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Abstract

Cancer is a worldwide disease and, in the UK, breast cancer is the most common.
Compared to healthy cells, cancer cells migrate abnormally, associated with alter-
ations in cell motility and morphology. The development of biomedical imaging
techniques result in the production of large amounts of data. The analysis of such
large data, the variety of cancer cell shapes and the potential links between cell
motility and morphology present a challenge for cell migration study: how to
analyse cell motility and morphology simultaneously.

This thesis proposes a computational framework to address integrated can-
cer cell migration analysis. Firstly, automated tracking of cell boundaries is un-
dertaken by a discrete white noise acceleration (DWNA) kinematic model of cell
boundaries, described by B-spline active contours. The tracked cell states intrin-
sically links cell morphology to motility features. As a result, cell centroid and
boundary dynamics are successfully tracked, followed by quantitative motility
analysis.

A module to quantitatively analyse cell morphology is proposed after tracking.
Cell shapes are described by a 2D descriptor. Accordingly, cell morphodynamics
are modelled as a hidden Markov process, along with three shape states: round,
elongated and teardrop. In order to explore the potential interactions between
cell shapes and muotility, cell centroid motility characteristics are associated to the
identified shape states. When the analysis was applied to breast cancer control
cells, the identified shape states showed distinct motility characteristics.

Finally, the proposed framework is adapted to the comparison of MDA-MB-
231 cell behaviours with regulating migration-associated proteins: i) Blebbistatin
and Y-27632, which are chemical inhibitors of two different proteins working on
the same pathway, showed identical, but different degrees of effects on the motil-
ity and morphology characteristics of MDA-MB-231 cells. ii) The absence of FA-
associated genes, including focal adhesion kinase (FAK), RhoE and B-PIX, respec-
tively showed distinct effects on cell migrations.
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Chapter 1
Introduction

Cancer has existed for as long as human history, but in medicine, the first writ-
ten description was about breast cancer in approximately 3000 BC [55]. After
5,000 years, cancer has become a disease that affects everyone — male and female,
wealthy and poor, young and old — and is one of the leading causes of mortality
throughout the world. In the year 2012, cancer deaths worldwide were approx-
imately 8.2 million, accounting for 14.6% of all human death. Around 70% of
cancer deaths occurred in middle-income and low-income countries [162]. There
are more than 100 types of cancer. The top 5 most common causes of cancer
death worldwide are the lung, liver, stomach, colorectal and breast cancers [161].
If detected at an early stage, most types of cancer, such as colorectal and breast
cancers, can be cured with adequate treatments [162]. Thus, large amounts of sci-
entific research efforts have been invested into developing cancer diagnosis and

treatments.

In the UK, the most common cancer is breast cancer. 53,696 new cases were
diagnosed in 2013, of which 99% are females and 50% are over the age of 65
[27]. In developed countries, breast cancer is a common type of cancer, but has
high survival rates with almost 78% of women surviving over 10 years after their
diagnosis of breast cancer in the UK (2010-2011) [27]. Meanwhile, a list of breast
cell lines have been established since the first line in 1958, BT-20 [84], which acts
as a source for experimental testing of treatments, and as databases for scientific
study of the behaviour of breast cancers.

Cancer, which starts as an abnormal cell, is capable of travelling to multiple
sites through human blood and the lymphatic system through metastasis [109].
The migration of breast cancer cells has not been fully understood. A wide range
of research has been proposed based on the studies on the established breast can-
cer cell lines, such as studies of cells migration mechanisms [29], cell adhesion
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network [174] and to test different treatments that affect cell behaviour [120].

The challenges in studying breast cancer cell migration are in extracting in-
formation efficiently from the cell lines to analyse the cell features. The cell lines
can involve multiple cell migrations, which show wide variation on cell quantities,
motilities and morphologies. Different cell lines can be cultivated under different
conditions and the screening presented in various formats, such as phase contrast
images, fluorescent images and quantitative phase contrast images [182]. The data
complexity and diversity that emerges from the screening experiments requires a
framework that can extract information from cell lines and process the extracted
information to analyse cell migration characteristics. This thesis proposes a novel
integrated framework that consists of a module of automated multiple cell mi-
gration tracking based on time-lapse greyscale image sequences and a module of
statistical analysis of cell motility and morphology features.

This chapter begins with the motivation of the project in Section 1.1 and aims
and objectives in Section 1.2. The thesis structure is outlined in Section 1.3 and the

original contributions are summarised in Section 1.4.

1.1 Motivation

The development of time-lapse fluorescence microscopy techniques enables the
observation of cellular dynamics over time, which is primarily used for fundamen-
tal research of cell biology process or clinical in vitro fertilisation [37]. The large
amount of data in the image sequences give rise to the necessity of automated
visual tracking and computational analysis methods for describing the dynamic
cellular phenotypes.

Cell morphology contains information pertaining to particular cell behaviours.
For example, cellular senescence is depicted as cells of large flat morphology,
whereas proliferating cells maintain a balanced morphology through cell division
[88]. Most animal cells present elongated or spindle morphologies in interphase,
but round up to spherical shapes during mitosis [26]. In epithelial-mesenchymal
transition, the epithelial cells have apical-basal polarity, tight cell-cell junctions
and lose adhesions and polarisation. After transition, the invasive isolated mes-
enchymal stem cells are morphologically characterised by spindle-like shapes [83].
Notably, a collection of cell morphological signatures can indicate the activities of
specific signalling networks [6]. When combined with microenvironment read-
outs, cell shapes can be used to explore signal transduction [138].

Distinct cell states corresponding to different motility patterns underlie some

of the hypotheses for cell behaviour studies. For example, compared to epithe-
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lium, mesenchymal stem cells show much stronger migration ability [83]. In com-
parison with healthy cells, tumour cells present continuous migratory behaviour
in the absence of stop signals [48]. As such cell motility is generally used to quan-
tify the effects of chemical drug treatments. Various motility measurements have
been proposed, such as the migration distance, confinement ratio and migration
direction change [10].

To date, automated visual tracking and computational analysis methods have
provided various studies of cell motility and morphology independently. Auto-
mated visual tracking of cell centroids and subcellular molecular dynamics have
been widely employed to gain insight into understanding cell migration, lineage
structures and proliferation [10, 86, 92]. Cell morphology is studied separately
through computational analysis of morphology signatures that can contribute to
the investigation of chemical substance testing or gene expressions [174, 181].
These strategies for cell properties analysis are limited in either focusing on cell
motility descriptions that neglect cell morphology characteristics, or on statisti-
cal analysis of cell morphology signatures, disregarding motility characteristics.
This separate analysis can limit the insight into understanding cell behaviours,
such as cell cycle and epithelial-mesenchymal transition, which are schemes that
inherently link cell motility and morphology. Therefore, this thesis is aimed at
developing an integrated framework that includes dynamical system descriptions,
combined estimation of cell motility and morphology and characterisation of cell

migration states.

1.2 Aims and objectives

The aim of this thesis is to develop a dynamical systems modelling and estimation
framework to analyse the migration of breast cancer cells through the quantitative
analysis of cell motility, cell morphology and integrated analysis. According to
the aims of the framework, the objectives of the project are given as follows:

e Develop an automated visual tracking algorithm to perform the automated
tracking of multiple cells motility and morphology dynamics. The tracking
algorithm will be illustrated by applying to the time-lapse grey-scale image

sequences of breast cancer cells.

e Develop a quantitative motility analysis module based on the tracking re-
sults. The module will include the analysis of cell global dynamics, de-
scribed by cell centroid motility features, and local skeleton dynamics, de-

scribed by boundary motility features.
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e Develop a morphology analysis module by using cell morphology tracking
results. The objective of this module is to identify different cell states accord-
ing to their shapes and compare the motility characteristics of different cell
states.

e Apply the developed computational framework to quantitatively compare
the effects of chemical inhibitors on breast cancer cell migration. The com-
putational framework consists of tracking, motility analysis and morphology
analysis modules. The databases include the wild breast cancer cells, cells
treated by blebblistatin and Y-27632, respectively.

e Apply the developed computational framework to analyse the effect of focal
adhesion (FA) associated genes. The breast cell lines, MDA-MB-231, were
cultivated by depletion of genes: focal adhesion kinase (FAK), RhoE and
B-PIX.

1.3 Structure of the thesis

This thesis proposes an integrated framework for cell migration analysis, includ-
ing cell tracking, motility and morphology analysis . The structure of this thesis is
summarised as follows:

e Chapter 2 introduces the theory and techniques associated to computational
cell behaviour study. The mechanisms of cell migration are introduced in
this chapter. The basic estimation theory and discrete kinematic models
are reviewed. Additionally, a number of computational analysis methods,
including the image segmentation, shape representation and clustering al-

gorithms, are described.

e Chapter 3 proposes a framework for automated multiple cell boundary track-
ing, combined with statistical motility analysis. Cell boundaries are repre-
sented by B-spline active contours. Subsequently, the boundary tracking
is performed by using Kalman filter (KF) and Rauch-Tung-Striebel (RTS)
smoothing to track cell contours. The cell centroid and boundary motility
characteristics are analysed quantitatively based on the B-spline representa-
tions.

e Chapter 4 presents a cell morphology module based on cell boundary track-
ing results. Cell shapes are described by two dimensional descriptors that are
obtained by the application of Fourier descriptor (FD) and principal compo-
nent analysis (PCA). In addition, hidden Markov model (HMM) is applied
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to the shape descriptors. Three different cell shape states and their corre-

sponding transition characteristics are identified.

e Chapter 5 presents the application of the proposed framework. The com-
putational framework is used to perform quantitative comparisons of motil-
ity and morphology of breast cancer cells that were cultivated by chem-
ical inhibitors: blebbistatin and Y-27632. In addition, the computational
framework is utilised to quantitatively analyse the functions of adhesion-
associated genes: FAK, RhoE and g-PIX.

e Chapter 6 summarises the developed cell migration analysis framework and
the conclusions of the applications of the framework. Future directions for
this framework including its improvement and potential applications are

presented.

1.4 Contributions

The contributions of this work are summarised as follows:

e An automated multiple cell boundary tracking algorithm is presented and
illustrated by application to a time-lapse image sequence of wild breast can-
cer cells (Chapter 3). The work was presented at the 37-th International
Conference of the IEEE Engineering in Medicine and Biology Society as a
poster ‘High-throughput Tracking of Cancer Cells using Parametric Active
Contours and Kalman Smoothing’, co-authored with Julia Sero, Geoffrey
Holmes, Chris Bakal, Sean Anderson, Visakan Kadirkamanathan.

o A framework for cell migration analysis is developed (Chapter 3 and Chapter
4). The framework is constructed on a cell-centric scenery where the motility
and morphology information of cell migration is organised based on single
cell track. Intrinsic link between cell motility and morphology is performed
through tracking the dynamics of cell shapes represented by parametric ac-
tive contours. Cell states are explored by applying hidden Markov model
(HMM) algorithm to cell morphology characteristics. The cell-centric sce-
nario not only provides the information for single cell migration study, but

can also be aggregated for population level analysis.

e The proposed framework is used to analyse the effects of different biochemi-
cal inhibitors on cell migration and the functions of different focal adhesion-

associated genes (Chapter 5). The framework for cell migration analysis and
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the application are organised as a manuscript in draft form for submission
to an international journal,

- Yang Zhang, Julia Sero, Geoffrey Holmes, Andrew Hills, Sean Ander-
son, Stephen Renshaw, Chris Bakal, Visakan Kadirkamanathan. Inte-
grated Motility and Morphodynamics Analysis of Breast Cancer Cells.



Chapter 2

Computational Methods in Cell
Behaviour Study

The first written description of breast cancer occurred in approximately 3000 BC
[55]; since then, especially in modern times, cancer has become one of the leading
causes of deaths worldwide [55]. Cancers are capable of spreading to different
organs and tissues from an initial cancerous site through the lymph and blood
systems. This invasion process is called cancer metastasis, which is the major
cause of cancer-related deaths [161]. Therefore, cancer cell migration, which is
the basis of cancer metastasis, is a key mechanism that needs to be identified for

understanding particular forms of cancer progression.

Bioinformatics, which integrates techniques from the fields of computer sci-
ence, engineering, statistics and mathematics to analyse large biological databases,
has become an essential tool for biological systems study since its introduction in
the 1970s [59]. Specifically, signal processing techniques, such as mathematical
models linked with estimation theory, can assist the study of cell behaviours by
enabling the description of cell dynamics over time. These mathematical descrip-
tions can give efficient insight into key attributes of cell migration.

Furthermore, visualisation and pattern-recognition methods can be used to
statistically measure cell behaviours based on large-scale databases. The mea-
surements of dynamic cellular features can be used to assess and compare the

behaviours of different cells.

The computational methods used in this study to process large amounts of in-
formation about cell migration aim to give insight into cell dynamics. After an in-
troduction to cancer cell migration, including the basic mechanisms, cell lamellipo-
dia structures and adhesion dynamics in migration, are provided in Section 2.1;
an introduction to computational models used in this study is provided:
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e Estimation theory and discrete state-space models, which are necessary for

mathematical description of cell migration, are described in Section 2.2.

e Statistical methods for motility and morphology analysis are presented in
Section 2.3.

2.1 Cancer cell migration

Cancer, namely breast cancer, was first recorded in the Egyptian Edwin Smith
Papyrus, around 3000 BC [55]. In the 15™ to the 17™ centuries, doctors began to
determine the cause of death by dissecting bodies, and they regarded cancer as
a contagious disease [55]. Due to the development of microscope techniques in
the 18 century, cancers were discovered to be capable of spreading from one site
to another by travelling through the lymph nodes, which is known as metastasis
[53]. Today, cancer is defined as a set of diseases caused by the abnormal growth
of cells that are capable of metastasis to multiple organs [146].

Cancer, as a group of diseases, has caused deaths worldwide. In 2012, 8.2 mil-
lion people died because of the diseases related to cancers and 70% of these deaths
occurred in Africa, Asia and Central and South America [161]. In addition, most
cancer patients have cancer metastasis, which is the primary cause of mortality.
Therefore, a wide range of research focuses on understanding cancer metastasis.
This section first gives an overview of cancer cell migration, including the devel-
opment of biomedical imaging techniques, features of cancer cell migration, as

well as protrusions and adhesion dynamics in cell migration.

2.1.1 Biomedical imaging techniques

Biomedical imaging techniques are used to acquire images of biological and med-
ical phenomena in the interior regions of the body, such as organs, tissues and
cells [8].

Traditional fluorescent microscopy refers to an optical microscope that uses flu-
orescence and phosphorescence to mark proteins and generate fluorescence micro-
graphs for the visualisation of either the cells or sub-cellular molecular activities
[182]. In 2014, Eric Betzig, William Moerner and Stefan Hell introduced fluores-
cence microscopy into the nano-dimension and were awarded the Nobel Prize in
Chemistry [31]. Fluorescent microscopy usually requires the use of a set of so-
phisticated equipment, such that most operations heavily rely on the meticulously

trained research operators.
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High-throughput screening (HTS) was developed in the early 1990s at about
the same time as the first automated deoxyribonucleic acid (DNA) sequencers
were generated. HTS achieves high throughput by using high-content screening
and automated motorised microscopes. For example, an ultra-high-throughput
screening can screen over 100,000 compounds every day [155]. In 2010, an HTS
process with screening 1000 times faster than than previous conventional pro-
cesses was developed [1]. Recently, time-lapse data acquisition techniques were
added to HTS to monitor intracellular or cellular activities [57, 182]. Time-lapse
high-throughput microscopy, which was used in this project to capture the breast
cancer cell migration, provided a large amount of precise and informative digital
image sequences. The large scale and complexity of the data is a challenge for
further processing.

2.1.2 Cancer metastasis and cell migration

Cancer is originally caused by one or more DNA mutations that alter the normal
cell cycle and lead to unregulated proliferation with unusual cytological features.
Cancer metastasis starts from angiogenesis, which is the formation of new blood
vessels [167]. Angiogenesis supplies the necessary condition for the primary tu-
mour to find access to the bloodstream. Tumour cells attach to healthy cells and
invade new organs or tissues via the body’s blood circulatory system or lymphatic
system. The newly arrived cancer cells proliferate in the new site and may lead
to further metastasis [30, 164]. General cells, such as leucocytes and blood cells,
migrate in tissues following a sequence of temporally integrated steps [104]. Cell
migration is first activated by the extracellular matrix (ECM), which causes the
cells to be polarised along the migrating direction (see Figure 2.1a). The extra-
cellular matrix (ECM) exists in the extracellular space and consists of water and
molecules that are secreted by cells. Also, the ECM contributes to maintaining
cell structure and chemical balance and plays an essential role in regulating cell
dynamics [46]. Next, a protrusion of the cell membrane extends in the migration
direction and the cell generates new adhesion at the cell’s leading edge (see Fig-
ure 2.1b). Traction forces are generated because of the protrusion extension, which
then carry the cell body moving forwards (see Figure 2.1c). In the last step, the
tailing region of the cell breaks its original adhesion and contracts against the rest
of the cell body to complete the forward migration (see Figure 2.1d). During mi-
gration, cell motility and morphology vary continuously, along with the changes
in the extracellular environment [48, 127].

Invasive cancer cells migrate following the same basic mechanism as general

cells, but have their own characteristics, such that different migration modes are
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Nucleus
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Figure 2.1: Major steps of cell migration [104]. (a) Cell migration is driven by the
ECM; (b) A cell protrusion extends toward the migration direction and generates
new adhesions at cell leading edge; (c) Cell body is carried forward; (d) The cell
breaks the original adhesion on cell trailing edge, which is retracted against the
cell body.

observed during the cancer cell movement [151]. Depending on the interaction
between cells, the migration of cancer cells is divided into two types: collective
migration, in which cells have tight junctions, and individual cell migration, with

weak junctions between cells.

The individual migration mode is divided into two types according to the

mechanisms used by the cells to migrate. One is mesenchymal migration, where a
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Figure 2.2: Different migration modes of cancer cells [47, 48]. (a) Mesenchymal;
(b) Amoeboid; (c) Collective cells. The green lines around cells represent collagen
fibres, which are the major component of ECM.

Table 2.1: The comparison of cancer cells in different migration modes.

Modes Mesenchymal Amoeboid Collective
Diagram Figure 2.2a Figure 2.2b Figure 2.2¢c
e Flongated or e Sheets, strands,

e Rounded-shaped

spindle-shaped clusters or ducts

Morphology| [ ength:  50-200
;m engt: B e Length: 0-30 yum | e Large cell mess
e Cell-substrate ad- | o Weak  cell- .
hesive substrate adhesive | * Cell-cell adhesive
Motility e Smaller velocity: | e Velocity in range: | ¢ Higher invasion

0.1-1 pm/min 0.1-20 pm/min efficiency

cell is elongated and needs an ECM gradient difference to inspire the movement.
The other one is amoeboid migration where cells have rounded shapes and move
independently of ECM degradation [96].

With respect to cells in collective migration mode, they move in groups and
have strong communications between adjacent cells [5, 48]. A comparison of
cell motility and morphology characteristics is provided in Table 2.1 [47, 48].
Moreover, recent studies have proved that cancer cells are able to transition be-
tween different migration modes under certain treatments [96, 171]. For example,
mesenchymal-amoeboid transitions can be realised via changing the extracellular
environment by applying five different protease inhibitors simultaneously [163].
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Lamellipodia

winipodijjawie

Figure 2.3: Diagrams of lamellipodia. (a) The lamellipodia of a breast tumour
cell in a grey scale image; The light grey parts, highlighted by blue lines are lamel-
lipodia and the righion of dark grey is the main body of cell; (b) A schematic
representation of lamellipodia [139]: (A) filopodium tips; (B) bundle; (C) lamel-
lipodium tip; (D) actin meshwork.

2.1.3 Lamellipodia in cell migration

The Lamellipodium is a layer of broad and light cytoplasm structure and plays
an essential role in cell migration. Figure 2.3a shows the lamellipodia of a breast
cancer cell observed under a fluorescence microscope and Figure 2.3b depicts the
compositions of a lamellipodium.

Lamellipodia are formed through actin polymerisation (see Section 2.1.4), this
is used to monitor the behaviour of lamellipodia. Cell migration is led by lamel-
lipodia through the generation of protrusions, with a balance between lamellipo-
dia assembling at a cell’s front and disassembling at rear [85, 110, 139, 148]. Cur-
rently, researchers have been focused on how to regulate the actin polymerisation,
so as to affect lamellipodium-based cell motility. It was proposed that epidermal
growth factor (EGF)-activated chemotaxis can be used to stimulate lamellipodia
protrusion activities by using green fluorescent protein (GFP) tagging [36, 58]. At
the same time, lamellipodia extension can be controlled by restraining cellular
traction force and cell shapes, which indicates that lamellipodia not only relate to

cell motility but also to morphological characteristics [115, 137].

214 Cell adhesion dynamics and migration

Cell migration is generally activated by extracellular signals, such as ECM pro-
teins, changes in chemical gradients and mechanical forces [180]. Initially, cells
polymerise the actin filaments at the leading edge to generate protrusions on the
cell membrane towards the extracellular signal. The adhesions that connect the

cytoskeleton to ECM proteins then stabilise the protrusions, as lamellipodia and
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traction forces are generated at the same time. These forces contribute to the adhe-
sion disassembly at the trailing edge of the cells so that the cells are able to travel
forwards. Accordingly, cell migration is driven by the formation and disassembly
of cell adhesions [127].

Cell adhesion is a dynamic continuum structure, depicted in Figure 2.4. The
adhesion cycle consistes of adhesion assembly, maturation, growth and disassem-
bly [116]:

e Adhesion assembly: Cell migration begins with an extension of the protru-
sion at the leading edge, where nascent adhesions are formed. At this stage,
the protrusions are not stabilised, but the adhesions strengthen the poly-

merisation of actin at the leading edge, so as to generate the protrusions.

e Adhesion maturation and growth: The nascent adhesions are linked to ac-
tomyosin that exist in the lamellum area so that they become mature as ad-
hesion complexes and focal adhesions stabilise lamellipodia. Although it is
still not clear how adhesion maturation is accomplished, myosin II is shown
to be able to generate the tension to sustain adhesion maturation by the Rho
activation, which is regulated by the actions of Rho-associated protein kinase
(ROCK) [33].

e Adhesion disassembly: At this stage of adhesion maturation, some nascent
adhesions, are not able to merge into the lamellipodium and lamellum. In-
stead, they disassemble at the cell front when the lamellipodium moves.
Disassembly also happens at cell retracting areas, including the cell front
and rear.

As introduced above, cell migration is driven by adhesion dynamics, which
are regulated by protein expressions, such as myosin II actin polymerisation and
ROCK. Hence, cancer cell migration is expected to be regulated by the control of
the adhesion cycle or adhesion-associated proteins. The cell adhesion network,
as a highly informational and complex system, incorporates over 180 nodes of
protein to protein interactions [178]. However, most of those proteins and the
way they cooperate are still not fully explained, which leads to the necessity for
these protein-related experiments and for an integrated analysis framework for
the results analysis.

2.2 Estimation and discrete state-space models

Systems biology combines the techniques from system engineering, statistical anal-
ysis, biophysics and other fields for the quantitative or qualitative study of biolog-
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O Disassembling . Focal Focal bundle or filament
adhesion complex adhesion

Figure 2.4: Cell adhesion dynamics. Adhesion dynamic is a continuous and
cyclical system, which consists of adhesion assembly, adhesion maturation and
growth and breakdown of adhesion [116].

ical systems [40, 149]. Mathematical and computational models are commonly
constructed to explain and characterise the underlying mechanisms [45, 123].

Parameter estimation is a typically static estimation problem. Generally, the
system is represented by regression type equations, where parameters are constant
over time [7]. Cell boundary contour estimation can be thought of as a parameter
estimation problem. State estimation is a dynamic estimation problem. The state
space model representation is required and model parameters need to be known.
The variables are dynamic and harshly measured, requiring reconstruction from
observed variables [75, 80]. Cell velocity and position estimation as well as cell
shape tracking can be considered as problems of state estimation. Slowly changing
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parameter estimation can be represented as a state estimation problem with a
suitable model characterising the nature of slow variation. In some problems of
state estimation, model parameters may be unknown. In this case, the problem
becomes a state and parameter estimation problem, such as in a HMM.

2.2.1 Non-Bayesian parameter estimators

Parameter estimation (static estimation) problems are described as follows [7].

The measurements z, are given by
zy = h(n,0,w,) n=1,---,N, (2.1)

where /(-) is the function relating the parameters to the measurements. n € Z is
the index of measurements and is in the range (0, N|, 6 is an unknown parameter
that is assumed to be time invariant, and w,, is the disturbance. The estimation
task is to find a function of the N observations

Oy £0(N, 2) (2.2)
This function is called the estimator and Z is a set of observations,
22z, (2.3)

with the estimation error given by,

™
(>

>
|

>

(2.4)

Maximum likelihood estimator

In the case of non-Bayesian parameters, a likelihood function, Az(6), which is
obtained from a probability density function (PDF) of the observations given by
the parameters, is constructed to measure how likely the observations are to have
arisen from the the chosen value of parameters,

Az(8) 2 p(Z]6) (2.5)

The maximum likelihood (ML) estimator is then computed by maximisation of the
likelihood function [7],

OML = argmax Az (6) (2.6)
0

For example, for a set of measurements with independent and identically zero-
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mean Gaussian distributed noise w ~ N(0,0?).
Zn = 0+ wy n=1---,N (2.7)
where 0 is an unknown constant parameter. Thus,
zn ~ N(6,0?) (2.8)

According to the definition (2.5), the likelihood function is constructed as:

N
Az(0) £ p(z1,--- 28| 0) = HN(Zn;Q,O'Z)
n=1
I S R R

(v2mo)N

— ce_ﬁ Lot Z%e_ﬁ(Nez_ze Lot 2n)

where,
=L (2.10)
(V2mo)N
fi(E) = e e B 2.11)
£(2,0) = e 2z (NP-2Liz) (2.12)

The ML estimation of 0 is then computed by maximising the likelihood function
through setting the first derivative equal to zero.

dAz(8) df(Z,0)
B 077 0

(2.13)

A 1 N
= ML — N Y zn=2 (2.14)
n=1

In (2.14), it is seen that the ML estimation is equal to the mean value of the mea-

surements. The expectation of estimation error is:

N

E@)=E0—-0) =E(zy —wy —2z) = E(wy) =0 (2.15)

It shows that the ML estimate is unbiased when the noise w,, is zero-mean Gaus-
sian distributed [7, 118].
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Least squares estimator

The least squares (LS) method is another common non-Bayesian estimation. Given

the measurements
zp =h(n,0)+w, n=1...N (2.16)

the corresponding LS estimator is derived by the minimisation of quadratic esti-
mation errors [91, 145, 145]:

N

0%’ = argmin] = argmin | ) [z, — h(n,6)]? (2.17)
0 0 n=1

If wy is assumed to be independent and identical zero-mean Gaussian dis-

tributed random noise of variance ¢, the measurements satisfy z, ~ N (h(n,0),02).

