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Abstract 

Due to their small size, and consequent quantum confinement, quantum dots 

(QDs) exhibit electronic properties intermediate between those of bulk 

semiconductors and individual molecules. The electronic and optical 

properties of these semiconductor nanocrystals are tuneable by nanocrystal 

size and composition. Consequently, they offer a range of attractive 

photophysical properties with a wide range of possible applications. Copper 

indium sulphide (CIS) QDs are attracting increasing attention due to lower 

toxicity, significant quantum confinement, and a bulk direct band-gap of 

~1.5eV making them ideal for solar energy applications. 

Bacteriochlorophylls (BChls) c/d and e are photosynthetic pigments found in 

green photosynthetic bacteria. Due to their structure, they are able to self-

assemble into densely packed aggregates exhibiting strong excitonic coupling 

between individual pigments as well as optical spectra substantially different 

to those of monomeric BChls. The self-aggregating nature of these molecules 

and the resulting strong coupling results in impressive light harvesting ability 

and rapid energy transfer, thus providing exciting opportunities for use in 

nanomaterials. 

Coupling BChl aggregates with QDs should lead to strong interaction between 

energy levels and efficient energy transfer, yielding new hybrid nanostructures 

with novel electronic and optical properties.  

In this thesis, BChl pigments and QDs are investigated with a focus on how 

they might be combined to produce novel photonic materials. This thesis 

outlines a new method for the production of zinc containing BChl analogues 

as well as presenting the first molecular dynamics simulations on BChl c 

pigment assemblies investigating the origin of intrinsic curvature. In addition, 

a new method for the direct synthesis of hydrophilic CIS QD is presented, 

along with the first quantitative data on size dependent photoluminescent 

quantum yield for CIS QDs. Furthermore photoluminescent decay studies 

presented in this thesis shed new light on the role of size and composition on 

the relative contribution of key recombination pathways within CIS quantum 

dots. 
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Chapter 1 

Introduction 

This thesis seeks to investigate bacteriochlorophyll (BChl) pigments and 

quantum dots (QDs) with the view to ultimately produce a novel photonic 

material. 

As a result of their small size, QDs exhibit electronic properties intermediate 

between those of bulk semiconductors and individual molecules. The 

electronic and optical properties of these semiconductor nanocrystals may be 

tuned through the careful control of nanocrystal size and composition. 

Consequently, they offer a range of attractive photophysical properties with a 

wide range of possible applications. 

Photosynthetic BChls c/d and e pigments self-assemble into densely packed 

aggregates exhibiting strong excitonic coupling between individual pigments 

as well as optical spectra substantially different to those of monomeric BChls. 

These aggregates exhibit impressive light harvesting properties with rapid and 

efficient energy transfer. Consequently, these pigments provide exciting 

opportunities for use in nanomaterials. 

Coupling BChl aggregates with QDs should lead to strong interaction between 

energy levels and efficient energy transfer, yielding new hybrid nanostructures 

with novel electronic and optical properties.  

A brief overview of both BChls and QDs is presented in this chapter along with 

a discussion of how they might be combined to produce such a material. 

Finally, the key aims and results of this work are summarised. 

1.1  BChls c, d, and e 

BChl c, d, and e are photosynthetic pigments found exclusively within light 

harvesting antenna systems called chlorosomes. Bacteriochlorophyll 

pigments, due to their unique chemical structures self-assemble into higher 

order structures with dense packing and tight excitonic coupling enabling their 

host organisms to live in extremely low light environments. Therefore, these 



- 2 - 

pigments have tremendous potential to be used as building blocks for 

nanotechnology and optical application including solar energy and sensing. 

This section gives an overview of the relevant key properties of these 

pigments as well as providing background on their biological function. 

 

1.1.1 Chlorosomes 

Chlorosomes (Figure 1.1) are extramembranous organelles which function as 

peripheral antenna systems. They are the largest supramolecular antenna 

system observed to date. They were first discovered in thin sections of cells 

from Chlorobi species by Cohen-bazire et al..1 They have since been found to 

be the main light harvesting apparatus in three phyla of green photosynthetic 

bacteria – a group of anoxygenic phototrophs. These include the green 

sulphur bacteria phylum Chlorobi and some filamentous anoxygenic 

phototrophs of the phylum Chloroflexi (formerly green non-sulfur bacteria). 

Additionally, chlorosomes have more recently been identified in the bacterium 

“Candidatus Chloracidobacterium thermophilum” – a member of the poorly 

characterised Acidobacteria phylum.2 Chlorobaculum tepidum and 

Chloroflexus aurantiacus have emerged as model species of the Chlorobi and 

Chloroflexi phyla, respectively, with Chlorobaculum tepidum being the most 

studied species of chlorosome containing photosynthetic bacteria and the first 

chlorosome containing bacterium to have its full genome sequenced.3 

Chlorosomes from the three phyla are similar, despite significant differences 

in the rest of their photosynthetic apparatus, suggesting that a horizontal gene 

transfer may have been responsible for their presence in three unrelated 

phyla.4 
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Figure 1.1 Schematic showing shape and basic structure of a chlorosome. 

The chlorosome envelope, whilst originally believed to be a lipid 

monolayer is now thought to consist primarily of proteins with a small 

number lipid molecules filling in the gaps between. The chlorosome is 

bound on one side by a BChl a and CsmA containing baseplate which is 

responsible for transferring energy from the chlorosome onwards 

towards the reaction centre. Within the chlorosome core, BChl c/d/e 

molecules aggregate to form lamellar layers (Image taken from Psencík 

et al.).5 

 

1.1.2 Structure of Chlorosomes 

The size and shape of chlorosomes have been widely studied using 

transmission electron microscopy (TEM) demonstrating that both size and 

shape vary widely between species as well as depending sensitively on 

growth conditions (Figure 1.2). An ellipsoidal form, with typical dimensions of 

150 – 200 x 50 x 25 nm, was reported for chlorosomes from Chlorobaculum 

tepidum. Chlorosomes from other species may differ in size by up to a factor 

of five. Irregularly shaped chlorosomes with an undulating surface were 

observed for “Candidatus Chloracidobacterium thermophilum”. Rough surface 

features have also been observed using atomic force microscopy (AFM) for 

both Chlorobaculum phaeobacteroides and Chlorobaculum vibrioforme.6 
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Figure 1.2 Cryo-Electron microscopy (Cryo-EM) images of chlorosomes. 

(a) ellipsoidal chlorosomes from Chlorobaculum tepidum wild type, (b) 

conical chlorosomes from the Chlorobaculum tepidum triple mutant 

bchQRU, and (c) irregular chlorosomes from “Candidatus 

Chloracidobacterium thermophilum”. Scale bar = 100 nm. (Image taken 

from Oostergetel et al.).7 

 

Additionally, with approximately 200 000 – 250 000 BChl c/d/e molecules 

residing in the chlorosome core,8 the supposed pigment content in 

chlorosomes far exceeds estimates for other photosynthetic complexes. By 

dry weight, chlorosomes are approximately 50% BChl c, d or e, 30% protein 

10% lipids. The remaining fraction consists of carotenoids, quinines, and BChl 

a.9 Estimates for the number of BChl c/d/e molecules vary widely due to batch 

to batch (50 – 500 x103) variations in chlorosome dimensions as well as 

various assumptions used in methods to determine the volume and BChl 

fraction within chlorosomes.  

Early freeze-fracture work by Staehelin et al.10,11 indicated that the chlorosome 

core was bound by a lipid layer which was approximately 3 nm thick. This was 

later confirmed by cryo-EM.7 The thickness and the absence of an observed 

regular structure is suggestive of a lipid monolayer rather than a lipid bilayer. 

However, estimates of the lipid content of chlorosomes suggest that there are 
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sufficient lipid molecules to cover only 5% of the envelope surface. The 

remaining portion of the surface likely consists of proteins with a small number 

of polar lipid molecules filling in the space in between12 with their polar heads 

oriented towards the cytoplasm.13 

Chlorosomes also contain a baseplate (Figure 1.1), located on one side of the 

chlorosome which plays a vital role in the transfer of excitonic energy from the 

chlorosome downstream towards the bacterial reaction centres located in the 

plasma membrane.14 It has been proposed that the highly ordered baseplate 

may be responsible for the long range order observed for BChl aggregates 

within the chlorosome core.15,16 The baseplate is formed by multiple copies of 

the BChl a coordinating protein CsmA which accounts for up to 50% of all 

protein mass in chlorosomes4 and has been shown to be the only protein 

necessary for chlorosome formation.4 Pedersen et al.17 described a baseplate 

model constructed from nuclear magnetic resonance (NMR) structural data 

for CsmA, with circular dichroism, and simulations of optical spectra for the 

CsmA–BChl a complex, in which CsmA dimers were used as the basic unit. 

In this model, two BChl a molecules are coordinated at the dimer interface by 

histidine side chains. Additionally, it is anticipated that a fraction of 

chlorosomal carotenoids resides in close proximity to the BChl a molecules to 

enable the molecular overlap required for the protective quenching of BChl a 

triplet state.18 

The photosynthetic BChl c/d/e pigments, essential for the function of the 

chlorosome, are contained within the chlorosome interior. Unlike all other 

known antenna systems, these pigments self-organise into higher order 

structures; they maintain distances and mutual orientations without forming 

protein complexes. The chlorosome interior also contains carotenoids, 

quinines, and, in the case of thermophillic species, non-polar lipids. 

The self-organisation of BChls within chlorosomes may be divided into two 

distinct levels: the molecular level organisation of pigments into aggregates 

and the long range organisation of these into larger structures. 
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1.1.3 Molecular organisation of BChl molecules 

Bacteriochlorophyll c, d, and e are found exclusively in chlorosomes. Despite 

their name, they are not bacteriochlorophylls (Figure 1.3) like the BChl a 

molecules found in the baseplate. However, these pigments were isolated 

from bacteria and named before knowledge of their chemical structure. 

 

 

Figure 1.3 Basic structures of chlorins, bacteriochlorins and porhins. 

Bacteriochlorophyll a is a true bacteriochlorophyll with a structure based 

on bacteriochlorin. Bacteriochlorophylls c, d, and e, in common with 

chlorophylls are based on a chlorin ring. 

 

Instead their chemical structure is based on a chlorin ring as commonly found 

in plant chlorophylls. Chlorins differ from bacteriochlorins by the presence of 

a double bond between C7 and C8. Also, spectrally, Bacteriochlorophylls c, 

d, and e are similar to their chlorophyll counterparts. BChl c has peaks at 436 

and 668 nm in CCl4. Consequently, BChl c has an absorption spectrum nearly 

identical to that of Chl a.19 BChl e has a spectrum similar to that observed for 

Chl b.  

BChl c, d, and e differ from each other in modifications at the C20 position 

(Figure 1.4) – where BChls c and e have methyl – and the C7 where BChl e 

has an aldehyde group. The fourth possible combination, BChl f, which 

harbours an aldehyde at C7 and hydrogen at C20 has been synthesised and 

characterised.20 In addition, a BChl f accumulating mutant of Chlorobaculum 
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limnaeu, which usually produces BChl e, was recently produced by knocking 

out the bchU gene encoding C20 methyltransferase.21 

 

 

Figure 1.4 Structure of different bacteriochlorophylls. 

Bacteriochlorophyll c, d, and e differ at the C20 and C7 positions. BChls 

c and e have methyl at C20 and BChl e has an aldehyde group at C7. 

 

Naturally occurring BChls exist as a mixture of homologues in chlorosomes of 

Chlorobi species. These homologues are divided into two classes, namely 

primary homologues, which differ in substituents of the chlorin ring (carbons 

C8 and C12) and secondary homologues that harbour different esterifying 

alcohols at the C173 propionic acid. The presence of various primary and 

secondary homologues have also been confirmed for Acidobacteria.22 

Chloroflexi only posses a single primary homologue (ethyl at C8 and methyl 

at C12) together with multiple secondary homologues. 

BChl c, d, and e pigments are able to self-assemble into aggregates due to 

the presence of a hydroxyl group at asymmetric C31 and the absence of a 

bulky carboxymethyl group at C132 (Figure 1.4).23 

The chemical groups involved in aggregation have been identified largely by 

vibrational spectroscopies.9,14 The key interaction leading to aggregation is 

thought to be the intermolecular coordination of the central Mg ion of one BChl 

molecule to the hydroxyl group at C31 of a second BChl. Additionally, an H-
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bond may form between the hydroxyl at C31 of the second BChl and keto 

group at C131 of the third BChl molecule24 (Figure 1.4). However, this has 

recently been questioned and an alternative model, in which the C131 keto 

group of the second BChl is weakly coordinated to the central Mg ion of yet 

another BChl within the aggregate, has been proposed.25 These interactions 

are in principle compatible with a number of molecular arrangements,26 of 

which three categories have received the most attention (Figure 1.5). These 

are the parallel monomer model,25,27,28 the anti-parallel piggy-back dimer,29–31 

and the syn-anti parallel dimer model.32 The parallel monomer model would 

appear unlikely given the need for the hydrophobic esterifying alcohol chains 

that stabilise the system to point in opposite directions33 (Figure 1.3). This 

requirement is met by both the anti-parallel piggy-back dimer model and the 

syn-anti parallel dimer model.  

 

Figure 1.5 Schematic representation of structural models proposed for BChl 
aggregates. 

(a) Parallel-stack model, (b) Piggy-back dimer model, and (c) Syn-anti 

dimer model. (Image adapted from Ganapathy et al.).32 

  

Higher resolution cryo-Em images of Chlorobaculum tepidum chlorosomes 

and their calculated diffraction patterns indicate the presence of a smaller 

spaced regular structure in the direction of the long axis in addition to long 

range lamellar ordering. In wild-type chlorosomes, a weak periodicity of 1.25 

nm is present whereas, in the bchQRU mutant a strong periodicity of 0.83 nm 

is evident from the diffraction pattern and also directly visible in the electron 
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micrograph images. The smaller spacing in the bchQRU triple mutant is 

ascribed to the absence of side chain heterogeneity at C8 and C12, the limited 

stereochemical heterogeneity at C31 and the absence of a methyl group at 

C20. 

X-ray diffraction studies on partially oriented chlorosomes and BChl 

aggregates have yielded information on the size of the asymmetric unit as well 

as the approximate orientation of the lattice with respect to the long axis of the 

chlorosome.34 Both the anti-parallel piggy-back dimer model and the syn-anti 

parallel dimer models fulfil the limits implied by X-ray experiments. In addition 

to the most intense lamellar peak (spacing about 2.1 nm), the X-ray scattering 

patterns of Chlorobaculum tepidum exhibit two peaks (Bragg spacing ~0.94 

and ~1.17 nm) that have been assigned to the chlorin ring lattice within 

individual lamellar layers.35 These three values define a monoclinic unit cell 

which is too large to contain just a single BChl molecule but can accommodate 

two BChl molecules. 

High resolution magic angle spinning solid state NMR measurements were 

performed on chlorosomes from the Chlorobaculum tepidum triple mutant 

bchQRU. Both the alternating syn-anti ligated BChl stack and the antiparallel 

monomer are consistent with the inter-stack distances derived from NMR 

data.32 However, when these stacks are combined into sheets, several inter-

stack distance for the anti-parallel monomer stacking configuration are larger 

than those derived from NMR measurements. Syn-anti monomer stacks are, 

however, consistent with the observed distance constraints. 

Ring current shift calculations were performed for the syn-anti monomer 

stacks, the anti-parallel monomer model and two earlier structural models that 

were proposed for BChl c in chlorosomes: the monomer-based parallel stack 

model)28 and the piggy-back dimer model.29 Calculations on the syn-anti 

monomer stack and the parallel stack reproduced the experimentally 

observed shifts. As only the syn-anti monomer stack satisfies the NMR 

distance constraints. This model is consistent with both theoretical, NMR, X-

ray, and EM observations.32 



- 10 - 

1.1.4 Long range ordering of BChl aggregates 

The organisation of BChl aggregates into higher order structures has been the 

subject of much debate. Early freeze-fracture electron microscopy (EM) work 

on unstained chlorosomes by Staehelin et al.10,11 indicated the presence of 

rod-shaped structures with diameters of approx. 5 and 10 nm in Chloroflexus 

aurantiacus and Chlorobium limicola, respectively. In addition, a striation 

pattern usually parallel to the long axis was observed.10,11 The calculated 

diffraction pattern indicated a strong diffraction spot equivalent to a spacing of 

~2.1 nm. Further EM studies observed a striation pattern with a spacing of  ~2 

nm for chlorosomes from Chlorobaculum tepidum34,36 and a larger 2.6 – 4 nm 

spacing for species of Chloroflexus aurantiacus.37 Similar features were also 

observed in the micrographs of Cohen-bazire et al.1 who were the first to 

observe chlorosomes. 

Comparable spacings (2.1 nm for Chlorobaculum tepidum, 3.3 nm for 

Chloroflexus aurantiacus) were obtained from solution X-ray scattering.37 The 

observed scattering pattern was consistent with the lamellar phase observed 

in the case of other amphipathic molecules such as lipids and block 

copolymers. 

The ~2 nm spacing seen in electron micrographs and evident from X-ray 

scattering appears at first to be inconsistent with the observation of 5 – 10 nm 

rods. However, Psencik et al.35 interpreted the 2.1 nm spacing as the distance 

between lamellae oriented parallel to the long axis and, based on the extent 

of the striations, appear to persist over the entire length of the chlorosome 

(Figure 1.6). Cryo-EM tilt series experiments indicated that this lamellar 

system could not be planar, but must in fact be curved. This led to the proposal 

of a model of undulating lamellar arrangements of pigment aggregates for 

three different Chlorobi species.35 
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Figure 1.6 The curved lamellar system in chlorosomes. 

(a) End on views of chlorosomes form EM, (b) schematic interpretation, 

and (c) schematic of Bchl stacking (green = BChl c, orange = 

carotenoids). (Image taken from Psencík et al.).5 

An important insight in to the lamellar arrangement of BChl aggregates was 

provided by cryo-EM performed on intact chlorosomes of both the 

Chlorobaculum tepidum wild type and bchQRU mutant.36 End-on views of 

these chlorosomes, fixed vertically and embedded in a thicker layer of ice, 

helped elucidate the arrangement of BChl sheets and their packing. Images 

of chlorosomes from the wild type indicated the presence of disordered multi-

lamellar tubular structures of variable diameter (10 – 30 nm) with some non-

tubular locally curved lamellae in between. In the case of the bchQRU mutant, 

chlorosomes had two tubular domains. For both types of chlorosomes, cryo-

EM shows that these multi-lamellar tubular domains extend over most of the 

length of the chlorosome, and are embedded in a matrix of less well ordered 

smaller curved lamellar domains. This model is consistent with both the early 

freeze fracture experiments, X-ray scattering studies, and the more recent 

cryo-EM observations. 

Images from the above cryo-EM experiments have been used to produce an 

idealized internal structural model consisting of lamellar cylinders.32 However, 

completely closed cylindrical features are unlikely to be prevalent among wild 

type chlorosomes. Hexane-wash experiments showed that inter-lamellar 

spacing decreases on removal of carotenoids and other lipophilic molecules 

– a transition unlikely to be possible for the closed concentric cylinders 

proposed. Additionally, anisotropy in X-ray scattering results34 and the extent 
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of the observed intrinsic disorder38 in wild type chlorosomes do not support a 

model consisting entirely of closed cylinders. 

The observed variability in higher order arrangements between wild type and 

mutant chlorosomes notwithstanding, BChl aggregate organisation is always 

in the form of repeating layers and is found to differ only in the extent of the 

long range order. The existence of a lamellar structure is believed to be a 

consequence of hydrophobic interaction due to the alternation of the relatively 

polar stacked chlorin rings and the interdigitating hydrophobic esterifying 

alcohol chains. The interdigitating esterifying alcohols protrude in both 

directions from the layer containing stacked chlorin rings, most likely due to 

alternating orientations of chlorin rings within BChl stacks, allowing 

interactions between esterfying alcohols from adjacent layers. 

The tilt-series experiments and end-on-views revealed significant 

fragmentation in the lamellar system perpendicular to the chlorosome long 

axis, as well as the existence of distinct domains with different orientations 

with respect to this axis. Such domains, whilst occasionally present in 

Chlorobaculum tepidum were particularly pronounced in chlorosomes from 

Chlorobaculum phaeobacteroides which have BChl e as the primary 

pigment.38 Physiologically, such fragmentation and the existence of domains 

may confer an advantage for light harvesting. The largest transition dipole 

moment (Figure 1.7) of BChl molecules is oriented in a direction parallel to the 

lamellar layers, consequently the orientation disorder afforded by the 

existence of these domains, allows chlorosomes to capture photons with 

different polarisations more effectively. This is advantageous for chlorosome 

containing bacteria that are found in extremely low light conditions. 

Additionally, the existence of these domains provides an explanation for the 

rough surface features of chlorosomes as observed by both EM and atomic 

force microscopy (AFM).6,38 
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Figure 1.7 𝑄𝑦 transition dipole moment. 

The transition dipole moment is shown for BChl c. In lamellar sheets, the 

transition dipole moments are orientated parallel to the layers. 

The effect of the length of the esterifying alcohol harboured at the C17 position 

of the BChl molecule has been investigated in in vitro assembled BChl c 

analogues.34 A linear dependence between chain length and lamellar spacing 

was observed which, extrapolated to zero, yielded an inter-lamellar spacing of 

1.1 nm – the approximate diameter of the chlorin ring. The experimental 

spacing of 2.1 nm observed for Chlorobaculum tepidum is in good agreement 

with this prediction. The observed increase in spacing of 0.08 nm per carbon 

corresponds to the projection of the chain in the direction of the spacing. 

Based on comparison with the projection of the C-C bond length in the 

direction of the chain, which gives an increment per carbon twice the observed 

value, the esterifying alcohol chains are believed to be either extensively 

twisted (gauche conformers) and/or to have their average direction at an angle 

to the spacing. 

Experimentally observed spacing for both brown coloured species, 

Chlorobaculum phaeobacteroides and Chloroflexus aurantiacus, are far 

higher than those predicted. Both species contain longer esterifying alcohols 

e.g., BChls harbouring octadecanol in Chloroflexus aurantiacus and a higher 

proportion of secondary homologues in brown-coloured species which are 

longer than farnesyl. The existence of longer esterifying alcohol chains is 
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thought to be necessary to increase the inter-lamellar space to allow the 

inclusion of the greater numbers of carotenoids found in these species within 

the hydrophobic space. BChl e containing species exhibit both longer alcohol 

chains and higher carotenoid levels. This is likely to be important for light 

harvesting as these species typically inhabit deep water low light 

environments where the spectrum of available light overlaps with the spectral 

region of carotenoid absorption. Additionally, a link has been identified 

between an increase in inter-lamellar spacing and disorder within the lamellar 

system37,38 as manifested by a greater spread in the distribution of inter-

lamellar spacing and the existence of distinct domains. 

Brune et al.39 showed that washing intact chlorosomes with hexane effectively 

removed carotenoids without otherwise disrupting chlorosomes. When the 

inter-lamellar spacings of native and hexane washed chlorosomes from 

Chlorobaculum phaeobacteroides were compared, a decrease was observed 

in the case of hexane washing38 and the resulting inter-lamellar spacing was 

close to the value predicted on the basis of the esterifying alcohol chain length. 

 

1.1.5 Spectroscopic properties of chlorosomes 

BChls are known to have two transition bands in the visible region.40 For BChl 

c these are the peaks mentioned above at 436 and 668 nm in CCl4. These 

bands are refered to as the Soret (𝐵) and 𝑄 bands respectively. The lower 

wavelength Soret band consists of two overlapping bands, 𝐵𝑥 and 𝐵𝑦. The Q 

band can also be decomposed into two bands, 𝑄𝑥 and 𝑄𝑦. Of these, the 𝑄𝑦 

band has the higher cross section and contributes more to the absorbance 

spectrum. The 𝑄𝑥 band, which has a higher transition energy, only has a minor 

absorbance intensity. The 𝑄𝑥 and 𝑄𝑦 transition dipoles are nearly parallel to 

the vectors from the central Mg to the nitrogen atom as shown above in Figure 

1.7. 

The optical spectra of chlorosomes are remarkably different from those of the 

monomeric BChls they contain (Figure 1.8). On aggregation of BChl 

molecules, a pronounced red shift in the position of the 𝑄𝑦 absorption band is 
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observed (Figure 1.8). The peak shifts from 668 to 745 nm, from 655 to 730 

nm and from 654 to 715 nm for BChl c, d, and e respectively. Changes in the 

Soret band within the blue region of the spectrum are observed on 

aggregation though these are usually far more subtle than those observed for 

the 𝑄𝑦 band with the exception of BChl e. On aggregation of BChl e, splitting 

of the Soret band and a bathochromic shift in the By band is observed due to 

the strong coupling between the B transition dipole moment.40 As discussed 

previously, BChl e containing species inhabit some of the lowest light 

environments and there is a significant physiological advantage to the 

enhanced spectral coverage in the 500 – 600 nm spectral region afforded by 

these changes. 

These changes are due to the dense packing of BChl molecules afforded by 

their ability to self-assemble into aggregates. This dense packing and the 

alignment of the 𝑄𝑦 transition dipole moments of the molecules (due to the 

hydrogen bonding network within lamellar planes) leads to strong excitonic 

coupling (estimated coupling energy -750 to – 550 cm-1)7 between BChl 

molecules that is similar to J-aggregates, in which molecules are arranged in 

linear stacks with a head-to-tail transition dipole moment orientation. The 

strong excitonic coupling leads to excitation delocalisation over BChl pigments 

and splitting of the energy levels into a number of exciton states and 

redistribution of the oscillator strength. 
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Figure 1.8 Absorption spectra for chlorosomes and monomeric BChl c in 

methanol. 

On aggregation of BChl c, the dense packing and alignment of the 

𝑄𝑦dipole moments leads to strong excitonic coupling. Excitation is 

delocalised over BChl pigments and energy levels are split into a number 

of exciton states with redistribution of the oscillator strength. (Own data). 

 

Whilst the spectra of BChl aggregates are similar to those of J-aggregates, 

there are notable differences; most significantly is the absence of exchange 

line narrowing.7 Such narrowing would reduce the spectral coverage of the 

chlorosomes and be detrimental to light harvesting. Line narrowing is absent 

even when aggregates of BChl are produced in vitro using single isomers.41 

A further increase in band-width is observed for BChl aggregates in 

chlorosomes that contain epimers and homologues as can be seen by 

comparing spectra of chlorosomes extracted from Chlorobaculum tepidum 

and Chloroflexus aurantiacus. In Chlorobaculum tepidum BChl c is found as 

a mixture of several primary (and a number of secondary homologues) and 

has a 𝑄𝑦 band with a full-width-half-maximum (FWHM) of ~50 nm compared 

to chlorosomes of Chloroflexus aurantiacus, which harbour only a single 
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primary homologue of BChl c which has a 𝑄𝑦 band FWHM of ~30 nm. 

However, more recent results for “Candidatus Chloracidobacterium 

thermophilum” do not follow this trend.42 The 𝑄𝑦 absorption band for 

chlorosomes from this species was much narrower than that of chlorosomes 

from Chlorobaculum tepidum and was blue-shifted by about 10 nm relative to 

that of Chlorobaculum tepidum. However, the absorption spectrum was similar 

to that of chlorosomes of Chloroflexus aurantiacus – despite previous studies 

using reverse phase high pressure liquid chromatography (HPLC) and mass 

spectrometry, which indicated the existence of a complex mixture of BChl c 

homologs.22 

Linearly polarized light can be used to obtain information on the orientations 

of the main exciton transitions. These are dependent on pigment orientation 

as well as the organization of the BChl molecules within chlorosomes.  The 

hydrogen bonding pattern within BChl aggregates acts to keep the 𝑄𝑦 

transition dipole moment of the BChl molecules parallel to the lamellar system, 

which is itself generally parallel to the long axis of the chlorosome. 

Consequently, it is expected that the strongest exciton transitions of this band 

should be approximately oriented parallel to the chlorosome long axis. In the 

case of perfect cylinders, theoretical models predict that this would correspond 

to the strongest transition being polarized parallel to the long axis of the 

cylinder.43 Linear dichroism measurements have been performed on 

chlorosomes from Chloroflexus aurantiacus44–48 and various Chlorobi 

species.49,50 Values ranging from 15° to 27° were obtained for the angle 

between the transition dipole moment of the 𝑄𝑦 band and the long axis of the 

chlorosomes for chlorosomes from Chloroflexus aurantiacus.  

In addition to ensemble LD measurements, single molecule spectroscopy 

studies have been carried out on individual chlorosomes (for a review see e.g. 

Saga et al.).51 Significant disorder at a single chlorosome level manifests itself 

in relatively broad absorption spectra which are observed for individual 

chlorosomes. Furthermore, polarisation measurements suggest that the 

observed single chlorosome fluorescence at low temperatures is due to the 

existence of multiple transition dipoles with different orientations.52,53 
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Fluorescence-detected three-dimensional LD combined with absorption LD 

on individual isolated chlorosomes also revealed a significant amount of 

disorder on the single-chlorosome level.54 These measurements showed that 

the 𝑄𝑦 exciton transition dipoles have a larger angle to the chlorosome axis 

when monitored from the top than from the side. This is consistent with 

polarization anisotropy of fluorescence spectra obtained from single 

chlorosomes isolated from Chlorobaculum tepidum which showed that whilst 

the dominant component of the 𝑄𝑦 transition is parallel to the long axis of the 

chlorosome, the components in the direction of the chlorosome height and 

width are not equal.53 The component of the 𝑄𝑦 transition in the direction of 

the width is larger than that in the direction of the chlorosome’s height. This 

anisotropic distribution of emitting transition dipoles within a single chlorosome 

is proposed to be due to the lack of rotational symmetry in the pigment 

arrangement and the asymmetric orientation of the curved lamellar system. 

The triple mutant bchQRU exhibited a more symmetric distribution of emitting 

transition dipoles,54 consistent with the previously observed highly ordered 

internal structure that consists of closed lamellar cylinders.36 

Strong circular dichroism (CD) has been observed for chlorosomes, however, 

a large degree of variation has been observed for different growth conditions 

and preparations of chlorosomes from the same species. The long range 

ordering of BChl aggregates into curved lamellar structures effectively creates 

helices from the linear chlorin stacks. The strong dichroism is a consequence 

of the resulting local helicity in the transition dipoles. Theoretical models 

indicate that the curvature is necessary as planar structures lead to only weak 

CD.55 It has however been proposed that continuous regions exhibiting 

alternating curvature would cause the observed CD signal to vanish. End-on-

views of chlorosomes have shown that this is avoided by the separation of 

such regions by fragmentation.36 The large variability in CD spectra may be 

explained by the fact that circular dichroism has been predicted to depend on 

the length of aggregate in both closed, helical cylindrical aggregates43 and in 

certain open curved structures.55 
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1.1.6 Excitation energy transfer in chlorosomes 

Fast photophysical processes in chlorosomes have been studied by several 

groups. Femtosecond transient absorption spectroscopy studies56,57 and two-

colour absorption difference profiles58 revealed that 𝑄𝑦 band excitation of BChl 

aggregates in Chloroflexus aurantiacus and Chlorobaculum 

phaeobacteroides  is followed by a rapid exciton relaxation, within 1 ps. 

Subsequently, long-range energy transfer processes within aggregates led to 

excitation equilibration over the whole chlorosome.56 From BChl c/d/e 

aggregates energy is transferred to BChl a molecules within the baseplate. 

Excitation energy transfer (EET) from bulk BChl aggregates to baseplate BChl 

a has been studied for a number of species with large differences observed 

for the speed of such transfer. For example, transfer times of 10 ps have been 

observed in Chloroflexus aurantiacus57,58  whilst far longer times were 

observed for the major component of EET (timescale of 120 – 130 ps) for 

chlorosomes from Chlorobium phaeobacteriodes.56 As EET within 

chlorosomes is sensitively dependent on pigment organisation, it is not 

surprising that there should be such variations between species.  

Dostál et al.59 used two-dimensional electronic spectroscopy to investigate the 

first 200 fs after excitation by monitoring the evolution of the 2-dimensional 

spectral line-shape. The excitation dynamics were explained by proposing a 

model of effective diffusion-like behaviour of the excitons. For perfectly 

periodic aggregates, it is expected that strong resonant coupling will result in 

energy eigenstates delocalised over the whole system. This is not the case 

for significantly disordered systems where a distribution of transition 

frequencies and couplings between molecules are observed. The observation 

of these distributions implies the existence of a number of  regions or domains. 

which are separated by high local energetic or structural dislocation. It Is not 

possible, in such cases, for the wave function of the aggregate’s excited state 

to be fully delocalised over the whole system. However, delocalisation should 

remain over individual “coherent domains”. Energy diffuses rapidly among and 

within coherent domains of the chlorosome after an initial excitation event. 

Due to the intrinsic static disorder within chlorosomes, it was impossible to 
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rule out the existence of coherent transfer on a shorter time scale. The model 

implies rapid dephasing between coherent domains due to energy diffusion. 

As a result, the electronic phase relationship between different domains is lost 

suggesting that overall energy transfer within chlorosomes cannot be 

mediated by coherent processes. 

 

1.1.7 In vitro BChl aggregates 

Aggregates of both chlorosomal BChls and their synthetic analogues have 

been prepared in vitro in non-polar and polar environments and have been 

found to produce similar spectra to chlorosomes. 

Self-aggregates of chlorosomal BChl c were first reported by Bystrova et al.60 

who observed that the self-aggregates, formed in hexane with small amounts 

of carbon tetrachloride. These exhibited similar absorption bands to those of 

chlorosomes with a large red shift compared with those of monomeric BChls 

in diethyl ether. Aggregates with a long wavelength maximum were later 

observed for BChls c, d, and e in 0.5% (v/v) dichloromethane-hexane.61 

Subsequently, self-aggregates of natural BChls have been reported by a 

number of groups and are commonly used for investigating properties of 

chlorosomal aggregates.39,62–70 

In chlorosomes, the BChl self-aggregates exist within a microheterogeneous 

hydrophobic environment provided by the lipid monolayer. In aqueous 

environments BChl molecules are hardly soluble and are found to form 

dimers. By mimicking the micoheterogeneous hydrophobic condition of the 

chlorosome interior, BChl aggregates have also been prepared in vitro in 

aqueous environments.71–74 Monogalactosyldiacylglycerol (MGDG), the 

primary lipid constituent of the chlorosome envelope, has been used to 

prepare a number of BChl aggregates water. In these studies, BChl 

aggregates formed in the stable hydrophobic environment provided by the 

MGDG. Chlorosome components (BChl c, carotenoids, lipids, and BChl a) 

extracted using either chloroform or chloroform/methanol mixtures have also 

been shown to effectively reassemble into chlorosome-like entities in aqueous 

environments.73,75,76 These assemblies, not only share similar absorption and 
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CD spectra to chlorosomes, but were revealed by electron microscopy and X-

ray scattering34 to have similar structures. Concentrated solutions of BChl c in 

polar solvents also form aggregates similar to those found in chlorosomes 

when diluted with a large volume of water.75 Individual epimers of BChl cF 

homologs formed aggregates in dichloromethane and in a 1:1 solvent mixture 

for dimethylsulfoxide and water. This approach overcomes both the solubility 

problem encounter for BChls in aqueous environment and the difficulty 

experienced in dispersing them. 

A number of semi-synthetic and fully synthetic BChl analogues have been 

produced (for a review see Balaban et al.).77 Such compounds are useful as 

they overcome the instability and heterogeneity (stereoisomers and 

homologues) of natural pigments. The majority of these analogues contain 

zinc as the central atom rather than magnesium and thus are less prone to 

demetallation and opening of the macro-ring. They are readily prepared by 

treating free base versions of naturally derived complexes with zinc acetate 

under relatively mild conditions. Self-aggregates of zinc BChl analogues have 

been widely reported (see for example Tamiaki et al., Tamiaki et al., and 

Cheng et al.)78–80 both in polar and non-polar environments. The first of these 

showed that homolog mixtures of zinc methyl bacteriopheophytins c and d 

self-aggregated in 0.5% (v/v) dichloromethane-hexane to produce oligomers 

with significantly blue shifted 𝑄𝑦 absorption maxima of 728 and 716 nm, 

respectively – similar to magnesium containing aggregates.80 Due to their 

similar properties to chlorosomal aggregates, zinc aggregates have since 

been used as a model for chlorosomes. As zinc containing chlorins are found 

to occur naturally in the acidophilic bacterium Acidiphilium rubrum81 it is not 

surprising that they provide a good model for chlorosomal aggregates. 

