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Abstract

Jatropha curcas is a perennial shrub from the Euphorbiacea family. It is known for its stress resilience and
high seed oil content, however little selective breeding has been carried out to fully domesticate this species.
The aim of this project is to identify and map quantitative trait loci (QTL) for seed oil content, seed oil
composition (oil quality), and oil yield, in order to identify loci suitable for introgression into an
economically viable cultivar. In this study, an F, population (G51xCV) consisting of 229 plants for linkage
analysis, and 145 plants for QTL analysis, was used to identify and position 312 genetic markers and 8
quantitative traits onto a genetic linkage and QTL map. Over 288 short sequence repeat (SSR) markers were
mined from genome sequence to complement single nucleotide polymorphism (SNP) markers from genomic
and transcribed DNA. 132 of the mined SSRs were physically linked to candidate genes, leading to the
mapping of a substantial portion of genes that form the seed oil biosynthetic pathway in Jatropha curcas.
Integration of phenotypic datasets collected over 2 independent years, enabled the identification of 15 QTL
regulating seed oil content (2QTL), seed oil composition; palmitate, stearate, oleate, linoleate content (10
QTL), seed weight (1 QTL), number of branches (1 QTL) and seed yield (1QTL). Combined PVE for these
QTL accounted for between 9.34 % (palmitate content year 2) to 32.26 % (seed oil content Year 2) of
observed variation. Analysis of final oil yield per plant, showed that seed yield (number of seeds) was most
important for regulating oil yield in this mapping population, however seed oil content and seed weight were
also important traits, highlighting that selection of both seed oil and vegetative traits are of utmost

importance for optimising oil yield in Jatropha curcas.
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Chapter 1: Introduction

1.1: Background and context — Population growth leads to challenges for food
production, energy supply and climate change

The world population is currently 7 billion, and is expected to increase to 9 billion by 2050 (Godfray et al.,
2010) and up to 12 billion by 2100 (Gerland et al., 2014). Such a large population places significant pressures
on critical resources such as energy, land, food and water (Steinbuks and Hertel, 2016, Newbold et al., 2016,
DeFries et al., 2015, Larsen et al., 2016, Jaramillo and Destouni, 2015, Fedoroff et al., 2010, Godfray et al.,
2010, Tilman et al., 2009). At the same time, competition for these finite resources is exacerbated by climate
change, which imposes constraints on how additional resources are made available to meet increased demand
(Tester and Langridge, 2010).

Food production, the majority of which is derived from plants either directly or indirectly, will require large
gains in global crop yields in order to feed the growing population (Tester and Langridge, 2010). Whilst
historically crop yields have kept pace with population growth through technological advancement (‘the
green revolution’) (Khush, 2001), optimisation of agricultural practices, refinement of genetics and
intensification of farming means that in the developed world, a theoretical maximum yield per hectare is
being approached using conventional technologies (Neumann et al., 2010), which places a premium on
available agricultural land. In the developing world, adoption of better farming practices and improved crop
cultivars may yield further gains, however there are other problems such as availability and access to
chemical inputs, water, suitable land and permissive climatic conditions, that mean even with full utilisation
of agricultural land for food production, meeting current and predicted food requirements will be a significant
challenge (Godfray et al., 2010).

Climate change is expected to exacerbate this problem (Wheeler and von Braun, 2013, Tester and Langridge,
2010). Whilst modelling has shown some improved yields under different climate change scenarios at the
regional level, overall, changes in climate are expected to decrease crop yields and available arable land;
increasing arid land and desertification, and producing greater abiotic stress for plant growth in the form of
unpredictable and more extreme weather conditions (Lobell et al., 2008). This will include drought

conditions and semi-arid soils in many areas (Varshney et al., 2011).

One of the buffers to atmospheric CO, and climate change; plant biomes, means that expansion of
agricultural land in pursuit of greater crop production is not recommended, as the negative effects on climate
change will far outweigh any shorter-term yield increases (Steinbuks and Hertel, 2016, Newbold et al., 2016).
Plant biomes also represent a rich resource of biodiversity that is vital for adapting to the unknown
challenges of the future using untapped alleles, genes, germplasm, and natural products. As an example of
this concept in practice, significant efforts are being made to expand the gene pool of highly domesticated
crop species using wild genomes and landraces (Feuillet et al., 2008, Brozynska et al., 2016, Tester and
Langridge, 2010, Zamir, 2001).

The majority of population growth will be seen in the developing world and the emerging economies, which
places a significant demand on energy requirements (British Petroleum, 2016, Chu and Majumdar, 2012).
Whilst fossil fuels have driven development for centuries, these are also finite resources and significant
contributors to climate change through the release of greenhouse gases (Intergovernmental Panel on Climate
12|Page



Change, 2014). The need to switch to renewable, low carbon energy sources in order to fuel development of
emerging economies to more sustainable energy-use models and population demographics, as occurred

during the industrial revolution in the developed world, is clear (Chu and Majumdar, 2012).

The cost of fossil fuels, such as crude oil, has risen steadily since their adoption and will continue to rise as
sources become harder and more dangerous to extract (National Academy of Sciences, 2009, Kerr, 2011).
Price fluctuations highlight the political aspect to supply and demand, and the need for energy security for
many developed nations (National Academy of Sciences, 2009, US Energy Information Administration,
2016).

The majority of the infrastructure surrounding the world economy has been built up around liquid
transportation fuels, such as petrol and diesel, and so there is an immediate requirement for renewable
replacements (Blanch, 2010). For example, of the distillates of crude oil, which account for a third of global
energy consumption (British Petroleum, 2016), 90 % is used for liquid transportation fuels, with the
remaining 10 % as feedstocks for chemical manufacturing and other industrial processes (Dyer and Mullen,
2008). This includes the manufacture of important materials and chemicals, such as plastics, fertilisers and
pesticides (Carlsson, 2009).

A number of renewable energy technologies are available to replace fossil fuels, and both the US and EU are
pursuing a diverse renewable energy strategy including the use of nuclear, solar, wind, geothermal,
hydroelectric and biomass technologies (The European Parliment, 2009, US Department of Energy, 2014).
However biomass is the only renewable technology that can provide direct replacements for liquid
transportation fuels (Blanch, 2010). Transition to different technologies for automotives e.g. electric, is
expected to take some time, and for larger transportation systems, such as heavy-freight and aircraft, liquid
transportation fuels are the only energetically-feasible energy source (Chu and Majumdar, 2012). Plant

biomass is therefore an essential part of the renewable energy toolbox.

With increases in food crop production required to meet population demands, and the growing area not likely
to expand due to the effects of climate change and biodiversity/ecosystem considerations, plant biomass
feedstocks are required to minimise competition with food crops, particularly for agricultural land (Tilman et
al., 2009).

Due to advances in genetics and plant breeding, such as the exponential rise in the power and accessibility of
genome sequencing (Edwards and Batley, 2010, Davey et al., 2011, Feuillet et al., 2011, Langridge and
Fleury, 2011, Morrell et al., 2012), novel plant-based solutions are now feasible. One approach that has
become available is the rapid domestication of wild plant species (Langridge and Fleury, 2011). Whilst the
creation of genetically improved cultivars traditionally took decades, often for small incremental
improvements, with advanced breeding technologies and access to powerful sequencing and genomics
technologies, this process can be significantly accelerated (Ragauskas et al., 2006). This opens up the
repertoire of available plant species and germplasm from which to create new cultivars; expanding on the
traditional high yielding annual crops that require high input farming, to intrinsically more efficient biomass
options, such as perennials (Kantar et al., 2016, Fargione et al., 2008), that can tolerate a greater range of soil

types, and use nutrients and water more efficiently (Tester and Langridge, 2010).
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Quantitative Trait Locus (QTL) mapping is an approach that is greatly enhanced by genome sequencing
technologies throughout its multistage process (Langridge and Fleury, 2011). The efficiency with which the
genomic resources required for QTL mapping can be attained, and the repertoire of available techniques to
mine and exploit novel genomes, substantially increases with access to genome sequence (Feuillet et al.,
2011, Morrell et al., 2012). This includes the production of DNA markers, genetic linkage mapping,
comparative mapping using synteny with sequenced relatives, the identification and mapping of candidate

genes, and the delineation of QTL intervals.

Once genomic resources such as DNA markers, genetic linkage and Quantitative Trait Loci (QTL) maps are
attained for novel crop species, advanced breeding technologies, such as Marker Assisted Selection (MAS),
can be implemented to accelerate the breeding cycle by enabling larger populations to be screened at a much
earlier stage for desirable genetics (Dekkers and Hospital, 2002). In this way the time taken to combine
favourable QTL in a single cultivar is reduced, shortening the timeline between a wild plant and a
genetically-improved cultivar.

Jatropha curcas, a perennial oilseed crop from the Euphorbiacea family, is a species that has generated
interest for use as a biodiesel feedstock plant (Fairless, 2007). On the one hand it is a potentially high-value
crop that combines a high seed oil content and valuable by-products, with significant plasticity to different
soils, water and nutrient conditions. However, it is also a wild long-life perennial species that presents
significant challenges to conventional selective breeding approaches; these challenges have thus far
prevented domestication or genetic improvement of Jatropha. This project contributes towards the genomic
resources required for the rapid domestication and genetic improvement of Jatropha, through QTL mapping
of a number of oil yield and oil quality related traits. The DNA markers, genetic linkage maps, QTL maps

and mapped candidate genes, will provide a basis for the breeding of improved varieties of Jatropha curcas.
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1.2: The current state of plant-based biorenewable fuels

1.2.1: Global trends in energy consumption drive demand for oil and its derivatives

Over the past 50 years there has been a steady increase in world energy consumption from 3730.2 Mtoe
(million tonnes of oil equivalent) in 1965, to 13,147.3 Mtoe in 2015 (British Petroleum, 2016). World energy
consumption has increased faster than population growth, indicating that energy consumption has been
driven by both population growth and a transition to more energy-intensive societies, as reflected by ever
greater urbanisation and energy consumption per capita (British Petroleum, 2016, Food and Agriculture
Organization of the United Nations, 2016).

Current (2015) figures show that energy consumption in OECD® countries accounts for 41.9 % of global
energy consumption (5503 Mtoe); an increase of 1.18 % from 2000, whereas energy consumption in non-
OECD countries accounts for 58.1 % of global energy consumption (7644 Mtoe); an increase of 93.57 %
over 2000 usage (British Petroleum, 2016). With Non-OECD countries containing 82.6 % of the world’s
population, and the greatest population growth and economic development expected in these regions (World
Bank, 2016), this trend is expected to continue, leading to a considerable increase in global energy demands

over the coming decades (US Energy Information Administration, 2016).

World energy is supplied from 6 major sources; oil (32.9 %), natural gas (23.9 %), coal (29.2 %), nuclear
energy (4.44 %), hydroelectric (6.79 %) and renewables (2.78 %) (British Petroleum, 2016). Of the three
fossil fuel sources, oil, gas and coal, which together account for 86 % of global energy consumption, oil is

most heavily used and least amenable to replacement by other fuel sources (Blanch, 2010).

Oil is fractionated into different hydrocarbons for different uses; approximately 90 % is used as liquid
transportation fuels, and the remaining 10 % used as chemical feedstocks and for manufacturing (for example
for the manufacture of plastics) (Dyer and Mullen, 2008, Carlsson, 2009). With the infrastructure of the
world’s economy built up around liquid transportation fuels (Chu and Majumdar, 2012), and the products of
petro-chemical feedstocks vital for the functioning of society, demand for oil and its derivatives is expected

to remain high.

1.2.2: Climate change is a leading driver for the switch to renewable energy sources

Anthropogenic emissions of greenhouse gases, predominantly the release of carbon dioxide from fossil fuel
use, is widely accepted to contribute to climate change, and is a key driver for the switch to renewable
energies (Intergovernmental Panel on Climate Change, 2014, US Energy Information Administration, 2016,
The European Parliment, 2009). Carbon dioxide emissions from fossil fuel combustion and industrial
processing alone accounted for 78 % of all greenhouse gas emissions between 1970-2010 (Intergovernmental
Panel on Climate Change, 2014). The predicted impacts of climate change on food production, means that
food security in particular provides significant incentive for the reduction of greenhouse gas emissions
(Godfray et al., 2010).

! The Organisation for Economic Co-operation and Development (OECD) countries includes those in Europe
and Australia, Canada, Chile, Israel, Japan, Mexico, New Zealand, South Korea, UK and US.
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Effects of climate change on food crop production, which are pertinent to plant-based biorenewable fuels,
include increasing global temperatures (Intergovernmental Panel on Climate Change, 2014), lower water
availability (Larsen et al., 2016, Jaramillo and Destouni, 2015, Fedoroff et al., 2010), decreasing arable and
agricultural land (Steinbuks and Hertel, 2016, DeFries et al., 2015), increasing arid and semi-arid land, more
extreme and unpredictable weather conditions including droughts in many areas (Varshney et al., 2011), and
these effects are thought to be proportional to the extent of climate change (Lobell et al., 2008). These effects
point towards a different model of agricultural farming in the future, moving towards more efficient ways of
farming with fewer inputs and under less favourable conditions (Fedoroff et al., 2010).

1.2.3: The economics of supply and demand present additional drivers for renewable
replacements for oil

Despite advances in oil exploration and extraction technologies that have been able to meet increased energy
demand with ever greater oil reserves and production rates (Chu and Majumdar, 2012, British Petroleum,
2016), the current reserve-to-production (R/P) ratio means on current consumption rates, world oil reserves
will be exhausted within 50 years (British Petroleum, 2016). Similarly, there are concerns that the difficulty
of extracting harder to reach reserves combined with ever increasing demand in the future, will lead to an oil
production peak and an escalation of costs (Kerr, 2011). Oil consumption and oil production are
geographically dislocated for many countries, leading to a reliance on oil imports and a susceptibility to
geopolitically-caused price fluctuations (National Academy of Sciences, 2009, US Energy Information
Administration, 2016). As a result, both energy supply and energy security provide significant additional

drivers for renewable replacements for oil.

1.2.4: Plant-based biofuels offer the potential of a renewable, low-carbon alternative
to petrochemical liquid transportation fuels

A diverse renewable energy portfolio is being established by both the US and the EU (The European
Parliment, 2009, US Department of Energy, 2014) including the use of nuclear, solar, wind, geothermal,
hydroelectric and biomass technologies. Despite this diversity of options however, biomass is the only
renewable energy source that can be used as a direct replacement for liquid transportation fuels (Blanch,
2010). Liquid transportation fuels account for 90 % of oil use (Dyer and Mullen, 2008), over 14 % of annual
greenhouse gas emissions (Intergovernmental Panel on Climate Change, 2014), and are the only
energetically-feasible energy source to power critical infrastructure such as aviation and heavy-freight

(National Academy of Sciences, 2009).

Plants are an attractive biomass feedstock due to their renewability and intrinsically low carbon footprint
(Hill et al., 2006, Durrett et al., 2008). Plants accumulate biomass using atmospheric CO,, water and sunlight
over a short time scale, such that the carbon released through their subsequent combustion when used as a
biofuel, should be less or equal to the amount of carbon fixed, with the additional lifecycle carbon-costs
associated with their farming, processing and transportation (Hill et al., 2006). Plant-based biofuel feedstocks
with low lifecycle greenhouse gas emissions, that minimise competition with food crops, are therefore the

industry target (Tilman et al., 2009).
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1.2.5: Research streams for exploitation of plant biomass for liquid transportation
biofuels

Two major avenues of research currently exist for exploitation of plant biomass for liquid transportation
biofuels (Guo et al., 2015). Bioethanol; produced from the fermentation of sugar to ethanol using
carbohydrates derived from plant biomass, is the current biofuel of choice to replace petroleum. Bioethanol
can be blended up to 10 % ethanol-to-petrol by volume, without the need to modify existing petrol
combustion engines (Coyle, 2007). Biodiesel; used either as crude plant storage oil or more commonly
manufactured by transesterification of plant triglycerides to simpler constituent fatty acids using methanol or
ethanol, is chemically very similar to diesel and can be used as a complete replacement with little or no
modification to diesel combustion engines? (Murugesan et al., 2009), although the most common blend in use
in the US is a 20 % biodiesel-to-diesel by volume (Guo et al., 2015).

The two biofuels; bioethanol and biodiesel, can be further split into technical streams according to how their
feedstock compounds are produced (Albers et al., 2016). The first stream for bioethanol production is the use
of high starch/sugar-containing plants, such as sugarcane, that can be directly converted to ethanol through
anaerobic fermentation. These are classed as ‘first generation’ biofuels, as typical high starch/sugar plant

feedstocks are food crops, such as sugarcane, maize or corn.

The second bioethanol stream; cellulosic bioethanol, uses cellulose found in plant cell walls as a feedstock
for producing carbohydrates from fibrous and woody plant biomass (Somerville et al., 2010). This process
uses biological means to convert cellulose to ethanol, including hydrolytic enzymes to breakdown the
cellulose matrix to simple sugars, and anaerobic fermentation to convert the liberated sugars to ethanol as
before. Cellulosic bioethanol is a ‘second generation’ or ‘advanced’ biofuel as it uses non-edible plant

biomass.

Finally thermochemical conversion of plant biomass, using pyrolysis and gasification reactions, is the third
stream. This breaks down unrefined plant biomass using heat and pressure in the presence of specialised
industrial catalysts, to synthesise a range of industrial chemicals including ethanol through non-biological

means.

Biodiesel production occurs almost exclusively from oilseed crops, although a minor amount is converted
from waste animal fat (Albers et al., 2016). The technical stream for biodiesel production, converts plant seed
oil, which is a triglyceride, to biodiesel, which are single chain fatty acids, through transesterification with
methanol, to yield biodiesel and the chemical by-product, glycerol. Biodiesel feedstock crops are classified as
“first generation’ if the oilseed feedstock is an existing food crop, for example soybean, rapeseed or palm oil,

or ‘second generation” or ‘advanced’, if the oilseed feedstock is a non-edible or a non-food species.

2 Biodiesels must meet the fuel standards ASTMD6751 (US) or EN14214 (EU) to be sold as pure biodiesels
(B100), which is dependent on the biodiesel fatty acid composition (Murugesan et al., 2009, King et al.,
2009). Jatropha curcas meets the US standard, and with most provenances the EU standard (King et al.,
2009).
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Critically, ‘second generation’ or ‘advanced’ oilseed and bioethanol crops, avoid competition with food crop

production®.

1.2.6: Current state of ‘second generation’ or ‘advanced’ plant-based biofuel
feedstocks

Second generation biofuels seek to minimise competition with food crops in a number of ways (Ho et al.,
2014). While non-edible crop sources were initially proposed as a way of reducing market pricing and
production issues for crops that could be used for food and fuel (Graham-Rowe, 2011, Fairley, 2011), in
many ways this was an over-simplification of the issue, since non-edible biofuel crops still fundamentally
compete with food crops for land space, particularly if their market value per hectare is competitive with the

food crops they displace.

The non-edible concept has been advanced to ways that more effectively avoid displacement of food crops.
Current efforts are focused on using non-agricultural land for example marginal crop land, or low
biodiversity semi-arid land for biofuel production (Tilman et al., 2009, Fargione et al., 2008). For this
purpose perennials have a number of advantages for both bioethanol and biodiesel production; either as

biomass accumulators or as oilseed crops respectively (Ragauskas et al., 2006, Somerville et al., 2010).

Another strategy is to use crop residues (the non-edible by-products of food crop harvests) as a source of
lignocellulosic biomass (Sims et al., 2010). Research aims to improve the efficiency of all steps in the
conversion process from lignocellulosic biomass to bioethanol (Sticklen, 2008, Blanch, 2010), from
improving the intrinsic efficiency of biomass crops by making them perennial (Somerville et al., 2010), to
engineering cellulose more amenable to breakdown by hydrolytic enzymes for example (National Academy
of Sciences, 2009, Sticklen, 2008).

Oilseed crops for biodiesel production are typically enhanced by increasing both the oil yield and oil quality.
Oil yield is a complex trait made up of a variety of component traits (‘hierarchical’ traits) (Alonso-Blanco
and Mendez-Vigo, 2014) such as seed yield, seed oil content and seed mass. These contributing traits
themselves may be determined by a number of other traits — for example in Jatropha, seed yield is affected by
the amount of branching and ratio of female to male flowers, and other traits. Therefore the traits and genetic
factors, or together the genetic architecture, controlling oil yield, are a diverse area of study and are often

dependent, and specific to, the oilseed crop species, and the environment in which it will be grown.

Oil quality is linked to seed oil composition, a genetically controlled trait that determines the ratio of
different fatty acids in the seed storage oil (Dyer and Mullen, 2008). Altering the ratio of fatty acids, affects
the kinetic properties of the resultant biodiesel, including cetane number, cold flow point, and oxidative

stability to name but a few (Knothe, 2009). Industry standards for each of these fuel properties determine the

% Whilst previously ‘non-edible’ was the definition of an advanced biofuel crop, it is now more accurate to
define advanced biofuels as those that minimise competition with existing food crops, since this is the
implied significance of the term ‘non-edible’, rather than the plant necessarily being inedible for human
consumption. This is pertinent to Jatropha curcas since efforts are being made to breed non-toxic varieties,
for the purpose of increasing the value of its seed meal for use as an animal feed, however even if it is
technically ‘edible’ once made non-toxic, it is still classed as an advanced biofuel since it is not an existing
food crop and it minimises competition with food crop production.

18|Page



suitability of the biodiesel for different applications. With specific oil compositions achievable through
genetic manipulation, the creation of ‘designer’ oils for industry is now an active area of research (Napier and

Graham, 2010).

1.3: Jatropha curcas, a perennial oilseed of the Euphorbiacea family

Jatropha curcas (known as ‘Jatropha’) is a member of the Euphorbiacea family, which contain a number of
agronomically-important species that are known to accumulate biomass efficiently; castor bean (Ricinus
communis), rubber (Hevea brasiliensis), cassava (Manihot esculenta), sacha peanut (Plukenetia volubilis) and
other less well-known oilseeds such as Chinese tallow (Triadica sebifera) and tung (Aleurites fordii) (Wu et
al., 2015, King et al., 2013).

Jatropha is a small tree/shrub that grows to approximately 3-5 m (Heller, 1996), and up to 10 m (Divakara et
al., 2010), although when pruned or managed for agricultural production, it can take a denser, more heavily
branched morphology, that can be readily trained to a range of sizes (Gour, 2006). It is a ‘hardy’ and
adaptable species, able to tolerate a wide range of soil types, day lengths and precipitation levels (Achten et
al., 2010). Jatropha is a perennial plant, meaning that it grows year round, rather than being planted from
seed each year as is required of annual crops. Once seedlings are established, Jatropha grows vegetatively for
approximately 1-2 years, before it flowers and produces oilseed-containing fruits. In tropical regions where
wet and dry seasons are observed, Jatropha typically flowers and produces seed twice a year; with vegetative
growth occurring predominantly during the wet season (Heller, 1996). In permanently humid tropical
regions, Jatropha flowers year round (Heller, 1996). Typically its first substantive yield is in the 2™ year of
growth, although minor yields are sometimes reported in the 1% year of growth. Seed yield and oil yield
continue to increase as it grows towards full maturity after ~5 years from seedling (Heller, 1996). Jatropha
has a lifespan of up to 50 years (Heller, 1996). Jatropha is monoecious, asynchronous and self-compatible,

leading to both crossing and self-fertilisation as reproductive strategies (Heller, 1996, Achten et al., 2010).

1.3.1: Jatropha distribution

Jatropha is a pan-tropical species originating from Meso-America (Heller, 1996, Achten et al., 2007). It has a
wide geographic range and can be grown beyond the tropics of Cancer and Capricorn (latitudes of +23.5°N)
(King et al., 2009), which is a greater range than the only major tropical-oilseed crop in cultivation; oil palm,
which is distributed between ~+15°N (Leff et al., 2004). It is reported to tolerate both dry and moisture-rich
soils (Kumar and Sharma, 2008, Makkar and Becker, 2009), giving it significant climatic-plasticity, although
prolonged or extremes of both, result in reduced growth and yields (Makkar and Becker, 2009, Abou Kheira
and Atta, 2009, Edrisi et al., 2015).

1.3.2: Jatropha curcas genetics

Jatropha curcas is a diploid species with 2n=22 chromosomes, and a genome size of C=416 Mb (Carvalho et
al., 2008). This is classed as a very small plant genome (Michael, 2014), and is small when compared to other
species within the same phylum, order or family (Angiosperms/Malpighiales/Euphorbiacea respectively)
(Bennett and Leitch, 2012). Of the crop species, only rice (389 Mb), cucumber (367 Mb), peach (220 Mb),
orange (367 Mb), papayas (372 Mb) have smaller genomes that have been sequenced (Goodstein et al., 2012,
Feuillet et al., 2011). Jatropha has a GC content of 38 % which is typical of dicots and similar to the model
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organism Arabidopsis (Arabidopsis thaliana), which facilitates genome assembly and annotation (Carvalho
et al., 2008).

Jatropha’s nearest sequenced relative is castor bean, which has a similar genome size (C=509 Mb) (Bennett
and Leitch, 2012) and a high-quality open-access genome sequence (Chan et al., 2010). A high level of
synteny and gene co-linearity exists between castor bean and Jatropha, as has been demonstrated during
genome sequence assembly (Wu et al., 2015, Sato et al., 2011) and genetic linkage mapping (King et al.,
2013). This is pertinent to Jatropha research, as the Jatropha genome sequence has, until recently, been
available only at the low-quality draft level, although recently this has been improved to a level comparable
to that of castor bean (Wu et al., 2015).

Genetic diversity is particularly low for Jatropha germplasm distributed globally (Yue et al., 2014, He et al.,
2011, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, Qi-Bao Sun et al., 2008). Genetic
characterisation and diversity studies suggest that the majority of Jatropha material found outside of Meso-
America, is descended from a narrow subsection of the Jatropha gene pool (He et al., 2011), as a result of
limited sampling during its introduction to global trade markets in the 16" century (Heller, 1996). A tendency
for inbreeding in Jatropha curcas, due to self-compatibility and monoecious flowering, is also thought to
contribute to genetic homogenisation of populations (Achten et al., 2010). Discovery of germplasm with
greater genetic and phenotypic diversity in recent times (He et al., 2011, Montes Osorio et al., 2014, Pecina-
Quintero et al., 2014), has overcome a major bottleneck in the breeding of improved varieties of Jatropha.

1.3.3: Genomic resources for Jatropha research

Genomic resources for Jatropha research have increased considerably following the advancement of genome
sequencing technologies. Early research assessed genetic diversity of Jatropha germplasm using molecular
genetic approaches, identifying suitable breeding material and greater genetic diversity in its centre of origin
(Yue et al., 2014, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011, Achten et al.,
2010, Graham, 2009, Basha et al., 2009, Sun et al., 2008). Following advances in genome sequencing, a
number of transcriptome sequencing studies were published using different sequencing platforms; dye-
terminator capillary sequencing (Costa et al., 2010); 454 pyrosequencing (King et al., 2011), and the FLX
titanium platform for 454 pyrosequencing (Natarajan and Parani, 2011), enabling gene discovery to occur in

key tissues such as the developing seed. This was followed shortly afterwards by the publication of a draft

* For the castor bean genome sequence published in Sept 2010 (Chan et al., 2010), mean and median (N50)
scaffold lengths were 93 kb and 561.4 kb respectively, for a gene density (total sequence span/number of
gene models) of 11,220 bp/gene, meaning that the number of genes per scaffold was relatively high. For the
Jatropha genome sequence, mean and median (N50) sequence element lengths were 1,900 bp, and 3,833 bp
respectively, for release JAT_r3.0 (Sato et al., 2011). Mean and median (N50) sequence element lengths were
marginally increased to 7,597 bp, and 15,950 bp respectively, for release JAT_r4.5 (Hirakawa et al., 2012).
With a gene density (total sequence/number of gene models) of 9,855 bp/gene for release JAT_r4.5, the
number of genes per sequence element is low, highlighting the utility of the castor bean genome sequence for
physically ordering the smaller sequence elements of the Jatropha genome sequence within syntenous
regions. The most recent Jatropha genome sequence, published in 2015, generated mean and median (N50)
scaffold lengths of 168 kb and 746 kb respectively (Wu et al., 2015), substantially increasing the quality of
available genome sequence.
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genome sequence (Hirakawa et al., 2012, Sato et al., 2011), significantly enhancing DNA marker and gene
discovery. An interspecific cross with j. integerrima, led to an interspecific draft genetic linkage map for
Jatropha (Wang et al., 2011), and a number of QTL and eQTL (Liu et al., 2011, Sun et al., 2012). Data from
this thesis study contributed to a collaborative project that published the first high density genetic linkage
map for Jatropha curcas, using intraspecific genetic diversity identified from its centre of origin (King et al.,
2013). This was followed by publication of an integrated QTL map and updated genetic linkage map (King et
al., 2015). A vastly improved Jatropha genome sequence was published in 2015 (Wu et al., 2015), increasing
average contig and scaffold size, and integrating previously published linkage maps.

1.3.4: Jatropha curcas as a valuable biodiesel feedstock crop

Jatropha curcas has several characteristics that make it an attractive feedstock crop for biodiesel production,
as an animal feed, for medicinal/pharmacological natural products, and for soil improvement/land
reclamation/utilisation of marginal land (Abhilash et al., 2011, Achten et al., 2007, Becker and Makkar,
2008, Devappa et al., 2010, Devappa et al., 2013, Divakara et al., 2010, Heller, 1996, King et al., 2009,
Kumar and Sharma, 2008, Makkar and Becker, 2009, Openshaw, 2000, Thomas et al., 2008, Sabandar et al.,
2013, Mukherjee et al., 2011).

Jatropha curcas is an oilseed crop that produces seeds of between 30-40 % seed oil content (Achten et al.,
2010). Jatropha oil has a favourable ‘high-oleic’ seed oil composition, making it suitable for use as biodiesel
(Knothe, 2009, Durrett et al., 2008). Transesterification of crude Jatropha oil produces a biodiesel that meets
both European and US fuel standards (King et al., 2009), that can be used in diesel combustion engines
without further modification. Reported Jatropha oil yields vary considerably, but can be up to 2000kg/ha/year
(Yue et al., 2013), which are yields from an undomesticated lineage with little genetic improvement. This
compares to 3680kg/halyear for oil palm, and 360kg/ha/year for soybean (Gupta, 2015), as examples of

commercial, high yielding oilseed crop cultivars that have undergone considerable genetic improvement.

The seed meal of Jatropha; a by-product of the seed oil extraction process, is high in protein and is suitable
for use as an animal feed. The presence of toxins in non-edible varieties; namely curcin and phorbal esters,
requires treatment of the seed meal before it can be ingested (Aregheore et al., 2003). Curcin is readily
broken down by heat treatment, however phorbal esters are more recalcitrant to detoxification methods
(Kumar and Sharma, 2008, King et al., 2009), and are a known purgative, co-carcinogen and a handling risk
for agricultural cultivation (Makkar et al., 2011, Aregheore et al., 2003, Makkar et al., 1998, Makkar et al.,
1997, King et al., 2009). Edible varieties that do not contain phorbal esters are present in Meso-America
(Pecina-Quintero et al., 2014, He et al., 2011, Makkar and Becker, 2009, Makkar et al., 1998), and so
identification of the QTL for phorbal ester production is the focus of genetic research (King et al., 2013)
(although beyond the scope of this thesis study). Creation of high yielding, phorbal-free cultivars will
enhance economical cultivation of Jatropha, and enable it to be used as a multipurpose feedstock crop for fuel
and animal feed, following similar models used for soybean cultivation (Cromwell, 2012, Food and

Agriculture Organization of the United Nations, 2016).

Jatropha curcas has also long been used as a medicinal crop by the indigenous people of Meso-America
(Heller, 1996). Like other species within the Euphorbiacea (such as castor bean), many parts of the plant have
biological activity (Hecker, 1968, Ernst et al., 2015, Evans and Taylor, 1983). This has generated interest in
using Jatropha as a feedstock for bioactive compounds or as a source of natural products for the
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pharmaceutical industry (Devappa et al., 2010, Thomas et al., 2008, Sabandar et al., 2013). Studies
demonstrate the anti-bacterial, anti-mollusc, anti-fungal, purgative, and latent-HIV stimulating (Wender et
al., 2008) activities of compounds found in Jatropha (Kumar and Sharma, 2008).

1.3.5: Jatropha as a perennial, intrinsically stress-tolerant species

Jatropha is a perennial crop, and there are significant benefits associated with a permanent and deep root
system (Becker and Makkar, 2008, King et al., 2009, Kantar et al., 2016). Perennial root systems fix more
carbon in the soil, improve soil structure and retain water, nitrogen and other beneficial soil components by
establishment of an extensive and robust physical root structure (Cox et al., 2006, Jerry D. Glover, 2007).
Over time this improves the soil and surrounding land by increasing carbon content, locking in more water
and nutrients, and increasing both above- and below-ground biodiversity, in comparison to annual crops (Cox
et al., 2006, Jerry D. Glover, 2007, Kantar et al., 2016), or when planted on marginal or arid land (Cox et al.,
2006, Jerry D. Glover, 2007, Becker and Makkar, 2008).

Perennial growth and a deep root system confers significant abiotic stress tolerance to Jatropha, particularly
drought and low nutrient conditions, since it is able to reach deeper parts of the soil and use water and
nutrients more efficiently (King et al., 2009). This characteristic makes Jatropha compatible with the ‘state-
of-the-art” for plant biofuels, since it conforms to two recognised strategies to avoid competition with food
crops; it can be grown on degraded/non-agricultural land, and it is suitable for mixed/double cropping
systems (for example as a border plant) (Tilman et al., 2009). The use of Jatropha as a border plant for

example, is well documented due to its anti-herbivory properties for grazing livestock (Heller, 1996).

Its ability to grow in, and improve degraded or arid land, with little external inputs makes it a viable option
for developing world agricultural systems, to utilise land that is otherwise dormant and low in biodiversity
(Makkar and Becker, 2009).

As with all known perennial species, little or no genetic improvement has been applied to domesticate or
create cultivars (Kantar et al., 2016). For oilseed perennials such as Jatropha, the requirements for
partitioning of energy between vegetative growth and seed production is likely to be very different for a wild
species compared to a crop cultivar (Van Tassel et al., 2010, Cox et al., 2006, Kantar et al., 2016, Jerry D.
Glover, 2007), therefore seed and oil yield related traits are expected to have significant scope for genetic

improvement. (Kantar et al., 2016)

1.3.6: Challenges for the development of Jatropha as a biodiesel feedstock

Most of the challenges for development of Jatropha as a biofuel feedstock, stem from the fact that Jatropha is
a wild species that has not been through any stringent selective breeding. At present oil yields from Jatropha
are sub-optimal and highly variable (Yue et al., 2013).

1.3.6.1: Challenges to conventional selective breeding

Despite the value of Jatropha being known for some time as shown in historical accounts of Jatropha use
(Heller, 1996), this lack of genetic improvement is a problem commonly associated with perennial species
(Kantar et al., 2016). Whilst annual species are suited to conventional selective breeding; they complete a full

lifecycle within a short period of time and each year new seed must be selected and sown for the next
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generation, the very characteristics that make perennial species prolific biomass accumulators and
intrinsically stress tolerant, also make it difficult for conventional selective breeding to occur (Cox et al.,
2006). Jatropha has a long lifespan (~50 years) and reaches maturity after ~5 years. Cross breeding is
challenging as Jatropha is self-compatible and monoecious; self-fertilisation is a frequent event and hard to
detect without genetic characterisation (as a result harvested seed is often a mix of cross- and self-pollinated
seed -discussed in results chapter 4). Direct-domestication using advanced breeding technologies such as
marker assisted selection (MAS), is a recognised strategy for the rapid domestication of wild perennials
(Kantar et al., 2016), and is particularly pertinent to Jatropha curcas, due its generation time (9 months

seedling to seed), time to maturity (~5 years), and self-compatible reproductive strategy.

Further factors confound conventional selective breeding approaches in Jatropha. The majority of material
found outside its centre of origin is genetically very similar, to the point where it has been described as
almost clonal (He et al., 2011, Montes Osorio et al., 2014, King et al., 2015). With some conventional
selective breeding efforts in Jatropha lacking genetic characterisation of starting material, and subsequent
selection of plants occurring at the phenotypic rather than genotypic level (He, 2011, Sato et al., 2011), a
great deal of observed variation in Jatropha material outside its centre of origin is thought to be of epigenetic
origin (Yi et al., 2010), rather than being underpinned by stable genetics suitable for selective breeding. This
lack of genetic variation in starting material, and lack of adequate breeding technologies to assess and guide

selection based on genetics, has until recently hampered genetic improvement of Jatropha curcas.

