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Abstract 

In CO2 corrosion, when the local concentrations of Fe2+ and CO3
2- ions 

exceed the solubility limit, precipitation of iron carbonate (FeCO3) can occur 

internally within pipework, forming a protective corrosion barrier at the steel-

electrolyte interface. Accurately quantifying the rate of precipitation of this 

film is important within the oil and gas industry as it can be implemented into 

corrosion prediction tools to provide a more reliable estimate of anticipated 

corrosion rates. 

Existing precipitation rate models are based on measurements conducted in 

a glass cell in static conditions where the kinetics of FeCO3 precipitation are 

accelerated by the addition of FeCl2.4H2O and correlated with bulk solution 

properties. They do not address the key aspects of FeCO3 formation in real 

corroding systems which relate to the local surface supersaturation 

produced as a result of the production of Fe2+ ions due to the corrosion 

process. 

In the following thesis, a combined experimental and modelling approach is 

carried out to investigate the development in the morphology of the FeCO3 

film under different environmental conditions and its consequent effect on 

the degradation rates of a pipeline. A thin channel flow cell is designed to 

extend the analysis to a fluid flow environment and a mechanistic model is 

developed to predict the nature of the near surface layer.  

It is found from the experimental analysis that FeCO3 precipitation is a 

simultaneous nucleation and growth process and the characteristics of the 

surface film significantly changes under varying parameters. Results show 

that the existing precipitation models based on measuring the dissolved 

ferrous ions in the bulk solution overestimate the precipitation of iron 

carbonate by a large margin and the precipitation model developed through 

the direct weight change approach is limited to the experimental conditions 

in which it was carried out. The models are correlated with bulk solution 

properties and it has been clearly demonstrated within this work that the 

precipitation of FeCO3 is directly related to the conditions at the steel surface 

which can be very different from that in the bulk. A combined model and 

experimental analysis shows that a higher initial surface saturation ratio 

indicates a more protective film formation over time.  
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Chapter 1  

Introduction and Research Project Background 

1.1 Project Background 

The Oil and Gas industry is a multi-billion dollar industry responsible for the 

production of petroleum products that accounts for a large percentage of the 

world’s energy consumption. The production of oil and gas, its 

transportation, refining and its subsequent use as fuel and raw materials 

constitute a complex and demanding process. One of the various problems 

encountered in this process that has a significant economic and 

environmental impact on the oil and gas industry is carbon dioxide (CO2) 

corrosion of pipelines [1].  

Despite the fact that high cost Corrosion Resistant Alloys (CRAs) were 

developed to resist internal corrosion, carbon steel is still the most widely 

used material in oil and gas production. The industry dependence on the use 

of carbon steel as pipework materials is based on their vast availability and 

ability to fulfil many of the mechanical, structural, fabrication and cost 

requirements. However, their poor corrosion performance has led to 

corrosion being widely investigated to optimise the use of carbon steel in 

corrosive conditions and ensure the operational integrity of equipment and 

facilities. Over the past several decades, corrosion models have been 

developed to predict the corrosion rate of carbon steel under their specific 

working conditions. Reliable estimation of the corrosion rate is a key 

consideration in the design of pipelines and their related infrastructure. 

Whilst these models have been extensively used, their proper application is 

limited to the specific conditions in which the models are built which mean 

that unplanned failures and unexpectedly high corrosion rates are 

experienced in some cases without proper explanation [2, 3]. In more recent 

years, advancements in the mechanistic understanding of the underlying 

processes in CO2 corrosion have provided opportunities for more robust 

calculations and flexibility required to include various conditions and 

processes in corrosion rate prediction.   

One area of critical importance in the CO2 corrosion of mild steel and the 

main focus of this thesis is the precipitation of ferrous carbonate (FeCO3) 

films on the surface of X65 carbon steel. The layer forms on the corroding 

surface preventing the underlying steel from further dissolution and acting as 
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a barrier stifling the corrosion rate. However, if there is any damage of the 

protective FeCO3 film, it may lead to serious localised corrosion problems by 

exposing the underlying metal to the aggressive corrosive environment 

resulting in catastrophic failure and significant economic cost.  

FeCO3 film growth depends primarily on the kinetics of scale formation. 

Therefore, understanding the factors governing the rate of precipitation and 

formation of FeCO3 layer on the corroding surface is an important step in 

predicting and controlling the CO2 corrosion of carbon steel. In literature, 

there are four models reported for calculating the rate of FeCO3 

precipitation. In each case, the rate of precipitation is a function of iron 

carbonate super saturation, the solubility limit, temperature and surface 

area-to-volume ratio. The precipitation rate is measured by either the 

consumption of Fe2+ from the bulk solution in models by Greenberg and 

Tomson (G&T) [4, 5], Johnson and Tomson (J&T) [6, 7] and van Hunnik et 

al. (vP&H) [8] or the accumulation of FeCO3 on the steel sample in model by 

Sun and Nesic (S&N) [9, 10]. However, both of these test methods are 

based on measurements conducted in a glass cell in static conditions where 

the kinetics of FeCO3 precipitation are accelerated by the addition of 

FeCl2.4H2O and correlated with bulk solution properties. They do not 

address the key aspects of FeCO3 formation in real corroding systems which 

relate to the local surface supersaturation produced as a result of the 

production of Fe2+ ions due to the corrosion process. In the following work, 

the developed FeCO3 precipitation models are critically analysed. The 

identified limitations of these models when accounting for FeCO3 is the key 

driver for this research. 

1.1 Objectives 

In order to address the gaps and limitations outlined previously, the focus of 

the PhD is to investigate the formation of corrosion films, particularly the 

early stages of initiation and propagation in a combined experimental and 

modelling approach.  

The following objectives are defined:  

 To understand the development in the morphology of the FeCO3 film 

under different environmental conditions and its consequent effect on 

the degradation rates of a pipeline.  
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 To understand the nature of the near surface region and in particular 

the flow characteristics (and associated mass transfer) and the 

distribution of the ionic species (electro-kinetics).  

 To assess the validity of the existing FeCO3 precipitation models 

highlighting their confines and applicability. 

 To design and develop a flow cell to understand the experimental 

significance of transition from static to flow induced corrosion and the 

effect on the kinetics of iron carbonate scale formation.  

 To develop a mechanistic model to assess the local, near-surface 

concentration boundary layer to determine the local saturation ratio. 

Assess the fundamental link between FeCO3 growth and the 

saturation ratio.  

1.2 Structure of Thesis 

This thesis contributes to literature by providing further understanding of the 

kinetics of FeCO3 nucleation and growth on the surface of X65 carbon steel. 

It demonstrates the ability of laboratory apparatus to investigate the 

characteristics of the formation of FeCO3 film and prediction models, based 

on a purely theoretical understanding of the physics behind the process, to 

provide information where experimental techniques are limited. The 

combined experimental and modelling approach provides a complementary 

analysis and defines the structure of the thesis.  

Chapter 2 presents an initial introduction to corrosion in the oil and gas 

industry expressing its economic and environmental significance to the 

industry, the existing preventative measures and the different types of 

corrosion failure. It also provides a fundamental understanding on the 

chemistry of corrosion. The literature review is presented in three chapters. 

Chapter 3 provides a literature review on CO2 corrosion and the varying 

parameters investigated to further its understanding and that of its by-

product, FeCO3 film formation. Chapter 4 and Chapter 5 consist of a full 

analysis of the existing CO2 corrosion models over the last few decades and 

the FeCO3 precipitation models respectively. The later chapters present the 

experimental, design and modelling work conducted throughout this project. 

Chapter 6 presents the experimental methods and techniques developed in 

order to investigate the formation of FeCO3 films. Chapter 7 presents the 

design and development of a flow cell to incorporate flow characteristics 

within the analysis.  Chapter 8 and Chapter 9 are the experimental results 

chapters and systematically provide an analysis of the obtained data from 
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experiments conducted in static and flowing conditions respectively. 

Chapter 10 and Chapter 11 comprise the modelling work. They are divided 

into two chapters based on their individual predicted outputs and the two 

different modelling software used, MATLAB and COMSOL. A final 

discussion highlighting the main findings, along with a comparison of 

literature and experimental studies is presented in Chapter 12. The final 

Chapter 13 provides the limitations of this study, future work and overall 

conclusions. Figure 1.1 demonstrates a brief overview of the thesis structure 

sequentially illustrating the different phases of research, measurements 

carried out or parametric values input, output and relationship between the 

two segments.  
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Input Parameters (Temperature, 

bulk pH, total pressure, pCO2, 

flow velocity, ionic strength, 

height of flow channel) 

Corrosion Rate 

Prediction (MATLAB) 

Near Surface Species 

Concentration (COMSOL)  

1. Experimental model validation  

2. Relationship between surface 

characteristics and FeCO3 precipitation  

Corrosion rate measurement, weight change due 

to corrosion and precipitation, microscopic 

surface imaging (SEM), film identification (XRD), 

solution chemistry analysis 

Experimental Analysis 

Static Testing Dynamic Testing  

Outputs/ Understanding: 

1. Influence of varying parameters 

2. Characterise development of FeCO3 film over time 

3. Effect of flow characteristics (laminar, turbulent)  

4. Bulk solution properties 

5. Precipitation rate of FeCO3 over time at different 

stage of protectiveness 

Modelling Analysis 

Figure 1.1 Thesis and research structure 
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Chapter 2  

Introduction to Corrosion in the Oil and Gas Industry 

This chapter provides a birds-eye view of the oil and gas industry. It 

discusses the importance of the industry and its demand, the industry 

network from extraction to consumption, the impact of corrosion on the 

industry and an understanding of the corrosion process.  

2.1 The Petroleum Industry 

Over the past two centuries, civilisation has depended on energy derived 

from crude oil, natural gas, coal, nuclear reaction and renewable sources 

such as wind, sun, biofuels, etc. Oil and gas is a multi-billion dollar industry 

responsible for the production of petroleum products that accounts for a 

large percentage of the world’s energy consumption as shown in Table 2.1  

Table 2.1 Current sources of world energy, 2005 [11] 

Energy Source Supply Percentage 

Crude oil 38 

Natural gas 23 

Coal 23 

Nuclear 7 

Renewables 9 

 

It is approximated that the total worldwide oil consumption is 93 million 

bbl/day as per the International Energy agency [12] and the approximate 

location and intensity of the oil reserves around the world is shown in Figure 

2.1.  

This energy, that is so fundamental in our day to day life, comes from 

hydrocarbons that occur naturally in the earth. According to the most widely 

accepted theory, hydrocarbons were formed when organic matter, such as 

the remains of plants or animals, was compressed under the earth, at very 

high pressure and temperature for a very long time. They may occur in the 

earth either as liquid or gas. Liquid hydrocarbon is commonly known as 



- 7 - 
 
 

 

crude oil or petroleum and gaseous hydrocarbon is commonly known as 

natural gas. 

At relatively lower temperatures, more crude oil is formed and at higher 

temperatures more gas is formed. As we go further beneath the earth’s 

crust, the temperature increases. For this reason, gas is usually associated 

with oil in wells that are within one or two miles from the earth’s crust. Wells 

deeper than two miles primarily produce natural gas. Together, they consist 

of more than 60% of the current world energy consumption [11]. 

 

 

Figure 2.1 A map of world oil reserves according to OPEC, January 2014 

[13] 

Petroleum products in their crude form are of little use to consumers. The Oil 

and Gas industry is a multitude of complex processes that essentially has 

the ultimate goal of transforming crude oil into marketable products. Figure 

2.2 illustrates the four essential processes. The initial process is the 

exploration and extraction. Seismic data and reservoir technology is used to 

discover the location of potential oil and gas reserves prior to drilling either 

on land or offshore. Once oil has been brought to the surface, it is cleaned 

and separated to meet the specific standards of refineries. This generally 

takes place onsite where extracted well mixed oil, gas, and saltwater are 

separated out in settling tanks. The third stage is the transportation of crude 

oil to refineries that are usually near oil consumption markets. This is done 

mainly via pipeline. For longer distances, oil is put in tanker trucks or moved 

by sea in oil tankers. After transportation, much of the crude oil is placed in 

storage facilities or tank farms until the refinery is ready to process it. Finally 

the last stage is the refining and delivery. In the refinery, petroleum is 
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physically, thermally and chemically separated into fractions and then 

converted into finished products. About 90% of these products are fuels 

such as gasoline, aviation fuels, distillate and residual oil, liquefied 

petroleum gas (LPG), and kerosene. Refineries also produce non-fuel 

products, including petrochemicals, asphalt, road oil, lubricants, solvents and 

wax. Petrochemicals (ethylene, propylene, benzene and others) are shipped 

to chemical plants, where they are used to manufacture chemicals and 

plastics [14-16]. 

 

Figure 2.2 Oil and gas industry [14] 

2.2 Pipeline Corrosion and its Significance 

At the source of petroleum production, when an oil company pumps crude oil 

out of the ground, it also pumps out a hot mixture of water, carbon dioxide, 

sulfur, microorganisms and solid particles. The exposure of these chemicals 

on the internal walls of the pipelines is what causes the corrosion of the pipe 

wall. Corrosion degrades the useful properties of material and structures 

including strength, appearance and permeability to liquids and gases. The 

nature and extent of the damage caused depends on the concentration and 

particular combinations of these various elements within the pipe as well as 

of the operating conditions within the pipeline [2, 14].  

Table 2.2 Analysis of selected number of pipeline failures in petroleum 

related industries [17] 

Type of Failure Frequency (%) 

Corrosion (all types) 33 

Fatigue 18 

Mechanical damage/ overload 14 

Brittle fracture 9 

Fabrication defects (excluding weld defects) 9 
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Welding defects 7 

Others 10 

The wide–ranging environmental conditions present in the oil and gas 

industry provide a plethora of different degradation phenomena causing 

failures, with corrosion being the most recurrent form of attack. An analysis 

of the types of petroleum industry related failures and corrosion related 

failures were published in Kermani et al. [17] and reproduced in Table 2.2 

and Table 2.3.  

Table 2.3 Causes of corrosion related failures in petroleum related industries 
[17] 

Type of Failure Frequency (%) 

CO2 related  28 

H2S related  18 

Preferential weld 18 

Pitting 12 

Erosion corrosion 9 

Galvanic  6 

Crevice 3 

Impingement  3 

Stress corrosion 3 

 

Despite the development of high cost Corrosion Resistant Alloys (CRAs), the 

industry continues its dependency on the use of carbon steel as pipework 

materials due to their vast availability and ability to fulfil many of the 

mechanical, structural and cost requirements. Their poor corrosion 

performance; however, has led to corrosion being widely investigated to 

optimize the use of carbon steel in a corrosive environment. A stringent 

corrosion management strategy is essential to not only reduce cost, but to 

prevent serious safety and environmental implications [1]. 

According to Table 2.2 and Table 2.3, approximately 33% of pipeline failures 

in the oil and gas industry are corrosion-related, and about half of these 

come about under CO2 (sweet) and H2S (sour) aqueous environments. 

Extracted oilfield brines pass through wellheads, tubing strings, flowlines and 
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risers under variable temperatures (from 5°C to 300°C (downhole)) and 

pressures (0.1 MPa to 100 MPa (downhole)) [18, 19] and internal corrosion 

of equipment under these conditions can become quite problematic. 

According to an Offshore Technology Conference (OTC) presentation in 

2008, the total annual cost of corrosion in the oil and gas production industry 

is estimated to be $1.372 billion [20]. These costs include preventative and 

maintenance measures taken to prevent the occurrence of a pipeline rupture 

and the major financial and economic losses that result from a pipeline 

failure. As the years have progressed, more and more preventative 

measures are taken when a pipeline is built in an attempt to ensure the 

optimal and secure operation of pipelines.  

Field devices such as flow, pressure and temperature gauges/transmitters 

and other devices are installed along pipelines to measure required data to 

maintain its remote operation. Furthermore, pipelines are also kept clean to 

ensure the integrity of its contents flowing through using a bullet shaped 

instrument called a pig that scrubs the wall of pipelines. More technologically 

advanced pigs, called smart pigs, use cameras to monitor the pipe for flaws 

and detect anomalies in the pipe that need to be addressed, such as 

corrosion, pipeline deformation, cracking and other abnormal features. Pipe 

manufacturers also employ many preventative measures such as 

preventative coatings, cathodic protection, inhibitors, etc. to safeguard the 

pipe and pipeline welds from corrosion [17, 21].   

Despite the high costs of maintaining these measures, the costs caused by 

plant failure are significantly larger than the cost of prevention. The financial 

impact of a plant failure includes lost revenue, lost product (from spills, fires, 

replacements etc.) and efficiency, contamination of product, delays and 

lawsuits [17, 21].  

The costly impact of corrosion on industry and the environment places a 

great demand on the importance of managing corrosion effectively and 

efficiently. This makes it imperative that research is sustained in the field of 

corrosion mitigation. Researchers are presented with the challenge of 

reducing unavoidable costs through advancements in technology whilst 

searching for more environmentally friendly products for industry to use. 

With the growing environmental awareness and imposed international 

legislation, corrosion issues in the oil and gas industry are much under 

scrutiny, highlighting the necessity for intensive research.  
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2.3 The Basics of Corrosion in an Electrochemical Cell 

Recognising corrosion when it does occur and understanding the 

mechanisms involved is an instrumental initial step in corrosion mitigation 

and management.  

2.3.1 Electrochemical Cell 

The basic corrosion mechanism follows the principle of an electrochemical 

cell which is capable of either generating electrical energy from chemical 

reactions or facilitating chemical reactions through the introduction of 

electrical energy. A typical cell consists of two half cells, each containing an 

electrode immersed in an electrolyte. All metals have a tendency to dissolve 

or corrode to a greater or lesser degree. In this case, the metal with the 

greater tendency to corrode forms the negative pole and is called the anode. 

When the two are connected, the other metal forms the positive pole, or 

cathode as shown in Figure 2.3. Loss of positive metal ions from the anode 

causes a release of free electrons in a process called oxidation. The build-up 

of electrons generates an electrical potential, causing them to flow through 

the conductor to the cathode. At the cathode, excess electrons are 

neutralised or taken up by ions in the electrolyte in a process called 

reduction. The anode will continue to corrode as long as the electric circuit is 

maintained and the metal ions are removed from solution [19, 22]. 

 

Figure 2.3 Typical corrosion cell [22] 

In the case of carbon steel or a real metal surface, the anode and cathode 

form on the single piece of metal made of small crystals of slightly different 
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compositions. In other words, different regions of the same metal surface, 

can represent the anodes and cathodes on of an electrochemical cell. The 

iron (Fe) in the steel has a tendency to dissolve into the solution as Fe2+ 

leaving two electrons behind and giving that area of the metal a small 

negative charge.  

𝐹𝑒(𝑠) ↔ 𝐹𝑒2+(𝑎𝑞) + 2𝑒− (2.1) 

If nothing happens to remove Fe2+ ions around the anodic site, the tendency 

to dissolve will diminish. In oil production, Fe2+ ions are commonly removed 

by reacting with oxygen (O2), hydrogen sulphide (H2S) or carbon dioxide 

(CO2) as shown in Figure 2.4. Excess electrons flow away from the anodic 

region to a site where they form a cathode and where the reduction occurs. 

Reduction of oxygenated water forms hydroxyl ions [OH-].  

𝑂2(𝑎𝑞) + 2𝐻2𝑂(𝑙) + 4𝑒− ↔ 4𝑂𝐻−(𝑎𝑞) (2.2) 

If oxygen is not present, but CO2 or H2S is, then the dominant cathodic 

reaction is the reduction of hydrogen ions to produce hydrogen gas.  

2𝐻+(𝑎𝑞) + 2𝑒− ↔ 𝐻2(𝑔) (2.3) 

In more complex cases, the metal ions combine with other species in the 

solution and precipitate compounds such as rust (Fe2O3), iron sulphides 

(FeS) or iron carbonate (FeCO3) [19, 22, 23].  

 

Figure 2.4 Corrosion on a steel surface [22] 
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2.3.2 Thermodynamics of Aqueous Corrosion Reactions 

Engineering metals are unstable and given the opportunity, they will corrode 

as discussed in the previous section. Metals try to lower their energy by 

spontaneously reacting to form solutions or compounds with greater 

thermodynamic stability [24]. The following section looks at the driving force 

for metallic corrosion which is the Gibbs free energy change (ΔG). 

Gibbs free energy is the change in free energy of the metal and environment 

combination brought about by corrosion. If a reaction is spontaneous, then 

ΔG must be negative. The term ΔG is only the difference between the Gibbs 

energies of the final and initial states of the reaction process, making it 

independent of the various intermediate stages [3, 25].  

A metal surface immersed in any aqueous solution will develop an electrode 

potential. Faraday derived an equation which relates potential difference and 

charge transported with the Gibbs free energy change of the corrosion 

process [25].  

∆𝐺 = (−𝑛𝐹)𝐸 (2.4) 

Where ΔG is the free energy change for the corrosion reaction in kJ/mol, n is 

the number of electrons exchanged in the corrosion reaction, F is Faraday’s 

constant in Coulombs/mole and E is the potential difference at non-standard 

conditions in Volts.  

By using the superscript (°), the equation can be rewritten to represent 

standard conditions at a temperature of 273.15 K and a pressure of 1 

atmosphere [25].  

∆𝐺° = (−𝑛𝐹)𝐸° (2.5) 

Values of E° are available for all metals as well as many other half cell redox 

reactions and examples of some standard half-cell potentials are provided in 

Table 2.4. An absolute measurement of this standard electrode potential is 

not possible. It can however be measured against a reference system. By 

convention, standard electrode potential for electrochemical reaction are 

measured against a standard hydrogen electrode (SHE). This half-cell 

reference is given an E° of 0.00 V. Metals at the negative end corrode 

readily and tend to be anodes [25, 26].  

The Gibbs free energy of a chemical reaction is related to the temperature 

and composition of the reaction mixture. By using thermodynamic principles, 

the value of ΔG at any given temperature or concentration can be defined 

as.  
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∆𝐺 = ∆𝐺° − 𝑅𝑇𝑙𝑛
[𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠]

[𝑎𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]
 (2.6) 

Where R is the ideal gas constant (8.314 J/mol.K), T is the absolute 

temperature in Kelvin (K) and [aproducts] or [areactants] are the concentrations or 

pressures of all the product or reactant species multiplied together in moles 

or atm [23, 25]. 

Table 2.4 Standard electrode reduction potentials versus a standard 

hydrogen electrode (SHE) [25, 26]. 

Electrode Standard Electrode Potential E° (V) 

𝐴𝑢3+(𝑎𝑞) + 3𝑒− → 𝐴𝑢 +1.50 

1

2
𝑂2 + 2𝐻+(𝑎𝑞) + 2𝑒− → 𝐻2𝑂 +1.228 

𝐹𝑒3+(𝑎𝑞) + 𝑒− → 𝐹𝑒2+ +0.771 

2𝐻+(𝑎𝑞) + 2𝑒 − → 𝐻2(𝑔) 0.00 

𝑁𝑖2+(𝑎𝑞) + 2𝑒− → 𝑁𝑖 -0.250 

𝐹𝑒2+(𝑎𝑞) + 2𝑒− → 𝐹𝑒 -0.440 

𝐶𝑟3+(𝑎𝑞) + 3𝑒− → 𝐶𝑟 -0.740 

𝑍𝑛2+(𝑎𝑞) + 2𝑒− → 𝑍𝑛 -0.763 

 

By combining Equation (2.6) with Faraday’s law (Equation (2.5)), the Nernst 

equation can be created, which allows for the correction of standard 

reduction potentials based on the environmental concentrations.  

𝐸 = 𝐸° −
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠]

[𝑎𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]
 (2.7) 

Electrode potentials can be combined arithmetically to give cell potentials 

consisting of both anodic and cathodic reactions. Knowledge of standard 

electrode potentials of metals can reveal their corrosion tendencies to each 

other. A spontaneous reaction such as the corrosion must result in a 

reduction in Gibbs energy, so ΔG must be negative. Therefore E cell must 

be positive for corrosion to occur and is calculated as follows [23, 25].  

𝐸𝑐𝑒𝑙𝑙 =  𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐 −  𝐸𝑎𝑛𝑜𝑑𝑖𝑐 (2.8) 

Where Ecell is the cell potential in Volts, Ecathodic is the reduction potential of 

the cathodic reaction and Eanodic is the reduction potential of the anodic 

reaction.  
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Nernst equation provides an idea of the thermodynamic driving force that 

could sustain the oxidation (corrosion) in a given solution. However, it is 

unknown how quickly the metal corrodes in a solution containing these 

oxidising agents. The rate of material corrosion is understood from the 

principles of corrosion kinetics [19].  

2.3.3 Electrical Double Layer (EDL) 

Initially, the focus is brought to the electrical double layer to understand the 

nature of the electrode/ electrolyte interface when a metal is immersed into 

an aqueous solution. Local anodic and cathodic regions are generated 

instantaneously at the solid/liquid interface as a result of differences in free 

energy states between reacting sites. 

As previously discussed, when a metal corrodes, ions depart their lattice, 

leaving behind their electrons. Water molecules then surround the metal ions 

as they escape the lattice, hydrating them. The hydrated ions are then free 

to diffuse away from the metal. The surface of the metal becomes negatively 

charged due to excess electrons and tends to attract some of the positively 

charged ions. This means that a certain percentage of ions remain near the 

surface, instead of diffusing into the bulk electrolyte. The water layer around 

the ions helps prevent them from making contact with the excess surface 

electrons and subsequently being reduced to metal atoms. Positive ions 

already in the electrolyte are also attracted to the negatively charged surface 

[25, 27]. 

 

Figure 2.5 Simplified view of a double-layer of negative ions in the electrode 

and solvated positive ions in the liquid electrolyte, separated by a layer 

of polarised solvent molecules [28]. 
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Figure 2.5 shows a schematic of the Electrical Double Layer (EDL) at a 

metal-solution interface. The electrolyte layer adjacent to an electrode 

surface contains water molecules and ions from both the metal and bulk 

electrolyte providing it with a distinctly different chemical composition than 

the bulk solution. This layer of specifically absorbed ions form with the inner 

Helmholtz plane (IHP) balancing the associated electron charge at the 

surface. A layer of solvated ions, which are free to diffuse into the bulk 

solution forms the adjacent region known as the Outer Helmholtz Plane 

(OHP).The negatively charged surface and the adjacent electrolyte layer are 

collectively referred to as the electrical double layer (EDL) [28]. 

The physical separation of two oppositely charged planes created by the 

EDL causes it to produce capacitor-like behaviour, with the level of 

capacitance being determined by the metal and electrolyte composition. The 

metal also resists transferring excess electrons to the electrochemically 

active ions, which allows the EDL to also behave as a resistor [25, 27].  

The charge separation in an EDL going from the metal surface (electrode) to 

the OHP (solution), undoubtedly creates an electrical potential that changes 

with the properties of the solution. The existence of a measurable electrical 

potential difference and the involvement of electron transfer in corrosion 

suggest there is a relationship between the EDL chemical composition, 

voltage and electric current [25, 27]. 

2.3.4 Corrosion Kinetics 

Thermodynamic principles can explain a corrosion situation in terms of the 

solubility of chemical species and reactions associated with the corrosion 

process. Revisiting Section 2.3.1, when an electrode is immersed in an 

aqueous solution, both an oxidation and reduction may occur. The 

thermodynamically favourable reaction that takes place is determined from 

the reduction potential using Nernst equation for certain environmental 

concentrations. 

An equilibrium potential is associated with each reaction and is the potential 

at which the sum of the anodic and cathodic reaction rates are equal to zero. 

It is termed the free corrosion potential (Ecorr) which is dependent on the 

metal and the nature of the solution. The corresponding current density is 

called the corrosion current density (icorr) [29]. Faraday proposed that the 

magnitude of current density indicates the rate of oxidation/ reduction.  
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Ecorr values change when EDL composition changes and applied voltages 

change EDL composition. The Nernst equation mathematically relates EDL 

behaviour to electrical potential: 

𝐸 = 𝐸° −
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠]

[𝑎𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]
 (2.9) 

The measured potential is dependent upon the concentrations of both the 

metal ions and electrochemically active species in the EDL. The magnitude 

of a measured potential will therefore change with EDL chemical 

composition. Hence, Ecorr will change if the bulk electrolyte composition is 

changed in such a way that it alters the EDL composition [25, 27]. 

The Nernst equation does not express a relationship for electrical current. 

Rather the Nernst equation expresses the tendency of a material to corrode, 

not the rate at which the material will deteriorate as mentioned previously.  

When a current is applied to the electrode surface, the electrode potential 

changes and the electrode is said to be polarised. The difference between 

this resultant potential (E) and each electrode’s reaction equilibrium potential 

(Eeq) is called polarisation or over-potential (η) and is modelled as [30]: 

𝜂 =  𝐸 −  𝐸𝑒𝑞 (2.10) 

The electrode potential, E is determined using the Butler-Volmer equation for 

an applied current for corroding electrodes in the absence of competing 

reduction-oxidation reactions [31]. 

𝑖 = 𝑖𝑐𝑜𝑟𝑟 [𝑒
(

(1−∝)𝑛𝐹(𝐸−𝐸𝑐𝑜𝑟𝑟)
𝑅𝑇

)
− 𝑒

(
−∝𝑛𝐹(𝐸−𝐸𝑐𝑜𝑟𝑟)

𝑅𝑇
)
] (2.11) 

where Ecorr is the free corrosion potential in Volts, i is the external current in 

Amps/cm2 flowing to or from the electrode because of an applied potential, 

icorr is the corrosion current density in Amps/cm2 that occurs when the 

electrode is at Ecorr, E is the applied potential in Volts, α is a coefficient 

ranging from 0 to 1 and R, T, n and F have been defined previously. The first 

term in Butler-Volmer equation describes the forward, anodic (metal 

dissolution) reaction while the second term describes the backward, cathodic 

reaction [25, 30]. 

Alternatively, the equation can be expressed in term of Tafel slopes (βa and 

βc) which are given by the gradients of the polarisation curves in the anodic 

and cathodic regions for a plot of E vs log(i) i.e. (dE/dlog(i)). Figure 2.6 

shows a theoretical potential-log current density of polarisation curve for a 
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single electrochemical reaction on a metal surface under standard 

conditions.  

𝑖 = 𝑖𝑐𝑜𝑟𝑟 [𝑒
(

2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)
𝛽𝑎

)
− 𝑒

(
−2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)

𝛽𝑐
)
] (2.12) 

This relationship provides the basis for the electrochemical polarisation 

technique for a corroding electrode at its free corrosion potential [32]. 

 

 

Figure 2.6 Theoretical potential-current density for a single redox reaction 

on a metal surface [19]. 

Applying a few millivolts of polarisation from Ecorr has been well-known to 

produce a linear relationship between applied voltage and current. The 

Butler-Voltmer equation was simplified by Stern and Geary [33] for the case 

of small over-potentials with respect to Ecorr. The kinetic expression has the 

following form.  

𝑅𝑝 = [
∆𝐸

∆𝑖
]

(𝐸−𝐸𝑐𝑜𝑟𝑟)→0
=

1

2.303𝑖𝑐𝑜𝑟𝑟

[
𝛽𝑎𝛽𝑐

𝛽𝑎 + 𝛽𝑐

] =  
𝐵

𝑅𝑝
 (2.13) 

Where Rp is the polarisation resistance (Ohm.cm2) given by the gradient of 

the polarisation plot as small over-potentials (dE/di) for a plot of E vs I.  

This theory links to the electrochemical measurement technique, commonly 

known as Linear Polarisation Resistance (LPR) technique that was used in 

determining the corrosion rate in experimental work in Chapter 6 and 7. 

Knowledge of Rp, βa and βc enables direct determination of the corrosion 

rate at any instant in time. 
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The above theory provides a basic understanding of the corrosion process 

which is essential first step in its mitigation and development of novel 

techniques. CO2 corrosion has been recognised as one of the most 

prevalent corrosive agents in upstream production and transport operations. 

One important feature is the formation of iron carbonate or siderite corrosion 

product scales (FeCO3) that is complementary to the CO2 corrosion of steel 

and is the focus of the work done in this thesis. The next chapter centres on 

an overall literature understanding of CO2 corrosion and FeCO3 film 

formation and the parameters that effect its kinetics.  
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Chapter 3  

CO2 Corrosion and FeCO3 Scale Formation 

Corrosion is a key hindrance to successful operation in the oil and gas 

industry. Its occurrence degrades the properties of a pipeline and has a 

major financial and environmental impact as discussed in the previous 

chapter.  One of the most frequent and major internal corrosion problems 

experienced in pipelines is carbon dioxide corrosion which is also known as 

sweet corrosion (as shown in Table 2.3 in Chapter 2). In order to fully assess 

its impact, it is essential to first understand the governing processes that 

occur. This chapter outlines the current understanding of CO2 corrosion 

mechanisms for carbon and low-alloy steels in hydrocarbon production and 

highlights key parameters which influence CO2 corrosion behaviour and the 

rate of FeCO3 film formation.  

3.1 CO2 Corrosion Chemistry 

CO2 corrosion is the chemical reaction of the pipeline material in the 

presence of water and CO2. It is a complex process in which a number of 

chemical reactions, electrochemical reactions and transport processes occur 

simultaneously which can be divided into both anodic and cathodic 

reactions. The presence of CO2 in an aqueous solution promotes the 

hydrogen evolution reaction, increasing the rate of corrosion of iron [34]. 

The chemical process of CO2 corrosion commences by the dissolution of 

CO2 in water. Depending on the conditions within the flow, a percentage of 

the carbon dioxide gas dissolves in the produced water and results in the 

formation of weak carbonic acid as shown in the Equations (3.1) and (3.2) 

[34, 35].  

𝐶𝑂2(𝑔) ⇌ 𝐶𝑂2(𝑎𝑞) (3.1) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇌ 𝐻2𝐶𝑂3(𝑎𝑞) (3.2) 

Carbonic acid is considered a weak acid as it does not fully dissociate. It is 

diprotic and partially dissociates in two steps to form bicarbonate (HCO3
-) 

and carbonate (CO3
2-) providing H+ ions. This separation provides the 

necessary H+ ions to enable the corrosion reaction. 

𝐻2𝐶𝑂3(𝑎𝑞) ⇌ 𝐻+ + 𝐻𝐶𝑂3
− (3.3) 

𝐻𝐶𝑂3
− ⇌ 𝐻+ + 𝐶𝑂3

2− (3.4) 
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According to the leading mechanism for CO2 corrosion of carbon steel 

developed by De Waard and Milliams (1975) [34], the reduction of the un-

dissociated acid molecule (H2CO3) occurs after it is absorbed onto the metal 

surface. This is therefore the rate-determining step of the process, so 

therefore the corrosion rate of the metal surface is directly related to the 

concentration of the un-dissociated acid in the solution.  

Corrosion is an electrochemical process and involves the transfer of 

electrons at the metal-solution interface. For CO2 corrosion of carbon steel, 

there are two possible cathodic reactions shown in Equation (3.5) and (3.6) 

[2, 34, 35].  

Cathodic Reactions 

H2 evolution 2𝐻+ + 2𝑒− → 𝐻2 (3.5) 

Direct reduction of H2CO3 2𝐻2𝐶𝑂3 + 2𝑒− → 𝐻2 + 2𝐻𝐶𝑂3
−

 (3.6) 

Whether or not the direct reduction of carbonic acid (Equation 3.6) actually 

occurs on the metal surface is debated in literature since it could be argued 

that carbonic acid would dissociate into a hydrogen ion faster than it could 

diffuse to the surface of the steel. If carbonic acid dissociated in the 

boundary layer, then it would only act as an additional source of hydrogen 

ions and the only cathodic reaction in the corrosion process is Equation 

(3.5).  

De Waard and Milliams [34] also found that the anodic dissolution of iron is 

determined by Equations (3.7), (3.8) and (3.9). The overall reaction is shown 

in Equation (3.10).  

𝐹𝑒 +  𝑂𝐻− → 𝐹𝑒𝑂𝐻 + 𝑒− (3.7) 

𝐹𝑒𝑂𝐻 → 𝐹𝑒𝑂𝐻+ + 𝑒− (3.8) 

𝐹𝑒𝑂𝐻+ → 𝐹𝑒2+ + 𝑂𝐻− (3.9) 

Anodic Reaction 

Fe oxidation 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒 − (3.10) 

A direct result of the CO2 corrosion process is the increase in the presence 

of Fe2+ ions. At a certain instant in time, depending on the conditions, when 

the product of the concentrations of Fe2+ and CO3
2- ions in the solution 

exceed the solubility limit (Ksp), they precipitate on the pipeline surface to 

form a protective film on the steel surface called FeCO3(s) as shown in 

Equation (3.11) [35].  
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FeCO3 Precipitation 𝐹𝑒2+ + 𝐶𝑂3
2− → 𝐹𝑒𝐶𝑂3(𝑠) (3.11) 

FeCO3 acts as a diffusion barrier for corrosive species and has a surface 

covering effect which therefore reduces the corrosion rate of the pipeline. 

However, if there is any damage of the protective FeCO3 film, it may lead to 

serious localized corrosion problems, also known as mesa attack, by 

exposing the underlying metal to the aggressive corrosive environment. This 

can result in catastrophic failure and significant economic cost. The integrity 

of the FeCO3 film depends on the characteristics of the film formed (porosity, 

thickness, etc).Two non-dimensional parameters that are used to identify the 

protectiveness of FeCO3 in literature are the Scaling Tendency and 

Saturation Ratio [2, 34, 35] 

Saturation Ratio 𝑆𝑅𝐹𝑒𝐶𝑂3 =
[𝐹𝑒2+][𝐶𝑂3

2−]

𝐾𝑠𝑝
 (3.12) 

Scaling Tendency 𝑆𝑇 =
𝐹𝑒𝐶𝑂3 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
 (3.13) 

If the rate of precipitation is faster that the rate of corrosion, the scaling 

tendency will be high. Thus the FeCO3 forms as a dense and protective 

scale on the steel surface. On the other hand, if the corrosion rate is faster 

than the precipitation rate the scaling tendency is low, a porous and non-

protective corrosion product layer will form.  
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Figure 3.1 Regions of Crystal Growth [36] 

In terms of the saturation ratio, Figure 3.1 shows the different regions of 

crystal growth as a function of the concentrations of the ions [36]. For 

precipitation to take place, supersaturation of ions is needed. Region 1 is 

under-saturated (SR<1).  

At this point the ions are dissolved in the solution (dissolution of the crystal). 

