Late Holocene Relative Sea-Level Change and the Implications for the Groundwater Resource, Humber Estuary, UK

Two Volumes

Volume Two:

Figures & Tables

Louise Alice Best

PhD

University of York

Environment

August 2016

Table of Contents

Tab	le of Contents	180
List	of Figures	181
List	of Tables	183
1.	Introduction	184
2.	Estuaries and Sea-Level Change	185
3.	Groundwater and Sea-Level Change	188
4.	The Humber Estuary	189
5.	Methodology	197
6.	Contemporary Environment and Sea-Level Transfer Functions	198
7.	Palaeoenvironment and Relative Sea-Level Reconstruction: East Halton	212
8.	Palaeoenvironment and Relative Sea-Level Reconstruction: Brough	221
9.	Sea Level, Groundwater and Abstraction: Past, Present and Future	235
10.	Discussion	245

List of Figures

Figure 1.1	Humber Estuary location map	184
Figure 2.1	Components of sea-level change	185
Figure 2.2	Global sea-level change zones	185
Figure 2.3	British-Irish Ice Sheet extent	186
Figure 2.4	Rates of British Isles relative sea-level change	186
Figure 2.5	Relative sea-level reconstructions from UK locations	187
Figure 3.1	Conceptual model of coastal groundwater interaction	188
Figure 4.1	Bedrock geology of the Humber region	189
Figure 4.2	Detailed bedrock geology of mid-portion of Humber Estuary and	100
	Springhead source	190
Figure 4.3	Superficial geology of the Humber region	190
Figure 4.4	Extent of Last Glacial Maximum in Humber region	191
Figure 4.5	Existing sea-level data for the Humber Estuary	192
Figure 4.6	Humber Estuary sea-level index points and tendency	193
Figure 4.7	Humber Estuary sea-level index points and curve	193
Figure 4.8	Holocene palaeogeography of the Humber Estuary	194
Figure 4.9	Humber Estuary relative sea-level observations and predictions	194
Figure 4.10	Effect of tidal range changes on Humber Estuary sea level	195
Figure 4.11	Proposed marshland and coastline position in the outer Humber	105
	Estuary 700 and 400 years BP	190
Figure 4.12	Reclamation and incorporation of Sunk Island in the Humber	106
	Estuary over the last c. 250 years	150
Figure 6.1	Humber Estuary Contemporary study sites	198
Figure 6.2	Summary diagrams of laboratory analyses of contemporary sites	199
Figure 6.3	Summary contemporary foraminifera and diatom diagram, Welwick	200
Figure 6.4	Summary contemporary foraminifera and diatom diagram, Spurn	201
Figure 6.5	Summary contemporary foraminifera and diatom diagram, East	202
	Halton	202
Figure 6.6	Cluster analysis results of Humber Estuary diatom training set	204
Figure 6.7	Cluster analysis results of Humber Estuary foraminifera training set	205
Figure 6.8	Summary distribution of Humber Estuary foraminifera and diatom	206
	training sets	200
Figure 6.9	CCA and partial CCA of Humber Estuary training sets	207
Figure 6.10	Observed vs predicted SWLI for diatom-based transfer functions	209
Figure 6.11	Observed vs predicted SWLI for foraminifera-based transfer	210
	functions	

Figure 6.12	Observed vs predicted SWLI for multi-proxy transfer functions	211			
Figure 7.1	Location of East Halton study site	212			
Figure 7.2	Summary of stratigraphic survey at East Halton	213			
Figure 7.3	Stratigraphy of East Halton east-west transect	214			
Figure 7.4	Summary diagram of laboratory analyses of core EH03	215			
Figure 7.5	Summary diatom assemblage diagram of core EH03	216			
Figure 7.6	Chronology of lower 0.36m of core EH03	217			
Figure 7.7	Transfer function sea-level reconstructions for core EH03	218			
Figure 7.8	Sea-level index points produced from East Halton and the existing	220			
	suite of Humber Estuary data	220			
Figure 8.1	Location of Brough study site	221			
Figure 8.2	Jre 8.2 Location of stratigraphic survey at Brough				
Figure 8.3	Summary of stratigraphic survey at Brough	222			
Figure 8.4	Summary diagram of laboratory analyses on cores BC01 and BC02	225			
Figure 8.5	Figure 8.5 Summary diatom and foraminifera assemblages diagram of core				
	BC01	220			
Figure 8.6	Summary diatom and foraminifera assemblages diagram of core	227			
	BC02	221			
Figure 8.7	Age-depth models for dated portions of cores BC01 and BC02	229			
Figure 8.8	Transfer function sea-level reconstructions for core BC01	232			
Figure 8.9	Transfer function sea-level reconstructions for core BC02				
Figure 8.10	Sea-level index points produced from Brough and the existing suite				
	of Humber Estuary data	204			
Figure 9.1	Chloride concentrations at Springhead	235			
Figure 9.2	Superficial geology transects around the Springhead-Humber	236			
	Estuary area	200			
Figure 9.3	Groundwater head under naturalised scenarios	238			
Figure 9.4	Groundwater head and flow results at Springhead and the Humber	230			
	Estuary boundary	200			
Figure 9.5	Groundwater head in the present and future scenarios	240			
Figure 9.6	Groundwater flow in the present and future scenarios	241			
Figure 9.7	Cross-sections of saline intrusion under naturalised scenarios	243			
Figure 9.8	Cross-sections of saline intrusion under some present and future	241			
	scenarios	274			
Figure 10.1	New and existing Humber Estuary sea-level index points	245			

