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Abstract

Nature is rich with examples of the collective motion of animal groups, such as

flocks of birds or shoals of fish. The mechanisms of self-organization resulting in these

spectacular phenomena have received wide attention. Individual-based models are a

popular and promising approach to investigate and explain features of animal collec-

tive motion. The first part of this thesis gradually develops a novel modelling frame-

work for the collective motion of animals and justifies it by comparison to empirical

findings. Key aspects of the model are stochastic asynchronous updates and sensory

zone sampling of individuals. Higher updating frequencies are related to increased

levels of perceived threat and reduced stochastic effects leading to synchronisation

in moving groups. Sensory zone sampling, biased according to the distance between

individuals, provides a possible mechanism for the empirical finding that animals on

average only interact with a fixed number of nearest neighbours.

Many group-living animals show social preferences for relatives, familiar con-

specifics or individuals of similar attributes, such as size. How such preferences could

affect the collective motion of animal groups has been rather unexplored. The second

part of this thesis reviews previous theoretical work that combines the concepts of

social networks and collective motion. Although many of the models reviewed have

not been explored with ecology in mind, they present a current context in which a

biologically relevant theory can be developed. The modelling framework from the

first part is extended to include social connections as preferential reactions between

individuals. This is used to show that the structure of social networks could influ-

ence the cohesion of groups, the spatial position of individuals within groups and the

hierarchical dynamics within such groups.

This thesis aims to contribute possible mechanisms, testable hypotheses and an

informed starting point for future research on how social networks could affect animal

group movement.
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GENERAL INTRODUCTION

Collective motion in animals

The collective motion of animals occurs in numerous different forms, many of which

are familiar to us. Examples are shown in figure 1 on the previous page and include

tightly bound fish shoals, flocks of birds, clouds of midges and even pedestrian crowds.

The fact that more than fifty percent of fish species display synchronised movement

[Parrish et al., 2002] illustrates that many group-living animals can move in aggre-

gations of varying coordination levels. Flocks of birds flying in a line, a V-shaped

formation or forming dense clusters are common sights. Perhaps it is this ubiqui-

tousness that has resulted in the fascination of scientists from different disciplines

for animal group movement phenomena. Human investigation or observation of an-

imal collective motion can be traced back more than two-thousand years (Pliny, in

Rackham [1933]) and since then, the scientific literature has grown steadily, including

a wealth of theories and empirical observations, as well as anecdotes, on this topic

[Bajec and Heppner, 2009].

In the widest sense, animal collective motion could be described as movement

phenomena of animal aggregations. However, the examples given above already sug-

gest that animal group movement is not easily categorised. To give an example,

in fish, “schools” have been defined as polarised and synchronised groups (Pitcher

et al. [1976], citing Shaw). Furthermore, definitions for flight aggregations, flight for-

mations, flocks, herds, shoals, swarms and more exist, but despite these efforts no

consensus on the naming of animal group movement phenomena has been reached

in the literature [Bajec and Heppner, 2009]. Indicative of this problem is that the

website “Wikipedia”, an extensive online encyclopedia, contains to date no article on

the term “collective motion”, but does contain articles on subcategories of collective

motion such as flocking and shoaling [Wikipedia, 2011]. It is in the sense of investigat-

ing subcategories of animal collective motion, rather than in the sense of suggesting a

definitive description or explanation, that the title of this thesis is to be understood.

In addition to classifying and recording observations, two general questions have

been posed, in the context of investigating the collective motion of animals: why
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GENERAL INTRODUCTION

do groups of animals move the way they do, and how do they do it [Viscido et al.,

2005, Bajec and Heppner, 2009]? Human observers tend to record attributes of the

collective, such as degree of alignment, density or shape of moving animal groups and

it is tempting to assign biological meaning to all such observations [Parrish et al.,

2002]. Many possible reasons, such as risk dilution in the presence of predators,

mating opportunities and improved ability to find food, have been offered to answer

the first question [Hamilton, 1971, Parrish and Edelstein-Keshet, 1999, Krause and

Ruxton, 2002, Bajec and Heppner, 2009]. Theoretical research has even investigated

possible evolutionary scenarios that could explain aspects of group movement [Wood

and Ackland, 2007, Wood, 2010, Torney et al., 2010]. However, nearly identical

shapes to animal movement patterns can be found in systems of inanimate objects

(e.g. magnets aligning, planets circling each other) which could suggest that not all

that is observed actually has a direct biological reason [Parrish et al., 2002]. This

thesis is predominantly concerned with the second question and attempts to suggest

and test possible mechanisms underlying group movement.

According to Parrish and Edelstein-Keshet [1999], animal aggregations can be di-

vided into two classes: self-organising ones and ones that form and move exclusively

in response to external cues. The current consensus is that the collective motion of

animals is a self-organising system in which the combination of individual actions

result in the group behaviour we observe [Parrish and Edelstein-Keshet, 1999, Krause

and Ruxton, 2002, Sumpter, 2006, Bajec and Heppner, 2009]. More specifically, the

idea is that in addition to reacting to external cues, individuals react to the posi-

tion and movement of other group members. Group characteristics that result from

decentralised individual actions are “emergent properties” [Viscido et al., 2004] and

understanding how they arise is a difficult problem (e.g. Sumpter [2006]).

Depending on the size of groups, individuals often have no knowledge of the col-

lective, as it extends beyond their range of perception [Viscido et al., 2005, Sumpter,

2006]. Examples could be large flocks of starlings or shoals of fish in which indi-

viduals block the field of vision of others [Parrish and Edelstein-Keshet, 1999, Bal-
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GENERAL INTRODUCTION

lerini et al., 2008]. Even creatures with comparatively limited information processing

abilities, such as locusts, are capable of remarkably coordinated displays including

synchronised changes in group movement direction, for example [Buhl et al., 2006].

Such observations, combined with theoretical investigations, have led researchers to

suggest that animal collective motion is based on individual actions and that very

simple and local behavioural rules for identical individuals could in fact account for a

large variety of group movement characteristics [Parrish and Edelstein-Keshet, 1999,

Sumpter, 2006, Bajec and Heppner, 2009]. An example for such a behavioural rule

could be “move away from nearby individuals to avoid collisions”.

Although recent empirical advances have started to shed light on this by deriv-

ing information on individual behaviours from statistical analysis on entire groups

(e.g. Yates et al. [2009], Ballerini et al. [2008]), it is still the case that researchers

predominantly turn to theoretical approaches to investigate the mechanisms of ani-

mal collective motion (e.g. Conradt et al. [2009], Wood [2010], Hildenbrandt et al.

[2010]). One reason for this is that the simple rules that are believed to govern indi-

vidual behaviours are readily expressed in mathematical equations or “traffic rules”

for individuals [Parrish and Edelstein-Keshet, 1999, Sumpter, 2006]. These repre-

sentations or models of biological systems can then be used to formulate testable

predictions. Modelling animal collective motion also allows researchers to compare

the patterns produced by different hypothetical interaction rules to differentiate be-

tween behavioural causes and other effects [Parrish et al., 2002] - some patterns may

be a direct consequence of particular behaviours, whilst others may be a product

of simple biomechanics such as drag, for example. This thesis uses such a theoret-

ical modelling approach, closely linked to empirical findings, to investigate possible

mechanisms of animal collective motion.

The remainder of the introduction briefly outlines key ideas on concepts of how

animal collective motion is quantified and modelled. In addition, the concept of social

networks in animals is introduced.
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GENERAL INTRODUCTION

Quantifying the collective motion of animals

An early example of quantifying the movement of animal groups is the study of fish

shoals in well-lit tanks. Aoki [1980] filmed shoals of fish from above under controlled

conditions and extracted time series of the positions of individual fish in two di-

mensions from his films (see also figure 2). Using these trajectories, Aoki analysed

the speed distributions, internal structure, distribution of distances to nearest neigh-

bours, turning events and movement correlation of individuals in his fish shoals. Each

of these summary statistics is obtained by combining information on the relative po-

sition, movement direction or speed of all individuals or a subset of the group. An

example for a commonly used summary statistic is the distribution of nearest neigh-

bour distances. This is obtained by computing the distance of each individual to

its closest group member and is a useful measure for the density of groups [Cavagna

et al., 2008]. Aoki’s comprehensive analysis includes many initial attempts of analysis

techniques that are still applied to animal group movement trajectories.
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experimental
tank

video camera

computer

3   2.4 2.1
2   3.2 1.6
1   4.5 1.0
ID  x    y

Figure 2: Example for an animal motion tracking experimental set-up. Fish are placed in a

shallow experimental tank to justify analysis in two dimensions. Using a video camera placed

directly above the tank, the fish movement is recorded to a computer, where time series

of individual positions for individuals are extracted using motion tracking software. These

trajectories can then be used in further analysis.

Filming moving groups of animals, followed by the extraction of individual tra-
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GENERAL INTRODUCTION

jectories from the films and finally analysing these trajectories by using increasingly

sophisticated approaches, has been a successful method to quantify the collective mo-

tion of animals. This approach is reasonably accessible, facilitated by the availability

of motion tracking software (e.g. “SwisTrack”; Correll et al. [2006]), can be used in

experimental settings (e.g. Aoki [1980], Partridge and Pitcher [1980]), natural habi-

tats (e.g. Tien et al. [2004]) and on most grouping animals such as, fish, insects [Buhl

et al., 2006] and humans [Moussäıd et al., 2010].

Beyond observing animal movement under controlled conditions, experimental

manipulation has offered a useful tool to investigate possible mechanisms. Partridge

and Pitcher [1980] assessed the positioning of blindfolded fish or ones with severed

lateral lines to establish a sensory basis for fish schooling. Experiments with locust

swarms in annular arenas revealed that the density of insects inside the arena is

a driver for the frequency of switches in group movement directions [Buhl et al.,

2006]. In another example, scientists waded into streams to simulate predatory attacks

and measured how this affected the nearest neighbour distances and tendencies of

individuals to move towards other group members [Tien et al., 2004]. Chapter 1 of

this thesis makes use of different experimental conditions to alter the behaviour of

individuals.

The acquisition of large datasets has made it possible to infer information on

individual behaviours from group-level statistics. In a particularly striking example,

Ballerini et al. [2008] used stereo-photography to reconstruct the three-dimensional

positions of individual birds in flocks of starlings numbering close to three thousand

individuals. Very fine details of the internal structure of these flocks, invisible to the

naked eye, led to the conclusion that starlings interact with a fixed number of nearest

neighbours [Ballerini et al., 2008]. Previous to this finding, the consensus had been

that individuals interact with all group members within a fixed distance from them.

Further work on locusts marching in an arena, as already mentioned, investigated

stochastic effects in locust movement using a coarse-grained approximation of their

movement [Yates et al., 2009]. Yates et al. [2009] suggested that locusts respond to
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GENERAL INTRODUCTION

decreasing alignment of the group by increasing the randomness of their movement.

The importance of this type of research is that it offers the possibility to replace

theoretical speculation on interaction rules (see above) with concrete guidance for

how animals interact. The group-level characteristics of Ballerini et al. [2008] and

Yates et al. [2009] therefore provide a base-line to be achieved for theoretical research

aiming to suggest mechanisms for animal collective motion. Chapters 2 and 3 relate

the theoretical work in this thesis directly to the aforementioned findings.

In a different approach to filming animals, recent work has used GPS sensors to

obtain trajectories of animals in groups. This has been used to investigate leader-

follower relationships in pigeon flocks [Nagy et al., 2010] and leadership in herds of

cows based on the social status of individuals [Sárová et al., 2010]. Here, this approach

is not used explicitly, but in chapter 5 simulations are put in context with the results

of Nagy et al. [2010].

Modelling the collective motion of animals

Three different theoretical approaches to model animal aggregations have been iden-

tified [Parrish and Edelstein-Keshet, 1999]. First, the mean-field densities of aggrega-

tions can be described using continuum equations (e.g. partial differential equations).

Such models are only biologically relevant for large, dense groups without sharp dis-

continuities. Second, detailed equations of motion for individuals can be formulated,

assigning forces and velocities to individuals. Although these models come closer in

describing what individuals are doing, it is difficult to investigate them analytically

and often numerical simulations or approximate solutions are presented. Third, in-

dividuals are represented directly and their movement and behaviour is simulated

discretely by encoding simple rules such as “align with other group members”.

Models of the third type are often called “individual-based” models and imple-

ment responses of individuals to external cues and to the movement and positions of

other group members. Typically, individual actions are modelled as a combination of

biomechanical or environmental forces (e.g. drag; Czirók et al. [1999]), attraction or
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GENERAL INTRODUCTION

repulsion tendencies (e.g. collision avoidance; Couzin et al. [2002]), alignment or be-

haviour matching (e.g. velocity matching; Reynolds [1987]) and random or stochastic

effects (e.g. sensory errors; Buhl et al. [2006]). Most models assume that all indi-

viduals are identical and therefore illustrate that entirely leaderless animal collective

motion is possible. Furthermore, Viscido et al. [2005] suggest that movement rules

should ideally be biologically realistic at the individual, group and population levels.

Figure 3 illustrates the principles and patterns produced by individual-based models

for collective motion.

21

3

zor
zoo

zoa

(b)

(c)

(d)

(a)

Figure 3: Example for an individual-based model for collective motion and patterns produced

by it. (a) schematic illustration of three individuals (labelled 1 to 3), moving at a constant

speed, showing the behavioural zones of individual 1. Each individual reacts to others by

following three behavioural rules, one rule for each non-overlapping part of its behavioural

zone. zor - zone of repulsion: “move away from other individuals to avoid collisions”. zoo

- zone of orientation: “align with others”. For example, individual 1 has a tendency to

align with individual 2. zoa - zone of attraction: “move towards others to maintain group

cohesion”. The exact way in which the different behavioural rules combine can vary. For

example, collision avoidance may override the other behaviours. Note the blind region directly

behind individuals in the zoo and zoa. Varying the size of the blind region, the relative extent

of the behavioural zones, or the size of stochastic effects results in different realistic patterns of

moving groups. (b) highly aligned group, (c) “milling” behaviour. (d) un-aligned “swarming”.

Figure inspired by findings in Couzin et al. [2002].
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GENERAL INTRODUCTION

Individual-based models are by far the most popular and intuitive theoretical ap-

proach to animal collective motion, as they can produce realistic behaviour [Parrish

and Edelstein-Keshet, 1999] and it is easy to explore the impact of varying individual

behaviours [Viscido et al., 2004]. However, this hints at one of the weaknesses of such

models. Many individual behaviour rules can result in realistic movement patterns

and it is therefore difficult to establish which rules animals actually follow [Parrish

and Edelstein-Keshet, 1999, Viscido et al., 2004, Sumpter, 2006]. While work has

started towards directly inferring animal movement rules from individual trajectories

(e.g. Eriksson et al. [2010]), this approach is, to date, not yet fully developed and ap-

plied. Recent advances in quantifying animal collective motion have made it possible

to conduct an empirically inspired debate about mechanistic details of model formu-

lation and to compare simulations to empirical data to a greater extent (see above).

Typically, when simulations are compared to empirical data, models are not fitted to

data quantitatively. Rather, a qualitative comparison of group-level characteristics is

performed (e.g. Buhl et al. [2006], Yates et al. [2009]). This is the approach taken

in this thesis: qualitative comparisons of individual-based models to empirical data

and the development of testable hypotheses are used to demonstrate the biological

relevance of the theoretical approach.

The success of individual-based models for collective motion is demonstrated by

the variety of models and model analysis approaches in the literature. At times this

has resulted in the complaint that the degree of replication across these studies is

too low to allow for meaningful comparisons [Parrish et al., 2002]. Early biological

models simulated small groups of less than fifty individuals and limited movement to

two spatial dimensions (e.g. Aoki [1982], Huth and Wissel [1992]). The nature of these

early studies was mostly exploratory. For example, Huth and Wissel [1992] found that,

in their model, interactions of individuals with a single neighbour were insufficient to

produce realistic shoaling patterns. Reynolds [1987] initiated a new application by

using a model for collective motion in three dimensions for the computer animation

of large animal groups. The basic idea of his model with individuals, or “boids”,
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GENERAL INTRODUCTION

following three behavioural rules has been introduced above. Additionally, the model

explicitly included features such as banking of individuals whilst turning and the

impact of gravity, to create life-like animations that were subsequently used in motion

pictures and computer games (see figure 4). This use of models has enjoyed popularity

ever since, but the progress in this field is difficult to track as publishing innovations

would have financial consequences (see also; Bajec and Heppner [2009]).

bank
angle

resultant
acceleration

direction of flight

global y

global z

local y
local x

centrifugal force

gravity

global x

Figure 4: Adapting individual behaviours for the computer animation of collective motion.

Individuals re-align their local coordinate system (defined by their body) whilst turning, to

balance the combination of gravity and centrifugal force acting upon them with the uplift

produced by their wings and thrust. This behaviour is called “banking” and including such

aspects of bird flight in individual-based models results in a visually more convincing represen-

tation of animal collective motion than the simpler approach illustrated in figure 3. Redrawn

from Reynolds [1987].

Individual-based models for collective motion gained an even wider audience when

physicists adapted the idea. In substantially simplified models, individuals were es-

sentially modelled as particles with constant velocity and an alignment behaviour

subject to an error of variable size [Vicsek et al., 1995, Toner and Tu, 1995]. Sim-

plification was taken even further by considering collective motion in one dimension

[Czirók et al., 1999, O’Loan and Evans, 1999, Raymond and Evans, 2006]. Physicists

were primarily interested in discovering different “phases” in collective motion and in

investigating the transition between phases [Vicsek et al., 1995, Grégoire and Chaté,
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2004]. These phases are analogous to different states of chemical substances, such

as gaseous or liquid, and therefore describe particular characteristics of group move-

ment. When the values of parameters in simulations are systematically varied, the

patterns produced also vary and may change from one phase to another. For example,

as the size of stochastic effects in the movement of individuals is increased, groups

may stop displaying a highly aligned state (see figure 3b) and instead display a less

organised pattern (see figure 3d). These investigations may help to place systems of

“self-propelled particles” in the wider context of physics.

Models for collective motion have also been successfully used to inform and im-

prove the control of crowd and vehicular dynamics. For example, features of escape

panic have been simulated and then used to improve the design of public buildings

[Helbing et al., 2000]. Most models in this field work with forces between individuals

and therefore equations of motion for individuals. However, the inclusion of social in-

teractions and the difficulty of solving these equations analytically effectively requires

explicit simulation of each individual [Braun et al., 2003, Moussäıd et al., 2010]. In

contrast to many biologically motivated models, the study of crowd dynamics of-

ten requires explicit consideration of limiting boundary conditions, such as walls or

emergency exits of limited width [Helbing et al., 2000, Braun et al., 2003].

Another possible application for the theory of collective motion is directly linked

to technological advances. Developments in electronics have meant that it has become

feasible to produce and access large numbers of identical robots. This has made the

design of swarms of autonomous robots a topic of research. Scientists have used mod-

els for collective motion to suggest suitable control algorithms and, more generally, to

determine what conditions robot interactions have to satisfy to achieve coordinated

movement (e.g. Liu et al. [2003], Tanner [2004], Lin et al. [2005], Schuresko and Cortés

[2009]). Here is not the place to discuss why exactly it may be beneficial to design

swarms of robots with decentralised control and it suffices to note that this concept

has been embraced enthusiastically by engineers and computer scientists (e.g. Kelly

and Keating [1996], Şahin et al. [2002], Jadbabaie et al. [2003], Liu et al. [2009]).

20



GENERAL INTRODUCTION

Biological applications of individual-based models for animal collective motion

have become increasingly sophisticated by including blind angles in individuals’ field of

perception [Couzin et al., 2002], explicitly modelling the lateral line of fish (Hemelrijk

and Hildenbrandt [2008]; see figure 5), accounting for the size of individuals [Hemelrijk

and Kunz, 2005], including responses to obstacles (in the context of escape panic

in humans Helbing et al. [2000]) and investigating leadership [Couzin et al., 2005,

Conradt et al., 2009]. In a different approach, simple models are compared directly

(qualitatively) to empirical data to disentangle the basic principles of animal collective

motion [Buhl et al., 2006, Yates et al., 2009, Moussäıd et al., 2010].

��
��
��
��

��
��
��
��

zoa

zor

zoo

Figure 5: Illustration of model interaction zones, explicitly considering the possible influences

of lateral lines in fish. Compare this to the interaction zones in figure 3. Redrawn from

Hemelrijk and Kunz [2005].

The discussion above illustrates the breadth and diversity of approaches for mod-

elling collective motion. Chapter 4 of this thesis attempts to bring together approaches

from different fields to provide an informed starting point for further study.

Social networks in animals

Networks are a popular and successful tool to represent data [Newman, 2010]. In

animal social networks, nodes represent individuals and edges represent connections,

such as social preferences [Croft et al., 2008]. The social network approach offers one

conceptual framework to study social organisation in animals at all levels (individual,

dyad, group, population; Krause et al. [2007]).
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Social networks are constructed by recording interactions, or affiliations, between

animals [Croft et al., 2008]. For example, if one monkey grooms another, the two

could be considered to have a social connection [Sueur et al., 2010]. Alternatively,

in dolphins, individuals that are consistently members of the same group are often

considered to have social preferences for each other [Lusseau et al., 2006, Lusseau,

2007]. The latter approach to record social associations is further explained in figure 6.

Associations defined via group membership, also known as the “gambit of the group”

[Whitehead and Dufault, 1999], assume all individuals within one group have social

associations. Multiple observations of group membership are used to construct social

networks for analysis. Therefore, these social networks represent information on the

spatial association of individuals accumulated over multiple observations. Since pairs

of individuals may be found in the same group more than once, these networks are

either weighted, according to the number of times pair-wise associations are observed,

or thresholded by only considering pair-wise associations that are observed more than

a fixed number of times [Croft et al., 2008].
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Figure 6: Constructing animal social networks from spatial associations. (a) shows a spa-

tial configuration of five fish. Numbers assign individual IDs and colours illustrate possible

differences in gender of the fish. (b) shows social associations constructed from the situation

in (a). The solid lines between individuals, or nodes, in the network indicate pairs that are

within a threshold distance from each other (chosen appropriately). Groups are defined as all

individuals which are directly or indirectly connected by solid lines. Defining associations via

group membership results in individuals 1 and 4 being connected (dashed line).

Using such methods, a network of social connections between individuals can be
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assembled [Whitehead, 2008]. Once animal social networks are assembled, they can

be analysed for non-random features using a large variety of analysis techniques [Croft

et al., 2008, Whitehead, 2008, Newman, 2010]. Such techniques have been applied

successfully to populations of fish [Croft et al., 2004], dolphins [Frère et al., 2010],

buffaloes [Cross et al., 2005] and many other animals [Croft et al., 2008]. Findings of

animal social network analyses include assortment by trait, such as size or sex (i.e.,

individuals of the same sex and similar size prefer to shoal together), behavioural as-

sortment, preferential pairwise connections between familiar individuals, active avoid-

ance between individuals, and key individuals that link otherwise disconnected groups

[Griffiths and Magurran, 1999, Croft et al., 2004, Lusseau and Newman, 2004, Croft

et al., 2005, 2009, Frère et al., 2010].

Many of the approaches in the literature to construct animal social networks rely

on spatial associations of animals [Croft et al., 2008, Whitehead, 2008]. Individual or

group movement is a necessary requirement for spatial proximity. Therefore, much

work on animal social networks underlies the assumption that affiliations impact on,

or are reflected in, the results of individual or group movement. This is investigated

in the second part of this thesis. Chapter 4 makes the concept of underlying social

networks explicit in the context of collective motion and reviews previous modelling

work in detail. In effect, subtle differences between individuals are introduced by

considering social networks underlying moving groups. While individuals may have

similar physical properties, such as speed and perception range, they may differ in

their position in preference networks. Chapter 5 of this thesis suggests how this could

impact on aspects of animal collective motion.

This introduction to animal social networks is deliberately kept brief and the

reader is referred to chapter 4, a published review article on modelling the combination

of social network structures and collective motion in animals.
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Thesis structure

This thesis is organised in two parts. The first part consists of three chapters and

gradually develops and justifies a novel modelling framework for the collective motion

of animals. This aims to create a theoretical basis that is tested against empirical

evidence and is then extended to go beyond current empirical knowledge in the second

part of this thesis. In chapter 1, the concept of asynchronous, stochastic updates is

introduced in two dimensions. Varying update rates produce testable hypotheses and

offer a possible explanation for how perceived threat increases the synchronization

in collectively moving animal groups. This is subsequently tested and verified in an

empirical system. Chapter 2 extends the model by including sensory zone sampling

of individuals. The importance of the update rate in the model and its relatedness

to commonly included stochastic errors, or noise, is illustrated. By qualitatively

comparing the model to empirical data on noise terms in locust groups published

elsewhere, the biological relevance of the model extension is demonstrated. In chapter

3, the modelling framework is further extended by making the sensory zone sampling

of individuals dependent on distances between individuals. Simulations reproduce

findings on the internal structure of starling flocks. This helps to explain the meaning

of the empirical finding suggesting that on average starlings only interact with their

six to seven closest neighbours.

The second part of the thesis consists of two chapters. As mentioned above, chap-

ter 4 attempts to systematically introduce the concept of underlying social networks

in the context of collective motion and reviews previous modelling work in detail.

Chapter 5 takes these ideas further and produces testable predictions for how under-

lying social networks could impact on three aspects of animal group movement. This

is achieved by the final extension of the modelling framework to include preferential

updating between socially affiliated individuals.

The introduction of this thesis does not provide fine details. This is to avoid

repetition, since the research in each chapter is introduced in the context of previous

work in the field. Each chapter is a published manuscript and is presented as it
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appears in print with supplementary information added as an appendix at the end of

chapters.
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A novel modelling framework for

the collective motion of animals
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Chapter 1

How perceived threat increases

synchronization in collectively

moving animal groups

Published manuscript

N.W.F. Bode, J.J. Faria, D.W. Franks, J. Krause, and A.J. Wood. How perceived

threat increases synchronization in collectively moving animal groups. Proc. R. Soc.

277: 3065-3070, 2010.
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Abstract

Nature is rich with many different examples of the cohesive motion of

animals. Previous attempts to model collective motion have primarily fo-

cused on group behaviours of identical individuals. In contrast, we put our

emphasis on modelling the contributions of different individual-level char-

acteristics within such groups by using stochastic asynchronous updating

of individual positions and orientations. Our model predicts that higher

updating frequency, which we relate to perceived threat, leads to more

synchronized group movement with speed and nearest-neighbour distribu-

tions becoming more uniform. Experiments with three-spined sticklebacks

(Gasterosteus aculeatus) that were exposed to different threat levels pro-

vide strong empirical support for our predictions. Our results suggest that

the behaviour of fish (at different states of agitation) can be explained by

a single parameter in our model: the updating frequency. We postulate

a mechanism for collective behavioural changes in different environment-

induced contexts, and explain our findings with reference to confusion and

oddity effects.