1.3.6.2: Target traits for the genetic improvement of J. curcas

With the implementation of an advanced breeding technology, such as MAS, to overcome the challenges of
conventional selective breeding in Jatropha, a number of target traits are amenable to genetic improvement
for the economic cultivation of Jatropha as a biodiesel feedstock. For oilseed crop species, traits affecting

both oil yield and oil quality are of fundamental importance.

For a trait to be amenable to genetic improvement there must be phenotypic variation in the trait of interest
across the population, and this variation must have a heritable component. Phenotypic variation suggests
plasticity in the trait of interest that could be optimised towards certain values within its distribution
(typically towards the high or low phenotypic values within its normal, bell-shaped distribution), and its
heritability suggests a genetic component that could be selected for reproducible phenotypic effects that are

heritable. A number of traits meet these criteria in Jatropha.

1.3.6.2.1: Oil yield related traits

Oil yield per plant® for an oilseed crop such as Jatropha, may be split into the component traits; oil yield per
seed, and, seed yield (the number of seeds produced per plant). Oil yield per seed and seed yield themselves

may be split into further component traits.

Oil yield per seed is the product of; seed oil content (% of oil per seed), and seed mass (average mass of each

seed). Both seed oil content and seed mass are traits that show significant variation and heritability between

® Qil yield per hectare, as a measure of oilseed crop performance, is dependent on additional agronomy
factors such as plant spacing, soil and growth management (Achten et al., 2010), which is beyond the scope
of this thesis study. Hence oil yield per plant is used to investigate oil yield.
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Jatropha lines (Achten et al., 2010), suggesting a genetic component to observed variation and scope for
optimisation through selection. Increasing seed oil content not only increases the proportion of oil produced
per seed, but could also increase the efficiency of oil extraction from harvested seed using mechanical or
chemical extraction methods. Seed mass may increase the oil yielded per seed if oil content as a proportion
does not decrease, or conversely, if seed mass does not increase and seed oil content increases, more
resources could be seen to be partitioned into seed storage oil over other seed components such as proteins or
carbohydrates. This interplay between seed mass and seed oil content determines the oil yielded per seed, and
so these are both important seed traits for optimisation. Due to the economic and industrial value of oilseed
crops, oilseed metabolism, particularly seed fatty acid biosynthesis, is an extensively studied area of research.
The identity and function of key metabolic players and their corresponding genes are well known,
particularly within the sequenced oilseed model species Arabidopsis thaliana (Li-Beisson et al., 2013). In the
age of comparative genomics and crop genome sequencing, in silico elucidation of the fatty acid biosynthetic
pathway and relevant candidate genes for oil quantity and quality traits, is both a recognised strategy for the
improvement of novel biofuel cultivars (Vega-Sanchez and Ronald, 2010), and more specifically, readily-
achievable for Jatropha curcas due to the availability of reference genome sequence (Sato et al., 2011, Wu et
al., 2015), transcriptomics (King et al., 2011, Costa et al., 2010), and closely related sequenced model and
crop species (Chan et al., 2010, Li-Beisson et al., 2013).

Seed yield is a highly variable trait in current Jatropha material, and is therefore a key target trait for
optimisation of oil yields (Achten et al., 2010). This is a hypothesis supported by current thinking on
resource partitioning of undomesticated perennial oilseed crops and the likely scope they possess for genetic
improvement (Kantar et al., 2016). Seed yield is a complex trait that encompasses a variety of component

vegetative- and plant architecture-related traits (King et al., 2009).

Two key traits that are thought to affect seed yield are the ratio of female to male flowers and the extent of
branching (Achten et al., 2010). Jatropha is monoecious; it produces both male and female flowers, and the
ratio of female to male flowers varies between lines and under different environmental conditions (Fresnedo-
Ramirez, 2013, Luo et al., 2007, Wu et al., 2011). Female flowers, once fertilised, produce the oilseed-
containing fruits. Therefore it has been hypothesised that the ratio of female to male flowers is one way in
which seed yield can be increased in Jatropha (Fresnedo-Ramirez, 2013, Divakara et al., 2010, Mukherjee et
al., 2011, Achten et al., 2010, King et al., 2009). Flowering is known to be highly dependent on
environmental conditions, for example some species flower in response to stress (Wada et al., 2010), and the
effects of exogenous application of plant signalling hormones on flowering in Jatropha (Makwana et al.,
2010, Pan and Xu, 2011, Gargi Joshi, 2011), suggest a strong interplay with environmentally-regulated
signalling mechanisms. Whilst the relative contribution of the environmental component of flower ratio
variation (the E of GXE) is still to be determined (Achten et al., 2010), it is possible that genetic variation

may be present that could modulate this response in naturally occurring populations.

Flower inflorescences occur at terminal and auxiliary nodes (ends of branches and branch points
respectively) (Fresnedo-Ramirez, 2013, Luo et al., 2007, Wu et al., 2011), therefore the extent of branching is
also thought to be a key trait that regulates seed yield in Jatropha. Due to the known effects of branching on
yields of many agronomic and commercial crops (Wang and Li, 2006, Zhang et al., 2013), branching is a
relatively well studied trait and the identity and function of a number of key gene classes has been elucidated
(Domagalska and Leyser, 2011, Wang and Li, 2008, Ongaro and Leyser, 2008). Increasing the number of
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branches increases the number of available flowering points, which, particularly if the ratio of female to male
flowers remains favourable, could significantly increase the seed yield in Jatropha (Achten et al., 2010).

Other vegetative traits are likely to regulate seed yield (although beyond the scope of this thesis study). These
include traits related to plant stature, biomass accumulation, and ‘vigour’ (often exploited in crop breeding as
‘hybrid vigour’). For inbreeding and homogenised populations such as those found for Jatropha outside its
centre of origin, cross breeding of genetically distinct lines to stimulate hybrid vigour could be a productive
approach (Achten et al., 2010), since material from such populations are ideal candidates for releasing hybrid

vigour.

The two components of oil yield per plant; seed oil yield (seed oil content, seed mass), and seed yield
(including branching and flower ratio traits), can be viewed as two distinct areas of plant metabolism and
development. Seed oil yield is dependent on seed metabolism (‘the seed fatty acid biosynthetic pathway’),
whereas seed yield is more directly associated with vegetative and architecture-related traits. A key output of
this thesis study will be determining the relative importance of optimising seed oil yield compared to

vegetative traits that regulate overall seed yield, for improving overall oil yield in Jatropha curcas.

1.3.6.2.2: Oil quality related traits

In addition to oil yield, oil quality is an important trait for biodiesel production. For oilseed crops, fatty acid
composition; the ratio of different fatty acids in the seed storage oil, determines the kinetic properties of the
resultant biodiesel (Knothe, 2009, Durrett et al., 2008). Due to the economic and industrial importance of oil
quality (fatty acid composition) for fuels, chemical feedstocks and in health and nutrition, fatty acid
composition has been extensively studied (Knothe, 2009, Cahoon et al., 2007, Durrett et al., 2008). The
kinetic properties and biodiesel performance of differing fatty acids (Knothe, 2005, Atabani et al., 2013), and
the genes responsible for regulating fatty acid compositions in plants (Li-Beisson et al., 2013), are two areas

that have been extensively studied.

Key kinetic properties of biodiesels include the cetane number (a measure of explosiveness), the cold flow
and cloud point (viscosity at low temperature and precipitation point respectively; the effective operating
temperature of the biodiesel and its suitability to different climates), and its oxidative stability (the rate at
which the biodiesel oxidises and degrades) (Knothe, 2009). Studies into these properties have found that the
level of desaturation of fatty acids (including the number of desaturated bonds in each fatty acid, and the mix
of saturated/desaturated fatty acids) is the most critical property for biofuel kinetics (Knothe, 2009, Durrett et
al., 2008). Saturated fatty acids have a higher energy content and are less reactive to oxygen (and therefore
have favourable cetane numbers and oxidative stability), but are more dense and viscous and therefore have
poor cold flow and cloud point characteristics. Conversely, polyunsaturated fatty acids have better cold flow
properties, but have less favourable cetane numbers and oxidative stability. Current research suggests that the
optimal compromise between these properties are fuels high in mono-unsaturated fatty acids (oleic-acid, 18:1
and palmitoleic-acid, 16:1) (Knothe, 2009).

The genetic basis of fatty acid composition, follows the same seed fatty acid biosynthetic pathway as that for
seed oil yield, as modification reactions such as desaturation, occur as part of the pathway between de novo
fatty acid synthesis in the plastid, and the final deposition of fatty acids as triglycerides in the seed storage oil

(Li-Beisson et al., 2013). Whilst the individual steps and the genes responsible for this core metabolic
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pathway are highly conserved across all oilseed crop species (Li-Beisson et al., 2013), significant inter- and
intra-species variation in seed fatty acid composition is present throughout nature and in response to differing
environments (Canvin, 1965, Voelker and Kinney, 2001, Flagella et al., 2002); highlighting the plasticity,
and potential to manipulative and adapt this pathway to achieve specific fatty acid compositions. As a
concept and approach this has been proved extensively in research (Napier et al., 2014, Napier and Graham,
2010, Bates et al., 2013, Durrett et al., 2008), and through the commercialisation of crops with altered fatty

acid compositions (Burton et al., 2004).

Although Jatropha seed oil meets quality standards for both EU and US fuel markets, there is also reported
plasticity in seed oil composition, for example in response to differing temperatures (King et al., 2009),
suggesting that optimisation of seed oil composition and therefore oil quality, would be useful in Jatropha,
particularly for material that may be grown under differing environmental conditions. Similarly, due to the
importance of the seed fatty acid biosynthetic pathway for oil yield and oil quality in oilseed crops such as
Jatropha, genetic mapping of candidate genes within this pathway would be a valuable genomic resource for

QTL mapping and genetic improvement of Jatropha curcas.
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Figure 1-1 The major steps fatty acid synthesis in seed storage oil in plants.
Adapted from ‘The Arabidopsis Book’ (Li-Beisson et al., 2013, Meng et al., 2013). An in depth analysis of candidate
genes for seed oil yield and seed oil composition, using this pathway will be discussed in Chapter 3.

1.4: Marker Assisted Selection as a technology for the rapid domestication and
accelerated breeding of Jatropha curcas varieties

Marker assisted selection (Dekkers and Hospital, 2002), is a technology that has been proposed for the
genetic improvement of Jatropha curcas, since it enables screening and selection of genotypes harbouring
beneficial QTL at the seedling stage based on genotype. This overcomes many of the challenges with
breeding improved Jatropha varieties: (1) offspring resulting from the intended cross (ie a true cross or

selfing event) can be identified through genotyping, (2) selection is based on seedling genotype, eliminating
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the difficulties of inferring genotype from phenotype, which may be harder to detect or quantify, and that are
subject to environmental effects (Dekkers and Hospital, 2002) (3) plants containing desirable genetics can be
identified at the seedling stage; eliminating the time needed for phenotypes to be expressed which can be
several years with Jatropha. Selection at the seedling stage enables larger populations to be created and
screened, allowing rarer, more desirable genetic events to be selected, for example the inheritance of multiple
QTL alleles, which in turn reduces the number of generations required to breed the desired genotype

(Dekkers and Hospital, 2002). In this way MAS can significantly accelerate the breeding process.

For such an approach, genetically- and phenotypically-diverse Jatropha lines are required from which to
breed from, and genomic resources are required to inform the selection process. Genetic and phenotypic
diversity issues have recently been overcome by identification of diverse germplasm in the place of origin of
Jatropha in Meso-America (Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011). The
genomic resources required for Marker Assisted Selection include DNA markers, genetic linkage maps and
QTL maps, that together provide information on target genomic regions (‘loci’) and the beneficial or
unwanted alleles within them, and the markers necessary to track their movement and transmission through
breeding populations (Dekkers and Hospital, 2002). Genomic resources for Jatropha have improved recently,
and several groups have begun QTL mapping studies (King et al., 2015, Sun et al., 2012, Liu et al., 2011).
Public dissemination of the results of such projects will significantly facilitate the creation of genetically
improved Jatropha cultivars.

1.5: The Quantitative Trait Loci (QTL) mapping process

The function of QTL mapping is to understand the genetic basis of simple and complex traits in a population
or family (Mackay et al., 2009). QTL mapping associates genotype with phenotypic variation, in order to
determine the regions of the genome (‘loci’) and the genetic variants contained within them (‘alleles’) that
are responsible for observed variation in a quantitative trait, using natural or experimental populations. A
variety of QTL mapping approaches, population structures and methods of statistical analysis, have been
developed with differing advantages and limitations (Wurschum, 2012, Staub et al., 1996, Doerge, 2002,
Morrell et al., 2012). The biparental, F, mapping population is an approach that is particularly useful for
investigating traits of interest with pre-identified variation in two distinct parental lines, for example a high-
oil and low-oil line.

In a biparental mapping population, the two parental lines that differ phenotypically for the trait of interest
are crossed to establish a mapping population. The parental lines are ideally genetically distinct and
homozygous at all loci, to enable genomic regions from each parent to be tracked and differentiated
throughout the mapping population, and to ensure observed phenotypic differences have a genetic basis.
Crossing of two homozygous parents, creates a heterozygous, genetically-uniform F; population, with 1
allele at each locus (in a diploid species such as Jatropha) originating from each parent. Selfing or crossing of
an F; plant, creates an F, population consisting of plants with a genetic mosaic of alleles from each parent,
due to meiotic recombination in F; gametes. Genetic diversity of the F, population is used to inform both
recombination rates of loci for genetic linkage mapping, and linkage or association of particular loci and
alleles (genotypes) to particular phenotypic values for QTL mapping. As a result, F, population size, along
with marker density (Morrell et al., 2012) and appropriate and accurate phenotyping (Alonso-Blanco and
Mendez-Vigo, 2014), determines the power to detect and locate QTL in this approach.
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Several key stages are present in the QTL mapping approach after selection of suitable parental material and
creation of a mapping population:

1) The development of DNA markers
2) Genotyping of the F, population
3) Genetic linkage mapping

4) Collection of phenotypic data

5) QTL mapping

1.6: Aims of the study

1.6.1: The development of SSR markers

SSR markers are a class of co-dominant marker that are hypervariable, abundant (Schlotterer, 2004, Agarwal
et al., 2008) and identifiable in-silico using a reference genome sequence and search algorithms (Sato et al.,
2011, Stieneke, 2007, Martins et al., 2009). As such SSRs are ideal for marking specific regions of the
genome in a targeted manner.

The aim of this part of the study was to develop SSR markers to complement existing genome-wide non-
selective markers (discussed in detail in chapters 3 and 4), for the purpose of gap filling during later-round

genetic linkage mapping, and to mark identified candidate genes for relevant traits of interest.

1.6.2: Identification and mapping of candidate genes for oil yield and oil quality
related traits

The principle mapping population under study in this thesis, G51xCV, was created from parental lines with
reported variation in oil yield and oil quality related traits; including seed oil content, seed oil composition,
seed mass, seed yield and branching. The relevance of oil yield- and oil quality-related traits, to the genetic
improvement of the oilseed crop, Jatropha curcas, makes the identification and mapping of candidate genes

for these traits a useful genomic resource for QTL mapping in this study and others.

1.6.3: Genetic linkage mapping in the G51xCV F, mapping population

Genotyping and genetic linkage mapping of the F, population, is an integral part of the QTL mapping
process. Accurate ordering and positioning of genetic markers on a genetic linkage map, facilitates the
detection and location of QTL during subsequent QTL mapping (Doerge, 2002). QTL can be associated with
genetic intervals rather than individual markers (‘interval mapping’ versus ‘single marker analysis’) (Doerge,
2002). Positioning of QTL between flanking markers, and within confidence intervals, increases the accuracy
and utility of identified QTL for crop breeding (and also other applications), in comparison to QTL
associated with single markers, unless the single marker is completely linked and the QTL is monogenic
(Mackay et al., 2009).

A key aim of genetic linkage mapping in the G51xCV mapping population, was to contribute data towards
the first intraspecific genetic linkage map published for Jatropha curcas (King et al., 2013), thereby
establishing a key genomic resource for Jatropha development. Genotyping and genetic linkage mapping in

the G51xCV mapping population was based on analysis of 229 F, plants.
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1.6.4: Seed-related phenotyping

G51xCV F, plants were phenotyped for the seed related traits; seed oil content, seed mass and seed oil
composition, using Nuclear Magnetic Resonance (NMR) spectroscopy and Fatty Acid Methyl Ester (FAME)
gas chromatography (see materials and methods). Seed oil composition was determined by measurement of
the 4 major fatty acid moieties in Jatropha curcas seed oil; palmitate, stearate, oleate, linoleate. Seed related

phenotyping occurred for 3 datasets collected over 2 years.

1.6.5: QTL mapping of oil yield, and oil quality related traits

QTL analysis of seed oil content, seed oil composition (palmitate, stearate, oleate, linoleate content), seed
mass, seed yield, and branching traits was conducted through integration of genotypic and phenotypic
datasets, using interval mapping and single marker analysis. Correlation and statistical analysis of traits was
conducted to determine causative relationships and interactions. The aim was to determine: (1) the presence
and location of QTL responsible for regulating oil yield and oil quality related traits in the G51xCV
population; (2) to provide data on their relative contribution towards phenotype; (3) to determine the QTL
parent of origin; (4) to determine their mode of action (dominance/semi-dominance/recessive/over-
dominant); (5) to determine hierarchical and/or causative relationships between traits; (6) to determine the
relative contribution of component traits to complex traits such as overall oil yield in the G51xCV

population.
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Chapter 2: Materials and Methods

2.1: The collaborative Jatropha project and contributions of this thesis study

Table 2-1 The Jatropha project structure at the University of York

Four F2 mapping populations were used for genetic linkage and QTL mapping, with specific quantitative traits under
study in each population. A combined dataset from all four mapping populations was used to create a combined genetic
linkage map, and phenotypic data from two populations used to create an integrated QTL map. The principle focus of this
thesis study has been highlighted in red: (1) The G51xCV mapping population from DNA marker generation onwards
(SSR DNA marker generation, genotyping, phenotypic data collection, and QTL mapping) (2) SSR DNA marker
generation across all 4 populations (3) Contributing data for the combined genetic linkage map and integrated QTL map
(marker generation all populations; G51xCV genotyping data, phenotypic data and QTL analysis) (King et al., 2013, King
etal., 2015).

Mapping G33xG43 QVo01 QV02 Combined
Population (for linkage
mapping)

Primary Trait | Oil content, oil Toxicity Oil Content, oil  Oil Content, n/a
Variation composition. composition Qil

Branching composition

Flower ratio
Population 229 320 220 220 989
size (plants)
Mapping site | Guatemala Guatemala Cape Verde Cape Verde n/a
Mapping Biocombustibles de  Biocombustible  Quinvita Quinvita Authors
Population Guatemala, S.A s de Guatemala, listed left
Responsibility S.A. (cols 2-5)
DNA marker [RGYEL)[! KeyGene KeyGene KeyGene Authors

generation JG Clarke AJ King AJ King AJ King listed left
AJ King JG Clarke JG Clarke JG Clarke (cols 2-5)

Data KeyGene KeyGene KeyGene KeyGene Authors
Collection; JG Clarke AJ King J Affleck J Affleck listed left
Genotyping AJ King AJ King (cols 2-5)
Data JG Clarke AJ King Quinvita Quinvita
Collection; (seed oil content, L Montes
Phenotyping oil composition,

seed mass)

L Montes,

Biocombustibles de

Guatemala, S.A

(vegetative traits)
Genetic JG Clarke AJ King AJ King AJ King AJ King
Analysis
QTL 7

Analysis JG Clarke AJ King

The G51xCV mapping population, consisting of 229 F2 plants, was the principle population under study for
this thesis. SSR DNA markers generated as part of this thesis study were tested across all 4 mapping
populations for a number of reasons: (1) to increase the chance of the marker being mapped in the combined

30|Page



map, as many of these markers were linked to candidate genes (2) to increase the available recombination
data for markers that could be mapped in multiple populations (3) to enable independent mapping population
maps to be aligned using shared markers for comparative mapping (4) to increase the number of markers for
QTL mapping in each population.

Table 2-2 DNA markers available for genetic linkage and QTL mapping
Table 2-2 lists the type and number of markers that were mapped during genetic linkage and QTL mapping for each

mapping population (for the total number of markers produced for this thesis i.e. including markers that may not have
been polymorphic or mapped in these populations, see chapter 3). The outputs of this thesis study have been highlighted
in red: (a) The production of SSR markers for all 4 populations (b) genotyping of markers in the G51xCV mapping
population (except genome sequence SNPs which were genotyped by Keygene as part of the CRoPS marker discovery
process) (van Orsouw et al., 2007) and (c) genetic linkage mapping of all markers in the G51xCV population. Not shown
here is phenotypic trait data collection and QTL mapping, that was conducted as part of this thesis study in G51xCV, as

specified in Table 2-1. The authors responsible for creating each marker type are listed in column 3.

Simple

Marker t Sequence JG Clarke | 62
arker type 62
& Author Repeats (SSRs) 77

117

EST-derived AJ King
SNPs 30 32 35 58
Total 303 381 378 594

Mapping Population [CHP (VA G33xG43 | QV01 | QV02 | Combined
Genome KeyGene
Sequence SNPs 181 161 287 283 318
48 87 129

Table 2-2 lists the final contribution of this thesis work to genetic linkage mapping within the collaborative
project. Genotyping and genetic linkage mapping for this study occurred for all marker types in the G51xCV
population, except the genotyping of genome sequence SNP’s which was carried out by KeyGene as part of
their SNP marker discovery process. In total, genotyping occurred for 131 markers in 229 F2 plants in the
G51xCV mapping population, and genetic linkage mapping with 312 markers. SSR marker mining was
conducted across all 4 independent populations; contributing between 9 (QV01 and QV02) and 62 (G51xCV)
SSR markers in individual maps for use in genetic linkage and QTL mapping, and 74 SSR markers for the

combined genetic linkage map.
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Table 2-3 Phenotypic trait data collection in the G51xCV mapping population
All phenotypic traits and corresponding datasets listed below were subject to QTL analysis as part of this thesis study.

Data collection for these traits was split according to the authors specified in Table 2-1. The traits and datasets
highlighted in red were collected at the University of York as part of this thesis study: (1) seed oil content (3 datasets); (2)
seed oil composition (1 dataset); (3) seed mass (3 datasets). The vegetative traits, branching and seed yield, were
collected by collaborators at the mapping population site (Guatemala), as listed in Table 2-1.

Year 2011 2012 2013
Date 13" 26" | 13" Ot 12" 15" 10" 22M 1 28" 16" 14"
[
Dec Jun Sep Oct Oct Jan May May Aug Oct
Years of
growth 1.76 2.30 2.51 2.56 2.59 2.6 2.84 3.2 3.22 3.44 3.60
Days after 123
transplanting 567 763 842 860 871 874 961 1093 1099 1179 8
Measurements - = = = = = - - - -
@ |82 8 8 8 8 8 8 8 h &
taken in the £ |2 £ S S S S S S b b b
=] S O 3+ [+ 3+ [+ «© «© «© «© «©
. = c = = = = = = = = = =
field IS - &8 o o o o o o =] o o
s} S d 3] 3] 3] 3] 3] 3] 3] 3] 3]
wn (92] (92] (92] (92] (9] (9] (%] [9p] [9p]
Sample period Batch Batch 2 Batch
for seed sent to 1 &
York
Trait Dataset name and sample period

Seed oil content Year 3a Year
B -
Seed oil
composition .
Seed mass . Year 3a Year
3b

Branching

Seed Yield Year 2 | Year 3

Table 2-3 shows the phenotypic data collected for this thesis study. Field-based vegetative traits were
collected by collaborators, along with other vegetative traits of interest that were studied outside of this work.
This thesis study collected 7 phenotypic datasets from 3 traits at the University of York, from biological
samples collected on the dates listed above. Data from all traits and datasets listed above was subject to QTL

analysis for this thesis study.

2.2: The G51xCV F, mapping population

The G51xCV F, mapping population was grown at [13°57'33.17"N and 90°23'21.89"W], Guatemala. F,
plants were planted at a density of one plant every 4 x 2 m, or 1,250 plants per hectare. Juvenile plants were
transplanted from nursery to the field on 25 May 2010, during the rainy season. Drip irrigation was applied
during the dry season (November to April), and fertilisers applied according to the nutritional requirements of

the plants in conjunction with soil analysis (King et al., 2015). In total, 229 F, plants were available for
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genetic linkage analysis, and the largest sub-population that experienced the same environmental conditions,
which consisted of 145 F, plants, was selected for QTL analysis.

2.3: Parental lines and population structure

The G51xCV F, mapping population was created by crossing a fully homozygous line, ‘Cape Verde’ (CV),
with a heterogeneously heterozygous line, ‘G51°. The G51 and CV lines were selected primarily on the basis
of their seed oil content; G51 at 36.90 % seed oil content, and CV at 26.00 % seed oil content. In addition to
seed oil content, F, plants were also screened for variation in a number of other traits. This study
investigated: (1) seed oil content (2) seed oil composition (3) seed mass (4) number of branches and (5) seed

yield (number of seeds).

DNA marker analysis showed that G51 was in the region of 36.5 % heterozygous, based on the DNA
markers used in this study. In order to maximise the number of informative markers at heterozygous loci in
Gb51, an F4 sibcross rather than F; self was used to create the F, population. Two F, populations were created
in consecutive years to maximise the number of F, plants available for genetic linkage mapping. In total 229
F, plants were available for genetic linkage analysis. The larger of the two populations consisting of 145 F,
plants was used to map quantitative trait loci. Whilst an F; sibcross was the primary crossing strategy, due to
the self-compatibility of Jatropha and its monoecious, asynchronous flowering strategy, F; selfing was also
present, leading to further subpopulations within the F, population. See figure 2-1 — this population structure

and the use of informative markers is explored in greater detail in the linkage mapping results chapter.
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Intended

Comments
Cross (1) Py x P, Parental lines, uni-directional cross
\ P;=aa, P,=bb/ab (36.5 %
l heterozygosity)
Cross (2a) F1,9 X F 2b) F1,9 xF
(23) Iﬂg 120 ( )l 127 1ad Generation 1, Reciprocal sib-cross
= E Generation 2, Test Population of 2
2.1...121 2.1...104 subpopulations
Actual
Comments
Cross (1) Py xP; Parental lines, uni-directional cross

:l \ P1=aa, P,=bb/ab (36.5 %
' e heterozygosity)
Cross (2a) F119 X Fiod— Fii@  (2b) F1o9 X Fuid —> Fi2"D

Generation 1, Reciprocal sib-cross,
l l l l frequent selfing of mother plant

Fa1. 37 Foi a3 Fa1..20 F21.45 Generation 2, Test Population of 4
subpopulations
1 A NS
! S Insufficient plants from cross (2); cross

Cross (3a) F112 X F1o8— Fi1"9 (3b) F1,9 X Fr.d—> Fy "  repeated at independent time point,

cross (3)
l l l l Generation 1, Reciprocal sib-cross,
frequent selfing of mother plant

Fa1..13 Fai..28 Fai..1 Fai..58 Generation 2, Test Population of 4
subpopulations (total 8 subpopulations)

Summary

Parental lines
CV - homozygous aa
51 — 36.5 % heterozygosity ab, 63.5 % bb

Fi

Two non-uniform F; used for reciprocal sibcrossing (the F; used as pollen parent switched in each cross)
F1.1: 86 % heterozygosity, 14 % homozygosity

F1.: 82.5 % heterozygosity, 17.5 % homozygosity

Fa:

229 F, plants split into 8 subpopulations

All F, plants used for linkage mapping after parentage determined using informative markers

Population split into two groups for QTL mapping according to the time the cross made (and therefore the
environmental growth conditions experienced), the larger of the two crosses, Cross (2a), consisting of 145 F,
plants used for QTL analysis

Figure 2-1 The 51xCV crossing scheme and population structure
The above diagram shows both the intended and actual population structure for the G51xCV mapping population as

determined through informative marker analysis.

This complex population structure was determined through informative marker analysis; a process developed
as part of this thesis study for determining the parentage (a true cross or selfing event) of F, plants. Figure 2-

2, explains what informative markers are and how they can be used in this context.
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(1) P;aa x P, ab

T

(2) Friabx Faa or Fyjaax Fppab

F2 progeny
F; Cross: F1.x (ab) selfing:
| a b | a B
a | aa ab ‘ ‘ A | aa Ab
a aa ab B ab Bb
1:1 ‘aa’, ‘ab’ 1:2:1 ‘aa’, ‘ab’, ‘bb’

(3) Number of informative markers available to detect an F;
selfing:

Inf marker class B
(41 markers) , and F;

Inf marker class A
(52 markers), and F;

genotypes genotypes
F; plant M1la M52a Milb M41b
Fi1 ab ... ab Aa ... aa
Fio aa ... aa Ab ... ab

(3a) Detecting F, ; selfing (direction 1)
In the F, generation; the presence of informative ‘bb’

genotypes at markers 1a to S1a, and all ‘aa’ at markers
1b to 41b.

(3b) Detecting F, , selfing (direction 2)

In the F, generation; the presence of informative ‘bb’
genotypes at markers 1b to 41b, and all ‘aa’ at markers
la to 52a.

(3c) Detecting true cross

In the F, generation; a lack of ‘bb’ scores and a 1:1
mixture of ‘aa’ and ‘ab’ genotypes at both informative
marker classes (rather than all ‘aa’ in one class).

Comments
(1) Informative markers begin as
heterozygous loci in the G51(P,) parent.

(2) Loci that are homozygous in one F; and
heterozygous in the other can be informative
for determining F, parentage

In the F, the presence of informative ‘bb’
scores indicates an F; selfing event

(3) There were 52 informative markers for
determining selfing of F; ; and 41 markers
for selfing of Fy,.

(a) Detecting F ; selfing (direction 1)

In the F, generation informative markers la
to 52a have a 1 in 4 chance of being
informative ‘bb’ genotypes. Informative
markers 1b to 41b will all be ‘aa’ genotypes.
Expected number of ‘bb’ alleles at markers
la to 52a; 52*0.25=13‘bb’ scores.

A threshold of 3 or more ‘bb’ alleles used to
assign selfing event in this dataset (with
M1b to 41b all ‘aa’). If cross, markers 1b to
41b; expected 0.5*¥41=20 ‘ab’ scores rather
than all ‘aa’.

(b) Detecting F, , selfing (direction 2)

In the F, generation informative markers 1b
to 41b have a 1 in 4 chance of being
informative ‘bb’ genotypes. Informative
markers la to 52a will all be ‘aa’ genotypes.
Expected number of ‘bb’ alleles at markers
1b to 41b; 41*0.25=10°bb’ scores.

Again the threshold value of 3 or more ‘bb’
alleles (and all ‘aa’ genotypes at other
marker class) is well below the expected
number. If cross, expected number of ‘ab’
scores at M1a to 52a; 52*0.5= 26 ‘ab’ scores
rather than all ‘aa’.

(c) Detecting true cross

The ‘bb’ score is impossible to obtain via a
true cross, and between 10-13 are expected
for either F, selfing. There is a very low
probability of getting all ‘aa’ at the other
class of informative marker since 50 % are
expected to be ‘ab’ by chance (between 20-
26 expected ‘ab’ scores for each cross
direction).

Figure 2-2 Informative Markers available for assigning F2 parentage in the G51xCV mapping population

The left column explains what informative loci are, and the alleles and genotypes expected at these loci in the mapping
population. The right column explains how these genotype frequencies were used to determine parentage of F2 plants.
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2.4: DNA extraction

Dry leaf tissue was transported from the mapping population site to the University of York on silica gel
desiccant. Between 10-20 mg of dried tissue was taken for DNA extraction using the Qiagen DNEasy Plant
Mini kit (Qiagen, Venlo, the Netherlands), according to the supplied protocol. DNA was eluted and stored in
Qiagen AE Buffer (10 mM Tris, 0.5 mM EDTA, pH9). DNA was quantified using the DNA binding dye
EvaGreen (Biotium, Hayward, CA), using salmon sperm DNA as a standard (Wang et al., 2006). DNA was
transferred to 96-well plates and diluted to working DNA concentrations (2-10 ug/pl).

2.5: DNA markers

This project utilised Single Nucleotide Polymorphisms (SNPs) and Simple Sequence Repeat (SSR) markers.
SNPs were mined using a reduced-representation genome-sequencing technique; Complexity Reduction of
Polymorphic Sequences (CRoPS®©) (van Orsouw et al., 2007) and through comparative sequencing of cDNA

libraries (King et al., 2011). SSRs were mined from publically available genome sequence (Sato et al., 2011).

2.5.1: Single Nucleotide Polymorphism (SNP) markers

SNP markers obtained from the reduced representation genome sequencing strategy; Complexity Reduction
of Polymorphic Sequences (CRoPs©) (van Orsouw et al., 2007) were scored using the Illumina VeraCode
Assay, a high-throughput plate based assay; work carried out by Keygene. A number of SNP markers were
obtained by pyrosequencing of developing seed tissue (cDNA sequencing) (King et al., 2011), and mining of
publically available sequence; work carried out by Dr. Andrew King. These SNPs were scored using KASPar
and allele specific PCR amplification systems (Cuppen, 2007, Bui and Liu, 2009) and an ABI3730 capillary

sequencer which can also analyse fragment sizes.

SNPs identified by the CRoPs© technique were expected to be randomly distributed throughout the Jatropha
genome. SNPs identified by cDNA sequencing were expected to be randomly distributed throughout

transcribed DNA sequence.

2.5.2: SSR markers

SSR markers were mined from the publically available Jatropha genome sequence published in 2011 (Sato et

al., 2011). Overall, the SSR mining process consisted of 4 phases.

Phase 1 was the identification of target J. curcas genome sequence contigs. Phase 2 was the identification of
SSRs within target contigs. Phase 3 was amplification of SSR sites. Phase 4 was scoring of the amplified
SSRs, leading to either confirmation of polymorphism in parental lines and progression to linkage mapping,

or elimination of the SSR as a marker.

SSR mining from the published reference genome sequence enabled a targeted rational approach to marker
generation, which complemented the wide coverage, but less specific, distribution of SNP markers used in
this project. SSR markers were used for (1) the genetic and physical mapping of candidate genes and
investigation of QTL (2) the development of markers to fill gaps in the genetic linkage map following earlier

rounds of genetic linkage mapping.

The 4 phases of SSR marker development is described in more detail below.
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2.5.2.1: Phase 1: Identification of target genome sequence contigs

Phase 1 is split into two parallel processes, candidate gene mapping (1a) or gap filling (1b), that identify
target contigs by two different approaches. After identification of the target contig, the two parallel
approaches converge to follow the same phase 2 and onwards, as described below.

2.5.2.1.1: Phase 1 (a) Candidate genes

Lists of candidate genes for each trait were compiled from genomic resources such as The Arabidopsis Book
(http://www.thearabidopsisbook.org)(Li-Beisson et al., 2013), the Plant Metabolic Network
(http://pmn.plantcyc.org/), KEGG PATHWAY Database (http://www.genome.jp/kega/pathway.html),

Gramene (http://pathway.gramene.org/ARA/), Biocyc (http://biocyc.org/ARA/), in combination with a

literature review of published genes studied in both model and crop species. Gene sequences were isolated

from the databases Arabidopsis.org (http://www.arabidopsis.org) for Arabidopsis genes, and GenBank

(www.ncbi.nlm.nih.gov/genbank/) for genes published in academic journals. Peptide sequences were used to

search the J. curcas genome sequence (Sato et al., 2011) for gene homologues, using the BLAST algorithm

at NCBI (http://blast.ncbi.nIm.nih.gov/Blast.cgi) and the BLAST algorithm in the J. curcas genome sequence

viewer at the Kazusa DNA research institute webpage (http://www.kazusa.or.jp/jatropha/). All Jatropha

genome sequence contigs that contained gene homologues with high sequence similarity to the reference

candidate gene were scanned for SSRs.