List of Tables

Table 5.1	Wentworth Scale (1922) of sediment classification 1					
Table 6.1	Summary of training sets	203				
Table 6.2	DCA analysis results of Humber Estuary training sets	207				
Table 6.3	Summary performance of developed transfer functions	208				
Table 7.1	Sediment descriptions of core EH03					
Table 7.2	Radiocarbon dates for core EH03	217				
Table 7.3	Summary performance of diatom transfer functions and modern analogues for core EH03	217				
Table 7.4	Sea-level index points produced from core EH03	219				
Table 8.1	Sediment descriptions of core BC01	223				
Table 8.2	Sediment descriptions of core BC02	224				
Table 8.3	Radiocarbon dates for cores BC01 and BC02	228				
Table 8.4	Summary performance of transfer functions and modern analogues for cores BC01 and BC02	230				
Table 8.5	Sea-level index points produced from cores BC01 and BC02	231				
Table 9.1	Outline of modelled scenarios	237				
Table 9.2	Groundwater head and flow results at Springhead and the Humber	007				
	Estuary boundary	231				
Table 9.3	Ghyben-Herzberg relationship results at Springhead and the Humber	727				
	Estuary boundary	231				

1. Introduction

Figure 1.1 Location map of the Humber Estuary.

2. Estuaries and Sea-Level Change

Figure 2.1 Processes and components that can influence global and regional sea level; any changes to one will result in sea-level change. 'Ocean properties' incorporates ocean temperature, salinity and density. Figure based upon the IPCC Fifth Assessment Report (Church *et al.*, 2013).

Figure 2.2 Six different zones and their expected relative sea-level history determined by Clarke *et al.* (1978); the UK is within transitional zones I-II. Figure based upon Horton (2007).

Figure 2.3 Maps of extent and ice thickness of the British-Irish Ice Sheet model at a) 21ka BP b) 20ka BP and c) 16ka BP. Figure modified from Bradley *et al.* (2011).

Figure 2.4 Rate of relative sea-level change (land level and sea level), 1000 years to present in the British Isles (mm a⁻¹); relative uplift is positive and subsidence negative. Figure after Shennan *et al.* (2012).

Figure 2.5 Relative sea-level (RSL) reconstructions and various model predictions for several sites around the UK; vertical axis is RSL (m), horizontal axis cal years BP. Figure modified and adapted from Shennan *et al.* (2012).

3. Groundwater and Sea-Level Change

Figure 3.1 Simplified conceptual model of surface and groundwater interaction and the hydrodynamic processes at an estuary boundary. Figure based upon Westbrook *et al.* (2005).

4. The Humber Estuary

Figure 4.1 Simplified bedrock geology of the Humber region, showing the Cretaceous Chalk to the east of the Yorkshire Wolds, and the narrow bands of various Jurassic and Triassic sedimentary rocks extending to the west. Two keys shown for clarity, full geological key available at: <u>http://digimap.edina.ac.uk/roam/geology</u>. Image and key modified and adapted from Digimap (2016) © Crown Copyright and Database Right (2016) OS (Digimap Licence).

Figure 4.2 Bedrock geology of the mid-portion of the Humber Estuary, the Chalk escarpment and Yorkshire Wolds. Key shows Chalk formations only for clarity; full geological key available at: <u>http://digimap.edina.ac.uk/roam/geology</u>. Red star indicates location of the Springhead groundwater source. Image and key modified and adapted from Digimap (2016) © Crown Copyright and Database Right (2016) OS (Digimap Licence).

Figure 4.3 Simplified superficial geology of the Humber region. Image and key modified from Digimap (2016) © Crown Copyright and Database Right (2016) OS (Digimap Licence).

Figure 4.4 Glacial limits, ice vectors, moraine locations, glacial lake extents and till distributions of the Last Glacial Maximum around the Humber region. Figure after Bateman *et al.* (2015).

Figure 4.5 Existing sea-level data for the Humber Estuary: a) shows raw data; b) shows data corrected for modelled tidal changes after Shennan *et. al.* (2003). Blue= outer estuary (east of Hull); green= inner estuary (west of Hull). Diamonds= limiting points; crosses intercalated points; plus= basal points; all include associated individual vertical and age error bars.