When the concentration of the ions reaches the solubility product, FeCO3 

can form and the protectiveness of the layer depends on how high the 

saturation ratio is [36]. At a high supersaturation, FeCO3 crystals may rapidly 

nucleate in a large number of locations and grow fast to form a thin tight 

surface film with small crystal size. These films are very protective. At a low 

supersaturation, nucleation happens in significantly smaller number of 

locations. The crystal growth proceeds slowly and the crystals become very 

large. Furthermore, the large crystals form a much thicker and looser surface 

layer that is less protective and is more easily damaged or swept away by 

the flow [35, 36].  
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3.2 FeCO3 Crystallisation 

As discussed in the previous section, the rate of FeCO3 precipitation from 

the solution is governed to a large extent by the saturation ratio. The ratio is 

quantified by the effusion of iron ions from the metal surface and infusion of 

carbonate ions from the bulk solution and is favourable only when the ratio is 

much greater than one. However, it is noted that the saturation ratio is a 

driving force and not a kinetic parameter of FeCO3 precipitation. The crystal 

precipitates on to the surface via nucleation and crystal growth and the 

competition between these two processes determines the morphology of the 

scale in terms of volumetric porosity. The corrosion product films would be 

less porous and compact if the nucleation rate is higher than the growth rate 

[37, 38].  

Nucleation is the first step in forming iron carbonate crystals and is followed 

by crystal growth. According to classical theory, if the nucleating phase is a 

sphere with radius r, the overall Gibbs free energy change, ΔG associated 

with nucleation from the solution is given by Equation (3.14) [39].  

∆𝐺 = (
4

3
𝜋𝑟3∆𝐺𝑣𝑜𝑙𝑢𝑚𝑒) + 4𝜋𝑟2𝛾 (3.14) 

Where ΔGvolume is the free energy change involved during the transformation 

of a crystallising solute to a large crystal of infinite volume and γ is the 

interfacial tension. Taking the first derivative of Equation (3.14), gives  

𝑑∆𝐺

𝑑𝑟
= 0 = (4𝜋𝑟2∆𝐺𝑣𝑜𝑙𝑢𝑚𝑒) + 8𝜋𝑟𝛾 (3.15) 

 And rearranging provides the value for the critical nucleus size, rc [39].  

𝑟𝑐 =  
−2𝛾

∆𝐺𝑣𝑜𝑙𝑢𝑚𝑒
 (3.16) 

For the nucleation of crystals from solution, the Ostwald-Freendlich equation 

[40] relates the solution saturation ratio to the size of the nucleating particle.  

ln 𝑆𝑅 =  
2𝛾𝑣

𝑘𝑇𝑟
 (3.17) 

Where SR is the saturation ratio, v is the volume of the aggregate, k is the 

Boltzman constant (1.38×10-23 m2.kg/s2K), Ti is temperature (K), γ is the 

interfacial tension and r is the size of the aggregate. By combining Equation 

(3.16) and (3.17), it is observed that the critical cluster size (rc) is inversely 

proportional to the saturation ratio.  
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−∆𝐺𝑣𝑜𝑙𝑢𝑚𝑒 =  
2𝛾

𝑟𝑐
=  

𝑘𝑇𝑙𝑛𝑆𝑅

𝑣
 (3.18) 

Finally, substituting the expression for ΔGvolume in Equation (3.18) and the 

expression for critical nucleus size, rc in Equation (3.16) into the general 

equation for Gibbs free energy, ΔG for nucleation in Equation (3.14), 

provides an expression that shows how the saturation ratio can be related to 

the height of the free energy barrier for critical nucleus formation, ΔGc as 

shown in Equation (3.19).  

∆𝐺𝑐 =
16𝜋𝛾3

3 (−
𝑘𝑇 𝑙𝑛𝑆𝑅

𝑣
)

2 =  
16𝜋𝛾3𝑣2

3(−𝑘𝑇 𝑙𝑛𝑆𝑅)2  
(3.19) 

ΔGc is the Gibbs free energy at critical nucleus size, Rc and is also known as 

the nucleation barrier. The height of the free energy barrier ΔGc is inversely 

proportional to the square of the saturation ratio. Thus, the critical nucleus 

size and the critical free energy requirement decrease with the saturation 

ratio [19, 40, 41].  

For FeCO3 crystals to nucleate homogenously in a solution, the crystallising 

solute particles need to interact, organise themselves in a structural order 

and grow beyond a critical size simultaneously. This is energetically 

demanding because FeCO3 aggregates would need to collide with each 

other in solution, overcome high interfacial tension during growth, and 

counteract intermolecular repulsion forces. Figure 3.1 shows spontaneous 

homogenous nucleation to occur at the top of the triangle at the highest 

levels of supersaturation. In practice, the process of nucleation is observed 

more typically as heterogeneous nucleation which is aided by the rough 

steel surface which acts as preferential nucleation sites. This offers 

adsorption sites to developing FeCO3 nuclei, which decreases the interfacial 

tension term, and thus the overall Gibbs free energy of nucleation. 

Properties of the surface such as its structure, composition and ‘wettability’, 

are important variable that influence crystal nucleation. Wettability refers to 

the interaction between fluid and solid phases. This means that the Gibbs 

free energy for heterogeneous crystal nucleation is lower (and thus more 

favourable) compared to the required free energy for homogenous 

nucleation [19, 37, 42].  

So, from the above thermodynamic consideration, it may be generalised that 

smaller critical cluster sizes and lower ΔG are obtained at higher 

supersaturation implying that an increasing supersaturation leads to a higher 

nucleation rate [19]. 
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For a corroding metal-solution interface in a sweet solution, as the ferrous 

and carbonate ion concentrations increase, an originally under-saturated 

solution passes through the equilibrium saturation line (SR=1). In the under-

saturated solution, it is thermodynamically unfavourable for FeCO3 crystals 

to form and existing crystals should dissolve away. Above SR=1, the solution 

is supersaturated and crystallisation is favourable. The time delay between 

exceeding supersaturation and the onset of nucleation is known as the 

induction time (τind). Ostwald recognised that a metastable zone exists at low 

supersaturation values as shown in Figure 3.1, where some crystallisation is 

possible but it can be difficult for nucleation events to take place due to long 

induction times [19]. Above some critical supersaturation (SRcrit), nucleation 

events are likely to proceed. The influence and range of this metastable 

zone can be a rate-limiting factor in crystal nucleation [19, 42]. 

Precipitated nuclei are deemed to be nano-crystalline or amorphous (without 

a clearly defined shape or form). As the nucleated phase begins to 

incorporate incoming FeCO3 growth onto a lattice, it begins to develop into a 

crystal. The nuclei grows only after reaching its critical size, rc, the nucleus is 

stable and at that instant the nuclei has overcome its free energy barrier, ΔG 

[37]. 

The number of crystallising aggregates over time passing through the 

thermodynamically determined energy barrier, ΔGc in order to become 

FeCO3 crystals provides the rate of nucleation. Dugstad et al. [43] reported 

that the rate of nucleation is believed to increase exponentially with relative 

supersaturation whereas the rate of particle growth bears an approximate 

linear relationship to this parameter. Crystal growth should therefore 

predominate at low relative supersaturation. When the supersaturation is 

high, the exponential dependency of nucleation rate may cause this 

nucleation process to occur to the near exclusion of particle growth.  

The Arrhenius equation relates the rate constant of a chemical reaction to 

temperature.  

𝑘 = [𝐴]𝑒𝑥𝑝 [−
𝐸𝑎

𝑘𝑇
] (3.20) 

[A] is the pre-exponential factor related to the frequency of molecular 

collisions and Ea is the activation energy. The rate of crystal nucleation, RNuc, 

defined as the number of aggregates overcoming ΔGc to form a pre-crystal 

nucleus with time is formed, according to Arumugam et al. [44], using the 

Arrehnius expression where ΔGc replaces Ea. 
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𝑅𝑁𝑢𝑐 = 𝑃[𝐴]𝑒𝑥𝑝 [−
16𝜋𝛾3𝑣2

3(𝑘𝑇)3 ln (𝑆𝑅)2 ] (3.21) 

P is the probability that [A] number of crystallising solute nuclei will grow into 

crystals. Nucleation relies on the interfacial tension, γ of the nucleated 

phase-solution boundary, the solution temperature, T and the saturation 

ratio, SR [19, 41, 42].  

The growth rate of a crystal is defined as the rate of change of a dimension 

of the crystal with time. According to Dugstad et al [43], the growth rate is 

observed to have a linear relationship with the relative saturation ratio and 

can be expressed according to Equation (3.22).  

𝑅𝐶𝐺 = 𝑘𝐶𝐺(𝑆𝑅 − 1)𝑦 (3.22) 

Where kCG is the crystal growth rate constant and exponent y is the growth 

order that represents the growth mechanism of the crystal.  

3.3 Key Parameters affecting CO2 Corrosion Rate 

The rate at which carbon steel corrodes in a CO2 environment is affected by 

a number of different factors. These parameters include water chemistry, 

CO2 content, temperature and fluid dynamics. The following section provides 

an overview of the existing literature describing observed results of the effect 

of these parameters on the corrosion rate and the formation of FeCO3 film.  

3.3.1 Water Chemistry and Content 

Solution chemistry plays an important role in CO2 corrosion rates. The 

solution composition can vary from simple to very complex with numerous 

species in the solution such as formation water accompanied by the 

presence of crude oil. This can be further complicated by the species which 

partition into the water from the oil phase [45].  

CO2 corrosion occurs as a result of water being present in the system which 

wets the steel surface. The intensity of the CO2 attack increases with the 

time during which the water phase is in contact with the steel surface. 

Therefore the water content and the notion of water wetting is an important 

consideration when examining CO2 corrosion. In cases where a water-in-oil 

emulsion is created and the water is held in the emulsion, then the water 

wetting of steel is significantly reduced, lowering the corrosion rate. Crude oil 

has been shown to help reduce CO2 corrosion through its interaction with the 

steel surface, as well as it reducing the surface wettability [45, 46]. 
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A complete understanding of brine chemistry and the effect this can have on 

CO2 corrosion rate is an important concept. However, in the following thesis, 

the area of concern is restricted to brine saturated with CO2 in order to 

maintain a controlled environment and identify specific causes.  

3.3.2 CO2 Corrosion Products 

CO2 corrosion of carbon steel is strongly dependant on the surface films 

formed during the corrosion process. The protectiveness, rate of 

precipitation and stability of the film dictate the corrosion rate and its nature. 

The corrosion rate will depend on the protectiveness of this porous scale, 

which is determined by the nature of the base alloy in terms of its 

composition and microstructure, the properties of the environment such as 

temperature, CO2 partial pressure, pH, etc. and the mechanical forces within 

the flow. The rate of precipitation heavily influences the properties of the 

FeCO3 film [47].  

The formation of iron carbonate films is governed by many factors but two of 

the most influential aspects are the solution pH and operating temperature. 

As mentioned previously, the super saturation with respect to iron carbonate 

needs to be exceeded in order to obtain appreciable enough levels of 

precipitation to form a dense protective scale and achieve successful 

protection.  

3.3.3 Operating Temperature 

Research and experiments have shown that the CO2 corrosion rate and the 

precipitation of FeCO3 have equally high dependence on the operating 

temperature.  At room temperature, precipitation is slow and even at high 

supersaturation, an un-protective film containing voids and grain boundaries 

will be produced unless pH is very high. Increasing the temperature of the 

electrolyte accelerates all processes involved in corrosion including chemical 

reactions in the bulk, electrochemical reactions at the metal surface and 

mass transport. The rate of corrosion steadily increases with temperature at 

low pH when the precipitation of iron carbonate and other protective scales 

do not form. The situation changes significantly when the conditions mean 

the solubility of iron carbonate (or other salts) is exceeded, which typically 

occurs at a higher pH. In these conditions, increasing temperature 

accelerates the kinetics of precipitation and protective scale formation, 

decreasing the corrosion rate [47-49].  

Studies by Ikeda et al. [50] show that at lower temperatures (<60°C) the film 

struggles to adhere to the surface and therefore offers little protection. At 
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temperature above 60°C, film protectiveness is seen to increase with 

temperature. Peaks in corrosion rate are usually seen between 60°C and 

80°C depending upon the solution chemistry and flow behaviour and this is 

referred to as the ‘scaling’ temperature [45]. Figure 3.2 shows the growth 

rate of FeCO3 film at different levels of supersaturation. 

 

Figure 3.2 The effect of supersaturation and temperature on the growth of 
FeCO3 [38] 

However, the precipitation of FeCO3 in itself does not necessarily result in 

the formation of a protective film. At higher temperatures, the film becomes 

different in texture, more crystalline and generally more protective. At lower 

temperatures (below 60°C), the corrosion product has a smudge-like texture 

and is easily removed by flowing fluid [51]. 

In reality, high supersaturation cannot be sustained for long periods at high 

temperature as the accelerated precipitation process will tend to rapidly 

return the solution to thermodynamic equilibrium. All investigations agree 

that increasing the temperature improves the protectiveness of the film, 

however, there is little agreement on a practical threshold temperature [48].  

3.3.4 pH 

With regard to solution pH, Nesic et al. [49] showed experimentally and 

computationally that pH has a strong influence on the formation of iron 

carbonate scale and henceforth the corrosion rate. A lower pH results in a 

more corrosive system. At high pH, the solubility of FeCO3 decreases 

leading to a high precipitation rate and scaling tendency.  
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Figure 3.3 shows the influence that CO2 partial pressure and pH have on the 

level at which FeCO3 saturation is attained [38].  

 

Figure 3.3 Quantity of Fe2+ needed to be produced by corrosion to reach 

FeCO3 saturation plotted as a function of pH. The brine pH is the pH 
before corrosion has started [38] 

The study has shown that increasing the pH of a solution from 4 to 5 

reduces the solubility of Fe
2+

 by approximately a factor of 5. A further 

increase in pH from 5 to 6 reduces solubility 100 times. A low solubility can 

correspond to higher supersaturation, which accelerates the precipitation 

and formation of FeCO3 films. Therefore, for pH > 5, as is the case with most 

CO2 saturated brines, the probability of film formation is increased, which 

can contribute to a lower corrosion rate [38].  

3.3.5 Partial Pressure 

In the case of scale-free CO2 corrosion, an increase of CO2 partial pressure 

(pCO2) tends to result in a rise in corrosion rate. It is generally considered 

that with increasing pCO2, the concentration of H2CO3 increases, 

accelerating the cathodic reaction, and ultimately the corrosion rate. 

However, when conditions are favourable for the formation of iron carbonate 

scales, increasing pCO2 can have a beneficial effect. At high pH, high pCO2 

can accelerate precipitation and scale formation by increasing the 

bicarbonate and carbonate ion concentration [2, 34].  

These findings are supported in Figure 3.4. The figure shows the result of a 

study by Suhor et al. [34] on the effect of high partial pressure on the 

corrosion rate over a period of 25 hours. The experiment was conducted in a 

20 litre autoclave at 80°C and autogeneous pH.  
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Figure 3.4 Corrosion rate over time for static experiment at high temperature 

(80°C), pCO2 ranging from 10 to 80 bar and autogeneous pH [34]. 

3.3.6 FeCO3 Film Growth over Time 

The following section focuses primarily on the kinetics of scale formation. 

There are two phases which iron carbonate film growth goes through: 

nucleation and growth. In the nucleation phase, crystals form on the 

imperfections of the steel surface and in the growth phase crystals grow 

from a large number of discrete nuclei into dendritic structures forming a 

porous film. As more iron carbonate precipitates, the film grows in density as 

well as thickness. Corrosion can occur under the film, creating a gap 

between the film and the steel surface; however, this is filled up by ongoing 

precipitation [36, 38].  

In a study by Gao et al. [52], ex-situ glass cell experiments were performed 

to explore the initiation and growth of iron carbonate films over time. The 

paper focussed specifically on the relationship between the growth of the 

iron carbonate crystals and the structure of the corrosion product films. 

Linear polarisation resistance (LPR) was used to monitor the corrosion rate 

and Scanning Electron Microscopy (SEM) was used to observe the 

formation of corrosion product films produced after different lengths of time. 

The conditions of the experiment are stated in the caption of Figure 3.5.  
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Figure 3.5 Cross-sectional and surface morphologies of corrosion product 

films formed at different times at 75°C: 108h (a and b), 144h (c and d), 
240h (e and f), pH=6.5, pCO2 = 10 bar [52]. 

The figure shows the SEM images of the corrosion product films formed 

after 108,144 and 240 hours. Silicone rubber was used in the experiments to 

prevent parts of the steel coupons from corroding in order to see the 

thickness and morphology of the corrosion films relative to the original un-

corroded steel surface. After 108 hours, a single layer can be seen on the 

steel, which is beneath the original steel surface. At 144 hours, the critical 

time, an outer layer corrosion film above the original steel surface forms. 

After the critical point, the thickness of the inner and outer layer increases 

with time. The surface morphologies also exhibit differences between the 

iron carbonate structures formed before and after the critical point. Before 

the critical point, the size of the iron carbonate grains is disordered and 

large, resulting in long distances between the crystal grains, increasing the 

porosity of the layer. A new compact crystal layer is shown to form over the 

steel surface or among the voids of the inner film soon after the critical point, 

creating a dense protective film [52].  

3.3.7 Effect of Flow 

Corrosion can be affected by flow differently depending on the mechanism 

governing the corrosion process. There are two cases to consider: the effect 
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of flow on corrosion when no surface films are present and the effect of flow 

on corrosion in the presence of surface films [45]. 

In the absence of films, the primary effect of flow on corrosion is through 

mass transfer of the species involved in the corrosion reaction at the metal 

surface. For mass transfer in turbulent liquid flow, all the concentration 

changes occur in a very narrow layer adjacent to the metal surface known as 

the mass-transfer boundary layer. The thickness of this layer is a function of 

the flow rate and flow geometry [45, 53].  

When surface films are present, a high flow rate can reduce the corrosion 

rate by hindering the transport of species involved in the electrochemical 

reactions at the metal surface. The surface films can be removed locally or 

globally by chemical dissolution or by mechanical forces, both of which lead 

to very high corrosion rates. Both mechanisms of film removal are related to 

flow and the transfer processes within. Chemical dissolution of surface 

deposits is related to mass transfer and to water chemistry. Mechanical 

removal of films is related to momentum transfer and often is encountered in 

single- and multiphase flows. In multiphase flow, film removal can be caused 

by the impact of solid particles present in the liquid, by the impact of droplets 

present in the gas flow (erosion), or by pressure and shear stress 

fluctuations due to slugging, etc. In single-phase flow, mechanical film 

removal often is seen particularly at geometrical irregularities (e.g., weld 

beads, grooves, and areas of sudden diameter changes) [53-55].  

The effect of flow on CO2 corrosion behaviour at 120°C was studied using a 

RCE in a study by Nesic et al. [53]. Figure 3.6 shows the observed corrosion 

rate from LPR at 120°C over time. The corrosion rates decreased with time 

for all rotating speeds due to the formation of corrosion product layers. 

However, the corrosion rates at 100 rpm were the lowest. By visual 

comparison of SEM images from each test, it was seen that the FeCO3 

crystals appeared damaged at 1000 rpm. Considering that the main 

corrosion product was FeCO3, the surface pH must have been higher than 

the bulk pH. Without flow, the concentration of Fe
2+

 with corrosion will 

increase the pH, but, with flow, mass transfer of species reduces the 

difference in pH between the surface and the bulk conditions. In other words, 

the value of surface pH was close to bulk pH, and then the condition 

becomes under-saturated for the FeCO3 formation. Thus, the FeCO3 crystals 

dissolved back or were chemically damaged resulting in the increase in the 

corrosion rate at higher flow rate [53-55]. 
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Figure 3.6 LPR corrosion rates at 120°C, pH 4.0, 1 wt% NaCl and rotating 

speeds of 0,100, 500 and 1000 rpm (equivalent to 0, 0.1, 0.5 and 1 m/s 
respectively) [53] 
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Chapter 4  

Assessment of CO2 Corrosion Prediction Models 

In recent years, many research papers have been published that describe 

an integrated approach, based on corrosion modelling and laboratory 

testing, to optimise the use of carbon steel in corrosive service. A similar 

approach will be carried out in the following PhD. To be most effective, the 

models should account for relevant chemistry and physics of the corrosion 

process and for variations in conditions and flow characteristics along the 

length of the pipeline.  

The following chapter focuses on providing a review of the many different 

mathematical models for CO2 corrosion that are used nowadays by 

engineers in the oil and gas industry. Different models have been developed 

for the past several decades since 1970.  They provide engineers quick and 

economical corrosion predictions that provide essential information on the 

material degradation of pipelines under different environmental conditions. 

The models available offer a large scatter in the prediction due to different 

theories, assumptions and modelling strategies. However, the following 

review is limited primarily to the models described in the open literature as 

the majority are patented models. The latter are typically a variation of 

publicly available models or are empirical correlations based on practical 

experience [45, 56].  

The models considered here have been chosen either because they are well 

known and widely used by industry or reflect the variety of different 

categories of models available. These CO2 corrosion models have been 

divided into three categories: empirical, semi-empirical and mechanistic 

models. They differ from one another by the level of experimental influence 

on the model and how firmly they are grounded in theory.  

4.1 Empirical Models 

Empirical corrosion predictive models are purely data driven and require a 

large amount of corrosion data that are either obtained from actual plant 

operations or from laboratory experiments. They provide reasonable 

predictions inside of their validation range. However, the drawbacks of this 

type of model are that they require a large set of data for various operating 

conditions that affect the corrosion rate and they extrapolate poorly outside 

the conditions present in their database [56, 57].  
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Dugstad et al. model 

The model by Dugstad et al. [58, 59] was first introduced in 1992. Their 

approach was to determine a temperature-dependent best-fit polynomial 

function and then multiply it by correction factors for pCO2, pH, velocity 

(shear stress) and steel Cr content. The model correlation is at the core of 

the NORSOK model and is based on the same experimental database as 

the model of de Waard et al. [34]. Equation (4.1) is the model correlation.   

𝐶𝑅 𝑇 =  𝐾𝑇𝑓𝐶𝑂2
0.6 (

𝑆

19
)

0.15+0.03 log(𝑓𝐶𝑂2 )

𝑓(𝑝𝐻)𝑇 (4.1) 

where CRT is the corrosion rate at a specific temperature in mm/year, KT is a 

temperature constant, fCO2 is the fugacity of CO2 in bar, S is the wall shear 

stress in Pa and f(pH)T is a constant dependent upon pH. Values for KT and f 

(pH)T are determined from an experimental database and can be found 

using tables such as those provided by Halvorsen and Søntvedt [60].  

Mishra et al. model 

In 1997, Mishra et al. [61] developed an empirical corrosion prediction 

equation based on reaction kinetic principles where the corrosion rate is 

expressed as a function of temperature, pH and CO2 partial pressure as 

shown in Equation (4.2).  

𝐶𝑅 = 𝐶[𝐻+]1.33𝑝𝐶𝑂2
0.67𝑒−

𝑄
𝑘𝑇⁄  (4.2) 

Where CR is the corrosion rate (mmpy), C is a constant, [H+] is the 

concentration of hydrogen ions (kmol/m3), pCO2 is the partial pressure of 

CO2 in (N/m2), Q is the instantaneous reaction rate constant of CO2 

dissolution in water, k is the Boltzman constant (J/K) and T is the 

temperature (K).  

Nesic et al. model 

In 1999, Nesic et al. [62, 63] presented a highly nonlinear empirical CO2 

corrosion model based on neural networks (NN) using the experimental 

database of Dugstad et al. [59] for calibration. The correlation was 

developed by using a ‘‘back propagation’’ neural network combined with a 

genetic algorithm. The NN model was cited to have demonstrated superior 

performance when compared to the empirical model of Dugstad et al. [59], 

the semi-empirical model of de Waard et al. [34] and the mechanistic 

electrochemical model of Nesic et al. [62, 63]. 
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The key problem with the NN and other fully empirical models is that they 

are considered ‘‘black boxes’’ meaning their prediction algorithms offer 

limited insight into the nature of the predictions they offer and cannot be 

used with confidence outside their calibration range. Adding new knowledge 

is a difficult process as it requires recalibration of the entire model with all 

the data. 

4.2 Semi-Empirical Models 

Semi empirical models are of two parts: an empirical correlation for base 

corrosion rate and correction factors that are based on theoretical 

hypotheses. The empirical correlation is derived from the corrosion data 

from either plant operations or experiments. Its correction factors are 

represented by parameters from physical or chemical phenomena involved 

in corrosion processes, such as FeCO3 film formation, flow velocity, pH, 

and/or the presence of inhibitors. Hence, semi-empirical models can be used 

to predict the corrosion rate outside the variable ranges used during model 

development with higher confidence than the empirical model [56, 57].  

This type of model is less time consuming and simpler to develop than 

purely theory-driven mechanistic models. Calibrated with a sufficiently large 

and reliable experimental database these models can extrapolate better than 

empirical models and enable good interpolation predictions. However, its 

drawbacks are similar to that of empirical models with respect to 

extrapolation and data requirements.  Extrapolation can lead to unreliable 

and sometimes physically unrealistic results.  

By far the most commonly used and the best-known semi-empirical model of 

CO2 corrosion are the models by De Waard and collaborators. Other semi-

empirical models can be found in the literature; however, they can be seen 

most often as variations of the De Waard models, where the experimental 

database is different, and the curve fitting strategy is more or less advanced. 

The first semi-empirical model was proposed by de Waard and Milliams in 

1975 [34], based on the assumption of the direct reduction of H2CO3. The 

authors presented a correlation for the corrosion rate as a function of 

temperature and CO2 partial pressure derived from gravimetric and linear 

polarisation measurements. Assuming a charge-transfer-controlled reaction 

between carbon steel and carbonic acid, an Arrhenius relationship was 

formulated along with an associated nomogram provided in Figure 4.1. 
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𝑙𝑜𝑔𝑉𝑐𝑜𝑟𝑟 = 7.96 −  
2320

𝑇 + 273
− 5.55 ×  10−3𝑇 + 0.67𝑙𝑜𝑔𝑃𝐶𝑂2 (4.3) 

where Vcorr is the corrosion rate in mm/year, T is the temperature in °C and 

pCO2 is the partial pressure of CO2 in bar. 

 

Figure 4.1 De Waard and Milliams nomogram for CO2 Corrosion [34] 

The model has been revised several times since, where different factors 

have been added to the original equation through the early 1990’s by 

essentially recalibrating the constants against more reliable experiments and 

introducing various correction factors to quantify the influence of physical 

and environmental properties under various conditions. In 1991, De Waard 

et al. [48] introduced correction factors for pH and corrosion product scale 

[64].  

In 1993, De Waard et al. [64] took into account the effect of mass transport, 

fluid velocity and steel composition. The model represents a best fit to a 

large number of corrosion flow loop data generated at Institute for Energy 

Technology (IFE). It was stated that every corrosion reaction consists of two 

consecutive steps; the transport of the corrosive species through a 

hydrodynamic or concentration boundary layer to the metal surface (mass 

transfer coefficient), and the reaction of the species at the metal’s surface 

(reaction rate constant). This theory was used to develop a parallel 

resistance model to determine the effect of velocity on corrosion rate in the 

absence of surface scales. The model essentially combined the flow-

independent kinetics of the corrosion reaction with the flow-dependent 

mechanism relating to mass transfer of dissolved CO2. 

1

𝑉𝑐𝑜𝑟
=  

1

𝑉𝑟
+  

1

𝑉𝑚
 (4.4) 

where Vr represents the rate of the electrochemical processes and Vm 

denotes mass transfer.  
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In 1995, De Waard et al. [58] further refined the model from 1993 to provide 

the following values for Vr and Vm according to Equation (4.5) and (4.6) 

respectively. 

𝑙𝑜𝑔𝑉𝑟 = 5.8 −  
1710

𝑇 + 273
+ 0.67𝑙𝑜𝑔𝑓𝐶𝑂2 (4.5) 

𝑉𝑚 = 2.45
𝑈0.8

𝑑0.2 𝑃𝐶𝑂2 (4.6) 

where T is the temperature in ˚C, pCO2 is the partial pressure in bar and pH 

actual and pHCO2 are the pH values of the aerated solution in the presence 

of dissolved salts and with dissolved CO2, respectively, U is the flow velocity 

in m/s and d is the pipe diameter in m. The results used to develop the 1993 

and 1995 models were the first set of substantial data to become available 

pertaining to the effect of velocity on CO2 corrosion under well-defined 

turbulent conditions. Tests were performed using coupons mounted within 

pipes and the environmental conditions were not influenced by the 

accumulation of corrosion products. 

In 2001 and 2003, De Waard et al. [65, 66] updated the original de Waard 

and Lotz empirical correction for water wetting and proposed the introduction 

of a new factor based on the emulsion breakpoint approach. The new 

empirical correction took into account the API gravity, emulsion stability and 

water wetting of steel by an oil-water mixture. Unfortunately, this model does 

not take into account pipe diameter, oil density, oil viscosity or operating 

temperature on the critical velocity of the flowing oil phase required for 

entrainment.  

Over the years, the De Waard and Milliams model of 1975 has been revised 

on several occasions, extending its validity into areas where protective 

scales are involved and to account for changes in high pH in brines, velocity, 

water wetting etc. Despite certain theoretical shortcomings, De Waard and 

Milliams’ work has marked one of the important reference points for CO2 

corrosion research over the past three decades, and its most recently 

revised form is still used informally by industries today. However, these 

models are only helpful in the oil and gas industry for estimating corrosion 

rates if the applied material properties and environmental parameters are 

very similar to those in the study [25]. 
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4.3 Mechanistic Models 

Mechanistic corrosion models differ from the empirical and semi-empirical 

models in that they are built purely on theory of corrosion processes and do 

not require any corrosion data for model development. All calculations are 

purely predictive. These models have good extrapolation capacity within the 

limitations of the theory and can be modified to simulate other systems. 

However, the drawbacks of such a model are the work required to 

implement the models and the specialised knowledge needed in order to 

extend the model to new systems. They require an understanding of 

fundamental science relating to kinetics, thermodynamics, heat transfer, 

mass transfer, and many different fields of engineering and science.  The 

time consuming nature of the development of such models indicate that the 

majority of models were developed by groups within universities. There is no 

guarantee that the models reproduce measured corrosion rate data but the 

models may be evaluated against experimental data in order to assess the 

validity [56, 57]. 

Following the initial landmark study by De Waard and Milliams in 1975 which 

resulted in a mechanistic model, it took until almost two decades later before 

Gray et al. [67] presented a more complete electrochemical model as part of 

their experimental study of CO2 mechanisms. A number of mechanisms for 

the electrochemical reactions occurring at the metal surface were adopted 

from literature and included into an overall model [56].  

In 1999, Anderko and Young [68] developed a mechanistic corrosion model 

composed of thermodynamic and electrochemical components to provide 

realistic speciation of aqueous system, as well as anodic and cathodic 

processes at the metal surface. The model was validated against 

experimental results and used to analyse parametric effects on corrosion 

rate, such as temperature, CO2 partial pressure, solution composition and 

flow velocity.  

Since early in the 21st century, the development of mechanistic models was 

dominated by Nesic et al. In 2001, Nesic et al. [69] developed their first 

mechanistic CO2 corrosion model at the University of Ohio. This model 

incorporated electrochemical reactions at the metal surface, diffusion of 

chemical species between bulk and metal surface, diffusion of chemical 

species across porous FeCO3 films, electro-migration of ions under the 

influence of the established potential gradients, and the chemical reactions 
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taking place in the bulk solution. The model allows users to specify FeCO3 

film thickness and study its effect on corrosion rate. 

Later in 2003, Nesic and Lee [49] improved the previous model by 

incorporating the growth of FeCO3 films mechanistically into the model. The 

FeCO3 precipitation starts when the solution is supersaturated with Fe2+ and 

CO3
2- ions and it was found from the simulation results that FeCO3 films 

formed at high pH, high temperature, high CO2 partial pressure and high 

Fe2+ concentration.  

In 2009, Nesic et al. [70] developed a mechanistic model, FREECORP that 

uses species transport equations to solve for speciation. This model includes 

the effects of H2S, O2 and organic acid on corrosion rates. Transport 

equations were written using Fick’s first and second laws, and electro 

neutrality was added as a constraint to solve for speciation. The model could 

predict corrosion rates at various CO2 partial pressures, temperatures, 

velocities, FeCO3 film thicknesses and flow velocities.  

However, a limitation of CO2 corrosion mechanistic modelling to date is that 

although aqueous CO2 corrosion environments can cause pitting corrosion, 

mesa attack, flow induced corrosion and uniform corrosion, due to the 

predominance of uniform corrosion and the complexity of model 

development for localized corrosion, all corrosion prediction models for 

aqueous CO2 environments to date were developed for uniform corrosion 

[25, 56].  

In the following sections, the theory behind the mechanistic models 

discussed above shall be presented. 

4.3.1 Theory behind Mechanistic Modelling 

The core of all mechanistic models is their governing electrochemical kinetic 

equations. The models are based on the fact that CO2 dissolves into the 

liquid phase, is hydrated and dissociates to create HCO3
- and CO3

- which 

produces an acidic solution. H2CO3 then diffuses to the pipe surface and 

participates in cathodic reactions leading to the production of H2. These 

reactions only proceed if electrons are supplied by other reactions, namely, 

the anodic reaction involving the dissolution of iron. The relevant process 

was expressed in detail in Chapter 3. 

Furthermore, the produced species diffuse away from the surface and 

depending upon the environmental conditions, FeCO3 may precipitate on the 

pipe wall, forming a protective scale. The presence of this carbonate film can 

act as a diffusion barrier, meaning electron transfer is smaller and the rate of 
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dissolution of iron is reduced. Figure 4.2 shows a representation of the 

modelling domain behind the mechanistic models by Nesic et al. [49, 62, 70] 

and the following section covers the underlying theory behind their model 

development. 

 

 

 

 

Figure 4.2 Sketch of the calculation domain; δf is the surface film thickness, 

δ-δf is the liquid boundary layer thickness. The curve on the top 
represents a typical variation of a single species concentration 
expected from theory [41]. 

4.3.1.1 Electrochemical Reactions at the Surface 

The general structure of the electrochemical kinetic reactions at the surface 

are typically formulated from the Volmer-Butler Equation (4.7). 

𝑖𝑛𝑒𝑡 = ∑ 𝑖0,𝑘 (exp (
(1 −∝𝑘)𝑛𝑘𝐹(𝐸 − 𝐸𝑘

° )

𝑅𝑇
) − exp (

−∝𝑘 𝑛𝑘𝐹(𝐸 − 𝐸𝑘
° )

𝑅𝑇
) )

𝑘

  (4.7) 

Where io,k is the exchange current density of the k’th electrochemical surface 

reaction, αk is the charge transfer coefficient and nk is the number of 

electrons transferred by reaction k. A table summary of the parametric 

constants in Equation (4.5) for the main electrochemical reactions in CO2 

corrosion are found in all relevant publications by Nesic et al [49, 69, 71]. 

This leaves the equation with an unknown potential, E that it is solved for 

and the surface concentration of the relevant species. The surface 
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concentration differs greatly from that at the bulk solution and brings about 

the main challenge in mechanistic models. Some models aim to solve this 

using diffusion theory and shall be analysed in the following section.  

Upon determining the surface concentration of the species, the equation is 

solved for the unknown potential, E. When E is calculated, the corrosion 

current is calculated and converted to mm/year using Faraday’s law 

according to Equation (4.8) [49].The equation was derived by the 

combination of Faraday’s 1st and 2nd law and then expressed in terms of 

Current Density (i) which has units (A/cm2) [49].  

𝐶𝑅 =
𝑎𝑖

𝑛𝐹
 𝑜𝑟 𝐶𝑅 = 0.00327

𝑎𝑖

𝑛𝐷
  (4.8) 

Where CR (corrosion rate) is determined in mm per year, D is the density of 

the metal, a is the atomic weight, n is the valency (which is the number 

of valence bonds a given atom has formed, or can form, with one or more 

other atoms) and F is Faraday’s Constant (F=96485 C/mol).  

The model developed by Nesic et al. [72], in 1996, couples four cathodic 

reactions with a single anodic reaction representing the dissolution of iron 

according to Equation (4.9). The model is based on purely electrochemical 

reactions at the surface.  

𝑖𝐻+ + 𝑖𝐻2𝐶𝑂3 + 𝑖𝐻2𝑂 + 𝑖𝑜2 = 𝑖𝐹𝑒   (4.9) 

The model required the user to input parameters such as temperature, pH, 

pCO2, oxygen concentration, steel type and flow geometry. ‘Pipe flow’ 

requires inputs of velocity and pipe diameter, while ‘RCE’ requires the 

rotating speed and cylinder diameter. 

Once the input parameters are determined, the program generates anodic 

and cathodic Tafel curves. The intersection of the curves gives the corrosion 

potential which is found by solving Equation (4.10). The program calculates 

icorr based on the known Ecorr and the anodic curve and subsequently the 

corrosion rate.  

𝑖 = 𝑖𝑐𝑜𝑟𝑟 [𝑒
(

2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)
𝛽𝑎

)
− 𝑒

(
−2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)

𝛽𝑐
)
] (4.10) 

This approach was similarly used by Anderrko et al. [68] and George et al. 

[73] All models that are solely based on electrochemical principles have a 

limitation in that although they can adequately describe the electrochemical 

processes occurring on the metal surface, the treatment of the transport 

processes in the boundary layer are not taken into consideration. This is 

http://en.wikipedia.org/wiki/Valence_bond_theory
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particularly crucial when a reliable prediction of protective scale is sought 

[25].  

4.3.1.2 Transport Based Electrochemical Models  

In corrosion, Fe2+ ions are created at the steel surface and H+ ions are 

depleted by the electrochemical reactions. This process inevitably leads to 

concentration gradients and diffusion of species to and from the corroding 

material surface. The challenge of mechanistic models lies in the calculation 

of surface concentrations as discussed. This in literature is attempted by 

diffusion theory. The relatively new approach of coupling transport and 

electrochemical behaviour has long been established in other areas of 

electrochemistry and crevice corrosion, but Turgoose et al. [74] were the first 

to pave the way for a more realistic way of interpreting the transport process 

in the boundary layer for the case of CO2 corrosion.  

The calculation of the diffusion process is performed by setting up a 

discretized partial differential equation (PDE) mass balance as shown in 

Equation (4.11) [69].  

𝜕𝑐𝑖

𝜕𝑡
=  −

𝜕𝑁𝑖

𝜕𝑧
+  𝑅𝑖 (4.11) 

Where 𝜕ci/𝜕t is the accumulation term and 𝜕Ni/𝜕z is the flux term. Ci is the 

concentration of species i, Ni is the flux of species i, Rj is source or sink of 

species ‘i’ in kmol/m3 due to all the chemical reactions in which the particular 

species is involved, t is time and z is spatial coordinate in m.  

