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Abstract 

Jatropha curcas is a perennial shrub from the Euphorbiacea family. It is known for its stress resilience and 

high seed oil content, however little selective breeding has been carried out to fully domesticate this species. 

The aim of this project is to identify and map quantitative trait loci (QTL) for seed oil content, seed oil 

composition (oil quality), and oil yield, in order to identify loci suitable for introgression into an 

economically viable cultivar. In this study, an F2 population (G51xCV) consisting of 229 plants for linkage 

analysis, and 145 plants for QTL analysis, was used to identify and position 312 genetic markers and 8 

quantitative traits onto a genetic linkage and QTL map. Over 288 short sequence repeat (SSR) markers were 

mined from genome sequence to complement single nucleotide polymorphism (SNP) markers from genomic 

and transcribed DNA. 132 of the mined SSRs were physically linked to candidate genes, leading to the 

mapping of a substantial portion of genes that form the seed oil biosynthetic pathway in Jatropha curcas. 

Integration of phenotypic datasets collected over 2 independent years, enabled the identification of 15 QTL 

regulating seed oil content (2QTL), seed oil composition; palmitate, stearate, oleate, linoleate content (10 

QTL), seed weight (1 QTL), number of branches (1 QTL) and seed yield (1QTL). Combined PVE for these 

QTL accounted for between 9.34 % (palmitate content year 2) to 32.26 % (seed oil content Year 2) of 

observed variation. Analysis of final oil yield per plant, showed that seed yield (number of seeds) was most 

important for regulating oil yield in this mapping population, however seed oil content and seed weight were 

also important traits, highlighting that selection of both seed oil and vegetative traits are of utmost 

importance for optimising oil yield in Jatropha curcas. 
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Chapter 1: Introduction 

1.1: Background and context – Population growth leads to challenges for food 

production, energy supply and climate change 

The world population is currently 7 billion, and is expected to increase to 9 billion by 2050 (Godfray et al., 

2010) and up to 12 billion by 2100 (Gerland et al., 2014). Such a large population places significant pressures 

on critical resources such as energy, land, food and water (Steinbuks and Hertel, 2016, Newbold et al., 2016, 

DeFries et al., 2015, Larsen et al., 2016, Jaramillo and Destouni, 2015, Fedoroff et al., 2010, Godfray et al., 

2010, Tilman et al., 2009). At the same time, competition for these finite resources is exacerbated by climate 

change, which imposes constraints on how additional resources are made available to meet increased demand 

(Tester and Langridge, 2010). 

Food production, the majority of which is derived from plants either directly or indirectly, will require large 

gains in global crop yields in order to feed the growing population (Tester and Langridge, 2010). Whilst 

historically crop yields have kept pace with population growth through technological advancement (‘the 

green revolution’) (Khush, 2001), optimisation of agricultural practices, refinement of genetics and 

intensification of farming means that in the developed world, a theoretical maximum yield per hectare is 

being approached using conventional technologies (Neumann et al., 2010), which places a premium on 

available agricultural land. In the developing world, adoption of better farming practices and improved crop 

cultivars may yield further gains, however there are other problems such as availability and access to 

chemical inputs, water, suitable land and permissive climatic conditions, that mean even with full utilisation 

of agricultural land for food production, meeting current and predicted food requirements will be a significant 

challenge (Godfray et al., 2010).  

Climate change is expected to exacerbate this problem (Wheeler and von Braun, 2013, Tester and Langridge, 

2010). Whilst modelling has shown some improved yields under different climate change scenarios at the 

regional level, overall, changes in climate are expected to decrease crop yields and available arable land; 

increasing arid land and desertification, and producing greater abiotic stress for plant growth in the form of 

unpredictable and more extreme weather conditions (Lobell et al., 2008). This will include drought 

conditions and semi-arid soils in many areas (Varshney et al., 2011).  

One of the buffers to atmospheric CO2 and climate change; plant biomes, means that expansion of 

agricultural land in pursuit of greater crop production is not recommended, as the negative effects on climate 

change will far outweigh any shorter-term yield increases (Steinbuks and Hertel, 2016, Newbold et al., 2016). 

Plant biomes also represent a rich resource of biodiversity that is vital for adapting to the unknown 

challenges of the future using untapped alleles, genes, germplasm, and natural products. As an example of 

this concept in practice, significant efforts are being made to expand the gene pool of highly domesticated 

crop species using wild genomes and landraces (Feuillet et al., 2008, Brozynska et al., 2016, Tester and 

Langridge, 2010, Zamir, 2001). 

The majority of population growth will be seen in the developing world and the emerging economies, which 

places a significant demand on energy requirements (British Petroleum, 2016, Chu and Majumdar, 2012). 

Whilst fossil fuels have driven development for centuries, these are also finite resources and significant 

contributors to climate change through the release of greenhouse gases (Intergovernmental Panel on Climate 
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Change, 2014). The need to switch to renewable, low carbon energy sources in order to fuel development of 

emerging economies to more sustainable energy-use models and population demographics, as occurred 

during the industrial revolution in the developed world, is clear (Chu and Majumdar, 2012).  

The cost of fossil fuels, such as crude oil, has risen steadily since their adoption and will continue to rise as 

sources become harder and more dangerous to extract (National Academy of Sciences, 2009, Kerr, 2011). 

Price fluctuations highlight the political aspect to supply and demand, and the need for energy security for 

many developed nations (National Academy of Sciences, 2009, US Energy Information Administration, 

2016).  

The majority of the infrastructure surrounding the world economy has been built up around liquid 

transportation fuels, such as petrol and diesel, and so there is an immediate requirement for renewable 

replacements (Blanch, 2010). For example, of the distillates of crude oil, which account for a third of global 

energy consumption (British Petroleum, 2016), 90 % is used for liquid transportation fuels, with the 

remaining 10 % as feedstocks for chemical manufacturing and other industrial processes (Dyer and Mullen, 

2008). This includes the manufacture of important materials and chemicals, such as plastics, fertilisers and 

pesticides (Carlsson, 2009).   

A number of renewable energy technologies are available to replace fossil fuels, and both the US and EU are 

pursuing a diverse renewable energy strategy including the use of nuclear, solar, wind, geothermal, 

hydroelectric and biomass technologies (The European Parliment, 2009, US Department of Energy, 2014). 

However biomass is the only renewable technology that can provide direct replacements for liquid 

transportation fuels (Blanch, 2010). Transition to different technologies for automotives e.g. electric, is 

expected to take some time, and for larger transportation systems, such as heavy-freight and aircraft, liquid 

transportation fuels are the only energetically-feasible energy source (Chu and Majumdar, 2012). Plant 

biomass is therefore an essential part of the renewable energy toolbox. 

With increases in food crop production required to meet population demands, and the growing area not likely 

to expand due to the effects of climate change and biodiversity/ecosystem considerations, plant biomass 

feedstocks are required to minimise competition with food crops, particularly for agricultural land (Tilman et 

al., 2009). 

Due to advances in genetics and plant breeding, such as the exponential rise in the power and accessibility of 

genome sequencing (Edwards and Batley, 2010, Davey et al., 2011, Feuillet et al., 2011, Langridge and 

Fleury, 2011, Morrell et al., 2012), novel plant-based solutions are now feasible. One approach that has 

become available is the rapid domestication of wild plant species (Langridge and Fleury, 2011). Whilst the 

creation of genetically improved cultivars traditionally took decades, often for small incremental 

improvements, with advanced breeding technologies and access to powerful sequencing and genomics 

technologies, this process can be significantly accelerated (Ragauskas et al., 2006). This opens up the 

repertoire of available plant species and germplasm from which to create new cultivars; expanding on the 

traditional high yielding annual crops that require high input farming, to intrinsically more efficient biomass 

options, such as perennials (Kantar et al., 2016, Fargione et al., 2008), that can tolerate a greater range of soil 

types, and use nutrients and water more efficiently (Tester and Langridge, 2010). 
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Quantitative Trait Locus (QTL) mapping is an approach that is greatly enhanced by genome sequencing 

technologies throughout its multistage process (Langridge and Fleury, 2011). The efficiency with which the 

genomic resources required for QTL mapping can be attained, and the repertoire of available techniques to 

mine and exploit novel genomes, substantially increases with access to genome sequence (Feuillet et al., 

2011, Morrell et al., 2012). This includes the production of DNA markers, genetic linkage mapping, 

comparative mapping using synteny with sequenced relatives, the identification and mapping of candidate 

genes, and the delineation of QTL intervals.  

Once genomic resources such as DNA markers, genetic linkage and Quantitative Trait Loci (QTL) maps are 

attained for novel crop species, advanced breeding technologies, such as Marker Assisted Selection (MAS), 

can be implemented to accelerate the breeding cycle by enabling larger populations to be screened at a much 

earlier stage for desirable genetics (Dekkers and Hospital, 2002). In this way the time taken to combine 

favourable QTL in a single cultivar is reduced, shortening the timeline between a wild plant and a 

genetically-improved cultivar. 

Jatropha curcas, a perennial oilseed crop from the Euphorbiacea family, is a species that has generated 

interest for use as a biodiesel feedstock plant (Fairless, 2007). On the one hand it is a potentially high-value 

crop that combines a high seed oil content and valuable by-products, with significant plasticity to different 

soils, water and nutrient conditions. However, it is also a wild long-life perennial species that presents 

significant challenges to conventional selective breeding approaches; these challenges have thus far 

prevented domestication or genetic improvement of Jatropha. This project contributes towards the genomic 

resources required for the rapid domestication and genetic improvement of Jatropha, through QTL mapping 

of a number of oil yield and oil quality related traits. The DNA markers, genetic linkage maps, QTL maps 

and mapped candidate genes, will provide a basis for the breeding of improved varieties of Jatropha curcas. 
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1.2: The current state of plant-based biorenewable fuels 

1.2.1: Global trends in energy consumption drive demand for oil and its derivatives 

Over the past 50 years there has been a steady increase in world energy consumption from 3730.2 Mtoe 

(million tonnes of oil equivalent) in 1965, to 13,147.3 Mtoe in 2015 (British Petroleum, 2016). World energy 

consumption has increased faster than population growth, indicating that energy consumption has been 

driven by both population growth and a transition to more energy-intensive societies, as reflected by ever 

greater urbanisation and energy consumption per capita (British Petroleum, 2016, Food and Agriculture 

Organization of the United Nations, 2016). 

Current (2015) figures show that energy consumption in OECD1 countries accounts for 41.9 %  of global 

energy consumption (5503 Mtoe); an increase of 1.18 % from 2000, whereas energy consumption in non-

OECD countries accounts for 58.1 % of global energy consumption (7644 Mtoe); an increase of 93.57 % 

over 2000 usage (British Petroleum, 2016). With Non-OECD countries containing 82.6 % of the world’s 

population, and the greatest population growth and economic development expected in these regions (World 

Bank, 2016), this trend is expected to continue, leading to a considerable increase in global energy demands 

over the coming decades (US Energy Information Administration, 2016). 

World energy is supplied from 6 major sources; oil (32.9 %), natural gas (23.9 %), coal (29.2 %), nuclear 

energy (4.44 %), hydroelectric (6.79 %) and renewables (2.78 %) (British Petroleum, 2016). Of the three 

fossil fuel sources, oil, gas and coal, which together account for 86 % of global energy consumption, oil is 

most heavily used and least amenable to replacement by other fuel sources (Blanch, 2010).  

Oil is fractionated into different hydrocarbons for different uses; approximately 90 % is used as liquid 

transportation fuels, and the remaining 10 % used as chemical feedstocks and for manufacturing (for example 

for the manufacture of plastics) (Dyer and Mullen, 2008, Carlsson, 2009). With the infrastructure of the 

world’s economy built up around liquid transportation fuels (Chu and Majumdar, 2012), and the products of 

petro-chemical feedstocks vital for the functioning of society, demand for oil and its derivatives is expected 

to remain high. 