In addition to zinc-bacteriopheophyrins, both semi-synthetic and fully synthetic 

pigments have been produced featuring a range of central metal atoms 

including Mn, Fe, Co, Ni, Cu, Pd, Ag, and Cd (see for example Tamiaki et 

al.).82 The aggregation properties of chlorins containing a variety of metals 

have been extensively studied. Neither Ni, Ag, Cu nor Pd containing chlorins 

have been shown to self-aggregate in hexane.61,82 However, Co containing 

chlorins were found to self-aggregate in 1% tetrahydrofuran : hexane and Mn 
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and Fe containing chlorins were found to fully and partially dimerize 

respectively. Cd chlorins were observed to self-aggregates in dried thin film 

as well as in non-polar solvents.83,84  

 

1.1.8 Theoretical description of BChls and their aggregates 

Theoretical studies on bacteriochlorophylls seeking to elucidate interactions 

between key groups and the nature of aggregation have been limited to 

quantum mechanical (QM) studies and molecular mechanics (MM) 

simulations on a relatively small number of pigments. 

31R-[E,M] BChlide d aggregation was explored by Holzwarth and Schaffner28 

who sought to explain the rod model of BChls in chlorosomes. Using 

monomer, trimer, pentamer, and decamer stacks with the Mg-hydroxyl 

coordination as the basic interaction element, strong interactions were 

observed for extended stacking of chlorins in van der Waals contact. In 

addition, large energy stabilisation was found to arise from the extended 

hydrogen bonding network brought about by OH···O=C bonding and 

electrostatic interactions. Structural features of large aggregates were found 

to agree well with both spectroscopic and low-resolution structural information 

from chlorosomes and in vitro BChl aggregates. The authors extrapolated the 

determined structural parameters including the rotation angle between stacks 

and a stack-stack distance to produce tubular structures with diameters 

corresponding to those proposed for the rod model of BChl aggregation in 

Chloroflexus species.  

A subsequent study by Ganapathy et al.32 investigated the properties of a syn-

anti structure by performing MM optimisation of six stacks of 12 interacting 

BChl d molecules. A single syn-anti pair was taken from this structure and 

used to construct a larger tubular structure. The electron density of this 

structure was calculated and projected down the central axis to produce side 

views that could be compared with cryo-EM data. These simulated images 

and their Fourier transforms were found to reproduce the 0.83 nm periodicity 

and striped appearance revealed for the concentric cylinders of the BChl d 

triple mutant bchQRU.  
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Simulations on artificially curved single, double, and multiple concentric rod 

structures as well as lamella and Archimedean spirals formed from 31R-[E,M] 

BChl c have been performed. The effects of length, width, diameter, curvature 

and orientation of dipole moments55 were investigated. MM calculations were 

used to produce stable optimised aggregates with a number of structural 

motifs divided into rods built from homogeneous arrays where BChls bind via 

a hydroxyl group and an Mg atom (m-rods); rods built from piggy-back dimers 

(d-rods);29 lamellar structures with the same binding pattern as m-rods (t-

sheets); and lamellar structures where hydroxyl and keto groups kept the 

structure intact (l-sheets). Archimedean spiral models were created using the 

same pigment binding motifs as lamellar sheets. Exciton theory was used to 

predict optical properties of aggregates based on these optimised structures. 

Whilst absorption, linear dichroism, and polarisation dependent fluorescence-

excitation spectra of the long structures were found to be practically identical 

for different architectures, circular dichroism predictions turned out to be highly 

sensitive to geometry and monomeric transition dipole moments within the 

structures. Long multiple rod and spiral structures, similar to those observed 

in high resolution EM studies,36 successful reproduced the CD profile seen 

experimentally for chlorosomes. Calculations suggested that the broad nature 

of the 𝑄𝑦 line observed for chlorosomes could be due to either different 

orientations of the transition moment vectors within multi-lamellar structures 

or the presence of a variety of different types of BChl aggregates within 

chlorosomes. The possibility of broadening due to the presence of a fractured 

domain structure as observed for BChl e containing species was not 

considered. 

Alster et al.26 used MM and QM methods to more extensively explore the short 

range structural parameters of a wider range of structural motifs. In addition, 

powder diffraction, and optical property predictions allowed comparison with 

experimental data. Eight structures based on dimers of 31R-[E,M] BChl-cF  

homologue with their esterifying alcohol chains protruding in opposite 

directions were explored. This homologue is one of four homologues found in 

the model organism Chlorobaculum tepidum. It differs from the homologue 

found in Chlorflexus aurantiacus only in its esterifying alcohol. Furthermore, it 



- 24 - 

differs only in the methyl at C20 form the 31R-[E,M] BChl dF homologue found 

in the bchQRU triple mutant found to produce highly ordered lamellar 

structures. Figure 1.9 shows the structural motifs used to create the aggregate 

systems. Structures were named according to IUPAC rules for tetrapyrroles:85 

S, used to denote ‘‘Syn’’ refers to the arrangement where the hydroxy group 

at C31 is on the same side of the chlorin ring as the C17-propionic acid moiety. 

Conversely, A, used to denote ‘‘Anti’’ is used when it is on the opposite side. 

The orientation of the Mg cation with respect to the C17 is denoted using α 

and β. Consistent with the notation proposed by Balaban et al.,85 the 

configuration with the magnesium cation on the opposite face to the C17- 

propionic acid moiety is designated as the α-configuration with the β-

configuration having the magnesium cation on the same side. Using this 

nomenclature, specifying the positions of both entities for both molecules 

within the basic dimer unit gives a four-letter code denoting stereochemistry 

of each motif e.g. AαAα or SβAα. In addition, the suffixes of -d and -dd were 

used to denote displaced and doubly displaced systems. The structural 

models can be divided into two groups: sheet and chain structures. In sheet 

structures, Mg atoms coordinate to C31 hydroxyl groups throughout the whole 

layer whereas, in chain structures they are formed from paired rows of BChl 

pigments. Structural models can also be divided by considering the mutual 

orientation of dipole moments within dimers into parallel and antiparallel 

motifs. Combining these, we obtain a system where structural motifs maybe 

divided into four groups (Figure 1.9): 

1) Parallel chains (e.g. αAαS, βSβS) 

2) Antiparallel chains (e.g. βSαA) 

3) Parallel sheets (e.g. αSβA, αSβA-d, αSβA-dd) 

4) Antiparallel sheets (e.g. αSαS, βAβA) 



- 25 - 

 

Figure 1.9 Structural motifs investigated in Alster et al..26 

The structural motifs may be divided into four categories: parallel chains, 

antiparallel chains, parallel sheets, and antiparallel sheets. Figure 

adapted from Alster et al..26 

 

Structural models of aggregates formed from a single layer of 8 x 10 dimers 

were optimised using a modified General Amber Force Field (GAFF). When 

compared to the pre-optimized monomer and a significant displacement of Mg 

atom out of the plane of the chlorin ring was observed. However, there was 

little change in the arrangement of the esterifying alcohol tails. An investigation 

of key chemical groups revealed that the Mg hydroxyl separation always  

corresponded to the value expected for coordination, whilst the H-bond (= 

O···H–O) distances were sometimes larger than that expected for a typical  H-

bond. Pigment densities of the most energetically favourable structure after 

MM optimisation were found to be in good agreement with estimates for 

chlorosomes with the discrepancy ascribed to the presence of increased 

disorder – and therefore lower density in real chlorosomes. 

The electronic structure of the central tetramer of each of the MM structure 

was investigated using three QM methods. These calculations suggested the 
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most favourable structure was the antiparallel chain model corresponding to 

the antiparallel piggy-back dimer (βSαA) with one of the antiparallel sheet 

models and one of the parallel sheet arrangements coming second and third 

respectively. These had energies about 10 – 20 kcal/mol lower than other 

structures. Using energy decomposition, it was possible to determine the 

contribution of individual interactions to the structural stabilisation. Of the three 

key interactions, the 𝜋 − 𝜋 stacking was found to have the largest contribution 

to stabilisation (40 kcal/mol for the completely stacked chlorin ring) followed 

by Mg-hydroxyl coordination (20 kcal/mol) with the H-bond having the smallest 

stabilisation effect (8 kcal/mol). 

Deformation energies were also determined for the tetramer structures. These 

values are consistent with significant deformation of the monomeric building 

blocks in the MM optimized structures relative to isolated monomers due to 

the packing effects in aggregates. 

The structures modelled in the work of Alster et al. all remained planar despite 

the curvature observed in EM of chlorosomes, with the authors noting: “it will 

be necessary to use molecular dynamics on a larger, multilayer assembly to 

solve this problem.” Despite this, they were able to demonstrate the 

importance of curvature by “wrapping” the layers around a central x-axis. The 

resulting scattering predictions were found to reproduce the observed X-ray 

scattering data.  

Electronic absorption spectra for each of the structural motifs were determined 

and the tetramer-monomer energy levels of the 𝑄𝑦 and Soret band were 

compared to expected shifts for monomeric, dimeric, and aggregated BChl c. 

The largest 𝑄𝑦 spectral line shift was observed for the αSβA-dd structural 

motif. The spectrum of αAαA displayed the second largest shift. The 

experimental spectral shift of the Soret band was relatively well reproduced 

by structures αAαA, βAβA, and αSβA-dd. The ability to closely reproduce the 

experimentally observed spectra further supports the proposal that the 

energetically preferred structures may correspond to structures found within 

chlorosomes.  
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Whilst Alster et al. provided a solid basis for further exploration, it did not allow 

decisive conclusions to be drawn. Investigation of larger systems with better 

sampling of phase space using molecular dynamics simulations should allow 

a more comprehensive understanding of aggregate structure with in 

chlorosomes including the existence and origin of lamellar curvature. 

1.2 QDs 

QDs are semiconductor nanoparticles (NPs), which due to quantum 

confinement have size tuneable properties intermediate between those of bulk 

semiconductors and individual atoms. Since their discovery by Brus in 1984,86 

quantum dots have been the focus of intensive interdisciplinary study drawing 

on expertise from amongst others chemistry, physics, biology, engineering, 

and materials science due to their unique size tuneable properties, and the 

vast array of applications they afford. This section gives a brief overview of 

semiconductor physics, quantum confinement, and quantum dot properties as 

well as current and potential applications. 

 

1.2.1 Semiconductors 

Solid state materials can be broadly divided into three categories: conductors, 

insulators, and semiconductors. According to band theory, when individual 

atoms come together to form a molecule, their atomic orbitals combine to form 

molecular orbitals resulting in new discrete energy levels. In the case of bulk 

materials, as more and more molecular orbitals come together, energy levels 

will be close together or even completely degenerate in energy forming 

continuous bands of accessible energy levels which are dispersed over 

momentum space. 

A ‘forbidden’ energy region called the band-gap (𝐸𝑔) may exist between the 

valence band (the lowest band of occupied levels) and the conduction band 

(where orbitals are completely unoccupied at absolute zero temperature). The 

size of this band-gap determines the electronic properties of a material and 

allows them to be classified as either insulators, conductors or 

semiconductors (Figure 1.10). In the case of insulators, the band-gap is large 
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> 4eV with few to no electrons residing within the conduction band at room 

temperature. Conversely, conductors exhibit band-gaps below the thermal 

energy at room temperature < 0 to 0.1 eV.  

For a semiconductor, at zero Kelvin, the ground state consists of a valence 

band with set of fully occupied levels and a conduction band with a set of 

unoccupied electronic energy levels separated by a  small forbidden energy 

band-gap (between 0.1 and 4 eV). Rather than think of the absence of 

electrons in the conduction band, it is conventional to discuss the conduction 

band in terms of being occupied by ‘holes’. These holes can be treated as 

positively charged particles with mass – equivalent to electrons in the valence 

band. 

 

Figure 1.10 Insulators, semiconductors, and conductors. 

Materials may be divided into insulators, semiconductors, and 

conductors based on the magnitude of the band-gap. In insulators, the 

gap between the valence and conduction band is large (>4 eV) where as 

in conductors the band-gap is small, less than the thermal energy at 

room temperature (<0.1 eV). Semi-conductors represent an intermediate 

case where the band-gap lies between 0.1 and 4.0 eV. 
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Excitation occurs when an electron is promoted from the valence band to an 

unoccupied site in the conduction. This is equivalent to a hole being promoted 

from the conduction band to the valence band. The result is the generation of 

an electron-hole pair. The relative abundance of electrons and holes allows 

semiconductors to be further classified into intrinsic –  where there are an 

equal number of holes and electrons, n-type – where there are more electrons 

than holes and p-type – where there are more holes than electrons (Figure 

1.11). 

 

 

Figure 1.11 Intrinsic, n-type, and p-type semiconductors. 

(a) Intrinsic semiconductor with equal population of electrons and holes, 

with fermi level 𝐸𝐹 in the middle of the band-gap; (b) n-type 

semiconductor with majority of electrons; (c) p-type semiconductor. 

 

A key parameter in band theory is the Fermi level, which is a virtual energy 

level corresponding to the energy where the probability of being occupied is 

one half. The position of the Fermi level in the relation to the conduction and 

valence bands plays a critical role in determining electrical properties. The 

probability that an electron is in a state with energy 𝐸𝑖 is given by 

𝑃(𝐸𝑖) =
1

1 + 𝑒
𝐸𝑖−𝐸𝐹

𝑘𝐵𝑇

 

(1. 1) 

Where 𝑘𝐵 is Boltzman’s constant and 𝑇 is absolute temperature. For intrinsic 

semiconductors, with their equal numbers of electrons and holes, this level 

lies exactly halfway between the valence and conduction bands. For n-type 
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semiconductors, 𝐸𝐹 lies closer to the conduction band, whereas for p-type 

semiconductors it lies closer to the valence band. 

The lowest energy state of the conduction band and the highest energy state 

of the valence band are each characterized by a certain crystal momentum 

(𝒌). The crystal momentum may either be the same for both states or different. 

This allow semiconductors can be divided into direct (𝒌 the same) and indirect 

(𝒌 different) band-gap semiconductors. In direct band-gap semiconductors an 

electron can be promoted from the highest-energy state in the valence band 

to the lowest-energy state in the conduction band without a change in crystal 

momentum. Similarly, an electron can move from the conductor band to the 

valence band without a change in momentum. In the case of indirect band-

gap semiconductor, a momentum exchange with the lattice in the form of a 

phonon is needed to account for the momentum change on moving and 

electron between bands. CIS is a direct band-gap semiconductor. Figure 1.12 

illustrates how an electron can be promoted from the valence band to the 

conduction band on absorption of a photon. For semiconductors with 𝐸𝑔 in the 

range 1.4 – 2.5 eV, such transitions may be invoked by absorption of a photon 

of visible light. Consequently, the details concerning the electronic band 

structure of the semiconductor crystal determines its optical response. 
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Figure 1.12 Excitation of a direct band-gap semiconductor. 

The momentum conserving promotion of an electron from the valence 

band into the conduction band may take place on absorption of a photon 

with 𝐸 > 𝐸𝑔. 

 

After excitation of a semiconductor, the created electron-hole pair may 

undergo momentum-conserving recombination by emission of a photon 

(Figure 1.13) with energy equal to the difference between the initial electron 

and hole energies. This process is called photoluminescence (PL). It should 

be noted that if intra-gap states exit the energy of the emitted photon may not 

necessary be equal to the band-gap energy. 
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Figure 1.13 Photoluminescence recombination of the electron hole pair in a 

direct band-gap semiconductor. 

Recombination of an electron hole pair results in the emission of 

corresponding energy. 

 

Direct band-gap semiconductors are more efficient emitters than their indirect 

band-gap semiconductors because no change in momentum is required. 

 

Photoluminescence decay is a first order kinetic process described by: 

𝐼𝑡 = 𝐼0𝑒−Γ𝑟𝑡 

(1. 2) 

where Γ𝑟 is a characteristic radiative decay constant. An important property of 

semiconductor photoluminescence is quantum yield (PLQY). The PLQY 

describes the conversion efficiency of absorbed energy into photons. It is 

defined as the ratio of absorbed to emitted photons: 
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𝜙 =
# 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

# 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
=  

Γ𝑟

Γ𝑟 + Γ𝑛𝑟
 

(1. 3) 

where Γ𝑛𝑟 is a characteristic non-radiative decay constant. 

 

During thermal excitation or photoexcitation, an electron is promoted from the 

valence band to the conduction band creating a bound electron-hole pair. This 

pair may be considered as a quasi-particle called an exciton which is free to 

move within the atomic lattice. If the effective masses of the electron and hole 

are 𝑚𝑒
∗  and 𝑚ℎ

∗ , respectively, the combined reduced mass, 𝜇𝑒𝑓𝑓, of the exciton 

quasi-particle is given by: 

1

𝜇𝑒𝑓𝑓
=

1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ , 

(1. 4) 

Excitons may broadly be divided into two classes: Wannier-Mott excitons87 

and Frenkel excitons.88 Wannier-Mott excitons are typically found in 

semiconductors, where due to the high dielectric constant and subsequent 

electric field screening the Coulomb binding energies are reduced. Wannier-

Mott exciton radii are typically larger than the lattice spacing. Conversely, in 

materials with a small dielectric constant, the Coulomb interaction between 

electrons and holes are stronger with smaller radii approximately the same 

size as the unit cell, leading to Frenkel excitations. 

Wannier-Mott excitations, due to their large hydrogen-like wavefunctions and 

small binding energies may be treated using the Bohr model. In the Bohr 
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model, the radius may be found by equating the potential energy due to 

Coulomb attraction and the kinetic energy: 

𝜇𝑒𝑓𝑓𝜈2 =  
1

4𝜋𝜀0

𝑒2

𝑟
 

(1. 5) 

where 𝑟 is the electron-hole separation, 𝜈 is the velocity and 𝜀0 is the 

permittivity of free space. Due to quantisation of momentum, 

𝐿 = 𝜇𝑒𝑓𝑓𝜈𝑟 

(1. 6) 

with 𝐿 ≥ ℏ, Equation (1. 5) can be rearrange to yield the Bohr exciton radius: 

𝑎𝐵 =
4𝜋𝜀0ℏ2

𝜇𝑒𝑓𝑓𝑒2
. 

(1. 7) 

The Bohr exciton radius is typically ~10 nm for semiconductors. 

 

1.2.2 Quantum confinement 

For systems with one or more dimension below the Bohr exciton radius, 

quantum confinement of wavefunctions in crystals leads to changes in the 

corresponding eigenvalues from continuous bands to discrete levels as 

predicted for a particle in a box model.89 The appearance of discrete levels 

introduces structure into the absorption spectra of the quantum dots and 

means the entities have properties intermediate between those of bulk 

semiconductors and individual molecules90 (Figure 1.14). Suppression of 

wavefunction delocalisation leads to compression of the upper and lower 

energy limits of each band as well as introducing a finite number of states 

within these bands. These effects increase with decreasing particle size, 

shifting the upper valence orbital to a lower energy and the lower conduction 

orbital to a higher energy, this increasing the band-gap. The effect of 

decreasing system size on the ground state wavefunction, along with the 

changes in energy levels and the increase in 𝐸𝑔, is shown in Figure 1.15. 
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Figure 1.14 Electronic properties of quantum dots c.f. bulk semiconductors 

and molecules. 

 

Figure 1.15 Quantum confinement. 

Below the Bohr exciton radius, as the system size decreases, the upper 

valence orbital is shifted to a lower energy and the lower conduction 

orbital to a higher energy, thus increasing the band-gap energy. 
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The energy of such spatially confined systems may be modelled by the 

“particle in a box” model. For QDs, which are confined in three dimensions, 

spherical coordinates are most convenient. In this coordinate system, the 

potential function for a spherically symmetrical confinement system where the 

potential inside is zero and the potential outside is infinite is given by: 

 

𝑉(𝑟, 𝜑, 𝜃) = {
0, 𝑟 < 𝑑
∞, 𝑟 ≥ 𝑑

  

(1. 8) 

where 𝑑 is the size of the system i.e. the quantum dot. 

The Schrodinger equation for such a system is given by: 

 

[
−ℏ2

2𝜇
∇2𝑉(𝑟, 𝜑, 𝜃)] 𝜓(𝑟, 𝜑, 𝜃) = [

−ℏ2

2𝜇𝑒𝑓𝑓
(∇𝑟

2 +
1

𝑟2
∇𝜑,𝜃

2 ) + 𝑉(𝑟, 𝜑, 𝜃)] 𝜓(𝑟, 𝜑, 𝜃)

= 𝑖ℏ
𝜕𝜓(𝑟, 𝜑, 𝜃)

𝜕𝑡
 

(1. 9) 

where 𝜓(𝑟, 𝜑, 𝜃) is the wavefunction of the exciton. Separating the angular 

𝑌(𝜑, 𝜃) and radial components 𝑋(𝑟) and using the eigenvalue 𝐿 of the angular 

momentum operator �̂�:  

 

𝐿2 = −ℏ2∇𝜑,𝜃
2 = 𝑙(𝑙 + 1)ℏ2 

(1. 10) 

Gives the expression 
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[∇𝑟
2 −

𝑙(𝑙 + 1)

𝑟2
+

2𝜇𝑒𝑓𝑓

ℏ2
(𝐸 − 𝑉(𝑟))] 𝑋(𝑟)

= [∇𝑟
2 −

𝑙(𝑙 + 1)

𝑟2
+ 𝜘2 +

2𝜇𝑒𝑓𝑓

ℏ2
𝑉(𝑟)] 𝑋(𝑟) = 0 

(1. 11) 

where 

𝜘2 =
2𝜇𝑒𝑓𝑓𝐸

ℏ2
 

(1. 12) 

For the simplest case of purely radial motion, 𝑙 = 0 and thus Equation (1. 11) 

becomes. 

 

[∇𝑟
2 + 𝜘2 +

2𝜇𝑒𝑓𝑓

ℏ2
𝑉(𝑟)] 𝑋(𝑟) = 0 

(1. 13) 

Additionally, within the quantum dot, 𝑉(𝑟) = 0, yielding: 

 

[∇𝑟
2 + 𝜘2]𝑋(𝑟) = 0 

(1. 14) 

The general solution for Equation (1. 14) is given by: 

 

𝑋0(𝑟) = 𝐴0 sin(ϰr) + 𝐵0 cos(𝜘𝑟) 

(1. 15) 

The specific solution requires a spherical Bessel function whose amplitude at 

the edge of the quantum dot matches the zero amplitude of the wavefunction 

outside. This is achieved by setting the boundary conditions 𝑋(0) = 𝑋(> 𝑟) =

0. At the centre of the quantum dot, these conditions require that 𝐵0 = 0. 
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𝑋0(0) = 𝐴0 sin(0) + 𝐵0 cos(0) = 0 

⇒  𝐵0 = 0 

(1. 16) 

At the quantum dot boundary, for the wavefunction amplitude inside the 

quantum dot to match that outside, the product 𝜘𝑑 must be an integer of 𝜋. 

𝑋0(> 𝑟) = 𝐴0 sin(𝜘𝑑) = 0 

⇒  𝜘 =
𝑛𝜋

𝑑
 

(1. 17) 

The increase in energy due to confinement can be obtained by rearranging 

Equation (1. 12) and substituting 𝜘 =
𝑛𝜋

𝑑
. 

 

𝐸𝑐𝑜𝑛𝑓 =
𝜘2ℏ2

2𝜇𝑒𝑓𝑓
=

𝜋2ℏ2𝑛2

2𝜇𝑒𝑓𝑓𝑑2
 

(1. 18) 

It can be seen from Equation (1. 18) the confinement energy scales with 𝑑−2. 

Furthermore, the significance of the Bohr exciton radius can be seen from the 

𝜇𝑒𝑓𝑓 term. The effect of confinement on the wavefunction is illustrated in 

Figure 1.15. 

The band-gap of a semiconductor nanoparticle, 𝐸𝑔𝑄𝐷, is a sum of three terms: 

 

𝐸𝑔𝑄𝐷 = 𝐸𝑔𝐵𝑢𝑙𝑘 + 𝐸𝑐𝑜𝑛𝑓 + 𝐸𝑒𝑥𝑐𝑖𝑡𝑜𝑛 , 

(1. 19) 

where 𝐸𝑔𝐵𝑢𝑙𝑘 is the band-gap for a bulk system and the final term 𝐸𝑒𝑥𝑐𝑖𝑡𝑜𝑛 is 

the electrostatic energy due to the Coulombic attraction between the 

oppositely charged electron and hole. This term is given by: 
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𝐸𝑒𝑥𝑐𝑖𝑡𝑜𝑛 = −1.8
𝑞2

2𝜋𝜀𝜀0𝑑
 . 

(1. 20) 

The exciton energy scales with the inverse of the particle size, however this 

effect is usually only significant for materials with a small dielectric constant. 

1.2.3 Appeal and applications 

Quantum dots have attracted significant attention due to a host of attractive 

photophysical and photochemical properties including: broad size-dependent 

excitation bands, narrow size-tuneable symmetrical PL emission bands,86,91 

high PLQY, good chemical stability, and high extinction coefficients. These 

properties combined with various available synthesis methods, has led to the 

development of many applications and fundamental studies.86,92,93  

These applications include lasers,94–96 light emitting devices,97–103 and solar 

cells.104–118 The potential for the use of quantum dots in biolabelling has also 

been explored extensively.119–128 Quantum dots are tuneable and have 

enhanced photostability compared with conventional organic dyes. 

Additionally, quantum dots are promising for applications in near infrared in 

vivo imaging.91,121–123,129–140 Further applications, include single photon 

sources for quantum cryptography,141 and visible range photocatalyst.142–144 

1.2.4 Quantum dot materials and synthesis routes 

The synthesis of quantum dots can be broadly divided into two regimes: 

nucleation and growth. Nucleation occurs when monomers in a 

supersaturated solution overcome an energy barrier to form a 

thermodynamically stable structure. The energy barrier originates from the 

surface tension associated with the creation of a new phase. The difference 

in energy 𝛥𝐺 for a cluster of 𝑛 atoms is given by 
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𝛥𝐺 = 𝑛(𝜇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) + 4𝜋𝑟2𝜎 

(1. 21) 

The first term gives the change due to the chemical potentials of the crystal 

𝜇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 and the solution 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. The second term represents the surface 

energy with 𝜎 the surface tension and 𝑟 is the radius of the cluster. 

The number of atoms in a cluster is given by 𝑛 =
4𝜋

3
𝑁𝑟3 where 𝑁 is the number 

of atoms per unit volume. Equation (1. 21) can be rewritten as: 

Δ𝐺 =
4𝜋

3
𝑁𝑟3(𝜇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) + 4𝜋𝑟2𝜎 

(1. 22) 

Figure 1.16 shows the change in interfacial energy (blue line), volume free 

energy (red line), and overall free energy (green line) as a function of cluster 

size. For small clusters, the increase in energy due to the creation of a new 

interface between phases is greater than reduction in free energy due to the 

volume free energy. Consequently, the overall change in free energy is 

positive and the cluster is unstable.  Once the cluster becomes large enough, 

the change in free energy becomes negative and the cluster becomes stable. 

This happens at the critical radius 𝑟𝑐. 

The critical radius can be found by setting the derivative of Δ𝐺 with respect to 

𝑟 equal to zero. 

𝑑Δ𝐺

𝑑𝑟
= 4𝜋𝑁𝑟2(𝜇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) + 8𝜋𝑟𝜎 = 0 

(1. 23) 

Which leads to: 

𝑟𝑐 =
−2𝜎

𝑁(𝜇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
 

(1. 24) 
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Figure 1.16 Change in free energy as a function of radius in NC growth. 

The interfacial energy (blue) is the energy associated with the creation 

of a new interface. The volume free energy (red) is the energy released 

on the creation of a new phase. Above a critical radius, the change in 

sum of these (green) becomes negative and growth is energetically 

favourable. 

 

The critical radius is the radius at which the cluster and the monomers in 

solution are in equilibrium. Once 𝑟 > 𝑟𝑐, the addition of new molecules to the 

cluster leads to a reduction in free energy. 

The growth of the nanocrystal beyond the critical radius is limited by the 

diffusion of monomers towards the cluster. This maybe described by Fick’s 

law: 

𝐽(𝑥 ≫ 𝑟) = 4𝜋𝑥2𝛽
𝑑𝐶

𝑑𝑥
 

(1. 25) 

Where 𝐽 is the flux far away from the nanocrystal surface (i.e. 𝑥 ≫ 𝑟), 𝛽 is the 

diffusion coefficient and the monomer concentration gradient is given by 
𝑑𝐶

𝑑𝑥
. 



- 42 - 

At equilibrium the flux is independent of 𝑥 which allows a second order 

differential equation to be formed. 

𝑑𝐽

𝑑𝑥
= 4𝜋𝛽 (2𝑥

𝑑𝐶

𝑑𝑥
+ 𝑥2

𝑑2𝐶

𝑑𝑥2
) = 0 

⇒
𝑑2𝐶

𝑑𝑥2
= −

2

𝑥

𝑑𝐶

𝑑𝑥
 

(1. 26) 

If boundary conditions are selected such that the concentration of monomers 

at the crystal surface is 𝐶𝑟 and bulk 𝐶𝑥 at 𝑥 ≫ 𝑟, the solution to the above 

equation is: 

𝐶(𝑥) = 𝐶𝑥 −
𝑟(𝐶𝑥 − 𝐶𝑟)

𝑥
 

(1. 27) 

Taking the derivative of Equation (1. 27) and substituting into Fick’s law we 

obtain: 

𝐽(𝑥 > 𝑟) = 4𝜋𝛽𝑟(𝐶𝑥 − 𝐶𝑟) 

(1. 28) 

Giving a growth rate of 

𝑑𝑟

𝑑𝑡
=

𝐽

4𝜋𝑟2𝑁
=

𝛽(𝐶𝑥 − 𝐶𝑟)

𝑟𝑁
 

(1. 29) 

The above treatment assumes both constant pressure and temperature. To 

take into account the effect of synthesis temperature it is necessary to use a 

formulation based on the general gas equation with the monomer 

concentrations treated as vapour pressures. 
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𝐶𝑟 = 𝐶∞ exp {
2𝜎

𝑟𝑁𝑘𝐵𝑇
} ≈ 𝐶∞ (1 +

2𝜎

𝑟𝑁𝑘𝐵𝑇
) 

(1. 30) 

𝐶𝑥 = 𝐶∞ exp {
2𝜎

𝑟𝑐𝑁𝑘𝐵𝑇
} ≈ 𝐶∞ (1 +

2𝜎

𝑟𝑐𝑁𝑘𝐵𝑇
) 

(1. 31) 

Where 𝐶∞ is the vapour pressure of a flat surface. Substituting Equations (1. 

30) and (1. 31) into the expression above for the growth rate we obtain: 

𝑑𝑟

𝑑𝑡
=

2𝜎𝛽𝐶∞

𝑁2𝑘𝐵𝑇
(

1

𝑟𝑐
−

1

𝑟
) 

(1. 32) 

The sign of the bracketed term determines whether a crystal with grow (𝑟 >

𝑟𝑐) or shrink (𝑟𝑐 > 𝑟). For the case where 𝑟 = 𝑟𝑐 the system is in equilibrium 

and the growth rate is zero. As a result, smaller crystals shrink and large 

crystals grow, leading to a broadening of the size distribution and a decrease 

in nanocrystal concentration in a process known as Ostwald ripening. A 

maximum growth rate is found at 𝑟 = 2𝑟𝑐. For cases where the entire size 

distribution lies above this value, smaller crystals grow faster than larger 

crystals and the size distribution becomes narrower (known as size 

focussing). Experimentally, this can be achieved via repeated injection of 

precursors to keep monomer concentration sufficiently high. 
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Figure 1.17 Nanoparticle growth: broadening vs. focusing. 

Graphical representation of Equation (1. 32). For crystal radii in the range 

𝑟𝑐 < 𝑟 < 2𝑟𝑐 growth takes place in the broadening regime. For 𝑟 > 2𝑟𝑐, 

growth takes place in the focussing regime. 

The degree to which a sample can be size focussed depends on a number of 

factors including: growth temperature, surface tension, and size distribution of 

nuclei. Ideally, nucleation should cease before the onset of the growth phase 

as nucleation taking place alongside growth reduces the concentration of 

available monomers and increases the critical radius and the potential for 

Ostwald ripening. The treatment here assumes spherical nanoparticles and 

does not deal with the different surface energies observed for different crystal 

facets. Nanoparticle morphology may be controlled by exploiting the 

preferential growth of certain crystal facets by diffusion limited reaction 

kinetics or the use of stabilising ligands which preferentially bind to specific 

facets. 

A multitude of quantum dots of different composition with diameters ranging 

from 1 – 20 nm have been produced. The majority of work so far has focused 

on binary compound semiconductors such as CdSe, CdTe, CdS, PbS, and 

PbSe and great progress has been made towards the production and 

characterisation of high quality nanocrystals. However, despite their appealing 

optical properties, the potential environmental, and health risks posed by toxic 

heavy metals such as lead and cadmium are likely to limit their use particularly 

as fluorescent probes in biomedical imaging.135,138,145 
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Whilst attempts to minimize these risks and improve quantum dot properties 

have been made using ZnS101 and SiO2
146 shells, encapsulating toxic 

nanoparticles in less toxic shells cannot remove the risks entirely. As a 

consequence there has also been increasing interest in less toxic direct-

transition semiconductor alternatives including Si,136,137 Ge,147,148 InP,131,149 

transition metal doped ZnSe150 as well as in ternary and quaternary 

semiconductor materials such as CuInSe,134,140,151 CuInS2, and AgInS2.152,153 

CuInS2 (CIS) quantum dots in particular are a promising candidate for non-

toxic quantum dots due to small size, large absorption coefficient (~105 cm-1), 

high quantum yield and optical and colloidal stability. In addition, their PL 

emission is tuneable from the visible to the near infrared121 with a direct band-

gap of ~1.5 eV154 making them especially promising for biomedical imaging 

and light harvesting applications, respectively. The large Stokes shift exhibited 

by CIS nanoparticles leads to lower self-reabsorption and consequently less 

loss further enhancing their suitability for energy applications. Whilst PLQY 

values for early CIS quantum dots were very low, more recent studies have 

reported values as high as 6 – 8%123 for core nanoparticles and as high as 

80%155 for core shell systems. Additionally, studies also indicate that these 

quantum dot are less toxic that their Cd-based counterparts.121,123,130 

Synthesis of CIS nanocrystals presents a challenge due to the properties of 

the two cations. In3+ is a hard Lewis acid while Cu+ is a soft Lewis acid. As a 

result, they differ in their reactivity with sulphur compounds which are typically 

soft Lewis bases. It is therefore necessary to carefully balance the reactivity 

of both the cationic precursors to prevent the formation of coper sulphide 

binary compounds. The reactivity of Cu+ and In3+ may be modulated 

simultaneously through the use of multiple stabilisers. Xie et al.156 achieved 

this using a thiol and a carboxylic acid to regulate the reactivity of Cu and In 

monomers respectively. Alternatively, a significant excess of a particular 

stabiliser can be used to reduce the reactivity of both cations to a similar level. 

This is a popular choice with thiols frequently being used as both the solvent 

and ligand.157 Use of a single molecular precursors which decompose to 

release equal amounts of copper and indium also promoted the formation of 

CIS nanoparticles over copper sulphides.  
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Despite the inherent difficulty, several methods have been employed for the 

synthesis of CIS quantum dots with various morphologies and increasing 

research efforts are leading to a growing degree of control over composition, 

shape, size, and structure. Using a variety of metal salts and sulphur 

compounds, most of these methods involve organic solvents with only a few 

water-based procedures described to date.157 Broadly, these methods include 

solvo/hydrothermal methods,104,107,115,152,158–165 hot injection 

techniques,106,121,129,156,166–176 “heating-up” methods,100,122,123,154,155,168,177–198 

and photochemical decomposition,199 microwave irradiation/heating.200–203 

The best control over shape and size is observed for hot-injection and heat-

up methods. The most common of these synthesis routes are heat-up 

methods, which provide a convenient route for the synthesis of quantum dots 

terminated by organic ligands which act to stabilize nanocrystal growth, 

maintain colloidal dispersion as well as partially isolating them from their 

environments. An overview of synthesis parameters and reagents/precursors 

used as well as details of the resulting nanoparticles can be found in Appendix 

A. 

Crystallisation of bulk CIS at room temperature yields the chalcopyrite crystal 

phase. At higher temperatures a random distribution of cations is 

thermodynamically favourable, resulting in the formation of the zincblende 

phase for temperatures above 980°C and wurtzite for temperatures between 

1045°C  and 1090°C. Cation disordered polymorphs allow for more flexible 

stoichiometry. As the Fermi energy of these crystals depends sensitively on 

composition, this allows 𝐸𝐹 to be tuned in a wide range, making them well 

suited to solar energy applications. Nanocrystalline CIS synthesised by 

different procedures have been shown to exhibit all three possible crystal 

phases at room temperature and a number of groups have reported control 

over crystal phase through varying synthesis conditions.  

Pan et al.169 were the first to describe tuneable zincblende and wurtzite 

structure for CIS nanoparticles. Using a mixed precursor hot-injection with 

oleylamine as the activation agent and oleic acid or dodecanthiol as the 

capping agent, they found that appropriate selection of the capping agent 

allows precise control of the crystalline structure from zincblende to wurtzite. 
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Nanoparticles synthesised using oleic acid as the capping agent exhibited the 

zincblende phase. Wurtzite nanocrystals were obtained  by  using  

dodecanethiol  as  the  capping  agent instead of oleic acid. 