The molar flux N was calculated by either Fick’s Law (Equation (4.12)) or the 

Nernst Planck Equation (Equation (4.13)) depending on the model [49, 66]. 

Ficks Law 𝑁𝑖 =  −𝐷𝑖

𝜕𝑐𝑖

𝜕𝑧
 (4.12) 

Nernst Planck Equation 𝑁𝑖 =  −𝐷𝑖

𝜕𝑐𝑖

𝜕𝑧
−  𝑧𝑖𝑢𝑖𝐹𝑐𝑖

𝜕𝜙

𝜕𝑧
+  𝑐𝑖𝑣 (4.13) 

Where Di is the molecular diffusion coefficient of species in m2/s, zi is the 

electrical charge of species j in C, uj is the mobility of species, F is Faradays 

constant, 𝜙 is the electric potential in the solution in V and v is the 

instantaneous velocity in m/s.  

Once the transport equation in Equation (4.11) was written for each species 

in the solution, the resulting set of equations is solved by numerical methods 

simultaneously in space and time. The boundary conditions for this set of 

partial differential equations are the flux of species as determined from the 

rate of the electrochemical reactions and the equilibrium concentrations of 
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species obtained based on chemical reactions of species based on their 

equilibrium constants.  

As the transport equation is transient, initial conditions are typically defined 

as a bare metal surface with the solution in chemical equilibrium and is used 

as the initial condition. Once the set of equations is solved for any given time 

step, the corrosion rate was calculated as the flux of Fe2+ ions at the metal 

surface [69]. 

4.3.1.3 Incorporating FeCO3 Film Development 

A variety of chemical reactions accompany the CO2 corrosion process. By 

affecting the surface concentrations of species, chemical reactions can 

significantly alter the rate of electrochemical processes at the steel surface 

and the rate of corrosion. This is particularly true when, due to high local 

concentrations of species, the solubility limit is exceeded and precipitation of 

surface scales occur [56, 69]. 

The rate of precipitation of iron carbonate FeCO3(s) in literature is predicted 

as a function of temperature and the saturation ratio and is discussed in 

detail in Chapter 5. The general form of the equation is: 

𝑅𝐹𝑒𝐶𝑂3(𝑠) =  
𝐴

𝑉
 × 𝑓(𝑇) × 𝐾𝑠𝑝 × 𝑓(𝑆𝑅) (4.14) 

Where A/V is the surface area to volume ratio in m-1, T is the absolute 

temperature in K, Ksp is the solubility limit and SR is the saturation ratio as 

shown in Equation (4.15). 

 𝑆𝑅𝐹𝑒𝐶𝑂3 =
[𝐹𝑒2+][𝐶𝑂3

2−]

𝐾𝑠𝑝
 (4.15) 

In 2001, Nesic et al [69] was the first to incorporate the growth of FeCO3 

films into their model. However, the corrosion film thickness and porosity 

could not be predicted mechanistically and were correlated empirically with 

results from corrosion loop experiments. Upon comparison with experimental 

data, the predicted corrosion rates were higher than the measured ones and 

it was concluded that improved models are needed to describe formation of 

protective corrosion films.  

In 2003, Nesic and Lee [49] developed the model where the iron carbonate 

film depends primarily on the precipitation rate, RFeCO3 as well as the rate of 

under deposit corrosion governed by the corrosion rate. The model was 

developed on the principle that initially, the surface water chemistry and the 

corrosion potential of the steel were obtained from the electrochemical 
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model described in the previous section. If the calculation of surface 

concentrations suggests that the solubility is exceeded a corrosion product 

layer is modelled on the steel surface and if not, the corrosion model 

proceeds unimpeded. 

As iron carbonate precipitates, the film grows in density as well as thickness. 

However, the steel surface corrodes under the film, continuously creating a 

“void” between the film and the steel surface. This process is referred to as 

“film undermining” by Nesic et al. and a pictorial representation has been 

shown in Figure 4.3. The void fills up by ongoing precipitation and the 

surface conditions and relative corrosion rate define whether the film is 

protective or not.  

                                       

Figure 4.3 Pictorial representation of under deposit corrosion, also known as 
"film undermining". 

The formation of iron carbonate affects the fluxes and thereby the 

concentration of species at the steel surface which in turn changes the 

kinetics of the electrochemical processes and corrosion. To reflect this the 

mass conservation reaction, flux of species between the bulk and the steel 

surface, diffusion through the porous corrosion product layer, flux of species 

as a result of electrochemical reactions at the steel surface are all modified 

to account for the porosity of the corrosion product layer, ε. 

Volumetric porosity, ε is defined as:  

𝜀 =  
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
=  

(𝑉𝑡𝑜𝑡𝑎𝑙 −  𝑉𝐹𝑒𝐶𝑂3(𝑠)
)

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −  

𝑉𝐹𝑒𝐶𝑂3(𝑠)

𝑉𝑡𝑜𝑡𝑎𝑙
 

=  1 −
𝑐𝐹𝑒𝐶𝑂3(𝑠)

𝑀𝐹𝑒𝐶𝑂3(𝑠)

𝜌𝐹𝑒𝐶𝑂3(𝑠)

 

(4.16) 

where MFeCO3(s) is the molecular mass of FeCO3 and is 115.95 g/mole and 

ρFeCO3(s) is the density of iron carbonate and is 3,900 kg/m3.  

The amount (concentration) of solid iron carbonate found in any volume, 

𝑐𝐹𝑒𝐶𝑂3(𝑠)
 is determined by the FeCO3 precipitation rate (RFeCO3) model 

Deposit Metal 
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developed by van Hunnik et al. [8] and the film undermining effect that 

represents the corrosion process that removes the steel under the fllm and is 

described by Equation (4.17).  

𝜕𝑐𝐹𝑒𝐶𝑂3(𝑠)

𝜕𝑡
=  𝑅𝐹𝑒𝐶𝑂3(𝑠) − 𝐶𝑅

𝜕𝑐𝐹𝑒𝐶𝑂3(𝑠)

𝜕𝑥
 (4.17) 

The equation is rearranged and the proposed equation describing film 

growth kinetics is in the form of Equation (4.18). 

𝜕𝜀

𝜕𝑡
=  

𝑀𝐹𝑒𝐶𝑂3(𝑠)

𝜌𝐹𝑒𝐶𝑂3(𝑠)

(𝑅𝐹𝑒𝐶𝑂3(𝑠) ) − 𝐶𝑅
𝜕𝜀

𝜕𝑥
 (4.18) 

𝑓𝑖𝑙𝑚 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑢𝑛𝑑𝑒𝑟𝑚𝑖𝑛𝑖𝑛𝑔 

Where MFeCO3 is the molar mass in g/mol, ρFeCO3 is the density in kg/m3 and 

CR is the corrosion rate.  

The precipitation rate model developed by van Hunnik et al. is shown by 

Equation (4.19). 

𝑅𝐹𝑒𝐶𝑂3
= 𝐴𝑝𝑒

−
𝐸𝑎

𝑅𝑇𝐾 (
𝐴

𝑉
) 𝐾𝑠𝑝(𝑆𝑅 − 1) (1 −

1

𝑆𝑅
) (4.19) 

Where Ap is the pre-exponential constant, Ea is the activation energy, TK is 

the temperature in Kelvin, R is the universal gas constant, A/V is the area of 

volume ratio, Ksp is the solubility product and SR is the saturation ratio.  

The model solves for Equation (4.18) simultaneously with the transport 

Equation (4.11) and the electrochemical Equation (4.7) all considered for 

calculations of porosity and thickness of iron carbonate scale. The model 

predicts the kinetics of iron carbonate film growth, the change in morphology 

of the film with respect to space and time as well as the resulting corrosion 

rate as a function of time [49]. It was concluded that the model was 

successfully calibrated against limited experimental data; however, further 

adjustment of the model would be needed as more accurate data on CO2 

corrosion in the presence of iron carbonate films emerge.   

In 2009 [70], the model was developed to incorporate the effects of H2S 

corrosion  and the FeCO3 precipitation prediction model was modified for the 

Sun and Nesic (S&N) precipitation model [9, 10]. It was concluded that the 

performance of model was favourably compared to the performance of other 

similar models. 

FeCO3 film growth is a complex process and in the models developed by 

Nesic [49, 70], detailed information of the film is lost as the process is 

simplified into a one-dimensional control volume approach. In each 
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publication, the models are observed and concluded to correlate with 

experimental data however only for select working conditions. The main 

limitation of these models is the incorporated FeCO3 precipitation rate 

models that shall be discussed in detail in Chapter 5. There is a 

contradiction in the underlying theory as the corrosion rate models are 

developed for turbulent pipe flow whereas the precipitation rate models are 

based on a static system and correlated with bulk solution properties. The 

main limitations of these precipitation models shall be expressed in the 

following chapter and shall be investigated in the work carried out in this 

PhD.  
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Chapter 5  

Precipitation Models – Review & Analysis 

FeCO3 precipitation is essential to the understanding of CO2 corrosion of 

mild steel due to its influence on the corrosion rate and the link then that the 

corrosion rate has on subsequent FeCO3 precipitation. The layer formed on 

the corroding surface acts as a barrier, stifling the corrosion rate by 

hindering the transport of species involved in the electrochemical reactions 

at the metal surface. The protectiveness, rate of precipitation and stability of 

the film dictate the corrosion rate and its nature. 

5.1 FeCO3 Precipitation Models 

Corrosion literature reports four FeCO3 precipitation models. A summary of 

the experimental methods used to develop the models, the resulting 

precipitation rate equations and the Ksp (solubility product) correlation 

associated with each precipitation is given in Table 5.1 to Table 5.4. 

Table 5.1 Greenberg and Tomson (G&T) Precipitation Model [4, 5] 

Model 𝑃𝐹𝑒𝐶𝑂3
= 𝐴𝑝𝑒

−
𝐸𝑎

𝑅𝑇𝐾 (
𝐴

𝑉
) 𝐾𝑠𝑝 (𝑆𝑅

1
2⁄ − 1)

2

 

Experimental 

Method 

Based on experiments following the change in [Fe2+] 

concentration with time as precipitation occurs from a 

solution of relatively low super-saturation onto well 

characterised FeCO3 seed crystals. 

Ksp 
log10 𝐾𝑠𝑝 =  −59.2385 − 0.041377𝑇 −  

2.1963

𝑇

+ 24.5724 log10 (𝑇) 

 
Table 5.2 Johnson and Tomson (J&T) Precipitation Model [6, 7] 

Model 𝑃𝐹𝑒𝐶𝑂3
= 𝐴𝑝𝑒

−
𝐸𝑎

𝑅𝑇𝐾 (
𝐴

𝑉
) 𝐾𝑠𝑝 (𝑆𝑅

1
2⁄ − 1)

2

 

Experimental 

Method 

Based on experiments following the change in [Fe2+] 

concentration with time as precipitation occurs from a 

solution of relatively low super-saturation onto well 

characterised FeCO3 seed crystals. 

Ksp log10 𝐾𝑠𝑝 =  −0.4343 (
−30140

8.314(𝑇𝐶 + 273.15)
) + 36.22 
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Table 5.3 Van Hunnik at al. (vP&H) Precipitation Model [8] 

Model 𝑃𝐹𝑒𝐶𝑂3
= 𝐴𝑝𝑒

−
𝐸𝑎

𝑅𝑇𝐾 (
𝐴

𝑉
)𝐾𝑠𝑝(𝑆𝑅 − 1) (1 −

1

𝑆𝑅
) 

Experimental 

Method 

Based on experiments following the change in slope of the 

[Fe2+] concentration as the system passes through the pH 

at which the product of [Fe2+] and [CO3
2-] exceeds the 

solubility limit, Ksp. This work was intended to extend the 

range of validity of the J&T to levels of S ≈ 1000. 

Ksp No correlation identified – assumed same as S&N 

 

Table 5.4 Sun and Nesic (S&N) Precipitation Model [9, 10] 

Model 𝑃𝐹𝑒𝐶𝑂3
= 𝐴𝑝𝑒

−
𝐸𝑎

𝑅𝑇𝐾 (
𝐴

𝑉
) 𝐾𝑠𝑝(𝑆𝑅 − 1) 

Experimental 

Method 

Based on experiments following the direct measurements 

of FeCO3 amount which precipitates on a corroding steel 

surface by determining the difference in weight of a FeCO3 

covered steel sample and the sample without the FeCO3 

layer. 

Ksp 
log10 𝐾𝑠𝑝 =  −59.3498 − 0.041337𝑇𝐾 −  

2.1963

𝑇𝐾

+ 24.5724 log10 (𝑇𝐾) 

 

A review of these models enables gaps in research to be identified which the 

thesis will address. The first precipitation model was established by 

Greenberg and Tomson [4, 5] in 1987 and was later developed in 1991 by 

Johnson and Tomson [6, 7]. They both developed semi empirical growth rate 

expressions that fitted their experimental results for a solution of a very low 

levels of supersaturation onto well characterised FeCO3 seed crystals. Their 

precipitation rate expression is the same and only differ in their kinetic and 

Ksp constants shown in Table 5.5. Figure 5.1 shows that the predicted 

precipitation rates by Greenberg and Tomson’s model [4, 5] have very 

similar values to that of Johnson and Tomson’s model with slight variations 

attributing to the differences in the values of the constants. 

In 1996, Van Hunnik et al. [8] developed a FeCO3 precipitation model that 

was intended to extend the validity of J&T’s model for higher levels of super-
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saturation. They believed that J&T’s model over estimates the precipitation 

rate particularly at higher values of super-saturation. The information 

regarding the model by Van Hunnik at al. [8] is limited as the description of 

the experimental procedure is incomplete in literature. However, there is a 

close relationship between vP&H and J&T model as shown in Figure 5.1.  

In 2006, Sun and Nesic [9, 10] developed a precipitation model based on the 

direct measurements of FeCO3 which precipitated on a corroding steel 

surface by weight gain. This technique produced precipitation rates that 

differ from the other models by 1-3 orders of magnitude as shown in Figure 

5.1.  

The expression for the saturation ration, σ(SR), the values of the pre-

exponential constant, Ap and activation energy, Ea are different in the various 

equations as shown in Table 5.5. The comparison between the predictions 

made by these models are shown in Figure 5.1 and Figure 5.2. There is a 

broad consistency between the predictions from G&T, J&T and vP&H 

models, and this group differs substantially from the results of S&N model by 

a factor of between 10 and 100. Also, as would be expected from general 

kinetic theory, there is an increase in precipitation rate with temperature and 

saturation level for all models.  

Table 5.5 Model variations for pre-exponential constant Ap, activation 

energy, Ea and saturation ratio expression, σ(SR) [36] 

Author PFeCO3 A/V lnAp Ea (kJ mol) σ(S) 

G&T 
𝑚𝑜𝑙

𝑘𝑔 𝑠
 

𝑚2

𝑘𝑔
 44.4 95.8 (𝑆𝑅

1
2⁄ − 1)

2

 

J&T 
𝑚𝑜𝑙

𝑘𝑔 𝑠
 

𝑚2

𝑘𝑔
 56.3 127.3 (𝑆𝑅

1
2⁄ − 1)

2

 

vP&H 
𝑚𝑜𝑙

𝑘𝑔 𝑠
 

𝑚2

𝑘𝑔
 52.4 119.8 (𝑆𝑅 − 1) (1 −

1

𝑆𝑅
) 

S&N 
𝑚𝑜𝑙

𝑚3 𝑠
 

𝑚2

𝑚3 28.2 64.9 (𝑆𝑅 − 1) 

 

A comparative analysis of the four precipitation models was made in a 

review paper by Woollam et al. [36] investigating the reasoning behind the 

significant difference in values between the S&N’s model and the rest of the 

models. The main distinction made is that on one side the rate equation was 

determined based on precipitation on well-characterised seed crystals (G&T 
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and J&T model) whereas on the other side, the rate equation was 

determined by precipitation on an actively corroding iron substrate (S&N 

model).  

 

 

Figure 5.1 Comparison of precipitation rates (mol/m2/s) determined by 

different precipitation models at varying SR and T=80°C. 

 

 

Figure 5.2 Comparison of precipitation rates (mol/m2/s) determined by 
different precipitation models at varying temperature and SR=10. 

Therefore, it is the experimental variation that is the root cause of the large 

difference in predicted precipitation rates between the two classes of the 
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models. A possible theory behind the significant difference in the two classes 

of models expressed by Woollam et al [36] is discussed below.  

FeCO3 crystal growth proceeds in two sequential steps, aqueous transport 

of species from the bulk to the crystal surface and then a surface process 

which results in the ions becoming part of the crystal lattice. The rate of the 

precipitation process is directly dependant on the rate determining step; the 

slowest step in the overall reaction.  

According to the mass transfer coefficient to a spherical particle under forced 

convection, the mass transfer coefficient is inversely proportional to the 

square root of the characteristic dimension of the particle or in this case the 

size of the crystal [75]. As the particle size increases, the mass transfer 

coefficient decreases in alignment with the following equation:  

𝑘𝑚  ∝  
𝐷

2
3⁄ 𝑢

1
2⁄ 𝜌

1
6⁄

𝑅𝑝

1
2⁄

𝜇
1

6⁄
 (5.1) 

Therefore, the mass-transfer coefficient to the well characterised seed 

crystals is generally greater than the mass-transfer coefficient to a corroding 

surface because of the change in characteristic lengths. In the experimental 

procedure for G&T [4, 5] and J&T [6, 7], the well characterised crystals are ≈ 

1 µm in size while the corroding surface in the S&N [9, 10] experiments 

considered is ≈ 0.01 m, which is 4 orders of magnitude difference resulting in 

a difference in mass-transfer coefficient of about 100. 

In the experiments of Sun and Nesic [9, 10], the surface was initially clean 

as there were no crystals present. This indicates that as the FeCO3 layer 

develops, the surface area available for the surface reactions increases, 

whereas the mass-transfer rate to the surface decreases. It is then possible 

for the rate of the surface reaction to become greater than the mass-transfer 

rate and therefore the mass transfer reaction becomes the rate-determining 

step. 

The differences in the precipitation rates is believed to be attributed to the 

differences in the rate-determining step in the precipitation reaction. In the 

seeded crystal work (G&T and J&T), the surface reactions dominate and for 

the corrosion surface work (S&N), the diffusion process dominates, hence 

there is a significant difference in the predicted precipitation rates. Table 5.6 

provides a summary of the theory behind the difference in the models.  
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Table 5.6 Summary of attributing factor to significant difference in 

precipitation models as a result of employed experimental technique 
[36]. 

Class1: G&T // J&T Model Class 2: S&N Model 

Based on precipitation onto well 

characterised seed crystals.  

Based on precipitation on an 

actively corroding iron substrate 

 

 

Single crystal Film formation 

seed crystal ≈ 1 µm  corroding surface ≈ 0.01m 

4 × Characteristic Lengthclass1 ≈ Characteristic Lengthclass2 

Mass transfer coefficient class1 ≈ 100 × Mass transfer coefficient class 

RDiffusion >> RSurface RSurface >> RDiffusion 

Surface dominant Mass transfer dominant 

5.2 Sun and Nesic Precipitation Model 

In the following work, focus is given to the development of the more recent 

Sun and Nesic (S&N) [9, 10] model. The model is developed based on a 

more direct technique, weight change method, to investigate the scale 

retention rate of FeCO3 on the steel surface in comparison to the other 

developed models. The following section consists of a summary of S&N 

published analysis of the previously developed models and the experimental 

procedure and theory behind the developed S&N model [9, 10].  

Scale growth depends primarily on the kinetics of scale formation and the 

previous authors developed semi-empirical growth rate expressions based 

on the following iron carbonate precipitation rate PR equation: 

𝑃𝑅 =  𝑘𝑟

𝐴

𝑉
𝜎𝑟 (5.2) 

Where kr is kinetic constant, A/V is surface area-to-volume ratio, σ is the 

driving force and r is the reaction order. The driving force for crystallisation is 
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described in terms of the saturation ratio, SR. SR is defined as the ratio of 

species concentrations and the solubility limit Ksp. The equation is defined 

previously in Equation (4.15) (page 43). 

Several equations were fitted with their experimental data using a 

temperature ramp method in order to obtain an iron carbonate precipitation 

rate equation. For example, Johnson and Tomson [6, 7] fitted equations 

such as Equation (5.3) to (5.5) with their experimental data and found that 

Equation (5.4) fit best with their data and hence developed the iron 

carbonate precipitation rate Equation (5.6).  

𝜎 =  (([𝐹𝑒2+][𝐶𝑂3
2−])

0.5
− 𝐾𝑠𝑝

0.5) (5.3) 

𝜎 =  (
([𝐹𝑒2+][𝐶𝑂3

2−])
0.5

− 𝐾𝑠𝑝
0.5

𝐾𝑠𝑝
0.5

) =  ((𝑆𝑅)0.5 − 1) (5.4) 

𝜎 =  𝑙𝑛 (
[𝐹𝑒2+][𝐶𝑂3

2−]

𝐾𝑠𝑝

) = ln (𝑆𝑅) (5.5) 

𝑃𝑅 =  𝑘𝑟

𝑆

𝑉
𝐾𝑠𝑝  ((𝑆𝑅)0.5 − 1)2 (5.6) 

The models by Johnson and Tomson [6, 7] and Van Hunnik et al. [8] were 

based on an indirect experimental technique, ferrous ion concentration 

measurement, which is based on measuring the decrease of ferrous ion 

concentration in the bulk of the solution. Their assumption was that the 

entire amount of ferrous ion lost in the solution ends up as a deposited iron 

carbonate scale on the steel surface. However, it is noted by S&N that iron 

carbonate not only deposits on the steel surface, but also precipitates 

elsewhere in the glass cell. Therefore, the assumption may lead to an 

overestimation of the deposition rate of iron carbonate on the steel surface, 

which is the main parameter affecting the corrosion rate [9, 10].  

There are three parts to the experiments carried out by Sun and Nesic in the 

published work. The initial set of experiments were performed to critically 

analyse the previously developed models. Then, experiments were carried 

out under varying conditions determining the weight change over time and 

bulk SS through spectroscopy. The final set of experiments were performed 

at a controlled super saturation to test its validity as the controlling factor. 

These results then led to the development of the model. Each experimental 

procedure and the summarised analysis and conclusion has been broken 

down in the following sub sections with the first sub section providing a 

summary of the overall experimental procedure.  
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5.2.1 S&N Experimental Procedure 

The experimental method behind Sun and Nesic’s developed model is 

based on static tests in a bubble cell. Figure 5.3 depicts the experimental 

setup used and Table 5.7 summarises the experimental conditions.  

 

Figure 5.3 Schematic of the experimental test cell [9, 10]: 1. Bubbler; 2. 

Temperature probe; 3. Rubber cork with nylon cord; 4. Steel substrate; 
5. Hot plate; 6. Condenser; 7. Cole-Parmer AgCl pH probe; 8. Glass 
cell. 

Table 5.7 Experimental matrix for S&N model development. 

Parameter Value 

Brine De-ionised water, 1 wt% NaCl purged with CO2 gas 

Temperature 60°C - 90°C 

pH 6.6 

Total pressure 1 bar 

Volume 2 litres 

SR 10 - 300 

 

The saturation ratio of iron carbonate in the solution was controlled through 

adding Fe2+ in the form of deoxygenated ferrous chloride salt (FeCl2.4H20) 
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solution and the samples were X65 carbon steel polished to 600 grit using 

SiC paper. The defined composition of the carbon steel samples is shown in 

Table 5.8. Time-averaged scale retention rate of iron carbonate was 

obtained by subtracting the weight of the coupons which had iron carbonate 

scale and those after the scale was removed using Clarke’s solution. Time-

averaged corrosion rate was calculated by subtracting the weight of the 

coupons prior to running the experiments and after removing the iron 

carbonate scale. The indirect ferrous ion concentration measurements were 

also used to obtain the iron carbonate scale retention rate. A 

spectrophotometer was used to measure ferrous ion concentration in the 

solution [9, 10].  

Table 5.8 Chemical composition of X65 (wt%) (Fe is the balance) 

C Mn Si P S Cr Cu Ni Mo Al 

0.050 1.32 0.31 0.013 0.002 0.042 0.019 0.039 0.031 0.032 

5.2.2 Existing Precipitation Model Analysis. 

Sun and Nesic [9, 10] conducted three sets of experiments to verify the 

previous iron carbonate scale retention rate expressions/ models. The 

experiments were carried out with different surface areas at pH 6.6, 

temperature of 80°C and initial Fe2+ 50 ppm. The first set of experiments 

was conducted using one specimen with a surface area of 5.4 cm2. The 

second set of experiments was conducted using thirty specimens each 

having a surface area of 2 cm2 (total of 60 cm2). During these experiments, 

six specimens were taken out of the solution every two and a half hours. In 

the third set of experiments, twelve specimens, each having a surface area 

of 21 cm2 (total of 252 cm2), were inserted in the solution and three 

specimens were taken out every two and a half hours. Results were taken in 

the form of direct weight change method and to compare with the previous 

models, ferrous ion concentrations were measured at different times. 

The results showed that the change of ferrous ion concentration in the 

solution with time was found to be similar irrespective of the very different 

surface areas of the substrates. As the surface area of the substrate 

decreased, the scale retention rate measured by the weight change method 

decreased while the results measured by the Fe2+ method did not. These 

results were used to disprove the Johnson and Tomson [6, 7] and Van 

Hunnik et al. [8] model expressions, as the scale retention rate on the steel 

surface should be proportional to the surface area-to-volume ratio (A/V). 
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However, it was also observed that for large A/V, most of the iron carbonate 

deposits on the steel substrate and the Fe2+ method used by these models 

appears to be valid. For a small A/V, most of the precipitated iron carbonate 

does not end up on the steel surface and the Fe
2+

 method is found to be in 

gross error.  

This observation expresses the limitation in the previous models. Sun and 

Nesic [9, 10] described it being impossible to directly reproduce the original 

experiments of Johnson and Tomson and van Hunnik et al [8] due to 

insufficient details published. However, large discrepancies were found upon 

comparing with their measurements of the scale retention rate with the 

experimental data obtained by weight change method being up to two orders 

of magnitude lower. The analysis and possible theory behind the difference 

in the models based on experimental procedure was discussed previously. 

They concluded in their published work that the Johnson and Tomson [6, 7] 

and van Hunnik et al. [8] model overestimates the actual scale retention rate 

by a large margin because the experimental data used to derive them were 

based on the Fe
2+

 method in which the assumption of Fe
2+

 lost in the bulk of 

the solution becoming FeCO3 scale on the steel surface is unreliable. Figure 

5.4 provides S&N’s published graph showing the comparative analysis of the 

previous models and S&N experimental results. 

 

Figure 5.4 Experimental and calculated (using kinetics expression given by 

van Hunnik et al.) scale retention rates of iron carbonate under a 
saturation ratio of 12 to 250 at a temperature of 80°C  [9, 10].  

From Figure 5.4, it is observed, as previously discussed, that for a lower 

surface area, the precipitation rate is closer to the calculated curve for the 
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van Hunnik model. However, for a larger surface area, the results are in par 

with the weight loss measurements which are orders of magnitude smaller in 

comparison.  

5.2.3 Scale Retention Rate and Corrosion Rate over Time   

These experiments were conducted by Sun and Nesic (S&N) [9, 10]  in static 

solution with initial Fe2+ of 50 ppm, pH of 6.6 and range of temperatures was 

used which varied from 60°C to 90°C. The surface area and quantity of the 

X65 carbon steel samples used in the experiments were not mentioned. The 

ferrous ion concentration was measured with time in addition to the weight 

change method in order to determine the bulk saturation ratio. Results 

showed that the ferrous ion concentration decreased steadily with time and 

decreased with the increase in temperature. In all conditions, the scale 

retention rate by the weight change method is seen to follow the saturation 

ratio in the bulk of the solution [9, 10].  

 

Figure 5.5 The comparison of differential scale retention rate (DSRR) of iron 

carbonate scale (DSRR) and differential corrosion rate of X65 carbon 

steel (DCR) in pure CO2 corrosion under the conditions of initial Fe2+ 
concentration 50 ppm (which then drifted down), pH 6.6, T=80°C  [9, 
10]. 

At 80°C, the scale retention rate decreased steadily with time because of the 

decrease of the saturation ratio in the bulk of the solution. Since iron 

carbonate scale formed faster at higher temperature and was more 

protective, the corrosion rate was observed by S&N to decrease more with 

the increase of temperature. The scale retention rate was also found to be 

higher than the corrosion rate at any time in the experiments proving that the 
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bulk Fe2+ is a more significant source of ferrous ions forming iron carbonate 

scale at 80°C than at lower temperatures. The published bar graph based on 

the obtained results for a temperature of 80°C is shown in Figure 5.5. 

5.2.4 Experiments Conducted at Constant Supersaturation 

The following experiments were conducted by Sun and Nesic (S&N) [9, 10] 

at a controlled constant supersaturation in static solution with Fe2+ 

concentrations of 50 ppm and 10 ppm, pH 6.6, and temperatures of 60°C, 

70°C, and 80°C. The controlled constant supersaturation was achieved by 

continuously dosing a deoxygenated ferrous chloride solution to the glass 

cell to compensate for the Fe2+ ions lost by precipitation. Again in the 

following case, the surface area and quantity of the X65 carbon steel 

samples used in the experiments were not mentioned. The results from 

these experiments concluded that by controlling the key parameters stable 

and reproducible results for the kinetics of iron carbonate scale formation 

can be obtained. Figure 5.6 shows the published results showing that 

maintaining the supersaturation results in repeatable data observed by Sun 

and Nesic [9, 10].  

 

Figure 5.6 The comparison of differential scale retention rate of iron 

carbonate scale in pure CO2 corrosion for constant Fe2+ concentration 
50 ppm, pH 6.6, T 60°C, 70°C, and 80°C. 

As a result of the work done, Sun and Nesic concluded from their results that 

the indirect dissolved ferrous ion concentration method leads to an error in 

calculating how much iron carbonate deposits on the steel surface because 

iron carbonate at high supersaturation not only deposits on the steel surface, 

but also precipitates elsewhere in the solution. They then developed a semi 
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empirical scale retention rate expression for corrosion engineering 

applications using the experimental data obtained by the direct weight 

change method.  

The experimental data similarly were employed to fit several empirical scale 

retention rate expressions including the previous models by Johnson and 

Tompson [6, 7] and van Hunnik et al. [8]. Equation (5.7) was found to fit the 

experimental data better than the other models.  

𝑃𝑅 =  𝑘𝑟

𝑆

𝑉
𝐾𝑠𝑝(𝑆𝑅 − 1) (5.7) 

The kinetic constant, kr was derived from experimental scale retention rates 

via the scale retention rate equation and Arrhenius’s law with temperature 

and is expressed in Table 5.5. The iron carbonate solubility limit Ksp is a 

function of temperature (T) in Kelvin and ionic strength (I) in mol/L which 

shall be discussed in further detail in the following section. Figure 5.7 shows 

the comparison between the different models and the experimental data 

attained by Nesic et al.  

 

Figure 5.7 The comparison of the experimental scale retention rate by 

weight change method and the calculated scale retention rate using 
kinetic expressions given by Johnson and Tomson, van Hunnik et al., 
and the present expression, under a saturation ratio of 24 to 200 and T 
= 80°C. 

5.3 Solubility Product (Ksp) Calculation 

The following section expands on the equations used to determine the Ksp 

for the different precipitation models and analyses the importance of the 
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parameter. The Ksp equation used in each model is previously described in 

Table 5.1 to Table 5.4.   

It is important to have a reliable estimate of the solubility limit in order to 

predict the deposition of FeCO3 on the steel surface. The saturation ratio 

has been discussed previously to be the controlling factor in the 

development of the precipitation models and according to Equation (5.3), the 

value of SR is directly dependant on the Ksp value and hence directly 

effecting the predicted precipitation rate.  

Figure 5.8 shows the results of the comparison of solubility product, pKsp 

values used by the different models. Each of the curves show an increasing 

trend with temperature, as would be expected, with divergence at the lower 

end of the temperature range. Overall, the differences in the Ksp values are 

small and are not a major source of the discrepancies in the precipitation 

rate predictions discussed previously.  

 

Figure 5.8 Comparison of pKsp for temperature ranges 0-100°C 

However, the models below do not account for ionic strength. In a recent 

review, Sun et al [9] proposed a more complete correlation which accounted 

for both the effect of temperature as well as ionic strength on FeCO3 

solubility product, developed based on literature data. The Equation (5.8) [9] 

is listed and the predictions made has been supported to agree well with 

published experimental data.   

log 𝐾𝑠𝑝 = −59.3498 − 0.041377 𝑇𝑘 −  
2.1963

𝑇𝐾
+ 24.5724 log10 (𝑇𝐾)

+ 2.518𝐼0.5 − 0.657𝐼  

(5.8) 
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Where the ionic strength [9] is defined as: 

𝐼 =
1

2
∑ 𝑐𝑖𝑧𝑖

2

𝑖

 
(5.9) 

And ci is the concentration of different species in the aqueous solution in 

mol/L, and zi is the species charge.  

The solution chemistry is slightly different between the two groups of 

experiments, J&T [6, 7] did their experiments in the absence of sodium 

chloride (NaCl) while S&N [9] experiments were done in a 1 w.t. % NaCl 

solution. Figure 5.9 and Figure 5.10 shows the differences due to the effect 

the ionic strength has on the solubility product, Ksp. Using the correlation of 

Sun et al, the change in ionic strength resulting from the presence of 1 w.t. 

% NaCl results in an increase in the precipitation kinetics by a factor of 

approximately 10. However, S&N experimental results which included 1 w.t. 

% NaCl are much lower than those of Greenberg and Johnson done without 

NaCl, indicating that this is not a reason for the significant differences 

between the models. It has been generalised in literature that taking into 

account ionic strength provides a more accurate estimation of the Ksp and 

therefore a more accurate prediction of FeCO3. [9]  

 

Figure 5.9 Effect of ionic strength on pKsp, solubility product for a varying 

temperature. 
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Figure 5.10 Effect of ionic strength on S&N precipitation rate equation for 

varying temperature. 

5.4 Literature Review – Key Findings and Limitations 

The mechanisms of carbon steel corrosion in CO2-containing environments 

have been studied and debated for many years. A great deal of literature 

has been published with a number of different corrosion rates and 

mechanisms being reported. The understanding of CO2 corrosion has come 

a considerable way over the past many years; however challenges still exist 

in this field. The above literature review has intensively discussed different 

attributes that effect CO2 corrosion in industry and the different techniques 

that have been developed to understand and predict its process. The 

following summary highlights the important aspects of the literature review 

and identifies the gaps that shall form the subject of this thesis.  

The electrochemistry of steel dissolution in CO2 solutions has been largely 

understood. The conditions that lead to the formation of protective and un-

protective FeCO3 scales have been identified and the influence of various 

parameters on this phenomenon has been studied. All investigations in 

literature agree that increasing the temperature and pH improves the 

protectiveness of the film, however the sensitivity of the environment plays a 
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vital role and there is little agreement on a particular threshold temperature 

and pH. A parametric analysis of different variables that may play a role on 

the rate of FeCO3 film formation is observed in Chapter 8.  

The exact characteristics and morphology of the FeCO3 film formed on the 

surface layer over time is understudied in literature and is an area of interest 

to the following thesis. This is addressed through applying different 

techniques to help understand the factors that control or dictate the 

nucleation and growth of FeCO3 and the protectiveness of the film formed. 

A main area of interest in this thesis is in advancing the mechanistic 

understanding of FeCO3 formation.  A number of models (mechanistic, semi-

empirical and empirical) exist to predict CO2 corrosion in literature. They all 

consist of different levels of complexity and different theoretical bases 

leading to a potentially inconsistent assessment of CO2 corrosion risk. 

Sometimes the basis and applicability limits of these prediction models are 

misunderstood which lead to incorrect prediction. Review papers of existing 

models show that the majority of mechanistic models assume ideality of the 

non-ideal electrolyte mixtures. A review paper by Sun et al. [45] concluded 

that improving the results by incorporating a semi-empirical activity 

coefficient in the mechanistic diffusion calculations may improve model 

predictions.  

There are very few existing models in literature that focus on the effect of 

hydrodynamics on FeCO3 film formation. The precipitation models discussed 

in Chapter 5 have all been derived from static conditions where the kinetics 

of FeCO3 precipitation are accelerated by the addition of FeCl2.4H2O and 

correlated with bulk solution properties. They do not address the key aspects 

of FeCO3 formation in real corroding systems which relate to the local 

surface supersaturation produced as a result of the production of Fe2+ ions 

due to the corrosion process. Furthermore, CO2 corrosion models that 

account for FeCO3 film formation in prediction of the corrosion rate over time 

are developed for pipe flow and the precipitation model incorporated is 

developed based on static conditions and bulk solution properties which 

results in an inconsistency in the underlying theory.  A large part of the 

following thesis is focussed in addressing this gap in a combined modelling 

and experimental approach. Figure 5.11 illustrates a flow chart highlighting 

the main gaps that are identified in the following literature review and the 

work carried out in this thesis to further the understanding of FeCO3 film 

formation.
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Limited understanding of nucleation and growth of FeCO3 crystals and the 

factors that contribute to the varying protectiveness offered 

Mechanistic CO2 corrosion models are developed based on flowing conditions 

account for FeCO3 film based on precipitation rate model developed in static 

conditions and based on FeCl2.4H2O addition 

FeCO3 precipitation model based on: Static Conditions 

Added FeCl2.4H2O 

Bulk solution properties 

Figure 5.11 Main literature findings and work carried out to address the identified limitations. 
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Chapter 6  

Static Experimental Theory and Methodology 

This chapter provides a theoretical understanding of the practical techniques 

used to investigate carbon dioxide (CO2) corrosion of X65 carbon steel in a 

static environment. This work contributes to furthering the understanding of 

the formation of FeCO3 under varying parameters, its effect on the corrosion 

rate and the characteristics of the film.  