Following successful linkage mapping of J. curcas candidate genes identified by this method, evidence to
support gene functionality/activity was generated by BLAST searching specific nucleotide data repositories
of NCBI:

1. Nucleotide Collection (nr/nt) for sequenced and characterised J. curcas genes
2. Expressed Sequence Tags (EST) and Transcriptome Shotgun Assembly (TSA) for J. curcas ,RNA

submissions for evidence of expression

2.5.2.1.2: Phase 1 (b) Gap filling during linkage mapping using comparative mapping
and castor bean microsynteny

Additional mapping was carried out to reduce gaps on the linkage map that were larger than 15 cM, or to

reduce the QTL interval for high significance QTL.

Linkage maps from 4 Jatropha mapping populations were physically aligned in silico using shared markers

(defined as a single marker that was independently positioned in more than one mapping population linkage
maps). Markers in one map that corresponded to gaps in another linkage map could then be used to locate J.
curcas genome sequence contigs in the target region, and the contig sequence mined for polymorphic SSRs

as described in Phase 2.

After this approach had been completed, castor microsynteny was utilised as a way to reach remaining gaps.
To identify syntenous regions, J. curcas transcribed amino acid gene sequences from contigs mapped by
polymorphic DNA markers were blasted against the castor genome to find the most similar gene
homologues, using BLASTP. This was repeated for all genes on mapped J. curcas contigs. Castor bean genes

mapping to the same contig and in the same order suggested a syntenous region with gene co-linearity.
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Where neighbouring J. curcas map positions aligned to the same castor contig, the region between
neighbouring positions could be assumed to be syntenous. Castor bean genes in this adjoining region could
then be used to as probes to search for homologous transcribed amino acid gene sequences in the J. curcas
genome sequence, and retrieved contigs could then be mined for additional SSR markers as described in
Phase 2. A graphical representation of this strategy is presented below.

Je contig Rec contig Je contig
Linkage group marker 1 i Linkage group
marker 4 -
marker 1 H I I marker 1 ||
marker 4
— —
marker 2 I marker 2
marker 5
8
marker 3 marker 2 marker 3
marker 5 -
I coding region
marker 3 - [ non-coding region
" s N 4+ markers
|

Figure 2-3 Diagrammatic representation of interspecific comparative mapping, conducted between J. curcas and
R. communis genomes

The process of comparative mapping to generate markers in gaps of the J. curcas linkage map. From left to right; a J.
curcas linkage group requiring further mapping; J. curcas genome sequence contigs retrieved using markers flanking the
target regions; R. communis genome sequence contig retrieved using transcribed gene models found on J. curcas
contigs (note J. curcas contigs map to the same R. communis contig -synteny); J. curcas contigs corresponding to the
target region retrieved using R. communis transcribed gene models; SSRs found on retrieved J. curcas contigs enable
markers to be mapped in the linkage group target regions.

2.5.2.2: Phase 2: the identification of SSRs within target contigs

Target J. curcas contigs were scanned for SSRs using web software, Websat (Martins et al., 2009) and
ImperfectSSR (Stieneke, 2007). For SSR’s of (x)n, where X is the length of the repeat motif, and n is the
number of repeats of that sequence, stringency was set at n > (12,6,6,5,4) number of repeats, for x=
(2,3,4,5,6) repeat motif size respectively. Primer3 (Untergasser et al., 2012) software was used to design
flanking PCR primers. In order to allow multiplexing, all PCR primers were designed with a T, of 55-60 °C
according the nearest-neighbour method (SantaLucia, 1998). The primers were designed so that amplicon

sizes were between 80 to 450 bp, suitable for fragment analysis by capillary electrophoresis. A standardised
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M13 18 bp sequence [5'-TGTAAAACGACGGCCAGT-3"] was appended to the 5 end of the shortest of the
two primers to allow fluorescent labelling during the PCR reaction (Hayden et al., 2008).

2.5.2.3: Phase 3: the amplification of SSRs

SSR marker PCR primers were tested on 4 mapping population parental accessions to increase the chance of
the marker loci being mapped in a combined genetic linkage map and to facilitate QTL mapping across all
populations. Polymorphic SSR primers were multiplexed according to product size with a >10 bp difference

between primer product sizes. Multiplexes contained between 5-10 primers.

Multiplexed PCR reactions were performed on the mapping population DNA using the QIAGEN Type-it
Microsatellite PCR kit. Reaction components included: the PCR reagents; the primer multiplex at 0.5 pM;
either M13 VIC or FAM fluorescent dye at 2 uM; and F, DNA at 10-20 pg/ul; in 96 well plate format.

PCR cycling conditions were:

1) Initial denaturation at 95 °C for 5 mins

2) 32 cycles of:
(a) denaturation at 95 °C for 30 s
(b) annealing at 55 °C for 1 min 30's
(c) elongation at 72 °C for 30 s;

3) Final elongation at 60 °C for 30 mins.

PCR plates were subject to a serial dilution equivalent to 100X dilution. 2 ul of diluted PCR product was
combined with 9 ul Hi-Di Formamide for analysis using the Applied Biosystems (ABI) 3730 DNA Analyzer
(Life Technologies). GeneScan 500 LIZ Size standard was used as an internal ladder. The standard plate

injection time was 15 s.

2.5.2.4: Phase 4: scoring of the amplified SSRs, leading to confirmation of
polymorphism, or elimination of the SSR marker

ABI3730 data was exported to Genemarker software (SoftGenetics, LLC, CA, USA) for scoring. Initial
automatic scoring was run with a scoring window of 80-450 bp and threshold intensity of >500. The panel
editor function was used to manually assign allele positions before re-running the scoring with the adjusted
allele positions. Following automatic scoring each allele position was individually checked for each plant in
the mapping population, due to complexities with scoring SSRs such as complex patterning and the
generation of PCR artefacts (Schlotterer, 2004).

2.6: F2 Genotype/marker score processing and analysis

2.6.1: Assignment of parentage

Comparison of F, and F; informative marker scores allowed F, parentage to be assigned as either the product
of an Fy intercross or an F; selfing event. The original crossing scheme was an F; sibcross however J. curcas
is self-compatible leading to frequent selfing events under field conditions; see results section chapter 4 for a

full analysis of the F, population structure as determined by informative marker scores.
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2.7: Linkage mapping
2.7.1: Assignment of markers to linkage groups by Two Point Linkage Analysis

The genotype/ F, matrix was converted into Crimap (Green, 1990) compatible files. Two point linkage
analysis was carried out to assign markers into linkage groups. A variety of LOD thresholds values were
tested to see what effect this had on the grouping of markers. The greatest LOD (logarithm of odds) threshold
value that produced 11 linkage groups, as supported by cytological evidence on J. curcas chromosome
number (Carvalho et al., 2008), that also linked the majority of markers, was used to maximise stringency of
linkage between markers (to avoid false linkages) whilst producing the correct number of linkage groups.

Markers were then separated into separate linkage group Crimap files for map building.

2.7.2: Linkage group mapping

Each linkage group was built independently according to the following process.

The crimap ‘build’ function was used to build the linkage group, starting with the two most likely markers
and adding consecutive markers in order of likelihood. The build analysis output file was scanned for
markers listed as completely linked to eachother and for markers that had more than one possible position.
The highest likelihood score was used to assign markers where they had more than one possible position,
and, where a marker had a possible position either side of another marker with equal likelihood, that marker

was assigned as completely linked to that marker.

After all such markers were assigned to positions the ‘build’ function was re-run, specifying the known order
and inputting completely linked markers. Following this, the ‘flips’ function was run, which switches around
(or “flips’) a set number of markers (2,3,4 or 5) giving a likelihood score of the new order. Any orders that

were more likely than the previous arrangement were taken as the true order, and the ‘build’ function rerun to

apply these changes.

Following a flips analysis where the order given was most likely, the ‘chrompic’ function was run to look at
crossovers across the linkage group for each F; plant. The chrompic output file for each plant is a series of
0’s and 1’s, or 0’s and i’s, with each integer specifying which parent the genotype score at that locus came
from. 0’s and 1’s represent one haplotype of a parent, o’s and i’s the other haplotype. In this way crossover

and recombination events can be visualised for each F, plant.

Any positions with a double crossover across a single locus was highlighted as a potential error as the
likelihood of such an event occurring by chance was low for closely linked markers (<15 cM), due to
crossover interference (Ooijen et al., 2013). Marker scores obtained by capillary electrophoresis were
rechecked by examining ABI3730 traces in GeneMarker. Incorrect scores were corrected , or where
ambiguous, the score for that marker left as undetermined. After each round of chrompic, the crimap
genotype and linkage group files were updated and the linkage mapping process repeated until a consensus

map emerged.
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2.7.3: y* Segregation Distortion Analysis

F, plants were separated into sub populations according to assigned parentage in order to carry out a y> test
for marker segregation distortion. This involved calculating the expected number of plants for each genotype
based on Mendelian genotype ratios, before using a 2 test to compare the observed number of plants to the
expected number of plants. The expected and observed number of plants for each genotype were totalled
across all subpopulations before the y> comparison, so that the test was across the entire dataset rather than
individual subpopulations. Regions of the genome can and do exhibit segregation distortion in nature due to
mitotic or embryonic selective pressures, and inclusion of segregating distorted markers improves genetic
linkage maps (Zhang et al., 2010). Therefore the small number of markers showing segregation distortion
were first checked for scoring errors, and after this, only markers with highly significant segregation
distortion, alongside other indicators that this segregation distortion was not due to natural phenomena, were
excluded from the dataset and the map rebuilt as before. Other indicators that a marker was exhibiting
unusual segregation distortion, were things such as a large genetic distance between any neighbouring

markers or the positioning of the marker at the end of a linkage group.

2.7.4: Linkage mapping using Joinmap software

The ‘CP’ population option was selected for linkage mapping as one of the parental lines was homozygous
diploid (line CV) and the other parental line heterogeneously heterozygous diploid (line G51). Conversion to
Joinmap (Ooijen, 2011) compatible datafiles for this population type involved assigning markers and
genotype scores the correct CP code (<abxcd>,<efxeg>,<hkxhk>,<Imxl|> or <nnxnp>) and separating F,
plants into their different subpopulations based on parentage. Each subpopulation was assigned to an
independent population node within a single Joinmap project file. For each subpopulation segregation
distortion was checked using the ‘Locus Genotype Frequency’ tab. Any markers showing highly significant
segregation distortion were excluded from the dataset by using the ‘exclude’ option under the ‘Data’ tab.
Pairwise linkage analysis was run and visualised using the ‘Groupings (text)’ and ‘Groupings (tree)’ tabs.
Groupings were selected at the highest LOD score that gave 11 linkage groups, as supported by published
literature on J. curcas chromosome number (Carvalho et al., 2008). Groups were created using the ‘Create

Groups Using the Groupings Tree’ function.

A preliminary map for each group was created using the ‘Calculate Map’ function, with calculation options
set to ‘Regression mapping’ using ‘linkages with recombination frequency smaller than 0.4’ and ‘LOD
greater than 1°, ‘Kosambi’ mapping function, ‘ripple’ (equivalent to crimap ‘flips’) after each locus, and 3

mapping rounds.

Within each group node, the ‘“Weak Linkages’ (defined as a pairwise recombination frequency greater than
0.45) and ‘Suspect Linkages’ (defined as a pairwise recombination frequency greater than 0.6) tabs were
checked for markers with ‘weak’ or ‘suspect’ linkages as defined by recombination frequency. Markers with
a high number of ‘Weak linkages’ to other markers not due to genetic distance as estimated from the
preliminary map, were excluded from analysis using the ‘Data’ tab as before. In effect this comparison
between calculated map distance and pairwise recombination frequencies is testing ‘marker stress’, as

described by Ooijen in ‘Genetic Mapping in Experimental Populations’ (Ooijen et al., 2013).
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After this process had been repeated for all linkage groups within subpopulations, corresponding linkage
groups between subpopulations were combined using the ‘Combine Groups for Map integration’ function.
The combined marker data was checked using the ‘Heterogeneity Test’ tab (which totals pairwise
recombination frequencies across all subpopulations and carries out a y? test for statistical significance), for
the theoretical scenario that markers may not have reached statistically significant segregation distortion in
subpopulation analysis but when totalled over all subpopulations were showing statistically significant
segregation distortion. The ‘Calculate Map’ function was run as before to create an integrated linkage group

map from each combined linkage group node.

The integrated map order was then used to check data in individual subpopulations by rebuilding the
subpopulation linkage maps using the specified marker order from the integrated linkage maps. This was
carried out by applying the ‘map in fixed order format’ at the end of the ‘Session Log’ tab from the integrated
linkage group node, to the ‘Fixed Orders’ Tab of each subpopulation group node. The ‘Calculate Map’
function was then run on each subpopulation linkage group node with the specified fixed marker order. In
this way subpopulation linkage groups were rebuilt using a marker order derived from the larger combined
subpopulations dataset. Fixed order subpopulation maps were then checked for suspect double crossover
events using the ‘Genotype Probabilities’ tab and by visualising the ‘Data’ tab with genotype colours on
(equivalent to the ‘chrompic’ function of crimap). Any markers with 3 or more suspect double crossovers
were excluded and the map rebuilt, using the same process of combining corresponding subpopulation group
nodes to form a combined linkage group node, and using the ‘Calculate Map’ function to produce an
integrated linkage group map. Crimap and Joinmap derived linkage maps were visualised and compared
using MapChart (\Voorrips, 2002) software to confirm a consensus map order derived from two independent

builds using independent software.

2.7.5: Integration of multiple mapping populations into a single combined map

Genotype datasets were combined from several mapping populations to create a combined linkage map
(work carried out by Dr. Andrew King, the University of York) using Crimap software as described above.

2.7.6: Additional Genetic Linkage Mapping: Gap filling using comparative mapping
and castor bean microsynteny

Additional mapping was carried out to reduce gaps on the linkage map above 15 cM, see Phase 1 (b) of SSR
marker development, Chapter 2.5.2.1.2;

2.8: Phenotypic data collection
2.8.1: Seed Traits

2.8.1.1: Collection of ‘Seed oil content’ and ‘100 seed mass’ datasets using Nuclear
Magnetic Resonance (NMR) spectroscopy

F, seed was received in a semi-dried state in paper sachets from the mapping population field site for Nuclear
Magnetic Resonance (NMR) spectroscopy analysis using an Oxford Instruments MQC Benchtop NMR
analyser (Abingdon, Oxfordshire).
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Known amounts of pure J. curcas oil were pipetted into glass vials and used as calibration standards. The
resultant oil content calibration curve was used to calibrate the NMR spectrophotometer for oil content.
Calibration standards were retained and two standards re-measured at the start of every NMR session to

ensure correct oil content calibration.

To calibrate the NMR measurements for water content, 2 samples were used from (a) freshly harvested seeds
(b) seeds stored > 1year at ambient humidity (c) seeds stored at 20 % relative humidity and (d) seeds stored
at 60 % relative humidity. Seeds were first measured for water content using NMR, before being placed in an
oven at 103 °C overnight to remove water. Seeds were cooled to room temperature in silica gel desiccant

before measuring dry weight to calibrate the NMR for water content.

Differing relative humidity was achieved by placing seeds in hermetically sealed chambers containing salt
solutions (KCI) of differing concentrations. The salt concentration determines the surrounding air moisture
content by affecting the equilibrium between water in solution with the salt ions and water as gas particles in
the surrounding chamber. Seeds were left in these chambers for at least four weeks to ensure moisture

diffusion and equilibrium throughout all seed tissue.

F3 seed (seed produced by the F, plants) were analysed in batches of 5-6 seeds to ensure correct positioning
in the NMR magnetic field. Seed mass was measured using scales accurate to 2 decimal places, prior to oil
and water content measurement using NMR. This generated datasets containing seed mass, oil content &
water content. Typically 50, but at least 20 seeds, from each F, plant were measured. Individual seed

measurements were integrated into single values for each F, plant and normalised to 7 % water content.

2.8.1.2: Analysis of the seed fatty acid composition dataset using Gas
Chromatography

For each F, plant, 20-25 whole seeds were mechanically ground using domestic coffee grinders until a fine
homogenous powder was formed. Triplicate samples were taken from this material for Gas Chromatography
(GC) according to published methodology (He et al., 2011). Briefly 10-30 mg of material was transferred to 2
ml glass vials containing 1 m HCL (in methanol), hexane, and a 15 carbon internal standard. Vials were
sealed with Teflon lined screw caps, vortexed to ensure thorough mixing and subject to an 2 hr incubation at
85 °C. After cooling, cell components were partitioned by the addition 0.9 % KCL, before removal and
transfer of the hexane layer containing fatty acids, into tapered vials for GC analysis. Negative controls
containing hexane and the external standard SUPELCO 37 FAME mix were included for every GC run. Each
sample was injected in triplicate as a control against machine variation. Raw GC data was scored by first
creating a template trace containing each fatty acid peak from the external standard. Automatic scoring was
then carried out using software, before manual checks of each sample to ensure correct assignment of each

peak. Raw data was processed to produce % of each fatty acid compared to total seed oil in each sample.

2.8.2: Non-seed traits: branching and seed yield

Non-seed traits were collected in the field by Luis Montes (Biocombustibles de Guatemala, Guatemala
Ciudad, Guatemala, and Plant Breeding Wageningen UR, Wageningen, The Netherlands) at the mapping

population field site in Guatemala.
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2.9: QTL mapping
2.9.1: Trait Analysis

Two approaches were used to integrate genetic and phenotypic datasets for QTL analysis. In the first
approach the complex population structure consisting of multiple subpopulations and semi-informative
markers were used, with data analysis occurring in GridQTL (Seaton G., 2006) software which is compatible
with such population structures/markers. This approach assumed that shared alleles in the parental lines e.g.
‘a’ alleles at semi-informative loci, are due to these loci being conserved or the same in both parents. As a

result this QTL mapping approach places greater emphasis on loci alleles rather than parent of origin effects.

In the second approach the complex population structure was converted to a standard F, population by
converting semi-informative markers to informative markers, either by inferring genotype by closely flanking
(<15 cM) informative marker genotypes or by conversion to dominant markers in non-informative
subpopulations where flanking markers were not available. This results in all alleles from a particular parent
being labelled one genotype class e.g. ‘a’ and the alleles from the other parent the other genotype class e.g.
‘b’ as in a standard F, population. This approach therefore assumes all loci from the parental lines are unique
and ignores any difference between the non-uniform F; used in the cross. Therefore in contrast to the first
approach this places greater emphasis on parentage of origin effects rather than loci alleles. By integrating
subpopulations it also increases the QTL mapping population size and gives all markers the same relative
information content. The mapping population size in this second approach was compatible with MapQTL
(Ooijen, 2004) software.

2.9.2: GridQTL

Genotype, map and trait data were converted into GridQTL compatible files as described by GridQTL
protocols. QTL analysis was run using both additive and dominative models, with experimental and
chromosomal wide permutation analysis set at the maximum 10,000 iterations. F-values were calculated
every 1 cM along each linkage group. F-values were converted to LOD scores to allow -1 LOD and -2 LOD

QTL boundaries to be calculated, using the following formula:

LoD = zlffgo)

where,

LRT = {df (RSSf) = 0.5(2 = df (@TL))}In (£57)
And,

RSST df (QTL)

RSSF = {1 + Fvalue % W}

Where, RSSf is the residual SS for the full model (including QTL)
RSSr is the residual SS for the reduced model (without QTL)
df(QTL) are the degrees of freedom for the QTL
df(RSSf) are the degrees of freedom associated with the residual for the full model

Source: The above formulae were derived from 'Multivariate statistical analysis for biologists' (1964),
personal communications with Dr. Sarah Knott, contributing author and software support for GridQTL.
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The author of this thesis study integrated the above formulae for excel data manipulation:

F-value to LOD conversion:

df (RSSf) x In {1 + (%)}

LOD =
2In(10)

Excel format: LOD =(df(RSSf)*LN(1+((Fvalue*2)/df(RDDf))))/(2*(LN(10)))

-1 LOD QTL boundary, F-value:

df(RSS (LODmax)-1
Fvalue(at — 1 LOD) = ¥ X {(e( df(RSSf) x21n(10))) - 1}

Excel format: Fvalue(at-1 LOD) =(df(RSSf)/2)*(EXP(((LODmax-1)/df(RSSf))*(2*LN(10)))-1)
Where, LODmax is the LOD score at the QTL position

-2 LOD QTL boundary, F-value:

df(RSS (LODmax)-2
Fvalue(at — 2 LOD) = ¥ X {(e( df(rSsf) XZI"(N))) — 1}

Excel format: Fvalue(at-2 LOD) =(df(RSSf)/2)*(EXP(((LODmax-2)/df(RSSf))*(2*LN(10)))-1)

Where, LODmax is the LOD score at the QTL position

2.9.3: MapQTL

2.9.3.1: Data manipulation to convert subpopulations and semi-informative markers
to a standard F, population and informative markers

Semi-informative markers were informative in 1 out of 4 subpopulations (where the heterozygous F; was
selfed). All other subpopulations were either semi-informative (for F; sib crosses where ‘H’ genotypes were
produced), or non-informative for the homozygous selfed F; containing indistinguishable ‘a’ alleles from
each parent. The genotype scores in these semi- and non-informative populations were deleted and the parent
of origin genotype inferred through flanking informative markers, under the assumption that double
crossovers do not occur within a distance of <15 cM due to crossover interference (Ooijen et al., 2013). In
some cases the distance between flanking informative markers was greater than 15 cM, or flanking markers
had different genotypes and so in these cases genotype scores were not able to be inferred. Where these
markers were previously ‘h’, they were converted to dominant scores e.g. —b, since a minimum of one ‘b’
allele had to be present for the ‘h’ score to occur. Semi-informative markers with at least one ‘b’ allele, that
were flanked by an ‘a’ informative and either a ‘h” or ‘b’ informative marker (within 15 cM) were converted
to the ‘h’ or ‘b’ genotype of the informative marker, since the ‘a’ genotype was excluded by the presence of
the ‘b’ informative allele in the original marker score, and a differing ‘h’ or ‘b’ score excluded due to
crossover interference. Where flanking informative markers within 15 cM were ‘h’ and ‘b’ the semi-
informative marker score was changed to a dominant score since the marker had to be ‘h’ or ‘b’ and so

contain a minimum of one ‘b’ allele represented by the dominant ‘-b’ genotype score. After conversion of the
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dataset into fully informative markers and a single F, population, the genotype and phenotype datasets were
converted to MapQTL format and imported into MapQTL for analysis.

2.9.3.2: QTL mapping

Following import of MapQTL compatible datafiles, a Kruskall-Wallis (One way ANOVA) test was carried
out to analyse single marker/trait associations. A permutation test was carried out to determine QTL
significance thresholds for interval and composite interval mapping. Both linkage group wide and genome
wide significance tables were created for a range of p-values using the ‘Permutation’ function with 1,000

iterations and 1,000 repeats.

Composite interval mapping was carried out for all Quantitative traits. After an initial mapping round,
markers nearest the maximum of significant QTL were selected as co-factors, before repeating the composite
interval mapping function. Markers flanking the co-factors that were still above the significance threshold
after this second mapping round were also selected as co-factors and the mapping analysis repeated until the
minimum QTL region was produced.

2.9.4: Cosegregation analysis

Cosegregation analysis was carried out using visual box and whisker plots and by statistical means.

For Box and whisker plots, the nearest marker to the QTL position, or markers flanking the QTL position

(the QTL interval), were used to group phenotypic scores according to the marker genotype. Box and whisker
plots were generated using SPSS software (IBM, 2013). This enabled a visualisation of the difference
between genotype means, interquartile ranges and ranges. Percentage increase between the different genotype
means, and Percentage of Variation Explained by genotype (PVE) was used to quantify the strength of the
QTL on phenotype.

An analysis of variance (ANOVA) test was carried out to test cosegregation statistically. ANOVA looks at
the level of variation within and between the grouped data. The ratio of variation between genotype groups
compared to the total variation within the dataset gives an indicator as to the strength of the genetic
component of the variation present. To test which genotype classes were statistically different from
eachother, and therefore indicate if the QTL was dominant/recessive/semi-dominant/overdominant, a post
hoc Tukey’s test was carried out using SPSS (IBM, 2013).

2.9.5: Correlation and Linear Regression Analysis

SPSS software (IBM, 2013) was used to carry out correlation analysis to look at association between
different traits. A Pearson two way correlation analysis was used to quantify the strength of association
between pairwise traits. After integration of multiple traits to calculate oil yield per plant (seed oil content x
seed mass x seed yield), linear regression analysis was used to calculate the relative contribution of each trait

to oil yield, to determine the most important trait.
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Chapter 3: Identification and validation of SSR markers from J. curcas

genotypes selected primarily on the basis of seed oil quantity and quality

3.1: Introduction

3.1.1: Identification and validation of SSR markers

One of the requisites of QTL mapping and marker assisted selection (MAS), is the production of DNA
markers (Dekkers and Hospital, 2002). An advantage of co-dominant markers is that they display both
dominant and recessive alleles at a given locus (Staub et al., 1996). Short Sequence Repeat markers (SSRs)
are one class of co-dominant marker that can be genotyped using polymerase chain reaction (PCR)
(Schlotterer, 2004).

SSR’s are repeat sequences that expand and retract over time due to a number of processes related to DNA
replication (Li et al., 2002). They are both abundant and hypervariable (Oliveira et al., 2006); consequently

they serve as excellent genetic markers.

SSR positions, or microsatellites, can be identified by searching for repeat sequences in genome sequence
(Stieneke, 2007, Martins et al., 2009). This search can be carried out in a reference genome sequence,
preventing the need to sequence the genome of parent plants of a given mapping population. Once identified
in the reference genome sequence, SSR positions can be checked for polymorphism in the mapping

population by PCR amplification.

Since the physical positions of SSRs are known in a reference genome sequence, specific SSRs can be
targeted to map regions of interest, which is particularly useful for mapping gaps in a linkage map or for the
mapping of candidate genes. This approach is dependent on the coverage of the reference genome sequence,
whether SSRs exist close enough to the region of interest, and if the SSRs are polymorphic in the mapping
population. Candidate genes; genes known or suspected to regulate a trait of interest (Pflieger et al., 2001),

such as seed oil content or quality, can be mapped in this way.

The candidate gene approach is reliant on information being present on the genes associated with the trait of
interest, including reliable sequence data (Pflieger et al., 2001). Well studied model species with
characterised genes, such as Arabidopsis, serve as excellent resources from which to compile candidate gene
lists. Since Arabidopsis is an oilseed species it is particularly useful for identifying candidate genes
associated with oil quantity and quality in Jatropha, using a reference genome sequence and search

algorithms.

Once a candidate gene is mapped on a genetic linkage map its involvement with identified QTL can be
hypothesised based on whether it falls within the QTL confidence interval. This process can occur in both
directions. Once a QTL is identified, markers within the confidence interval can be used to pull out genome
sequence in that region and scanned for likely candidate genes. For long generation plants such as Jatropha (9
months seedling to seed, first substantive harvest in Year 2), where phenotypic data for QTL analysis may
take considerable time to obtain, candidate genes involved in the regulation of important traits can be mapped
first, so that once QTL are identified the position of candidate genes has already been determined. Phenotypic

variation in parental lines can inform which traits are likely to have QTL associated with them. If a mapped
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candidate gene does fall within a QTL confidence interval, the gene sequence and any surrounding regulatory
sequences, can then be amplified and sequenced to detect potentially causative polymorphisms.

The seed oil biosynthetic pathway is particularly important for a biofuel crop such as Jatropha for obvious
reasons. It is fortunate that, due to the economic value of plant oils for both food and industry, the seed oil
biosynthetic pathway is one of the most well studied and understood pathways in plants (Li-Beisson et al.,
2013). Genes within this pathway are known to regulate both seed oil content (a component trait of oil yield)
and oil quality (fatty acid composition); two traits that are vital for developing economically viable biofuel
cultivars. Vegetative and plant architecture traits such as the amount of branching, seed yield, or seed mass,
can also contribute towards final oil yield and so are important traits to map if variation is present in parental
lines. The mapping of candidate genes associated with oilseed metabolism, provides a basis to investigate
QTL that impact on oil yield and oil quality in this study and others, since it is relatively easy to align
different genetic maps using bridging and anchor markers.

Genetic linkage mapping benefits from large population sizes and high numbers of markers (Mackay et al.,
2009). Since genetic mapping counts the crossover/recombination frequency between different markers; an
event that is proportional to the genetic distance between those markers and independent from external,
environmental conditions, genetic data from independent mapping populations can be combined to increase
the amount of genetic data available to calculate recombination frequency. For this reason the same marker
can be used in multiple mapping populations to increase the data available for its recombination frequency,
whilst increasing marker density in the individual maps. There is also a greater chance that a marker will be
polymorphic if tested across multiple populations rather than single populations, which is particularly
important for the mapping of candidate genes, since once positioned on one map, the candidate gene position

can be inferred on all other maps.
3.2: Results

3.2.1: SSR mining leads to the identification of over 300 SSR positions, of which 288
had flanking sequence suitable for validation by PCR amplification

Figure 3-1, shows the results of SSR mining for the Jatropha project. Over 300 SSR positions were identified
from reference genome sequence, of which 288 had flanking sequence suitable for validation via PCR,
according to criteria required for PCR multiplexing and scoring using an ABI3730 capillary sequencer (80-
450 bp amplicon size, and a melting temperature (T.,) of 55 °C; see materials and methods). As outlined in
the materials and methods, the majority of this search occurred in silico, using the Jatropha reference genome
sequence and web-based programmes to identify repeat sequences, candidate gene homologues and suitable
primer binding sites (Sato et al., 2011, Stieneke, 2007, Martins et al., 2009, Untergasser et al., 2012).

3.2.2: 39.59 % of validated SSRs were polymorphic in 1 or more mapping
populations, providing data for these loci to be mapped in a combined genetic linkage
map and subsequent QTL analysis

Of the 288 SSRs tested, 39.59 % (114) were polymorphic in 1 or more mapping populations: 46 SSRs in
G51xCV only (the principle population of this thesis study), 25 SSRs in G33xG43 only, and 43 SSRs in 2 or
more populations (34 SSRs in 2 populations, 4 SSRs in 3 populations, and 5 SSRs in all 4 populations).
Mapping of markers in multiple populations increases the amount of genetic data available to calculate
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marker recombination frequency; increasing the accuracy of the resulting genetic linkage map. It also enables
independent maps from different mapping populations to be aligned for the purpose of gap
filling/comparative mapping. Post-genetic linkage mapping, it also provides usable genetic markers for QTL
mapping in each of the populations in which the markers are mapped.

3.2.3: SSRs were developed primarily for the mapping of candidate genes (58.33 %0,
168 SSRs) or for gap filling during linkage mapping (41.67 %, 120 SSRs)

The primary function of the SSRs identified and validated were for the mapping of candidate genes (133 for
seed oil-related genes, 25 for branching genes, 10 for flowering genes) or for gap filling during linkage
mapping (120 SSRs). SSRs are ideally suited for mapping specific regions of the genome in a targeted way.
A query sequence can be used to find SSRs in a specific region using a reference genome sequence. For
example, candidate genes can be used as query sequences, or markers corresponding to gaps in a linkage map

when aligning different genetic linkage maps (comparative mapping).

Genes that carry out a core metabolic function, such as seed oil candidate genes, tend to be highly conserved
at the protein level, enabling homologues to be found relatively easily using BLAST algorithms. For gap
filling, due to the presence of markers that were polymorphic in multiple populations, their resulting genetic
linkage maps could be aligned, and markers corresponding to regions requiring additional mapping in one
map, used as the query sequence to mine for additional SSRs in that region in other maps. This approach also
works across species; castor bean, a close Euphorbiacea relative of Jatropha, can be aligned using transcribed
amino acid sequences from annotated gene models (which are more highly conserved than nucleotide
sequence), and transcribed amino acid sequences corresponding to the target region used to search the
Jatropha genome for nearby SSRs; provided synteny and gene-colinearity exists between the species in the

target region.
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Figure 3-1 Short Sequence Repeat markers developed as part of this thesis study for
Jatropha mapping populations at the University of York.
In total, 288 SSRs were identified and validated from reference genome sequence. (A) 114

(39.59 %) SSRs were polymorphic in the principle mapping population (G51xCV) and up to
3 other populations, providing data for a combined linkage map and subsequent QTL
analysis. (B) SSRs were developed for the mapping of candidate genes or for gap filling
during linkage mapping.




3.2.4: Candidate genes were identified for seed oil related traits (seed oil content and
seed oil composition), and branching

As can be seen by figure 3-1, the majority of SSRs (168, 58.33 %) were developed for the mapping of
candidate genes for the traits seed oil content, fatty acid composition, branching and flower ratio. Genes
relevant to these traits were mined from Jatropha genome sequence using comparative genomics. A table
listing the identified gene-linked SSRs is provided in the appendix to this chapter. The majority of candidate
genes were first identified in the model species Arabidopsis, before sequence homologues were identified in
Jatropha curcas genome sequence, using transcribed amino acid sequences which are more highly conserved

across species than nucleotide sequence (due to redundancy of triplicate codons).

Once genes were identified in Jatropha curcas genome sequence, nucleotide sequence was used to search for
nucleotide and nRNA Jatropha accessions in GenBank, in order to provide one indicator of likely

functionality (gene expression) of the identified gene sequences.

3.2.4.1: Seed oil content candidate genes
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Figure 3-2. The major steps fatty acid synthesis in seed storage oil in plants.

Compiled from ‘The Arabidopsis Book’ (Li-Beisson et al., 2013). Major steps of the seed fatty acid pathway (represented
by arrows), and the genes responsible (in bold) are presented. In general, fatty acid biosynthesis can be divided into de
novo synthesis in the chloroplast, and four separate fatty acid pools; the acyl-CoA pool (both cytoplasmic and
endoplasmic reticulum pools), the phosphatidylcholine pool, and the tri-acyl-glycerol (TAG) pool. Fatty acids from each
fatty acid pool or compartment have unique carrier proteins; acyl carrier protein (ACP), co-enzyme A (CoA),
phosphatidylcholine (PC) or glycerol. Detail on relevant candidate genes in this pathway are explained in the text below.

3.2.4.1.1: Acetyl-CoA Carboxylase (ACC)

ACC converts the main output of the Calvin cycle, pyruvate (after its been hydrogenated to Acetyl-CoA), to
Malonyl-CoA using bicarbonate ions and ATP, and represents the first committed step in fatty acid synthesis

in the plastid (Li-Beisson et al., 2013). It is made up of 4 subunits; BC, BCCP, CAC2 —u, CAC2-p (Sasaki
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and Nagano, 2004). Since there is competition for pyruvate for other metabolic processes such as amino acid
production, and since pyruvate, and hence Acetyl-CoA production, can be high at points for instance during
periods of high rates of photosynthesis and respiration, the activity of ACC is thought to affect the proportion
of pyruvate that is committed to fatty acid synthesis (Paul K. Stumpf, 2012, Li-Beisson et al., 2013), and is
also thought to be a rate limiting step in fatty acid synthesis (Sasaki and Nagano, 2004). Its activity is known
to be regulated by certain mechanisms, such as the amount of free fatty acid and light/dark (Shintani and
Ohlrogge, 1995, Li-Beisson et al., 2013), suggesting that a mutation that overrides its negative regulation by
other signals (such as the amount of free fatty acid), could provide a mechanism by which to continue
shuttling pyruvate into fatty acid synthesis to increase seed oil content. Alternatively a mutation that
increases its substrate turnover rate (enzyme activity) could also be envisaged to increase seed oil content.
There are examples where overexpression of ACCase has increased seed oil content in rapeseed (Brassica
napus) (Roesler et al., 1997). There are also crop breeding examples where seed oil content QTL associate

with ACC polymorphisms, in plants such as oat (Kianian et al., 1999).

3.2.4.1.2: Acyl carrier protein (ACP)

Acyl carrier protein is responsible for binding to and shuttling malonyl, the two carbon building block, to the
fatty acid synthase (FAS) complex, before shuttling the growing fatty acid chains through progressive
elongation cycles, and then shuttling them out of the FAS complex, onto modification steps (such as
desaturation) before ACP is exchanged for CoA for export to the cytoplasm. ACP can therefore be thought of
as one of the main players that are associated with fatty acids throughout the plastid stage of synthesis. One
can envisage that a mutation in ACP could potentially affect its interaction with the host of metabolic
enzymes and transport proteins that make up fatty acid synthesis in the plastid, potentially affecting both seed

oil content and seed oil composition.