1.1 Introduction

The ubiquitous features observed in animal collectives have inspired researchers from

a range of disciplines to describe, model, and reproduce these extraordinary displays

of coordinated behaviour [Sumpter, 2006]. Most group-living animals are able to move

coherently and collectively, preserving common features such as coordinated turns,

maintenance of internal structures, and apparently leaderless movement. Examples

include the tightly bound tori exhibited by large shoals of sardines under predation

pressure [Parrish et al., 2002] and the striking pre-roosting displays of starlings [Bal-

lerini et al., 2008]. Despite considerable research interest in group coordination there

is still a significant gap between theory and experimental data. Attempts to bridge
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this gap are hindered by the emergent nature of collective motion [Viscido et al., 2004]

and matching modelling studies to empirical data - as, for example, in Buhl et al.

[2006] and Yates et al. [2009] - remains a challenging goal in this field.

Models have been central to understanding the mechanisms behind collective an-

imal motion [Krause and Ruxton, 2002]. Individual-based models in particular have

allowed researchers to examine the emergence of different collective behaviours re-

sulting from simple mechanisms at the level of the individual [Krause and Ruxton,

2002]. These models typically assume that identical individuals react to the position

and movement of their nearest conspecifics by a combination of alignment, attrac-

tion, and repulsion [Krause and Ruxton, 2002]. Originally based on the extensive

work by Aoki [1982], these simple ideas were also adopted in physics [Vicsek et al.,

1995], computer science [Reynolds, 1987] and control engineering [Liu et al., 2003].

In biology the connection between the metric inter-individual distance and the sub-

sequent behaviour has given rise to a family of models investigated computationally

[Couzin et al., 2002] and tested empirically [Tien et al., 2004]. Models have been suc-

cessful in shaping explanations and understanding mechanisms for different collective

behaviours [Couzin et al., 2002, 2005, Hemelrijk and Hildenbrandt, 2008, Hoare et al.,

2004, Viscido et al., 2005], but only at a qualitative level.

One of the earliest empirical studies to quantify individual trajectories in collec-

tive motion was performed almost three decades ago [Aoki, 1980]. In his experiments,

Aoki filmed shoals of tamoroko (Gnathopogon elongatus) and Japanese horse mack-

erel (Trachurus japonicus) under controlled conditions and extracted time series of

the positions of individual fish from his films. Aoki assembled the distribution of

speeds and nearest-neighbour distance distributions of individuals within fish shoals.

It is surprising that so few models incorporate these findings and no model explains

them. Most modelling studies, for example, use a constant and homogeneous speed

(e.g. Couzin et al. [2002]). Some studies have used Aoki’s data by drawing an instan-

taneous speed at each time-step from an appropriate distribution [Aoki, 1982, Huth

and Wissel, 1992], but they do not explain the emergence of this distribution from first
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principles. In this article, we construct a model in which the speed distributions are

emergent purely from the local interactions between the group members, and discuss

its consequences in the context of experimental work on fish shoals.

1.2 Material and Methods

(a) Computational Model

We have developed an individual-based model of group interactions, based on local

rules, that replicates the speed distributions found in Aokis and our experiments. The

basis of our approach is to adopt stochastic asynchronous updating of individual fish

positions and orientations; rather than using deterministic and sequential updating at

each time-step, fish can react to external stimuli with a stochastic rate. The average

behaviour of individuals over short time intervals then varies probabilistically. Models

with asynchronous updating have been previously introduced in simple one- and two-

dimensional models [O’Loan and Evans, 1999, Raymond and Evans, 2006, Samiloglu

et al., 2006, Liu et al., 2003], but we believe their potential to explain empirical

observations in real animals, such as effectively modelling fish speed distributions,

has been overlooked.

Individuals are represented by points on the plane moving continuously in a

toroidal space (a square box of side length L with periodic boundary conditions).

The notation and nomenclature below follows that of Couzin et al. [2002]. Let N

be the number of individuals, indexed i, with positions xi = (xj , yj) and direction of

motion θi. We assume that each individual reacts with an identical stochastic rate,

enabling us to exploit a particle picking approach to exactly simulate the implicit

underlying Master Equation of the system. The algorithmic implementation of our

model contains aspects of earlier work [Couzin et al., 2002, O’Loan and Evans, 1999,

Tsitsiklis et al., 1986] and proceeds as follows:

1. Choose individual j at random, where j ∈ {1, ..., N} (equal probabilities).

2. Decide which one of two behavioural rules j will follow in this step (probabilities
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p and (1− p), respectively).

3. Update xj and θj according to the behavioural rule chosen in step (2).

N realisations of steps (1) to (3) constitute one update step of length ∆t seconds. The

duration of this update step corresponds to the reciprocal value of the rate at which

individuals update. The output of the model is obtained by recording the positions

of all individuals every T = λ∆t seconds, where λ ≥ 1. This is analogous to how data

of animal motion is obtained empirically where individual positions and orientations

are sampled according to the frame rate of video recordings [Aoki, 1980, Buhl et al.,

2006]. In our simulations we keep T fixed and only vary ∆t and therefore also λ.

We use purely metric behaviour rules in this implementation, based on those of

Couzin et al. [2002]. We will defer commenting on the appropriateness of this approach

given recent findings [Ballerini et al., 2008] until the discussion. Each individual

obtains information from interaction zones - zone of repulsion (zor), zone of orientation

(zoo) and zone of attraction (zoa) - which are described by concentric circles, centred

on the individual, of radius rR, rO and rA, respectively. Both the zoo and the zoa

are punctured by a “blind angle”, α, in which individuals cannot perceive other

individuals. Suppose individual j has been chosen in the algorithm described above;

our first behavioural rule, which is selected with probability p, implements either

alignment or repulsion. The individual tries to move away from conspecifics within

its zor or aligns to conspecifics in its zoo, where, in common with other models of

collective motion, repulsive motion takes precedence over alignment. The distance of

j to its nearest neighbour determines the behaviour. Let R ⊆ {1, ..., N} be the set

of individuals within the zor of j, excluding j. If |R| ≥ 1, the desired direction of

motion of j is given by

θdesiredj = angle

(

−
∑

i∈R

rij
|rij|

)

, (1.1)

where angle(y) denotes the angle the vector y makes with the horizontal axis and

rij = (xi−xj) is the vector in the direction from j to i. However, if the distance from

j to its nearest neighbour is larger than rR, then j aligns with its conspecifics. Let
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O ⊆ {1, ..., N} be the set of individuals within the zoo of j, excluding j. If |O| ≥ 1,

the desired direction of motion of j is given by

θdesiredj =
1

|O|

∑

i∈O

θi. (1.2)

If both R and O are empty, then θdesiredj = θj, and the individual does not deviate

its direction. It executes this move with an instantaneous speed v = vO.

In the alternative case we select our second behavioural rule with probability

(1 − p). In this case individual j gets attracted to conspecifics in its zoa and the

distance rij once more determines its behaviour. Let A ⊆ {1, ..., N} be the set of

individuals within the zoa of j, excluding j. If |A| ≥ 1, the desired direction of

motion of j is given by

θdesiredj = angle

(

∑

i∈A

rij
|rij|

)

. (1.3)

Once more, if A is empty, then θdesiredj = θj , and no deviation occurs. Subsequent

movement happens at instantaneous speed v = vA. Throughout this study, we choose

p = 0.5, in agreement with previous research in which an equal weight is assigned to

orientation and attraction in individuals [Couzin et al., 2002]. For both behavioural

rules, once the desired direction of motion for j is calculated, the updated direction of

motion, new(θj) is found by rotating the individual j by at most β∆t from θj towards

θdesiredj . Here, β denotes the maximum turning rate for individuals. Every time an

individual j is updated, it is moved by v units in the updated direction

new(xj) = xj + v∆t

(

cos(new(θj))

sin(new(θj))

)

, (1.4)

where v is selected to be either vO (alignment or repulsion) or vA (attraction), as

described above. The average speed of an individual, over many update steps, is

consequently given by vav = pvO+(1−p)vA. Parameters used in the model simulations

are as follows: N = 8, L = 168.73 cm, T = 0.04 s, p = 0.5 , α = 270o, β = 40o/s,

vO = 8.44 cm/s, vA = 2vO, rR = 5.06 cm, rO = 20.25 cm, rA = 33.75 cm, values of

∆t are given in the figure legends and justified in the appendix.
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In a simple stochastic implementation, all individuals would have an identical

instantaneous speed, independent of the rule they follow and the behaviour of their

fellow individuals. This would produce an unskewed Poisson distribution for the

individual speeds (when averaged over time) that is unsupported by empirical data.

The novelty of our implementation is that individuals adopt differing speeds according

to the behavioural rule they follow. In such a way, we can obtain skewed distributions

for the individual speeds as observed in empirical data (see below).

An inherent parameter in our model is the length of the update step ∆t (in sec-

onds). This parameter reciprocally rescales the reaction rates in the system: small

values of ∆t imply rapid updates, while large values of ∆t imply slow updates. It

is important to stress at this stage that we are not explicitly relating the size of ∆t

to biological or neurological reaction times of animals (but discuss the possibility of

a connection later in this article). In addition, no direct physical meaning should

be attached to the instantaneous positions on time-scales close to ∆t. The fact that

some individual might not move for one or more update steps does not imply they

have stopped; rather that they are reacting more slowly to their surrounding than

their fellows. At first glance it may appear that the same effect we obtain by varying

∆t could be obtained by varying the speed at which individuals move. This is not

the case. In our model different values of ∆t do not alter the average speed at which

individuals move, but they do alter the average rate at which individuals act upon

information from within their sensory zones. Imposing different average speeds (i.e.

changing vA and vO) changes the relationship between the average speed of individ-

uals and the extent of their sensory zones.

(b) Experimental methods

We extended Aoki’s experiments [Aoki, 1980] using small shoals of eight three-spined

sticklebacks, Gasterosteus aculeatus, within an indoor circular tank of 1 m diameter.

From individual movement trajectories we constructed the distributions of the indi-
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vidual speeds of fish within a shoal and the distribution of the individuals’ distances to

their nearest shoal mates (nearest-neighbour distances). To test predictions from our

model, we designed a number of new experimental treatments (table 1.1) to produce

varying levels of agitation in the fish including most agitation (treatment 1), least

agitation (treatment 4) and intermediate agitation levels. This allowed us to com-

pare different model outcomes under different conditions to experimental data under

parallel conditions. Evidence suggests that sticklebacks are in a greater state of agita-

tion or excitement in higher light levels since in experiments fish of this species prefer

shaded regions in tanks [Ward et al., 2008]. Fish that perceive a higher predation

threat tend to use more shaded areas than fish which don’t perceive the same level

of threat [McCartt et al., 1997]. This suggests that they perceive a lower predation

threat in shaded areas than in well-lit areas. An explanation for this could be that fish

can see approaching predators which are not in shaded areas better from the shade,

and that fish are less likely to be seen in shade [Helfman, 1981]. We also varied the

water depth in our experimental tank. Given the white background of the tank, the

fish bodies are clearly visible and thus make fish potentially conspicuous to over-head

predators such as kingfishers and herons. In this situation sticklebacks show a strong

tendency to move into deeper water (J. Krause 2008, unpublished data).

Table 1.1: Experimental conditions and corresponding treatments identities (IDs)

from most agitation (1) to least agitation (4).

treatment ID experimental conditions

1 shallow water (2 cm), bright light (690 lux)

2 deep water (8 cm), bright light (690 lux)

3 shallow water (2 cm), dimmed light (20 lux)

4 deep water (8 cm), dimmed light (20 lux)
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1.3 Results

(a) Model output

Our model produces skewed speed distributions (in two dimensions) similar to em-

pirical data as an emergent property of our novel update scheme (figure 1.1c,d).

Individual speeds are approximated by calculating the distance covered by fish over

a fixed time-step, with each time-step T comprising many multiples of ∆t. This is

analogous to how speed distributions are determined empirically where fish speeds are

averaged over a range of video frames (see appendix; see also Aoki [1980]). The effect

of varying ∆t is striking: large values of ∆t promote a strongly positively skewed

distribution and small values reduce the skewness and give rise to speed distributions

which resemble normal, or Gaussian, distributions (figure 1.1c,d). We do not claim to

reproduce speed distributions of real fish quantitatively, as the influence of important

factors on the speed distributions is unknown (e.g. interaction with environment).

Rather, we show that our model is capable of producing similar speed distributions

to the data without a priori assumptions or explicit addition of stochastic noise. Fur-

thermore, our model suggests that the shape of the speed distributions can be varied

by changing one parameter in our model.

From the speed and nearest neighbour distance distributions of the simulated

shoals we extracted three summary statistics: the standard deviation of the speed

distributions, skewness of the speed distributions, and the median of the nearest-

neighbour distance distributions. Substantial changes in the summary statistics for

different values of ∆t are observed (figure 1.2a-c). Most prominent is the reduction in

nearest neighbour distance (for a given fish this is the distance between this fish and

the fish closest to it). Such a decrease in nearest neighbour distances or more compact

group structures have previously been observed in empirical experiments for increasing

threat or agitation levels [Tien et al., 2004, Krause, 1993, Carere et al., 2009]. The

effect of ∆t on the summary statistics highlights that this parameter is important for

biological interpretation and is not just an invisible model implementation parameter.
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We propose that values of ∆t in our model correspond to states of agitation in

animals. For example, low values of ∆t (that is rapid updates) would correspond

to high states of agitation, which might occur when animals feel threatened or at

risk [Krause and Ruxton, 2002]. Our model predicts that increasing agitation makes

the speed distribution of the shoal become more uniform and causes the nearest-

neighbour distribution to contract. This allows us to form the following empirically

testable hypothesis: the speed distributions and nearest-neighbour distributions of

fish at different levels of agitation should qualitatively correspond to distributions in

our model where ∆t is varied appropriately. Specifically, our model predicts that:

• High states of agitation (low values ∆t) should result in strongly peaked, unskewed

speed distributions and a contraction of nearest-neighbour distances.

• Low states of agitation (high values of ∆t should result in well-spread distribu-

tions with positive skew and an increase in nearest-neighbour distances.

(b) Empirical Findings

Using our empirical system we confirmed previous results [Aoki, 1980] in finding long-

tailed and positively skewed speed distributions (figure 1.1a,b). We then extracted

the same three summary statistics from the empirical data as we did for the simulated

data. To investigate the statistical significance of differences in the measurements of

the summary statistics across treatments, we used a generalised linear mixed model

(GLMM), taking into account the differences between shoals and the order in which

the treatments were applied. In our analysis of the empirical data, we found that

all three summary statistics were affected by one or more of the treatments in a

statistically significant way (figure 1.2). Statistically significant differences between

treatment 1 and treatments 2 and 3 (e.g. figure 1.2d,f) illustrate that water depth

and light intensity can separately affect the animals’ movement patterns. The lack

of monotony in some of the trends is due to behavioural factors we cannot control,

which are discussed in the appendix. The fact that not all of the summary statistics
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show statistically significant differences between treatment 1 and treatments 2 and 3

is likely to be due to the fact that the contrast between these treatments is not large

enough.

Overall, our experimental findings confirmed the predictions from our model that

increasing agitation in fish makes the speed distribution of the shoal become more

uniform (i.e. it decreases the distribution’s standard deviation and skewness, and

makes the nearest neighbour-distribution contract figure 1.2).

1.4 Discussion

This study is a combined modelling and empirical effort that has successfully pre-

dicted and reproduced emergent empirical properties of coordinated group behaviour

from a model based entirely on local interactions. Our model is relatively simple and

therefore provides an ideal starting point for the inclusion of individual characteristics

and excitement levels into models of collective motion based on stochasticity. Our

model produces novel predictions as to how group properties will alter in different

behavioural contexts, and our experiments provide supporting evidence for these pre-

dictions. This reveals the importance of threat or risk levels perceived by fish for the

composition of their movement trajectories and coordination. It has been suggested

that fish react more quickly to shoal mates in situations of higher perceived risk or

threat levels [Ward et al., 2008]. However, to our knowledge, this is the first time that

the updating frequency of individuals has been modelled and tested against empirical

data explicitly.

Our parameter ∆t is the mean inter-update time that captures the relative fre-

quency of updates within a given sampling time frame. It is important to emphasize

that we are not making an explicit claim that this parameter is derivable from neu-

rological information; we regard this parameter as controlling the dynamic averaging

of the positional information from nearby conspecifics. The precise mechanism and

quantities in our model provide an interesting avenue to be tested in further empirical

research, focused on understanding the physiological interpretation of the stochastic
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Figure 1.1: In (a) and (b) we show empirical speed distributions for two different shoals

of eight fish over 10 min in identical experimental conditions (treatment 1, see table 1.1).

Note how the shape of the speed distributions varies between groups. In (c) and (d) we show

simulated speed distributions for different values of ∆t, which illustrate the model’s capability

to produce qualitatively similar speed distributions to those observed in the empirical data.

To facilitate comparison, we have ensured that all histograms in this figure have area 1.

Summary statistics are given for comparison: (a): mean = 13.3 ± 6.2 (s.d.) cm/s, skewness

= 0.1; (b): mean = 9.1± 4.8 (s.d.) cm/s, skewness = 0.3; (c): mean = 12.7± 7.3 (s.d.) cm/s,

skewness = 0.6; (d): mean = 12.7 ± 2.8 (s.d.) cm/s, skewness = 0.2. See text for details of

the data analysis and the model simulations.
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Figure 1.2: Summary statistics for a shoal of eight fish for model simulations (a-c, five

replicates) and empirical data (d-f, eight replicates) for varying ∆t and different treatments,

respectively. The model simulations are not fitted to the data. Error bars show 1 standard

deviation from the mean; in (a) and (b) the error bars are smaller than the symbols. In

(a) and (b) we show the mean of the standard deviations and skewness of normalized speed

distributions (to account for varying group speeds). Both these statistics, as well as (c) the

mean of the median nearest-neighbour distances, increase with increasing values of ∆t (note

the log scale on the x-axis, ∆t is measured in seconds). This trend is qualitatively replicated in

the empirical data for decreasing perceived agitation levels (d-f). The effect of the treatments

is analysed using a GLMM with predicting factors (categorical) treatment ID + sequential

treatment order and random factor (categorical) replicate ID (see also appendix). Significant

differences between treatment 1 and the other treatments are indicated with asterisks above

the brackets (* p < 0.05, ** p < 0.001).
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rates we find emerging from our qualitative model comparisons. The simulations pre-

sented in figures 1.1 and 1.2 use values of ∆t that are significantly lower than the

0.1 s that has been previously recorded as the reaction time for fish [Partridge and

Pitcher, 1980], indicating that many multiples of ∆t make up a responsive reaction

from the organism. The effect of reducing the step size in algorithms such as ours has

previously been considered, but not in a biological context [Tsitsiklis et al., 1986].

It has recently been argued that the behavioural rules of collectively moving an-

imals are based on the number of conspecifics each individual tracks (“topological

framework”) rather than on the distance between individuals as in our model [Bal-

lerini et al., 2008]. Some of the phenomena Ballerini and co-workers observed in their

data have been reproduced in extensive simulation studies [Hildenbrandt et al., 2010]

by assuming a priori that individuals only interact with a limited number of shoal

mates. However, we suggest that this is not necessarily the only way in which the

observations made in Ballerini et al. [2008] may arise in a model (see also chapter 3).

Furthermore, a simple implementation of a topological framework, in which individu-

als only interact with a fixed number of their nearest neighbours, would not affect the

emergence of speed distributions in our model. For these reasons we have continued

to use a distance-based approach.

We suggest that by moving in a more coherent fashion with shoal members, an

individual is able to reduce the risk of being targeted by predators as the “odd one

out”, often termed the oddity effect [Krause and Ruxton, 2002]. The confusion effect

- where predators find it more difficult to target an individual in a group than to tar-

get an isolated individual - is easily broken if one individual differs morphologically

or behaviourally from others [Krause and Ruxton, 2002]. For example, in a threat-

ened group where nearest-neighbour distances are generally low, an individual with a

large nearest-neighbour distance will stand out from the crowd and probably be tar-

geted by predators. This provides a mechanistic explanation for our findings: greater

risk produces higher updating frequencies and higher updating frequencies produce

lower oddity. Therefore, we suggest that the oddity effect could be the driving force
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for the behavioural changes in different contexts and the high degree of synchrony

characterizing threat-induced collective behaviours.

Finally, our method of measuring the uniformity of speed distributions and nearest-

neighbour distances could provide a simple way of empirically assessing stress levels

of collectively grouping animals in a remotely collectable and non-obtrusive way.
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1.5 Appendix

Theoretical methods

Justification for asynchronous updating scheme

Asynchronous updates are integral to our model. Consider a synchronous analogue

of our model in which all individuals update at the same time but still choose the

behavioural rule they follow at random. If p = 0.5 such a model will always result in

symmetric distributions of individual speeds for long simulations. Such speed distri-

butions do not have a positive skewness as observed in empirical data. Furthermore,

adding a symmetric error or noise term to the desired movement of individuals in

the model (as commonly done in the literature) will not result in positively skewed

speed distributions for long simulations. However, if we relax the assumption that

collectively moving animals align and attract on average to the same extent, that is

to say, if we allow p < 0.5 or p > 0.5 in a synchronous version of our model, we

can obtain skewed speed distributions. These speed distributions would be truncated
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with lower value vO and upper value vA.

Model simulations and parameters

All simulations were initialised with random positions inside a box of side length

L = 33.75 cm to ensure that the simulated animals were initially capable of perceiving

each other. Two seconds of warm-up time were allowed before output was recorded

for 4000 seconds in a toroidal box of side length L = 168.73 cm. The warm-up was

introduced to ensure that no initial flock formation data was used in the analysis.

In this study we were interested in properties of moving coherent groups and not in

properties of assembling groups. Three intervals of 400 s of simulated collective motion

spread evenly over the total simulation length were used for analysis. Parameters used

in the model simulations: N = 8, L = 168.73 cm, T = 0.04 s, p = 0.5, α = 270o,

β = 40o/s, vO = 8.44 cm/s, vA = 2vO, rR = 5.06 cm, rO = 20.25 cm, rA = 33.75

cm, values of ∆t are given in the figure legends. Simulations of our model resulted in

stable and non-fragmented groups (see figure 1.3).

The values for parameters involving distances were chosen in such a way that they

resulted in the same average group speed in the model as was observed over all of our

empirical experiments which are described below. The values for the turning rate,

β, and the angle of the field of perception, α, were chosen on the basis of previous

extensive simulation studies [Couzin et al., 2002] with the emphasis on obtaining

stable and non-fragmented groups. We chose a higher speed for attraction than for

alignment and repulsion. This is an assumption justified only by the observation that

individuals will predominantly get attracted to individuals in front of them (due to

the blind angles in their sensory zones) and may consequently attempt to “catch up”

with those individuals to maintain group cohesion.

Our model showed consistent behaviour for a wide range of speed ratios (vA/vO)

and produced positively skewed speed distributions whilst having a variable emergent

nearest neighbour distribution (see figure 1.4). Note that the trends in the summary

statistics can be observed for different sizes of simulated shoals (see figure 1.5). We
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speculate that the decrease of nearest neighbour distances for larger updating frequen-

cies is a result of the reduced noise or error in the system which enables individuals

to maintain high alignment when closer to each other (see also figure 1.6).

Experimental methods

Fish housing

The shoals in the investigation were drawn from a population of 160 three-spined

sticklebacks (Gasterosteus aculeatus). None of the fish was used more than once in the

experiments. The fish were collected from a wild population in Saltfleet, Lincolnshire,

UK (Latitude: 53o 25′ 0 N, Longitude: 0o 10′ 60 E) in April 2009. The sticklebacks

were roughly equal in size (TL 44 ± 5 mm s.d.) to avoid size-based biases in the

experiments. The fish were housed at a University of Leeds aquarium. They were

kept at 14±1oC (s.d.), on a 12L:12D lighting regime, and fed every day at 08:00 with

frozen bloodworm.

Setup

Fish were transferred to an experimental tank for observation. This tank was circular

(1m diameter), had a flat base and white interior. Water in the experimental tank

was 14± 1oC (s.d.), and at depth 2 cm (“shallow”) or 8 cm (“deep”). The tank was

illuminated to one of two illumination levels: 20 lux (“low”) or 690 lux (“high”). The

fish in the experimental tank were observed from a distance of 1m directly above the

tank by a video camera (Sony Digital Handycam DCR-PC100E) with a wide angle

lens, which was remotely controlled out of the visual range of the fish.

Procedure

Our experiments were conducted in July 2009 between 09:00 and 17:00. We observed

eight shoals of sticklebacks, each shoal separately, using the following experimental

procedure: (i) a shoal of eight fish was transferred from a holding tank to the exper-

imental tank and left to acclimate for 10 minutes (water depth: deep; light intensity:
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low.) (ii) The shoal was then subject to each treatment in order. Treatment order

was generated by permutation: each treatment was applied twice at each order. Be-

tween each treatment, the fish were habituated to the conditions of the next treatment

for two minutes. The four treatments differed between perceived level of excitement

which was manipulated by the light intensity and the water depth of the experimental

tank (see table 1.1). Every treatment lasted 10 minutes and we changed the water in

the experimental tank between shoals.

Ethical Note

None of the fish were harmed in our experiments. High light intensities (690 lux) were

significantly lower than the outdoor light intensity on an average day (about 30000

lux). In shallow water the fish were still capable of swimming freely.

Tracking individual fish

The video footage from our experiments was analysed with the freely available “Swis-

Track” software package [Correll et al., 2006] to recover information on the position of

the fish in two dimensions. Our analysis in two dimensions is justified by the shallow

water depths used in the experiments which these fish often occupy in nature. Po-

sitions of fish were obtained every 0.04 seconds over intervals of at least one second.

The fish positions at consecutive time points were then connected into fish tracks

by using a nearest neighbour tracking approach that worked with distances between

fish positions [Correll et al., 2006]. Further information can be found below. For a

video of 10 minutes length we obtained fish tracks in intervals of at least one second

length and over a total of at least 2.8 minutes (mean: 5.2± 1.8 (s.d.) minutes). The

volume and statistical composition of the video fish track data was independent of

the treatment, ensuring there was no bias in recovery between treatments.
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Obtaining fish trajectories from fish position time series

Positions at one time step were connected to the closest positions at the next time step.

This approach was justified as the distance between fish was generally larger than the

distance fish moved in one or even two time steps. For the purpose of our analysis it

was sufficient to assume that overlapping fish were at the same position. Erroneous

fish positions produced by SwisTrack due to noise in the videos (e.g. reflections on

the water, etc.) were detected by additionally considering distances between positions

which were two time steps apart. Again, positions at one time step were connected to

the closest position two time steps away via the closest position one time step away.