The experimental analysis is divided into three stages. Initially, the effect of 

varying parameters on the corrosion rate is tested. The results from this 

analysis are compared with existing published data and theory in order to 

validate the experimental procedure and observations. Furthermore, the 

results provide an understanding of the different parameters that can cause 

an effect on the CO2 corrosion rate of X65 carbon steel in a static 

environment emphasising the sensitivity of this process. In the second stage, 

two different conditions are decided on from the previous analysis; one 

where a protective film is formed and the other where the film is less 

protective. Under these conditions, the nucleation and growth of the FeCO3 

crystals are tracked with time through scanning electron microscopy, weight 

change due to corrosion and film precipitation through mass measurements 

and spectroscopy to determine the bulk Fe2+ ion concentration. This stage of 

experiments is performed to understand the factors that contribute to making 

a film protective through observing the development of the film over time. A 

series of different analysis techniques are used to compare the two different 

conditions and highlight the limiting components in the spontaneous 

nucleation and growth of FeCO3 crystals. The final stage of the static tests 

was carried out with the addition of hydrated FeCl2.4H2O where the 

precipitation rate is determined from the weight gain due to FeCO3 crystal 

formation on a corroding steel surface and pre-formed protective FeCO3 film. 

Figure 6.1 provides an overview of the tests done under static conditions 

and the subsequent analysis. The following chapter covers a detailed 

overview of the experimental procedure along with the theory behind the 

practical applications applied.
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Static Tests 

Stage 1 

Effect of Temperature (40°C, 60°C, 80°C) 

Effect of pH (6.3, 6.8, 7.0) 

Effect of Roughness (120, 600, 1200) grit 

Effect of salinity (1.0, 3.5, 5) wt% 

80°C, pH 6.8, 3.5 wt% NaCl, 600 grit 

80°C, pH 6.3, 3.5 wt% NaCl, 600 grit 

80°C, 600 grit, variable initial FeCl2 added 

LPR 

Stage 2 Stage 3 

Mass Change 

SEM XRD 

Spectroscopy 

Protective film formed 

Non-protective film formed 

Mass Change 

Spectroscopy 

Corroding Surface Pre-formed film 

Figure 6.1 Summary of static experimental work done. 
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6.1 Static Experimental Set-Up 

The true mechanism behind corrosion is the actual atomic, molecular, or 

ionic transport process that occur at the material interface. These processes 

cannot be directly observed on an atomic scale, making it necessary to infer 

possible mechanisms based on indirect measurements and observations 

such as mass loss, rate of corrosion product formation or changes in surface 

appearance. When electrochemical corrosion is occurring, mechanisms can 

be identified through the implementation of an electrical potential and/ or 

current measurements [3]. 

In the following study, as in most electrochemical techniques, a ‘three-

electrode configuration’ is used. The setup comprises a working electrode 

(WE), a reference electrode (RE) and a counter electrode (CE). Figure 6.2 

depicts a 3D model of the experimental apparatus used to carry out the 

static experiments. The figure is clearly labelled identifying the different 

components used in the study.  

 

Figure 6.2 Labelled 3D CAD model of static experimental set-up. 
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The working electrode is an X65 carbon steel sample and is the electrode 

under study. A combined ORP (oxidation-reduction potential) electrode is 

used as the reference/ counter electrode. The reference electrode allows 

measurement of the working electrode potential without passing current 

through it while the counter (auxiliary) electrode is an inert electrode with a 

‘current-carrying function’ (allows current to pass through WE) to study WE 

kinetics [19]. The three electrodes are electrically connected to a potentiostat 

which controls the potential of the working electrode and measures the 

resulting current. The following three sub-sections highlight the step-wise 

procedure to starting and running a static test and collecting electrochemical 

measurements. 

6.1.1 Sample Preparation 

Carbon steel samples were cut from the pipework and machined down to 25 

mm diameter pieces. The exposed area of each specimen to the test 

solution was 4.9 cm2. X65 carbon steel was the material used as it is 

commonly used to manufacture oil and gas pipelines due to its availability 

and ability to fulfil many of the mechanical, structural and cost requirements 

[1]. 

Its chemical composition as shown in Table 5.8 (page 54).  The machined 

coupons were initially soldered to a wire approximately 20 cm in length 

before being embedded in to a non-conductive resin. The resin mixture was 

prepared by mixing VariDur10 powder with VariDur10 liquid solvent 

hardener and then poured into the resin moulds over the soldered coupons. 

After the resin had set, the coupons were removed from the moulds and 

were then polished. SiC abrasive paper is used within the University of 

Leeds for polishing metallic specimens. SiC abrasive papers are available in 

all common grit sizes ranging from 120 to 1200 grit.  

Table 6.1 Steel surface properties upon polishing with SiC abrasive papers. 

Standard 

ANSI grit 

European 

(P-Grade) 

Median Diameter 

(microns) 

Surface Roughness on 

Steel, (Ra – nm) 

120 P120 106 1050 

320 P360 40.5 230 

600 P1200 15.3 15.3 

800 P2400 6.5 6.5 
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1200 P4000 2.5 2.5 

Table 6.1 shows different representations of the surface finish of the 

polished samples. The samples were then degreased with ethanol and 

rinsed with distilled water to completely clean them of any leftover residue 

and then dried with compressed air. 

6.1.2 Solution Preparation 

A glass cell was filled up with 1L of electrolyte that was prepared by 

dissolving 3.5 wt% (35 g) of NaCl in distilled water. Initially, the solution was 

deaerated with CO2 gas for about 1h before starting the test as well as 

throughout the experiment to ensure complete saturation. The cell was 

sealed apart from a small outlet to prevent O2 contamination while the CO2 

gas was bubbling. A hot plate was used to heat the temperature to required 

operating temperature and it was maintained at ±1°C with the use of the 

temperature probe forming a feedback loop. The cell was operating at 

atmospheric pressure. A pH meter was calibrated using three different buffer 

solutions and then the solution pH was adjusted to the desired value of pH 

by adding sodium bicarbonate to the solution. A magnetic stirrer rotating at a 

speed of 200 rpm was used continuously throughout the experiment to 

promote chemical consistency throughout the fluid.  

6.1.3 Corrosion Measurement 

Once the setup was at the desired operating conditions, the electrodes were 

immersed into the test solution. They were then connected electrically to the 

potentiostat for electrochemical measurements to be taken. The 

electrochemistry in the following study was carried out by means of the DC 

linear polarisation technique using a computer controlled Potentiostat (ACM 

Gill).  

The experiment is run and the corrosion rate of the metal working electrode 

is directly measured every 15 minutes using Linear Polarisation Resistance 

(LPR) electrochemical technique. The technique works by first measuring 

the Open Circuit Potential (OCP). The OCP is the equilibrium potential 

assumed by the steel specimen in contact with the electrolyte and is 

required prior to carrying out reliable electrochemical corrosion kinetics 

assessments through Potentiodynamic Polarisation (PDP), Linear 

Polarisation Resistance (LPR) and Electrochemical Impedance 

Spectroscopy (EIS).  
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Assuming no external polarisation, oxidation and reduction reactions take 

place at the same rate on an immersed electrode surface, meaning that 

opposing anodic and cathodic current densities are equal in magnitude and 

there is zero net current. Under such conditions, measuring the WE potential 

with respect to that of the RE gives the OCP. When the OCP values (as a 

function of time) become stable, the electrode is assumed to have reached a 

‘steady state’. The change of OCP with time can be informative about the 

reactions occurring on the electrode surface. For example, an OCP shift to a 

more negative potential can indicate a change in the corrosion kinetics to 

one either favouring the anodic reaction or suppressing the cathodic reaction 

[19]. In this work, electrodes were left to corrode at their open circuit 

potential for all periods outside of electrochemical measurements. The OCP 

for carbon steel is typically around -0.7V vs. Ag/AgCl for a pH of 6. 

Polarisation measurements were then subsequently started. Polarization 

resistance measurements were conducted by polarising the working 

electrode ±15mV from OCP and scanning at a rate of 0.25 mV/s. For such 

small potential perturbations, the WE surface is not altered/damaged [32, 

33]. A typical plot obtained of current density vs. potential is shown in Figure 

6.3 which shows that the measured current density is linearly proportional to 

the applied potential.  

 

Figure 6.3 Typical LPR plot that demonstrates the linear potential-current 

relationship at low applied over potential. The gradient is used to obtain 
the polarisation resistance Rp. 
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The gradient of the linear section, attained from numerical fit of the curve, 

yields the value for Polarisation Resistance, Rp of the electrode [19]. This 

potential-current gradient around OCP is the uncompensated for the solution 

resistance between the WE and RE, i.e. 

𝑅𝑝 = 𝑅𝑐𝑡 + 𝑅𝑠 (6.1) 

Rp is the measured gradient, which contains the electrode’s true Faradaic 

corrosion resistance (Rct) and the solution resistance (Rs). The solution 

resistance term for a static cell at 80°C in 3.5 wt% NaCl is recorded to be 

quite small (approximately 1 Ohm.cm2) and is assumed negligible in the 

experiments in the following chapter. A number of research groups working 

in static conditions have taken a similar approach [19, 76-80]. However, it 

may be significant in some cases such as in the following chapter. In such a 

case, Rs is subtracted from the polarisation resistance (Rp) obtained from 

linear data curve fitting. The true Rct is considered to be proportional to the 

rate of the corrosion reactions taking place at the electrode surface. Solution 

resistance (Rs) was measured from AC impedance spectroscopy.  

Rct is inversely proportional to the corrosion rate and can be related to the 

corrosion current density (icorr) by the Stern-Geary Equation [47].  

𝑅𝑐𝑡 =
𝐵

𝑖𝑐𝑜𝑟𝑟
=

(∆𝐸)

(∆𝑖)∆𝐸→0
 (6.2) 

Where Rct is the charge transfer resistance (Ohms.cm2), icorr the corrosion 

current density (A/cm
2
) and B is the proportionality constant and is known as 

the Stern-Geary coefficient ‘B’ (in V decade-1). B can be calculated from βa 

and βc, the slopes of the anodic and cathodic tafel as shown in the Equation 

(6.3) [47].  

𝐵 =
𝛽𝑎𝛽𝑐

2.303(𝛽𝑎+𝛽𝑐 )
 (6.3) 

The value of B for an electrode immersed in an electrolyte, in a given 

system, is often a topic of controversy since selecting a straight line in a 

polarisation curve is subjective. Furthermore, the B parameter varies over 

time as surface conditions on the electrode change and reported values from 

literature are never specific to the exact practical conditions under study (i.e. 

solution chemistry, flow, material, microstructure, electrode geometry are all 

different) [19]. 

Stern et al. [81] described βa and βc as a function of temperature.  
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𝛽𝑎 =  
2.303𝑅𝑇

𝛼𝑎𝐹
   

(6.4) 

𝛽𝑐 =  
2.303𝑅𝑇

𝛼𝑐 𝐹
 (6.5) 

Where T is the absolute temperature in K, R is the universal gas constant 

(8.314 J/mol K), and αa and αc are the symmetry factors for anodic and 

cathodic reaction. The values of αa and αc are 1.5 and 0.5 as explained by 

the Bockris mechanism. F is the Faraday’s constant (96,496 Coulombs/ 

mole).  

For the corrosion rate calculations under static conditions in this work, B was 

maintained as 26 mV decade-1 so that all presented corrosion rates become 

comparable with each other, as done in [80]. A number of research groups 

have used B = 26 mV decade-1 when presenting their corrosion rate data 

[19, 76-80]. The corrosion rate data in those works, and indeed this thesis, 

have been used predominantly as an indicator of the progress of scale 

development and the protective effect that scaling imparts over time. Even 

though B = 26 mV decade-1 may not be entirely accurate, it only provides a 

systematic error and therefore its usage in this work is justifiable as a 

‘conversion’ factor [19]. 

The corrosion rate, CR is then finally quantified using Equations (6.6, 6.7). 

𝐶𝑅 (
𝑚𝑚

𝑦
) =  

𝑖𝑐𝑜𝑟𝑟  (
𝐴

𝑐𝑚2 ) × 10 (
𝑚𝑚
𝑐𝑚

 ) × 31,556,926 (
𝑠 
𝑦𝑟

) × 𝑀 (
𝑔

𝑚𝑜𝑙
 )

𝑛 (𝑒−) ×  𝐹 (
𝐶

𝑚𝑜𝑙
 )  ×  𝜌 ( 

𝑔
𝑐𝑚3 )

   (6.6) 

𝐶𝑅 (
𝑚𝑚

𝑦
) =  1.17 × 104 (𝑖𝑐𝑜𝑟𝑟) (6.7) 

Where icorr is the corrosion current density (A/cm2), M is the atomic weight of 

the metal (55.85 g/mol), ρ is the density (7.8 g/cm3), n is the charge number 

(2e-) which indicates the number of electrons exchanged in the dissolution 

reaction and F is Faraday’s constant (96,485 C/mol).  

At the end of each experiment, the specimen was removed and immediately 

rinsed with distilled water and then flushed with ethanol until it was cooled to 

room temperature. This was done in order to reduce oxidation of wet films at 

an elevated temperature and remove any unwanted salts that may have 

formed on the surface. Any remaining alcohol was then blown away from the 

surface using a compressed air gun. The samples were freed from the resin 

and the wire attached to the samples by carefully breaking the resin. The 
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specimen was then placed in a desiccator under a low humidity atmosphere 

for storage prior to further surface analysis.  

 6.2 Weight Change Method 

The following experimental technique was used in the second and third 

stage of the static experimental work done in order to directly infer the 

weight loss of an X65 carbon steel sample due to corrosion and the weight 

gained due to FeCO3 precipitation during the duration of exposure in a CO2 

environment. The technique was used previously by Sun et al. [9, 10] and 

the experimental set-up is similar to discussed previously. The experiments 

were performed in a static solution with 1 bar total pressure. The glass cell 

was filled with 1 litre of distilled water and 3.5 wt % NaCl, which was heated 

and purged with CO2 gas four hours prior to and throughout the experiment. 

The pH was increased to the desired pH by adding sodium bicarbonate. 

Once the solution had reached the required conditions, the X65 carbon steel 

sample was inserted into the solution.  

The difference in the following technique lies in the sample preparation. The 

sample was still 25 mm in diameter and the exposed area was 4.9 cm2. 

However, in these experiments, the sample surface was initially polished 

with 120, 320 and 600 grit SiC paper, rinsed with ethanol, distilled water and 

then dried with compressed air. The initial mass of the sample was then 

measured using a sensitive micro balance (Mettler XP26). The sample was 

similarly embedded in non-conductive resin. The surface of the sample was 

protected using tape preventing any of the resin hardening on the surface to 

be exposed. The sample was not soldered to a wire as electrochemical 

measurements were not required. However, a wire of similar length is fixed 

on to the sample in the resin in order to drop the sample into the solution 

and hold it in place. After the resin had set, the coupons were removed from 

the moulds and tape. It was then rinsed with ethanol, distilled water and 

dried with compressed air before being immersed in the prepared solution.  

At the end of each experiment, the sample was similarly removed and rinsed 

with ethanol, distilled water and then dried with compressed air. The resin 

was then cracked and the sample weight was once again measured 

determining the mass of the sample with the FeCO3 film formed. The scale 

was then removed using Clarke’s solution. Clarke’s solution was prepared 

using 20g antimony trioxide and 50 g stannous chloride in 1 litre hydrochloric 

acid at room temperature for up to 25 minutes. A thin layer of the solution 
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was placed on the exposed surface of the sample and a cotton swab was 

used to remove the film.  

  

(a) (b) 

Figure 6.4 SEM image of carbon steel sample before and after film removal 

using Clarke’s solution. Sample was exposed to a CO2 saturated 
environment at 80°C, pH 6.8 for 20 hours. (a) Before removal. (b) After 
film removal. 

This technique was used by Sun et al. [9, 10] however was initially tested in 

order to ensure that it was effective and the complete FeCO3 film was 

removed. Scanned electron microscopy (SEM) images of the surface of the 

samples with a complete film and after rubbing with Clarke’s solution was 

observed. Multiple images were taken across the surface and the technique 

used was found to be effective. Figure 6.4 shows an SEM image of the 

sample before and after removal of the film.  

Another test was performed in order to ensure that the technique used did 

not remove more than just the FeCO3 film. This was performed by polishing 

a few samples, determining their initial mass and then rubbing the surface 

with Clarke solution. The mass of the samples were then measured in order 

to determine of if there was a mass loss due to the Clarke solution possibly 

effecting a clean sample. The mass loss was found to be approximately on 

average 4µg supporting the use of the technique.  

After removal of the film, a third measurement of the sample mass was 

taken. This measurement represented the post experimental mass of the 

sample of the sample without a film present. The time-averaged corrosion 

rate was calculated by subtracting the weight of the samples prior to running 

the experiments and after removing the iron carbonate scale. The time-

averaged precipitation rate of iron carbonate was obtained by subtracting the 

weight of the sample which had iron carbonate and those after the scale was 
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removed. The equations used to calculate the two terms are expressed 

below. 

𝐶𝑅(
𝑚𝑜𝑙

𝑚2𝑠
) =  

𝑚1(𝑔) − 𝑚3(𝑔)

𝑀𝑊𝐹𝑒  (
𝑔

𝑚𝑜𝑙
) × 𝑡 (ℎ𝑟) × 𝑆 (𝑚2) × 3600 (

𝑠
ℎ𝑟

)
 (6.8) 

𝐶𝑅(
𝑚𝑚

𝑦𝑟
) =  𝐶𝑅(

𝑚𝑜𝑙

𝑚2𝑠
) ×

365 (
𝑑𝑎𝑦𝑠

𝑦𝑟
) × 86400 (

𝑠
𝑑𝑎𝑦

) × 𝑀𝑊𝐹𝑒 (
𝑔

𝑚𝑜𝑙
)

𝜌 (
𝑘𝑔
𝑚3)

 (6.9) 

𝑃𝑅(
𝑚𝑜𝑙

𝑚2𝑠
) =  

𝑚2(𝑔) − 𝑚3(𝑔)

𝑀𝑊𝐹𝑒𝐶𝑂3 (
𝑔

𝑚𝑜𝑙
) × 𝑡 (ℎ𝑟) × 𝑆 (𝑚2) × 3600 (

𝑠
ℎ𝑟

)
 (6.10) 

Where CR is the corrosion rate (mm/year), PR is the precipitation rate 

(mol/m2s), m1 is the weight of the coupon prior to running experiments (g), 

m2 is the weight of the sample which has scale on it after the experiments 

(g), m3 is the weight of the sample after removing the scale (g), MWFe is the 

molecular weight of iron (g/mol), MWFeCO3 is the molecular weight of iron 

carbonate, t is the exposed time (hours), S is the exposed sample area (m2) 

and ρ is the density of the sample (kg/m3).  

6.3 Method of Fe2+ Addition 

In the third stage of experiments, the weight change technique was applied 

to observe the effect of a variable bulk super saturation on the iron 

carbonate scale retention rate on the steel surface. The required amounts of 

Fe2+ were added in the form of deoxygenated ferrous chloride salt 

(FeCl2.4H2O) solution. The procedure used for the addition of FeCl2 was 

applied previously by Nafday et al [82]. 

A gram of FeCl2.4H2O was weighed in a weighing dish and was added to 10 

ml of deoxygenated distilled water in a small vessel. After the FeCl2 was 

dissolved, the required amount of solution was removed out of the glass 

vessel using a pipette and added to the test solution. The amount of iron 

chloride solution added to the test solution to achieve a required 

concentration of Fe2+ (ppm), when 1 gram of FeCl2.4H2O is dissolved in 10 

ml of deoxygenated solution is given by Equation (6.11).  
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𝑉(𝑚𝑙) =  
𝐹𝑒2+(𝑝𝑝𝑚)

𝑀𝑊𝐹𝑒2+(
𝑔

𝑚𝑜𝑙
) × 1000

×
𝑉𝑡𝑜𝑡𝑎𝑙(𝑙) × 𝑉𝐹𝑒𝐶𝑙2.4𝐻2𝑂(𝑚𝑙)

(
𝑊(𝑔)

𝑀𝑊 (
𝑔

𝑚𝑜𝑙
)
)

𝐹𝑒𝐶𝑙2.4𝐻2𝑂

 

(6.11) 

Where V is the volume needed to be added to the test (ml), Vtotal is the total 

volume of the test solution in litres (1l), W is the weight of FeCl2.4H2O added 

(1 g), MW is the molecular weight of FeCl2.4H2O (198 g/ mol) and VFeCl2.4H20 

is the volume of FeCl2 solution in ml (10 ml). 

6.4 Solution Analysis - ([Fe2+ (aq)] Calculation 

Determining the Fe2+ ion concentration was of specific interest in this study 

because it could indicate the degree to which the bulk solution was 

supersaturated with respect to FeCO3 at the time of sample removal. The 

solution saturation ratio can be determined using Equation (6.12) as 

discussed previously. The unitless parameter indicated whether the bulk of 

the solution is under saturated (< 1) or supersaturated (> 1).  

𝑆𝑅 =  
𝑐𝐹𝑒2+𝑐𝐶𝑂3

2−

𝐾𝑠𝑝
 (6.12) 

A spectrophotometer was used to measure ferrous ion concentration in the 

solution. The technique involved removing 2ml of the test solution at a given 

time instant using a calibrated pipette. This volume is added to a Fe2+ ion 

cuvette (Hach Iron (II/III) cuvette test 0.2 – 6.0 mg/l Fe) as shown in Figure 

6.5. The solution mixes with a chemical reagent and after 5 minutes, the 

cuvette is placed in the spectrophotometer (DR3900) that provides a reading 

of the concentration of Fe
2+

 ions in mg/l.  The device measures how much 

the chemical substance absorbs light by measuring the intensity of light as a 

beam of light passes through sample solution. The intensity of the colour of 

a solution is proportional to the concentration of the absorbing species and a 

comparison of the intensity of the colour of solutions of known concentration 

with the intensity of an unknown permits identification of the concentration of 

the unknown solution.  
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(a) (b) 

Figure 6.5 (a) Hach Fe
2+

 ion cuvettes used in analysis of solution. (b) Image 

representation of working principle behind spectrophotometer used in 
determining Fe2+ ion concentration in sample solution [83]. 

The solubility limit for FeCO3 is determined based on the knowledge of 

solution temperature and ionic strength using the empirical expression 

proposed by Sun et al. [9, 10] discussed previously. The equation has been 

reiterated below.  

log 𝐾𝑠𝑝 = −59.3498 − 0.041377 𝑇𝑘 − 
2.1963

𝑇𝐾
+ 24.5724 log10 (𝑇𝐾)

+ 2.518𝐼0.5 − 0.657𝐼  

(6.13) 

Where TK is the temperature in degrees Kelvin (K), and I is the solution ionic 

strength. For a system of CO2 saturated distilled water at 80°C and 3.5 wt% 

NaCl, the Ksp (FeCO3) can be calculated to be 1.62 × 10-10 according to 

Equation (6.13).  

The final term in determining the solution saturation ratio is the CO3
2-

 ion 

concentration. For a specific solution temperature, ionic strength and pH, 

this can be calculated through knowledge of the equilibrium bulk 

concentrations for a CO2 saturated solution. Oddo and Tomson [84] 

proposed the following empirical expressions, which were republished by 

Sun and Nesic in Shreir’s Corrosion Handbook (Corrosion in Acid Gas 

solutions) [34]. 

In order to estimate the dissolved CO2 concentration ([CO2 (aq)]), Henry’s 

Law can be used, through determining the CO2 gas solubility constant (Ksol 

(CO2) in the aqueous solution and knowing the partial pressure of CO2 gas 

(bar). This is expressed in Equation (6.14). 

𝐾𝑠𝑜𝑙 = [𝐶𝑂2] 𝑝𝐶𝑂2⁄  (6.14) 
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The CO2 gas solubility constant ((Ksol) [34] depends upon solution 

temperature (in degrees Fahrenheit) and ionic strength according to 

Equation (6.15). 

𝐾𝑠𝑜𝑙 =
14 .5

1.00258
× 10

[−(2.27+5.65×10−3𝑇𝑓 −8.06×10−6𝑇𝑓
2+0.075𝐼) 

𝑚𝑜𝑙𝑎𝑟 𝑏𝑎𝑟⁄  (6.15) 

The product of Ksol and pCO2 (bar) will provide the aqueous dissolved 

concentration of CO2.  

A proportion of dissolved CO2 hydrates to form carbonic acid (H2CO3 (aq)). 

The equilibrium hydration constant (Khy) is taken as ~ 2.58 x 10-3 from the 

literature, and does not vary significantly from 20 – 100°C.  

𝐾ℎ𝑦 = [𝐻2𝐶𝑂3] [𝐶𝑂2]⁄  (6.16) 

The dissolved H2CO3 concentration can be calculated as the product of the 

dissolved CO2 concentration ([CO2 (aq)]) and the equilibrium hydration 

constant (Khy) according to Equation (6.16).  

Furthermore, carbonic acid dissociates into hydronium (H+) and bicarbonate 

(HCO3
-
) ions. The equilibrium constant for this reaction is known as the 

carbonic acid dissociation constant denoted by Kca, as Equation (6.17) 

shows [34, 84, 85].  

𝐾𝑐𝑎 = [𝐻+][𝐻𝐶𝑂3
−] [𝐻2𝐶𝑂3]⁄  (6.17) 

The equilibrium first dissociation constant is a function of the solution 

temperature (degrees Fahrenheit) and ionic strength, and can be calculated 

using Equation (6.18).  

𝐾𝑐𝑎

= 387.6

× 10
[−(6.41−1.59×10−3𝑇𝑓 +8.52×10−6𝑇𝑓

2−3.07×10−5𝑝−0.4772𝐼1 2⁄ +0.1180𝐼)]
molar 

(6.18) 

The dissociation constant depends upon solution temperature (in degrees 

Fahrenheit), ionic strength and total pressure in pounds per square inch 

(psi). Therefore, [HCO3-(aq)] is determined as Kca and [H2CO3 (aq)] is 

calculated. The [H+ 
(aq)] is determined from solution pH. 

Finally, the [CO3
2- (aq)] can be calculated. Similar to carbonic acid, 

bicarbonate ions dissociate into hydronium (H+) and carbonate (HCO3
-) ions, 

according to Equation (6.19). 

𝐾𝑏𝑖 = [𝐻+][𝐶𝑂3
2−] [𝐻𝐶𝑂3

−]⁄  (6.19) 

The equilibrium constant for this reaction is known as the bicarbonate 

dissociation constant and is denoted by Kbi [34, 84].  
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𝐾𝑏𝑖

= 10
[−(10.61−4.97×10−3𝑇𝑓 +1.331×10−5𝑇𝑓

2−2.624×10−5𝑝−1.166𝐼1 2⁄ +0.3466𝐼) ]
molar 

(6.20) 

[CO3
2-

(aq)] can be calculated as [HCO3
-
(aq)], solution pH ([H+ (aq)]) and Kbi are 

known. From this, we have all the necessary values to estimate the bulk SS 

according to Equation (6.20). 

This technique was used in both stage 2 and stage 3 of the experimental 

tests and provided an understanding of the change in bulk SS with time and 

its relation to the observed precipitation rate determined through the weight 

change method. The calculations discussed will be revisited in more detail in 

future chapters where all the bulk species concentrations are determined 

and a model is implemented to calculate the values more efficiently.   

6.5 Post Experimental Analysis Techniques 

The focus of this analysis is to develop a further understanding for the 

mechanism of scale formation. This includes the characterisation of the 

morphology, structure and chemical composition of the film. After the 

performed experiments, the samples are analysed using specialised surface 

analysis techniques. The techniques carried out are explained in the 

following sections.   

6.5.1 Scanning Electron Microscopy (SEM) 

SEM is a qualitative surface analysis technique used to observe the surface 

of the carbon steel sample exposed to a CO2 environment under varying 

conditions. The instrument provides high resolution imaging and the 

machines available in-house is the Carl Zeiss Evo MA15 and the TM3030 as 

shown in Figure 6.6. The EVO MA15 requires sample preparation prior to 

analysis under the electron microscope. The carbon steel samples were 

attached to specimen mounts using double sided carbon tape and painted 

around the edges with graphite paint to form a conductive bridge between 

the top surface of the specimen and specimen holder. The samples were 

then coated with a 50 nm layer of gold to prevent the samples from charging 

during SEM analysis. After sample preparation, the Carl Zeiss Evo machine 

was initially vented and opened. The samples were then loaded into the 

machine and secured on to the stage. The SEM machine was closed and 

pumped down to a vacuum of about 1.3×10-6 torrs. Images were then taken 

at a working distance of 8 mm and several areas of the samples were 

analysed and scanned [34]. 
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(a) (b) 

Figure 6.6 Image of a) SEM used in study and b) TM3030 Benchtop SEM 
[86] 

The TM3030 was used more frequently in the following study due to its 

availability and ease of use. It is operated under a low vacuum environment 

and allows for quick image observation without specimen preparation. The 

sample is mounted on a base and connected to the required set height. It is 

fixed inside the SEM chamber, as shown in Figure 6.6 (b), and then closed. 

The chamber was then pumped into vacuum. The device upon start-up 

automatically turns on the beam, adjusts focus, brightness and contrast 

displaying the image at a starting magnification of ×100. The images were 

recorded at an accelerating voltage of 5keV in comparison to the 20keV of 

the EVO MA15 [86, 87].  

6.5.2 X-ray Diffraction (XRD) 

Another essential surface analysis technique that provides vital information 

to the following work is X-Ray diffraction (XRD). It is a commonly used 

technique in the identification of the phases which constitute the film at an 

instant in time. 

The in-house XRD Machine at the University of Leeds is the Siemens Bruker 

D8 Advance XRD machine capable of using either copper or silver source 

tubes.  
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(a) (b) 

Figure 6.7 a) Image of in-house XRD facility. b) Schematic representation of 
the XRD Technique and Bragg Diffraction [88], 

In the following analysis, copper source tube was used as it results in higher 

resolution and therefore more visible peaks with less noise. The sample was 

placed on the metal ring shown in Figure 6.7 (a) and was positioned against 

the three sample leveller pins in the sample holder stage within the XRD 

machine so that the sample is in line with the rim of the holder and x-rays 

impinge only upon the sample surface. Scattered x-rays are detected using 

a point detector that scans the range 20° < 2θ < 70° to capture the main 

FeCO3 peaks. When the sample is bombarded with radiation, X-rays are 

typically diffracted from the surface via the electron in the material according 

to Braggs Diffraction law (Equation (6.20)) where d is the spacing between 

the diffracting planes or lattice, θ is the incident angle, n is any integer and λ 

is the wavelength of the beam [88, 89].  

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 (6.20) 

The diffracted X-ray beams are picked up by a detector scanning at this 

angle and the positions of these reflections inform the user about the inter-

layer spacing of atoms in the crystal structure. Peak intensities give 

information about how much X-ray scattering is contributing to that reflection 

in terms of where particular atoms lie in the structure, or how much of a 

phase is present in a sample. The diffraction pattern is analysed using X-

Pert Analysis software that allows the identification of phases within a given 

sample [88].  

Figure 6.8 shows a typical result of XRD analysis of a carbon steel sample at 

variable times of exposure to experimental conditions 70°C, pH 6.5, 3.5 wt% 

NaCl and 0.54 bar pCO2. X-Pert High Score Plus Software is used to label 

the peaks produced by comparing with the standard. The Figure shows that 
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there was a general FeCO3 film increase with time while the Fe peak 

intensity decreases. 

 

Figure 6.8 XRD pattern results for carbon steel samples [90]. 
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Chapter 7  

Development of Thin Channel Flow Cell 

An integral part of the experimental aspects of this thesis is the design, 

manufacture and development of a thin channel flow cell for examining the 

effects of single phase fluid flow on CO2 corrosion and the formation of 

FeCO3.  

The CO2 corrosion process has been seen to accelerate significantly under 

extreme environmental conditions such as high temperature, high pressure, 

and turbulent fluid flow [91]. To further the understanding of these field 

corrosion problems, researchers have attempted to reproduce the same or 

similar conditions in controlled settings in a laboratory environment. Well-

known laboratory equipment for temperature and pressure control are the 

bubble cell and autoclave systems. They are widely used, readily available 

and referenced in a multitude of literature. However, their primary drawback 

is that they are limited to static conditions. In Chapter 6, a variety of test 

methodologies were discussed for experiments conducted in a glass cell. In 

the following chapter, the work is extended to introduce a fluid flow condition. 

Corrosion is a surface-related degradation process and the flow of fluid 

media over a metal surface could increase of decrease the corrosion rate of 

the metal.  A commonly-used laboratory system to incorporate flow into a 

testing environment is a Rotating Cylinder Electrode (RCE) [53, 92] where a 

metal sample is rotated with respect to the fluid. In the following work; 

however, the fluid is moved across the sample in the form of a designed thin 

channel flow cell which is believed to represent pipe flow more accurately 

and eliminates the effect of the centrifugal force encountered in the rotating 

cylinder electrode system. 

7.1 Flow Cell Design and Manufacture 

The study on the effect of flow on corrosion requires that the flow apparatus 

has a well-defined hydrodynamic and mass transfer behaviour. This is 

important in establishing that the observed flow-sensitive corrosion is due to 

mass transfer control and not due to hydrodynamic shear stress. The thin 

channel flow cell, shown in Figure 7.1, was designed to study the effect of a 

fully developed single phase laminar and turbulent flow on corrosion and the 

kinetics of FeCO3 film formation. The width of the channel (15 mm) is 5 times 

larger than its thickness (3 mm) so as to ensure that there will be no edge 

effect and the velocity gradient will be only in the height direction therefore 
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mass transport will only be one dimensional. The entrance length is set at 

105 mm which ensures that the hydrodynamic and the diffusion boundary 

layer will be uniform over the sample surface.  

  

 

Figure 7.1 Exploded and labelled 3D CAD model of designed flow cell. Top 
right hand corner depicts flow cell with all components fitted together. 

The exploded view is used to show the individual components of the cell 

which consist of three main parts, a Perspex top plate providing a visual 

view of the flow across the sample, a Viton rubber gasket which controls the 

flow path across the sample surface and offers sealing properties between 

the two plates and the acetyl bottom plate which houses three X65 carbon 

steel samples. The three components are tightly sealed/ bolted together 

preventing any leakages or oxygen contamination. The top plate is also 

modelled to accommodate three cable glands to house three reference/ 

counter electrodes. Each reference/ counter electrode is connected with its 

respective working electrode to provide LPR measurements.  The carbon 

steel samples are flush mounted with a total exposed surface area of 0.79 

cm2 each. The flow channel across the sample is determined through the 

use of a gasket where the flow velocity is determined according to its shape. 

The thickness of the gasket is 3 mm and COMSOL computational fluid 

dynamic (CFD) analysis is performed to identify the flow velocity across the 

sample and shall be further discussed in the following section.  
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The configuration of the flow cell to accommodate three samples and three 

corresponding reference and counter electrodes was initially designed to 

vary the flow across each sample by altering the width of the flow channel 

across each sample. Each redox electrode would then be exposed to the 

same flow velocity as its corresponding sample and the distance between 

the sample and its redox electrode was kept at the minimum to reduce 

solution resistance. The straight gasket shown in Figure 7.1 was then 

intended to be used to determine the effect of each of the samples on each 

other. However, initial testing and analysis showed that altering the channel 

width across each sample was limited by the size of the flow cell and 

achievable change in velocity across the sample did not have a significant 

effect on the corrosion rate results obtained through LPR measurements. 

The design of the tests were then modified to facilitate the use of the straight 

gasket where the width of the flow channel across each of the samples was 

the same and the main distinction in velocity was achieved through different 

pump flow rates.  

7.2 Flow Analysis through TCFC 

An essential component of the analysis of the thin channel flow cell (TCFC) 

is determining the flow across each of the samples for a given configuration. 

An initial decision was made that the flow cell shall be analysed for four 

different velocities determined by the pump settings of 400, 1000, 2000 and 

3000 ml/min. The flow was calibrated to determine the flow rate through the 

flow cell for each pump setting and Table 7.1 shows the results.  

𝑄(𝑚3 𝑠⁄ ) = 𝑉(𝑚 𝑠⁄ ) × 𝐴(𝑚2) (7.1) 

The flow velocity across the surface of the sample was initially determined 

analytically for each flow rate (Q) according to Equation (7.1). The area of 

the flow channel across the sample is defined by the gasket and was 

15mm×3mm. The calculated flow velocities are shown in Table 7.1.  

The type of flow for each pump setting is determined by Reynolds number, 

Re and is calculated according to Equation (7.2) for a thin channel flow cell. 

𝑅𝑒𝑇 =
𝑉 × ℎ

𝑣
 (7.2) 

Where V is the velocity across the surface of the sample in m/s, h is the 

height of the thin channel flow cell in m and v is the kinematic viscosity of 

water in m2/s. The Reynolds number for each flow velocity is shown in Table 
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7.1 and flow is found to be laminar for a flow velocity of 0.12 m/s and 

turbulent for 0.31, 0.62 and 0.95 m/s across the surface of the sample.  

Table 7.1 Flow configuration through thin channel flow cell. 

Pump 

Setting 

(ml/min) 

Calibrated Flow 

Rate, Q 

(ml/min) 

Velocity  

COMSOL 

(m/s) 

Velocity  

Analytical  

(m/s) 

Re # 

400 304.2 0.12 0.11 986.30 

1000 775.2 0.31 0.29 2547.95 

2000 1562.4 0.62 0.58 5095.89 

3000 2376.2 0.95 0.88 7808.22 

 

The analytically calculated velocity values are a simple approximation of the 

flow characteristics. The technique does not take into account the 

inconsistency of the flow and possible stagnation points or boundary layer 

separation that may occur. A more complete analysis of the fluid flow 

through the flow cell was studied with COMSOL Multiphysics. The software 

provides the ability to simulate a more accurate representation of the flow 

characteristics through the flow cell and determine the flow efficiency. The 

geometry of the fluid is 3-dimensionally modelled in Solid Works and 

imported into COMSOL as shown in Figure 7.2. The water fluid parameters, 

boundary conditions, inlet flow rate and mesh are defined and the simulation 

is run for a stationary solver. The turbulent flow, k-ω model interface is used 

for simulating the flow at high Reynold’s number while a laminar flow 

interface is used for a flow velocity of 0.1 m/s. The defined mesh is 

illustrated in Figure 7.2 and comprises of 71,547 elements. It was 

determined by progressively creating a finer mesh until a robust, mesh 

independent solution was obtained.  

COMSOL flow analysis results for each of the pump settings are shown in 

Figure 7.3. The colour panel identifies the flow velocities across the thin 

channel flow path showing a uniform flow across the surface of the samples 

with the uniform velocity across all three samples indicated in Table 7.1. The 

dark blue region indicates stagnation points in the flow and are found to be 

minimal at all flow settings and form at the very far end of the inlet and outlet 

walls.  Figure 7.3 (e) shows the wall shear stress in (N/m2) at the highest 

flow velocity considered (0.95 m/s). It was found to be minimal across the 
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surface of the sample and the noted maximum shear stress was 2.4 N/m2. 

