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Abstract

This research is to study the characteristics of fabric properties measured in an

innovative fabric test system, Leeds University Fabric Handle Evaluation System
(LUFHES); it is designed for objectively evaluating fabric handle in a simpler,
relatively low cost and automatic method. The quantification of fabric handle in the
LUFHES is based on the energy consumption of fabric shells during their cyclic
shear twisting and cyclic axial compression buckling deformations, as well as the
fabric surface properties evaluated from fabric-fabric self-friction process.

In this study, low stress fabric mechanical properties measured in the cyclic axial
compression buckling, shear twisting and fabric-fabric friction of fabric shells in
LUFHES were analysed to establish the new technological approach in relation to
fabric handle analysis. In addition, the fabric properties measured in the LUFHES
were compared with the fabric properties measured in fabric unidirectional
deformation processes such as the Kawabata Evaluation System for Fabric (KES-
F) and the Fabric Assurance by Simple Testing (FAST) to disclose the differences
of these three fabric measurement systems.

Properties of 29 fabrics including 12 woven fabrics, 7 knitted fabrics and 10
nonwoven fabrics were studied in this project in order to understand the
mechanical properties of fabrics which are made from different fibres, having
different fabric structures, fabric weight and thickness measured by using the
LUFHES system.

The suitable pre-tension for the LUFHES tests was determined by analysing the
effect of pre-tensions on the energy consumption of various fabric deformations in
cyclic fabric shell compression buckling-recovery processes, and suitable pre-
tension force for fabric measurements in the LUFHES was identified in the range
of 1.2N/m and 2N/m.

Fabric shear and buckling properties measured in the LUFHES were compared
with shear and bending properties obtained in both the KES-F and FAST systems
to investigate the differences between these three systems in discriminating
fabrics. It was found that fabric shear properties obtained in the FAST were
different from those obtained in the LUFHES shear tests for woven fabrics due to
insufficient shear deformations in woven fabrics in FAST test. It was also found
that shear properties obtained in the KES-F shear tests were not in agreement
with those obtained in the LUFHES tests due to greater extension forces applied
on fabrics leading to greater fabric elongation before its shear test in the KES-F
system for some fabrics such as knitted and nonwoven fabrics. Thus, fabric



discriminations in terms of fabric shear properties obtained in these three testing
systems will be different.

The correlation between critical buckling force and bending properties was found
to depend on the fabric types and measurement methods. Critical buckling forces
of woven and nonwoven fabrics obtained in the LUFHES were found to correlate
well with bending rigidity obtained in the KES-F system, while critical buckling
forces of knitted fabrics correlated well with the bending rigidity obtained in the
FAST system.

It was found that there are several unique advantages using the fabric-fabric self-
friction method in objective measurement of fabric handle over other methods
such as fabric-metal and fabric-artificial finger frictions. The characteristics of
fabric-fabric self-friction in the LUFHES friction test were analysed theoretically
and experimentally, as well as compared with that of the KES-F fabric-sensor
friction/roughness test. It was found that fabric-fabric friction coefficients obtained
in LUFHES were greater and in a wider range than those obtained in the KES-F
fabric-sensor friction test, and the spectrum of LUFHES fabric-fabric friction profile
has advantages in differentiating the main fabric characteristic structures.

In summary, the unique low-stress mechanical properties (shear and buckling)
obtained in the LUFHES tests reveal insightful information of mechanical
properties of fabric shell during biaxial deformations. The fabric-fabric friction was
found to have advantages in discriminating fabric friction coefficient and fabric
surface structures. Thus, the LUFHES has the potential to be used to sensitively
evaluate fabric handle.
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Chapter 1 Introduction

1.1 Background

Tactile comfort properties of woven, knitted and nonwoven fabrics used in suits
and next-to-skin products such as sportswear, innerwear, lingerie, bedding liners,
wipes, diaper and other hygiene products are primarily important functionalities for
consumers, its evaluations and assessments are of great interests for both
retailers and designer (Bertaux et al., 2007).

Tactile comfort of fabric refers to the human perception of the fabrics when it is
touched with human skin (Chattopadhyay, 2008; Bishop, 1996). It is one of the
main factors affecting consumers’ purchasing decisions. Subjective assessment
of fabric tactile comfort properties is usually done by using human hand when
fabric is deformed by touching, stretching, rubbing and squeezing, etc. Objective
assessment of the fabric tactile properties is always desirable, and it is usually
evaluated through the measurement of the fabric low-stress mechanical
properties such as friction, extension, compression, shear, bending and buckling
properties (Behera and Hari, 1994).

Various methods for the objective measurements of fabric mechanical properties
are developed for this purpose. The widely-used fabric objective measurement
(FOM) systems include the Kawabata Evaluation System of Fabrics (KES-F)
system (Kawabata, 1982), Fabric Assurance by Simple Testing (FAST) system
(De Boos and Tester, 1994), PhabrOmeter system (Pan, 2006), Wool Comfort-
Meter and Wool Handle-Meter (AWTA). However, all of the existing systems
(KES-F, FAST, PhabrOmeter, etc.) rely on the relationship between subjective
assessment of a limited number of standard fabrics and their individual
mechanical properties measured during the processes of either unidirectional
fabric deformations (e.g. FAST and KES-F) or uncontrolled complex deformati