If the minimal distance between fish positions across the entire shoal, either one or

two time steps apart, was larger than 3.37 or 6.74 centimetres respectively (about

2.5 times the measured maximal group speed), the fish positions were considered to

be wrong and were deleted from the position time series (along with all other fish

positions at that time point). If the distance between fish positions two time steps

apart was smaller than the distance covered over one of the two time steps this was

considered to be due to an erroneous fish position. This assumption was based on

the observations that the fish rarely performed very sharp turns on such a small time

scale which would have allowed for an alternative explanation of such a situation. In

these cases the erroneous position was replaced by averaging between the two correct

positions that were two time steps apart. Less than 2 percent of the total fish positions

were replaced. The resulting fish tracks were compared visually to the movement of

the fish in the original videos.

Empirical speed distributions

As an approximation for the individual speeds of fish we used the distances between

fish positions at two consecutive measurements or time points, following the methods

of Aoki [1980]. The speed of the group (mean of individual speeds at one point

in time) in the empirical data showed considerably more variation than the group

speed in the simulations of our model. Since we are comparing the empirical data
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to the model simulations it was necessary to “mean-normalise” the distributions of

individual speeds. In the mean normalised speed distributions the group speed of

the shoal at one time point was subtracted from each individual speed measurement

to account for changes in the group speed. This ensured that the group speed in

the mean normalised speed distributions was zero in both the empirical data and

the simulated data. Figure 1.7 shows that the variation in group speed could have a

noticeable impact on the distribution of individual speeds.

Note that the alignment or polarisation of the shoals was not easily obtainable in

a way which is consistent with the polarisation in the model simulations because of

the effect the boundary had on the movement of the shoals.

Statistical analysis

For each summary statistic (standard deviation and skewness of speed distributions,

median nearest neighbour distances) one GLMM was constructed using the ’glmm-

PQL’ function in the R programming environment [R Development Core Team, 2008,

Venables and Ripley, 2002]. The summary statistic was the response variable and the

factors (categorical) treatment ID and sequential order of treatment (irrespective of

ID) were explanatory variables. Group identity was added as a random factor (cate-

gorical). For tables with p-values for the fixed effects of the GLMMs see tables 1.2,

1.3 and 1.4.

We found that the sequential order in which the treatments were applied (irrespec-

tive of treatment IDs) had a statistically significant effect on some of the summary

statistics (see tables 1.2, 1.3 and 1.4). This suggests that the fish may have acclimated

to the experimental conditions to some extent. Different shoals displayed different

base levels for the summary statistics. These observations may explain the lack of

monotony in some of the trends in figure 1.2.

Note that increasing contrasts between treatments would either make an analysis

in two dimensions unjustifiable (in the case of water depth), or subject the fish to

high intensities of direct light (in the case of light intensities).

46



CHAPTER 1

Supplementary figures and tables
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Figure 1.3: Coherence of simulated shoals. Individuals are considered to be connected if

they are within rA of each other. Components or shoals are defined as sets of individuals

which are connected to each other either directly or via other individuals. Therefore, if there

is one component, then all individuals are in the same shoal. In A we show the number of

components for simulations of shoals of 8 fish. The data points are the average of the mean

number of components over 1000 equally spaced sampling points during a 4000s simulation (5

replicas). Error bars show one standard deviation from the mean. Note the log scale on the

x-axis (∆t measured in seconds). The average number of components is only for the largest

three values of ∆t substantially larger than 1. Thus, the shoals are generally very coherent.

In B we show the average of the fraction of the total number of individuals which are within

the largest component. Again, this only decreases for the three largest values of ∆t and is

always larger than 0.75. Therefore, on the occasion that the shoal is not entirely coherent it

is only a few outliers that are not part of the shoal. This supports our observation that the

simulated shoals are very coherent.
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Figure 1.4: Median nearest neighbour distances (A) and skewness (B) of normalised speed

distributions (normalised to account for variations in group speed) for simulated shoals of 40

individuals against the ratio of the instantaneous speed parameters, vA/vO. Error bars show

one standard deviation from the mean (5 replicates). The nearest neighbour distances increase

with increasing vA/vO, but remain stable over a wide range of vA/vO (A). The skewness of

the speed distributions is always positive with the lowest skewness when vA = vO (B). Note

that the standard deviations of the speed distributions also increases with increasing vA/vO

(not shown). Parameter values can be found in the text and ∆t = 0.00067, vO = 8.44 cm/s.

48



CHAPTER 1

−3.5 −2.5 −1.5

2
4

6
8

10
12

log10(∆t)

s.
d.

 (
cm

/s
ec

on
d)

A

−3.5 −2.5 −1.5

0.
2

0.
4

0.
6

0.
8

1.
0

log10(∆t)

sk
ew

ne
ss

B

−3.5 −2.5 −1.5

2.
0

2.
5

3.
0

3.
5

log10(∆t)

n.
n.

di
st

an
ce

 (
cm

)

C

Figure 1.5: Summary statistics for a shoal of 50 fish for model simulations (5 replicates)

with varying ∆t. Error bars show 1 standard deviation from the mean (in A and B the error

bars are smaller than the symbols). Parameter values can be found in the main text. In

A and B we show the mean of the standard deviations and skewness of normalised speed

distributions (to account for varying group speeds). Both these statistics, as well as the mean

of the median nearest neighbour distances (C) increase for increasing values of ∆t (note the

log scale on the x-axis, ∆t is measured in seconds). These trends are qualitatively the same

as for the simulations of shoals of 8 fish (see figure 1.2).
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Figure 1.6: Median polarisation for simulated shoals of 8 (A) and 50 (B) individuals (5

replicates) for varying ∆t. Error bars show 1 standard deviation from the mean (over repli-

cates). Parameter values can be found in the main text. The polarisation is a measure of the

alignment of the shoal. It is the length of the sum of the instantaneous unit direction vectors

over all individuals divided by the number of individuals. Note how the polarisation of the

shoals drops for increasing values of ∆t (note the log scale on the x-axis, ∆t is measured in

seconds). The groups are generally very well aligned.
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Figure 1.7: Speed distribution for a shoal of 8 fish over a 10 minute experiment under

treatment 1 (A). In our analysis the speed distributions were mean-normalised. B shows the

mean-normalised speed distribution for the data in A. For each individual speed measurement

the mean speed of the entire shoal at that time was subtracted to account for changes in the

group speed. Summary statistics of the two distributions are given for comparison: A: mean

= 13.3± 6.2 (s.d.) cm/s, skewness = 0.1; B: mean = 0± 5 (s.d.) cm/s, skewness = 0.1.
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Value (cm/s) DF t-value p-value

Intercept 4.601387 18 20.545021 <0.0001

ID 2 0.032164 18 0.164057 0.8715

ID 3 1.221405 18 6.229875 <0.0001

ID 4 0.943842 18 4.814141 0.0001

order 2 -0.503927 18 -2.570321 0.0193

order 2 -0.760083 18 -3.876863 0.0011

order 3 -0.993512 18 -5.067489 0.0001

Table 1.2: Table of p-values for treatment contrasts in the fixed effects of the GLMM

for the standard deviations of empirically obtained speed distributions. The categor-

ical factors “Treatment ID 1” and “Treatment order 1” are made into the intercept.

In the first entry of the first row we can read off the intercept. The remaining six

rows in the first column show differences. These comparisons are always between the

intercept and the other categorical factors. The second column shows the residual

degrees of freedom. As an example, treatment 4 increases the standard deviations of

speed distributions by 0.943 cm/s over the intercept and this difference is significant

at p = 0.0001. And so on. Note that the effect of treatment 4 may not be signif-

icantly different from the effect of treatment 3. The categorical factor ”Treatment

order” denotes the sequential order in which the treatments were applied irrespective

of their treatment ID.
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Value (cm/s) DF t-value p-value

Intercept 0.3841125 18 2.9853271 0.0079

ID 2 -0.1479250 18 -1.0786136 0.2950

ID 3 -0.0231125 18 -0.1685277 0.8680

ID 4 0.3335375 18 2.4320303 0.0257

order 2 0.0534125 18 0.3894639 0.7015

order 3 0.1048375 18 0.7644357 0.4545

order 4 0.1625000 18 1.1848890 0.2515

Table 1.3: Table of p-values for treatment contrasts in the fixed effects of the GLMM

for the skewness of empirically obtained speed distributions. Analysis identical as for

standard deviations (compare to table 1.2).

Value (cm/s) DF t-value p-value

Intercept 4.876932 18 16.115464 <0.0001

ID 2 0.719450 18 2.590028 0.0185

ID 3 0.684643 18 2.464722 0.0240

ID 4 1.416012 18 5.097658 0.0001

order 2 0.253523 18 0.912687 0.3735

order 3 0.239202 18 0.861131 0.4005

order 4 0.915746 18 3.296696 0.0040

Table 1.4: Table of p-values for treatment contrasts in the fixed effects of the

GLMM for the medians of nearest neighbour distances of empirically obtained nearest-

neighbour distance distributions. Analysis identical as for standard deviations (com-

pare to table 1.2).
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Making noise: Emergent

stochasticity in collective motion
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ity in collective motion. J. Theor. Biol. 267: 292-299, 2010.
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Abstract

Individual-based models of self-propelled particles (SPPs) are a popular

and promising approach to explain features of the collective motion of

animal aggregations. Many models that capture some features of group

motion have been suggested, but a common framework has yet to emerge.

Key to all of these models is the inclusion of “noise” or stochastic errors in

the individual behaviour of the SPPs. Here, we present a fully stochastic

SPP model in one dimension that demonstrates a new way of introducing

noise into SPP models whilst preserving emergent behaviours of previ-

ous models such as coherent groups and spontaneous direction switching.

This purely individual-to-individual, local model is related to previous

models in the literature and can easily be extended to higher dimensions.

Its coarse-grained behaviour qualitatively reproduces recently reported lo-

cust movement data. We suggest that our approach offers an alternative

to current reasoning about model construction and has the potential to

offer mechanistic explanations for emergent properties of animal groups

in nature.

2.1 Introduction

Modelling the collective motion of animals remains a tantalising problem for scientists

of a host of different disciplines. Both visually attractive and scientifically challenging,

the concept remains useful because of its applicability to both animation [Reynolds,

1987] and control systems [Liu et al., 2003, Tanner et al., 2007] as well as the fun-

damental ecological understanding it brings [Sumpter, 2006]. Many individual-based

models have emerged in the last few decades that exploit advances in computational

power to describe features seen in collective animal motion including group decision

making [Couzin et al., 2005, Conradt and Roper, 2007], information flow [Sumpter

et al., 2008] and response to predation [Wood and Ackland, 2007]. This article focuses
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on the development of one-dimensional models that seek to describe some of the sim-

plest observed features in collective motion. Such models are now known collectively

as 1D self-propelled particle (SPP) models.

In recent years the biological relevance of these models has been demonstrated

as a result of the development of novel, approximately one-dimensional, experimental

systems. By constraining marching bands of locust nymphs to a specially constructed

annular arena Buhl et al. [2006], and more recently Yates et al. [2009], have shown

that these insects do indeed behave in a manner that is qualitatively comparable to

one-dimensional SPP models. In particular, this work demonstrated that SPP models

capture the spontaneous turns of the locust bands, where the entire group reverses

its direction of motion without external input. It is believed that the origin of these

observations lies in internal, or intrinsic, stochastic effects or “noise” which may or

may not correspond to inaccuracy of the individual movements (e.g Buhl et al. [2006],

Couzin et al. [2005]).

Recently, the coarse-grained behaviour of 1D SPP models has been compared to

locust movement in a more systematic way. From their study Yates et al. [2009]

suggested that the insects respond to a decrease of group alignment by increasing the

noise in their movement. The importance of this finding is that the addition of simple

noise terms is not necessarily sufficient to describe and explain collective motion in

animals. However, despite its great importance the origin of this stochasticity is far

from clear.

In this research we focus exclusively on a simple one-dimensional SPP model,

and show how a combination of an asynchronous updating scheme and a novel im-

plementation of particle interactions can produce a coarse-grained behaviour which

reproduces findings by Yates et al. [2009] in locust movement data. The novelty of

our research lies in the fact that all noise in the system emerges from the algorithmic

implementation of our model rather than being added to the movement of particles.

We therefore work towards explaining the origin of stochasticity in animal collective

motion using our modelling approach.
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First, we give an overview of selected 1D SPP models described in previous work

and the results that they give. Second, we introduce our modelling approach. We then

show that our model can produce stable groups and spontaneous direction switching

and study the coarse-grained behaviour of our model via an equation-free approach

using numerical simulations. We conclude by commenting on the potential of our

modelling approach for integrating individual-level characteristics and describing mo-

tion in dimensions greater than one.

2.2 SPP Models

The first 1D SPP model simulated particles with a local aligning behaviour on a

continuous line with periodic boundary conditions [Czirók et al., 1999]. In this model

the individual and continuous velocities and positions are updated sequentially and

simultaneously for all individuals. Particles tend to align with the average velocity

of all particles within a fixed distance from them. This alignment is subject to a

stochastic error in the form of uniformly distributed noise which is explicitly added

to the particles’ response to the average local velocity. An anti-symmetric function

G is applied to the preferred velocity of individuals and introduces both propulsion

and friction to the system. The individual velocities ui(t) are therefore updated as,

ui(t+ 1) = G (〈u(t)〉i) + ξi, (2.1)

where 〈u〉i is the local average velocity for particle i and ξi is a random variable with

uniform probability distribution over a finite interval [−η/2, η/2] [Czirók et al., 1999].

The function G(z) is given by,

G(z) =
1

2
(z + sgn(z)), (2.2)

which sets the average of the individual speeds in the absence of particle interactions

to magnitude 1 [Czirók et al., 1999]. Analysis of the model has indicated that the

average velocity of all particles undergoes a phase transition from an ordered state to

a disordered state when the amplitude of the noise (η) or the particle density is varied
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[Czirók et al., 1999]. Such phase transitions have also been observed for SPP models

in two and three dimensions which suggests that some features of higher dimensional

systems are preserved in 1D models [Vicsek et al., 1995, Chaté et al., 2008]. For certain

parameter values the model exhibits a fascinating direction switching behaviour - the

average velocity of all particles in the system changes sign spontaneously and on a

short time scale compared to longer intervals of sustained high absolute values of

the average velocity. Several variants of this scheme to introduce noise have been

published [Chaté et al., 2008].

Another approach has been to implement SPP models on a one-dimensional lattice

with periodic boundary conditions over which particles move with velocities +1 or

−1 [O’Loan and Evans, 1999, Raymond and Evans, 2006]. In the first model of this

type particles align with the velocity of the majority of particles around them with

a given probability [O’Loan and Evans, 1999]. The magnitude of this probability is

the first source of noise in the model. The second source of noise and an important

aspect of the model related to this research is its asynchronous updating scheme. In

each step only the position and velocity of one, randomly chosen particle are updated.

Simulations of the model showed a phase transition from high to low average particle

velocities for increasing sizes of the aligning probability. This is qualitatively similar

to the phase transition exhibited by the model of Czirók et al. [1999].

This asynchronous 1D SPP lattice model was subsequently extended significantly

by the inclusion of repulsion and attraction into the individual behaviour of the par-

ticles and the modification of the alignment behaviour [Raymond and Evans, 2006].

The authors justified their implementation of the different behaviours by showing that

they correspond qualitatively to taking random samples of neighbours [Raymond and

Evans, 2006]. This implementation results in two separate parameters which con-

trol the size of the error or noise in the reaction of individuals to their surrounding

neighbours. One parameter controls the error arising from stochastically sampling the

local group to determine the particle’s preferred direction and the other parameter

introduces uncorrelated errors [Raymond and Evans, 2006].
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In summary, 1D SPP models show a wealth of emergent behaviours which have

increasingly been compared to real collective animal motion. The way stochastic

errors have been included into such models can roughly be divided into three cat-

egories. First, adding a random variable to the preferred direction of individuals

[Czirók et al., 1999]. Second, asynchronous and probabilistic updates [O’Loan and

Evans, 1999, Raymond and Evans, 2006]. Third, varying the probability and accu-

racy with which individuals execute their behavioural rules [O’Loan and Evans, 1999,

Raymond and Evans, 2006]. In the next section we will introduce our model which

takes inspiration from the second and third approaches.

2.3 Modelling approach

In our model N individuals are represented by points on a continuous line and not by

points on a lattice as in some of the models discussed above. The individuals, indexed

i, are characterised by their position xi and instantaneous velocity θi and they react

to their “neighbours” which are less than a distance rA away from them. We assume

that each individual reacts with an identical stochastic rate to its surroundings. This

defines an implicit master equation that in principle could be solved with a stochastic

simulation algorithm [Gillespie, 1976]. Instead, we exploit the identical rates and

a simple particle picking approach to simulate the the system [O’Loan and Evans,

1999]. The algorithmic implementation of our model is as follows:

1. Choose individual i at random, where i = 1, ..., N (equal probabilities, with

replacement).

2. If i has neighbours, choose a neighbour k of i at random (equal probabilities for

all individuals within less than rA of i).

3. Update xi and θi (based on the interaction between k and i or on previous θi if

i has no neighbours).
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N realisations of steps (1) to (3) constitute one update step of length ∆t time-steps

(see also figure 2.1). The duration of this update step corresponds to the reciprocal

value of the algorithmic rate at which individuals update. Small values of ∆t imply

rapid updates, while large values of ∆t imply slow updates. The output of the model

is obtained by recording the positions and velocities of all individuals every T = λ∆t

time-steps, where λ ≥ 1. This is analogous to how data of animal motion is obtained

empirically where individual positions and orientations are sampled according to the

frame rate of video recordings [Aoki, 1980, Buhl et al., 2006]. In our simulations we

keep T fixed and only vary ∆t and therefore also λ.

Suppose individual i and a neighbour k of i have been chosen in the algorithm

described above. The interaction between i and k depends on the distance d between

the two individuals. If d ≤ rO < rA, i attempts to align with k and has desired

velocity,

θdesiredi = G(θk). (2.3)

If rO < d < rA individual i gets attracted to k and has desired velocity,

θdesiredi = G

(

sgn(xk − xi)

(

d− rO
rA − rO

+ 1

))

, (2.4)

where the fraction term in the argument is motivated by a distance rule such that

at maximum distance maximal desired velocities are achieved. If i has no neighbours

(there is no k such that d < rA), θ
desired
i is given by,

θdesiredi = G(θi). (2.5)

The function G is given above in equation 2.2. Once θdesiredi is determined, θi and xi

are updated according to,

new(θi) = θi + (θdesiredi − θi)∆t, (2.6)

new(xi) = xi + new(θi)∆t. (2.7)

In our model individuals react deterministically to the positions and motion of

randomly selected neighbours. In previous work [Huth and Wissel, 1992], it has
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been suggested that interactions with single individuals are not able to mimic the

properties of animal collective motion in the same way as averaging over a number

of individuals. However, viewed over time-scales larger than ∆t, our algorithm is

qualitatively equivalent to reacting in a noisy way to a random sample of neighbours

and our results below show that our simulations are comparable to empirical data.

For a more detailed discussion on the biological plausibility and interpretation of our

model we refer the reader to the discussion.

The instantaneous individual speed in our model tends to be increased when

particles get attracted to others (see equation 2.4). Such a dependence of the instan-

taneous speed on the distance between individuals has previously been used in models

of collective motion for repulsion between individuals [Reynolds, 1987, Hemelrijk and

Hildenbrandt, 2008]. Our assumption of higher attraction speeds is based on the hy-

pothesis that individuals need to move faster if they are interacting with individuals

further away (e.g. to catch up with them), but is also necessary for the recovery of

realistic distributions of individual speeds (chapter 1).

To derive this model we use asynchronous updates similar to the ones suggested

by O’Loan and Evans [1999] but we collect particle positions every T time-steps and

thereby allow for different individual and average update rates in real time with an

approximately continuous velocity distribution. The implementation of alignment,

friction and propulsion (see G(z)) are inspired by Czirók et al. [1999], but our imple-

mentation of attraction is new. Our random-neighbour-picking approach has parallels

to the neighbour-sampling argument Raymond and Evans [2006] invoked to justify

the implementation of their behavioural rules, but we have made this sampling ex-

plicit and limited interactions in our algorithm to pairwise interactions. The effect

of varying the length of update-steps in algorithms such as ours has been considered

previously, but not in a biological context [Tsitsiklis et al., 1986]. The rationale be-

hind our model is to find a set of microscopic rules that are capable of recovering

empirical results.
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Figure 2.1: Schematic illustration of an example for one update step ∆t of our model for

N = 3 (top to bottom). The grey areas indicate the extent of rO for updating individuals

(in white) and the arrows show the direction of motion of the particles. Particles without

arrows have zero instantaneous velocity. Dotted lines highlight interactions. In the first panel

individual 2 is chosen and randomly picks individual 1 to interact with (alignment). In the

second panel 3 is chosen and picks 1 to interact with. Since the distance between the two

particles is larger than rO, 3 gets attracted to 1. In the third panel 2 is chosen again and

chooses to align to individual 3. The last panel shows the positions of 1,2, and 3 after one

update step ∆t.
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2.4 Model analysis

Coherence and direction switching

Here we show that our model preserves the interesting emergent behaviours previous

models have found. We do not present a complete analysis of the behaviour of our

model. Rather, we focus on experiments which illustrate that our model produces

coherent groups in which individuals do not diffuse over long simulations and that our

way of including noise results in a phase transition from an ordered to a disordered

state of simulated groups for increasing noise and therefore that we are recovering

previous results.

Our simulations are performed in the absence of boundary conditions. Typically,

simulated collective motion is limited by periodic boundary conditions [Vicsek et al.,

1995, Czirók et al., 1999, O’Loan and Evans, 1999, Raymond and Evans, 2006]. This

means that individuals crossing one boundary are removed and appear at the opposite

boundary which results in movement on a circle in one dimension. The advantage of

this approach is that simulated groups cannot disperse in space. Boundary conditions

can form a source of ambiguity in that it may not be clear in how far emergent

behaviours are a result of the model or the implementation of the boundary conditions.

Initially, individuals were randomly distributed in an interval of length rA to

ensure that they were capable of perceiving at least one other particle. At the start

of our simulations all individuals had velocity θi = +1. More commonly particles are

assigned random initial velocities in simulation studies [Czirók et al., 1999, O’Loan

and Evans, 1999, Raymond and Evans, 2006, Buhl et al., 2006]. We chose our initial

conditions to ensure that groups would not fragment within the first few time-steps

of the simulations. Long simulated time intervals before recording started (typically

100, 000 time-steps) ensured that no initial transitional data was used in our results.

Figure 2.2 shows that our model is capable of producing groups which remain

coherent over long simulations in absence of boundary conditions. For large values of

∆t (here close to T ) and small values of rA the groups tend to fragment. We show
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results for two particular values of rA for unchanged rO to illustrate that the relative

size of the former parameter can be important for the coherence of the simulated

groups. Non-zero distances between individuals and their nearest neighbours in our

simulations indicate that individuals do not “collapse” onto one position in coherent

groups - a potential problem in deterministic simulations (figure 2.2).

In figure 2.3 we illustrate that simulated groups show spontaneous switches in

direction. To do so we measure Q =
∑

i θi/N , the average velocity of individuals. To

get a feeling for how direction switches of groups can occur in our model we refer the

reader to figure 2.1. In this illustration the group initially travels on average to the

right hand side. After one update step is performed, the group travels on average to

the left hand side. The quantity 〈|Q|〉 represents the mean over a large number of the

absolute value of measurements of Q and is used to measure the order or alignment

in the system. Large values indicate high order and low values low order. Our model

exhibits a phase transition from an ordered state to a disordered state for increasing

values of ∆t (see figure 2.3a). In figure 2.4 we show two examples for the characteristic

distributions of Q for our model. For low values of ∆t the distribution of Q peaks

at two large values of |Q| which indicates that the group collectively moves in one

direction with occasional and relatively quickly executed switches in direction. Higher

values of ∆t result in a decreased distance between the two peaks in the distribution

of Q up to the point when the group does not move collectively in one direction for

prolonged periods of time any more. This phase transition is captured by the sign

of the skewness of the distribution of |Q| which turns from negative to positive for

increasing values of ∆t (figure 2.4c). The time which the groups spend travelling in

one direction between reversals in direction increases dramatically with decreasing ∆t

(see figure 2.5). This trend is qualitatively similar to findings for other SPP models

in which reversal times increase for decreasing noise [O’Loan and Evans, 1999, Yates

et al., 2009].

We have seen that the parameters rA and ∆t control the stability and state or

phase of the simulated groups (ordered/disordered). To obtain a more complete
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picture of our models’ behaviour we performed a systematic scan of the (rA,∆t)

parameter space for N = 50 (see figure 2.6). We used the sign of the skewness

of the distribution of |Q| as an indicator of the phase as the change of sign in the

skewness provided a clear and easily-defined switching point (see figure 2.4c). Using

the conditions for different phases established above, we divided the parameter space

into three regions of distinctive model behaviours: unstable or fragmenting flocks,

disordered flocks and ordered flocks. As with all stochastic simulations this phase

diagram can only be understood as a an indicative approximation of the model’s

behaviour. In combination with our initial conditions the case rA = rO leads to a

collective which moves in one direction, but diffuses as a result of the asynchronous

updating scheme. For larger rA the groups quickly stabilise and show a distinctive

divide between an ordered and a disordered phase for small and large values of ∆t

respectively.

In summary, we have established that our model can produce a qualitatively

similar emergent behaviour to previous models. The level of noise in the system is

determined by the parameters rA and ∆t. Qualitatively similar but quantitatively

different phase diagrams for our model could be obtained if particles were allowed to

move at instantaneous speeds larger than two (cf equation 2.4) or if they accelerated

faster. The effect of N also leads to a quantitative but not a qualitative change in the

behaviour of our model. Our model analysis is an illustration of principle and a more

detailed investigation of the effect of different initial conditions including different

measures for the stability of the group is beyond the scope of this work.

Coarse-grained behaviour

The coarse-grained behaviour of a system can often be described in terms of a small

number or even single “coarse” variables. In some cases it is possible to construct a

“coarse-grained” model which accurately captures the temporal development of these

variables [Erban et al., 2006, Kolpas et al., 2007, Yates et al., 2009].