The likelihood function can be calculated as
1 Y . 2
AO) =p(z1,---,z2n|0) = cexp ~552 Z [zn —h(j,0)] (2.18)
n=1

Comparing (2.17) with (2.18) indicates that minimising the quadratic estimation er-
rors is equivalent to maximising the likelihood function. The LS estimator, hence,
coincides with the ML estimator [3, 7].

Additionally, h(n,6) can be either a linear or non-linear function of parameter
6, corresponding to either a linear or non-linear LS estimation problem, respec-
tively. Because of the linear static models involved in the project, the linear LS

problem is described here. Given a linear measurement vector

z=HO0+w (2.19)

IRNXM

where z € RY is the vector of measurements, H € is the measurement

matrix, 6 € RM is the parameter vector and w € RY is the vector of measurement

errors. The quadratic error
J(0) = (z—HO)" (z — HO) (2.20)
is minimised by setting the first derivative of J(6) with respect to 6 to 0:

d(]d(:>) =20'H'H-22"H=0 (2.21)

The linear LS estimator is then calculated as

0" = <HTH>71 H'z (2.22)
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The LS algorithm, furthermore, has a recursion feature such that it can be
written in a recursive form, and this leads it to be capable of solving the problems
of time series models. For example, the iterative least squares and recursive least
squares methods are derived according to the LS estimation and have been applied
to the parameter identification for the controlled autoregressive moving average

models [166] and output error moving average systems [60].

2.2.2 Bayesian parameter estimators
Maximum a posteriori estimator

In Bayesian estimation, parameters are viewed as random variables and hence ad-
mits distributions. Hence, a prior distribution p(6) for the parameter 6 is assumed
as a Gaussian variable with mean value 0 and variance o7 (i.e., 0 ~ N (0,02)). The
maximum a posteriori (MAP) estimator can be derived by evaluating the posterior
PDF from the Bayes’ rule,

p(6|2) = ”(Zp‘(?)p ©) (2.23)

which involves the likelihood function in (2.9) and where the posteriori PDF is,

(6] Z) = cf1(2)f2(Z,0)p(0)

p(Z)
Cfl(Z) 1 1 >
= [ N6? =20z, | - — (60
p(2) Varoy e"P[ 202 ( ZZ 2
_cfi(z) 1 exp _ Nog +7? 2_2‘70 Y01 Zn -HTZ@ o0
P(Z) /270y 20203 Nog + 0?2 ko + o2
1 1 )
= f3(Z —55 (0-8(Z 2.24
F(Z) e ep | =502 (0-E(2) @24)
where,
s
o7 = _Wfaz (2.25)
U Z Zn+0'29
{(z)=-=2 Naé e (2.26)

i) 1 o0
f3(2) = Wexp !—%’12 <—§(Z)2 + W) (2.27)
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Hence, the MAP estimator that seeks to find the mode of the a posteriori distribu-
tion gives,

OMAP(Z) = argmaxp(0 | Z) (2.28)
0
d(p(6|2)) _ GMAP _
=0 = MT=¢(2) (2.29)

If the prior PDF has 0y — co, MAP estimator is
A 1 ~
GMAP(Z2) = F(2) = N n)_;lzn —z =M (2.30)

The assumption of oy — oo, which causes the prior PDF being equivalent to a uni-
form distribution, makes the MAP estimator coincide with the ML estimator. The
prior adds a bias to the maximum likelihood estimate but improves by reducing

its variance, which can be useful in solving ill-posed problems [7].

Minimum mean square error estimator

The minimum mean square error (MMSE) estimator is applied in the Bayesian
setting when a prior PDF of parameter is given, and the estimator is computed by

minimising the mean squared errors:

OMMSE — argminE [(0 — 0)? | Z] (2.31)
0

The first derivative of the above function is

dE [(6 - )| Z]
do

=20-2E(0 | 2)=0 (2.32)
The MMSE estimator, hence, is
OMMSE —E(9 | Z) (2.33)

which is the conditional expected value of 6, given the observations.

With the assumption of Gaussian distributed 6, the MAP estimator equals the
mean value of the conditional Gaussian PDF in (2.24). Therefore, the MMSE esti-
mator coincides with the MAP estimator.

As mentioned above, an estimate computed from different approaches with
different constraints can be the same under specific cases. The ML estimator,
as a non-Bayesian approach, coincides with the Bayesian MAP estimator with a

diffused Gaussian prior PDF that indicates the ignorance of prior information.
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For the non-Bayesian approaches, the LS estimate of a system with independent
and identical zero-mean Gaussian disturbance coincides with the ML estimate.
For the Bayesian approaches, the MMSE estimate of a Gaussian variable coincides
with the MAP estimate.

In practice, non-Bayesian approaches are commonly applied to the cases lack-
ing reliable prior knowledge; otherwise Bayesian approaches are used. The ML
estimator is applicable when large amounts of data are available so that unbiased
estimation can be carried out. Compared to the ML estimator, the LS estima-
tor does not require any assumptions about noise distributions and hence needs
less parameters to estimate. This results in the data being used more effectively
[61]. The derivation of the MAP estimator is completely model-dependent (Sec-
tion 2.2.2) so that errors can be easily caused by inadequately selected models and
distributions. The MMSE estimate given in (2.33) is actually the expected value
of the posterior parameter, and it is generally calculated according to Bayes’ rule
(2.23), instead of being given directly.

2.2.3 Discrete-time kinematic models

Kinematic models can be defined directly in discrete time and correspond to phys-
ical characters of the described motions. Discrete-time linear stochastic systems

can be represented by a discrete-time state-space model,
xt41 = Fixp + Gyup + Ty (2.34)

where x; is the state at time index ¢, F; is the system state matrix and G; is the
gain of input, u;, and I is the gain of process noise, w;, which is defined as a
sequence with zero-mean and variance ¢2. The covariance of process noise then
can be calculated as

Q; = E[Twiw T/ | = T[0T, (2.35)

where,
E(wiw;) = 026 (2.36)

The discrete-time measurement z; is given in (2.37), which is represented by a

measurement matrix H; and a zero-mean measurement noise v; of covariance R;.
Z; — HtXt + vy (237)

The measurement and the process noise sequences are assumed to be uncorre-
lated.
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According to (2.34), a kinematic system without an input sequence is directly

defined in (2.38) with a zero-mean white noise sequence w.
Xt+1 = FXt + l"wt. (238)

In practice, kinematic models are derived from Newton’s laws of motion with
the assumption of constant velocity or constant acceleration. These models are
known as discrete white noise acceleration (DWNA) and discrete Wiener pro-
cess acceleration (DWPA) models and are related to second-order and third-order

models, respectively [7].

Discrete white noise acceleration model

The DWNA model is defined by assuming that the object is moving with constant
acceleration a; from sampling time tAT to (t + 1)AT, where AT is the sampling
period, so that it is also known as constant velocity (CV) model. According to this

assumption, velocity v; has following relations:

Oty1 = Ut + atAT (239)
and the position is
ar+ap1)AT AT?
Pr+1 = pt + (tth) = pr T AT +a—— (2.40)

Therefore, the second-order kinematic model is constructed as follows:

1 AT AT
Pret | PRl 2 |a (2.41)
Utt1 0 1 o AT
T
Compared to (2.38), the state x; = [ pr U } and process noise is the assumed

acceleration (i.e., w; = a;). The state matrix F and noise gain matrix I' are given as

AT2
r=| 2
[AT

The covariance of the process noise, according to (2.35), is then computed as:

follows:

(2.42)

AT AT®
Q=rc’r' = | % 2 |2 (2.43)

AT? 2
5 AT
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where, 0, has the same physical dimensions as acceleration. Practically, oy, is set

up in the range of [0.5ap, ap1], where ay; is the maximum acceleration [7].

Discrete Wiener process acceleration model

The DWPA model is also known as constant acceleration (CA) model. The model
is constructed based on the assumption that the acceleration increases from sam-
pling time AT to (t + 1)AT with zero-mean white noise sequence wy. The model

is then constructed as follows:

Xt41 = Fx; 4+ T'w; (244)
where
-
Xt = { pr Ur ap } (2.45)
2
1 AT AF
F=]0 1 AT (2.46)
0 0 1
AT?
2
I'=| AT (2.47)
1

The covariance of noise term I'w; is computed as shown in (2.48). In applications,
0w is generally set up in the range of [0.5Aay, Aay], where Aayy is the maximum

value of acceleration increments during sampling interval.

AT*  ATS  AT?

4 2 2

Q=TT = | 2 AT2 AT |3 (2.48)
AT?
AT AT 1

2

The direct discrete kinematic models became popular because of their links to
the actual physical processes (i.e., position, velocity and acceleration), especially
for fixed sampling intervals. The second-order and the third-order models can be
applied as either isolated or combined in the same system. For example, in the
prediction of pedestrian path, multiple models, such as CV, CA, constant turn (CT)
models, are applied in the same system to predict pedestrian position, velocity,

acceleration and turning, from the image sequences [134].
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2.2.4 State estimation in discrete-time dynamic systems

A discrete-time dynamic system is described as follows:

xt41 = Fixt + Gyup + Ty (2.49)
Zy — Htxt + v (250)

where x;, u;, I't and w; denote the vectors of system state, input, gain of process
noise and the noise, respectively. z; and v; are the vectors of measurement and
measurement noise. This dynamic system is assumed to have following properties:

e The process noise satisfies w ~ N (0,0, ), and therefore T'w; is zero-mean

Gaussian variable with covariance Qy, derived in (2.35).

e The measurement noise v; is zero-mean Gaussian variable with covariance
R;.

e The noise w; and v; are mutually independent.

The fundamental equations of linear estimation are derived from the posterior
PDF p(x | z) of a static system, where x and z are assumed to be jointly Gaussian

[7]. The equations include a conditional mean and the corresponding covariance:
X 2 E(x | z) =X+ Py,P,l(z —Z) (2.51)

Pxx\z £ COV(X | Z) = Pyx — szP;zll)zx (2.52)

where x ~ N'(X,Pxx), z ~ N(z,P;;) and Py, = E [(x —X)(z —Z) | = P,

Kalman filter

The dynamic system described in (2.49) and (2.50) can be regarded as recursive
linear static estimation such that the state at time t 4- 1 is estimated from previous

moment ¢. The X is substituted by X, ; that can be calculated through

X1 = E(xeq1 | 2') = B(Fx¢ + Goug + Ty | 2)
= X1 = Fikyp + Grug (2.53)

where Z! = {z;,...,z}. The prediction error and the corresponding covariance
are

it+l‘t - Xt+1 - )A(t_;’_l't — Ftit‘t + rtCUt (2.54)
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E (XXt | 2') = FE (X% ) F/ + E(Trwpwo T)
= Py = FPyFl +Qy (2.55)

The predicted measurement Z is then substituted by 2,

E(zi11 | 2') = B(Hipaxe1 + o | 2Y)
= 2y = Hea X (2.56)
The measurement prediction error and the covariance that is the substitute of Py

are

Ziqp = Hea X ) + 061 (2.57)
St+1 = Ht+1Pt+1|thT+1 + Rit1 (2.58)
The substitution of Py, is the covariance between state and measurement that is

E(X; 11 Z¢ 1) | 2') =B (Xt [Hipa X + vl | 2°)

:Pt+1|thT+1 (2.59)

Subsequently, according to (2.51), the estimated gain is
— (% .5 neT  _ T g1
Kiv1 = E(Xep1)Zese | 27)Si01 = Py Hia Sy (2.60)

In dynamic systems, the estimated state X, 1, and covariance P, };;1, according
to (2.51) and (2.52), are represented in the form

Xpi1)41 = K1) + Ker1 (Ze4q)r) (2.61)

Pt+1|t+1 = Pt+1|t - Kt+1Ht+1Pt+1\t = Pt+1|t - Kt+15t+1KtT+1 (2.62)

The above linear dynamic state estimation is the KF, whose applications in-

clude the evolution of state and measurement, and it is overviewed in Figure 2.5

[7].

If the system is represented as a non-linear model, given in (2.63) and (2.64), the
KF is extended to the non-linear estimation. For example, the extended Kalman
filter (EKF) follows the same process as the KF and linearises the non-linear func-
tion f and h by Jacobian matrices and current estimation to perform the covariance
computation [43, 72]. Since the non-linearity becomes higher, the Jacobian matrices

calculation becomes challenging and the large errors generated from linearisation
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Figure 2.5: Flow diagram of the KF

results in the poor performance of EKF.
Xer1 = f(xp,up) + wy (2.63)

Z; = h(Xt) + v (264)

The unscented Kalman filter (UKF) applies an unscented transform to generate
the samples of the same mean and variance with x;;, then recovers the estimate
mean and covariance by propagating these samples through the non-linear tran-
sition and measurement functions. The UKF has been demonstrated to be able to
provide more accurate estimates than EKF for highly non-linear cases [43, 70, 71].

In this thesis, application of the non-linear estimation was not required.

Interacting multiple model estimators

When a system’s behaviour cannot be characterised by a single model, multiple
models can be adapted appropriately with respect to the observations to obtain a
better system description; this is called the multiple model approach.

The interacting multiple model (IMM) algorithm is able to estimate states of
a system including different dynamic modes. It runs filters under finite number
of possible models in parallel and combines the results according to the previous
models for the state estimation [20, 98].
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Figure 2.6: The algorithm of the IMM estimator [7].

An IMM estimator of a dynamic system of two models (M) i = 1,2) is
521‘ ;1 and covariance PE?H 1
(07)

t—1[t—1

demonstrated in Figure 2.6. The previous estimate X

are selected as the input. Firstly, mixed initial condition X and covariance

p(®) (il7)
t=1[t—1 t—1]t—1
ondly, the filter is matched to different models and run in parallel to calculate the
E‘] t) , £|] t) and likelihood functions ASJ ) by
using the mixed initial condition and observations z;. The mixing probabilities

‘ut(] ) are then updated by combining the likelihood functions Agj ). The estimate

are calculated by applying mixing probabilities p to the input. Sec-

model-conditioned estimates X,;/, covariances P

and covariance are updated as a mixture of the model-conditioned estimates and

covariance [7].

The modular structure of the IMM estimator makes it possible to be applied
to either linear or non-linear model by setting up KF or EKF in the corresponding
behaviour modes. In practice, IMM has been widely applied to the target tracking
systems, such as the Global Positioning System (GPS) [68], air traffic management

system [165] and human motions tracking [87].
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2.2.5 Hidden Markov models and expectation maximisation

Given a time sequence {xy, - - - ,xr}, the joint distribution is

T
p(xll e /XT) = HP(Xt | X1, /xt—l) (2‘65)
t=1
Assuming that the conditional distribution, p(x; | x3,---,X;—1), is dependent on
the most recent observation, a first-order Markov chain is constructed as the dia-
gram in Figure 2.7a and the joint distribution for the data sequence is

T
p(xi,---,xp) = px) [ [ p(xt | xi=1) (2.66)
t=2
According to (2.65) and (2.66), the conditional distribution of x; given all previous
observations is
p(xe [ X1, xe-1) = p(xe | x4-1) (2.67)

which indicates that the predicted distribution of x; depends only on x;_;.

In order to not be restricted to the Markov assumption of the model orders, a
latent variable x; is introduced to control the corresponding observation z;. Mean-
while, x; is assumed to be a first-order Markov chain. The joint distribution for

the observations and latent variables is given by

T
p(z1,...,21,%1,...,x7) = p(x1) [Hp Xt | X¢_1 ]Hp(zt]xt) (2.68)
=1

which indicates that any two observations z;, and z;, are connected through latent
variables (see Figure 2.7b). Therefore, the prediction of z;,;, depends on all the
previous observations. The model with discrete latent variables in a Markov chain
is a HMM.

With respect to a HMM with binary latent variable of K discrete states, the
conditional distribution p(x; | x;_1) corresponds to a transition matrix A € RK*K,
where the elements represent the transition probabilities from the state at time
t —1 to the state at t:

A =plxix=1]x-1;=1) (2.69)

where j and k are the indices of row and column of matrix A and x;; denotes the

state k of latent variable at t. The transition probabilities satisfy

Y Apg=1 0<Ap<1 (2.70)
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Figure 2.7: Diagram of HMM [17]. (a) A first-order Markov chain, where
{x1,X%2,...,xr} is a set of observations. (b) A model of sequential data, of which
each observation z; is conditioned on the corresponding latent variables x;. At the
same time, the latent variables form a Markov chain. (c) Transition diagram of
a HMM with three states, i.e., K = 3. The red, green and blue squares represent
three different states of latent variables and the black arrows indicate the transition
matrix, where Aj indicates the transition probability of latent variables changing
from state i to k from moment ¢t — 1 to ¢.

and can be depicted in a transition diagram, where the states of latent variables
are represented as nodes, shown in Figure 2.7c.

The conditional distribution is then given by

K K
pxi | xi1, A) =TT 1Ak (2.71)

k=1j=1
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When t = 1, a marginal distribution is

—~

px | ) =[] (2.72)

k=1
where 71, = p(x1 ) and Y&, 7, = 1. With respect to the probability model, emis-
sion probabilities are defined as p(z | xi, Bp), where 0, is the set of parameters
of the distributions. Additionally, the joint probability for the observations and
latent variables is

T T
p(Z2,X[8)=p(x|m) [HP(Xt | xt—le)] [T p(zm | xm, 6p) (2.73)
t=2 m=1

where Z = {z1,...,z7} is the set of observations, X = {xy,...,xr} is the set of
latent variables and 0 = {K, A, 6,,} is the set of parameters of the HMM [17, 101].

The parameters involved in the HMM are commonly identified using the ex-
pectation maximisation (EM) algorithm, which identifies the parameters by max-
imising a likelihood function. The EM algorithm is demonstrated in Section 4.3.1
and the general steps are summarised as follows [16, 17, 105]:

Bold

e Initialise the model parameters, randomly or according to the prior

knowledge about the system.

e Calculate the posterior distribution, p(X | Z,6°%), using the current param-
eters, so as to evaluate the expectation of the log likelihood of complete-data,
Q(6,6°%) (E-step).

e Calculate the new parameters, §"°“, by maximising the function Q(8,6°7)
(M-step).

o If the log likelihood is not converged, the parameters are updated by setting
6°'Y « 9" and the algorithm goes back to E-step.

In summary, HMMs model the sequence data with hidden states that are as-
sumed to be a Markov process. They have been extensively used in temporal data
analysis, such as speech recognition, precipitation modelling [113] and biological
sequence analysis [175].

2.2.6 Smoothing for discrete-time state-space models

State smoothing applies data interval Z/ up to future moment j to estimate states
at j and it is defined by,
% =E[x | 2], j>t (2.74)
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According to the relationship between j and ¢, the state smoothing is classified
into the following types [7, 23]:

e Fixed-interval smoothing: The measurement data interval of fixed length is
applied to estimate the interior states (i.e,, j=T,t=1,2,...T).

e Fixed-point smoothing: It is an estimation of the state at fixed moments by
adding the measurement ahead iteratively (i.e, j =t +1,t +2,... with fixed

value of j).

e Fixed-lag smoothing: In this case, the state is estimated along with the
time by using the measurement interval with the fixed time lead 7 (i.e.,
t=0,1,2,... and j =t + 7).

Fixed-interval smoothing is commonly applied along with the corresponding
filter for the processing of noisy measurements off-line. For example, the Rauch-
Tung-Striebel (RTS) smoother can work backwards after the KF estimator for linear
Gaussian dynamic models. The extended RTS smoother cooperates with EKF for
non-linear models [133]. A RTS smoother consists of a calculation of smoothing
gain, states smoothing and the update of the smoothed state’s covariance (see
Figure 2.8a). It is initialised by the last estimated states after the KF estimation and
iterates backward to the first moment states. A cooperative application of forward
running KF and backward recursion RTS is demonstrated on a DWNA model,
which was introduced in Section 2.2.3 and the results are shown in Figure 2.8b.
It is seen that the smoother significantly smoothes the errors introduced by the
random initialisation. Explicitly, the smoothed position is seen to more quickly,

less noisily and accurately follow the real situations, as does the velocity.

2.3 Methods for motility and morphology analysis

2.3.1 Overview of object tracking

Object tracking is the process to regenerate the spatial and temporal trajectory of
an object and it is widely applied in vehicle navigation, visual surveillance and the
study of unfamiliar objects” behaviours. Numerous tracking approaches have been

proposed and two issues, in general, are addressed during the tracking process:
e A suitable object representation for tracking.

e Tracking methods selection according to the object representation.
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Figure 2.8: The demonstration of a RTS smoother. (a) The diagram of a RTS
smoother; (b) State estimation and smoothing of a DWNA model by KF and a RTS
smoother where the position and velocity estimation and smoothing are given in
subfigures (b.1) and (b.2), respectively.

The object representation is deemed to capture the object’s spatial features,
which is the basis of temporal analysis. The representation is required to be easily
detected and efficiently represented. According to the object’s geometric proper-
ties, the commonly used representations are of the following three types [173]:

e In the scenarios of tracking of small-sized objects or a large number of ob-
jects, the objects are generally represented by points. For example, the local-
isation of a specific kind of protein is often tracked to analyse its functions
[21]. Kadirkamanathan et al. studied the neutrophil chemotaxis patterns in
vivo through the estimation of the multiple cell tracks using a cell centroids
tracking approach [73].

e Simple geometric shapes such as ellipses and rectangles are used to represent
rigid objects. For example, a rectangular tracking window was applied to

handle visual tracking and recognition problems [177].

e Contours, a representation of object boundaries, are used for non-rigid ob-
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jects tracking; for instance, human motion tracking from the dance videos
or the tracking of cell divisions, where the target object presents irregular
shapes [34, 147].

The object representations mentioned above correspond to different tracking
methods [69]:

e Points tracking problems can be described as the frame-to-frame correspon-
dence identification of points that represent objects. In respect of the as-
sumptions of point correspondence, tracking methods are separated into
deterministic and statistical methods. Deterministic methods define a cor-
respondence cost using different motion constraints, such as the assump-
tions of limited location and velocity changes across consecutive frames [65].
Statistical methods, on the other hand, solve object correspondence by em-
ploying the measurement of object state with the consideration of model
uncertainty; for example, performing the tracking of a single object state,
which is assumed to be Gaussian distributed, of a linear system using a KF
[69].

e Kernel tracking, which refers to the problem of tracking objects represented
by geometric shapes, is performed by describing the motion of the object
frame-to-frame through parametric geometric transformations, such as trans-
lation, rotation and affine transformation. Tracking can be carried out based
on either single or multiview appearance models. For example, the mean-
shift tracking algorithm estimates the object translocation through maximis-
ing the similarity of colour histograms of predefined object regions between
consecutive frames [35]. In addition, Yu et al. proposed an approach that
uses mean-shift tracking of the weighted spatial histogram of the back-
ground combining multi-scale models of objects to solve the problem of
scale-changed object tracking [176].

o Silhouette-tracking algorithms describe object shape accurately in every frame
using object edges, colour histograms or contours. These tracking meth-
ods are classified into two categories: (i) shape matching, and (ii) contour
tracking. Shape matching identifies an object by maximising the similarity
between the current frame and the constructed shape model. Huttenlocher
et al. first proposed shape recognition from rigid motions using edge-based
representation and Hausdorff distance between the object model and the im-
ages. The Hausdorff distance is a correlation surface, where the minimum is

the location of the object [62]. Unlike shape matching, contour tracking uses



Chapter 2. Computational Methods in Cell Behaviour Study 33

an energy function to evolve object contour from the previous frame [12].
For example, Zimmer et al. proposed an energy function that integrated the
repulsive forces and ‘topological operators” into a classical ‘snake” model to

perform tracking of contacting cells and cell divisions [185, 186].

In summary, with regard to the particular representation of objects, tracking
methods are divided into three categories: points tracking, kernel tracking and
silhouette tracking. Approaches in points tracking segment the objects from the
frames first and link up the detected point features across the frames, separately
[172]. Whereas, the kernel and silhouette tracking approaches perform object de-
tection and correspondence establishment jointly during the estimation of object
statement from the previous frame. Compared to the tracking of the object re-
gions, point tracking is more straightforward in object detection but sacrifices the
appearance characteristics of the objects. Kernel tracking keeps the information
about object appearance using geometric shape representation, but which is only
applicable to rigid object tracking. With respect to silhouette tracking approaches,
object appearance, including rigid, non-rigid shapes and even topological changes,
are mostly tracked. However, the complexity of shape descriptions leads to a re-
striction on the number of tracked objects [172, 186].

The object-tracking approaches have been widely applied to different fields,
such as the video-based traffic monitoring, human-computer interaction and ul-
trastructural investigation under the electron microscope. A challenge in object
tracking is to extend the traditional approaches to satisfy the different tracking re-
quirements of a particular scenerio. One popular solution is to involve additional
sources of object information, such as prior knowledge and contextual informa-
tion. Jo et al. introduced a synergistic framework for integrated vehicle and lane
tracking modules, in which both tracking performances were improved by util-
ising contextual information [68]. The road tracking was improved by using the
vehicle tracking results to reduce the errors, brought by the vehicles on the road,
during road localisation. At the same time, the lane models were able to add geo-
metric constraints of vehicle models that improved vehicle detection. Papenmeier
et al. proposed an approach that uses the surface features to recover the target ob-
jects lost, caused by spatiotemporal discontinuities in the multiple-object tracking
[114].