Figure 4.6 Sea-level index points from the Humber Estuary; upward arrows indicate a positive sea-level tendency and downward arrows a negative sea-level tendency. Figure based upon data as presented in Long *et al.* (1998)

Figure 4.7 Relative sea-level index points and relative sea-level for the Humber Estuary. Figure based upon data as presented in Metcalfe *et al.* (2000).

Figure 4.8 Palaeogeographical maps of the Humber Estuary from 8000 to 3000 cal years BP. Figure after Metcalfe *et al.* (2000).

Figure 4.9 Relative sea-level observations and model predictions for the inner and outer portions of the Humber Estuary. Figure modified from Shennan *et al.* (2006).

Figure 4.10 Holocene relative sea-level changes for the inner (circle) and outer (cross) Humber Estuary; dashed line is modelled relative sea-level prediction from Peltier *et al.* (2002); solid line is the best fit line for the inner estuary data; (a) assumes constant tidal range through time at present day values and (b) assumes tidal changes through time as determined by Shennan *et al.* (2003). Figure after Shennan *et al.* (2003).

Figure 4.11 The southern Holderness and northern outer Humber Estuary marshlands c. 400 years BP and proposed position of the Medieval coastline c. 700 years BP represented by the dashed line. Figure based upon Sheppard (1966).

Figure 4.12 Extent of reclamation and incorporation of Sunk Island on the northern outer portion of the Humber Estuary over the last c. 250 years. Dates are stated in years AD. Figure based upon Sheppard (1966).

5. Methodology

Millimetres (mm)	Grade	Class
1-2	Very Coarse	
0.5- 1	Coarse	
0.25- 0.5	Medium	Sand
0.125- 0.25	Fine	
0.0625- 0.125	Very fine	
0.031- 0.0625	Coarse	
0.0156- 0.031	Medium	Silt
0.0078- 0.0156	Fine	Ont
0.0039-0.0078	Very fine	
0- 0.00006	Clay	Clay

 Table 5.1
 Wentworth Scale of sediment size classification (1922), converted to millimetres.

6. Contemporary Environment and Sea-Level Transfer Functions

Figure 6.1 Location of the contemporary marsh study sites and modern surface sample transects. Blue= East Halton; green= Welwick; red= Spurn.

Figure 6.2 Summary diagrams of the laboratory analyses of contemporary surface samples from Welwick, Spurn and East Halton, including summary diatom and foraminifera assemblages, loss-on-ignition, particle size analysis and elevation.

Species >5% in two or more samples shown.

Species >5% in two or more samples shown.

Figure 6.5 Summary percentage foraminifera and diatom assemblages of East Halton contemporary surface samples. Species >5% in two or more samples shown.

Name	Scale	Proxy	Sites	Samples	Source
D-1	Humber	Diatom	3	40	This study
D-2	UK	Diatom	6	88	Zong & Horton, 1999
ΠЗ	UK-	Diatom	0	128	This study; Zong & Horton,
D-3	Humber	Diatom	9	120	1999
D_4	UK	Diatom	3	51	Zong & Horton, 1999
D - 4	estuary	Diatom	0	51	
	UK				This study
D-5	estuary-	Diatom	6	91	Zong & Horton 1999
	Humber				Zong & Honton, 1999
F-1	Humber	Foram	3	34	This study
F-2	UK	Foram	12	162	Horton & Edwards, 2006
E 3	UK-	Foram	15	106	This study
1-5	Humber	i orani	10	190	Horton & Edwards, 2006
F-4	UK	Foram	4	64	Horton & Edwards 2006
1 -4	estuary	roram	7	07	
	UK				This study
F-5	estuary-	Foram	7	98	Horton & Edwards 2006
	Humber				
M-1	Humber	Multi	3	40	This study
M-2	l IK	Multi	18	250	Horton & Edwards, 2006
101 2	ÖR	Walt	10	200	Zong & Horton, 1999
					This study
M-3	Humber	Multi	21	290	Horton & Edwards, 2006
	Tumber				Zong & Horton, 1999
M_4	UK	Multi	7	115	Horton & Edwards, 2006;
101-4	estuary	watt	1	115	Zong & Horton, 1999
	UK				This study
M-5	estuary-	Multi	10	155	Horton & Edwards, 2006
	Humber				Zong & Horton, 1999

Table 6.1 Summary details of the 15 training sets formed, including the proxy type,size and source.

SWLI	Diatom Zones	Foraminifera Zones	
310 305	Upper Saltmarsh	Upper Saltmarsh	
MHWST 300	No Sample	S	
295			
290	Upper Saltmarsh D. interrupta, D. smithii, D. subtilis, N. cincta. N. diaitoradiata.	Upper Saltmarsh	
285	N. navicularis, N. sigma	J. macrescens, M. fusca, T. inflata	
280			
275	Lower Saltmarsh		
270	G. wansbeckii, N. cincta,		
265	n. ampinceros, r. eccentrica	Lower Saltmarsh	
260		A. batava, H. germanıca, T. agglutinans	
255	Tidal Flat C. belgica, G. wansbeckii,		
250	R. amphiceros		

Figure 6.8 Distribution of the diatom and foraminifera training sets in relation to SWLI as identified by cluster analysis, with named key species.