1.2.2: Climate change is a leading driver for the switch to renewable energy sources  

Anthropogenic emissions of greenhouse gases, predominantly the release of carbon dioxide from fossil fuel 

use, is widely accepted to contribute to climate change, and is a key driver for the switch to renewable 

energies (Intergovernmental Panel on Climate Change, 2014, US Energy Information Administration, 2016, 

The European Parliment, 2009). Carbon dioxide emissions from fossil fuel combustion and industrial 

processing alone accounted for 78 % of all greenhouse gas emissions between 1970-2010 (Intergovernmental 

Panel on Climate Change, 2014). The predicted impacts of climate change on food production, means that 

food security in particular provides significant incentive for the reduction of greenhouse gas emissions 

(Godfray et al., 2010). 

                                                        
1 The Organisation for Economic Co-operation and Development (OECD) countries includes those in Europe 

and Australia, Canada, Chile, Israel, Japan, Mexico, New Zealand, South Korea, UK and US. 
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Effects of climate change on food crop production, which are pertinent to plant-based biorenewable fuels, 

include increasing global temperatures (Intergovernmental Panel on Climate Change, 2014), lower water 

availability (Larsen et al., 2016, Jaramillo and Destouni, 2015, Fedoroff et al., 2010), decreasing arable and 

agricultural land (Steinbuks and Hertel, 2016, DeFries et al., 2015), increasing arid and semi-arid land, more 

extreme and unpredictable weather conditions including droughts in many areas (Varshney et al., 2011), and 

these effects are thought to be proportional to the extent of climate change (Lobell et al., 2008). These effects 

point towards a different model of agricultural farming in the future, moving towards more efficient ways of 

farming with fewer inputs and under less favourable conditions (Fedoroff et al., 2010). 

1.2.3: The economics of supply and demand present additional drivers for renewable 

replacements for oil 

Despite advances in oil exploration and extraction technologies that have been able to meet increased energy 

demand with ever greater oil reserves and production rates (Chu and Majumdar, 2012, British Petroleum, 

2016), the current reserve-to-production (R/P) ratio means on current consumption rates, world oil reserves 

will be exhausted within 50 years (British Petroleum, 2016). Similarly, there are concerns that the difficulty 

of extracting harder to reach reserves combined with ever increasing demand in the future, will lead to an oil 

production peak and an escalation of costs (Kerr, 2011). Oil consumption and oil production are 

geographically dislocated for many countries, leading to a reliance on oil imports and a susceptibility to 

geopolitically-caused price fluctuations (National Academy of Sciences, 2009, US Energy Information 

Administration, 2016). As a result, both energy supply and energy security provide significant additional 

drivers for renewable replacements for oil.  

1.2.4: Plant-based biofuels offer the potential of a renewable, low-carbon alternative 

to petrochemical liquid transportation fuels 

A diverse renewable energy portfolio is being established by both the US and the EU (The European 

Parliment, 2009, US Department of Energy, 2014) including the use of nuclear, solar, wind, geothermal, 

hydroelectric and biomass technologies. Despite this diversity of options however, biomass is the only 

renewable energy source that can be used as a direct replacement for liquid transportation fuels (Blanch, 

2010). Liquid transportation fuels account for 90 % of oil use (Dyer and Mullen, 2008), over 14 % of annual 

greenhouse gas emissions (Intergovernmental Panel on Climate Change, 2014), and are the only 

energetically-feasible energy source to power critical infrastructure such as aviation and heavy-freight 

(National Academy of Sciences, 2009). 

Plants are an attractive biomass feedstock due to their renewability and intrinsically low carbon footprint 

(Hill et al., 2006, Durrett et al., 2008). Plants accumulate biomass using atmospheric CO2, water and sunlight 

over a short time scale, such that the carbon released through their subsequent combustion when used as a 

biofuel, should be less or equal to the amount of carbon fixed, with the additional lifecycle carbon-costs 

associated with their farming, processing and transportation (Hill et al., 2006). Plant-based biofuel feedstocks 

with low lifecycle greenhouse gas emissions, that minimise competition with food crops, are therefore the 

industry target (Tilman et al., 2009).  
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1.2.5: Research streams for exploitation of plant biomass for liquid transportation 

biofuels 

Two major avenues of research currently exist for exploitation of plant biomass for liquid transportation 

biofuels (Guo et al., 2015). Bioethanol; produced from the fermentation of sugar to ethanol using 

carbohydrates derived from plant biomass, is the current biofuel of choice to replace petroleum. Bioethanol 

can be blended up to 10 % ethanol-to-petrol by volume, without the need to modify existing petrol 

combustion engines (Coyle, 2007). Biodiesel; used either as crude plant storage oil or more commonly 

manufactured by transesterification of plant triglycerides to simpler constituent fatty acids using methanol or 

ethanol, is chemically very similar to diesel and can be used as a complete replacement with little or no 

modification to diesel combustion engines2 (Murugesan et al., 2009), although the most common blend in use 

in the US is a 20 % biodiesel-to-diesel by volume (Guo et al., 2015). 

The two biofuels; bioethanol and biodiesel, can be further split into technical streams according to how their 

feedstock compounds are produced (Albers et al., 2016). The first stream for bioethanol production is the use 

of high starch/sugar-containing plants, such as sugarcane, that can be directly converted to ethanol through 

anaerobic fermentation. These are classed as ‘first generation’ biofuels, as typical high starch/sugar plant 

feedstocks are food crops, such as sugarcane, maize or corn.  

The second bioethanol stream; cellulosic bioethanol, uses cellulose found in plant cell walls as a feedstock 

for producing carbohydrates from fibrous and woody plant biomass (Somerville et al., 2010). This process 

uses biological means to convert cellulose to ethanol, including hydrolytic enzymes to breakdown the 

cellulose matrix to simple sugars, and anaerobic fermentation to convert the liberated sugars to ethanol as 

before. Cellulosic bioethanol is a ‘second generation’ or ‘advanced’ biofuel as it uses non-edible plant 

biomass.  

Finally thermochemical conversion of plant biomass, using pyrolysis and gasification reactions, is the third 

stream. This breaks down unrefined plant biomass using heat and pressure in the presence of specialised 

industrial catalysts, to synthesise a range of industrial chemicals including ethanol through non-biological 

means.  

Biodiesel production occurs almost exclusively from oilseed crops, although a minor amount is converted 

from waste animal fat (Albers et al., 2016). The technical stream for biodiesel production, converts plant seed 

oil, which is a triglyceride, to biodiesel, which are single chain fatty acids, through transesterification with 

methanol, to yield biodiesel and the chemical by-product, glycerol. Biodiesel feedstock crops are classified as 

‘first generation’ if the oilseed feedstock is an existing food crop, for example soybean, rapeseed or palm oil, 

or ‘second generation’ or ‘advanced’, if the oilseed feedstock is a non-edible or a non-food species. 

                                                        
2 Biodiesels must meet the fuel standards ASTMD6751 (US) or EN14214 (EU) to be sold as pure biodiesels 

(B100), which is dependent on the biodiesel fatty acid composition (Murugesan et al., 2009, King et al., 

2009). Jatropha curcas meets the US standard, and with most provenances the EU standard (King et al., 

2009). 
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Critically, ‘second generation’ or ‘advanced’ oilseed and bioethanol crops, avoid competition with food crop 

production3.  

1.2.6: Current state of ‘second generation’ or ‘advanced’ plant-based biofuel 

feedstocks 

Second generation biofuels seek to minimise competition with food crops in a number of ways (Ho et al., 

2014). While non-edible crop sources were initially proposed as a way of reducing market pricing and 

production issues for crops that could be used for food and fuel (Graham-Rowe, 2011, Fairley, 2011), in 

many ways this was an over-simplification of the issue, since non-edible biofuel crops still fundamentally 

compete with food crops for land space, particularly if their market value per hectare is competitive with the 

food crops they displace.  

The non-edible concept has been advanced to ways that more effectively avoid displacement of food crops. 

Current efforts are focused on using non-agricultural land for example marginal crop land, or low 

biodiversity semi-arid land for biofuel production (Tilman et al., 2009, Fargione et al., 2008). For this 

purpose perennials have a number of advantages for both bioethanol and biodiesel production; either as 

biomass accumulators or as oilseed crops respectively (Ragauskas et al., 2006, Somerville et al., 2010).  

Another strategy is to use crop residues (the non-edible by-products of food crop harvests) as a source of 

lignocellulosic biomass (Sims et al., 2010). Research aims to improve the efficiency of all steps in the 

conversion process from lignocellulosic biomass to bioethanol (Sticklen, 2008, Blanch, 2010), from 

improving the intrinsic efficiency of biomass crops by making them perennial (Somerville et al., 2010), to 

engineering cellulose more amenable to breakdown by hydrolytic enzymes for example (National Academy 

of Sciences, 2009, Sticklen, 2008).  

Oilseed crops for biodiesel production are typically enhanced by increasing both the oil yield and oil quality. 

Oil yield is a complex trait made up of a variety of component traits (‘hierarchical’ traits) (Alonso-Blanco 

and Mendez-Vigo, 2014) such as seed yield, seed oil content and seed mass. These contributing traits 

themselves may be determined by a number of other traits – for example in Jatropha, seed yield is affected by 

the amount of branching and ratio of female to male flowers, and other traits. Therefore the traits and genetic 

factors, or together the genetic architecture, controlling oil yield, are a diverse area of study and are often 

dependent, and specific to, the oilseed crop species, and the environment in which it will be grown.  

Oil quality is linked to seed oil composition, a genetically controlled trait that determines the ratio of 

different fatty acids in the seed storage oil (Dyer and Mullen, 2008). Altering the ratio of fatty acids, affects 

the kinetic properties of the resultant biodiesel, including cetane number, cold flow point, and oxidative 

stability to name but a few (Knothe, 2009). Industry standards for each of these fuel properties determine the 

                                                        
3 Whilst previously ‘non-edible’ was the definition of an advanced biofuel crop, it is now more accurate to 

define advanced biofuels as those that minimise competition with existing food crops, since this is the 

implied significance of the term ‘non-edible’, rather than the plant necessarily being inedible for human 

consumption. This is pertinent to Jatropha curcas since efforts are being made to breed non-toxic varieties, 

for the purpose of increasing the value of its seed meal for use as an animal feed, however even if it is 

technically ‘edible’ once made non-toxic, it is still classed as an advanced biofuel since it is not an existing 

food crop and it minimises competition with food crop production. 
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suitability of the biodiesel for different applications. With specific oil compositions achievable through 

genetic manipulation, the creation of ‘designer’ oils for industry is now an active area of research (Napier and 

Graham, 2010). 

1.3: Jatropha curcas, a perennial oilseed of the Euphorbiacea family 

Jatropha curcas (known as ‘Jatropha’) is a member of the Euphorbiacea family, which contain a number of 

agronomically-important species that are known to accumulate biomass efficiently; castor bean (Ricinus 

communis), rubber (Hevea brasiliensis), cassava (Manihot esculenta), sacha peanut (Plukenetia volubilis) and 

other less well-known oilseeds such as Chinese tallow (Triadica sebifera) and tung (Aleurites fordii) (Wu et 

al., 2015, King et al., 2013).  