Further investigation into the wall shear stress has been neglected as 

according to Yang et al. [93], stresses of the order of 106 pascals are 

needed to detach a protective FeCO3 layer [94].  

Overall, the results show that the designed flow path created by the gasket 

provides a uniform flow velocity across the surface of the samples and 

justifies its use in the flow cell design.  

 

 

Figure 7.2 (a) 3D constructed geometry of flow cell imported into COMSOL 

Multiphysics. (b) Defined mesh distribution across geometry of fluid 
flow. 

 

(a) 

(b) 
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(a) 400 ml/min (c) 2000 ml/min (d) 3000 ml/min (b) 1000 ml/min (e) Wall Shear Stress 
(N/m2) 

Figure 7.3 (a) – (d) Computational results showing the velocity fields in (m/s) for each indicated flow setting. Scale is used 
to determine and indicate, using dotted line, location of three samples. (e) Indicates wall shear stress across surface. 
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7.4 Experimental Methodology 

Corrosion rates were measured in the thin channel flow cell (TCFC) using 

electrochemical methods and mass gain measurements were taken at the 

end of 20 hours to determine the precipitation rate similar to the weight 

change method discussed in Chapter 6.2. The following section covers the 

experimental set-up of the flow cell.  

7.4.1 Solution Preparation 

Initially, a solution of 1 litre of distilled water and 3.5 wt% sodium chloride 

(NaCl) was heated to a temperature of 80°C. CO2 was bubbled into the 

solution for at least 4 hours prior to the experiment and throughout the 

duration of the experiment ensuring the solution was completely saturated 

with CO2. The experiment was conducted at atmospheric pressure. The 

temperature of the solution was maintained at 80°C using a hotplate with an 

integrated stainless steel temperature sensor that was immersed into the 1 

litre beaker.  The pH of the test solution is set to a pH of 6.8 through the 

addition of sodium hydrogen bicarbonate (NaHCO3) and is tested using a pH 

probe. Finally, the solution was continually/ evenly mixed throughout the test 

within the beaker using a magnetic stirrer rotating at 200 rpm controlled by 

the hotplate.  

7.4.2 Sample Preparation 

Prior to the start of the experiment, three test samples were wet ground up 

to 600 silicon grit paper, degreased with acetone, rinsed with distilled water 

and dried with compressed air. The samples were then fitted into a cable 

gland using epoxy resin and then screwed into the acetyl base of the flow 

cell shown in Figure 7.4 

 Carbon steel Sample 

(Area: 0.79 cm2) 

Epoxy Resin 

Screw thread 

fitted into base 

Sample exposed for 

electrical contact 

PG 13.5 Cable 

Gland 
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Figure 7.4 Test sample fitted into cable gland and screwed into flow cell 

base. 

A part of the sample is left protruding uncovered with resin for electrical 

contact for electrochemical measurements. The cylindrical samples used 

within the flow cell are 1 cm in diameter with an exposed surface area of 

0.79 cm2. The carbon steel samples are of the same chemical composition 

as that used in the experiments conducted in the glass cell and is shown in 

Erreur ! Source du renvoi introuvable.. 

7.4.3 Laboratory Flow Loop Set-Up 

The full TCFC system is shown in Figure 7.5. When the solution was 

deemed ready, the CO2 saturated water is pumped into the test section/ flow 

cell and then back into the beaker in a recirculating closed flow loop and 

corrosion measurements were initiated. The pump used is a centrifugal 

micro pump and was controlled using a magnetic drive gear micro-pump 

(Ismatec Series GJ-N23) capable of flow rates 250 to 3200 ml/min.  

7.4.4 In-Situ Electrochemical Measurements 

The electrochemical set-up used for the flow cell design is a standard three-

electrode cell which is commonly used for corrosion studies. The working 

electrode is the X65 grade carbon steel sample and an Ag/AgCl redox 

electrode is used as the reference/ counter electrode which is position 

directly downstream from each sample as shown in Figure 7.5. 

Electrochemical measurements were carried out using an ACM potentiostat, 

in order to determine the corrosion rate of each X65 carbon steel working 

electrode. Linear polarisation resistance (LPR) measurements were 

performed by polarising the sample ±10 mV vs. OCP at a scan rate of 0.10 

mV/s to obtain a polarisation resistance measurement (Rp). LPR 

measurements were undertaken every 10 minutes, allowing the sample to 

remain at OCP between each reading. Tafel polarisation measurements 
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were completed by performing anodic and cathodic sweeps ±250mV vs. 

OCP at a scan rate of 0.20 mV/s. Anodic and cathodic Tafel constants were 

obtained from the Tafel plots allowing the true Stern-Geary coefficient to be 

calculated. Once the Stern-Geary coefficient was established, it can then be 

used in combination with Faraday’s Law and the measured values of Rp to 

estimate the true general corrosion rate of the system. AC impedance 

measurements were performed before the test to determine the solution 

resistance. The data obtained was used to compensate for solution 

resistance in the system when determining the corrosion rates using the 

LPR method.  

7.4.5 Post-Experimental Analysis 

At the end of each experiment, the sample was cracked out of the resin and 

cable gland and was rinsed with ethanol, distilled water and then dried with 

compressed air. Mass measurements were carried out similar to that 

conducted in the static tests. The sample weight was measured determining 

the mass of the sample with the FeCO3 film formed. The scale was removed 

using Clarke’s solution and a final mass measurement was taken. SEM 

images and XRD analysis was also carried out on the surface of the 

samples.  
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Figure 7.5 Labelled 3D CAD drawing of laboratory flow loop set-up. 1) CO2 feed. 2) Temperature probe. 3) Hot plate. 4) Condenser. 

5) Glass beaker. 6) Pump. 7) Tubing. 8) X65 Carbon Steel Samples. 9) Reference/ counter electrode. 10) Flow cell. 11) Pump 
stand. 12) Flow cell stand
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Chapter 8                                                                               

Static Experimental Results 

The following chapter comprises the reporting of results and analysis of the 

results obtained from experiments conducted in a glass cell. The 

experimental work was divided into three different stages, shown in Figure 

6.1 and will be individually presented in the following sub sections. In all 

cases, the experiments were repeated and error bars were included to 

express the sensitivity of the results.  The data points plotted in the figures 

representing experimental data show the mean value describing the central 

tendency about which the data points vary. The mean is calculated using the 

AVERAGE function in Excel. The error bars represent the overall distribution 

of the data and is determined through the standard error which is the 

standard deviation of the mean. The standard error is determined by initially 

calculating the standard deviation of the data using the Excel function 

STDEV and dividing it by the square root of the number of measurements 

that make up the mean. The error bars shown represents how accurately the 

mean represents the true measured value.  

8.1 Parametric Analysis of CO2 Corrosion of Carbon Steel 

The effect of varying parameters such as temperature, pH, surface 

roughness and salinity were tested on the corrosion of X65 carbon steel in a 

CO2 saturated environment. Table 8.1 shows an experimental matrix of the 

tests performed in this stage of the experimental work.  

Table 8.1 Experimental matrix 

Parameters Conditions 

Material X65 Carbon Steel 

Solution 1 L Distilled water 

CO2 Partial Pressure 

(bar) 
0.54 bar 

Temperature (°C) 40°C, 60°C, 80°C 

pH 6.3, 6.8, 7.0 

Salinity 1.0, 3.5, 5.0 wt% NaCL 

Surface roughness 120, 600, 1200 grit 
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8.1.1 Effect of Temperature 

Initial tests were performed to observe the effect of temperature on CO2 

corrosion. The tests were performed for a solution of 3.5 wt% NaCl dissolved 

in distilled water at a pH 6.8. The working sample was polished to 600 grit. 

Figure 8.1 shows the results of the experiments for a temperature of 40°C, 

60°C and 80°C. At 40°C and 60°C, there is no significant drop in corrosion 

rate. It gradually decreases slightly at 60°C and the drop in the corrosion 

rate at the end of 20 hours is only 0.2 mm/ year. At 40°C, the corrosion rate 

remains at more or less the same. However, at 80°C, the curves initially 

shows the corrosion rate to increase. Once it has reached its peak, the 

corrosion rate starts to drop relatively quickly before stabilising at a 

significantly lower corrosion rate. The kinetics are observed to be faster for a 

higher temperature and the drop in corrosion rate by 1.6 mm/ year is due to 

iron carbonate film formation on the surface of the sample blocking the 

active corrosive sites. The initial increase in the corrosion rate observed at a 

high temperature of 80°C may be due to the increase in surface area of the 

exposed the Fe3C layer. FeCO3 crystals may have precipitated at 40°C and 

60°C, however the film is not protective.  

 

Figure 8.1 Effect of temperature on CO2 corrosion of X65 carbon steel. 

(Working Conditions: 3.5 wt% NaCl, pH 6.8, 0.54 pCO2, 600 grit). 

8.1.2 Effect of Salinity 

The second parameter tested is the effect of salinity on the CO2 corrosion 

rate. The tests were performed for a 1 litre solution heated to 80°C and set 

to a pH 6.8. The working sample was similarly polished to 600 grit. Figure 
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8.2 shows the results of the experiments for a 1, 3.5 and 5.0 weight % of 

NaCl. 

NaCl is added into the solution during experimental analysis as it increases 

the conductivity of the solution. In literature, most CO2 research is done at 

lower salt concentrations typically from 1wt% to 3wt% NaCl and no 

significant effects of salt concentration on general CO2 corrosion has been 

observed in this range [77]. Fang et al. [95] tested the effect of high salt 

concentrations on CO2 corrosion with salt concentrations up to 25 wt%, 

close to the solubility limit. The corrosion rate of carbon steel was found to 

be significantly affected by the high content of salt and was observed to 

decrease with increasing salt concentration. This occurs as increasing the 

salt concentration increases the solution resistance, reducing the solubility of 

CO2 and is found to retard the cathodic reaction, the anodic reaction and the 

limiting current [95, 96]. However, the experiments were conducted for salt 

concentrations greater than 15 wt%.  

In the following work, as shown in Figure 8.2, the effect of salinity is shown 

to not have a significant effect on the corrosion rate at salt concentrations of 

1.0wt% and 3.5wt % and the corrosion rate is observed to follow a similar 

trend over 20 hours.  

 

Figure 8.2 Effect of salinity on CO2 corrosion of X65 carbon steel. (Working 

Conditions: 80°C, pH 6.8, 0.54 pCO2, 600 grit) 
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Figure 8.3 Effect of salinity on CO2 corrosion of X65 carbon steel, 

logarithmic plot. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 600 
grit) 

For a higher salt concentration of 5.0 wt%, a higher initial corrosion rate is 

observed. However, the rate of decrease in the corrosion rate over time is 

observed to be similar to that of the lower salt concentrations.  Figure 8.3 

shows the corrosion rates on a logarithmic scale. The figure shows a more 

clear identification of the corrosion rate at the end of the test which indicates 

the level of protectiveness of the FeCO3 film formed in each condition. The 

relative protectiveness of the film is similar for the different salt 

concentrations tested at the end of 20 hours with an average corrosion rate 

of approximately 0.05 mm per year. 

8.1.3 Effect of Surface Roughness 

There is limited literature focussing on the effect of surface roughness on 

CO2 corrosion. A substantial layer of metal is removed upon polishing the 

test samples and manually polishing leaves room for metallic surface 

variations which can affect the corrosion rate measurement. Work done by 

Asma et al. [97] tests the effect of surface finish on corrosion of carbon steel 

in a CO2 environment. Their results have shown that the corrosion rate for a 

rough surface is found to be higher than a smooth surface by increasing the 

surface area which involves the distribution of electrochemical reaction. 

However, this work has been done at room temperature, pH 5.5, 3.0 wt% 

NaCl and for carbon steel BS970. FeCO3 film precipitation has not been 

found to occur in these conditions and the effect of surface roughness on 

film formation has not been found in literature.  
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In the following study, surface roughness on the CO2 corrosion rate was 

tested for a 3.5 wt% NaCl, 1 litre solution heated to 80°C and set to a pH of 

6.8.The working samples were polished using SiC paper to 120, 600 and 

1200 grit. Figure 8.4 shows the results from the experiments carried out. 

The figure shows a higher initial corrosion rate for a rougher surface, 

polished to 120 grit, agreeing with Asma et al. [97]. The corrosion rate then 

steadily decreases over time and remains somewhat constant after 

approximately 13 hours.  The corrosion rate for a more finely polished 

sample at 600 grit is observed to be lower at all-time instances. The 

corrosion rate decreases at approximately the same rate and settles after 

approximately 16 hours. The lowest corrosion rate, hence the most 

protective film, occurs under these conditions over 20 hours. For a sample 

polished to 1200 grit, the corrosion rate is observed to drop at a much slower 

rate. The corrosion rate is similar to that of a 120 grit polished surface after 

20 hours however, it has not yet steadied out and may continue to drop.   

 

Figure 8.4 Effect of surface roughness on CO2 corrosion of X65 carbon 

steel, logarithmic plot. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 
3.5 wt% NaCl) 
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Figure 8.5 Effect of pH on CO2 corrosion of X65 carbon steel, logarithmic 

plot. (Working Conditions: 80°C, 0.54 pCO2, 3.5 wt% NaCl, 600 grit) 

Figure 8.5 shows that at a pH of 6.3, there is no significant decrease in the 

corrosion rate over 20 hours. However, an increase in the pH for the same 

conditions results in a significant drop in corrosion rate and much lower 

corrosion rate. A similar trend is observed for both pH 6.8 and pH 7.0. The 

corrosion rate is observed to decrease over time due to formation of a 

protective FeCO3 film. At pH 7.0, results do show faster kinetics of film 

formation with a slightly lower corrosion rate after 20 hours.  

SEM images were taken of each sample at the end of the 20 hour period to 

identify the characteristics of the film formed in respect to size, surface 

coverage, distribution, etc. Multiple images were taken across the sample to 

attain an overall perspective. However, in some aspects, there are areas of 

the surface where a higher surface coverage, density of crystal formation is 

found in comparison to other areas. This non-uniformity of the film formed 

may be due to differences in the surface finish across the sample, different 

local conditions at locations of the sample due to differences in solution 

composition in a static cell. There may be many possible reasons for the 

varying conditions. 

Figure 8.6 shows select images that best represent the surface of the 

sample at these conditions. The images are taken at ×1000 magnification 

and represents approximately 175×175 μm2 area of the sample surface. 

SEM surface analysis software offers the capability to annotate the image 

with the approximate size of the crystals. The figure shows that the crystals 

are much larger in size for a pH 6.3 and more discrete whereas for both pH 
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6.8 and pH 7, the crystal are much smaller, compact and dense which tend 

to favour a more protective film.  

pH 6.3 pH 6.8 pH 7.0 

   

Figure 8.6 SEM Imaging of X65 carbon steel surface at varying pH. 
(Working Conditions: 80°C, 0.54 pCO2, 3.5 wt% NaCl, 600 grit) 

In static cell experiments, there are many variables that can affect the 

corrosion rate and the nature of the film formed. The effect of some of these 

parameters are well-known in literature whereas for others the 

understanding is limited. The results of this section focused on the analysis 

of four parameters that were believed to have an instrumental effect. The 

experiments were repeated and error bars were included to express the 

sensitivity of the results.  

8.2 Nucleation and Growth of FeCO3 over Time 

In the previous section, the effect of pH on the corrosion rate and FeCO3 film 

formation was analysed in a static CO2 environment. Results showed that 

nucleation and growth of FeCO3 crystals occurred at both pH 6.3 and pH 6.8 

within 20 hours however the protectiveness of the film varied significantly. In 

the following stage, experiments are carried out to: 

 Investigate the main contributing factor to the significant change in 

protectivity of the film for a minor change in pH through mass gain 

and mass loss measurements at different time intervals.  

 Analytically determine the precipitation rate and corrosion rate over 

time from the observed mass gain and mass loss results.  

 Compare the corrosion rate results from both techniques, LPR and 

weight change method.  

 Determine a relationship between the precipitation rate and the bulk 

saturation ratio (SR) determined through spectroscopy.  
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 Correlate the results with scanned electron microscopy (SEM) images 

at the end of each time interval to support the observed trends.  

The static cell was set-up for working conditions; 80°C, 3.5 wt% NaCl, 1 L 

CO2 saturated solution of CO2 partial pressure 0.54 bar. X65 carbon steel 

samples of 25 mm diameter were polished to 600 grit. Multiple experiments 

were carried out for variable time periods of 2, 5, 10, 15 and 20 hours for a 

pH of 6.3 and 6.8. The weight change of each sample was determined at the 

end of each time period and a sample of the solution was taken for Fe2+ ion 

measurement. The detailed experimental procedure was discussed in the 

chapter. The experiments were repeated to ensure reliability and the 

accuracy of the results. Error bars are displayed on the graphs to show the 

variability of data and indicate the error, or uncertainty in the measurements. 

8.2.1 Quantitative Analysis of FeCO3 Precipitation 

Figure 8.7 shows the mass gain for each individual time period due to 

FeCO3 precipitation at pH 6.3 and pH 6.8. Results show that the mass gain 

is higher for a pH of 6.8 at the earlier time periods. However for longer time 

periods the gap between the mass gain results decreases. The mass gain at 

pH 6.3 continues to increase and is observed to larger than that at pH 6.8 at 

the end of 20 hours.   

 

Figure 8.7 Mass gain due to FeCO3 precipitation at pH 6.3 and pH 6.8 over 

variable time periods (Working Conditions: 80°C, 0.54 pCO2, 3.5 wt% 
NaCl, 600 grit). 
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quantitative analysis of FeCO3 film shows that at pH 6.3, after 20 hours, a 

slightly larger mass gain is observed however for a considerably less 

protective film. 

These results are correlated with SEM images in Figure 8.9, Figure 8.12 and 

Figure 8.13. At the end of each time period, the nucleation and growth of 

crystals is more significant for a pH 6.8 with a significantly higher surface 

coverage being noted over the image square area. However, the average 

crystal size is seen to be larger at pH 6.3 especially over longer time 

periods. Correlating the SEM images with the mass gain results indicates 

that there are many smaller crystals at pH 6.8 versus fewer larger crystals at 

pH 6.3 providing an explanation for the converging behaviour of the mass 

gain results.  

Figure 8.8 shows the mass loss at the end of each time period due to 

corrosion at pH 6.3 and pH 6.8. Results show that the mass loss is 

progressively greater for pH 6.3 in comparison to pH 6.8. This links to a 

higher degradation of the surface of the sample due to a less protective film 

being formed over time in comparison to that at pH 6.8.  

 

Figure 8.8 Mass loss due to FeCO3 precipitation at pH 6.3 and pH 6.8 over 

variable time periods (Working Conditions: 80°C, 0.54 pCO2, 3.5 wt% 
NaCl, 600 grit). 
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Scanning Electron Microscopy (SEM) was used to observe the surface of 

the carbon steel sample at the end of each time period and the images were 

carefully analysed to determine the crystal morphology, crystal size and the 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22

M
as

s 
lo

ss
 (

m
g)

 

Time period (hours) 

pH 6.3

pH 6.8



- 104 - 

 
 

 

surface coverage. Multiple images were taken across the sample to attain an 

overall perspective. In Figure 8.9, the surface of the sample is observed for 

both pH 6.3 and pH 6.8. The figure is annotated to include the average 

crystal size, mass gain and corrosion rate at the end of each time period. 

The figure shows the crystals to be more discrete and larger in size at pH 

6.3 with crystals as large as 40µm being formed after 20 hours.  At pH 6.8, 

the maximum crystal size has been observed to be approximately half the 

size. The images were taken at the same magnification and the density and 

compactness of the film formed at pH 6.8 in comparison is clearly observed. 

Small crystals can be seen to form in tiny spaces and then grow into the 

surrounding crystals, conjointly working at blocking the surface from further 

corrosion. Figure 8.10 compares the average crystal size as a function of 

time for pH 6.3 and pH 6.8. The crystal size was determined using SEM 

image analysis software to approximately measure the size of each 

individual crystal.



- 105 - 
 
 

 

  

  

  

 

 

2 HOURS 

Av. Crystal Size: 7.9 µm 

Av. Mass Gain: 2.64 mg 

Corrosion Rate: 2.32 mm/yr 

5 HOURS 

Av. Crystal Size: 11.80 µm 

Av. Mass Gain: 4.73 mg 

Corrosion Rate: 0.89 mm/yr 

10 HOURS 

Av. Crystal Size: 12.16 µm 

Av. Mass Gain: 6.43 mg 

Corrosion Rate: 0.30 mm/yr 

15 HOURS 

Av. Crystal Size: 12.88 µm 

Av. Mass Gain: 7.44 mg 

Corrosion Rate: 0.08 mm/yr 

20 HOURS 

Av. Crystal Size: 14.2 µm 

Av. Mass Gain: 7.74 mg 

Corrosion Rate: 0.04 mm/yr 

2 HOURS 

Av. Crystal Size: 11.15µm 

Av. Mass Gain: 1.15 mg 

Corrosion Rate: 2.10 mm/yr 

10 HOURS 

Av. Crystal Size: 16.9 µm 

Av. Mass Gain: 5.87 mg 

Corrosion Rate: 0.75 mm/yr 

15 HOURS 

Av. Crystal Size: 23.6 µm 

Av. Mass Gain: 7.66 mg 

Corrosion Rate: 0.73 mm/yr 

20 HOURS 

Av. Crystal Size: 35.12 µm 

Av. Mass Gain: 8.50 mg 

Corrosion Rate: 0.59 mm/yr 

5 HOURS 

Av. Crystal Size: 12.66 µm 

Av. Mass Gain: 3.23 mg 

Corrosion Rate: 1.64 mm/yr 

pH 6.8 

pH 6.3 

Figure 8.9 SEM images illustrating FeCO3 crystal formation at different time periods for pH 6.3 and pH 6.8. Images are also annotated to 
indicate average crystal size, average mass gain and corrosion at these time steps.  



- 106 - 
 
 

 

An average of the crystal size was determined across the images taken at 

the end of each time period for a pH of 6.3 and pH 6.8. Results show that 

the crystal size increases exponentially at pH 6.3 whereas the growth of 

crystals are more limited at pH 6.8 where only a slight increase in average 

crystal size is observed over time. 

 

Figure 8.10 Analysis of SEM images over time to determine average crystal 
size for pH 6.3 and pH 6.8.  

The percentage of the carbon steel surface covered with FeCO3 crystals 

may provide an indication to the protectiveness of the film. It is obtained 

through processing multiple random images from across the sample into a 

MATLAB programme that utilizes the difference in contrast of the crystals 

formed against the bare steel surface to produce a binary output image. The 

programme then plots the percentage of black pixels (crystals) against the 

white pixels (no crystals).  

 

 

Figure 8.11 Image analysis using MATLAB to determine surface coverage. 

a) Image as attained from SEM for 80°C, 6.3 pH, 5 hours. b) Image 

corrected for contrast and brightness. c) Matlab correction into black 
and white pixels.  
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Figure 8.11 shows the MATLAB analysis of a SEM image of the surface at 

pH 6.3 after 5 hours. The image was set to a contrast and brightness factor 

of +40% and -40% respectively in order to make the crystals more detailed 

and the image annotation was cropped out. The MATLAB programme 

analyses the image and produces the binary image shown in Figure 8.11 (c). 

The surface coverage of the selected image was computed to be 

approximately 11.86%.  

For a pH 6.3, images were taken at a magnification of ×80 in order to obtain 

the largest overall perspective of the surface as shown in Figure 8.12. 

Images were taken across the surface, each comprising of an area of 

2×2mm. A similar analysis was performed for a pH 6.8 after each time period 

and is shown in Figure 8.13. The images under these conditions were taken 

at a magnification of ×100 as the crystals were too small to be analysed for 

surface coverage at a lower magnification. It is noted that the crystals at pH 

6.3 are observed more clearly at a lower magnification than crystals at pH 

6.8 at a higher magnification. This adds to the finding that the crystals at pH 

6.3 are significantly larger in size than at pH 6.8.
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 Figure 8.12 SEM images illustrating FeCO3 crystal formation at different time periods for pH 6.3. 
Images are also annotated to indicate surface coverage at these time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Hours – 9.54 % Surface Coverage 

10 Hours – 32.86 % Surface Coverage 

15 Hours – 59.81 % Surface Coverage 

20 Hours – 63.35 % Surface Coverage 
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 Figure 8.13 SEM images illustrating FeCO3 crystal formation at different time periods for pH 6.8. 

Images are also annotated to indicate surface coverage at these time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Hours – 36.45 % Surface Coverage 

10 Hours – 63.54 % Surface Coverage 

15 Hours – 90.86 % Surface Coverage 

20 Hours – 92.35 % Surface Coverage 
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Figure 8.14 compares the percentage surface coverage over time for pH 6.3 

and pH 6.8. The trend is observed to be very similar for pH 6.3 and pH 6.8 

with it steadily increasing over time over 15 hours and then considerably 

slowing down there after. The surface coverage at pH 6.8 is found to be 

much higher at the end of each time period in comparison to at pH 6.3, as is 

expected, with a surface coverage of approximately 92% after 20 hours and 

approximately 63% for a pH 6.3. 

 

Figure 8.14 Analysis of SEM images over time to determine average 

surface coverage for pH 6.3 and pH 6.8. 

It is noted that the developed MATLAB model is limited in determining the 

surface coverage at the end of time periods where there is no clear visual 

contrast between the FeCO3 crystals and the remaining surface such as the 

SEM image after 20 hours at pH 6.8. At this stage, the image represents a 

close to full surface coverage. The model is more accurate in determining 

the surface coverage for earlier time periods. 

8.2.3 Corrosion Rate Analysis 

The corrosion rate over time is analytically calculated from the mass loss 

measurements at the end of each time period. Equation 6.8, in Chapter 6.2, 

provides the corrosion rate at the end of each time period assuming it is 

constant over the total time period. However, altering the equation for a 

change in mass loss over time, from one period to the next, allows for a 

more accurate tracking of corrosion rate over time as shown in Equation 

(8.1).  
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𝐶𝑅(
𝑚𝑚

𝑦𝑟
) =  

𝑀𝐿𝑡2(𝑔) − 𝑀𝐿𝑡1(𝑔)

𝑀𝑊𝐹𝑒  (
𝑔

𝑚𝑜𝑙
) × 𝑡 (ℎ𝑟) × 𝑆 (𝑚2)

×
365 (

𝑑𝑎𝑦𝑠
𝑦𝑟

) × 24 (
ℎ𝑟𝑠
𝑑𝑎𝑦

) × 𝑀𝑊𝐹𝑒 (
𝑔

𝑚𝑜𝑙
) 

𝜌 (
𝑘𝑔
𝑚3)

 

(8.1) 

Where CR is the corrosion rate (mm/year), MLt2-MLt1 is the change in mass 

loss from one time interval to the next (g), MWFe is the molecular weight of 

iron (g/mol), t is the time interval in between measurements (hours), S is the 

exposed sample area (m2) and ρ is the density of the sample (kg/m3).  

 

Figure 8.15 Corrosion rate (mm/year) calculated over time from mass loss 

measurements. 

Figure 8.15 shows the corrosion rate results over time for pH 6.3 and pH 6.8. 

The results show that there is a more significant drop in the corrosion rate 

for a pH of 6.8. After a time period of approximately 10 hours, however, the 

rate in the drop of the corrosion rate is observed to significantly slow down 

and almost remains constant thereafter. For a pH 6.3, the corrosion rate is 

observed to steadily decrease over time with the rate slowing down after 8 

hours. The observed trend may be compared with the LPR measurement 

results in Figure 8.5 and is found to be similar with the corrosion rate for a 

pH of 6.3 being higher at each time instant. The difference between the 

corrosion rate values may be attributed to the Stern-Geary coefficient, B. 

The Stern-Geary coefficient used in the LPR measurements was assumed 

to be 26 mV/decade. Referring back to Chapter 6.1.3, Stern et al. [81] 

described βa and βc as a function of temperature. For 80°C, βa and βc can be 

calculated to be 46.7 mV/decade and 140mV/decade respectively therefore 
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resulting in a Stern-Geary coefficient of 15.2 mV/decade. Correcting the LPR 

measurement for the new Stern-Geary coefficient provides a better 

comparison as shown in Figure 8.16.  

 

Figure 8.16. Comparison of weight loss measurements with corrected LPR 

measurements for pH 6.3 and pH 6.8. 

However, there is a discrepancy in the data mainly at the initial time periods 

where the corrosion rate attained through the mass loss measurements 

being much higher for both pH of 6.3 and 6.8. After approximately 7.5 hours, 

the results are seen to match more closely.  

The possible reason for the difference in the corrosion rate results from 

mass loss and LPR measurements is that as the sample surface corrodes, 

the surface area and surface roughness increases due to the surface profile 

of the Fe3C layer. Mass loss is a direct measurement due to the corrosion at 

the surface. However, LPR measurements do not take into account the 

changing surface area. This may be the reason for the significantly higher 

corrosion rate determined from the mass loss measurements at the initial 

time periods. Furthermore, correcting the LPR measurements for a Stern-

Geary coefficient, B based on mass loss measurements at the end of the 20 

hour period or equations by Stern et al. [81] for the entire set of 

measurements may be considered inaccurate as the B parameter varies 

over time as surface conditions, microstructure change therefore as 

observed from the comparison in Figure 8.16, a different Stern-Geary 

coefficient for the initial time periods may be more viable.  
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8.2.4 Precipitation Rate and Bulk Saturation Ratio Analysis 

The precipitation rate is calculated from the mass gain measurements 

according to Equation (8.2).  

𝑃𝑅(
𝑚𝑜𝑙

𝑚2𝑠
) =  

𝑀𝐺𝑡2(𝑔) − 𝑀𝐺𝑡1(𝑔)

𝑀𝑊𝐹𝑒𝐶𝑂3 (
𝑔

𝑚𝑜𝑙
) × 𝑡 (ℎ𝑟) × 𝑆 (𝑚2) × 3600  (

𝑠
ℎ𝑟

)
 (8.2) 

Where PR is the precipitation rate (mol/m
2
s), MGt2-MGt1 is the change in 

mass gain from one time interval to the next (g), MWFeCO3 is the molecular 

weight of iron carbonate, t is the time interval in between measurements 

(hours) and S is the exposed sample area (m2).  

Figure 8.17 shows the calculated precipitation rate over time for pH 6.3 and 

pH 6.8. The theory behind the calculation is similar to that used to determine 

the corrosion rate and can be explained as follows. The mass gain was 

experimentally determined for a time period of 2 hours and 5 hours. 

Therefore the change in mass between that time period of 3 hours is the 

difference of the mass gain. Equation (8.2) provides an estimated 

precipitation rate over the time from 2 to 5 hours. The resulting numerical 

value is plotted for 3.5 hours and error bars are used to show the 

approximate time span of this precipitation rate. This method was 

subsequently applied for the remaining time periods.  

 

Figure 8.17 Precipitation rate (mol/m2.s) calculated over time from mass 

gain measurements. 

Results show that at pH 6.8, the precipitation rate is at its highest over the 

initial time period and then gradually decreases. In comparison, at pH 6.3, 

the precipitation is significantly lower, less than half, at the initial time period. 
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The precipitation rate is seen to increase and overlap with the precipitation 

rate at pH 6.8 over the time period of 2 to 5 hours. It then steadily decreases 

but remains higher than that at pH 6.8. This is due to the higher change in 

mass gain over time observed at pH 6.3 as the crystal size progressively 

grows in comparison to pH 6.8. The higher change in mass gain directly 

corresponds to the higher precipitation rate observed over time.  

In literature, precipitation rate is commonly linked with the bulk saturation 

ratio (SR) as shown in the precipitation models reviewed in Chapter 5. 

Experimentally determining surface chemistry is very difficult and a method 

has yet to be determined. Therefore, most of the physical phenomena 

observed in literature have been linked to the bulk properties and in the 

following work, the Fe2+ ion concentration and subsequently bulk saturation 

ratio is determined through analysing a sample of the solution using 

spectroscopy.  

Figure 8.18 shows that for pH 6.8, the bulk SR is observed to follow the 

same trend as the precipitation rate at initial time periods. Results suggest 

that a higher bulk SR gives more precipitation. However, for a pH of 6.3, a 

different correlation is observed as the bulk SR increases over time. 

Furthermore, after 7.5 hours, the bulk SR at both pH remains approximately 

constant with time while the precipitation continues to drop in a linear 

fashion.  

 

Figure 8.18 Bulk saturation ratio over time determined through spectroscopy 

for pH 6.3 and pH 6.8. 

Reverting back to its calculation, Figure 8.19 shows that at pH 6.8, the bulk 

Fe2+ ion concentration is approximately only 0.1 ppm and a small decrease 
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in the concentration results in a more significant change in the calculated SR 

as shown in Figure 8.18. At pH 6.3, the Fe2+ ion concentration increases 

with time and then remains approximately the same after 7.5 hours. The 

results indicate that at pH 6.3, there is more diffusion of Fe2+ ions to the bulk 

in comparison to pH 6.8 where a much lower bulk Fe2+ ion concentration is 

observed. This observation implies that more of the Fe2+ ions at pH 6.8 is 

being consumed at the surface as FeCO3 or remains close to the surface 

resulting in the much lower bulk Fe2+ ion concentration observed in the bulk. 

The observed trend after approximately 7.5 hours for bulk SR and Fe2+ ion 

concentration may be linked to the corrosion rate results in Figure 8.15. The 

results are somewhat stable after this time period indicating that the rate of 

dissolution of Fe2+ ions and hence the diffusion of Fe2+ to and away from the 

surface may be considered to be at equilibrium.  

 

Figure 8.19 Comparison of bulk Fe2+ ion concentration at pH 6.3 and pH 

6.8. 

Therefore, the following observations show that there can be no direct 

correlation between the precipitation rate and the bulk saturation ratio for a 

freely corroding system. This indicates that the reaction is surface dominated 

and there may be a significant difference between bulk and surface 

properties.  

8.2.5 Comparison of Precipitation Rate to Corrosion Rate 

Figure 8.20 shows a comparison of the percentage of Fe2+ ions lost from the 

surface due to corrosion that is precipitated as FeCO3 at the end of each 

time period. A significantly higher percentage of Fe2+ ions produced due to 

corrosion is observed to have precipitated as FeCO3 at a pH 6.8 than at pH 
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6.3. On average, the percentage of Fe2+ ions consumed at the surface at all 

time periods is approximately 77.4% at pH 6.8 and 43% at pH 6.3. For both 

pH 6.3 and pH 6.8, the percentage is observed to increase for a longer time 

period. This is due to the protective FeCO3 film develops over time resulting 

in a lower rate of dissolution of Fe2+ ions. Therefore, the difference in mass 

gain and mass loss measurements is larger and the ratio of the precipitation 

rate to the corrosion rate, also known as the scaling tendency, increases. 

 

Figure 8.20 % Fe2+ ions lost from surface that precipitates as FeCO3 

determined from weight change results. 

8.2.6 XRD Surface Analysis 

The surface was analysed using X-Ray Diffraction (XRD) in order to identify 

the phases which constitute the film and ensure that the crystals formed over 

the surface is entirely FeCO3. Both Figure 8.21 and Figure 8.22 confirm that 

FeCO3 is the only main formation on the surface at both conditions.  
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Figure 8.21 XRD patterns of X65 carbon steel exposed to a CO2 saturated 

environment at 80°C, pH 6.3 and pCO2 0.54 bar for 20 hours.  

 

Figure 8.22 XRD patterns of X65 carbon steel exposed to a CO2 saturated 

environment at 80°C, pH 6.3 and pCO2 0.54 bar for 20 hours. 

8.3 Accelerating FeCO3 Precipitation Kinetics 

This section covers the final stage of the experimental work under static 

working conditions. Experiments have been carried out with the addition of 

hydrated FeCl2.4H2O where the corrosion and precipitation rate is 

determined from mass gain and loss measurements and the bulk super 

saturation through spectroscopy. Table 8.2 shows an experimental matrix of 

the experiments carried out.  
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The aim of the experimental analysis in this section is to test the effect of 

controlling the bulk saturation ratio on the observed kinetics of FeCO3 film 

formation and compare with the observations in a freely corroding system. A 

large part of the work done in literature observing FeCO3 formation kinetics 

has been conducted with the addition of FeCl2.4H2O and this section of this 

work contributes to critically analysing the contribution of the added Fe2+ 

ions to the corrosion rate and precipitation of FeCO3 at the carbon steel 

surface.  

Table 8.2 Experimental Matrix 

Parameters Conditions 

Material X65 Carbon Steel 

Solution 1 L Distilled water 

CO2 Partial Pressure (bar) 0.54 bar 

Temperature (°C) 80°C 

pH 6.8 

Salinity 3.5 wt% NaCL 

FeCl2.4H2O 10, 25 and 50 ppm 

Surface roughness 600 grit 

8.3.1 Effect of FeCl2.4H2O Addition 

The first set of experiments were aimed at determining the effect of adding 

varying amounts of FeCl2.4H2O on the corrosion rate and precipitation rate. 

A series of 2 hour experiments were run at 80°C, pH 6.8 and 3.5 wt% and 

were compared with that of a freely corroding system. Figure 8.23 shows the 

FeCO3 precipitation rate and corrosion rate determined from mass gain and 

mass loss measurements as a function of the average bulk saturation ratio 

at the end of 2 hours. Each set of values represented by the bar graph 

corresponds with the amount of Fe
2+

 ions added at the start of the 

experiment (0, 10, 25, 50 ppm respectively).  

The figure shows that the precipitation rate progressively increases with the 

addition of FeCl2.4H2O. The corrosion rate, on the other hand, is significantly 

lower when FeCl2.4H2O is added in comparison to a freely corroding system. 

This indicates that the source of ferrous ions forming iron carbonate scale 

may include ferrous ions both released from the steel surface and those 
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provided by the bulk of the solution. Due to this additional source of Fe2+ 

ions, a higher precipitation rate is observed and less Fe2+ ions are dissolved 

from the surface. Comparing the corrosion rate for the experiments 

conducted with the addition of Fe2+ ions, results show that the corrosion rate 

slightly increases for a higher bulk SR however, considering the error bars, 

this may be due to the variability in the measurements and corrosion rate 

after 2 hours may be considered to be approximately similar.  

 

Figure 8.23 Effect of initial SR on corrosion rate and precipitation rate over 2 

hour period. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 3.5 wt% 
NaCl) 

 

Figure 8.24 Precipitation rate vs. bulk saturation ratio for varying amounts of 

FeCl2.4H2O added over 2 hour period. (Working Conditions: 80°C, pH 
6.8, 0.54 pCO2, 3.5 wt% NaCl) 
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The bulk saturation ratio was determined at the end of each test. Figure 8.24 

shows the precipitation rate as a function of the average bulk saturation ratio 

over the 2 hour period. The figure shows that adding FeCl2.4H2O has a 

significant effect on the bulk solution properties and the precipitation rate is 

observed to increase for a higher bulk saturation ratio. Furthermore, during 

the experiments, bulk precipitation is observed to occur within the glass cell 

and is found to be more significant and spontaneous for a higher amount of 

FeCl2.4H2O added.   