Using CuCl, In(acac)3, di-tert-butyl disulfide, 1-dodecanethiol (DDT), and 

oleylamine (OLAM), Norako et al.167 synthesised wurtzite nanopartiles. They 

attributed the formation of the crystal phase to the coordination of OLAM to 

the CuCl and In(acac)3 and the slow release of sulphur from the di-tert-butyl 

disulfide. 

Nose et al.179 demonstrated phase controlled using the ligand species of the 

metallic monomers. When the metallic monomers were coordinated with 

trioctylphosphite (TOOP), the chalcopyrite or zincblende phase was observed. 

Coordinating with hexadecylamine (HDA) or OLAM led to the wurtzite phase. 

The observed crystal phase was found to be predominantly determined by the 

nanocrystal growth rate. This was influenced by both the bond strength 

between the metallic monomers and ligand molecules and steric size of the 

ligand molecules. In the case of TOOP complex of metallic monomers leading 

to the chalcopyrite or zincblende phase, crystal growth was slow. The wurtzite 

phase resulting from the OLAM or HDA complex of the metallic monomer was 

conversely proposed to be due to the very fast growth of crystals. 

Batabyal et al.177 demonstrated surfactant dependent phase control as well as 

providing the first report on the use of reaction temperature on crystal phase. 

In a synthesis using ((Ph3P)CuIn(SC{O}Ph)4) as a single source precursor in 

the presence of trioclylphosphine (TOPO) and DDT demonstrated that for 

moderate amounts of TOPO the wurtzite phase is formed below 250°C with 

the zincblende phase starting forming above 250°C with the pure phase 

observed above 300°C. For higher concentrations of TOPO the wurtzite phase 

could be formed even at 300°C. Kruszynska et al.175, in contrast, reported the 

formation of zincblende particles from reaction of CuOAc and InOAc3 with 

sulphur in OLAM at low temperatures and wurtzite at higher temperatures in 

the presence of thiols. 

Chang and Waclawik189 used the coordination properties of solvents and 

reaction temperatures to regulate crystallographic structure. Phase structure 
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was controlled by the coordination strength between solvent and metal 

precursors. Zincblende nanoparticles were obtained when CuI, InOAc, and 

DDT were heated at 220°C in 1 ODE or OA; however, replacing the solvent 

with OLAM or TOPO led to the wurtzite phase. The authors were able to 

produce the zincblende phase in OLAM solvent by injecting DDT into the 

reaction solution at 315°C. The CuInS2 phase structure was found to be 

determined at the initial formation step of a CuIn(SR)x intermediate, with a 

high crystallinity intermediate leading to  the wurtzite structure and a low 

crystallinity intermediate to the zincblende phase. Furthermore, Chang and 

Waclawik were able to apply this phase control strategy to the synthesis of 

two other materials, namely, Cu2SnS3, and Cu2ZnSn. 

In a solvothermal synthesis, Huang et al.115 observed the formation of pure 

zincblende particles at 160°C using oleylamine as the solvent. Exchanging 

oleylamine for ethylenediamine yielded wurtzite CuInS2 nanoparticles. When 

a mixture of these two solvents was used, mixed zincblende and wurtzite 

particles were observed. 

An additional means of controlling CIS nanocrystal phase is afforded by using 

copper sulphide intermediates. Hexagonal copper sulphide and wurtzite CIS 

have similar anion lattices and copper sulphide has been shown to play the 

role of a template for the growth of wurtzite CIS nanoparticles.166,186,197 

A wide array of stabilising ligands have been employed in the synthesis of CIS 

nanoparticles. These include, amongst others, amines, thiols, carboxylic 

acids, phospines or phosphonic acids, and mixtures of two or more ligands 

maybe used. Ligands used in nanoparticle synthesis feature a functional 

group able to bind surface metal atoms, in addition to at least one relatively 

long carbon chain. These carbon chains provide the nanoparticle with a 

hydrophobic shell, improving the colloidal stability in nonpolar solvents. 

As well as core CIS particles, a significant effort has been focused on 

synthesis of core-shell systems where CIS nanoparticles are modified to 

incorporate a shell of a different material. Most work has focussed on ZnS 

encapsulated CIS quantum dots. This is typically achieved via addition of a 

zinc precursor to as synthesised quantum dots before additional heating. As 
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the unpurified CIS product typically contains high levels of unreacted sulphur 

it is often not necessary to add an additional sulphur source. Over-coating CIS 

nanoparticles in this way markedly improves the photoluminescence 

properties, including the PLQY, of the nanoparticles. Despite this advantage, 

this the work presented in this thesis deals with core CIS nanoparticles in order 

to reduce system complexity and maximise the probability of successful 

energy and charge transfer between bacteriochlorophyll ligands and quantum 

dots (see Section 1.3). 

1.2.5 Properties and size dependence 

The impact of ternary nanocrystal (NC) size, shape, composition and surface 

states on optical properties has been reported extensively (for a review see 

e.g. Kolny-Olesiak and Weller).157 This section contains a brief overview of 

these properties focusing ternary CIS nanoparticles and on those properties 

most relevant to the work presented in this thesis. 

1.2.5.1 Band-gap 

Through varying nanoparticle size, the absorption of CIS quantum dots can 

be tuned to cover almost all of the visible spectrum. Theoretical predictions 

based on finite-depth-well effective mass calculations for the chalcopyrite CIS 

structure show that the band-gap can be tuned to 3.3 – 1.7 eV for 

nanoparticles in the size range 1 – 6 nm.204 This is in good agreement with 

experimentally observed values. 

Zhong et al.154  provided a thorough investigation of the size dependence of 

the optical (𝐸𝑥) and electronic band-gap (𝐸𝑔) energies of monodisperse 

chalcopyrite CuInS2 quantum dots as well as the binding energies of their 

excitons. The size of these quantum dots, grown by thermal decomposition 

with reaction times ranging from 20 – 120 min were between 3 and 8 nm as 

determined by X-ray diffraction (XRD) and high resolution transmission 

electron microscopy (HRTEM). 𝐸𝑥  was determined for each particle size from 

absorbance measurements using Tauc plots (a description of this can be 

found in Huxter et al.).205 Values for 𝐸𝑥   were found to increase with decreasing 

particle size ranging from 1.668 eV for 7.2 nm particles to 1.945 eV for 3.5 nm. 

Cyclic voltammetry (CV) was used to determine the values of the lowest 



- 50 - 

conductive states and the highest valence states and consequently the band-

gap (𝐸𝑔) of the pyramidal nanocrystals. The size of the band-gap was found 

to increase with decreasing particle size ranging from 1.7 eV for 7.3 nm to 

2.04 eV for 3.5 nm. Even for the largest nanoparticles investigated, the band-

gap was well above that reported for bulk phase CuInS2 (~1.5 eV).206,207 The 

electronic band-gap energy is the energy required to create a non-bound 

electron-hole pair whereas, the optical band-gap energy is that required to 

promote an electron from the valence band to the conduction band and create 

a bound electron-hole pair. Due to Coulombic attraction between the electron 

and hole, the optical band-gap energy is always lower than electronic band-

gap energy. The exciton binding energy (𝐸𝑏) due to the Coulombic interaction 

is therefore given by 𝐸𝑏 = 𝐸𝑔 − 𝐸𝑥. Values calculated using the 𝐸𝑔  and 𝐸𝑥   

values determined for each particle size were found to be in the range 100 – 

30 meV. The exciton binding energy was found to decrease with increasing 

nanocrystal size due to the size dependence of the electron-hole coulomb 

interaction. The values reported by Zhong et al.154 for 𝐸𝑔, 𝐸𝑥, and 𝐸𝑏    are 

shown in Table 1.1. 

Table 1.1 Comparison of band-gap data for CIS quantum dots of different 

sizes as reported by Zhong et al..154 

Average sizes 3.5 
nm 

5.2 
nm 

5.6 
nm 

6.1 
nm 

7.3 
nm 

𝐸𝑔  (eV) (determined by CV) 2.04 1.88 1.80 1.78 1.70 

𝐸𝑥  (eV) (determined by absorption) 1.945 1.798 1.757 1.719 1.668 

𝐸𝑏  (meV) (determined from 𝐸𝑔 − 𝐸𝑥) ~95 ~82 ~43 ~61 ~32 

 

It should be noted that composition, as well as size, influences the band-

gap.183 Lowering of the valence band is observed in copper deficient 

nanoparticles leading to widening of the band-gap.183,184 Nevertheless, the 

band-gap in CIS has been demonstrated to be stable even against high 

degrees of off-stoichiometry,208–210 though the size dependence of this has not 
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been thoroughly investigated for materials specially confined in three 

dimensions. 

The lowest energy transition 𝐸1 for which a valid solution to the Schrodinger 

equation exists may be larger than the band-gap energy. In the case of CIS 

nanoparticles, this transition is not typically easy to distinguish in absorption 

spectra. Consequently, in order to determine the value of 𝐸1 alternative 

methods must be used. One option is to use the local minimum of the second 

derivative of the absorption spectrum.211 Alternatively, Qin et al.212 employed 

a different method; taking the position of the intersection of two tangents in 

the absorption spectrum. 

1.2.5.2 Absorption 

In general CIS quantum dot absorbance spectra feature a broad absorption 

band together with an absorption tail at longer wavelengths. With increasing 

quantum dot size, the absorption edge shifts to longer wavelengths. Typically, 

no sharp absorption peak is observed for CIS quantum dots.154,156,182 

Several explanations have been presented for the absence of a sharp 

excitonic peak. One possibility is that this is an intrinsic property of CIS 

nanoparticles. Alternatively, this feature, or rather lack thereof, could stem 

from sample heterogeneity in either size, shape or composition. Despite 

recent progress in the controllable synthesis of CIS nanoparticles, size 

distributions for most methods remain large with a significant degree of 

variation in shape.157 

The tail observed at long wavelengths has been attributed to both participation 

of the electronic states of ligands in absorption and the contribution of 

intraband CIS states. However, work by Castro et al.181 looking at the effect 

of different ligands on CIS quantum dot absorption appeared to disprove the 

first hypothesis. 

A key property associated with absorption of light is a material’s extinction 

coefficient which allows the concentration of nanoparticles within a sample to 

be determined. For nanoparticles, this is a size dependent property and must 

be determined for different diameters of nanoparticles. Two groups have 
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investigated size dependent extinction coefficient determination for CIS core 

and CIS/ZnS core shell quantum dots.211,212 Booth et al.211 determined the 

extinction coefficient at two wavelengths, the first excitation 𝐸1 and 3.1 eV. 

They determined the following relations: 

𝜀𝐶𝐼𝑆(𝐸1) = (830 ± 660)𝑑3.7±0.6 

(1. 33) 

 

𝜀𝐶𝐼𝑆(3.1 𝑒𝑉) = (2123 ± 109)𝑑3.8±0.3 

(1. 34) 

where 𝑑 is the nanoparticle diameter. Due to the relatively high optical density, 

using the absorption at 3.1 eV offers greater sensitivity as well as removing 

the influence of ligands of a ZnS shell. 

Qin et al.212 proposed an alternative equation for the extinction coefficient of 

CIS nanoparticles using the first excitonic transition: 

𝜀𝐶𝐼𝑆(𝐸1) = 11430𝑑2.147 

(1. 35) 

However, the values reported in this study are notably lower than those seen 

elsewhere. Furthermore, a different method was employed for the 

determination of the first excitonic transition. Extinction coefficient 

determinations using Equations (1. 33) and (1. 35) differ significantly despite  

showing similar size dependence. This can likely be traced to the broad size 

distributions observed for CIS nanoparticles as well as difficulty in accurately 

determining nanoparticle size for non-spherical particles. Whilst further 

progress is needed to accurately determine the size dependent nature of 

extinction coefficients, Equation (1. 34) provided a reasonable means of 

estimating nanoparticle concentrations. 

1.2.5.3 Emission 

In contrast with quantum dots of other compounds, the PL emission band for 

CIS is broad in nature,154,156,182 with FWHMs of ~100 nm. Emission spectra 

consisting of multiple overlapping bands have also been reported.123 In 
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addition, there is a large Stokes shift of between 130 and 170 nm indicating 

that defects likely play a significant role in emission. The large Stokes has the 

practical advantage of reducing self-reabsorption which is desirable for a 

number of applications including those in light harvesting. The wavelength of 

PL emission increases with particle size allowing tuneable emission in the red-

near infrared (NIR) portion of the spectrum making them ideally suited to in 

vivo imaging. 

Investigation of photoluminescence lifetimes of CIS182 were found to be 

significantly higher and more complex than more common quantum dot 

semiconductors such as CdS and CdSe. Different radiative lifetimes 

correspond to different electron hole recombination mechanisms and 

therefore offer an important insight into exciton behaviour in nanocrystals. 

Time resolved laser techniques have been used to probe the PL decay curves 

for CIS quantum dots at a range of wavelengths. PL decay curves were fitted 

using a sum of three exponential functions: 

𝐼(𝑡) = 𝐴1 exp(−𝑡
𝜏1

⁄ ) +  𝐴2 exp(−𝑡
𝜏2

⁄ ) + 𝐴3 exp(−𝑡
𝜏3

⁄ ) 

(1. 36) 

where 𝜏1, 𝜏2, 𝜏3 represent the decay times of the PL emission, A1, A2, and A3 

are the amplitudes of the corresponding amplitudes. From fitting, 𝜏1, 𝜏2, and 𝜏3 

were determined to be 4 – 12 ns, 28 – 60 ns, and 140 – 300 ns respectively. 

The decay component with the longest time constant accounted for the 40 – 

80% of the total PL emission spectra. This contrasts with earlier studies on 

the PL decay behaviour of CdSe quantum dots which revealed a universal 

biexponential decay.213,214 In this case, the shorter lifetime (several 

nanoseconds) is attributable to the intrinsic recombination of initially populated 

core states whereas the longer lifetime can be explained by the existence of 

surface states. For CIS quantum dots it is proposed that 𝜏1 and 𝜏2 correspond 

to intrinsic recombination and surface states respectively with the longer 𝜏3 

attributed to donor-acceptor pair (DAP) recombination.  

For DAP recombination to take place, coupling of the conduction band to an 

emitting donor state with either radiative or non-radiative energy transfer is 
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required. Whilst previous studies have shown that emission on excitation is 

instantaneous (at least on the nanosecond timescale) an ultrafast population 

transfer between the conduction band and “electron deficient' donor states is 

possible.215 Studies of CIS and the similar CuInSe2 (CISe) material indicate 

that due to the low energy of formation InCu + 2Cu likely constitute the electron 

deficient domain.216–219 Such defects may exist either as isolated point 

defects, associated pairs or clusters depending on defect density. 

Li et al.123 also studied the time dependence of PL from CIS nanoparticles. 

The reported the presence of two long lived components with a red-shift with 

increasing delay time. The long lived nature of the PL means band edge 

recombination is unlikely. Furthermore, the observed red-shift is consistent 

with donor-acceptor transitions, with the shift to lower energies resulting from 

a decrease in the Coulomb energy with increasing charge separation. 

In a later study, Li et al.155 observed a faster decay channel which could be 

suppressed via surface treatment with a Zn or CdS overcoating. Combined 

with the concomitant increase in PLQY, this suggests recombination through 

surface defect states serving primarily as a centre for non-radiative decay.  

The existence and extent of such a DAP recombination mechanism in CIS 

nanoparticles would also explain the broad nature of PL emission spectra 

compared to CdSe quantum dots, the large Stokes shift, as well as relatively 

low quantum efficiency.  

Whilst PLQY values for early CIS quantum dots were very low, more recent 

studies have reported values as high as 6 – 8%123 for core nanoparticles and 

as high as 80%155 for core/shell systems. The increase in PLQY observed in 

the presence of a shell of higher band-gap material can be ascribed to a 

reduction in surface traps and consequent suppression of nonradiative 

recombination. 

1.3 Combining Bacteriochlorophylls and Quantum dots 

The energy levels associated with BChls and CIS QDs (Figure 1.18a) are ideal 

for the production of a composite material with excitonic coupling. Coupling of 
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individual zinc-containing BChl and Chl derivatives to the surface of quantum 

dots should lead to energy transfer between the two and provide a new 

material with interesting electronic and optical properties. This coupled system 

may exhibit either Förster Resonant Energy Transfer (FRET) or perhaps even 

a mixing of energy levels leading to radical changes in the band structure of 

the system. 

Efficient energy transfer between pigments and quantum dots will require an 

appropriate relationship between the band-gap of the semiconductor 

nanocrystals and the energy levels of pigments and their aggregates. For 

illustrative purposes, Figure 1.18a shows the relationship between the band 

structure of CIS quantum dots and the energy levels corresponding to the 

Soret and 𝑄𝑦  transitions of zinc containing BChl c derivatives. 

There exist two primary ways in which the levels of such a system may be 

modified to enhance energy coupling. The first of these involves size control 

of the synthesised quantum dots. By selecting quantum dots of an appropriate 

size, the energy levels of the quantum dots can be chosen to best match those 

of the bacteriochlorophyll pigments to ensure tight coupling and efficient 

energy transfer (Figure 1.18b) 

Additionally, through appropriate selection of environmental conditions, it 

should be possible to drive pigment assembly at the quantum dot surface 

(Figure 1.18c). Due to the tight excitonic coupling observed in BChl 

aggregates and the remarkable changes in properties observed on 

aggregation, these systems should have properties different from both their 

constituent parts and quantum dot-monomer systems. Through carefully 

varying environmental conditions, control of assembly should allow further 

tuning of system properties (Figure 1.18). 

Whilst transfer from quantum dot to the 𝑄𝑦   band of the pigment would require 

inordinately large particles, transfer between quantum dots and the Soret 

band, and vice versa, should be possible by tuning quantum dot size. 

Furthermore, transfer of energy from the 𝑄𝑦 band of the pigment to the 

quantum dot should be possible. It may also be possible to couple to defect 

levels within the quantum dot system. 
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As mentioned in Section 1.2.4, quantum dots are generally passivized with 

thiol containing ligands. These ligands offer a simple means of coupling BChls 

to quantum dot via ligand exchange. Ligand exchange has been used in a 

number of case to modify the nanoparticles and improve their suitability for 

potential applications. One such example is when nanoparticles are to be 

used in aqueous environments (as is typically required for biomedical imaging) 

for which synthesis ligands are typically insufficient. In addition, for some 

applications, such as those requiring charge transport a thinner ligand shell is 

necessary. Though modification of BChls to incorporate a short chain thiol or 

dithiol it should be possible to tightly couple pigments to quantum dots and 

thus allow energy transfer between the two.  
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Figure 1.18 Relationship between energy levels in CIS quantum dots 

(orange) and zinc containing BChl pigments (green). 

(a) The energy levels of CIS and zinc containing BChls are ideally suited 

for the production of a coupled hybrid system; (b) controlling the size of 

the CIS nanoparticles allows modulation of energy levels for CIS 

quantum dots; (c) further control is afforded by the shift in energy levels 

observed for aggregates of zinc containing BChl pigments. 
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1.4 Summary of key aims and results 

Figure 1.19 provides an overview of the key steps involved in the production 

of a hybrid BChl-QD system. Briefly, pigments must first be modified to 

increase stability and provide a means of coupling. Then, using ligand 

exchange, pigments may be coupled to synthesises and well characterised 

quantum dots. 

 

Figure 1.19 Project scheme showing the key stages of composite material 

production. 

The work in this theses may be divided into three sections (I-III). 

I. Chemical modification of pigments 

II. Simulation of BChl pigments to better understand aggregation and 

intrinsic curvature. 

III. Synthesis and characterisation of Cu-deficient CIS QDs of different 

diameter (and consequently curvatures) 

These are outlined below with a brief overview of the most significant findings. 

1.4.1 I. Chemical modification of pigments 

Key to the successful production of a novel photonic material combining BChls 

and QDs is the chemical modification of pigments to increase stability and to 

provide a means of chemical coupling to the QD surface. A new method for 

the conversion of BChls to Zn-Bacteriopheophytins was employed which 
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allowed the rapid production of large quantities of the later. Purification 

protocols were also developed for the production of pure samples of zinc 

modified BChl c and zinc modified Chl a. In addition, attempts were made to 

further modify pigments by replacing the long alcohol tail with a short chain 

thiol via transamidation. The goal of this was to provide SH functionalised 

BChls suitable for ligand exchange with thiol stabilised CIS QDs. X-ray 

photoelectron spectroscopy indicated successful modification albeit not 

conclusively. Chapter 3 deals with the modification of pigments.  

 

1.4.2 II. Simulation of BChl pigments to better understand 

aggregation 

With the vision of assembling BChls around highly curved QD surfaces, 

molecular dynamics (MD) simulations were performed on a number of 

pigment arrangements in order to study the mechanism of BChl pigment 

aggregation and in particular the origin of the curved lamellar system observed 

in electron micrographs of chlorosomes. These are the first MD simulation on 

pigment assemblies and through the investigation of a wide variety of pigment 

assemblies, new insight has been gained into the nature and energetic 

implications of sheet curvature. In addition, the exploitation of parallelised high 

performance computing methods has allowed the prediction of X-ray 

scattering patterns for simulated structures which may be compared to 

experimentally observed X-ray scattering.35 Details of MD simulations on 

pigments and their analysis can be found in Chapter 4. 

 

1.4.3 III. Synthesis and characterisation of CIS QDs 

This thesis presents a novel method for the direct synthesis of high quality 

hydrophilic CIS nanoparticles with PLQY comparable to the best reported 

values for core CIS nanoparticles. The structure, composition and optical 

properties of these highly copper-deficient particles are investigated using a 

variety of methods. This allowed the exploration of quantum dot emission 

properties for both the steady state and the nanosecond time scale. The 

dependence of QD properties on size, composition, and defects is also 
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investigated. Consistent with previously published work, three key 

recombination pathways were identified, which contribute to PL emission; 

namely band-gap recombination, core defect, and surface defect emission. 

Additionally, an increase in the contribution of long-lived defect-related 

emission with increasing nanoparticle size was observed. This was attributed 

to an increase in the density of InCu antisites and copper vacancy defects with 

increasing synthesis time and resulting increasing copper deficiency. This 

provides an additional parameter for fine tuning of the energetic structure of 

CIS QDs and controlling energy flow in hybrid systems. The results of CIS 

quantum dot synthesis and characterisation are presented in Chapter 5. 
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Chapter 2 

Materials and Methods 

2.1  Introduction 

This chapter contains details of materials and methods used in Chapters 3-5. 

Section 2.1.1 contains information on materials used and their sources. 

Section 2.2 provides details of methods used in the purification and chemical 

modification of pigments (Chapter 3). Section 2.3 covers methods for the 

Molecular Dynamics (MD) simulation of pigments and the analysis of these 

simulations (Chapter 4). Section 2.4 relates to the methods used in the 

synthesis and characterisation of copper indium sulphide (CIS) quantum dots 

(QDs) (Chapter 5). 

2.1.1  Materials 

The reagents were purchased from the following. Sigma Aldrich: Streptavidin, 

Ethyl acetate, Sucrose, 3-aminopropyltrimethoxysilane, Iron(III) chloride 

hexahydrate, Sodium molybdate dihydrate, Manganese(II) chloride 

tetrahydrate, Vanadium(IV) oxide sulfate heptahydrate, Sodium tungstate 

dihydrate, Monopotassium phosphate, Ammonium chloride, Calcium chloride 

dihydrate, Vitamin B-12, Sodium sulfide nonanydrate, Methanol (laboratory 

grade), Hexane, Indium acetate, Copper iodide, Mercaptoundecanol, 

Thiourea, Ethylene glycol. Fisher: Methanol (High pressure liquid 

chromatography (HPLC) grade), Acetic acid, Boric acid, Ammonium acetate, 

Sodium chloride, Magnesium sulfate heptahydrate, Methanol (laboratory 

grade), Acetone, Tris buffer, Methanol (analytical reagent grade). Lichrosolve: 

Tetrahydrofuran (THF) and Dichloromethane. Alfa aesar: Zinc acetate and 

Copper chloride dehydrate. Fluka: Sodium bicarbonate, Sodium selenite 

pentahydrate, Cysteamine. Acros organics: Hydrochloric acid, Nickel(II) 

chloride hexahydrate, Chloroform, Potassium tert-butoxide. Gibco: Phosphate 

buffered saline (PBS) tablets. Thermo: Ethylenediaminetetraacetic acid. 

VWR: Sodium thiosulfate pentahydrate. Merk: Sodium thiocynate. Nanocs: 

HS-Polyethylene glycol (PEG)(3400)-Biotin. Rapp Polymere: N-
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hydroxysuccinimide (NHS) PEG 5000, NHS-PEG 5000-biotin. MP 

biomedicals: Cobalt(II) chloride hexahydrate, Zinc sulfate heptahydrate. Fresh 

spinach was purchased from the supermarket. All chemicals were used as 

supplied. 

2.2 Bacteriochlorophylls (BChls) and chlorophylls (Chls) 

2.2.1  Purification of BChls and Chls 

2.2.1.1 Source and growth of cells 

Initial batches of Chlorobaculum tepidum cells were obtained from Jakub 

Psencik (Charles University, Prague) and Radek Litvin (University of South 

Bohemia, České Budějovice and Czech Academy of Sciences, České 

Budějovice). These were either stored in the dark at 5 °C or aliquoted and 

stored at -20 °C until use. 

Additionally, a live culture of Chlorobaculum tepidum cells for growth was 

received. These cells were grown using a modified Pfenning’s medium220 as 

described in Table 2.1. 

Table 2.1 Modified Pennings’ medium.220 

Na2S2O3 x 5H2O 1.0 g 

KH2PO4 500 mg 

CH3COONH4 500 mg 

NH4Cl 400 mg 

NaCl 400 mg 

MgSO4 x 7H2O 200 mg 

CaCl2 x 2H2O 50 mg 

Ethylenediaminetetraacetic 
acid (EDTA) 

12.5 mg 

NaHCO3 2 g 

Mineral supplement 

(see Table 2.2) 

1 ml 

Vitamin B12 4 μg 

*(quantities are per litre of medium). 
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Table 2.2 Mineral supplement for Modified Pennings’ medium.220  

The pH was adjusted to 8.0 using concentrated NaOH. 

EDTA 6.7 g 

FeCl3 x 6H2O 2.0 g 

CoCl2 x 6H2O 190 mg 

Na2MoO4 x 2H2O 190 mg 

ZnSO4 x 7H2O 150 mg 

MnCl2 x 4H2O 100 mg 

VOSo4 x 2H2O 30 mg 

NiCl2 x 6H2O 25 mg 

CuCl2 x 2H2O 17 mg 

H3BO3 6 mg 

Na2SeO3 x 5H2O 3.2 mg 

Na2WO4 x 2H2O 2 mg 

*(quantities are per litre of supplement). 

 

Before autoclaving, the pH of the media was adjusted to 6.7, using HCl, and 

gas exchange was performed by sparging with sterile N2 gas for 40 min to 

remove O2. NaS2 was added and the lid fastened quickly to prevent O2 

entering. 800 ml of the medium was autoclaved (121 °C, 1-2 bar, 25 min) in 1 

l bottles fitted with a resalable polytetrafluoroethylene (PTFE) septum. After 

autoclaving, the pH was readjusted by a needle and syringe through the PTFE 

septum to 6.7-6.9 using 10% HCl. The medium was inoculated with 20 - 40 ml 

of culture before flasks were left at room temperature in on a window sill in 

indirect sunlight and inverted daily to ensure cells remained in suspension and 

received sufficient light to grow. Once the flasks had become a dark green, 

the contents was aliquoted into falcon tubes and centrifuged at 4000 g for 10 

min. The supernatant was removed and the pellet stored at -20 °C. 

2.2.1.2 Extraction of BChl c from Chlorobaculum tepidum cells 

Pigments were extracted from whole cells using a modified version the 

protocol outlined by Zhu et al..221 Briefly, cells were dried under vacuum at 40 

°C. A 1:1:2 (v/v/v) mixture of methanol : chloroform : H2O was added. The 



- 64 - 

chloroform layer was washed with fresh deionised H2O until clear. The 

chloroform subphase was removed and dried under nitrogen. Dried pigments 

were washed repeatedly with hexane to remove carotenoids until the hexane 

remained colourless. UV-Visible (UV-Vis) absorption spectra were taken of 

the extracted pigments before washing with hexane and after. UV-Vis 

absorption spectra were also obtained for the hexane used to wash the 

pigments. Pigments were then dried under nitrogen and stored as a thin film 

in the dark at -20 °C until purification by HPLC or further use. 

2.2.1.3 Extraction of BChl e from chlorosomes 

Bacteriochlorophyll e was extracted from chlorosomes of Chlorobaculum 

phaeobacteroides using the same protocol used for extraction of BChl c 

pigments from whole cells (section 2.1.1.2). 

2.2.1.4 Extraction of chlorosomes from Chlorobaculum tepidum cells 

Chlorosomes were extracted from Chlorobaculum tepidum cells by dilution in 

50 mM Tris buffer (pH 8) containing 2 M NaSCN and lysed by three passage 

through a cold French pressure cell at 20 000 psi. Cell debris were removed 

by centrifugation at 10 000 rpm for 10min at 4 °C. The chlorosome containing 

supernatant was loaded onto a 10-50% sucrose density gradient and 

centrifuged for 24 h at 220 000 g at 5 °C (SW40Ti rotor). The chromosome 

containing band was recovered and concentrated by centrifugation (235 000 

g, 45Ti, 2 h, 5 °C). Chlorosomes were stored at -20 °C as pellets until use. 

2.2.1.5 Extraction of pigments from spinach 

Pigments (Chlorophyll a, b, their derivatives, and carotenoids) were extracted 

from commercially obtained spinach. Leaves of fresh spinach were cut into 

small pieces, discarding stems and larger veins. 2 ml of ice cold acetone was 

added per 1 g of spinach and leaf fragments were homogenised using a 

Warring blender. The resulting mixture was centrifuged at 5000 g for 10 min. 

The supernatant was transferred to fresh tubes and equal amounts of hexane 

and water were added. After thorough shaking of tubes, the mixture was 

centrifuged again at 5000 g for 10 min to phase-separate the emulsion. The 

pigment containing hexane layer was removed, dried under nitrogen and 
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stored at -20 °C until HPLC purification. Extraction was performed in the dark 

at 5 °C. 

 

2.2.1.6 Absorbance measurements and concentration determination 

All UV-Vis absorbance spectra for native and modified pigments were 

obtained either using a Jasco V-560 spectrophotometer, a Genesys 6 

spectrophotometer, or a DeNovix DS-11+ Spectrophotometer. Measurements 

made using both the Jasco and Genesys were typically made over the range 

300-750 nm at a resolution of 1 nm. A scanning speed of 2000 nm min-1 was 

used on the Jasco instrument and the fast scan setting on the Genesys. 

Measurements using the DeNovix were performed over the range 220-750 

nm using default settings and a resolution of 1 nm. 

All spectra of pigments were obtained in methanol with the exception of the 

spectra of aggregates which were taken in 200:1 (v/v) hexane : 

dichloromethane. Chlorosome spectra were measured in water. The values 

used in the determination of pigment concentrations in methanol and their 

sources are shown in Table 2.3. 

Table 2.3 Positions of 𝑄𝑦 peaks and values used for concentration 

determinations of BChl c, BChl e, Chl a, and Chl b. 

Pigment Qy position (nm) Molar absorptivity at Qy 
(mM-1 cm-1) 

BChl c 669 70222 

BChl e 660 35.5223 

Chl a 665 88.8* 

Chl b 652 42.9** 

*calculated based on an absorption coefficient of 79.24 g-1 cm-1 and 

molar mass of 892 g mol-1 (both values taken from Craft224) ** calculated 

based on an absorption coefficient of 38.87 g-1 cm-1 and molar mass of 

906 g mol-1 (both values taken from Craft).224 
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2.2.1.7 HPLC purification of BChl c pigments 

BChl c was isolated from the pigment extract by reverse-phase HPLC using a 

Zorbax XDB-C18 Semi-preparative 9.4 x 250 mm (5 µm particle size) column. 

A modified version of the method employed by Klinger et al.33 was used for 

separation of BChl c homologues, BChl derivatives, and remaining β-

carotenes. Briefly, a three step isocratic gradient consisting of 100% solvent 

A (100% methanol) for the first 25 min followed by 100% solvent B (4:1 (v/v) 

methanol/hexane) for the next 10 min followed by 100% solvent A for a further 

15 min. The flow rate throughout was 1.5ml/min. The column was equilibrated 

with the initial run conditions for > 15 min prior to each run. HPLC grade 

solvents were degassed and filtered through 0.2 μm filters prior to use. 

Chromatography was monitored at 669 nm and a 3-dimensional field detector 

allowed spectral identification of each peak across the range 250 to 750 nm. 

Saturated pigment solutions were prepared immediately before use by 

dissolving dried pigments in methanol. The autosampler was cooled to 5 °C 

and the column held at 20 °C to minimise sample degradation due to 

temperature. Injection volumes were selected based on concentration of 

sample but were typically in the range 75 -150 µl. The four main C8 and C12 

homologs of BChl c esterified with farnesyl at C173 were combined and dried 

immediately under N2. Samples were dried in the dark and stored in dried films 

at -20 °C until use to minimise sample degradation. 

2.2.1.8 HPLC purification of chlorophyll a and b 

Individual pigment species were isolated using the same C18 Zorbax Semi-

preparative column used for purification of BChl c. Solvents used and gradient 

conditions are given in Table 2.4. Chromatography was monitored at 658 nm. 

3-dimensional full spectral chromatograms were also obtained to assist with 

assignment of peaks. All other parameters and sample preparation 

considerations were as descried above for BChl c. HPLC purified pigments 

were dried under nitrogen and stored as a dried film in the dark at -20 °C until 

use. 
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Table 2.4 Gradient conditions for separation of chlorophylls, their 

derivatives, and carotenoids.  

Solvent A: 15:65:20 (v/v/v) ethyl acetate/methanol/water. Solvent B: 

60:30:10 (v/v/v) ethyl acetate/methanol/water. *method adapted from 

Craft224 to allow for larger column diameter. 

Time 

(min) 

Flow rate 

(ml min-1) 

% Solvent A % Solvent B 

0.0 5.2 100.0 0.0 

6.0 5.2 100.0 0.0 

7.0 6.0 70.0 30.0 

10.0 6.0 70.0 30.0 

11.0 6.0 60.0 40.0 

12.0 6.0 50.0 50.0 

13.0 6.0 0.0 100.0 

24.0 6.0 0.0 100.0 

26.0 6.0 100.0 0.0 

 

2.2.2  Chemical modification of pigments 

2.2.2.1 Zinc-(Bacterio)Pheophytin (Zn-(B)Phe) production 

Pigments were dried in a thin film and treated with 2 ml HCl (concentrations 

ranging from 1 – 5 M) to remove Mg. HCl was removed and residual HCl was 

evaporated under nitrogen. 2 ml sodium hydroxide (concentrations ranging 

from 1-5 M) was added and the vessel rotated for ~2 min to ensure thorough 

deprotonation of pheophytins. Sodium hydroxide was removed from the 

vessel and pigments were dried briefly under nitrogen. Pigments were 

dissolved in methanol. The solution was then saturated with zinc acetate and 

the container shaken vigorously for 5 mins or until colour change ceased. The 

reaction mixture was centrifuged for 10 min at 5000g to remove the insoluble 

fraction of zinc. 
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2.2.2.2 Pre-purification and HPLC purification and analysis of Zn-

(B)Phes 

To prevent precipitation of zinc on the column, an intermediate purification 

step was added to remove unreacted zinc and sodium hydroxide. After 

transmetallation, the supernatant was either mixed with an equivalent volume 

of chloroform and 2 equivalent volumes of H2O or dried under N2 and 

dissolved in a 1:3 (v/v) chloroform : H2O mixture. In the case of the latter, the 

chloroform layer was removed and transferred to a new tube. The chloroform 

layer was washed a minimum of three times with H2O or until the upper water 

phase was clear and the interface between layers was free from precipitant. 

The method used for HPLC purification of BChl c was modified further to allow 

purification of the more polar Zn-BPhe c. The modified protocol consisted of 

three isocratic steps: 100% solvent A (100% methanol) for the first 35 min 

followed by 100% solvent B (4/1 (v/v) methanol hexane) for the next 10 min 

followed by 100% solvent A for a further 15 min leading to a total run time of 

60 min. All other conditions and preparative steps were as used for BChl c. 

2.2.2.3 Incorporation of an thiol group  

(B)Chl and Zn-(B)Phe pigments were chemically modified to include an SH 

group at the C173 position using cysteamine. 1 μmol of pigment was dried in 

a glass vial before being dissolved 1.2 ml THF. 1 μmol cysteamine in 400 μl 

ultrapure H2O was added followed by 2 μmol potassium tert-butoxide in 

ultrapure H2O. The reaction mixture was incubated overnight in the dark at 

5°C on a rolling incubator. The reaction mixture was then dried and stored at 

-20°C. 