Training Set	Axis 1 Length	Axis 1 Variation Explained (%)
Diatom	2.87	30.34
Foraminifera	2.32	53.52
Combined Multi-Proxy	2.42	38.02

Figure 6.9 Results of CCA and partial CCA of the three Humber training sets.

Name	Component (% change)	RMSEP	Bootstrapped r ²
D-1	1	41.895	0.098
D-2	2 (6.15)	22.692	0.651
D-3	1	30.997	0.426
D-4	3 (7.51)	16.461	0.802
D-5	1	32.884	0.313
F-1	1	44.583	0.002
F-2	1	25.782	0.276
F-3	1	29.444	0.226
F-4	1	14.481	0.0917
F-5	1	28.325	0.026
M-1	2 (5.37)	42.790	0.142
M-2	2 (5.15)	24.196	0.484
M-3	1	28.474	0.363
M-4	3 (7.51)	15.707	0.659
M-5	1	26.973	0.297

Table 6.3 Summary of the performance of the 15 transfer functions developed from the training sets outlined in Table 6.1 (D= Diatom, F= Foraminifera, M= Multi-proxy).

Figure 6.10 Observed SWLI and estimated SWLI predicted by the diatom transfer functions; components used are those outlined in Table 6.3.

Figure 6.11 Observed SWLI and estimated SWLI predicted by the foraminifera transfer functions; components used are those outlined in Table 6.3.

Figure 6.12 Observed SWLI and estimated SWLI predicted by the multi-proxy diatom and foraminifera transfer functions; components used are those outlined in Table 6.3.

7. Palaeoenvironment and Relative Sea-Level Reconstruction: East Halton

Figure 7.1 Location of the East Halton palaeo study site.

Figure 7.3 Stratigraphy of the east-west transect, with position of core EH03 highlighted. Stratigraphic key follows that in Figure 7.2.

Depth	Elevation	Description	Troels-Smith (1955)
(m)	(m OD)	Description	Description
	+2 587 -		Nig 2; Strf. 0; Elas. 0; Sicc.
0-0.3	12.007 -	Brown stony topsoil	4; Lim. 0; Str. conf.; Ag2;
	+2.207		As2
0.3-	+2.287 -	Donao brown eilt elev	Nig 2; Strf. 0; Elas. 0; Sicc.
0.5	+2.087	Dense brown sill-clay	3; Lim. 0; Ag2; As2
0.5-	+2.087 -	Dense brown blue silt clay	Nig 2; Strf. 0; Elas. 0; Sicc.
1.33	+1.257	Dense brown-blue sin clay	3; Lim. 0; Ag2; As2
1.33-	+1.257 -	Donce brown grow blue silt clay	Nig 2; Strf. 0; Elas. 0; Sicc.
1.495	+1.092	Dense brown-grey-blue sin-clay	3; Lim. 0; Ag2; As2
		Gradational transition from	Nig 2: Strf. 0: Elas, 0: Sice
1.495-	+1.092 -	brown-grey-blue silt-clay into	$\frac{1}{2} \lim_{n \to \infty} \frac{1}{2} \int \frac{1}{2$
1.54	+1.047	dark brown silty-peat with visible	3, LIIII. 1, AY2, AS1, SIT1,
		sand and plant rootlets	Ga+; In+
1.54	+1 047	Dark brown silty-peat with sand	Nig 3; Strf. 0; Elas. 0; Sicc.
1.04-	1.047 -	and plant rootlets. Visible sand	3; Lim. 1; Ag2; Sh2; As+;
1.85	+0.737	content decreases 1.75-1.54.	Ga+; Th+
			Nig 3; Strf. 0; Elas. 0; Sicc.
1.85-	+0.737 -	Dark brown sandy-silty-peat and	3; Lim. 1; Ag2; Sh2; As+;
1.9	+0.687	basal stones	Ga+; Gs+; Gg(min)+;
			Gg(maj)+; Th+

	Table 7.1	Sediment	descriptions	of core	EH03.
--	-----------	----------	--------------	---------	-------

Figure 7.4 Summary diagram of laboratory analyses of core EH03, including summary diatom assemblage, loss-on-ignition and particle size results. Stratigraphic key follows that in Figure 7.2.

in Figure 7.2.

Code	Identifier Core-Depth (cm)	Elevation (mOD)	Sample	Conventional Radiocarbon Age (years BP ±1σ)	Cal Years BP
UBA- 27936	EH-155	+1.037	Bulk	3029±26	3227 (3158-3342)
UBA- 27935	EH-190	+0.687	Bulk	3169±41	3395 (3257-3476)

Table 7.2 Radiocarbon dates for core EH03 (analysis undertaken at ¹⁴CHRONOCentre at Queens University Belfast.

Figure 7.6 Chronology established using Bacon (Blaauw & Christen, 2011) for the lower 0.36m of core EH03, based on the two radiocarbon dates in Table 7.2.