In terms of microscopy image sequences of breast cancer cells, the deformable
cell shapes are of interest to track, in addition to cell trajectories and correspon-
dence over frames. Therefore, point tracking integrated with shape features is a

potential direction for a tracking solution.
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2.3.2 Image segmentation

Segmentation, which subdivides images into constituent regions, has been widely
used to support the development of medical imaging, object detections, traffic
monitoring and machine vision. In general, image segmentation is deemed to be
an essential starting step to ensure the subsequent process and analysis is carried
out successfully [119, 141]. According to the features of identified constituent
region, image segmentation can be approached through pixel-based, edge-based

or region-based methods [136].

Intensity thresholding

Intensity thresholding is the most straightforward pixel-based segmentation ap-

proach that segments the object regions using the image intensity, given by

1 if I(iy,i,) > h*
I(ix, iy) = (i) (2.75)
0 otherwise

where I(iy,i,) denotes the image intensity at coordinate (iy, i,). I is the resultant
binary image from the grey-scale image, I, with threshold h* [141].

For an automated image segmentation, threshold, /&, needs to be calculated
automatically [107]. Ostu’s method [112] was proposed for automated calculation
of h by maximising the inter-class variances. The method is performed as follows
[2, 107, 154]:

e Assuming that i € [1, H]| is the grey level and N,;, is the number of pixels

of the image, the probability of pixels occurring at grey level / is

(h)
N'.
h) = 2 2.76
P =N (2.76)
where N ;SZZ denotes the number of pixels occurring at level h.

e The image pixels are separated by the grey level & into two classes: C; and
C>. The grey levels from 1 to & are included in class C; and other levels from
h 41 to H are included in class C,. The class probabilities are calculated by

H
pi(h) =) p(i)  pa(h) =} p(i) (2.77)
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where p1(h) and p»(h) have the relation:
p1(h) +p2(h) =1 (2.78)

o With respect to each class, the mean value is calculated by

h H . .
L p(i)i X op(i)i
m(h) == na(h) = = (2.79)
p1(h) pa(h)
and the mean of the entire data set is
H
u =Y p(i)i (2.80)
i=1
The variance of each class is
201\ _ 2 201\ _ 2
o (h) = (ua(h) — pn) oy (h) = (pa(h) — pn) (2.81)
The inter-class covariance, 01, (h), is calculated, as follows
a12(h) = pr(h)ai (h) + p2(h)o3 (h) (2.82)

e Start with 1 = 1, perform the above steps iteratively until 1 = H. The
threshold is then set to h*, where 01 ,(h) reaches the maximum.

h* = argmaxoq 2(h) (2.83)
1<h<H

The common drawbacks of thresholding segmentation is its sensitivity to illu-
mination variations and the disregard of connections between pixels. Any uneven
illumination can cause contrast differences across different parts in the same im-
age. Lack of consideration of the neighbourhood of pixels leads to the segmented
objects to be discontinuous. For complex image segmentation problems, more
post-processing or other approaches are then needed to obtain more accurate seg-

mentation.

Canny edge detector

With respect to edge-based segmentation, three general criteria are proposed as
follows [103]:

e For detection, the real edges should be detected as much as possible while
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faulty detections, where the no non-edge points are detected as edge, are
minimised.

e The location differences between the detected and real edges are minimised.
e A real edge should correspond to only one direction.

Considering these above criteria, the Canny edge detector [28] is one of the
most reliable detection approaches and it is performed by the following steps
[66, 141]:

e The original image is smoothed by a Gaussian filter to reduce the effects of

image noise.

e The intensity gradients of the image in the horizontal, Al (i, iy), and vertical
directions, AIy(ix, iy), are calculated to measure the edge, where the strength,
Al(iy, iy), and direction, ¢(iy, i,), are given,

Al(i,iy) = /AL iy, iy )2 + Ay (i iy )? (2.84)

_q ALy (ix, iy)

AL (ix, iy) (2.85)

¢(ix, iy) = tan
e Four angles are defined as: 0°, 90°, 45° and 135°. The edge directions are

digitised to their closest angle.

e The edges extracted from the image intensity gradient may be still blurred;
non-maximum suppression, therefore, is performed. At every pixel, the pixel
value is set to zero, if its strength is smaller than the strength of neighbours
at both sides of the gradient direction.

e After the non-maximum suppression, image edges are finally clarified by
hysteresis. Two distinct thresholds hy and hy (hy > hp) are selected empir-
ically. If the edge strength, AI(iy,1,), is smaller then /i, the pixel is rejected
from image edges. If AI(iy,iy) > hp, the pixel is marked as on the strong
edges. Furthermore, if h; < Al(iy, iy) < hp, the pixel is identified exclusive
of the edges unless the pixel connects to the strong edges.

The downside of Canny edge detectors is the application of Gaussian filter,
which can smooth the noise, as well as the edges. The information lost from edges
may result in faulty detection. In the last step, the empirically selected thresholds
need to be adjusted with respect to different images. Hence, more operations and

segmentation approaches are proposed later for further improvement [157].
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Watershed algorithm

Region-based segmentation directly returns an object region, which is a group
of pixels corresponding to the same object. The segmentation has the following

formulations [106]:
e Every pixel in the image should be assigned to a region.
e In the same region, the pixels should have a common property.
e Different regions have their own properties that differ from others.
e A region must not connect to any other regions.

Beucher and Lantuejoul proposed the watershed algorithm, which has been
commonly used to process segmentation of touching objects [15]. A grey-scale
image is regarded as ‘Landscape” with grey-scale levels as altitude. A 1-D land-
scape is shown in Figure 2.9a. The watershed segmentation is carried out by the

following steps:

e Assuming that water gradually floods into the landscape, the water firstly
enters the local minima and generates a water line (see Figure 2.9b).

e The water line starts rising and is disconnected by the landscape. The valleys
that hold water (see Figure 2.9b) are called catchment basins, which in an
image, are the groups of pixels that correspond to the same region.

e When the water line reaches the local maximum, the water can flow into
adjacent catchment basins. These local maxima are defined as watersheds.
The detected pixels at watersheds are adjacent to more than one basins, thus
they are object boundaries (see Figure 2.9¢).

The watershed segmentation separates an image into three different types of
data: (i) the pixels of the local minima give the locations of the segmented objects,
(ii) the catchment basins are the regions of the objects, (ii) the detected watersheds
are the object boundaries. Practically, different algorithms have been developed to
detect watersheds, according to the specific images [141, 156, 183].

Regarding the segmentation of time-lapse image sequences of breast cancer
cells, an automatic segmentation process is necessary. Due to the scenario of cell

connectedness even overlap, the watershed algorithm is considered [141].
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Grey-scale value
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\/ Catchment basins ® Minima - = = = Water lines l Watersheds

Figure 2.9: The basic idea of 1-D watershed segmentation [141]. (a) A grey-scale
image is represented by a landscape where the amplitude is the grey-scale level
at corresponding image location. (b) Object areas are detected by increasing the
water line iteratively. (c) The detected catchment basins and watersheds which are
the object areas and boundaries, respectively.

2.3.3 Active contour models for shape representation

Active contour models, also known as deformable contour model or ‘snakes’,
were proposed to assist computer image analysis of the deformable shapes by
combining image information with geometry, physics and optimal approximation
principles. Geometry is employed for the description of object shapes, physics
is applied to define the constraints on shape transform over space and time and
approximation theory is applied to fit the model to the image data. Compared to
traditional image processing, active contour models are able to achieve a more ac-
curate delineation of object outlines by incorporating prior knowledge into image
information. Furthermore, deformable energy terms in the active contour models
enable the description of deformable shapes [76, 99, 100].

In the past decades, active contours have been widely used for the image
segmentation, shape representation and object tracking. Different image infor-
mations, such as image intensity [67], colours [94] and different texture features
[102], were included into the construction of image fitting energy functions so as

to perform image segmentations according to the specific image types [76].

Geometric active contours

According to their mathematical derivations, active contours are divided into geo-
metric active contours and parametric active contours [169, 184]. Geometric active
contours are derived from geometric evolution and the contours are calculated

as the zero level set of a 2-D scalar function of image, I(iy, iy), and time period,
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t € [0, T], given by
U = {(ix,1y) € Qo(ix, iy, t) = 0} (2.86)

where )} are object contours at + and ¢(iy, iy, t) is a time-dependent level set func-
tion defined on a domain, Q) [89].

Figure 2.10 shows an example of cell contour segmentation using geometric
active contour. The evolution of the level set function is shown in Figure 2.10a and

the corresponding segmentation results are shown in Figure 2.10b.

== Zero level contour

100

(a) (b)

Figure 2.10: An example of cell contour representation by geometric active con-
tour [90]. (a) Level set function after 210 iterations and the related zero level con-
tours, which are represented by red contours. (b) Overlay of zero level contours
on the raw image, where the contours describe the outline of cells effectively.

The calculated contours can be regarded as a time-dependent surface where
the scalar function ¢(iy, iy, t) equals zero permanently. It is hence known as an
implicit representation and enables to describe contour topological changes over
time, such as division and merging of contours. Therefore, geometric active con-
tours have been widely applied to describe the scenarios with frequent topological
changes [92, 169]; for example, Zimmer et al. achieved the tracking of contacting
cells and cell divisions by involving repulsive forces and ‘topological operators’

into the scalar function [186].

Parametric active contours

The parametric active contour model is derived by minimising the energy func-
tions to balance the external constraint forces and internal forces of a curve [186].
The active contour model, as an explicit representation, represents contours in the
form of parametric functions, which is convenient for the application of signal

processing techniques.
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Figure 2.11: An example of B-spline contours [19]. (a) Quadratic B-spline basis
functions and control points in the same splines; (b) B-spline contours constructed
by the sum of basis functions weighted by control points.

A B-spline parametric contour was proposed as a typical parametric contour
and is constructed as the weighted sum of B-spline basis functions, given by,

u(s) = Y B(s)ar = B(5)Q 87)
1=0

where s is the parameter of constructed curves u(s), BY(s) is the I-th basis function
with parameter s, which is a polynomial of order d — 1, and q; is the control points,
calculated by fitting to image data. A schematic of B-splines with quadratic basis
functions is given in Figure 2.11. Due to the computational simplicity and ease of
manipulation, B-spline active contours have been applied to image processing in
various areas, such as traffic monitoring, robot grasping and facial animation [19].

2.3.4 Morphology description techniques

Shape features can be measured by different parameters. The morphology param-
eters, including shape perimeters, areas, minor and major axes, can be directly
obtained from images or segmented object regions. Parameters, such as circu-
larity, eccentricity and concavity, require a calculation using the basic parameters
[41].

Furthermore, various shape descriptors were proposed to address specific shape
feature changes, and at the same time being invariant with other transformations.
The shape descriptors can be used for solving the problems associated with shape
matching and shape recognition based on the similarity of shape descriptors [54].
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Curvature scale-space (CSS) descriptor is a scale space representation and is
utilised to describe the local concavity or convexity of two dimensional shapes.
The curvature scale-space (CSS) descriptor is derived from the definition of cur-
vature. Assume that a two dimensional parametric curve u(s) = (x(s),y(s)) is
recursively smoothed by a Gaussian filter with mean value s and standard devia-

tion o, given by

—g2

1
Q(s,0) = Eexp(ﬁ) (2.88)

the evolved curve is u,(s) = (xf(s, o), ys(s, o) and calculated by

x¢(s,0) = x(s) * g(s,0) (2.89)
yr(s,0) = y(s) xg(s,0) (2.90)

where * denotes convolution operator. The curvature of the evolved curve is then

calculated by

Xf(S,O')]]f(S, 0') — Xf(S, a)yf(s, 0')
(2(s,0) + 725, 0))"

Ke(s,0) = (2.91)

Figure 2.12b shows an example of a CSS map of the cell contour given in Fig-
ure 2.12a. In Figure 2.12b, the horizontal coordinate indicates the index of points
on the shape outline and vertical coordinate is the evolution times. The CSS map
is constructed by the zero crossing points of the curvature over the evolution (i.e.,
Kk¢(s,0) = 0). The indices of the peaks are the locations of four deep concave or
convex areas on the original contour, which is consistent with the actual situation

in Figure 2.12a.

Fourier descriptor (FD) is another commonly applied shape descriptor. It was
successfully used in the analysis of cell shape populations combined with prin-
cipal component analysis (PCA) [121]. As shown in Figure 2.12¢, shape centroid
distance D; is selected as the signature. According to the Fourier transformation

N-1 :
2
D; exp (—j 7;;”), n=01--,N—1 (2.92)
0

1
a4 = 5 )2
where N is the number of points on the boundary. Normalisation is carried out
afterwards to keep the descriptors invariant to shape shifting, scale changing and
shape rotation [179, 187]. Figure 2.12d is the FDs of the shapes given in Fig-
ure 2.12¢ based on the morphology signature of centroid distance. The different
shapes give different patterns in the frequency domain, especially their magni-
tudes, which are commonly selected as criteria to measure the similarity between
two shapes.
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Figure 2.12: Examples of cell shape descriptors. (a) The original shape; (b) CSS
map of subfigure (a); (c) Two different shapes; (d) The FDs of shapes shown in
subfigure (c). The red and blue descriptors correspond to the red and blue shapes
in subfigure (c), respectively.

Compared to CSS descriptors, FDs require smaller computational complexity
and easier normalisation. CSS descriptors capture the global curvature features
while FDs keep global and local features at different frequencies. Therefore, FDs
are more suitable for the problems involving a high number of objects. However,
FDs have the drawback of signature selection, which needs to be determined with

respect to the actual situations [179].

2.3.5 Cluster analysis

Classification analysis plays a vital role in exploring unfamiliar phenomena. With
a large amount of collected data, researchers attempt to group the data into dif-
ferent categories based on specific features. These categories can then be tested to
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Figure 2.13: Procedure for cluster analysis. Cluster analysis is separated into
four steps: feature selection, clustering algorithm design, clusters validation and
results. The analysis system is performed as a feedback pathway, where these
four steps corporation with each other to give an insight into the experimental
data [170].

match the well-known data, therefore helping to understand the original phenom-
ena [170]. Classification systems are divided into supervised and unsupervised
systems [74]. Supervised classification is performed to map the input data to fi-
nite labelled classes, whereas, unsupervised classification does not have labelled
data. Unsupervised classification, also known as clustering, aims to separate the
unlabelled input data into discrete groups automatically [32].

Figure 2.13 shows the procedure for cluster analysis, which consists of fea-
ture selection or extraction, clustering algorithm design, clusters validation and
interpretation of results [170].

First, feature selection or extraction is the process to describe the original data
by its distinctive features, which can be selected from the given features or be
transformed from the data. An elegant feature should be interpreted and obtained
easily, insensitive to noise in the data and able to simplify the studied process.
Crucially, the features used should present distinct patterns for different clusters.

Second, the clustering algorithm should be designed according to the extracted
features. A measure of the features is required to ensure that feature similarity
and difference can be evaluated. Moreover, a clustering criterion needs to be
constructed to optimise the clusters. According to the cluster structures, clustering
algorithms are separated into hierarchical clustering and partitional clustering.
Hierarchical clustering performs clustering by connecting objects and gives a tree-
like structure of each cluster. Partitional clustering directly divides the data into a
finite number of clusters without hierarchical relations between objects. Different

clustering algorithms are introduced in Section 2.3.6.
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Then, validation for the clustering results is carried out because using different
approaches to the same data usually leads to different results. External evaluation
is commonly used to compare the clustering results from different methods. The
external validation is based on a standard, such as the labelled classes and bench-
marks, which are generated by experts and defined in advance, indicating the
prior knowledge about the data [44].

Further analysis of the cluster results in combination with the original data is
carried out afterwards to assist in the study of the original objectives.

Cluster analysis has been widely applied to solve practical problems. For ex-
ample, Rennard et al. identified five subgroups of chronic obstructive pulmonary
disease by cluster analysis of clinical features [125]. Spasova et al. analysed the
genetic remoteness of Bulgarian and Macedonian cotton lines using hierarchical
cluster analysis [144]. Similarly, hierarchical cluster analysis was applied to study
the socio-economic status of international immigrants in Chile [25]. Accordingly,
cluster analysis can deal with data from a wide variety of disciplines, ranging from
engineering, computer science, chemical science to social science, life science and
economics [170]. Practically, there does not exist a clustering algorithm that can
deal with all the problems. Specific algorithms need to be selected or designed
according to the particular purpose of the study and features of the data.

2.3.6 Clustering algorithms

As mentioned above in Section 2.3.5, clustering algorithms can be roughly cat-
egorised into hierarchical and partitional clustering, which are mathematically
described as follows [56]:

e Assuming the input data set

X: {X1,“' s Xn, 0 /XN} (293)

(1) (2 (M)]

where x, =[x/, %, -+, Xp T € RM is the vector of observed features.

The partitional clustering is aimed to divide X" into K partitions:
c={C,...,Ck}, K<N (2.94)

The partitions attempt to satisfy the following:
- Cx #9,k=1,...,K, where @ denotes an empty set.
- U]Ileck =X
- Ckl ﬂCkz =0,ki,kp =1,...,Kand ki # k»
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Algorithm 2.1 Hierarchical clustering: Agglomerative approach

Input:

Data set: X = {x1, - ,Xn," "+ , XN}

Distance function: dist(Cy,, Cy,) // Distance between Cg, and Cq,
Output:

Clustering results: C

For n< 1toN
Set C, = {xu}
End For
SetC = {Cy,...,Cn}
While C.length > 1 do
Set (Ciin1, Ciinz) = minimum dist(Cy,, Cg,) for all Cg,, Cq, in C
Remove C,in1 and Cyinp from C
Add {Cminll CminZ} to C
End While

e The hierarchical clustering is aimed at organising the observation set, X,
into tree-like structured subsets: D = {Dy,---,Dg} where G < N. Hence,
Ck, € Dy, Cx, € Dy, and g1 > &2, where g1,82,k1,k2 = 1,2,...,G, indicate
the relation of Cy, € Cy, or Gy, NCy, = 2.

Hierarchical clustering

In hierarchical clustering, algorithms, according to the direction of data process-
ing, are divided into division and agglomerative approaches.

The general agglomerative approach is given in Algorithm 2.1 [131]. The clus-
tering starts with initialising each input vector, x;, as a single cluster, C,. Subse-
quently, the clusters of the minimum distance are merged as one until only one
cluster is left in C.

In the applications, different distance functions are employed in different algo-
rithms. The most straightforward method is single linkage clustering, where the
distance between two clusters is calculated as the minimum distance between the

elements in each cluster [170]:
dist(Cq,, Cg,) = min{||c; — ¢j|| : ¢; € Cq,, ¢j € Cg, } (2.95)

where || - || denotes the Euclidean distance and ¢; and ¢; are the elements in cluster
Cq1 and Cyp, respectively. The complete lineage method, on the other hand, uses

the maximum distance between the elements of each cluster,

dist(Cq,, Cg,) = max{||c; — ¢j|| : ¢; € Cq,, ¢j € Cg, } (2.96)
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The other commonly used lineage method is average linkage, and the distance
between clusters is given by [170]

Ng; Ng,

dist(Cq,, Cg,) = Ng1 N, Z; Y llei — ¢l (2.97)
i=1j=

where ¢; € Cq, ¢; € Cq,, Ny and N,, are the size of the cluster Cy, and Cy,,
respectively.

The division method, performed in the reverse direction than the agglomera-
tive method, first groups all the observations, x;, as a unit cluster, then recursively
divides the cluster until that each cluster only has one observation.

When hierarchical clustering is carried out, the observations will not be checked
after being assigned to a cluster. The algorithm is not able to correct for previously
misaligned elements, which causes hierarchical clustering to be sensitive to noises

and outlier observations, which is a challenge for large-scale data set clustering.

Partitional clustering

Partitional clustering assigns the observations, X = {x1,...Xn,...,xy}, into K
clusters, C = {Cy,...,Ck} according to data-intrinsic distributions. Many cluster-
ing algorithms have been generated by assuming specific data distributions. Due
to the complexity of realistic data, a universal algorithm and objectively ‘correct’
clustering has not been achieved. Hence, such algorithms are empirically selected
for the specific practical problems [64].

K-means, first published in [97], is the simplest partitional clustering algorithm
and is still widely used. The K-means algorithm performs clustering by assigning
objects to the nearest cluster based on the centroid distance. The algorithm is

precisely explained in Algorithm 2.2 and is summarised in the following steps:

e Clusters are either initialised randomly by setting cluster centres, M, ran-
domly or initialised using prior knowledge.

e The observations are assigned to the cluster for which the centre has the

smallest distance to the observations.

e Cluster centres are recalculated using the mean of observations assigned to

the cluster.

e The previous two steps are iteratively performed until the cluster centres
stop changing.
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Algorithm 2.2 Partitional clustering: K-means algorithm

Input:

Data set: X = {xq,... Xy, ..., XN}

Number of clusters: K

Maximum of iterations: maxIter

Output:

Cluster labels of X': labelX = {label(x,)| n =1,2,...,N}
Cluster centres: M = {p1,..., ux}

For k+ 1toK

Set uy = x, € X // Initialise cluster centres by random observations.

End For

For n+ 1toN
Set label(x;) < arg min dist(x,, pix), k € {1,...,K}

// Initialise the label set by the cluster of minimum distance.
End For

Set iter <— 0
Set updated < 1
While iter < maxlter & updated =1 do
For k< 1toK
updateCluster(py)
End For

Set updated < 0
For n< 1toN
Set minD < arg min dist(x,, px), k € {1,...,N}
k

If minD # label(x,)
Set label(x;,) <—minD
Set updated <1
End If
End For

Set iter < iter+1
End While
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In practice, the K-means algorithm is easy to implement. The development of
parallel techniques makes the K-means clustering capable of dealing with large-
scale data sets [81]. However, the K-means algorithm has the drawback of cluster-
ing initialisation, including the identification of cluster numbers and locations. An
inappropriate initialisation can significantly increase the computational complex-
ity [170]. The K-means algorithm attempts to assign the observations into same
sized partitions, which leads to the clustering results converging to a local opti-
mum instead of a global optimum, especially for the unevenly distributed data.
Besides, the strong links to the data means that K-means algorithm is sensitive to
noise and outliers.

Distribution-based clustering is another widely used algorithm type, apart
from the centroid-based algorithm. In different clusters, the observations are as-
sumed to be generated from different probability distributions, where the prior
probability of cluster Ci is p(Cx) and the corresponding conditional probability
density is p(x | C, 6¢) with unknown parameter vector, 6;. The probability den-
sity of mixture models, p(x | ), is

K
p(x]0) =Y p(x|Ck0)p(Cr) (2.98)
k=1

where 6 = [0, ...,0k] and the component distributions, in theory, can be of any
type. A mixture of multivariate Gaussian distributions is a prominent structure,
integrated with the EM algorithm for parameters estimation through maximising
the likelihood function (see Section 4.2.2).

A drawback of the EM algorithm is its sensitivity to the parameter initiali-
sation. The random initialisation may lead to be converged to a local optimum,

consequently leading to wrong estimations of the cluster parameters [170].

Sequential data clustering

Sequential data are generated from scenarios having relevant spatial or temporal
structure such as DNA sequences, video sequences and stock markets [95]. Se-
quential data clustering uses unsupervised learning algorithms to find the statisti-
cally significant potential patterns of the sequence data. The clustering algorithms
are categorised into: sequence similarity clustering, indirect sequence clustering
and statistical sequence clustering [170].

The sequence similarity clustering method first measures the similarity be-
tween different data sequences, then groups similar sequences using clustering
algorithms, which can be either hierarchical or partitional algorithms. Sequence
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clustering analysis can efficiently remove redundant information from the origi-
nal data set, so as to simplify the computation of later analyses. At the same time,
some fundamental questions are addressed: for example, clustering analysis of
metagenomics can help identify protein families [93].

Indirect sequence clustering first extracts features from the sequences. All
the sequences are then mapped to the extracted feature space. Afterwards, the
classical clustering algorithms can be employed to perform cluster analysis in the
feature space. Indirect sequence clustering can efficiently reduce computational
complexity by sacrificing some information from the original sequences. Thus,
the feature extraction is essential for keeping enough information for clustering
[108].

Statistical sequence clustering is generally used for numerical data sequence
clustering, while the indirect sequence and sequence similarity clustering are more
commonly employed for alphabet sequences analysis [170]. Statistical sequence
clustering describes the dynamics of each group of sequences through statisti-
cal models. The most commonly used model is HMM, combined with EM for
parameter identification (see Section 4.2.2). According to the particular data, dif-
ferent models can also be used. For example, Xiong and Yeung proposed an algo-
rithm for time series clustering using mixtures of autoregressive moving average
(ARMA) model and Markov chain [168]. This statistical model-based clustering
can intuitively describe the dynamics of different data types and is capable of pro-
cessing data sequences of different lengths. However, in order to better capture
data characteristics, selection of an appropriate model is necessary [170].

In this section, the commonly used cluster algorithms were reviewed. In prac-
tice, the algorithms should be chosen according to the specific problems. A large
number of clustering algorithms have been proposed in the literature. How-
ever, some problems still remain challenging, such as large-scale data and high-
dimensional data clustering.

24 Summary

In this chapter, the basic techniques that are required to construct a framework for
breast cancer cell behaviour analysis has been presented. The methods of image
processing, active contour models, discrete-time kinematic models and state esti-
mation and smoothing provide the basis of an automated cell boundary tracking
system, which is proposed in Chapter 3, and applied to breast cancer control cells.
The shape descriptors combined with clustering algorithms can be applied to char-

acterise cell morphology states, which is covered in Chapter 4. The morphology
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analysis, carried out after the cell tracking, is applied to the tracking results of cell

boundaries.