We adopt the approach pioneered by Yates et al. [2009] in which they study the
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Figure 2.2: Coherence of simulated groups. Individuals within rA of each other are considered

to be connected. Components are defined as sets of individuals which are connected to each

other either directly or via other individuals. If there is one component, all individuals are

in the same group. (a) the fraction of the total number of individuals within the largest

component. (b) the median of individual’s distance to their nearest neighbour (NNDs). We

show the average over 1000 equally spaced sampling points during the last 200, 000 time-steps

of a simulation over 300, 000 time-steps (5 replicas). Error bars show one standard deviation

from the mean. For larger values of ∆t the groups did not maintain coherence which led to a

low average proportion of individuals within the largest component. For larger rA the groups

maintained coherence over the simulation, even for large values of ∆t. The NNDs increased

with increasing values of ∆t. For ∆t > 0.6 and rA = 6 the groups did not maintain cohesion

over the length of the simulation which led to very large NNDs. Parameters: N = 100, rO = 5

and T = 1.
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Figure 2.3: (a) 〈|Q|〉 as a function of ∆t (mean over 5 replicas, error bars are smaller than the

symbols). Parameters are as in figure 1 but N = 50 and rA = 50. (b)-(d) illustrate direction

switching in the simulations of our model, where ∆t = 0.1 (b), ∆t = 0.6 (c) and ∆t = 1.0 (d).

The groups remained coherent for the duration of the simulations (cf figure 2.2). Simulations

lasted for 1, 600, 000 time-steps and output started after 100, 000 time-steps.

Figure 2.4: Distribution of Q for different values of ∆t over 400,000 time-steps (T ) at the

end of 10 million time-steps. (a) ∆t = 0.6, the particles switch direction occasionally and

the group is mostly well aligned (high values of Q). (b) ∆t = 0.9), the group is not well

aligned and Q fluctuates about zero. N = 50, rA = 50, rO = 5, T = 1. (c) Skewness of the

distribution of |Q| against ∆t extracted from simulations of 400,000 time-steps at the end of

a 10 million time-step simulation. The sign of the skewness switches from negative to positive

for increasing values of ∆t. N = 50, rA = 9, rO = 5, T = 1.
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Figure 2.5: Average reversal times for simulated flocks for varying ∆t. The quantity 〈τ〉 is

the average time for which sgn(Q) remains unchanged. We collected 1000 values of τ for 10

replicas of each parameter combination. Error bars show one standard deviation from the

mean. For smaller values of ∆t the sign of Q remained unchanged over a simulation of 100

million time-steps. Note the log-scale on the y-axis. rA = 50, rO = 5, T = 1.

Figure 2.6: Phase diagram for simulations over 10 million time-steps. Groups were considered

to be unstable if at some stage during the simulation at least one particles had no neighbours

(i.e. no particles within rA). The ordered state was defined by a negatively skewed distribution

of |Q|. The behaviour of the model was robust over five replicates. Dashed lines are for

guidance of the eye only. N = 50, rO = 5, T = 1.
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coarse-grained behaviour of 1D SPP models in terms of the average particle velocity

Q. Yates and co-workers hypothesised that the temporal evolution of Q can be

approximately described by the Fokker-Planck equation (FPE),

∂fN (Q, t)

∂t
=

∂2(D(Q)fN )

∂Q2
−

∂(F (Q)fN )

∂Q
, (2.8)

where the function fN (Q, t) is the time-dependant probability distribution for the

random variable Q. D(Q) and F (Q) denote the diffusion and drift coefficients, re-

spectively. These two coefficients can be interpreted as follows: the drift captures the

mean rate of change of Q while the diffusion denotes the magnitude of the randomness

in the evolution of Q. Since the explicit form of the FPE is not available, the drift and

diffusion coefficients need to be estimated using computer simulations (for details, see

Yates et al. [2009]). While it is possible to approximate interesting quantities such

as the mean switching time from the estimated form of the FPE [Erban et al., 2006,

Yates et al., 2009], we will limit our study to the functional form of the drift and

diffusion coefficients as this provides a sufficiently detailed insight into the behaviour

of Q.

When a similar technique was applied to long time-series of the alignment (Q in

this case) of locust bands marching in an annular arena, the functional form of F (Q)

and D(Q) revealed fascinating properties of the evolution of Q [Yates et al., 2009].

Previous research had shown that the locusts were highly aligned and marched in one

direction for prolonged periods of time before spontaneously switching the direction

of their motion within a few minutes and marching in the opposite direction [Buhl

et al., 2006]. The drift coefficient estimated from this empirical data had a roughly

cubic and antisymmetric shape which is consistent with particle motion in aligned

states with occasional switches in direction [Yates et al., 2009]. For large positive

values of Q, F (Q) took large negative values, and vice-versa. This indicated that

for very high average group speeds the group speed was likely to decline over time.

There were three points for which F (Q) = 0. These corresponded to one unstable and

two stable stationary points of Q(t). The two stable stationary points indicate that

groups of locusts had a preferred group speed which was approximately the same in
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either direction. Interestingly, the diffusion coefficient had a quadratic shape with its

maximum at zero alignment [Yates et al., 2009]. An equation-free analysis of a simple

1D SPP model (a variant of Czirók’s model [Czirók et al., 1999]) indicated that the

approximated diffusion coefficient for the evolution of the average particle velocity in

this model was roughly constant for different values of Q, while F (Q) had the same

antisymmetric cubic shape as found in the locust data. Yates et al. [2009] hypothesised

that the quadratic shape of D(Q) for the empirical data could be a result of locusts

responding to “low group alignment by increasing the noisiness of their motion”. The

authors tested their hypothesis by refining their original model. In the new model

the stochastic error added to the preferred direction of individuals was increased if

individuals perceived a low local group alignment around them. This model produced

a better fit to the empirical data and its equation-free analysis confirmed that the

estimate for D(Q) now had a quadratic form.

We performed an equation-free analysis on our model following the approach by

Yates et al. [2009]. To facilitate a comparison to previous empirical data and models,

we restricted the particles to a line of length L with periodic boundary conditions

and used the same parameters as Yates and co-workers wherever possible. We found

that the estimated drift coefficient for our model had a cubic shape and the diffusion

coefficient a roughly quadratic shape with maximum at Q = 0 (see figure 2.7). The

diffusion shows a noticeable increase for large values of |Q|. This phenomenon was not

found in the empirical data [Yates et al., 2009] and is a sign that the drift coefficient

affects the diffusion coefficient. In other words, the cubic drift is so pronounced or

sharp that it impacts on the diffusion. For our model this effect could be explained

by the fact that the groups cannot maintain high velocities as a result of the friction

implemented in the function G. This cannot happen in the measurements Yates et al.

[2009] made from the locust data since the absolute value of their coarse variable was

bounded above by 1.

These findings indicate that our model produces a coarse-grained behaviour qual-

itatively similar to the coarse-grained behaviour of bands of marching locusts. The
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higher noise in the evolution of Q in our simulations emerges from our model which

does not assume larger stochastic errors for low values of |Q|. Yates and colleagues

noted that the randomness in their models is not necessarily indicative of random

decision making in locusts. They suggest that there may be small-scale detailed

interactions between individuals which result in noise in the coarser experimental

observations [Yates et al., 2009]. This is precisely what our model achieves.

2.5 Discussion

In this work we have introduced a new approach to include noise into 1D SPP mod-

els. Our approach yields a good qualitative fit to empirical data and can easily be

extended to higher dimensions. It therefore suggests a mechanism whereby small-scale

stochastic interactions can produce an emergent behaviour which is comparable to the

coarse-grained behaviour of bands of marching locust nymphs. Our model suggests

that stochasticity in animal movement could be a result of incomplete information in-

take (neighbour sampling) and small variations in instantaneous rates of information

intake (asynchronous updates). This mechanism is parsimonious as it only relies on

asynchronous updating and stochastic neighbour-sampling of individuals.

For our model it is important to maintain a clear separation between algorithmic

implementation and biological interpretation. We do not claim that updates in our

model translate directly into interactions between individuals. The length of update-

steps, encoded in the size of ∆t, does not explicitly relate to biological or neurological

reaction times of animals. Furthermore, the instantaneous positions and movement

of individuals on time-scales close to ∆t have no direct physical meaning. We merely

record the response of individuals to their surroundings averaged over multiple up-

dates (model output every T time-steps). Therefore, it is the average behaviour of

individuals in our model at time-scales larger than ∆t that should be considered in a

biological interpretation of our model. The importance and impact of variable update

rates in our model opens up questions regarding the length of and difference between

reaction and decision times in animals and their individual information processing
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Figure 2.7: Equation-free analysis of our model. L = 90, N = 30, rA = 6, rO = 5, T = 1

and ∆t = 0.5. All parameter values were chosen as close as possible to the ones by Yates

and coworkers and otherwise to produce a similar coarse-grained behaviour to the locust data

[Yates et al., 2009]. (a) The drift coefficient shows a characteristic antisymmetric cubic shape.

(b) The diffusion coefficient has a roughly quadratic shape with maximum approximately at

Q = 0. Notice the “ears” in D(Q) for large values of |Q|. The estimates for drift and diffusion

were obtained from long time series of model simulations in agreement with the analysis of

empirical data.

71



CHAPTER 2

capabilities.

We aim to hint at under-explored possibilities in formulating SPP models. Most

SPP models implement interactions in a deterministic way and then add stochastic

errors (e.g. Vicsek et al. [1995], Czirók et al. [1999]). Absence of noise terms in such

models would result in accurate interactions of individuals in perfect knowledge of each

other. In contrast, in our approach the algorithmic implementation of interactions

itself leads to noisy interactions. We feel this is an important difference with the

potential of improving our understanding of collective animal motion by suggesting

possible mechanisms for seemingly imperfect or erratic animal interactions. We have

previously demonstrated, for example, that an asynchronous updating scheme coupled

with varied updating rates provides a mechanism that could explain both continuous

speed distributions of collectively moving individuals and the way in which these

distributions change in response to external stimuli (chapter 1). This work has also

suggested that the length of update steps in algorithms such as the one presented here

could be related to the level of threat animals perceive. The length of the update

steps is one of the parameters that controls the level of noise in our model. Therefore,

our model suggests a meaningful explanation and mechanism for different levels of

noise in a biological system and makes testable predictions as to when and why phase

transitions might occur in this system. Furthermore, a mechanism based on stochastic

sampling of individal’s sensory zones as in our model also offers a potential explanation

for the anisotropy observed in the internal structure of large starling flocks (Ballerini

et al. [2008]; see chapter 3).

SPP models commonly assume that all individuals are identical. However, this

does not necessarily hold in nature. Research has begun to investigate the effect of in-

dividual features of gregarious animals onto collective behaviour [Couzin et al., 2005,

Leblond and Reebs, 2006]. Our framework facilitates the inclusion of individual char-

acteristics. One could, for example, consider different updating rates for individuals,

possibly related to their individual state of agitation (chapter 1). These individual

updating rates could vary over time in response to environmental stimuli or simply
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the number and updating rates of neighbouring individuals. The advantage of our

modelling approach, with a detailed microscopic description, is that additional fea-

tures such as decision making and information transfer can be incorporated into the

framework that we propose in the future.

In conclusion, we suggest that noise in models for collective motion of animals

should not be considered as a necessary error to account for imperfect interactions

but as an opportunity to find out more about how animals function within collective

aggregations.
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Abstract

The mechanism of self-organization resulting in coordinated collective mo-

tion has received wide attention from a range of scientists interested in

both its technical and biological relevance. Models have been highly influ-

ential in highlighting how collective motion can be produced from purely

local interactions between individuals. Typical models in this field are

termed “metric” because each individual only reacts to conspecifics within

a fixed distance. A recent large-scale study has, however, provided evi-

dence that interactions ruling collective behaviour occur between a fixed

number of nearest neighbours (“topological” framework). Despite their

importance in clarifying the nature of the mechanism underlying animal

interactions these findings have yet to be produced by either metric or

topological models. Here we present an original individual-based model

of collective animal motion that reproduces the previous findings. Our

approach bridges the current gap between previous model analysis and

recent evidence, and presents a framework for further study.

3.1 Introduction

The mesmerizing displays of animal collective motion have received much attention

from scientists [Parrish and Edelstein-Keshet, 1999, Helbing et al., 2000, Buhl et al.,

2006, Sumpter, 2006]. To the casual observer, animal groups such as shoals of fish

or flocks of birds often appear to show tightly bound agglomerations that change

direction and shape continually and almost instantaneously. Individuals within these

groups self-organize into collectives that exhibit a high degree of structure [Hemelrijk

and Hildenbrandt, 2008, Cavagna et al., 2010]. How this structure emerges from the

behaviour of individuals has been the main focus of research in this field.

It is now widely accepted that the movement of animal groups emerges from the

interactions between many similar individuals within the group [Krause and Rux-
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ton, 2002]. Highly influential individual-based models have been essential in high-

lighting how coordinated displays of collective motion can emerge from purely local

interactions between neighbouring individuals [Vicsek et al., 1995, Reynolds, 1987,

Couzin et al., 2002, Grégoire and Chaté, 2004]. These models implement simple be-

havioural rules for individuals; these can be loosely expressed as “get attracted to

conspecifics” and “avoid collisions”. The dominant theory has been that animal in-

teractions are based on a “metric” framework in which individuals apply these rules

only to conspecifics within a fixed distance. Thus, a metric attraction rule would be

“get attracted to those neighbors within the specified distance”.

A recent large-scale field study has, however, provided evidence that interactions

ruling collective behavior depend on a “topological” rather than metric framework

[Ballerini et al., 2008]. Using stereo-photography and multiple cameras, Ballerini et

al. reconstructed the trajectories of individuals within large moving flocks of star-

lings (Sturnus vulgaris). They found a significant lack of nearest neighbours along

the direction of motion of each individual. This only applied to the first six or seven

closest neighbours on average. The distribution of directions to neighbours beyond

the seventh closest was approximately uniform across an entire flock. Ballerini et al.

interpreted the anisotropy in the flock structures as a manifestation of interactions

among individuals. Since the anisotropy disappeared at a constant topological dis-

tance (sixth or seventh neighbour), irrespective of flock densities, they reasoned that

interactions between collectively moving animals depend on topological rather than

metric distances. Within a topological framework, an attraction rule could be “get

attracted to the closest six or seven neighbours, no matter how far away they are”.

In summary, the difference between the two concepts is that a topological rule limits

by the number of nearest neighbours, whereas the metric rule limits by the distance

between individuals. In a metric model this is most simply expressed as the number

of interacting birds will change with density; by contrast in a topological framework

it will not. Ballerini et al. [2008] argue that this is a key difference when it comes to

explaining data.
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Despite their importance, it has yet to be determined whether models adhering to

either framework reproduce these findings. Here, we present an original individual-

based model of collective animal motion, repeat the analysis by Ballerini et al. [2008]

for the first time on model simulations and reproduce the empirical findings.

3.2 Modelling Approach

The idea in our modelling approach is to adopt a stochastic, asynchronous updating

scheme that takes inspiration from previous models [Raymond and Evans, 2006, Tsit-

siklis et al., 1986]. However, in contrast to these approaches we perform a weighted

stochastic selection of pairs of interacting individuals, rather than using averaged re-

sponses to neighbours [Raymond and Evans, 2006] or unweighted sampling [Tsitsiklis

et al., 1986]. Individuals can only react to conspecifics within their fixed spherical sen-

sory zone, which is limited by a “blind volume”, a cone directly behind the individual

[Couzin et al., 2002]. Importantly, the probability of a particular pair of individuals

being selected to interact in our algorithm depends on the distance between indi-

viduals. This selection rule is the most prominent novel feature in our modelling

framework. This contrasts to previous models that account for inter-individual dis-

tances by scaling contributions of neighbours to a weighted average [Grégoire and

Chaté, 2004].

For a reference individual, i, we relate the probability pj of selecting a neighbour

j, a distance, dj, away to dj by:

pj ∼
1

dj
. (3.1)

We introduce a cut-off for values of dj close to zero to avoid the singularity there.

The distance-dependent probabilities are normalised over all individuals within the

sensory zone of a reference individual. Other relations between pj and dj are of course

possible, but not explored here for simplicity. The sampling approach of our algorithm

leads to individuals preferentially reacting to nearby conspecifics.
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In brief, our algorithm consists of three consecutive steps, a fixed number of which

are performed between separate recordings of model output.

1. Choose individual i at random (equal probabilities, with replacement).

2. Pick “update partner” j of i as described above.

3. Update the position and velocity of i as described below.

Once a pair of interacting individuals is chosen, the focus individual reacts to its “up-

date partner” depending on the distance between them. At close distances individuals

move away from each other to avoid collisions (dj < rR), and at further distances

(rO ≤ dj < rA) individuals get attracted to each other to maintain flock cohesion

[Couzin et al., 2002]. At intermediate distances individuals align (rR ≤ dj < rO).

The size of these behavioural zones, defined by the radii rA, rO and rR remains

fixed throughout the simulation. An additional feature of our model is that individ-

uals move with differing instantaneous speeds according to how they react to their

“update partner” (chapter 1). When individuals are attracted to their update part-

ner, they move at twice the instantaneous speed than otherwise (2vO instead of vO).

Stochastic effects in our simulations are entirely generated by the internal dynamics

of the algorithm.

The overall behaviour of our model is akin to animal behaviour producing cohesive

flocks which change direction, but the exact algorithmic update of each individual

has no direct physical meaning: it is the sum of a number of updates we observe and

interpret. The movement of individuals between two separate model outputs consists

on average of the sum of a number of updates (averaging over changes in instantaneous

speed) and the overall effect is for each individual to compose a kinetic average of

its surroundings. Our model is therefore to be understood as follows: Individuals

react upon information they obtain from sampling their (fixed) sensory zone, biased

negatively with distance, at a certain frequency (fixed in this study). Individual

information intake is subject to asynchronies and small variations in individual update
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frequencies. This also results in a variation of individual speeds reported previously

(chapter 1). More details of our approach can be found in the appendix.

3.3 Results

Simulations of our model resulted in stable and coherent flocks with a sparseness

speed ratio comparable to empirical data (see table 3.1) and non-constant speed dis-

tributions (see appendix, figure 3.3). We compared our simulated flocks with the field

data presented by Ballerini et al. [2008] by following their methodology as accurately

as possible (Cavagna et al. [2008]; A. Cavagna 2010 personal communication). The

key observable of interest is the so-called anisotropy factor, γ(n), which represents

structural information with respect to the nth nearest neighbours. Averaged over

many instances, a random spatial distribution of individuals will give rise to γ(n)

having a constant value of one-third, deviations from this value indicate structural

information. Ballerini et al. [2008] observed that in the Starling flocks they were able

to observe, film and analyse, γ(n) decayed from high values to the isotropic value of

one-third after a critical number, nc, of nearest neighbours, where nc ≈ 6.5 [Ballerini

et al., 2008]. By simulating similar numbers of birds to those filmed we are able to

show that our new model is able to replicate this finding (figure 3.1). To further

illuminate the nature of individual interactions in our model we repeated the tests for

a topological and a metric framework as suggested by Ballerini et al. [2008], as seen

in figure 3.2. To simulate flocks with different densities we varied the extent of the

zone in which individuals align with conspecifics (rO) relative to the overall extent

of their sensory zone as well as the average speed at which individuals move (vO)

(table 3.1). Faced with a lack of empirical guidance on what causes different flock

densities in starlings, we adopted this parsimonious approach (see also appendix). As

in the empirical data we found that our simulated data supported a topological rather

than a metric framework.
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Figure 3.1: Anisotropy in two distinct model simulations (1000 individuals). The anisotropy

factor γ plotted against the nearest neighbour n considered in its computation (averaged over

90 consecutive recordings). High values of this measurement quantify a lack of nth-nearest

neighbours in the direction of motion averaged over all individuals in the simulated flocks.

Note how γ(n) decays with increasing n until the internal flock structure becomes isotropic

(γ = 1/3). Circles correspond to simulation sim3 and solid squares correspond to simulation

sim1 in table 3.1. Error bars show s.e. The inset shows the function γ(n) for empirical data

(redrawn from Ballerini et al. [2008]. Circles, flock 1; filled squares, flock 2).
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Figure 3.2: Anisotropy ranges in model simulations. Error bars show standard errors. (a)

The function γ(n) for a model simulation (averaged over 90 consecutive recordings). The

topological range nc is defined as the n-value for which a linear fit to γ(n) in the decreasing

interval intersects the value 1/3. This is illustrated by the dashed line. On average we found

nc = 8.81 ± 0.749 (s.e.m). (b) The average distance of the nth neighbour plotted against

n1/3 for two distinct model simulations (error bars smaller than symbol size). Note how

rn ∼ r1×n1/3, where r1 is the sparseness or average distance to the nearest neighbour, a good

estimate for the density of flocks. This relation also implies that rc ∼ r1×n
1/3
c , where rc is the

metric range (in meters) corresponding to the topological range nc (in nearest neighbours).

To test which range describes the decay of anisotropy across flocks we simulate flocks of

different sparseness travelling at varying average speed. In a metric scenario rc is constant

and we therefore expect r1 ∼ n
−1/3
c , while in a topological scenario nc should be constant

and therefore we would expect to find a linear correlation between r1 and rc. (c) Testing

for the metric scenario, no significant correlation is found between n
−1/3
c and r1 (Pearson’s

correlation test: n=36, R2=0.061, p=0.723). (d) Testing for the topological scenario, we find

a strong linear correlation between r1 and rc (Pearson’s correlation test: n=36, R2=0.89,

p <0.00001). The results from our model simulations are therefore in agreement with the

experimental data. This plot should be compared with fig. 3 in Ballerini et al. [2008]. In

panels (c) and (d), squares correspond to lower and circles to higher average speeds (see

appendix).
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Table 3.1: Example summary statistics and model parameters for simulations.

simulation ID sim1 sim2 sim3 sim4

sparseness, r1 (m) 1.84 2.38 2.53 1.30

group speed (m/s) 8.05 8.02 10.04 10.03

topological range, nc 6.33 8.54 9.83 7.35

vO (m/s) 8 8 10 10

rO (m) 45 60 60 20

3.4 Discussion

We present here the first model analysis to reproduce the findings of what is currently

the largest animal tracking experiment in the wild. The tracking experiment raised

the importance of how only a limited number of individuals dominated the interactions

[Ballerini et al., 2008]. It also led to the definition that a model with a large radius of

interaction in small flock densities and a small radius of interaction in high densities

should be referred to as a topological model since the number of interacting neighbours

does not change as the density varies (Ballerini et al. [2008]; A. Cavagna 2010, personal

communication). To date, it has not been clear how these findings arise from the local

interactions between individuals within the group.

The individual behaviour in our model does not explicitly limit individual’s reac-

tions to a fixed number of closest neighbours. The overall extent of the perceptive

range is the same in all simulations; but the balance between attractive and align-

ing behaviour is altered to achieve differing sparseness in the groups. This balance

also modulates the noise in our study; recall there is no explicit addition of noise.

Noise and its character are emergent from variation in update and type of interaction

(chapter 2). Despite our model maintaining features from previous metric modelling

frameworks, it is clear that it behaves as a topological model in the manner defined

by previous work (Ballerini et al. [2008]; A. Cavagna 2010, personal communication).

The model we have constructed gives rise to emergent topological interactions con-
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sistent with the most prominent large-scale empirical study to date. Our model offers

a parsimonious mechanism to explain the anisotropic nature and apparent limited

interactions seen in this study.
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3.5 Appendix

Supplementary methods

Full model description

In our model N individuals are represented by points in continuous three-dimensional

space. Each individual obtains information from its sensory zone which is described

by a sphere, centred on the individual, of radius rA. This sphere is punctured by a

blind volume, a cone directly behind the individual of interior angle (360o − α), in

which individuals cannot perceive other individuals. The individuals, indexed i, are

characterised by their position xi and instantaneous velocity vi. We assume that all

individuals react with an identical stochastic rate. Rather than using a Gillespie type

algorithm we can therefore use a more efficient particle picking approach to exactly

simulate the implicit underlying Master Equation of the system. The algorithmic

implementation of our model is as follows:

1. Choose individual i at random, where i = 1, ..., N (equal probabilities, with

replacement).
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2. If i has neighbours (conspecifics within sensory zone of i), choose a neighbour

j of i at random (probabilities depend on the distance between i and j, see

below).

3. Update xi and vi (depending on the interaction between j and i or based on

previous vi if i has no neighbours).

One update step of length ∆t seconds consists of N realisations of steps (1) to (3). The

reciprocal value of ∆t is the average rate at which individuals update. Large values of

∆t imply slow updates and small values of ∆t imply rapid updates. The output of our

model is obtained by recording the positions of individuals every T = λ∆t seconds,

where λ ≥ 1. This is analogous to how data is obtained empirically where individual

positions are sampled according to the frame rate of a camera [Ballerini et al., 2008].

For the purpose of this research we do not investigate the impact of ∆t on the model

behaviour but do so elsewhere. Therefore, we keep T and ∆t fixed. The movement

of individuals over T seconds between two separate model outputs consists therefore

of the sum of λ updates on average.

The key difference between this model and previous models is that not only are

neighbours (individuals within sensory zones of focus individual) with whom indi-

viduals update chosen randomly, but the probability that a particular neighbour is

chosen depends on the distance between this neighbour and the updating individual.

Suppose individual i has neighbours k = 1, ..., kl which are at distances dk from i

(0 ≤ dk < rA). Then individual j is chosen in step (2) above with probability,

pj =
1

dj
/

(

∑

k

1

dk

)

. (3.2)

For the purpose of finding these probabilities, all dk equal to zero are replaced with a

small constant. This approach ensures that on average individual i is more likely to

react to neighbours nearby.

Once individuals i and j have been chosen in the algorithm described above, they

interact according to metric behavioural rules based on Couzin et al. [2002]. Let dij
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be the distance between individuals i and j. If dij < rR, the “repulsion radius”, i

moves away from j and has desired velocity,

vdesired
i = vO

(

xi − xj

dij

)

. (3.3)

If rR ≤ dij < rO, where rO is the “orientation radius”, i seeks to align with individual

j and consequently has desired velocity,

vdesired
i = vO

(

vj

|vj|

)

. (3.4)

Finally, if rO ≤ dij < rA, i gets attracted to j:

vdesired
i = vA

(

xj − xi

dij

)

. (3.5)

Should i have no individuals within its sensory zone, it does not deviate from its

direction. Note how individuals move at a different speed when getting attracted (vA

as opposed to vO). This is based on the assumption that there exists a quantitative

difference in the way animals react to conspecifics further away. Furthermore, differing

speeds are required to simulate positively skewed speed distributions that have been

found in empirical data [Aoki, 1980]. Throughout this work we choose vA = 2vO

assuming that attracting individuals try to “catch up” with conspecifics.