8.3.2 Effect of Adding FeCl2.4H2O on Results over Time 

Experiments were run over a time period of 2, 5, 7.5 and 10 hours to 

observe the effect adding an initial quantity of FeCl2.4H2O on the 

precipitation and corrosion rate over time.  

In the previous section, the effect of adding variable concentrations of 

FeCl2.4H2O was observed on the precipitation and corrosion rate at an initial 

time period of 2 hours and it was seen to have a significant effect on the 

initial precipitation rate. A similar observation is seen in Figure 8.25 however, 

over time, the precipitation rate drops to a much lower value and continues 

to drop over time. The corrosion rate is observed to decrease and remains 

approximately the same after 5 hours with an average corrosion rate of 0.60 

mm/ year.  

  

Figure 8.25 Effect of initial SR on precipitation rate and corrosion rate over 

time. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 3.5 wt% NaCl, 50 
ppm FeCl2.4H2O) 
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Comparing the precipitation rate with the corrosion rate in the same molar 

units, the precipitation rate is significantly higher than the corrosion rate at 

the initial time period which indicates that the bulk Fe2+ is a more significant 

source of ferrous iron forming FeCO3. At later time periods, the corrosion 

rate is higher than the precipitation rate. The results may indicate that over 

time, the Fe2+ ions contributes more to bulk precipitation that is observed 

elsewhere in the beaker therefore resulting in a lower contribution to FeCO3 

precipitation at the surface.  

  

Figure 8.26 Precipitation rate as a function of the bulk saturation ratio. Arrow 

indicated direction with time. (Working Conditions: 80°C, pH 6.8, 0.54 
pCO2, 3.5 wt% NaCl, 50 ppm FeCl2.4H2O) 

Figure 8.26 shows the results of the precipitation rate plotted as a function of 

bulk saturation ratio and the arrow indicates the direction of the trend over 

time. The results shows an exponential drop in precipitation rate with bulk 

super saturation. The drop in saturation ratio confirms the observed bulk 

precipitation. The results show that the bulk Fe
2+

 ions reduce significantly 

over time and the corresponding reduction in precipitation rate implies that 

the Fe2+ are being consumed elsewhere.  

8.3.3 Later Stages of FeCO3 Nucleation and Growth 

In the following section, the properties of a fully formed protective FeCO3 film 

is studied to represent the later stages of FeCO3 nucleation and growth. 

Initially, a FeCO3 film is precipitated on a carbon steel sample over 20 hours 

at 80°C, pH 6.8, 1 bar total pressure and 3.5 wt% NaCl. Results have shown 

that the film developed within this time frame under these conditions is a 
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compact and dense protective layer. The sample is then placed under two 

different conditions: 

 a fresh CO2 saturated solution at 80°C, pH 6.8, 1 bar total pressure 

and 3.5 wt% NaCl with the magnetic stirrer rotating at 750 rpm to 

introduce turbulence to the system. The following test is conducted 

over two hours to test the stability of the developed film.  

 a fresh CO2 saturated solution at 80°C, pH 6.8, 1 bar total pressure 

and 3.5 wt% NaCl with 10 ppm and 50 ppm of Fe2+ ions added to the 

bulk solution. The following test is again conducted over two hours 

and used to determine whether increasing the bulk super saturation 

has an influence on the pre-formed protective FeCO3 film.  

Mass loss and gain measurements are taken and the subsequent effect of 

the new conditions on the developed film is studied. Figure 8.27 shows the 

mass change in mg at the end of each test with the pre-formed film over 20 

hours. Figure 8.28 shows the resulting change in precipitation rate and 

corrosion rate in mol/m2.s. The bar chart is labelled according to the 

condition that it is introduced into as turbulence, 10 ppm FeCl2.4H2O and 50 

ppm FeCl2.4H2O respectively.  

In the initial case of introducing the sample with a pre-formed film into a 

solution with turbulent flow characteristics, results show that there is a 

negative change in mass gain and precipitation rate. This indicates that 

some of the unstable FeCO3 crystals may have dissolved back in to the 

solution. However, there is no increase in corrosion rate which implies that 

the film is still protective. The corrosion rate is seen to be negative due to 

slightly smaller mass loss measurements recorded. This value is not 

significant and may be due to human error or slight variations in the 

experimental procedure. There is no true meaning that can be attained from 

a negative change in mass loss. In all cases, a negative change in mass 

loss or corrosion rate may be due to differences in cell set-up or human 

errors. However, an increase in mass loss would indicate that the film is no 

longer protective and corrosion rate has increased. 

In the next sequence of experiments, the pre-formed film is placed in a 

solution with 10 ppm and 50 ppm of FeCl2.4H2O in the same conditions of 

temperature and pH. Contradictory results are observed where adding 10 

ppm of Fe2+ ions resulted in a higher mass gain and an increase in 

precipitation rate as more FeCO3 crystals are formed at the surface. 
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However, adding a significantly higher amount of Fe2+ ions (50 ppm) did not 

result in an even higher precipitation rate but the mass change remained 

approximately the same or even slightly lower as some FeCO3 crystals may 

have dissolved into the solution. This may be because the bulk precipitation 

is more spontaneous and due to the limited Fe2+ ions at the surface, the Fe2+ 

added to the solution may contribute significantly more to the nucleation and 

growth of crystals in the bulk. Adding FeCl2.4H2O does not seem to have a 

significant effect on the mass loss results.  

 

Figure 8.27 Change in mass gain and mass loss measurements testing the 

effect of turbulence and adding FeCl2.4H2O on a pre-formed protective 
film. 

 

Figure 8.28 Calculated precipitation rate and corrosion rate testing the effect 
of turbulence and adding FeCl2.4H2O on a pre-formed protective film. 

-4

-3

-2

-1

0

1

2

3

Turbulence 10 ppm FeCl2.4H2O 50 ppm FeCl2.4H2O

M
as

s 
C

h
an

ge
 (

m
g)

 

Δ Mass Gain (mg) Δ Mass Loss (mg) 

-8.0E-06

-6.0E-06

-4.0E-06

-2.0E-06

0.0E+00

2.0E-06

4.0E-06

6.0E-06

Turbulence 10 ppm FeCl2.4H2O 50 ppm FeCl2.4H2O

R
e

ac
ti

o
n

 R
at

e
 (

m
o

l/
m

2 .s
) 

Precipitation Rate Corrosion Rate



- 124 - 

 
 

 

Chapter 9                                                                                  

Flow Cell Experimental Results 

Experiments were carried out at 80°C, pH 6.8, 3.5 wt% NaCl and at four 

variable speeds (0.1, 0.3, 0.6, 1m/s) across the surface of the samples. 

Electrochemical measurements were taken in the form of LPR, AC 

impedance and Tafel polarisation measurements. The experiments were 

repeated to ensure consistency of data. The samples at the end of each test 

were also analysed for mass gain, SEM and XRD.  

9.1 Comparison between Results in Same Flow Channel 

In each test, results were obtained from three different samples in the same 

channel. Each sample was exposed to the same conditions and the same 

velocity as computed in Chapter 7.2. In the first stage of the analysis, the 

results of each of the samples was analysed to determine if there was any 

relative effect.  

The original value of LPR corrosion rate was calculated using the measured 

value of polarisation resistance. However, charge transfer resistance should 

be used to calculate the corrosion rate to account for any solution resistance 

according to Equation (6.1) in Chapter 6.1.3. Figure 9.1 shows the Nyquist 

plot of sample 2 (middle sample) for working conditions of 80°C, pH 6.8, 3.5 

wt% NaCl and velocity of 1 m/s.  

 

Figure 9.1 Nyquist plot indicating solution resistance and charge transfer 

resistance. Working conditions (80°C, pH 6.8, 3.5 wt% NaCl and 
velocity of 1 m/s) 
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The solution resistance (Rs) was taken from the Nyquist plot by determining 

the first value of Z’ when Z’’ = 0. The polarisation resistance measurements 

were then corrected for by account for the solution resistance (Rct = Rp – Rs). 

Another essential parameter is the Stern-Geary coefficient that was 

previously discussed in Chapter 6.1.3. The coefficient value used to 

calculate the corrosion rate initially was 26, as it was assumed the Tafel 

constants were equal to 120 mV/decade. To correct the Stern-Geary 

coefficient, the gradient of the anodic and cathodic branches were calculated 

at the end of each test. 

The Tafel plot for sample 2 for working conditions of 80°C, pH 6.8, 3.5 wt% 

NaCl and velocity of 1 m/s is shown in Figure 9.2. The gradient of the anodic 

branch, βa can be seen to be approximately 50 mV/decade and the gradient 

of the cathodic branch, βc is approximately 140 mV/decade. This results in a 

Stern-Geary coefficient, B of 16.0 mV/decade.    

 

Figure 9.2 Tafel plot for 80°C, pH 6.8, 3.5 wt% NaCl and velocity of 1 m/s 

across sample surface. 

The flow cell was initially run for  a velocity of 1 m/s across the surface of the 

samples (pump setting 3000 ml/min) at 80°C and pH 6.8 for a period of 20 

hours and electrochemical measurements were carried out. Figure 9.3 

illustrates a complete analysis from the electrochemical results for each 

sample in the configuration. Figure 9.3 (a) shows a 3D solid works drawing 

identifying the three different samples in sequence within the flow cell and 

their respective electrodes from inlet to outlet.  Figure 9.3 (b) shows the AC 
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impedance measurements carried out at the beginning of each test for each 

sample.  
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Figure 9.3 Overall analysis of electrochemical measurements of X65 carbon steel at 80°C, pH 6.8, 3,5 wt % NaCl and a flow 

velocity of 1 m/s. (a) 3D representation of flow cell identifying samples and their corresponding redox electrode. (b) 
Nyquist plot. (c) Tafel plot. (d) Corrected corrosion rate over time for each sample.  
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Results show that the solution resistance is approximately the same for each 

sample with values of 26.49, 22.40, and 24.33 Ω/cm2 respectively. Figure 

9.3 (c) shows the results of the Tafel anodic and cathodic polarisation at the 

end of the test. The βa and βc slopes are seen to approximately overlap and 

therefore, as in Figure 9.2, the Stern-Geary coefficient for the specified 

working conditions for each sample is 16.0 mV/decade. Upon correcting the 

corrosion rates, Figure 9.3 (d) shows the resulting values for each sample 

over the 20 hour period. The results for each sample are seen to be very 

similar in trend and it can be inferred from results that there is no relative 

effect on the samples and they may be considered a repeat measurement. A 

similar observation is found for all tests carried out in the flow cell supporting 

the analysis. 

9.2 Effect of Flow Velocity  

The next sequence of results analysed is the effect of flow on the solution 

resistance, Tafel plots and finally the corrected corrosion rate.   

9.2.1 Effect of Flow on Solution Resistance for TCFC 

Figure 9.4 shows the Nyquist plot as a result of AC impedance 

measurements carried out at the start of each test. The results show that the 

solution resistance is approximately similar for each velocity with a solution 

resistance for each sample of approximately 25 Ω/cm2. Main parameters that 

effect solution resistance is temperature and ionic strength which are 

maintained in the following experiments and therefore the results are as 

expected. 
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Figure 9.4 Nyquist plot showing solution resistance for variable flow 

velocities at 80°C, pH 6.8, pCO2 0.54 bar and 3.5 wt % NaCl. 

9.2.2 Effect of Flow on Tafel Plot for TCFC 

Figure 9.5 shows Tafel plot results for anodic and cathodic polarisation 

measurements carried out at the end of the test at variable flow velocities in 

the thin channel flow cell. The figure shows that there appears to be a shift in 

the cathodic Tafel as an increase in velocity results in an increase in 

potential and the rate of cathodic reaction. The slopes, βa are βc appear to 

have a similar value for all flow velocities across the surface of the sample. 

Reading the plot allows us to discern the βa and βc to be 50 and 140 mV/ 

decade approximately. This corresponds well with the equations for Tafel 

constants by Stern et al. (Section 6.1.3). 

 

Figure 9.5 Tafel plot, effect of velocity at 80°C, pH 6.8, pCO2 0.54 bar and 

3.5 wt % NaCl. 

9.2.3 Effect of Flow on Corrosion Rate for TCFC 

After correcting each of the results, Figure 9.6 shows the corrosion rate as a 

function time for the different velocities across the sample. A velocity of 0.95, 

0.62 and 0.31 m/s correspond to turbulent flow across the surface of the 

sample whereas a velocity of 0.12 m/s correspond to laminar flow. The 

figure shows a higher initial corrosion rate is observed for a higher velocity. 

This is as expected as a higher flow across the surface of the sample results 

in higher mass transport of species away from the surface, a lower surface 

saturation ratio and hence a higher corrosion rate. However, a faster drop in 

corrosion rate is observed for a faster velocities which may imply a faster 

rate of FeCO3 film formation. This observation may be an aspect of a 
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recirculating flow loop. It may be argued that for a faster velocity the 

concentration of Fe2+ ions that would pass across the surface for a specific 

time instant would be higher. And the combined Fe2+ ions from the three 

samples would cause a higher surface SR and a higher FeCO3 precipitation 

rate resulting in the more significant drop in corrosion rate observed for a 

higher velocity. 

 

Figure 9.6 Effect of velocity on corrosion rate for working conditions 80°C, 

pH 6.8, pCO2 0.54 bar and 3.5 wt % NaCl. 

At the end of 20 hours, the corrosion rate is observed to be lower for a lower 

velocity and the most protective film is formed for a static system. A faster 

flow rate may imply a lower adherence to the surface therefore resulting in a 

less protective film for a higher velocity after 20 hours.  

A similar observation is reported in experiments conducted using a rotating 

cylinder electrode (RCE) in a study by Nesic et al. [53]. The results showed 

that the corrosion rate dropped at a faster rate for higher rotational velocity 

of the RCE but the corrosion rate at the end of the test was observed to be 

lower for a lower rotational velocity. It was concluded that the FeCO3 

precipitated on the surface dissolved back or were chemically damaged 

resulting in the higher corrosion rate at a higher flow rate supporting the 

observations within the flow cell.  

Mass gain measurements were taken at the end of each test and Figure 9.7 

shows the precipitation rate at the end of 20 hours. The figure shows that the 

precipitation rate reduces for a higher velocity which agrees with the LPR 

measurements. The results are correlated with SEM images taken at the 

end of each test. The images shown in Figure 9.8 are the best 
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representation of the overall surface. At a velocity of 0.95 m/s and 0.62 m/s, 

the crystals formed on the surface after 20 hours is observed to be similar in 

microstructure. The average crystal size is approximately 12 μm and a 

similar surface coverage is observed. This corresponds with Figure 9.6 and 

Figure 9.7 where the precipitation rate and corrosion rate are approximately 

the same for both velocities. At a velocity of 0.13 m/s, the crystal size is 

observed to be larger with an average size of 30 μm. However, the surface 

coverage is observed to be higher which relates to the lower corrosion rate 

and significantly higher precipitation rate observed. At 0.12 m/s across the 

surface of the sample, the flow is laminar. A significantly higher surface 

coverage and smaller crystal size is observed with an average crystal size of 

5 μm.  

 

Figure 9.7 Precipitation rate determined from mass gain measurements at 

the end of 20 hours for variable flow velocity and  working conditions 
80°C, pH 6.8, pCO2 0.54 bar and 3.5 wt % NaCl.  

The corrosion rate results in Figure 9.6 show the corrosion rate to be lowest 

at the end of 20 hours and hence the more protective film is formed at this 

flow condition. Comparing laminar flow (0.12 m/s) with results from the static 

system, Figure 9.6 shows a more protective film is formed under static 

conditions. However, Figure 9.7 shows a higher precipitation rate for a flow 

velocity of 0.12 m/s and SEM images show that the crystals are much 

smaller in size. There is a significant difference in exposed surface area of 

the samples used in the static glass cell experiments and flow cell 

experiments. Despite the surface area being taken into account in the 

electrochemical measurements and the precipitation rate calculations, the 

characteristics of the film formed may attribute to the difference.  
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(a) (b) 

  

(c) (d) 

Figure 9.8 SEM images of the surface of the sample at variable flow 
velocities (a) 0.95 m/s (b) 0.63 m/s (c) 0.31 m/s (d) 0.12 m/s. 

9.2.4 XRD Surface Analysis  

 

Figure 9.9 XRD patterns of X65 carbon steel exposed to a CO2 saturated 

environment at 80°C, pH 6.8, pCO2 0.54 bar and flow velocity 0.12 m/s 
for 20 hours.  
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XRD analysis was performed at the end of the each test to ensure that the 

film formed is FeCO3 and to ensure there is no oxygen contamination within 

the cell resulting in a by-product such as magnetite, Fe3O4. Figure 9.9 and 

Figure 9.10 shows the results for a velocity of 0.12 m/s and 0.95 m/s 

respectively.  The observed difference in peak intensities may be due to the 

substantial difference in the amount of crystals observed on the surface. 

 

 

Figure 9.10 XRD patterns of X65 carbon steel exposed to a CO2 saturated 

environment at 80°C, pH 6.8, pCO2 0.54 bar and flow velocity 0.95 m/s 
for 20 hours. 

9.3 Summary of Experimental Results 

The results presented in Chapter 8 and Chapter 9 demonstrate that  

1. High bulk pH and high temperature contribute to a faster reduction 

in corrosion rate and a more protective FeCO3 film after 20 hours. 

2. The corrosion rate is observed to follow a similar trend for low salt 

concentrations (1.0 and 3.5 wt% NaCl). Increasing the salt 

concentration (5.0wt %) results in a higher corrosion rate over 

time. 

3. Sample polished to 600 grit is observed to have the lowest 

corrosion rate after 20 hours and hence the more protective 

FeCO3 film. A rougher surface results in a less protective film and 

a smoother surface results in a slower reduction in corrosion rate.  

25 30 35 40 45 50 55

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0.62 m/s

 

 

In
te

n
si

ty
 (

a
rb

. 
u

n
its

)

2-Theta

{012}

FeCO
3

{104}

FeCO
3

Fe

{110}

FeCO
3

{110}
FeCO

3

{113}

FeCO
3

{116}

FeCO
3

{118}

0.95 m/s 



- 134 - 

 
 

 

4. Surface analysis (SEM) shows that nucleation and growth is a 

simultaneous process. For a more protective film formation, the 

crystals are observed to be more compact, dense with a smaller 

crystal size. A less protective film is observed to have larger, more 

discrete crystals.  

5. Crystal size is higher for a less protective film whereas surface 

coverage is higher for a more protective film.  

6. Mass gain does not directly relate to the protectiveness of the film. 

Over a period of 20 hours, the corrosion rate is observed to be 

lower for a higher mass gain. A fewer, larger crystals may have a 

similar mass gain to many, smaller crystals.  

7. There is no clear correlation between bulk saturation ratio and 

precipitation rate for a freely corroding system.  

8. A more significant percentage of the Fe2+ ions dissolved from the 

surface is precipitated as FeCO3 for a higher pH and more 

protective film. 

9. The source of ferrous ions forming iron carbonate scale includes 

ferrous ions both released from the steel surface and those 

provided by the bulk of the solution when FeCl2.4H2O is added to 

the solution. Addition of FeCl2.4H2O is observed to accelerate the 

kinetics of FeCO3 film formation over initial time periods.  

10. The precipitation rate of iron carbonate scale is more strongly 

affected by the corrosion rate of the steel at low bulk 

supersaturation. At high bulk supersaturation, the corrosion rate 

has little effect on the precipitation rate. This is observed as the 

precipitation rate is higher than the corrosion rate upon 

comparison.  

11. At high bulk super saturation, bulk precipitation is observed and is 

observed to dominate the precipitation reaction over time.  

12. At later stages of FeCO3 nucleation and growth, turbulence is 

observed to result in FeCO3 being removed from the surface; 

however, the film remains protective as the corrosion rate does 

not increase. 
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13. FeCO3 may be enticed to precipitate on to a pre-formed protective 

film through addition of FeCl2.4H2O. However, increasing the bulk 

Fe2+ does not progressively increase the precipitation on to the 

film as bulk precipitation dominates.  

14. For a flowing system, a more protective film is observed to form 

for a lower velocity at the end of 20 hours. However, a faster drop 

in corrosion rate is observed at a faster velocity.  

15. In turbulent flow across the surface of a sample, SEM images 

show the precipitated FeCO3 crystals to be scattered and discrete. 

The film formed is less protective than for laminar flow and static 

conditions.  

16. In laminar flow conditions, a compact and dense FeCO3 film is 

formed across the surface. However, corrosion rate calculations 

from LPR measurements observe a more protective film formed 

for static conditions.  

17. XRD analysis confirms that the film formed is FeCO3 and there is 

no contamination within the flow cell.  
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Chapter 10  

Development of Corrosion Rate Model 

In literature, CO2 corrosion models have been developed [49, 69, 70] that 

predict the corrosion rate over time accounting for FeCO3 film development. 

However, the models have been developed for turbulent pipe flow and the 

FeCO3 precipitation rate model used is based on experiments conducted 

under static conditions. Experimental results, in this work, have shown that 

the kinetics of film development and the characteristics of the film are very 

different under flowing conditions and the limitations of the developed 

precipitation models have been identified. Therefore, the theory used in the 

development of these corrosion models in conditions of where a FeCO3 film 

is considered is found to be unrealistic. 

The following chapter focuses on the development of a steady state 

corrosion rate model. In the previous chapter, the effect of flow was 

observed on the corrosion rate in a thin channel flow cell. This work carries 

forward and utilises existing theoretical knowledge on CO2 corrosion to 

predict the steady state corrosion rate, the maximum corrosion rate, under 

varying environmental conditions. The model does not account for film 

development as a complete understanding of the film under varying 

conditions is required to be accounted within a model and to predict the 

resulting corrosion rate over time. The results from the developed model is 

intended to complement the experimental work carried out and to provide an 

understanding of surface characteristics where an experimental investigation 

is limited. The model is run for conditions where a film is expected to form 

and provides an understanding of conditions at the initial stages that may 

drive the precipitation of the film.  

Figure 10.1 represents a flow chart outlining the stages of the corrosion 

model and the subsequent sections that shall cover each concept in the 

following chapter. 
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Figure 10.1 Stages of corrosion model. 
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10.1 Modelling Framework 

The model accounts for the key processes underlying the CO2 corrosion of 

carbon steel; chemical reactions in the bulk solution, mass transport of 

aqueous species through the liquid boundary layer and electrochemical 

reactions at the steel surface. The model based on these key 

physiochemical processes is mechanistic and has been developed using 

MATLAB software package which is a well-known and widely used 

numerical computing program. It is able to predict the steady state corrosion 

rate for varying input parameters of velocity, temperature, pH, pCO2, ionic 

strength and total pressure.   

The concentration of the species can be very different in the bulk solution 

and at the corroding steel surface due to corrosion, mass transfer effects 

and chemical reactions. This was observed experimentally in experiments 

conducted in a glass cell in Chapter 8. The model presented in this chapter 

is based on theory behind a predictive corrosion model by Nesic et al. [35, 

69, 71, 98] in CO2 and H2S containing environments; however is only 

considered for CO2 conditions in the following work. Two calculation nodes 

were used in the computational domain. One for the species concentration in 

the bulk solution and the other for the species concentrations in the thin 

water layer adjacent to the corroding steel surface. Figure 10.2 depicts a 

sketch of the corrosion process and the three related physiochemical 

processes.  
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The three processes are interconnected and can be expressed by writing a 

mass balance or species conservation equation for a thin surface water layer 

[71].  

𝜕𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗

𝜕𝑡
=

𝑁𝑒,𝑗 − 𝑁𝑤,𝑗

∆𝑥
+ 𝑅𝑗 (10.1) 

Where 𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗 is the concentration of species j, 𝑁𝑒,𝑗is the flux of species j 

on the boundary due to mass transfer from the bulk solution to the surface, 

𝑁𝑤,𝑗is the flux of species j on the boundary due to electrochemical reactions 

at the steel surface, and 𝑅𝑗 is the source/sink term due to homogenous 

chemical reactions involving species j. Each process shall be discussed in 

detail in the following sections.  

10.1.1 Equilibrium Chemical Reactions in Bulk 

Chemical reactions are the local sources or sinks of species in the solution 

(term Rj in the mass balance Equation (10.1)). They are often very rapid 

when compared to other processes involved in corrosion, such as species 

transport and electrochemical reactions, thus preserving chemical equilibria 

throughout the solution. On the other hand, in the case of slow chemical 

reactions such as the CO2 hydration reaction, other faster processes can 

lead to local non-equilibrium conditions at the corroding steel surface. 

Therefore, chemical reactions can significantly affect the rates of 

electrochemical processes at the steel surface and ultimately the corrosion 

rate [69].  

Table 10.1 Chemical reactions accounted for in the model and their 

equilibrium constants. 

Description Reaction Equilibrium Constant 

Dissolution of 

carbon dioxide 
𝐶𝑂2 (𝑔) ↔ 𝐶𝑂2(𝑎𝑞) 𝐾𝑠𝑜𝑙 = [𝐶𝑂2] 𝑝𝐶𝑂2⁄  

Water dissociation 𝐻2𝑂 → 𝐻+ + 𝑂𝐻− 𝐾𝑤𝑎 = [𝐻+][𝑂𝐻−] 

Carbon dioxide 

hydration 
𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 𝐾ℎ𝑦 = [𝐻2𝐶𝑂3] [𝐶𝑂2]⁄  

Carbonic acid 

dissociation 
𝐻2𝐶𝑂3 ↔ 𝐻+ + 𝐻𝐶𝑂3

− 𝐾𝑐𝑎 = [𝐻+][𝐻𝐶𝑂3
−] [𝐻2𝐶𝑂3]⁄  

Figure 10.2 Illustration of computation domain for CO2 corrosion rate 

model. 
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Bicarbonate anion 

dissociation 
𝐻𝐶𝑂3

− ↔ 𝐻+ + 𝐶𝑂3
2− 𝐾𝑏𝑖 = [𝐻+][𝐶𝑂3

2−] [𝐻𝐶𝑂3
−]⁄  

The relevant chemical reactions and their equilibrium constants are 

tabulated in Table 10.1 with the equilibrium, forward and backward reaction 

rate values for reactions included in the model listed in Table 10.2. 

Table 10.2 Equilibrium (K), forward (kf) and backward (kb) reaction rate 

coefficients (K=kf/kb) where Tf is temperature in degrees Fahrenheit, 
TK is absolute temperature in Kelvin, Tc is temperature in degrees 
Celsius, I is ionic strength in molar and p is the total pressure in psi) 
[69]. 

Chemical Reaction Constants Source 

𝐾𝑠𝑜𝑙 =
14.5

1.00258
× 10

[−(2.27+5.65×10−3𝑇𝑓 −8.06×10−6𝑇𝑓
2+0.075𝐼) 

molar/

bar  

Oddo and 

Tomson [84] 

𝐾𝑤𝑎 = 10[−(29.3868−0.0737549𝑇𝐾−7.47881×10−5𝑇𝐾
2)]  molar2  

Kharaka et 

all [99] 

𝐾ℎ𝑦 = 2.58 × 10−3  

Palmer and 

van Eldik 

[85] 

𝑘𝑓,ℎ𝑦 = 10
[329.85−110.541×𝑙𝑜𝑔𝑇𝐾−

17265.4

𝑇𝐾
]
 s−1  

Palmer and 

van Eldik 

[85] 

𝐾𝑐𝑎 =

387.6 ×

10
[−(6.41−1.59×10−3𝑇𝑓 +8.52×10−6𝑇𝑓

2−3.07×10−5𝑝−0.4772𝐼1 2⁄ +0.1180𝐼)]
molar  

Oddo and 

Tomson [84] 

𝐾𝑏𝑖 =

10
[−(10.61−4.97×10−3𝑇𝑓 +1.331×10−5𝑇𝑓

2−2.624×10−5𝑝−1.166𝐼1 2⁄ +0.3466𝐼)]
molar  

Oddo and 

Tomson [84] 

The reaction rate (net rate of change) of a species is determined as a 

function of the species concentration, forward and backward reaction rate 

constants. Equations (10.2 - 10.4) describe the method of determining the 

rate of a chemical reaction for species a and b,  
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𝑎 ↔ 𝑏 (10.2) 

𝑅𝑎 = −𝑘𝑓[𝑎] + 𝑘𝑏[𝑏] (10.3) 

𝑅𝑏 = 𝑘𝑓[𝑎] − 𝑘𝑏[𝑏] (10.4) 

In the case that the reaction is at equilibrium, the net rate R i is equal to zero. 

If the chemical reaction rates kf and/ or kb for a particular reaction is very 

large, the net reaction term Ri  will be much larger than the other terms in 

mass balance Equation (10.1) giving Ri =0. This means that the 

concentrations of the species involved will be at equilibrium irrespective of 

other processes such as diffusion or migration.  

In the case of slow reactions, the concentrations of species are determined 

by other terms in mass balance Equation (10.1) resulting in a non-

equilibrium concentration field. This is the case for carbon dioxide hydration 

reaction and the reaction rate of species are calculated as shown in 

Equations (10.6) and (10.7) below.  

𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 (10.5) 

𝑅𝐶𝑂2
= −𝑘𝑓,ℎ𝑦[𝐶𝐶𝑂2

] + 𝑘𝑏,ℎ𝑦[𝐶𝐻2𝐶𝑂3
] (10.6) 

𝑅𝐻2𝐶𝑂3
= 𝑘𝑓,ℎ𝑦[𝐶𝐶𝑂2

] − 𝑘𝑏,ℎ𝑦[𝐶𝐻2𝐶𝑂3
] (10.7) 

Solving the concentration of the species in the bulk for a known bulk pH and 

assuming equilibrium, Figure 10.3 depicts the concentrations for variable pH 

at a temperature of 80°C and pCO2 = 0.54 bar.  
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Figure 10.3 Equilibrium distribution of species concentration in bulk solution 
as a function of pH at T=80°C, pCO2 = 0.54 bar 

10.1.2 Transport of Species between Steel Surface and Bulk   

The mass transfer flux between the bulk solution and steel surface is 

computed for seven different species (CO2, H2CO3, HCO3
-, CO3

2-, OH-, H+ 

and Fe
2+

).  The species concentration of Na
+
 and Cl

-
 exceeds the 

concentration of other species by orders of magnitude. However, the flux of 

these species are discounted in the following model as they do not directly 

affect the chemistry of CO2 corrosion. In the following model, two calculation 

nodes are used, one in the bulk and the other at the steel surface, so the 

mass transfer flux between the bulk solution to the steel surface can be 

calculated for each of the species using a mass transfer coefficient , km,j 

approach [71].  

𝑁𝑒,𝑗 = 𝑘𝑚,𝑗(𝐶𝑏𝑢𝑙𝑘,𝑗 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗) + 𝑘𝑚,𝑗

𝑧𝑗𝐹

𝑅𝑇
𝑐𝑏𝑢𝑙𝑘,𝑗∆ɸ (10.8) 

Here 𝐶𝑏𝑢𝑙𝑘,𝑗 is the concentration of the species j in the bulk solution, 

𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗 is the concentration of the species j at the steel surface, 𝑧𝑗 is the 

electric charge of species j. The last term,∆ɸ in the transport equation 

represents electro-migration due to a small electrical potential difference 

between the bulk solution and the surface water layer. This term is 

significant only for the transport of species (Na+ and Cl-) and therefore can 
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be assumed to be zero in the mass transfer flux calculations for the above 

species. Therefore equation (10.8) can be simplified to give [71]: 

𝑁𝑒,𝑗 = 𝑘𝑚,𝑗(𝐶𝑏𝑢𝑙𝑘,𝑗 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗) (10.9) 

The mass transfer coefficient, km is calculated from correlations for a thin 

channel flow cell (TCFC), proposed by Sleicher and Rouse [100]. 

𝑘𝑚 =
𝑆ℎ 𝑇𝐷

ℎ
 (10.10) 

𝑆ℎ 𝑇 = 5 + 0.015(𝑅𝑒𝑇
𝑎)(𝑆𝑐𝑏 ) (10.11) 

𝑅𝑒𝑇 =
𝑉𝑇ℎ

𝑣
 (10.12) 

Where 𝑆ℎ 𝑇  is Sherwood’s number for a TCFC, ℎ is the height of the TCFC, 

𝑅𝑒𝑇  is the Reynolds number for the TCFC, 𝑉𝑇  is the linear velocity of the 

liquid in the TCFC in (m/s), 𝑎, 𝑏 are empirical constants defined by:  

𝑎 = 0.88 −
0.24

(4 + 𝑆𝑐)
 (10.13) 

𝑏 =
1

3
+ 0.5𝑒 (−0.65𝑐) (10.14) 

D is the molecular diffusion coefficient of species in (m2/s) and is determined 

from the Equation (10.15). The reference diffusion coefficient [69] for the 

relevant species is available in literature and tabulated below in Table 10.3.  

𝐷 = 𝐷𝑟𝑒𝑓 ×
𝑇

𝑇𝑟𝑒𝑓
×

𝜇𝑟𝑒𝑓

𝜇
 (10.15) 

The dynamic viscosity,µ in kg/m.s and is determined by Equation (10.16) 

and density, ρ in kg/m3 by Equation (10.17).  

𝜇 = 0.001002 × 10
1.3277×(293.15−𝑇)−0.01053×(298.15−𝑇)2

𝑇−168.15  (10.16) 

𝜌 = (753.596 + 1.87748 × 𝑇 − 0.003564 × 𝑇2) (10.17) 

µref is determined for a reference temperature, Tref of 20°C. 

Table 10.3 Reference molecular diffusion coefficient, Dref [69]. 

Species Diffusion Coefficient (m2/s) Source 

CO2 1.96×10-9 Perry [101] 

H2CO3 2.00×10-9 Kvarekva [102] 

HCO3
- 1.105×10-9 Newman [103] 

CO3
2- 0.92×10-9 Kvarekva [102] 
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H+ 9.312×10-9 Newman [103] 

OH- 5.26×10-9 Newman [103] 

Fe2+ 0.72×10-9 Kvarekva [102] 

 

10.1.3 Electrochemical Reactions at Surface 

The electrochemical reactions at the steel surface considered in the 

following model are listed in Table 10.4 

Table 10.4 Electrochemical reactions at steel surface 

Process Description Reaction 

Electrochemical dissolution of iron 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

Hydrogen evolution 2𝐻+  + 2𝑒− → 𝐻2 

Direct reduction of carbonic acid 2𝐻2𝐶𝑂3 + 2𝑒− → 𝐻2 + 2𝐻𝐶𝑂3
− 

The species flux due to the electrochemical reactions at the steel surface 

can be determined from:  

𝑁𝑤,𝑗 = ±
𝑖𝑗

𝑛𝑗𝐹
 (10.18) 

Where 𝑖𝑗 is the total current density (A/m2), 𝑛𝑗 is the number of moles of 

electrons exchanged per mole of species j participating in a particular 

electrochemical reaction. The positive sign is applied for species consumed 

and the negative sign for species produced by electrochemical reactions at 

the steel surface. For those species that are not involved in the 

electrochemical reactions, 𝑖𝑗 = 0.  

The current density for reduction of H+ consists of two components [104]: 

charge transfer current and mass transfer limiting current. Total current 

density is calculated as follows:  

𝑖𝐻+ = (𝑖∝,𝐻+ × 𝑖𝑙𝑖𝑚,𝐻+
𝑑 )/(𝑖∝,𝐻+ + 𝑖𝑙𝑖𝑚,𝐻+

𝑑 ) (10.19) 

Where 𝑖𝐻+ is total current density of H+ reduction (A/m2), 𝑖∝,𝐻+  is the charge 

transfer current density (A/m2), 𝑖𝑙𝑖𝑚,𝐻+
𝑑 is the diffusion limiting current density 

calculated by the equation (10.20). 

𝑖𝑙𝑖𝑚,𝐻+
𝑑 = 𝑘𝑚,𝐻+𝐹𝐶𝐻+  (10.20) 
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Where 𝑘𝑚,𝐻+  is the H+ mass transfer coefficient (m/s) and 𝐶𝐻+ is the bulk 

concentration of H+ (mol/m3). 

Similarly, the total current density of H2CO3 reduction [105] is given by:  

𝑖𝐻2𝐶𝑂3
= (𝑖∝,𝐻2𝐶𝑂3

× 𝑖𝑙𝑖𝑚,𝐻2𝐶𝑂3

𝑟 )/(𝑖∝,𝐻2𝐶𝑂3
+ 𝑖𝑙𝑖𝑚,𝐻2𝐶𝑂3

𝑟 ) (10.21) 

Where 𝑖𝐻2𝐶𝑂3
, 𝑖∝,𝐻2𝐶𝑂3

, 𝑖𝑙𝑖𝑚,𝐻2𝐶𝑂3

𝑟 are the total current density, the charge 

transfer current density, and the mass transfer limiting current density of the 

reaction in A/m2 respectively.  

The CO2 hydration reaction limiting current density is calculated by:  

𝑖𝑙𝑖𝑚,𝐻2𝐶𝑂3

𝑟 = 𝐹 × 𝐶𝐶𝑂2
× (𝐷𝐻2𝐶𝑂3

𝐾ℎ𝑦𝐾𝑓,ℎ𝑦)0.5 (10.22) 

Where 𝐹 is Faraday’s constant, 𝐶𝐶𝑂2
 is the bulk concentration of dissolved 

carbon dioxide, DH2CO3 is the diffusion coefficient of H2CO3, 𝐾ℎ𝑦 is the 

equilibrium constant of the CO2 hydration reaction and 𝐾𝑓,ℎ𝑦 is the forward 

hydration reaction constant.  

The charge transfer current density for each species is calculated using the 

tafel equation [71].  