Jatropha is a small tree/shrub that grows to approximately 3-5 m (Heller, 1996), and up to 10 m (Divakara et 

al., 2010), although when pruned or managed for agricultural production, it can take a denser, more heavily 

branched morphology, that can be readily trained to a range of sizes (Gour, 2006). It is a ‘hardy’ and 

adaptable species, able to tolerate a wide range of soil types, day lengths and precipitation levels (Achten et 

al., 2010). Jatropha is a perennial plant, meaning that it grows year round, rather than being planted from 

seed each year as is required of annual crops. Once seedlings are established, Jatropha grows vegetatively for 

approximately 1-2 years, before it flowers and produces oilseed-containing fruits. In tropical regions where 

wet and dry seasons are observed, Jatropha typically flowers and produces seed twice a year; with vegetative 

growth occurring predominantly during the wet season (Heller, 1996). In permanently humid tropical 

regions, Jatropha flowers year round (Heller, 1996). Typically its first substantive yield is in the 2nd year of 

growth, although minor yields are sometimes reported in the 1st year of growth. Seed yield and oil yield 

continue to increase as it grows towards full maturity after ~5 years from seedling (Heller, 1996). Jatropha 

has a lifespan of up to 50 years (Heller, 1996). Jatropha is monoecious, asynchronous and self-compatible, 

leading to both crossing and self-fertilisation as reproductive strategies (Heller, 1996, Achten et al., 2010).   

1.3.1: Jatropha distribution 

Jatropha is a pan-tropical species originating from Meso-America (Heller, 1996, Achten et al., 2007). It has a 

wide geographic range and can be grown beyond the tropics of Cancer and Capricorn (latitudes of ±23.5oN) 

(King et al., 2009), which is a greater range than the only major tropical-oilseed crop in cultivation; oil palm, 

which is distributed between ~±15oN (Leff et al., 2004). It is reported to tolerate both dry and moisture-rich 

soils (Kumar and Sharma, 2008, Makkar and Becker, 2009), giving it significant climatic-plasticity, although 

prolonged or extremes of both, result in reduced growth and yields (Makkar and Becker, 2009, Abou Kheira 

and Atta, 2009, Edrisi et al., 2015). 

1.3.2: Jatropha curcas genetics 

Jatropha curcas is a diploid species with 2n=22 chromosomes, and a genome size of C=416 Mb (Carvalho et 

al., 2008). This is classed as a very small plant genome (Michael, 2014), and is small when compared to other 

species within the same phylum, order or family (Angiosperms/Malpighiales/Euphorbiacea respectively) 

(Bennett and Leitch, 2012). Of the crop species, only rice (389 Mb), cucumber (367 Mb), peach (220 Mb), 

orange (367 Mb), papayas (372 Mb) have smaller genomes that have been sequenced (Goodstein et al., 2012, 

Feuillet et al., 2011). Jatropha has a GC content of 38 % which is typical of dicots and similar to the model 
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organism Arabidopsis (Arabidopsis thaliana), which facilitates genome assembly and annotation (Carvalho 

et al., 2008).   

Jatropha’s nearest sequenced relative is castor bean, which has a similar genome size (C=509 Mb) (Bennett 

and Leitch, 2012) and a high-quality open-access genome sequence (Chan et al., 2010). A high level of 

synteny and gene co-linearity exists between castor bean and Jatropha, as has been demonstrated during 

genome sequence assembly (Wu et al., 2015, Sato et al., 2011) and genetic linkage mapping (King et al., 

2013). This is pertinent to Jatropha research, as the Jatropha genome sequence has, until recently, been 

available only at the low-quality draft level4, although recently this has been improved to a level comparable 

to that of castor bean (Wu et al., 2015).  

Genetic diversity is particularly low for Jatropha germplasm distributed globally (Yue et al., 2014, He et al., 

2011, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, Qi-Bao Sun et al., 2008). Genetic 

characterisation and diversity studies suggest that the majority of Jatropha material found outside of Meso-

America, is descended from a narrow subsection of the Jatropha gene pool (He et al., 2011), as a result of 

limited sampling during its introduction to global trade markets in the 16
th

 century (Heller, 1996). A tendency 

for inbreeding in Jatropha curcas, due to self-compatibility and monoecious flowering, is also thought to 

contribute to genetic homogenisation of populations (Achten et al., 2010). Discovery of germplasm with 

greater genetic and phenotypic diversity in recent times (He et al., 2011, Montes Osorio et al., 2014, Pecina-

Quintero et al., 2014), has overcome a major bottleneck in the breeding of improved varieties of Jatropha. 

1.3.3: Genomic resources for Jatropha research 

Genomic resources for Jatropha research have increased considerably following the advancement of genome 

sequencing technologies. Early research assessed genetic diversity of Jatropha germplasm using molecular 

genetic approaches, identifying suitable breeding material and greater genetic diversity in its centre of origin 

(Yue et al., 2014, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011, Achten et al., 

2010, Graham, 2009, Basha et al., 2009, Sun et al., 2008). Following advances in genome sequencing, a 

number of transcriptome sequencing studies were published using different sequencing platforms; dye-

terminator capillary sequencing (Costa et al., 2010); 454 pyrosequencing (King et al., 2011), and the FLX 

titanium platform for 454 pyrosequencing (Natarajan and Parani, 2011), enabling gene discovery to occur in 

key tissues such as the developing seed. This was followed shortly afterwards by the publication of a draft 

                                                        
4 For the castor bean genome sequence published in Sept 2010 (Chan et al., 2010), mean and median (N50) 

scaffold lengths were 93 kb and 561.4 kb respectively, for a gene density (total sequence span/number of 

gene models) of 11,220 bp/gene, meaning that the number of genes per scaffold was relatively high. For the 

Jatropha genome sequence, mean and median (N50) sequence element lengths were 1,900 bp, and 3,833 bp 

respectively, for release JAT_r3.0 (Sato et al., 2011). Mean and median (N50) sequence element lengths were 

marginally increased to 7,597 bp, and 15,950 bp respectively, for release JAT_r4.5 (Hirakawa et al., 2012). 

With a gene density (total sequence/number of gene models) of 9,855 bp/gene for release JAT_r4.5, the 

number of genes per sequence element is low, highlighting the utility of the castor bean genome sequence for 

physically ordering the smaller sequence elements of the Jatropha genome sequence within syntenous 

regions. The most recent Jatropha genome sequence, published in 2015, generated mean and median (N50) 

scaffold lengths of 168 kb and 746 kb respectively (Wu et al., 2015), substantially increasing the quality of 

available genome sequence.  
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genome sequence (Hirakawa et al., 2012, Sato et al., 2011), significantly enhancing DNA marker and gene 

discovery. An interspecific cross with j. integerrima, led to an interspecific draft genetic linkage map for 

Jatropha (Wang et al., 2011), and a number of QTL and eQTL (Liu et al., 2011, Sun et al., 2012). Data from 

this thesis study contributed to a collaborative project that published the first high density genetic linkage 

map for Jatropha curcas, using intraspecific genetic diversity identified from its centre of origin (King et al., 

2013). This was followed by publication of an integrated QTL map and updated genetic linkage map (King et 

al., 2015). A vastly improved Jatropha genome sequence was published in 2015 (Wu et al., 2015), increasing 

average contig and scaffold size, and integrating previously published linkage maps. 

1.3.4: Jatropha curcas as a valuable biodiesel feedstock crop 

Jatropha curcas has several characteristics that make it an attractive feedstock crop for biodiesel production, 

as an animal feed, for medicinal/pharmacological natural products, and for soil improvement/land 

reclamation/utilisation of marginal land (Abhilash et al., 2011, Achten et al., 2007, Becker and Makkar, 

2008, Devappa et al., 2010, Devappa et al., 2013, Divakara et al., 2010, Heller, 1996, King et al., 2009, 

Kumar and Sharma, 2008, Makkar and Becker, 2009, Openshaw, 2000, Thomas et al., 2008, Sabandar et al., 

2013, Mukherjee et al., 2011). 

Jatropha curcas is an oilseed crop that produces seeds of between 30-40 % seed oil content (Achten et al., 

2010). Jatropha oil has a favourable ‘high-oleic’ seed oil composition, making it suitable for use as biodiesel 

(Knothe, 2009, Durrett et al., 2008). Transesterification of crude Jatropha oil produces a biodiesel that meets 

both European and US fuel standards (King et al., 2009), that can be used in diesel combustion engines 

without further modification. Reported Jatropha oil yields vary considerably, but can be up to 2000kg/ha/year 

(Yue et al., 2013), which are yields from an undomesticated lineage with little genetic improvement. This 

compares to 3680kg/ha/year for oil palm, and 360kg/ha/year for soybean (Gupta, 2015), as examples of 

commercial, high yielding oilseed crop cultivars that have undergone considerable genetic improvement.  

The seed meal of Jatropha; a by-product of the seed oil extraction process, is high in protein and is suitable 

for use as an animal feed. The presence of toxins in non-edible varieties; namely curcin and phorbal esters, 

requires treatment of the seed meal before it can be ingested (Aregheore et al., 2003). Curcin is readily 

broken down by heat treatment, however phorbal esters are more recalcitrant to detoxification methods 

(Kumar and Sharma, 2008, King et al., 2009), and are a known purgative, co-carcinogen and a handling risk 

for agricultural cultivation (Makkar et al., 2011, Aregheore et al., 2003, Makkar et al., 1998, Makkar et al., 

1997, King et al., 2009). Edible varieties that do not contain phorbal esters are present in Meso-America 

(Pecina-Quintero et al., 2014, He et al., 2011, Makkar and Becker, 2009, Makkar et al., 1998), and so 

identification of the QTL for phorbal ester production is the focus of genetic research (King et al., 2013) 

(although beyond the scope of this thesis study). Creation of high yielding, phorbal-free cultivars will 

enhance economical cultivation of Jatropha, and enable it to be used as a multipurpose feedstock crop for fuel 

and animal feed, following similar models used for soybean cultivation (Cromwell, 2012, Food and 

Agriculture Organization of the United Nations, 2016).   

Jatropha curcas has also long been used as a medicinal crop by the indigenous people of Meso-America 

(Heller, 1996). Like other species within the Euphorbiacea (such as castor bean), many parts of the plant have 

biological activity (Hecker, 1968, Ernst et al., 2015, Evans and Taylor, 1983). This has generated interest in 

using Jatropha as a feedstock for bioactive compounds or as a source of natural products for the 
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pharmaceutical industry (Devappa et al., 2010, Thomas et al., 2008, Sabandar et al., 2013). Studies 

demonstrate the anti-bacterial, anti-mollusc, anti-fungal, purgative, and latent-HIV stimulating (Wender et 

al., 2008) activities of compounds found in Jatropha (Kumar and Sharma, 2008). 

1.3.5: Jatropha as a perennial, intrinsically stress-tolerant species 

Jatropha is a perennial crop, and there are significant benefits associated with a permanent and deep root 

system (Becker and Makkar, 2008, King et al., 2009, Kantar et al., 2016). Perennial root systems fix more 

carbon in the soil, improve soil structure and retain water, nitrogen and other beneficial soil components by 

establishment of an extensive and robust physical root structure (Cox et al., 2006, Jerry D. Glover, 2007). 

Over time this improves the soil and surrounding land by increasing carbon content, locking in more water 

and nutrients, and increasing both above- and below-ground biodiversity, in comparison to annual crops (Cox 

et al., 2006, Jerry D. Glover, 2007, Kantar et al., 2016), or when planted on marginal or arid land (Cox et al., 

2006, Jerry D. Glover, 2007, Becker and Makkar, 2008). 

Perennial growth and a deep root system confers significant abiotic stress tolerance to Jatropha, particularly 

drought and low nutrient conditions, since it is able to reach deeper parts of the soil and use water and 

nutrients more efficiently (King et al., 2009). This characteristic makes Jatropha compatible with the ‘state-

of-the-art’ for plant biofuels, since it conforms to two recognised strategies to avoid competition with food 

crops; it can be grown on degraded/non-agricultural land, and it is suitable for mixed/double cropping 

systems (for example as a border plant) (Tilman et al., 2009). The use of Jatropha as a border plant for 

example, is well documented due to its anti-herbivory properties for grazing livestock (Heller, 1996).  