2.2.2.4 X-ray photoelectron spectroscopy (XPS) analysis of pigments 

XPS analysis of modified and native above was performed using a VG 

Escalab 250 with monochromated aluminum K-α X-ray source. The incident 

Xray beam had an energy of 1486.68 eV and the spot size was 500 μm. 

Measurements were made at a pressure of <1 × 10−9 mbar. Pigments were 

dried onto ozone cleaned fragments of microscope slides with evaporated 

gold layer. Samples were immobilised onto stainless steel sample holders by 

means of double sided carbon tape.  
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Low resolution survey spectra obtained using a pass energy of 150 eV over a 

binding energy range of −2 to 1400 eV with 1 eV increments were used to 

define regions for high resolution spectral scanning. Additional regions were 

also identified which corresponded to peaks expected for modified pigments. 

For native and zinc modified Chl a and Chl b detailed scans of the Au 4f, C 

1s, Mg 1s, N 1s, O 1s, Zn 2p, and S 2p regions were obtained. For BChl c and 

zinc modified BChl c, the Mg 2p region was used instead of the Mg 1s due to 

low signal strength. In addition, as no cysteamine-treated versions of BChl 

were prepared the S 2p peak regions were omitted for these pigments.  For 

cysteamine-treated pigments, the regions were the same as those for native 

and zinc modified Chls with the addition of the K 2p region. These scans were 

obtained using a pass energy of 20 eV with 0.1 eV increments. Binding 

energies were calibrated by setting the 1s carbon peak to 285 eV. 

2.3  MD simulation of BChl aggregation 

Simulations of BChl aggregates were performed using molecular dynamics. 

Molecular dynamics is a computational technique, which, whilst originally 

developed for the modelling of liquids,225 has proved itself a useful tool for the 

modelling of complex biomolecules (see e.g. Schlick et al.).226 The wide 

applicability of MD owes itself, in large part to the technique’s underlying 

simplicity.  

2.3.1 Theoretical basis of molecular dynamics 

Molecular dynamics is governed by Newton’s second law (Equation (2. 1)). 

For a known starting configuration, it is possible to numerically integrate the 

equation of motion iteratively such that the positions of particles may be 

generated at each time step.  
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𝑭 = 𝑚
𝑑𝑟𝒓

𝑑𝑡2
= 𝑚𝒂 

(2. 1) 

Where 𝑭 is the force, 𝑚 is the mass, 
𝑑𝑟𝒓

𝑑𝑡2 the second derivative of the position, 

𝒓, with respect to time, 𝑡, and 𝑎 is the acceleration. 

Such initial configurations may be determined from experimental techniques 

such as X-ray diffraction or nuclear magnetic resonance (NMR). Alternatively, 

models may be constructed from “best guesses” refined through 

computational techniques such as quantum mechanical (QM) modelling. 

In order to compute future positions from an initial starting configuration, a 

potential energy function 𝑈(𝒓)𝑡𝑜𝑡𝑎𝑙 is required. 𝑈(𝒓)𝑡𝑜𝑡𝑎𝑙 is also referred to as 

the forcefield. The forces on each particle are given by the gradient of the 

forcefield i.e. 

𝑭 = ∇𝑈(𝒓)𝑡𝑜𝑡𝑎𝑙 

(2. 2) 

The potential 𝑈(𝑟)𝑇𝑜𝑡𝑎𝑙 is an empirically derived function. A number of different 

biomolecular forcefields exist, differing either in their functional form or 

parameterisation, for example AMBER, CHARMM, GROMOS, and OPLS. 

Ubiquitous among theses forcefields is the summation of the bonded and non-

bonded interaction terms. The generic form of the potential energy function is 

given by: 

𝑈(𝑟)𝑡𝑜𝑡𝑎𝑙 = 𝑈𝐵𝑜𝑛𝑑 + 𝑈𝐴𝑛𝑔𝑙𝑒 + 𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑈𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟 + 𝑈𝑉𝐷𝑊 + 𝑈𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 

(2. 3) 

where the first four terms represent contributions from bonded interactions 

between covalently linked atoms and the final two from non-bonded 

interactions. A summary of bonded and non-bonded interaction terms can be 

found in Figure 2.1 and Figure 2.2 respectively. 
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𝑈𝐵𝑜𝑛𝑑 is the potential energy due to bond stretching from an equilibrium 

separation (Figure 2.1a) summed over all bonds. This behaviour is treated as 

a simple harmonic oscillator and is given by: 

𝑈𝐵𝑜𝑛𝑑 =  ∑
1

2
𝑘𝐵

𝐵𝑜𝑛𝑑𝑠

(𝑟 − 𝑟𝑒𝑞)2, 

(2. 4) 

Where 𝑘𝐵 is the force constant of the bond and 𝑟𝑒𝑞 is the equilibrium bond 

length. 

However, harmonic potentials are only valid for small fluctuations from the 

equilibrium position. For larger fluctuations including those involved in bond 

breakage and formation events, the potential is more accurately described by 

the Morse potential given by: 

𝑈𝐵𝑜𝑛𝑑 =  𝐷𝑒(1 − 𝑒−𝑎(𝑟−𝑟𝑒𝑞))2 

(2. 5) 

where 𝐷𝑒 is the dissociation energy, 𝑟𝑒𝑞 is the equilibrium bond length and 𝑎 

is constant which gives how quickly the potential changes with increasing 

separation. Due to its much higher computational cost and the need to 

parameterise 𝐷𝑒, 𝑟𝑒𝑞 and 𝑎 for each bond, the Morse potential is rarely 

implemented. 

The contribution due to angle bending, 𝑈𝐴𝑛𝑔𝑙𝑒𝑠 away from an equilibrium bond 

angle is also described as a simple harmonic oscillator and given by: 

𝑈𝐴𝑛𝑔𝑙𝑒 = ∑
1

2
𝑘𝐴(𝜃 − 𝜃𝑒𝑞)2,

𝐴𝑛𝑔𝑙𝑒𝑠

 

(2. 6) 

where, 𝑘𝐴 is the force constant for angle bending and Θ𝑒𝑞 is the equilibrium 

bond length. 

𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 is the contribution from torsionional energy between a group of four 

atoms linked by three covalent bonds. This term is, given by: 
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𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = ∑
𝑉𝑛

2
[1 + cos(𝑛𝜙 − 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

(2. 7) 

where, 
𝑉𝑛

2
 is the barrier height, 𝑛 is the periodicity (the number of maxima and 

minima) and 𝛾 shifts the position of the maxima and minima. 

𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 only takes into consecutively linked atoms i.e. proper dihedrals. An 

additional term, 𝑈𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟, is needed to account for improper dihedrals and 

out-of-plane bending is given by: 

𝑈𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟 = ∑
1

2
𝑘𝐼(𝜔 − 𝜔𝑒𝑞)2

𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

 

(2. 8) 

Where 𝑘𝐼 is the associated force constant and 𝜔𝑒𝑞 is the equilibrium angle 

between planes. 

The non-bonded contributions come from van der Waals and electrostatic 

interactions given by: 

𝑈𝑉𝐷𝑊 = ∑ 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]

𝑁𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

 

(2. 9) 

where, 𝜀 is the depth of the potential well and 𝜎 is the finite distance at which 

the inter-particle potential is zero. 

In vacuum, the electrostatic interaction term 𝑈𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 is given by: 

𝑈𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟
𝑁𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

 

(2. 10) 

where, 𝑞𝑖 and 𝑞𝑗 are the charges on the two particles and 𝜀0 permittivity of free 

space.  
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The evaluation of the pairwise non-bonded interactions accounts for a large 

proportion of the computational cost. A number of methods and 

approximations are employed to reduce the computational cost. Van der 

Waals interactions are represented using the Lennard-Jones potential 

Equation (2. 9). As can be seen from Figure 2.2a atom pairs beyond the 

optimal inter-particle distance move closer to each other due to mutual 

attraction given by the 𝑟−6 term. Particles closer than the optimal distance will 

repel each other given by the 𝑟−12 term. Van der Waals interactions are 

typically short ranged and as such, distance cut-offs or switching functions 

may be used to reduce computational costs. 

In the case of electrostatic reactions described by Equation (2. 10), the 

interaction scales with 𝑟−1, indicating long ranged interactions for which cut-

offs or switching functions are inappropriate. Fortunately, alternative methods 

for improving efficiency in calculating electrostatic interactions have been 

developed. One such method is the particle-mesh Ewald method (PME). The 

Ewald summation method, a special case of the Poisson summation formula, 

divides long range interactions into two parts, a short range contribution in real 

space and a ling range contribution in reciprocal space. The method offers 

rapid convergence reducing the problem from 𝒪𝑁2 to 𝒪𝑁 log 𝑁. This speed up 

is facilitated by the use of a fast Fourier transform requiring each atomic point 

charge to be distributed on a lattice grid. 
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Figure 2.1 Summary of bonded interactions. 

The potential from bonded interactions may be divided into contributions 

from (a) bond stretching, 𝑈𝐵𝑜𝑛𝑑; (b) bond bending, 𝑈𝐴𝑛𝑔𝑙𝑒; (c) bond 

torsion, 𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛; (d) improper dihedrals, 𝑈𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟. 
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Figure 2.2 Summary of non-bonded interactions. 

The non-bonded contributions to the potential energy function can be 

divided into those from (a) van der Waals interactions, 𝑈𝑉𝐷𝑊, and (b) 

electrostatic interactions, 𝑈𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐. 

 

Once an appropriate forcefield has been selected Newton’s equations of 

motion may be solved through numerical integration to yield particle 

trajectories. 

The most common method uses the Verlet algorithm. In molecular dynamics 

simulations, the configuration is split in to a series of frames separated by a 

time 𝜏 the time step. Information from previous steps can be used to generate 

subsequent steps.  

The Lagrangian of a system is defined as the difference between its kinetic 

and potential energy. 

𝐿 = 𝐾(�̇�) − 𝑈(𝑞) 

(2. 11) 

Here 𝑞 is a general coordinate. In forcefield dynamics, the potential energy 

𝑈(𝑞) depends only on position. The kinetic energy 𝐾(�̇�) depends only on the 

velocity, �̇�. A general property of the Lagrangian is that the time derivative of 

the momentum is equal to the derivative of the Lagrangian with respect to 

position i.e. 
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𝜕

𝜕𝑡
(

𝜕𝐿

𝜕𝑞�̇�
) =

𝜕𝐿

𝜕𝑞𝑖
 

(2. 12) 

For a general system, the Lagrangian may be given by: 

𝐿(𝑟𝑖, �⃗�𝑖) =
1

2
∑ 𝑚𝑖𝑣𝑖

2 − ∑ ∑ 𝑈(𝑟𝑖)

𝑗>1

𝑁−1

𝑖

𝑁

𝑖

 

(2. 13) 

With the first term giving the kinetic energy and the second giving the potential 

energy. 

As �̇�𝑖 =
𝜕𝑟𝑖

𝜕𝑡
= 𝑣𝑖 and the momentum is given by, 

𝜕𝐿

𝜕𝑣𝑖
= 𝑚𝑖𝑣𝑖 

(2. 14) 

The left hand side of Equation (2. 12) can be rewritten as: 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕𝑣𝑖
) = 𝑚𝑖

𝜕𝑣𝑖

𝜕𝑡
 

(2. 15) 

Similarly, the right hand side can be rewritten as: 

𝜕𝐿

𝜕𝑟𝑖
= −

𝜕𝑉

𝜕𝑟𝑖
 

(2. 16) 

This gives 

−
𝜕𝑉

𝜕𝑟𝑖
= 𝑚𝑖

𝜕𝑣𝑖

𝜕𝑡
 

(2. 17) 

which simply states that force is the rate of change of momentum i.e. 𝑓 = 𝑚𝑎 

for each particle. 
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𝑓𝑖 = 𝑚𝑖

𝜕𝑣𝑖

𝜕𝑡
 

(2. 18) 

The force on an atom 𝑖 for any given configuration can be determined from 

the forcefield. The above equation can be rearranged to give: 

𝜕𝑣𝑖

𝜕𝑡
=

𝑓𝑖

𝑚𝑖
 

(2. 19) 

Meaning that for any given configuration we know the acceleration of each 

particle. This means given an initial velocity 𝑣𝑖(0) we can determine the 

velocity of the particle some time later 𝑣𝑖(𝜏): 

𝑣𝑖(𝜏) = 𝑣𝑖(0) + ∫
𝑑𝑣𝑖

𝑑𝑡
𝑑𝑡

𝜏

𝑜

 

(2. 20) 

Similarly, we can obtain the position of each particle at 𝜏 by integrating the 

particle’s velocity: 

𝑟𝑖(𝜏) = 𝑟𝑖(0) + ∫ 𝑣𝑖(𝑡) 𝑑𝑡
𝜏

𝑜

 

(2. 21) 

Once particles move and the distances governing the potentials change, the 

forces acting on them also change. Molecular dynamics must therefore 

integrate these equations of motion such that trajectories may be obtained 

numerically. 

There are a number of requirements for such an integration algorithm: 

1) Computational speed 

2) Low memory demand 

3) Accuracy 

4) Stability (i.e. energy is conserved and there is no drift) 

5) Time reversibility 
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6) Symplectic (i.e. each step in the simulation constitutes the same 

volume of phase space) 

A popular example of an algorithm which meets these requirements is the 

Verlet algorithm. Newton’s law for the position of any atom at a time 𝑡 + 𝜏 may 

be given as a Taylor expansion: 

𝑟𝑖(𝑡 + 𝜏) = 𝑟𝑖(𝑡) + 𝑣𝑖(𝑡)𝜏 +
1

2

𝑓𝑖(𝑡)

𝑚𝑖
𝜏2 +

1

6
𝑟�⃛�(𝑡)𝜏3 … 

(2. 22) 

Similarly, for a negative time step 𝑡 − 𝜏 we have: 

𝑟𝑖(𝑡 − 𝜏) = 𝑟𝑖(𝑡) − 𝑣𝑖(𝑡)𝜏 +
1

2

𝑓𝑖(𝑡)

𝑚𝑖
𝜏2 −

1

6
𝑟�⃛�(𝑡)𝜏3 … 

(2. 23) 

Adding Equations (2. 22) and (2. 23) and approximating: 

𝑟𝑖(𝑡 + 𝜏) = 2𝑟𝑖(𝑡) − 𝑟𝑖(𝑡 − 𝜏) + 𝑎𝑖(𝑡)𝜏2 

(2. 24) 

With: 

𝑎𝑖(𝑡) = −
1

𝑚𝑖
∇𝑈(𝑟𝑖)𝑡𝑜𝑡𝑎𝑙 

(2. 25) 

For a sufficiently small timestep, 𝛿𝜏, Equation (2.24) converges to continuous 

trajectories gives the position of the atom at 𝜏 and removes the need to 

calculate the velocity at each time step. A ‘timeline’ for the Verlet algorithm is 

shown in Figure 2.3. 
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Figure 2.3 Verlet algorithm timeline. 

The Verlet algorithm is a method which allows integration of the 

equations of motion such that continuous trajectories are obtained 

numerically. 

2.3.2 Construction of pigment systems 

2.3.2.1 Dimer arrangements 

Pigment assemblies were constructed for various pigment dimer building 

block units (as shown in Figure 2.4. Structures were named according to 

IUPAC rules for tetrapyrroles: S, used to denote ‘‘Syn’’ refers to the 

arrangement where the hydroxy group at C31 is on the same side of the chlorin 

ring as the C17-propionic acid moiety. Conversely, A, used to denote ‘‘Anti’’ is 

used when it is on the opposite side. The orientation of the Mg cation with 

respect to the C17 is denoted using α and β. Consistent with the notation 

proposed by Balaban et al.,85 the configuration with the magnesium cation on 

the opposite face to the C17- propionic acid moiety is designated as the α-

configuration with the β-configuration having the magnesium cation on the 

same side. Using this nomenclature, specifying the configurations of both 

entities for both molecules within the dimer unit gives a four-letter code 

denoting stereochemistry of each motif e.g. αAαA or βSαA. In addition, a 

suffixes of d, g, and u are used to denote structures with special properties. 

For example αSβA-d is formed of displaced dimers whereas βSαA-g is a 

modified version of βSαA with intermolecular contacts according to 

Ganapathy et al..32 βSαA-u is an anti-parallel dimer, optimised to reproduce 
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experimentally observed X-ray diffraction. βSαA-g and βSαA-u are not shown 

in Figure 2.4 due to their stereochemistry being identical to βSαA. 

 

Figure 2.4 Classification of structural motifs used in molecular dynamics 

simulations. 

The structural motifs used in this thesis may be divided into four 

categories: parallel chains, antiparallel chains, parallel sheets, and 

antiparallel sheets. Figure adapted from Alster et al..26 Not shown βSαAg 

and βSαAu due to similarity to βSαA. 

2.3.2.2 Single and triple layer sheets 

The above dimers were arranged into (10 x 8) sheets of dimers with alcohol 

tails pointing perpendicular to the plane formed by the sheet. These sheets 

were optimised by Alster et al.26 to satisfy known experimentl constraints such 

as Mg coordination. These sheets were then repeated using the script in 

Appendix B to form a 3 lamellae system as shown in Figure 2.5. 
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Figure 2.5 Construction of multilayer system from initial dimers. 

The initial dimer (as described in Figure 2.4) is arranged on a regular 

lattice which is then repeated to form a 3 lamellae system. 

 

For the simulations the first 4 (or 5 in the case of αSβAd, βSαAg, βSαA u) 

letters correspond to the dimer arrangement used to produce a sheet. The 

suffix 3 is used to denote a three layer system. 

For each system, three repeats were performed, the first of these is simply 

labelled as described above, the second and third repeats are denoted by the 

suffixes _1 and _2. For example a single layer system performed on sheet 

based on the αAαA dimer configuration is given by αAαA and the first repeat 

of a triple layer system based on βAβA is given by βAβA3_1. A full list of 

simulations is presented below. 
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Table 2.5 List of simulations performed. 

 First repeat Second repeat Third repeat 

Si
n

gl
e 

la
ye

r 

αAαA αAαA_1 αAαA_2 

αSαS αSαS_1 αSαS_2 

αSβS αSβS_1 αSβS_2 

αSβSd αSβSd_1 αSβSd_2 

βAβA βAβA_1 βAβA_2 

βSαA βSαA_1 βSαA_2 

βSαAg βSαAg_1 βSαAg_2 

βSαAu βSαAu_1 βSαAg_2 

βSβS βSβS_1 βSβS_2 

Tr
ip

le
 la

ye
r 

αAαA3 αAαA3_1 αAαA3_2 

αSαS3 αSαS3_1 αSαS3_2 

αSβS3 αSβS3_1 αSβS3_2 

αSβSd3 αSβSd3_1 αSβSd3_2 

βAβA3 βAβA3_1 βAβA3_2 

βSαA3 βSαA3_1 βSαA3_2 

βSαAg3 βSαAg3_1 βSαAg3_2 

βSαAu3 βSαAu3_1 βSαAg3_2 

βSβS3 βSβS3_1 βSβS3_2 

 

2.3.3 Simulation details and setup 

The MD simulations discussed in this thesis were performed using the 

AMBER 10 suite of programs using the general AMBER force field (GAFF). In 

order to fully exploit available high performance computing facilities, PMEMD, 

the parallelised implementation of SANDER, was used. Simulations were 

subjected to minimisation, heating, and equilibration steps prior to 

unrestrained production MD runs. 

2.3.3.1 Minimisation, heating, and equilibration steps 

As the structures were not necessarily energetically optimised, it was 

necessary to perform energy minimisation and equilibration of each system 

before performing proper simulations of the system. This was performed in 
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four stages at constant volume with restraints decreasing for each stage. 

Minimisation was performed for 10000 cycles with the first 50 using the 

steepest decents method before switching to the conjugate gradients method. 

For the first three mininisation steps the convergence criterion (drms) was set 

to 0.5 kcal/mol-Å. For the final minimiation step this was reduced to 0.2 

kcal/mol-Å. The restraints were decreased from an initial value of 50 to 0 over 

the course of the minimisation. The details of the initial minimisation steps can 

be found in Table 2.6 together with details of other steps. 

After minimisation, one heating step (md1), and seven equilibration steps 

(md2 – md8) at constant pressure were performed. At the start of the heating 

step atoms were assigned velocities from a Maxwellian distribution 

corresponding to an initial temperature of 100 K. Over the course of this step 

the temperature was raised to 300 K, which served as the reference 

temperature for all subsequent steps including the final MD production run. 

The weak coupling temperature algorithm was used ensure the kinetic energy 

remained appropriate for the reference temperature. For all steps bond 

interactions involving hydrogen atoms were omitted in force evaluations and 

a non-bonded cut-off of 9 Å. For each step the SHAKE algorithm was used to 

constrain all bonds involving hydrogen atoms. As bond stretching represents 

the fastest motion, its elimination using the SHAKE algorithm allowed a longer 

time step of 0.002 ps to be used. Each of these steps lasted 10 ps with the 

system restraints being progressively removed. Details of these steps are 

summarised below in Table 2.6. 
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Table 2.6 Conditions for system minimisation, heating, and equilibration. 

A multistage minimisation, heating, and equilibration protocol was 

employed prior to full scale production MD. k is the positional restrain in 

units of  kcal/molÅ2. 

Stage Type Details Duration 

min1 Minimisation Solute restrained, solvent frozen, k = default 10000 
cycles 

min2 Minimisation Solute restrained, solvent frozen k = 50 10000 
cycles 

min3 Minimisation Solute restrained, solvent frozen k = 25 10000 
cycles 

min4 Minimisation All atoms free to move, k = 0 10000 
cycles 

md1 Heating Solute restrained, k = 100 10 ps 

md2 Equilibration Solute restrained, k = 100 10 ps 

md3 Equilibration Solute restrained, k = 50 10 ps 

md4 Equilibration Solute restrained, k = 25 10 ps 

md5 Equilibration Solute restrained, k = 10 10 ps 

md6 Equilibration Solute restrained, k = 5 10 ps 

md7 Equilibration Solute restrained, k = 2.5 10 ps 

md8 Equilibration Solute restrained, k = 1 10 ps 

 

2.3.3.2 Production dynamics 

After md8, a longer unrestrained MD step (md9) lasting 30 ns or 48 hours 

computation time, whichever was the shorter, was performed with the same 

conditions set out above.  

Simulation scripts can be found in Appendix C. 

2.3.4 Computational resources 

High performance computing resources were used to carry out the simulations 

and perform analysis. These were supplied through the University of Leeds 

Advanced Research Computer 1 (ARC1) and Advanced Research Computer 

2 (ARC2) facilities. ARC1 is a shared batch system running the CentOS 5 
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Linux operating system consisting of 672 cores (Intel X5560 2.8GHz 

processors) of computing capacity with an additional 64 ‘large memory’ cores 

(AMD 8384 2.7 GHz processors) serviced by over 100 TB of fast disk storage 

with a data transfer rate of around 3.2 GB per second.  

ARC2 is a shared batch system based on the CentOS 6 Linux operating 

system with 3040 cores of computing capacity (8-core Intel E5-2670 2.6GHz 

processors) with 2 GB/core and is serviced by 170 TB of fast disk storage 

(giving a data transfer rate of around 4 GB per second). In the case of both 

ARC1 and ARC2, compute nodes are connected with ‘Infiniband’ 

interconnects. 

ARC1 was use for running simulations and ARC2 was used for performing 

computationally demanding analysis including the X-ray scattering 

predictions. 

2.3.5 Analysis of MD results 

2.3.5.1 Structures 

The root-mean-squared (RMS) pair-wise separation of Mg atoms were 

calculated for a series of approximately logarithmically spaced time points 

(~100 points) for each structure. In order to do this, pdb files were generated 

from simulation .x output files using ptraj. A Matlab script was then used to 

extract Mg atom positions from these pdb files and calculate the RMS pair-

wise separations for each time point. The Matlab script used can be found in 

Appendix D These values were plotted as a function of time for each 

simulation to allow system evolution to be studied. 

Simulation trajectories were visualised using the Virtual Molecular Dynamics 

program (VMD). This allowed visual assessments to be made on the degree 

of curvature present in each system as well as its axis and direction. 

Visualising simulation trajectories in this way also allowed for any defects 

within simulation sheets to be identified. 

Dipole moment plots were created using Matlab to extract the positions of the 

ND and NB nitrogen atoms from pdb files. Plots were then generated with 

arrows pointing in these directions, corresponding to the 𝑄𝑦 dipole moments. 

The Matlab script used to produce dipole plots can be found in Appendix D. 
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These plots allowed the dipole stacking and disorder within structures to be 

visualised more easily. 

2.3.5.2 Energy of simulated systems 

Total system energy, was extracted from simulation output files (see Appendix 

D for script). This was plotted as a function of simulation time for each 

simulation in order to investigate system energy evolution.  

The energy for the last 1 ns (10 000 points) was averaged to provide a final 

equilibrated system energy. Structures were ranked according to their final 

equilibrated energies to determine the effect of dimer type and curvature on 

energy. 

In order to determine whether a stabilising effect exists for multilamellar 

systems, average energies were determined for each dimmer type, for both 

single and triple layers, by averaging over repeats. Single layer average 

energies were then compared to their triple layer 

2.3.5.3 X-ray scattering predictions 

X-ray scattering predictions from simulations were produced using a modified 

code supplied by Roman Tuma. This code was modified to produce an 

OpenMP parallelised version (Appendix D) to allow more time points to be 

analysed. X-ray scattering predictions were summed over the final 0.1 ns of 

simulation (100 frames) and compared to both previously published X-ray 

scattering data and X-ray scattering predictions corresponding to the start of 

the simulation. 

2.4 Quantum dots 

2.4.1 Quantum dot synthesis 

Quantum dots were prepared via precursor thermal decomposition. Briefly, 24 

mg (0.125 mmol) of copper iodide, 73 mg (0.25 mmol) indium acetate, 38.2 

mg (0.5 mmol) thiourea, 200.4 mg mercaptoundecanol, 64.7 mg Biotin-

PEG(4300)-SH (molar ratio of 50:1 thiol:biotin-thiol, corresponding to on 

average to approx. 3-4 biotin-thiols per quantum dot) were mixed in 5 ml 

ethylene glycol. After purging with argon, the flask was heated to 170 °C whilst 

stirring. Aliquots for analyses were taken using a glass syringe at 10, 15, 20, 

25, 30, 40, 50, 60 min (timed from the start of heating) and quenched by 
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injecting into room temperature methanol, effectively stopping the reaction 

while keeping the products dispersed. Due to larger sample requirements, in 

the case of quantum dots prepared for X-ray diffraction, aliquots were not 

taken and instead the reaction quenched at 15 min by submerging the reaction 

vessel in cold water. 

2.4.2 Quantum dot cleaning 

Free thiol, biotin-thiol, unreacted compounds and residual ethylene glycol 

were removed using a 30 kDa KrosFlow modified Polyethersulfone (mPES) 

hollow fibre filter module in conjunction with a KrosFlo Research IIi Tangential 

Flow Filtration System (based on the setup outlined in Sweeney et al.)227 set 

at a flow rate of 60 ml min-1. The pressure of the sample entering and leaving 

the membrane tube was 5.9 psi and 4.1 psi respectively. The pressure applied 

on the outside of the membrane was 0.1 psi providing a transmembrane 

pressure of 5.2 psi. Due to the negative transmembrane pressure, the 

dispersing solvent was able to pass through the membrane, removing with it 

reagents, unbound ligand and residual amounts of ethylene glycol. The 

volume of the sample within the system was allowed to reduce by half before 

being made up to its initial volume with fresh methanol. This was repeated 5 

times leading to a >96% reduction in sample contamination. Quantum dots 

were stored in the dark at 4 °C until use. 
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Figure 2.6 KrosFlo diafiltration setup used for purification. 

Free thiols and unreacted reagents were removed using diafiltration.  

2.4.3 Absorbance measurements, determination of E1, Ex, and 

concentration 

UV-Vis absorption spectra were recorded using a Genesys 6 

spectrophotometer. Samples used for UV-Vis absorption spectroscopy were 

diluted so the optical density at the first transition was ~0.1. 𝐸1 was determined 

from the minimum of the second derivative of the absorption spectrum. 𝐸𝑋 was 

determined using Tauc plots  (a description of this can be found in Huxter et 

al.).205 Where concentrations were estimated, this was done using the Beer-

Lambert law with the extinction coefficient at 3.1 eV, 𝜀𝐶𝐼𝑆(3.1 𝑒𝑉), determined 

according to the method of Booth et al.:211 
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𝜀𝐶𝐼𝑆(3.1 𝑒𝑉) = (2123 ± 109)𝑑3.8±0.3 

(2. 26) 

Where d is the size estimated here using transmission electron microscopy 

(TEM) data and synthesis time. 

2.4.4 TEM measurements 

Nanocrystal size and morphology was examined using High Resolution 

Transmission Electron Microscopy (HRTEM) with a FEI Tecnai TF20 field 

emission gun (FEG)-TEM operated at 200 kV and a Gatan Orius SC600A 

charge coupled device (CCD) camera. Quantum dots dispersed in methanol 

were deposited onto gold-coated carbon grids by drop casting. Regions of 

interest were determined using low magnification images (<120000x). Size 

distributions of quantum dots were determined using either 220000 or 390000 

magnification images, based on a sample of at least 100 particles from each 

aliquot. Lattice spacings were determined from high magnification (690000x) 

images using 2-dimensional Fourier transform. 

2.4.5  X-ray diffraction (XRD) measurements 

Owing to larger sample requirements, an additional synthesis was performed 

as described above without aliquots. The synthesis was quenched at 15 min 

by immersing the reaction vessel in cold water. The entire reaction product 

(~100 mg) was used. Solvent exchange into pure (18.2 MΩ) H2O was 

performed using the KrosFlo Research IIi Tangential Flow Filtration System 

under the conditions described above using H2O instead of methanol to make 

up lost volume. Quantum dots in H2O were frozen using liquid nitrogen and 

lyophilised to produce a fine powder. XRD pattern was obtained using a 

Panalytical Model X'Pert Pro MPD X-ray diffractometer with Cu Kα source (λ 

= 0.154 nm) and a X'cellerator detector. A continuous scan over a 2θ range 

from 10° to 80° was performed with an acquisition time of 45 min. 

2.4.6  Energy dispersive analysis of X-rays (EDX) 

Elemental composition was established by energy dispersive X-ray analysis 

using an Oxford Instruments 80 mm X-Max silicon drift device (SDD) EDX 

detector on areas identified from low and medium magnification images as 
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having a high density of nanoparticles. A low background sample holder and 

gold TEM grids were used to minimise background copper signal. 

 

2.4.7  XPS analysis of quantum dots 

The elemental stoichiometry of quantum dots was determined using a Kratos 

Axis Ultra Delay-line detector (DLD) with monochromated aluminum Kα X-ray 

source. The incident X-ray beam had an energy of 1486.69 eV with a 

rectangular illumination profile of ~300 by 700 μm. Measurements were made 

under high vacuum (p <1x10-9 mbar). Quantum dots in methanol were 

dropcast onto ozone cleaned fragments of microscope slides with a 50 nm 

evaporated gold layer on a 5 nm chromium. Samples were immobilised onto 

stainless steel sample holders by means of double sided carbon tape. Low 

resolution survey spectra were obtained using a pass energy of 160 eV over 

a binding energy range of -5 to 1200 eV with 0.5 eV increment. High resolution 

spectral scans were obtained using a pass energy of 20 eV with 0.05 eV 

increments. An acquisition time of 240 s was used for both survey and high 

resolution scans. Binding energies were calibrated by setting the 1s carbon 

peak to 285 eV. Copper to indium ratios were determined using the Cu2p 3/2 

and In 3d 5/2 peaks. 

2.4.8 Photoluminescence (PL) emission and excitation spectra 

Photoluminescence spectra were obtained using a Shimadzu RF-301PC 

Spectrofluorophotometer. 450 nm excitation and emission slit widths of 5 nm 

were used. Samples used for steady state fluorescence measurements were 

diluted to fall within the linear response region of the spectrofluorimeter. 

Stokes shifts were calculated as the difference between the position of PL 

maximum intensity and the energy of the first transition determined above. 

2.4.9  Photoluminescence quantum yield (PLQY) measurements 

Absolute values for PLQY were determined using a spectroscope equipped 

with an 10 cm diameter integrating sphere (SphereOptics GmbH). Samples 

excitation was via indirect diffused light from light emitting diodes (LEDs) 

emitting in the range 2.4 to 3.1 eV. Light from the integrating sphere was 
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coupled to a silica fibre bundle, the output of which was imaged by a Acton 

SpectraPro SP2150i spectrometer with a Spec-10:400B back-illuminated 

CCD camera. PLQY was determined as the ratio of the number of emitted and 

the number of absorbed photons. A more detailed theoretical discussion and 

further details on the set-up can be found in Valenta.228 

2.4.10  PL lifetime measurements 

Time-domain nanosecond PL lifetime measurements were made using a set-

up consisting of a gated PIMAX intensified CCD (ICCD) detector (Princeton 

Instruments) and iHR-320 monochromator (Horiba). An optical parametric 

oscillator (OPO) (PG-122, EXPLA, Vilnus, Lithuania), pumped by yttrium 

aluminium garnet (YAG) laser, was used as the excitation pulse source. 

Measurement frequency was 10 Hz. The pulse energy was measured to be 

0.25 mJ at 450 nm with ~3.5 ns full width at half maximum. Spectra were 

measured over 503 to 897 nm range with delay times from 5 to 1580 ns, where 

zero time was taken to be the centre of the excitation pulse. Experiments were 

performed at 4 °C to minimise sample degradation.  Steady-state absorption 

and PL spectra were measured before and after the experiments to ensure 

that no degradation occurred during acquisition. Global analysis fitting 

software229,230 (provided by Jan Alster) was used to extract lifetimes and decay 

associated spectra. Transition energies were determined from fitted PL peak 

positions and the relative contribution of each fitted component was estimated 

using fitted peak areas. 

2.4.11  Transient absorption measurements 

Nanosecond  transient absorption spectroscopy was performed using the 

same set-up as PL measurement with the addition of a xenon flash lamp to 

generate probing white light pulse. White light was split into probe and 

reference beams, and were projected on to different parts of the ICCD 

detector. Measurement was running at 10 Hz frequency with halved (5 Hz) 

frequency of excitation laser. Changes in transient absorption over the range 

364 to 743 nm were calculated as difference between measurements with and 

without excitation. Spectra were measured for delay times between -5 and 

500 ns. Experiments were performed at 4 °C using glass cuvettes to minimise 
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degradation. Steady-state absorption and PL spectra were measured before 

and after to monitor sample degradation during data acquisition. Data was 

analysed using the same software used for PL lifetime analysis.
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Chapter 3 

Results and Discussion: Bacteriochlorophyll and Zinc-

(Bacterio)Pheophytin Preparation and Chemical Modification 

3.1 Introduction 

This chapter covers the extraction, purification, and chemical modification of 

chlorophylls (Chls) and bacteriochlorophylls (BChls). Section 3.2 deals with 

the extaction of pigments from bacterial cells and plant matter and their 

purification. Section 3.3 deals with the chemical modification of pigments; 

including the production of zinc-(bacterio)chlorophyll derivatives to increase 

stability (Section 3.3.1) and attempts at incorporation of a thiol group to 

facilitate coupling to quantum dots (Section 3.3.2). These sections include 

details of UV-Visible (UV-Vis) absorbance spectroscopy and XPS analysis to 

determine whether modification was successful. 

3.2 Purification of BChls and Chls 

3.2.1 Growth of Chlorobaculum tepidum cells 

Chlorobaculum tepidum were cultured in order to provide a supply of BChl c 

cells for modification and investigation. No bacterial growth was observed for 

attempts to grow cells in 38ºC incubators under illumination. Initially, this was 

assumed to be due to incorrect selection of light bulbs. However, even after 

changing to the 60W incandescent bulbs used elsewhere,231 no growth was 

observed. Nevertheless, growth, as indicated by the presence of a dark green 

matter, was observed for cells grown at room temperature in proximity to the 

laboratory window. Cells were allowed to grow until contents were visually so 

dense as to render additional growth unlikely. The dark green colour of the 

cultures, together with the high concentration of BChl c contained within lysed 

cell confirmed these cells were most likely Chlorobaculum tepidum. 
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3.2.2 Extraction of BChl c from cells 

Extraction of BChl c cells from Chlorobaculum tepidum cells was performed 

using a modification of an established method.221 On addition of the 1:1:2 

(v/v/v) methanol/chloroform/water solvent mixture to the dried cells, a 

concentrated chloroform subphase formed below a cloudy white-green water-

methanol layer. After repeated washing with water, the water layer became 

colourless and transparent and the turbidity of the chloroform layer 

disappeared. This is consistent with the successful removal of cell debris and 

other insoluble matter in the crude extract. 