3.2.4.1.3: The Keto-Acyl Synthases (KASI, KASII, KASIII)

The fatty acid synthase (FAS) complex, made up of 4 independent catalytic subunits (KASI, KAR, HAD,
ENR), and two additional enzymes that control fatty acid entry and exit into FAS (KASIII, KASII), controls
the elongation reactions of fatty acid synthesis in the plastid. The initial condensation reaction is carried out
by KASIII, linking Malonyl-ACP to Acetyl-CoA to form the 4 carbon fatty acid, 3-Ketoacyl-ACP.
Subsequent steps are carried out by KASI, through the addition of Malonyl-ACP, from a 4 carbon fatty acid
up to a 16 carbon fatty acid, in two carbon increments. A final elongation reaction from a 16 carbon to an 18

carbon fatty acid is carried out by the KASII enzyme.

There is an extensive array of studies proving the central roles of the KAS genes in regulating both fatty acid
synthesis and fatty acid composition. From a mechanistic point of view the relative activities of these three
enzymes to eachother and other genes, such as the thioesterases (that release fatty acids from ACP to halt
elongation), are proposed as a mechanism by which they can affect the proportion of different fatty acids in
seed storage oil, such as the relative amounts of Palmitate (16C) and Stearate (18C) for example. Upregulated
activity of KASIII tends to push more fatty acid into the FAS complex, and has been proposed as a rate
limiting step in fatty acid synthesis and a target for increasing seed oil content with success (Yu et al., 2015,
JUN LI, 2008, Stoll et al., 2006). The activity of KASI compared to KASII, seems to compensate better by

this increased flux, elongating fatty acids up to the 16 carbon length and out of the FAS complex, quicker
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than KASII can carry out the final elongation to 18 carbon fatty acid, resulting in higher levels of palmitate in
the seed storage oil.

There have also been studies looking at these genes in plants with naturally differing seed oil compositions
(Voelker and Kinney, 2001). Plants high in palmitate compared to stearate often have highly active KASI
genes to produce high levels of 16 carbon fatty acid, and FATB thioesterase genes (that release palmitate
from the FAS complex for export) with a much higher activity than the KASII gene. KASII and FATB can be
thought to be in competition for the 16 carbon palmitate substrate so their relative activities determine what
proportion of fatty acid is released as palmitate or converted to stearate. They work in conjunction with
different thioesterases which have differing substrate preferences, determining at what stage elongation is

halted and preventing metabolic bottlenecks that could be self-limiting.

3.2.4.1.4: Stearoyl-ACP desaturases (SAD)

After KASII has elongated palmitate-ACP to Stearoyl-ACP, the first fatty acid modification step can occur
by desaturation of the ninth carbon by SAD (a delta 9 desaturase) in the plastid. Whilst the majority of fatty
acid modification occurs on the endoplasmic reticulum, this step differs in that it occurs in the plastid. A
mutation resulting in a change of activity of the SAD gene could be hypothesised to cause a change in fatty
acid composition. Reduced activity could reduce the proportion of oleic acid, and downstream linoleic, and
alpha linoleic acids, and increase the proportion of saturated fatty acids in seed storage oil. Increased activity
could be hypothesised to increase the proportion of desaturated fatty acids, by converting more stearate into
oleate, and downstream polyunsaturated fatty acids. Demonstration of this principle can be seen by the anti-
sense suppression of a SAD gene in Brassica napus and Brassica rapa, resulting in dramatically increased

stearate levels (Knutzon et al., 1992).

3.2.4.1.5: The Thioesterases (FATA and FATB)

The thioesterases are responsible for removing the ACP carrier proteins that are associated with fatty acids as
they are elongated and modified in the plastid. Removal of ACP prevents further modifications in the plastid
and, with the addition of a CoA carrier protein, enables their transport to the cytosol for the next stage of the
seed storage oil pathway. The two isoforms, FATA and FATB have differing substrate preferences that affect
seed oil composition. FATB hydrolyses shorter chain, saturated fatty acids preferentially (palmitic-ACP),
although they can also hydrolyse stearoyl-ACPs and oleic-ACP to a lesser extent. FATA hydrolyses oleic-
ACP preferentially, with lower activity towards palmitic-ACP and stearoyl-ACP. Their relative activities in
conjunction with the KAS genes has a large effect on the fatty acid output of the plastid during synthesis
(Voelker and Kinney, 2001). Plants with high KASII, SAD and FATA activities channel more fatty acid
through to oleic acid. Plants with lower FATB and SAD activity tend to channel more fatty acid towards
stearic acid. Those with lower KASII activity and higher FATB activity channel more fatty acid towards
palmitic acid. Mutations resulting in changes of activities of these enzymes have been proven to substantially

alter fatty acid composition (Moreno-Perez et al., 2012).

3.2.4.1.6: Long Chain Acyl-CoA Synthases (LACS)

After the fatty acid thioesterases have liberated fatty acids from their acyl carrier proteins, the LACS are
responsible for conjugating them to CoA proteins for export to the cytosol. Since it has been proven that free

fatty acids can have negative feedback regulation on fatty acid synthesis as a whole, including the activity of
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ACC, the efficiency of conjugation and subsequent export into the cytosol is a critical factor in seed oil
content (Zhao L, 2010). Similarly the LACS gene family is known to have different substrate turnover rates in
Arabidopsis (Shockey et al., 2002), and along with other acyl modifying genes, regulates fatty acid
compartmentation and subsequent modification (Chapman and Ohlrogge, 2012), and so it could be
hypothesised that changes in the activity of different LACS could affect oil composition in plants such as
Jatropha.

3.2.4.1.7: Compartmentation and shuttling genes on the cytoplasmic, endoplasmic
reticulum (LPCAT, GPAT, LPAAT, PP, MAGAT, PDCT, DAG-CPT, PDAT, DGAT,
DAGTA, Pla2g4b)

Once exported into the cytosol, Acyl-CoAs are shuttled between 3 fatty acid pools, that act as
compartmentation mechanisms to carry out further modification, or storage, mechanisms. This is controlled
by the associated carrier protein. The Acyl-CoA pool represents newly exported fatty acids from the plastid.
The phosphotidyl-Choline (PC) pool represents another compartment where modification steps such as
desaturation can occur. Finally the Triacylglycerol (TAG) pool is the storage pool that enables fatty acids to
accumulate to high levels without interfering with other cellular reactions. The exchange of the CoA and PC
carrier proteins, and the incorporation of both pools onto the glycerol backbone for TAG storage, is carried
out in a number of steps by different genes (see figure 3-2). The relative activities of these genes can easily
be hypothesised to control both seed oil content and seed oil composition (Chapman and Ohlrogge, 2012,
Bates et al., 2013). For example the efficiency with which newly synthesised Acyl-CoAs from the plastid are
incorporated into TAG storage oil could regulate seed oil content, by controlling the amount of excess fatty
acid in solution that is known to negatively feedback on overall fatty acid synthesis. Oil composition could
be affected by the rates at which differing fatty acids are incorporated into TAG in a substrate specific
manner, and also the rate at which fatty acids are shuttled to the Acyl-PC pool for further modification. There
are a number of examples where this has already been hypothesised and experimentally tested (Chapman and
Ohlrogge, 2012, Li-Beisson et al., 2013, Sharma and Chauhan, 2012, Xu et al., 2012, Andrianov et al., 2010,
Zheng et al., 2008, Lardizabal et al., 2008).

3.2.4.1.8: Endoplasmic fatty acid desaturases (FAD2, FAD3)

Further modification can occur once fatty acids have been transported out of the plastid onto the endoplasmic
reticulum. The desaturation reactions that convert oleate (18:1) to linoleate (18:2) and downstream linolenate
(18:3), occur in the Acyl-PC pool, by the action of desaturases. FAD2, a delta 12 desaturase, is responsible
for desaturating the twelfth carbon position of oleate to convert it to the polyunsaturated linoleate, followed
by FAD3 which desaturates linoleate to linolenate. Since the majority of these modified fatty acids end up in
TAG storage oil in seed tissue, altering the activities of these genes has been shown to substantially alter fatty
acid composition of TAG (Qu et al., 2012, Belo et al., 2008, Sandhu et al., 2007, Schuppert et al., 2006, Hu
et al., 2006, Hernandez et al., 2005, Patel et al., 2004). Similarly because these desaturated fatty acids are
predominantly stored, particularly when looking at seed specific FAD isoforms, modification has not been
found to affect overall cell metabolism or plant fitness. In plants, the FAD2 gene seems to be the sole
pathway for oleate desaturation, with a seed specific isoform that regulates seed oil desaturation. Therefore
mutations that affect FAD2 genes seem to be very effective at altering seed oil composition. Active site
mutations, and other naturally occurring knockout polymorphisms have been shown to produce high oleate

oil, which is the preferred seed oil fatty acid profile for biofuel production. This is an attractive target for
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manipulation to produce designer oil, and has been exploited for a wide range of plant species both
experimentally and commercially.

3.2.4.1.9: Seed oil body associated storage proteins (Oleosins, Caleosins)

Once free fatty acids and their associated carrier proteins, PC or CoA, have been exchanged for a glycerol
backbone, to form TAG, the compound becomes insoluble and starts to form inclusion bodies. This groups
TAG molecules together, effectively storing them as large bodies separate from cellular reactions. Caleosins
and Oleosins bind to the outside of these bodies, providing an interface between the hydrophilic cytoplasm
and the hydrophobic oil body and ultimately stabilising them, regulating flux in and out of these bodies, and
enabling them to become bigger without breaking up (Hyun et al., 2013, Jolivet et al., 2013, Parthibane et al.,
2012, Gitte I. Frandsena, 2001). These molecules have been shown to be critical for allowing higher
concentrations of seed oil to accumulate, with studies showing QTL association of oleosins with high seed oil

content in crops including Jatropha (Liu et al., 2011).

3.2.4.1.10: Fatty acid synthesis master regulator, Wrinkled 1 (WRI1)

WRIL1, is a transcription factor that has been proved to be important for regulating fatty acid synthesis as well
as other metabolic processes (Baud and Lepiniec, 2009)(Tajima et al., 2013). It is an APETELA-ethylene
responsive binding element, that has been proved to regulate genes of late glycoloysis, and the plastidial fatty
acid synthesis gene network (Baud and Lepiniec, 2009), including the fatty acid synthase (FAS) machinery
directly. The WRI gene is necessary for normal seed storage oil accumulation, with seed storage oil severely
impaired in the wril mutant (although basal fatty acid synthesis is maintained to enable vegetative growth)
(To et al., 2012). Conversely, WRI1 overexpressors accumulate higher levels of seed oil, both at the per seed
and per hectare level in maize (Shen et al., 2010), and in other species (Vanhercke et al., 2013). Also, unlike
upstream regulators such as LECL, the storage fatty acid specificity of WRI1 means that modulation has little

effect on overall plant fithess and does not have any known pleiotropic effects on other processes.

3.2.4.2: Branching candidate genes and flower ratio genes

A number of candidate gene classes were identified for the branching and flower ratio traits.

Key genes, and gene families, identified for branching included: (1) the MAX gene family (Bennett et al.,
2006); (2) genes encoding F-box proteins; TIR1, AFB (Kepinski and Leyser, 2005, Dharmasiri et al., 2005);
(3) AXR1 gene (Stirnberg et al., 1999, Ongaro and Leyser, 2008); (4) the PIN1 gene (Bennett et al., 2006);
(5) the MOC1 gene of rice and the Arabidopsis equivalent LAS (Sun et al., 2010, Wang and Li, 2008); and (6)
the transcription factor ABI3 (McSteen and Leyser, 2005, Ehrenreich et al., 2007, Ongaro and Leyser, 2008).

Genes and gene families identified for flower ratio include: (1) the lipoxygenase gene family (LOX)
(Caldelari et al., 2011, Feussner and Wasternack, 2002); (2) the maize sex-determination TASSELSEED
genes, and Arabidopsis homologues, ATA1, ADH1 (DeLong et al., 1993, Thompson and Hake, 2009,
Barazesh and McSteen, 2008); (3) the MADS-box flower developmental genes; PI, SHP2, AG (Dornelas et
al., 2011, Adam et al., 2007, Becker and Theissen, 2003, Liljegren et al., 2000, Favaro et al., 2003).
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3.3: Discussion

A key requirement of QTL mapping, after parental lines have been selected, is the development of DNA
markers. Ideally DNA markers should be spread throughout the genome so that all regions of the genome can
be tracked throughout the mapping population, and spaced so that minor effect QTL (<10 cM) (Darvasi et
al., 1993) and all crossover events (<15 cM) (Ooijen et al., 2013), including double crossovers, can be
detected(Darvasi et al., 1993). To get this coverage, genome-wide non-selective marker strategies can be
used (Davey et al., 2011). In this project the Complexity Reduction of Polymorphic Sequences (CRoPS)
technique (a modified AFLP sequencing, genome reduction strategy) (Davey et al., 2011, van Orsouw et al.,
2007) was used to develop SNPs dispersed across the genome in a non-selective manner. SNPs mined from
comparative sequencing of transcribed DNA (cDNA) (King et al., 2011), developed a small number of SNPs
spread throughout transcribed genes, increasing the chance of picking up a mutation in functional DNA,
although still in a non-selective manner within the Jatropha transcriptome. To complement this approach,
SSR markers were used to place additional markers on the genetic linkage map in a more specific and

targeted manner.

As can be seen, the majority of SSRs were developed to map specific genes, or to fill in remaining gaps in
the linkage map. As a result of this work, over 300 SSR positions were identified, of which 288 had flanking
sequence suitable for amplification via PCR. Validation testing across parental lines, showed that 114 (39.59
%) of amplified SSRs were polymorphic in at least 1 mapping population and could be used for genetic
linkage mapping. In addition, a significant proportion were polymorphic in more than one population,
increasing the utility of the marker for QTL mapping in multiple populations, and providing additional data
on its recombination frequency for a combined genetic linkage map. Markers that were mapped in more than
one mapping population, also enabled accurate alignment of individual maps and facilitated subsequent gap

filling using comparative mapping strategies.

Such SSR markers were designed to complement the less specific genome wide SNP markers. Each SSR
marker either marked a potential candidate gene or metabolic gene identified through research, or
corresponded to gaps in the linkage maps after genetic mapping had been carried out using the genome wide
SNPs. This targeted rational approach enhanced the robustness and information content of the overall DNA
marker set for this project. In addition since it is relatively easy to anchor new linkage maps onto existing
ones, by mapping shared markers, the position of all mapped candidate genes can be used to inform future

QTL mapping projects.

Candidate genes identified for this project were primarily obtained for marking seed oil biosynthetic genes,
for obvious reasons in the Jatropha biofuel crop. Identification of candidate genes, either a priori or post
QTL analysis and gene sequencing, requires existing knowledge to be available, if predictions on gene
function are to be achieved before investing in functional characterisation; a core function of the candidate
gene approach (Pflieger et al., 2001). It is fortunate that, due to the high economic and industrial value of
plant seed oils for food and industry, the seed oil biosynthetic metabolic pathway is one of the most well-
known and characterised pathways in plants (Li-Beisson et al., 2013). The main challenge is translating
existing knowledge into a previously understudied species such as Jatropha (at least at the gene functional
level) (Morrell et al., 2012). Essentially it is dependent on the degree of sequence conservation between
functional homologues (Peregrin-Alvarez et al., 2009). The sheer diversity of mutations that have been
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shown to modulate seed oil content and composition across different species (Gupta, 2015, Napier et al.,
2014, Bates et al., 2013, Sanyal and Randal Linder, 2012, Sharma and Chauhan, 2012, Weselake et al.,
2009), with new mutations being discovered all the time, means mapping as much of the metabolic pathway
as possible, is more likely to capture all potential mutations. In the age of comparative genomics (Morrell et
al., 2012) this type of approach is readily achievable.

It is advantageous that firstly the core metabolic pathway for seed oil biosynthesis has been extensively
studied, and that the majority of translative processing to find functional homologues can occur in silico.
With SSR marker development also occurring predominantly in silico, a comprehensive approach can be
used to maximise the chance of capturing as many relevant genes as possible. Since Jatropha is a relatively
novel crop under study, particularly at the genetic level, marking of these vitally important genes has on-
going utility both inside and outside of this project, and complements the rapidly improving genomic
resources available for Jatropha development (King et al., 2015, Wu et al., 2015, Yue et al., 2013, King et al.,
2013, Sun et al., 2012).

Whilst the majority of metabolic pathway and candidate gene research can occur in silico, using model
species (Li-Beisson et al., 2013), online gene databases, published literature and the Jatropha reference
genome sequence (Li-Beisson et al., 2013, Hirakawa et al., 2012, Sato et al., 2011), there are further

advantages of using SSRs as markers.

SSRs have the advantage of being easily identified in a reference genome sequence due to their repetitive
sequence (Stieneke, 2007, Martins et al., 2009). SNPs on the other hand require comparative sequencing to
be detected. Once identified, SSRs can be validated and checked for polymorphism in parental lines via PCR
amplification. Since SSR polymorphisms result in different SSR repeat sizes, and hence different PCR
fragment sizes, sequencing is not needed and the actual nucleotide sequence itself is irrelevant. This reduces
the technological requirements of developing reliable DNA markers, which for lower numbers of bespoke
markers targeted to specific regions of the genome e.g. to mark candidate genes or to fill gaps, may be a more

suitable approach than the implementation of genome-wide sequencing approaches.

Genes that carry out a core metabolic function, such as seed oil candidate genes, tend to be highly conserved
at the protein level (Peregrin-Alvarez et al., 2009), enabling functional homologues to be found relatively
easily using BLAST algorithms (Gish and States, 1993). For gap filling, due to the presence of shared
markers that were mapped in multiple populations, independent linkage maps could be aligned, and markers
corresponding to regions requiring additional mapping could be used as query sequences to search the
Jatropha genome for additional SSRs in the target region, highlighting the utility of polymorphism testing of

SSR markers across multiple mapping populations.

SSR markers provide substantial value to the marker set available for genetic linkage mapping in the
G51xCV mapping population. Marker coverage and information content is increased through the targeting of
SSRs to gaps in the linkage map after initial rounds of genetic linkage mapping, and by the marking of

candidate genes related to a number of agronomically-relevant traits.

3.4: Appendix

List of candidate gene linked SSR markers.
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Table 3-1 Candidate gene linked SSR markers

Source Arabidopsis thaliana gene model Nearest Evidence for Expression (Jatropha curcas mRNA)
sequenced
relative
Marker Contig | Contig Gene Gene description At Rc NCBI Nucleo. Nucleo. Accession Title Authors | Journal
(r3.0) (r4.5) Symbol Homolo | Homologue | accessio | Coverage | Similarity
(At) gue n (%) (%)

3.2.4.1: Acetyl-CoA Carboxylase (ACC)

JcSSR_G352 Jer4S02200 | ACCl acetyl-CoA carboxylase | AT1G361 | 29908.m00599 | DQ63274 98 99 | Amplification and sequencing of Krishna NCBI
1 60.2 1 6.1 cytosolic ACCase gene from Jatropha KumarR., submission

' ' curcas Jain,D., (2009)
Parameswaran,S
.and
Johnson,T.S.

JcSSR_G353 JcraS01232 BCCP1 Acetyl-CoA carboxylase | AT5G163 | 29929.m00456 | HQ15309 96 100 mftJ!ngm'z:IE'ngré%::guegupr:ﬁssgg Sof gﬁlaKm y Z:Tnéjzcié igo
BCCP subunit 90.1 0 8.1 from Jatropha curcas Tian,DY. aHd (Zdll)

Yin,Z.

JcSSR_G354 Jer4s01222 | BCCP2 biotin carboxyl carrier AT5G155 | 29630.m00080 | GQ24172 80 100 Lfé‘m'fl;lcgt‘m;%% Eglafcaacr‘r?:f;‘rmlgfa mivaé L\cha'ission(zoo

protein 2 30.1 9 11 subunit from Jatropha curcas L. Zenyg,i_.',y 9)
Li,M.R,,
Chen,Y.P,,
Jiang,H.W. and
Wu,G.J.

JCSSR_G355 Jcr4S03449 CAC2 -a acetyl Co-enzyme a AT5G353 | 30185.m00095 | FJ952146. 80 100 'demlifAng‘CiUn apd Chji'aﬂe[‘iza‘io“ of La wel& NCbB', (200
carboxylase blotln 601 4 1 novel ase frrom atrop a curcas L. Zel;,gyi_l.y, ;U mlssmn(
carboxylase subunit Chen,Y.,

Li,MR,,
Jiang,H.W. and
Wu,G.J.
*JCSSR_G359 JcrdS02200 ACC1 acetyl-CoA carboxylase AT1G361 | 29908.m00599 | DQ63274 98 99 | Amplification and sequencing of Krishna NCBI
1 60.2 1 6.1 cytosolic ACCase gene from Jatropha Kl_Jmar,R., submission
. . curcas Jain,D., (2009)
Parameswaran,S
.and
Johnson,T.S.

JcSSR_G360 JcrdS00416 CAC2-p acetyl Co-enzyme a AT2G380 | 27798.m00058 | GQ84501 98 99 'nf“v?fgf,?élfﬂ ;E(é )f;‘ﬁ:gﬁggg?:ugz ﬁn \é\éingL L\chrilission
CarbOXylase 402 5 3.1 from Jatropha curcas L. WuPZ (2009)
carboxyltransferase Chen,Y.P.,
alpha subunit ;%":‘W and

WuGld.
JcSSR_G361 Jcrd4S00075 CAC2-p acetyl Co-enzyme a AT2G380 | 30174.m00899 | GAHKO10 100 100 g:;ﬁz::elazzlse Oefnzf;n:ziszl_zf:e \é\éan%H\}'Vang s Zth;SE?sgsElg
X| 1 u,Z., ;9. i
CarbOXylase 402 9 16038.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
carboxyltransferase curcas L
alpha subunit
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JcSSR_G366 Jer4U29862 ACCD acetyl-CoA carboxylase ATCGO005 | 28890.m00000 | HQ15309 96 99 ":’é‘t’;‘sgum'::lg'gfgg ::‘:ue;upr:ﬁssie%'; S°f SﬁlaKm " (Pi)ﬂ"éfzc_ié igo
carbo>_<y| transferase 00.1 6 6.1 from Jatropha curcas Tian,Dl. a.rl1d (2611)
subunit beta Yin,z.

3.2.4.1.2: Acyl Carrier Protein (ACP)

JcSSR_G38 JCCA030 | Jcr4S00106 ACP Acyl carrier protein AT4G250 | 29726.m00398 | EZ418424 100 100 | Profiling the Developing Jatropha KingA.J, Li,Y. | Bioenergy Res

8711 50.1 0 1 curcas L. Seed Transcriptome by and Graham,|.A. (2011)
. . Pyrosequencing
JcSSR_G42 JcCB0042 | JcraS00742 | mtACP Acyl carrier protein AT5G476 | 29826.m00073 | GAHKO010 98 100 | Global Analysis of Transcriptome Wang,H, PLoS ONE 8
491 30.2 2 27354.1 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
' ' Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JcSSR_G353 Jcras01232 | mtACP2 Acyl carrier protein AT1G652 | 29929.m00455 | EF179617 100 100 | Cloning and characterization of Jiang L.D., NCBI
90.1 1 Jatropha curcas ACP gene Zhang,Y., submission
' Wang,Y.X., (2009)
Wang,Y.C.,
Xu,Y. and
Chen,F.
JcSSR_G401 Jer4S00649 | ACP3 acyl carrier protein 3 AT1G546 | 29739.m00365 | GAHKO010 30 99 | Global Analysis of Transcriptome WangH., PLoS ONE 8
30.1 4 26238.1 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
' ' Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G408 Jer4sS00546 | ACP3 acyl carrier protein 3 AT1G546 | 30128.m00867 | EZ412266 100 100 | Profiling the Developing Jatropha KingA.J. LiY. | Bioenergy Res
30.1 0 1 curcas L. See.d Transcriptome by and Graham,|.A. (2011)
. . Pyrosequencing
JCSSR_G411 Jer4S00546 | ACP3 acyl carrier protein 3 AT1G546 | 30128.m00867 | EZ412266 100 100 | Profiling the Developing Jatropha KingA.J. LiY. | Bioenergy Res
301 0 1 curcas L. Seed Transcriptome by and Graham,|.A. (2011)
' . Pyrosequencing
JCSSR_G415 Jcr4S00190 ACP4 acyl carrier protein 4 AT4G250 | 30147.m01442 | GAHKO10 100 100 | Global Analysis of Transcriptome WangH., PLoSONE 8
50.1 5 13596.1 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
' ' Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
3.2.4.1.3: The Keto-Acyl Synthases (KASI, KASII, KASIII, FAE)
JcSSR_G33 JcCA0143 | JcrdS04655 KAS2 Beta-ketoacyl-ACP AT1G749 29739.m00371 DQ98770 100 99 | Cloning and characterization of a beta- | Wei,Q,, LiJ, J. Plant Physiol.
871 synthase I1 60.3 1 0.2 ketoacyl-acy| carrier protein synthase I Zhang,L., 169 (8), 816-
Y . . from Jatropha curcas Wu,P., Chen,Y., 824 (2012)
Li,M., Jiang,H.
and Wu,G.
JCSSR_G34 JCCB004 JcrdS00903 KAS3 Beta-ketoacyl-ACP AT1G626 28455.m00036 DQ98770 100 99 mg:;gliﬁff;'%grg ::Cdo m’g??s&ﬁve \Ii\i/ﬂ'{:»l_zi'M'R” (TGr)eegzqygS;U?l- 28
3371 synthase m 402 8 11 beta-ketoacyl-acy| carrier protein Tiaﬁ,é.é., (2608)
(ACP) synthase Il (KAS I11) from Jiang,H.W. and
Jatropha curcas Wu,GJ.
JCcSSR_G386 JcrdS02541 KAS1 3-ketoacyl-acyl carrier AT5G462 29693.m00203 | GAHKO010 100 100 gggg'n?e’;agziSGOefnZ'E:;%iSPS‘i‘;f:e \é\éi”%"'wang S E’l'—Z‘;SE%gSElg
proteln Symhase ! 90.1 4 172511 Profiles to Cold Stress of Jatropha and YGloyng,M o (20f3)
curcas L
JcSSR_G389a JcrdS04655 | KAS2 Beta-ketoacyl-ACP AT1G749 | 29739.m00371 | DQ98770 100 99 | Cloning and characterization of abeta- [ Wei.Q., LiJ. 3. Plant Physiol.
th M 60.3 1 0.2 ketoacyl-acy| carrier protein synthase |1 Zhang,L., 169 (8), 816-
synthase . . from Jatropha curcas Wu,P., Chen,Y., 824 (2012)
Li,M., Jiang,H.
and Wu,G.

JCSSR_G396 JcrdS08397 KAS1 3-ketoacyl-acyl carrier AT5G462 30068.m00251 | GAHKO010 100 100 g:;gz'rg‘sazziSGan:’I’;‘Q;fSSPS‘izTG ‘é‘(’)ﬁ”%“\-/v\lang S E’l'—Z‘;SE%gsElg

protein Symhase I 90.1 5 07871.1 Profiles to Cold Stress of Jatropha and YG;JYng,M o (20f3)

curcas L
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JcSSR_G409

JerdS27123

KAS2/FAB
1

fatty acid biosynthesis 1

AT1G749
60.3

29739.m00371
1

GT976545
1

64

91

Transcriptome analysis of the oil-rich
seed of the bioenergy crop Jatropha
curcas L

Costa,G.G.L.,
Cardoso,K.C.,
Del
Bem,L.E.V.,
Lima,A.C.,
Cunha,M.AS.,
de Campos-
Leite,L.,
Vicentini,R.,
Papes,F.,
Moreira,R.C.,
Yunes,J.A.,
Campos,F.A.P.
and Da
Silva,M.J.

BMC Genomics
11 (1), 462
(2010)

JcSSR_G413

Jer4aS00903

KAS3

Beta-ketoacyl-ACP
synthase I11

AT1G626
40.2

28455.m00036
8

DQY8770
11

100

99

Molecular cloning and expression
analysis of a gene encoding a putative
beta-ketoacyl-acy| carrier protein
(ACP) synthase Il (KAS II1) from
Jatropha curcas

LiJ, LiMR,
WupP.Z,
Tian,C.E.,
Jiang,H.W. and
Wu,GJ.

Tree Physiol. 28
(6), 921-927
(2008)

JcSSR_G418

JeraS00288

FAE/KCS
2

3-ketoacyl-CoA synthase
2

AT1G042
20.1

29844.m00318
6

GAHKO010
19920.1

95

100

Global Analysis of Transcriptome
Responses and Gene Expression
Profiles to Cold Stress of Jatropha
curcas L

Wang,H.,

Zou,Z., Wang,S.

and Gong,M

PLoS ONE 8
(12), E82817
(2013)

JCSSR_G419

JcrdS00731

FAE/KCS
4

3-ketoacyl-CoA synthase
4

AT1G194
40.1

30190.m01090
3

GWwW87937
4.1

27

99

Profiling gene expression of the
reproductive organs of Jatropha curcas

Wang,W.,
Wei,B., Sing,P.,
JinQ.D,,
Wong,W.S.,
Zhang,S.H. and
Li,N.

NCBI
submission
(2010)

JCSSR_G421

JcrdS00865

FAE/KCS
19

3-ketoacyl-CoA synthase
19

AT5G045
30.1

29690.m00041
2

No
evidence
for
expression

3.2.4.1.4: Stearoyl-ACP desaturases (SAD, FAB2)

JcSSR_G36

JcCBO0395
461

Jcr4S01370

FAB2

Plant stearoyl-acyl-
carrier-protein
desaturase

AT2G437
10.2

30020.m00020
3

DQ08449
11

100

99

Jatropha curcas stearoyl-ACP
desaturase cCDNA

Luo,T., Xu,Y.,
Deng,W.,
Wang,S.,
Tang,L.,
Xiao,M.,
Zeng,N.,
Guo,L.,
Zhang,Y. and
Chen,F.

NCBI
submission
(2005)

JcSSR_G393

Jcr4S13936

stearoyl-
ACP
desaturase

Plant stearoyl-acyl-
carrier-protein
desaturase family protein

AT3G026
30.1

29929.m00451
5

EZ418900
a1

67

99

Profiling the Developing Jatropha
curcas L. Seed Transcriptome by
Pyrosequencing

King,AJ., Li,Y.

and Graham,|.A.

Bioenergy Res
(2011)

JcSSR_G398

Jcr4S01370

FAB2

Plant stearoyl-acyl-
carrier-protein
desaturase

AT2G437
10.2

30020.m00020
3

DQ08449
11

100

99

Jatropha curcas stearoyl-ACP
desaturase cCDNA

Luo,T., Xu,Y.,
Deng,W.,
Wang,S.,
Tang,L.,
Xiao,M.,
Zeng,N.,
Guo,L.,
Zhang,Y. and
Chen,F.