Once vdesired
i is determined, the new direction of motion for i, new(vi), is deter-

mined by rotating vi towards vdesired
i by an angle of at most β∆t degrees. Here β

stands for the maximum turning rate of individuals. The new position of individual

i is then obtained as,

new(xi) = xi + new(vi)∆t. (3.6)

Model discussion and simulations

In our model algorithm the probability of i to choose a particular “update partner”

j simply depends on the inverse of the distance dij (pj ∼ 1/dij). Clearly, one could

imagine other dependencies between pj and dij, possibly of the more general form

pij ∼ 1/dcij , where c is a constant. We have not explored different values of c since
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we consider our model to be an illustration of principle rather than an exhaustive

parametrisation study. Likewise, we have restricted the region of the parameter space

we explored by fixing N = 1000,∆t = 0.025s, T = 1s, rR = 1m, rA = 100m, vA =

2vO, β = 120o/s and α = 270o. Simulations lasted for 1100s, started from random ini-

tial positions and orientations inside a sphere of radius 20m and output was recorded

for the last 90s. It was important to include a long warm-up time during which no

model output was recorded to ensure that the simulated flocks assembled the internal

structure that accurately reflected the model‘s emergent properties rather than the

random initial conditions. For vO we used the values 8m/s and 10m/s and for rO we

used values in the set {20, 25, 30, ..., 60} (in meters). We used two replicates of each

parameter combination in our analysis.

Data analysis

The analysis of our simulated data followed the analysis of empirical data as closely

as possible. Ballerini et al. developed an anisotropy factor for flocks, γ(n), for the nth

closest neighbour [Ballerini et al., 2008, Cavagna et al., 2008]. This factor quantifies

the lack of nearest neighbours along the direction of motion of individuals averaged

across an entire flock (0 ≤ γ(n) ≤ 1).

Boundary effects influence the value of γ(n) strongly for small flocks (smallN)

[Cavagna et al., 2008]. Therefore, it has been recommended to find the boundary of

flocks by using α-shapes and to exclude all neighbours from the analysis which are

further away than the boundary is from their reference individuals (Hanisch method)

[Cavagna et al., 2008]. We are using a convex hull algorithm to find the flock boundary

in our analysis. The α-shapes approach has the advantage that it accounts for non-

convex flocks for appropriate values of α, which regulates the allowed minimal size

of concavities in the flock boundary [Cavagna et al., 2008]. Visual inspection showed

that in contrast to flocks of starlings [Ballerini et al., 2008] our simulated flocks had

an approximately convex boundary. We also found that the shape of our flocks was

affected by a small number of outliers away from the main body of the flock (see

86



CHAPTER 3

figure 3.3). Outliers have an effect on the boundary found by using the convex hull or

the α-shapes method. However, large numbers of individuals in flocks help to smooth

out any errors introduced by outliers or inaccurate boundaries. For these reasons a

convex hull algorithm for the calculation of the flock boundaries was sufficient to find

clear qualitative trends in the large simulated flocks in this work.

Ballerini and co-workers argued that the anisotropy in the internal structure of

starling flocks is a direct result of interactions between birds and defined an interaction

range nc, given by the value of n where γ becomes 1/3. They suggested that birds

do not interact with conspecifics further than their ncth nearest neighbour [Ballerini

et al., 2008]. Specifically, nc was found as the n value where a linear fit to the

decreasing interval of γ(n) intersects the horizontal line γ = 1/3 as in [Ballerini et al.,

2008]. We automated this procedure by fitting a line to all values of γ(n) obtained

from our simulations for all n < nfit and a horizontal line of value γ = 1/3 to the

values of γ(n) for n ≥ nfit. The value of nfit we used resulted in the smallest sum of

squared residual for the corresponding fit to γ(n). The value for nc was then defined

as the intersection between the linear part of our fit to γ(n) and the line γ = 1/3.

Flock summary statistics

From our simulated flocks we extracted the polarisation and angular momentum,

given by [Couzin et al., 2002],

pgroup =
1

N
|

N
∑

i=1

vi|, (3.7)

mgroup =
1

N
|

N
∑

i=1

(xi − cgroup)× vi|, (3.8)

where cgroup =
∑

xi/N is the group centre. The angular momentum measures the

degree of rotation of the group about the centre of the group and the polarisation

the degree of alignment among individuals [Couzin et al., 2002]. High values of

0 ≤ pgroup ≤ 1 denote high levels of alignment and vice versa. Similarly, high values

of 0 ≤ mgroup ≤ 1 denote a high degree of rotation about the centre of the group. The
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two summary statistics presented here are commonly used to describe and identify

changes in the type of collective behaviour displayed by moving groups of individuals

[Couzin et al., 2002]. Since we are comparing our model to empirical data of highly

aligned flocks of birds [Ballerini et al., 2008], we needed to ensure that for our choice of

parameters the simulated groups always displayed the same type of collective motion.

The group speed, vgroup, was approximated by the distance the centre of the group

moved between model outputs:

vgroup(t) = |cgroup(t)− cgroup(t+ T )|. (3.9)
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Figure 3.3: Two-dimensional projection of simulated individual velocities (approximated by

the vector between two consecutive positions, 1 second apart) and distribution of individual

speeds. The figure shows individual velocity vectors at one instant of time for a flock of

1,000 individuals. The length of the vectors is divided by a factor of 5 for clarity. The flock

is highly aligned but some individuals leave the core of the flock temporarily. No outliers

are eliminated from this picture and we confirmed that simulated flocks stay coherent over

long simulation runs despite significant fluctuations at the boundary. The inset shows the

distribution of individual speeds across the entire group for 20 consecutive recordings.
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Figure 3.4: Polarisation and angular momentum plotted against sparseness for the simulated

flocks used in the analysis in the main text. Error bars (standard error) are smaller than

the symbol size. Squares denote simulations with vO = 8m/s and circles simulations with

vO = 10m/s Neither of the summary statistics displays large systematic changes for different

values of r1. This suggests that the simulated flocks displayed the same type of collective

motion for all simulations.

Supplementary discussion

Empirical results indicate that the spatial shape of moving animal groups can be

affected by environmental factors such as the level of predation risk [Krause and

Ruxton, 2002, Couzin et al., 2002]. Simulation studies have shown that the type of

collective motion can depend heavily on the extent of the sensory zones of individu-

als which in turn may be determined by environmental factors [Couzin et al., 2002].

Furthermore, it has been suggested that swarms may have higher frontal densities

as a result of preferential attacks on the front of swarms [Hildenbrandt et al., 2010].

Potential sources for anisotropic flock structures have been identified in the body

shape of animals or even the aerodynamics (or hydrodynamics) involved in collective

motion. However, these possibilities have been excluded for the starling data that

we use as a benchmark for our model [Ballerini et al., 2008]. As a result, our model

does not account for physical aspects within animal groups such as the size and shape

of individuals‘ bodies. In this work we do not consider the influence of environmen-

tal factors on the collective motion of individuals. The anisotropy we found in our
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simulated flocks is therefore an emergent property of the behaviour of individuals.

An important aspect of the analysis by Ballerini et al. [2008] which we repeated

for our simulations is to consider flocks of different densities [Ballerini et al., 2008].

In the context of simulating groups of animals it becomes important to determine

the origin of the variation in density between flocks. We decided to approach this

problem by varying the extent of the “zone of orientation” (rO) of individuals and

the average speed (vO, vA) at which individuals move. This yielded flocks with a

sparseness to average group speed ratio comparable to empirical data [Ballerini et al.,

2008]. However, we cannot guarantee that the behavioural differences we used are

in fact the correct ones that explain different flock densities. In our model there

are different ways of varying the density of simulated flocks. For example, different

functions for the selection probabilities, pj, may and varying the update frequency

(∆t) does lead to different flock densities. However, this will not only affect the

density of simulated flocks but also other aspects of their dynamics. Faced with a

lack of empirical guidance on this issue, we chose a parsimonious approach to simulate

flocks of different densities.

When we repeated the analysis described above for a different model of collective

motion that is already defined in the literature [Couzin et al., 2002], we were unable

to reproduce functions of γ(n) with values significantly different from 1/3 in the

physical regime (unpublished data Bode et al. 2010; A. Cavagna 2010, personal

communication). This indicates that such models may not be able to reproduce the

empirical results. However, it is not clear whether this is true for all of the many

different models for collective motion.
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Abstract

The theory of collective motion and the study of animal social networks

have, each individually, received much attention. Currently most models

of collective motion do not consider social network structure. The impli-

cations for considering collective motion and social networks together are

likely to be important. Social networks could determine how populations

move in, split up into and form separate groups (social networks affect-

ing collective motion). Conversely, collective movement could change the

structure of social networks by creating social ties that did not exist pre-

viously and maintaining existing ties (collective motion affecting social

networks). Thus, there is a need to combine the two areas of research and

examine the relationship between network structure and collective mo-

tion. Here, we review different modelling approaches that combine social

network structures and collective motion. Although many of these mod-

els have not been developed with ecology in mind, they present a current

context in which a biologically relevant theory can be developed. We ar-

gue that future models in ecology should take inspiration from empirical

observations and consider different mechanisms of how social preferences

could be expressed in collectively moving animal groups.

4.1 Introduction

Imagine that you and your friends are walking in a protest crowd marching through

the streets. In following the crowd you align yourself in the same direction as those

around you. However, within the crowd you are more likely to move in the direction

of your friends in order to stay together. Thus, your position in the crowd is related

to the position of your friends, and if the crowd splits into two, your choice of which

crowd to follow will also be affected by your preference to be near your friends.

Everyone else is moving in the same way: they are moving with the crowd, but
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preferentially moving alongside their friends. From this the overall crowd structure

and collective movement remains, but strong substructures exist within the group.

Similar processes occur in non-human animals. Guppies (Poecilia reticulata), for

example, are small fresh-water fish that tend to move in shoals. Frequent encounters

present opportunities for individuals to move between shoals [Croft et al., 2003].

Controlled experiments in which guppies were presented with a choice of shoaling with

two or more conspecifics demonstrated a strong and consistent preference of guppies

to shoal with individuals with whom they are familiar [Griffiths and Magurran, 1999].

We therefore know from experimentation, observation and personal experience that

social ties affect movement in groups. The implications for considering collective

motion and social networks together are likely to be important. Social networks could

determine how populations move in, split up into and form separate groups (social

networks affecting collective motion). Conversely, collective movement could change

the structure of social networks by creating social ties that did not exist previously

and maintaining existing ties (collective motion affecting social networks). From

an evolutionary perspective, there could be fitness trade-offs for an animal between

having many beneficial social ties and maintaining these ties in moving animal groups.

Separately, both the theory of collective motion and social connections in animals have

received a lot of attention as we will briefly describe.

Collective motion is the term used to describe the synchronised motion of groups

of animals such as shoals of fish or flocks of birds that appear to behave as one body,

continually changing shape and direction [Sumpter, 2006]. The movement of animal

groups has been shown to emerge from local interactions between many neighbouring

individuals within a group using rules such as (loosely expressed) “get attracted to

nearby individuals” [Krause and Ruxton, 2002, Sumpter, 2006]. We can learn about

behaviours governing animals by studying their collective motion, and also use similar

conceptual ideas to study human crowds [Helbing et al., 2000] and to design teams of

robots [Liu et al., 2003].

Social preferences between animals can be represented by networks in which nodes
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represent individuals and edges connections between them [Croft et al., 2008]. The

particular appeal of the social network approach to studying animal behaviour is

that it allows the study of the social organisation of animals at all levels (individual,

dyad, group, population) and for different types of interaction using one conceptual

framework [Krause et al., 2007]. Network analysis offers many novel techniques for

examining social organisation in animals and exploring how these aspects influence

individuals and groups [Whitehead, 2008, Krause et al., 2009, Sih et al., 2009].

In ecology, models of collective motion typically do not consider social network

structure (i.e., social preference is equal for all perceived conspecifics; e.g. Couzin

et al. [2002], Hemelrijk and Hildenbrandt [2008]). If ecologists are to make the move

towards studying the relationship between social networks and collective motion then

models are likely to be as important as they have been for studies of collective motion

alone. It is important to develop the theory in the context of research that has already

been conducted, and we therefore provide a review of relevant models. Most of these

models have not been developed with ecology in mind. However, they present a

current context in which we can develop a biologically relevant theory of the interplay

between social networks and collective motion. We present a way forward for this type

of research.

4.2 Concepts and context

Before we introduce and discuss the literature in detail, it is necessary to explain

some key concepts regarding the synthesis of collective motion and social networks,

and also outline the context in which ecologists are interested in this notion. First,

we propose a working definition for collective motion for the purpose of our review.

Second, we define the two different types of networks that are important in collective

motion. Then, we briefly describe two perspectives on the effect of social networks

on collective motion that are of direct interest to ecologists. Finally, we outline the

different approaches with which we have categorized the relevant literature.
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A working definition for collective motion

So far we have followed the typical practice and given examples and a loose definition

for the collective motion of animals. However, a more specific definition will help in

the context of this review. Petit and Bon [2010] suggest that collective movement

corresponds to a sequence of events including a pre-departure period, initiation and

subsequent group movement. This concept is appealing as it is easy to imagine how

the different consecutive events affect each other. Petit and Bon [2010] remark that

most models for collective movement do not adhere to the notion of consecutive events

but focus on a minimalist scenario in which continually moving groups are considered.

We found that this observation holds for most of the literature we review here.

While we appreciate the need for a more unifying framework of animal group

movement and comment on this later on, we will restrict the focus of this review to

instances of collective motion (as opposed to collective movement). We define the

collective motion of animals as: the manifestations of the locally aligned, locally syn-

chronous, and continuous movement of one or more groups of interacting individuals.

Multiple groups are included in our definition to allow for group fission and fusion

processes which we believe are important in moving animal groups and interactions

do not have to occur between all individuals involved. The notion of “groups” in

our definition implicitly suggests the concept of a coherent collection of individuals.

Coherence of animal groups is often defined in terms of spatial proximity (e.g. Croft

et al. [2003]) and a definition in terms of communication networks may be possible

but we will defer from defining group cohesion explicitly. Our definition is far from

complete and somewhat vague but its main intention is to highlight the concept of

continuous group movement in contrast to the “stop-and-go” dynamics defined by

Petit and Bon [2010]. We will base our review on this working definition but note

that it is not a characterisation of collective motion.
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Communication networks and social networks

Relationships, associations, and interactions between individuals can be expressed

in terms of network theory. Individuals are represented by “nodes” with “edges”

between them representing connections. Edges can either take binary values (they

exist or not) or weighted values (representing the strength of the connection) and they

can be undirected (connection between two animals) or directed (connection from one

animal to another). There are many excellent textbooks providing more information

on network analysis and terminology [Croft et al., 2008, Whitehead, 2008, Newman,

2010]. In the context of collective motion, two different types of networks emerge

from the literature for describing connections between individuals that directly affect

the behaviour of animals: communication networks and social networks. These two

network types are related and to avoid ambiguity we will define them in more detail.

“Communication networks” represent the exchange of information between indi-

viduals. If animal A obtains information from or about animal B, then A is connected

to B in the corresponding communication network1. Communication could consist

of observing the spatial position of shoal mates, receiving olfactory cues or hearing

warning calls from conspecifics. The information intake of animals is limited by their

sensory capabilities. In models of collective motion, it is often assumed that individ-

uals can only perceive other individuals within their sensory zone, a region of fixed

size around them (e.g. Couzin et al. [2002], Hemelrijk and Hildenbrandt [2008]).

Individuals can move in and out of the sensory zones of other group members. Com-

munication networks can therefore rapidly change over time, with each configuration

of the communication topology capturing the structure of information exchange at

each instant in time. Figure 4.1a illustrates an instant of a communication network

based on the extent of the sensory zones of individuals. For simplicity, we show binary

and undirected networks.

A “social network” represents interaction or association preferences between all

1This definition is inspired by the use of the term “communication networks” in the modelling

literature. See also introduction of chapter 5.
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individuals. For example, if animal A prefers animal B over animal C, then the edge

between A and B in the corresponding social network has a higher weight than the

edge between A and C. In animals, this could be the preference of large guppies to

shoal with other large guppies, the preference for familiar individuals or the preference

of offspring for a parent rather than a stranger. Social networks are not limited by

communication. They underlie a group or population and do not necessarily change

over time or with the movement of individuals. One way to consider social networks

is to ignore weak connections and to focus on strong social preferences. Figure 4.1b

shows an example for such a social network in contrast to the communication network

in figure 4.1a.

Communication networks may or may not be equivalent to preference networks.

Consider the situation when two “associates” cannot perceive each other due to sen-

sory limitations. In this case they are not connected in the communication network

but they are still connected in a social network describing their relationship. How-

ever, if all individuals can perceive each other then a weighted communication network

could express the preferences of individuals to interact with each other in the weights

of its edges. These two network concepts help to organise the literature on social

networks in collective motion into the different approaches that have been taken.

Population level

Researchers interested in linking the behaviour of individuals and groups to the struc-

ture of groups in animal populations have turned to network theory [Lusseau and New-

man, 2004, Cross et al., 2005, Lusseau et al., 2006, Lusseau, 2007, Nagy et al., 2010].

Social network analyses of shoaling guppies, for example, have shown small-world

properties (where most nodes can be reached from every other via a small number of

intermediate nodes), assortment by trait such as size or sex (i.e., individuals of the

same sex and similar size prefer to shoal together), preferential pairwise connections

between familiar individuals, positive degree correlations (e.g., well-connected indi-

viduals tend to be connected to other well-connected individuals) and behavioural
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assortment [Griffiths and Magurran, 1997, Dugatkin and Wilson, 2000, Croft et al.,

2003, 2004, 2005, 2009]. Social networks are typically constructed from animal pop-

ulations found in the wild by invoking the “gambit of the group” (GoG, Whitehead

and Dufault [1999]; for other methods see: Whitehead [2008], Krause et al. [2009]).

This means that associations are recorded between every pair of individuals that are

members of the same collectively moving group. Data are collected for a number

of GoG censuses and the cumulative network in which all recorded associations are

included is then analysed for non-random features [Croft et al., 2008].

Significant fission-fusion processes, such as shoals dispersing at night and forming

new groups the next day, are likely to be important in defining group composition and

the network structure obtained in the way described above. However, fission-fusion

events also occur frequently during shoaling due to groups splitting up and groups

joining together [Croft et al., 2003]. During these events individuals may actively

choose to move preferentially towards certain neighbours (e.g., those of the same sex)

to whom they have a stronger social affiliation. This suggests that the composition of

animal groups could be determined by social aspects not only in the initial formation

of groups but also in encounters of moving groups.

Network analyses of collectively moving animal groups have shown the importance

of individuals’ position in the social network. For example, Lusseau and Newman

[2004] showed that the information flow in a bottlenose dolphin network was suscep-

tible to the removal of dolphins with high betweenness (betweenness is a measure of

importance of individuals in a network to the flow of information between others).

One could imagine that one or a small number of individuals might link otherwise sep-

arate groups. Network analyses deal with static network representations but collective

motion and the adaptability of groups might mean that the network reconfigures after

the loss of individuals. Thus, it is important to bring together theories of collective

motion and social networks.
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Group level

Many animal groups have a distinctive, often hierarchical, underlying social network

structure [Croft et al., 2008, Whitehead, 2008]. When moving collectively, animals

obtain information through their links in the communication network, as described

above. Social connections between animals may result in preferences between ani-

mals which in turn may alter their behaviour towards each other. Theoretical work

has demonstrated that subtle changes in the behaviour of individual animals, such as

higher speeds [Couzin et al., 2002, Wood, 2010], can impact on their spatial position

within a group. From a social network perspective, we might expect that socially me-

diated changes in behaviour, due to individuals’ social network position, could affect

the spatial position of animals within groups. We might, for example, hypothesise

that well-connected individuals tend towards the centre of the group.

Recent research has used pigeons tagged with GPS transmitters to examine group

dynamics within small flocks for long- and short-distance group motion [Nagy et al.,

2010]. The delay between the directional choices of pairs of birds, that is to say

the correlation between birds’ flight directions, was used to construct a directional

leader-follower network that reveals a well-defined and consistent (over a number

of flights) hierarchy among flock members. Individuals assuming positions higher

in the hierarchy network tended to be closer to the front of the flock. This research

demonstrates that different positions of animals within a collectively moving aggregate

can be linked to differential roles of individuals, possibly related to their position

within a social network. Consequently, it will be necessary in the future to investigate

to what extent underlying social structures, be they long- or short-term, impact on

individual spatial positions within moving groups.

Social preferences within groups are often determined by social behaviours, such

as grooming and social dominance [Hemelrijk, 2000]. However, the discussion above

suggests that social preferences may be expressed in collective motion at a more

general level. In addition to distinct spatial positioning within groups, we might

expect to find socially mitigated leadership, fine details in the internal structure of
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groups, or even particular formations. To what extent such features could be a result

of underlying social preference networks is an important area of research.

Approaches in the literature

Many researchers have independently included the notion of networks into models of

collective motion. We grouped the literature into three different approaches of how to

consider networks in collective motion, which we briefly introduce before we discuss

the associated literature in detail.

The first approach is particular to the physics and engineering literature. It can be

posed as, “What type of communication network is necessary to achieve cohesive and

aligned collective motion in a given number of independent individuals?” It amounts

to analytically deriving necessary and sufficient conditions on communication network

structures (e.g. connected or containing a globally reachable node) for certain types

of collective motion (e.g. cohesive, aligned). This problem is of importance for the de-

sign of efficient and robust multi-robot swarms [Liu et al., 2003]. However, it is also of

interest to biological models as it shows us which communication network structures

are possible in collective and cohesive motion. Although progress has been made in

considering communication topologies in collectively moving groups for engineering

purposes, there is no agreed consensus on the requirements for a communication topol-

ogy to obtain cohesive and aligned collective motion in biology. More importantly,

from the perspective of this review, a direct link to social networks is missing: most

of the studies do not explicitly introduce social networks with preferences between

certain individuals. Weighted communication topologies may or may not (depending

on the existence of non-social mechanisms) be equivalent to a weighted animal social

network, in which individuals react more strongly to preferred individuals. This con-

nection has not been made in the literature and could be explored using the types of

modelling approaches we review. It might be interesting to consider future findings

such as the loss of cohesion or alignment as a result of social networks in the light

of the analytical work of this literature. We refer the interested reader to table 4.1
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which gives examples for different types of communication networks and models that

have been considered.

The second approach (“Social networks affecting collective motion”) is conceptu-

ally very different from the first one. It can be posed as, “Given different social or

communication network structures, what can we expect from our collectively moving

groups?” In ecology this approach would address how different social preferences (such

as sex preferences in guppies, Croft et al. [2004]) or structures (such as hierarchical

positions in pigeons, Nagy et al. [2010]) affect collective motion. While the structure

of the communication topology is still of interest, this work is predominantly mo-

tivated by social aspects of interactions. Crucially, the impact of manipulating the

communication topology in response to an underlying fixed (time-invariant) social

network is studied. In contrast to the first approach, the objectives in this part of

the literature are not limited to investigating group cohesion and alignment.

Finally, the third approach (“Collective motion affecting social networks”) con-

siders how social networks can emerge and change over time as a result of different

movement patterns. Unlike the second approach, there is no predefined fixed social

network structure from the start. From an ecological perspective, this could be useful

for studying whether social networks are based on kinship or acquired familiarity, for

example. Loosely speaking one could ask the question “Are an individual’s associates

the types of individuals to whom it prefers to affiliate with (in an already existing

social network) or are they its associates because it has developed a familiarity with

them (in an emergent social network)?” It might also be interesting to investigate

whether social dominance or leadership is only expressed in collective motion, or

whether it could be achieved through collective motion [Quera et al., 2010]. The

social preferences of individuals may change over time, perhaps due to increased fa-

miliarity with individuals, or positive or negative reactions between individuals. This

could affect social network structure by increasing or decreasing the weights assigned

to preferences (see figure 4.2 for an illustration). In many models the communication

topology at any one instant is defined by spatial proximity (recall figure 4.1a). There-
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Figure 4.1: The difference between communication and social networks. The positions of

individuals are marked by black circles with arrows indicating their direction of motion.

Connections (edges) are marked by black lines between individuals. (a) Illustration of an

instantaneous communication network. The extent of the sensory zones for individuals 1

and 5 are marked by grey regions. Edges in the communication network are based on which

individuals can perceive each other and can therefore exchange information. (b) Example

for a social network indicating strong social preferences that could underlie the group of

individuals in (a). Note how this network contains connections between individuals 4 and 5,

for example, which is not the case in the communication network in (a). Limited perception

can therefore restrict the communication network to a structure different to the underlying

network of social preferences.

fore, the instantaneous effect of changes in the social network may be small, but over

time the impact can be significant.

The categories and concepts developed in the three different approaches are not

mutually exclusive in biological systems. A collectively moving group might have un-

derlying shoaling preferences (such as guppies preferentially shoaling with individuals

of a similar size), but the social network can also adapt over time (such as guppies

gaining familiarity with certain other individuals). In the following we discuss the

relevant literature in the light of the last two approaches - that are directly connected

to social networks - in more detail.
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Figure 4.2: Illustration of how a social network could change over time driven by spatial

proximity of individuals. Increased width of edges illustrates increased strength of social

connections and the positions of individuals relative to each other are shown. Panels (a)-(c)

show three consecutive instances of time, (t, t + 1, t + 2). (a) Individuals 1-3 close to each

other having established loose social ties. In (b), individual 3 has moved away from 1 and 2

and another individual, 4, has appeared. 1 and 2 have strengthened their connection and 3

has established a social connection to 4. (c) The final configuration in which 3 has lost its

social connection to 1 and 2 as a result of being distant from them for some time. Individuals

3 and 4 and 1 and 2 have increased the strength of their social connections and since 4 has

moved towards 1 and 2, it has established connections to them.

4.3 Social networks affecting collective motion

In this section, we review models that investigate the impact of imposed networks

on collective motion. Much of the work we review was not biologically motivated.

We have nevertheless grouped the relevant literature into three aspects of collective

motion that are directly related to the concepts we have introduced. With this we

highlight areas where previous work could be relevant and useful to biology.

Group structure and formations

Empirical studies in a wide range of group living animals have shown preferences

for familiar individuals, family members, or certain characteristics, and form various

structures based on such preferences [Croft et al., 2008]. Some field studies have even

demonstrated preference for avoidance between certain individuals (e.g., Frère et al.

[2010]). The evidence of such social preferences calls for theoretical work explor-
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Table 4.1: A rough inventory of studies that establish “Conditions on networks” and

focus on necessary and sufficient conditions for cohesive and aligned collective motion

in communication networks. The table lists selected details of models in the literature.

∗ A word of caution: it has been suggested that models of collective motion with time-

invariant or fixed communication topology are formally not equivalent to systems with

time-dependent communication topology [Toner and Tu, 1995].