Chapter 3

High-throughput Tracking of
Cancer Cells Using Parametric
Active Contour and Kalman
Smoothing

High-throughput cell tracking is essential for investigating functions and dynamic
characteristics of multiple cells. The large amounts of information, generated after
tracking, can then be used for analysing various aspects of cell behaviours, such
as the study of cell circle, the gene expression and the drug discovery [182].

Traditional manual tracking and analysis of high-throughput data is restric-
tive because of the time consuming and large requirement of human resources.
There is thus a need for automatic cell tracking to support the life science re-
searchers. The basis for most cell tracking methods is the particle tracking tech-
niques. For example, Li et al. proposed a tracking algorithm by combining IMM
filter with maximume-likelihood matching to accomplish high-throughput cell cen-
troid tracking [92]. Reyes-Aldasoro et al. proposed a tracking algorithm based on
a ‘keyhole” model, which predicted the probable cell landing position between
connective frames and achieved the centroid tracking of fluorescent labelled red
blood cells migrating in microvessels of tumour [126]. Additionally, active con-
tours derived from evolving deformable shapes have been used to describe cell
shapes. For example, level-set functions derived from different shape constraints
were commonly used to segment the overlapped cells from the microscopy images
[185].

The particles tracking techniques capture the spatio-temporal trajectories of

cells, but completely ignore the information about the deformable cell shapes. The
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active contours, in turn, capture cell shape deformation but ignore the cell spatio-
temporal information. This results in the corresponding applications being limited
to the study of either cell motility or extract morphology features. In cancer cells
primarily, and in other type of cells, it has been observed that cell motility and cell
morphology characteristics have high correlation [48].

In this chapter, a tracking framework is proposed that can simultaneously track
the cell boundaries, their spatio-temporal dynamics and cell centroid trajectories.
Unlike in previous cell tracking literature, this framework uses B-spline active
contours for cell boundary description. This linear dimensional parametric de-
scription enables an efficient tracking of cell boundaries by a lower dimensional
dynamic model, additionally links the cell motility and morphology naturally.
This enables the possibility of carrying out integrated cell motility and morphol-
ogy analysis.

Flow chart of cell tracking
using parametric active contour and Kalman smoothing
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Figure 3.1: Overview of the cell tracking framework.

The structure of the proposed tracking framework is shown in Figure 3.1 and

is summarised as follows:

e The marker-controlled watershed cell segmentation, a non-parametric seg-
mentation algorithm, is used first to extract the cell boundary features from

the image sequences to enable the tracking.
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e The B-spline active contours are employed to describe the extracted cell
boundaries efficiently parametrised through control points.

e The dynamics of cell shapes are represented by a second-order kinematic
model of control points whose positions and velocities are estimated by

Kalman filtering and smoothing.

e The parametric active contour representation and the estimated position and
velocity time sequences of the control points together are provided to a mod-

ule of quantitative analysis of cell motility features.

3.1 Automatic cell boundary segmentation using marker-

controlled watershed algorithm

The watershed algorithm, being a non-parametric image segmentation method,
operates based on pixel intensities [14]. In the applications, the main advantage
of watershed algorithm is the capability to separate closely located objects, such
as in delineating touching cells. Images can be envisaged as a landscape (see
Figure 3.2a), where (iy,i,) is the coordinate of pixel with value I(iy,iy). In a
grey-scale image, pixel values are in the range [0, 1], corresponding to the colour
varying from black to white.

In the conventional watershed algorithm, ‘water lines” are initialised at the ar-
eas with local minimum intensity and are then increased until it meets others at
the ‘watersheds’. Segmented cell contours are essentially the watersheds. The
main drawback of the watershed algorithm is the over-segmentation, which is re-
sulted in the image noise, diversity of cell shapes and large cell quantity. In order
to avoid the over-segmentation, the marker-controlled watershed algorithm is ap-
plied to perform the automatic cell segmentation. The segmentation is designed
as follows [24]:

e The photobleach induces significant change in the image contrast across dif-
ferent frames in the same image sequence. The pixel value of original image,
Loriginai (ix, iy), is enhanced first according to the formula:

Ienhanced(ixziy) = (Ioriginal<ixr iy) - ea) < i ) 3.1)
€p — €q
where Ijanced 1S the enhanced image, [e,, €] is set to be [0,0.1] and it is
the range of the pixel values, according to the image pixel histogram (see
Figure 3.2b), that need to be emphasised. The effect of contrast stretching is
shown in Figure 3.2c and Figure 3.2d.



54

3.1. Cell boundary segmentation
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Figure 3.2: An example of landscape view of a grey-scale image. (a) Landscape
view of a grey scale image; (b) Pixel histogram of image in subfigure (a); (c)
Landscape view of the contrast stretched image corresponding to subfigure (a);
(d) The pixel histogram of subfigure (c). In subfigures (a) and (c) the pixel value
is mapped to a RGB colour scale to aid visualisation. In the grey-scale images,
pixel values from 0 to 1 correspond to the colour varying from black to white. In
the histograms, subfigures (b) and (d), x-axis is the pixel values and y-axis is the
number of pixel values occurred in the image.

e The background marker is the collection of the pixels not belonging to any

cells. They are obtained by applying the intensity thresholding:

1 if Ienhanced(ix/ iy) > €p

Iy (i, iy) = (3.2)

0 otherwise

where, €, is the threshold selected by Otsu’s method, calculated by minimis-
ing the interclass variance [112].

The foreground markers, as shown in Figure 3.2¢c, are used to locate the
cells. They are obtained by applying morphological operators followed by
intensity thresholding.

The above two different markers are set to be minus infinity, where the “‘water
lines” are initialized. The cell regions then can be segmented by performing

the watershed segmentation.
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e Cell boundaries can be obtained from the segmented cell areas. Meanwhile,
intensity thresholding is applied one more time to each of the segmented cell
area to separate the cell main area and the shadow area, which is normally

composed of cell protrusion.

3.2 Cell boundary representation by B-spline active con-

tours
The observed boundary of a single cell is modelled by,

z=u+w (3.3)

(x)

z

where z = w |’ and z™),z(¥) € RM are the vector of x and y coordinates of
z

cell boundary obtained from cell segmentation, and N; is the number of points on

cell boundary. u is the B-spline active contour representation and w is the noise

contributing to the model fit errors. The B-spline contours are constructed as:

i (x)
u® Z§O BI(S)ql B 0 q(x)
" — | = — (3.4)
¥ Bi(s)q)" 0 B
1=0

where,
o — [ W }T (3.5)
w® = [ }T (3.6)
_ [ Bo(s) Bi(s) --- BLfl(S)} (3.7)
= [ - g, f (3.8)
@@= - ] (39)

(3.10)

u(x), u) e RM:, and (u,S’;),u,SZ)) is the coordinate of the point on the B-spline
contour, where 7, is the point index (n, € [1,N;]). The contour u consists of L
spans (L < N;). B(s) is the basis function for span I € [0,L — 1], which is a
function of a parameter s € [I,/ + 1], and (ql(x), ql(y)) are the Cartesian coordinates

of the corresponding control point. The basis function matrix, B € RN-*L, is able
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to be calculated off-line and the weights vector, q = € R%L is calculated

)
q
by LS method. Due to the linear-parameter representation of B-spline contours
and the dimension transform from u € R?M: to qc R2L, the control points vector,
q, is later applied as the states to be tracked in the cell boundary tracking system.

3.2.1 The construction of B-spline active contours

The periodic basis function is used because of the wrap-around feature associated
with the closed curve representation, which can be used to represent cell bound-
ary. The basis function B;(s) in span [ € [0,L) is

Bl(s):[so sl ... gd-l }BIG, (3.11)

which is a vector of polynomials of parameter s whose highest order is 4 — 1. The
basis function is calculated by the multiplication of a span matrix, B;, and the
corresponding placement matrix, G;.

An index b; is firstly calculated to indicate the first span affected by B,

l—d+2 ifl>d—-3
b = (3.12)
| —d+L+2 otherwise

d
By yi1,

and it is recursively calculated from ground instance d = 1.

(s) is used to denote the i-th basis polynomials for span I of order d

1 ifn<s<n+1
Bl,(s) = - (3.13)
0 otherwise

where, n = bj+i—1and i = 1...d. The higher order polynomials are then
calculated recursively using

s+1—n)BE s+ (n+d—s—1)B% 1 (s
BY (s) :( JBy (8) d<_1 B (5) (3.14)

B, is then structured with the coefficients of the basis polynomial Bz ;(s) on the
i-th column and the constant terms on the first row. Gj is the related placement

matrix and computed using

1 ifi—b=j
Gl( = . (3.15)
0 otherwise



Chapter 3. High-throughout Tracking of Cancer Cells 57

where 7 and j are the indices of row and column, respectively.

The estimation of the control points can be found using LS applied to (3.4),
g=(®'®) o'z (3.16)

where the design matrix @ is constructed by the vector of basis functions,

B 0
cp:[O B] (3.17)

Therefore, the estimated B-spline contour, 2, is calculated by,

2 = ®q (3.18)

Control points can be calculated separately, here it is only used for initialisation
and take advantage of dynamic model representation and state estimation to track

them across frames.

3.2.2 The parameter selection of B-spline active contours

Two parameters are involved in constructing B-splines, which are: (i) the degree
of the spline; (ii) the number of spans involved in the contour. Generally, the
spline degree is fixed to be a small number in order to reduce the computational
complexity. The model fitting accuracy can be adjusted by changing the number
of spans.

The basis functions with spline orders, d = 1,2, 3,4, are used to fit an identical
cell boundary with a choice L = 20. (see Figure 3.3). When d = 1, the constant
basis functions generate a binary spline, given in Figure 3.3a. When d increases
from 2 to 4, the constructed contours, which correspond to the linear (d = 2),
the quadratic (d = 3) and the cubic (d = 4) functions, are piece-wise, slope and
curvature continuity respectively (see Figure 3.3b-d). The curvature continuity is
essential to ensure the contours are smooth, therefore d is set to be 4 in order to

describe the cell boundary, as well as boundary velocity, smoothly.

With the fixed degree d = 4, L is set to different values in the range [3,100]
for boundary estimation with B-spline applied to the same image sequence of

migrating cancer cells. The mean squared error (MSE) calculated to measure the
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An example of fitting the same cell boundary using B-spline basis
functions of different spline orders. The number of span is set to be 20. Sub-
figures (a)—(d), respectively, show the periodical basis functions of spline order,
d =1, 2, 3, and 4, over the spline s € [0,100]. Subfigures (e)-(h) present the
fitting results of an identical cell boundary using the B-spline basis functions in
subfigures (a)-(d), respectively.
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The MSE and computational time
by using different value of parameter L
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Figure 3.4: The MSE and algorithm running time of B-spline estimation with
different number of spans. Cubic basis functions were used for the estimation of
cell boundaries of the image sequence given in Table 3.1 and number of span is
set to L € [3,100]. The MSE and algorithm running time are the average situation
over 50 times experiments.

estimation errors and the formula is:

(i)
LS5 (L0 502
MSE = ) >y (zn s ) (3.19)
i=1 z i=1n=1

where, z,(f) is the point n on the boundary of cell (i), which is obtained from image

segmentation, and 2,@ is the corresponding point obtained from the estimated B-
spline contour. N, is the number of cells used and Nz(i) is the number of pixels
on the boundary of cell (7). The same process was performed 50 times and the
average algorithm running time and average MSE are shown in Figure 3.4. It
is shown that with increasing span, the MSE decreases while the running time
increases. To achieve a compromise, L is set to 20. Information on this experiment

are provided in Table 3.1.
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Table 3.1: Experimental information for identification of the number of spans
on B-spline contours. The experiment was performed with cubic basis functions
(d =4).

o Cell line: MDA-MB-231 breast cancer cells
Experimental data e Label: J21-F1 (labelled with CellTracker Orange)

o Cell culture: Cells are cultured on tissue culture
plastic

e Image Type: Time-lapse grey-scaled image se-
quence

Image sequences
8 q e Frames: 38 Frames

e Time intervals: 15 minutes between two frames

e Cell quantity: 451 cells showed in the video

e Processor: Intel(R) Core(TM) i5-2400 CPU @
3.10GHz 3.10 GHz

Computer and software | ® RAM: 4GB
e System: Windows 7 Professional (64-bit)

e Software: MATLAB R2015a

3.3 Cell boundary tracking with Kalman filter estimation

and smoothing

In this section, a discrete second order spatio-temporal model is designed to de-
scribe the dynamics of cells, including the tracking of cell boundaries and cen-
troids. The tracking consists of two parts, which are the kinematic model con-
struction and the tracking with the KF estimation and smoothing.

3.3.1 A discrete white noise acceleration model of cell migration

It is assumed that cells are migrating with constant velocity and subjected to ran-
dom disturbances from the sampling moment tAT to (t + 1)AT. The periodical
basis functions B in (3.7) are of the highest degree 3 so that the second order
derivative of the cell boundaries are continuous, which is indicative of a second-
order kinematic model. A DWNA kinematic model for a singe cell boundary is
constructed with the following structure:

Xt+1 = FXt + l"wt (320)
Z; — HXt + v (321)
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where the state at frame ¢, x;, consists of locations and velocities of control points,

q

)
x=| U . (3.22)
Aq;

Aqy”

A (x)
where Aq; = [ Aqt(y) ] is the velocities of control points at frame t. The related
q;
transition matrix is

I 0 AT-1T 0
0 I 0 AT -1
F= (3.23)
0 0 I 0
00 0 I
and ,
AT
21 0
0 Ag
r= 2 (3.24)
ATI 0
0 ATI

where, 0 and I are the zero and identity matrix of size RE*L, AT is the sampling

time. The segmented cell boundary is the model observation.
(%)
z
zZ; = [ éy) ] (3.25)
z

The structure of B-splines induces the measurement matrix to be in the form:

B 0 0 O
H= (3.26)
0 B 0O

where B is the basis function. In the state-space model, w; and v; are the noise

presenting in the state estimation and measurement, respectively, and are assumed

) (3.27)

to be random variables from:

()

Q 0
0 R

where Q and R are the related covariances. R is set to be the identity matrix
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of size R>*! and Q is calculated by
Q=E(Twww,T") =Tc?T" (3.28)

where [E(-) is the expectation function, the argument o, is selected according to
the maximum magnitude of acceleration, a,1. For object tracking, practically, oy, is
chosen to be in the range [0.5a,1, ap] [7].

3.3.2 Cell tracking with Kalman estimation and smoothing

The cell tracking is carried out by using Kalman filtering and the RTS smoothing
with a population of cells. The tracking, demonstrated in Algorithm 3.1, consists of
cell correspondence identification, cell tracks estimation and cell tracks smoothing.
KF, an optimal Bayesian method, is applied forwards to estimate the tracks of the
cell boundaries. The smoothing is performed backwards on the estimated tracks
to improve the initial tracking results.

By following the Algorithm 3.1, the tracking process is performed as follows:

e In the function Tracking_initialisation(Image[1]), tracking states are initialised
by the LS estimated control points of cell contours in the first frame, given in
(3.29), and the velocity states are initialised as zero vectors of length L. The
covariances of measurement are initialised as identity matrices of size RE*!

and the estimation covariance is given in (3.28) with ¢, = 1.
R0 = [ &Y q¥ o0 o (3.29)

e In the function Predict(-), the prediction of cell states at moment t + 1, %; 1y,

and the estimation covariance, P, are calculated:

)A(t+1|t = Fﬁt|t (3.30)
P i =FPyF' +Q (3.31)

e In the function Cell_correspondence(-), the correspondence includes the frame

to frame cell correspondence and the identical sequence of cell boundary.

Frame to frame cell correspondence is identified by the nearest-neighbour
(NN) method [130]. The NN method is both simple and effective for scenar-
ios such as this where cell speed is relatively slow compared to the frame
rate [38]. In general, the NN method estimates the cell correspondence over

frames based on the similarity of features with cell centroid location, which
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Algorithm 3.1 Cell Tracking Algorithm

Input:

Image sequence after segmentation: Image[k], k = 1,... numberOfFrames
Output:

Smoothed states of cell boundary: smoothedState[k][iC]

Cell correspondence in different frames: liveCells[k]

// Initialisation of cell tracking using cells in the first frame
Set ( liveCells[1], estimatedState[1] ) = Tracking_initialisation( Image[1] )

// Cell tracks estimation
For k + 1 to numberOfFrames — 1
For iC <« liveCells[k]
Set ( predictedState, predictedCovariance ) = ...
... Predict( cellState[k][iC], kinematicModel )
Set ( correspondCell, correspondBoundary ) = ...
... Cell_correspondence( predictedState, cellCentroid[k+1], Image[k+1])
If  correspondCell == @
Set liveCells[k+1] = liveCells[k] — iC // Remove the dead tracks
Else
Set ( predictBoundary, measurementCovariance ) = ...
...Boundary_prediction( predictedState kinematicModel )
Set ( estimatedState[iF+1][iC], estimatedCovariance ) = ...
... Update( correspondBoundary, predictedBoundary,. ..
... kinematicModel, predictedCovariance )
End If
End For
// Check new tracks
Set newCells = not Assigned cell at Frame k
If newCells # &
Set ( liveCells[k+1], estimatedState[k+1][newCells] ) = ...
... Tracking_initialisation( Image[k+1], newCells )
End If
End For

// Cell tracks smoothing
Set smoothedState[numberOfFrames] = estimatedState[numberOfFrames]
For k < numberOfFrames -1 to 1 in steps of —1
For iC <« liveCells[k]
Set smoothedState[k][iC] = State_smooth( smoothedState[k+1][iC] )
End For
End For
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can be directly calculated from the control points of B-spline contours, given

t rgy)

where <, > represents the inner productand 1 € RE. Here, the cell centroid

in:
<1, qu) > ]

3.32
<1,qY > (332

distance, D(r;), is calculated between the estimated centroid at frame ¢ + 1

given t and cell centroid at frame f + 1, is used as the feature distance, given

by:

D(x;) = \/ (rfh =1 )2+ (= 72 (3.33)

The cell in validated measurements, which has the minimum centroid dis-

tance is designed as the corresponding cell as explained by

r; = arg min D(r;) (3.34)
1 ER:
where R;, expressed in (3.35), is a set of validated measurements of which

the feature distance is below the threshold ¢;.

Rt = {r11: D(r;) < ea} (3.35)

On the other hand, the cells at frame t with empty R; are considered to
either be dead or have moved outside the frame. At frame t + 1, if any cell
is not linked to cells in the previous frame, they are assumed to be the start
of new tracks.

After the identification of frame to frame cell correspondence, cell states cor-
respondence is determined by maintaining the starting point of constructed
B-spline contours using the Bresenham line algorithm [22]. Firstly, the cell
contour at frame t is shifted to the centroid location where the corresponding
cell is at frame ¢ + 1. Figure 3.5a demonstrates the shift of B-spline contours,
of which the start point is labelled by a yellow asterisk and calculated by

[uﬁ,’i’]: (Bis) 0 |[q¥]
W |0 Bis) || g |
=135 s si-1 0 sdfl}
BG 0 ][4y (3.36)
| 0 BiGy || g ]
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where (uf’;), ugyl)) is the Cartesian coordinate of start point, B; and G; are

the span matrix and placement matrix of the basis function at first span,
Bi(s). Due to the calculation of the starting point, the parameter s set to 0
and (qg?, qul)) is the first point of the estimated control points. The tangent

of contour is calculated by

(x')
t | (01 (d—1)s"2 0 1 (d—1)s"2 |
u(y ) e e ...
t,1
B1G, 0 qgi) (337)
0 B1G; qg,yl)

so that the normal vector is
(xh) )
Uiq _ | T

The normal line is then generated from the shifted start point on both posi-
tive and negative directions using the Bresenham line algorithm:

ey L)
ut(y) = [ t(yl) +Arty- t’lL (3.39)
u (x4)
t1 Uiq

where 7 is the length of the normal line and increases until the two joint
points with segmented boundary at frame f + 1 are found, as illustrated in
Figure 3.5b. The first joint point is shifted to the start of the segmented
boundary at frame t + 1, which is considered as the measurement at next

frame, z;, 1.

e In the function Boundary_prediction(-), the prediction of cell boundaries
(3.40) and the related measurement covariance (3.41) are calculated:

2t+1|t = H)A(t\t (3.40)
Sy 1 =HP,; H +R (3.41)

e In the function Update(-), the prediction of tracking states and the estimation
covariance are amended through the Kalman gain as follows[160]:

K =Py H' S (3.42)

Xpp1)i41 = Xepap + Kep1(zep1 — 2e4q)) (3.43)
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Identification of cell boundary correspondence Identification of cell boundary correspondence

= = Shifted contour

Segmented cell boundary
pixels in frame t+1
Bresenham line
Identified start point
of new boundar

== Cell contour in frame k
® Centroidatt
Centroid at t+1
Start point of contour
= = Centroid shifted contour

Frame: t+1

(a) (b)

Figure 3.5: Illustration of cell contour correspondence. (a) Shift the constructed
B-spline contours at frame t to the location where cell centroid at frame ¢ + 1
is. The red solid boundary is the B-spline contour, constructed according to the
estimated control points at frame ¢. Red point is the centroid of the red contour
calculated from (3.32) and is shifted to the location of green point, which is the
centroid of the green boundary shown in subfigure (b). The B-spline contour is,
therefore, shifted to the dotted red outline. The yellow asterisk is the start point
of the B-spline contour. (b) Identify the start point of segmented cell boundary at
frame t + 1. The normal line (yellow line) starts extending from the yellow asterisk
on both positive and negative directions until that two joint points are identified
between the yellow line and the green boundary. The joint point, which is first
identified, is considered as the start location of green boundary.

Piijir1 = Proajesr — Kt+1st+thT+1 (3.44)

e In the function of State_smooth(-), a fixed-interval smoother is applied af-
terwards in the backward direction of the time-line to minimise the errors
that are introduced in the tracking system because of the random initiali-
sation [124]. The smoother is initialised by the cell states estimation at the
last frame T. A smoother gain is calculated in (3.45) and is applied for the
smoothing states in (3.46) and the smoothing covariance given in (3.47).

Cr =P/ P, (3.45)

Xy = Xe|p + Cr(Xep1yr — Xega)t) (3.46)

Py = Py 4+ Co(Ppyqyr — Pryg)C/ (3.47)
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3.4 Cell motility analysis

In the tracking scheme, the coordinates and velocities of cell centroid locations
and velocities can be calculated through the inner product of control points and

vector of ones.

r) <1, qtil’ii >
(v) q'Y
ty _ < 1/ qt‘t > (348)
ArY <1,Aq;) >
ArY) | <1,7q]) > |

where r; = (rt(x), rfy )) is the Cartesian coordinate of cell centroid at frame f and

Ary = (Arix),Art(y) ) is the corresponding velocity. 1 € R” is a vector of ones, and
< -,- > is the inner product for spline functions [19], and it is calculated by

1 L-1
<1,§>=1" (L ) GITBZTPBIG1> q (3.49)
1=0

where L is the number of spans, B; and G, are the span and placement matrix of
basis function at span I. P is

1

S

Discretely, P is constructed as a "Hilbert” matrix [19], of which the coefficients are

1

Pij = T

(3.51)

In addition, the definition of B-spline active contours can be used to calculate

cell boundaries through the estimated states of control points shown as follows:
)
uf”’)
Augx)

Augy )

o oo W™
o oW o
o W o o
W o o o

where u; = (ugx),Auiy )> is the Cartesian coordinate of cell contour at frame ¢.

Au; = <Au§x), Augy )) is the corresponding velocity.

In this section, cell motility analysis is carried out based on cell centroids and
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cell boundary motility features separately.

3.4.1 Cell centroid motility features

Cell migration length, confinement ratio and migration angle change can be cal-
culated from cell centroid tracks for the quantitative analysis of cell global be-
haviours.

The centroid trajectory of cell (i) is shown in Figure 3.6 [100]. The cell migra-
tion length is defined by,

. T-1 ) .
iy = 1 I il (353)
t=1
where, || - || denotes the Euclidean distance, T is the number of frames included in

the trajectory.

Yy

Figure 3.6: An example of cell centroid trajectory. The trajectory starts from t = 1
tot =T. rt(l),t € [1,T] are cell centroid locations. (pt(l) is the migration angle at

frame t and Agbt(i) is the migration angle change at frame t.

The confinement ratio is defined as the ratio of cell migration displacement,

d,glgt, to the travelled distance, dgé)t, given by
i () (i
co = o __Iry | (3.54)

i) T=1 oy
Bt 2

The confinement ratio is a measurement of the straightness of cells” migration.
When Cﬁl) =1, d(l) = d(l)

net tot*

This tells that the cell travels in a straight line. Oppo-
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sitely, Cﬁi) = 0 indicates that dse)t < dg;)t The cell migration is restrained in a small
area so that the cell moves around in the area with small displacement, but large
distance [61].

The cell directional change, A¢y, is a motility feature that is associated with cell

orientation and is calculated via [100],

APy = ¢t — P11 (3.55)

where ¢; is cell migration angle at frame t and is computed by

r(y) _ r(y)
¢¢ = arctan (M) (3.56)
Teyr = T

3.4.2 Cell boundary motility features

The B-spline active contour representation of cell boundaries allows the measure-
ment of cell boundary local motility in the same framework with the measurement
of cell centroid motility. The orientation and protrusion distribution around cell
boundary are quantified in this section using cell boundary location and velocity
calculated in (3.48).

The algorithm that measures cell boundary orientation is illustrated in Fig-

ure 3.7a. For cell (i) at frame f, the tracking results of cell boundary location, ugi),

and velocity, Augi), are in the form:

i G n 1T
= (o) fh ] o3

. . . . T
Au? = [ aul) Al Aut%] (3.58)

where M is the number of points used to construct the cell boundary and u% is
m-th point on the boundary with velocity Aut(;z1 (m € [1, M]). The radius vector of

cell (i) at frame f, pt(i), is first calculated using,

pgi) = ugi) - rgi) (3.59)

Next, the angles, in), between the radius vectors and corresponding velocity

angles are calculated in order to identify the point at the front, ﬁgi), referred to as
the front point, where the radius vector represents the most likely direction for

cell movement in the next image frame.

s = [ o o o 8 ] = £(pf" - Au) (3.60)
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The front point, is then detected via a search to find the minimum Jt(i),

L_lt(i) = arg minJEi) (3.61)

weul?