NCBI
submission
(2005)
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JcSSR_G399 Jer4S03070. | stearoyl- Plant stearoyl-acyl- AT3G026 | 29929.m00451 | GAHKO10 100 99 S'Oba' A"a'YZiSG of T'E"SC"P‘_OFHS ‘é\’ﬂ"%H\-;v s (PlLZ(;SE%’Z\‘BElg
. . esponses an ene expression ou,Z., Wang,s. y
3 ACP carrier-protein i i 30.1 4 04511.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
desaturase | desaturase family protein curcas L
JCSSR_G400 Jcr4S03070. | stearoyl- Plant stearoyl-acyl- AT3G026 | 29929.m00451 | GAHKO010 82 100 SL@E?;L;T%?SG zfnlfé::ﬁ:sp;gr?e ‘é\gi"%H\-;Vang s (Pl'—Z(;SE%’Z\‘SElg
4 ACP carrier-protein . i 30.1 4 26581.1 Profiles to Cold Stress of Jatropha and YG.oyng,M o (2015)
desaturase | desaturase family protein curcas L
JcSSR_G407 Jcras03522 | stearoyl- | Plant stearoyl-acyl- AT1G438 | 27985.m00087 | EZ412266 100 100 | Profiling the Developing Jatropha KingA.J, Li,Y. | Bioenergy Res
ACP carrier-protein 00.1 7 1 ;L;Irr%e;selq;ues:ceitri];'ranscr|pt0me by and Graham,|.A. (2011)
desaturase | desaturase family protein
3.2.4.1.5: The Thioesterases (FATA and FATB)
JcSSR_G39 JcCBO017 | JcrdS00539 | FATA fatA acyl-ACP AT3G251 [ 30217.m00026 | EU267122 100 96 | Identification and characterization ofa [ WuP.Z, LiJ, [ NCBI _
291 thioesterase 10.1 2 2 novel acyl-ACP thioesterase (FATA) LiMR., submission
' : from Jatropha curcas L. Jiang,H.W. and (2010)
Wu,GJ.
JcSSR_G416 Jcr4S00062 | FATB fatty acyl-ACP AT1G085 | 29841.m00274 | JX966083. 100 96 | Cloning and characterization of an ZhangL., NCBI
thioesterases B 101 4 1 gcyl-acyl carrier protein thioesterase Wu,P.Z., submission
' like from Jatropha curcas Jiang,H.W. and (2012)
Wu,G.J.
JcSSR_G417 JcraS02908 | FATB fatty acyl-ACP AT1G085 | 29660.m00078 | JX966081. 100 99 | Cloning and characterization of an ZhangL., NCBI
thioesterases B 101 2 1 gcyl-acyl carrier protein thioesterase Wu,P.Z., submission
' like from Jatropha curcas Jiang,H.W. and (2012)
Wu,G.J.
3.2.4.1.6: Long Chain Acyl-CoA Synthases (LACS)
JCSSR_G27 JcCBO0175 | Jcrd4S01110 LACS9 Long-chain-fatty-acid AT1G775 | 29908.m00618 | GAHKO10 100 99 SL‘;%L&T%SG f;fnl'é:;%g‘gwe %ﬁ”gﬁwmg s E’l'—zf;SE%gsElg
451 CoA ligase 90.1 6 147121 Profiles to Cold Stress of Jatropha and YG;JYng,M. o (2013)
curcas L
JcSSR_G40_L | JcCB0030 | Jcr4S00733 | LACS2 long-chain acyl-CoA AT1G494 | 29851.m00247 | GAHKO10 100 100 SL‘;%L&T%SG f;fnl'é:;%g‘gwe %ﬁ”gﬁwmg s E’l'—zf;SE%gsElg
1 361 SynthEtase 30.1 3 16749.1 Profiles to Cold Stress of Jatropha and YGloyng,M. o (2015)
curcas L
JcSSR_G356 Jor4S05261 | LACS1 Long-chain-fatty-acid AT2G472 | 30076.m00461 | GW61132 27 100 | Profiling gene expression of the Wang\W., NCBI
CoA ligase 40.2 6 71 reproductive organs of Jatropha curcas Wel,B., Sing,P., submission
9 . : Jin,Q.D., (2010)
Wong,W.S.,
Zhang,S.H. and
Li,N.
JcSSR_G362 Jcr4S00096 | LACS4 Long-chain acyl-CoA AT4G238 | 30190.m01083 | GAHKO010 97 92 gggzlnf;r;agzise Oefn?EanfQ-%Te \ZAgangvaang . flef;SE%gsElg
X| 1 u,zZ., = f
Symhetase 4 50.1 1 04006.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JcSSR_G363 Jcr4s00818 | LACS7 long-chain acyl-CoA AT5G276 | 30128.m00877 | GAHKO010 94 100 gg;ggln/;er;agzise of T rén:%ispst%r:e g ZL;;SE%QSES
X| 1 u,zZ., = f
Symhetase 7 00.1 7 02069 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JCcSSR_G367 JcrdS00733 LACS2 long-chain acyl-CoA AT1G494 29851.m00247 | GAHKO010 100 100 gé‘;ggL/:e”sazzisGoefan;:;?gSZ‘i%f:e \é\(’)i”%"'wang S ?1L2§SE%§8ES
synthetase 30.1 3 16749.1 Profiles to Cold Stress of Jatropha and YG;:Ynng,M. o (20f3)
curcas L
JCcSSR_G368 JcrdS05261 LACS1 Long-chain-fatty-acid AT2G472 30076.m00461 | GW61132 27 100 | Profiling gene expression of the Wang,W., NCBI
reproductive organs of Jatropha curcas Wei,B,, Sing,P., submission
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CoA ligase 40.2 6 7.1 JinQ.D., (2010)
Wong,W.S.,
Zhang,S.H. and
Li,N.
3.2.4.1.7: Compartmentation and shuttling genes (LPCAT, GPAT, LPAAT, PP, MAGAT, PDCT, DAG-CPT, PDAT, DGAT, DAGTA)
JCSSR_G41 JcCA0009 | JcrdS00582 GPAT3 glycerol-3-phosphate AT4G019 | 30076.m00461 | No
631 acyltransferase 50.1 8 evidence
for
expression
JcSSR_G45 JcCA0084 | JcraS08388 ATS1 Plastid glycerol-3- AT1G322 | 30068.m00266 | GAHKO010 72 100 S'Oba'Ana'YZiSGOfT'énSCViPthe ‘é\’ﬂn%HW s Z'—zf;SE%’Z\‘SES
esponses an ene expression ou,Z., Wang,o. s
251 phOSphate 00.2 0 04097.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
acyltransferase curcas L
JCSSR_G356 JerdS05261 GPAT3 glycerol-3-phosphate AT4G019 | 30076.m00461 | GAHKO10 70 100 SlobalAnalyzizofﬂ;nscﬁpt_ome ;Van%HW s Z'—z‘;SE%’;'SElg
esponses an ene expression ou,Z., Wang,o. s
aCyItranSferase 3 50.1 8 299221 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JCSSR_G357 JeraS00121 GPAT3 glycerol-3-phosphate AT4G019 | 29908.m00596 | GT969993 30 99 Tfagscffiﬂtog?ea”a'YSiSO“heO“-r:ich CoséavG-G-'—-v BMC Genomics
acyltransferase 3 50.1 7 1 zﬁicaglf e bioenergy crop Jatropha gz; 0so0,K.C., (1210(113) 462
Bem,L.E.V.,
Lima,A.C.,
Cunha,M.AS.,
de Campos-
Leite,L.,
Vicentini,R.,
Papes,F.,
Moreira,R.C.,
Yunes,J.A.,
Campos,F.A.P.
and Da
Silva,M.J.
JCSSR_G358 Jcras08802 GPAT3 glycerol-3-phosphate AT4G019 | 29908.m00596 | GAHKO010 19 90 SL‘;%L&T%SG f;fnl'é:;%glgwe %Z”%Hwangs E’l'—zf;SE%gsElg
acyltransferase 3 50.1 7 31716.1 Profiles to Cold Stress of Jatropha andyGang,M o (2013)
curcas L
JcSSR_G364 Jcr4S00582 GPAT3 glycerol-3-phosphate AT4G019 | 30076.m00461 | No
acyltransferase 50.1 8 evidence
for
expression
JCSSR_G368 JcrdS05261 GPAT3 glycerol-3-phosphate AT4G019 | 30076.m00461 | GAHKO10 70 100 S:;Ez'n/:ef;azzise Oefnzfé::%g‘lzf:e \z/\éin%H\'/\/angs 'Zl'—zf;SE%ygElg
acyltranSferaSE3 50.1 8 29922.1 Profiles to Cold Stress of Jatropha andyG'oyng,M o (ZOfS)
curcas L
JCSSR_G369 JcrdS01535 GPATS8 glycerol-3-phosphate AT4G004 | 30174.m00861 | GAHKO10 100 100 ggﬁz'@;ﬁ?z Oefnzf;“;ziszl};f:e \é\éan%H\'/\/angs E’l'—Z‘;SE%gSElg
X| 1 u,Z., ;9. f
acyltransferase 8 00.1 5 15603.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G370 Jcr4S00361 GPATS5 glycerol-3-phosphate AT3G114 | 29736.m00207 | No
acyltransferase 5 30.1 0 evidence
for
expression
JcSSR_G371 Jcr4S00686 GPAT6 glycerol-3-phosphate AT2G381 | 29736.m00207 | No
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acyltransferase 6 10.1 0 evidence
for
expression
JcSSR_G373 Jcrd4S11460 GPAT7 glycerol-3-phosphate AT5G060 | 27568.m00026 | No
acyltransferase 7 90.1 6 evidence
for
expression
JcSSR_G380 JeraS03010 GPAT6 glycerol-3-phosphate AT2G381 | 29969.m00026 | GAHKO10 70 100 S'Oba' A”a'YZiSG of TVEHSCHP‘PF”G ‘é\’ﬂ”g»H\-/v s E’lLZ[;SE%IZ\ISEl?
esponses and Gene Expression ou,Z., Wang,S. ,
acyltransferase 6 101 7 139411 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G427 Jcr4S01398 ATS1 seed gene 1 AT4G267 | 30008.m00082 | EZ409221 100 100 | Profiling the Developing Jatropha KingA.J, LiY. | Bioenergy Res
40.1 0 1 curcas L. Seed Transcriptome by and Graham,l.A. | (2011)
. . Pyrosequencing
JCSSR_G28 JcCA0153 | JcrdaS00343 LPAT1 Lysophosphatidic acid AT4G305 | 29687.m00057 | GAHKO10 100 100 S'Oba' A”a'YZiSG of T'E"Wipt_ome ‘é\’ﬂ”gv"'w s E’l'—zf;SE%’z\‘sElg
esponses and Gene Expression ou,Z., Wang,S. ,
351 acyltransferase 80.1 2 03393.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JCSSR_G29 JcCA0151 | JerdS01477 LPAT4 Lysophosphatidic acid AT1G750 | 30170.m01399 | GAHKO010 61 100 S'Oba' A”a'YZiSG of T'E"%fiptome ‘é\’ﬂ”%"'w s E’l'—zf;SE%’z\‘sElg
esponses and Gene Expression ou,Z., Wang,S. \
201 acyltransferase 20.2 0 19129.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JCSSR_G30 JcCB0037 | JcrdaS00971 LPAT5 Lysophosphatidic acid AT3G188 | 29851.m00244 | GAHKO10 51 100 S"}ggz'nﬁe”sazzise f;fnlfégsigsp;lg?e %Z”%Hwang s ZLZ‘;SE%ggElg
1 acyltransferase 50.4 8 23279.1 Profiles to Cold Stress of Jatropha and YG;JYng,M. o (2013)
curcas L
JCSSR_G365 Jcr4S00971 LPAT5 Lysophosphatidic acid AT3G188 | 29851.m00244 | GAHKO10 51 100 S"}Zgz'nﬁe”sazzise f;fnlfégsigsp;lg?e %Z”%Hwang s ZLZ‘;SE%ggElg
acyltransferase 50.4 8 23279.1 Profiles to Cold Stress of Jatropha and YG;JYng,M. o (2013)
curcas L
JCSSR_G372 JcrdS00017 LPAT2 1-acylglycerol-3- AT3G576 | 30169.m00643 | No
phosphate 50.1 2 evidence
acyltransferase for
expression
JcSSR_G374 JcraS01622 LPAT1 Phospholipid/glycerol AT4G305 | 29666.m00143 | GAHKO10 100 100 ge';gzL?egazzisef;fn?é:;%isll‘izwe \é\éz“%*"wang s fle(;SE%ysElg
(ATS2) acylt'tanSferase family 80.1 0 20046.1 Profiles to Cold Stress of Jatropha and YGloyng,M. o (2015)
protein curcas L
JcSSR_G375 JcraS22362 LPAT2 lysophosphatidyl AT3G576 | 27810.m00064 | GAHKO10 95 100 S:}ggzL/:ef‘sazzisezfnzfé:;%iszme \z/\ézn%H\'/'\/ang s '(DILZ(;SE%gSElg
acyltransferase 2 50.1 6 04915.1 Profiles to Cold Stress of Jatropha and YGloyng,M. o (2015)
curcas L
JcSSR_G376 JcrdS01477 LPAT4 Lysophosphatidic acid AT1G750 | 30170.m01399 | GAHKO10 61 100 gé‘;ggL/:ef;azziseoefn?é“:%g‘};f:e \z/\éan%H\'/\/ang s '(DILZ(;SE%?SEIE
X| l u,Z., = f
acyltransferase 20.2 0 19129.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JcSSR_G31 JcCA0311 | JcrdS09416 LPP3 lipid phosphate AT3G026 | 29586.m00062 | GAHKO10 78 100 gézﬁz'n/:e’;azzise anlﬁnzzisps!zf:e \é\éa”%“\;\lang s E’l'-z‘;SE%gsElg
X| I u,zZ., = f
711 phosphatase 3 00.1 0 20421.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JCSSR_G377 JcraS02521 LPP2 lipid phosphate AT1G150 | 29747.m00107 | GAHKO10 42 100 gé‘;ﬁzL/:e"sazzisezfnlféf‘:%isll‘};:‘e \é\ga”%“\-/\/ang s Flet;SE%gsElg
X| !l u,Z., 1. f
phosphatase 2 80.1 5 17362.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
curcas L
JcSSR_G378 Jcr4S09416 LPP3 lipid phosphate AT3G026 | 29586.m00062 | GAHKO10 78 100 | Global Analysis of Transcriptome WangH., PLoS ONE 8
Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
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phosphatase 3 00.1 0 20421.1 Z:zr);iilsesl_to Cold Stress of Jatropha and Gong,M. (2013)
JcSSR_G37 JcCB0022 | JcrdS04735 MCAAT Malonyl-CoA : ACP AT2G302 30113.m00144 GAHKO010 100 100 S'Ub‘“ AnalyfjisGof T'E"SC"P‘_OF”S ‘é\’ﬂ”%"'\-;v s (PlLZ())SE%IZ\‘&ig
esponses an ene expression ou,Z., Wang,s. s
101 Acyltransferase 00.1 8 18914.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
(MCAAT) curcas L
JcSSR_G32 JcCA0249 | JcrdS00514 ROD1 phosphatidic acid AT3G158 29841.m00286 GAHKO010 97 99 | Global Analysis of Transcriptome Wang,H., PLoS ONE 8
31 (PDCT) | phosphatase-reated/ [ 201 | 5 129041 eprses G Esion | Zoug Was. | (2 Serai
PAP2-related curcas L Y
JcSSR_G382 JerdaS00514 PDCT phosphatidic acid AT3G158 | 29841.m00286 | GAHKO010 97 99 S'Oba' A”a'YZiSG of T'EHSCHP‘_OFHG ‘é\’ﬂ”gvH\-/v s flLZC;SEOSIZ\ISEl?
esponses and Gene Expression ou,Z., Wang,S. ,
(ROD1), phosphatase-related / 20.1 > 11904.1 Profiles to Cold Stress of Jatropha and Gong,M. (2013)
FAD5 PAP2-related curcas L
JCSSR_G381 Jcr4S01903 AAPT1 Diacylglycerol AT1G135 | 30138.m00384 | GAHKO10 95 100 S'Oba' A”a'YZiSG of T'E"Wipt_ome ‘é\’ﬂ”gv"'w s E’l'—zf;SE%’z\‘sElg
(DAG- Cholinephosphotransfera | 60.2 5 12179.1 pf;frifezsfos g:nd sirsss fff’ﬁffﬁha ar?tl; Gong i/rl]g' | (eo13)
CPT) se curcas L
JcSSR_G385 JcraS00804 PDAT1 Phosphatidylcholine: AT3G448 | 29706.m00130 | GAHKO010 98 99 S'Oba' Ana'yziSG of T';"SCfiptome ‘é\’an%"'w s Z'—zf;SE%’Z\ISElg
: esponses and Gene Expression ou,Z., Wang,S. ,
Rlaclillgly?erol 30.1 5 10861.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
Cyltransterase curcas L
JcSSR_G388 Jcr4S01037 PDAT1 phospholipid:diacylglyce | AT5G136 | 29912.m00528 | HQ82779 91 100 E]ngf;;ig?dp;?;iL?isag;%ﬁgizriglvolved ;UdFi-iuVXang,R- g:ggaesrz v
rol acyltransferase 40.1 6 6.1 synthesis in developing seeds of o (5), 1683-1692
Jatropha (Jatropha curcas L.) (2011)
JcSSR_G403 JcrdS08851 PDAT2 Phospholipid:diacylglyc AT3G448 | 29991.m00062 | No
erol acyltransferase 2 30.1 6 evidence
for
expression
JCSSR_G404 JcrdS19008 PDAT2 Phospholipid:diacylglyc AT3G448 | 29991.m00062 | No
erol acyltransferase 2 30.1 6 evidence
for
expression
JCSSR_G432 Jcrd4S01037 PDAT1 phospholipid:diacylglyce | AT5G136 | 29912.m00528 | HQ82779 91 100 Exfr;ftfjifé?dp;?;iLerisag;%elggzriglvolved ;UARI’_-{UVEHQR- g:gmsrz v
rol acyltransferase 40.1 6 6.1 synthesis in developing seeds of o (5), 1683-1692
Jatropha (Jatro_pha curcas L_.) (2011)
JCcSSR_G379 JcrdS00709 DGAT3 Acyltransferase-like AT1G545 30128.m00865 GAHKO010 90 99 Sgﬁmeza;ﬁ'seoefnz'E:;f:szme \z/\ét”% HWang S '(DlLZ(;SE%?SEl?
protein 70.1 6 02587.1 Profiles to Cold Stress of Jatropha and YGloyng,M. o (2015)
curcas L
JCcSSR_G383 JcrdS01935 DGAT3 transferases, transferring | AT3G020 | 30131.m00701 | GAHKO010 99 100 Siiﬁﬁ'n?erla;ﬁ'se Oefnlfé)f:;i'sztlzf:e ?31”% HWang s '(DILZ(;SE%gEI;El?
acy.l gI’OUpIS other than 30.1 0 00294.1 Profiles to Cold Stress of Jatropha and YGloyng,M o (ZOfS)
amino-acy curcas L
groups;acyltransferases
JcSSR_G384 Jcr4S04966 DGAT3 transferases, transferring | AT3G020 | 30131.m00701 | GAHKO010 97 91 gggz'n/:ef;a;ﬁ% Oefnzféf‘:?gg_zf:e \é\ga”% H\hang s Z'—Z‘;SE%%ES
X I u,Z., = f
acy.l gI’OUpIS other than 30.1 0 00294.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
amino-acy! curcas L
groups;acyltransferases
JcSSR_G387 JerdU29423 DGAT2 diacylglycerol AT3G515 29682.m00058 JQ319813. 100 99 | Characterization of DGAT1 and . Xu,R.and NCBI
I £ 20.1 1 1 DGAT2 from Jatropha curcas and their Liu,A. submission
acyltransferase . nonredundant functions in storage lipid (2011)

biosynthesis
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JcSSR_G394 Jcr4S00406 | DGAT Diacylglycerol AT1G545 | 30128.m00865 | GAHKO10 95 85 | Global Analysi of Transcriptome WengH. | PLoSONES
acyltransferase 70.1 6 02587.1 Prafies to ol Sues o avopha | and songh® | (2013
curcas L
JcSSR_G395 Jcr4s03244 | DGAT Diacylglycerol AT3G020 | 30131.m00701 | GAHKO010 96 91 | Clobal Analysis of Transcriptome Wangf, | PLoSONES
acyltransferase 301 0 00294.1 Prafies o Cold Swessof samopha | and Gong | (2013
curcas L
JcSSR_G402 Jcr4S04033 | DGAT Phospholipid/glycerol AT1G809 | 30170.m01400 | GAHKO010 81 100 | Global Analysis of Transcriptome WangH. PLOS ONES
acyltransferase family | 50.1 2 10064.1 Prafies o Cold Sessof sropha | and Gong | (2013)
protein curcas L
JCSSR_G43 JcCB0021 | Jcrd4S15605, | Pla2g4b Phospholipase A2, group | AT3G458 | 29489.m00017 | GAHKO010 24 100 g'obal Analyzis of ngﬂSCfiPtome ;Van%HW P1|-203E0’2\‘E1§
271 JCras05766 IVB (cytosolic) 80.1 0 37072.1 Profies o Cold Swess f awopra | and Gongnt. | 2oty
curcas L
JcSSR_G365 Jerd4S00971 n/a phospholipase A-2- AT3G188 | 29851.m00244 | GAHKO10 71 100 | Global Analysis of Transcriptome Wang H., PL0OS ONE 8
activating protein 60.2 9 18279.1 Profies 1o ol Suos of avropna | and Gongwe | (2ot
curcas L
JcSSR_G422 Jcr4s02881 | DGD1 UDP- AT3G116 | 28726.m00006 | GAHKO010 99 100 | Global Analysi of Transcriptore Wangh. ZLZr;SE%QISEl g
esponses and Gene Expression ou,Z., Wang,S. ,
GIyCOSyIt_ranSfera_se 70.1 9 14347.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
superfamily protein curcas L
3.2.4.1.8: Endoplasmic reticulum desaturases (FAD2, FAD3)
JcSSR_G32 Jer4S00514 FAD5 fatty acid desaturase 5 AT3G158 | 29841.m00286 | GAHKO010 100 100 | Global Analysis of Transcriptome WangH., PLoS ONE 8
Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
50.1 3 15790.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G35 Jcr4S04563 | FADS Omega-3 fatty acid AT5G055 | 29681.m00136 | EU267121 95 84 ;“ifofis%nnﬂf?;@ﬁﬁ?;ff wo_ m}fgs 3 glf(ir;; )P%sﬁig'-
degaturase, endoplasmic 80.1 0 1 Jatropha curcas L Zhang:L..y, 1366 (2613)
reticulum Chen,Y., LiM.,
Jiang,H. and
Wu,G.
JcSSR_G35 JcCA0269 | JcrdS27172 FAD3/7 Microsomal omega-3 AT3G111 | 29681.m00136 | EU267121 67 99 | Identification and characterization ofa | Wu,P.Z, LiJ., NCBI
021 favy acid desawrase | 701 | 0 1 e | L g | e
Wu,GJ.
JCSSR_G390 JcrdS09407 FAD2 fatty acid desaturase 2 AT3G121 29613.m00035 | EZ409947 100 98 E’J?ggnf ‘Q;EGT\?ZL?SFJCE&&YSE;& aKr:ggé?;{énlqiiT& (Bziéﬁ)ergy Res
20.2 8 1 o A
Pyrosequencing
JcSSR_G391 Jcras01187 | FAD3 Microsomal omega-3 AT5G055 | 29681.m00136 | EU267121 100 97 ;uifo};m\f?;@cﬁiﬁgﬁtef;f: o %iﬁg's 3 (P)'?T; f*}éﬂg"
fatty acid desaturase 80.1 0 1 Jatropha curcas L Zhang L., 1366 (2013)
Chen,Y., Li,M.,
Jiang,H. and
Wu,G.
JcSSR_G392 Jcras01217 | FAD4 fatty acid desaturase A AT4G270 | 29666.m00145 | GAHKO010 100 100 | Global Analysis of Transcriptome WangH., PLoS ONE 8
Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
30.1 6 13623.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G397 JcrdS03307 FADS8 fatty acid desaturase 8 AT5G055 29814.m00071 DQ45208 100 100 | Aplastidial omega-3 fatty acid GuoL. QingR., | NCBI
80.1 9 9.1 desaturase from Jatropha curcas Huang,M., submission
: : He,W., Xu,Y., (2006)
Tang,L. and
Chen,F.
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JcSSR_G405 Jer4s02981 | FAD3 fatty acid desaturase 3 | AT2G299 | 29681.m00136 | EU267121 100 94 | Functional characterization of two wup, J.Plant Physiol.
80.1 0 1 microsomal fatty acid desaturases from Zhang,S., 170 (15), 1360-
: . Jatropha curcas L Zhang,L., 1366 (2013)
Chen,Y., Li,M.,
Jiang,H. and
Wu,G.
JcSSR_G406 Jcr4S04563 FAD8 Omega-3 fatty acid AT5G055 | 29681.m00136 | EU267121 95 84 | Functional f?i;aﬁterézzﬁontof tWOf ‘g’\UP-vS 31-7 g'?;‘;;’%sgg'-
. microsomal fatty acid desaturases from ang,S., , -
des_aturase' endOpIasmlc 80.1 0 1 Jatropha curcas L Zhang,L., 1366 (2013)
reticulum Chen,Y., LiM.,
Jiang,H. and
Wu,G.
JcSSR_G410 Jcr4S00514 | FADS fatty acid desaturase 5 AT3G158 | 29841.m00286 | GAHKO010 100 100 | Global Analysis of Transcriptome Wang,H, PLoS ONE 8
50.1 3 15790.1 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
. . Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G414 Jer4S03452 FAD6 fatty acid desaturase 6 AT4G309 | 29696.m00010 | EU106889 95 100 | !dentification and characterization ofa | Wu,P.Z, LiJ., NCBI
50.1 5 1 novel chloroplast omega-6 fatty acid LiMR,, submission(200
' ' desaturase from Jatropha curcas L. Jiang,H.W. and 7)
Wu,G.J.
3.2.4.1.9: Seed oil body-associated storage protein genes; Oleosins and Caleosins
JCSSR_G412 JeraS06252 Oleosin Oleosin family protein AT3G185 | 30174.m00872 | GW61916 100 100 | Profiling gene expression of the Wang,W., NCBI
70.1 8 21 reproductive organs of Jatropha curcas Wel,B., Sing,P., submission
: : JinQ.D., (2010)
Wong,W.S.,
Zhang,S.H. and
Li,N.
JCSSR_G420 JcrdS01276 OLEO1 oleosin 1 AT4G251 30147.m01433 | EZ417041 100 100 | Profiling the Developing Jatropha KingA.J, LiY. | Bioenergy Res
40.1 3 1 curcas L. See}i Transcriptome by and Graham,|.A. (2011)
' ' Pyrosequencing
JcSSR_G423 Jer4S05922 Caleosin Caleosin-related family AT1G706 | 29673.m00093 | GAHKO010 97 99 | Global Analysis of Transcriptome WangH., PLoS ONE 8
tein 70.1 2 237421 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
pro ' ' Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JCSSR_G424 Jer4S28232 Oleosin Oleosin family protein AT2G258 | 29794.m00337 | Ez412177 100 100 | Profiling the Developing Jatropha King,A.J. LiY. | Bioenergy Res
90.1 2 1 curcas L. See_d Transcriptome by and Graham,|.A. (2011)
. . Pyrosequencing
JcSSR_G428 Jer4S00534 Oleosin Oleosin family protein AT2G258 | 29794.m00337 | Ez412177 96 100 | Profiling the Developing Jatropha KingA.J., LiY. | Bioenergy Res
90.1 2 1 curcas L. See_d Transcriptome by and Graham,l.A. (2011)
' ' Pyrosequencing
JCSSR_G429 Jerd4S05992 Oleosin Oleosin family protein AT3G015 | 29917.m00199 | EZ418548 100 100 | Profiling the Developing Jatropha KingAJ., LiY. | Bioenergy Res
70.1 2 1 curcas L. See_d Transcriptome by and Graham,l.A. (2011)
' ' Pyrosequencing
3.2.4.1.10: Fatty acid synthesis master regulators
JCSSR_G425 JcrdS00084 WRI1 Integrase-type DNA- AT3G543 29736.m00202 | No
binding superfamily 20.3 9 evidence
protein for
expression
JCSSR_G426 JcrdS07197 WRI1 Integrase-type DNA- AT3G543 29736.m00202 | No
binding superfamily 20.3 9 evidence
protein for
expression
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JcSSR_G430 Jcr4S03855 WRI1 Integrase-type DNA- AT3G543 | 30069.m00044 | JF703666. 100 99 35%{7;?{‘ and tha'acj‘e”za‘}ion of \Z(hﬂng!z'--- § N‘;B'_ )
blndlng Superfamlly 203 0 1 C gene from Jatropha curcas Sssr?:s. ani ?;JOEI)SSIOH
protein

JcSSR_G431 Jcr4S05417 WRI1 Integrase-type DNA- AT3G543 | 29822.m00347 | No
binding superfamily 20.3 7 evidence
protein for

expression
3.2.4.2: Branching candidate genes
JcSSR_G56 JcCA0154 | JcrdS00260 TIR1 TRANSPORT AT3G629 29647.m00202 | GAHKO010 100 99 (R3I0bal AnalyzisGof Trélnscript_ome \éVan%H\.l,v . E’llac;SE%l;l;?
esponses and Gene Expression ou,Z., Wang,S. ,
071.10 INHIBITOR 80.1 2 14281.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
RESPONSE 1 (F- curcas L
box/RNI-like
superfamily protein)
JCSSR_G57 JcCA0074 | JcrdS05147 AFB5 auxin F-box protein 5 AT5G499 29908.m00622 | GAHKO010 100 100 | Global Analysis of Transcriptome WangH., PL0S ONE 8
811.10 80.1 3 04749.1 Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
' ' ' Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G58 JcCA0133 | JcrdS00529 ABI3 AP2/B3-like AT3G246 | 30204.m00180 | EZ411848 57 98 E’Sgg'smg ‘Qselgﬁzlr?spciggtﬁfggha elfrjggéééiénlgiin (Bzigf?)ergy Res
141.20 transcriptional factor 50.1 3 1 Pyrosequencing ptome by A
family protein
JCSSR_G59 JcCBO0165 | JcrdaS02351 MAX2 RNI-like superfamily AT2G426 | 29451.m00004 | GAHKO10 16 100 Séggz'n?e”sazzise f;fnlfégsz'spstlgwe \é\éin%H\}'\/ang s ZLZ‘;SE%%E?
711.10 protein 20.1 9 32867.1 Profiles to Cold Stress of Jatropha and YG;JYng,M o (2013)
curcas L
JcSSR_G60 JcCA0141 | JcrdS16834 MAX4 carotenoid cleavage AT4G328 | 29794.m00338 | No
181.10 dioxygenase 8 10.1 2 evidence
for
expression
JCSSR_G61_A | JcCA0306 | JcrdS22672 PIN1 Auxin efflux carrier AT1G735 | 29651.m00029 | GAHKO10 73 100 SL‘;%L&T%SG f;fnl'é:;%g‘gwe %ﬁ”gﬁwmg s E’l'—zf;SE%gsElg
1 791.10 family protein 90.1 6 24416.1 Profiles to Cold Stress of Jatropha and YGloyng,M o (2015)
curcas L
JCSSR_G428 JcrdS00534 MAX4 carotenoid cleavage AT4G328 | 29794.m00338 | No
dioxygenase 8 10.1 2 evidence
for
expression
JCSSR_G435 JcrdS05086 AXR1 NAD(P)-binding AT1G051 29600.m00055 | GAHKO010 68 100 gggz'n/:ezagziSG(;fnZ'é“:zisF;‘_‘;f:e \z/\éan%H\'/Vang s '(DlLZ(;SE%?SElg
X| 1 u,zZ., = f
Rossmanp'fOId ) 80.1 2 25428.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
superfamily protein curcas L
JCSSR_G436 JcrdS00105 TIR1 TRANSPORT AT3G629 29933.m00142 | GAHKO010 79 99 géit;z'n?e’;azziSGanZTE“;ziSPS‘_‘::e \é\éa”%"'\-/\,ang s ZLZ(;SE%gSElg
X| 1 u,zZ., = f
INHIBITOR i 80.1 7 07122.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
RESPONSE 1 protein curcas L
JCcSSR_G437 JcrdS03655 AFB2 auxin signaling F-box 2 AT3G268 30131.m00686 | GAHKO010 99 100 | Global Analysis of Transcriptome Wang H., PLoS ONE 8
10.1 3 14896.1 Resp_onses and Gene Expression Zou,Z., Wang,S. (12), E82817
. . Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L

JCSSR_G438 JcrdS00335 MAX1 Fatty acid/sphingolipid AT2G462 29794.m00330 | EF208109. 100 100 | Characterization of D8-sphingolipid Qing.R., Guo,L. | NCBI

desaturase 10.1 8 1 desaturase from Jatropha curcas and Chen,F. submission
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(2007)

JcSSR_G439 JcrdS01087 MAX2 RNI-like superfamily AT2G426 | 29682.m00060 | GAHKO10 45 100 | Global Analysis of Transcriptome Wang H., PLoS ONE 8
. Responses and Gene Expression Zou,Z., Wang,S. (12), E82817
protein 20.1 1 22914.1 Profiles to Cold Stress of Jatropha and Gong,M (2013)
curcas L
JcSSR_G440 JcrdS01272 MAX3 carotenoid cleavage AT2G449 | 30174.m00879 | No
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Chapter 4: Linkage mapping in an F, population derived from parents with

high and low seed oil phenotypes

Genetic linkage mapping uses genetic markers to measure recombination frequency, or crossover events, that
occur during DNA replication. The rate of recombination is proportional to the genetic distance between the
markers; completely unlinked markers recombine in a diploid species 50 % of the time, whereas physically
linked markers have a lower recombination frequency proportional to physical distance. Each F, plant in the
mapping population is effectively a single measurement of recombination between the available DNA
markers. Therefore the larger the F, population, the greater the sample size for estimating recombination

frequency and the greater the accuracy of the inferred genetic linkage map.

Since DNA replication occurs independently from external, environmental conditions, it is not necessary for
the F, plants to experience the same environmental conditions when measuring recombination frequency for
genetic linkage mapping. This is in contrast to QTL mapping that is dependent on phenotypic measurements;
a function of Genetic and Environmental factors (GXE). This property has been exploited to increase sample
size in several ways in this project. Firstly individual mapping populations (such as the principle population
under study for this thesis, G51xCV) has F, plants created over 2 rounds of crossing. Secondly the G51xCV
data has been combined with 3 other mapping populations in order to create a combined dataset and genetic

linkage map. This was possible due to all populations using the same DNA marker set.

This results chapter will have two narrative strands. Genetic linkage mapping in the G51xCV mapping
population will be the central focus, as this was the principle mapping population under study for this thesis.
This will also set the conditions for the G51xCV QTL analysis in the proceeding chapter.

The other strand will look at the genetic linkage mapping process overall. It will analyse the DNA marker set
to determine individual marker characteristics and performance during the genetic linkage mapping process.
It will also present the combined genetic linkage map, which aside from being the ultimate product of genetic
data collected from the G51xCV mapping population, also acts as a reference map with which to compare
this thesis linkage map. This comparison was used in this thesis work for comparative mapping strategies and

to assess the quality and robustness of G51xCV results against the larger combined dataset.
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4.1: Genetic linkage mapping in G51xCV

4.1.1: The G51xCV E,; mapping population has a complex population structure, due
to heterozygosity in G51, and the asynchronous, self-compatible flowering strategy of
J. curcas

The G51xCV mapping population was created from a cross between a homozygous parent (‘CV’) and a
heterogeneously heterozygous parent (‘G51°), containing 36.5 % heterozygosity. In order to map as many of
these heterozygous loci as possible, a reciprocal sib-cross of two non-uniform F;’s was carried out, with

alternate F; plants acting as the mother plant for each direction of the cross.

Further complexity was added to this population structure due reproductive characteristics of Jatropha. J.
curcas is self-compatible, with male and female flowers found on the same inflorescence. Whilst Jatropha is
protogynous; female flowers reach maturity before males flowers of the same inflorescence, the plant as a
whole is asynchronous; inflorescences on the same plant flower at different times. With mature male and
female flowers found on different parts of the plant during the flowering cycle, there is opportunity for self-
pollination to occur (Achten et al., 2010).

Therefore whilst an F; sib-cross was the intended crossing strategy for the F, population, self-pollination was
also present. In each direction of the reciprocal sibcross, the mother plant self-fertilised at a high rate, and as
a result, instead of two F, subpopulations derived from the F; sibcross in each direction, a further 2
subpopulations were created from selfing of each F; mother plant.

This cross was repeated on two separate occasions in order to generate more F, plants for linkage mapping,
therefore in total this population contained 8 subpopulations for genetic linkage mapping. Please refer to

Figure 2-1 (materials and methods), for an illustration of the intended and actual population structures.

4.1.2: Heterozygosity in G51 enabled population structure to be determined through
the use of informative marker loci

The complex population structure of G51XCV as described in fig 2-1, was determined through informative
marker analysis. Whilst selfing of genetically uniform F; plants would be identical to sib-crossing, selfing
and sib-crossing of two heterogeneously heterozygous (non-uniform) F; plants would have different
outcomes on the genetics of the F, offspring. To illustrate the non-uniformity of the F, plants, F1; was 86 %

heterozygous, whereas F; , was 82.5 % heterozygous.

Ironically, the heterozygosity in G51 that gave rise to this complex population structure, also created
informative marker loci that enabled this population structure to be elucidated. Please refer to Figure 2-2
(materials and methods) which explains what informative marker loci are, and how they were used to inform

the population structure and parentage of each F2 plant in this project.
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4.1.3: Heterozygosity in G51 is likely to represent underlying genetic similarity to CV,
rather than non-informative marker loci, therefore heterozygous loci have been
included to maximise accuracy of downstream linkage and QTL mapping

A model F, population is created from two homozygous, genetically-distinct lines e.g. Parent 1 would be all
‘aa’ genotype, whereas parentage 2 would be all ‘bb’ genotype. In this population the parent G51 was

partially ‘ab’.

There are two implications for the heterozygosity in G51. Either these ‘a’ alleles indicate that the underlying
genetic region is identical to the CV parent, in which case the genotype of these markers is fully informative,
or that the underlying genetic region is different in the two parents and the markers developed for these
regions are only 50 % informative. In either scenario the parent of origin cannot be distinguished in the F,
generation, however if the marker allele is informative of the underlying genetic region/alleles, as in the first
scenario, then the markers can be used to measure the association of genetic alleles to phenotypic

measurements during QTL analysis, and therefore provide value for QTL mapping.

All markers used in this study are co-dominant, however SSRs provide an additional level of informativeness
due to their continuous rather than digital nature in comparison to SNPs. SNPs can have a maximum of 4
alleles (A,C,T,G), whereas SSRs can potentially have any number of repeats, giving greater ability to
differentiate the genetic origin of particular sequences. It is because of this that the first scenario would seem
more likely; that the heterozygous regions in the G51 parents are 50 % identical to the CV parent (rather than
the loci being completely genetically distinct but just the marker scores being shared). If the heterozygous
regions in the G51 parent were heterozygous regions originating from a completely genetically distinct line
from the CV parent, the chance that all heterozygous loci would have identical SSR lengths (or alleles) to the
CV parent by chance is low (given that there are 93 informative loci that share the identical number of SSR
repeats as the CV parent).

It is therefore more likely that the G51 parent shares some genetic relatedness to the CV parent, a scenario
supported by the small centre of origin for this species and the lack of genetic diversity observed so far in
comparison to most other (despite being more highly cultivated) crop species. Therefore the marker scores at
these loci would seem fully informative in terms of the underlying genetic alleles present, and are included in

downstream analysis for linkage and QTL mapping.

4.1.4: The G51xCV genetic linkage map, derived from 229 F2 plants, comprises 312
co-dominant DNA markers spread over 11 linkage groups

Genetic linkage mapping in the G51xCV mapping population was carried out using 229 F, plants, and 312
SNPs and SSR markers. Correct parentage of F, plants was ascertained using informative marker loci as
described above, and linkage mapping carried out using Crimap software, which is able to incorporate the
complex population structure of the G51xCV mapping population. A robust quality control and error
checking process was also incorporated to maximise robustness of the linkage map. See ‘Materials and

Methods’ for a detailed description of the Crimapping procedure.
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Figure 4-1 The G51xCV Genetic Linkage Map, Linkage groups 1-11.
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The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups with a genome
wide marker density for unique loci of 2.969 cM. Markers physically linked to candidate genes have been highlighted in
bold. In this population, 44 candidate genes have been mapped for oil content, oil composition, branching and flower

ratio traits.
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Table 4-1 The G51xCV genetic linkage map statistics.

Summary statistics for the G51xCV linkage map are presented below._ The G51xCV linkage map consisting of 312 co-
dominant markers, 11 linkage groups and a total genetic distance of 621 cM, has a mean marker density of between
2.21 cM (LG04) and 7.58 cM (LG09) for unique loci.