Figure 3.1a shows the spectrum of the resulting crude pigment extract from 

cells of Chlorobaculum tepidum before washing with hexane. Significant 

peaks are present at 416 nm, 434 nm, and 669 nm. A smaller peak is also 

present at 488nm. Pigments removed via hexane washing (dried and 

resuspended in methanol) are shown in Figure 3.1b. Spectra of removed 

pigments exhibited large peaks at 488 nm, 458 nm, and 431 nm, 414 nm, and 

a smaller peak at 669 nm. In the spectrum of the pigments remaining after 

multiple hexane washes is shown in Figure 3.1c. The carotenoid peaks 

previously present at 488nm and 416nm are absent. Peaks at 434 nm and 

669 nm remain. 

The largest peaks at 669 nm and 434 nm for pigments extracted from whole 

cells of Chlorobaculum tepidum observed both before and after washing with 

hexane correspond to the 𝑄𝑦 and Sorret peaks for monomeric BChl c 

pigments which is the most abundant constituent of the extract. 

The significant absorption observed in the region 500-650 nm for pigment 

extracts before washing with hexane can be ascribed to the presence of a 

significant fraction of carotenoids. The decrease in absorption in this region 

on washing with hexane, together with the spectrum obtained for the hexane 

soluble component indicates the removal of the majority, though not all, of the 

carotenoids.  

The increase in absorption observed at ~750 nm (not seen in BChl c) may be 

explained by the presence of a small amount of BChl a from the baseplate 

and reaction centre.  
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Figure 3.1 Extraction of BChl c pigments from Chlorobaculum tepidum. 

Spectra of pigments extracted from whole cells of Chlorobaculum 

tepidum. (a) Pigment rich chloroform layer, (b) carotenoid rich hexane 

wash, and (c) after hexane washing. 
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3.2.3 Extraction of BChl e from chlorosomes 

In order to provide a second bacteriochlorophyll pigment for modification and 

investigation, BChl e as extracted from chlorosomes of Chlorobaculum 

phaeobacteroides. Similar observations to those made for the extraction of 

BChl c from cells were made for BChl e pigments extracted from chlorosomes 

of Chlorobaculum phaeobacteroides (Figure 3.2). Figure 3.2a shows the 

absorbance spectra for whole Chlorobaculum phaeobacteroides chlorosomes 

with peaks at 457 nm, 521 nm, and 707 nm corresponding to the presence of 

aggregated BChl e as well as significant amounts of β-Carotene. After addition 

of methanol and rinsing with hexane, the two most prominent peaks were 

found at 472 nm and 656 nm, corresponding to BChl e monomers Figure 3.2b. 

 

Figure 3.2 Extraction of BChl e pigments from Chlorobaculum 

phaeobacteroides chlorosomes. 
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(a) spectrum of chlorosomes of Chlorobaculum phaeobacteroides and 

(b) after addition of methanol and hexane washing. 

3.2.4 Extraction of chlorosomes from Chlorobaculum tepidum 

cells 

Chlorosomes were extracted from Chlorobaculum tepidum cells as an 

alternative source of pure pigments and to provide a spectral comparison for 

aggregates of native pigments and their derivatives. Cell lysate was subjected 

to sucrose density gradient centrifugation. After sucrose density gradient 

centrifugation, a distinct well-defined green band was present approximately 

halfway up the tube. The absorption spectrum of this band after concentration 

and dilution in fresh milliQ-grade-H2O is shown in Figure 3.3. Chlorosomes 

exhibited a Soret peak at 456 nm and a 𝑄𝑦 peak at 744 nm. The spectrum of 

chlorosomes purified using the 10-50% sucrose density gradient closely 

matches previously reported spectra for chlorosomes from this species with 

the peaks at 744 nm and 456 nm corresponding to aggregated BChl c. 

 

Figure 3.3 Absorbance spectrum of chlorosomes from Chlorobaculum 

tepidum purified using a sucrose density gradient. 
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3.2.5 Extraction of pigments from spinach 

Chlorophyll pigments were extracted from spinach to provide a more abundant 

and easily obtained source of pigments. Whilst plant chlorophylls do not 

aggregate, their similarity to the aggregating bacteriochlorophylls means they 

provide a substitute for investigation of modification methods. Pigments were 

extracted using acetone and subjected to two rounds of centrifugation using 

different solvent mixes. After the second round of centrifugation, a green 

pigment-rich hexane layer and a colourless water-acetone subphase formed 

– indicating that the majority of the pigments were contained in the dark 

hexane layer. The spectrum of this layer dried and resuspended in methanol 

is shown in Figure 3.4. The two largest peaks are found at 438 nm and 663 

nm. In addition, there is substantial absorbance in the 500-650 nm region as 

well as shoulders on the short wavelength side of the 438 nm peak and the 

short wavelength side of the 663 nm peak  

The peaks at 663 nm and 438 nm as well as the pattern of peaks observed in 

the sub-438 nm region, correspond to Chlorophyll a – the most abundant 

pigment found in spinach. The asymmetry of the 663 nm peak and the peak 

at 467 nm are due to smaller amounts of Chlorophyll b present in the sample. 

The large absorbance in the 400-500 nm region compared to the peak at ~663 

nm may also be explained by contributions from carotenoids. 
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Figure 3.4 Spectrum of crude pigment extract from spinach. 

The spectrum of crude spinach extract contains contributions from Chl a, 

Chl b as well as the carotenoids: Neoxanthin, Violaxanthin, Lutein, and 

β-Carotene. 

 

3.2.6 High Pressure Liquid Chromatography (HPLC) purification of 

BChl c pigments 

HPLC purification was used to separate BChl c homologues and carotenoids 

to provide a pure source of pigment for further modification and investigation. 

The chromatogram monitored at 669 nm is shown in Figure 3.5a. The four 

largest peaks eluted at times ~17.7, ~18.7, ~20.4, and ~22.5 min. The peaks 

were well separated and symmetrical in shape with the exception of the peak 

eluting at ~20.4 min which exhibited late eluting a shoulder. The components 

eluting at these times were present approximately in the ratio: 1.0:4.0:3.9:1.0. 

The spectra of the four largest peaks are shown in Figures 3.5(b – e). All 

exhibit maxima at 434 and 669 nm.  

A small peak, not visible in Figure 3.5a, can be seen in chromatograms 

monitored at other wavelengths and in the 3D field chromatogram (Figure 3.6), 
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was present at ~42 min. The spectrum of this peak (Figure 3.5f) has maxima 

at 435 nm, 457 nm, and 487 nm. 

A large peak was observed at ~38.4 min. The spectrum of the peak at ~38 

min is shown in Figures 3.5g. The spectrum of this peak has peaks at 669nm, 

416 nm, and 434 nm. The ratio of the peak intensities at 434 nm and 416 nm 

to each other and the component at 669 nm for this peak varied from run-to-

run.  

 

 

Figure 3.5 HPLC Purification of BChl c from Chlorobaculum tepidum. 

(a) Chromatogram monitored at 669 nm. (b-e) Absorbance spectra for 

the four main homologues of BChl c (in order of elution), (f) spectrum of 

β-carotene, and (g) spectrum corresponding to late eluting pigments. 
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Figure 3.6 HPLC 3-dimensional field chromatogram for purification of BChl c. 

Contour plot showing the spectra of pigments eluting at different times 

for pigments extracted from Chlorobaculum tepidum cells.  

 

Based on the approximate elution time, spectra, and relative abundances, the 

peaks at ~17.7, ~18.7, ~20.4, and ~22.5 min may be ascribed to be the four 

main C8 and C12 homologs of BChl c esterified with farnesyl at C173.232 

These are, in order of elution: 8-ethyl-12-methyl BChl c ([E,M]BChl cF),  8-

ethyl-12-ethyl BChl c ([E,E]BChl cF), 8-propyl-12-ethyl BChl c ([P,E]BChl cF), 

and 8isobutyl-12-ethyl BChl c ([I,E]BChl cF) respectively. The existence of a 

slight shoulder to the 3rd peak may be explained by the existence of both R 

and S enantiomers of 8-propyl-12-ethyl BChl c ([P,E]BChl cF) eluting close 

together. Typical relative abundances for these homologues are similar to 

those reported previously. However, it should be noted that these ratios have 

been found to vary depending on growth conditions.232  

The small peak at ~42 min was determined, due to its spectrum and retention 

time to be residual β-carotene remaining after hexane washing. 

The large peak was observed at ~38.4 min appears, based on the observation 

of peaks at 416 and 434 nm to be a mix of late eluting BChl c pigments and 

BPhe c. The run-to-run variation in the relative intensities of these peaks 

suggests batch-to-batch variations in the two pigments. This likely correspond 

to varying levels of sample degradation. 

The lack of a significant peak corresponding to BChl a indicates that should 

BChl a be the reason for the small peak observed at ~750 nm observed above 

in the spectrum of extracted pigments (Figure 3.1), it is a minor component. 
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The method showed a high degree of reproducibility between runs and 

presents a reliable and efficient means of purifying BChl c. Additionally, it 

should be noted that whilst not attempted in this thesis due to lack of 

Chlorobaculum phaeobacteroides cells, based on their structural similarity 

and previously reported attempts, it should be possible to use the same 

method for the isolation of the four primary homologues of BChl e. 

3.2.7 HPLC purification of chlorophyll a and b 

Figure 3.7a shows the chromatogram monitored at 658 nm. The four largest 

peaks eluted at times ~16.4, ~16.8, ~17.8, and ~18.3 min. The spectra of the 

four largest peaks are shown in Figures 3.7(b – e). The spectra of peaks 

eluting at ~16.4, ~16.8 min (b and c) both exhibit maxima at ~460 and 649 

nm. The spectra of peaks eluting at ~17.8 and ~18.3 min (d and e) both exhibit 

maxima at 432 and 664 nm.  

In addition to those peaks observed in the chromatogram monitored at 658 

nm, additional peaks were observed in chromatograms monitored at other 

wavelengths and in the 3D field chromatogram (Figure 3.8). The spectra of 

these peaks had multiple peaks in the 400-500 nm region but no peak in the 

600-700 nm region as observed for the four peaks described above. These 

peaks do not overlap temporally with any of the four main peaks in Figure 3.7.  

Based on the approximate elution time, spectra, and relative abundances, the 

peaks at ~17.6, ~18.0, ~19.3, and ~20.1 min may be ascribed chlorophyll b, 

chlorophyll b’, chlorophyll a and chlorophyll a’.224 The relative abundances as 

determined by peak area are in good agreement with previously ratios for 

spinach.224 The additional peaks seen in the 3D field chromatogram 

correspond to the main carotenoids found in spinach, namely: Neoxanthin, 

Violaxanthin, Lutein, and β-Carotene. 

Whilst closer inspection of some HPLC chromatograms revealed the presence 

of chlorophyllide (Chlide), in the 7-12 min region, and pheophytin (Phe), in the 

>30 min region, these were present at only a low level, suggesting that the 

method employed here allowed the extraction of chlorophyll a and b with only 

a minimal amount of sample degradation. 
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Figure 3.7 HPLC purification of chlorophylls a and b. 

(a) Chromatogram monitored at 658nm. (b-e) Absorbance spectra of the 

four peaks (in order of elution) – Chl b, Chl b’, Chl a, and Chl a’.  
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Figure 3.8 HPLC 3-dimensional field chromatogram for purification  of Chls. 

Contour plot showing the spectra of pigments eluting at different times 

for pigments extracted from spinach.  

 

3.2.8 XPS analysis of native pigments 

Figures 3.9, 3.10, and 3.11 show XPS survey spectra for HPLC purified Chl 

a, Chl b, and BChl c respectively. These spectra revealed the presence of 

significant amounts of Au, C, Mg, N, and O. The presence of Au is due to the 

gold coated substrate onto which samples were deposited. The C, Mg, N, and 

O detected are consistent with the composition expected for Chl a, b, and 

BChl c. 

More detailed scans of the Au 4f, C 1s, Mg 1s, N 1s, O 1s, S 2p, and Zn 2p 

regions for Chl a and Chl b are shown in Figure 3.12 and 3.13. Scans for the 

Au 4f, C 1s, Mg 2p, N 1s, O 1s, and Zn 2p for BChl c are shown in Figure 3.14. 

The Mg 2p region was used for BChl instead of the Mg 1s region owing to low 

signal from this sample. Scans of the Zn 2p regions for all three pigments and 

the S 2p regions for Chl a and Chl b are presented to allow comparison with 

modified pigments in the subsequent sections. No indication of zinc was found 

for any of the three native pigments. A small peak at ~168 eV was observed 

in the S 2p regions of Chl a and Chl b. However, the small intensity of this 

peak indicates it is most likely from low level contamination. 
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Figure 3.9 XPS survey spectrum for unmodified Chl a. 

XPS survey spectrum for unmodified Chl a showing the presence of 

carbon, oxygen, nitrogen, and magnesium. 

 

Figure 3.10 XPS survey spectrum for unmodified Chl b. 

XPS survey spectrum for unmodified Chl b showing the presence of 

carbon, oxygen, nitrogen, and magnesium. 
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Figure 3.11 XPS survey spectrum for unmodified BChl c. 

XPS survey spectrum for unmodified BChl c showing the presence of 

carbon, oxygen, nitrogen, and magnesium.  

 



- 107 - 

 

Figure 3.12 Detailed XPS spectra for Chl a. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 1s, (d) N 1s, (e) O 1s, 

(f) S 2p, and (g) Zn 2p peaks obtained for unmodified Chl a. 
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Figure 3.13 Detailed XPS spectra for Chl b. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 1s, (d) N 1s, (e) O 1s, 

(f) S 2p, and (g) Zn 2p peaks obtained for unmodified Chl b. 
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Figure 3.14 Detailed XPS spectra used for BChl c. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 2p, (d) N 1s, (e) O 1s, 

and (f) Zn 2p obtained for unmodified BChl c. 

3.3 Chemical modification of pigments 

3.3.1 Zn-(B)Phe production and purification 

3.3.1.1 Transmetallation of pigments 

Pigments were transmetallated to provide more stable and easier to work with 

zinc analogues. This was done using a novel method which provided a faster 

and more straightforward means of converting (B)Chls to Zn-(B)Phes. After 

treatment with HCl, the pigments changed from a green to brown colour with 

the extent of colour change increasing with increasing HCl concentration. 
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Should pigment be resuspended at this stage, a blue tint will be observed. 

Further treatment with NaOH resulted in a further change from green-brown 

to pink-brown with the extent of colour change dependent on NaOH 

concentration. On resuspension in zinc acetate saturated methanol and 

shaking, a further colour change from brown to vivid green was observed.   

The changes in pigment colour observed on treatment with HCl are consistent 

with demetallation of the pigments and conversion to free-base analogues. 

The blue tint observed on drying and redispersal in methanol maybe explained 

by protonation of the ring. Conversely, the change in colour on treatment with 

NaOH may be explained by deprotonation of the ring. The rapid colour change 

seen on treatment with zinc acetate saturated methanol can be explained by 

the rapid incorporation of zinc in to deprotonated pheophytins. 

 

3.3.1.2 Spectroscopic properties of transmetallated pigments 

In order to monitor changes to pigments during treatment, UV-Vis absorbance 

spectra for Chl a, Chl b, BChl c, and BChl e taken before treatment, after 

treatment with HCl and after incubation with zinc acetate are shown in Figures 

3.15(a-d). The positions of the Soret and 𝑄𝑦 peaks at each stage for each 

pigment are shown in Table 3.1. Spectra of Chl a and Chl b before treatment 

were similar to BChl c and BChl e respectively in terms of both peak positions 

and shape as reported previously.19 In all cases, treatment with HCl led to a 

blue-shift in the position of the Soret band whilst the position of the 𝑄𝑦 band 

remained largely unchanged. After treatment with the zinc acetate solution, 

the 𝑄𝑦 band was blue-shifted from the position of the untreated and HCl 

pigments by between 6 and 19 nm. In addition, with the exception of Chl b, 

the position of the Soret band was red-shifted but did not reach the position of 

the untreated pigments. An apparent splitting of the Soret band in the case of 

BChl e was observed after treatment with a large peak at 440 nm and a 

smaller component at 460 nm.  
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Figure 3.15 Spectral changes during transmetallation of pigments. 

UV-Vis spectra of native, de-metallated and transmetallated (a) Chl a, 

(b) Chl b, (c) BChl c, and (d) BChl e.  

Table 3.1 Summary of Soret and 𝑄𝑦 positions for natural pigments, their free 

bases, and zinc analogues. 

Pigment Soret and 𝑸𝒚 

position of native 
pigments (nm) 

Soret and 𝑸𝒚 position 

of demteallated 
pigments (nm) 

Soret and 𝑸𝒚 position 

of transmetallated 
pigment (nm) 

BChl c 435, 669 412, 669 432, 663 

BChl e 476, 660 420, 662 429 and 451, 641 

Chl a 423, 665 416, 663 416, 655 

Chl b 466, 651 417, 646 452, 646 

 

The above changes in colour and absorption spectra were found for all 

concentrations of HCl and NaOH used in the range 1-5 M.  
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Energy levels for the two allowed transitions with a significant crossection are 

shown in Figure 3.16 for each of the final products. 

 

Figure 3.16 Energy levels of transmetallated pigments. 

Energy levels showing the modified positions of the Soret and 𝑄𝑦 for (a) 

Zn-Phe a, (b) Zn-Phe b, (c) Zn-BPhe c, and (d) Zn-BPhe e.  

The successful implementation of the method for four different pigments (two 

chlorophylls and two bacteriochlorophylls) illustrates the wide applicability of 

the method. In addition, when compared with other reported methods, the 

method offers a faster and easier means of converting (B)Chls to Zn-(B)Phes.  

 

3.3.1.3 Pre-purification and HPLC purification and analysis of Zn-

(B)Phes 

Initial attempts to purify Zn-BPhe c by HPLC without first removing unreacted 

zinc led to the adhesion of zinc to the HPLC column. To avoid zinc 

precipitation on the HPLC column, a pre-purification step was therefore 

necessary. When the methanol containing reaction mixture was added to 

chloroform and water added, a white gel like phase formed throughout the 
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mixture. On centrifugation of this mixture two distinct phases formed with a 

white precipitate at the interface. After successive washing this interface 

became clear of precipitant and the pigment containing chloroform subphase 

was dried. The dried pigment layer was green with no visible trace of white 

contaminant.  

Figure 3.17a shows the HPLC chromatogram of the pigment phase monitored 

at 663 nm (chosen to correspond to the 𝑄𝑦 maximum of Zn-BPhe c). Four 

peaks are eluted at 25.5, 27.5, 30.7, and 32 min in a similar pattern to those 

observed for the four main homologues of BChl c above, albeit eluting later. 

The spectra of these four peaks are shown, in order of elution, in Figures 

3.17(b-e). All spectra exhibit peaks at 432 and 663 nm. 

In addition, a similar cluster of much lower intensity peaks were observed in 

the chromatogram in the 10-12 min region. The shape of this cluster and the 

relative intensities of the peaks are almost identical to those observed for the 

four main peaks above. These peaks also have spectra with peaks at 432 and 

663 nm. Finally, a large peak is observed at ~48 min. Again, the spectra of 

this peak has maxima at 432 and 663 nm. 

Due to the spectra of the peaks eluting between 25.5 and 32 min, and their 

similar elution pattern and relative abundancies to those observed for BChl c, 

these peaks may be assigned to Zn-containing derivatives of the four BChl c 

homologues: 8-ethyl-12-methyl Zn-BPhe c ([E,M]Zn-BPhe cF), 8-ethyl-12-

ethyl Zn-BPhe c ([E,E]Zn-BPhe cF), 8-propyl-12-ethyl Zn-BPhe c ([P,E]Zn-

BPhe cF), and 8-isobutyl-12-ethyl Zn-Phe c ([I,E]Zn-BPhe cF). Based on the 

similarity to the peaks of the BChl c counterparts it may be assumed that 

pigments eluting in this region have undergone no additional change beyond 

replacement of the central metal atom. The later elution of these pigments  

compared to BChls indicate that the pigments have been made more apolar 

by the addition of zinc. 

The early eluting peaks in the 10-12 min region, which are present to a lesser 

extent, can be assigned to Zn-BPheides which are more polar then their Zn-

BPhe counterparts due to the loss of the alcohol chain at C173. This is 

consistent with previously reported behaviour for Chl pigments (see e.g. Craft 
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et al.).224 In order of elution these peaks are 8-ethyl-12-methyl Zn-BPheide c 

([E,M]Zn-BPheide c), 8-ethyl-12-ethyl Zn-BPheide c ([E,E]Zn-BPheide c), 8-

propyl-12-ethyl Zn-BPheide c ([P,E]Zn-BPheide c), and 8-isobutyl-12-ethyl 

Zn-BPheide c ([I,E]Zn-BPheide c). The final peak corresponds to late eluting 

Zn-BPhe c like pigments which have bound more tightly to the column. 

 

Figure 3.17 Successful HPLC purification of Zn-BPhe c (after pre-purification 

using phase separation method). 

(a) Chromatogram monitored at 663 nm. (b-e) Absorbance spectra of the 

four main Zn-Pheide c peaks (in order of elution).  
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Figure 3.18 3-dimensional field chromatogram for purification of Zn-BPhe c. 

Contour plot showing the spectra of pigments eluting at different times 

for zinc modified BChl pigments.  

 

For comparison, Figure 3.19 shows an HPLC chromatogram monitored at 663 

nm for Zn-BPhe c pigments which have not undergone prepurification. This 

chromatogram shows a greater proportion of hydrolysed pigments elution in 

the 10-12 min region. Only three peaks are clearly resolved in this case, likely 

due to loss of resolution due to an increased amount of sample eluting in this 

period. A greater proportion of hydrolysed pigments for the same 

concentration of HCl/NaOH suggests that in addition to zinc, the 

prepurification process also removed Zn-BPheides. This can be explained by 

the fact that Zn-BPheides, unlike Zn-BPhes, are water-soluble. Consequently, 

these pigments may preferentially partition into the water phase and be 

removed during successive washing steps.  
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Figure 3.19 HPLC purification of Zn-BPhe c without pre-purification using 

phase separation method. 

 

Figure 3.20a shows a chromatogram monitored at 658 nm for the purification 

of Zn-Phe a produced from HPLC purified Chl a. The two largest peaks elute 

at 18.2 and 19 min. The absorbance spectra of these peaks are shown in 

Figure 3.20(b and c). These peaks both exhibit absorbance maxima at 420 

and 656 nm. Two additional peaks are present in the chromatogram either 

side of these peaks at 17.5 and 19.5 min. The spectra of these peaks have 

maxima at 428 and 660 nm.  

The Soret maximum of the two central peaks is red-shifted from that observed 

above for transmetallated pigments. This can be explained by the different 

solvent environment of the pigments during HPLC (ethyl 

acetate/methanol/water mixture versus pure methanol). The absorbance 

properties of chlorophyll and chlorophyll-like pigments have previously been 

shown to be highly sensitive to different solvent environments. Based on their 

absorbance spectra, elution positions, and peak ratios, these two peaks were 

determined to be Zn-Phe a and Zn-Phe b respectively. As observed above for 

BChl c and Zn-BPhe c and as reported previously,224 the zinc containing 

analogues elute later than those containing magnesium. Only the Zn-Phe a 

peak was collected and used for further analysis. The two additional peaks on 

either side, based on spectra and retention times, are most likely Mg 

containing Chl a or Chl a derivatives. 
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Figure 3.20 HPLC purification of Zn-pheophytin a. 

(a) Chromatogram monitored at 658nm. (b-c) Absorbance spectra of 

the two peaks (in order of elution).  

 

 

Figure 3.21 3-dimensional field chromatogram for purification of Zn-Phe a. 

Contour plot showing the spectra of pigments eluting at different times 

for zinc modified Chl a pigments.  
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3.3.1.4 XPS analysis of zinc modified pigments 

XPS was used to help confirm successful incorporation of a zinc into Chl a 

and BChl c pigments. Figures 3.22 and 3.23 show XPS survey spectra for 

these zinc modified pigments. The key elements detected were gold, carbon, 

oxygen, nitrogen, and zinc. The absence of magnesium as a component and 

presence of zinc is consistent with the successful transmetallation of 

pigments. Figures 3.24 and 3.25 detailed XPS spectra for the Au 4f, C 1s, N 

1s, O 1s, and Zn 2p regions are shown for Zn-Phe a and Zn-BPhe c. In 

addition, Mg 1s and Mg 2p are shown for Zn-Phe a and Zn-BPhe c 

respectively. 

 

 

Figure 3.22 XPS survey spectrum for Zn-Phe a. 

XPS survey spectrum for Zn-Phe a showing the presence of carbon, 

oxygen, nitrogen, and zinc. 
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Figure 3.23 XPS survey spectrum for Zn-BPhe c. 

XPS survey spectrum for Zn-BPhe b showing the presence of carbon, 

oxygen, nitrogen, and zinc. 
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Figure 3.24 Detailed XPS spectra used for composition determinations of Zn-

Phe a. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 1s, (d) N 1s, (e) O 1s, 

(f) S 2p, and (g) Zn 2p peaks obtained for Zn-Phe a. 
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Figure 3.25 Detailed XPS spectra used for composition determinations of Zn-

BPhe c. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 2p, (d) N 1s,  (e) O 

1s, and (f) Zn 2p peaks obtained for Zn-BPhe c. 
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3.3.1.5 Aggregation of Zn-BPhes and BChls 

On injection of a saturated solution of BChl c into vigorously mixed hexane, a 

shift in the absorption maxima at 435 and 669 nm to 440 and 718 nm, 

respectively, was observed. A significant shoulder was observed at ~670 nm. 

Similarly, on injection of a saturated solution of HPLC purified Zn-BPhe c the 

peaks at 434 and 663 nm shifted to 427 and 703 nm, respectively, with a 

smaller peak appearing at ~660 nm. These spectral changes for BChl c and 

Zn-BPhe c are shown in Figures 3.26(a and b) respectively.  

The spectral changes observed on injection of BChl c and Zn-BPhe c into 

vigorously mixed hexane can be explained by aggregation of pigment 

monomers. The relatively small shift in peak positions compared to the spectra 

observed for chlorosomes and for previously published aggregates of BChl c 

along with the shoulder at ~670 nm observed in the case of BChl c and the 

smaller peak at ~660 nm observed for Zn-BPhe c can be explained by the 

presence of a significant quantity of pigment monomers. 
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Figure 3.26 Spectra of aggregates and monomers of BChl c and Zn-BPhe c. 

(a) Spectra for monomeric (red) and aggregated (black) BChl c. (b) 

Spectra for monomeric (red) and aggregated (black) Zn-BPhe c.  

 

3.3.2 Incorporation of a thiol group 

No visual change was observed directly after mixing of reagents used for 

incorporation of a thiol group at the C173 position. However, during the course 

of incubation an oily less optically dense, subphase formed (Figure 3.27). The 
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formation of such a phase may be consistent with the removal of the long 

alcohol tails from pigments. 

 

Figure 3.27 Reaction vial used for attempted incorporation of an SH group in 

Chl a. 

The photograph shows the oily sub-phase which forms during incubation 

of Chl a, cysteamine, and potassium tert-butoxide. 

3.3.2.1 XPS analysis of Cysteamine treated pigments. 

Figures 3.28 and 3.29 show XPS survey spectra for cysteamine-treated Chl a 

and Chl b respectively. As with native pigments carbon, nitrogen, oxygen, and 

magnesium were detected. In addition, for cysteamine treated pigments, 

sulphur and trace amounts of potassium were detected. Figures 3.30 and 3.31 

show detailed XPS spectra for the Au 4f, C 1s, Mg 1s, N 1s, O 1s, S 2p, Zn 

2p, and K 2p for treated Chl a and Chl b respectively. 
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Figure 3.28 XPS survey spectrum for cysteamine-treated Chl a. 

XPS survey spectrum for cysteamine-treated Chl a showing the 

presence of carbon, oxygen, nitrogen, magnesium, and sulphur. 

 

Figure 3.29 XPS survey spectrum for cysteamine-treated Chl b. 

XPS survey spectrum for cysteamine-treated Chl b showing the 

presence of carbon, oxygen, nitrogen, magnesium, and sulphur. 
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Figure 3.30 Detailed XPS spectra for cysteamine-treated Chl a. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c) Mg 1s, (d) N 1s, (e) O 1s, 

(f) S 2p, (g) Zn 2p, and (h) K 2p peaks obtained for cysteamine-treated 

Chl a. 
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Figure 3.31 Detailed XPS spectra used for cysteamine-treated Chl b. 

Detailed XPS spectra of (a) Au 4f, (b) C 1s, (c)  Mg 1s, (d) N 1s, (e) O 

1s, (f) S 2p, (g) Zn 2p, and (h) K 2p peaks obtained for cysteamine-

treated Chl b. 
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As these pigments were not purified after treatment due to the lack of a 

suitable method, simple examination of the component elements is insufficient 

to determine whether the reaction was successful. Instead it is necessary to 

examine whether a change in the proportion of element species exists.  Figure 

3.32 shows C 1s spectra for treated Chl a and Chl b which have been 

normalised and had the normalised C 1s spectra of their Chl a and Chl b 

counterparts subtracted. In both cases two troughs can be seen. This 

corresponds to the absence of components which were present in the native 

pigments in the spectra for treated components. Due to the binding energies 

of these troughs, the first higher binding energy trough may be tentatively 

assigned to missing contributions from carbon double bonds and CH3 carbon 

species.233 Similarly, the second lower energy peak most likely corresponds 

to missing CH2 species of carbon.233 This is consistent with the removal of 

hydrolysed hydrocarbon tails from the treated pigments. Combined with the 

visual observations described above, it can be concluded that during 

treatment, alcohol tails are lost and may evaporate during pigment drying. It 

was however, not possible to determine whether these tails were simply lost 

or were replaced with an SH terminated amine as intended, though no 

chemistry is known between the reagents used which would account for 

simple hydrolysis. Additional techniques will be required to assess the 

success of modification. Nonetheless, XPS results presented here are by no 

means incompatible with successful incorporation of a thiol group. 
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Figure 3.32 Difference spectra for C 1s peaks of cysteamine-treated Chl a 

and Chl b. 

C 1s carbon spectra for (a) treated Chl a and (b) treated Chl minus their 

untreated counterparts. The insert shows the hydrolysed tail with key 

groups indicated. 
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3.4 Conclusions 

This chapter demonstrates the successful extraction and purification of native 

chlorophylls and bacteriochlorophylls. Bacteriochlorophylls were successful 

extracted from whole cells and chlorosomes using a modified method with 

minimal degradation. Similarly, chlorophyll a and b have been successfully 

extracted from spinach also with minimal sample degradation. HPLC methods 

for purification of as extracted pigments were implemented for BChl c as well 

as Chl a and Chl b allowing the production of pure pigment samples for further 

characterisation and modification. Elemental analysis of these pigments were 

consistent with native chlorophylls and bacteriochlorophylls. 

A facile and versatile method for conversion of (B)Chls to Zn-(B)Phes has also 

been found and applied to Chl a, Chl b, BChl c, and BChl e, to produce Zn-

Phe a, Zn-Phe b, Zn-BPhe c, and Zn-BPhe e. These pigments have been 

spectrally characterised and a protocol for the purification of Zn-Phe a and Zn-

BPhe c developed. Crucially, it has been shown here that bacteriochlorophyll 

pigments modified in this way retain their ability to aggregate. As aggregation 

appears to be key to high efficiency energy transfer in bacteriochlorophyll 

containing systems, the ability of modified forms to aggregate is likely vital for 

their use in light harvesting or other photonic applications. 

Unfortunately, whilst evidence presented here is not conclusive, it is 

consistent with the successful incorporation of a thiol group. The identification 

of a suitable purification method and the further analysis of the reaction 

products are therefore needed to determine whether or not this was 

successful.



- 131 - 

Chapter 4 

Results and Discussion: Simulations of bacteriochlorophyll 

pigment assemblies 

4.1  Introduction 

This chapter details results from the first all-atom molecular dynamics 

simulations of bacteriochlorophyll pigment assemblies. This work is 

exploratory in nature and seeks to shed light on whether there is a preferred 

dimer arrangement, the origin of lamellar curvature and how chemical 

structure influences final structure. To this end, this chapter examines nine 

different previously proposed dimer configurations arranged in single (Section 

4.2) and triple layer (Section 4.3) assemblies. Initial and final structures of 

these simulations are examined and related to system energy. For single layer 

systems, X-ray scattering is predicted for stationary structures and compared 

to previously reported experimental results.  

4.2 Single sheets 

As a starting point, single sheet simulations were performed on optimised 

dimer arrangements of αAαA, αSαS, αSβA, αSβAd, βAβA, βSαA, βSαAg, 

βSαAu, and βSβS (see Figure 1.9). Three repeats with identical initial 

configurations and conditions were performed. Simulations were performed in 

vacuo in order to more closely mimic the hydrophobic environment found 

within chlorosomes. 
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4.2.1 Structures from simulation 

 

Figure 4.1 RMS pair-wise separation of Mg atoms for single layer pigment 

systems. 

Change in RMS separation of Mg atoms with time for simulations based 

on (a) αAαA, (b) αSαS, (c) αSβA, (d) αSβAd, (e) βAβA, (f) βSαA, (g) 

βSαAg, (h) βSαAu, and (i) βSβS dimer configurations and their repeats. 
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Root-mean-squared (RMS) pair-wise separation plots for magnesium atoms 

within each of the single sheet simulations are shown in Figure 4.1. In all 

cases, except for αSβA_1, values were found to stabilise quickly after a rapid 

initial decrease due to contraction of the sheets. In the case of αSβA_1 a rapid 

change was observed at the beginning of the simulation, followed by a second 

rapid decrease at ~15 ns. This is consistent with the existence of a rapidly 

formed, relatively long lived, initial state which later transitions to a second 

more stable state. In a number of cases, repeats for identically prepared 

starting configurations (dimer motifs) lead to very different equilibrium 

separations for Mg atoms. This suggests the formation of slightly different 

structures despite the same initial dimer configuration. 

Detailed discussion of simulation results for individual dimer configurations are 

presented in the following section. Dipole moment plots are provided both to 

show how dipole orientation differs between different dimer arrangements 

(e.g. parallel and anti-parallel arrangements) and also the extent to which 

initial dimer orientation is lost or maintained. Furthermore, whilst not 

calculated in this thesis, the arrangement of dipole moments within a structure 

determines its optical absorbance and circular dichroism properties. 

Consequently, significantly different dipole arrangements should lead to 

different optical properties. 

αAαA: For the αAαA dimer configuration, curvature was observed for two of 

the three repeats (Figure 4.2). In the case of the αAαA and αAαA _2 curvature 

was observed about a single axis with curvature taking place in the same 

direction in each repeat. In the case of αAαA _1 curvature was minimal with 

slight bending only observed at the sheet edges. Dipole moment plots (Figure 

4.3)1 suggest that significant disorder is present for this dimer arrangement. 

                                            

1 Larger versions of all dipole moment plots can be found in Appendix E. 
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Figure 4.2 Initial and final structures for simulations on sheets formed using 

the αAαA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αAαA, (c) αAαA _1, and (d) αAαA _2.  

 

 

Figure 4.3 𝑄𝑦 dipole moments for sheets formed using the αAαA dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αAαA, (b) αAαA _1, and (c) αAαA _2. The direction of the 

arrow indicates the direction of the dipole moment. 
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αSαS: No curvature was observed for single sheets constructed based on the 

αSαS dimer motif (Figure 4.4), however, some twisting of the sheets was 

observed. This twisting can most easily be seen in the dipole moment plots 

(Figure 4.5). These plots also indicated that sheets formed of the αSαS dimer 

arrangement retain a high degree of order. 

 

Figure 4.4 Initial and final structures for simulations on sheets formed using 

the αSαS dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αSαS, (c) αSαS_1, and (d) αSαS_2. 

 

Figure 4.5 𝑄𝑦 dipole moments for sheets formed using the αSαS dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αSαS, (b) αSαS_1, 

and (c) αSαS _2. The direction of the arrow indicates the direction of 

the dipole moment. 
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αSβA: In the case of the αSβA dimer sheets (Figure 4.6), two repeats, αSβA 

and αSβA_1, showed strong curvature shortly after the beginning of 

unrestrained simulation. However, sheets were later observed to straighten 

before finally curving again. The third repeat, αSβA_2, did not regain 

curvature. It can be seen from the dipole moment plots in Figure 4.7, that the 

third repeat is more disordered during the straightened phase, than its two 

counterparts. Consequently, one possible explanation for the failure of this 

repeat to either retain or regain curvature could be found in the increased 

disorder effectively blocking the transition. 
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Figure 4.6 Initial and final configurations for simulations on sheets formed 

using the αSβA dimer arrangement. 