Its ability to grow in, and improve degraded or arid land, with little external inputs makes it a viable option 

for developing world agricultural systems, to utilise land that is otherwise dormant and low in biodiversity 

(Makkar and Becker, 2009). 

As with all known perennial species, little or no genetic improvement has been applied to domesticate or 

create cultivars (Kantar et al., 2016). For oilseed perennials such as Jatropha, the requirements for 

partitioning of energy between vegetative growth and seed production is likely to be very different for a wild 

species compared to a crop cultivar (Van Tassel et al., 2010, Cox et al., 2006, Kantar et al., 2016, Jerry D. 

Glover, 2007), therefore seed and oil yield related traits are expected to have significant scope for genetic 

improvement. (Kantar et al., 2016) 

1.3.6: Challenges for the development of Jatropha as a biodiesel feedstock 

Most of the challenges for development of Jatropha as a biofuel feedstock, stem from the fact that Jatropha is 

a wild species that has not been through any stringent selective breeding. At present oil yields from Jatropha 

are sub-optimal and highly variable (Yue et al., 2013).  

1.3.6.1: Challenges to conventional selective breeding 

Despite the value of Jatropha being known for some time as shown in historical accounts of Jatropha use 

(Heller, 1996), this lack of genetic improvement is a problem commonly associated with perennial species 

(Kantar et al., 2016). Whilst annual species are suited to conventional selective breeding; they complete a full 

lifecycle within a short period of time and each year new seed must be selected and sown for the next 



 23 | P a g e  

 

generation, the very characteristics that make perennial species prolific biomass accumulators and 

intrinsically stress tolerant, also make it difficult for conventional selective breeding to occur (Cox et al., 

2006). Jatropha has a long lifespan (~50 years) and reaches maturity after ~5 years. Cross breeding is 

challenging as Jatropha is self-compatible and monoecious; self-fertilisation is a frequent event and hard to 

detect without genetic characterisation (as a result harvested seed is often a mix of cross- and self-pollinated 

seed -discussed in results chapter 4). Direct-domestication using advanced breeding technologies such as 

marker assisted selection (MAS), is a recognised strategy for the rapid domestication of wild perennials 

(Kantar et al., 2016), and is particularly pertinent to Jatropha curcas, due its generation time (9 months 

seedling to seed), time to maturity (~5 years), and self-compatible reproductive strategy. 

Further factors confound conventional selective breeding approaches in Jatropha. The majority of material 

found outside its centre of origin is genetically very similar, to the point where it has been described as 

almost clonal (He et al., 2011, Montes Osorio et al., 2014, King et al., 2015). With some conventional 

selective breeding efforts in Jatropha lacking genetic characterisation of starting material, and subsequent 

selection of plants occurring at the phenotypic rather than genotypic level (He, 2011, Sato et al., 2011), a 

great deal of observed variation in Jatropha material outside its centre of origin is thought to be of epigenetic 

origin (Yi et al., 2010), rather than being underpinned by stable genetics suitable for selective breeding. This 

lack of genetic variation in starting material, and lack of adequate breeding technologies to assess and guide 

selection based on genetics, has until recently hampered genetic improvement of Jatropha curcas. 

1.3.6.2: Target traits for the genetic improvement of J. curcas 

With the implementation of an advanced breeding technology, such as MAS, to overcome the challenges of 

conventional selective breeding in Jatropha, a number of target traits are amenable to genetic improvement 

for the economic cultivation of Jatropha as a biodiesel feedstock. For oilseed crop species, traits affecting 

both oil yield and oil quality are of fundamental importance.  

For a trait to be amenable to genetic improvement there must be phenotypic variation in the trait of interest 

across the population, and this variation must have a heritable component. Phenotypic variation suggests 

plasticity in the trait of interest that could be optimised towards certain values within its distribution 

(typically towards the high or low phenotypic values within its normal, bell-shaped distribution), and its 

heritability suggests a genetic component that could be selected for reproducible phenotypic effects that are 

heritable. A number of traits meet these criteria in Jatropha.  

1.3.6.2.1: Oil yield related traits 

Oil yield per plant 5 for an oilseed crop such as Jatropha, may be split into the component traits; oil yield per 

seed, and, seed yield (the number of seeds produced per plant). Oil yield per seed and seed yield themselves 

may be split into further component traits. 

Oil yield per seed is the product of; seed oil content (% of oil per seed), and seed mass (average mass of each 

seed). Both seed oil content and seed mass are traits that show significant variation and heritability between 

                                                        
5 Oil yield per hectare, as a measure of oilseed crop performance, is dependent on additional agronomy 

factors such as plant spacing, soil and growth management (Achten et al., 2010), which is beyond the scope 

of this thesis study. Hence oil yield per plant is used to investigate oil yield. 
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Jatropha lines (Achten et al., 2010), suggesting a genetic component to observed variation and scope for 

optimisation through selection. Increasing seed oil content not only increases the proportion of oil produced 

per seed, but could also increase the efficiency of oil extraction from harvested seed using mechanical or 

chemical extraction methods. Seed mass may increase the oil yielded per seed if oil content as a proportion 

does not decrease, or conversely, if seed mass does not increase and seed oil content increases, more 

resources could be seen to be partitioned into seed storage oil over other seed components such as proteins or 

carbohydrates. This interplay between seed mass and seed oil content determines the oil yielded per seed, and 

so these are both important seed traits for optimisation. Due to the economic and industrial value of oilseed 

crops, oilseed metabolism, particularly seed fatty acid biosynthesis, is an extensively studied area of research. 

The identity and function of key metabolic players and their corresponding genes are well known, 

particularly within the sequenced oilseed model species Arabidopsis thaliana (Li-Beisson et al., 2013). In the 

age of comparative genomics and crop genome sequencing, in silico elucidation of the fatty acid biosynthetic 

pathway and relevant candidate genes for oil quantity and quality traits, is both a recognised strategy for the 

improvement of novel biofuel cultivars (Vega-Sanchez and Ronald, 2010), and more specifically, readily-

achievable for Jatropha curcas due to the availability of reference genome sequence (Sato et al., 2011, Wu et 

al., 2015), transcriptomics (King et al., 2011, Costa et al., 2010), and closely related sequenced model and 

crop species (Chan et al., 2010, Li-Beisson et al., 2013).  

Seed yield is a highly variable trait in current Jatropha material, and is therefore a key target trait for 

optimisation of oil yields (Achten et al., 2010). This is a hypothesis supported by current thinking on 

resource partitioning of undomesticated perennial oilseed crops and the likely scope they possess for genetic 

improvement (Kantar et al., 2016). Seed yield is a complex trait that encompasses a variety of component 

vegetative- and plant architecture-related traits (King et al., 2009).  

Two key traits that are thought to affect seed yield are the ratio of female to male flowers and the extent of 

branching (Achten et al., 2010). Jatropha is monoecious; it produces both male and female flowers, and the 

ratio of female to male flowers varies between lines and under different environmental conditions (Fresnedo-

Ramirez, 2013, Luo et al., 2007, Wu et al., 2011). Female flowers, once fertilised, produce the oilseed-

containing fruits. Therefore it has been hypothesised that the ratio of female to male flowers is one way in 

which seed yield can be increased in Jatropha (Fresnedo-Ramirez, 2013, Divakara et al., 2010, Mukherjee et 

al., 2011, Achten et al., 2010, King et al., 2009). Flowering is known to be highly dependent on 

environmental conditions, for example some species flower in response to stress (Wada et al., 2010), and the 

effects of exogenous application of plant signalling hormones on flowering in Jatropha (Makwana et al., 

2010, Pan and Xu, 2011, Gargi Joshi, 2011), suggest a strong interplay with environmentally-regulated 

signalling mechanisms. Whilst the relative contribution of the environmental component of flower ratio 

variation (the E of GxE) is still to be determined (Achten et al., 2010), it is possible that genetic variation 

may be present that could modulate this response in naturally occurring populations. 

Flower inflorescences occur at terminal and auxiliary nodes (ends of branches and branch points 

respectively) (Fresnedo-Ramirez, 2013, Luo et al., 2007, Wu et al., 2011), therefore the extent of branching is 

also thought to be a key trait that regulates seed yield in Jatropha. Due to the known effects of branching on 

yields of many agronomic and commercial crops (Wang and Li, 2006, Zhang et al., 2013), branching is a 

relatively well studied trait and the identity and function of a number of key gene classes has been elucidated 

(Domagalska and Leyser, 2011, Wang and Li, 2008, Ongaro and Leyser, 2008). Increasing the number of 
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branches increases the number of available flowering points, which, particularly if the ratio of female to male 

flowers remains favourable, could significantly increase the seed yield in Jatropha (Achten et al., 2010). 

Other vegetative traits are likely to regulate seed yield (although beyond the scope of this thesis study). These 

include traits related to plant stature, biomass accumulation, and ‘vigour’ (often exploited in crop breeding as 

‘hybrid vigour’). For inbreeding and homogenised populations such as those found for Jatropha outside its 

centre of origin, cross breeding of genetically distinct lines to stimulate hybrid vigour could be a productive 

approach (Achten et al., 2010), since material from such populations are ideal candidates for releasing hybrid 

vigour.  

The two components of oil yield per plant; seed oil yield (seed oil content, seed mass), and seed yield 

(including branching and flower ratio traits), can be viewed as two distinct areas of plant metabolism and 

development. Seed oil yield is dependent on seed metabolism (‘the seed fatty acid biosynthetic pathway’), 

whereas seed yield is more directly associated with vegetative and architecture-related traits. A key output of 

this thesis study will be determining the relative importance of optimising seed oil yield compared to 

vegetative traits that regulate overall seed yield, for improving overall oil yield in Jatropha curcas. 

1.3.6.2.2: Oil quality related traits 

In addition to oil yield, oil quality is an important trait for biodiesel production. For oilseed crops, fatty acid 

composition; the ratio of different fatty acids in the seed storage oil, determines the kinetic properties of the 

resultant biodiesel (Knothe, 2009, Durrett et al., 2008). Due to the economic and industrial importance of oil 

quality (fatty acid composition) for fuels, chemical feedstocks and in health and nutrition, fatty acid 

composition has been extensively studied (Knothe, 2009, Cahoon et al., 2007, Durrett et al., 2008). The 

kinetic properties and biodiesel performance of differing fatty acids (Knothe, 2005, Atabani et al., 2013), and 

the genes responsible for regulating fatty acid compositions in plants (Li-Beisson et al., 2013), are two areas 

that have been extensively studied.  

Key kinetic properties of biodiesels include the cetane number (a measure of explosiveness), the cold flow 

and cloud point (viscosity at low temperature and precipitation point respectively; the effective operating 

temperature of the biodiesel and its suitability to different climates), and its oxidative stability (the rate at 

which the biodiesel oxidises and degrades) (Knothe, 2009). Studies into these properties have found that the 

level of desaturation of fatty acids (including the number of desaturated bonds in each fatty acid, and the mix 

of saturated/desaturated fatty acids) is the most critical property for biofuel kinetics (Knothe, 2009, Durrett et 

al., 2008). Saturated fatty acids have a higher energy content and are less reactive to oxygen (and therefore 

have favourable cetane numbers and oxidative stability), but are more dense and viscous and therefore have 

poor cold flow and cloud point characteristics. Conversely, polyunsaturated fatty acids have better cold flow 

properties, but have less favourable cetane numbers and oxidative stability. Current research suggests that the 

optimal compromise between these properties are fuels high in mono-unsaturated fatty acids (oleic-acid, 18:1 

and palmitoleic-acid, 16:1) (Knothe, 2009).  