The corresponding radius vector pgi) at the same point is regarded as the ref-
erence location. Finally, the cell orientation is measured by the angle difference to

a reference, illustrated in
S = Lot —py)) m e [0,M] (3.62)

(i)

t,m

A smaller p, ;, indicates that the point is closer to the cell migration front, whereas

a larger value indicates that the point is closer to the side opposite to cell migration

direction, referred to as cell rear.

Cell orientation Cell protrusions
Front Au(i)

Front ooint )
ront point U,

i) ¢ Front

Front

Contour of (%)
cell nucleus —'t

Contour of (%)
cell mask t

Contour of ~ (3)
cellmask U
Rear

Rear Rear

(a) (b)

Figure 3.7: Illustration of cell orientation and protrusion identification. (a) Ori-

entation identification of cell (i) at frame t. Cell boundary orientation is repre-

sented by a RGB colour map. With the increase of 5521, cell boundary starts from

the front (red) to the rear (blue). (b) Protrusions identification of cell (i) at frame .
The protrusions, labelled by green lines, are identified where the normal distance,

D s larger then the protrusion threshold.

tm 7

Under the florescence microscopy, protrusions are generated around the cell
boundary and are represented as light grey areas due to their cytoplasm thin struc-
ture. In the segmentation step, the cell body is separated into the mask and the

nucleus area. Within the tracking process, these two boundary types are tracked
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separately. The protrusion locations are then identified via the normal distance
between these two contours. For each point along the cell mask contour, the clos-
est distance between it and the corresponding nucleus contour is calculated as

L)

the normal distance, D",

and the location of protrusions are identified by go-

ing through every point on the mask contour. If Dt% ,,(j) is larger than a threshold,
Eprotrusions u% is the protrusion points. The protrusion identification of cell (i) at

frame ¢ is illustrated in Figure 3.7b.

3.5 Breast cancer migration

The aforementioned algorithms are applied to a set of MDA-MB-231 breast cancer
cells, described in Table 3.1. This section will present the results of segmentation,
tracking and cell motility analysis.

3.5.1 Cell segmentation results

The marker-controlled watershed segmentation is demonstrated in Figure 3.8. Fig-
ure 3.8a gives a grey-scale frame extracted from the original image sequence. By
following the procedures outlined in Section 3.1, after the frame contrast enhance-
ment, the background marker is obtained using global intensity thresholding and
set to black area, shown in Figure 3.8b. The cell foreground markers, which in-
dicates the location of cells, are coloured green in Figure 3.8c. In Figure 3.8d,
both marker types are set to be minus infinity so that the water lines of the water-
shed algorithm are initialised from these areas. After the watershed algorithm is
carried out, the segmented areas are marked with different colours, shown in Fig-
ure 3.8e. For each segmented cell area, intensity thresholding algorithm is used to
segment the cell nucleus, surrounded by the red contours, and entire cell masks,
surrounded by the green contours (see Figure 3.8f). These boundary segmenta-
tions demonstrate that the marker-controlled watershed algorithm can identify
cells preventing combining the cells that are closely contacting (i.e., cells: 1-5),
but the algorithm cannot segment the cells, whose nucleus are overlapped (i.e.,
cells: 6 and 7).

Since we used the Otsu’s method for automated thresholding, the segmenta-
tion algorithm can be applied to frames with different pixel intensities. Figure 3.9
illustrates the effectiveness of the segmentation algorithm when applied to images
of different contrast. The subfigures on the left column are the raw images and
those on the right column correspond to the respective segmentation results. Fig-
ure 3.9a and Figure 3.9b demonstrate that the segmentation algorithm is capable

of segmenting the images, where cells have different shape types to those shown
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Background marker Foreground marker

Figure 3.8: Image segmentation process. (a) The grey-scale raw frame. (b) The
identified background marker (the black area). (c) The foreground markers (green
areas). (d) The modified segmentation function, where the background and fore-
ground markers are set to minus infinity (i.e. black colour). (e) The colour labelled
segmentation; each colour indicates a separate segmented area. (f) The segmented
cell boundaries; the green and the red contours represent the boundaries of cell
masks and nucleus, respectively.



Chapter 3. High-throughout Tracking of Cancer Cells 73

in Figure 3.8a. Additionally, frame 1 and frame 221 belonging to the same image
sequence are shown in Figure 3.9¢c and Figure 3.9¢e , respectively. However, the im-
age quality is reduced significantly from frame 1 to frame 221. This phenomenon
is because the fluorochrome molecules lose the fluorescence due to the exposure
to light, known as photobleaching [143]. The associated segmentation results are
shown in Figure 3.9d and Figure 3.9f.

3.5.2 Cell tracking results

Section 3.2 and Section 3.3 described how B-spline active contours are used to rep-
resent the segmented cell boundaries and a DWNA kinematic model is then used
to track the corresponding control points using the Kalman filter and smoother in
order to describe the cell boundary dynamics. Invalid trajectories, such as those
from disturbances, are removed by only considering trajectories that are longer
than 5 frames (75 minutes).

Figure 3.10 presents the tracking results of the control data set ‘J21-F1’. Six
frames extracted from the raw image sequence are provided in Figure 3.10a. These
images show that cell travelling distances between two adjacent frames are much
small compared to the average size of cell shapes (i.e., radius of cell shape) and the
cells show shape variety during migration. Cell centroid trajectories and boundary
trajectories are shown in Figure 3.10b and Figure 3.10c, respectively. 10 of 12 cell
centroid tracks starting from the first frame separately go through the same cell
at frame 20. One cell track (cell: 3) stops earlier because the cell travelled out of
the view. Another track (cell: 13) stops due to segmentation errors where the cell
body was recognised as part of cell 12 at frame 16. In addition, Figure 3.10d shows
an example of tracking cell boundary velocities.

The tracking errors are detected from visual inspection. Tracking inaccuracies
arise from two possible scenarios: i) wrong trajectory caused by the limitation of
cell correspondence identification using NN algorithm; ii) other errors that are
generated in the cell segmentation step. The former occurs when tracking cells
which cross paths can lead to the two cell trajectories being confused. In the latter
case, cells with significant overlap can be incorrectly interpreted as a single cell
in the segmentation step. For statistical analysis after tracking, such as the speed
histogram, migration angle and cell orientation identification, tracking errors only
affect the data of single cell for one frame and it is not capable of altering the
overall statistical trends. However, such mistakes can affect the analysis that focus
on single cell and is relevant to time. For example, the confinement ratio may

change substantially with incorrect trajectory.
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Image sequence: Y27-J15-F1 Image sequence: Y27-J15-F1
Frame:1 (raw image) Frame: 1 (segmentation)

Image sequence: control_3141 Image sequence: control_3141
Frame: 1 (raw image) Frame: 1 (segmentation)
v

(c) (d)

Image sequence: control_3141 Image sequence: control_3141
Frame: 221 (raw image) Frame: 221 (segmentation)
. — >

o

a

(e) (f)

Figure 3.9: Examples of the image segmentation algorithm working on the im-
ages with cell shape variety and different image quality. (a) The cell shape
diversity has been increased compared to Figure 3.8a. (c) and (d) are frame 1 and
frame 221, extracted from the same image sequence. (b), (d) and (f) show the
corresponding segmentation results of subfigures (a), (c) and (e), respectively.
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Raw images Cell centroid tracking
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Figure 3.10: Tracking of cell trajectories and velocities. (a) The raw images of
frames 1,7, 13, 19, 25, 31 of cell line ‘J21-F1". (b) Cell centroid trajectories; different
cell tracks are indexed by lines of different colours. (c) Cell boundary trajectories
alongside overlapping the raw images; colour is used as time index; these cells
migrated from the blue to the red contours. (d) The boundary velocities of cell 8
and cell 10 at frame 4.
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3.5.3 Statistical analysis of cell motility

The results of centroid motility analysis is presented in Figure 3.11. The histogram
of migration speed is shown in Figure 3.11a and it indicates that those cells cannot
move faster than 10 pixels in 5 minutes (i.e., time interval between two frames) and
over 80% cells migrated slower than 4 pixels in 5 minutes. Figure 3.11b is the his-
togram of cell directional changes and shows that cells had the highest occurrence
of maintaining the migration direction (i.e., the directional changes were smaller
than 15° ) when moving to the next frame. Moreover, about 90% of cells migrated
with a directional change smaller than 90°, which indicates that 5 minutes was not
long enough for these cells to move in the opposite direction. Figure 3.11c shows
the confinement ratios, calculated from (3.54), of cells, that presented through-
out the duration of the video. Figure 3.11d shows the comparison of two cells
with significantly different confinement ratios, where cell 1 had larger confine-
ment ratios than cell 2. The corresponding cell trajectories of a bird’s-eye view
(see Figure 3.11e) and a 3D view (see Figure 3.11f) indicate that cell 1 migration
was confined to a small area while cell 2 maintained its direction.

Figure 3.12 provides an example of the orientation identification (method is
seen in Section 3.4.2). The cell orientation throughout the video are shown in
Figure 3.12a and the identified front areas are consistent with the cell centroid
migration directions. Three selected frames are extracted along with the original
grey-scale images are shown in Figure 3.12b and illustrates that this algorithm of
orientation identification is capable of being identical to the visual inspection.

The effect of protrusion identification is illustrated in Figure 3.13 (method is
provided in Section 3.4.2). The protrusion identification of a frame randomly
extracted from the image sequence J21-F1 and the protrusions of a cell at different
frames are shown in Figure 3.13a and Figure 3.13b, respectively. The identified
protrusion locations connect to the light grey cell areas exhibiting large and broad
shapes, which are generally characterised as protrusions [127]. This indicates that
the protrusion identification is capable of showing consistency with observations.

After the protrusions are located on the cell boundary, the length of protru-
sive boundary are normalised against the entire length of cell boundary and are
categorised according to cell orientations. The results are expressed as a polar
histogram, shown in Figure 3.14. It is a mirror image relative to the polar axis
that the histogram in the range [0°, —180°] is mirrored of the part in the range
[0°,180°]. The advantage of using the symmetric polar histogram is the similarity
between the shape and closed cell contours, which is convenient for understand-
ing the behaviours of cells. Additionally, the background colour is indicative of the

orientation angle amplitude. The polar histogram in Figure 3.13 gives an average
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Figure 3.11: Analysis of cell centroid motility. (a) Speed histogram of cell cen-
troid migration. (b) Histogram of cell centroid migration directional change. (c)
Confinement ratios of cells, which existed over 175 minutes (i.e., 35 frames). Each
line represents the confinement ratios over time of a single cell. (d) The confine-
ment ratios of two cells with significantly different values. (e) and (f) are the
bird’s-eye view and the 3D view, respectively, of the cells with the confinement
ratios shown in subfigure (d).
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Figure 3.12: An example of cell orientation identification. (a) The identified
cell orientation throughout cell migration video; colours are used as the index of
orientation that cell front and rear areas are marked by red and blue, respectively,
and the cell centroid trajectory is linked by black line. (b) Frame: 9, 18 and 27 are
extracted from subfigure (a) along with the grey-scale cell image.

Identified protrusions Frame: 9
@
Frame: 18
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Figure 3.13: Example of cell protrusion identification. (a) The identified pro-
trusion locations at the first frame of the image sequence of cell line J21-F1; the
tracked cell contours are shown in yellow and the allocated protrusions are in red.
(b) The protrusion locations of cell 2 at frames: 9, 18 and 27.
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lamellipodia distributions of cells in cell line: J31-F1. Explicitly, a greater number
of protrusions are located in the front area compared to other orientations and
more protrusions are located in the rear area compared to the both sides of the
cells.

Lamellipodia distribution

9 o0.15
120 60

-90
Orientation
rear [T TN Front
180 150 120 90 60 30 0

Figure 3.14: Polar histogram of protrusion distributions associated with cell
orientation (J21-F1). The polar histogram in [0°, —180°] is mirrored of [0°,180°]
and cell orientation is indexed by the colours the same with Figure 3.12 that red
area represents the front and when the colour close to blue the area is close to cell
rear.

3.6 Conclusion

In this chapter, a novel tracking framework was presented alongside a statistical
analyse of cell motility features. The system was demonstrated by applying it to a
grey-scale time-lapse image sequence of breast cancer cells migrating.

The tracking framework consists of cell segmentation, cell boundary represen-
tation and cell dynamic tracking modules. The marker-controlled watershed seg-
mentation was used for automated cell segmentation. This algorithm can segment
the closely contacting cells and overcome over-segmentation, which is a common
problem with the watershed algorithms. B-spline active contours were then ap-
plied to represent the segmented cell boundaries as a linear model with lower
dimensional parameters (control points). Accordingly, a DWNA kinematic model
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was constructed to track the locations and velocities of the control points. Cell cor-
respondence was identified using the NN algorithm. KF estimation and smooth-
ing were performed individually from forward and backward time lines to achieve
the multiple cells tracking.

Cell centroid and boundary dynamics can be calculated from the tracked con-
trol points. The centroid dynamics were computationally analysed by the speed
histogram, the histogram of migration directional changes and the confinement
ratios. Cell boundary motility was quantified by cell protrusion distributions as-
sociated with cell orientations and was presented as a normalised polar histogram.

The proposed tracking framework was applied to the breast cancer cell line
J21-F1. The cell segmentation, centroid and boundary tracks, confinement ratio
analysis, protrusion identification and cell orientations showed the consistency
with the visual inspection. The statistical analysis of cell protrusions associated
with orientations indicated that, for the tracked cells, more protrusions distributed
in the front of the cell. This analysis provided a way to quantify cell motility,
therefore, to compare the motility of different cells or cell lines, which is essential
for the drug testing and the study of unknown cells.

In summary, the presented tracking framework can simultaneously track the
cell boundary and centroid dynamics. The tracking results provided a basis for
further morphology and motility analysis, which is the focus of Chapter 4.



Chapter 4

A Computational Module for Cell
Morphology Analysis

Cell morphology is affected by both intracellular and extracellular environment
changes. The relevant parameters to cell morphology, such as cell area, shape size,
boundary and shape polarisation, have been analysed with a view to help explore
cell membrane structure [77], cell-to-cell interactions [140], morphology associ-
ated signalling networks [6, 138] and functional gene expression [6, 132]. More
recently, discrete cell shape classes and the shape transitions have been observed
[132, 174]. However, there has been little study linking cell motility behaviours
to different shapes. This is important because when cells transition to a different
state, cells generally change morphology, as well as motility characteristics. For
example, when epithelial cells change to mesenchymal stem cells, the apical-basal
polarised cell shapes morph into spindle-like shapes and the tight jointed cells
become isolated and invasive [83]. There are currently no methods for computa-
tionally analysing how dynamics are linked to shapes. Therefore, in this chapter,
a novel computational module for cell morphology analysis is proposed that for
the first time extends analysis of shape to morphodynamics, i.e., analyses how the

cell shape evolves over time and also how cell shapes are linked to motility.

The morphology analysis framework is built on the basis of boundary track-
ing results (see Chapter 3) and its schematic diagram is given in Figure 4.1. The
analysis consists of cell shape description detailed in Section 4.1, shape cluster-
ing detailed in Section 4.2, and integrated motility and morphology analysis and
morphodynamics analysis presented in Section 4.3. Section 4.4 demonstrates the
application of the morphology analysis module to the datasets of wild breast can-
cer cells.

81
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Figure 4.1: Flowchart of cell morphology analysis

4.1 Cell shape description

This session introduces the techniques used for cell shape description. With the es-
timated position of control points and cubic basis functions, cell boundary shapes
can be constructed through the definition of B-spline active contours. FDs are
applied to capture the shape features in frequency domain and has the following
benefits [179].

FDs have the corresponding physical explanation.

FDs involve both local and global shape features since it covers components
of different frequencies.

FDs are easy normalised, namely invariance to shape transposition, scale
and rotation, which simplifies the process of shape matching.

FDs are more robust to noise and boundary variations because of its repre-

sentation in the spectral domain.

The constructed FDs are the same length as the estimated cell contours after
tracking. The features are still of a high dimension and will present difficulties
in identifying different cell shapes consistently. Hence, a feature extraction using
Fourier analysis, is applied to the FDs to perform the dimension reduction.



Chapter 4. A Computational Module for Cell Morphology Analysis 83

4.1.1 Fourier descriptors of cell contour

In what follows, the outline theory of the FDs are given. For a given

] [
u=| u |= ugx) +]'u§y) (4.1)
L UM | i ug\’,j) +ju%) |

(x) ()

where (u;”,u;”"),i=1,..., M is the coordinates of a cell contour (see Figure 4.2a),

the Fourier transform is defined by

1 M=l 27Tim
Ay = M g u; exp <—] M > 4.2)
which has the following properties.

e The Fourier series is periodic of length M, i.e., ay, = ay—cm, c € Z

e Whenm =0,
1 M-1

ap — M = u; (43)

which is the constant component and represents the centroid location of cell
boundary.

e For m = 1, the relevant frequency component represents the shape scale. It
is assumed that u; is on the boundary of a circle centred at the origin with
radius R. If the circle is represented by

u; = Rexp <27t]]\l4> (4.4)

then

(4.5)

e In terms of the other values of m, a,, represent forces acting at different
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locations on the circle. For m > 1, a,, indicates push forces working on m — 1
locations (4.6) simultaneously. For m < 0, it represents pull effects working
on 1 — m points placed on the circle. The point index, i, is given in (4.6).

s+ M ML k=12,...,m-1 ifm>1

i = 2(";21) " . ‘ (4.6)
m+km+Mﬁ k=1,2,...,1—m ifm<0

where 6 = arctan (Eﬁgz;’:; ) is the phase of the Fourier series, a,,. Im(a,,) is the

imaginary part and Re(ay,) is the real part of a,,.

The FD are obtained by normalisation of the Fourier series (4.7). The location
invariance is achieved by removing the constant component, the scale invariance
is achieved by dividing the scale parameter a; and the rotation invariance is per-
formed by eliminating the phase components [121, 179, 187]. The resulting shape
feature vector is given by,

.
fz[fo h o fs oo fM—l}
:[0 T wf 4.7)

This normalisation process is demonstrated in Figure 4.2. The boundaries of
two cells, which are located at different coordinates in raw image (see Figure 4.2a),
correspond to two symmetric shapes located at origin with normalised scale (see
Figure 4.2d). The rotation normalisation removes the phase information from
the descriptor elements so that only the amplitude spectrum is considered in the
obtained FD. The general shape features remain, which are sufficient to tell the
differences between two general cell shape types, such as the circular and the
teardrop shape.

4.1.2 Feature extraction of cell boundary descriptors

The FD represents the features of the cell shape in the form of scale, translation
and rotation invariance. However, the FD is a high-dimensional representation
and a low-dimensional representation is required for use in clustering. In order to
keep the essential shape information, the power spectrum of the Fourier descriptor

is used to select the principal frequency components.

A data matrix D) € RM*(N+1) ig first constructed as

D) = frer £1 f2,--- fN (4.8)
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Figure 4.2: The normalisation of shape descriptors. (a) The original cell bound-
aries, where the start points are marked by circles, and the Fourier transform
is given in subfigure (e); (b) Normalisation of shape translation and the Fourier
transform is given in subfigure (f); (c) Normalisation of shape scale and the Fourier
transform is given in subfigure (g); (d) Normalisation of rotation and the Fourier
transform is given in subfigure (h), which is the same with subfigure (g), but
represented in logarithmic scale of the y-axis. Blue and orange are respectively
employed to represent the boundaries of two different cell shapes and the corre-
sponding Fourier transform. In order to observe the changes of Fourier transform
from subfigures (e) — (h), 40 points are evenly sampled on each cell boundary.

where N is the number of cell shapes, £, is the FD of the n-th cell shape (n € [1, N])
and shown in Figure 4.3a. £, is the FD of a unit circle, which is a reference for
shapes,
-
fmf:[o 10 - 00 (4.9)
The reference shape is included in order to identify where this reference circle
shape is placed in the reduced dimensional space.

The power spectrum of the FD is used to measure the frequency content, and
the average power spectrum of the data base is shown in Figure 4.3b. The frequen-
cies are arranged in descending order of the power. A simplified FD is constructed
by only keeping the strong frequency components. The lost shape information is
measured by the mean integrated squared error (MISE) between the FD retrieved
shapes and the simplified FD retrieved shapes [13, 117]. Figure 4.3c shows the
MISE curve from involving the strongest frequency component to the top 20 fre-
quencies (M = 199). Accordingly, the first three components are kept, and they
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correspond to m = 1, m = 197 and m = 198, respectively.

In terms of the frequency component m = 1, f; constantly equals one in the

normalised FDs. As such the frequency components fig7, fi9s are extracted as a
2D shape descriptor,

_ _ f1(91; ) <f1(9]\;) ) ]
W=|w; -+ W = 4.10
' N ] [ ( f1198 f1(91\z;) 10

where f,gf) is the component at frequency m of FD of cell n.

Regarding the physical explanation of FD (4.6), the value of frequency compo-
nent fyr—» equals to f_», which indicates three pull forces separately working at
locations of %, Y and % on the unit circle (see Figure 4.4a). A bigger value of
ap—» represents stronger forces. Similarly, fy1—1 generates two pull forces working
on locations % and 3 (see Figure 4.4b) on the circle. The new insight developed
here for analysing cell shape is that the first two principal components (PCs) of

FD describe the polarisation of the cell.

The two extracted principal shape features are relevant to the components at
frequency m = —2 and m = —1. A group of FD, combining these two frequency
components over a range of amplitudes with zero values at other frequencies, are
formulated via inverse Fourier Transform to reconstruct the expected cell shapes
at different parts of the shape feature space. Figure 4.4c presents these spectrum
of shapes and three template cell shapes from real cell images in the 2D feature
space, defined as PC1 — PC2.

The shape spectrum illustrates that with the increase of PC1 component, shapes
polarise in three directions whereas bipolar shapes are associated with the increase
of PC2 component. In respect of the template shapes, the red point P, is close to
the origin and the corresponding shape is similar to a circle. The green point P
is almost on the axis of PC2 and corresponds to a bipolar shape. The blue point,
on the other hand, has large value of PC1 and a similar value for PC2. These
represent a combination of the forces in Figure 4.4a and Figure 4.4b, and therefore
the generated shape becomes a teardrop. The extracted real cell shapes are con-
sistent with the shape inference and its associated principles based on forces. This
indicates that the proposed 2D shape descriptors are able to capture the relevant

geometric features of cell shapes.
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Figure 4.3: Feature extraction from the FDs. (a) The FDs of entire data set. Each
colour represents a FD of a single cell and 8894 cells are included. (b) The average
power spectrum of the FD. (c) The MISE of FD that involves strong frequency
components. For example, the red point in subfigure (c) indicates the measured
descriptor contains the components at frequencies m = 197, m = 198 and m = 1.
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Figure 4.4: Cell shape description. (a) The force effects generated by the com-
ponents of a,,—_5; (b) The forces generated by the components of a,,—_1; (c) The
ideal shapes in shape space PC1 — PC2. The descriptors of three practical shapes
are labelled by red, blue and green spots and the real shapes are given in the right
side.

4.2 Cell shape clustering

The shape of breast cancer cells are characerised by large variations. For example,
the isolated migrating cancer cell can be in the elongated mesenchymal migration
mode or in the rounded-shaped amoeboid migration mode [48]. Figure 4.5a shows
the distribution of observed shapes of wild breast cancer cells in the shape space
PC1 — PC2. The distribution of the cell shape features appear to be contained
in a triangle region, with the vertices of the triangle corresponding to distinct
cell shapes: round, teardrop and elongated. With these shapes associated with
potential behavioural modes of the cells, charactering cell modes from the shape
features becomes an important challenge.

This section presents the techniques used for clustering shape features. This is
accomplished by representing the feature data distributions as Gaussian mixture
models with three PCs, with its initialisation provided by the K-means clustering
algorithm. The K-means algorithm itself is initialised with the vertices of the
triangle region of the feature distribution.
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4.2.1 Cell shape clustering using K-means

The distribution of cell shape descriptors W = | w; wp ... wy | in PC1 —
PC2 were noted to be within a triangle region. The three vertices of this triangle
were also associated with template cell shapes. Hence, the choice for the number
of cell shape clusters are assigned to be K = 3. The simplest clustering method,

K-means clustering, is first used.

The cluster centres are initialised at vertices of the data distribution triangle,
which are p; = [0,0], u, = [0,0.8] and p; = [0.2,0.2]. The parameters are then
identified by minimising the distortion function J,

N K
=YY Carllwn — mel? (4.11)
n—1k=1

where, {, is a binary cluster indicator variable and determined by

1 if k = argmin |w, — ]|, i=1,23
Cnk = i (4.12)
0 otherwise

With the assigned indicators, the minimisation of distortion function | is achieved
by setting its first derivative of y, to be zero which provides the expression of the

derived mean values of clusters to be

N
Y. CnkWn
= n:;\] k=1,2,---,K (4.13)
D gnk
n=1
These are actually the mean values of the observations assigned to the same clus-
ter. The data points are then reassigned according to the distance to the updated

cluster centres, the process repeated until the distortion function converges.

The results of K-means clustering are shown in Figure 4.5b, where the data
points assigned to the same cluster are shown in the same colour and the iden-
tified cluster centres are p; = [ 0.6660 0.1140 }, Yy = [ 0.6960 0.5269 ] and

3 = [ 0.0854 0.2956 ] The cluster centres identified do not conform to the
analysis presented in Section 4.1.2. The cluster centres seem to suggest that there
is no discriminatory information in PC1, whereas, PC1 showed the importance of
being associated with the teardrop cell shape and also do not seem to have an ap-
propriate interpretation. Nevertheless, it appears that the boundaries between the

different clusters may still be usefully associated with cell shape classes. However,
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the cell shape may be better represented by a probabilistic distribution rather than
in terms of cell shape classes.