Edge-on views of (a) the initial starting structures key states observed 

during the three simulation repeats (b) αSαS, (c) αSαS_1, and (d) 

αSαS_2. States shown for αSαS and αSαS_1 are representative of the 

three observed states. 
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Figure 4.7 𝑄𝑦 dipole moments for sheets formed using the αSβA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αSβA, (b) αSβA_1,  and 

(c) αSβA_2. The direction of the arrow indicates the direction of the 

dipole moment. 
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αSβAd: None of the αSβAd dimer simulations exhibited significant curvature 

(Figure 4.8). The slight curvature observed for simulation αSβAd_1 appears, 

on closer inspection, to be due to defect formation. This is consistent with the 

slight splintering of the sheet observed in the dipole moment plots (Figure 

4.9b). 

 

Figure 4.8 Initial and final structures for simulations on sheets formed using 

the αSβAd dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αSβAd, (c) αSβAd_1, and (d) αSβAd_2. 

  

Figure 4.9 𝑄𝑦 dipole moments for sheets formed using the αSβAd dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αSβAd, (b) αSβAd_1, 

and (c) αSβAd_2. The direction of the arrow indicates the direction of the 

dipole moment. 
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βAβA: All three repeats of single sheets composed of the βAβA motif curved 

strongly about a single axis in the same direction (Figure 4.10). The dipole 

moment plots for this dimer arrangement also look substantially different to 

those observed for other dimer configurations with dimers appearing to remain 

stacked and twist together as columns to provide curvature (Figure 4.11). 

 

Figure 4.10 Initial and final structures for simulations on sheets formed using 

the βAβA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βAβA, (c) βAβA_1, and (d) βAβA_2. 

 

Figure 4.11 𝑄𝑦 dipole moments for sheets formed using the βAβA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βAβA, (b) βAβA _1, and 

(c) βAβA _2. The direction of the arrow indicates the direction of the 

dipole moment. 
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βSαA: Together with the βSαAg motif, this dimer arrangement led to some of 

the most curved structures (Figure 4.12). In all three repeats, curvature took 

place in the same direction. In addition, a significant degree of twisting was 

observed as manifested in dipole moments fanning out (Figure 4.13). In the 

βSαA repeat, the pigment sheet curves and twists sufficiently that the top right 

hand dimer appears to stack with the bottom left hand dimer forming a helically 

wrapped tube. An overlap in the 𝑄𝑦 dipole moment corresponding to these 

two dimers is observed (Figure 4.13a) 

 

Figure 4.12 Initial and final structures for simulations on sheets formed using 

the βSαA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSαA, (c) βSαA_1, and (d) βSαA_2. 
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Figure 4.13 𝑄𝑦 dipole moments for sheets formed using the βSαA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSαA, (b) βSαA _1, and 

(c) βSαA _2. Arrow indicates the direction of the dipole moment. 

 

βSαAg: As with βSαA significant curvature and twisting is observed for the 

βSαAg dimer motif (Figure 4.14). Curvature takes place in the same direction 

for all repeats and in the same direction as that observed for βSαA dimer 

sheets. Two of the repeats, βSαAg and βSαAg_2, appear to form a helically 

wrapped tube, as described above. From the dipole moment plot, stacking of 

the dimers and dipole moments appears to take place along the interface 

where the tube forms (Figure 4.15 a and c). 

 

Figure 4.14 Initial and final structures for simulations on sheets formed using 

the βSαAg dimer arrangement. 

Edge-on views of (a) the initial starting structures with the three 

simulation repeats (b) βSαAg, (c) βSαAg_1, and (d) βSαAg_2. 
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Figure 4.15 𝑄𝑦 dipole moments for sheets formed using the βSαAg dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSαAg, (b) βSαAg _1, 

and (c) βSαAg _2. The direction of the arrow indicates the direction of 

the dipole moment. 

 

βSαAu: Strong curvature is observed in two of the three repeats (βSαAu_1 

and βSαA u_2) (Figure 4.16). The remaining repeat did not curve but a degree 

of sheet twisting can be seen from the dipole moment plot (Figure 4.17a). 

 

Figure 4.16 Initial and final structures for simulations on sheets formed using 

the βSαAu dimer arrangement. 

Edge-on views of (a) the initial starting structures along with the three 

simulation repeats (b) βSαAu, (c) βSαAu_1, and (d) βSαAu _2. 
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Figure 4.17 𝑄𝑦 dipole moments for sheets formed using the βSαAu dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSαAu, (b) βSαAu _1, 

and (c) βSαAu _2. Arrow indicates the direction of the dipole moment. 

 

βSβS: Whilst some slight curvature is apparent in the final structure of βSβS, 

βSβS_1 and βSβS_2 do not curve (Figure 4.18). Dipole moment plots (Figure 

4.19) show the dipole moments for this structure are significantly different from 

those observed for other configurations. In the case of this configuration, the 

dipole moments do not simply point in alternating directions. Instead, there is 

a large angle between the moments. 

 

Figure 4.18 Initial and final structures for simulations on sheets formed using 

the βSβS dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSβS, (c) βSβS_1, and (d) βSβS_2. 
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Figure 4.19 𝑄𝑦 dipole moments for sheets formed using the βSαAu dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSβS, (b) βSβS_1, and 

(c) βSβS_2. Arrow indicates the direction of the dipole moment. 

Summary of physical structures: 

A variety of structures were observed to form both within and between 

different dimer configurations. A number of systems exhibited significant 

curvature with the βSαA and βSαAu configurations curving most strongly. The 

formation of wrapped helical tube like structures together with overlapping and 

stacking of the dimers/dipole moment is of great interest given experimental 

observations of cylindrical forms within electron micrographs of chlorosomes.5 

Significantly, it was observed that, should a particular dimer unit structure 

exhibit curvature, this always takes place in the same direction for all repeats. 

This suggests that curvature may be dictated by an asymmetry of the dimer 

unit since the composition Is the same. Finally, the large variation in the 

appearance of dipole moment arrangement observed for different dimer 

configurations suggests that these systems will likely yield distinct absorbance 

and circular dichroism data. This may help further elucidate which structures 

are likely to be present in chlorosomes and in vitro aggregates. 

4.2.2 Energy of simulated systems 

Figure 4.20 shows the evolution of total system energy 𝐸𝑇𝑜𝑡 for each 

simulation grouped by dimer type. For all simulations, 𝐸𝑇𝑜𝑡 undergoes a initial 

rapid decrease. This rapid change mirrors the change seen in the pair-wise 

separation plots and consequently is likely due to the initial contraction of the 

system to a more favourable densely packed state. A more detailed analysis 

of system energy evolution is provided below for each dimer configuration. 
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Figure 4.20 Energy evolution for single layer pigment systems. 

Total system energy as a function of time for simulations based on (a) 

αAαA, (b) αSαS, (c) αSβA, (d) αSβAd, (e) βAβA, (f) βSαA, (g) βSαAg, 

(h) βSαAu, and (i) βSβS dimer configurations and their repeats. 
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αAαA: The evolution of total system energy during the simulation is very 

similar for all repeats despite two of the sheets exhibiting curvature. This 

suggests that for this dimer configuration the presence of curvature is neither 

more nor less energetically favourable. 

αSαS: In all cases the change of energy during repeats of simulations of αSαS 

followed the same trend however the energy for the αSαS_2 repeat decreases 

less than the other two repeats. This may be explained by the greater degree 

of twisting observed for this repeat preventing such close packing of pigments. 

αSβA: Of all the dimer motifs, the αSβA configuration showed the greatest 

variation in system energy between repeats. In addition, there also appeared 

to be a number of intermediate states. This correlates with visual observations 

of sheet morphology also indicating the existence of multiple states. The two 

simulation repeats with a final curved state were found to be of the lowest 

energy though there is insufficient evidence to conclusively state whether a 

causal link exists. 

αSβAd: As with the corresponding non-displaced αSβA dimer arrangement, 

these simulations exhibited some variation in energies and existence of long 

lived intermediate states (αSβAd_1). The decrease in energy observed at ~12 

ns for αSβAd_1 corresponds to a decrease in the RMS pair-wise separation 

at the same time. Despite this, no obvious structural transition could be 

discerned in the simulation movies.  

βAβA: During simulations of βAβA sheets, the system energy of the three 

repeats was similar however small differences in final equilibrium energy 

appear to be correlated to degree of curvature. More highly curved systems 

were found to have a lower final energy. 

βSαA: In the case of sheets composed of the βSαA dimer unit, the energy 

evolution of all three repeats were in good agreement with each other. 

βSαAg: The energy of two repeats of simulations on sheets of this structure 

(βSαAg and βSαAg_1) were very similar in energy. The third repeat, βSαAg_2 

was markedly lower in energy, and was found to have the lowest energy of all 
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simulations. The reason why this repeat had an energy significantly lower that 

the other two βSαAg. 

βSαAu: In simulations of sheets based in the βSαA dimer motif, the total 

system energy evolved similarly in all three repeats. The energy of the βSαA 

βSαAu_2 is slightly higher than the other two repeats. The reason for this is 

not clear from examination of the three βSαAu repeats. 

βSβS: Single sheet simulations based on this dimer structural unit were 

similar with the curved βSβS repeat having a slightly higher energy than its 

two flatter counterparts. 

The final system energy averaged over the final 1 ns is shown in Figure 4.21a. 

The antiparallel dimer arrangement appears to be the energetically favourable 

arrangement. It can be seen that of the majority lowest energy states, 

correspond to the βSαA, βSαAg, and βSαAu dimer arrangements. The 

βSαAg_2 simulation had the lowest energy for any simulation, however, the 

other two repeats (βSαAg and βSαAu_2) had higher energy. After βSαAg_2 

the next three lowest energy structures corresponded to the βSαAu 

configuration. 

Figure 4.21b shows the average final system energy colour coded according 

to curvature. Here, energy is presented per dimer to allow comparison with 

the αSβAd sheets which contain a smaller number of dimers. The lowest 

energy states generally exhibit curvature. The two exceptions to this are the 

βSαAu and αAαA_1 simulations. It is however, worth noting that other repeats 

of this dimer structures do exhibit curvature. 
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Figure 4.21 Final energy per dimer of single sheet systems. 

Final 𝐸𝑇𝑜𝑡 of single layer systems averaged over the last 1 ns and colour 

coded according to (a) dimer arrangement and (b) curvature. 
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4.2.3 X-ray scattering predictions 

Figure 4.22. shows X-ray scattering predictions for each simulated sheet. 

 

Figure 4.22 X-ray scattering predictions for single sheet systems. 

X-ray scattering predictions for (a) αAαA, (b) αSαS, (c) αSβA, (d) αSβAd, 

(e) βAβA, (f) βSαA, (g) βSαAg, (h) βSαAu, and (i) βSβS dimer 

configurations, and repeats. (j) Experimental X-ray scattering data35 for 

comparison. 
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X-ray scattering data is shown as the average of 100 frames (0.1 ns) in order 

to provide a more realistic basis for comparison with experimental results. 

With the exception of simulations for sheets based on the αAαA dimer 

configuration (Figure 4.22a), significant peaks were observed in the predicted 

X-ray scattering curves for all simulations. A number of strong peaks were 

observed in the predicted X-ray scattering curve for the initial configuration of 

αAαA. These peaks however are largely absent in the curves obtained for the 

final configurations. The lack of structure observed in X-ray scattering for this 

repeat is consistent with the high degree of disorder observed in the dipole 

moment plot (Figure 4.3). In general, X-ray scattering patterns for a particular 

dimer configuration are similar across all repeats. The exception to this is for 

the αSβA dimer configuration for which one of the repeats exhibits significantly 

reduced X-ray scattering. The reason for this is not clear and the dipole 

moment plot for this simulation does not show any more or less disorder than 

the other two repeats. 

Figure 4.22j shows experimental X-ray scattering data for dried chlorosomes. 

The key features of the X-ray scattering curve are shown. A significant peak 

at 0.3 Å-1 corresponds to a lattice spacing of 20.9 Å and the (001) lattice plane. 

Psencik et al.35 attribute this peak to the inter-lamellar spacing. Three peaks 

are present in the 0.5 – 0.8 Å-1 region at 0.54, 0.67, and 0.76 Å-1. These peaks 

correspond to lattice spacings and planes of 11.7 Å (010), 9.4 Å (100), and 

8.2 Å (110). A final broad peak at 1.4 Å-1 is present. This peak is attributed to 

short range interactions including chlorin ring stacking. 

The lamellar peak at 0.3 Å-1 is absent in all cases for predicted X-ray scattering 

curves. This can be explained by the presence of only a single layer of 

pigments in the simulations. 

The two lowest energy systems βSαAg and βSαAu do not exhibit the expected 

peaks in the 0.5-0.8 Å-1 region. βSαAg and its two repeats exhibited peaks at 

~0.57, ~0.80, and ~0.95 Å-1. These peaks correspond to ~11.0, ~7.9, and ~6.6 

Å-1, indicating denser packing than that observed experimentally. βSαAu and 

βSαAu_2 exhibit peaks at ~0.43, ~0.57, and ~0.86 Å-1, corresponding to 

spacings of ~14.6, ~11.0, and ~7.3 Å-1. These values differ not only from those 

observed experimentally but also from those stated above for βSαAg. This 
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suggests the packing of pigments within sheets consisting of the two different 

but similar dimer configurations differ significantly. Further investigation of this 

may provide insight into why the βSαAu dimer motif does not exhibit curvature 

in triple layer systems. Of the structures, the only simulations which had peaks 

in this region corresponding to those seen experimentally were αSβA_2 and 

αSβAd_2 which both had a strong peak at ~0.76 Å-1. Additionally, a peak at 

0.54 Å-1 was observed for αSβA_2. The significance of this is not clear. Where 

peaks were observed in this region, they were less pronounced than those 

shown in Figure 4.22j. It should however be noted that prominent peaks are 

also absent in the X-ray scattering patterns for chlorosomes of certain species, 

i.e. Chlorobaculum phaeobacteroides.38 Chlorosomes of these species 

typically exhibit greater disorder. Consequently, the lower prominence, and in 

some cases absence, of peaks in the predicted patterns could be indicative of 

greater disorder. 

This discrepancy between predicted X-ray scattering for simulated structures 

and that observed experimentally can most likely be ascribed to the fact that 

calculated curves are based single layer structures whereas multilamellar 

structures are believed to exist within chlorosomes. Consequently, further X-

ray scattering predictions are required for triple layer systems. The increase 

in the number of scattering centres for triple layer systems combined with the 

fact that the brute force algorithm employed here scales with the square of the 

system size, means this will likely necessitate the modification of the script to 

incorporate a Monte-Carlo sampling method. 

All simulations except for those of αAαA (Figure 4.22a) exhibited a peak at 

~1.6 Å-1 corresponding to a spacing of 3.9 Å. This peak corresponds to the 

peak observed experimentally at 1.4 Å-1 for dried chlorosomes. The smaller 

spacing observed for short range interactions the absence of solvent or 

additional components (e.g. inter-digitating carotenoid pigments) in simulated 

structures. The simulated peak is far sharper than that observed 

experimentally, indicating a smaller degree of disorder in simulated structures 

compared to chlorosomes. In addition, as the predicted X-ray scattering 

curves correspond to single layer systems. As a consequence, these sheets 

are not affected by tails of pigments from neighbouring sheets which are also 
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likely to increase the spacing between units as well as, due to their high 

flexibility, increasing disorder. 

4.3 Multilamellar systems 

Following the simulation of single sheet systems, triple layer systems were 

investigated. It was hoped that these simulations would more accurately 

represent the lamellar structure believed to be found within chlorosomes. 

Furthermore, by having a central sheet of pigments which was surrounded on 

both sides by another layer of pigments, it was hoped that conclusions could 

be drawn on the role of stabilising effects in in vivo and in vitro aggregates.  

4.3.1 Structures from simulation 

Figure 4.23 shows RMS pair-wise separation plots for Mg atoms in each 

simulation. As with the single layer structure, there is a sharp initial decrease 

in Mg atom spacing. This decrease is larger than that observed for single 

layers. This is likely due to individual layers moving together at the beginning 

of the unrestrained simulation. Another difference between these RMS pair-

wise separation plots and those for single layer structures is the smaller 

variation in RMS pair-wise separation for a given dimer configuration. This 

may be explained by motion and available structures being more restricted in 

triple layer systems due to pigments having less space to move arround. As 

with the single layer structures, a more detailed description of final simulation 

structures is given bellow. 
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Figure 4.23 RMS pair-wise separation of Mg atoms for single layer 

pigment systems. 

Change in RMS separation of Mg atoms with time for 

simulations based on (a) αAαA, (b) αSαS, (c) αSβA, (d) 

αSβAd, (e) βAβA, (f) βSαA, (g) βSαAg, (h) βSαAu, and (i) 

βSβS dimer configurations and their repeats. 
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αAαA3: Both αAαA3 and αAαA3_2 showed slight curvature whereas no 

discernible curvature was observed for αAαA3_1 (Figure 4.24). This contrasts 

with single layer simulations of the αAαA dimer configuration in which two out 

of the three repeats curved substantially. A possible explanation is that the 

presence of additional layers reduced the amount of space each layer has to 

curve and suggests that curvature may take place on a single layer level rather 

than as a group of layers all curving together. In all cases, sheets, and the 

spaced between sheets, contracted substantially early in the simulation – 

consistent with observations for Mg atom RMS pair-wise separation. As with 

single layer simulations of this dimer configuration, a degree of disorder is 

present in the dipole moment plots (Figure 4.25). 

 

 

Figure 4.24 Initial and final structures for simulations on triple layer systems 

formed using the αAαA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αAαA3, (c) αAαA3_1, and (d) αAαA3_2. 
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Figure 4.25 𝑄𝑦 dipole moments for sheets formed using the αAαA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αAαA3, (b) αAαA3_1, 

and (c) αAαA3 _2. Arrow indicates the direction of the dipole moment. 

 

αSαS3: No curvature was observed for αSαS3_1 or αSαS3_2. Very slight 

curvature was observed for αSαS3 (Figure 4.26). The space between layers 

decreased rapidly at the beginning of the simulation however, the contraction 

of the individual pigment layers was less than that observed for αAαA3. Dipole 

moment plots (Figure 4.27) indicate a high level of order was maintained for 

this dimer configuration during simulation. 

 

Figure 4.26 Initial and final structures for simulations on triple layer systems 

formed using the αSαS dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αSαS3, (c) αSαS3_1, and (d) αSαS3_2. 
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Figure 4.27 𝑄𝑦 dipole moments for sheets formed using the αSαS dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αSαS, (b) αSαS _1, and 

(c) αSαS _2. The direction of the arrow indicates the direction of the 

dipole moment. 

 

αSβA3: Initially, αSβA3 developed slight curvature which persisted for some 

time before progressing into more distinct curvature. In the case of αSβA3_1 

and αSβA3_2, the system only exhibited mild curvature (Figure 4.28). The 

existence of an intermediate less curved state for αSβA is consistent with the 

change in RMS pair-wise separation of Mg atoms observed for this simulation 

at ~7 ns. The dipole moment plots (Figure 4.29) suggest that initial order is 

maintained better for this simulation repeat than the other two. This adds 

further weight to the hypothesis that the preservation of order within the 

system is required for curvature - at least as far as the αSβA dimer motif is 

concerned. 
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Figure 4.28 Initial and final structures for simulations on triple layer systems 

formed using the αSβA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αSβA3, (c) αSβA3_1, and (d) αSβA3_2. 

 

 

Figure 4.29 𝑄𝑦 dipole moments for sheets formed using the αSβA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structure of simulations (a) αSβA, (b) αSβA _1, and 

(c) αSβA _2. The direction of the arrow indicates the direction of the 

dipole moment. 
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αSβAd3: Neither αSβAd3_1 nor αSβAd3_2 curved significantly, however 

SβAd3_1 showed a “defect” type anomaly on one layer with a highly local 

bend of approximately 90 degrees (Figure 4.30). In addition, αSβAd3_2 

showed some bending localised to sheet edges. These two observations may 

be ascribed to the highly anisotropic nature of the sheets which, unlike all other 

dimer configurations, resemble rhombuses rather than rectangles. αSβAd3 

showed significant curvature which none of the single layer simulations did. 

The reason for this remains unclear, however, the curved structure also 

appears to be the most ordered as shown in dipole moment plots (Figure 

4.31). 

 

 

Figure 4.30 Initial and final structures for simulations on triple layer systems 

formed using the αSβAd dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) αSβAd3, (c) αSβAd3_1, and (d) αSβAd3_2. 
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Figure 4.31 𝑄𝑦 dipole moments for sheets formed using the αSβAd dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) αSβAd3, (b) αSβAd3_1, 

and (c) αSβAd3_2. Arrow indicates the direction of the dipole moment. 

 

βAβA3: In the case of βAβA, as with single layer simulations, curvature was 

observed for all three repeats (Figure 4.32). Curvature took place in the same 

direction for all repeats and corresponds to the direction of curvature observe 

for single sheets. As with βAβA single layer systems, dipole moment plots for 

this structure look very different to those observed for other dimer 

configurations with dimers appearing to remain stacked and twist together as 

columns to provide curvature (Figure 4.33). 
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Figure 4.32 Initial and final structures for simulations on triple layer systems 

formed using the βAβA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βAβA3, (c) βAβA3_1, and (d) βAβA3_2. 

 

 

 

Figure 4.33 𝑄𝑦 dipole moments for sheets formed using the βAβA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βAβA3, (b) βAβA3_1, 

and (c) βAβA3_2. The direction of the arrow indicates the direction of the 

dipole moment. 
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βSαA3: For triple layers of the βSαA dimer system (Figure 4.34), all repeats 

exhibited unambiguous curvature in the same direction as that observed for 

single layer simulations on βSαA. In addition, a high level of order is apparent 

in the dipole moment plots (Figure 4.35). 

 

Figure 4.34 Initial and final structures for simulations on triple layer systems 

formed using the βSαA dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSαA3, (c) βSαA3_1, and (d) βSαA3_2. 

 

 

Figure 4.35 𝑄𝑦 dipole moments for sheets formed using the βSαA dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSαA3, (b) βSαA3_1, 

and (c) βSαA3_2. Arrow indicates the direction of the dipole moment. 
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βSαAg3: As with the βSαA systems, simulations on the Ganapthy32 optimised 

arrangement, βSαAg triple layers all lead to curved systems with curvature 

taking place in the same direction (Figure 4.36). In addition, some helical 

twisting of the sheets was apparent both in simulation movies and in the dipole 

moment plots (Figure 4.37). 

 

Figure 4.36 Initial and final structures for simulations on triple layer systems 

formed using the βSαAg dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSαAg3, (c) βSαAg3_1, and (d) βSαAg3_2. 

 

Figure 4.37 𝑄𝑦 dipole moments for sheets formed using the βSαAg dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structure of simulations (a) βSαAg3, (b) βSαAg3_1, 

and (c) βSαAg3_2. Arrow indicates the direction of the dipole moment. 
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βSαAu3: Little to no curvature was observed for triple layer systems 

composed of the X-ray optimised βSαAu dimer arrangement (Figure 4.38). 

However, some twisting of the sheets was observed. A reasonable degree of 

dipole moment disorder was apparent in these structures (Figure 4.39). 

 

Figure 4.38 Initial and final structures for simulations on triple layer systems 

formed using the βSαAu dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSαAu3, (c) βSαAu3_1, and (d) βSαAu3_2. 

 

 

Figure 4.39 𝑄𝑦 dipole moments for sheets formed using the βSαAu dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structures of simulations (a) βSαAu3, (b) βSαAu3_1, 

and (c) βSαAu3_2. The direction of the arrow indicates the direction of 

the dipole moment. 
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βSβS3: Triple layer sheets formed of the βSβS dimer arrangement (Figure 

4.40) did not show any curvature however some slight twisting was observed 

– especially in the case of βSβS3_1. This can most easily be seen in the dipole 

moment plots (Figure 4.41). These plots also indicate that despite the lack of 

curvature, a high level of order is maintained during the simulation. 

 

Figure 4.40 Initial and final structures for simulations on triple layer systems 

formed using the βSβS dimer arrangement. 

Edge-on views of (a) the initial starting structure along with the three 

simulation repeats (b) βSβS3, (c) βSβS3_1, and (d) βSβS3_2. 

 

Figure 4.41 𝑄𝑦 dipole moments for sheets formed using the βSβS dimer 

arrangement. 

Edge-on views of the arrangement of the 𝑄𝑦 dipole moments, shown as 

arrows, for the final structure of simulations (a) βSβS3, (b) βSβS3_1, and 

(c) βSβS3_2. Arrow indicates the direction of the dipole moment. 
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Summary of physical structures: 

In all cases, curvature for triple layer systems was less than that observed for 

single layer systems. This is most likely due to reduced freedom of movement 

in larger more densely packed systems. As with the single layer systems, 

should a particular dimer unit structure exhibit curvature, this takes place 

always in the same direction for repeats of that configuration as well as that 

observed for the single layer variant. Providing further evidence that curvature 

may be dictated by an asymmetry of the dimer unit.  

Additionally, there appears to be a link between dipole order and curvature 

with more curved systems exhibiting greater order. However, the case of 

βSβS which shows a high level of disorder but no curvature suggest this may 

be necessary but not sufficient for curvature to form.  

As with single layer simulations, the dipole moment plots for the βAβA motif 

differ markedly to those observed for other repeats and appear to indicate 

either a different form or origin of curvature. The diversity within the dipole 

moment plots observed for single layers was similarly observed for triple layer 

systems. The significance of this being that different dipole configurations will 

lead to different absorbance and circular dichroism (CD) spectral properties 

which may help identify which of these structures – if any - are present in 

chlorosomes and in vitro aggregates. 

 

4.3.2 Energy of simulated systems 

The total system energy as a function of simulation time for simulations of 

triple layer systems in vacuum is show in Figure 4.42. As with the RMS pair-

wise separation plots a rapid decrease in energy is shown at the start of the 

simulation. Again, as with the RMS pair-wise separation plots less diversity is 

observed compared with the single layer simulation and in the majority of 

cases, energy evolved similarly for all repeats of a given dimer configuration. 

Exceptions to this are for αSβAd, αSβAd3, and βAβA3 which are explained 

below. 

αSβA3: The energy trajectories for αSβA3_1 and αSβA3_2 remain close to 

each other throughout their evolution. In contrast total system energy of αSβA 
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whilst initially decreasing almost identically to αSβA3_1 and αSβA3_2 spends 

an extended period in a higher energy state before eventually transition to a 

lower energy state. This is consistent with the observation of an intermediate 

slightly curved state which later transitions to a more curved final state. The 

timescale over which this takes place is consistent with both the observed 

simulation trajectories and the RMS pair-wise separation plots (Figure 4.23 c). 

αSβAd3: For this dimer configuration, all repeats undergo a rapid decrease 

in energy, reaching equilibration quickly. However, the final energy of the 

αSβAd repeat – the only one to exhibit curvature – is higher.  

βAβA3: The energy trajectories for triple layers of this dimer arrangement 

follow similar trends however, the system energy for the most curved system 

(βAβA3_2) is slightly lower. 

The apparent contradiction between the αSβA and βAβA simulations in which 

the most curved sheet exhibit both the highest and lowest energy respectively 

suggest that that whilst curvature may be energetically favourable for a 

particular dimer arrangement, it may be unfavourable for another. This 

suggests that there may not necessarily be a straightforward connection 

between curvature and overall system energy. 
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Figure 4.42 Energy evolution for the simulation of triple layer pigment 

systems. 

Total system energy as a function of time for simulations of triple layers 

based on (a) αAαA, (b) αSαS, (c) αSβA, (d) αSβAd, (e) βAβA, (f) βSαA, 

(g) βSαAg, (h) βSαAu, and (i) βSβS dimer configurations and their 

repeats. 
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Figure 4.43 Final energy per dimer of triple layer systems. 

Final 𝐸𝑇𝑜𝑡/dimer of multilamellar systems averaged over the last 1 ns 

colour coded according to (a) dimer arrangement and (b) curvature. 
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Figure 4.43a shows the final system energy averaged over the final 1 ns colour 

coded by dimer configuration. Again, energy is presented per dimer to allow 

comparison with the αSβAd sheets which contain a smaller number of dimers. 

As with the single sheet simulations, the antiparallel dimer arrangement 

appears to be the energetically favourable arrangement. It can be seen that 

of the majority lowest energy states, correspond to the βSαA, βSαAg, and 

βSαAu dimer arrangements with the βSαAu arrangement, again, having the 

lowest energy.  

Figure 4.43b shows the average final system energy colour coded according 

to curvature. Despite the inconsistency mentioned above, like the single layer 

simulations, the lowest energy triple layer systems generally exhibit curvature. 

The exception to this is the βSαAu motif which had the three lowest energies 

but did not curve. 

 

Figure 4.44 Energy stabilisation for triple layer systems. 

Final 𝐸𝑇𝑜𝑡/dimer averages for each dimer configuration for single layer 

(black) and triple layer (red). Error bars = standard error. 
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Figure 4.44 shows final 𝐸𝑇𝑜𝑡 averages over each dimer configuration for both 

single and triple layers. In all cases the energy for the triple layer systems is 

lower than for its single layer equivalent. This suggest that there is a stabilising 

effect from having additional layers/molecules. This effect was found to range 

between 0.56 +0.01 and 5.61 +0.06 kcal/mol depending on dimer 

configuration. 

4.4 Conclusions and future directions 

RMS pair-wise separation plots for Mg atom separation indicated that the 

prepared dimer sheets undergo rapid contraction and generally reach an 

equilibrium state within a couple of nanoseconds. In addition to investigating 

the displacement of Mg atoms, future work may investigate the separation of 

key groups within individual dimers, e.g. the length of the Mg-OH coordination 

bond. This may provide new information including whether or not initial 

spacings for optimised dimer units persist during simulation. This maybe 

particularly relevant for the similar βSαA, βSαAg, and βSαAu arrangements 

where configurations differ from each other only in the separations of pigments 

and the molecular contacts within dimers. 

For both single layer and triple layer systems, a variety of structures were 

observed. In some cases, different structures were seen for repeats of the 

same dimer configuration. In addition, for some dimer configurations 

simulations indicated the existence of long-lived intermediate states. A 

number of systems exhibited significant curvature with the βSαA and βSαAu 

configurations curving most strongly in both the single layer and triple layer 

simulations. In all cases, a higher degree of curvature was observed in single 

layer systems. The formation of wrapped helical-tube like structures together 

with overlapping and stacking of the dimers/dipole moments was only 

observed for single layer structures. The lower degree of curvature for 

multilamellar systems is most likely due to reduced freedom of movement in 

larger, more densely packed systems. This appears to contradict the 

observation of highly curved multilamellar structures in EM images in some 

chlorosomes. One possible explanation is a step-wise formation of curved 
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regions from single sheets with additional layers curving around the initial 

cylinder. 

It was observed for both single and triple layer systems that, should a 

particular dimer unit structure exhibit curvature, this always takes place in the 

same direction for all repeats. As the chemical structure of pigments is the 

same in all simulated cases, this suggests that curvature may be dictated by 

an asymmetry of the dimer unit.  

In this thesis, curvature has been assessed by visual means only. In order to 

draw more concrete conclusions about the role of curvature it will be 

necessary to find a means of mathematically describing and assessing the 

extent of this curvature. 

A correlation between dipole order and curvature was observed with more 

curved systems exhibiting greater order. However, the case of βSβS which 

shows a high level of disorder but no curvature suggest this may be necessary 

but not sufficient for curvature to form. The dipole moment plots for both the 

single and triple layer simulations on the βAβA motif differ markedly to those 

observed for other repeats and appear to indicate either a different form or 

origin of curvature. It is expected that the large variation in the appearance of 

dipole moment arrangement presented here will lead to different CD and 

absorbance properties. Consequently, future work should include prediction 

of CD and absorbance properties for these simulation structures. This will offer 

an additional means of comparing simulation work to experimentally observed 

structures and may provide a means of determining which structures are likely 

to be present in chlorosomes and in in vitro aggregates. 

Time resolved system energy plots for the simulations revealed an initial rapid 

decrease in energy on a time scale identical to that observed for the decrease 

in RMS pair-wise separation Mg atom separation. This suggests that the 

decrease in energy may be due to contraction of pigment assemblies into 

more favourable densely packed systems. Examination of the final energy per 

dimer of systems indicated that the X-ray unit cell optimised βSαAu dimer 

motif may be the most energetically favourable for both single and triple layer 

systems. This was followed by the similar βSαA and βSαAg motifs.  
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In the majority of cases, the lowest energy systems generally exhibited 

curvature. The exception to this is the βSαAu motif which had the three lowest 

energies but did not curve. This apparent conflict could be explained by the 

existence of two phases within chlorosomes with βSαAu dimer motif forming 

the flat sections and βSαAg forming the curved sections. Some evidence for 

the existence of both flat and curved regions has been seen in wild type 

chlorosomes.5 

Further work is required to determine conclusively whether a link between 

lower energy states and curvature exists and if so, why the βSαAu dimer motif 

is an exception. In addition, it should be possible, by examining the evolution 

of individual energy components, including electrostatic and van der Waals 

contributions to gain a more comprehensive picture of the energetics of sheet 

curvature.  

A significant energy stabilisation was observed for triple layer systems 

compared to their single layer counterparts. Again, a more comprehensive 

examination of individual energy components should shed light on the origins 

of this effect. In addition, it should be possible to decompose system energy 

into individual layers. 

X-ray scattering predictions from single layer sheets failed to reproduce the 

peaks observed for dried chlorosomes. This is most likely due to the presence 

of a single sheet rather than the multilamellar structure believed to exist in 

chlorosomes.5 Therefore, future work should include the modification of the X-

ray scattering script to use a Monte Carlo sampling method to allow the 

calculation of expected X-ray scattering behaviour for the simulation outputs 

from triple layer structures. 

Finally, it should be noted that the exploratory study undertaken here has 

resulted in the generation of an extraordinarily large volume of data. The 

observation of unexpected dimer twisting for the βAβA highlights the potential 

of data mining this large body of information to enable a more thorough 

understanding of BChl aggregation as well as to help set the direction of future 

study. 
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Chapter 5 

Results and Discussion: Synthesis and characterisation of 

copper indium sulphide quantum dots 

5.1 Introduction 

This chapter contains results relating to the synthesis and characterisation of 

copper indium sulphide (CIS) nanoparticles (NPs). Section 5.2 deals with the 

structure and composition of the synthesised quantum dots (QDs) including 

size, composition, and crystal phase. Section 5.3 focuses on the optical 

properties of the quantum dots including: steady state absorbance 

measurements, steady state photoluminescence (PL) emission, 

photoluminescence quantum yield (PLQY) measurements, PL lifetime 

measurements, and transient absorption spectroscopy. In both sections, 

critical attention is played to the role of synthesis time and consequent 

nanoparticle size. Furthermore, care is taken to link optical properties of 

nanoparticles to their composition and structure. Finally, Section 5.4 provides 

an overview of results presented in this chapter and key conclusions. 

5.2 Structure and composition 

The dependence of QD size on synthesis time was followed using 

transmission electron microscopy (TEM). The crystal phase was determined 

using lattice spacing from high-resolution transmission electron microscope 

(HR-TEM) imaging and powder X-ray diffraction (XRD). Finally, detailed 

investigation of NP composition and its dependence on synthesis time was 

performed using energy dispersive analysis of X-rays (EDX) and X-ray 

photoelectron spectroscopy (XPS). 

5.2.1 Quantum dot synthesis and cleaning 

Figure 5.1 shows aliquots of quantum dots taken during synthesis. During 

synthesis a gradual colour change from colourless to red-orange (left to right), 

indicating particle nucleation and growth, was observed. 
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Quantum dots from different aliquots exhibited different levels of colloidal 

stability. Earlier aliquots were found to be far more stable than later ones which 

tended to flocculate more quickly. This may be explained by the number of 

available stabilising thiol ligands being insufficient to fully stabilise larger 

particles. 

 

Figure 5.1 Aliquots of quantum dots taken at various synthesis times. 

Aliquots of nanoparticles taken at (left to right) 10 min, 15 min, 20 min, 

25 min, 30 min, 40 min, 50 min, 60 min, 75 min, and 90 min. A colour 

change, indicative of increasing nanoparticle size, is observed.   

Quantum dots were cleaned using a diafiltration setup in which nanoparticles 

in methanol were pumped using a peristaltic pump through a dialysis 

membrane. For effective removal of unreacted product and free thiol with 

minimum loss of sample, the retentate containing the quantum dots should 

retain its strong initial colour whilst the permeate remains colourless. This was 

true for all but the shortest synthesis time aliquots, in which case the permeate 

was slightly coloured. This is likely due to smaller particles being able to cross 

the dialysis membrane in higher numbers than the other, larger particle 

containing aliquots. For synthesis times between 10 and 40 min, the turbidity 

of the samples decreased after cleaning suggesting the successful removal 

of unwanted components. For the later aliquots, this was not the case, 

suggesting the turbidity could be due to particle flocculation.  
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5.2.2 Transmission electron microscopy 

HR-TEM was used to determine the size distribution (diameter) and 

morphology of nanoparticles. Well-dispersed nanoparticles were observed in 

low magnification TEM images (Figure 5.2).  