The genetic basis of fatty acid composition, follows the same seed fatty acid biosynthetic pathway as that for 

seed oil yield, as modification reactions such as desaturation, occur as part of the pathway between de novo 

fatty acid synthesis in the plastid, and the final deposition of fatty acids as triglycerides in the seed storage oil 

(Li-Beisson et al., 2013). Whilst the individual steps and the genes responsible for this core metabolic 
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pathway are highly conserved across all oilseed crop species (Li-Beisson et al., 2013), significant inter- and 

intra-species variation in seed fatty acid composition is present throughout nature and in response to differing 

environments (Canvin, 1965, Voelker and Kinney, 2001, Flagella et al., 2002); highlighting the plasticity, 

and potential to manipulative and adapt this pathway to achieve specific fatty acid compositions. As a 

concept and approach this has been proved extensively in research (Napier et al., 2014, Napier and Graham, 

2010, Bates et al., 2013, Durrett et al., 2008), and through the commercialisation of crops with altered fatty 

acid compositions (Burton et al., 2004).  

Although Jatropha seed oil meets quality standards for both EU and US fuel markets, there is also reported 

plasticity in seed oil composition, for example in response to differing temperatures (King et al., 2009), 

suggesting that optimisation of seed oil composition and therefore oil quality, would be useful in Jatropha, 

particularly for material that may be grown under differing environmental conditions. Similarly, due to the 

importance of the seed fatty acid biosynthetic pathway for oil yield and oil quality in oilseed crops such as 

Jatropha, genetic mapping of candidate genes within this pathway would be a valuable genomic resource for 

QTL mapping and genetic improvement of Jatropha curcas. 

______________________________________________________________________________________ 

 

Figure 1-1 The major steps fatty acid synthesis in seed storage oil in plants.  
Adapted from ‘The Arabidopsis Book’ (Li-Beisson et al., 2013, Meng et al., 2013). An in depth analysis of candidate 
genes for seed oil yield and seed oil composition, using this pathway will be discussed in Chapter 3. 
_______________________________________________________________________________________ 

1.4: Marker Assisted Selection as a technology for the rapid domestication and 

accelerated breeding of Jatropha curcas varieties 

Marker assisted selection (Dekkers and Hospital, 2002), is a technology that has been proposed for the 

genetic improvement of Jatropha curcas, since it enables screening and selection of genotypes harbouring 

beneficial QTL at the seedling stage based on genotype. This overcomes many of the challenges with 

breeding improved Jatropha varieties: (1) offspring resulting from the intended cross (ie a true cross or 

selfing event) can be identified through genotyping, (2) selection is based on seedling genotype, eliminating 
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the difficulties of inferring genotype from phenotype, which may be harder to detect or quantify, and that are 

subject to environmental effects (Dekkers and Hospital, 2002) (3) plants containing desirable genetics can be 

identified at the seedling stage; eliminating the time needed for phenotypes to be expressed which can be 

several years with Jatropha. Selection at the seedling stage enables larger populations to be created and 

screened, allowing rarer, more desirable genetic events to be selected, for example the inheritance of multiple 

QTL alleles, which in turn reduces the number of generations required to breed the desired genotype 

(Dekkers and Hospital, 2002). In this way MAS can significantly accelerate the breeding process. 

For such an approach, genetically- and phenotypically-diverse Jatropha lines are required from which to 

breed from, and genomic resources are required to inform the selection process. Genetic and phenotypic 

diversity issues have recently been overcome by identification of diverse germplasm in the place of origin of 

Jatropha in Meso-America (Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011). The 

genomic resources required for Marker Assisted Selection include DNA markers, genetic linkage maps and 

QTL maps, that together provide information on target genomic regions (‘loci’) and the beneficial or 

unwanted alleles within them, and the markers necessary to track their movement and transmission through 

breeding populations (Dekkers and Hospital, 2002). Genomic resources for Jatropha have improved recently, 

and several groups have begun QTL mapping studies (King et al., 2015, Sun et al., 2012, Liu et al., 2011). 

Public dissemination of the results of such projects will significantly facilitate the creation of genetically 

improved Jatropha cultivars. 

1.5: The Quantitative Trait Loci (QTL) mapping process 

The function of QTL mapping is to understand the genetic basis of simple and complex traits in a population 

or family (Mackay et al., 2009). QTL mapping associates genotype with phenotypic variation, in order to 

determine the regions of the genome (‘loci’) and the genetic variants contained within them (‘alleles’) that 

are responsible for observed variation in a quantitative trait, using natural or experimental populations.  A 

variety of QTL mapping approaches, population structures and methods of statistical analysis, have been 

developed with differing advantages and limitations (Wurschum, 2012, Staub et al., 1996, Doerge, 2002, 

Morrell et al., 2012). The biparental, F2 mapping population is an approach that is particularly useful for 

investigating traits of interest with pre-identified variation in two distinct parental lines, for example a high-

oil and low-oil line. 

In a biparental mapping population, the two parental lines that differ phenotypically for the trait of interest 

are crossed to establish a mapping population. The parental lines are ideally genetically distinct and 

homozygous at all loci, to enable genomic regions from each parent to be tracked and differentiated 

throughout the mapping population, and to ensure observed phenotypic differences have a genetic basis. 

Crossing of two homozygous parents, creates a heterozygous, genetically-uniform F1 population, with 1 

allele at each locus (in a diploid species such as Jatropha) originating from each parent. Selfing or crossing of 

an F1 plant, creates an F2 population consisting of plants with a genetic mosaic of alleles from each parent, 

due to meiotic recombination in F1 gametes. Genetic diversity of the F2 population is used to inform both 

recombination rates of loci for genetic linkage mapping, and linkage or association of particular loci and 

alleles (genotypes) to particular phenotypic values for QTL mapping. As a result, F2 population size, along 

with marker density (Morrell et al., 2012) and appropriate and accurate phenotyping (Alonso-Blanco and 

Mendez-Vigo, 2014), determines the power to detect and locate QTL in this approach.  
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Several key stages are present in the QTL mapping approach after selection of suitable parental material and 

creation of a mapping population: 

1) The development of DNA markers 

2) Genotyping of the F2 population 

3) Genetic linkage mapping 

4) Collection of phenotypic data 

5) QTL mapping 

1.6: Aims of the study 

1.6.1: The development of SSR markers 

SSR markers are a class of co-dominant marker that are hypervariable, abundant (Schlotterer, 2004, Agarwal 

et al., 2008) and identifiable in-silico using a reference genome sequence and search algorithms (Sato et al., 

2011, Stieneke, 2007, Martins et al., 2009). As such SSRs are ideal for marking specific regions of the 

genome in a targeted manner.  

The aim of this part of the study was to develop SSR markers to complement existing genome-wide non-

selective markers (discussed in detail in chapters 3 and 4), for the purpose of gap filling during later-round 

genetic linkage mapping, and to mark identified candidate genes for relevant traits of interest.    

1.6.2: Identification and mapping of candidate genes for oil yield and oil quality 

related traits 

The principle mapping population under study in this thesis, G51xCV, was created from parental lines with 

reported variation in oil yield and oil quality related traits; including seed oil content, seed oil composition, 

seed mass, seed yield and branching. The relevance of oil yield- and oil quality-related traits, to the genetic 

improvement of the oilseed crop, Jatropha curcas, makes the identification and mapping of candidate genes 

for these traits a useful genomic resource for QTL mapping in this study and others.  

1.6.3: Genetic linkage mapping in the G51xCV F2 mapping population 

Genotyping and genetic linkage mapping of the F2 population, is an integral part of the QTL mapping 

process. Accurate ordering and positioning of genetic markers on a genetic linkage map, facilitates the 

detection and location of QTL during subsequent QTL mapping (Doerge, 2002). QTL can be associated with 

genetic intervals rather than individual markers (‘interval mapping’ versus ‘single marker analysis’) (Doerge, 

2002). Positioning of QTL between flanking markers, and within confidence intervals, increases the accuracy 

and utility of identified QTL for crop breeding (and also other applications), in comparison to QTL 

associated with single markers, unless the single marker is completely linked and the QTL is monogenic 

(Mackay et al., 2009).  

A key aim of genetic linkage mapping in the G51xCV mapping population, was to contribute data towards 

the first intraspecific genetic linkage map published for Jatropha curcas (King et al., 2013), thereby 

establishing a key genomic resource for Jatropha development. Genotyping and genetic linkage mapping in 

the G51xCV mapping population was based on analysis of 229 F2 plants. 
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1.6.4: Seed-related phenotyping 

G51xCV F2 plants were phenotyped for the seed related traits; seed oil content, seed mass and seed oil 

composition, using Nuclear Magnetic Resonance (NMR) spectroscopy and Fatty Acid Methyl Ester (FAME) 

gas chromatography (see materials and methods). Seed oil composition was determined by measurement of 

the 4 major fatty acid moieties in Jatropha curcas seed oil; palmitate, stearate, oleate, linoleate. Seed related 

phenotyping occurred for 3 datasets collected over 2 years. 

1.6.5: QTL mapping of oil yield, and oil quality related traits 

QTL analysis of seed oil content, seed oil composition (palmitate, stearate, oleate, linoleate content), seed 

mass, seed yield, and branching traits was conducted through integration of genotypic and phenotypic 

datasets, using interval mapping and single marker analysis. Correlation and statistical analysis of traits was 

conducted to determine causative relationships and interactions. The aim was to determine: (1) the presence 

and location of QTL responsible for regulating oil yield and oil quality related traits in the G51xCV 

population; (2) to provide data on their relative contribution towards phenotype; (3) to determine the QTL 

parent of origin; (4) to determine their mode of action (dominance/semi-dominance/recessive/over-

dominant); (5) to determine hierarchical and/or causative relationships between traits; (6) to determine the 

relative contribution of component traits to complex traits such as overall oil yield in the G51xCV 

population. 
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Chapter 2: Materials and Methods 

2.1: The collaborative Jatropha project and contributions of this thesis study 

______________________________________________________________________________ 

Table 2-1 The Jatropha project structure at the University of York 
Four F2 mapping populations were used for genetic linkage and QTL mapping, with specific quantitative traits under 

study in each population. A combined dataset from all four mapping populations was used to create a combined genetic 

linkage map, and phenotypic data from two populations used to create an integrated QTL map. The principle focus of this 

thesis study has been highlighted in red: (1) The G51xCV mapping population from DNA marker generation onwards 

(SSR DNA marker generation, genotyping, phenotypic data collection, and QTL mapping) (2) SSR DNA marker 

generation across all 4 populations (3) Contributing data for the combined genetic linkage map and integrated QTL map 

(marker generation all populations; G51xCV genotyping data, phenotypic data and QTL analysis) (King et al., 2013, King 

et al., 2015). 

Mapping 

Population 

G51xCV G33xG43 QV01 QV02 Combined 

(for linkage 

mapping) 

Primary Trait 

Variation 

 

Oil content, oil 

composition. 

Branching 
Flower ratio 

 

Toxicity Oil Content, oil 

composition  

Oil Content, 

Oil 

composition 

n/a 

Population 

size (plants) 

 

229 320 220 220 989 

Mapping site 

 

Guatemala Guatemala Cape Verde Cape Verde n/a 

Mapping 

Population 

Responsibility 

 

Biocombustibles de 

Guatemala, S.A 

Biocombustible

s de Guatemala, 

S.A. 