The distribution of raw data K-means clustering
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Figure 4.5: Cell shape clustering using K-means. (a) Distributions of shape de-
scriptors of wild breast cancer cells; Three practical shapes are projected to the
corresponding descriptors in PC1 — PC2. The vertices of the triangle distributions
correspond to distinct cell shapes: round, teardrop, elongated. (b) The K-means
clustering results, where the cluster centres are labelled by yellow crosses and the
points belonging to the same cluster is given by the same colour.

4.2.2 Cell shape clustering using Gaussian mixture model

In Gaussian mixture modelling, the observations W = [ Wi W2 ... Wy } are
assumed to be a linear combination of Gaussian distributions, given by

K
p(wn) =Y mN (W | 1y, i) (4.14)
k=1

where N (w,, | p, L) are the Gaussian components with mean p, and variance
Y in the form

1 1 1 -
N(Wn | ”k/zk) = (27Tk)1/2 ’ Zk |1/2 exp _E(wn - ,uk)TZk 1(Wn _.uk) (415)

The mixing coefficient 77, is the probability of belonging to a specific component
distribution associated with a cluster and is a latent variable that is required to
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Table 4.1: Initialisation of Gaussian mixture model using K-means.

Clusters | Means Covariances Mixing co-
efficients
i 7 0.0025 0.0004
k=1 0.0666 0.1140 0.4705
) - 0.0004 0.0028
— T 0.0021  —0.0005
k=2 0.0696 0.5269 0.1782
- - —0.0005 0.0083
i 7 0.0029  —0.0002
k=3 0.0854 0.2956 0.3512
- - —0.0002 0.0036
satisfy
0<m <1 (4.16)
K
Y m=1 (4.17)

The log likelihood function for a mixture Gaussian distribution model of (4.14), is

expressed as

N K
Inp(wy, | m,p,Z) =) In| Y mN(wy | p, Zi) (4.18)
n= k=1

1 =

To identify the Gaussian mixtures model, the EM algorithm is used to find

the solution that maximises the likelihood function. The EM algorithm is per-

formed via steps of initialisation, expectation, maximisation and evaluation of the
likelihood [17, 39].

e Initially, the model parameters are set up by K-means clustering, given in
Section 4.2.1 (Table 4.1). The initial value of the log likelihood function is
then calculated.

¢ In the expectation step, the conditional probability of z; given w,, expressed

as v (zpk), is calculated through the initial parameters and is regarded as the

responsibility of cluster k for observations wy,.
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p(ze = D)p(wWn | ¢ = 1)
K
L p(zi =)p(wn | zi =1)
- Ika (W | o Zi) (4.19)
L N (Wn | py, Zi)

V(zak) = plze =1 [ wn) =

e In the step of maximisation, the parameter estimations are updated using
the obtained responsibility. By setting the first derivative of log likelihood
given in (4.18) to be zero, it is obtained that

N , Y K
-y g"N(W” | o Zi) Y (W — 1) =0 (4.20)
=1 ,Z N (W |y, Zi) K=
N K
= Y v(zw) Y (w (4.21)
n=1 k=1
1 N
Y 1w (4.22)
Ni n=1
where N
Ne= Y (zu) (4.23)
n=1
The estimated variances are
. 1 . R
L= 7 (k) (W = fig) (Wi — )’ (4.24)

The mixing coefficients are estimated by a Lagrange multiplier and given in
(4.25)

e Finally, the new log likelihood can be evaluated. The estimation and max-
imisation steps will be repeated until the log likelihood is converging and is
tested by its change falling below a threshold.

The identification of a Gaussian mixture model, including the convergence of
the mixture Gaussian distribution and the likelihood function, is illustrated in
Figure 4.6 with the converged parameters given in Table 4.2. The coverage of
the Gaussian distribution components in the PC1 — PC2 space suggests a closer
alignment to the template shapes, so that the three components are assumed to
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correspond to the round shape (k = 1), the elongated shape (k = 2) and the
teardrop shape (k = 3).
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Figure 4.6: The identification of a Gaussian mixture model of cell shape dis-
tribution by the EM algorithm. Subfigures (a)-(d) show the distribution of the
Gaussian mixture model at the iteration 1, 5 and 10 and the final results; (e) Like-
lihood function over the iterations.

The results appear to support the notion that there are three fundamental cell
shapes that can be found in the population of cells. The cell morphological anal-
ysis that uses FDs, followed by the feature extraction and the Gaussian mixture
modelling can be used in an automatic analysis towards labelling each cell shape

class to be round, elongated or teardrop.
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Table 4.2: The parameters of converged Gaussian mixture model.
Clusters | Means Covariances Mixing co-

efficients
- 7 0.0006 0.0005
k=1 0.0465 0.1205 0.3440
- - 0.0005 0.0041
- 7 0.0011  —0.0010
k=2 0.0642 0.3604 0.4136
- - —0.0010  0.0263
- : 0.0039  —0.0002
k=3 0.1287 0.2510 0.2424
- - —0.0002 0.0167

4.3 Cell morphodynamics analysis

The study of morphodynamics not only demands that we classify cell shapes but
also quantify the dynamics of how the cell shapes evolve over time as well as to
link them with cell motility. This problem is approached here with HMM mod-

elling where cell shape classes are represented as states of the HMM.

4.3.1 Description of cell shape evolution based on Gaussian mixture

model

The evolution of cell shapes between adjacent frames can be modelled using the
clustering results from the Gaussian mixture model. If the clustering results are
assumed to be true, then the evolution of cell shapes can be thought of as a se-
quence of shape clusters which can be represented as a Markov model. This is a
two stage method involving clustering and then using that result in modelling the
dynamics of shapes.

Using the parameters of the Gaussian mixture model, cell shapes are classified
into the shape class with the maximum conditional probability, y(z,), defined in
(4.19).
k=1,2,3

Xn = argmax y(zux), (4.26)

k

where 7 is the index of cell shape and x, = 1,2,3 represent the shape state of
round, elongated and teardrop, respectively.

Subsequently, cell shapes are linked over time according to the cell correspon-
dence calculated from the tracking process (Methods given in Chapter 3). Given

)(gi) is the shape type of cell (i) at moment f, there are nine possible shape evolu-
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tions from Xi@l to )(gi) , which are:
Round — Round Round — Elongated Round — Teardrop
Elongated — Round Elongated — Elongated Elongated — Teardrop  (4.27)
Teardrop — Round  Teardrop — Elongated  Teardrop — Teardrop

where Round — Elongated represents that the cell at time t — 1 is round shape
and transitions to elongated shape in the next frame at time t. Using the cell
track analysis, the number of all possible shape transitions can be counted and
normalised on the basis of prior shape type, thereby a matrix A, € R¥*3 can
be generated to statistically describe the behaviours of cell shape evolution in
adjoining frames. Each element of A, corresponds to normalised (conditional on

the prior state) frequency of the transition given in (4.27).

The two stage analysis is essentially an approximation of the morphodynam-
ics model since the first stage of clustering assumes that there are no uncertainties
in the classification process. Any clustering errors will then get passed on the
Markov model stage which results in a model that is only an approximate repre-
sentation. An improved modelling approach that integrates these two stages into
one is offered by the use of HMM, as described in Section 4.3.2. As such, the two

stage method must be viewed as a simplifed approximation to the HMM.

4.3.2 Cell morphodynamics modelling using hidden Markov model
Let the sequence of cell shape features of a specific cell (i) be denoted as wgi) over
time t = 1,---,T; where T; is the number of samples for that specific cell track
and i = 1,---, N, is the index of cells. If it is assumed that the current shape
feature sequence is dependent only on its most recent past observation, the shape
change over time can then be modelled by a first-order Markov process. The cell
shape class to which a shape feature pattern is to be associated with is unknown
and represented as a latent variable z. This latent variable can be one of the three
discrete states: round, elongated and teardrop. The identified Gaussian mixture
model of cell shape distributions (Table 4.2) can be treated as prior information
to this stage of the modelling and therefore are employed as the initialisation
of component densities. The time sequences of cell shape descriptors are then
modelled by a HMM.

The HMM represents the conditional dependence in the time sequence through

a set of parametrised conditional probability distribution. This conditional distri-
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Figure 4.7: Lattice diagram of cell shape transitions. Cell shapes are represented
as the states of the HMM and the transition probabilities between different shape
states from t — 1 to t are given by transition matrix, of which the element in row i
and column kis Ay = p(zir =11 z4-1; = 1).

bution p(z: | z;—1) is then constructed as

K K
p(zi | z1,A) =TT ]An (4.28)
k=1i=1

where z; is the shape states at time t € [2,T] and T is the length of time se-
quence. A is the transition matrix, which indicates the relations between latent
states. Ajp = p(zx = 1| zi-1; = 1) is the element in row j and column k of A
and represents the transition probabilities. These represent the parameters of the
model and need to be determined from data.

The HMM representation of the cell shape evolution between the three classes
of cell shapes is illustrated by a lattice diagram in Figure 4.7.

The parameters of the HMM are determined by likelihood maximisation, using
the EM algorithm. Assuming that three Gaussian distributed classes are involved,
the emission density of the HMM will be the corresponding component Gaussian
distribution from amongst the mixture (4.14) with the distribution parameters p,
X and 7r. The transition matrix A is initialised uniformly with different diagonal
values in the range p € [0.4,0.98] to be consistent with the prior knowledge that
the cell shape class has a higher probability to be unchanged at the next time
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instant. With the off-diagonal transition probabilities set to be equal, A becomes,

if j =k
Ay = Fl’ t (4.29)
= Ak

Next, for the shape feature sequence of cell (i), W) = [wgi), . .,w(Tii)], with
the latent sequence z(?), the joint posterior & (zgl,zgi)) and the marginal posterior
(i)

distribution 7(z,’) are evaluated using the forward-backward algorithm [17] at
the Expectation stage of EM. Using Bayes’ theorem,

1(z{") = p(z!" | W)
~p(WO | 20)p(2)

a p(W)

p(wgl), . ..,wgt),zt(l))p(wfllil, . “'W(Tli) \ zEZ))

p(W)
_ x(z))B(z") (431)

(4.30)

&(z),2") = p(2!",, 2" | W)
p(W | zill,zi Nr(z, 2"
p(W)
p(w; ""'wngl | ZQl)P(WE?l | ZQl)P(Wle-“IwT
p(W®D)

i

= — ) — (4.32)
where, (x(zgi)) = p(wgi), e, wgi), zgi)) is the joint distribution of all the shape obser-
vations up to the moment t and the hidden states zgi). ﬁ(zgi)) = P(ngr . .,Wgé) ]
zgi)) is the conditional probability of all following observations from ¢ 41 to the
end of the sequence given the latent variable. By applying the sum and product
rules, the joint probabilities are expressed by

a(z") = p(w" | 2" }:«x 2 | 2(") (4.33)
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which is a part of forward recursion. The recursion is initialised by:
w(z) = p(z)")p(w | 2)") (434)

Similarly, a backward recursion is derived in terms of the conditional probabilities,
given in (4.35), and is initialised by ,B(Z(Tll)) =1

B2y = Y B ) pw!? | | 2 p(2l), | 27) (4.35)
(i)
Z 4

(i) (i)

The function a(z,;") is rescaled in (4.36) to avoid the issue that a(z;”’) becoming

exponentially close to zero:

( i i i a(z
a(z)) = p(z) |wl,. .., w) = t( t (4.36)
e
h=1
where a scaling factor /- gi) = p(wfi) | wgi), . .,wgl) is employed. The forward
recursion then becomes
(i) () M0y v (i) (i) ()
Fi &(Zt ) =p(w,’ [ z") Z &(Zt—l)p(zt ‘Zt—l) (4.37)

The function 5(z§i)) is rescaled in (4.38) and the corresponding recursion equation

is given in (4.39).

. (0
plaf?y = B2 ) (4.39)
1 %
=it "
Q) a/ () Ko CIRORYRGINNG
Ft+1:B(Zt )= (Z .B(Zt+1)p(wt+l | Zt+1)p(zt+1 | z,7) (4.39)
th =1

1(2") = a(z)")p(z") (4.40)
() @) 1)y () ) A (D)
C(Z&,zgi)) _ &(z" ) p(w,” | z' )(Z(th | 2,”)B(z") (4.41)
Fy

where, the scale factor F Ei) is cancelled out during the EM.

At the maximisation stage, the logarithm of the likelihood function is defined
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as a function of the model parameters,

Q(b,0) = ;P(Z | W,8)Inp(W,Z | )

1k

c i K K
MERTENS 30 30 3 BTG UPEL U1V P

i=1t=2j=1k=1

ek

Z
=

YD) Inp(w | 4, %) (4.42)

mg

N
I
—_
-
Il
—

k

1
Parameters & = {7, A, i, L} then can be estimated by maximising the log-

likelihood function as follows:

fo= L (4.43)

(4.44)

i = (4.45)

5, = == . (4.46)

The expectation and maximisation steps are then performed iteratively until
the likelihood function p(W) converges to a local maximum. The p(W) is able to
be found by the product rule and is given by (4.47) [16, 17, 52].

p(W) = HH F (4.47)

The estimated HMM parameters represent the evolution of cell shape over
time. Even though the cell shape distribution was estimated as part of the overall
HMM, instead of using the results of Section 4.2.2, the distribution parameters
do not reveal time evolution properties. The transition matrix A is the parameter
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Figure 4.8: Flowchart of cell morphology analysis.

containing this information. However, the diagonal elements of this matrix tend
to be large, reflecting the fact that cell shape class transitions are not frequent
at the data sampling rates used here. A more appropriate measure under these
circumstances is to estimate how long a cell remains in a specific cell shape class
before it transitions to another shape class.

This measure is the sojourn time that represents the expected time duration of
residence in a particular cell shape class which can be calculated from the transi-

tion matrix: .

= = 4.4
1= Ay’ k=1,2,3 (4.48)

Tk

In summary, cell shapes are clustered into round, teardrop and elongated states
using HMM, where the transition matrix A describes the transition probabilities
of states in contiguous moments and sojourn time is used to estimate the expected

time of each shape state.

4.4 Morphology analysis of breast cancer cells

The morphodynamic modelling algorithm for analysing cell shape evolution de-
veloped in the previous sections, summarised in Figure 4.8, is now applied to wild
breast cancer cells data described in Table 4.3. This section provides the quanti-
tative analysis of the control cell morphodynamics and links cell morphology to

motility characteristics.
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Table 4.3: Experimental information. The data is used for the demonstration of
morphology analysis module.

e Cell line: MDA-MB-231 breast cancer cells
Experimental data e Cell collection: control 3-13-2, control 3-13-2,
control 3-14-2

e Culture condition: tissue culture plastic
Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented 5% heat-inactivated on Fetal
Bovine Serum (FBS)

e Image type: time-lapse grey-scaled image
sequence

e Resolution: 500 x 664

e Length: 220 Frames

e Time interval: 5 minutes

Image sequences

4.4.1 Quantitative morphodynamics analysis

The shape descriptors of cells from the data given in Table 4.3 are represented as
points in a 2-D shape space (see Figure 4.5a), with the cell shape features distribu-
tions modelled as a linear mixture of three Gaussians (see Figure 4.6d). In order
to keep a count of the observed cell shape transitions, cell shapes are classified
into the shape class with highest membership probability (4.26). The observed
number of shape transition between two adjacent frames are counted using the
method given in Section 4.3.1, and the results are given in Table 4.4. The counts
are normalized by rows to obtain an estimation of the transition matrix A, given
by:
0.8362 0.1108 0.0530
A, = 0.1089 0.8113 0.0798 (4.49)
0.1015 0.1909 0.7077

Note that this transition matrix estimate models the shape sequences as a Markov
model but assumes that the shape classes are accurately estimated. In Table 4.4,
the counts show that a cell shape state remained in the same state 3 to 10 times
over all cell shape transitions. The low cell counts for some shape transitions
reveal that potentially the data may be insufficient to accurately model the mor-
phodynamics. With increased amounts of data, A, may become less sensitive to
the data variations.

It is clear that a better model representation can be formed by the use of HMM

that treats the shape class as a hidden variable and the shape features as observa-
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Table 4.4: Count of shape transitions between adjacent frames

3 ! Round (R) Elongated (E) Teardrop (T)
R 2920 387 185

E 390 2906 286

T 160 301 1116

tions that are conditioned on the hidden shape class. Hence, the previous analysis
was followed with cell morphodynamics being described by a first order HMM,
EM based estimation was employed to determine the model parameters. By intro-
ducing the first order HMM, cell shape sequences are assumed to be independent
of the observations except for those at the most recent observation frame, and the

emission probabilities are represented by a mixture Gaussian distribution.

The converged parameters are given in Table 4.5. The cell shape classification is
achieved by normalising the mixture distributions, which computes the posterior
probability of the features belonging to specific cell shape class, y(z;). The class
membership posterior probabilities over cell shape feature space are shown in Fig-
ure 4.9a. The figure shows that the class boundaries are very clearly defined with
probabilities dropping and rising sharply. Figure 4.9b presents the data points
that are shown by the proportions of the red, blue and green colours associated
with the value of membership probabilities. Due to the trends of membership
probabilities, prominent colour changes occur at the interaction areas. The clus-
ters intersections in the shape space are shown in Figure 4.9c with the boundary

superimposed with the ideal shapes.

Table 4.5: Parameters of shape feature distribution in the identified HMM.

Clusters | Means Covariances Mixing coeffi-
cients

: - | [ 0.0008 0.0004 ]
k=1 0.0504 0.1298 0.3763
: - 0.0004 0.0048

: - 0.0010 —0.0001 |
k=2 0.0593 0.4236 0.3274
L : 00001  0.0174

: - | [ 00031 0.0001 |
k=3 01375 0.2399 0.2963
: - 0.0001 0.0144
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Figure 4.9: Results of cell clustering based on HMM. (a) The membership proba-
bilities of different shape class over the shape feature space. (b) The data clustering
results. Each point represent a descriptor of cell shape and is coloured by the pro-
portions of red, blue and green colours associated with the associated membership
probabilities. (c) The cluster intersections in the shape space and the ideal shapes
are located at the coordinates of corresponding descriptors.
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The transition matrix is

0.9766 0.0175 0.0059
A= | 00607 0.9094 0.0298 (4.50)
0.3438 0.0532 0.6029

The corresponding Sojourn times are calculated in Table 4.6. Sojourn time
is an indicator of the prevalence of cells to maintain a specific shape before any
transitions and can characterise morphodynamics differences in different cellular
environments. The Sojourn time is also normalised with respect to the round state

to see any pattern of relative changes in sojourn time of other cell shapes.

Table 4.6: The Sojourn time of being each state.

Cluster | Shape state Sojourn time | Normalised so-
(19) (minutes) journ time

1 Round 214 1

2 Elongated 55 0.2570

3 Teardrop 13 0.0607

The transition matrix in (4.50), indicates that the cells have the highest probabil-
ity of retaining the same shape state rather than jumping to other states during the
5 minutes interval, whereas the round state has the highest probability (0.9766),
followed by the elongated (0.9094) and teardrop shape state (0.6029). When shape
state transition occurs, the teardrop shaped cells display a significantly high prob-
ability to switch to the round state (0.3438). In respect of sojourn time (Table 4.6),
cells are expected to stay in round state for as long as about 4 times of maintaining
elongated and about 16 times of maintaining teardrop.

Compared to the approximate transition matrix, A, in (4.49), A displays simi-
lar patterns of the probabilities of cell shape transitions. Specifically, the diagonal
entries in both matrices are all over 0.5, which indicates the cells have higher prob-
abilities of retaining the shape state instead of transiting to others in the 5 minutes
time interval. Furthermore, the diagonal states are identified in the same order of
round, elongated and teardrop and cells show the strongest stability of staying in
the round state and the least probability of remaining in teardrop shape.

However, there are dissimilarities between A and A,. For instance, in HMM,
the cells at teardrop state displays a higher probability of switching to round shape
than the elongated shape whereas in A, this characteristic is reversed. This is pos-
sibly due to two reasons. Firstly, the shape class boundaries are slightly different
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between the two approaches. Secondly, and more importantly, the uncertainties
in the estimation is ignored in the approximate transition probability estimation
while HMM includes it.

In summary, cells can retain the round shape state for the longest duration
while also displaying higher probability to transition to the teardrop shape than
the elongated one. Both elongated and teardrop cells have a higher probability
to transition to the round shape than transition to the other shapes. The teardrop
shaped cells are the most difficult shape state to be retained, indicating that this
shape is perhaps a transition state for the cells. These reflect the morphodynamic
characteristics during controlled cell migration and this analysis provides a quan-

titative assessment of morphodynamics.

4.4.2 Integrated motility and morphology analysis

The HMM hidden variable estimates are used in classifying cell shapes according
to the shape class with the highest posterior membership probability. However,
the highest probability of a cell shape class does not necessarily indicate that this
classification has a high degree of confidence or that it is closer to a decision
boundary. In order to identify cell motility patterns from those that clearly belong
to a specific shape, a threshold on this posterior probability is applied to extract
only those cells that can clearly be attributed to a specific cell shape class. These
cells will have the posterior probabilities that are greater than the threshold.

The integrated motility and morphology analysis is centred on linking specific
cell shapes with features of cell motility. Essentially, it seeks to address whether
specific cell shapes are associated with higher migration speed and directional
change in motility. Such quantitative integrated analysis can reveal if cellular
behaviour can be predicted based on motility and morphology characteristics.

Figure 4.10 gives the cell motile speed distribution in truncated histograms
for cells in each of the three shapes. This distribution is repeated with different
thresholds to investigate whether there is a strong correlation between motility
and morphology. These histograms are normalized by the number of cells in each
category so that the histograms represent the class conditional probability.

The elongated cells are characterised by having a distribution with a higher
proportion of cells at greater cell speeds of over 8 pixels/5 mins compared to
the cells of the other two shapes. The teardrop shaped cells show the highest
probability at the speed range [2,4] pixels/5 mins but not at the smallest velocity
range, where the round shaped cells have the highest probability. With the increase
of the threshold, round cells show a continuous increase of the probability for cell
speeds less than 2 pixels/5 mins and the probability is 0.52 when the threshold is
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largest at 0.96. Note that the greater the threshold, the more closer the cell shapes
chosen in the analysis are to the ideal shapes.

A similar analysis is carried out to analyse cell migration angle change, and its
correlation with cell shapes, with the results given in Figure 4.11. As the thresh-
old is increased, the histograms appear to change very little indicating that the
distributions are quite stable. The elongated cells exhibit the highest probability
when migration angle change is smaller than 15° and bigger than 110°. This in-
dicates that, the elongated cells have the strongest preference to keep moving in
the same direction or suddenly orienting in the opposite direction. The teardrop
and round cells show similar histogram patterns, but teardrop shaped cells show
higher probability of direction change that is smaller than 15°.

Additionally, cell speed with respect to direction change is analysed in Fig-
ure 4.12. The analysis is focussed on the threshold for shape classification being
set to 0.96. At this threshold, the cells are closer to their ideal shape and even
at this threshold, there are sufficient number of data of cell shape and motility
to perform this analysis. In comparison with round cells, teardrop shaped cells
move relatively faster. Elongated cells showed a tendency to move forward with
a significant speed increase as observed for the range [0°,22.5°] (round: 4.28 pix-
els/5 mins, teardrop: 4.77 pixels/5 mins, elongated: 5.42 pixels/5 mins).

Integrated morphology and motility analysis showed that shape states have
distinct motility features. Cells at round shape state move slowly and no pref-
erence for direction. In comparison, teardrop shaped cells show a preference for
small directional changes, [0°,15°], and move faster along with any orientation.
Elongated cells show the highest probability of directional changes smaller than

15°, whereas cells migrate at the highest speed amongst all shapes.

4.4.3 Morphodynamics analysis of single cell migration

The analysis module for cell morphodynamics is based on cell-centric views so
that the analysis is amenable for use in the study of single cell migration. A single
cell migration with significant directional changes in the observed time-lapse mi-
croscopy is extracted. The results of tracking this cell is given in Figure 4.13. Cell
boundary tracking showed that cell boundary speed were generally smaller than
12 pixels/frame, except for two sections where cell rear migrated significantly
faster than the typical speeds (see Figure 4.13a). The centroid trajectory showed
that there were two migration directional changes (see Figure 4.13b).

In order to explore how cell shape changes were correlated with motility char-
acteristics of cell speed and cell migration directional change, a quantitative mea-

sure of shape change is introduced. This measure is based on the Euclidean dis-
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Figure 4.10: The comparison of cell migration speed of different shapes. The
speed histogram (truncated) of different shape is normalised by the number of
cells involved in the shape class. The cell numbers of each analysis are marked
in the right of each figure. Cell shape classification is performed with different

thresholds: 0.5, 0.7, 0.8, 0.9, 0.94 and 0.96.
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Figure 4.11: The comparison of cell migration angle change for different shapes.
The histogram (truncated) for different shapes are normalised by the number of
cells involved in the shape class. The cell numbers of each analysis are marked
in the right of each figure.. Cell shape classification is performed with different
thresholds: 0.5, 0.6, 0.7, 0.9, 0.92, 0.94 and 0.96.
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Figure 4.12: Cell speed with respect to direction change for different shape state.
(a) The comparison of round and teardrop state. (b) The comparison of round and
elongated shape state. The threshold, used for shape classification, is set up as
0.96. In the polar charts, angular and radial coordinates represent cell migration
direction change (°) and the corresponding average speed (pixels/5 mins), respec-
tively, additionally, the angle range [0°, —180°] are symmetric to the angle range
[0°,180°].

tance in the shape feature space PC1 — PC2, and given by:

|APC|| = \/(wt,PC1 —wi_1,pc1)’ + (Whpc2 — Wi—1,pc2)° (4.51)

where (w; pc1, Wt pcz) denotes the 2D shape descriptor of cell in frame t.