 

Figure 5.2 TEM images of CIS quantum dots (220 000x magnification). 

TEM micrographs of QDs used for sizing of each aliquot (a) 10 min, (b) 

15 min, (c) 20 min, (d) 25 min, (e) 30 min, (f) 40 min, (g) 50 min, (h) 60 

min. Scale bar = 10 nm. 
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Figure 5.3 Size distribution histograms of quantum dots from TEM images. 

Size-distribution histograms for synthesis times (a) 10 min, (b) 15 min, 

(c) 20 min, (d) 25 min, (e) 30 min, (f) 40 min, (g) 50 min, and (h) 60 min. 
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Size distributions for each synthesis time were fitted to normal distrubutions 

with widths ranging from 0.2 nm to 0.5 nm (Figure 5.3). Nanoparticle size 

increased with synthesis time from 1.4 ± 0.2 nm (10 min) to 3.8 ± 0.4 nm (60 

min) (Figure 5.4 and Table 5.1). This is consistent with the colour change 

observed during synthesis. The increase in size with synthesis time shown in 

Figure 5.4 appears to be approximately linear and not of the form expected 

for Oswald ripening (see Chapter 1). This indicates growth may be taking 

place by a different mechanism.  

Table 5.1 NP size as determined using TEM for each synthesis time. 

Time (min) Size (nm) 

10 min 1.4 +0.2 

15 min 1.8 +0.2 

20 min 1.9 +0.3 

25 min 2.0 +0.3 

30 min 2.6 +0.4 

40 min 3.1 +0.5 

50 min 3.2 +0.4 

60 min 3.8 +0.4 
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Figure 5.4 Dependence of quantum dot size on synthesis time. 

The size of quantum dots increased with increasing synthesis time. Line 

added as a guide to the eye. 

 

5.2.3 Lattice spacings from high resolution TEM 

Higher magnification HR-TEM allowed the imaging of lattice fringes. These 

lattice fringes are clearly visible in Figure 5.5. Fringe separations determined 

by line fitting were 0.30 +0.01 nm. A Fast Fourier Transform (FFT) method 

was also used to determine lattice spacing of 0.3 +0.1 nm (inset Figure 5.5). 

These values are consistent with the 112 plane of chalcopyrite CIS. 
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Figure 5.5 Lattice spacings from HR-TEM (690 000x magnification). 

Lattice spacings were determined from HR-TEM images both using 

fringe separations determined from line spacing and using a FFT method 

applied to induvial particles (insert). Scale bar = 5 nm. 

 

5.2.4 X-ray diffraction 

Powder XRD pattern (Figure 5.6) for the nanoparticles was consistent with 

reference data for the tetragonal chalcopyrite CIS phase. The Bragg peaks 

are consistent with the lattice spacing values obtained from TEM. 

Consequently, it can be assumed with some certainty that the quantum dots 

described here are of the same chalcopyrite crystal structure as those 

prepared using dodecanethiol as a solvent and sulphur source.215 



- 182 - 

 

Figure 5.6 Powder XRD pattern of CIS nanoparticles. 

XRD pattern for CIS NPs with a synthesis time of 20 min (black line) was 

in good agreement with reference data for CIS chalcopyrite (red line). 

 

In the absence of strain, the line-broadening, 𝛽, of a diffraction peak at angle, 

𝜃, is related to the crystalline grain size, 𝐷.   

𝐷 = 𝜅𝛽 cos 𝜃 

where 𝜅 is a shape factor accounting for the shape of the crystallite. For a 

tetrahedron the value of 𝜅 is approximately 0.9. The wavelength, 𝜆, of the 

incident X-rays was 0.154 nm. For the XRD data shown in Figure 5.6 the grain 

size was determined to be 1.8 +0.1 nm. This value is consistent (within error) 

with size determined from TEM for synthesis times of 20 min (1.9 +0.3 nm). 

This suggests that each QD is acting as a single diffracting domain (grain). 

Smaller grain sizes would indicate greater disorder. 
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5.2.5 Energy dispersive X-ray analysis  

EDX analysis was performed on aliquots of nanoparticles taken between 10 

and 60 min. The ratio of copper to indium was determined (Figure 5.7), with 

the proportion of copper decreasing with increasing size and synthesis time.  

 

 

Figure 5.7 Dependence Cu:In ratio on nanoparticle size as determined by 

EDX analysis. 

The ratio of copper to indium was found to decrease with increasing 

particle size. Despite issues with determining accurate ratios due to high 

background copper levels, a clear trend is nevertheless present. 

 

5.2.6 X-ray photoelectron spectroscopy 

XPS was performed on nanoparticles with synthesis times 10 min – 60 min. 

The surface sensitivity of XPS makes accurate composition determination 

difficult. The sampling depth for copper (at an electron energy of 1000 eV) is 

estimated to be >4.5 nm.233 As this is larger than the nanoparticles produced 

here, it is expected that this should not be too great an issue. Survey spectra 
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for all sizes are shown in Figure 5.8. The primary elements found were carbon, 

nitrogen, oxygen, copper, indium, sulphur, and gold. Whilst the presence of 

copper, indium, sulphur, carbon, oxygen, and nitrogen may be attributed to 

the CIS nanoparticles, it should be noted that carbon, oxygen, and nitrogen 

are also likely present as contaminants. The gold detected is from the gold 

layer on the coated microscope slide. 

The individual Cu 2p, In 3d, and S 2p profiles of the CIS quantum dots are 

shown in Figure 5.9 for each size of nanoparticle. Atomic ratios of copper and 

indium are shown in Table 5.2. Figure 5.10 shows the dependence of Cu:In 

ratio on particle size. All particles were copper deficient with Cu:In <1. 

Additionally, the ratio of Cu to In increases with increasing particles size. This 

may be explained either by annealing of Cu vacancies with increasing 

synthesis time or alternatively by an increase in available copper or 

moderation of relative reactivities with higher temperatures. This is opposite 

to the trend was observed for EDX composition determination. Additionally, 

the Cu:In ratios determined by EDX were much higher. Both of these factors 

can be explained by the high and unstable copper background observed in 

these EDX measurements. 

Table 5.2 Copper to indium ratio as determined using XPS for quantum dots 

of each size. Quantum dots were found to be increasingly copper 

deficient with increasing size. 

Size (nm) Cu:In ratio 

1.4 +0.2 0.15 +0.01 

1.8 +0.2 0.18 +0.01 

1.9 +0.3 0.22 +0.02 

2.0 +0.3 0.19 +0.01 

2.6 +0.4 0.32 +0.02 

3.1 +0.5 0.30 +0.02 

3.2 +0.4 0.34 +0.02 

3.8 +0.4 0.37 +0.03 
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Figure 5.8 XPS survey spectra for CIS nanoparticles of various sizes. 

XPS survey spectra for CIS nanoparticles of size (a) 1.4 +0.2 nm (10 

min), (b) 1.8 +0.2 nm (15 min), (c) 1.9 +0.3 nm (20 min), (d) 2.0 +0.3 nm 

(25 min), (e) 2.6 +0.4 nm (30 min), (f) 3.1 +0.5 nm (40 min), (g) 3.2 +0.4 

nm (50 min), and (h) 3.8 +0.4 nm (60 min). 
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Figure continued on adjacent page. 
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Figure 5.9 Detailed XPS spectra used for the determination of elemental 

ratios of Cu:In for various sizes of nanoparticles. 

Cu 2p (left), In 3d (middle), and S 2p (right) XPS spectra used for the 

determination of nanoparticle composition are shown for nanoparticles 

of size (a) 1.4 +0.2 nm (10 min), (b) 1.8 +0.2 nm (15 min), (c) 1.9 +0.3 

nm (20 min), (d) 2.0 +0.3 nm (25 min), (e) 2.6 +0.4 nm (30 min), (f) 3.1 

+0.5 nm (40 min), (g) 3.2 +0.4 nm (50 min), and (h) 3.8 +0.4 nm (60 min). 
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Figure 5.10 Composition: Dependence of copper-indium ratio on nanoparticle 

size as determined by XPS. 

5.3 Optical properties 

The size (and composition) dependent optical properties of the nanoparticles 

were investigated using steady state absorbance measurements, steady state 

PL emission, PLQY measurements, and PL lifetime measurements. In 

addition, transient absorption spectroscopy measurements were performed 

on nanoparticles of with a synthesis time of 20 min (size 1.9 +0.2 nm) in order 

to provide more information on energy levels and possible recombination 

pathways. 

 

5.3.1 Absorbance measurements, determination of E1, Ex 

Figure 5.11 shows UV-Visible (UV-Vis) absorbance spectra for each synthesis 

time. The UV-Vis absorbance spectra for the synthesized nanoparticles 

exhibit a broad shoulder and absorption edge corresponding to a single broad 

excitonic band. There is a marked red-shift in the absorbance spectra with 

increasing synthesis time and particle size (Figure 5.11), consistent with 

previous observations.154,182 In contrast with previously observed spectra, the 
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nanoparticles synthesised here exhibit more pronounced absorbance 

shoulder corresponding to the first excitation band (𝐸1). The shape and size 

dependent trend of these spectra are typical of all syntheses. 

 

Figure 5.11 UV-Vis absorbance of quantum dots with various synthesis times. 

Absorbance spectra for NPs with various synthesis times. The 

absorption feature is significantly red-shifted between 450 and 550 nm 

with increasing synthesis time. 

 

Tauc plots were used for the determination of optical band-gaps, 𝐸𝑥, from 

absorbance data. Tauc plots corresponding to the quantum dots in Figure 5.11 

are shown in Figure 5.12. The band-gap energy was found to decrease with 

increasing nanoparticle size owing to a decrease in quantum confinement, as 

expected. For the largest nanoparticles, the value of 𝐸𝑋 is comparable to that 

for bulk CIS (~1.5 eV)154 indicating weak/no quantum confinement. The 

decrease in band-gap energy with increasing particle size is shown in Figure 

5.13. This decrese does not appear to follow the 
1

𝑟2 expected for quantum 
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confinement (Equation 1.18). This may be explained by defects and 

composition effecting the band-gap. 

 

Figure 5.12 Tauc plots for determination of band-gap. 

Tauc plots were used for the determination of band-gaps for each aliquot 

taken at (a) 10 min, (b) 15 min, (c) 20 min, (d) 25 min, (e) 30 min (f) 40 

min, (g) 50 min, and (h) 60 min.  
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Figure 5.13 Band-gap of quantum dots as a function of size. 

Optical band-gap energy, 𝐸𝑥, (as determined using Tauc plots shown in 

Figure 5.12) dependence on nanoparticle size. 

 

In addition to calculating the optical band-gap energy, the energy of the first 

excitation was also determined. As the location of this feature can be difficult 

to determine in absorbance spectra, the local minimum of the second 

derivative of the absorbance with respect to wavelength was used. Generally, 

this feature was undetectable for those samples at the extremes of size e.g. 

those corresponding to synthesis times of 10 min or 60 min. Second 

derivatives of absorbance against wavelength for all other synthesis times are 

shown in Figure 5.14, together with the corresponding position of the first 

transition.  Figure 5.15 shows the corresponding energy of the first transition 

plotted against synthesis time. In all cases, the energy of 𝐸1 is greater than 

that of the optical band-gap, indicating that the energy of the first transition for 

which a solution to Schrodinger's equation exists is larger than the band-gap 

energy. (Figure 5.13).  
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Figure 5.14 Second derivative of absorbance used for the determination of 

𝐸1. 

The local minimum of the second derivative of the absorbance with 

respect to wavelength was used to determine the position of the first 

excitation for aliquots taken at (a) 15 min, (b) 20 min, (c) 25 min, (d) 30 

min, (e) 40 min, and (f) 50 min. 
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Figure 5.15 Position of first excitation of quantum dots as a function of size. 

Size dependence of the first transition 𝐸1 as determined from the second 

derivative as shown in Figure 5.14. 

 

For both the optical band-gap and the energy of the first transition, the values 

and the overall trend was found to be reproducible across syntheses. Figure 

5.16a and Figure 5.17b show values of 𝐸1 and 𝐸𝑥 respectively as determined 

for three different synthesis batches. This high level of consistency between 

batches indicates the synthesis method presented here allows for the 

reproducible synthesis of particles with well controlled properties. 
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Figure 5.16 Reproducibility of 𝐸𝑥 and 𝐸1 between batches (different colours). 

Both the optical band-gap and energy of the first transition was found to 

be reproducible between batches. 
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5.3.2 PL emission 

PL emission spectra for sizes with measurable emission are shown in Figure 

5.17. QD aliquots taken at 10 and 60 min did not exhibit fluorescence  In all 

cases the PL spectral peak is broad in nature due to the intra band-gap defect 

driven nature of emission. Peaks may be further broadened by the existence 

of a broad size distribution of particles. The energy of defect levels within the 

band-gap are highly sensitive to local properties of the crystal structure. 

Consequently, an ensemble of quantum dots of varying sizes should be 

expected to have a range of defect positions, leading to a broader spectral 

form. The position of the PL maximum is plotted against particle size in Figure 

5.18. A clear size dependency of the peak position can be seen with its 

position increasing from 641 +1 nm to 695 +1 nm as nanoparticles increase 

in size from 1.8 +0.2 nm to 3.2 +0.4 nm. This trend is consistent with the 

expected decrease in band-gap with increasing quantum dot size. In addition 

to a pronounced red shift, peak broadening is also observed as synthesis time 

and consequently nanoparticle size increases. 

 



- 196 - 

 

Figure 5.17 PL emission spectra for quantum dots with various synthesis 

times. 

Representative PL emission spectra for synthesis time CIS quantum dots 

in methanol are shown.  
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Figure 5.18 Dependence of PL peak position on NP synthesis time. 

 

The strong dependence of the absorbance and emission properties on 

nanoparticle size and synthesis time, combined with the batch-to-batch 

reproducibility (Figure 5.19), demonstrates that the optical properties can be 

reliably tuned by varying synthesis time. 
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Figure 5.19 Reproducibility of PL emission between batches (different 

colours). 

The size dependent shift in PL peak position was found to be consistent 

between batches. 

 

Figure 5.20 below shows both the absorbance spectrum and the PL emission 

spectrum plotted together. As observed previously, there is a large energetic 

difference between the first excitonic feature in the absorbance spectrum and 

the PL emission peak. This difference, known as the Stokes shift, is typically 

attributed to the involvement of intra-gap states in PL emission. Table 5.3 

contains calculated Stokes shifts for all nanoparticles for which PL emission 

was observable. The size of the Stokes shift was found to be independent of 

nanoparticle size. 
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Figure 5.20 UV-vis and PL showing the Stokes shift for 1.9 +0.3 nm diameter 

nanoparticles. 

The absorbance (black) and PL emission (red) spectra for 1.9 +0.3 nm 

diameter nanoparticles are overlaid. 

Table 5.3 Stokes shifts calculated for nanoparticles of various sizes. 

Size (nm) Stokes shift (nm) 

1.8 +0.2 167 +2 

1.9 +0.3 168 +2 

2.0 +0.3 160 +2 

2.6 +0.4 159 +2  

3.1 +0.5 167 +2 

3.2 +0.4 186 +2 

 

5.3.3 PLQY 

PLQY measurements plotted against size, measured at various excitation 

energies, are shown in Figure 5.21 and Table 5.4. Values ranged from ~2-6% 
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comparable with previous best published values123,155,156,158,161,162,181–184 for 

core only CIS quantum dots. PLQY increased with increasing particle size 

while having slightly lower PLQY at higher excitation energies 

 

 

Figure 5.21 Dependence of PLQY on nanoparticle size and excitation energy. 

The PLQY for nanoparticles between 1.8 +0.2 nm and 2.6 +0.4 nm is 

shown for excitation energies of 2.42 eV, 2.63 eV, 2.76 eV, 2.91 eV, and 

3.1 eV. 
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Table 5.4 PLQY for nanoparticles between 1.8 +0.2 and 2.6 +0.4 nm at a 

range of excitation energies. 

Size 

(nm) 

PLQY 

(%) 

at 2.42 eV 

PLQY 

(%) 

at 2.63 eV 

PLQY 

(%) 

at 2.76 eV 

PLQY 

(%) 

at 2.91 eV 

PLQY 

(%) 

at 3.10 eV 

1.8 +0.2 3.41 +0.14 2.02 +0.09 2.11 +0.09 1.83 +0.08 2.09 +0.09 

1.9 +0.3 5.00 +0.21 3.58 +0.15 3.96 +0.17 3.54 +0.15 3.37 +0.15 

2.0 +0.3 4.85 +0.21 3.86 +0.16 4.39 +0.19 3.81 +0.16 3.61 +0.16 

2.6 +0.4 5.87 +0.25 5.08 +0.22 5.85 +0.25 4.99 +0.22 4.52 +0.20 

 

5.3.3 Fluorescence lifetime measurements 

Figure 5.22 shows a typical PL lifetime decay spectrum for nanoparticles with 

a synthesis time of 20 min. Spectra for samples with synthesis times of 15, 

20, 25, and 30 min were all similar with a broad peak at ~ 596 nm (shifting to 

~622 nm for larger nanoparticles), consistent with steady state PL 

measurements. A systematic blue shift of ~10 nm is observed in the PL 

emission, compared to steady state measurements, for all sizes. This can be 

explained either by the fact that steady state measurements are more 

sensitive to longer lived components which have a large PL max wavelength 

or via sample degradation with a decrease in the wavelength of maximum PL 

emission corresponding to particle shrinking. The PL emission peak shifts to 

longer wavelengths with increasing delay time before decaying to zero within 

~1500 ns. This suggests the existence of a shorter lifetime component and a 

longer-lived red-shifted component as observed for stoichiometric CIS 

nanoparticles previously.182  
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Figure 5.22 Contour plot of representative PL decay spectrum. 

Representative data for 1.9 +0.3 nm (20 min synthesis time) 

nanoparticles taken over the first 1600 ns after excitation at 450 nm. 

 

Global analysis fitting yielded three decay associated spectral components 

with different spectra: a short wavelength fast component with a lifetime of ~5 

ns, a medium-lived component of ~35 ns and a long-lived component of ~245 

ns (Figure 5.23). Three components were also identified by single value 

decomposition. Both the 35 ns peak and the 245 ns peak were red-shifted 

relative to the shortest lifetime component with the longest lifetime 245 ns 

lifetime peak exhibiting a significant shift. Based on both lifetimes and spectral 

peak positions, these components, consistent with previous literature,182 were 

attributed to band-gap emission, surface state emission, and defect-related 

emission respectively.  
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Figure 5.23 Decay associated spectra (DAS) obtained from global analysis 

fitting. 

DAS obtained for nanoparticles of size (a) 1.8 +0.2 nm (15 min), (b) 1.9 

+0.3 nm (20 min), (c) 2.0 +0.3 nm (25 min), (d) 2.6 +0.4 nm. In all case, 

optimal fitting was found for three components with 𝜏1~ 5 ns (black), 𝜏2~ 

35 ns (red), and 𝜏3~ 240 ns (blue). For each NP size, the amplitudes of 

peaks shown correspond to the relative spectral intensities determined 

by fitting. 

 

The spectral position of all three components was found to be red-shifted with 

increasing nanoparticle size (Figure 5.24a). The increase in wavelength for 

the component corresponding to band-gap emission can be ascribed to a 

decrease in separation of the valence and conduction bands with increasing 

particle size owing to decreasing quantum confinement. The Stokes shift for 
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each of the three components was not found to vary significantly with 

nanoparticle size (Table 5.5). 

 

Figure 5.24 Size dependence of fitted peak positions and area fractions. 

(a) Size dependence of fitted peak position for quantum dot size and 

each component. (b) Size dependence of area fraction determined for 

each DAS component. 
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Table 5.5 Stokes shift for each of the three fitted PL decay components. No 

significant dependence on nanoparticle size was observed. 

Size (nm) 

Stokes shift (nm) 

Short lifetime 
component 

Stokes shift (nm) 

Medium lifetime 
component 

Stokes shift (nm) 

Long lifetime 
component 

1.8 +0.2 4 +2 29 +2 48 +2 

1.9 +0.3 9 +2 23 +2 46 +2 

2.0 +0.3 22 +2 33 +2 55 +2 

2.6 +0.4 11 +2 27 +2 49 +2 

 

It was assumed that peak area was proportional to the relative contribution of 

each type of recombination. The relative area of longest lifetime component 

increases with synthesis time whilst the relative area of the band-gap and 

surface state-related peaks decrease with nanoparticle size (Figure 5.24b).  

Figure 5.25 shows a proposed recombination scheme based on the three 

pathways indicated by PL lifetime measurements and their size dependence. 
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Figure 5.25 Effect of nanoparticle size on energy levels. 

Schematic showing proposed changes to energy levels with increasing 

particle size. Arrow thickness is indicative of relative contribution of the 

component as indicated by DAS obtained from global analysis of PL 

lifetime data. 

 

5.3.4 Transient absorption measurements 

Figure 5.26a shows the transient absorption spectrum of evolution over 500 

ns.  This consists of a positive band at ~400nm, and two negative bands at 

~500 nm and ~640 nm. A positive change in absorption, ΔA, is associated 

with excited state absorption (ESA).  The strong negative ΔA centred at ~500 

nm is associate with a ground state bleach (GSB) and thus the combination 

of the GSB and ESA bands correspond to the population of the ground and 

excited state.  However, stimulated emission (SE) from the conduction band 

(CB) to the valance band (VB) will also cause a negative ΔA and this will be 

on the red-side of the GSB. It is therefore possible that the centre band at 

~500 nm has contributions from GSB and SE. Stimulated emission often 

resembles the fluorescence spectrum. In this study, the dominant radiative 

pathway is consistent with donor to VB, and the third band is consistent with 

this wavelength position.   
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Figure 5.26 Transient absorption spectroscopy. 

Transient absorption spectroscopy analysis of quantum dots of 1.91 nm 

(20 min synthesis time) (a) Transient absorption spectrum over the first 

500 ns after excitation. (b) Fitted DAS showing three components with 

similar lifetimes to those observed for PL decay. 

 

Global analysis fitting yielded three spectral components (shown in Figure 

5.26b) with lifetimes similar to those observed from PL lifetime analysis. In 
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addition to the surface defect and core defect related energy levels observed 

in PL lifetime analysis, global analysis fitting suggests the existence of an 

acceptor level just above the valence band involved in stimulated emission 

from both defect levels as shown in Figure 5.25. 

5.4 Conclusion 

In conclusion, this chapter demonstrates a novel method for the direct 

synthesis of high quality hydrophilic nanoparticles with PLQY comparable to 

the best reported values for core CIS nanoparticles. Furthermore, this thesis 

presents the first known quantitative size dependent PLQY results for CIS 

nanoparticles. Consistent with previously published work,182  PL decay 

measurements suggest three key recombination pathways contributing to PL 

emission. Through careful control of nanoparticle size and synthesis of 

deliberately copper deficient nanoparticles with the degree of copper 

deficiency controlled by synthesis time, this thesis has shed new light on the 

role of size and composition on the relative contribution of band-gap 

recombination, core defect and surface defect emission. It is, however, difficult 

to conclusively separate what is a size dependent effect and what is a defect 

dependant effect. It is likely that further experimental and simulation work, 

including further study on the impact of composition variations for 

nanoparticles of a fixed size, will be needed to clarify this.
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Chapter 6 

Conclusions and future perspectives 

This thesis concerns bacteriochlorophyll (BChl) pigments and copper indium 

sulphide (CIS) quantum dots (QDs) and how they may be combined for the 

production of novel photonic materials. The key aims of this thesis were: 

1) Chemical modification of BChl pigments improve stability and 

facilitate coupling (Chapter 3). 

2) Molecular dynamics simulations of BChl assemblies to investigate 

pigment aggregation and curvature (Chapter 4). 

3) Synthesis and characterisation of Cu-deficient CIS QDs of various 

sizes (Chapter 5). 

The key results for each of each chapter are summarised below (Section 6.1) 

with a discussion on the direction of future work on BChl pigment modification 

and QDs towards the production of hybrid BChl-QD nanostructures (Section 

6.2). Proposals for the further study of pigment assemblies using molecular 

dynamics are also presented. 

6.1 Conclusions 

6.1.1 BChl and Zinc-(Bacterio)Pheophytin (Zn-(B)Phe) Preparation 

and Chemical Modification 

Chapter 3 describes progress towards the production of chemically modified 

pigments suitable for coupling to QDs. 

Bacteriochlorophylls and chlorophylls were successful extracted with minimal 

sample degradation and pure samples obtained using high pressure liquid 

chromatography (HPLC). A facile and versatile method for conversion of 

(B)Chls to Zn-(B)Phes has also been developed and applied to Chl a, Chl b, 

BChl c, and BChl e, to produce zinc containing analogues. These pigments 

were spectrally characterised and a protocol for the purification of Zn-Phe a 

and Zn-BPhe c developed. Crucially, BChl pigments modified in this way 
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retained their ability to aggregate. This is significant as the ability of modified 

pigments to aggregate and retain their strong excitonic coupling and highly 

efficient energy transfer, is likely to be vital for their use in light harvesting or 

other photonic applications. Whilst evidence presented here is not conclusive, 

it is consistent with the successful incorporation of a thiol group for direct 

couping to CIS quantum dots. 

6.1.2 Simulations of BChl pigment assemblies 

Chapter 4 presented the first molecular dynamics study on BChl pigment 

assemblies. This exploratory study led to a number of new observations on 

the behaviour of pigment sheets and their curvature as well as providing new 

evidence in support of the previously proposed syn-anti βSαA, βSαAg and 

βSαAu dimer motifs.26 

A variety of structures were observed to form both within and between 

different dimer configurations with some simulations exhibiting long-lived 

intermediate states. In addition, a number of systems exhibited significant 

curvature with the βSαA and βSαAu configurations curving most strongly. 

Direction of curvature appears to be dictated by an asymmetry of the dimer 

unit. A higher degree of curvature was observed in single layer systems. The 

formation of wrapped helical tube like structures was only observed for single 

layer structures. The lower degree of curvature for multilamellar systems is 

most likely due to reduced freedom of movement in larger more densely 

packed systems. This appears to contradict the observation of highly curved 

multilamellar structures in electron microscopy (EM) images of certain 

chlorosomes. One possible explanation is the formation of curved regions 

from single sheets with additional layers curving around the initial cylinder.  

The transition dipole moment plots for both the single and triple layer 

simulations on the βAβA motif differ markedly to those observed for other 

repeats and appear to indicate either a different form or origin of curvature. It 

is expected that the large variation in the appearance of dipole moment 

arrangement presented here will lead to different circular dichroism (CD) and 

absorbance properties.  
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Investigation of system energy showed a rapid decrease in energy which 

appears to be due contraction of pigment systems into more favourable 

densely packed systems. Examination of the final energy per dimer indicated 

that the X-ray unit cell optimised βSαAu dimer motif may be the most 

energetically favourable for both single and triple layer systems. This was 

followed by the similar βSαA and βSαAg motifs.  

In the majority of cases, the lowest energy systems generally exhibited 

curvature. The exception to this is the βSαAu motif which had the three lowest 

energies but did not curve in the triple sheet arrangement. This apparent 

conflict could be explained by the existence of two phases within chlorosomes, 

with βSαAu dimer motif forming the straight sections and βSαAg forming the 

curved sections. Some evidence for the existence of both flat and curved 

regions has been seen in wild type chlorosomes.5 As well as providing a 

greater understanding of how pigment sheets curve in chlorosomes, 

investigation of curvature in these systems is likely to be important for the 

generation of hybrid systems containing aggregated BChls. In these 

structures it may be necessary to match curvature of aggregates to the radius 

of the quantum dots. 

6.1.3 Synthesis and characterisation of CIS QDs 

Chapter 5 describes a novel method for the direct synthesis of high quality 

hydrophilic CIS QDs and their extensive characterisation.  

In this study, the dodecanethiol method of synthesizing CIS quantum dots234  

was modified. Changing the solvent, surfactant and the sulphur source led to 

the synthesis of more hydrophilic nanoparticles. These nanoparticles had 

photoluminescence quantum yield (PLQY) comparable to the best reported 

values for core CIS nanoparticles. Furthermore, this thesis presents the first 

known quantitative size dependent PLQY results for CIS nanoparticles. 

Consistent with previously published work,182  photoluminescence (PL) decay 

measurements suggest three key recombination pathways contributing to PL 

emission. Through careful control of nanoparticle size and synthesis of 

deliberately copper deficient nanoparticles with the degree of copper 

deficiency controlled by synthesis time, this thesis has shed new light on the 
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role of size and composition on the relative contribution of band-gap 

recombination, core defect and surface defect emission. A detailed 

understating of the energy levels and recombination pathways of CIS quantum 

dots is essential for successful coupling of QDs to BChls and their aggregates. 

6.2 Future work 

6.2.1 Pigment modification and production of hybrid systems 

Key to successful coupling of BChl pigments and QDs outlined in Chapter 1 

lies in the successful chemical modification of BChl pigments to incorporate a 

trailing SH group to facilitate chemical linking of the two components. 

Therefore, further work should include the identification of a suitable 

purification method for the cysteamine treated pigments as well as further 

investigation to determine if chemically modification has been successful. It 

should then be possible, via ligand exchange to coat the QDs with Chl and 

BChl pigments.  

The resulting hybrid material should then be extensively characterised to 

determine the extent and nature of coupling. This might use techniques such 

as: absorption measurements, PL emission, excitation, lifetime and transient 

absorption measurements. It is anticipated that transfer of energy between 

QDs and pigments will either take the form of Förster resonance energy 

transfer (FRET) or excitonic coupling. Direct excitonic coupling should lead to 

changes in peak positions and ratios of peaks in absorption, PL emission and 

PL excitation spectra distinct from those expected by simple superposition of 

their individual spectra. In the case of FRET only changes to PL and transient 

absorption (TA) lifetimes are expected due to the presence of additional 

energy levels and pathways within the system compared to bare QDs. 

Additionally, techniques such as dynamic light scattering (DLS) and 

fluorescence correlation spectroscopy (FCS) would allow changes to 

hydrodynamic radius to be investigated.  

6.2.2 Simulations on pigment assemblies 

The simulations on BChl pigment assemblies have highlighted a number of 

areas for future study.  
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Further work may investigate the separation of key groups within individual 

dimers, e.g. the length of the Mg-OH coordination bond. This may provide new 

information including whether or not initial spacings for optimised dimer units 

persist during simulation. This maybe particularly relevant for the similar 

βSαA, βSαAg, and βSαAu arrangements. 

In this thesis, curvature has been assessed by visual means only. In order to 

draw more concrete conclusions about the role of curvature it will be 

necessary to find a means of mathematically describing and assessing the 

extent of this curvature with respect to the direction of e.g. dipole moments. 

Through additional simulations on different BChl c homologues and BChl d 

and e, it should be possible to correlate system curvature to chemical 

structure. In addition to providing insight on the behaviour of pigment 

assemblies in chlorosomes of different species, this may suggest ways in 

which pigments can be modified to alter curvature. Experimentally, this would 

allow fine tuning of pigment assemblies to increase the chances of successful 

coupling to quantum dots. 

Future work should also include prediction of CD and absorbance properties 

for these simulation structures. This will offer an additional means of 

comparing simulation work to experimentally observed structures and may 

provide a means of determining structures are likely to be present in 

chlorosomes and in vitro aggregates. 

Further work is required to determine conclusively whether a link between 

lower energy states and curvature exists and if so, why the βSαAu dimer motif 

is an exception. In addition, it should be possible, by examining the evolution 

of individual energy components, including electrostatic and van der Waals 

contributions to gain a more comprehensive picture of the energetics of sheet 

curvature. Again, a more comprehensive examination of individual energy 

components should shed light on the origins of the stabilisation effect 

observed for triple layers over their single layer counterparts. In addition, it 

should be possible to decompose system energy into individual layers. 

X-ray scattering predictions from single layer sheets failed to reproduce the 

peaks observed for dried chlorosomes. This is most likely due to the presence 
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of a single sheet rather than the multilamellar structure believed to exist in 

chlorosomes.5 Therefore, future work should include the modification of the X-

ray scattering script to use a Monte Carlo sampling method to allow the 

calculation of expected X-ray scattering behaviour for the simulation outputs 

from triple layer structures. 

Finally, as mentioned previously, the exploratory study undertaken here has 

resulted in the generation of an extraordinarily large volume of data. Data 

mining this large body of information to enable a more thorough understanding 

of BChl aggregation as well as to help set the direction of future study. 

6.2.3 Quantum dots 

Further study on the impact of composition variations for nanoparticles of a 

fixed size may be useful to help separate which effects are size dependent 

and which are defect dependent. This could be combined with in-depth 

structural analysis using Electron energy loss spectroscopy (EELS) mapping 

in Super Scanning transmission electron microscopy (SuperSTEM) to enable 

a more detailed understanding of structure within Cu deficient CIS 

nanoparticles.235 

Single particle spectroscopy could also be used to probe the properties of 

individual particles. Finally, total internal reflectance fluorescence microscopy 

(TIRFM) studies of fluorescence intermittency (FI) of quantum dots should be 

performed. FI is the observation of “on” and “off” periods for emitting QDs. 

Extensive characterisation of FI of CIS QDs has not yet been performed. This 

would likely provide additional information on the energy transfer pathways 

within CIS QDs. It is expect, as with PL and TA lifetimes, that in the case of 

FRET, the addition of BChl pigments may lead changes due to presence of 

additional energy levels and pathways.
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Acac – Acetylacetonate 

AFM – Atomic force microscopy 

ARC1 – Advanced research 

computer 1 

ARC2 – Advanced research 

computer 2 

ATR – Attenuated total reflectance 

BChl – Bacteriochlorophyll 

BChl cF – Bacteriochlorophyll c 

esterified with farnesyl 

BChlide – Bacteriochlorophyllide 

CCD – Charge coupled device 

BPhe – Bacteriopheophytin 

BPheide – Bacteriopheophorbide 

Chl – Chlorophyll 

Chlide – Chlorophyllide 

CB – Conduction band 

CCD – Charge coupled device 

CD – Circular dichroism 

Chl – Chlorophyll 

Chlide – Chlorophyllide 

CIS - Copper indium disulfide 

(CuInS2) 

CISe – Copper indium diselenide 

(CuInSe2) 

Cryo-EM – Cryo-electron 

microscopy 

CV – Cyclic voltammetry 

DAP – Donor-acceptor pair 

DDT – Dodecanethiol 

DLD – Delay-line detector 

DLS – Dynamic light scattering 

EDTA - 

Ethylenediaminetetraacetic acid 

EDX – Energy dispersive analysis 

of X-rays 

EELS – Electron energy loss 

spectroscopy 

EET – Exciton energy transfer 

EM – Electron microscopy 

ESA – Excited state absorption 

FCS – Fluorescence correlation 

spectroscopy 

FEG – Field emission gun 

FFT – Fast Fourier transform 

FI – Fluoresce intermittency 

FTIR – Fourier transform infra-red 

spectroscopy 

FWHM – Full width at half 

maximum 
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Field 

GSB – Ground state bleach 

HAADF – High-angle annular dark 

field 
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HPLC – High pressure liquid 

chromatography 

HPLC-MS – High pressure liquid 

chromatography - mass 

spectrometry 

HRTEM – High resolution 

transmission electron microscopy 

ICCD – Intensified charge coupled 

device 

IR – Infrared  

IUPAC – International Union of 

Pure and Applied Chemistry 

LC – Liquid chromatography 

LD – Linear dichroism 

LED - Light emitting diode 

MCT – Mercury cadmium telluride 

MD – Molecular dynamics 

MeOH – Methanol 

MGDG – 

Monogalactosyldiacylglycerol 

MM – Molecular mechanics 

mPES - modified Polyethersulfone 

MUD – Mercaptoundecanol 

NaOH – Sodium hydroxide 

NC – Nanocrystal 

NHS - N-hydroxysuccinimide 

NIR – Near infra-red 

NMR – Nuclear magnetic 

resonance 

NP – Nanoparticle 

OAc – Acetate 

OD – Optical density 

ODE – Octadecene 

OLA – Oleylamine 

OLAM – Oleylamine 

OPO – Optical parametric 

oscillator 

PEG – Polyethylene glycol 

PBS – Phosphate buffered saline 

Phe – Pheophytin 

Pheide – Pheophorbide 

PL – Photoluminescence 

PLQY – Photoluminescence 

quantum yield 

PME – Particle-mesh Ewald 

method 

PTFE – Polytetrafluoroethylene 

QD – Quantum dot 

QM – Quantum Mechanical 
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RMS – Root-mean-squared 

SDD - Silicon drift device 

SE – Stimulated emission 

SuperSTEM – Scanning 

transmission electron microscopy 

TA – Transient absorption 

THF – Tetrahydrofuran 

TEM – Transmission electron 

microscopy 

TFA – Trifluoroacetic acid 

TFF – Tangential flow filtration 

TIRF – Total internal reflectance 

fluorescence 

TOOP – Trioctylphosphite 

TOPO – Trioclylphosphine 

UV – Ultraviolet 

UV-Vis – Ultraviolet-Visible 

VB – Valence band 

VMD – Virtual molecular dynamics 

XPS – X-ray photoelectron 

spectroscopy 

XRD – X-ray diffraction 

YAG - Yttrium aluminium garnet 

Zn-BPhe – Zinc-
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Zn-BPheide – Zinc-

Bacteriopheophorbide 

Zn-Phe – Zinc-Pheophytin 
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Appendix A 

Summary of “heat up” synthesis methods 

Table A.1 Overview of experimental procedures for ‘heating up’ methods 
 

Reagents/precursors Method NP properties 

(morphology, size, 

crystal phase) 

Ref 

Cu(SON(CNPr2)2)2, 

In(SON(CNPr2)2)3, OLAM, 1-DDT 

200 − 280 °C, 1 h 10 nm, trigonal, quasi-

spherical, hexagonal, 

conical, CP, WZ 

Abdelhady et al. 