—_

Linkage Group 1 2 3 4 5 6 7 8 9 10 11 All
SSRs 6 9 15 12 10 10 10 9 6 16 14 117
SNPs 15 5 18 27 27 15 12 30 3 16 13 181
Markers
EST SNPs | 4 0 3 0 1 2 0 2 0 2 0 14
Total 25 14 36 39 38 27 22 41 9 34 27 312
Total Loci 18 12 26 27 21 17 15 31 8 15 20 210

Total Distance (cM) 46.1  78.3 | 55.6 | 57.5 ]| 44.0 [ 50.0 | 73.2 | 64.7 | 53.0 | 49.8 | 48.3 | 621

l\D/Iarkfr All markers | 1.92 | 6.02 [ 1.59 [ 1.51 | 1.19 [ 1.92 | 3.48 | 1.62 | 6.63 | 1.51 | 1.86 | 2.00
ensity

(cM) Unique loci | 2.71 | 7.12 [ 223 | 2.21 | 2.20 | 3.13 | 5.23 | 2.16 | 7.58 | 3.56 | 2.54 | 2.97

Table 4-1 shows the G51xCV genetic linkage map summary statistics. The G51xCV linkage map consisted
of 312 co-dominant markers, spread over 11 linkage groups and covering a total genetic distance of 621 cM.
Marker density is 2.97 cM per unique locus across all linkage groups, and ranges from 2.21 ¢cM (LG04) to
7.58 cM (LGO09) per unique loci in individual linkage groups. Markers physically linked to candidate genes
identified from Jatropha genome sequence (Sato et al., 2011) have been highlighted in bold, Figure 4-1. In
the 51xCV population, 44 candidate genes have been mapped for oil content, oil composition, branching and

flower ratio traits.

The 11 linkage groups presented here are in agreement with cytological evidence on J. curcas chromosome
number (Carvalho et al., 2008) and a previously published interspecific linkage map (Wang et al., 2011).
Based on the total genetic distance mapped of 621 cM, and cytological evidence suggesting the Jatropha
genome size to be 416 Mbp (Carvalho et al., 2008), a genetic distance of 1 cM is corresponds to

approximately 0.7 Mbp or 700Kbp on this map.

4.1.5: Physical alignment of the G51xCV linkage map, to independent mapping
populations and the combined population linkage map, confirms mapping accuracy
and genome coverage for G51xCV

Figure 4-7 to 4-19, Appendix 4.6.2, shows the physical alignment of the G51xCV, and other population
linkage maps that together were used to build the combined linkage map - an example of which is presented
below, Figure 4-2. This alignment was made possible by the fact that all 4 populations used the same DNA
marker set. Markers that were mapped in multiple populations have been connected by black lines to

facilitate comparison.
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Figure 4-2 Physical alignment and comparison of linkage maps from independent mapping populations and the

combined population dataset.

Alignment of independent mapping population linkage maps was used as a way to confirm accuracy of individual maps.
Linkage groups are annotated with the format (linkage group number)_(Mapping population); the above is an example of
linkage group 1 alignment (LG1) for populations QV01, QV02, G33xG43, G51xCV (the principle population for this thesis
study), and the combined genetic linkage map. Markers that were mapped in more than one population have been
connected with dark black lines to aid comparison. As can be seen by the connecting lines, marker order and spacing is
highly conserved across individual linkage groups, indicating that the markers and datasets generated from independent
mapping populations are robust and accurate. Marker spacing (genetic distance) is likely to be most accurate in the
combined genetic map since this represents the largest sample size from which recombination frequency has been
calculated (a total of 989 F2 plants). As with marker order, genetic distance is also highly conserved across independent

mapping populations. Comparisons of linkage groups 1-11 are including in the appendix.

Physical alignment enables the level of consensus between individual linkage maps to be established, and by

doing so gives an indicator of the relative accuracy and robustness of individual population datasets. This

comparison works on the principle that marker order and recombination rate should be conserved across each

population, since the physical position of the DNA markers are constant in the Jatropha genome. Overall one

can see that marker order and spacing is highly conserved, and for G51xCV, indicates that this is an accurate

linkage map that contributes robust data to the combined genetic linkage map, as well as providing the

foundation for accurate QTL mapping in Chapter 5. This alignment technique was used to carry out

comparative mapping during later rounds of linkage mapping as outlined in the materials and methods of this

thesis.

4.1.6: Quantification of gaps on linkage maps highlights regions requiring further
mapping and also suggests areas of low polymorphism and regions identical by

descent

Physical alignment of individual maps, as presented above, enables visual comparison of marker order,

spacing and coverage between individual linkage maps and the combined genetic linkage map and also
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highlights areas of low marker density for future improvement of the maps. Whilst this visual comparison
enables an overall impression to be gained, a quantitative approach enables gaps to be identified more
systematically, according to predetermined thresholds.

For example it is reckoned that a spacing of 10-20 cM between markers represents a robust marker coverage
that is capable of capturing all QTL effects. Similarly for accurate genetic linkage mapping, double

crossovers are thought unlikely to occur within distances smaller than 15 ¢M due to crossover interference.

Quantification of internal gaps can be done by map position of flanking markers. For missing regions at the
end of linkage groups, comparison to the combined linkage map has been carried out, since this represents
the most accurate and robust linkage map based on sample size (989 F2 plants). To carry out this comparison,
the position of the nearest shared end marker between the individual and combined map is used as the
reference point. The distance of the marker to the end of the linkage group on the two linkage maps gives an

indication of the amount of the missing region on the individual map, compared to the combined map.

Table 4-2 Quantitative analysis of the number of regions in individual population maps that could be targeted
with additional markers
The table below shows regions that could be targeted with additional markers and highlights that certain regions show

low polymorphism across multiple independent mapping populations, suggesting regions identical by descent. Gaps are
measured by flanking markers in the population map containing the gap, whereas end regions are calculated by
comparison to the combined genetic map, since this represents the best estimation of genetic distance. Numbers are in
¢M, and symbols represent location; G = internal gap, T = top of linkage group, B = bottom of linkage group. Regions of
low marker density across all maps, suggesting regions identical by descent, are highlighted in red.

Mapping Population

Linkage | ceiycv  G33xG43  QVOL  QV02
group
Map JG Clarke  AJKing AJKing  AJKing
author
g e oo

3 36.3T

4

5

6

7 s 1278

8

~ 10 [1986 1696 1796
11 I 15.5G

Count |7 6 3 2

As can be seen by the table, alignment of linkage maps using shared markers has enabled regions that require
further mapping to be identified. Quantitative analysis of the G51xCV map shows that there are just 3 regions
spanning greater than 20 cM, and 5 regions greater than 15 cM (LG 2,7,9 & 10), and so the probability of
missing double crossover events, and therefore underestimating genetic distance, is very low for most areas
of this linkage map. Similarly, high significance QTL are expected to be detected by this marker density,
although further mapping is required to ensure low significance QTL are not present in the larger gaps on

linkage groups 7 & 9.
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It is interesting to note that many of the identified regions tend to cluster around the same linkage groups in
different populations (highlighted red), suggesting that these regions are areas of low intraspecific
polymorphism or regions identical by descent from a shared ancestral line. Comparative mapping using
aligned linkage maps from individual populations, and comparative mapping using castor bean microsynteny,
did not yield any polymorphic SSR markers in these regions. Similarly, randomly or unbiasedly selected
genotyping by sequencing SNPs did not fall in these regions by chance. This would suggest that these could
be low polymorphism regions (similar in both parental lines), or so called ‘identical by descent’ regions (i.e.
they have remained unchanged from the common ancestral line). Identical by descent regions are thought to
be maintained by stabilising or positive selection, often at a very early stage in plant development such that

they can persist through the selective pressures during a plant’s life cycle (Jordan et al., 2005).

4.1.7: In addition to identifying regions of low marker density in G51xCV,
comparative mapping also highlights isolated markers that are accurate, that
otherwise would have been excluded during the genetic linkage mapping process.

The 5 regions greater than 15 cM in G51xCV, are all present towards the end of linkage groups, and are
marked by single markers in some cases. Such markers would normally be suggestive of an erroneous marker
showing a spurious linkage, however alignment of maps from other mapping populations suggest that these
markers are correct, as either these particular markers have been mapped to the same region in an
independent mapping population, or they map a region covered by different markers in another population.

For this reason they have been included on the G51xCV map.
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4.2: Incorporation of G51xCV data and SSR markers, contributes towards the
combined genetic linkage map; a robust and comprehensive linkage map for J. curcas
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Figure 4-3 The Combined Genetic Linkage map derived from four F, mapping populations (989 F2

plants)

In total, 589 co-dominant markers map 11 linkage groups and a genetic distance of 733 cM. Average marker density is
1.62 cM per unique loci. A total of 67 candidate genes and trait-related metabolic genes are mapped (highlighted in

bold).
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Table 4-3 The Combined Linkage Map; Marker and Map Statistics.
Summary statistics for the combined genetic linkage map. The 594 co-dominant markers, spread over 11 linkage groups,

map a total distance of 733 cM. Genome wide marker density for unique loci is 1.62 cM, individual linkage group marker
densities range from 0.96 cM (LG11) to 2.98 cM (LG09).

Linkage group 1 2 3 4 5 6 7 8 9 10 11 All
SSRs 19 |15 |28 18 18 16 12 39 9 19 20 213
SNPs 19 |16 |31 29 |40 |31 25 48 13 29 |37 318
Markers
ESTSNPs | 6 11 |7 2 4 9 3 4 3 2 7 58
Total 44 |42 |66 |49 62 | 56 40 91 25 50 64 589
Total loci 34 |3 |52 39 |49 |43 34 71 24 134 |49 464

Total distance (cM) 50.4(855]69.2 628 |60.8|814|745|67.2]|685]57.1|554] 733

g/larkter All markers | 1.17 [ 2.08 | 1.07 | 1.31 | 1.00 | 1.48 | 1.91 | 0.74 | 2.86 | 1.16 | 0.88 | 1.24
ensity

(cM) Unique loci | 1.53 [ 251 | 1.36 | 1.65 [ 1.27 | 1.94 | 2.26 | 0.96 | 2.98 | 1.73 | 1.15 | 1.62

Table 4-3 and Figure 4-3, show the combined genetic linkage map and statistics. As can be seen 589 co-
dominant markers were mapped across 11 linkage groups, with a mean marker density of 1.62 cM per unique
locus. The lowest marker density for individual linkage groups was 2.98 cM (LG09). This map was made
from 4 independent F, mapping populations, each containing between 220 to 320 F, plants. Since all four
mapping populations used the same set of DNA markers, recombination data for the combined map was
calculated from a combined population size of 989 F, plants. Markers physically linked to candidate and

trait-related metabolic genes have been highlighted in bold. In total 67 candidate gene markers were mapped.
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4.3: DNA Marker analysis

4.3.1: DNA markers used throughout the genetic linkage mapping process show
differing performance

During the course of genetic linkage mapping for this project, a number of properties were of interest relating
to how efficiently a DNA marker could be mined, genotyped and mapped. In this section, the DNA marker

set will be analysed to obtain insight into marker performance within this genetic mapping process.

Table 4-4 Comparison of EST SNP and SSR marker performance

(a) Marker Type

EST
Marker type SNPs Short Sequence Repeats (SSRs)
Author AJ King All AJKing | JG Clarke | R Santos
Number of marker
primers designed 104 683 371 288 24
(b) Marker outcome
Polymorphic 73 317 190 115 12
Not polymorphic 5 263 114 147 2
Failed 22 82 57 15 10
Not tested 4 21 10 11 0
Total 104 683 371 288 24
Mapped 58 213 129 74 10
(c) Success rate (%)
Fail rate 22 12.4 15.8 5.42 41.7
Polymorphism rate | 93.6 54.7 62.5 43.9 85.7
Map rate 79.5 67.2 67.9 64.3 67.2

Table 4-6, gives attribution for the DNA markers developed, and enables a comparison of EST SNP and SSR
marker performance during the linkage mapping process. Part (a) lists the number of marker sequences
mined and primers designed over the course of the project. In total 104 EST SNP markers were mined and
designed (Andy King), of which 73 were polymorphic and 58 were successfully mapped (Andy King, J
Clarke). In total 683 SSR marker sequences were mined and primers designed (Andy King, Jasper Clarke,
Roberto Santos), of which 317 were polymorphic and 129 were successfully mapped (Andrew King, Jasper
Clarke). Individual attribution for each marker type is given in the table. Part (c) highlights the success rate of
markers throughout the linkage mapping process. Fail rate measured as ‘Total failed/Total tested (Total
tested = Total designed-Not tested)’, looks at the proportion of markers that failed PCR amplification. This
can therefore be thought of as a reflection of both the accuracy of the target sequence on which the primers
were designed, and the success of the primer design since both PCR cycling conditions and PCR reagents
were kept constant throughout this work. Polymorphism rate, measured as ‘Total Polymorphic/Total
successfully tested (Total successfully tested = Polymorphic + Not polymorphic)’, looks at the proportion of
markers that, following successful PCR amplification, were found to be polymorphic in the populations
tested. This can therefore be thought of as a measure of the polymorphism of the target sequence.
Polymorphism rate of the target sequence is itself influenced by the type of SSR targeted and level of

polymorphism between the lines tested. Map rate, measured as ‘Total mapped/total Polymorphic’, asks the
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question, ‘of the markers found to be polymorphic, what proportion successfully made it through to the final
linkage map?’ Factors that can affect this rate are the ease of scoring during genotyping, and the robustness

of amplification throughout the F, population.

Map rate for the EST SNPs is considerably higher than for the SSR markers, probably reflecting the ease and
unambiguity of scoring, particularly for KASPAR markers. In contrast, SSRs can have complex patterning,
particularly for complex or compound repeat sequences and also contain PCR artefacts that can be difficult to
accurately distinguish (Schlotterer, 2004). Multiplexed primers can sometimes interact in unforeseen ways
meaning a portion of markers fail the F2 genotyping or mapping process despite being polymorphic when
tested individually.

The fail rate of SSR markers is low, averaging 12.4 % across the combined dataset. Polymorphism rate is
substantially lower than the EST SNPs, as expected, since SSRs are not identified as polymorphic prior to
PCR amplification. Polymorphism rate, instead, reflects a combination of the level of polymorphism or
genetic relatedness of the parental lines tested, and the type of SSR targeted. Different SSR sequence lengths
can differ in polymorphism rate due to the ease in which DNA polymerase slippage and DNA mismatching
can occur during DNA replication, a point that will be explored later. Since this data has not been grouped by
the lines tested or type of SSR targeted, these values should represent an averaged value across all markers

and populations according to those tested by the listed authors.

The observed variation in polymorphism rate between the individual authors for SSR markers reflects the
difference in function that these markers were developed for, in terms of the proportion of the total for each
author. Mapping of gaps in the linkage map represents a drop in polymorphism rate for several reasons. By
definition these regions tend to have lower polymorphism rates as otherwise the randomly distributed
markers would have been expected to fall within these regions by chance. Secondly, since mapping of gaps is
specific to individual maps from individual populations, these markers are only tested in single populations,
effectively decreasing the chance of polymorphism by 4. Mapping of candidate genes can also have a similar
effect, since particular candidate genes are developed for specific populations. It is an important aim of this
type of analysis to deconstruct and differentiate between these various influences on marker performance, so
that the individual effects of each factor can be clearly seen, as well as the underlying/intrinsic performance
rate of this particular marker type when such influences are removed. Such data is then informative for future

use if such markers are used again.

Influences of the sequence source, function/application for which the markers were developed and the type of

SSR targeted on SSR marker performance will be explored in greater detail in this chapter.

This analysis highlights the difference in performance statistics between EST SNPs and SSRs. General rules
can be identified, such as the difference in fail rate between markers developed from transcribed DNA and
genomic DNA (due to the presence of introns and regulatory elements), the difference in polymorphism rate
between markers developed from comparative sequencing data compared to genome sequence (and whether
polymorphism is identified in silico prior to PCR amplification), and the difference in mapping rate between
EST SNPs and SSRs (due to the differing systems used to amplify and score these markers). SSR
performance rates indicate the average rates over the course of the project, without differentiating marker

source, function or type of SSR targeted.
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Table 4-5 SSR Marker Source analysis

(a) SSR Marker Source
3
=
g
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o 2 =
€ | o > =
=l g8 2| g g g @
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2182 5| 3] 5] S =| §
L | >0 > 4 4 ” n >
El5S| S| 8| 3| 8 e 2
m|gg| & 2| 2| g 5| O
[ 5 x 5 > > > c
SSR Source = 3 £ £ 2 R < | Total
Number of
Marker Primers
Designed 74 19 3 9 17 23 530 8 683
Author(s) A 1A 1AW 1AW 1AW W W W
(b) Primer outcome
Polymorphic 31 12 2 2 11 14 240 5 317
Not Polymorphic | 28 4 1 1 5 8 215 1 263
Failed 15 3 0 6 1 1 54 2 82
Not tested 0 0 0 0 0 0 21 0 21
Total 74 19 3 9 17 23 530 8 683
Mapped 28 11 2 2 10 13 143 4 213
(c) Success rate (%)
Fail rate 20.3 | 158 |0 66.7 | 5.88 | 4.35 | 10.6 25.0 | 124
Polymorphism
rate 525 | 75.0 | 66.7 | 66.7 | 68.8 | 63.6 | 52.7 83.3 | 54.7
Map rate 90.3 [91.7 | 100 | 100 |90.9 |92.9 |59.6* 80.0 | 67.2
*Map rate excluding markers developed for gap filling = 77.6 %
Authors Previous studies
SSR mining, primer design and polymorphism (1) (Sun etal., 2008)

testing carried out by: ‘ (2) (Phumichai et al., 2011)
(A) Dr. Andrew J. King (3) (Wang et al., 2011)
(B) Jasper G. Clarke (4) (Satoetal., 2011)

Table 4-5 analyses the SSR markers according to the sequence source from which they were mined. Part (a)
lists the different marker sources in the order that they were carried out during the project (from left to right),
the number of primers designed and the author(s) attributed with this work. Part (b) lists the outcome of
primer testing, and part (c) the performance statistics including fail rate, polymorphism rate and map rate,
calculated in the same way as described in the table 4-6 analysis.

SSR markers were mined from a variety of sources. This included transcribed DNA in the form of EST
enriched libraries (column 2) or publically deposited mMRNA/cDNA submissions (column 3), GenBank
nucleotide submissions (column 4), markers used to characterise J. curcas genetic variation in previously
published studies (column 5 & 6), markers mined from the Jatropha genome sequence (column 8), markers to

anchor previously published linkage maps (column 7), and markers mined from Bacterial Artificial
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Chromosome (BAC) sequencing for fine mapping applications (column 9). The majority of markers were
mined from EST enriched libraries and the Jatropha genome sequence (together accounting for 88.4 % of
total markers designed).

Comparison of markers developed from transcribed DNA (columns 2 & 3) to markers developed from
genomic DNA sequence (columns 6-8) shows the characteristically higher fail rate (as observed with EST
SNPs table 2) due to the absence of introns and other regulatory sequences in transcribed DNA, leading to a
greater PCR primer fail rate when amplifying from genomic DNA. Polymorphism rate should not have a bias
between transcribed and genomic DNA marker sources, since neither of these marker groups have been

identified as polymorphic prior to polymorphism testing.

Here we see polymorphism rates that vary between a lower end of just over 50 % (for EST enriched library
and genome sequence), to the majority of sources being between mid to high 60’s (66.7 %, 66.7 %, 68.8 %,
63.6 %) to a high score of 75 % (for publically deposited ,RNA/cDNA). Polymorphism rate does seem to be
lower for EST enriched library SSR markers and genome sequence SSRs. In part this can be explained by the
function for which the markers were developed. For genome sequence derived SSRs, a significant proportion
were developed to fill in gaps during later rounds of linkage mapping, map candidate genes or fine map QTL.
All of these applications are specific to individual populations, reducing the number of populations each
marker was tested in and therefore the chance of polymorphism. In addition, markers designed for gap filling
are specifically targeting low polymorphism regions, which otherwise would be expected to be covered by
the randomly distributed markers by chance. The fact that subsequent SSR markers targeted to these regions
through comparative mapping techniques also show a low polymorphism rate confirm that these gaps tend to
be low polymorphism regions. Polymorphism rate is expected to be lower in the EST enriched library source
since greater evolutionary pressures operate on coding DNA, shortening average SSR repeat sequence length
in comparison to genomic SSRs and limiting the frequency of repeat sequence expansions/contractions that
would be expected to have an impact on protein function. Given that we know these influences are reducing
polymorphism rates in genome sequence sourced SSRs, it seems likely that the rate of between 65-70 %
polymorphism as observed for the majority of the other sources reflects the most accurate indicator of

underlying polymorphism across these populations for SSR markers.

Map rate (defined as ‘Total markers mapped/total markers polymorphic’; see table 1.3) should also be
constant since all markers were scored in the same manner, and each category is composed of a mixture of
different SSR types. Here we see the majority of markers are within the 90 % or greater range, with the
exception of Genome Sequence derived SSRs. The drop in map rate observed for genome sequence SSRS can
be explained by the fact that this group contains markers developed for the mapping of gaps in later rounds of
linkage mapping, and mapping of candidate gene markers specific to particular populations. The approach
used to map gaps was to target multiple SSRs per locus with only 1 polymorphic marker needing to be
mapped during linkage mapping. To illustrate the effect that the application for which the SSR primer was
developed has on map rate, when markers developing for gap filling are removed from this group, map rate
increases to 77.6 %. Candidate gene mapping can again be specific to individual populations such that if the
marker is not polymorphic in that specific population there is no point in mapping in other populations that
the marker may be polymorphic, particularly if the region is already mapped. It seems likely that a map rate
of ~90 % represents the most accurate reflection of the rate of mapping SSRs mined from genome sequence

in this dataset when all other specific influences are removed.
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Taken together, these points suggest that the most representative performance statistics for SSR markers
mined from genome sequence, are a fail rate of between 5-10 % (excluding the influence of markers designed
from transcribed DNA), a polymorphism rate of ~60-65 % (excluding the influence of markers targeted to
low polymorphism regions and tested in single populations), and a map rate of around 90 % (excluding
markers where several SSRs were targeted per locus or markers were developed for specific populations).

Table 4-6 SSR Marker Function/Application and performance

(a) SSR Marker Function (ordered by number mapped)
Non-specific
. _ Candidate Gap fiIIing_ gene Non-_ _ Map
unction Genes (comp_aratlve mapping SpECIf!C anchoring
mapping) (transcribed | mapping Total
sequences)
Designed 197 284 96 83 23 683
Author (A)(B) (A)(B) (A) (A) A)
(b) Primer outcome
Polymorphic 100 116 45 42 14 317
Not Polymorphic | 71 128 33 23 8 263
Failed 15 30 18 18 1 82
Not tested 11 10 0 0 0 21
Total 197 284 96 83 23 683
Mapped 67 57 41 35 13 213
(c) Success rate (%0)
Fail rate 8.1 10.9 18.8 21.7 4.3 12.4
Polymorphism
rate 58.5 475 57.7 64.6 63.6 54.7
Map rate 67.0 49.1 91.1 83.3 92.9 67.2
Authors

SSR mining, primer design and polymorphism testing carried out by:
(A) Dr. Andrew J. King

(B) Jasper G. Clarke

Table 4-8 shows the SSR markers grouped according to function/application in the project. Part (a) lists
application in order of number of markers mapped (from left to right), the number of primers designed and
the authors responsible for the work. As can be seen, a total of 683 markers were developed, of which 197
were for candidate gene mapping, 284 for second generation linkage mapping, 96 were for non-specific gene
mapping based on transcribed sequence data, 83 were for non-specific mapping and 23 for anchoring linkage
groups to a previously published linkage map. Part (b) lists the outcome of primer testing. In summary, the
following number of SSRs were mapped for each application: 67 for candidate gene mapping, 57 for second
generation linkage mapping, 41 for non-specific gene mapping using transcribed sequence, 35 for
unspecified mapping, and 13 for anchoring linkage groups to previously published maps. In total this gives
213 SSR markers mapped. Part (c) lists the performance statistics for each category of SSR, in fail rate,

polymorphism rate and map rate.

As can be seen by the statistics listed in parts (a) and (b), Candidate gene mapping was the predominant
applications of SSR markers used in this project. Total primers for these categories combined account for

70.4 % of all markers designed. Looking at the fail rates across the groups, we see that the typical ~5-10 %
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fail rate (4.3 % map anchoring to 10.9 % for gap filling) is observed with the exception of the markers mined
from transcribed sequences (18.8 %), which, as already discussed, have a characteristically higher fail rate
due to the presence of introns and other regulatory elements not present in the genomic DNA that PCR
primers are tested on. This fail rate of 18.8 % is very similar to the EST-SNP marker fail rate (22 %, table 2),
which were also designed from transcribed DNA.

Map rate is at the typical ~90 % rate for all groups except candidate genes and gap filling, ranging from 83.3
% for non-specific mapping to 92.9 % for Map anchoring. As previously discussed, a drop in map rate in gap
filling is expected due to multiple SSRs being targeted per locus, and for candidate genes, such gene markers

only being required in the populations harbouring the specific traits of interest.

To summarise this analysis, SSR markers have been predominantly used for the mapping of candidate genes,
later stage linkage mapping to improve areas of low marker density. A significant proportion of markers were
also developed from an EST enriched library to map expressed genes in a less specific manner. As observed
with previous analyses, markers designed from transcribed DNA show a characteristically higher fail rate
compared to markers mined directly from genomic DNA. Markers designed for gap filling has a lower
polymorphism and map rate, due to markers targeting lower polymorphism regions and being specific to

individual mapping populations.

Table 4-7 SSR SSR repeat sequence size and performance

(a) SSR Repeat Sequence

Repeats seq size

(X)n 1 2 3 4 5 |6 7 | Complex | Unknown | Total

Number of marker

primers designed 2 332 119 14 3 |10 2 | 66 135 683
(b) Author

Al King 0 183 43 4 0 |5 0 |25 135 395

JG Clarke 2 149 76 10 3 |5 2 |41 0 288

Total 2 332 119 |14 3 |10 |2 |66 135 683
(c) Primer outcome

Polymorphic 1 169 41 0 0 |5 0 |27 74 317

Not Polymorphic 1 99 64 12 3 |4 2 |33 45 263

Failed 0 51 10 1 0 |1 0 |4 15 82

Not Tested 0 13 4 1 0 |0 0 |2 1 21

Total 2 332 119 | 14 3 |10 |2 |66 135 683

Total Mapped 1 123 32 0 0 |5 0 |18 34 213
(d) Success rate (%)

Fail rate 0 16.0 870 | 769 |0 |10 |0 |6.25 11.2 12.4

Polymorphismrate | 50 | 63.1 39.0 |0 0 | 556 |0 |45 62.2 54.7

Map rate 100 | 72.8 780 |0 0 | 100 |0 | 66.7 45.9 67.2

Table 4-7 shows the performance of individual types of SSR SSR. Part (a) lists the number of SSRs mined
and primers designed for each SSR sequence type. Part (b) lists the authors responsible for the work, and the
number of primers designed for each SSR type. Part (c) lists the outcome of primer testing and part (d) lists

the overall success rate of each SSR type in fail rate, polymorphism rate and map rate.
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In this project, repeat sequences of 1 to 7 nucleotides were targeted for simple repeat SSRs, as well as
complex SSRs consisting of either or both elements of (a) multiple repeat sequence sizes (compound SSRS)
or (b)interrupted SSRs (repeat sequences interspersed with non-repeat sequence). Complex SSRs were mined
using ‘Imperfect SSR’ software as described in Materials and Methods. The most commonly used SSR was
the dinucleotide (xx),and trinucleotide (xxx),repeat sequences with 332 and 119 sequences mined
respectively. There was also a significant quantity of complex SSRs (66 sequences). Unknown SSRs reflect a
number of unannotated SSRs included in order to maintain continuity in overall/total marker statistics. As
can be seen, all authors predominantly targeted the shorter repeat sizes of two and three nucleotides,
reflecting the fact that these were often the most common SSR type found and often the largest in total

number of repeats units.

It can be expected that the shorter the repeat motif and the greater the number of repeat units, the more likely
the chance of polymorphism (Lai and Sun, 2003, Schlotterer and Tautz, 1992). SSR expansion is thought to
be caused by a combination of DNA polymerase slippage and DNA mismatching during DNA replication,
leading to the formation of loop structures that enable these repeat stretches to expand or contract over time
(Li et al., 2002). Both DNA polymerase slippage and DNA mismatching are more likely to occur with shorter
repeat motif sequences due to the smaller physical distances between each repeat unit making replication
errors, such as slippage and mismatching, more likely to occur. Longer repeat stretches facilitate the

formation of loop structures during replication and can also be expected to facilitate changes in repeat length.

Part (c) lists the outcome of primer testing and part (d) an analysis of these values to indicate overall marker
performance. Fail rate was expected to have been constant across all groups since the different marker
sequence sources (such as transcribed or genomic DNA) were distributed across all groups. Fail rate ranges
from 6.25 % for complex SSRs to 16 % for dinucleotide repeats, roughly keeping to the 5-10 % fail rate
observed previously, with a variation from the mean rate of 12.4 % of -6.15 % and +3.6 % for these two most

extreme groups respectively.

Polymorphism rate would have been expected to vary depending on the type of SSR targeted. The three
largest groups, 2, 3 and complex SSRs, are most informative in this regard due to the higher number of
markers tested. Here we see that dinucleotide repeats have a significantly higher polymorphism rate
compared to trinucleotide and complex SSRs, as expected. Interestingly, complex SSRs have a higher
polymorphism rate than trinucleotide repeats, suggesting that elements such as short non-SSR sequences in
the middle of SSRs, or mixtures of different repeat sequence sizes, are not in themselves a major factor

limiting repeat expansion over time.

Map rate, as previously discussed can be thought of as an indicator of the ease of scoring and robustness of
amplification across the F2 population, after other factors such as the application for which they were
developed are taken into account. Since this data is not grouped according to application, the effects of
markers developed for gap filling which have a lower map rate, for example, should be distributed across all
of the groups being compared here, enabling the relative map rates of each group to be fairly compared.

Amplified SSRs create a characteristic amplification pattern depending on size and type of repeat sequence,
and the alleles present. Allele sizes that are very similar can interact to form additional patterns due to
overlapping peaks. It could therefore be expected that different repeat sizes and types could have different
emergent map rates, as the number of primers tested increases to greater numbers. We know that the
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function/application for which the SSR were developed affects map rate, however this effect should be
reduced since the groupings in this analysis do not have any bias towards function/application, and so the
effect of these markers should be split between the different SSR repeat categories, such that the relative rates
of each category can be compared.

We do see a difference in map rate between the three largest categories, 2, 3 and complex SSRs which have a
72.8 %, 78 % and 66.7 % map rate observed respectively. This data would suggest that trinucleotide repeats
are slightly easier to score than dinucleotide repeats, which can be true when the polymorphism level is a
single repeat unit difference. Here a 3 bp difference in PCR product compared to a 2 bp difference could be
expected to be easier to differentiate when scoring in terms of less overlapping sequences trace. However, it
is the authors’ experience that these two categories do not present a substantial difference in ease of scoring,
and so the differences could be due to the number of markers in each category that were developed for
different applications, although a slight drop can be observed for complex SSRs which may be due to the
more complex trace patterning that these class of marker produce. A substantial difference in map rate is not
observed between different SSR repeat sequence types, suggesting that there is not a great difference in the

ease of scoring and the robustness of amplification between the different categories.

A remaining factor that is not covered in this analysis is the number of repeat units and its effect on
polymorphism rate. As previously discussed, the longer the repeat sequence stretch the higher the
polymorphism rate is expected to be, due to the greater number of opportunities available for DNA slippage
and mismatching to occur and the ease at which loop structures would be expected to be formed. However,

data for this property was not available for analysis.

Nevertheless, this analysis supports the hypothesis that shorter repeat motifs have a higher polymorphism
rate, and therefore should be preferentially targeted for the development of DNA markers. This analysis also
highlights the fact that complex SSRs, particularly those consisting of short repeat sequence sizes, should
also be considered for SSR marker development, highlighting the importance of using software that is

capable of recognizing these complex sequence types in genomic or transcribed DNA sequence.

4.4: Discussion

Breeding programmes that intend to utilise Marker Assisted Selection (MAS), require a number of genetic
resources. Genetically and phenotypically distinct lines are required to form mapping populations.
Phenotypic variation should be present in the trait of interest, and genetic variation should be present to
ensure that such traits are heritable, and that they can be tracked throughout a segregating population. A
comprehensive set of DNA markers are required to track individual loci, assess their performance on
phenotype and ultimately inform selection of lines containing beneficial QTL. DNA markers should cover
the complete genome, and ideally be placed as close to, and flanking, any QTL present. The chance of
marking functionally relevant loci and causative mutations is increased by mapping expressed genes and
candidate genes. DNA markers need to be grouped, ordered and their relative distances calculated so that the

resulting linkage map can be used to most accurately detect and locate QTL.

In this study, genotyping and genetic linkage mapping of the G51xCV mapping population was used to
generate a genetic linkage map and to contribute data towards the combined genetic linkage map along with

data from three other populations.
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DNA marker production across these populations was facilitated by the genetic similarity of one parental line
in each population. This reference line, to which the other lines containing beneficial traits was crossed, was
genetically very similar to the majority of material used across the world as determined by genetic
characterisation work (Yue et al., 2014, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al.,
2011). By using a single reference line in each population, the chances of DNA markers being polymorphic
across multiple populations was increased. This increased the number of markers available per population,
and increased the value per marker versus the resources required to produce it. The genetic similarity of the
reference lines to widely used material will facilitate introgression of beneficial QTL identified by this study,
as the DNA markers disseminated should be directly transferable, and QTL performance will have been

established in a genetically-similar background.

Markers with polymorphism in multiple populations not only improve marker density and facilitate QTL
mapping in individual populations, but such shared markers have numerous benefits for comparative

mapping and linkage mapping from combined datasets.

Alignment of the individual mapping population linkage maps was possible due to these shared markers.
Since the physical location of these markers in the J. curcas genome remains constant in each population,
marker ordering and recombination rate should be similar, which should lead to identical marker ordering
and similar marker spacing in all individual population linkage maps. Alignment and comparison of shared
marker positions between maps, enables relatively accuracy and consensus to be determined across each
population, and serves as an excellent quality control for the overall mapping process. Marker ordering,
spacing and total distance mapped remains highly conserved between all independent population maps,

indicating the robustness and accuracy of each dataset.

Following alignment, such shared markers also become useful for comparative mapping. After linkage maps
are aligned, markers in one map that correspond to gaps in another, can be used to target additional markers
to the regions required. The markers corresponding to the gap are used as probes to retrieve J. curcas genome

sequence contigs; these contigs can then be scanned for additional SSR markers.

Lastly, shared markers substantially improve the accuracy of the combined linkage map by increasing the
recombination data available for these markers, which account for a significant portion of the total markers
mapped. This substantially improves the accuracy of the calculated genetic distances and marker ordering,
since sample size is effectively increased from individual population numbers to multiple populations, for
calculating recombination rates of these markers. Marker ordering and spacing for shared markers in the
combined map, represents data collected from up to 989 F2 plants. The combined map produced from this
data represented a considerable improvement on the only other available Jatropha linkage map at the time of

publication; an inter-specific linkage map produced from 93 plants (Wang et al, 2011).

The 51xCV mapping population utilised a variety of DNA marker types and sequence sources. A genome
wide, randomly distributed selection of genome sequencing derived SNPs were developed to cover as much
of the genome as possible. The CRoPs® technique utilised here, harnesses next generation sequencing to
comparatively sequence amplified fragments produced from a modified DNA fingerprinting technique,
AFLP (van Orsouw et al., 2007). As with genotyping by sequencing approaches, SNPs can be selected from
a panel of thousands that offer most use to the user and are genotyped using high throughput methods (work
conducted by Keygene) (Davey et al., 2011).
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Whilst this approach amplified random segments of the genome without differentiating between coding and
non-coding regions leading to a genome-wide non-selective marker set, markers in expressed gene were also
available for genotyping and mapping in the G51xCV mapping population (King et al., 2011). Such
expressed sequence tagged (EST) markers were randomly distributed through expressed genes, adding
selectivity towards functional DNA, although still randomly distributed throughout the Jatropha
transcriptome (King et al., 2011, Varshney et al., 2014).

Simple Sequence Repeat (SSR) markers were utilised for a range of specific tasks. Mapping of markers from
previous studies enabled comparison of parental material to previously studied germplasm, and linkage maps
to be anchored to a previously published interspecific linkage map (Wang et al 2011). The main applications
for SSRs, however, were for gap filling of individual linkage maps during later round linkage mapping, and
for the mapping of candidate genes.