Quinvita Quinvita Authors 

listed left 

(cols 2-5) 

DNA marker 

generation 

KeyGene  

JG Clarke 

AJ King  

 

KeyGene  

AJ King  

JG Clarke  

 

KeyGene  

AJ King  

JG Clarke  

 

KeyGene  

AJ King  

JG Clarke  

 

Authors 

listed left 

(cols 2-5) 

Data 

Collection; 

Genotyping 

 

KeyGene 

JG Clarke 

 

KeyGene 

AJ King 

KeyGene  

J Affleck 

AJ King 

 

KeyGene  

J Affleck 

AJ King 

Authors 

listed left 

(cols 2-5) 

Data 

Collection; 

Phenotyping 

 

JG Clarke  

(seed oil content, 

oil composition, 

seed mass) 
  

L Montes, 

Biocombustibles de 

Guatemala, S.A 

(vegetative traits) 

 

AJ King 

L Montes 

Quinvita Quinvita n/a 

Genetic 

Analysis 

JG Clarke AJ King AJ King AJ King AJ King 

QTL  

Analysis JG Clarke AJ King    

______________________________________________________________________________ 

The G51xCV mapping population, consisting of 229 F2 plants, was the principle population under study for 

this thesis. SSR DNA markers generated as part of this thesis study were tested across all 4 mapping 

populations for a number of reasons: (1) to increase the chance of the marker being mapped in the combined 
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map, as many of these markers were linked to candidate genes (2) to increase the available recombination 

data for markers that could be mapped in multiple populations (3) to enable independent mapping population 

maps to be aligned using shared markers for comparative mapping  (4) to increase the number of markers for 

QTL mapping in each population. 

________________________________________________________________________________________________ 

Table 2-2 DNA markers available for genetic linkage and QTL mapping 
Table 2-2 lists the type and number of markers that were mapped during genetic linkage and QTL mapping for each 

mapping population (for the total number of markers produced for this thesis i.e. including markers that may not have 

been polymorphic or mapped in these populations, see chapter 3). The outputs of this thesis study have been highlighted 

in red: (a) The production of SSR markers for all 4 populations (b) genotyping of markers in the G51xCV mapping 

population (except genome sequence SNPs which were genotyped by Keygene as part of the CRoPS marker discovery 

process) (van Orsouw et al., 2007) and (c) genetic linkage mapping of all markers in the G51xCV population. Not shown 

here is phenotypic trait data collection and QTL mapping, that was conducted as part of this thesis study in G51xCV, as 

specified in Table 2-1. The authors responsible for creating each marker type are listed in column 3.  

Mapping Population G51xCV G33xG43 QV01 QV02 Combined 

Marker type 

& Author 

Genome 

Sequence SNPs 

KeyGene 

181 161 287 283 318 

Simple 

Sequence 
Repeats (SSRs) 

AJ King 48 87 49 48 129 

JG Clarke 62 18 9 9 74 

R Santos 7 7 4 3 10 

Total 117 112 62 60 213 

EST-derived 

SNPs 

AJ King 

14 30 32 35 58 

Total  312 303 381 378 594 

________________________________________________________________________________________________ 

 

Table 2-2 lists the final contribution of this thesis work to genetic linkage mapping within the collaborative 

project. Genotyping and genetic linkage mapping for this study occurred for all marker types in the G51xCV 

population, except the genotyping of genome sequence SNP’s which was carried out by KeyGene as part of 

their SNP marker discovery process. In total, genotyping occurred for 131 markers in 229 F2 plants in the 

G51xCV mapping population, and genetic linkage mapping with 312 markers. SSR marker mining was 

conducted across all 4 independent populations; contributing between 9 (QV01 and QV02) and 62 (G51xCV) 

SSR markers in individual maps for use in genetic linkage and QTL mapping, and 74 SSR markers for the 

combined genetic linkage map. 
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_______________________________________________________________________________________ 

Table 2-3 Phenotypic trait data collection in the G51xCV mapping population 

All phenotypic traits and corresponding datasets listed below were subject to QTL analysis as part of this thesis study. 

Data collection for these traits was split according to the authors specified in Table 2-1. The traits and datasets 

highlighted in red were collected at the University of York as part of this thesis study: (1) seed oil content (3 datasets); (2) 

seed oil composition (1 dataset); (3) seed mass (3 datasets). The vegetative traits, branching and seed yield, were 

collected by collaborators at the mapping population site (Guatemala), as listed in Table 2-1. 

Year 2011 2012 2013 

Date 13th 

Dec 

26th 

Jun 

13th 

Sep 
1st Oct 

12th 

Oct 

15th 

Oct 

10th 

Jan 

22nd 

May 

28th 

May 

16th 

Aug 

14th 

Oct 

Years of 

growth 1.76 2.30 2.51 2.56 2.59 2.6 2.84 3.2 3.22 3.44 3.60 

Days after 

transplanting 567 763 842 860 871 874 961 1093 1099 1179 

123

8 

Measurements 

taken in the 

field 

B
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g
 

S
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t 

S
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d
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v
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t 

S
ee

d
 h
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v
es

t 

Sample period 

for seed sent to 

York 

 Batch 

1 

     Batch 2 Batch 

3 

 

Trait Dataset name and sample period 

Seed oil content  Year 

2 

 Year 3a Year 

3b 

 

Seed oil 

composition 

 Year 

2 

 

Seed mass  Year 

2 

 Year 3a Year 

3b 

 

Branching Year 

1  

Year 

2 

 

Seed Yield  Year 2 Year 3 

_______________________________________________________________________________________ 

Table 2-3 shows the phenotypic data collected for this thesis study. Field-based vegetative traits were 

collected by collaborators, along with other vegetative traits of interest that were studied outside of this work. 

This thesis study collected 7 phenotypic datasets from 3 traits at the University of York, from biological 

samples collected on the dates listed above. Data from all traits and datasets listed above was subject to QTL 

analysis for this thesis study.  

2.2: The G51xCV F2 mapping population 

The G51xCV F2 mapping population was grown at [13°57'33.17"N and 90°23'21.89"W], Guatemala. F2 

plants were planted at a density of one plant every 4 x 2 m, or 1,250 plants per hectare. Juvenile plants were 

transplanted from nursery to the field on 25 May 2010, during the rainy season. Drip irrigation was applied 

during the dry season (November to April), and fertilisers applied according to the nutritional requirements of 

the plants in conjunction with soil analysis (King et al., 2015). In total, 229 F2 plants were available for 
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genetic linkage analysis, and the largest sub-population that experienced the same environmental conditions, 

which consisted of 145 F2 plants, was selected for QTL analysis. 

2.3: Parental lines and population structure 

The G51xCV F2 mapping population was created by crossing a fully homozygous line, ‘Cape Verde’ (CV), 

with a heterogeneously heterozygous line, ‘G51’. The G51 and CV lines were selected primarily on the basis 

of their seed oil content; G51 at 36.90 % seed oil content, and CV at 26.00 % seed oil content. In addition to 

seed oil content, F2 plants were also screened for variation in a number of other traits. This study 

investigated: (1) seed oil content (2) seed oil composition (3) seed mass (4) number of branches and (5) seed 

yield (number of seeds).  

DNA marker analysis showed that G51 was in the region of 36.5 % heterozygous, based on the DNA 

markers used in this study. In order to maximise the number of informative markers at heterozygous loci in 

G51, an F1 sibcross rather than F1 self was used to create the F2 population. Two F2 populations were created 

in consecutive years to maximise the number of F2 plants available for genetic linkage mapping. In total 229 

F2 plants were available for genetic linkage analysis. The larger of the two populations consisting of 145 F2 

plants was used to map quantitative trait loci. Whilst an F1 sibcross was the primary crossing strategy, due to 

the self-compatibility of Jatropha and its monoecious, asynchronous flowering strategy, F1 selfing was also 

present, leading to further subpopulations within the F2 population. See figure 2-1 – this population structure 

and the use of informative markers is explored in greater detail in the linkage mapping results chapter. 
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_______________________________________________________________________________________ 

Intended   
 

Cross (1)  P1 x P2 

 

 

Cross (2a) F1.1♀ x F1.2 ♂ 
 

 

                 F2.1…121 

 

 

 

 

(2b) F1.2♀ x F1.1♂ 
 

 

F2.1…104 

Comments 
Parental lines, uni-directional cross 

P1=aa, P2=bb/ab (36.5 % 

heterozygosity) 
 
Generation 1, Reciprocal sib-cross 
 
Generation 2, Test Population of 2 

subpopulations 

Actual   
 

Cross (1)  P1 x P2 

 
 

Cross (2a) F1.1♀ x F1.2♂         F1.1 

 

 

                 F2.1…37                 F2.1…43 

 

 

 
 

(2b) F1.2♀ x F1.1♂              F1.2 
 

 

        F2.1…20                           F2.1…45 

Comments 
Parental lines, uni-directional cross 

P1=aa, P2=bb/ab (36.5 % 

heterozygosity) 
 
Generation 1, Reciprocal sib-cross, 
frequent selfing of mother plant 
 
Generation 2, Test Population of 4 
subpopulations 

 

 

Cross (3a) F1.1♀ x F1.2♂         F1.1 

 

 

 
                 F2.1…13                 F2.1…28 

 

 

(3b) F1.2♀ x F1.1♂         F1.2 
  

 

 
        F2.1…1                         F2.1…38 

 
Insufficient plants from cross (2); cross 
repeated at independent time point, 
cross (3) 
Generation 1, Reciprocal sib-cross, 
frequent selfing of mother plant 
 
Generation 2, Test Population of 4 

subpopulations (total 8 subpopulations) 

Summary 
Parental lines 

CV – homozygous aa 
51 – 36.5 % heterozygosity ab, 63.5 % bb 

 

F1: 

Two non-uniform F1 used for reciprocal sibcrossing (the F1 used as pollen parent switched in each cross) 

F1.1: 86 % heterozygosity, 14 % homozygosity 

F1.2: 82.5 % heterozygosity, 17.5 % homozygosity 

 

F2: 

229 F2 plants split into 8 subpopulations 

All F2 plants used for linkage mapping after parentage determined using informative markers 

Population split into two groups for QTL mapping according to the time the cross made (and therefore the 

environmental growth conditions experienced), the larger of the two crosses, Cross (2a), consisting of 145 F2 
plants used for QTL analysis 

Figure 2-1 The 51xCV crossing scheme and population structure 
The above diagram shows both the intended and actual population structure for the G51xCV mapping population as 

determined through informative marker analysis. 

This complex population structure was determined through informative marker analysis; a process developed 

as part of this thesis study for determining the parentage (a true cross or selfing event) of F2 plants. Figure 2-

2, explains what informative markers are and how they can be used in this context. 
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_______________________________________________________________________________________ 

 

(1) P1aa  x  P2 ab 

 

 

(2) F1.1 ab x F1.2 aa   or  F1.1 aa x F1.2 ab 

 

F2 progeny 

F1 Cross:                           F1.x (ab) selfing: 
 a b   a B 

a aa ab  A aa Ab 

a aa ab  B ab Bb 

       1:1 ‘aa’, ‘ab’                   1:2:1 ‘aa’, ‘ab’, ‘bb’ 

 

(3) Number of informative markers available to detect an F1 

selfing: 
 

 Inf marker class A 

(52 markers), and F1 

genotypes 

Inf marker class B 

(41 markers) , and F1 

genotypes 

F1 plant M1a … M52a M1b … M41b 

F1.1 ab … ab Aa … aa 

F1.2 aa … aa Ab … ab 

 

(3a) Detecting F1.1 selfing (direction 1) 

In the F2 generation; the presence of informative ‘bb’ 

genotypes at markers 1a to 51a, and all ‘aa’ at markers 

1b to 41b. 

 

 

(3b) Detecting F1.2 selfing (direction 2) 

In the F2 generation; the presence of informative ‘bb’ 

genotypes at markers 1b to 41b, and all ‘aa’ at markers 

1a to 52a.  

 

 

(3c) Detecting true cross 

In the F2 generation; a lack of ‘bb’ scores and a 1:1 

mixture of ‘aa’ and ‘ab’ genotypes at both informative 

marker classes (rather than all ‘aa’ in one class).  

 

Comments 

(1) Informative markers begin as 

heterozygous loci in the G51(P2) parent. 