2012168 

1-ODE, CuAc, In(OAc)3, 1-DDT, 240 °C, 18 min 3 nm, tetragonal, CP Akdas et al. 

2015236 

(Ph3P)CuIn(SC{O}Ph)4, 1-DDT, 

TOPO 

350 °C platelike, WZ, ZB Batabyal et al. 

2009177 

(Cu(SMDTC)Cl2), 

(In(SMDTC)2Cl2)Cl, EN 

120 °C, 1 h anisotropic hexagonal, 

WZ 

Bera et al. 2010180  

CuI, In(OAc)3, 1-DDT 230 °C, 10 min to 1.5 h 2.5-5 nm, tetragonal, 

CP 

Booth et al. 

2012211 

CuI, In(OAc)3, 1-DDT 230 °C, 5 min to 1 h ~3 nm, tetragonal, CP Booth et al. 

2013234 

(Ph3)2CuIn(SEt)4, hexanethiol, 

dioctylphthalate 

250/300 °C, 1 h 2-4 nm CP Castro et al. 

2004181 

CuI, In(OAc)3, 1-DDT, ODE 

CuI, In(OAc)3, 1-DDT, OLAM 

220 °C, overnight  

190 °C, overnight 

9 nm, 25 nm triangular 

pyramid, ZB 

hexagonal nanodisc, 

WZ 

Chang et al. 

2013189 

CuI, In(OAc)3, 1-DDT, OA, ODE 210 °C, 60 min 5 nm, CP Chen et al. 2012184 

CuCl, InCl3,Na2S, sodium citrate, 

thiourea, L-glutathion, H2O 

95 °C, 40 min 2.1 nm, ZB Chen et al. 2013193 

CuCl, InCl3, S, OLAM 265 °C, 1.5 h 15−17 nm, quasi-

spherical, CP 

Chiang et al. 

2011198 

CuI, In(OAc)3, DDT 180 °C, 10 h 3 nm, ZB Choi et al. 2015128 

Cu-oleate, In-oleate, 1-DDT, 

OLAM 

215 − 300 °C, 20 min nanorods, WZ Connor et al. 

2009197 

Cu(OAc)2, In(OAc)3, 1-DDT, OA, 

ODE 

215 − 280 °C 2.5 nm, ZB Deng et al. 2012237 
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Cu(S2COEt), In(S2COEt)3, EG 196 °C, 15 min to 4 h 3.6-3.8 nm, ~spherical, 

CP 

Dutta et al. 2006194 

CuCl, InCl3 x 4H2O, DDT, OA, ODE 200 °C, 30 min tetragonal, ZB, 

hexagonal, WZ 

Gong et al. 2014238 

CuI, In(OAc)3 x H2O, thiourea, OA 180 °C, 1 h ~10 nm, spheroidal, 

WZ 

Halpert et al. 

2015117 

Cu(OAc)2, In(OAc)3, 1-DDT, 

Sn(OAc)2Cl2 

200 °C, 120 min polygonal, CP He et al. 2012126 

Cu(OAc)2, In(OAc)3, 1-DDT, tri-n-

octylamine 

230 °C 1.8−2.8 nm, quasi-

spherical, CP 

Kino et al. 2008195 

CuCl, InCl3, thiourea, OLAM 240 °C, 1 h 13.4 × 5.7 nm, 

nanodiscs, CP/WZ 

Koo et al. 2009178 

CuI, In(OAc)3, 1-DDT 210 °C, 5 min – 1 h 3.4 nm tetragonal, CP Kraatz et al. 

2014215 

CuI, In(OAc)3, 1-DDT, ODE 200−270 °C, 15−290 

min 

platelike, WZ, ZB Li et al. 2009123 

CuI, In(OAc)3, 1-DDT 230 °C, 5 min to 1 h 3−8 nm, triangular, CP Li et al. 2011155 

Cu(NO3)2, In(NO3)3, 1-DDT, 

OLAM, OA 

240 °C, 30 min quasi-spherical, rods, 

WZ 

Lu et al. 2011186 

Cu(acac)2, In(acac)3, S, OLAM, 

(ODAm, OLAm, ODE)/(OLAm, 

ODE) 

241 °C, 1 h 7 nm, hexagonal tiles, 

CP 

Martins et al. 

2014239 

CuI, InI3, S, OLAM, TOP, ODE 160−180 °C, 60−300 s 3-6 nm, CP Nakamura et al. 

2006185 

CuI, InCl3, S/triphenylphosphite, 

TOOP, HDA, ODE 

200−240 °C, 2−10 min 5 nm, ZB, WZ Nose et al. 2009179 

CuI, OLA, ODE, InBr3, OLA, ODE, 

S, TPOP, TOOP 

200 °C, 30 s - 30 min 2.9 - 4.1 nm, 

~spherical, CP 

Omata et al. 

2014240 

CuI, InCl3, OLAM, S 120 °C 15 min - 20 h, 

220 °C,15 min - 80 min 

3 - 10 nm, irregular 

shapes, CP 

Pein et al. 2011187 

CuI, In(acac)3, n-DDT, 1-ODE, OA 200 °C, 10-120 min 2 - 8 nm, CP Peng et al. 2012105 

o-dichlorobenzene, OLAM, 

Cu(acac)2, In(acac)3, S 

180 °C, 1 h 7.4 nm, spherical, CP Sakamoto et al. 

2015241 

Cu(acac)2, In(acac)3, S, OLAM, o-

dichlorobenzene 

180 °C, 1 h 20 × 200, nanotubes, 

CP 

Shi et al. 2010192 

CuI, In(OAc)3, 1-DDT 230 °C, 5 min 2 nm, CP Song et al. 2012100 

Ph3P, CuCl, benzyl acetate, InCl3, 

NaSEt 

150 - 190 °C, 3 h 1.8 - 5.2 nm, CP Sun et al. 2014242 
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Cu(OAc)2, In(OAc)3, 1-DDT, OA, 

TOP, ODE 

120 °C, 10 min 9−11.5 nm, cubic, CP Tang et al. 2011188 

InAc, CuI, 1-NNT 200 °C, until desired 

colour 

2-3 nm, CP Tanaka et al. 

2012243 

CuI, InI, S, OLAM, DDT 160–240 °C ~4 nm, CP Uehara et al. 

2008183 

[(Ph3P)CuIn(SC{O}Ph)4], DDT, 

TOPO 

150, 250, 350 °C, 15 h 6.5 - 35 nm, WZ, ZB Venkatram et al. 

2009244 

CuCl, In(NO3)3, S, octadecylamine 120 °C, 10 min 7 nm ~spherical Wang et al. 

2008196 

CuCl, DDT, In(Ac)3 230 °C, 60 min 2.2 - 2.5 nm, CP Wang et al. 

2015245 

CuI, In(Ac)3, DDT, ODE 230 °C Irregular nanorods, 2.9 

nm CP 

Xia et al. 2014246 

In(OAc)3, CuCl, 1-DDT, ODE 240 °C, 1 h ∼7 nm, CP Yao et al. 2013190 

Cu(acac)2, InCl3, DDT, ODE 220 °C, ~10s of min Hexagonal nanoplates, 

5.8 - 9.6 nm, WZ 

Yin et al. 2014247 

CuI, In(OAc)3, 1-DDT, 

diphenylphosphine sulphide 

50 − 160 °C 2.8−3.4 nm, quasi-

spherical, CP 

Yu et al. 2013191 

CuAc, In(Ac)3, DDT, ODE 240  °C, 1 - 360 min Nanoparticles, 2 - 5 

nm, nanorods w/ 

aspect ratios of 1 - 3, 

CP 

Zhong et al. 

2008182 

CuI, In(OAc)3, DDT, ODE, OA 200 °C, 20 - 120 min Pyrimidal, 3 - 8 nm, CP. Zhong et al. 

2010154 



- 241 - 

Appendix B 

Preparation of triple layer pigment systems for simulation 

This section lists the c script (a modified version of a script provided by 

Roman Tuma) used to prepare triple layer pigment sheets from quantum 

mechanically optimised single layer pigment systems. 

 

#include <stdio.h> 

#include <math.h> 

#include <fcntl.h> 

#include <stdlib.h> 

#include <string.h> 

#define NP 120 /* max number of imput coord pts */ 

#define NS 180 

float x[NP], y[NP], z[NP]; // input coords of diffracting 

points 

float xr[NP], yr[NP], zr[NP]; // output coords of 

diffracting points 

char s1[NP][50],s2[NP][50],s3[NP][50], s4[NP][50], 

s5[NP][50], s6[NP][50], s7[NP][50]; 

int main(int na, char *ars[]) 

{ 

 FILE *fp1, *fp2; 

 int np; // nro of atoms in one structure 

 int k,i,j,i1,i2,n,nr=1; 

 char c, spc[10]; 

 int no,npo=1; // nro of output data pts 

 float q1,q2, dil=1.0, phi=0, r; 

 float xm, ym, zm, xm0, ym0, zm0,x0,y0,z0,x1,y1,z1; 

 if(na==3) 

  { 

    printf("\n processing script file : %s  output 

into file: %s \n", ars[1], ars[2]); 

  fp1=fopen(ars[1],"r");fp2=fopen(ars[2],"w"); 

  if(fp2==NULL){printf("\n problem opening output 

file\n");exit(-1);}; 

  if(fp1==NULL){printf("\n input file 

missing\n");exit(-1);}else 



- 242 - 

   { 

   fscanf(fp1,"%i", &n);fprintf(fp2,"%i\n",3*n); 

   if(n>NP*NS){printf("\n out of memory: too 

many points\n"); exit(-1);} 

   fscanf(fp1,"%f, ",&q1); 

   q1=0.05; fprintf(fp2,"%f\n",q1); 

   fscanf(fp1,"%f, ",&q2); 

   q2=2.5; fprintf(fp2,"%f\n",q2); 

   fscanf(fp1,"%i, 

",&no);fprintf(fp2,"%i\n",no); 

   np=0; 

   printf("np = %i \n",n); 

   do 

    { 

    fscanf(fp1,"%s",&s1[np][0]);//printf("\n 

>%s<",s1[np]); 

    c=s1[np][0];  

    while (c != 84 && c != 69) 

      { 

      fscanf(fp1,"%s",&s2[np][0]); 

      fscanf(fp1,"%s",&s3[np][0]); 

      fscanf(fp1,"%s",&s4[np][0]); 

      fscanf(fp1,"%s",&s5[np][0]); 

      fscanf(fp1,"%f", &x[np]); 

      fscanf(fp1,"%f", &y[np]); 

      fscanf(fp1,"%f", &z[np]); 

      fscanf(fp1,"%s",&s6[np][0]); 

      

if(s3[np][0]=='M'){xm=x[np];ym=y[np];zm=z[np]; }; 

      fscanf(fp1,"%s",&s7[np][0]); 

      np++; 

      fscanf(fp1,"%s",&s1[np][0]); 

      c=s1[np][0]; //printf("\n np=%i >%s< 

c=<%c>",np,s1[np],c); 

      }; 

    // printf("Mg nro %i = %f %f %f\n", np, 

xm, ym, zm); 

    for(i=0;i<np;i++) 

      { 

// transformation of coords starts 
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     xr[i]=x[i]; 

     yr[i]=y[i]; 

     zr[i]=z[i]; 

      spc[0]='\0'; 

      if(strlen(s3[i])==2){spc[0]=' 

';spc[1]=' ';spc[2]='\0';} 

      if(strlen(s3[i])==3){spc[0]=' 

';spc[1]='\0';} 

      fprintf(fp2,"%s %6i %s%s%4s%6i    % 

8.3f%8.3f% 8.3f   %s\n",s1[i],npo,s3[i],spc, s4[i], nr, 

xr[i],yr[i],zr[i],s6[i]); 

      npo++; 

      } 

    nr++; 

      fprintf(fp2,"%s\n",s1[np]); 

 for(i=0;i<np;i++) 

      { 

// transformation of coords lamellar 1 starts 

     xr[i]=x[i]+10; 

     yr[i]=y[i]+30; 

     zr[i]=z[i]; 

      spc[0]='\0'; 

      if(strlen(s3[i])==2){spc[0]=' 

';spc[1]=' ';spc[2]='\0';} 

      if(strlen(s3[i])==3){spc[0]=' 

';spc[1]='\0';} 

 

      fprintf(fp2,"%s %6i %s%s%4s%6i    % 

8.3f%8.3f% 8.3f   %s\n",s1[i],npo,s3[i],spc, s4[i], nr, 

xr[i],yr[i],zr[i],s6[i]); 

    npo++; 

      } 

 nr++; 

      fprintf(fp2,"%s\n",s1[np]); 

 for(i=0;i<np;i++) 

      { 

// transformation of coords lamellar 2 starts 

     xr[i]=x[i]+10; 

     yr[i]=y[i]+60; 

     zr[i]=z[i]; 
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      spc[0]='\0'; 

      if(strlen(s3[i])==2){spc[0]=' 

';spc[1]=' ';spc[2]='\0';} 

      if(strlen(s3[i])==3){spc[0]=' 

';spc[1]='\0';} 

 

      fprintf(fp2,"%s %6i %s%s%4s%6i    % 

8.3f%8.3f% 8.3f   %s\n",s1[i],npo,s3[i],spc, s4[i], nr, 

xr[i],yr[i],zr[i],s6[i]); 

      npo++; 

      } 

 nr++; 

      fprintf(fp2,"%s\n",s1[np]); 

    np=0; 

    }while (c != 69); 

   fclose(fp1);fclose(fp2); 

   //for(i=0;i<20;i++)printf(">%f<>%f<>%f<  

atom= %s \n",x[i],y[i],z[i], s3[i]); 

   } 

  } 

  else printf("\n usage inputfile outputfile\n"); 

 return 0; 

} 
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Appendix C 
Amber simulation scripts 

This section lists the Amber simulation scripts used to perform the molecular 
dynamics simulations in Chapter 4. This includes the shell script used to run 
simulation (Section C.1), the four minimisation steps, min1-min4,(Section 
C.2-C.5) and the nine molecular dynamics steps, md1-md9, (Section C.6 – 
C.14). 

C.1  equil.sh 

#!/bin/bash 

#$ -cwd -V 

#$ -l h_rt=48:00:00 

#$ -pe ib 16 

module add amber 

l=crd 

f=min1 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=min1 

f=min2 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=min2 

f=min3 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=min3 

f=min4 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 
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        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=min4 

f=md1 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md1 

f=md2 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md2 

f=md3 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene3 

l=md3 

f=md4 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md4 

f=md5 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md5 

f=md6 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 
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l=md6 

f=md7 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md7 

f=md8 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

l=md8 

f=md9 

mpirun pmemd.MPI \ 

        -O -i $f.in -o FILE$f.out -inf FILE$f.inf \ 

        -c FILE.$l -ref FILE.$l -r FILE.$f \ 

        -p FILE.top -x FILE$f.x -e FILE$f.ene 

 

C.2  min1.in 

&cntrl 

        imin=1, maxcyc=10000, ncyc=50, drms=0.5, 

ibelly=1, 

        ntb=1, 

 / 

Atoms which are allowed to move in the min 

RES 1 240  

END  

END 

C.3  min2.in 

&cntrl 

        imin=1, maxcyc=10000, ncyc=50, drms=0.5,  ntr=1, 

        ntb=1, 

 &end 
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Restrain DNA 

50.0 

RES 1 304  

END  

END 

C.4  min3.in 

&cntrl 

        imin=1, maxcyc=10000, ncyc=50, drms=0.5,  ntr=1, 

        ntb=1, 

 / 

Restrain DNA 

25.0 

RES 1 304  

END  

END 

C.5  min4.in 

&cntrl 

        imin=1, maxcyc=10000, ncyc=50, drms=0.2, 

ibelly=0, 

        ntb=1 

 / 

C.6  md1.in 

&cntrl 

        irest=0, ntx=1, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        tempi=100.0 temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

100.0 
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RES 1 304  

END 

END 

C.7  md2.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

100.0 

RES 1 304  

END 

END 

C.8  md3.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2,  

 / 

Restrain DNA 

50.0 

RES 1 304  

END 

END 
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C.9  md4.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

25.0 

RES 1 304  

END 

END 

C.10  md5.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

10.0 

RES 1 304  

END 

END 

C.11  md6.in 

MD on the water and Na about DNA 

 &cntrl 
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        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

5.0 

RES 1 304  

END 

END 

C.12  md7.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

2.5 

RES 1 304  

END 

END 

C.13  md8.in 

&cntrl 

        irest=1, ntx=7, 

        ntf=2, ntb=2, cut=9.0, 

        ntr=1, 

        nstlim=5000, dt=0.002, 
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        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 / 

Restrain DNA 

1.0 

RES 1 304  

END 

END 

C.14  md9.in 

&cntrl 

irest=1, ntx=7,  

        ntf=2, ntb=2, cut=9.0, 

        nstlim=15000000, dt=0.002, 

        temp0=300.0, ntt=1, 

        ntp=1, 

        ntc=2, 

 ntwx=500,     

 / 
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Appendix D 

Molecular dynamics (MD) analysis scripts 

D.1  Root-mean-squared (RMS) pair-wise separation 

The Matlab script used to calculate root-mean-squared pair-wise separation 

of Mg atoms within a structure is listed below: 

clear 

tind=1; 

h=1; 

car=cputime; 

num=1; 

store=0; 

y=logspace(0,5,150); 

tcat=round(y); 

%works out aprox log spaced set of points for a given 

number of frames 

for i=1:150 

    if tcat(i)<30000 

    if tcat(i)~=store; 

        logsc(num)=tcat(i); 

        store=tcat(i); 

        num=num+1; 

    end 

    end 

end 

for t=1:1:(num-1) 

    h=1; 

    %Input filename 

    fex=int2str(logsc(t)); 

    name='AAAAout.'; 

    fn=strcat(name, fex); 

    %Opens file, ignores header line, reads in data from 

file, x,y,z coords 

    %are stored as doubles, closes file 

    fid = fopen(fn); 
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    fgetl(fid); 

    pdb = textscan(fid,'%s%s%s%s%s%f%f%f%s%s'); 

    fclose(fid); 

    j=1; 

    %Reads N and Mg coords into an array 

    for i=66:119:9519 

        Mgcoords(j,:)=[pdb{1,6}(i-65) pdb{1,7}(i-65) 

pdb{1,8}(i-65)]; 

        j=j+1; 

    end 

   count=1; 

   for i=1:80 

            %Copies norm values for each molecule into an 

array, one column 

            %for each time point read in            

C(i,tind)={{norm(count,1),norm(count,2),norm(count,3)}}; 

            count=count+1; 

            %Works out pairwise displacement and then 

distance of Mg atoms 

            for j=1:80 

            if i~=j 

                Mgdiffall(h,tind)={Mgcoords(i,:)-

Mgcoords(j,:)};                

distances(h,tind)=sqrt(sum(Mgdiffall{h,tind}.*Mgdiffall{h

,tind})); 

                %RMSD calc              

RMSD(h,tind)=(distances(h,tind)*distances(h,tind)); 

                RMSD1(t)=sqrt(sum(RMSD)/57360); 

                h=h+1; 

            end 

            end 

   end 

   h=1; 

end 

%for all mg atoms 

tind=1; 

figure() 

plot(logsc,RMSD1) 

axis tight; 

xlabel('Time (frames)') 
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ylabel('RMSD (Angstroms)') 

set(gca,'Title',text('String','RMSD - all Mg atoms')) 

RMSD1=RMSD1'; 

logsc=logsc'; 

D.2  System energy analysis 

The matlab script used for the extraction of total system energy, 𝐸𝑇𝑜𝑡, from 

Amber .out files. In addition to 𝐸𝑇𝑜𝑡 a number of other parameters were also 

extracted. These included temperature, pressure and electrostatic and van 

der Waals contributions to energy. 

names1 = dir('*.out'); 

    names1 = {names1.name}; 

    headings={'Nstep', 'Time (ps)', 'Temp (K)', 'Pres', 

'Etot', 'Ektot', 'Eptot'}; 

    headings2={'deltaTemp', 'deltaPres', 'deltaEtot', 

'deltaEktot', 'deltaEptot'}; 

for ii=1:length(names1) 

    clearvars -except names1 headings headings2 ii 

    fn=names1{ii}; 

    fid = fopen(fn); 

    s= textscan(fid,'%s'); 

    fclose(fid); 

    idx1=find(strcmp('NSTEP',s{1,1})); 

for i=1:(numel(idx1)); 

    nstep(i)=str2num(s{1,1}{idx1(i)+2,1}); 

    time(i)=str2num(s{1,1}{idx1(i)+5,1}); 

    temp(i)=str2num(s{1,1}{idx1(i)+8,1}); 

    pres(i)=str2num(s{1,1}{idx1(i)+11,1}); 

    etot(i)=str2num(s{1,1}{idx1(i)+14,1}); 

    ektot(i)=str2num(s{1,1}{idx1(i)+17,1}); 

    eptot(i)=str2num(s{1,1}{idx1(i)+20,1}); 

end 

nstep=nstep'; 

time=time'; 

temp=temp'; 

pres=pres'; 

etot=etot'; 
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ektot=ektot'; 

eptot=eptot'; 

cell={nstep, time, temp, pres, etot, ektot, eptot}; 

ss=strread(names1{ii},'%s','delimiter','.') 

fn1=strcat(ss{1},'prop.txt') 

dlmwrite(fn1, cell); 

deltatemp=temp(numel(idx1)-1)-temp(1); 

deltapres=pres(numel(idx1)-1)-pres(1); 

deltaetot=etot(numel(idx1)-1)-etot(1); 

deltaektot=ektot(numel(idx1)-1)-ektot(1); 

deltaeptot=eptot(numel(idx1)-1)-eptot(1); 

cell1={deltatemp(1), deltapres(1), deltaetot(1), 

deltaektot(1), deltaeptot(1)}; 

fn2=strcat(ss{1},'deltas.txt') 

dlmwrite(fn2, cell1); 

end 

D.3  Dipole moment plots 

The Matlab script used to produce dipole moment plots is listed below: 

 

fex='30000';%frame number 

name='AAAAout.';%root filename 

fn=strcat(name, fex,'.pdb'); 

%Opens file, ignores header line, reads in data from 

file, x,y,z coords 

%are stored as doubles, closes file 

fid = fopen(fn); 

fgetl(fid); 

pdb = textscan(fid,'%s%s%s%s%s%f%f%f%s%s'); 

fclose(fid); 

j=1; 

%Reads NB and ND coords into an array 

figure() 

for i=66:119:7615 

        NBcoords(j,:)=[pdb{1,6}(i-14) pdb{1,7}(i-14) 

pdb{1,8}(i-14)]; 
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        NDcoords(j,:)=[pdb{1,6}(i-64) pdb{1,7}(i-64) 

pdb{1,8}(i-64)]; 

        dp=NBcoords(j,:)-NDcoords(j,:); 

        

quiver3(NDcoords(j,1),NDcoords(j,2),NDcoords(j,3),dp(1),d

p(2),dp(3),4,'Linewidth',1,'Color','b')%draws arrows 

        j=j+1; 

        hold on 

end 

grid off 

 

D.4  Parallelised Brute force X-ray scattering code 

The modified c script parallelised, using OpenMP, to allow calculation of 

scattering from a greater number of structures is listed below. This script 

was based on an original script provided by Roman Tuma. This script was 

used for the calculation of all X-ray scattering in Chapter 4. 

 

/* parallel distance distribution and debye formula 

scattering brute force comp for pdbs from ptraj*/ 

#include <stdio.h> 

#include <math.h> 

#include <fcntl.h> 

#include <stdlib.h> 

#include <string.h> 

#include <omp.h> 

#define NP 57000 /* max number of imput coord */ 

#define NO 500 

#define NA 5 // nro of atom types 

#define NA1 NA+1 

float ** d;//[NP][NP];//  pairwise distance matrix 

float x[NP], y[NP], z[NP]; // input coords of diffracting 

points 

double s, ds[NO],dsa[NO]; 

double ** f;//[NP][NO]; 

int e1[NP], dsn[NO], nrmax; //index of atom H==0 

float fs[NP]; // forward scattering power q=0 ~ Z 

float dr;//=0.5; //histogram step A 
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int main(int na, char *ars[]) 

{ 

 float seconds; 

 seconds=omp_get_wtime(); //start clock 

 FILE *fp; 

 int np; // nro of atoms in one structure 

 int k,i,j,i1,m,incre, inc; 

 char 

s1[30][200],s2[200],s3[200],filename[50],filename1[50],fi

lename2[50],sk[30][200]; 

 float  a1[NA1],a2[NA1], a3[NA1], a4[NA1],b1[NA1], 

b2[NA1],b3[NA1], b4[NA1], c[NA1];// Cromer-Mann coeff 

matrix 

 int no; // nro of output data pts 

 float dmax1, dm, q1,q2,dq; 

 double  Iq[NP],p, q[NO],qr,qk, di; 

 float Iqm, dmin, dmax; 

 if(na==8) 

 #pragma omp parallel for private (m,incre, filename, 

filename1, 

filename2,a1,a2,a3,a4,c,j,i,b1,b2,b3,b4,fp,np,q1,q2,no,dr

,dq,e1,fs,s1,x,y,z,p,dmin,dmax,nrmax,dm,qk,i1,di,qr,s,Iq,

Iqm,q,d,f) 

 //crude parallelisation of script using parallel for 

   for(m=0;m<1;++m){ 

    Iqm=100; 

 np=atof(ars[3]);q1=atof(ars[4]);q2=atof(ars[5]);no=atof(

ars[6]);dr=atof(ars[7]); //sets values from input/usgage 

    dmin=100; 

    dmax=0; 

    for(i=0;i<NP;++i){ 

    Iq[i]=0; 

    } 

    //printf("IQ=%f",Iq); 

    incre=atof(ars[2])+m; 

    sprintf(filename, 

"%s.%d.pdb",ars[1],incre); //sets input filename from 

root given when program started 

    sprintf(filename1, 

"%sout%d.txt",ars[1],incre); //sets output filename from 

root given when program started 

    sprintf(filename2, "cm%d.asc",incre); 
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    fp=fopen("cm.asc","r"); //cm.asc is the Cromer 

Man coefficient file 

    for(i=0;i<NA;i++) 

      { 

        fscanf(fp,"%f %f %f %f %f %f %f %f 

%f",&a1[i],&a2[i], &a3[i], &a4[i],&c[i], &b1[i], 

&b2[i],&b3[i], &b4[i]); //reads in coeffs from file 

assigns to variables 

        //printf("\n %i %f %f %f %f %f %f %f %f 

%f",i,a1[i],a2[i], a3[i], a4[i],c[i], b1[i], b2[i],b3[i], 

b4[i]); for debug 

      } 

    a1[NA]=0;a2[NA]=0; a3[NA]=0; a4[NA]=0; c[NA]=0; 

b1[NA]=0; b2[NA]=0; b3[NA]=0; b4[NA]=0; 

    fclose(fp); 

    //printf("\n processing script file : %s  output 

into file: %s \n", filename, filename1); for debug 

  fp=fopen(filename,"r"); \\open input file, warn if 

missing, if not assign memory for d and f arrays (the 

large arrays) 

  if(fp==NULL){printf("\n Input file %s 

missing\n",filename);exit(-1);}else 

   { 

   d=calloc( sizeof(float*),np); 

    if (d==NULL){ 

     perror("d"); 

     //return -1; 

    } 

    for (int cat=0;cat<np;cat++){ 

     d[cat]=calloc(sizeof(float),np); 

     if (d[cat]==NULL){ 

      perror("d"); 

      //return -1; 

     } 

    } 

    f=calloc( sizeof(float*),np); 

    if (f==NULL){ 

     perror("f"); 

     //return -1; 

    } 

    for (int dog=0;dog<np;dog++){ 
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     f[dog]=calloc(sizeof(float),np); 

     if (f[dog]==NULL){ 

      perror("f"); 

      //return -1; 

     } 

    } 

   dq=(q2-q1)/(no-1); 

      for(i=0;i<np;i++) 

    { 

      e1[i]=0;fs[i]=0; 

      fscanf(fp,"%s",&s1[0][0]); 

      if (s1[0][0]=='T'){  

fscanf(fp,"%s",&s1[0][0]); \\checks to see if line = TER 

i.e. no atom info 

      fscanf(fp,"%s",&s1[0][0]); i=i-1;}  

      else if(s1[0][0]=='A'){ 

     \\for lines which do have atom 

info, do the following 

      fscanf(fp,"%s",&s1[0][0]); \\read atom 

type 

      fscanf(fp,"%s",&s1[0][0]); 

      if(s1[0][0]=='H'){fs[i]=1;e1[i]=0;}; 

\\assign atom index and foward scattering power values 

based on atom type 

      if(s1[0][0]=='C'){fs[i]=6;e1[i]=1;}; 

      if(s1[0][0]=='N'){fs[i]=7;e1[i]=2;}; 

      if(s1[0][0]=='O'){fs[i]=8;e1[i]=3;}; 

      if(s1[0][0]=='M'){fs[i]=10;e1[i]=4;}; 

    fscanf(fp,"%s",&s1[0][0]); \\read and 

ignore 

    fscanf(fp,"%s",&s1[0][0]); 

    fscanf(fp,"%f", &x[i]); \\read x 

    fscanf(fp,"%f", &y[i]); \\read y 

    fscanf(fp,"%f", &z[i]); \\read z 

    fscanf(fp,"%s",&s1[0][0]); \\read and 

ignore 

    fscanf(fp,"%s",&s1[0][0]); 

    } 

     } 

   fclose(fp); 
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   \\pairwise distance calc 

   for(i=0;i<np-1;i++) 

     { 

     for(j=i+1;j<np;j++) 

     { 

       p=sqrt((x[i]-x[j])*(x[i]-x[j]) + (y[i]-

y[j])*(y[i]-y[j]) +(z[i]-z[j])*(z[i]-z[j])); 

         d[i][j]=p; 

       if (dmin>p)dmin=p; \\set max and min dist 

values 

       if (dmax<p)dmax=p; 

     } 

     } 

    nrmax=floor((dmax-dmin)/dr)+1; \\binning 

info 

    dm=(dmax-dmin)/(nrmax-1); 

 for(i=0;i<np-1;i++) \\for every atom... 

     { 

       for(k=0;k<no;k++) \\and every value of k 

i.e. every value of q workout scattering intensity matrix 

using coefficients from cm.asc and particle data from 

inputfile  

      { 

        q[k]=q1+k*dq; 

        qk=q[k]/12.56637; 

        i1=e1[i]; 

        f[i][k]=c[i1]+a1[i1]*exp(-

b1[i1]*qk*qk)+a2[i1]*exp(-b2[i1]*qk*qk)+a3[i1]*exp(-

b3[i1]*qk*qk)+a4[i1]*exp(-b4[i1]*qk*qk); 

      } 

     } 

 //Cromer Mann finished 

 //Next section computes actual scatering data from 

scattering matrix and distance data and adds up 

contributions to scattring intensity at each value of k 

   for(i=0;i<np-1;i++)  

     { 

       di=i/1000.0; 

       di=di-floor(i/1000); 

     for(j=i+1;j<np;j++) 

       { 
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       p=d[i][j]; 

    for(k=0;k<no;k++) 

      { 

        qr=p*q[k]; 

        s=f[i][k]*f[j][k]; 

        Iq[k]=Iq[k]+s*sin(qr)/qr; 

      } 

       } 

     } 

  for(k=0;k<no;k++) 

      { 

        if(Iq[k]<Iqm)Iqm=Iq[k]; \\sets 

minimum Iq value 

      } 

 fp=fopen(filename1, "w"); 

    for(i=0;i<no;i++) 

      { 

        fprintf(fp,"%f\t%f\n",q[i],Iq[i]-

Iqm+.1); 

      } //write to output file 

    fclose(fp); 

   } 

 for(i=0;i<np;++i){free(d[i]); free(f[i]);} \\free memory

   

  } 

  else printf("\n usage inputfile_rootname 

start_of_increment np q1 q2 no dr \n"); \\if incorrect 

usage, remind user of correct usage 

 seconds=omp_get_wtime()-seconds; \\get run time 

 printf("elapsed wallclock time = %f",seconds); \\print 

runtime to screen or on arc1/arc2 logfile 

 return 0; 

} 
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Appendix E 
Dipole moment plots from Chapter 4 

 

 

Figure E.1 𝑄𝑦 dipole moments for sheets formed using the αAαA dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αAαA, (b) αAαA _1, and (c) αAαA _2. 
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Figure E.2 𝑄𝑦 dipole moments for sheets formed using the αSαS dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αSαS, (b) αSαS_1, and (c) αSαS_2. 
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Figure E.3 𝑄𝑦 dipole moments for sheets formed using the αSβA dimer 

arrangement (first repeat). 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations αAαA at (a) 0.5 ns, (b) 4.5 ns, and (c) 7 ns. 
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Figure E.4 𝑄𝑦 dipole moments for sheets formed using the αSβA dimer 

arrangement (third repeat). 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations αAαA at (a) 0.6 ns, (b) 3 ns, and (c) 20 ns. 
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Figure E.5 𝑄𝑦 dipole moments for sheets formed using the αSβA dimer 

arrangement (first repeat). 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations αAαA at (a) 0.5 ns, and (b) 3 ns. 
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Figure E.6 𝑄𝑦 dipole moments for sheets formed using the αSβAd dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αSβAd, (b) αSβAd_1, and (c) αSβAd_2. 
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Figure E.7 𝑄𝑦 dipole moments for sheets formed using the βAβA dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βAβA, (b) βAβA_1, and (c) βAβA_2. 

 



- 270 - 

 

Figure E.8 𝑄𝑦 dipole moments for sheets formed using the βSαA dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαA, (b) βSαA_1, and (c) βSαA_2. 
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Figure E.9 𝑄𝑦 dipole moments for sheets formed using the βSαAg dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαAg, (b) βSαAg_1, and (c) βSαAg_2. 
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Figure E.10 𝑄𝑦 dipole moments for sheets formed using the βSαAu dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαAu, (b) βSαAu_1, and (c) βSαAu_2. 
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Figure E.11 𝑄𝑦 dipole moments for sheets formed using the βSβS dimer 

arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSβS, (b) βSβS_1, and (c) βSβS_2. 
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Figure E.12 𝑄𝑦 dipole moments for triple layer sheets formed using the αAαA 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αAαA3, (b) αAαA3 _1, and (c) αAαA3 _2. 
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Figure E.13 𝑄𝑦 dipole moments for triple layer sheets formed using the αSαS 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αSαS3, (b) αSαS3_1, and (c) αSαS3_2. 
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Figure E.14 𝑄𝑦 dipole moments for triple layer sheets formed using the αSβA 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αSβA3, (b) αSβA3_1, and (c) αSβA3_2. 
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Figure E.15 𝑄𝑦 dipole moments for triple layer sheets formed using the αSβAd 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) αSβAd3, (b) αSβAd3_1, and (c) αSβAd3_2. 
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Figure E.16 𝑄𝑦 dipole moments for triple layer sheets formed using the βAβA 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βAβA3, (b) βAβA3_1, and (c) βAβA3_2. 
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Figure E.17 𝑄𝑦 dipole moments for triple layer sheets formed using the βSαA 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαA3, (b) βSαA3_1, and (c) βSαA3_2. 
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Figure E.18 𝑄𝑦 dipole moments for triple layer sheets formed using the βSαAg 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαAg3, (b) βSαAg3_1, and (c) βSαAg3_2. 
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Figure E.19 𝑄𝑦 dipole moments for triple layer sheets formed using the βSαAu 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSαAu3, (b) βSαAu3_1, and (c) βSαAu3_2. 
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Figure E.20 𝑄𝑦 dipole moments for triple layer sheets formed using the βSβS 

dimer arrangement. 

𝑄𝑦 dipole moments, shown as arrows, for the final structures of 

simulations (a) βSβS3, (b) βSβS3_1, and (c) βSβS3_2. 

 

 