Table 7.3 Summary performance of the diatom transfer functions (Table 6.1) andresults of modern analogue analysis for core EH03.

Transfer	Component	RMSEP	Bootstrapped	Modern Analogues		
Function	(% change)	INNOLI	r²	Poor	Close	Good
D-1	2 (5.08)	39.45	0.27	27	0	0
D-2	2 (6.65)	22.57	0.65	11	16	0
D-3	1	30.4	0.42	7	10	10
D-4	3 (7.92)	16.37	0.81	27	0	0
D-5	1	32.87	0.31	27	0	0

Figure 7.7 Sea-level reconstructions based on the UK *D*-1 (red) and UK-Humber *D*-3 (blue) transfer functions. Dash symbol represents estimate with good modern analogues, circle represents close, and square represents poor.

Tendency		Positive	Positive
Change in	KSL (m)	-2.41 +/- 0.52	-3.04 +/- 0.43
ction (m) (0.2847	N/A
Corr	Tidal	-0.17	-0.18
teference Water Level (m OD) -		3.905 +/-0.395	3.905 +/-0.395
Indicative Meaning		(MHWST+HAT)/ 2	(MHWST+HAT)/ 2
Elevation (m OD)		1.037	0.687
Depth (m)		1.55	1.9
-/- 2σ	Мах	3342	3476
ears BP (+ range)	Median	3227	3395
Cal Yé	Min	3158	3257
¹⁴ C Age (Years BP +/-1σ)		3029+/-26	3169+/-41
14C	sample	Bulk	Bulk
Code		EH- 155	EH- 190

Table 7.4 Sea-level index points produced from core EH03.

Figure 7.8 Two new sea-level index points (red plus symbol) with the existing tidalcorrected sea-level index points for the Humber Estuary: a) new sea-level index points with data from inner and outer estuary, and b) new sea-level index points with data from outer estuary only. Blue= outer estuary (east of Hull); green= inner estuary (west of Hull). Diamonds= limiting points; crosses intercalated points; plus= basal points; all include associated individual vertical and age error bars.

8. Palaeoenvironment and Relative Sea-Level

Reconstruction: Brough

Figure 8.1 Location of Brough palaeo study site. Red crosses indicate location of stratigraphic cores from this study.

Figure 8.2 Location of boreholes taken for stratigraphic survey in this study.

 Table 8.1 Sediment descriptions of core BC01.

Depth	Elevation		Troels-Smith (1955)
(m)	(m OD)	Description	Description
	+2.702 -	Dense krown tenseil	Nig 2; Strf. 0; Elas. 0; Sicc. 4;
0-0.3	+2.402	Dense brown topsoli	Lim. 0; Strf. conf; Ag2; As2
0.3-	+2.402-	Dense brown blue silty clay	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
0.88	+1.822	Dense brown blue silty clay	Lim. 0; Ag2; As2
0.88-	+1.822 -	Dense brown blue silty clay	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
0.93	+1.772	with plant fibres	Lim. 0; Ag2; As2; Th+
0.93-	+1.722 -	Brown organic crumbly silty	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
1.12	+1.582	clay	Lim. 0; Ag2; As2; Sh+; Th+
1.12-	+1.582 -	Prown silty post	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
1.19	+1.512	Brown silty pear	Lim. 0; Ag2; Sh2; Sh+; Th+
		Brown grey blue silty clay	
1.19-	+1.512 -	with organic patches;	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
1.71	+1.002	increasingly organic 1.48-	Lim. 0; Ag2; As2; Sh+
		1.71	
1.71-	+1.002 -	Dark brown silty peat	Nig 3; Strf. 0; Elas. 0; Sicc. 3;
2.0	+0.702	Dark brown silly peak	Lim. 0; Ag2; Sh2; Th+
2.0-	+0.702 -	Dark brown peat	Nig 3; Strf. 2; Elas. 1; Sicc. 3;
2.18	+0.522	Dark brown peat	Lim. 0; Sh3; Th1
2.18-	+0.522 -	Dark brown peat with	Nig 3; Strf. 2; Elas. 1; Sicc. 3;
2.46	+0.242	occasional wood fragments	Lim. 0; Sh3; Th1; TI+
2.46-	+0.242 -	Dark rod brown woody post	Nig 3; Strf. 2; Elas. 1; Sicc. 3;
3.26	-0.558	Dark red-brown woody pear	Lim. 0; Sh2; Tl1; Th1
3.26-	-0.558 —	Dark brown silty post	Nig 3; Strf. 0; Elas. 0; Sicc. 3;
3.32	-0.618	Dark brown silly pear	Lim. 0; Ag2; Sh2; Th+
3.32-	-0.618 —	Dark brown silty peat with	Nig 3; Strf. 0; Elas. 0; Sicc. 3;
3.38	-0.678	fine sand	Lim. 1; Ag2; Sh2; Th+; Ga+
3 38-	-0 678 –	Yellow-grey silty coarse	Nig 1; Strf. 0; Elas. 0; Sicc. 3;
3 4 9	-0 788	sand	Lim. 1; Ag2; Ga1; Gs1;
	0.100	ound	Gg(min)+