Type of Alignment only Jadbabaie et al. [2003], Savkin [2004], Yu and Wang [2008]

interaction Repulsion, alignment, attraction Tanner [2004], Shi et al. [2005], Liu et al. [2009]

Nutrient profile + others Liu et al. [2008]

Fixed target + others Tanner [2004]

Spatial Closed loops (e.g. ellipsoids) Paley et al. [2008]

dimension 2-dimensional Jadbabaie et al. [2003], Sepulchre et al. [2005, 2007, 2008]

Yu and Wang [2008]

3-dimensional Scardovi et al. [2007], Sarlette et al. [2009]

m-dimensional Liu et al. [2003], Shi et al. [2005]

Type of All-to-all Scardovi et al. [2007], Sepulchre et al. [2007]

communication time-invariant ∗ Liu et al. [2003], Tanner et al. [2003], Lin et al. [2005]

Li [2008], De Smet and Aeyels [2009]

Type of Undirected Shi et al. [2005], Zavlanos et al. [2007]

network Directed Saber and Murray [2003], Li [2008]

Binary Yu and Wang [2008]

Weighted Saber and Murray [2003], Li [2008], Liu et al. [2008]

ing possible underlying mechanisms for the spatial association within and between

shoals. Further investigation is also needed to explore the extent to which movement

between groups and the fragmentation of groups could be explained by underlying

social networks.

Some migratory birds move in characteristic “V-shaped” formations [Bajec and

Heppner, 2009] and detailed empirical work has revealed that collectively moving

animal aggregates across a range of species show a remarkable variation in the internal

structure they adopt. Starling flocks (Sturnus vulgaris), for example, are denser at

the edges than at the core of the group [Ballerini et al., 2008] while the shoals of roach

(Rutilus rutilus) are densest at the front [Buman et al., 1997]. It is possible that these

observations could be explained simply by physical features of the animals involved

or particular behaviours in response to predation pressure. However, the role of social

network structure in shaping these formations needs to be explored in the context of
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biology.

A unified framework for imposing social networks into models of collective motion

was recently suggested by [Qiu and Hu, 2010]. They used their model to examine

the role of social network structure on the formations of collectively moving human

crowds. Their social network is implemented by values (connection weights wij be-

tween individuals i and j) that represent how important an individual j’s spatial

position is in the calculation of individual i’s desired position. Their model allowed

for two scenarios. In the first, all pairs of individuals were connected in the social

network (and thus able to interact when they can perceive each other). In the second,

all individuals within a group can interact, but only a limited predefined number of

individuals were capable of reacting to members of other groups (these could be con-

sidered “group leaders”). This framework is general and allows for the inclusion of

complex preference networks. Qiu and Hu [2010] show that in their simulations the

precise social structure within a group has a marked effect on the formation in which

groups move, and this is reflected in the average distance of group members to the

centre of the group. For example, a linear network topology (a “chain” of connec-

tions) leads to a linear group formation. A network in which all followers are only

connected with the group leader results in a compact formation with a low average

spatial distance of group members to the centre of the group in contrast to the linear

scenario. This work clearly demonstrates how group formations can be reliant on the

underlying social network.

The effect of a simple social network structure on collective motion was also ex-

plored in a model for fish shoals by Hemelrijk and Kunz [2005]. Individuals in the

model are split into two categories: familiar and unfamiliar. In a similar manner

to the previous model, the social network was implemented by values that represent

how heavily an individual i weights (in terms of preference) its movement tendencies

in respect to individual j (in addition to spatial distance weightings). Individuals

were given higher social preferences for familiar individuals. Hemelrijk and Kunz

[2005] found that individuals spatially clustered with familiar conspecifics within the
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group. This demonstrates that sub-structures within collectively moving groups could

be explained by social networks. The spatial assortment of familiar or similar indi-

viduals within collectively moving groups has also been studied in the context of

pedestrian crowds [Fridman and Kaminka, 2007] and cell sorting [Belmonte et al.,

2008]. The precise mechanisms for the expression of individual preferences employed

by these models are based on weighted behavioural responses between individuals

and therefore similar to the ones presented above. Fridman and Kaminka [2007] used

the quantity “hierarchical social entropy” as a measure for group formation in their

simulations. This measure decreases as individuals increase their spatial clustering

(equalling zero if all individuals are on the same position). Hierarchical social entropy

could be useful to assess the degree of structure and grouping in animal populations

and in biological models.

[Moussäıd et al., 2010] suggested an interesting theory specific to the movement

and formations of social groups within pedestrian crowds. Importantly they pre-

sented a model guided by a detailed empirical investigation. It was observed that

more than two thirds of pedestrians moved in coherent and stable groups of two to

four individuals in two pedestrian crowds of different densities and that the mem-

bers of these groups were walking side by side. As pedestrian densities increased,

the linear formations bent forward and adopted a V-shape. These formations and

density-dependent changes were reproduced in a “social force” model in which social

tendencies (and other pedestrian movement tendencies) are directly translated into

forces acting on individuals. The novelty of the model by Moussäıd et al. [2010] is the

consideration of the communication needs of individuals in pre-defined social groups.

Group members turn their “gazing direction” to be able to see their partners and

move to ensure that they do not have to twist their head too much. While this model

is specific to pedestrian movement, it is to date the only study comparing a model for

collective motion to individual movement data whilst considering an underlying so-

cial structure. Furthermore, the empirical observations suggest that underlying social

networks have a strong effect on formations of collectively moving groups. This study
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demonstrates the potential of comparing and informing models of collective motion

and social structure with real-world data. In general, this work suggests that bio-

logically relevant models can be developed and tested in collectively moving animals

where social structure is either known or can be manipulated experimentally.

The study of the formation and requirements of ad hoc mobile networks (e.g. net-

works of wireless, hand-held devices) led researchers to combine aspects from social

theory and collective motion in models [Musolesi et al., 2004, Borrel et al., 2009].

Both studies included social preferences as fixed dyadic weights between pairs of in-

dividuals. The precise mechanisms of group behaviour are roughly similar to what

has been described above. However, Borrel et al. [2009] performed an interesting

analysis. The authors studied the distribution of inter-contact durations (based on

spatial proximity) for random underlying networks (described by dyadic weights) and

compared them to empirical data published elsewhere. They found power law distri-

butions of inter-contact durations (with cut-offs) in their simulations that are similar

to the empirical evidence. To rephrase this slightly, their random social network pro-

duced power law contact networks. They suggested that this finding was independent

of the type of random social network used in their simulations. This analysis shows

that the structure of an underlying social network is not necessarily reflected in the

structure of contacts or, in a wider sense, communication networks. This is an im-

portant point: when we study social aspects of animal behaviour, we often record

contacts between animals. The work by Borrel et al. [2009] illustrates that we have

to choose carefully what aspects of the contacts or communication between animals

we study if we want to infer information on the social preferences of these animals.

It also demonstrates that, depending on the non-social behaviour of animals (such

as a preference for larger groups, or home range constraints), observations of animal

associations do not necessarily recover social preferences of animals in all cases.

While most of the work presented in this section has not been conducted with

biology in mind, it presents a body of interesting approaches that include social

interactions in models of collectively moving groups that could inspire biologically
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relevant mechanisms. Furthermore, the analysis of these models has culminated in

useful measures and approaches (e.g. “hierarchical social entropy” [Fridman and

Kaminka, 2007], distribution of contact durations [Borrel et al., 2009]) that could be

usefully applied to biological systems.

Structured interactions and the efficiency of group movement

Social network structure may impact on the nature of communication between ani-

mals and this in turn could affect the overall efficiency of communication. Consider,

for example, the case of a social hierarchy in which individuals predominantly pay

attention to a small number of dominant individuals. Such a focus of attention could

result in reduced efficiency of information transfer between subordinate individuals.

If information (such as direction or the presence of a predator) does not propagate

through a moving animal group with enough efficiency, the individuals within the

group will suffer a fitness loss due, for example, to less efficient foraging, less efficient

flying, or slower anti-predator reactions.

Motivated by the notion of small-world networks [Watts and Strogatz, 1998], Bus-

carino et al. [2006] manipulated the communication network structure in a simple

model for collective motion. The original version of the model allows individuals

to react to the average orientation of all individuals within a fixed range of percep-

tion [Vicsek et al., 1995]. In the adapted model long-range interactions beyond the

range of perception of individuals were introduced in a stochastic way. This led to

improved alignment in the presence of stochastic effects or noise [Buscarino et al.,

2006]. While this work is primarily related to efficient and sufficient communication

between individuals, one could imagine that underlying social preferences may forge

long-range communication links that go beyond local information exchange. For ex-

ample, African elephants (Loxodonta africana) mostly move in small social units and

are capable of long-distance vocal communication with elephants in separate social

units [McComb et al., 2000]. The work by Buscarino et al. [2006] demonstrates that

long-range communication could impact on or even facilitate the collective motion of
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such groups.

The theoretical work presented so far suggests that social preferences can have

a profound impact on collective motion. This could be particularly important in

situations where there is limited space for group movement due to a restrictive local

environment. This could, for example, have heavy fitness implications for animal

groups attempting to escape from a predator. Braun et al. [2003] studied the impact of

individual agents’ characteristics on evacuation efficiency. Their model simulates the

escape of a group of people from a room with one door. Social ties were implemented

via distance-dependent attractive forces between individuals in the same family or

group within the crowd. Overall, the framework is versatile and allows the inclusion of

weighted and directed connections between individuals, although the effect of this was

not studied. Braun et al. [2003] found that the flow of people out of the room decreased

slightly with stronger social ties and, qualitatively, that the members of predefined

social groups moved closer to each other over time. The situation simulated by this

model would become particularly interesting to biologists if the group represented an

animal collective with a predator in pursuit. However, the effect of social networks

on collective anti-predatory response has not been studied.

Leaders and followers

Leadership in moving animal groups has received a lot of attention (e.g. Couzin et al.

[2005], Conradt et al. [2009]). It has been argued, for example, that small groups

of informed individuals can lead large groups of naive individuals simply by moving

towards their target [Couzin et al., 2005]. Additionally, it has been suggested that

individuals can increase their influence on group movement by adjusting their own

behaviour [Conradt et al., 2009]. The last two examples are possible explanations for

leadership without the need for social preferences. However, recent empirical work

has shown that dominant beef cows (Bos taurus) have more influence on herd move-

ment than more subordinate cows [Sárová et al., 2010]. Leader-follower relationships

impose a rudimentary social network onto simulated collective motion. More gener-
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ally, modelling socially mitigated leadership in the collective motion of animals could

allow insights into the possible situations in which we can realistically expect to find

leadership as a social phenomenon. The research directed at the aspects of socially

mitigated leadership in collective motion is currently somewhat removed from biologi-

cal systems. Some of the studies reviewed here may, however, provide a good starting

point to investigate this field and further our understanding of how hierarchical social

structures affect group movement.

Some analytical studies incorporate leaders into their models [Jadbabaie et al.,

2003, Liu et al., 2003, Hu and Hong, 2007, Consolini et al., 2008]. Followers in these

models have equal preferences for leaders or other followers in their interactions. It

is only the behaviour of the leader that is different in that leaders do not interact

with other individuals. This represents an extreme social network structure where

all individuals are socially connected, with the exception of the leaders that have

only incoming (directed) social connections. Essentially, this represents a hierarchical

sub-structure within the social network. The only criteria examined in this body of

literature are the stability (coherence) and alignment of simulated flocks, and the

necessary conditions on the communication topology to achieve the aforementioned

criteria. Simulation studies have also included the concept of leadership into collective

motion [Qiu and Hu, 2010, Loscos et al., 2003], but have not studied the consequences

of this addition.

4.4 Collective motion affecting social networks

In the section “Group level” we have hinted at how social networks could emerge and

develop as a result of collective motion and at the impact this could have. Now we

develop this concept in more detail.

As we discussed in the previous section, theoretical work has suggested that faster

individuals are more likely to be found at the front of groups [Couzin et al., 2002,

Wood, 2010] and that individual group members can increase their influence on the

movement of the group by adjusting their behaviour [Conradt et al., 2009]. Simple
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mechanisms such as the ones explored in these models may result in spatial sort-

ing within moving animal groups and subsequently in increased familiarity between

similar individuals (according to behaviour or physical properties). Effects such as

increased familiarity between individuals could result in changes to the underlying

social network (e.g. increased preference for familiar individuals). Empirical work

on guppies (Poecilia reticulata) has demonstrated that individual fish prefer to shoal

with conspecifics with whom they are familiar [Griffiths and Magurran, 1999]. This

suggests the possibility for underlying social network structures to change: as two

individuals shoal together (due to any factor such as chance, home range overlap,

assortment preference, etc.) they adjust their preferences to increase the chance that

they will shoal in the future. Thus, a promising approach may be to investigate how

the structure of moving animal groups changes over time and in space. With regards

to the mechanisms of how exactly social networks may change as a result of group

dynamics, inspiration could be taken from the literature on adaptive co-evolutionary

networks [Gross and Blasius, 2008].

The approach of “collective motion affecting social networks” has been studied

little. In the following we will give examples from the literature that are intended

to illustrate examples of how social networks could emerge as a result of collective

motion.

An early model for crowd behaviour assigned social parameters and spatial goals

to agents [Musse and Thalmann, 1997]. Agents were members of groups and when

they reached their spatial goal they re-assessed their group membership and social

parameters based on the social parameters of other agents present. Thus, their social

affiliations and preferences changed over time as a result of their decisions. This

led to group formation and movement between groups. Musse and Thalmann [1997]

developed and explained their model in detail but their analysis of the model is

only qualitative. While the impact of the particular mechanism suggested by Musse

and Thalmann [1997] is not clear, their work may provide a valuable starting point

to include re-assessment of group membership in animals once targets (such as e.g.
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waterholes or roosts) have been reached. Although this example does not fit with our

definition of collective motion, it is a good example of how different social behaviours

can influence and create social network structures. It is easy to see how this might

translate to models of collective motion, where the behavioural characteristics of

animals influences the underlying social network.

An entirely different concept was presented by Wessnitzer et al. [2001]. The goal

of their collective motion and decision-making model was the self-organisation of

individuals into formations (e.g. a line or square). Initially, individuals did not com-

municate. Subsequently one agent began to recruit other individuals for the task at

hand based on distance-dependent probabilities. The way in which the communica-

tion links were assembled also depended on the task. The recruitment of individuals

to the group continued until a sufficient number of agents was assembled [Wessnitzer

et al., 2001]. Formation control is a problem relevant to many engineering problems

and further work can be found in this literature (e.g. Şahin et al. [2002], Trianni and

Dorigo [2006]). The self-organisation into formations is possibly not directly related

to collective motion in the classical sense (shoals of fish, flocks of birds), but the

example of the defensive formations of muskoxen (Ovibus moschatus) illustrates that

this does occur in nature and may be influenced by social preferences.

In the previous section we discussed models of leadership. A recent study showed

how leaders could emerge from local interactions between individual group members

[Quera et al., 2010]. This approach is based on a matrix of “ideal distances” that

agents ideally attempt to maintain between each other. Individuals move to min-

imise the difference between the actual distances to agents they can perceive and the

preferred distances to these agents. The ideal distances can be viewed as weighted

interaction and proximity preferences and are not static. Instead, they are updated

based on a reward system in which pairs of agents predict distances between each

other before moving. Good predictions are rewarded by manipulating the ideal dis-

tances and vice versa. In the analysis of the model, hierarchical leadership is defined

rigorously and measures for leadership and the extent to which the group moved
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together (alignment and cohesion in one quantity) are defined [Quera et al., 2010].

In summary, some interesting concepts have been developed in this field, but the

direct link to animal behaviour is currently missing.

4.5 Discussion

We have seen that a myriad of models for collective motion that include communi-

cation networks or social networks into their mechanisms have been developed for a

number of different reasons. However, despite the high level of interest in both social

animal networks and animal collective motion in ecology, only a very small fraction of

the literature is concerned with animal behaviour. Bringing together these two areas

of research is the natural progression that will allow us to understand the interplay

between social networks and collective motion. We suggest that this will represent

an important advance in the field of animal behaviour. In the following we present

a number of questions and perspectives for future work (see also table 4.1). We feel

that addressing these questions and issues will greatly help our understanding of the

connection of social networks and collective motion, and our understanding of the

movement of animals groups in general.

Defining collective motion

At this stage we need to revisit our working definition for collective motion. Recall

that Petit and Bon [2010] defined the collective movement of animals as a sequence

of events including pre-departure and initiation. It is likely that social preferences

impact on such events. Fission-fusion events are thought to be the key drivers behind

many network structures sampled by ecologists, and thus understanding how the

social networks underlying group fission are likely to prove important for informing

field ecologists [Franks et al., 2010]. Research on macaques (Macaca tonkeana and

Macaca mulatta), for example, suggests that mechanisms underlying group fission in

group departure events are mainly influenced by individual affiliations [Sueur et al.,
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2010]. This raises the question of whether future models for the movement of animal

groups should cover a wider spectrum of behaviours than the ones included in our

definition of collective motion.

For two reasons we believe that models can continue to focus on minimalist sce-

narios as they have done on the past. First, extending the scope of group movement

models is likely to increase their complexity (even more so than in minimalist mod-

els), as we may have to account explicitly for factors such as the environment (e.g.

resources, obstacles), the internal state of individuals (e.g. food deprivation) and the

time of day. Second, we tentatively suggest that the behaviour of animals varies to

an extent that allows a separate treatment of different behavioural contexts. A set of

minimalist models could therefore present a compartmental description of behaviour.

Characterising collective motion

There is a crucial need to characterise the movement of animal groups in a way that

is appropriate to study the impact of underlying social networks. Many of the studies

we review only consider summary statistics such as alignment and cohesion - mea-

sures that may be inappropriate for the problem at hand. Innovative measures such

as “hierarchical social entropy” [Fridman and Kaminka, 2007] and the distribution

of contact durations [Borrel et al., 2009] are the exception in theoretical studies. Al-

though there is value in purely theoretical analyses, much inspiration comes from

empirical work. Detailed investigations of individual animal trajectories have offered

insights into the internal structure of flocks of birds [Ballerini et al., 2008] and forma-

tions within pedestrian crowds [Moussäıd et al., 2010]. Another interesting approach

to study group fission and fusion events at the individual level is presented by Miche-

lena et al. [2010]. They look at a mechanism for how animals form groups and split

into smaller subgroups on a given food environment. While the mechanism suggested

is based on differences between bold and shy individuals and therefore not on social

affiliations between individuals, the approach by Michelena et al. [2010] to study in-

dividual probabilities for leaving or joining other conspecifics might be useful in the
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context of group fission and fusion as a result of social preferences.

While already existing work opens up new questions about the mechanisms gen-

erating them, we would like to see this go further. Specifically, it would be interesting

to see whether the positions animals occupy within groups (relative to conspecifics)

are fixed or vary over time and between flocking events. Here the work by Nagy et al.

[2010] on small flocks of pigeons provides an interesting starting point. Experiments

could also be designed to test ideas regarding emerging or changing networks. For

example, two guppies could be made familiar with each other before being added to

a group. Their relative positions and orientations could then be tracked (e.g. us-

ing free tracking software such as SwisTrack; Correll et al. [2006]) and researchers

could investigate whether familiar individuals tend to shoal together more than they

do with less familiar group members. Another option would be to track patterns of

interactions of moving individuals in different groups where they are known to have

different social structures. These social structures could be also related to environ-

mental, or group size constraints, or have movement limitations. Such experiments

would require replication and are not without difficulties. However, we anticipate that

experiments of this nature will help elucidate the role of social networks in collective

motion. Although we would expect a cycle between models and empirical experiment,

such empirical studies could open up questions important in their own right.

Mechanisms at the individual level

Rather than simply assuming that social preferences directly translate into attractive,

repulsive or aligning tendencies - as in most of the literature we review - it may be

worthwhile to consider the precise mechanisms of how this could work in animals.

For example, Lemasson et al. [2009] study collective motion from a neuro-biological

perspective and one could imagine that neurological pattern recognition might yield

interesting concepts. Recent work suggests a simple neighbour sampling approach by

which individual-to-individual preferences can be modelled without a priori assuming

that social connections translate into particular movement tendencies (chapter 3).
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The idea behind this concept is that animals sample information from their field of

perception, rather than averaging over it (as is typically assumed). In the current im-

plementation animals prefer to react to nearby conspecifics, however, this could easily

be extended to include preferential interactions between socially connected animals

(see chapter 5). Preferential interactions can, but do not necessarily translate into

attractive social forces. In a different approach it has already been demonstrated that

the communication needs of social group members could explain movement features

in pedestrian crowds [Moussäıd et al., 2010].

Issues at the population level

In the introduction we highlighted the difference between group-level and population-

level perspectives. Most current animal social network data is recorded from the

population-level perspective. The predominant method essentially samples instances

of spatial assortment of individuals in groups. Despite rigorous approaches and care-

ful analysis [Croft et al., 2008, Whitehead, 2008, Franks et al., 2010] we do not yet

know the extent to which the sampling techniques used can accurately reconstruct

social preferences in moving populations in which individuals are continually switch-

ing group membership within a sampling period. Within populations areas of interest

include the fragmentation and formation (fission-fusion) of groups as a result of so-

cial interactions, the number of groups formed in limited space as a result of different

social structures and the effect of boundaries on the preceding issues in limited space.

These aspects are particularly important if we want to derive information on the social

structure in populations from empirical observations. Careful modelling of such sce-

narios will provide a baseline and may even enable us to specifically suggest effective

sampling protocols. From this perspective, research can address questions relating to

the effect of large-scale social network structures, such as degree distributions (e.g. the

distribution could be Poisson, or skewed with some very well-connected individuals),

average path lengths (where a high average path length could represent high rates

of mixing between groups), and the network position of key individuals. The social
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position of individuals in a large-scale network, representing the social structure of

the population, would likely represent the level to which individuals mediate between

groups, in addition to local social preferences. To include large-scale social network

structures in models of collective motion, networks with the desired properties can be

generated and each individual allocated to a network position (i.e. a node).

Issues at the group level

In the previous sections we have discussed the need for research to examine how social

network structure might affect group formations and internal structures, efficiency of

communication, or group leadership. For group formations we can address questions

such as why starling flocks are denser at the edges than at the core of the group.

Biologically relevant models can be developed and tested in collectively moving an-

imals where social structure can be manipulated experimentally. This would allow

researchers to examine questions related within-group structures, such as what af-

fect the social network structure has on group formations (such as V-formations), or

what affect the social network position (e.g., well-connected or poorly-connected) of

an individual has on their spatial position (e.g, middle of the group or periphery of

the group). One possible approach for empirical work could be to remove dominant

animals from groups and to compare the collective motion of the group the situation

when subordinate individuals are removed. Theoretical work on dominance interac-

tions in stationary groups, for example, has suggested that dominant individuals take

central spatial positions within groups [Hemelrijk, 2000]. Could this concept extend

to collectively moving groups?

Examining the communication or even navigation efficiency of groups with dif-

ferent social network configurations will allow a link to fitness based on foraging

efficiency, predator escape efficiency, etc. For example, we could ask whether a dense

network structure decreases time to escape from predators, or hinders the shaping of

anti-predatory group formations such as torus formations. When examining group

leaders, analysing the role of hierarchical social network structures could prove fruit-
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ful. Nagy et al. [2010] claim that small groups navigate more efficiently with leaders.

Could this explain social hierarchies in some small groups of migrating animals?

We have suggested that movement patterns can affect social structure by allowing

individuals to become familiar with others as a result of their position in a group (see

section “Leaders and followers”). To establish whether this is a plausible mechanism

studies are needed that investigate the relative positions of animals within moving

groups over possibly long time scales. One mechanism for this could be the ageing

of animals and the corresponding change of their physical abilities. Alternatively,

varying predation pressure could impact on collective motion. Recent empirical and

theoretical work by has suggested how animal groups synchronise in the face of in-

creased threat levels (chapter 1). This could provide a starting point to investigate

the positioning of animals within groups in such situations. Alternatively, we could

also imagine a complex feedback scenario. Animals with weak social ties, for exam-

ple, may occupy peripheral positions in groups. On the edge of groups they may face

higher predation. As a result, predation pressure on moving animal groups may result

in or even select for denser and more homogeneous social networks.

Other questions of interest

There are other general questions that could be asked of collective motion in the

context of social networks. For example, it could be valuable to investigate whether

there is a general cost to maintaining social ties in collective motion (e.g. ungulate

parents and offspring trying to maintain proximity; Espmark [1971]) and to examine

the extent to which this could explain different social structures across species. Costs

and benefits associated with maintaining social ties in collectively moving animal

groups will highlight fitness trade-offs for individuals that could explain why some

species are and others are not sociable. Researchers are increasingly interested in the

effect of “personality” (behavioural syndromes) on collective motion in a shift away

from the simplifying assumption of identical individuals [Croft et al., 2009, Piyapong

et al., 2010]. Introducing social interactions will add another aspect of individualism
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to the theory of collective motion and this additional meta-level is a further step to

disentangle and understand the true complexity of animal groups.

Table 4.1: List of a number of questions of immediate interest for future research.

• How does the spatial positioning of animals within moving groups

vary over time, flocking events and social rank?

• Can detailed internal substructures or formations tell us something

about social preferences in animals?

• Is current data gathering that infers social networks from spatial

association adequate?

• When and where is socially mitigated leadership possible?

• Is there a cost to maintaining social ties in collective motion?

• Can social affiliations improve or hinder the predatory response of

moving animal groups?

• Could different social structures explain differences in collective

motion between species?

• Do aspects of collective motion result in particular social network

structures in animal groups?
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Abstract

Many group-living animals show social preferences for relatives, familiar

conspecifics or individuals of similar attributes such as size, personality,

or sex. How such preferences could affect the collective motion of ani-

mal groups has been rather unexplored. We present a general model of

collective animal motion that includes social connections as preferential

reactions between individuals. Our conceptual examples illustrate the

possible impact of underlying social networks on the collective motion of

animals. Our approach shows that the structure of these networks could

influence: (1) the cohesion of groups; (2) the spatial position of individu-

als within groups; and (3) the hierarchical dynamics within such groups.

We argue that the position of individuals within a social network and

the social network structure of populations could have important fitness

implications for individual animals. Counter-intuitive results from our

conceptual examples show that social structures can result in unexpected

group dynamics. This sharpens our understanding of the way in which

collective movement can be interpreted as a result of social interactions.

5.1 Introduction

Many group-living animals show social preferences for particular individuals or groups

of individuals. These inter-individual preferences affect the movement of animals

within groups and the movement of groups as a whole. For example, guppies (Poe-

cilia reticulata) prefer to shoal with familiar conspecifics [Griffiths and Magurran,

1999], the majority of pedestrians walk in small social groups [Moussäıd et al., 2010],

and group fission in macaques (Macaca tonkeana and Macaca mulatta) is strongly

influenced by individual affiliations [Sueur et al., 2010].

Individual-based models have been essential in demonstrating how the collective

motion of animal groups, such as flocks of birds or shoals of fish, could emerge from
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simple rules and entirely local interactions between individuals (e.g. Reynolds [1987],

Vicsek et al. [1995], Couzin et al. [2002], Buhl et al. [2006]). Some models have in-

cluded social preferences, but the focus has been largely on pedestrian crowds (e.g.