 

(2) Loci that are homozygous in one F1 and 

heterozygous in the other can be informative 

for determining F2 parentage 

 

In the F2 the presence of informative ‘bb’ 
scores indicates an F1 selfing event 

 

(3) There were 52 informative markers for 

determining selfing of F1.1 and 41 markers 

for selfing of F1.2: 

 

(a) Detecting F1.1 selfing (direction 1) 

In the F2 generation informative markers 1a 

to 52a have a 1 in 4 chance of being 

informative ‘bb’ genotypes. Informative 

markers 1b to 41b will all be ‘aa’ genotypes. 
Expected number of ‘bb’ alleles at markers 

1a to 52a; 52*0.25=13‘bb’ scores.  

A threshold of 3 or more ‘bb’ alleles used to 

assign selfing event in this dataset (with 

M1b to 41b all ‘aa’). If cross, markers 1b to 

41b; expected 0.5*41=20 ‘ab’ scores rather 

than all ‘aa’. 

 

(b) Detecting F1.2 selfing (direction 2) 

In the F2 generation informative markers 1b 

to 41b have a 1 in 4 chance of being 

informative ‘bb’ genotypes. Informative 
markers 1a to 52a will all be ‘aa’ genotypes. 

Expected number of ‘bb’ alleles at markers 

1b to 41b; 41*0.25=10‘bb’ scores.  

Again the threshold value of 3 or more ‘bb’ 

alleles (and all ‘aa’ genotypes at other 

marker class) is well below the expected 

number. If cross, expected number of ‘ab’ 

scores at M1a to 52a; 52*0.5= 26 ‘ab’ scores 

rather than all ‘aa’.  

 

(c) Detecting true cross 
The ‘bb’ score is impossible to obtain via a 

true cross, and between 10-13 are expected 

for either F1 selfing. There is a very low 

probability of getting all ‘aa’ at the other 

class of informative marker since 50 % are 

expected to be ‘ab’ by chance (between 20-

26 expected ‘ab’ scores for each cross 

direction).  

 

Figure 2-2 Informative Markers available for assigning F2 parentage in the G51xCV mapping population 
The left column explains what informative loci are, and the alleles and genotypes expected at these loci in the mapping 

population. The right column explains how these genotype frequencies were used to determine parentage of F2 plants. 

_______________________________________________________________________________________ 
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2.4: DNA extraction 

Dry leaf tissue was transported from the mapping population site to the University of York on silica gel 

desiccant. Between 10-20 mg of dried tissue was taken for DNA extraction using the Qiagen DNEasy Plant 

Mini kit (Qiagen, Venlo, the Netherlands), according to the supplied protocol. DNA was eluted and stored in 

Qiagen AE Buffer (10 mM Tris, 0.5 mM EDTA, pH9). DNA was quantified using the DNA binding dye 

EvaGreen (Biotium, Hayward, CA), using salmon sperm DNA as a standard (Wang et al., 2006). DNA was 

transferred to 96-well plates and diluted to working DNA concentrations (2-10 ug/μl). 

2.5: DNA markers 

This project utilised Single Nucleotide Polymorphisms (SNPs) and Simple Sequence Repeat (SSR) markers. 

SNPs were mined using a reduced-representation genome-sequencing technique; Complexity Reduction of 

Polymorphic Sequences (CRoPS©) (van Orsouw et al., 2007) and through comparative sequencing of cDNA 

libraries (King et al., 2011). SSRs were mined from publically available genome sequence (Sato et al., 2011). 

2.5.1: Single Nucleotide Polymorphism (SNP) markers 

SNP markers obtained from the reduced representation genome sequencing strategy; Complexity Reduction 

of Polymorphic Sequences (CRoPs©) (van Orsouw et al., 2007) were scored using the Illumina VeraCode 

Assay, a high-throughput plate based assay; work carried out by Keygene. A number of SNP markers were 

obtained by pyrosequencing of developing seed tissue (cDNA sequencing) (King et al., 2011), and mining of 

publically available sequence; work carried out by Dr. Andrew King. These SNPs were scored using KASPar 

and allele specific PCR amplification systems (Cuppen, 2007, Bui and Liu, 2009) and an ABI3730 capillary 

sequencer which can also analyse fragment sizes. 

SNPs identified by the CRoPs© technique were expected to be randomly distributed throughout the Jatropha 

genome. SNPs identified by cDNA sequencing were expected to be randomly distributed throughout 

transcribed DNA sequence.   

2.5.2: SSR markers 

SSR markers were mined from the publically available Jatropha genome sequence published in 2011 (Sato et 

al., 2011). Overall, the SSR mining process consisted of 4 phases.  

Phase 1 was the identification of target J. curcas genome sequence contigs. Phase 2 was the identification of 

SSRs within target contigs. Phase 3 was amplification of SSR sites. Phase 4 was scoring of the amplified 

SSRs, leading to either confirmation of polymorphism in parental lines and progression to linkage mapping, 

or elimination of the SSR as a marker.  

SSR mining from the published reference genome sequence enabled a targeted rational approach to marker 

generation, which complemented the wide coverage, but less specific, distribution of SNP markers used in 

this project. SSR markers were used for (1) the genetic and physical mapping of candidate genes and 

investigation of QTL (2) the development of markers to fill gaps in the genetic linkage map following earlier 

rounds of genetic linkage mapping. 

The 4 phases of SSR marker development is described in more detail below.  
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2.5.2.1: Phase 1: Identification of target genome sequence contigs 

Phase 1 is split into two parallel processes, candidate gene mapping (1a) or gap filling (1b), that identify 

target contigs by two different approaches. After identification of the target contig, the two parallel 

approaches converge to follow the same phase 2 and onwards, as described below.  

2.5.2.1.1: Phase 1 (a) Candidate genes 

Lists of candidate genes for each trait were compiled from genomic resources such as The Arabidopsis Book 

(http://www.thearabidopsisbook.org)(Li-Beisson et al., 2013), the Plant Metabolic Network 

(http://pmn.plantcyc.org/), KEGG PATHWAY Database (http://www.genome.jp/kegg/pathway.html), 

Gramene (http://pathway.gramene.org/ARA/), Biocyc (http://biocyc.org/ARA/), in combination with a 

literature review of published genes studied in both model and crop species. Gene sequences were isolated 

from the databases Arabidopsis.org (http://www.arabidopsis.org) for Arabidopsis genes, and GenBank 

(www.ncbi.nlm.nih.gov/genbank/) for genes published in academic journals. Peptide sequences were used to 

search the J. curcas genome sequence (Sato et al., 2011) for gene homologues, using the BLAST algorithm 

at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the BLAST algorithm in the J. curcas genome sequence 

viewer at the Kazusa DNA research institute webpage (http://www.kazusa.or.jp/jatropha/). All Jatropha 

genome sequence contigs that contained gene homologues with high sequence similarity to the reference 

candidate gene were scanned for SSRs.  

Following successful linkage mapping of J. curcas candidate genes identified by this method, evidence to 

support gene functionality/activity was generated by BLAST searching specific nucleotide data repositories 

of NCBI: 

1. Nucleotide Collection (nr/nt) for sequenced and characterised J. curcas genes 

2. Expressed Sequence Tags (EST) and Transcriptome Shotgun Assembly (TSA) for J. curcas mRNA 

submissions for evidence of expression 

2.5.2.1.2: Phase 1 (b) Gap filling during linkage mapping using comparative mapping 

and castor bean microsynteny 

Additional mapping was carried out to reduce gaps on the linkage map that were larger than 15 cM, or to 

reduce the QTL interval for high significance QTL.  

Linkage maps from 4 Jatropha mapping populations were physically aligned in silico using shared markers 

(defined as a single marker that was independently positioned in more than one mapping population linkage 

maps). Markers in one map that corresponded to gaps in another linkage map could then be used to locate J. 

curcas genome sequence contigs in the target region, and the contig sequence mined for polymorphic SSRs 

as described in Phase 2. 

After this approach had been completed, castor microsynteny was utilised as a way to reach remaining gaps. 

To identify syntenous regions, J. curcas transcribed amino acid gene sequences from contigs mapped by 

polymorphic DNA markers were blasted against the castor genome to find the most similar gene 

homologues, using BLASTP. This was repeated for all genes on mapped J. curcas contigs. Castor bean genes 

mapping to the same contig and in the same order suggested a syntenous region with gene co-linearity. 

http://www.thearabidopsisbook.org/
http://pmn.plantcyc.org/
http://www.genome.jp/kegg/pathway.html
http://pathway.gramene.org/ARA/
http://biocyc.org/ARA/
http://www.arabidopsis.org/
http://www.ncbi.nlm.nih.gov/genbank/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.kazusa.or.jp/jatropha/
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Where neighbouring J. curcas map positions aligned to the same castor contig, the region between 

neighbouring positions could be assumed to be syntenous. Castor bean genes in this adjoining region could 

then be used to as probes to search for homologous transcribed amino acid gene sequences in the J. curcas 

genome sequence, and retrieved contigs could then be mined for additional SSR markers as described in 

Phase 2. A graphical representation of this strategy is presented below. 

_______________________________________________________________________________________ 

 

 

Figure 2-3 Diagrammatic representation of interspecific comparative mapping, conducted between J. curcas and 
R. communis genomes 

The process of comparative mapping to generate markers in gaps of the J. curcas linkage map. From left to right: a J. 

curcas linkage group requiring further mapping; J. curcas genome sequence contigs retrieved using markers flanking the 

target regions; R. communis genome sequence contig retrieved using transcribed gene models found on J. curcas 

contigs (note J. curcas contigs map to the same R. communis contig -synteny); J. curcas contigs corresponding to the 

target region retrieved using R. communis transcribed gene models; SSRs found on retrieved J. curcas contigs enable 

markers to be mapped in the linkage group target regions. 

_______________________________________________________________________________________ 

2.5.2.2: Phase 2: the identification of SSRs within target contigs 

Target J. curcas contigs were scanned for SSRs using web software, Websat (Martins et al., 2009) and 

ImperfectSSR (Stieneke, 2007). For SSR’s of (x)n, where x is the length of the repeat motif, and n is the 

number of repeats of that sequence, stringency was set at n ≥ (12,6,6,5,4) number of repeats, for x= 

(2,3,4,5,6) repeat motif size respectively. Primer3 (Untergasser et al., 2012) software was used to design 

flanking PCR primers. In order to allow multiplexing, all PCR primers were designed with a Tm of 55-60 oC 

according the nearest-neighbour method (SantaLucia, 1998).  The primers were designed so that amplicon 

sizes were between 80 to 450 bp, suitable for fragment analysis by capillary electrophoresis. A standardised 
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M13 18 bp sequence [5′-TGTAAAACGACGGCCAGT-3′] was appended to the 5’ end of the shortest of the 

two primers to allow fluorescent labelling during the PCR reaction (Hayden et al., 2008). 

2.5.2.3: Phase 3: the amplification of SSRs 

SSR marker PCR primers were tested on 4 mapping population parental accessions to increase the chance of 

the marker loci being mapped in a combined genetic linkage map and to facilitate QTL mapping across all 

populations. Polymorphic SSR primers were multiplexed according to product size with a >10 bp difference 

between primer product sizes. Multiplexes contained between 5-10 primers. 

Multiplexed PCR reactions were performed on the mapping population DNA using the QIAGEN Type-it 

Microsatellite PCR kit. Reaction components included: the PCR reagents; the primer multiplex at 0.5 µM; 

either M13 VIC or FAM fluorescent dye at 2 µM; and F2 DNA at 10-20 µg/µl; in 96 well plate format.  

PCR cycling conditions were:  

1) Initial denaturation at 95 oC for 5 mins  

2) 32 cycles of:  

(a) denaturation at 95 oC for 30 s  

(b) annealing at 55 oC for 1 min 30 s  

(c) elongation at 72 oC for 30 s;  

3) Final elongation at 60 oC for 30 mins.  