Figure 4.14a shows the cell shape evolution in shape feature space PC1 — PC2
with the trajectory showing that the shape changes are fast at some stages. The
cell shape changes, centroid velocity and migration angle changes over time are
presented in Figure 4.14b, Figure 4.14c, Figure 4.14d, respectively. The first sig-
nificant shape change occurred from frame 11 to 17 and cell speed increased si-
multaneously. The migration angles changed after the cell shape changes and the
migration speed became small. Further on, the cell experienced a similar migra-
tion process that started with cell shape and speed increasing in frame 29 and

followed by migration directional change in frame 32.
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Figure 4.13: Tracking of single cell migration. (a) Cell boundary tracking. The
speeds of cell boundary correspond to the colour bar. (b) Cell centroid tracking.
The centroid velocities are represented as vectors with magnitudes indicated by
length and directions indicated by arrows and cell centroids being treated as the
origin. The colours indicate the time (frame) index.

Figure 4.15 shows those two periods of change (frames 11 — 17 and 29 - 32)
when the cell changed shape significantly and it migrated quickly. In both periods,
the cell experienced a tail contraction in which the cell rear was moving with
a larger speed than the other parts of the cell boundary. The front of the cell

remained mostly unchanged.

In summary, the integrated motility and morphology analysis on this cell re-
veals that migration directional changes was associated with cell tails shrinking.
Cell tails moved quickly, and resulted in fast cell shape change. A slow migration
in a new direction generated once the tail contraction was completed. Further
single cell studies are required to investigate the cellular behaviours that may be
presented in general. More importantly, the quantitative integrated analysis also
shows the potential for identifying cellular behavioural characteristics that may
have time correlation rather than association of characteristics at a particular time

instant.
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Figure 4.14: Motility and morphodynamic characteristics of single cell migra-
tion. (a) Cell shape evolution in shape feature space, where colour is used as time
(frame) index. (b) Cell shape changes over time. (c) Cell centroid speed over time.

(d) Cell migration angle changes over time.

Frame: 11 -17 Frame: 29 - 32
340t
310
300 320 1
290 +
300
280
270} 280 7
> 260 | >
250 260 |
240
240
230
2201 220} 0 6 12 18 24 30
210 b | | | Speec? (pixels‘/frame)‘
340 360 380 400 420 440 340 360 380 400 420 440
X X

(b)

Figure 4.15: Shape tracking in single cell migration. The magnitude of the cell
boundary speeds are shown in colours, corresponding to the colour bar, on the
cell boundary. (a) For frames 11 - 17 (b) For frames 29 — 32.
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4.5 Conclusion

In this chapter, a module for cell morphodynamics analysis was proposed. It con-
sisted of cell shape descriptions, shape clustering, shape evolution modelling and
integrated analysis of cell morphology with motility at population and single cell
migration. The module is designed as an extension to the cell tracking framework
and was demonstrated by its application to the image sequences of wild breast
cancer cells.

In shape description, the analysis is performed by determine the FDs and their
dimension reduced by keeping the principal frequency components. The FDs, as
generic spectral shape descriptors, have the physical explanation associated with
each of the components as well, and are invariant to shape shifting, rotation and
scale change. To only keep the strong frequency components, extracted discrimi-
natory information about the FDs from the many cells used in the analysis. The
population of cell shape distribution in this reduced 2-D shape feature space was
then modelled by a Gaussian mixture model and assigned to clusters of round,
elongated and teardrop shape classes.

For shape evolution over time, a HMM was estimated using the data from the
shape feature space. In the process, the Gaussian mixture model was utilised as a
prior to generate the emission properties of the HMM. The integrated analysis of
cell motility and morphology was then performed by combing shape classification
results with cell centroid motility features. The quantitative morphodynamic anal-
ysis showed that the round shape is the most stable state of breast cancer cells and
that the teardrop shape was the state, which transited more readily. The analy-
sis module demonstrated that it can reveal migration characteristics at a single cell
and population levels. Specifically, it is able to capture time correlations associated
with specific cellular behavioural patterns.



Chapter 5

Comparison of MDA-MB-231 Cell
Behaviours with Regulating
Migration-Associated Proteins

Cell migration is the foundation of tumour invasion, which is the essential reason
leading to the death of tumour patients [146]. Vast numbers of drugs have been
designed on the basis of either inhibiting or modifying cell migration. Cell migra-
tion is an integration of a sequence of locomotion, like morphology polarization,
membrane extension and attachments formation and stabilization, and are accom-
plished by spatial and temporal coordination of distinctive molecular mechanisms
[85]. Any change to those molecular structures or assemblies can affect the way
that cells migrate. In the cancer research laboratory, different chemical inhibitors
that act on migration-associated molecular components have been applied in cell
cultivation to identify the underlying molecular functions, at the same time, ex-
plore the efficient way to regulate cell migration [171].

Currently, the evaluation of cell behaviour alterations under different cultiva-
tion environments are generally performed based on visual inspection or manual
counting with applying different chemical indicators [122, 142]. This implies un-
acceptably high time consuming human effort and can lead to mistakes. With
the development of computer vision technology, this requirement for an efficient
and systematic cell behaviour analysis system must tackle the complexity of cell
migration mechanism and the large amount of types of data that may be derived.
By combining the methods discussed in Chapter 3 and Chapter 4, a framework
that integrates automatic cell boundary tracking, cell motility and morphology
analysis, is constructed and used to assess cell migration (see Figure 5.1). Unlike
classical separate cell motility and morphology analysis, the framework is un-
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Figure 5.1: Diagram of the integrated cell migration analysis framework. The
framework consists of automatic cell boundary tracking and subsequent cell motil-
ity and morphology analysis. The potential correlation, marked by the red arrows,
between cell morphology and motility are also discussed in this chapter.

derpinned by the parametric active contours used for cell boundary description,
which intrinsically links cell morphology to motility.

In this chapter, the proposed framework is illustrated to measure the migra-
tion of MDA-MB-231 breast cancer cells subjected to experimental regulation of
different migration-associated proteins.

ROCK and myosin II are two different functional proteins involved in cell
migration due to their contribution to the cell adhesion dynamics, which is an es-
sential process driving cells to migrate, as introduced in Section 2.1.4. Blebbistatin
and Y-27632 are chemical inhibitors of ROCK and myosin II, respectively. They
have been widely applied to cell cultivations in laboratory to infer the functions
of ROCK and myosin II in cell migration [4, 42, 128]. In Section 5.2, the proposed
framework is applied to quantitatively compare the motility and morphology of
control, blebbistatin and Y-27632 activated cells, in order to explore whether the
inhibitions of ROCK and myosin II, which work in the same pathway, regulate cell
migration identically.

Apart from the inhibition of functional proteins, cell behaviours are experimen-
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tally regulated by control of the migration-associated gene expressions [79, 129].
The expressions of FAK, RhoE and B-PIX, respectively, contribute to different steps
of cell focal adhesion continuum, which generates traction stress to drive cell mi-
gration [50]. In Section 5.3, MDA-MB-231 cells were cultivated with knocking
down genes: FAK, RhoE and B-PIX. The integrated analysis framework is applied
to evaluate cell migrations and subsequently to quantitatively compare the regu-

lation functions in the absence of different genes.

5.1 Experimental procedures

To validate the assessment framework for cell migration, two groups of experi-
ments were performed by applying chemical inhibitors to influence different pro-
tein expressions that are likely to be associated with cell migration.

The cell lines used are commercially available from American Tissue Cell Cul-
ture (ATCC, Manassas, VA, USA). The experiments were performed by Dr. Julia
E. Sero in the dynamical cell systems team, division of cancer biology, Institute of
Cancer Research, London, UK.

5.1.1 Introduction of experimental plasmids

In the first experiment, MDA-MB-231 cells were treated by different chemical in-
hibitors, blebbistatin and Y-27632, both acting on proteins in the same pathway:

e Blebbistatin is a small molecule inhibiting activity of non-muscle myosin II,
which plays an essential role in cell adhesion maturation and subsequent
cell migration (see Figure 2.4 in Section 2.1.4). In one study, blebbistatin was
applied to pancreatic adenocarcinoma to investigate the myosin II functions
in cell migration. This study showed that blebbistatin had a negative effect
on cell focal adhesion formation, through which the cytoskeleton activity is

regulated, inhibiting cell adhesion, migration and spreading [42].

e Y-27632 is a biochemical inhibitor of ROCK, which is similar to myosin II
which contributes to cell adhesion maturation. It has been shown that Y-
27632 inhibits migration of rat ascites hepatoma cells through the suppres-
sion of cell focal adhesion and actin bundle, which are essential for cell move-
ment [63].

Next, MDA-MB-231 were cultivated by knocking down FA associated genes,
including FAK, RhoE and B-PIX. These genes have been identified to play a role

in cell migration and are briefly described below:
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e FAK-encoded protein is mainly expressed during the focal adhesion forma-
tion and boundary spreading. Compared to normal cells, the FAK activity
is detected to increase in tumour cells, such as prostate, thyroid and breast
tumours [150]. Aberrant expression of FAK have been experimented in a
variety of cell types and various regulation functions on cells are reported.
For example, van der Gaag et al. proves that overexpression of FAK can en-
courage the cell spreading of melanoma cancer [152]. Ward et al. shows that
depletion of FAK inhibits tumour growth of mice ovarian carcinoma cells
[159].

e RhoE is a member of Rnd proteins and is involved in many cellular activities,
such as cell migration, epithelial polarity and cytoskeletal dynamics [153]. It
is proved that the RhoE expression is essential for preventing the transfor-
mation of human prostate cancer cells [9]. Beyond prostate cancer cells, the
functions and mechanisms of RhoE have not been fully understood since it

is found in many cell events [9].

e B-PIXis found located in nascent adhesion and is dissociated after adhesion
becomes mature. An interaction exists between myosin II, which is essential
for FA growth and maturation, and B-PIX. Hence cell migration and mor-
phology are affected by a change to -PIX. For example, for human corneal
epithelial cells, overexpression of B-PIX negatively regulates adhesion matu-

ration, but promotes cell migration [79, 82].

5.1.2 Experimental data

MDA-MB-231 breast cancer cells were labelled with CellTracker Orange (excita-
tion wavelength of 561 nm and emission wavelength of 600 nm; Invitrogen) and
cultured on tissue culture plastic in DMEM plus 5% heat-inactivated FBS. Time-
lapse grey-scale imaging was performed using an Opera Cell::Explorer automated
spinning disk confocal microscope (PerkinElmer) with a climate control chamber
(37°C, 5% CO2). Images of revolution 500 x 664 were acquired at 5 minutes inter-
vals with a 20x water objective lens (NA = 0.7) with 2 x 2 binning. Movement
correction was applied to time-lapse movies using Velocity (PerkinElmer).

Table 5.1 provides the experimental conditions used and datasets obtained for
the comparison of myosin II and ROCK inhibitors. Table 5.2 lists the experimental
conditions and datasets obtained for the comparison of different FA associated
genes, FAK, RhoE and B-PIX.
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Table 5.1: Data used for comparison of blebbistatin and Y-27632.

live Y27 J15-F7
live Y27 J16-F2

Chemical inhibitors Data sets Interval | Video duration
None live control J21-F1 5 mins 38 frames
(control sets) live control J21-F3

live control J21-F5
Blebbistatin live Blebb J18-F5 5 mins 38 frames

live Blebb J18-F7

live Blebb J19-F2
Y-27632 live Y27 J15-F1 5 mins | 38 frames

Table 5.2: Data used for the comparison of focal adhesion associated genes.

Knockdown genes

Data sets

Interval

Video duration

B-PIX 4-14-1

None control 3-13-2 5 mins 220 frames
(Control sets) control 3-14-1
control 3-14-2
FAK FAK 5-13-3 5 mins 220 frames
FAK 5-13-5
FAK 5-14-5
RhoE RhoE 7-13-3 5 mins 220 frames
RhoE 7-13-5
RhoE 7-15-4
B-PIX B-PIX 4-13-2 5mins | 220 frames
B-PIX 4-13-3
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5.2 Quantitative motility and morphology analysis of MDA-
MB-231 cells treated by blebbistatin and Y-27632

Myosin II and ROCK are essential proteins that affect cell migration through par-
ticipation in cell focal adhesion maturation and growth (see Section 2.1.4). Blebbis-
tatin and Y-27632 are small molecular inhibitors, acting on myosin II and ROCK,
respectively, and have been studied mostly for their effects on kinases distributions
using immunofluorescence techniques and vision inspections, such as the analysis
of inhibition of cell blebbing by Y-27632, and the evaluation of blebbistatin effects
on apoptosis [11, 78, 111, 120]. There are currently no systematic computational
analysis of cell behaviours, which can be used for the comparison of the effects
of blebbistatin and Y-27632 on cell migration in isolation from the complicated
molecular process involved in cell signalling in cellular activities.

This section uses the proposed framework in Chapter 3 and Chapter 4 to com-
pare cell migration, regulated by inhibition of myosin II and ROCK functions
using blebbistatin and Y-27632, at the population level. The comparison consists
of the analysis of cell centroid motility, cell boundary dynamics, cell morphology
and morphodynamics.

5.2.1 Analysis of cell centroid motility

In Section 3.4, cell dynamics are described by cell trajectories and velocities us-
ing automated cell boundary tracking. To compare the effects of blebbistatin and
Y-27632 on cell motility, the quantitative analysis of cell motility is presented ac-
cording to movement of cell centroid and boundary dynamics.

Cell centroid motility characteristics, including migration speed, migration di-
rection change, migration length, confinement ratio and average speed in respect
of direction change, are calculated separately to characterise cell motility. Both
chemical inhibitors suppress cell centroid motility, however they do so in a differ-
ent way.

Cell migration speeds and direction change are calculated based on cell cen-
troid tracking (Method is given in Section 3.4.1). Blebbistatin and Y-27632 treated
cells show a similar average speed to control cells (control: 3.0 pixels/5 min,
blebbistatin: 3.0 pixels/ 5 min, Y-27632 3.6 pixels/5 min; see Figure 5.2a). The
speed histogram shows that more Y-27632 treated cells migrate faster than 2 pix-
els/5 min. Blebbistatin-treated cells, however, have similar distributions of migra-
tion speeds to the control cells (see Figure 5.2b).

Figure 5.2c shows that Y-27632-treated cells migrate with smaller mean and

narrowly distributed direction changes between adjacent frames, compared to con-
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trol and Blebbistatin-treated cells. In addition, the direction change histogram in
Figure 5.2d shows that both inhibitors restrict cell migration direction changes in
the 5 min study interval (occurrence of angle change less than 20°: control 54%;
blebbistatin 68%; Y-27632 70%).
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Figure 5.2: Quantitative analysis of cell centroid speed and direction change. (a)
Centroid migration speed of cells subjected to blebbistatin and Y-27632 treatments
and corresponding speed histogram (truncated) is given in subfigure (b); (c) Cen-
troid migration direction change of cells subjected to treatment of blebbistatin and
Y-27632 and the histogram (truncated) is given in subfigure (d). In subfigure (a)
and (c), the red lines in the middle of the box correspond to the median values, the
lower and upper edges of the box are used to mark the 25% and 75% of the data
distributions, respectively. The whiskers outside of the box extend to the extreme
values of the data.

Secondly, with the assumption that cell migration speed is associated to the
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Figure 5.3: Cell centroid speed in respect to migration direction change. (a)
Comparison between control cells and blebbistain treated cells. (b) Compari-
son between control and Y-27632 treated cells. These polar charts are designed
up-down symmetrical, angular coordinates represent cell migration direction
changes and radial coordinates are the corresponding average centroid speed (pix-
els/5 mins)

orientation, cell average speeds in respect of migration direction change are pre-
sented in a polar chart, where angular and radial coordinates represent migration
angle changes and corresponding average speeds, respectively (see Figure 5.3).
Compared to the control cells, blebbistatin and Y-27632 mainly maintain cell speed
when cells move forward ([0°,20°]). In other directions, blebbistatin strongly sup-
presses cell speed more than Y-27632. Hence, the control, Y-27632 and blebbistatin
treated cells have increasing ability to maintain migration direction while blebbis-
tatin treated cells exhibit a stronger ability to maintain migration direction.

Additionally, cell tracks over 30 frames are extracted to characterise cell abil-
ity of directional migration through cell migration length and confinement ratio.
Figure 5.4a gives the comparison of cell migration length. Over longer time spans,
blebbistatin reduces cell migration distance, Y-27632, on the other hand, improves
the migration distance (blebbistatin 105 pixels; control 117 pixels; Y-27632 128 pix-
els at 150 minutes). Figure 5.4b shows the comparison of cell confinement ratio.
both inhibitors exhibited significantly larger confinement ratio than control cells
after the first 50 minutes. This indicates that both inhibitors can promote cell
directional migration, with blebbistatin exhibiting stronger effects (150 minutes,
blebbistatin 0.62; Y-27632 0.57; control 0.45).

In summary, Y-27632 increased cell translocation whereas blebbistatin inhib-

ited cell translocation, especially when observed over longer time period. How-
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Figure 5.4: Quantitative analysis of cell directional migration. (a) Comparison
of cell migration length over time. (b) Comparison of cell confinement ratio. The
solid lines represent the average value and the transparent band is the standard
deviation.

ever, both chemical inhibitors promoted MDA-MB-231 cell directionality in motil-
ity. Blebbistatin showed stronger effects on cells so as to maintain migration direc-
tion when compared to Y-27632, especially over longer time periods.

5.2.2 Analysis of cell boundary motility

Cell boundary dynamics is characterised by boundary velocities and protrusion
distributions, which are calculated based on cell boundary tracking (method is
given in Section 3.4.2).

Quantitative analysis of cell boundary motility is shown in Figure 5.5a and
Figure 5.5b. The speed histograms show that blebbistatin and Y-27632-treated
cells have smaller number of cell boundaries moving slower than 4 pixels/5 min
(Control: 0.52; blebbistatin: 0.47; Y-27632: 0.39). This indicates that both chemical
inhibitors promote cell boundary dynamics, and Y-27632 has a stronger effect than
blebbistatin (see Figure 5.5a and Figure 5.5b).

Subsequently, in order to compare the protrusiveness of cells subjected to dif-
ferent treatments, the cell boundary was first identified as the cell boundary ad-
jacent to the protrusions. The length of protrusive cell boundary was normalised
against the entire cell boundary length and compartmentalised into the different
angles associated with cell orientation (Methods are given in Section 3.4.2 and

results are shown in Figure 5.5¢ and Figure 5.5d). All cells exhibit similar dis-
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Figure 5.5: Quantitative analysis of cell boundary motility. (a) Speed histogram
of cell boundary (control and blebbistatin-treated cells); (b) Speed histogram of cell
boundary (control and Y-27632-treated cells). (c) Protrusion distribution of control
and blebbistatin treated cells; (d) Protrusion distribution of control and Y-27632
treated cells. The polar histograms are designed up-down symmetric. Angular
coordinates represent the angle to cell migration direction. Front, side and rear
indicate toward, vertical and opposite direction of cell movement, respectively.
Radial coordinates represent the occurrence of boundary in the corresponding
angle range adjacent to protrusions and normalised by the length of entire cell
boundary. (e) Images extracted from cell migration image sequences. From left to
right, they belong to control, blebbistatin and Y-27632 treated cells, respectively.
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tributions: Most protrusions were observed at the cell boundaries close to cell
front. Fewest protrusions were observed on both sides of the cell boundary. Com-
pared to control cells, blebbistatin and Y-27632 both significantly increased cell
protrusions occurring at their front (i.e., 0°~18°: control, 2.5%; blebbistatin, 4.2%;
Y-27632, 3.8%), as well as a minor increase at their rear. In particular, blebbistatin-
treated cells displayed a larger amount of protrusions and greater protrusion size
distribution at the front from 0° to 54°.

In summary, blebbistatin and Y-27632 both increased the activities of the cell
boundary, as well as increased the number of protrusions occurring at the cell
front. Compared to Y-27632, blebbistatin-treated cells showed an increased size
distribution at the front of the cells. This analysis is consistent with the observa-
tions in cell migration. Extracted frames from cell migration image sequences are

shown in Figure 5.5e.

5.2.3 Integrated analysis of cell morphology and motility

Cell morphology is analysed based on three different shape states: round, elon-
gated and teardrop, of which the membership probabilities are derived from con-
trol datasets given in Figure 4.9 (method is discussed in Chapter 4). Cell morphol-
ogy is characterised by the population of shape states and is combined with an

analysis of centroid motility characteristics.

The shape states population in Figure 5.6a shows that blebbistatin and Y-27632
identically affect cell shape distributions. Both chemical inhibitors decrease the
percentage of round shape state (control: 42%, blebbistatin: 19%, Y-27632: 17%),
but increase the percentage of the other two states, where the teardrop shape state
becomes the most frequent.

In the integrated motility and morphology analysis of control cells (see Sec-
tion 4.4.1), different shape states had distinct motility features, which are sum-
marised in Figure 5.6b.

A decrease in percentage of cells with round shape, which are characterised
by lower amount of movement, indicate more cells are moving faster overall.
Elongated cells showed the strongest capability of maintaining direction; thus,
an increase in their proportion indicated that directional cell motility had been
promoted by a treatment. Blebbistatin treatments showed the strongest effects.
The inference of cell motility from cell shape proportions matches the quantitative

analysis of cell motility given in Section 5.2.1.



124 5.2. Cells subjected to blebbistatin and Y-27632 treatments

Control Blebbistatin Y-27632

irectionality)

o

directionality

0

| I Round I Elongated [ Teardrop |

(a) (b)

Figure 5.6: Population analysis of cell shape state. (a) Proportion of different
cell shape states in datasets. From left to right: control, blebbistatin-treated and
Y-27632-treated cells. (b) Motility features of different cell shape states.

5.2.4 Analysis of cell morphodynamics

Cell morphodynamics are characterised by the dynamics of shape transitions,
which are first modelled as a Markov model using the shape classes identified
from Gaussian mixture models. The transition matrix is estimated through the
number of shape transition occurring between two adjacent frames. The accu-
racy of this model is limited by the assumption that shape classes were accurately
classified. Therefore, this accuracy will be limited by insufficient data, especially
for the shape transitions that occurred less frequently when compared to shapes
remaining unchanged. However the counts of shape transitions can reveal if dif-
ferent treatments alter the probabilities of cell shape transitions. In recognition
of the strong assumption that limits the accuracy of the results, a HMM that re-
gards shape classes as hidden variables is employed to improve the modelling of
shape evolution. The corresponding methods are discussed in Section 4.3.1 and
Section 4.3.2, respectively.

Cell shape evolutions were initially represented as a Markov model, where the
shapes were classified according to the Gaussian mixture model identified from
control cells (parameters are provided in Table 4.2). Table 5.3 (control), Table 5.4
(blebbistatin) and Table 5.5 (Y-27632) show the counts of cell shape evolutions
and show the corresponding 3D bar charts normalised by the sum of all different
shape evolutions. These tables show that both chemical inhibitors significantly
reduce the proportion of round cells that remain round in the subsequent frame.
Maintaining a round shape between two frames was the most frequent shape state
evolution for the control cells, but is the least for blebbistatin- and Y-27632-treated
cells. In terms of overall transitions, in respect of cells activated by blebbistatin
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and Y-27632, the transition states with the highest frequency were those that main-
tained elongated and teardrop shapes in subsequent frames, respectively.

Table 5.3: Count of shape transitions between adjacent frames (Control cells).
The corresponding normalised histogram is shown in the right.
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Table 5.4: Count of shape transitions between adjacent frames (Blebbistatin).
The corresponding normalised histogram is shown in the right.
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Table 5.5: Count of shape transitions between adjacent frames (Y-27632). The
corresponding normalised histogram is shown in the right.
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Cell shape evolutions were then represented as a HMM and cell shapes as-
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signed as latent variables, with membership probabilities of cell shapes deter-
mined from control cells with parameters given in Table 4.5. The identified transi-
tion matrices are given in Table 5.6.

In comparison of control cells, blebbistatin and Y-27632 showed similar effects
on the cell ability to maintain shapes. Specifically, both inhibitors significantly
increased the sojourn time of the teardrop shape state (control: 15 min; blebbis-
tatin: 100 min; Y-27632: 191 min), accompanied with a sojourn time decreasing
for the round shape state (control: 753 min; blebbistatin: 34 min; Y-27632: 11
min). This is consistent with the transition results given in Table 5.3, Table 5.4 and
Table 5.5. Furthermore, blebbistatin-treated cells had longer sojourn time main-
taining the round state compared with Y-27632-treated cells (blebbistatin: 34 min;
Y-27632: 11 min). Blebbistatin, at the same time, increased the sojourn time of the
elongated state (control: 28 min; blebbistatin: 81 min; Y-27632: 28 min). Y-27632
had a stronger effect in maintaining the teardrop shape state, which had a higher
probability and longer corresponding sojourn time.

Any transition with a transition probability greater than 0.1 is deemed signifi-
cant enough. Control cells most frequently transition to the round state. Blebbis-
tatin treated cells do not show any noticeable shape transition, whereas Y-27632
increases the transition to the teardrop shape state.

In conclusion, Y27 and blebbistatin showed similar effects on the migration
of MDA-MB-231 breast cancer cells, although these effects were manifested with
distinct features. Both chemical inhibitors promoted cell directional migration, in-
creased cell protrusion distributions, especially at the front of cells, and decreased
cell stability of the round shape state. Blebbistatin played a stronger role in the
restriction of cell migration direction while Y-27632 treatment resulted in more
frequent cell shape transitions.

5.3 Quantitative motility and morphology analysis of MDA-
MB-231 cells in the absence of focal adhesion associated

genes

FAK, RhoE and B-PIX are three different genes associated with FA and they are
expressed at different stages of the adhesion continuum (see Figure 2.4 and Sec-
tion 2.1.4). The roles that these genes play in cell behaviour such as cell spread-
ing, adhesion and cell invasion have been explored through the enhancement or
impairment of gene expressions. The functions are examined by observing the
changes in cell phenotypes corresponding to the alteration in gene expressions
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Table 5.6: The shape transition relations of breast cancer cells treated with chem-
ical inhibitors blebbistatin and Y-27632.

Treatments Transition diagram Sojourn time (minutes)
control
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[49]. There have been only a few cases of computational analysis of gene expres-

sion associated with cell motility or cell morphology characteristics. A computa-

tional analysis framework that can quantify cell motility and morphology char-

acteristics is necessary to compare the influence of expressions of different genes

that are associated with cell FA system on cell migration.