Braun et al. [2003], Moussäıd et al. [2010], Qiu and Hu [2010]). In a more general

approach Hemelrijk and Kunz [2005] divided their groups into two categories: fa-

miliar and unfamiliar. Individuals were given higher social preferences for familiar

individuals. Hemelrijk and Kunz found that individuals spatially clustered with fa-

miliar conspecifics within the group. This demonstrates that sub-structures within

collectively moving groups could be explained by social networks. While the litera-

ture provides some interesting starting points there is a real need to develop this field

further (see also chapter 4).

When social preferences as introduced above are present in a species that displays

collective motion, it is likely that they impact on the interactions between individuals.

This should in turn affect the spatio-temporal patterns that emerge from local inter-

actions. They could, for example, determine how populations move in, split up into

and form separate groups. From an evolutionary perspective, there could be fitness

trade-offs for an animal between having many beneficial social ties and maintaining

these ties in moving animal groups.

Social preferences and interactions between moving individuals obey different

time-scales. While social preferences often change slowly (e.g. familiarity, kinship),

interactions between moving individuals change more frequently (e.g. collision avoid-

ance, group cohesion). In some cases interactions between moving individuals may

influence social preferences (e.g. familiarity based on spatial proximity, see chapter

4), but the impact of social links on interactions should be far more ubiquitous and

strong.

Both social preferences and interactions between moving individuals can be ex-

pressed in terms of network theory [Croft et al., 2008, Whitehead, 2008, Newman,

2010]. Animals are represented by “nodes” with “edges” between them representing

connections. In the context of modelling collective motion two different types of net-
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works emerge from the literature for describing connections between individuals that

directly affect the behaviour of animals: communication networks and social networks

(chapter 4).

“Communication networks” represent the exchange of information between in-

dividuals while they are collectively moving, such as observing the spatial position

of group mates. In models of collective motion it is often assumed that individuals

can only perceive other individuals within their sensory zone, a region of fixed size

around them (e.g. Couzin et al. [2002], Hemelrijk and Hildenbrandt [2008]). Individu-

als can move in and out of the sensory zones of other group members. Communication

networks can therefore rapidly change over time, with each configuration of the com-

munication topology capturing the structure of information exchange at each instant

in time. How individuals react to the information they perceive is not encoded in

communication networks. In a different context the term “communication network”

is commonly used to refer to the active space of a signal requiring both a signaller and

a receiver [McGregor, 2005]. In contrast, our use of the terminology is founded in the

modelling literature and refers to direct information transmission (see also chapter

4).

In a “social network”, connections between individuals represent social preferences

with stronger connection weights representing stronger preferences. Social networks

are not limited by communication or spatial positions: two individuals might share a

highly weighted social network connection despite not currently being able to perceive

each other or being a large distance apart. In other words, individuals that share an

edge in a social network may not share an edge in a communication network at one

instant of time. The existence of such underlying social networks in groups of animals

requires the ability of individuals to some kind of cognitive process (e.g. sex discrimi-

nation or individual recognition). Ecologists working on animal networks are typically

interested in these social networks as they reveal patterns of social preferences (Croft

et al. [2008]; chapter 4).

Social and communication networks are useful concepts as the network represen-
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tation facilitates analysis of the topological structure of the connections. This permits

investigation of features such as the connectivity of the group based on connections,

the relative importance of nodes in the networks and many more [Croft et al., 2008,

Whitehead, 2008, Newman, 2010]. Here, we investigate the relationship between the

two types of networks in the context of collectively moving animal groups.

Some studies, published outside of biology, have explored the effect of communi-

cation networks on the coherence of collectively moving groups (e.g. Jadbabaie et al.

[2003], Liu et al. [2003], Tanner et al. [2003]; see also chapter 4). In collective robotics,

for example, researchers have included details of the connectivity of the communica-

tion network into robot control protocols, in an attempt to improve the coherence of

robot group mobility [Schuresko and Cortés, 2009]. A focus on the effect of social

networks on group coherence could have interesting implications for ecology, where

many researchers are interested in fission-fusion events (in which groups break up or

join together; e.g. Croft et al. [2003]). This leads to our first hypothesis, which we

phrase as a question. Do strong pairwise social preferences between group members

always improve group cohesion? Specifically, we might ask whether groups in which

all individuals have equal preferences for each other are the most coherent and stable,

and whether groups with multiple separate social components are less coherent with

a higher frequency of group fission events.

Another general question of interest regarding collective motion is why different

individuals occupy different positions in the group. We suggest that the location of

individuals within their social network could affect their spatial position in the group.

A theoretical study of dominance interactions in stationary groups has suggested

that dominant animals take central positions within groups [Hemelrijk, 2000]. Fur-

thermore, it has been argued that fish could be subject to varying levels of predation

pressure depending on their spatial positions in shoals (e.g. Buman et al. [1997]). The

above shows it has long been suggested that the spatial position of animals within

groups can have significant fitness implications at the individual level (see also Hamil-

ton [1971], Mooring and Hart [1992], Morrell and Romey [2008], Wood [2010]). This
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leads to our second hypothesis: individuals with a lot of strong connections in the

social network will be closer to the centre of the group than individuals with fewer

strong connections.

Research using pigeons, Columbia livia, tagged with GPS transmitters has exam-

ined group dynamics within small flocks for long- and short-distance group motion

[Nagy et al., 2010]. The delay between the directional choices of pairs of birds, that

is the correlation between birds’ flight directions, was used to construct a directional

leader-follower network that reveals a well-defined and consistent (over a number of

flights) hierarchy among flock members. Nagy et al. [2010] cautiously described their

findings as “hierarchical group dynamics”. It is unclear whether such hierarchical

group dynamics could result from underlying social network structures alone. For ex-

ample, physical or motivational differences between individual birds such as preferred

flying speed or the need for food could lead to leader-follower relationships that are

possibly unrelated to underlying social networks. This leads to our third hypothesis

that hierarchical group dynamics can arise purely from underlying social networks

and that the former accurately reflect the structure of the latter.

Here we extend the model of animal collective motion presented in chapter 3 by

adding preferential interactions between socially connected individuals. We use simple

but illustrative conceptual examples to study the effect of social network structures

on three different aspects of animal group movement; group coherence, individual

spatial position in groups, and hierarchical dynamics in groups. Specifically, we test

the three hypotheses described above. (1) Do strong pairwise social preferences be-

tween group members always improve group cohesion? (2) Individuals with a lot of

strong connections in the social network will be closer to the centre of the group than

individuals with fewer strong connections. (3) Hierarchical group dynamics can arise

purely from underlying social networks and the former accurately reflect the structure

of the latter.
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5.2 Methods

In this section we describe and justify our modelling approach and some key methods.

Model for collective motion

Our model extends a previously published model that reproduces large-scale empir-

ical data (chapter 3). The behaviour of individuals follows the commonly adapted

“Avoidance-Alignment-Attraction” approach in which a combination of local align-

ment, repulsion and attraction between individuals results in collective behaviour

[Reynolds, 1987, Couzin et al., 2002, 2005, Buhl et al., 2006, Hemelrijk and Hilden-

brandt, 2008]. In our model, N individuals are represented by points in two-dimensional

space. Each individual obtains information from its sensory zone, which is described

by a circle of radius rA, centred on the individual. This circle is punctured by a “blind

angle” directly behind the individual of size (360o − α), in which individuals cannot

perceive other animals. The individuals, indexed i, are at position xi and move at

the instantaneous velocity vi. We assume that all individuals react with an identical

stochastic rate to their environment. In brief, our algorithm consists of three consec-

utive steps, a fixed number of which are performed between separate recordings of

model output.

1. Choose individual i at random (equal probabilities, with replacement).

2. If i has neighbours (conspecifics within sensory zone of i), choose a neighbour

j of i at random with probability pj (see below).

3. Update xi and vi, as described below.

One update step of length ∆t seconds consists of N realisations of steps (1) to (3).

This ensures that each individual gets moved on average once per update step. The

exact algorithmic update of each individual over one update step, ∆t, has no direct

physical meaning. We observe the sum of a number of updates. The output of our

model is obtained by recording the positions of individuals every T = λ∆t seconds,
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where λ ≥ 1. Therefore, the movement of individuals between two separate model

outputs consists of an average over the sum of a number of updates (averaging over

changes in instantaneous velocity).Decreasing ∆t for fixed T results in the model

output being composed of the average of an increasing number of shorter “steps”

while the average speed of individuals is constant. For more details on the effect of

the parameter ∆t we refer the reader to earlier publications relating to this model

(chapters 1 and 2).

Previous models that have considered social networks underlying collective motion

have translated social preferences into attractive or aligning forces between individu-

als (e.g. Braun et al. [2003], Hemelrijk and Kunz [2005], Moussäıd et al. [2010]). The

novelty of our model lies in the inclusion of social networks: the probability for choos-

ing a particular neighbour not only depends on the distance between this neighbour

and the updating individual, but also on the social preference individuals have for

each other (the weight of the network connection between them). Suppose individual

i has neighbours k = 1, ..., kl which are at distances dk from i (0 ≤ dk < rA). Fur-

thermore, denote the preferences of individual i for its neighbours by eik ≥ 0. Then

individual j is chosen in step (2) above with probability,

pj =

(

eij
dj

)

/

(

∑

k

eik
dk

)

. (5.1)

To avoid a singularity, we introduced a cut-off for values of dk close to zero, but

in practice this is almost never activated. Our approach ensures that on average

individual i is more likely to react to neighbours nearby.

By varying the preferences eab individuals a and b have for each other across

the group, the concept of “preferential updating” between individuals is introduced.

This means that an updating individual is more likely to react to the position and

movement of one or a number of specific individuals as opposed to the rest of the group

for a given fixed distance between individuals. Therefore, we can impose a weighted

social network of preferences on the interactions within our modelling framework.

To see this note that the preferences eab denote the weighted edges (=preferences)
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between nodes (=individuals) a and b in a network of N nodes in total. We can

consider undirected networks, where eab = eba, or directed networks.

Once a pair of interacting individuals has been chosen as described above, the

focus individual reacts to its “update partner” depending on the distance, dj , between

them. Only the focus individual, and not the update partner, is moved in one update.

The sensory zone of individuals is divided into hierarchical interaction zones of radius

rR, rO and rA [Couzin et al., 2002]. At close distances, the focus individual moves

away from its update partner to avoid collisions (dj < rR) and at larger distances

(rO ≤ dj < rA) it gets attracted to its update partner to maintain group cohesion

[Couzin et al., 2002]. At intermediate distances the focus individual aligns with its

update partner (rR ≤ dj < rO). Focal individuals move at different instantaneous

speeds according to how they react to their update partner. When moving towards

their update partner (attraction), individuals move at twice the instantaneous speed

than otherwise (i.e. |vi| = 2vO∆t instead of vO∆t, where vO is the speed parameter

in our model). Our assumption of higher attraction speeds is based on the hypothesis

that individuals need to move faster when they are interacting with individuals further

away (e.g. to catch up with them), but is also necessary for the recovery of realistic

distributions of individual speeds (chapter 1). The rate at which individuals turn is

limited to β degrees per second. Therefore, the new velocity of focal individuals, vi, is

obtained by turning them by at most β∆t degrees towards their preferred movement

direction (e.g. directly away or towards their update partner) in one update. Then

the focal individual is moved by the vector vi, the length of which depends on the type

of interaction as described above. Stochastic effects in our simulations are entirely

generated by the internal dynamics of the algorithm. We do not perturb the movement

directions of updating individuals by adding a random variable. For further details,

including a biological interpretation of our algorithm, we refer the reader to chapter

3. Variations of the model used in this research have demonstrated the biological

relevance of our theoretical approach (chapters 1 and 2).
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Generation of social network structures

To simplify our analysis we restrict the weights of edges in underlying social prefer-

ence networks to “strong” and “weak” connections. If they are not linked by strong

preferences, individuals in the social networks we consider are connected by weak

connections. This takes into account that individuals can react to conspecifics even if

they do not have strong preferences for them, although they are more likely to react

to individuals to whom they are strongly connected. Typically we set the connection

weights to eab = 1 for weak connections and eab = 100 for strong connections (the

ratio between these measures is the only thing that matters, and we also system-

atically vary this difference; see appendix). Most of our analyses are performed by

using simple but illustrative networks selected to explore the effect of key types of

network structures. In cases where this is not appropriate, and to provide a base-line

for comparison, we randomly assign strong preferences. To ensure that the method

of assigning strong connections does not affect our results, we use three different

approaches.

Erdös-Rényi method: Strong edges are independently added to the network from

the set of all possible edges with a fixed probability [Erdös and Rényi, 1960].

Watts and Strogatz method: Nodes are arranged in a ring-lattice and all have

identical numbers of strong edges to their immediate neighbours. These Edges are

then re-wired independently with fixed probability without duplicating edges. This

leads to the “small-world” phenomenon in which all nodes are connected by a small

number of edges [Watts and Strogatz, 1998]. Varying the re-wiring probability leads

to networks of different levels of randomness.

Scale-free method: To include strong connections we start with a small number of

nodes, then add nodes and a fixed number of strong edges connected to them, attach-

ing the new node to already included nodes with strong connections by preferential

attachment (“rich get richer model”; Barabási and Albert [1999]).
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Model parameters and simulations

Simulations of our model are performed within a toroidal box of side-length L = 200

m (box with periodic boundary conditions). This is to ensure that after group fission,

it is subsequently possible for groups to re-form rather than to disperse in unbounded

space. Simulations started from random initial conditions within a box of side-length

rA, to ensure that individuals were aggregated initially. Parameter values were chosen

to ensure that in the control case (all individuals are weakly connected) stable and

coherent groups formed. Since this work is intended as an illustration of principle, we

confined simulations to the parameter space given by: N = 100, rR = 1 m, rO = 12 m,

rA = 20 m, vO = 3 m/s, vA = 2vO, ∆t = {0.2s, 0.1s, 0.05s}, α = 270o, and β = 40o/s

(note that parameters have been explored elsewhere, see chapters 1-3). When started

from random initial conditions the summary statistics initially reflected transitional

group formation behaviour. To avoid recording such transitional data, we introduced

a warm-up time of 100 T (therefore depending on the size of T ) for our simulations.

We use different values of ∆t in the scenarios we use to explore the three hy-

potheses stated in the introduction. Varying ∆t for fixed T changes the behaviour

of the system. For example, low values of ∆t result in more synchronized and co-

hesive groups than higher values of ∆t (chapters 1 and 2). We utilise this feature

of our model to adjust the emergent properties in simulations to suit the scenarios

investigated. For our first hypothesis we choose a value of ∆t that allows for frequent

group fragmentation since we are studying a fission-fusion system. Since we are only

interested in non-fragmented groups in the other scenarios, we use smaller values of

∆t in these simulations.

5.3 Results

Group cohesion (hypothesis 1)

To explore possible effects of social network structure on group cohesion and align-

ment, we generated five different underlying social networks that each captures differ-
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ent illustrative structural elements (figure 5.1). The network structures we used were:

(1) fully connected where all connections have the same strength (i.e. no structure);

(2) two components; (3) three components; (4) a key individual (hub) that is strongly

connected to all others; (5) randomly created strong connections [Erdös and Rényi,

1960]. We simulated groups of 100 individuals.

We first measured group cohesion. To do so we use the network of possible in-

teractions between individuals for each model output we used in our analysis (snap-

shots/still images of group movement). Possible interactions were determined by the

spatial positions of individuals. Two individuals were considered to be connected in

the network of possible interactions if they were within a distance of rA from each

other (perceptual range). Groups were defined as distinct subsets of individuals with

no connection between their respective elements (i.e. the closest distance between

individuals in two separate groups is larger than rA). We recorded the number of

groups and the fraction of the total number of individuals belonging to the largest

group in our simulations.

We also recorded the frequency for each pair of individuals to be in the same group.

This measure was inspired by field ecologists who commonly use the “gambit of the

group” (GoG) approach. In this sampling approach, groups of animals are repeatedly

observed, and all individuals within each collectively moving group are assumed to

be associating [Whitehead and Dufault, 1999]. Data from a number of such GoG

censuses can be combined into cumulative networks that can then be analysed for

non-random features and social preferences [Croft et al., 2008]. This can be thought

of as taking multiple samples of the network of possible interactions, to reconstruct

(in relative terms) the underlying social network. Here we actually impose the social

network and investigate whether it is reflected in our GoG-inspired analysis.

For each model output (a snapshot/still image of group movement) we recorded

for all pairs of individuals whether they were in the same group or not, regardless of

whether they were strongly or weakly connected in the social network. This resulted

in counts between zero and the number of model outputs we used in our analysis (we
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recorded one thousand model outputs). We called these counts “GoG edge frequen-

cies”. In our analysis GoG edge frequencies close to zero indicate that individuals

were rarely found in the same group and GoG frequencies close to one thousand

indicate that they were in the same group most of the time. Since we were inter-

ested in the impact of the imposed social network, we compared the average GoG

edge frequencies of pairs of individuals with strong and weak social connections. We

condensed this into one quantity by subtracting the average GoG edge frequency for

weak connections from the one for strong connections and called this measure “GoG

difference”. The GoG difference takes values between zero and one thousand. High

GoG differences indicate that pairs with underlying strong connections are observed

more frequently in the same group than pairs with weak underlying connections in

simulations.

Figure 5.1 shows the GoG edge frequencies averaged over pairs with strong and

weak connection in the underlying social network, for the different social network

structures we imposed on groups. Figure 5.1a,b shows the control case in which all

social network connections have the same strength. We could therefore only record the

GoG edge frequency for one social connection strength. This takes a value of less than

one thousand (figure 5.1b), which is explained by the fact that the group occasionally

fragments in our simulations. It is noticeable that underlying social networks that

include clear separations into distinct subunits with respect to the strong connections

(e.g. two or three components, figure 5.1c, e) produce high GoG edge frequencies

for strong connections and significantly smaller ones for weak connections. Since the

GoG edge frequencies are defined by group membership which in turn is defined by

spatial proximity, our modelling approach translates social or updating preferences

into spatial proximity in collective motion in such cases. Our supplementary film,

which shows the scenario depicted in figure 5.1c, illustrates this (included in electronic

submission). Preferential updating leads to spatial assortment but weakly connected

individuals still interact.

The summary statistics listed in table 5.1 quantify our observations from figure 5.1
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further. We examined group alignment by extracting the polarisation, pgroup ∈ [0, 1]

from our simulated groups. High polarisation values indicate high group alignment

and low polarisation values indicate low group alignment [Couzin et al., 2002]. In the

control case (no imposed social network structure), the simulations result on average

in one stable group, which is highly aligned and contains all individuals. If the

underlying social network contains separate subunits (e.g. two or three components),

the polarisation drops significantly, because on average more than one group is formed.

The groups move separately from each other, often in different directions, which

explains the reduction in the polarisation for the population as a whole. Separate

groups within the population may still be highly aligned, but we only consider the

entire population in our analysis. The average fraction of individuals in the largest

group also decreases as a result of more than one separately moving group. Individuals

within different subunits of the underlying social network can still interact which

occasionally leads to the formation of only one group. This is reflected in the average

number of groups present and the average fraction of individuals in the largest group.

The large GoG differences confirm our observations from figure 5.1. An underlying

network in which one central node is connected to all other nodes (figure 5.1) results

in an overall much less fragmented population. However, such a highly structured

social network still results in a higher GoG difference than random networks, despite

the fact that the random networks we explored contained a higher number of strong

connections. These findings are not just a result of the large difference between weak

and strong connections in our simulations but they vary smoothly with the difference

between weak and strong connections (figure 5.5 in appendix).

Our first question was whether strong pairwise social preferences between group

members always improve group cohesion. The results presented in table 5.1 show

already that this is not the case. Social networks which split a group into two separate

social components (see figure 5.1c) do not result in higher group cohesion than the

control case without any social structure. However, we may ask whether particular

social structures improve group cohesion or, more generally, what aspects of social
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Table 5.1: Summary statistics for simulations with differing underlying social net-

works as seen in figure 5.1 (average over 10 simulations ± standard error). Random

networks are created by assigning strong connections according to the Erdös-Rényi

method with edge-probability 0.1. Ten replicas for ten different random graphs and

groups of 100 individuals were used.

Network Polarisation no. of groups |largest group|/N GoG difference

control 0.99 ± 0.0003 1.1± 0.01 0.99 ± 0.0002 NA

2 components 0.81 ± 0.003 1.7± 0.01 0.73 ± 0.003 526± 6

3 components 0.70 ± 0.004 2.4± 0.02 0.64 ± 0.004 581± 6

centre 0.97 ± 0.0009 1.4± 0.02 0.98 ± 0.001 16± 1

random 0.96 ± 0.002 1.7± 0.03 0.97 ± 0.002 10± 1

networks increase or decrease group fragmentation. We tested this by designing three

social networks with two, one or no “key individuals” that are linked to others by

strong connections (figure 5.2). Table 5.2 shows that in this scenario the degree

of group cohesion and alignment increased with the removal of key individuals and

strong connections.

This example suggests that group cohesion benefits from homogeneous underly-

ing preference networks. Strong pairwise preferences may therefore be detrimental

to group cohesion if they break the homogeneity of the underlying preference net-

works. Another example is given in the appendix, where we systematically reduce

the structure in underlying preference networks (figure 5.6 in appendix).

Positions within groups (hypothesis 2)

To test our second hypothesis, that individuals with a lot of strong connections in the

social network will be closer to the centre of the group than individuals with fewer

strong connections, we compare the average distance of individuals from the centre of

mass (CoM) of the group (CoM=
∑

xi/N) to the “strong degree” (number of strong

social connections) of those individuals in generated social networks. We repeated our
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Figure 5.1: Effect of different underlying social networks on collective motion. (a,c,e,d,i)

Illustrations for the underlying networks used in the simulations for N = 10. Strong connec-

tions are shown in thick black lines and weak connections in thin grey lines. In our simulations

these networks were scaled up to N = 100. (b,d,f,h,j) Box-plots of the distribution of GoG

edge frequencies for pairs of individuals with strong or weak social connections for one simu-

lation with an underlying social network as the illustration in the same row (but for N = 100,

∆t = 0.2, T = 100; we recorded 1000 separate output instances, T seconds apart, for each

simulation). Box plots show medians and 25th and 75th percentiles; whiskers indicate 1.5

times the interquartile range and circles indicate outliers. (a) Control case, all connections

have the same strength. This is equivalent to the case when all connections are strong. (c)

and (e) Networks with two and three separate components, respectively. (g) Network with one

well-connected individual, which has strong connections to all other nodes. (i) Random net-

works that are created by assigning strong connections according to the Erdös-Rényi method

with edge-probability 0.1
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(a) (b) (c)

Figure 5.2: Illustration of networks with (a) two, (b) one and (c) no highly linked key

individual forN = 10. Strong connections are shown in thick black lines and weak connections

in thin grey lines. In our simulations these networks were scaled up to N = 100.

Table 5.2: Summary statistics for simulations with differing underlying social net-

works as seen in figure 5.2 (average over 10 simulations ± standard error). Differences

in summary statistics between different underlying social networks are statistically sig-

nificant allowing for a Bonferroni correction for multiple comparisons (Kruskal-Wallis

test; Polarisation: H2 = 25.8, P < 0.001; no. of groups: H2 = 25.8, P < 0.001;

|largest group|/N: H2 = 25.1, P < 0.001; GoG difference: Mann-Whitney U test,

U = 96, N1 = N2 = 10, P < 0.001).

Network Polarisation no. of groups |largest group|/N GoG difference

2 centres 0.97 ± 0.0009 1.35± 0.01 0.98 ± 0.0008 12± 0.5

1 centre 0.98 ± 0.0007 1.2± 0.01 0.99 ± 0.0007 7± 0.7

no centre 0.99 ± 0.0003 1.1± 0.01 0.99 ± 0.0002 NA
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analysis for the three most commonly used approaches to generate network structure

randomisations: Erdös-Rényi random networks [Erdös and Rényi, 1960], small-world

networks [Watts and Strogatz, 1998], and networks with skewed degree distributions

[Barabási and Albert, 1999]. Figure 5.3 shows that in all cases the distance from the

CoM decreases as the strong degree in the underlying social network increases. This

confirms our hypothesis and suggests that well-connected individuals occupy positions

closer to the centre of the group, whereas individuals with fewer strong connections

are on average further away from the centre of the group.

To explain this result, recall that as the number of strong social connections

an individual has increases, its preferential interactions with group mates will be

biased towards a larger proportion instead of a small subset of the group (averaging

over all possible spatial configurations of the group). Therefore, if the individual

is situated on the periphery of the group and has many strong social preferences,

its average direction of attraction will be towards the CoM of the group. If the

individual is already situated close to the CoM of the group and has many strong

social preferences, the attraction tendencies towards individuals on the periphery of

the group will balance. These tendencies only hold if the interactions of individuals

are not biased towards a small subset of the group.

Hierarchical group dynamics (hypothesis 3)

To investigate whether hierarchical group dynamics can arise purely from preference

interactions, we use the methods described by [Nagy et al., 2010]. For each individual,

we examined if it turned before or after the average of the group. To do so we

computed the cross-correlation Cij(δt) between the time series of movement directions

(recorded every T = 0.2 seconds) for pairs of individuals (i, j), shifting the time series

of individual j by δt seconds (therefore Cij(δt) = Cji(−δt)). The value of δt for

which Cij(δt) reaches its maximum value was the delay between individuals i and j.

Negative values for the delay mean that the movement direction of the ith individual

lags behind the one of the jth individual. We recorded this pairwise delay only if the
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Figure 5.3: Average distance from the centre of mass (CoM) of simulated groups against

the degree within a randomly generated underlying social network. To create the strong

connections randomly we used the Erdös-Rényi method (a), the Watts-Strogatz method (b)

and the scale-free method (c). We ensured that the total number of strong connections

included in networks was on average equal for the different networks. The average over at

least 2 and at most 50 simulations is shown (not all random networks contained nodes with

certain very large or small degrees); error bars show standard errors. We used N = 100,

∆t = 0.1 s, T = 100 and recorded 1000 separate output instances, T seconds apart, for each

simulation, Only instances when groups were coherent were included in the analysis. Average

fraction of times groups in output where coherent over 50 simulations ± standard error: (a)

0.86± 0.0031; (b) 0.84± 0.0039;(c) 0.81± 0.0039.
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maximal value of Cij(δt) was above the threshold Cmin = 0.98. To find the delay

between the turns of individual i and the rest of the flock, we computed Ci(δt) by

averaging Cij(δt) over all individuals j (excluding j = i). Again, the value of δt for

which Ci(δt) reaches its maximum value was the delay between individuals i and the

rest of the flock. We call this the “flock delay” of individual i. Once more, positive

values for the delay mean that the movement direction of the ith individual is ahead

of the rest of the flock. Before we performed this analysis, we filtered the data for each

simulation and only include instances when the flock forms one cohesive group (as

defined in section “Group cohesion (hypothesis 1)”) in our analysis. We computed

the flock delay separately for 50 simulations and report the average. For pairwise

delays we compute the average of the function Cij(δt) over 50 simulations and use

this to find the pairwise delays as described above. Further details of the method can

be found elsewhere [Nagy et al., 2010].