Table 8.2 Sediment descriptions of core BC02
--

Depth	Elevation	Description	Troels-Smith (1955)
(m)	(m OD)	Description	Description
0.0.47	+2.404 -	Dense brown tonsoil	Nig 2; Strf. 0; Elas. 0; Sicc. 4;
0-0.47	+1.934	Dense brown topson	Lim. 0; Strf. conf; Ag2; As2
0.47-	+1.934 -	Dense brown blue silt clav	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
0.79	+1.614	Dense brown blue silt clay	Lim. 0; Ag2; As2
0.79-	+1.614 -	Dense brown blue silt with	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
0.9	+1.504	organic patches	Lim. 0; Ag2; As2; Sh+
0.9-	+1.504 -	Grev brown blue silty clay	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
1.27	+1.134	Grey brown blue sity clay	Lim. 0; Ag2; As2
1 27-	+1 134 -	Brown blue silty clay with	Nig 2: Strf 0: Elas 0: Sicc 3:
14	+1 004	organic patches;	$1 \text{ im } 0^{\circ} \text{ Ag2}^{\circ} \text{ As2}^{\circ} \text{ Sh+}^{\circ} \text{ Th+}$
		increasingly fibrous 1.32-1.4	o,, o ,
1.4-	+1.004 -	Dark brown silty peat	Nig 3; Strf. 0; Elas. 0; Sicc. 3;
1.67	+0.734	Dark brown sitty pear	Lim. 0; Ag2; Sh2; Th+
1.67-	+0.734 -	Grey blue silty clay with	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
2.14	+0.264	organic patches	Lim. 0; Ag2; As2; Sh+
2.14-	+0.264 -	Dark brown silty peat	Nig 3; Strf. 0; Elas. 0; Sicc. 3;
2.44	-0.036	Dark brown sitty pear	Lim. 0; Ag2; Sh2; Th+
2.44-	-0.036 –	Blue brown silty clay with	Nig 2; Strf. 0; Elas. 0; Sicc. 3;
2.6	-0.196	organic patches	Lim. 0; Ag2; As2; Sh+
26-36	-0.196 —	Dark brown peat	Nig 3; Strf. 2; Elas. 1; Sicc. 3;
2.0-3.0	-1.196	Dark brown pear	Lim. 0; Sh3; Th1
3.6-	-1.196 —	Dark red brown woody peat	Nig 3; Strf. 2; Elas. 1; Sicc. 3;
4.16	-1.756	Dark led blown woody pear	Lim. 0; Sh2; Tl1; Th1
4 16-	-1 756 -	Brown black silty neat with	Nig 4; Strf. 0; Elas. 0; Sicc. 3;
1 20	-1.886	shell fragments / 18-/ 20	Lim. 0; Ag3; Sh1; test (moll.);
4.23	-1.000	Shell hagments 4.10-4.29	part.test.(moll.)
4 29-	-1 886 -	Yellow-arev silty coarse	Nig 1; Strf. 0; Elas. 0; Sicc. 3;
4 55	-2 146	sand	Lim. 1; Ag2; Ga1; Gs1;
+.00	2.170	Sana	Gg(min)+

Figure 8.4 Summary diagrams of the laboratory analyses of cores BC01 and BC02, including summary diatom assemblages, foraminifera abundance, loss-on-ignition and particle size results. Foraminifera summaries are not included as all identified were agglutinated species. Stratigraphic key follows that in Figure 8.3.

key follows that in Figure 8.3.

	Identifier	Elovation		Conventional	Cal Voars
Code	Core-		Sample	Radiocarbon Age	
	Depth (cm)	(mod)		(years BP ± 1 σ)	DP
SUERC-	PC01 105	+1 652	Pulk	2624 ± 25	3935
65976	BC01-105	+1.052	DUIK	3024 ± 33	(3841-4078)
SUERC-	BC01 110	±1 512	Bulk	2448 ± 37	2522
65980	DC01-119	1.512	Duik	2440 1 37	(2359-2705)
SUERC-	PC01 202	+0 692	Plant	2606 ± 27	2745
65981	BC01-202	+0.062	macrofossil	2000 ± 37	(2540-2791)
SUERC-	PC02 03	±1 474	Dulk	7556 ± 20	8376
65982	DC02-93	±1.474	DUIK	7550 ± 59	(8315-8425)
SUERC-	BC02 130	±1 10 <i>1</i>	Plant	1583 ± 36	1470
65983	DC02-130	1.104	macrofossil	1363 I 30	(1396-1550)
SUERC-	BC02-159	+0.81/	Plant	1630 + 37	1540
65984	DC02-133	10.014	macrofossil	1039 I 37	(1414-1616)
SUERC-	BC02 175	+0.654	Bulk	23/3 + 37	2356
65985	DC02-175	10.004	Duik	2040 I 37	(2209-2489)
SUERC-	BC02-259	-0 186	Bulk	3682 + 38	4022
65986	DC02-209	-0.100	Duik	5002 I 50	(3902-4145)

Table 8.3 Radiocarbon dates (analysis undertaken at NERC Radiocarbon FacilityNRCF010001, allocation number 1932.1015).