𝑖 = 𝑖0 × 10±
𝐸−𝐸0

𝑏  (10.23) 

Where 𝑖 represents the reaction current density in A/m2, 𝑖0 represents a 

reference current density in A/m2, E represent the corrosion potential of the 

steel in V, 𝐸0 represent a reference potential in V and b represent the tafel 

slope in V/decade. In the model, the current density for each electrochemical 

reaction depends on the surface concentration of species, which is not 

explicitly known and needs to be calculated. For a spontaneous corrosion 

process, the unknown corrosion potential of the steel, E can be calculated 

from the charge balance equation at the steel surface [71]:  

∑ 𝑖

𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐

= ∑ 𝑖

𝑎𝑛𝑜𝑑𝑖𝑐

 
(10.24) 

The exchange current density, i0 for each electrochemical reaction is 

calculated by the following equation [69] with the constant defined in Table 

10.5: 

𝑖0 = (
𝐶𝐻+

𝐶𝐻+𝑟𝑒𝑓

)

𝑎1

(
𝐶𝐶𝑂2

𝐶𝐶𝑂2𝑟𝑒𝑓

)

𝑎2

(
𝐶𝐻2𝐶𝑂3

𝐶𝐻2𝐶𝑂3𝑟𝑒𝑓

)

𝑎3

× 𝑒
−

∆𝐻
𝑅

(1
𝑇

−
1

𝑇𝑟𝑒𝑓
)
 (10.25) 

Substitution of flux density due to electrochemical reactions expressed by 

Equation (10.18) and mass transfer processes (10.9) into mass balance 

Equation (10.1) yields the final transport equation which is written for each 

species.  
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∆𝑥
𝜕𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗

𝜕𝑡
= − (±

𝑖𝑗

𝑛𝑗𝐹
) + 𝑘𝑚,𝑗(𝐶𝑏𝑢𝑙𝑘,𝑗 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗) + ∆𝑥 × 𝑅𝑗 (10.26) 
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Table 10.5 Electrochemical parameters for the reactions included in the model which fit the general rate Equation (10.23) and 

exchange current density Equation (10.25) [69]. 

Reaction 

𝒊𝟎𝒓𝒆𝒇 

(
𝑨

𝒎𝟐
) 

𝒂𝟏 
𝒄𝑯+𝒓𝒆𝒇 

(𝑴) 
𝒂𝟐 

𝒄𝑪𝑶𝟐𝒓𝒆𝒇 

(𝑴) 
𝒂𝟑 

𝒄𝑯𝟐𝑪𝑶𝟑𝒓𝒆𝒇 

(𝑴) 

∆𝑯 

(
𝒌𝑱

𝒎𝒐𝒍
) 

𝑻𝒓𝒆𝒇 

(°𝑪) 

𝑬𝒓𝒆𝒗 

(𝑽) 

𝒃 

(𝑽) 

2𝐻+  + 2𝑒− → 𝐻2 

 
0.05 0.5 10-4 0 N/A 0 N/A 30 25 −

2.3𝑅𝑇

𝐹
𝑝𝐻 

2.3𝑅𝑇

2𝐹
 

2𝐻2𝐶𝑂3 + 2𝑒−

→ 𝐻2 + 2𝐻𝐶𝑂3
− 

0.06 -0.5 10-5 0 N/A 1 10-4 50 20 −
2𝑅𝑇

𝐹
𝑝𝐻 

2.3𝑅𝑇

2𝐹
 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

 
1 

pCO2<1 bar - 1 

pCO2 =1 bar - 

0 

10-4 

pH<4 – 2 

4<pH<5 – 

1 

pH>5 – 0 

0.0366 0 N/A 37.5 25 -0.488 

pH<4 – 

0.03 

4<pH<5 

– 0.08 

pH>5 – 

0.12 
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10.2 Step-wise Implementation of MATLAB Model 

The above theory is implemented into MATLAB numerical programming to 

predict the steady state corrosion rate of X65 carbon steel in a CO2 

containing environment. The model shall be validated experimentally 

through comparison with results from the thin channel flow cell discussed in 

Chapter 8.   The model initially provides a user interface to define input 

parameters in the form of temperature, partial pressure CO2, flow velocity, 

height of thin channel, ionic strength, total pressure and bulk pH. These 

parameters are then fed into a sequence of equations to solve for the three 

physiochemical processes. The model is solved for steady state conditions 

and therefore the surface concentration as a function of time, 
𝜕𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗

𝜕𝑡
 is 

equal to 0. The bulk concentrations of all related species are determined; 

assuming chemical reactions in Table 10.1 are in equilibrium.  Equilibrium 

reaction rate coefficients are listed in Table 10.2. This solves for the 𝐶𝑏𝑢𝑙𝑘,𝑗 

term in the final transport Equation (10.26) for all species.  

0 = − (±
𝑖𝑗

𝑛𝑗𝐹
) + 𝑘𝑚,𝑗(𝐶𝑏𝑢𝑙𝑘,𝑗 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗) + ∆𝑥 × 𝑅𝑗 (10.27) 

The mass transfer coefficient for each species is dependent on input 

parameters and are calculated for either turbulent pipe flow or thin channel 

flow depending on the system under consideration. Therefore solving a 

second term of the final transport equation.  

0 = − (±
𝑖𝑗

𝑛𝑗𝐹
) + 𝑘𝑚,𝑗(𝐶𝑏𝑢𝑙𝑘,𝑗 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑗) + ∆𝑥 × 𝑅𝑗 (10.28) 

The surface concentration of species are unknown and an initial assumption 

of the surface concentration of H+ (Cs,H) is initially predicted by MATLAB. As 

discussed in Section 8.1, the chemical reaction rates kf and kb for water, 

carbonic anion and bicarbonate anion dissociation are very large, therefore 

the rate of reaction Ri ≈o and concentrations of the species involved are 

assumed to be in equilibrium. Hence the surface concentration of OH- is 

determined from the equilibrium equation. 

𝐶𝑠,𝑂𝐻− = 𝐾𝑤𝑎/𝐶𝑠,𝐻+ (10.29) 

The final transport Equation (10.26) is then listed for the remaining species. 

The reaction rate of species in carbon dioxide hydration reaction are 

implemented from Equation (10.6, 10.7).  
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0 = −
𝑖𝐻2𝐶𝑂3

𝐹
+ 𝑘𝑚,𝐻2𝐶𝑂3

(𝐶𝑏,𝐻2𝐶𝑂3
− 𝐶𝑠,𝐻2𝐶𝑂3

) + (𝑘𝑓,ℎ𝑦[𝐶𝑠,𝐶𝑂2
]

− 𝑘𝑏,ℎ𝑦[𝐶𝑠,𝐻2𝐶𝑂3
]) 

(10.30) 

0 =
𝑖𝐻𝐶𝑂3

𝐹
+ 𝑘𝑚,𝐻𝐶𝑂3

(𝐶𝑏,𝐻𝐶𝑂3
− 𝐶𝑠,𝐻𝐶𝑂3

) (10.31) 

 0 = 𝑘𝑚,𝐶𝑂3
(𝐶𝑏,𝐶𝑂3

− 𝐶𝑠,𝐶𝑂3
) (10.32) 

0 = 𝑘𝑚,𝐶𝑂2
(𝐶𝑏,𝐶𝑂2

− 𝐶𝑠,𝐶𝑂2
) + (𝑘𝑏,ℎ𝑦[𝐶𝑠,𝐻2𝐶𝑂3

] − 𝑘𝑓,ℎ𝑦[𝐶𝑠,𝐶𝑂2
]) (10.33) 

The four transport Equations (10.30– 10.33) are rearranged and substituted 

and the surface concentrations are then solved for using MATLAB solver.  

The next stage of the program is determining the surface potential, E. With 

the initial assumption of the surface concentrations, the unknown corrosion 

potential of the steel, E is calculated from the charge balance equation 

(10.24) at the steel surface.  

The total cathodic current density can be calculated from the calculated 

potential, E and initial guess for surface concentrations.  

𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐 = 𝑖𝐻+ + 𝑖𝐻2𝐶𝑂3
 (10.34) 

The final stage of the MATLAB program is to verify if the initial assumption of 

CH+ satisfies the steady state condition in Equation (10.27). Failing which, a 

new initial surface concentration, CH+ is determined by bi-section method. 

This method is a root finding method that repeatedly bisects an interval and 

then selects a subinterval in which a root must lie for further processing. The 

process is continued until the steady state condition is met.  

10.3 Steady State Corrosion Rate Model Results  

10.3.1 Model Validation with Literature 

The MATLAB model was implemented and run for varying pH, temperature 

and velocity values. At the initial stage, the model was compared against 

results from Nesic et al. [71] published working model in order to validate 

against literature. Figure 10.4 and Figure 10.5 show the results of the 

comparison for the steady state corrosion rate against varying velocity for a 

pH of 4 and 6 respectively. The working conditions were for a turbulent pipe 

flow of diameter of 0.01 m and fluid parameters of 20°C, 1 bar pCO2 and 1 

wt% NaCl.  

The comparison shows a close correlation between the two models however 

there are observed differences. At a lower pH of 4, the pattern of corrosion 

rate against velocity is seen to follow the same trend for both models with 
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the predicted values being more similar for lower velocities. At a pH of 6, the 

Nesic model corrosion rate is seen to vary a little more with velocity than the 

developed model. However they both do not vary significantly.  

 

Figure 10.4 Comparisons between model predictions results at 1 bar CO₂, 
20°C, pH 4 and 1wt% NaCl. 

In Figure 10.5, at pH 6, the H+ ion concentration in the bulk is significantly 

small therefore the surface concentration due to mass transfer would be 

even lower. Despite there being a slightly higher H+ ion concentration at the 

surface at a higher velocity due a higher mass transfer coefficient, the 

resulting change in corrosion rate would be predicted to be very minor. In 

comparison, at pH 4, there is a much larger bulk H+ ion concentration 

resulting in a more significant difference in surface H+ ion concentration due 

to mass transport and the more variable corrosion rate as a function of 

velocity observed in Figure 10.4. 

The slight differences between the models may be due to many possible 

reasons. In Nesic et al. publications [35, 36, 71, 98, 104, 105], as discussed, 

there is a theoretical foundation to the models however there are gaps in 

each individual research which were developed based on a  more combined 

understanding from various sources leading to possible differences in the 

development of the model. Furthermore, the values of corrosion rate against 

velocity for the two pH values were obtained from published figures [71] 

through a web plot digitiser with a sensitive marker which may attribute to 

slight differences in accurately reading the graph.  
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Figure 10.5 Comparisons between model predictions results at 1 bar CO₂, 
20°C, pH 6 and 1wt% NaCl. 

Overall, however, it may be reasoned that the two models have a similar 

trend and both effectively predict the steady state corrosion rate to a certain 

degree of error.  

10.3.2 Model Sensitivity Analysis 

In the next stage, a sensitivity analysis of the effect of pH and temperature 

on the predicted steady state corrosion rate was determined.  

Figure 10.6 shows the effect of pH where the pH was varied from 4 to 7 for 

fluid parameters of 80°C, 0.54 bar pCO2, 3.5 wt % NaCl and a flow velocity 

of 1 m/s. The figure shows a higher corrosion rate for a lower pH. The 

corrosion rate decreases significantly from a pH of 4 to 5. Further increasing 

the pH reduces the corrosion rate however the trend is observed to be less 

dependent on the pH. The observed trend is as would be expected in an 

experimental system. A higher bulk pH corresponds to a lower bulk 

concentration of H+ ions. Therefore a lower flux of H+ ions towards the 

surface that principally determines the rate of the electrochemical reaction 

resulting in a lower corrosion rate.  
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Figure 10.6 Effect of pH on predicted steady state corrosion rate using 

developed model. 

 

Figure 10.7 Effect of temperature on predicted steady state corrosion rate 

using developed model. 

Figure 10.7 shows the effect of temperature which was varied from 25°C to 

80°C for fluid parameters of pH 6, 0.54 bar pCO2, 3.5 wt % NaCl and a flow 

velocity of 1 m/s. A linear trend is observed with an increasing temperature 

due to an increase in the rate of kinetics that makes the bare steel corrosion 

rate higher especially when there is no corrosion product layer formed/ in the 

beginning of experiments. The formation of protective iron carbonate layer is 

also promoted at high temperatures and therefore the corrosion rate 

decreases more rapidly with temperature increase if corrosion product and 

time dependency was taken into consideration.  
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10.3.3 Model Validation with Experimental Results 

The final stage of the development of the steady state corrosion model is its 

validation with experimental data. In the previous chapter, the corrosion rate 

was observed in a thin channel flow cell for working condition of 80°C, pH 

6.8, 3.5 wt% NaCl, pCO2 0.54 bar and varying velocity. The model was 

modified to theoretically predict the mass transfer in a thin channel flow cell 

and was applied for the same parameters. Figure 10.8 shows the 

comparison between the experimental corrosion rate and the predicted 

corrosion rate for the defined conditions.  

 

Figure 10.8 Comparison of experimental results with model output for 

variable velocity at 80°C, pH 6.8, pCO2 0.54 bar and 3.5 wt% NaCl. 

The steady state corrosion rate from the experimental results in the thin 

channel flow cell (Figure 9.6) was inferred to be the maximum corrosion rate 

in each test as it does not involve significant formation of any film. There is a 

good correlation between the experimental results and the output from the 

steady state corrosion model supporting the validity of the model.  
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Chapter 11  

Modelling Near Surface Region for CO2 Corrosion 

The developed mechanistic model in the following PhD consists of two parts: 

a MATLAB steady state corrosion model and a COMSOL model. The 

MATLAB model was described in detail in the previous chapter and is limited 

to a bimodal computational domain. It provides the steady state corrosion 

rate at the surface which determines the resulting flux of species at the 

surface. The MATLAB model can be applied to pipe flow, RCE flow or thin 

channel flow depending on input parameters. The COMSOL model which 

shall be described in the following chapter extends this analysis to a two-

dimensional domain consisting of multiple nodes providing information on 

the nature of the near surface region for a thin channel flow cell. The model 

geometry was developed based on the design of the flow cell discussed in 

Chapter 7 and is intended to predict the surface characteristics to 

complement the experimental work carried out. Simulating the model for the 

same working conditions carried out within the flow cell shall provide an 

understanding of the surface conditions at the initial stage, prior to any 

substantial film development that may drive the precipitation of the film that 

is observed experimentally.  

11.1 COMSOL Model Development 

COMSOL Multiphysics is a finite element analysis, solver and simulation 

software package for various physics and engineering applications. It 

provides the ability to couple different physics and in the following model, 

fluid flow and distribution of diluted species are combined to analyse a 

carbon steel surface under CO2 corrosion.  

The model geometry, as shown in Figure 11.1 is a two dimensional flow 

channel with an outflux of Fe2+ ions and influx of H+ across a length of 10 

mm which is the size of the X65 carbon steel sample used in the 

experimental analysis. 

     

Inlet Outlet Fe
2+

 H
+
 Flux: Sample 

Bulk equilibrium condition 

10 mm 
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The COMSOL model is developed through five different stages: 

 Geometry: This is where the two dimensional space in Figure 11.1 is 

defined. The geometry is drawn to best fit a simplification of the 

problem in question. The sample is 10 mm in length to represent 

sample size in the lab for future experimental correlation.   

 Materials: The area passing over the sample/ flowing through the 

system is defined as water with all its relative properties such as 

viscosity and density at the indicated fluid temperature.  

 Physics: In this stage, two different physics are defined. Fluid flow 

which can be laminar or turbulent depending on the flow rate/ 

Reynold’s number at the inlet. This is coupled with distribution of 

diluted species which facilitates the definition of flux at the sample 

surface as a result of corrosion, bulk equilibrium species 

concentration, reaction rates of species, etc. Defining the flow across 

the sample is essential to determine the resulting transport of species.  

 Mesh: The most appropriate mesh is defined for accurate, efficient 

Multiphysics solutions. A mesh sensitivity analysis is performed in 

order to determine the optimum mesh density. 

 Study: A stationary solver is used in the model as the field variables 

do not change with time and the model is solved for steady state 

conditions.  

The chemistry behind the COMSOL model is identical to the MATLAB model 

in terms of bulk equilibrium and reaction rates. The boundary conditions are 

determined for bulk equilibrium where the species concentrations are 

determined from their equilibrium constants. As in the MATLAB model, the 

forward and backward dissociation reaction rates are significantly large and 

the reaction is assumed to be at equilibrium. The reaction rates taken into 

account in the model are that of the slow hydration reaction where RCO2 and 

RH2CO3 are determined as expressed in Equation (10.6) and (10.7). The 

steady state corrosion rate determined from the MATLAB model is used to 

determine the surface flux of Fe2+ and H+ ions at a certain set of conditions 

(pH, temperature, total pressure, etc.). The flux is determined from 

Faraday’s Law as shown in equation (11.1 – 11.3).  

𝐶𝑅 =
𝑀

𝑛𝐹𝜌
𝑖𝑐𝑜𝑟𝑟 (11.1) 

𝑁𝐹𝑒 = +
𝑖𝑐𝑜𝑟𝑟

2 × 𝐹
 (11.2) 

𝑁𝐻 = −
𝑖𝑐𝑜𝑟𝑟

𝐹
 (11.3) 

Figure 11.1 Schematic diagram describing COMSOL analysis 
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Where M is the atomic weight in (g/mole), ρ is the density in (g/m3), n is the 

charge number which indicates the number of electrons exchanged in the 

dissolution reaction, F is the Faraday constant (96486 C/mol), icorr is the 

corrosion current (A/cm2) and CR is the corrosion rate in (mm/yr).  

The transport of the diluted species module calculates the concentration field 

of the relevant species with the defined mesh that provides the nodes for the 

computational domain. The driving forces for transport are diffusion by Fick’s 

law and convection that is coupled to the defined flow field. Migration is not 

taken into account in the following model as it assumed to be negligible due 

to the significantly small magnitude of the concentration of the ionic species. 

Whenever mass transport of a dissolved species is considered, 

concentration gradients will cause diffusion. If there is bulk fluid motion, 

convection will also contribute to the flux of chemical species. Therefore, the 

following model is solved for the combined effect of both convection and 

diffusion.  

A simplification of the computational grid for the solution to the COMSOL 

model is shown in Figure 11.2. 

 

Figure 11.2 Simplified sketch of computational grid and control volumes 

used for discretisation of the computational domain in COMSOL. δ - δf 
represents the liquid boundary layer thickness. 

Figure 11.2 represents a sketch of the computational grid solved using 

COMSOL. The number and size of the domain elements are dependent on 

the mesh density and are analysed in the following section.  

The transport of diluted species interface models chemical species transport 

through diffusion and convection and solves the mass conservation equation 

for the relevant chemical species i:  

𝜕𝑐𝑖

𝜕𝑡
+ ∇ ∙ 𝑁𝑖 = 𝑅𝑖 (11.4) 
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𝑁𝑖 = −𝐷𝑖∇𝑐𝑖 + 𝑐𝑖𝑢 (11.5) 

Where ci is the concentration of species (mol/m3), Di denotes the diffusion 

coefficient (m2/s), Ri is a reaction rate expression for the species (mol/m3.s) 

and u is the velocity vector (m/s). The flux vector N is associated with the 

mass balance equation and used in boundary conditions and flux 

computations. The first term of Equation (11.4), 
𝜕𝑐𝑖

𝜕𝑡
 corresponds to the 

accumulation (or consumption) of the species. It is considered to be equal to 

zero in the following model as it is being solved for steady state and 

computed using a stationary solver. ∇ ∙ 𝑁𝑖 in Equation (11.4) accounts for the 

transport mechanisms where the second term, ∇ ∙ 𝑁𝑖 accounts for diffusive 

transport, accounting for the interaction between the dilute species and the 

solvent. An input field for the diffusion coefficient is available and the values 

are input from Equation (10.15) as computed in the MATLAB model.  The 

third term on the right side of Equation (11.5), 𝑐𝑖𝑢 describes the convective 

transport due to a velocity field u. This field can be expressed analytically or 

obtained from coupling this physics interface to one that computes fluid flow. 

On the right hand side of the mass balance equation, Ri represent as source 

or sink term, typically due to a chemical reaction. To specify R i, another 

component is added to the transport of diluted species interface, the reaction 

node, which has a field for specifying a reaction equation using the variable 

names of all participating species discussed previously.  

Equation (11.5) is for the case where the diffusion and convection are the 

only transport mechanisms considered.  If migration in electric fields is 

activated, the flux vector is amended with the migration term as shown in 

equation (11.6).  

𝑁𝑖 = −𝐷𝑖∇𝑐𝑖 + 𝑐𝑖𝑢 − 𝑧𝑖𝑢𝑖𝐹𝑐𝑖

𝜕ɸ

𝜕𝑥
 (11.6) 

Where zi is the electrical charge of species i, ui is the mobility of species, F is 

the Faraday’s constant and ɸ is the electrical potential. However, it is noted 

in Nesic et al. [35, 69] that the proportionality constant 
𝜀𝐹

𝑘𝜉
 in equation (11.6) 

is so large that even a tiny separation of charge results in an appreciable 

potential gradient which in practise prevents any significant separation in 

charge. Instead of equation (11.7), the simple electro-neutrality equation 

(11.8) is implemented:  

𝜕

𝜕𝑥
(𝜅𝜉

𝜕ɸ

𝜕𝑥
) = −𝜀𝐹 ∑ 𝑧𝑖𝑐𝑖

𝑖

 
(11.7) 
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∑ 𝑧𝑖𝑐𝑖

𝑖

= 0 
(11.8) 

This electro-neutrality equation is based on an assumption that any, 

however small, amount of solution is always electroneutral therefore there is 

a perfect balance between the positively and negatively charged species 

everywhere in the solution. In other words, there is no charge separation that 

occurs.  

Finally, the model is developed from the above discussed input parameters 

and combined physics producing an output in the form of the species 

concentration at the very near surface of a carbon steel sample. It provides 

insight into the flux of the different relevant species at the very early stages 

of CO2 corrosion. It also allows us to determine, for a specific set of 

conditions, the liquid boundary layer thickness, the pH and saturation profile 

as a function of distance from the surface.  

11.2 Mesh Sensitivity Analysis 

The created mesh is an integral part of the COMSOL model development. 

The accuracy of the model output is directly dependant on the mesh density, 

element type and shape. A high density mesh will produce results with high 

accuracy. However, if a mesh is too dense, it will require a large amount of 

memory and computational time.  

In the following study, the quality of the mesh is evaluated through mesh 

refinement and interpretations of result discontinuities. The mesh is refined 

until the critical result at a specific location converges. The output under 

study is the super saturation ratio as it is a key aspect in the following study. 

Recalling from literature, the saturation ratio is calculated from the 

concentration of the Fe2+ and CO3
2- ions at each node and divided by the 

solubility constant at the given conditions. The model is run for input 

conditions of 80°C, pH 6.8, CO2 partial pressure of 0.54 bar, 3.5 wt% NaCl 

and 1 m/s inlet velocity. The steady state corrosion rate is determined 

through the MATLAB model and fed into COMSOL.  

The main shift in super saturation takes place at the very near surface region 

approximately within 120 µm from the defined sample surface. Therefore a 

well-defined boundary layer mesh is applied and the number of boundary 

layers is increased until there is no significant change in results for a change 

in number of elements. Figure 11.3 shows that there is a significant change 

in the SS trend as a function of the distance of the metal surface for different 
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number of elements and the curve is observed to be smoother for a higher 

mesh density as there are more nodal points. Above 47518 total elements 

(boundary and domain), the SS curve tends to overlap. Therefore the results 

are consistent and a suitable mesh has been determined. The defined mesh 

consists of 120 boundary layers with a nodal distance of 10-8 m.  

 

Figure 11.3 Saturation ratio trend for varying number of mesh elements. 

 

Figure 11.4 Flow velocity profile across channel height at different sections 

of the flow channel. 

Another key parameter to the COMSOL model is the flow velocity profile. 

The flow is considered to be fully developed when the velocity profile 

remains unchanged. Therefore, the velocity profile is determined at different 

sections of the flow channel, for 1 m/s, to ensure the flow across the surface 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Sa
tu

ra
ti

o
n

 R
at

io
 

Distance from metal surface (um) 

12597 elements

13272 elements

18172 elements

47518 elements

50353 elements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

V
e

lo
ci

ty
 P

ro
fi

le
 (m

/s
) 

Channel Height (m) 

0.125 m 0.075 0.025 m 0.01 m 0 m



- 159 - 

 

of the sample is fully developed at the fastest velocity run through the flow 

cell. Figure 11.4 shows the results of the velocity profile for a varying 

distance from the sample where 0.165 m is at the start of the defined 

channel and 0 m is the location of the sample as indicated in the legend. The 

results show that as the flow moves along the channel, the velocity profile 

becomes more parabolic and at a distance of 0.025 m from the sample, the 

flow enters the fully developed stage where it remains unchanged thereafter.  

Furthermore, the velocity profile is predicted for a mesh of 47518 and 50353 

total elements in order to ensure that there is no change in predicted values 

for the selected mesh density.  Increasing the number of elements produces 

no observable change in velocity profile and the results to overlap as shown 

in Figure 11.5. Therefore, the defined mesh consisting of 47,518 elements 

may be considered to accurately simulate the model output. The 

computational time for the model is 152s and is used throughout future 

model computations.  

 

Figure 11.5 Flow velocity across height of channel at centre of geometry. 

11.3 Model Validation with Literature 

The next stage of the development of the model is its validation in order to 

ensure that the attained results are sensible and effectively represent what 

occurs in a CO2 corrosive environment. In this stage, the only available 

method is comparison with existing published model results. Figure 11.6 

shows the published figure by Nesic et al. [35] for the concentration 

deviation from bulk as a function of distance from the metal surface. In this 

work, Nesic’s model was computed for conditions of no film at 20°C, pH 6, 
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partial pressure of CO2 of 1 bar, 1 m/s inlet velocity and pipe diameter of 

0.1m diameter.  

 

Figure 11.6 Deviation of dissolved species concentration from the bulk 

values as a function of distance from the steel surface; 20°C, pipe 
diameter 0.1 m, flow velocity 1 m/s and pH 6, pCO2 = 1 bar. 

The model by Nesic et al. [35] is for turbulent pipe flow where as the model 

developed in COMSOL is for thin channel flow. Therefore there is a main 

difference in the transport mechanisms used in the two models.  

According to work done by Nor et al. [100], the equivalent flow velocity of 

two different flow geometries can be calculated by equating the mass 

transfer coefficients. The same mass transfer coefficients imply a similar 

corrosion rate for the same operational parameters and water chemistry.  

The mass transfer coefficient, km for a thin channel flow cell (TCFC) is 

calculated according to Equations (11.9 – 11.12) and was proposed by 

Sleicher and Rouse [106].  

𝑘𝑚,𝑇 =
𝑆ℎ𝑇𝐷

ℎ
 (11.9) 

𝑆ℎ 𝑇 = 5 + 0.015(𝑅𝑒𝑇
𝑎)(𝑆𝑐𝑏 ) (11.10) 

𝑆𝑐 =
𝑣

𝐷
 (11.11) 

𝑅𝑒𝑇 =
𝑉𝑇ℎ

𝑣
 (11.12) 

where 𝑘𝑚,𝑇 is the mass transfer for the TCFC, 𝑆ℎ 𝑇  is Sherwood’s number for 

a TCFC, 𝑆𝑐 is Schmidt number, ℎ is the height of the TCFC in m, 𝑅𝑒𝑇  is the 

Reynolds number for the TCFC, D is the diffusion coefficient in m2/s, v is the 
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kinematic viscosity of water in m2/s, 𝑉𝑇  is the linear velocity of the liquid in 

the TCFC in (m/s), 𝑎, 𝑏 are empirical constants defined by:  

𝑎 = 0.88 −
0.24

(4 + 𝑆𝑐)
 (11.13) 

𝑏 =
1

3
+ 0.5𝑒(−0.6𝑆𝑐) (11.14) 

The mass transfer coefficient, km for pipe flow [107] is calculated according 

to Equations (11.9 – 11.12).   

𝑘𝑚,𝑃𝑖𝑝𝑒 =
𝑆ℎ𝑝𝐷

𝐷𝑖𝑎
 (11.15) 

𝑆ℎ𝑝 = 0.0165 ∗ (𝑅𝑒𝑝
0.86)(𝑆𝑐0.33) (11.16) 

𝑆𝑐 =
𝑣

𝐷
 (11.17) 

𝑅𝑒𝑝 =
𝑉𝑝𝐷𝑖𝑎

𝑣
 (11.18) 

where 𝑘𝑚,𝑃𝑖𝑝𝑒  is the mass transfer coefficient for the pipe, 𝑆ℎ𝑝  is Sherwood’s 

number for pipe flow, 𝐷𝑖𝑎 is the diameter of the pipe, 𝑅𝑒𝑝  is the Reynolds 

number for the pipe, D is the diffusion coefficient in m2/s, 𝑉𝑝  is the linear 

velocity of the liquid in (m/s).   

The diffusion coefficient, D is a main factor in the calculation of the mass 

transfer coefficient and is a function of temperature and dynamic viscosity 

according to Equation (11.19) [108].  

𝐷 = 𝐷𝑟𝑒𝑓 ×
𝑇

𝑇𝑟𝑒𝑓
×

𝜇𝑟𝑒𝑓

𝜇
 (11.19) 

The equations were implemented into a MATLAB program and was 

computationally solved for a pipe diameter (Dia) of 0.1m and flow channel 

height (h) of 0.003m. Therefore, for a flow velocity of 1m/s through at 0.1m 

diameter pipe at 20°C, pH 6 and pCO2 of 1 bar, the corresponding flow 

velocity in a thin channel is approximately 0.47 m/s.  

The conditions are input and modelled through a combination of the 

developed MATLAB and COMSOL models. The results are shown in Figure 

11.7. There are slight variations in the concentrations however they fall 

within the same order of magnitude and follow the same trend with the 

species concentration deviation merging after approximately 100 μm. This 

corresponds to the liquid boundary layer thickness. The combined MATLAB 

and COMSOL model have been developed on a similar literature 

background to that performed by Nesic et al. Due to certain limitations in the 

information available, a more accurate correlation is deemed unachievable 
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however, the low margin of difference in the comparison proves that the 

model is successful in its computation. 

 

Figure 11.7 COMSOL model output for deviation of dissolved species 

concentration from the bulk values as a function of distance from the 
steel surface; 20°C, 3mm channel height, flow velocity 0.47 m/s and pH 
6, pCO2 = 1 bar. 

Figure 11.7 shows that the concentration deviation from the bulk is negative 

for some species (bulk concentration greater than the surface) and positive 

for others (surface concentration greater than the bulk). At pH 6, there is 

very little H+ available in the bulk and the relative concentration deviation is 

close to 0 as the mass transport of CO2 and H2CO3 towards the surface are 

much larger than that of H+. These are shown as negative as these species 

move in the negative x direction and the bulk species concentration is 

always greater than the surface. In the vicinity of the surface, CO2 is 

hydrated to H2CO3 which is then consumed at the metal surface by 

dissociation to H+ which is then reduced. The corrosion products HCO3
- and 

Fe2+ are transported away from the metal surface and is shown as positive 

as the surface concentration is relatively greater.   

The developed model is further supported in the comparison between Figure 

11.8 and Figure 11.9. In another publication by Nesic et al. [35], the model 

was run for similar conditions however an initial bulk Fe2+ concentration of 1 

ppm and pH is varied. Output is delivered in the form of supersaturation as a 

function of the distance from the metal surface. The results from the 

COMSOL model for the above conditions is shown in Figure 11.9. 
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Figure 11.8 Supersaturation as a function of distance from the steel surface 

at conditions: 20°C, pipe diameter 0.1 m, flow velocity 1 m/s, varying 
pH, pCO2 = 1 bar and [Fe2+] = 1ppm [35]. 

In this case, the produced results match very accurately with that published 

by Nesic et al. [35] despite the differences in geometry (pipe flow and thin 

channel flow). This close comparison provides a good validation to the 

developed model and can be explained that since the values, as seen 

before, are of the same order of magnitude, slight differences will not be 

observed as the saturation ratio values are plotted in logarithmic. 

 

Figure 11.9 COMSOL model output for saturation ratio as a function of 

distance from the steel surface at conditions: 20°C, 3mm channel 
height, flow velocity 1 m/s, varying pH, pCO2 = 1 bar and [Fe2+] = 
1ppm. 

0.001

0.01

0.1

1

10

100

0 20 40 60 80

Sa
tu

ra
ti

o
n

 R
at

io
 

Distance from metal surface(μm) 

pH 5

pH 6

pH 6.3

pH 6.6

pH 7



- 164 - 

 

11.4 Comparison of Model with Experimental Observations 

The developed COMSOL model is mechanistic and capable of predicting the 

species concentration profiles at the very near surface region for varying 

conditions. As discussed, the model was based on the design of the thin 

channel flow cell and is used to identify the effect of flow on the surface 

characteristics and its comparison with bulk properties for the initial stages 

prior to any substantial film development. In this section, the model is 

simulated for conditions carried out within the thin channel flow cell.  

Figure 11.10 shows the predicted saturation ratio profile as a function of 

distance from the metal surface for 80°C, pH 6.8, pCO2 0.54 bar and varying 

flow velocity.  

 

Figure 11.10 Saturation ratio as a function of distance from the surface for 

variable flow velocities operated within thin channel flow cell at 80°C, 
pH 6.8 and pCO2 0.54 bar. 

The figure shows that the surface saturation ratio is predicted to be higher 

for a lower flow velocity. This agrees with literature as a faster velocity 

increases the rate of mass transfer of Fe2+ ions away from the surface 

resulting in a lower saturation ratio. The predicted corrosion rate at the given 

conditions is observed to not change significantly at varying flow velocity at 

these conditions due to the high pH and low H+ ion concentration at the 

surface, as discussed previously and shown in Figure 11.12. The model 

output shows that at a lower flow velocity, the saturation ratio is higher, 

therefore a higher initial precipitation rate of FeCO3 is expected and a more 

protective film is favoured under these conditions over time. This statement 
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is supported by the experimental observations from the thin channel flow cell 

in Figure 9.6. Therefore, it may be inferred that the predicted surface 

saturation at the initial stages from the combined MATLAB and COMSOL 

model may indicate the protectiveness of the film developed over time under 

varying conditions. 

 

Figure 11.11 Steady state corrosion rate model output for variable velocity 

at 80°C, pH 6.8, pCO2 0.54 bar and 3.5 wt% NaCl. 

Figure 11.12 shows the pH profile respectively as a function of distance from 

the metal surface for the working conditions applied within the flow cell. The 

pH at the surface is higher than the bulk however does not change 

significantly with velocity. 
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Figure 11.12 pH as a function of distance from the surface for variable flow 

velocities operated within thin channel flow cell at 80°C, pH 6.8 and 
pCO2 0.54 bar. 

At a pH 6.8, the bulk concentration of H+ ions is really small. H+ ions are 

transported towards the surface where they are consumed as per the 

electrochemical reaction and therefore resulting in a lower concentration and 

a higher pH. The rate of H2 evolution is limited by the H+ ions available at the 

surface. At conditions of a higher velocity, the corrosion rate is higher 

therefore the combined rate of mass transport to the surface and 

consumption due to corrosion results in a smaller change in H+ ions. 

11.5 Summary of Modelling Analysis 

The modelling work carried out within this PhD has been developed to 

complement the experimental work to provide an understanding of the 

surface conditions at the initial stage prior to any substantial film 

development that may drive the precipitation of the film that is observed 

experimentally. The combined model is based on a bi-nodal MATLAB model 

that predicts the corrosion rate that is fed into a COMSOL model developed 

based on the designed thin channel flow cell in which an experimental 

analysis is carried out.  

The experimental analysis conducted in this study shows the complexity of 

the formation of FeCO3. The existing developed models do not accurately 

account for the properties of the developing FeCO3 film and is limited to a 

one-dimensional control volume. The novelty of the developed model is that 

it extends the mechanistic understanding to a coupled analysis directly 

representing the flow environment and provides a link between the surface 

saturation ratio and the experimentally observed precipitation rate due to 

FeCO3. The model does not account for film development as a complete 

understanding of the film under varying conditions and its relationship to the 

“surface” saturation ratio is required and a comprehensive future analysis 

could produce a more robust mechanistic model with a more complete 

underlying theory.  
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Chapter 12                                                                      

Discussion of Experimental and Modelling Results 

FeCO3 is a naturally-occurring film that precipitates on the surface of X65 

carbon steel. For corrosion protection in a CO2 environment, relevant to oil 

and gas production, the film is extremely important. Its formation is promoted 

at high temperature and pH. The film can be protective in its nature and can 

form a barrier to reduce the corrosion rate by blocking active corrosive sites. 

From the results presented in Chapter 8 and Chapter 9, the effect of varying 

parameters on the corrosion rate in a pure CO2 environment and the 

protectiveness of the FeCO3 film formed have been studied. In Chapter 10 

and Chapter 11, the corrosion rate and species concentration at the near 

surface region are predicted for the initial stages under varying conditions 

that may drive the rate of FeCO3 precipitation. Understanding the true nature 

of nucleation and growth of FeCO3 crystals, the factors that govern the rate 

of precipitation, and the characteristics of the developed film is essential in 

assessing the practical use of FeCO3 in the protection of pipelines. In the 

following chapter, the combined experimental and modelling results 

observed throughout this project are critically analysed and discussed 

highlighting the main findings and furthering the literature understanding of 

FeCO3 film formation.  

The discussion is divided into four parts.  

1. The characteristics of the FeCO3 film that contribute to its 

protectiveness are discussed. A critical analysis of experiments 

conducted in a glass cell and tracking the nature of the growth of the 

film is presented.  

2. The effect of accelerating the kinetics of FeCO3 film formation through 

providing an additional source of Fe2+ ions is discussed.  

3. The stability and precipitation onto a protective FeCO3 film are 

analysed. 

4. The effect of laminar and turbulent flow characteristics on FeCO3 

precipitation and the nature of the film formed are discussed.  

12.1 Nucleation and Growth of FeCO3 Film Formation 

FeCO3 crystals are observed to nucleate and grow at varying conditions. 

However the protectiveness of the film has been observed to vary 

significantly. Corrosion rate measurement results showed that FeCO3 

precipitates at pH 6.3 and pH 6.8 however the film formed at pH 6.8 is 
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significantly more protective with the corrosion rate after 20 hours observed 

to be 0.09 mm/ year in comparison to 0.45 mm/ year for pH 6.3. These two 

conditions were critically analysed tracking the characteristics of film 

development over time. 

Nucleation and growth of FeCO3 are observed to be a simultaneous 

processes. Results show that at pH 6.3, fewer crystals were observed on the 

surface, but they were much larger in size at each time instant. At pH 6.8, 

the crystals were smaller in size but a larger quantity of crystals was 

observed on the surface. The reason behind the observed differences in the 

morphology of the scale is due to the competition between the nucleation 

and growth process.  

According to crystallisation theory, crystal nucleation poses a large energy 

barrier which is easier to overcome at a higher levels of supersaturation and 

growth is limited by diffusion and existing stable nuclei. Corrosion product 

films are less porous and compact if the nucleation rate is higher than the 

growth rate.  