We now use directed connections in our social network (in contrast to the pre-

vious undirected networks). This allows us to model hierarchical underlying social

structures. For our conceptual study we use a simple chain-like structure of strong

connections in the underlying social network that helps to illustrate the many facets

of how social preferences could impact on group dynamics (figure 5.4a). In our exam-

ple individual 2 preferentially interacts with individual 1, individual 3 preferentially

interacts with individual 2, and so on. Individual 1 has equal preference for all indi-

viduals.

In a null scenario, without underlying social preferences, there are no systematic

differences in the flock delays between individuals apart from random fluctuations

(see figure 5.4b). However, given the directional structure of the underlying prefer-

ence network, we might expect to find this reflected in hierarchical group dynamics

(hypothesis 3). Calculating the flock delays for each individual in our example shows

that there are indeed differences between individuals (figure 5.4b). However, it is not

animals at the front of the chain of strong preferences (individuals 1,2,3 and 4) that

have the highest positive flock delays. In fact, they have negative flock delays and
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therefore appear to turn after the rest of the group. It is individuals in the middle of

the chain that have the highest positive flock delays (in particular individual 7). An

examination of the significant (recall Cmin) pairwise delays is instructive (figure 5.4c).

The back end of the structure of strong preferences is reflected in significant pairwise

delays. For individuals 1 and 2 in particular this is not the case. They turn after

individuals that are behind them in the chain of strong preferences. This is because

individual 1 has no interaction preferences; it therefore reacts, on average, accurately

to the average of the group, which results in a delay behind the rest of the group.

Individual 2 closely follows 1 and therefore also lags behind the rest of the group.

We repeated this analysis for an underlying social network similar to the one de-

picted in figure 5.1g (figure 5.7 in appendix). For this case we found that although

there were differences in the flock delays of individuals, it was difficult to establish a

clear trend compared to the control case in which all preferences are equal. Again, the

pairwise delays are instructive. All individuals except for individual 1 have a strong

social preference for individual 1. We found no incoming or outgoing pairwise delays

to individual 1. The imposed social network structure is therefore reflected in the

lack of delays between individual 1 and the rest of the group. As in figure 5.4 indi-

vidual 1 reacts on average accurately to the entire group. Since all other individuals

closely follow 1, the entire group turns synchronously at delays that we cannot detect

accurately at a resolution of model output every T = 0.2 seconds. The flock delays

and pairwise delays we do find are therefore stochastic effects (as the comparison to

the control case mentioned above suggests). This example is instructive as it shows

that even if there is a distinctive structure of strong social preferences, this need not

be reflected in hierarchical group dynamics.

The group dynamics recovered from our model simulations (figure 5.4b,c) are

not as strictly hierarchical as the group dynamics found for flocks of pigeons [Nagy

et al., 2010]. This can be seen from the mismatch in the hierarchical sorting of

individuals obtained by using flock delays or pairwise delays. However, our examples

illustrate an important point. Had we found group dynamics as in figure 5.4b,c in a
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Figure 5.4: Group dynamics for a given underlying preference network. (a) Underlying

network of social preferences. Strong preferences are shown in thick black lines and weak

preferences in thin grey lines. Numbers denote individual IDs. (b) Mean flock delays for

each individual averaged over 50 simulations. We show the control case when all social

connections have the same strength and the case for the network illustrated in (a). Error bars

show standard errors. (c) Pairwise delays between individuals, denoted by arrows from the

leading to the following individual averaged over 50 simulations. Delay values are not given

but greater than zero. N = 10, T = 0.2 s, ∆t = 0.05 s. We recorded 5000 output instances, T

seconds apart, for each simulation. Only instances when groups were coherent were included

in the analysis. This was more than ninety percent of the time for control groups and more

than seventy percent of the time for groups with underlying social network.

biological system, it is unlikely that we would have guessed the underlying network

of preferences. Therefore, hierarchical group dynamics could be a result of social

preferences, but it is important to observe that we cannot necessarily infer the social

preferences from recorded hierarchical group dynamics.

5.4 Discussion

We have presented a model of animal collective motion that includes social network

structures. Our simulations suggest that social preferences could lead to spatial asso-

ciation of socially connected individuals and could also impact on group fission and

fusion. Furthermore, our model leads to the testable predictions that animals with
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many social links can be found closer to the centre of moving groups. Finally, our

model shows that social preferences alone could lead to hierarchical group dynam-

ics but, more importantly, that social structure may not necessarily be reflected as

expected in the group dynamics.

Current animal social network data is often obtained by using the “gambit of the

group” technique we described above. This method essentially samples instances of

spatial assortment of individuals in groups. Despite careful approaches and analysis

[Croft et al., 2008, Whitehead, 2008, Franks et al., 2010] more research is needed to

assess how different sampling methods can accurately reconstruct social preferences

in moving populations with ongoing group fission and fusion. We have shown that

for simple underlying social networks (e.g. two or three subsets of strongly linked

individuals, see figure 5.1) the GoG sampling technique can be effective, but a more

rigorous approach incorporating collective motion will be necessary in the future, in

combination with an analysis of sampling over multiple days (after large-scale fission-

fusion events; Franks et al. [2010]) and within days (capturing fine-scaled fission-fusion

events as we do here). For example, larger populations and the effect of limited space

will have to be investigated further without relying on toroidal boxes as we have done

for simplicity.

The positioning of individuals within moving groups has been related to their

internal state and it has been suggested that predation pressure is higher on individ-

uals moving in particular positions, such as frontal or even central group positions

(e.g. Krause and Ruxton [2002], Morrell and Romey [2008]). Our simulations show

that spatial positioning of individuals could also be related to their position within

an underlying social network. This raises further questions considering the fitness

consequences for animals that have many or few social ties. For example, we could

ask whether predation pressure could result in homogeneous social networks in which

all individuals have similar numbers of social ties or whether it could even result in

selection against social preferences in the first place.

It has been suggested that the mechanism for the pairwise leader-follower rela-
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tions found in pigeons is based on state-dependent behaviours, such as navigational

knowledge or current motivation [Nagy et al., 2010]. Our model demonstrates that

leadership, in the sense of hierarchical dynamics based purely on social preferences,

is in theory possible (although with possibly unexpected hierarchies). The notion of

socially mediated leadership is supported by a study, unrelated to hierarchical dy-

namics in pigeons, showing that dominant beef cows, Bos taurus, have more influence

on herd movement than more subordinate cows [Sárová et al., 2010]. Other research

suggests superior information [Couzin et al., 2005] or small changes in behaviour [Con-

radt et al., 2009] as possible mechanisms for leadership. We suggest that to answer

questions about leadership in biological systems; all of these social, knowledge-based,

behavioural or physical factors have to be considered.

Our model assumes that social preferences translate into updating preferences.

This is one possible mechanism for how social affiliations may translate into be-

havioural responses. Another approach could be to translate social preferences di-

rectly into attractive forces between individuals. Would our findings still hold? Ul-

timately only further empirical data will help to answer the questions of how social

affiliations translate into behavioural responses and how these affect collective motion.

We suggest that in future work it will certainly be beneficial to consider other ap-

proaches in addition to ours (see also discussion of chapter 4). We have deliberately

focussed on simple illustrative networks to use as conceptual examples. However,

we have demonstrated some counter-intuitive results, and our work is a step towards

sharpening our understanding of how social networks could impact on three important

aspects of group movement.
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5.5 Appendix

Supplementary film 1 : The video file can be found in the electronic submission. This

film contains a 1000 second segment of an animation showing the movement of a

group of 100 individuals. The underlying social preference network divides the group

into two compartments, as depicted in figure 5.1c. The different social subunits are

shown in red and black. The animation starts from random initial conditions and

shows that preferential updating leads to spatial assortment (individuals of the same

colour tend to move in the same groups). However, interactions between weakly linked

individuals still occur, as is illustrated, for example, by black individuals joining red

groups. Parameter values are the same as in the main text, but T = 1 s.
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Figure 5.5: The effect of the strength of strong connections in the case of an underlying

social network with 2 separate components (compare to figure 5.1c in the main text). (a)

Polarisation, (b) number of groups, (c) number of individuals in the largest group divided

by the overall number of individuals, and (d) the GoG difference (see text for details). The

figure shows that as the strength of the strong connections is increased, the impact of the

underlying social network becomes clearer. As the strength of strong connections tends to

infinity one would expect that spatial proximity between weakly linked individuals is only

a result of boundary conditions and stochastic effects. The average over 10 simulations is

shown, error bars show standard errors. N = 100, ∆t = 0.2 s, T = 100 s.

145



CHAPTER 5

(a)

0

0.25

0.5

0.75

1

0 0.3 0.6 0.9
rewire p

po
la

ris
at

io
n

(b)

2.5

3

3.5

4

4.5

0 0.3 0.6 0.9
rewire p

# 
gr

ou
ps

(c)

0

0.25

0.5

0.75

1

0 0.3 0.6 0.9
rewire p

(#
 in

 la
rg

es
t g

ro
up

)/
N (d)

50

75

100

125

150

0 0.3 0.6 0.9
rewire p

G
oG

 d
iff

er
en

ce

Figure 5.6: The effect of increasingly random small-world networks on collective motion. (a)

Polarisation, (b) number of groups, (c) number of individuals in the largest group divided

by the overall number of individuals, and (d) the GoG difference (see text for details). The

re-wiring probability gradually increased, starting from a regular ring lattice with average

degree = 4. With increasing re-wiring probability the original structure gets more and more

diluted and the cohesion of the group increases. The average over 10 simulations is shown,

error bars show standard errors. N = 100, ∆t = 0.2 s, T = 100 s.
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Figure 5.7: Group dynamics for a given underlying preference network. (a) Underlying

network of social preferences. Strong connections are shown in thick black lines and weak

connections in thin grey lines. Numbers denote individual IDs. (b) Mean flock delays for each

individual over 50 simulations. We show the control case when all social connections have

the same strength and the case for the network illustrated in (a). Error bars show standard

errors. (c) Pairwise delays between individuals, denoted by arrows from the leading to the

following individual averaged over 50 simulations. Delay values are not given but greater than

zero. The social structure from (a) is not reflected in the pairwise delays in (c). However, the

pairwise delays are consistent with the flock delays in (b). Individual 8, for example, appears

to lead the flock (high positive flock delay) and also has many outgoing but no incoming links

in the network of pairwise delays. The differences between individuals appear to dominated

by stochastic fluctuations and it is difficult to see a trend different from the control case. It

is, in fact, the absence of any pairwise delays between individual 1 and the rest of the group

that reflects the imposed social network. N = 10, T = 0.2 s, ∆t = 0.05 s, Cmin = 0.98. We

recorded 5000 output instances, T seconds apart, for each simulation. Only instances when

groups were coherent were included in the analysis. This was more than ninety percent of the

time for control groups and for groups with underlying social network.
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Conclusions

Although predominantly a theoretical approach, this thesis has employed empirical

investigation (chapter 1) and attempted to interpret and synthesise previous work

from different disciplines to provide an informed starting point for future investigation

of biological systems (chapter 4). Overall, this research aims to contribute in three

ways to the understanding of animal collective motion.

First, the development of a novel modelling framework was used to suggest possible

mechanisms for existing empirical knowledge. Chapter 1 initially set out to obtain

realistic speed distributions for simulated groups without assuming them a priori.

This was approached by using asynchronous and stochastic updates and eventually

led to the suggestion that update rates, or the frequency at which individuals react to

their environment, could explain changes at the group level in response to increased

perceived threat. Chapter 2 extended the concept of asynchronous and stochastic

updates by implementing individuals that sample the information, contained in their

field of perception, at a given rate. Results suggested that this mechanism could

explain stochastic effects in animal group movement, such as abrupt changes in the

group movement direction. This could provide an explanation for the finding of

Yates et al. [2009] that locusts increase the randomness of their movement at low

group alignment. In chapter 3, the sensory zone sampling of individuals was further

extended to include a distance-dependent bias. Interactions between individuals close

to each other were more likely than interactions between individuals that were fur-

ther apart. This revised mechanism reproduced findings on starling flocks suggesting

that on average individual birds interact with a fixed number of nearest neighbours

(“topological interactions”; Ballerini et al. [2008]). Thereby, the model sheds light on

a potential misinterpretation of the empirical findings. It is not necessary to explic-

itly limit the number of interacting neighbours to a fixed number for a mechanistic

explanation. Instead, variable relative sizes of interaction zones, in combination with

a distance-dependent bias in interactions, can result, on average, in topological inter-

actions. Chapter 5 suggested preferential updates as one possible mechanism for how
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underlying social networks could be expressed in interactions between individuals.

Results show that while this could be a mechanism for hierarchical group dynamics

similar to the ones found by Nagy et al. [2010] in pigeons, the underlying social net-

work may be reflected in unexpected ways in the group dynamics. In conclusion, the

research in this thesis has suggested a number of mechanisms for different aspects of

animal group movement.

The second way in which this thesis aims to contribute to research on animal

collective motion is by formulating testable hypotheses. Based on the assumption that

update rates of individuals are connected to perceived levels of threat, simulations in

chapter 1 predicted that collectively moving groups synchronise and become denser

when the perceived threat level increases. These predictions were subsequently tested

and confirmed in empirical experiments. Chapter 5 presented detailed hypotheses

regarding three aspects of group movement. Simulations were used to illustrate how

underlying social networks could impact on the cohesion of groups, the positioning

of individuals within groups, and on the hierarchical dynamics within groups. The

predictions made are simple and could, in principle, be tested in biological systems

with equipment that is readily available. However, the most intuitive way to test the

hypotheses requires knowledge of underlying social networks in animal groups. Two

out of the three predictions relate to spatial positioning of individuals and this is

unfortunately what is often used to construct animal social networks in the first place

[Croft et al., 2008, Whitehead, 2008]. Therefore, testing the impact of underlying

social networks on animal collective motion is a topic that requires further work (see

“Future work” section below). In summary, this work has suggested a number of

testable hypotheses for animal group movement phenomena.

Finally, the third way this research aims to contribute to the understanding of

animal collective motion is to provide an informed starting point for future research

on how underlying social networks could affect group movement. Chapter 4 reviewed

the modelling literature on this topic. The aim was to create a conceptual framework

and terminology, as well as an introduction to previous theoretical work. In chapter
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5 these concepts were put into action by simulating the possible impact of underlying

social networks on aspects of animal group movement. The difficulties for empirical

tests on this topic have briefly been discussed in the last paragraph. This caveat pro-

vides an incentive for initially approaching the impact of social networks on animal

collective motion in theoretical work. An improved theoretical understanding of the

problem may in the future provide guidance or inspiration for empirical investigation.

In this sense, the second part of this thesis provides an informed starting point for

further work on the impact of underlying social networks on group movement.

Although the findings and mechanisms in this thesis are often presented in the

context of empirical data on specific animal species, the models are general and may

be useful in further investigations into the collective motion of other species. The

fact that it has been possible to investigate completely different aspects of animal

group movement in one, two, and three spatial dimensions simply by extending one

conceptual modelling framework supports this notion. Furthermore, the modelling

approach has opened up a number of questions for further investigation (see also

next section). However, I do not wish to suggest that the modelling framework

could be the basis for a universal theory covering all aspects of animal collective

motion. Many changes would be necessary to obtain certain features of pedestrian

movement, as presented in Moussäıd et al. [2010], for example. In addition, the

sensory basis for group movement may vary substantially across different species. For

example, the lateral line in fish may influence alignment behaviours (Partridge and

Pitcher [1980], Hemelrijk and Hildenbrandt [2008]; see also introduction), while birds

may predominantly rely on vision [Ballerini et al., 2008]. The modelling framework

presented here generalises sensing abilities and it is not clear whether this is adequate

to describe collective motion across species.

In conclusion, agreeing with the approach put forward by Sumpter [2006], we have

proceeded on a case-by-case basis to further the understanding of collectively moving

animals. The rationale of our modelling approach was to capture generic features,
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without attempting to model particular species. Therefore, we have not attempted to

fit our models to data - they were not designed to produce meaningful quantitative

predictions. Gradually extending the model allowed comparison to previous models

at the early stages and highlighted the effect of and reason for each extension. The

fact that our modelling framework has produced biologically relevant results across

species and spatial dimensions may suggest that there are some basic properties of

animal collective motion that are represented in our model, but it does not imply

this.

Future work

This section summarises questions that arise immediately from the research in this

thesis and additionally suggests avenues for future research leading on from ap-

proaches developed here.

An integral part of the modelling framework, developed in chapters 1-3 and 5,

is the method of variable update rates and the sampling of information from the

sensory zone of individuals. The biological interpretation of these mechanisms has

been discussed to some extent above. Here, this is made more explicit.

We have stressed repeatedly that one update step in the model has no direct phys-

ical meaning, and that it is the average over a number of update steps that needs to

be considered. This can be interpreted as individuals reacting to a dynamic average

of information from within their sensory zone. The actions of individuals are subject

to stochastic effects which arise from incomplete sampling of their sensory zone and

fluctuations in the rate at which they obtain this information. These mechanisms

could be investigated with regards to physiological or behavioural properties of ani-

mals. For example, in starlings, it has been suggested that vision is the predominant

sensory input to achieve flocking (e.g. Ballerini et al. [2008]). It has long been pos-

sible to track the movement of human eyes or individual parts of the human body

(e.g. Duchowski [2007]). This can be scaled down to allow applications on small and
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fast moving animals [Plotkin et al., 2008]. By tracking the eye movements and/or

head movements of individual birds in response to visual, possibly simulated, stimuli

similar to what they might experience in a flocking situation, it could be tested how

birds scan their environment. For example, akin to what we suggest, animals could

obtain information by randomly scanning their visual range. Alternatively, informa-

tion acquisition in animals could be biased in some way or systematic (e.g. scanning

of sensory zone could follow a fixed routine).

In chapter 1, we noted that the individual update rates in our simulations are

considerably lower than the 0.1 seconds suggested previously (Partridge and Pitcher

[1980], cited in e.g. Couzin et al. [2002, 2005]). While this discrepancy is partially

mitigated by the fact that we consider averages over update steps, it nevertheless raises

the question of how quickly animals can obtain and process sensory information. In

general, we might expect that mechanistic properties of the nervous system of animals

impose an upper bound for the speed of information intake. Experiments in humans

and monkeys suggest, for example, that animals can process complex patterns such

as human faces that are presented to them at frequencies of over seventy images per

second [Keysers et al., 2001]. Considering that in the fourteen milliseconds between

images, neurons can typically produce at most one spike, this is remarkable [Keysers

et al., 2001]. In addition, this finding is rather reassuring when considering individual

recognition in collectively moving groups, as we have in chapter 5. Further work on

the speed at which individuals can detect moving objects could help to establish the

limits of data-processing speed in collectively moving animals.

Some modelling studies have distinguished between different individuals in ani-

mal collective motion (e.g. Couzin et al. [2005], Hemelrijk and Kunz [2005], Conradt

et al. [2009]). However, most theoretical work assumes that individuals are virtually

identical [Parrish et al., 2002, Viscido et al., 2005]. Work on animals, that at a first

glance may not be distinguishable, such as certain types of fish, suggests that this

assumption may be too simplistic. For example, Croft et al. [2009] and Piyapong

et al. [2010] investigated personality in guppies. Underlying social networks aside,
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the model presented here offers an intuitive and novel way of introducing variation

across individuals. Throughout this thesis we assume that all individuals update on

average at the same rate. Relaxing this assumption would allow for variable update

rates across the simulated groups which could be related to perceived threat levels of

individuals (chapter 1) or even personality (e.g. “shy” or “bold” individuals). Fur-

thermore, allowing individual update rates to vary over time, possibly in response

to other group members, could be useful to study the propagation of behavioural

responses through moving animal groups. For example, if a predator attacked one

side of a large group, it may take some time until the entire group not only responds

to the threat, but also alters its behavioural state accordingly. This could be detected

in localised differences between movement characteristics, such as synchrony of move-

ment or nearest-neighbour distance, across the entire group.

In chapter 4, possible avenues for further work on the effect of underlying social

networks on animal collective motion were presented. It is not necessary to repeat

this discussion here. Rather, additional aspects leading on from considering social

networks in the context of animal movement will be introduced.

The results in chapter 5 illustrate that leadership, in the sense of hierarchical

dynamics, based purely on social preferences, is in theory possible. Leadership in

animal collective motion has received considerable attention and some of this work

has been reviewed in chapter 4 (e.g. Couzin et al. [2005], Conradt et al. [2009],

Nagy et al. [2010], Sárová et al. [2010]). In general, the mechanisms and origins of

leadership in animals have increasingly been studied [King et al., 2009, Torney et al.,

2010]. The specific mechanistic question our work begins to address is: to what

extent, and how, is leadership in moving animal groups facilitated by social networks.

One anonymous reviewer for chapter 5 commented specifically on the sentence at the

start of this paragraph. We were advised that if we wanted to discuss leadership, we

should explain how leadership would translate into one of our social networks. The

suggestion in the comment was that to model a group with one leader, we should have
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implemented a social network in which all individuals have a strong preference for the

leader but the leader has no preference whatsoever, and therefore no connection to

any other group member. This scenario may be regarded as being paradigmatic for

leadership: the leader ignores others in its actions, while the rest of the group follows

the leader. However, this is only one possible scenario for socially mediated leadership.

One could argue that the scenario in the appendix of chapter 5 is just as intuitive:

everyone pays attention to the leader, while the leader spreads its attention equally

across the group. This example illustrates that there can be different intuitions about

the mechanisms of leadership.

Ultimately, these considerations prompt further questions: how to define leader-

ship in animals, and how leadership could arise in animals. Our model in chapter

5 might be a useful tool to investigate different possible mechanisms, and measure-

ments, for leadership in moving animal groups. The first question that would need to

be addressed is how to measure leadership. Hierarchical dynamics are one way of mea-

suring leadership, spatial positioning within groups may be another way. Different

measurements could be interpreted as different definitions for leadership. Mecha-

nisms could include physical, motivational or knowledge-based differences between

individuals, as well as differences in the position of individuals within underlying

social networks [King et al., 2009]. In animal groups a combination of the aforemen-

tioned mechanisms may be at work. Simulating different mechanisms separately, or

in combination, would provide a useful baseline for comparison with empirical data.

The impact of the environment on the movement of animal groups has been mod-

elled to some extent. For example, Wood and Ackland [2007] introduce food items

for foraging swarms, Liu et al. [2008] consider nutrient profiles, and Reynolds [1987]

include obstacle avoidance in individual behaviours. Hemelrijk et al. [2010] include

interactions of fish with tank boundaries in their model but they do not investigate

the correctness of the assumed interactions using their empirical data. Overall, it

is noticeable that most studies on animal collective motion are conducted in homo-

geneous environments with no barriers or other features affecting the movement of
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individuals. In particular, interactions of individuals or groups with obstacles such as

tank boundaries are rarely investigated. However, in studying animal social networks,

and therefore spatial associations of individuals, the impact of interactions with the

environments may become important. Consider, for example, the construction of a

social network in animals that depend on localised food sources. If spatial associations

in groups of such animals were to be sampled, the result could be a network reflect-

ing which animals feed together rather than which animals have social preferences

for each other. Individuals at localised food sources may even compete, resulting in

strong individuals competing at high quality food sources, irrespective of their social

preferences. In a different example, consider a population of fish living in two ponds

that are connected by a narrow stream. Social preferences in a random sample from

the entire population may show a clear separation into two subgroups that could be

entirely due to low mixing between the sub-populations in the two ponds. These

conceptual examples demonstrate that there is a need to consider the impact of the

environment on animal movement in the context of social networks.

Closing remarks

From biologists, via physicists, to computer scientists and engineers, a large and

diverse group of scientists continues to study, and take inspiration from, animal col-

lective motion. The future for this subject seems to be bright, not only for further

scientific investigation, but also for applications in different contexts. Already, appli-

cations for the theory of collective motion have been found in pedestrian flow control

and the prevention of crowd disasters (e.g. Helbing et al. [2007]). Within the next

decade, the first fully functional swarms of robots may operate outside laboratory

environments. In biology, smaller and better tracking devices are likely to result in

an increase in data and thereby knowledge of biological systems. This may ultimately

enable scientists to make specific and detailed recommendations on conservation poli-

cies and pest control, for example.

Finally, I would like to express my hope that the research presented here will
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inspire further investigation. In particular, I believe that the ubiquitousness of both

animal social networks and collective motion merits the study of both topics in com-

bination.
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S.V. Viscido, J.K. Parrish, and D. Grünbaum. The effect of population size and

number of influential neighbors on the emergent properties of fish schools. Ecol.

Model., 183:347–363, 2005.

A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, P.J.B. Hart, and J. Krause. Quorum

decision-making facilitates information transfer in fish shoals. Proc. Natl Acad.

Sci. USA, 105:6948–6953, 2008.

D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Nature,

393:440–442, 1998.

J. Wessnitzer, A. Adamatzky, and C. Melhuish. Towards Self-Organising Structure

Formations: A Decentralized Approach. Adv. Artif. Life, 2159:573–581, 2001.

H. Whitehead. Analyzing animal societies: quantitative methods for vertebrate social

analysis. University Of Chicago Press, 2008.

H. Whitehead and S. Dufault. Techniques for analyzing vertebrate social structure

using identified individuals: review and recommendations. Adv. Stud. Behav., 28:

33–74, 1999.

170



BIBLIOGRAPHY

Wikipedia. Wikipedia, The Free Encyclopedia, 2011. URL

http://en.wikipedia.org. [Online; accessed 4-July-2011].

A.J. Wood. Strategy selection under predation; evolutionary analysis of the emergence

of cohesive aggregations. J. Theor. Biol., 264:1102–1110, 2010.

A.J. Wood and G.J. Ackland. Evolving the selfish herd: emergence of distinct ag-

gregating strategies in an individual-based model. Proc R. Soc. B, 274:1637–1642,

2007.

C.A. Yates, R. Erban, C. Escudero, I.D. Couzin, J. Buhl, I.G. Kevrekidis, P.K. Maini,

and D.J.T. Sumpter. Inherent noise can facilitate coherence in collective swarm

motion. Proc. Natl Acad. Sci. USA, 106:5464–5469, 2009.

H. Yu and Y. Wang. Coordinated Collective Motion of Groups of Autonomous Mobile

Robots with Directed Interconnected Topology. J. Intell. Robot. Syst., 53:87–98,

2008.

M.M. Zavlanos, A. Jadbabaie, and G.J. Pappas. Flocking while preserving network

connectivity. In Proc. 46th IEEE Conf. Decision and Control, pages 3196–3201,

2007.

171