Figure 8.7 Chronology and age-depth model established using Bacon (Blaauw & Christen, 2011) for the dated sections of cores BC01 and BC02.

			Boot-	Modern Analogues					
Model	Component (% Change)	RMSEP	strapped	BC01				BC0	2
			r ²		С	G	Р	С	G
D-1	1	41.90	0.10	16	0	0	35	0	0
D-2	2 (6.15)	22.69	0.65	16	0	0	15	10	0
D-3	1	31.00	0.43	7	9	0	6	20	9
D-4	3 (7.51)	16.46	0.80	16	0	0	35	0	0
D-5	1	32.88	0.31	16	0	0	35	0	0
F-1	1	44.58	0.00	9	0	0	16	4	1
F-2	1	25.78	0.28	0	0	9	0	0	21
F-3	1	29.44	0.23	0	0	9	0	0	21
F-4	1	14.48	0.09	0	0	9	0	0	21
F-5	1	28.33	0.03	0	0	9	0	0	21
M-1	2 (5.37)	42.79	0.14	16	0	0	36	0	0
M-2	2 (5.15)	24.20	0.48	7	6	3	15	10	11
M-3	1	28.47	0.36	1	10	5	3	20	13
M-4	3 (7.51)	15.71	0.66	7	6	3	18	6	12
M-5	1	26.97	0.30	7	4	5	16	4	16

Table 8.4 Summary performance of the transfer functions (Table 6.1) and results ofmodern analogue analysis (P= poor; C= close; G= good) for cores BC01 and BC02.

ea-	
e S	
ativ	
ค	
e.	
ang	
ch	
the	
.⊆	
Ited	
ora	
Sorp	
ino	
een	
ot þ	
e DC	
ave	
ן Sr	
Stion	
rrec	
8	
idal	
⊢ ⊲i	
CO	
dВ	
an	
20	
В В	
Suce	
ы С	
fron	
eq	
quc	
bro	
lts	
poii	
ě	
ino	
svel	
a-le	
Se	s.
8.5	irro
ble	ele
Ta	e<

¹⁴ C Ag	9	Cal Ye	ars BP (+/- 2	2ơ range)	- Depth	Elevation	Reference	Corre	ection (m)	Change	
(Years BP +/- Min Meo 1σ)	Min Me(Me	dian	Max	(E)	(m OD)	Water Level (m OD)	Tidal	Compaction	in RSL (m)	Tende
2448 +/- 37 2359 25	2359 25	26	522	2705	1.19	1.512	4.078 +/- 0.387	-1.759	0.014	-0.79 +/- 0.39	Negative
2606 +/- 37 2540 27	2540 27	27	45	2791	2.02	0.682	3.899 +/- 0.335	-1.915	0.126	-1.18 +/- 0.36	Positive
1583 +/- 36 1396 147	1396 147	147	0	1550	1.3	1.104	4.019 +/- 0.373	-1.025	0.171	-1.72 +/- 0.41	Positive
1639 +/- 37 1414 154	1414 154	154	0	1616	1.59	0.814	4.024 +/- 0.378	-1.074	0.236	-1.90 +/- 0.45	Negative
2343 +/- 37 2209 235	2209 235	235	9	2489	1.75	0.654	3.952 +/- 0.377	-1.643	0.045	-1.61 +/- 0.38	Negative
3682 +/- 38 3902 4022	3902 4022	4022	~	4145	2.59	-0.186	3.982 +/- 0.369	-2.839	0.171	-1.16 +/- 0.41	Positive

Figure 8.8 Transfer function reconstructions for core BC01 based on the multi-proxy UK-Humber model, *M*-3. Dash symbol indicates good modern analogues, circle represents close, and square represents poor. Ages are based on the chronology established between the two accepted radiocarbon dates at +1.512 and +0.682 m OD (Figure 8.7); the ages beyond this range are extrapolated from the model.

Figure 8.9 Transfer function reconstructions for core BC02 based on the multi-proxy UK-Humber model, *M*-3. Dash symbol indicates good modern analogues, circle represents close, and square represents poor. Ages are based on the age-depth model between the four accepted radiocarbon dates at +1.104, +0.814, +0.654 and and - 0.186 m OD (Figure 8.7); the ages beyond this range are extrapolated from the model.

Figure 8.10 Six new sea-level index points (red plus symbol) with the existing tidalcorrected sea-level index points for the Humber Estuary: a) new sea-level index points with data from the inner and outer estuary, and b) new sea-level index points with data from the inner estuary only. Blue= outer estuary (east of Hull); green= inner estuary (west of Hull) Diamonds= limiting points; crosses= intercalated points; plus= basal points; all include associated individual vertical and age error bars.