The following analysis and discussion is a breakdown of what is believed to 

occur based on experimental observations. Figure 12.1 shows a 

representation of a typical corrosion rate graph observed under these two 

conditions with the trend broken into three time stages. Figure 12.2 shows a 

summarised pictorial representation of the development of the film observed 

over time for the two conditions of pH. The cubic structure of FeCO3 is 

represented by blocks. 

 

Figure 12.1 Representation of typical corrosion rate graph based on 

experimental observations for a pH 6.3 and pH 6.8. 
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The surface is initially ‘clean’ and there are no crystals present. Time step, t1 

represents the initial stages of nucleation and growth. The corrosion rate is 

believed to increase because as the sample surface corrodes, the surface 

area and surface roughness increases due to the surface profile of the Fe3C 

layer. This time step is captured by LPR measurements to occur within the 

first hour. No noteworthy FeCO3 crystals are expected to be present. After 5 

hours, at pH 6.3, an average surface coverage of 9.5% is observed through 

experimental analysis as shown in Figure 8.12 and from the observed 

respective drop in corrosion rate showed in Figure 8.15, it may be inferred 

that zero or a very low surface coverage of FeCO3 crystals is formed on the 

carbon steel surface at time step, t1.   

 

 

The developed model predicts the maximum corrosion rate and 

corresponding surface species concentration for a specified working 

conditions. The surface saturation ratio is expected to increase with the 

corrosion rate at this region and Figure 12.3 shows the saturation ratio at the 

highest corrosion rate corresponding to the end of time step, t1 for flowing 

conditions. The saturation ratio is observed to be significantly higher for pH 

6.8. 

The figure is determined from the COMSOL model for 80°C, pCO2 0.54 bar, 

3.5 wt % and a velocity of 0.1 m/s. The analysis is for a flowing system 

however the surface saturation ratio is believed to be higher for a pH of 6.8 

in comparison to pH 6.3 independent of flow conditions. Therefore Figure 

Figure 12.2 Pictorial representation of development of FeCO3 film over time 
for pH 6.3 and pH 6.8. 
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12.3 is used to indicate the significant difference in saturation ratio for the 

two different pH values under the same conditions. 

 

Figure 12.3 Effect of pH on saturation ratio as a function of distance from 

the metal surface for parameters of 80°C, pCO2 0.54 bar, 3.5 wt % and 
a velocity of 0.1 m/s. 

A higher supersaturation results in a higher nucleation rate which is the 

number of nuclei formed per unit area and time. The literature behind crystal 

nucleation is discussed in Chapter 3.2 and according to Arumugam et al. 

[44], the nucleation rate RNuc relies on the interfacial tension, γ of the 

nucleated phase-solution boundary, the solution temperature, T and the 

saturation ratio, SR and is reiterated in Equation (12.1). 

𝑅𝑁𝑢𝑐 = 𝑃[𝐴]𝑒𝑥𝑝 [−
16𝜋 𝛾3𝑣2

3(𝑘𝑇) 3 ln (𝑆𝑅)2 ] (12.1) 

P is the probability that [A] number of crystallising solute nuclei will grow into 

crystals. The nucleation rate is inversely proportional to the square of 

saturation ratio. Therefore, more crystals are expected to form at pH 6.8 due 

to the higher nucleation rate and surface saturation ratio. 

FeCO3 crystals precipitate on the corroding surface, the surface coverage 

progressive increases blocking the active corrosive sites. At a certain time 

instant, the percentage of the surface covered results in the rate of 

production of Fe2+ ions to decrease and the corrosion rate starts to drop. 

This represents time step, t2. The actual threshold value of surface coverage 

is unknown however is expected to be quite low.  

At this time step, already present scale crystals continue to grow while new 

crystals are formed. The corrosion rate is observed to drop more significantly 
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at pH 6.8 at this stage as shown in Figure 12.1. The crystals at pH 6.3 are 

observed to grow more progressively whereas at pH 6.8, more crystals are 

formed limiting the growth of crystals. This may imply that the lower surface 

saturation ratio at pH 6.3 results in fewer nuclei overcoming the free energy 

barrier. Therefore, the surface concentration of Fe2+ contributes more to the 

growth of FeCO3. This process of nucleation and growth continues into time 

step, t3 which corresponds to a relatively low level of super saturation. At this 

stage, the corrosion rate is observed to remain somewhat constant and the 

solution is considered in the metastable region where the precipitation of 

FeCO3 may only occur on already present seed crystals. It is believed, from 

this work, that this metastable region corresponds to the later stages of film 

development where the corrosion rate is stable over time. At this condition, 

the rate of precipitation of FeCO3 is considered equal to the rate of 

dissolution of the unstable crystals and the protective film is maintained. In 

order to support this hypothesis, the corrosion rate at the end of the 20 hour 

time period determined experimentally is entered into the COMSOL model 

for pH 6.3 and pH 6.8. The model is run for a low velocity of 0.1 m/s and is 

again limited to a flowing system however is used for a comparative basis. 

Furthermore, the model does not take into account the properties of the 

surface film and therefore is purely based on the obtained experimental 

corrosion rate and mass transport from the surface.  

 

Figure 12.4 Effect of pH on saturation ratio as a function of distance from 

the metal surface for parameters of 80°C, pCO2 0.54 bar, 3.5 wt %, 0.1 
m/s and corrosion rate of 0.45 and 0.09 for pH 6.3 and pH 6.8 
respectively. 
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Figure 12.4 shows that surface SR at the end of the 20 hour time period for 

pH 6.3 and pH 6.8, based on the corrosion rate from mass loss 

measurements, are significantly lower than the initial saturation ratio 

predicted in Figure 12.3. However, the surface saturation ratio is greater 

than 1 which indicates that the FeCO3 crystals are not dissolving back into 

the solution and the similar mass gain measurements at these time period 

indicate that there is no significant increase in FeCO3 crystals forming on the 

surface. Therefore, the combined experimental and modelling analysis 

supports that at this time stage, a metastable region is observed and the 

corrosion rate is believed to remain constant into longer time periods. It is 

also noted that despite a corrosion rate at pH 6.8 being 1/5th of the corrosion 

rate of pH 6.3 at the end of the 20 hour period, the predicted surface 

saturation ratio is higher for pH 6.8.  

From the above analysis, it is observed that FeCO3 precipitation over time is 

a complex process and is dependent on many surface factors. It is evident 

that saturation ratio is an important aspect however it is a driving force and 

not a kinetic parameter. Figure 12.5 shows the different parameters that 

were considered and studied in this work. Each parameter is dependent on 

each other and the observed correlations shall be discussed in the following 

sub sections.   

 

Figure 12.5 Parameters investigated and observed to have an effect on 

FeCO3 precipitation rate. 

12.1.1 Precipitation Rate and Film Protectiveness 

A quantitative analysis was carried out through mass gain measurements at 

different time periods from which the precipitation rate of FeCO3 was directly 
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determined. Results showed that the mass gain was higher for a pH of 6.8 at 

the earlier time periods however for longer time periods, the gap between 

the mass gain results reduce and a higher mass gain was attained for a pH 

of 6.3 after 20 hours.  

Nucleation of crystalline films is a very difficult process to model 

mathematically as it is deemed to be nano-crystalline. Therefore, the rate of 

precipitation is believed to be controlled by the crystal growth rate. The 

precipitation rate at pH 6.3 was observed to be higher than that at pH 6.8 

over time, as shown in Figure 8.17, after the initial time period as the change 

in mass is higher due to the more dominant growth of crystals observed for a 

lower pH.  Therefore, a quantitative analysis of FeCO3 and hence the 

analytically determined precipitation rate cannot be directly related to the 

protectiveness of the film.  

At the end of each time period, the average surface coverage and crystal 

size was determined through analysis of SEM images taken at different 

areas of the sample. Surface coverage may be considered a direct 

representative of the protectiveness of the film as it indicates what portion of 

the surface is covered by the developed film. Figure 12.6 shows the average 

corrosion rate observed at the end of each time period as a function of the 

average surface coverage.  

 

Figure 12.6 Corrosion rate as a function of surface coverage for pH 6.3 and 

pH 6.8 at 80°C, 3.5 wt% NaCl, pCO2 0.54 bar. 
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the values are observed to be approximately similar. Therefore, the change 

in corrosion rate and surface coverage may be considered parameters that 

directly infer the protectiveness of the film and are directly related to the 

precipitation rate. At pH 6.8, higher percentage of surface coverage values 

are observed that correspond to a lower corrosion rate. Future work under 

varying conditions may establish a robust linear relationship between 

corrosion rate and surface coverage.  

Reverting back to the threshold value of surface coverage for a drop in 

corrosion rate. A line of best fit is applied to the trend observed in Figure 

12.6 and is interpolated to approximately determine the maximum corrosion 

rate for a 0% surface coverage. The corrosion rate is 1×10-5 mol/m2.s that 

corresponds to a value of 2.24 mm/ year. At the end of a time period of 2 

hours, the corrosion rate for pH 6.8 and pH 6.3 is experimentally determined 

to be 2.12 and 2.09 mm/ year respectively. Therefore, from the above 

analysis, it may be concluded that at the initial time step t1, the surface 

coverage is 0% and no protective FeCO3 crystals have formed on the 

surface. As the surface coverage increases, the corrosion rate starts to drop 

as the portion of the surface is covered.  

12.1.2 Scaling Tendency 

In a freely corroding system, the corrosion rate at a given set of conditions 

defines the production of Fe2+ ions which therefore describes the saturation 

ratio and resulting surface coverage, crystal size and precipitation rate. The 

precipitation rate provides a quantitative measure of the FeCO3 that forms 

on the surface but needs to be coupled with a parameter which infers the 

protectiveness of the film in order to form a true representative of the film 

properties. Figure 12.7 shows the relationship between the precipitation rate 

and the corrosion rate observed at the end of each time period for pH 6.8 

and pH 6.3. The precipitation rate is observed to be higher for the same 

corrosion rate at pH 6.8. Therefore it may directly inferred that the film is 

more protective at pH 6.8. Observing the precipitation rate as a function of 

time, Figure 8.17, the precipitation rate is observed to be higher at the later 

time periods at pH 6.3. Therefore, the protectiveness of the film cannot be 

directly determined from the precipitation rate alone.  

In the experimental analysis, the percentage of Fe
2+

 ions dissolved from the 

surface that are precipitated as FeCO3 is determined and is found to be 

significantly higher for a pH 6.8 at the end of each time period as shown in 

Figure 8.20. This ratio, also known as the scaling tendency (ST), is 

considered in literature to be a valid indicator of protective film formation. In 
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Nesic et al. [70], it is stated that for a ST less than one, porous and un-

protective films are likely to form. Conversely when ST is greater than or 

equal to one, conditions become favourable for formation of dense, 

protective iron carbonate films. This hypothesis is proven false in the 

following work. 

 

Figure 12.7 Precipitation as a function of corrosion rate for pH 6.3 and pH 

6.8 at 80°C, 3.5 wt% NaCl, pCO2 0.54 bar. 

In much of the work done by Nesic et al. [49, 62, 70], the kinetics of FeCO3 

formation is accelerated through an additional source of Fe2+ ions. This is 

representative of downstream in the pipeline. Therefore a scaling tendency 

of greater than one is possible. However, for a freely corroding surface 

without an additional bulk Fe2+ ion concentration, the precipitation rate 

cannot possibly be observed to be greater than the corrosion rate. Results 

have shown that a relatively dense and protective FeCO3 film is formed at 

pH 6.8 in a freely corroding system. Therefore, from this work, it is agreed 

that scaling tendency is a valid indicator of the protectiveness of the film 

formed in a comparative analysis; however, there is no specific range in 

which the film formed on the surface offers no protection. The effect of 

adding FeCl2.4H2O shall be discussed further in a later section.  

12.1.3 Surface Coverage and Crystal Size 

An accurate calculation of surface coverage and crystal size theoretically 

should be able to determine the quantity of FeCO3 crystals at the surface. 

Therefore, the precipitation may be determined from mass gain 

measurements, as previously carried out, and from combined surface 

coverage and crystal size analysis of the surface. Figure 12.8 shows the 
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sequence of calculations carried out. It is noted that the crystals sizes and 

surface coverage were observed to vary at different areas of the surface. 

However, an average was obtained from multiple images across the surface 

and in the following calculations, the crystal size and surface coverage was 

assumed to be uniform throughout. The density of FeCO3 is 3960 kg/m3 and 

a thickness and porosity of the film of 8 μm and 0.8 respectively was used 

based on a table of calculations by Nesic et al. [10] under varying conditions.  

               

Figure 12.9 and Figure 12.10 show the results from the comparison of the 

precipitation rate determined from mass gain measurements and a 

combined analysis of surface coverage and crystal size at the end of each 

time period for pH 6.3 and pH 6.8 respectively. The figures show a close 

comparison between the precipitation rates obtained through both methods 

at both pH.   

Figure 12.9 shows that the comparison is closer at the later time periods. 

This may be because the observed crystals are more discrete and varied 

over the surface over the sample at the observed SEM images at the early 

time stages. Therefore the overall average surface coverage may be more 

difficult to attain. The opposite trend is observed in Figure 12.10 where the 

comparison is closer at the earlier time periods and is more different for the 

later time periods. This may be due to it being more difficult to identify an 

Figure 12.8 Sequence carried out to determine precipitation rate from 
surface coverage and crystal size. 
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accurate surface coverage at “close to full” surface coverage. It is 

approximated to be approximately 95% by the developed MATLAB 

programme however it is difficult for the program to identify the contrast 

between the corroding surface and crystals as shown in Figure 8.13. It is 

also noted that in determining the mass of the overall crystals formed from a 

combined surface coverage and crystal size analysis, it is assumed that the 

thickness and porosity is constant at both conditions and the values are 

determined from literature. Therefore, a certain percentage of error may be 

expected due to the assumption.  

 

Figure 12.9 Comparison of the precipitation rate determined from mass gain 

measurements and a combined analysis of surface coverage and 
crystal size at 80°C, pH 6.3, 3.5 wt% NaCl, pCO2 0.54 bar. 
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Figure 12.10 Comparison of the precipitation rate determined from mass 

gain measurements and a combined analysis of surface coverage and 
crystal size at 80°C, pH 6.8, 3.5 wt% NaCl, pCO2 0.54 bar. 

From the following analysis, it may be reasoned that the precipitation rate 

may be determined from the characteristics of the crystal formed on the 

surface. Furthermore, it also confirms the methodology and the MATLAB 

program created to analyse the surface coverage and the determined 

average crystal size.  

12.1.4 Quantifying Saturation Ratio 

Saturation ratio is defined by the ratio of the product of the species 

concentration to the solubility limit. It is calculated by Equation (4.15) (page 

43) and is quantified by the effusion of iron ions from the metal surface and 

infusion of carbonate ions from the bulk solution. 

The solubility limit of FeCO3 is a function of temperature and ionic strength. 

Since the experiments were conducted at 80°C and 3.5 wt% NaCl, the Ksp 

for both pH 6.3 and pH 6.8 is the same at 1.62 × 10-10 mol/l determined using 

the Sun and Nesic’s model for Ksp. According to the bulk equilibrium 

calculations in Chapter 6.4, the CO3
2- ion concentration can be analytically 

calculated and is found to be 7.50 × 10-5 mol/l for pH 6.8 and 7.50 × 10-6 

mol/l for pH 6.3. The CO3
2- ion concentration in the bulk is different by a 

factor of 10 between pH 6.3 and pH 6.8. Therefore, the Fe2+ ion 

concentration at pH 6.3 has to be higher than pH 6.8 approximately by an 

order of 10 in order to achieve the same SR. From this, we can infer that the 

saturation ratio and hence the nucleation and growth rate of FeCO3 at a pH 
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of 6.3 and pH 6.8 is controlled predominantly by the CO3
2- ion concentration 

under these conditions. 

 

Figure 12.11 Effect of pH and temperature on CO3
2- ion concentration. 

Therefore the next step is defining what parameters affect the CO3
2- ion 

concentration. A modelling analysis shows that the CO3
2- ion concentration is 

a function of temperature, pH, ionic strength and the total pressure of the 

system. Furthermore, analysis from species concentration from the surface 

to the bulk shows that surface and bulk concentrations of CO3
2- are 

approximately similar.  

Figure 12.11 shows the varying CO3
2- ion concentration as a function of the 

pH and temperature, the two main parameters considered in this study. The 

figure shows that pH has a significant effect on the concentration. At a pH of 

lower than 6.2 at all temperatures, the CO3
2- concentrations are very low and 

therefore FeCO3 precipitation would be unfavourable. However, the 

concentration increases exponentially at a higher pH which shall therefore 

result in a higher initial saturation ratio.  

On the other hand, the CO3
2- concentration increases for a lower 

temperature however, the solubility of FeCO3, Ksp increases as well. 

Therefore a higher initial saturation ratio is attained for a higher pH and 

temperature and results have shown that a lower temperature, pH favour the 

formation of large crystals and hence increased porosity of the scale layer.  

At a specific time instant, the CO3
2- concentration and Ksp can be analytically 

calculated given the working conditions. The Fe2+ ion concentration however 

poses a larger challenge. In much of the work in literature, the bulk Fe2+ ions 
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is determined through spectroscopy and surface phenomena is correlated 

with bulk solution properties.  A similar experimental procedure was carried 

out and the results showed that the bulk saturation ratio is significantly lower 

than what would be expected at the surface for the observed nucleation and 

growth of FeCO3 crystals at pH 6.3 and pH 6.8 as shown in Figure 8.18. 

Therefore, it is understood that the precipitation rate has no direct correlation 

with the bulk SR as the reaction is surface dominated.  

Analysis of the bulk Fe2+ ion concentration at the end of each time period, as 

shown in Figure 8.19, results show that at a pH 6.8, a large concentration of 

Fe2+ ions is retained at the surface and reacts with CO3
2- ions to form iron 

carbonate. On the other hand, at pH 6.3, due to limited surface 

concentration of CO3
2- ions, a larger portion of the Fe2+ ions remain 

unreacted and diffuse to the bulk and hence a larger bulk Fe2+ ion 

concentration. 

12.1.5 Limitation of Modelling Static System 

In Chapter 10, the COMSOL model was developed to predict the initial 

surface saturation ratio however the model was unable to be refined for a 

static system. In a static environment, mass transport is solely due to 

diffusion of species. Figure 12.12 shows the surface saturation ratio and 

corrosion rate as the velocity was reduced in the model for a thin channel 

flow cell.  

 

Figure 12.12 Saturation ratio and corrosion rate as a function of velocity 

from developed model for thin channel flow cell. Working Conditions 
(80°C, pH 6.8 and pCO2 0.54 bar). 
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As the velocity decreases, the corrosion rate converges to a steady state 

corrosion rate value of 1.435 mm/ year as it is mass transfer limited by the 

diffusion of H
+
 ions. However, the saturation ratio exponentially increases. 

This is due to the flux of Fe2+ ions due to corrosion being significantly higher 

than the diffusion rate of Fe2+ ions away from the surface and therefore 

resulting in a build-up of Fe
2+

 ions at the surface. The value does not 

converge and therefore is unable to be computed for purely static conditions.  

In order to model a static system, the model will have to be adapted to a 

time dependant solver that takes into account and predicts the varying 

precipitation rate over time resulting in a negative flux of Fe2+ ions at the 

surface. This is a complex analysis and is difficult to model given the current 

literature.  

12.2 Accelerating Kinetics of FeCO3 Film Formation 

Adding FeCl2.4H2O to the solution provides an additional source of Fe2+ ions 

and the ferrous ions forming iron carbonate scale includes ferrous ions both 

released from the steel surface and provided by the bulk of the solution. This 

is evident as the precipitation rate is observed to be higher than the 

corrosion rate, as shown in Figure 8.23, hence a scaling tendency of greater 

than one. Over the same initial time period of 2 hours, a higher amount of 

FeCl2.4H2O added resulted in a higher precipitation rate; therefore 

accelerating the kinetics of FeCO3 film formation. A combined analysis of the 

observed significant difference in the corrosion rate and significantly higher 

bulk saturation ratio to a freely corroding system, indicates that the added 

FeCl2.4H2O increases the surface SR resulting in the a shorter induction 

time for the formation of FeCO3 and therefore less Fe2+ ions being produced 

from the surface due to corrosion. Figure 12.13 shows the resulting initial 

surface saturation ratio as a result of the added Fe2+ ion concentration.  
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Figure 12.13 Surface saturation ratio as a function of distance from metal 

surface for varying concentration of Fe
2+

 added at 80°C, pH 6.8, 0.54 
bar,3.5 wt% NaCl and 0.1 m/s. 

The surface saturation ratio is for a velocity of 0.1 m/s determined from the 

COMSOL model however is used to highlight the effect of bulk 

supersaturation on surface properties. The values obtained are not 

representative of a static system however, the behaviour from the surface to 

bulk may be considered similar.  

The figure shows that for 10 ppm of Fe2+ ions added to the bulk solution, the 

change in the saturation ratio from the surface to the bulk is similar to that for 

a freely corroding system. As the amount of Fe2+ ions is increased, the 

change in the saturation ratio from bulk to surface increases. Therefore, it 

may be inferred that at low bulk supersaturation, the surface saturation ratio 

and hence the precipitation rate of iron carbonate is surface dominated and 

strongly affected by the corrosion rate of the steel. At high bulk 

supersaturation, the corrosion rate has little effect on the scale as more Fe2+ 

are contributed from the bulk solution.  

However, the high bulk saturation ratio also results in bulk precipitation 

elsewhere in the glass cell. Experiments conducted over time, as shown in 

Figure 8.25, showed that adding FeCl2.4H2O influences the surface 

characteristics resulting in accelerated kinetics of FeCO3 film formation and 

a lower corrosion rate at the initial time period. However, over time, the Fe2+ 

ions contribute more to bulk precipitation resulting in a lower contribution to 

FeCO3 precipitation at the surface and the corrosion rate stabilising at higher 

corrosion rate than for a freely corroding system.  
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Figure 12.14 Corrosion rate vs. time compared for a freely corroding system 

and 50 ppm Fe
2+

 ions added for experiments conducted at 80°C, pH 
6.8, 0.54 bar and 3.5 wt% NaCl.  

This is shown in Figure 12.14 where the corrosion rate in mm per year is 

plotted as a function time for a freely corroding system and when 50 ppm of 

Fe2+ ions is added at the start of the experiment. Therefore, externally 

influencing the kinetics of FeCO3 film formation, despite increasing the 

nucleation and growth of FeCO3 crystals at the early stages, does not 

contribute to producing a protective film over time due to bulk precipitation.  

Much of the work by Nesic et al. [49, 62, 70], was carried out with addition of 

FeCl2.4H2O. The development of the S&N precipitation model, described in 

detail in Chapter 5.2, was based on experiments carried out in static 

conditions with initial Fe2+ of 50 ppm, pH of 6.6 and range of temperatures 

from 60°C to 90°C. The precipitation rate was determined through mass gain 

measurements and correlated with the bulk super saturation over time.  

Figure 12.15 shows the comparison between the experimental data and the 

existing precipitation rate models by Greenberg and Tomson (G&T) [4, 5], 

Johnson and Tomson (J&T) [6, 7], van Hunnik et al. (vP&H) [8] and Sun and 

Nesic (S&N) [9, 10]. The precipitation rate is plotted against the bulk 

saturation ratio determined through spectroscopy for the experiments carried 

out over the initial time period of two hours.  
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Figure 12.15 Comparison of experimental data with precipitation models for 

a series of test done over initial time period of 2 hours and varying 
initial FeCl2.4H2O. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 3.5 
wt% NaCl). 

The figure shows a good correlation with the S&N model for high values of 

bulk SR, which corresponds to experiments conducted with 25, 40 and 50 

ppm of Fe2+ ions added to the solution, whereas the other models are 

observed to overestimate the precipitation rate. The models by G&T, J&T 

and vP&H are based on experiments where the precipitation rate is 

determined by the change in bulk Fe2+ ion concentration. However, from the 

observations of this work, added FeCl2.4H2O results in bulk precipitation 

therefore the assumption that the reduction in bulk supersaturation is due to 

precipitation only at the surface of the metal is found to be incorrect. This 

conclusion is supported in the work done by Nesic et al. [9, 10]. At high bulk 

supersaturation, the corrosion rate is observed to have little effect on the 

precipitation rate. The bulk Fe2+ ions contribute more to the formation of 

FeCO3 crystals and the surface saturation ratio may be assumed similar to 

that in the bulk. The S&N model is observed to be efficient in predicting the 

precipitation rate for high bulk SR over initial time periods. 

For lower values of bulk SR, the precipitation results are observed to be 

higher than the predicted values by the Nesic et al. model and are therefore 

under-predicted. These results correlate to the precipitation rate over the 

initial time period of 2 hours for a freely corroding system and 10 ppm of 

Fe2+ ions added to the solution.  
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Figure 12.16 Precipitation rate as a function of supersaturation in 

comparison to S&N model. (Working Conditions: 80°C, pH 6.8, 0.54 
pCO2, 3.5 wt% NaCl, 50 ppm FeCl2.4H2O). 

The precipitation model by S&N was determined based on the experimental 

observations where 50 ppm of Fe2+ ions was added and the precipitation 

rate and corresponding bulk SR were determined over time. Figure 12.16 

shows a comparison between the S&N precipitation model and the 

precipitation rate determined experimentally over time for 50 ppm of Fe2+ 

added to the solution and an experiment conducted in a glass cell at 80°C, 

pH 6.8, 0.54 pCO2, 3.5 wt% NaCl.  

The result shows that the observed trend in S&N developed model for a low 

bulk saturation ratio of 0 to 50 is due to the low precipitation rate observed at 

later time intervals. It is believed that further experiments carried out at 

similar conditions would confirm a similar trend. Therefore, it may be inferred 

that the S&N precipitation model is limited to a system where the kinetics of 

FeCO3 film formation is initially accelerated through addition of FeCl2.4H2O.  

12.3 Later Stages of FeCO3 Film Development 

In the discussion so far, the precipitation of FeCO3 over time on a clean X65 

carbon steel surface was analysed for a freely corroding system and for 

varying concentrations of Fe2+ ions added externally influencing the 

precipitation of the FeCO3 film. In the following stage, the behaviour of the 

later stages of film development is analysed. Results have shown that as the 

FeCO3 film nucleates and grows on the surface of the carbon steel surface, 

the corrosion rate decreases as the surface coverage of the developing film 
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increases. However, at a certain time instant, the rate of reduction of the 

corrosion rate decreases and corrosion rate is observed to be stable. From 

an earlier point in the discussion, it was hypothesised that this stage refers 

to the metastable region where the surface SR is low. At conditions of 80°C, 

pH 6.8 and pCO2 of 0.56 bar, the precipitated FeCO3 film is relatively 

protective with a corrosion rate of 0.05 mm/year measured after 20 hours.  

The protective film is placed in a fresh solution at the same conditions for  

three different scenarios: turbulent flow, 10 ppm of Fe2+ ions and 50 ppm of 

Fe2+ ions to observe the stability of the protective film and if the addition of 

FeCl2.4H2O may result in further precipitation of FeCO3 at the surface. The 

experiments were conducted over 2 hours and repeated observations 

showed that: 

1. Mass loss was observed due to the turbulent flow across the surface 

of the sample. Therefore, some of the FeCO3 film dissolved into the 

solution however, the corrosion rate did not increase. Previously, it 

was discussed that a higher nucleation rate leads to a more protective 

film and that the precipitation rate is mostly governed by crystal 

growth. Therefore it may be inferred that the protectiveness of the film 

may not be directly compromised by a reduction in the mass or a 

negative precipitation rate. Unstable crystals may have dissolved into 

the solution causing the observed reduction in mass however, the film 

remained protective after a 2 hour period.  

2. Adding 10 ppm of Fe
2+

 ions resulted in a mass gain due to FeCO3 

precipitation on the already protective film. For a corroding surface, 

the surface reaction will dominate the FeCO3 precipitation process 

where the process is limited by the rate of nucleation and growth. As 

the layer is developed, the system moves to mass transfer control and 

is limited by the mass transfer of the species required to result in 

further FeCO3 crystal growth. For a fully formed protective film, the 

surface concentration of Fe2+ ions is limited due to the low corrosion 

rate. Adding Fe2+ ions to the solution results in mass transport of Fe2+ 

ions to the surface and hence a higher mass gain. However, bulk 

precipitation is also observed.  

3. Adding 50 ppm of Fe2+ ions does not result in a higher mass transport 

of Fe2+ ions to the surface resulting in a higher measured precipitation 

rate at the surface. For a high bulk saturation ratio, bulk precipitation 

is more spontaneous. The Fe2+ ions contribute more to the growth of 
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nuclei in the bulk of the solution and a higher precipitation rate is not 

observed.  

12.4 Effect of Flow on FeCO3 Film Development 

The final stage of the discussion comprises of the developed flow cell and 

the resulting CO2 corrosion rate and FeCO3 precipitation for varying flow 

velocities. Both laminar and turbulent flow was analysed and the results 

showed that a more protective film and a higher precipitation rate at the end 

of 20 hours was observed for a lower velocity.  

SEM images, Figure 9.8, showed that for turbulent flow characteristics, the 

FeCO3 crystals appeared scattered with no significant surface coverage. 

However, the corrosion rate was observed to drop faster for a higher flow 

velocity. This contradictory effect may be an aspect of a recirculating flow 

loop as the amount of Fe2+ ions flowing across the surface of the sample for 

a given time instant would be higher for a faster velocity therefore resulting 

in the observed faster drop in corrosion rate. An amorphous protective layer 

may form under these flow characteristics resulting in the observed drop in 

the corrosion rate however the precipitated FeCO3 crystals may remain 

unstable and be physically removed due to the turbulence across the 

surface resulting in the observed SEM images of the surface after 20 hours.  

In a more laminar flow regime, a more compact and dense film is observed 

on the surface of the carbon steel sample resulting a more protective film 

formed after 20 hours. The crystals are observed to be much smaller in size 

with a significantly higher surface coverage.  However, LPR measurement 

show that a more protective film with a lower corrosion rate is attained under 

static conditions.  

The precipitation rate of iron carbonate is directly related to corrosion and 

the conditions at the steel surface. The reaction is surface dominated as 

discussed and determining the surface saturation ratio is essential in order 

to accurately predict the precipitation rate. However; experimentally 

determining the surface properties is difficult and a method has yet to be 

determined. The modelling work done in this thesis allows for a theoretical 

prediction of surface properties for a flowing system. The model was 

adapted for a thin channel flow cell in order to correlate experimental 

observations with the predicted surface saturation ratio. However, the model 

is limited for a steady state system therefore only being able to predict the 

initial surface saturation ratio for a flow through the flow cell. The model does 
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not account for film development as a complete understanding of the film 

under varying conditions is required to be accounted within a model and to 

predict the resulting corrosion rate over time.  

 

Figure 12.17 Precipitation rate as a function of surface saturation ratio for a 

thin channel flow cell at variable flow velocities in comparison to S&N 
precipitation model. (Working Conditions: 80°C, pH 6.8, 0.54 pCO2, 3.5 
wt% NaCl). 

Figure 12.17 shows the correlation of the precipitation rate in mol/m2.s at the 

end of 20 hours with the initial saturation ratio for working conditions of 80°C, 

pH 6.8, pCO2 0.54 bar and the respective flow velocities. The observed 

results is compared with the S&N precipitation model. It may be argued that 

the initial saturation ratio results in a significant percentage in the overall 

nucleation and growth of FeCO3 and therefore may prove somewhat 

accurate in being linked with the precipitation rate over 20 hours. The 

surface saturation ratio drives the nucleation of FeCO3 crystals and it was 

inferred from the analysis in Chapter 10.4 that a predicted initial surface 

saturation ratio may imply the nature of the film formed over time. The figure 

shows that a higher precipitation rate is observed for a higher initial surface 

saturation ratio and the results compare well with the S&N model 

considering the differences in the mechanism used in each case. The 

observed trend agrees with literature and further work in the area may prove 

valuable in testing the sensitivity of the model predicting the initial surface 

saturation ratio and linking the values with experimental precipitation rates.  

An accurate determination of the surface saturation ratio over time would 

require a time dependant system and intensive knowledge on the kinetics of 

FeCO3 precipitation over time at variable flow velocities in terms of 
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precipitation rate, porosity of the film, etc. Developing such a database is 

high in complexity, time intensive and currently limited by the literature in the 

area.  
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Chapter 13                                                                               

Final Conclusion and Future Consideration 

The work carried out in this PhD is a combined experimental and modelling 

approach to furthering the literature understanding of FeCO3 precipitation 

and the protectiveness of the developed film. The experimental analysis is 

conducted in static and flowing conditions. A thin channel flow cell was 

designed to study the effect of laminar and turbulent flow on FeCO3 

precipitation. The modelling work is intended to complement the 

experimental work carried out and provide a mechanistic understanding of 

surface characteristics where an experimental investigation is limited.  

In this final concluding chapter, the questions raised in the aims and 

objectives have been addressed and the following conclusions have been 

made.  

 FeCO3 precipitation is a complex simultaneous nucleation and growth 

process and the characteristics of the surface film significantly 

changes under varying parameters. A more protective film is formed 

for conditions of high temperature and pH.  

 For a more protective film formation, the crystals are more compact 

and dense offering a higher surface coverage. A less protective film 

consists of larger, more discrete crystals not effectively blocking 

active corrosive sites. The difference in characteristics of the film 

results in the precipitation rate to not directly relate to the 

protectiveness of the developed film. Precipitation rate is based on a 

quantitative measure of the FeCO3 film formed on the surface. The 

precipitation rate at a specific time instant can be higher due to a 

larger mass gain as a result of larger crystals formed on the surface.  

 Scaling tendency is a valid indicator of the protectiveness of the film. 

It is the ratio of the precipitation rate to the corrosion rate and is 

higher for a more protective film. The ratio is greater than 1 for 

conditions where the precipitation rate is larger than the corrosion as 

a result of an additional contribution of Fe2+ ions.  

 The corrosion rate is inversely proportional to the surface coverage. 

An accurately calculated surface coverage directly reflects to the 

portion of the surface covered due to the FeCO3 film.  

 The kinetics of FeCO3 precipitation may be accelerated through 

addition of Fe2+ ions. This situation occurs downstream in a pipeline. 

The source of ferrous ions forming iron carbonate scale includes 
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ferrous ions both released from the steel surface and those provided 

by the bulk of the solution. 

 At low bulk supersaturation, the precipitation rate of iron carbonate 

scale is strongly affected by the corrosion rate of the steel. At high 

bulk supersaturation, the corrosion rate has little effect on the 

precipitation rate of iron carbonate. 

 Bulk precipitation takes place at high bulk supersaturation. FeCO3 

precipitation is favoured more in the bulk than on the surface over 

time.  

 The precipitation rate of iron carbonate is directly related to corrosion 

and the conditions at the steel surface. It is a surface dominated 

reaction and bulk solution properties vary significantly from the 

surface.  

 Saturation ratio is a main parameter in the development of FeCO3 

precipitation rate models. It is considered a driving force and a higher 

saturation ratio defines a higher scaling tendency.  

 Precipitation models by Greenberg and Tomson (G&T), Johnson and 

Tomson (J&T) and van Hunnik et al. (vP&H), based on measuring the 

dissolved ferrous ions in the bulk solution, overestimate the 

precipitation of iron carbonate on the steel surface by a large margin. 

 Sun and Nesic (S&N) precipitation model is limited to the 

experimental conditions it is conducted in and underestimates the 

precipitation rate at low bulk supersaturation where surface conditions 

dominate the precipitation process. The model also does not take into 

account varying pH which is a main parameter in defining the 

characteristics of the film developed. A slight variation in pH results in 

an exponential increase in the CO3
2- ion concentration which directly 

effects the saturation ratio and the precipitation rate.  

 A mechanistic model is developed in this study to predict nature of 

near surface region at initial stages prior to any substantial film 

development under varying conditions. A high initial surface saturation 

ratio is an indication to a protective film formation.  

 Thin channel flow cell is designed to study effect of laminar and 

turbulent flow on FeCO3 film characteristics. A more protective film 

forms at lower flow velocities. FeCO3 crystals dissolved back or were 

chemically damaged and has a higher corrosion rate at higher 

turbulent flow rates.   
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13.1 Limitation of this Study and Future Work 

Although this study has highlighted some important findings with respect to 

understanding the nucleation and growth of FeCO3 crystals, there is a 

multitude of avenues that the work can be carried forward.  

In the development of the precipitation model by Sun and Nesic, a 

temperature ramp method was used in determining the precipitation rate 

equation to fit their data while the pH was maintained. In this work, it is 

shown that temperature plays an important role in the kinetics of FeCO3 film 

formation; however, a slight variation is pH has a significant effect on the 

CO3
2- ions and subsequently the precipitation rate. Furthermore, it is 

observed that the FeCO3 precipitation rate is surface dominated and there 

may be a significant difference between bulk and surface properties.  

The next step in this work is the development of a FeCO3 precipitation model 

that relates directly with the surface saturation ratio for varying conditions of 

pH and temperature. This requires an intensive knowledge on the kinetics of 

FeCO3 precipitation over time at variable flow velocities. It is believed from 

the observed results that behaviour of FeCO3 film formation varies for 

conditions of laminar and turbulent flow and a single model cannot account 

for all conditions. Furthermore, due to the time intensive nature, each study 

will have to be carried out independently. The following bullet points identify 

the next steps into further understanding the FeCO3 formation kinetics in 

laminar flow at varying temperature and pH with the intent of working 

towards developing a novel FeCO3 precipitation model.  

 Develop flow cell to create a more efficient method of installation of 

samples within the flow path and removal for post surface analysis. 

The current method is limited due to wearing of cable gland thread 

and cable gland needs to be broken and disposed of to extract 

sample for post surface analysis.  

 Carry out a sequence of experiments over variable time periods for a 

freely corroding system and determine how the precipitation rate 

changes over time from mass gain measurement. Identify what time 

period the predicted surface saturation ratio predicted by the 

combined MATLAB and COMSOL model can accurately relate to.  

 Modify the flow cell apparatus for a once through flowing system as 

shown in schematic diagram in Figure 13.1. Control the surface SR 

across the surface of the sample by varying the Fe2+ ions added and 

determine the respective precipitation rate for varying conditions.  



- 193 - 

 

 Repeat experiments and determine a trend from the observed results. 

Where kCG is the crystal growth rate constant and exponent y is the 

growth order that represents the growth mechanism of the crystal.  

 Develop a novel approach to a mechanistic model for FeCO3 

precipitation.  

 

 

 

 

 

 

 

 

Figure 13.1 Schematic for once-through flow system for future work. 
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