In this section, the proposed integrated analysis in Figure 5.1 is used to quan-

titatively compare cell migration regulated by depletion of genes FAK, RhoE and

B-PIX, respectively. The motility is analysed from the view of cell centroid migra-

tion as an overview of cell motility and cell boundary movement as a measure of
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cell cytoskeleton dynamics. Meanwhile, cell morphology is examined separately
in an integrated cell morphology and motility analysis, and the study of cell mor-
phodynamics is examined through the analysis of cell shape evolutions between

adjoining frames.

5.3.1 Analysis of cell centroid motility

As illustrated in the system diagram in Figure 5.1, automated cell boundary track-
ing is performed initially to describe the dynamics of multiple cells. Cell centroid

motility characteristics are organised based on static and dynamic analysis.

The quantitative analysis of cell centroid speed and migration speed in respect
of direction changes are given in Figure 5.7. The distributions of cell migration
speeds shows that cell speed is inhibited mostly by the depletion of FAK, as well
as a minor inhibition in RhoE knockdown cells but not in the depletion of B-
PIX (Median speed in 5 minutes: control 3.25 pixels, FAK 1.04 pixels, RhoE 2.07
pixels, B-PIX 3.04 pixels, see Figure5.7a). With respect to the direction changes,
FAK knockdown cells migrate significantly slower independently of any direc-
tion changes, compared to control cells (see Figure 5.7b). RhoE knockdown cells,
similarly, migrate slower, but shows less speed inhibition compared to FAK knock-
downs (see Figure5.7c). B-PIX-depleted cells have higher speeds when direction
changes are smaller than 22.5° (see Figure 5.7d).

Considering the numbers of cells involved, cell trajectories of 250 minutes are
extracted. Cell migration lengths and confinement ratio changes over time are
shown in Figure 5.8. Compared to control cells, FAK knockdown cells present a
significantly inhibited average migration length. A decrease in rate of change in
migration length occurred at 50 minutes, which indicates a stronger suppression in
cell migration. Whereas, RhoE and B-PIX knockdowns show a similar migration
length to control cells (see Figure 5.8a). The corresponding confinement ratios
show that cell directional persistence is significantly reduced by the depletion of
FAK and B-PIX, but not RhoE (see Figure 5.8b).

In summary, knockdown of FAK, RhoE and B-PIX affect cell motility differ-
ently. The depletion of FAK significantly inhibited both cell migration speed and
direction persistence and the inhibition effects were stronger with the increase of
cultivated time. The knockdown of RhoE reduced cell migration speed but not di-
rection persistence, whereas the B-PIX knockdowns reduced migration direction

persistence but migrated with similar speed to control cells.
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Figure 5.7: Quantitative centroid motility analysis of breast cancer cells sub-
jected to knockdown of focal adhesion associated genes. (a) Comparison of cell
centroid speeds. Median speeds are marked by the red lines, 25% and 75% of the
speed distributions are marked by the lower and upper edges of the boxes and
the whiskers extend to the extreme value of cell speed. (b)-(d) Comparison of
cell average speed with respect to direction changes of situations: (b) control vs.
FAK knockdown cells; (c) control vs. RhoE-depleted cells; (d) control vs. B-PIX.
These polar charts are up-down symmetric, angular coordinates are cell migration
direction changes (°) and radial coordinates are the corresponding average cell
speeds.

5.3.2 Analysis of cell boundary motility

The analysis of cell local dynamics/cell boundary protrusiveness, histogram of cell
boundary speeds and normalised protrusion distributions are shown in Figure 5.9

(methods are given in Section 3.4.2).
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Figure 5.8: Cell directional migration analysis. (a) Comparison of cell migration
length over time (0-250 mins). (b) Comparison of cell confinement ratio over time
(0-250 mins). Solid lines are the mean values and apparent bands are the width
of corresponding standard deviation.

The depletion of FAK significantly restricts cell protrusiveness. In particular,
86% of cell boundaries move with speed slower than 4 pixels per 5 minutes com-
pared to 51% of control cells, hence the average speed is reduced to 1.71 pixels/5
mins from 3.74 pixels/5 mins in control cells (see Figure 5.9a.1). Additionally,
distributions of protrusions are reduced independent of any orientation angles
(see Figure 5.9b.1), which matches the observations from the migration image se-
quences in Figure 5.10a and Figure 5.10b.

RhoE knockdown cells exhibit restrictions on cell boundary dynamics only at
specific orientations. There are 66% of cell boundaries moving slower than 4 pixels
in 5 minutes compared to 51% of control cells (see Figure 5.9a.2). Furthermore,
the distribution of protrusions perpendicular to the travel direction are reduced
while the protrusions located opposite to the migration direction are increased
(see Figure 59b.2). This bipolar distributed protrusions is consistent with the
observations in Figure 5.10c.

B-PIX knockdown cells display a similar boundary speed as control cells (see
Figure 5.9a.3). In terms of the distribution of protrusions, f-PIX knockdown cells
show larger amount of protrusions independent of orientations (see Figure 5.9b.3).
The observations of protrusion consistently display a more uniform distributional
pattern (see Figure 5.10c). The protrusion distributions indicate -PIX knockdown
cells are unable to commit to a steady travel direction, which is an explanation

of why knockdown of B-PIX persistently reduce cell migration directionality (see
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Figure 5.9: Quantitative analysis of cell boundary motility. (a) Speed histograms
of cell boundaries: (a.1) control vs. FAK knockdown cells; (a.2) control vs. RhoE
knockdown cells; (a.3) control vs. B-PIX knockdown cells. (b) Protrusion distri-
bution in respect of cell orientation: (b.1) control vs. FAK knockdown cells; (b.2)
control vs. RhoE knockdown cells; (b.3) control cells vs. B-PIX cells. The polar
histograms are up-down symmetric, angular coordinates are the angels to cell mi-
gration direction and radial coordinates are the percentage of the corresponding
area adherent to protrusions over entire cell boundary.
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Figure 5.10: Cell migration images extracted from time-lapse image sequence.
(a) Control cell migration. (b) FAK knockdown cells. (c) RhoE knockdown cells.
(d) B-PIX knockdown cells.

Figure 5.8b).

Depletion of FAK, RhoE and B-PIX, in comparison to control cells, each have
distinct boundary motility characteristics, which indicate that those genes affect
the cytoskeleton dynamics differently, altering cell morphology characteristics.

This is discussed in the next section.

5.3.3 Integrated analysis of cell morphology and motility

Cell morphology is characterised by the membership probabilities of different
shape states, which are identified from control cells. In this section, ratio of cells
being different shape states is computed and is linked to cell motility using the
characteristics of different shape states (derived in Section 4.4 and depicted in
Figure 5.6b).

The ratios of the cell counts with different shape states for the various treat-
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Figure 5.11: Ratio of cells of different shape states. From left to right, pie charts
represent the ratio of different shape states of control, FAK knockdown, RhoE
knockdown and B-PIX knockdown cells.

ments are shown as pie charts in Figure 5.11. Compared to control cells, knocking
down FAK significantly increased the percentage of cells in the round shape state
(control: 43%; FAK: 56%) with a corresponding drop in the percentages of both
elongated and teardrop shape states. The over 50% of round cells indicates that
FAK knockdowns should have motility characteristics similar to round shape state,
where cells travel slowly and are difficult to maintain a persistent migration direc-
tion. This motility inference corresponds to the quantitative analysis of centroid
motility shown in Figure 5.7a and Figure 5.8b in Section 5.3.1.

Knockdown of RhoE, distinctively, increased the percentage of cells in the elon-
gated shape state (control: 31%; RhoE: 44%. see Figure 5.11). The elongated cells
travelled with strong direction persistence, which can explain why RhoE knock-
down cells migrate more slowly than control cells (see Figure 5.7a), but have a
similar confinement ratio (see Figure 5.8b).

B-PIX knockdown cells had an increased ratio of teardrop shape state, by sup-
pressing the percentage of cells in elongated shape state (see Figure 5.11), which is
the shape state with the strongest direction persistence. The decrease in elongated
shaped cells indicates generally a lower direction persistence, and a decrease in
the cell confinement ratio (see Figure 5.8b).

5.3.4 Analysis of cell morphodynamics

The morphodynamic analysis includes the calculation of shape transitions based
on a Gaussian mixture model for cell shape classification, as well as the HMM for
shape evolution.
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Table 5.7: Count shape transitions between adjacent frames (Control cells for
gene tests). The normalised histogram of counting is shown in the right.

-1 IR E T 04
R 2920 387 185 =
E 390 2906 286 £
T 160 301 1116 0

* R, E, T denote the shape of
round, elongated and teardrop, re-
spectively.

The numbers of different shape transitions based on Gaussian mixture model
is normalised by their sum, and is represented in a 3D histogram in Table 5.7 for
control cells, Table 5.8 for FAK knockdown cells, Table 5.9 for RhoE knockdown
cells and Table 5.10 for B-PIX knockdown cells. The depletion of different FA-
associated genes reflects the distinctive alteration of cell shape transitions. Control
cells, treated as the standard migration benchmark for breast cancer cells, have a
high frequency of round shape cells, as well as elongated shape, and not transi-
tioning their shapes at the next frame (Table 5.8). In the absence of FAK, the fre-
quencies of most cell shape evolutions in the 5 minutes intervals were decreased
except for round shape state being maintained. Shape transitions, especially, were
decreased to a value close to zero. For instance, the numbers of transitions from
teardrop to round shape were 46 times and from round to teardrop were 39 times,
whereas the number of cells remaining round were 3015 (Table 5.8). The deple-
tion of RhoE increased the maintenance of the elongated cell state rather than the
round cells being dominant (Table 5.9). The B-PIX knockdown cells showed a
similar pattern to the control cells, but with an increased frequency of elongated
cells retaining its shape and decreased frequency of teardrop cells unchanged (Ta-
ble 5.10).

When the shape transition is modelled through HMM, the transition diagrams
and corresponding sojourn times are given in Table 5.11. Compared to control
cells, the absence of FAK increased cell stability of all shape states. The probabili-
ties of maintaining the shape states were all over 0.9, hence shape-type transition
probabilities are all constrained to be smaller than 0.1. The significantly longer
sojourn time of round shape state shows that cells are stuck in the round shape
state (Tg = 676 minutes; T = 85 minutes; Tr = 51 minutes).

Knockdown of RhoE extended the time cells maintained the elongated shape
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Table 5.8: Count of shape transitions between adjacent frames (FAK knockdown
cells). The normalised histogram of counting is shown in the right.

t

3 R E T
R 3015 160 39
E 161 1726 98
T 46 92 720

* R, E, T denote the shape of
round, elongated and teardrop, re-
spectively.

Table 5.9: Count of shape transitions between adjacent frames (RhoE knock-
down cells). The normalised histogram of counting is shown in the right.

Y FIR E T
R 2396 244 58
E 258 3799 161
T 54 167 727
* R, E, T denote shape of round,
elongated and teardrop

Table 5.10: Count of shape transitions between adjacent frames (3-PIX knock-
down cells). The normalised histogram of counting is shown in the right.

t

Y R E T
R 2917 428 201
E 411 2337 405
T 191 398 1756

* R, E, T denote shape of round,
elongated and teardrop.
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state and suppressed the time for being in a teardrop state. Elongated shape states

had the highest probability of staying unchanged, as well as the longest sojourn

time. The teardrop-elongated transition probability, meanwhile, was increased to

a notable value 0.1638, compared to 0.0532 for control cells.

The absence of B-PIX, similar to control cells, kept the round shape state as
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the state with the highest retention probability, but with a shorter sojourn time
(control:Tg = 214 min; B-PIX: 7 = 135 min). The elongated state, with state self-
transition probability 0.7918, was the most unstable state instead of the teardrop
shape as it was for control cells. The most frequent shape transitions was from
elongated to teardrop shape state (p(Ty | Ex_1) = 0.1223).

In conclusion, due to the interaction between cell motility and morphology,
cell behaviours are affected distinctively by the depletion of FA-associated genes.
Knocking down FAK inhibited cell migration generally, so that cells moved slowly
with gently spreading boundaries and hardly any shape transitions. RhoE knock-
down cells mainly exhibited bidirectional migration with relatively active bound-
aries at front and rear orientations, and at the same time, these cells had the
longest sojourn time in the elongated shape state. Depletion of B-PIX sped up
cell movement but inhibited directional travelling by activating cell side-boundary
dynamics. Meanwhile, cells were retained for a longer time in the teardrop than
the elongated shape state.

5.4 Conclusion

An integrated framework that combines automated cell boundary tracking, quan-
titative analysis of cell motility and morphology can give insights into cell be-
haviour under different conditions. In this chapter, this integrated framework was
used to analyse the regulated migration of MDA-MB-231 breast cancer cells sub-
jected to treatments with different chemical inhibitors and with aberrant expressed
genes.

The population level analysis showed that the inhibition of ROCK (blebbis-
tatin treatment) and myosin II (Y-27632 treatments) induced some alterations on
cell behaviours that were similar. Compared to wild MDA-MB-231 cells, Y-27632
and blebbistatin both promoted cell directional persistence during migration and
increased the cytoskeletal dynamics, evidenced by the accelerated cell boundary
velocity and increased protrusion distributions, especially at the cell leading edge.
Moreover, blebbistatin and Y-27632 significantly reduced cell stability of round
states in terms of less amount of round-shaped cells being observed and the re-
duced time in which the cells maintained their round shape state.

Cells in round shape state were characterised as being slow and migrating
without directional preference. The morphological alterations that resulted in dif-
ferent distribution of cell shapes still showed evidence that for individual cell
shapes, the motility characteristics were consistent with the findings in Chap-

ter 4. In addition, the regulation of cell migration suggested that the chemotaxis
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Table 5.11: The shape transition relations of breast cancer cells with different

gene knocked-down.
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Sojourn time (min-
utes)

Control cells

control
0.9766

TR — 214 (1)
e = 55 (0.2570T)
7r = 13 (0.0607T)

CEr 22 @)
0.6029 0.0298 0.9094
FAK
0.9926
)
TR = 676 (1)
Cells with FAK $/h \N\e, e = gf (g-éigi)
knockdown NS %\\’% Tr = 51 (0.0754)
T %
0.0291
Crs 22 @) )
0.9010 0.0160 0.9413
RhoE
0.9567
)
TR = 115 (1)
Cells with RhoE & \N\e, = ;i’l (521-221)
knockdown S/ /S -oox"; r = 21 (0.1826)
© S
0.7596 0.0072 0.9784
BetaPIX
0.9629
)
R = 135 (1)
. ~ T =24 (0.1778
Cells with B-PIX e \Ne e EO 3407;
knock-down S//§ @ G T= .
[+
Cod 20 @)
0.8923 0.1223 0.7918

* (+) is the normalised sojourn time with respect to round shape state.




138 5.4. Conclusion

of MDA-MB-231 breast cancer cells, which has been proposed to be essential for
cancer metastasis [158], may be controlled by regulating the ROCK and myosin II
in the cell.

However, distinct degrees of the effects on cell behaviours induced by blebbis-
tatin and Y-27632 were noticed. Specifically blebbistatin showed stronger promo-
tion of cell directional persistence while Y-27632 showed a larger effect on the cell
being able to maintain itself in the round shape state. This may be caused by the
underlying mechanisms of cell migration involving ROCK and myosin II or the
indirect influence of a difference in chemical inhibitor concentration in cell cul-
ture. More laboratory experience and integrated analysis are therefore suggested
to identify how MDA-MB-231 breast cancer cells respond to the different chemical
inhibitor concentrations.

Next, the computational analysis of FA-associated gene expression showed that
FAK, RhoE and B-PIX induced different effects on MDA-MB-231 breast cancer cell
behaviours. Compared to the wild cells, knockdown of FAK inhibited cell motility
and morphology simultaneously, evidenced by the decreased cell centroid mi-
gration speed and directional persistence, reduced cytoskeleton speed, reduced
protrusion distributions, significantly increased presence of round shape and the
time duration for cells to maintain their round shape state, and the reduced shape
transition probabilities. Depletion of RhoE slowed down cell migration and was
observed to have distributed protrusions at cell leading and contracting edges
that were similar. Meanwhile, cell elongated shape state is dominant, including
longer sojourn time and increased occurrence. Knockdown of B-PIX inhibited cell
directional migration by equally increasing cell protrusion distributions at cell pe-
riphery. With regard to cell morphology, reduced B-PIX expression increased the
cell being in the teardrop shape state, while the elongated shape state decreased.

The comparison of MDA-MB-231 breast cancer cell migration with depletion
of FAK, RhoE and B-PIX showed that the knockdown of RhoE and B-PIX inhibited
different aspects of cell motility while the knockdown of FAK generally reduced
cell motility. Cells with reduced RhoE or B-PIX expression had higher morpho-
dynamic variability compared to the reduction of FAK expression. This indicates
that FAK expression is essential for MDA-MB-231 breast cancer cell migration.
Meanwhile some studies showed that FAK is detected more in breast tumour cells
than healthy cells [150]. The FAK is suggested as being a potential therapeutic
target for breast cancer treatment.



Chapter 6

Conclusions and Future Work

Cell motility and morphology properties are a combined reflection of cellular and
extracellular environments, and they mutually affect each other during cell migra-
tion. Compared to healthy breast cells, the cancer cells show abnormal motility
and morphology properties, which are generally associated with cancer invasion
and metastasis [48]. This addresses the importance of cell motility and morphol-
ogy analysis for a better understanding of cancer cell behaviour. The traditional
separate cell motility and morphology analysis is restrictive in the insight that
can be obtained if cell behaviours influence cell motility and morphology simul-
taneously. In this thesis, an integrated computational framework is proposed to
describe cell motility and morphology simultaneously as well as the analysis car-
ried out in parallel. The framework is built up on a cell-centric view, which is
able to characterise cell dynamics in respect of single cell tracks and can be ag-
gregated to the population-level analysis. The main conclusions of the research

investigations are provided below along with some directions for future work.

6.1 Summary and conclusions

The computational framework proposed in the thesis consists of modules for an
automated multiple cell boundaries tracking, cell motility and morphology char-
acterisation at the same time, integrated study of cell motility and morphology
and cell morphodynamics analysis. Its utility was demonstrated by applying it to
high throughput screening images of time lapse microscopy data of breast cancer
cells in different drug environments.

The problem of cell motility and morphology analysis was viewed as a signal
processing problem involving signal tracking, state estimation and classification.

Hence, the thesis first reviewed the discrete-time kinematic model structures, static

139
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and state estimation methods that are relevant to automated cell tracking. The
tracking process, aimed at reproducing cell spatial and temporal dynamics, either
addressed the problem of high-throughput tracking regardless of cell morphology
features or focused on cell morphology modelling. The separate cell motility and
morphology processing restricts the study of the cell behaviours relevant to cell

motility and morphology, the obstacle which this thesis aimed to overcome.

In Chapter 3, an automated spatio-temporal tracking of cell contours, which
inherently link cell morphology and motility, was presented. Firstly, the marker-
controlled watershed algorithm, which is qualified to separate closely located ob-
jects, was applied to cell boundary segmentation of the time-lapse grey-scale im-
age sequences. Secondly, the B-spline active contours with cubic basis functions
were constructed for the cell boundary representation. The linear-in-parameter
formulation and the off-line calculated basis functions of B-splines translated the
problem of cell boundary tracking to a reduced dimensional linear state estima-
tion problem. The tracking was then performed by estimating and smoothing the
control points of cell contours through a DWNA kinematic model. The KF and
fixed interval RTS smoother were respectively applied to the time forward estima-
tion and backward smoothing. The cell correspondence problem was, meanwhile,
solved by the NN algorithm.

The above tracking system was demonstrated by applying it to the time-lapse
grey-scale image sequences of wild MDA-MB-231 breast cancer cells. This mod-
ule was connected to the quantitative cell motility analysis module, which pro-
duced quantitative analysis outputs such as velocity, migration direction change,
confinement ratio, orientation and distribution of cell protrusion in respect to ori-
entation. The quantitative results showed that cell migration directions, generally,
changed gradually over 5 minutes without any sudden changes. The distribution
of cell protrusion showed that more protrusions were located at the migration
front. While these observations are generally known, these analyses provide the

first quantified evidence of such behaviour.

In Chapter 4, a module of morphology analysis was built as an extension of the
tracking system proposed in Chapter 3. Initially, the FD combined with PCA were
applied to characterise the cell contour features in a 2-D shape space. According
to the feature distributions and corresponding physical explanations of FD, cell
shapes were assigned to teardrop, elongated and round shape classes by a model
of Gaussian mixture distributions. These cell clusters were analysed, and inte-
grated with cell motility features to explore cell motility patterns for the different
morphological classes. The cell morphodynamics were then characterised by an
HMM initialised with the Gaussian mixture distribution. The estimated transition



Chapter 6. Conclusions and Future Work 141

matrix gives the transition probabilities between different shape states at adjacent
moments and additionally, the state sojourn time, which is the expected time of a
cell retaining the same shape class.

The above techniques were applied to both single cell and population-level
analysis of cell migration. The simultaneous analysis of cell motility and morphol-
ogy of single cell migration indicated that the cell migration direction change was
lagging behind the shape change, as well as velocity changes. The quantitative in-
tegrated analysis showed that cells of different shapes presented different motility
features. Round cells were characterised by the slowest migration speed but with a
wide range of directional changes. The teardrop cells, on the other hand, migrated
quickly and with direction changes that had a relatively narrow distribution. Elon-
gated cells showed the strongest ability to either keep its original orientation or
migrate backwards. In terms of the analysis of morphodynamics, the sojourn time
decrease was found to be ordered as round, elongated and teardrop states. The
teardrop, as the least stable state, showed a significant probability of transition to

the round shape state which was the most stable state.

In Chapter 5, the framework integrated the cell tracking and analysis, which
was proposed in Chapters 3 and 4, was applied to compare the effects of chemical
inhibitors, blebbistatin and Y-27632, on breast cancer cell migration. The quantita-
tive analysis showed that blebbistatin and Y-27632 had similar but distinct effects
on breast cancer cell migration. Both chemical inhibitor treatments increased a
cell’s ability to forward migrate and the distribution of its protrusion at the migra-
tion front. Blebbistatin treated cells showed faster migration speeds while Y-27632
treated cells showed more restrictions on migration directional changes. In terms
of morphodynamics, both treatments increased the probability of being in the
teardrop shape state, but decreased the stability of being in the round shape state.
Y-27632 showed a stronger effect on the sojourn time of being in the round shape
state which is about 2 times when treated by blebbistatin. These results are based
on a small population of cells and so would require analysis over a larger number
of cells before a firm conclusion can be drawn.

Subsequently, the integrated framework was applied to analyse the effects of
knocking down the FA associated genes. The results showed that the depletion
of FAK, RhoE and B-PIX affect cell behaviours differently. FAK knockdown sig-
nificantly restricted cell motility of both the centroid and the cytoskeleton. RhoE
knockdown cells showed slower migration, but stronger capacity for directional
persistence. The B-PIX knockdown cells showed similar motility pattern as control
cells except that there was an increase of protrusion distribution across the whole

cytoskeleton. The cell morphodynamics of FA associated gene knockdown cells,



142 6.2. Future work

when compared to control cells, showed that, (i) the depletion of FAK especially
influences the cells to predominantly be in the round shape state; (ii) the deple-
tion of RhoE increased the stability of cells to be in the elongated shape state; and
(iii) the B-PIX knockdown increased the probability of a cell being in the teardrop
shape state. These findings support the assertion that FAK is a potential therapeu-
tic target for breast cancer treatment.

In conclusion, the proposed computational framework permits the integrated
analysis of cell motility and morphology through an automated cell boundary
tracking system. Its application to high throughput time lapse microscopic image
sequences showed its ability to quantify and compare cell behaviours through the
automatic extraction of motility, morphology and morphodynamic features. This
indicates its capacity for giving an insight into cell-associated hypotheses associ-

ated with unknown proteins, chemical treatments and molecular mechanisms.

6.2 Future work

The migration of breast cancer cells is accompanied with simultaneous changes of
motility and morphology. The proposed novel framework performs the analysis
of cell motility and morphology in parallel, combined with quantitative analysis
of cell morphodynamics. The thesis has laid a platform for such integrated anal-
ysis but further extensions and new directions of research can take this further,

suggestions of which are outlined below.

e The tracking results, given in Chapter 3, have shown that the tracking sys-
tem is adapted for the scenario where cells are moving slowly, without cross
migration and cell divisions. To handle this extended scenario, alternative
statistical data association methods can be applied in place of the NN algo-
rithm. For example, the Joint Probability Data Association Filter (JPDAF)
[135] and Multiple Hypothesis Tracking (MHT) [18] are two commonly ap-
plied and robust data association methods to handle the multiple target
tracking problem with missing data, object occlusion and so on. This up-
grade for the tracking system will provide a better analysis of cell lineages,

as well as increase the analysis accuracy of single cell behaviours.

e The cell shapes classification, presented in Chapter 4, is performed in the 2-
D shape space extracted from cell boundary FD that are insensitive to shape
shift, rotation and scale. A more precise classification for the continuously
changed cell shape [174] may be performed by involving more morphology
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coefficients that are sensitive to the cellular environment changes, such as

cell areas and cell image intensity.

e In addition, analysing cell motility in respect of the shape states obtained
from HMM can be used as prior knowledge to construct hybrid model struc-
tures (IMM) so that cell behaviours are estimated simultaneously with cell

shape state estimation.

e Currently, the applications, presented in Chapter 5, focus on the analysis
of breast cancer cell migration. Other cell types, such as leukocytes in the
immune system, are also analysed for their motility and morphology. Sim-
ilar time lapse image sequences of cells are generated under different drug
treatments and so their analysis can also be carried out using the developed
integrated analysis framework.

e When integrated with different level cell-associated data, this framework
can be further applied to study the multi-scale aspects of living systems
characterstics, such as the molecule-cell (e.g., protein-cell) and the cell-tissue
systems [147].

In summary, these future work are built on the integrated cell motility and
morphology analysis framework that is proposed in this thesis and shows its po-
tential for adoption beyond the analysis of breast cancer cells.
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