SSR mining benefitted from the publication of the Jatropha genome sequence in 2011 (Sato et al, 2011). SSR
SSRs can be efficiently mined from genome sequence using software (Martins et al., 2009, Stieneke, 2007).
In contrast to SNPs that require comparative sequencing to identify markers, SSRs are identifiable from a
single sequence such as a reference genome sequence. Validation of identified SSRs is conducted by PCR
amplification in parental lines, which is perhaps the biggest drawback of SSRs since the design of PCR
primers, amplification and scoring in parental lines (polymorphism testing) is more user-intensive than higher
throughput approaches that utilise genome sequencing.

For this reason rational selection of SSRs to increase the chance of polymorphism is important to maximise
efficiency of marker production. As has been explored in this chapter, shorter repeat motifs have a higher
polymorphism rate, due to the ease at which DNA polymerase slippage and DNA mismatching can occur
during DNA replication (Li et al., 2002). The length or number of repeat units also increases the probability
of polymorphism since there are more opportunities for polymerase slippage and mismatching to occur, and
more sequence in which loop structures can form (Oliveira et al., 2006, Lai and Sun, 2003, Li et al., 2002).
As highlighted by the analyses in this chapter, the presence of compound or interrupted SSRs (together
‘complex SSRs’), does not in itself represent a major influence on polymorphism rate, such that complex
SSRs, particularly those consisting of shorter repeat motif sizes, should be readily included in ones SSR
mining strategy. Software such as Imperfect SSR is recommended over standard SSR mining software in this

regard.

This final point is particularly important for draft genome sequences, which are differentiated from complete
genome sequences by a lack of physical mapping. Draft genome sequences consist of a series of unordered
contigs of varying sizes. For the majority of applications the draft genome state is more than adequate, such
that there is very little incentive to produce physical maps which add another (significant) level of technical
difficulty, time and cost. In an age where next generation sequencing is becoming cheaper and more
accessible, and where a greater range of crops are becoming sequenced, draft genome sequences will
continue to represent the majority of genomes for all but the most widely studied species (Feuillet et al.,
2011). Mining of all effective marker types from potentially small contigs is important to increase the utility
of such resources. Comparative mapping techniques, utilising comparative genomics, were also extensively

used in this project for the same reason.
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SSR markers were utilised for gap filling and the mapping of candidate genes in the G51xCV mapping
population. Comparative mapping techniques, such as alignment of individual population maps, was used as
a method of targeting SSRs to gaps in the G51xCV linkage map. Comparative mapping and synteny with
castor bean (Chan et al., 2010) was also utilised for SSR marker development as an extension of this process.

For example after G51xCV linkage groups were aligned to other population maps, markers corresponding to
gaps were used to pull out J. curcas contigs as before. From there, amino acid sequences from all predicted
gene models in the contig, were used as probes to search the castor bean genome sequence. Castor bean
transcribed amino acid sequences that mapped to the same contig and in the same order, suggested a region
of synteny and gene-colinearity. Transcribed amino acid sequences further upstream or downstream in the
castorbean genome sequence could then be used as a probe to retrieve J. curcas genome sequence in the
reverse direction. For syntenous regions, the longer contig sizes of the castor bean genome sequence could be
used to identify and order the more fragmented J. curcas genome sequence, in order to reach contigs
corresponding to target regions of the linkage map. Amino acid sequence conservation for transcribed gene
models was high between the two Euphorbiacea species, Jatropha curcas and castor bean, facilitating this

approach. Figure 4-6 below, gives a visualisation of this process.
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Figure 4-4 Comparative mapping between J .curcas and R. communis during later round linkage mapping.
Interspecific synteny and gene-colinearity were utilised between J. curcas and its nearest sequenced relative R.

communis (Hirakawa et al., 2012, Sato et al., 2011, Chan et al., 2010). The more highly conserved transcribed amino
acid sequences of gene models, from J. curcas and R. communis genome sequence, were used to establish syntenous
regions and navigate back and forth between genomes in order to identify SSR markers in target regions. Note the
difference in contig length between J. curcas and R. communis, which made this technique possible. Average contig
length displayed in the statistics table is misleading, due to the high number of small fragments in each genome
sequence. More informative is the median contig length (N50) which more accurately reflects the difference in contig
sizes between the two genome sequences. J. curcas had two genome sequence releases r3.0 and r4.5 (Hirakawa et al.,
2012, Sato et al., 2011).

As explored in this chapter, mining of SSR markers for different applications produced differing
polymorphism, and map rates. Analysis of the various components influencing SSR marker success rates,
such as target sequence source, application, and repeat sequence motif size, showed that with all distorting
influences removed, SSR performance characteristics were approximately a 5-10 % fail rate, 60-70 %
polymorphism rate, and a 90 % map rate, highlighting the efficiency and utility of using this readily available
marker type for the applications suggested. The mapping of candidate genes, as discussed in Chapter 3 was a
particularly useful addition of developed SSR markers to the genome wide non-selective markers available in

the G51xCV mapping population.
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Overall the marker mining strategies employed in this project were designed to produce a comprehensive set
of DNA markers. A panel of randomly (unbiasedly) distributed SNPs were generated using a reduced
representation genotyping by sequencing approach (Davey et al., 2011, van Orsouw et al., 2007). Genotyping
by sequencing based approaches remain the most thorough and powerful marker mining technology
available, since both SNP discovery and genotyping can be carried out in a single run and the density of
markers produced is theoretically maximal depending on whether a genome reduction strategy is employed
and the depth of sequencing (Davey et al., 2011). The power of this approach should only increase as
sequencing technology improves and costs reduce. Comparative EST library sequencing was used to increase
the number of mapped expressed genes and increase the chance of mapping functionally relevant loci. Since
expressed genes make up the majority of functional DNA, mapping of expressed genes would seem like a
critical component of a comprehensive marker set (depending on the level and coverage of genotyping by
sequencing if it is employed). SSR markers were mined from the Jatropha genome sequence to improve the
linkage maps during later round linkage mapping, as well as to map candidate genes and other important
trait-related metabolic genes. These SSR markers represented an efficient, cost effective and readily available
source of marker to complement and further improve on the randomly distributed, non-selective (either

across the entire genome or the transcriptome) markers.

Genetic linkage mapping in the G51xCV mapping population, produced a robust and reliable genotypic
dataset and genomic resource that was validated through alignment to 3 other independent dataset linkage
maps using shared markers. The G51xCV genetic linkage map underpins both accurate QTL detection and
QTL location in this population, and has also contributed towards the first published intraspecific genetic
linkage map for Jatropha curcas. Mapping of SSRs linked to seed oil biosynthetic genes in particular, is a
useful genomic resource for further study into the genetic basis of oil yield and oil quality variation in

Jatropha curcas populations.

4.5: Appendix

Contents:

(1) The 51xCV linkage map

(2) Physical Alignment and Comparison of individual mapping population linkage maps
(3) The Combined linkage map

(4) Candidate and metabolic gene linked SSR markers
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4.5.1: The G51xCV Genetic Linkage Map
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Figure 4-5 The G51xCV Genetic Linkage Map, Linkage groups 1-6.
The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups at a density of 2.969 ¢cM per unique loci. Markers linked to candidate genes have been highlighted in bold.
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Figure 4-6 The G51xCV Genetic Linkage Map, Linkage groups 7-11.
The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups at a density of 2.969 ¢cM per unique loci. Markers linked to candidate genes have been highlighted in bold.
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4.5.2: Physical Alignment and Comparison of individual mapping population linkage maps
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Figure 4-7 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps.

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.

Note that the author of this study was
carried out solely in the 51xCV population. This comparison enables the accuracy of
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Figure 4-8 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-9 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-10 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-11 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-12 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.

100|Page



LG07_QVo1
0.0 1409595(12324146
95 1409650/12329380
9.9 1409592/12311291

103 AG643
18.1 SNP12027

21.0 G58-ADH1,ABI3

27.6 Jatr845

28.1 1400474/12285467

28.7 139819312345483

30.4 1408932/12337291

31.0 1402100/12332506

31.9 1398939]12323262

348 1409401/12326003
36.3 G17
1400336/12287926
368 1407842/12323323
37.4 AG616
39.9 1404686/12285157
41.0 1418450/12267776
AG639
413 1401137/12297663
1402816/12348077
. 1409256/12312963
S W T 140883412338009
1400933/12362961
42.1 1398222]12344025
L [\1139956312308700
473 SNP5464
482 140081812283200
604 L 1406769]12276330
6767 Jo\ ! 140162812353310
76.6 1404489]12357367

Figure 4-13 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.
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Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-14 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-15 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.
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individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-16 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.
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individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-17 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised.
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Figure 4-18 The Combined Genetic Linkage map, groups 1-6.
This map was generated from four F2 mapping populations. In total, 589 co-dominant markers map 11 linkage groups and a distance of 733 cM. Average marker density is 1.62 cM per unique loci. A total of 67
candidate genes and trait-related metabolic genes were mapped (highlighted in bold).
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Figure 4-19 The Combined Genetic Linkage map, groups 7-11
This map was generated from four F2 mapping populations. In total, 589 co-dominant markers map 11 linkage groups and a distance of 733 cM. Average marker density is 1.62 cM per unique loci. A total of 67
candidate genes and trait-related metabolic genes were mapped (highlighted in bold)

107|Page



Chapter 5: Integration of phenotypic datasets identifies several QTL that
contribute to oil vield and oil quality in the G51xCV mapping population.

5.1: Introduction

5.1.1: Target traits for the genetic improvement of J. curcas

After a mapping population and linkage map have been produced Quantitative Trait Locus (QTL) mapping
can be carried out through the integration of phenotypic datasets. QTL mapping uses association to correlate
genotype with phenotype (Mackay et al., 2009). Two commonly used methods to calculate QTL are (1)
single marker analysis; the association between phenotypic values and genotype class at each marker position
independently, and (2) interval mapping, which calculates the association between phenotypic values against

set intervals across each linkage group (Doerge, 2002).

There are many traits that are desirable in a crop. Traits that affect overall yield, such as vigour, plant
architecture, size and biomass, would be desirable within most agronomic plant species. For oilseed crop
species intended for biofuel production, seed oil content and seed oil composition are also important traits.
Increasing seed oil content increases the oil yield per seed, and seed oil extraction efficiency. Seed oil
composition, the relative amounts of different fatty acids in the seed storage oil, in terms of carbon chain
length and the presence/absence of different functional groups or bonds, has a large effect on the end biofuel
performance characteristics and therefore determines oil quality (Durrett et al., 2008, Vega-Sanchez and
Ronald, 2010, Balat, 2011, Atabani et al., 2013, Knothe, 2009). The properties of the different fatty acids
affect the biofuel performance in combustion engines in several ways. Cetane number (the speed at which a
fuel combusts, also a measure of explosiveness), the cloud point (the temperature at which the biofuel
precipitates), coldflow point (a measure of viscosity at low temperatures), and oxidative stability (the rate at

which fatty acids oxidise and degrade) are all defined by the biofuel fatty acid composition.

The amount of saturated and unsaturated bonds has been shown to substantially alter these properties.
Biofuels high in saturated fatty acids such as 16:0 and 18:0 show favourable cetane numbers and oxidative
stability, but they have reduced cold flow properties due to the increased density of saturated fatty acids.
Conversely, oils high in unsaturated or polyunsaturated fatty acids have improved cold flow properties due
the presence of carbon double bonds, that reduce packing density by introducing a kink into the fatty acid
backbone. However this improved cold flow property is at the expense of both oxidative stability and CN
number. Current opinion is that oil high in oleic acid (with a single double bond), is the optimal compromise
between these properties (Vega-Sanchez and Ronald, 2010, Durrett et al., 2008, Graef et al., 2009, Knothe,
2009, King et al., 2009).

For Jatropha, a monoecious, self-compatible species, seed yield is thought to be highly correlated with the
amount and type of branching, and the ratio of female to male flowers (Divakara et al., 2010, King et al.,
2009). Inflorescences (flower nodes) develop at branch points, and within inflorescences, only the female

flower produces seed (Wu et al., 2011, Fresnedo-Ramirez, 2013).

Both seed yield and oil yield could be affected by seed mass. Integration of seed mass, seed oil content and

seed yield datasets, enabled oil yield to be calculated, and the relative contribution of each of these traits
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could be determined within the G51xCV mapping population. Optimisation of traits that affect final oil yield
will be vital for the economical production of Jatropha curcas as a biodiesel feedstock.

5.1.2: The G51xCV mapping population, and phenotypic dataset generation

Jatropha is perennial and asynchronous in flowering, and does not have a distinct growth and harvest season
in contrast to the majority of widely cultivated crops. To enable seed to mature and accumulate in situ to a
level suitable for harvest, seed was collected at 5 time points throughout the year. Similarly, although
Jatropha is reported to produce seed from the 1% year of growth, seed yield increases with size and maturity
of plant (Fresnedo-Ramirez, 2013), up to the reported full maturity stage that is reached after 5 years
(Fresnedo-Ramirez, 2013, Atabani et al., 2013). Seed batches were sent for analysis from years 2 and 3
(datasets Year 2 and Year 3a). These two collection points roughly equate to the same growth and harvest

time for each seed batch.

Due to the high number of seeds produced in Year 3, a second batch of seed was sent which was sampled
from later in the year (dataset Year 3b). Since Year 3 seed batches experienced slightly different
environmental conditions (separated by several months growth time between harvests), each seed batch was

treated as a separate dataset.

Seed oil related phenotypic datasets; Seed oil content, Seed oil quality (fatty acid composition) and Seed
weight (100 seed mass), were collected at the University of York using Nuclear Magnetic Resonance (NMR)

and Gas Chromatography (GC), described in further detail in the Materials and Methods.

Number of branches datasets were collected in years 1 and 2, prior to pruning of non-seed producing
branches in year 3 in line with recommended agronomic practice for Jatropha cultivation (personal
communications Dr. Luis Montez). Seed yield (number of seeds) data was collected at 5 time points per year,
and a sample period of 1st February to 31% January was used to create a Year 2 and Year 3 seed yield dataset

(expressed as total number of seeds produced per plant).

Seed oil content (% of total seed mass), seed mass (average mass per seed) and seed yield (number of seeds
produced per plant), enabled oil yield per plant to be calculated for Year 2 and 3 datasets, as a product of

these three traits.
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Table 5-1 Seed and branching sample dates, and dataset naming.

Year 2011 2012 2013
Date 13" [ 26" | 13" 1 Ot 2" 15" 10" |22 28" [16" | 14"
Dec Jun Sep Oct Oct Jan May May Aug Oct

Years of
growth 1.76 2.30 251 2.56 2.59 2.6 2.84 3.2 3.22 3.44 | 3.60
Days after 123
transplanting 567 763 842 860 871 874 961 1093 1099 1179 8
Measurements o = = = = = = = 1+ -

. @ (g2 3 3 8 8 8 8 8 8 8
taken in the £ g £ g g g g g g g g g
field § |o 8 = = = = = = = = =
Sample period Batch Batch 2 Batch
for seed sent to 1 3
York

Trait Dataset name and sample period
Seed oil content Year Year 3a Year

2 3b
Seed oil Year
composition 2
Seed mass Year Year 3a Year
2 3b
Branching Year | Year
1 2

Seed Yield Year 2 Year 3
Oil yield Year 2 Year 3
5.2: Results

5.2.1: Phenotypic trait population distributions

5.2.1.1: Phenotypic traits are normally distributed in the G51xCV mapping
population.

Phenotypic traits in the G51xCV mapping population have Normal population distributions (Figure 5-1,
p120), indicative of quantitative, continuous traits, suitable for QTL mapping. The equal and balanced
distribution of values around the mean, as indicated by the symmetry and low skewness values for the lines
of best fit, Figure 5-1, p120 and Table 5-2, p122, shows that this is an unbiased mapping population that is
not under any distorting selective pressure. In some cases, the dataset means are lower or higher than the
mean for the Normal line of best fit, due to the presence of outliers that sit outside the normal distribution and
decrease or increase the dataset mean respectively. In most cases the median value is a more accurate

reflection of the centre of the distribution.
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5.2.1.2: Phenotypic traits in the G51xCV population, show a high level of variation in
seed oil content, seed oil composition and other oil yield related traits that can be
investigated by QTL mapping

The G51xCV mapping population was created from parents selected primarily for oil content; CV at 26.00 %
seed oil content, and G51 at 36.90 % seed oil content. Therefore it is of interest to see if this trait shows
variation, and segregates, in the F2 population. Seed oil content ranges from 26.00-39.75 % in Year 2, 19-
40.0 % in Year 3a, and 23.60-40.30 % in Year 3b (Table 5-2, p122). The middle 90 % of plants fall between
30.80-39.40 % in Year 2, 27.50-39.10 % in Year 3a, 29.68-39.21 % in Year 3b. For all three datasets, the
middle 90 % of plants are within typical seed oil content ranges reported in Jatropha (between ~30-40 % seed
oil content) (Balat, 2011, Achten et al., 2007, Wang et al., 2008, Yue et al., 2013, Heller, 1996). The
variation between the minimum and maximum, and the middle 90 % of plants, show that there is significant
variation in this trait, that is consistent across independent harvests. There are also a number of consistently
low outliers that are between ~20-25 % seed oil content in all three datasets (Figure 5-1, Parts A-C, p120),
which is similar to the phenotype of the CV parent at 26 % seed oil content, and a number of high oil F2
plants at 37 % seed oil content or above, which is similar to the phenotype of the G51 parent at 36.90 % seed

oil content.

There is also significant variation in seed oil composition for the four most common fatty acids; stearate,
palmitate, oleate and linoleate. The middle 90 % of values; Stearate 11.23-13.41 %, Palmitate 6.76-8.71 %,
Oleate 43.93-49.11 %, Linoleate 28.09-33.87 %, are ranges typically found within Jatropha material (Atabani
et al., 2013, Balat, 2011, King et al., 2009). For high oleate biodiesel fuels, changes of a few percent oleate
content have significant effects on biofuel performance (Durrett et al., 2008, Knothe, 2009). In the G51xCV
mapping population, oleate varies by 5.18 % for the middle 90 % of plants, and 7.90 % between the
minimum and maximum values.

Seed yield (number of seeds), seed mass and branching also show significant variation. In contrast to seed oil
content which has a number of low outliers, both branching and seed yield show a consistent number of high
outliers that are outside the normally distributed F2 plants, Figure 5-1, parts G-J, p120.

In summary there is a high level of phenotypic variation in the traits measured, including a portion of plants
that segregate close to the parental phenotypes for seed oil content, and outliers that are consistent across
independent harvests, together suggesting that there is a strong genetic component to this phenotypic

variation.

5.2.1.3: Correlation analysis shows a number of significant correlations between seed
and vegetative traits in the G51xCV mapping population

There are a number of significant correlations between seed and vegetative traits in the G51xCV mapping
population as identified by Pearson’s correlation analysis, Table 5-3, p123. For all traits measured, there is
highly significant (p<0.01) correlation between independent harvests/datasets for each trait, showing that

phenotypes are consistent across multiple harvests in the F, population.

The seed related traits, 100 seed mass and seed oil content, show either strong highly significant correlation

or weak highly significant correlation to each other depending on the harvest, Table 5-3, p123. The positive

correlation between seed mass and seed oil content, suggests that variation in seed mass can be partly
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attributable to variation in seed oil content; either partly attributable for weak correlations, or predominantly
attributable for strong correlations. The difference in magnitude of correlation between different harvests,
could be due to environmental effects. For example correlation between Seed oil content Y2 and 100 seed
mass Y2, and seed oil content Y3b and 100 seed mass Y3b, is R=0.440 and R=0.454 respectively, whereas
correlation between seed oil content Y3a and 100 seed mass Y3a is R=0.700. As can be seen by Table 5-1,
p110, these seeds were harvested at different times of the year. This correlation data suggests that the year 3a
dataset experienced environmental conditions where seed mass was most affected by the rate of seed storage
oil deposition rather than other seed constituents that could affect seed mass, for example proteins, fibre or
polysaccharides. As mentioned in Materials and Methods, seed mass data was normalised to 7 % water

content to eliminate this as a variable.

Weak but significant correlations were detected between the seed related traits; seed oil content and 100 seed
mass, and the vegetative traits; branching and number of seeds, Table 5-3, p123. Both seed oil content (Y3a)
and 100 seed mass (Y3a and Y3b) showed weak but significant correlation with number of seeds Y3. The
positive correlation between seed yield and seed oil content, shows that seed oil content is not mutually
exclusive with seed yield. Plants that have high seed oil content also tend to have high seed yields in this
population. This correlation is present in Year 3 datasets but not Year 2 datasets, suggesting that there could

be an environmental effect or an effect attributable to the maturity of the plants.

Branching is weakly but significantly correlated with seed yield (number of seeds) in both Y2 and Y3
(p<0.000). Flower nodes are known to occur at branch points, therefore the more branched a plant the more
sites available for flower and seed development. The weak correlation despite the high significance, could be
due to the fact that branching does not take into account the ratio of female to male flowers at each branch
node, meaning an additional factor is missing when directly correlating branching and seed yield (number of

seed) traits.

5.2.1.4: Fatty acid moieties are most highly correlated with other fatty acid moieties
suggesting that metabolic pathway regulation and the shuttling of fatty acids from
different pools to seed storage oil is the major regulator of seed oil composition (oil
guality) in the G51x CV mapping population.

Correlation between the four most common Jatropha seed oil fatty acids, is negative for nearly all pairwise
comparisons in this mapping population, Table 5-4, p124. This could be expected due to the fact that these 4
moieties are part of the same biosynthetic pathway (see chapter 3, figure 3-1), therefore an increase or
decrease in one fatty acid would be expected to be at the expense of the other fatty acids in the pathway,
assuming a limited fatty acid pool or limiting rate of de novo synthesis. An exception to this, is the
correlation between stearate and oleate, which is positive. In this mapping population plants with high oleate
content also tend to have higher stearate content and visa versa. A possible explanation for this, is that if the
rate of oleate to linoleate conversion is reduced, it could cause upstream moieties oleate and stearate to
accumulate and visa versa, since more of these fatty acids would be available for incorporation into the seed

storage oil.

Whilst most correlations are weak, the correlation between oleate and linoleate is much stronger (R=-0.835 at
p<0.000 significance). Since conversion of oleate to linoleate occurs in a single step by the action of the fatty

acid desaturase 2 gene (of which there is one endoplasmic homologue in J. curcas (Ye et al., 2009, Liu et al.,

112|Page



2011, King et al., 2011, Sato et al., 2011, Gu et al., 2012, King et al., 2013, Jiang et al., 2012, Wu et al.,
2013, Costa et al., 2010, Qu et al., 2012, Utomo et al., 2015), this suggests that manipulation of this gene
would be highly effective at altering the ratio of oleate to linoleate in Jatropha seed storage oil.

5.2.1.5: Linoleate seed oil content is positively correlated with overall seed oil content,
and seed mass, suggesting that there is a weak bias towards storing excess fatty acids
as the linoleate moiety in the seed storage oil of G51xCV F2 plants.

Linoleate content is positively correlated with both seed oil content and seed mass in the G51xCV mapping
population, Table 5-4, p124. As mentioned in section 5.2.1.3: p111, seed mass is correlated with, and partly
determined by, seed oil content. The positive correlation between linoleate content and seed oil content,
shows that as the amount of oil per seed increases so does the relative amount of linoleate, suggesting that
there is a bias towards storing excess fatty acids as linoleate in the seed storage oil pool. The bias towards
storing excess fatty acids as linoleate could be due to the promiscuity of the fatty acid desaturase 2 gene
located on the endoplasmic reticulum fatty acid pool, which is supported by the strong negative correlation
between linoleate content and oleate content. This is further supported by the correlations between oleate,
linoleate and 100 seed mass year 2 datasets. The oleate content is negatively associated with seed mass,
whilst the linoleate content is positively associated, suggesting that as the seed mass increases, in part due to

seed oil content, the relative amount of linoleate compared to oleate increases.

5.2.1.6: Palmitate content is weakly correlated with branching and seed yield,
suggesting that vegetative traits that contribute towards seed yield can have minor
effects on seed oil composition (oil quality) in the G51xCV mapping population

Palmitate content has weak but significant, positive correlation with branching and seed yield in the G51xCV
mapping population, Table 5-4, p124. This suggests that there is a tendency for the relative proportion of
palmitate to increase as the amount of branching and seed yield increases, through an unknown mechanism.
This demonstrates that, although a weak association, it is possible for vegetative traits such as branching and

seed yield to be correlated with the fatty acid composition of the seed storage oil.

5.2.1.7: Oil yield is correlated with nearly all seed and vegetative traits measured,
however it is most strongly correlated with number of seeds per plant, showing that
seed yield is the strongest determinant of oil yield in the G51xCV mapping
population.

Oil yield in Years 2 and 3 is significantly correlated with all seed and vegetative traits measured in the
G51xCV mapping population with the exception of Seed oil content Year 2 and Seed oil content Year 3b,
and the seed oil composition fatty acids Stearate, Oleate and Linoleate, Table 5-5, p124. Correlations are weak
but significant with the exception of seed yield (number of seeds) which is strongly and significantly
correlated (Oil yield Year 2 and Number of seeds Year 2, R=0.972, and Oil yield Year 3 and Number of
seeds Year 3, R=0.948). This strong correlation shows that of all the vegetative and seed traits measured,
seed yield is the strongest determinant of oil yield in the G51xCV mapping population. This stronger
correlation may be due to the greater level of variation in number of seeds compared to seed oil content and
seed mass in this population.
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Given that seed mass is an indirect measurement of seed oil content, the traits seed yield and seed oil content
are the two most important determinants of oil yield in this population. Since variation in seed yield is much

greater than variation in seed oil content, seed yield has greater influence on final oil yield in this population.
Seed oil content and seed mass do have a significant effect on oil yield, therefore they remain important traits
for QTL analysis, particularly for introgression into cultivars that may be high yielding in terms of seeds, but

require improvement of seed oil content or seed mass traits.

5.2.1.8: Palmitate content is weakly associated with oil yield in the G51xCV mapping
population

Palmitate content is weakly correlated with oil yield in both year 2 and year 3 datasets, Table 5-5, p124.
Palmitate content is also correlated with seed yield and branching in this mapping population. In turn seed
yield and branching are highly correlated with oil yield. There is insufficient evidence to determine whether
Palmitate and Oil yield are directly regulating each other through an unknown mechanism, or whether the co-
correlation of Palmitate and Oil yield to traits such as seed yield or branching, mean they are indirectly

correlated. Either way in this population, palmitate is a (weak) marker/predictor of oil yield.
5.2.2: Quantitative trait locus mapping

5.2.2.1: Interval mapping reveals a number of QTL for oil quality and oil yield-
related traits in the G51xCV mapping population.

5.2.2.1.1: Seed oil content analysis identifies two QTL on linkage groups 4 and 10

Figure 5-2 part A, p126, shows two QTL for seed oil content across the Year 2, 3a and 3b datasets. QTL are
located on linkages groups 4 and 10 (Year 2), linkage group 4 only (Year 3a) and linkage group 10 only
(Year 3b). Association reaches LOD4.624, 4.414, 3.527, 3.503 respectively, which is significant at
experiment wide thresholds (p<0.05 for Year 2, and p<0.01 for Year 3a, and 3b), Table 5-6, p125. PVE
values for these loci, are 16.56, 15.75, 13.42, and 15.95 percent respectively. The fact that the QTL on
linkage groups 4 and 10 are both significant in the Year 2 dataset, whereas only one of each is significant in
the Year 3a and 3b datasets could be due to environmental effects that limit the effects of one of the QTL in
each dataset. As previously outlined, all three datasets were harvested at different times of the year, Table
5-1, p110. Alleles at these QTL loci are dominant, as shown by Tukey’s comparison of means tests, with the

high oil allele originating from the G51 parent, Figure 5-3 parts A, B, C, p129.

Figure 5-3, part A, p129, examines the effect of both QTL (linkage group 4 & 10) on seed oil content in the
Year 2 dataset. From left to right, the number of G51 ‘b’ alleles increases at both loci, from AA (homozygous
A at both QTL positions) to BB (homozygous B at both QTL positions). As can be seen, as the number of ‘b’
alleles increase at both loci, so does the seed oil content. However, in part due to the low number of plants in
each genotype class (N=145, Table 5-2, p122, for 9 genotype classes, Figure 5-3, part A, p129), Tukey’s post
hoc comparison of means test shows that we can only be statistically confident that AA, and HH/HB/BH are
statistically different. Nevertheless, we can see from these groups alone that as the number of ‘b’ alleles at
each loci increases, so does the average and minimum and maximum oil content values. This shows that
these QTL loci act in a synergistic manner, and that they could be stacked or pyramided in a single cultivar

for greater enhancement of seed oil content.
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5.2.2.1.2: 100 seed mass analysis identifies one QTL on linkage group 4

One QTL was detected for 100 seed mass on linkage group 4 in Years 2, 3a and 3b datasets, Figure 5-2 part
A, pl126. This QTL reaches experiment wide significance thresholds (p<0.01 for Year 2 and 3a, and p<0.05
for Year 3b). The calculated QTL position differs by <8 cM across the 3 datasets. For Year 2, 3a and 3b
datasets association reaches LOD7.776, 4.964, 3.285 with PVE values of 29.39, 19.39, and 14.89 percent
respectively, Table 5-6, p125. Alleles at these loci are dominant, with the beneficial allele originating from
the G51 parent Figure 5-3 parts A, B, C, p129.

5.2.2.1.3: Branching (number of branches) analysis identifies one QTL on linkage
group 1

One QTL was detected for branching @763days on linkage group 1 at the p<0.05 experiment wide
significance threshold, Figure 5-2 part D, p126. Association at the QTL is LOD3.477, which accounts for a
PVE of 12.115 percent, Table 5-6, p125. The allele at this QTL is dominant as determined by Tukey’s
comparison of means test, with the beneficial allele originating from the CV parent, Figure 5-3 part G, p129,

which is in contrast to the seed oil content and seed mass QTL where the high allele is G51.

5.2.2.1.4: Seed yield (number of seeds) identifies one QTL on linkage group 10

One QTL was detected for number of seeds Year 3, linkage group 10 at the p<0.05 experiment wide
significance threshold, Figure 5-2 part E, p126. Association was LOD 3.966 with a PVE of 14.15 percent,
Table 5-6, p125. As with branching, the beneficial allele is dominant and originates from the CV parent,
Figure 5-3 part H, p129.

5.2.2.2: Oil quality (composition) traits

5.2.2.2.1: Palmitate content analysis identifies two QTL on linkage groups 5 and 7

Two QTL were detected for palmitate content on linkage groups 5 and 7 at the p<0.01 and p<0.05
experiment wide significance thresholds respectively, Figure 5-2, Part C, p126. Association reached
LOD7.929 and 3.24 which accounted for 30.54 and 11.51 percent PVE respectively, Table 5-6, p125. The
linkage group 5 QTL has a semidominant character according to Tukey’s post hoc comparison of means test,
with the high palmitate allele originating from the CV parent, , p130. For the linkage group 7 QTL, the high
palmitate allele is recessive and also originates from the CV parent according to the Tukey’s comparison of

means test.

5.2.2.2.2: Stearate content analysis identifies three QTL on linkage groups 1, 4 and 7

Three stearate QTL were identified on linkage groups 1, 4 and 7, Figure 5-2, Part C, p126. All three QTL
surpassed the p<0.01 experiment wide significance threshold, with peak association at LODA4.144, 4.226 and
6.606 respectively, Table 5-6, p125. PVE for the 3 QTL were 14.95, 15.26 and 24.86 percent respectively.
The linkage group 1 QTL was dominant according to Tukey’s comparison of means test, with the high
stearate allele originating from the G51 parent, Figure 5-4, p130. The linkage group 4 QTL is semi-dominant
with the high stearate allele originating from the CV parent. The linkage group 7 QTL is also semi-dominant

but the high stearate allele originates in the G51 parent.
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5.2.2.2.3: Oleate content analysis identifies one QTL on linkage group 6

A single oleate QTL was identified on linkage group 6, at LOD3.398 which surpassed the p<0.05 experiment
wide significance threshold, Figure 5-2, Part C, p126. This QTL was attributable for a PVE value of 12.10
percent, Table 5-6, p125 . The high oleate allele originated from the CV parent, and has a recessive nature,
Figure 5-4, p130, however interestingly the homozygous G51 genotype (‘B’) was not significantly different
from either the homozygous CV genotype (‘A’, high oleate) or the heterozygous genotype (‘H’, low oleate).
This may be due to a heterosis effect whereby when one of each allele is present in the same genotype a low
oleate phenotype is generated, presumably due to interaction between the two alleles or factors within
physically linked DNA.

5.2.2.2.4: Linoleate content identifies three QTL on linkage groups 4, 6 and 8

Three linoleate content QTL were identified on linkage groups 4, 6 and 8 at the p<0.05 (linkage groups 4 and
8 QTL) and p<0.01 (linkage group 6 QTL) experiment wide significance thresholds, Figure 5-2, Part C, p126.
Association at the QTL loci reached LOD3.995, 4.307 and 3.287, which accounted for 14.37, 15.58 and
11.68 percent PVE, for linkage groups 4, 6 and 8 QTL respectively, Table 5-6, p125. For linkage group 4 and
6 QTL, the high linoleate content allele originated from the G51 parent and was dominant, whereas for the
linkage group 8 QTL the high linoleate content allele originated from the CV parent but was also dominant,
Figure 5-5, p130.

5.2.2.2.5: Multiple QTL for palmitate, stearate, oleate and linoleate co-locate to the
same linkage groups, providing evidence that these loci contain genes responsible for
the shuttling of fatty acids through parts of the seed fatty acid synthesis and
modification metabolic pathway.

5.2.2.2.6: A Palmitate and Stearate QTL co-locate to linkage group 7

Conversion of Palmitate to Stearate occurs in a single step by the action of the Keto-Acyl Synthase 2 (KASII)
gene, through the addition of a 2 carbon acyl ACP group (see chapter 3, fig 3-1). The KASII gene would be
the most likely candidate gene to be contained within QTL regions that co-locate for both traits, since
conversion of one moiety into the other, mediated through a change in KASII activity, would affect both
traits. This is supported by the strong negative correlation between Palmitate and Stearate content according
to Pearson’s correlation analysis, 5.2.1.4: p112 and Table 5-4, p124. In the G51xCV mapping population a
Palmitate and Stearate QTL co-locate to linkage group 7, Figure 5-2, p126. The Jatropha KASII gene was
mapped using a nearby SSR marker (Marker G33, J. Clarke) which maps to linkage group 11. One
explanation is that a causative gene on linkage group 7 could regulate the expression of the KASII gene on
linkage group 11. A way to investigate this would be to carry out expression QTL mapping (eQTL mapping)
since if this hypothesis was correct both the linkage group 7 and linkage group 11 loci would associate with

palmitate and stearate phenotypes.

5.2.2.2.7: An oleate and linoleate QTL co-locate to linkage group 6

Oleate is converted to linoleate through desaturation of the delta-12 carbon of the fatty acid backbone,
through the action of the Fatty Acid Desaturase Il gene (FAD2), (see chapter 3, fig 3-1). A single locus that

associates with changes in both oleate and linoleate would suggest that this locus is controlling the
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conversion of oleate to linoleate, or the activity of the FAD2 gene. The linkage group 6 oleate and linoleate
QTL map to within 2 cM of each other (2 cM and 4 cM respectively), supporting the hypothesis that a single
locus is regulating both traits. The FAD2 gene was mapped using SSR’s (marker G390, J. Clarke, see chapter
3 appendix), and maps to linkage group 6 at position 55.9 cM, which unfortunately is outside of the Bayes’
95 % confidence interval for these QTL. Given the known activity and predominance of the FAD2 gene for
this metabolic conversion, this QTL could be a trans regulator of the FAD2 gene located on the same linkage
group. Other mapped candidate genes, that lie within the QTL region are a GPAT and DGAT (markers G41,
G394, J. Clarke, see chapter 3 appendix). These genes are responsible for incorporating fatty acids onto a
glycerol backbone to form triglycerides, that are subsequently stored in the seed storage oil bodies. Some
GPATs and DGATSs have been known to show selectivity towards certain types of fatty acids (in terms of the
rate at which they incorporate different molecules into triacylglycerol) (Snyder et al., 2009, Cahoon et al.,
2007, Graham et al., 2007, Yen etal., 2008, Zheng et al., 2008, Baud and Lepiniec, 2010, Li-Beisson et al.,
2013, Bates and Browse, 2012, Bates et al., 2012) which could lead to accumulation of one fatty acid over
the other.