9. Sea Level, Groundwater and Abstraction: Past,

Present and Future

Figure 9.1 Chloride concentrations at Springhead. Red data is from Foster *et al.* (1976); purple, green and blue are data from Yorkshire Water (graph based on data presented in ARUP (2016)).

Figure 9.2 Simplified superficial geology transects around the Springhead- Humber Estuary area based upon published borehole records (British Geological Survey, 2015); map of transect locations from Digimap (2016) © Crown Copyright and Database Right (2016) OS (Digimap Licence).

Table 9.1 Outline of the nine scenarios simulated using the East Yorkshire Chalk numerical model. Naturalised, recent actual and fully licensed refers to the abstraction conditions (section 5.8.3). Head boundary represents sea level at the boundary of the model, the northern bank of the Humber Estuary (section 5.8.3).

Sconario	Dariad	Veer	Abotraction	Sea-Level	Head Boundary
Scenario	Penou	rear	Abstraction	Change (m)	(m OD)
1	Palaeo	3000 BP	Naturalised	-1.2	-1
2	Palaeo	2000 BP	Naturalised	-0.4	-0.2
3	Palaeo	1000 BP	Naturalised	-0.2	0
4	Present	2016	Naturalised	0	0.2
5	Present	2016	Recent Actual	0	0,2
6	Present	2016	Fully Licensed	0	0.2
7	Future	2100	Naturalised	+0.73	+0.93
8	Future	2100	Recent Actual	+0.73	+0.93
9	Future	2100	Fully Licensed	+0.73	+0.93

Table 9.2 East Yorkshire Chalk model head and flow results at Springhead and Humber Estuary boundary cells (sections 5.8.3; 9.2.2) based on the nine scenarios (outlined in Table 9.1).

Scenario	Sprin	ghead	Estuary		
ocentario	Head (m OD)	Flows (m ³ d ⁻¹)	Head (m OD)	Flows (m ³ d ⁻¹)	
1	5.307	733.564	-0.217	283.319	
2	5.501	717.873	0.277	212.014	
3	5.54	714.704	0.362	211.349	
4	5.577	711.620	0.447	210.610	
5	-0.108	1312.476	0.214	74.645	
6	-2.835	1777.810	0.087	1.219	
7	5.715	701.177	0.756	207.166	
8	0.133	1319.266	0.536	79.019	
9	-2.493	1786.314	0.419	14.741	

Figure 9.3 Chalk groundwater head contour maps of the Springhead area under naturalised scenarios (scenarios 1-4 and 7).

238

Table 9.3 Ghyben-Herzberg relationship results at Springhead and the estuary boundary for each of the scenarios outlined in Tables 9.1 & 9.2. h= height of fresh groundwater above sea level, z= depth of freshwater below sea level assuming z=40h.

Seenerie	Sea Level	Groundwater	<i>h</i> (m)	= (m)	Saline Water				
Scenario	(m OD)	Head (m OD)	<i>n</i> (m)	z (m)	Depth (m OD)				
Springhead									
1	-1	5.307	6.307	252.28	-253.28				
2	-0.2	5.501	5.701	228.04	-228.24				
3	0	5.54	5.54	221.6	-221.6				
4	0.2	5.577	5.377	215.08	-214.88				
5	0.2	-0.108	-0.308	-12.32	N/A				
6	0.2	-2.835	-3.035	-121.4	N/A				
7	0.93	5.715	4.785	191.4	-190.47				
8	0.93	0.133	-0.797	-31.88	N/A				
9	0.93	-2.493	-3.423	-136.92	N/A				
Estuary									
1	-1	-0.217	0.783	31.32	-32.32				
2	-0.2	0.277	0.477	19.08	-19.28				
3	0	0.362	0.362	14.48	-14.48				
4	0.2	0.447	0.247	9.88	-9.68				
5	0.2	0.214	0.014	0.56	-0.36				
6	0.2	0.087	-0.113	-4.52	N/A				
7	0.93	0.756	-0.174	-6.96	N/A				
8	0.93	0.536	-0.394	-15.76	N/A				
9	0.93	0.419	-0.511	-20.44	N/A				

Estuary. Light grey= freshwater, dark grey= saline water. Arrows= direction of groundwater flow. Hatched area= below approximate base of Figure 9.7 Cross-sections representing the results of the naturalised scenarios (scenarios 1-4 and 7) between Springhead and the Humber Chalk aquifer; dashed line= potential pathway and layer of saline water at base of chalk.

Figure 9.8 Cross-sections representing the results of some of the present and future scenarios (scenarios 3-4 and 7-9) between Springhead and the Humber Estuary. Light grey= freshwater, dark grey= saline water. Arrows= direction of groundwater flow. Hatched area= below approximate base of Chalk aquifer; dashed line= potential pathway and layer of saline water at base of chalk. Red line= Springhead location.