5.3: Discussion

Overall, a number of agronomically-relevant QTL were identified in the G51xCV mapping population. The
primary purpose of this mapping population was the identification of seed oil content QTL, due to the
variation present in the parents; G51 (36.9 % seed oil) and CV (25 % seed oil), of which 2 QTL were
identified that were responsible for a combined PVE of 32.31 % seed oil content. Due to its intended use as a
biofuel crop, any trait that contributes towards final oil yield was also of interest in this mapping population.
Of particular note was the identification of branching and seed yield (number of seeds) QTL, that were
responsible for PVE of 12.115 % and 14.15 % respectively, and which were strongly correlated with final oil
yield in this population. Lastly a number of oil quality (oil composition) QTL were identified, of which, a
single QTL regulating oleate to linoleate conversion was identified opening up the possibility of producing

high oleate designer oil in future research through investigation of this QTL.

Analysis of the phenotypic datasets showed that all had normal distributions. This indicated that the
phenotypes measured were complex traits with a continuous distribution. The low skewness values for the
normal distributions also demonstrated that the mapping population was unbiased and not under any
distorting selective pressure. There were a number of outliers for most datasets, and some indications of
segregation according to parental phenotypes in traits such as seed oil content. Plant phenotypes tended to be
very consistent across the independent harvests as indicated by the high level of correlation between
individual datasets, suggesting that a genetic component contributed to the variation displayed. Often there
were a number of outliers both above and below the rest of the distribution. For seed oil content these were

similar phenotypic values to the parents, suggesting a level of segregation in the F, population.

Correlation between seed oil content and seed mass suggested that seed mass was to a large extent
determined by seed oil content, which is hardly surprising given that Jatropha seed is typically 30-40 % oil
by weight. There was also significant correlation between the number of branches and the number of seeds
produced per plant, which can also be expected given that flower inflorescences develop at branch nodes.
Although highly significant (p<0.001), correlation was weak which could be due to the fact that an additional
factor; female to male flower ratio at each inflorescence, also determines the number of seeds that can be
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produced per plant. The four most common fatty acid moieties in Jatropha seed oil, palmitate, stearate, oleate
and linoleate, which are all produced by the same metabolic pathway were nearly all negatively correlated
with eachother, which supports the hypothesis that plants high in a particular fatty acid tend to have reduced
amounts of the other fatty acids due to greater partitioning of the available fatty acid sink into the ‘high’ fatty
acid at the expense of the other fatty acids. To highlight the metabolic relationship between these 4 moieties,
each fatty acid is the building block of the next fatty acid in the pathway, so this is an expected result. Oil
yield, calculated as the product of seed oil content (average percentage of oil per seed) x seed mass (the
average mass of a seed) x seed yield (the number of seeds produced per plant), gave insight into which of
these 3 traits had most impact on final oil yield. All 3 traits significantly affected final oil yield, with seed
yield having the greatest influence on oil yield in the G51xCV mapping population. This could be partly
explained by the greater level of variation in seed yield in this mapping population, in comparison to seed oil
content or seed mass variation. This suggests that vegetative traits that affect seed yield are of utmost
importance for creating high oil-yielding Jatropha. In addition both seed oil content and seed mass have
significant impact on oil yield, and for material that has optimised vegetative traits but may require
optimisation of seed oil content and seed mass, introgression of QTL for these traits will also be of great

importance for maximising final oil yield.

The specialisation of different Jatropha material can be seen even within the G51xCV mapping population.
High seed oil content and high seed mass alleles originated from the G51 parent, whereas high branching and
high seed yield alleles originated from the CV parent, Chapter 5.2.2.1: p114. The G51 line contains QTL
alleles that enhance seed related traits, whereas the CV parent contains QTL alleles that enhance vegetative
traits. Correlation analysis of the F2 progeny show that plants high in seed yield also tend to be high in seed
oil content (Chapter 5.2.1.3: p111), suggesting that these traits are synergistic and not mutually exclusive.
Combining QTL alleles to optimise both vegetative growth and oil productivity into a single cultivar, would
be desirable to get the best of both types of traits to optimise overall oil yield. This could also be
symptomatic of a heterosis effect; hybrid material created from genetically distinct lines is well known to
produce vigorous offspring in some cases. If this is the case, the generation of genetically fixed parental
material from which to reliably breed heterozygous cultivars will be important, or the development of
efficient propagation strategies and protocols such as the use of cuttings.

The mapping of candidate genes, particularly for well-studied metabolic pathways such as seed oil
biosynthesis, has great utility in non-model species such as Jatropha. Likely candidate genes that could be
responsible for observed phenotypic variation can be identified through knowledge of the biosynthetic
pathway and previous examples of mutants with similar phenotypes. Immediately the candidate can be either
confirmed or eliminated if they have already been mapped, by comparing its physical position to the
confidence intervals for the identified QTL. Should a candidate gene lie within the confidence interval, it is
simple, in theory, to clone and sequence the gene since its position and the surrounding sequence have
already been identified. Unfortunately, although most of the genes in the fatty acid biosynthetic pathway
were identified and mapped as part of this project, no causative mutations in these genes were present in this
mapping population. However the positions of these genes have now been placed for future studies into
Jatropha. Future Jatropha QTL mapping projects need only anchor their linkage map to the one developed in
this study for the positions of all these genes to be of use. Or novel flanking markers could be developed
using the candidate gene sequences as probes to pull out the physically linked genome sequence contig.
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For the purpose of crop breeding the identification of QTL and their flanking markers are all that is required
for introgression of the QTL into another cultivar. However from a conceptual perspective it would be
interesting to determine the causative gene behind the QTL, and by doing so, begin to form a hypothesis on
the mechanism by which they could regulate the phenotype. Of great utility for this purpose is the availability
of genome sequence. Contigs harbouring a DNA marker physically linked to the QTL enables that contig to
be searched for potential candidate genes. The nearest flanking marker may be some physical distance from
the QTL position, therefore the greater the quality of the genome sequence and size of contig, the greater the
chance of identifying the QTL sequence.

QTL confidence intervals were relatively large in this mapping population. Confidence intervals can be
reduced by increasing the mapping population size which increases the number of crossovers at the genetic
level, and the number corresponding phenotypic measurements to correlate them to. Confidence intervals
may also be reduced by increasing the density of genetic markers to more accurately determine the position
of crossovers. Marker density is partly reliant on the type of marker used and the method by which they are
produced, for example genotyping by sequencing in theory should produce the highest density of markers
since all sequence variation is detected down to individual SNPs (within the limitations of the sequencing
technology). Genetic marker density is also restricted by the genetic diversity of the starting material used for
the cross, since the more genetically similar the parental lines, the fewer sequence polymorphisms that are
available for use as markers. Whilst genotyping by sequencing on its own would undoubtedly increase the
density of markers on this map, using it as part of an association mapping project would have several
advantages. Association mapping would use a panel of genetically diverse Jatropha from which to produce
markers and populations. By starting with genetically diverse material, a greater number of genotypes and
polymorphisms would be available, effectively looking at genetic crossover events and mutations
accumulated over evolutionary timescales. Such an approach would also have the advantage of having a
larger library of germplasm with which to start a breeding programme from after identification of desirable
QTL. This combined with genotyping by sequencing markers to create a dense genetic linkage map would
maximise the resolution of individual QTL and reduce the confidence interval. The smaller the confidence
interval and the more precise the introgression of the QTL sequence into the recipient cultivar whilst
minimising hitchhiking or unwanted physically linked sequence.
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5.4: Chapter 5 Appendix

5.4.1: Phenotypic trait distributions
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Figure 5-1. The population distribution of phenotypic traits in the G51xCV mapping population.

The distributions are plotted as frequency (number of F2 plants) on the y-axis, over the phenotypic unit of measure on
the x-axis. A Normal line of best fit has been drawn to demonstrate that these traits have a normal distribution as
expected from a quantitative continuous trait. Traits measured include, from A-J, seed oil content Year 2, seed oil content
Year 3a, seed oil content Year 3b, seed mass year 2, seed mass year 3a, seed mass year 3b, number of branches at
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567days, number of branches at 763days, seeds per plant year 2, seeds per plant year 3. Dataset mean, standard
deviations and number of measurements (N) are also included.
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Figure 5-1. The population distribution of phenotypic traits in the G51xCV mapping population.

The distributions are plotted as frequency (number of F2 plants) on the y-axis, over the phenotypic unit of measure on
the x-axis. A Normal line of best fit has been drawn to demonstrate that these traits have a normal distribution as
expected from a quantitative continuous trait. Traits measured include, from K-P, ail yield year 2, oil yield year 3,
palmitate content of seed oil year 2, stearate content of seed oil year 2, oleate content of seed ail year 2, linoleate
content of seed oil year 2. Dataset mean, standard deviations and number of measurements (N) are also included.
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Table 5-2. Phenotype dataset statistics for the G51xCV mapping population.
Statistics include N (number of F2 plants measured), Mean, Median, Std. Deviation (standard deviation), Skewness, Standard Error of Skewness, Range, Minimum value, Maximum value, 5th and 95th
Percentile values. All values are correct to 2 decimal places. Trait and dataset are listed in columns from left to right (Y2= Year 2, Y3a = Year 3a, Y3b= Year 3b).

Seed oil content (%0) 100 seed mass (@) Number of Seed yield QOil yield Stearate | Palmitate | Oleate | Linoleate
branches (number (g/plant) content content content | content
of seeds) (%) (%) (%) (%)
Y2 Y3a Y3b Y2 Y3a Y3b @s67 @763 Y2 Y3 Y2 Y3 Y2 Y2 Y2 Y2
days days
N (F2 plants) 145 132 114 145 132 114 145 143 140 141 139 132 141 141 141 141
Mean 3597 | 3547 | 3521 | 71.14 | 65.67 | 67.35 10.71 29.9 32345 | 881.97 | 83.29 | 21942 12.31 7.66 46.56 31.12
Median 36.16 36.3 35.61 71.07 65.98 68.68 10 28 309.5 883 81.39 215.09 12.32 7.61 46.45 31.26
Std. Deviation 2.415 3.55 2.97 6.82 7.44 7.33 5.274 13.778 191.02 479.92 49.66 125.1 0.64 0.59 1.67 1.67
Skewness -1.55 -2.04 -1.28 0.14 -0.68 -0.27 0.696 1.075 0.64 0.54 0.67 0.73 0.12 0.22 -0.04 -0.19
Std. Error of 02 | 021 | 023 0.2 021 | 023 | 0201 | 0203 0.21 0.2 0.21 0.21 0.2 0.2 0.2 0.2
Skewness
Range 13.76 20.94 16.7 36 42.48 41.63 27 79 894 2310 22854 | 612.18 3.42 3.17 7.91 8.68
Minimum 26 19.01 23.6 55.14 37.34 48.73 1 4 10 12 2.74 12.13 10.66 6.08 42.63 26.65
Maximum 39.75 39.95 40.3 91.14 79.81 90.36 28 83 904 2322 231.28 | 624.31 14.08 9.24 50.53 35.33
] 5 30.77 27.55 29.68 60.19 53.26 52.34 3 11 53.15 195.2 14.92 40.79 11.23 6.76 43.93 28.09
Percentiles
95| 39.37 | 39.14 | 39.21 | 8206 | 77.00 | 78.38 21 59.4 72175 | 17805 | 182.77 | 444.11 13.41 8.71 49.11 33.87
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Table 5-3. Pearson correlations of phenotypic traits in the 51xCV mapping population.

In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in
dark green (p<0.01) and light green (0.01<p<0.05).

Seed oil Seed oil Seed oil 100 seed mass | 100 seed mass | 100 seed mass | Branches @ Branches @ Number of Number of
content Y2 | content Y3a content Y3b Y2 Y3a Y3b 567 days 763 days seeds Y2 seeds Y3

Seed oil 1 482 440 440 .373 .370 .056 .054 -.138 -.094
content Y2 .000 .000 .000 .000 .000 .510 .526 .104 271
Seed oil 1 182 431 .700 .575 -.033 .109 .066 191
content Y3a .000 .000 .000 .000 704 212 454 .028
Seed oil 1 322 448 454 -.011 .078 -.075 -.042
content Y3b .001 .000 .000 .909 414 .438 .665
100 seed mass 1 .615 .643 -.006 101 .014 -.026
Y2 .000 .000 .948 234 .873 762
100 seed mass 1 .815 -.033 121 .040 232
Y3a .000 711 167 .655 .007
100 seed mass 1 141 .202 124 .268
Y3b .138 .033 197 .004
Branches @ 141 1 731 .333 .357
567 days 510 704 .909 .948 J11 .138 .000 .000 .000
Branches @ .054 .109 .078 101 121 .202 1 312 .448
763 days .526 212 414 234 167 .033 .000 .000
Number of -.138 .066 -.075 .014 .040 124 1 .565
seeds Y2 .104 454 438 873 .000
Number of -.094 191 -.042 -.026

seeds Y3 271 .028 .665 .762
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Table 5-4 Pearson correlations between oil quality (oil composition) and other phenotypic traits measured in the G51xCV mapping population.

In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in

dark green (p<0.01) and light green (0.01<p<0.05).

Correlations
Seed oil | Seed oil | Seed oil Seed Seed Seed Seeds
content | content | content mass mass mass | Branches [ Branches | per plant
Year2 | Year3a | Year3b | Year2 | Year3a | Year3b | Yearl Year 2 Year 2
Palmitate content Year 2 -.152 -.028 -.124 157 114 .070 142
.072 754 194 .063 197 464 .094
Stearate content Year 2 -.021 -.078 -.090 -.134 -.043 -.108 .156
.808 .381 .350 113 .632 .260 .065
Oleate content Year 2 -.009 -.072 -.066 -.191 -.163 -.101 -.067
918 419 490 .023 .065 .290 433
Lineoleate content Year 2 .180 .190 .208 .207 170 -.035
.033 .031 .028 .018 .075 .681

Table 5-5 Pearson correlations between oil yield and other phenotypic traits measured in the the G51xCV mapping population.

Stearate
content
Year 2

Oleate
content

Lineolea
te
content

In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in

dark green (p<0.01) and light green (0.01<p<0.05).

Correlations
Seed

Seed oil Seed oil | Seed oil | Seed | mass Palmitate | Stearate | Oleate | Lineoleate

content content | content | mass | Year Branches | Branches content | content | content | content

Year 2 Year 3a | Year 3b| Year 2 Year 1 Year2 |Year2|Year3| Year2 Year2 | Year?2 Year 2
[oil yield Year 2 .050 .185 079 .205 ' ' 151 .086| -.103 .040
.559 .035 410 .078 319 232 .639
[Oil yield Year 3 100 | -005[ -.091 .050
255 | 953 .307 576
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Table 5-6. Summary statistics for QTL identified by interval mapping in the G51xCV mapping population.

Trait Dataset Linkage Position LOD p-value PVE (%) Bayes95% -1LOD -2LOD Beneficial Effect
group (cM) (p<x) Cl (cM) interval (cM) interval (cM) (high) allele
Seed oil content Year 2 4 33 4.624  0.0027 16.56 2.0-56.0 7.0-36.0 6.0-39.0 G51 Dominant
10 31 4414 0.0044 15.75 8.0-40.0 23.0-34.0 3.0-47.0 G51 Dominant
Year 3a 4 46 3.527  0.0291 13.42 0.0-57.0 43.0-55.0 39.0-57.0 G51 Dominant
Year 3b 10 27 3.503 0.0322 15.95 22.0-46.0 23.0-49.0 20.0-49.0 G51 Dominant
Seed mass Year 2 4 11 7.776  0.0000 29.39 0.0-53.0 2.0-12.0 0.0-22.0 G51 Dominant
Year 3a 4 10 4.964 0.0011 19.39 0.0-51.0 0.0-19.0 0.0-23.0 G51 Dominant
Year 3b 4 3 3.285 0.0507 14.89 2.0-53.0 0.0-12.0 0.0-38.0 G51 Dominant
Seed oil composition Palmitate content Year 2 5 32 7.929 0.0000 30.54 28.0-41.0 27.0-36.0 25.0-37.0 Ccv Semi-dominant
7 58 3.24  0.0548 11.51 26.0-70.0 44.0-75.0 25.0-75.0 cv Recessive
10 33 2.917 0.1056 9.34 0.0-38.0 30.0-38.0 23.0-46.0 G51/cvV Heterosis
Stearate content Year 2 1 35 4.144 0.0010 14.95 4.0-41.0 28.0-38.0 22.0-43.0 G51 Dominant
4 27 4.226  0.0079 15.26 7.0-53.0 23.0-34.0 21.0-47.0 cv Semi-dominant
7 22 6.606 0.0000 24.86 1.0-36.0 19.0-31.0 12.0-41.0 G51 Semi-dominant
Oleate content Year 2 6 2 3.398 0.0387 12.10 0.0-19.0 0.0-13.0 0.0-17.0 Ccv Recessive
Linoleate content Year 2 4 24 3.995 0.0117 14.37 1.0-49.0 17.0-39.0 0.0-41.0 G51 Dominant
6 4 4.307 0.0055 15.58 0.0-15.0 0.0-14.0 0.0-17.0 G51 Dominant
8 11 3.287 0.0505 11.68 1.0-48.0 1.0-14.0 0.0-30.0 cv Dominant
Number of Branches @ 763 days 1 25 3.477 0.0024 12.115 0.0-26.0 17.0-30.0 0.0-32.0 Ccv Dominant
Seed yield (number of seeds) Year 3 10 33 3.966 0.0104 14.15 0.0-33.0 0.0-39.0 0.0-49.0 CcVv Dominant
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Figure 5-2. The output of a QTL analysis using GridQTL software.
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The level of QTL association, as determined by Haley and Knott interval mapping, is indicated as the F statistic (y-axis).
Linkage groups 1-11 (x-axis) are separated by vertical lines. Horizontal lines represent experiment wide significance
thresholds (long dash, p= 0.05, short dash, p= 0.01) calculated from bootstrap analysis using 10,000 iterations.
Phenotypic traits showing significant QTL association include: Seed oil content, A; Seed mass, B; Seed oil composition,
C; Number of branches, D; Seed yield (number of seeds), E.
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Figure 5-3. Boxplot showing correlation between phenotype and genotype at identified Quantitative Trait Loci in

the G51xCV mapping population.

The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges
(upper and lower) represent the interquartile range. The median value is indicated by the thick line within the box.
Statistically different groups, as determined by a Tukey’s post hoc comparison of means test, have been labelled in red,
with the p value for each comparison indicated below the box and whisker plot. Phenotypic traits and datasets include:
Seed oil content; Year 2 (A), Year 3a (B), Year 3b (C), Seed mass; Year 2 (D), Year 3a (E), Year 3b (F), Number of
branches at 763days (G).
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Figure 5-4 Boxplot showing correlation between phenotype and genotype at identified Quantitative Trait Loci in
the G51xCV mapping population

The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges
(upper and lower) represent the interquartile range. The median value is indicated by the thick line within the box.
Statistically different groups, as determined by a Tukey's post hoc comparison of means test, have been labelled in red,
with the p value for each comparison indicated below the box and whisker plot. Phenotypic traits and datasets include:
Seed Yield (number of seeds), Year 3 (H); Palmitate seed oil content, Year 2 (I); Stearate seed oil content, Year 2 (J);
Oleate seed oil content, Year 2 (K).
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the G51xCV mapping population
The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges
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Statistically different groups, as determined by a Tukey's post hoc comparison of means test, have been labelled in red,
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Linoleate seed ail content, Year 2 (L).
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Chapter 6: Summary and conclusions

Population growth, economic development and climate change necessitate an increase in world energy
production with concurrent reductions in greenhouse gas emissions (Intergovernmental Panel on Climate
Change, 2014, US Energy Information Administration, 2016). Plant based biofuels, offer the only renewable,
low-carbon alternative to liquid transportation fuels (Blanch, 2010); the single largest sector of the most
widely-used fossil fuel; oil (British Petroleum, 2016). In the midst of food security concerns due to
population growth and predicted effects of climate change on food crop production (Godfray et al., 2010),
de-confliction of biofuel and food crops particularly for agricultural land, suggests a greater utilisation of
marginal land (Tilman et al., 2009), and the harnessing of novel crop species more adaptable to alternative
models of farming (Tester and Langridge, 2010). For bioethanol and biodiesel production, perennial species
are generating much interest as biomass and oilseed crops respectively, as they are more amenable to growth
on marginal land, and could be intrinsically more-efficient at using nutrients, water and sequestering carbon,

than currently-cultivated annual crops (Somerville et al., 2010, Kantar et al., 2016).

Jatropha curcas, a perennial oilseed crop from the Euphorbiacea, is a biodiesel candidate that has generated
interest due to a high seed oil content, a protein rich seed meal suitable for use as an animal feed, and an
adaptability to a wide range of soil types, nutrient and precipitation levels (King et al., 2009, Achten et al.,
2010). Before economic cultivation of Jatropha can be assessed, optimisation of oil yield and oil quality -
related traits is required in order to domesticate current semi-wild/wild material and create a genetically-

improved cultivar.

Jatropha presents several challenges to selective breeding. Jatropha is monoecious and self-compatible,
which leads to a propensity for self-fertilisation. Jatropha is a long-life perennial and has a life span of 50
years; Jatropha plants reach maturity and express full phenotypes after approximately 5 years from seedling.
Seedling-to-seed generation time is approximately 9 months. Material distributed outside its centre of origin
in Meso-America contains very little genetic variation and is almost clonal (King et al., 2015, Montes Osorio
et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011). These point towards the requirement for
Quantitative Trait Locus (QTL) mapping, so that breeding technologies such as Marker Assisted Selection
(MAS) can guide selection of breeding material based on the genetics underpinning key traits. Ultimately the
stacking of multiple, desirable QTL in a single Jatropha line will be required to create a cultivar suitable for
economic cultivation. The aim of this study was to identify and locate QTL underlying oil yield- and ail
quality-related traits (seed oil content, seed oil composition, seed mass, seed yield, branching), in the
G51xCV mapping population; a biparental F, population created from parental lines selected primarily on the

basis of seed oil content; G51 at 36.90 % and CV at 26.00 %, seed oil content respectively.

Reduced-representation genome sequencing, using the Complexity Reduction of Polymorphic Sequences
(CRoPS) approach (van Orsouw et al., 2007), was used to generate a high-coverage, genome-wide marker set
and this formed the majority of markers used for genetic linkage mapping in the G51xCV population (181
markers, 58.01 %). In addition a small number of expressed sequence tagged (EST) markers were available
to map expressed genes (14 markers, 4.49 %) (King et al., 2011). The development of SSR markers formed
the principle output of marker development in this thesis study, and accounted for the second largest group of

markers available for linkage mapping in the G51xCV population (117 markers, 37.50 %).
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In total, over 300 SSR positions were identified using reference genome sequence (Hirakawa et al., 2012,
Sato et al., 2011), of which 288 SSRs had flanking sequence suitable for PCR amplification. Polymorphism
testing across parental lines from 4 independent mapping populations, showed that of the 288 SSRs tested,
114 SSR markers (39.59 %) were polymorphic in at least 1 mapping population, and 43 SSR markers (14.93
%) were polymorphic in 2 or more populations. Markers that were mapped in multiple populations (shared
markers), increased recombination data available for these loci in a combined dataset, and also enabled
alignment and comparison of individual population linkage maps, providing both a validation method for
individual population datasets, and a means to conduct comparative mapping to mine additional SSRs in
regions that required them. Marker ordering, marker spacing and total genetic distance mapped was highly
conserved across all 4 independent linkage maps, indicating the robustness of the markers and datasets, from
all 4 populations. This robust approach led to a substantial increase in the accuracy of estimated genetic map
size, over a previously published interspecific linkage map (Wang et al., 2011, King et al., 2013). SSR
markers developed in this study, and the dataset produced from the genotyping and linkage mapping of 229
plants from the G51xCV mapping population, contributed data towards the first intraspecific linkage map
published for Jatropha curcas in 2013 (King et al., 2013).

SSR marker development was carried out for several functions. As can be seen from this project, SSR
markers are ideally suited for the mapping of smaller numbers of loci in a more selective and targeted
manner, in comparison to more highly-parallel, high-throughput sequencing-based strategies used for the
other marker types in this study. As such the SSR markers developed in this study added value to the existing
genome-wide marker set, by enhancing both the coverage and information content of mapped loci. For
example, 120 SSR markers were developed to map gaps in the linkage map using comparative mapping, after
genetic linkage mapping with the genome-wide marker set, thereby reducing the number of regions where
marker spacing was greater than the recommended 10 cM required for complete QTL detection (Darvasi et
al., 1993). Information content of the genetic linkage map was significantly enhanced through the mapping of

candidate genes.

In total, 133 SSR markers (42.63 %) developed from this thesis study, were physically linked to candidate
genes of the fatty acid biosynthetic pathway; a pathway responsible for regulating oil yield and oil quality
related traits (seed oil content and fatty acid composition), as well as a smaller number of SSR markers (35
SSRs or 11.22 %) that were linked to branching and flower ratio candidate genes. The utility of such genes
for plant biotechnology, and their central role in regulating both oil yield and oil quality (seed oil
composition) (Napier et al., 2014, Bates et al., 2013, Vega-Sanchez and Ronald, 2010, Durrett et al., 2008),
as has been extensively demonstrated in research and agriculture(Napier et al., 2014, Bates et al., 2013,
Vega-Sanchez and Ronald, 2010, Durrett et al., 2008), highlights the importance of these genes in an oilseed
crop such as Jatropha. In silico identification of candidate genes through the compilation of genes from
model species such as Arabidopsis (Li-Beisson et al., 2013), and comparative genomic approaches utilising
search algorithms, enables a comprehensive approach to mapping of this pathway; ensuring as much of the
genetic architecture of complex traits such as oil yield, and its component trait, seed oil content, are mapped.
Since alignment of genetic linkage maps is relatively easy using anchor and bridging markers, as has been
demonstrated in this study, the positioning of such key genes, is of on-going utility to genetic research in
Jatropha curcas, for example for the investigation of QTL associated with oil yield or oil quality related
traits.
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Integration of additional SSRs mined for gap filling and the marking of candidate genes, in the G51xCV
mapping population during this thesis study, enabled the updating of the combined genetic linkage map
published in 2013 (King et al., 2015, King et al., 2013); modestly but significantly increasing marker density
and coverage, and substantially increasing information content of the linkage map through the addition of
candidate gene markers (King et al., 2015). This led to dissemination of a refined intraspecific linkage map
for Jatropha curcas in 2015 (King et al., 2015), that was validated through subsequent genome sequencing
efforts from the Chinese Academy of Sciences (Wu et al., 2015), that together enabled the physical mapping
of 51 % of the Jatropha genome sequence, and 64 % of protein encoding sequences (King et al., 2015); a key

genomic resource for the investigation of QTL in Jatropha curcas.

Collection of seed-related phenotypic data using Nuclear Magnetic Resonance spectroscopy and FAMES gas
chromatography enabled QTL mapping of traits from up to 3 separate sample points (years 2, and years 3a

and 3b) in the G51xCV mapping population.

A combination of single marker analysis and interval mapping, combined with correlation analysis, enabled
the investigation of phenotypic traits in the G51xCV mapping population. A hierarchical trait relationship
(Alonso-Blanco and Mendez-Vigo, 2014) could be established for oil yield per plant, based on the product of
seed oil content, seed mass and seed yield traits. It was therefore of interest to determine the relative
importance of these component traits to overall oil yield. Similarly, positive and negative correlations
between traits gave an indicator of the level of independence or causality between traits. Key findings of
correlation analysis in G51xCV population was that seed yield, seed oil content and seed mass were all
positively correlated with eachother, suggesting that increases in any one of these traits is not at the expense
of the others, and that optimisation of all three of these key traits is compatible within a single cultivar. Of
these three traits, seed yield was most strongly correlated with oil yield per plant, showing that seed yield was

most important for regulating final oil yield in the G51xCV mapping population.

Negative correlations, for example between oleic and linoleic acid, suggested causality between these traits; a
suggestion supported by the fact that both fatty acids exist in the same metabolic pathway. This finding is
consistent with the concept of limited fatty acid pools, or limited rates of synthesis, such that conversion of
one fatty acid into the other, leads to an increase in one fatty acid at the expense of the other, ultimately
producing differing fatty acid ratios. The fact that QTLs for both these fatty acid moieties co-located to a
single region, suggests that this conversion is controlled by a single locus and perhaps a single gene. This is
supported by the known pathway for this conversion, which is the result of the single step conversion by the
fatty acid desaturase gene, FAD2, in the oilseed model species, Arabidopsis thaliana (Li-Beisson et al.,
2013). The fact that a high oleate fatty acid composition is the key attribute for developing biodiesels that
meet international fuel standards (Durrett et al., 2008, Knothe, 2009), suggests that elucidation of this locus is
of high value for optimising oil quality of Jatropha curcas. This has been proven recently in J. curcas using
gene silencing of the FAD2 gene, to produce high oleate Jatropha oil (Utomo et al., 2015, Ye et al., 2009).

QTL were identified in all component traits of oil yield per plant and oil quality; seed oil content, seed mass
and seed yield (including the component trait of seed yield; branching), and through QTL mapping of the
major fatty acids that make up Jatropha curcas seed fatty acid composition. In total, 15 QTL were detected
for seed oil content (2QTL), seed oil composition; palmitate, stearate, oleate, linoleate content (10 QTL),
seed mass (1 QTL), number of branches (1 QTL) and seed yield (1QTL). Strongest QTL effects were

134|Page



detected for seed oil content, the principle trait of interest in the G51xCV population. Combined PVE for
seed oil content in year 2, accounted for 32.26 % of observed variation. Similarly large effect QTL were
detected for the other component traits of oil yield per plant; seed yield, 14.15 % PVE and seed mass,
between 14.89 % and 29.39 % PVE. Multiple QTL located to linkage groups 4 and 10; suggesting regions on
these linkage groups are important for regulating a variety of traits (or that some QTL could be pleiotropic),
and are therefore key target regions for introgression into a cultivar. Analysis of the parent-of-origin for QTL
alleles, showed that beneficial vegetative/architecture QTL alleles (branching, seed yield traits) originated
from the CV parent, whereas beneficial alleles for seed related QTL (seed oil content, seed mass traits)
originated from the G51 parent. This suggests that breeding of hybrid plants may be an advantageous strategy
to combine favourable components of both seed and vegetative/architecture related traits in a single cultivar.
Since the CV parent is genetically similar to widely distributed Jatropha material, the seed related trait QTL
as found in G51, may be more beneficial for introgression to improve widely distributed material. That being
said, in G51xCV, seed yield was ultimately the most important trait for regulating oil yield, and so, alongside
seed oil content and seed mass traits, generating Jatropha cultivars with high seed yields will be of utmost
importance for creating high yielding varieties.

6.1: Future recommendations

The major limitations of this study were the confidence intervals for identified QTL which were relatively
large; ranging from 13 cM (palmitate year 2) to 57 cM (seed oil content year 3a) for the Bayes 95 %
confidence interval. For crop breeding delimiting QTLs to the smallest interval possible is advantageous so
that QTL can be introgressed and/or stacked (combined) with greatest precision (Dekkers and Hospital,
2002). It also enables desirable alleles to be found across diverse germplasm collections with greatest
accuracy, as the genotype for flanking markers of QTL, are more likely to be informative of the underlying

genetic alleles, the closer the markers are together.

The resolution of QTL location is dependent on the number of recombination events and independent
phenotypic measurements with which to correlate them to, and the density of DNA markers to most
accurately locate recombination points (Mackay et al., 2009). During a single meiosis event, between zero
and two crossover events per linkage group, were most common according to linkage mapping data used in
this study (data not shown), which is consistent with findings in Arabidopsis despite differences in
chromosome length between the two species (Giraut et al., 2011). Therefore in a Jatropha F, population,
which is the product of recombination in two F; gametes as it is a diploid species, 0 to 2 times the F,
population size per gamete, can be used as an estimation of the number of recombination events sampled per
linkage group (i.e. between 0 and 4 recombinations, per linkage group, per F, plant). One can increase
recombination data, by using shared markers that are mapped in independent populations, as utilised by
linkage mapping in the combined genetic linkage map, however unless independent populations phenotype
the same traits, and experience identical environmental conditions, there may not be corresponding

phenotypic measurements to correlate these recombination events to, for QTL mapping of particular traits.

Another way to increase the number of recombinations sampled per plant, is to conduct association mapping
using a diverse germplasm panel (Hamblin et al., 2011, Davey et al., 2011, Rafalski, 2010). By doing so
recombination events are sampled over the many generations since divergence of the germplasm panel from
a common ancestor, substantially increasing the resolution of QTL mapping (Hamblin et al., 2011). This,
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combined with genome-wide sequencing of the germplasm collection (Davey et al., 2011), produces a
maximal marker density - depending on the depth of sequencing and the sequencing approach used (i.e.
complete vs reduced representation) (Davey et al., 2011), which determines the completeness of the genome
sequences that can be compared for marker generation. Surveying a diverse germplasm collection also
enables investigation of a wider selection of genotypes and phenotypes, potentially capturing more
advantageous phenotypic and genetic variation that can be investigated (Hamblin et al., 2011). This
germplasm collection can then form the basis of a breeding programme, once relevant QTL have been
discovered. Whilst increasing population size, recombination events per plant, and marker density are well-
known strategies to increase the power to detect and locate QTL (Mackay et al., 2009, Davey et al., 2011),
the importance of accurate and suitable phenotyping to increase QTL detection, particularly for complex

traits such as oil yield, is also important (Alonso-Blanco and Mendez-Vigo, 2014).

Complex traits such as oil yield are known to be the result of the interaction of a myriad of loci, affecting
different areas of plant development and metabolism, each potentially contributing minor effects that are
subject to modulation by the environment (Holland, 2007, Alonso-Blanco and Mendez-Vigo, 2014). As such
QTL mapping of a complex trait such as oil yield, limits the power to detect minor effect QTL that
nevertheless, in aggregate, may be important for regulating oil yield (Alonso-Blanco and Mendez-Vigo,
2014). One method to increase the power to detect QTL is to determine hierarchical trait relationships
(Alonso-Blanco and Mendez-Vigo, 2014); splitting oil yield into component traits, such as oil content, seed
mass and seed yield — as conducted in this study. Whilst QTL may have only minor effects at the oil yield
level, the effects on component traits that QTL may more-directly regulate would be bigger, effectively
increasing the power to detect these QTL. This can be seen by seed oil composition QTL detected in this
study. Whilst variation of only a few percent seed oil composition were observed for some fatty acid
moieties, strong QTL associations were able to be detected, due to precision phenotyping of individual fatty

acids using gas chromatography.

Oil yield per plant in this study, was broken down into component traits, seed oil content, seed mass and seed
yield. Whilst seed mass could have been broken down further, for example into seed components, such as
proteins, carbohydrates and fats, or different seed tissues, to give further information on seed mass variation,
this, whilst interesting from a biological perspective, would have less significance for overall oil yield and the
breeding of improved Jatropha varieties. Seed yield however, could have significantly more scope for

phenotypic dissection.

In this study branching was one trait that was measured as a component of seed yield; which itself was the
most strongly associated with oil yield per plant in G51xCV (in years 2 and 3, seed yield and oil yield
showed a correlation of R=0.972, and R=0.948 respectively). Although branching was significantly
associated with seed yield variation (p<0.000), showing that this is an important contributor to seed yield, the
fact that correlation was incomplete (between R=0.312 and R=0.448) suggested that additional factors were
present. A key trait that would be expected to be correlated with branching and seed yield, would be flower
ratio. Flower inflorescences, which produce seed through the female flowers, are highly dependent on
branching, since flower inflorescences occur at positions along branches. Whilst branching may determine
the number of possible flower points on a plant, the actual extent of flowering and the ratio of female to male
flowers, may well also contribute towards seed yield and so this would be a key trait to measure in future

studies along with branching. Other vegetative traits were measured in the G51xCV mapping population as

136|Page



part of a wider study outside of this thesis work (King et al., 2015). Plant height and stem diameter were also
shown to be significant to seed yield (King et al., 2015), demonstrating the complex genetic architecture

likely to underlie seed yield in Jatropha.

As such, seed yield, could perhaps be the trait that could most benefit from future genome wide association

studies, including precision and hierarchical trait phenotyping, to dissect this complex trait and determine the
genetic basis of observed variation through the study of diverse germplasm collections. This will provide the
basis to add to QTL discovered in this study, whilst expanding the collection of suitable starting material for

the breeding of improved cultivars of Jatropha curcas.
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