PCR plates were subject to a serial dilution equivalent to 100X dilution. 2 l of diluted PCR product was 

combined with 9 l Hi-Di Formamide for analysis using the Applied Biosystems (ABI) 3730 DNA Analyzer 

(Life Technologies). GeneScan 500 LIZ Size standard was used as an internal ladder. The standard plate 

injection time was 15 s. 

2.5.2.4: Phase 4: scoring of the amplified SSRs, leading to confirmation of 

polymorphism, or elimination of the SSR marker 

ABI3730 data was exported to Genemarker software (SoftGenetics, LLC, CA, USA) for scoring. Initial 

automatic scoring was run with a scoring window of 80-450 bp and threshold intensity of >500. The panel 

editor function was used to manually assign allele positions before re-running the scoring with the adjusted 

allele positions. Following automatic scoring each allele position was individually checked for each plant in 

the mapping population, due to complexities with scoring SSRs such as complex patterning and the 

generation of PCR artefacts (Schlotterer, 2004).  

2.6: F2 Genotype/marker score processing and analysis 

2.6.1: Assignment of parentage 

Comparison of F2 and F1 informative marker scores allowed F2 parentage to be assigned as either the product 

of an F1 intercross or an F1 selfing event. The original crossing scheme was an F1 sibcross however J. curcas 

is self-compatible leading to frequent selfing events under field conditions; see results section chapter 4 for a 

full analysis of the F2 population structure as determined by informative marker scores. 
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2.7: Linkage mapping 

2.7.1: Assignment of markers to linkage groups by Two Point Linkage Analysis 

The genotype/ F2 matrix was converted into Crimap (Green, 1990) compatible files. Two point linkage 

analysis was carried out to assign markers into linkage groups. A variety of LOD thresholds values were 

tested to see what effect this had on the grouping of markers. The greatest LOD (logarithm of odds) threshold 

value that produced 11 linkage groups, as supported by cytological evidence on J. curcas chromosome 

number (Carvalho et al., 2008), that also linked the majority of markers, was used to maximise stringency of 

linkage between markers (to avoid false linkages) whilst producing the correct number of linkage groups. 

Markers were then separated into separate linkage group Crimap files for map building.  

2.7.2: Linkage group mapping 

Each linkage group was built independently according to the following process. 

The crimap ‘build’ function was used to build the linkage group, starting with the two most likely markers 

and adding consecutive markers in order of likelihood. The build analysis output file was scanned for 

markers listed as completely linked to eachother and for markers that had more than one possible position. 

The highest likelihood score was used to assign markers where they had more than one possible position, 

and, where a marker had a possible position either side of another marker with equal likelihood, that marker 

was assigned as completely linked to that marker. 

After all such markers were assigned to positions the ‘build’ function was re-run, specifying the known order 

and inputting completely linked markers. Following this, the ‘flips’ function was run, which switches around 

(or ‘flips’) a set number of markers (2,3,4 or 5) giving a likelihood score of the new order. Any orders that 

were more likely than the previous arrangement were taken as the true order, and the ‘build’ function rerun to 

apply these changes.  

Following a flips analysis where the order given was most likely, the ‘chrompic’ function was run to look at 

crossovers across the linkage group for each F2 plant. The chrompic output file for each plant is a series of 

0’s and 1’s, or o’s and i’s, with each integer specifying which parent the genotype score at that locus came 

from. 0’s and 1’s represent one haplotype of a parent, o’s and i’s the other haplotype.  In this way crossover 

and recombination events can be visualised for each F2 plant.   

Any positions with a double crossover across a single locus was highlighted as a potential error as the 

likelihood of such an event occurring by chance was low for closely linked markers (<15 cM), due to 

crossover interference (Ooijen et al., 2013). Marker scores obtained by capillary electrophoresis were 

rechecked by examining ABI3730 traces in GeneMarker. Incorrect scores were corrected , or where 

ambiguous, the score for that marker left as undetermined. After each round of chrompic, the crimap 

genotype and linkage group files were updated and the linkage mapping process repeated until a consensus 

map emerged. 
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2.7.3: χ² Segregation Distortion Analysis 

F2 plants were separated into sub populations according to assigned parentage in order to carry out a χ² test 

for marker segregation distortion. This involved calculating the expected number of plants for each genotype 

based on Mendelian genotype ratios, before using a χ² test to compare the observed number of plants to the 

expected number of plants. The expected and observed number of plants for each genotype were totalled 

across all subpopulations before the χ² comparison, so that the test was across the entire dataset rather than 

individual subpopulations. Regions of the genome can and do exhibit segregation distortion in nature due to 

mitotic or embryonic selective pressures, and inclusion of segregating distorted markers improves genetic 

linkage maps (Zhang et al., 2010). Therefore the small number of markers showing segregation distortion 

were first checked for scoring errors, and after this, only markers with highly significant segregation 

distortion, alongside other indicators that this segregation distortion was not due to natural phenomena, were 

excluded from the dataset and the map rebuilt as before. Other indicators that a marker was exhibiting 

unusual segregation distortion, were things such as a large genetic distance between any neighbouring 

markers or the positioning of the marker at the end of a linkage group.  

2.7.4: Linkage mapping using Joinmap software 

The ‘CP’ population option was selected for linkage mapping as one of the parental lines was homozygous 

diploid (line CV) and the other parental line heterogeneously heterozygous diploid (line G51). Conversion to 

Joinmap (Ooijen, 2011) compatible datafiles for this population type involved assigning markers and 

genotype scores the correct CP code (<abxcd>,<efxeg>,<hkxhk>,<lmxll> or <nnxnp>) and separating F2 

plants into their different subpopulations based on parentage. Each subpopulation was assigned to an 

independent population node within a single Joinmap project file. For each subpopulation segregation 

distortion was checked using the ‘Locus Genotype Frequency’ tab. Any markers showing highly significant 

segregation distortion were excluded from the dataset by using the ‘exclude’ option under the ‘Data’ tab. 

Pairwise linkage analysis was run and visualised using the ‘Groupings (text)’ and ‘Groupings (tree)’ tabs. 

Groupings were selected at the highest LOD score that gave 11 linkage groups, as supported by published 

literature on J. curcas chromosome number (Carvalho et al., 2008). Groups were created using the ‘Create 

Groups Using the Groupings Tree’ function. 

A preliminary map for each group was created using the ‘Calculate Map’ function, with calculation options 

set to ‘Regression mapping’ using ‘linkages with recombination frequency smaller than 0.4’ and ‘LOD 

greater than 1’, ‘Kosambi’ mapping function, ‘ripple’ (equivalent to crimap ‘flips’) after each locus, and 3 

mapping rounds. 

Within each group node, the ‘Weak Linkages’ (defined as a pairwise recombination frequency greater than 

0.45) and ‘Suspect Linkages’ (defined as a pairwise recombination frequency greater than 0.6) tabs were 

checked for markers with ‘weak’ or ‘suspect’ linkages as defined by recombination frequency. Markers with 

a high number of ‘Weak linkages’ to other markers not due to genetic distance as estimated from the 

preliminary map, were excluded from analysis using the ‘Data’ tab as before. In effect this comparison 

between calculated map distance and pairwise recombination frequencies is testing ‘marker stress’, as 

described by Ooijen in ‘Genetic Mapping in Experimental Populations’ (Ooijen et al., 2013). 
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After this process had been repeated for all linkage groups within subpopulations, corresponding linkage 

groups between subpopulations were combined using the ‘Combine Groups for Map integration’ function. 

The combined marker data was checked using the ‘Heterogeneity Test’ tab (which totals pairwise 

recombination frequencies across all subpopulations and carries out a χ² test for statistical significance), for 

the theoretical scenario that markers may not have reached statistically significant segregation distortion in 

subpopulation analysis but when totalled over all subpopulations were showing statistically significant 

segregation distortion. The ‘Calculate Map’ function was run as before to create an integrated linkage group 

map from each combined linkage group node. 

The integrated map order was then used to check data in individual subpopulations by rebuilding the 

subpopulation linkage maps using the specified marker order from the integrated linkage maps. This was 

carried out by applying the ‘map in fixed order format’ at the end of the ‘Session Log’ tab from the integrated 

linkage group node, to the ‘Fixed Orders’ Tab of each subpopulation group node. The ‘Calculate Map’ 

function was then run on each subpopulation linkage group node with the specified fixed marker order. In 

this way subpopulation linkage groups were rebuilt using a marker order derived from the larger combined 

subpopulations dataset. Fixed order subpopulation maps were then checked for suspect double crossover 

events using the ‘Genotype Probabilities’ tab and by visualising the ‘Data’ tab with genotype colours on 

(equivalent to the ‘chrompic’ function of crimap). Any markers with 3 or more suspect double crossovers 

were excluded and the map rebuilt, using the same process of combining corresponding subpopulation group 

nodes to form a combined linkage group node, and using the ‘Calculate Map’ function to produce an 

integrated linkage group map. Crimap and Joinmap derived linkage maps were visualised and compared 

using MapChart (Voorrips, 2002) software to confirm a consensus map order derived from two independent 

builds using independent software. 

2.7.5: Integration of multiple mapping populations into a single combined map 

Genotype datasets were combined from several mapping populations to create a combined linkage map 

(work carried out by Dr. Andrew King, the University of York) using Crimap software as described above. 

2.7.6: Additional Genetic Linkage Mapping: Gap filling using comparative mapping 

and castor bean microsynteny 

Additional mapping was carried out to reduce gaps on the linkage map above 15 cM, see Phase 1 (b) of SSR 

marker development, Chapter 2.5.2.1.2:   

2.8: Phenotypic data collection 

2.8.1: Seed Traits 

2.8.1.1: Collection of ‘Seed oil content’ and ‘100 seed mass’ datasets using Nuclear 

Magnetic Resonance (NMR) spectroscopy 

F2 seed was received in a semi-dried state in paper sachets from the mapping population field site for Nuclear 

Magnetic Resonance (NMR) spectroscopy analysis using an Oxford Instruments MQC Benchtop NMR 

analyser (Abingdon, Oxfordshire).  
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Known amounts of pure J. curcas oil were pipetted into glass vials and used as calibration standards. The 

resultant oil content calibration curve was used to calibrate the NMR spectrophotometer for oil content. 

Calibration standards were retained and two standards re-measured at the start of every NMR session to 

ensure correct oil content calibration.  

To calibrate the NMR measurements for water content, 2 samples were used from (a) freshly harvested seeds 

(b) seeds stored > 1year at ambient humidity (c) seeds stored at 20 % relative humidity and (d) seeds stored 

at 60 % relative humidity. Seeds were first measured for water content using NMR, before being placed in an 

oven at 103 oC overnight to remove water. Seeds were cooled to room temperature in silica gel desiccant 

before measuring dry weight to calibrate the NMR for water content.  

Differing relative humidity was achieved by placing seeds in hermetically sealed chambers containing salt 

solutions (KCl) of differing concentrations.  The salt concentration determines the surrounding air moisture 

content by affecting the equilibrium between water in solution with the salt ions and water as gas particles in 

the surrounding chamber. Seeds were left in these chambers for at least four weeks to ensure moisture 

diffusion and equilibrium throughout all seed tissue.  

F3 seed (seed produced by the F2 plants) were analysed in batches of 5-6 seeds to ensure correct positioning 

in the NMR magnetic field. Seed mass was measured using scales accurate to 2 decimal places, prior to oil 

and water content measurement using NMR. This generated datasets containing seed mass, oil content & 

water content. Typically 50, but at least 20 seeds, from each F2 plant were measured. Individual seed 

measurements were integrated into single values for each F2 plant and normalised to 7 % water content.  

2.8.1.2: Analysis of the seed fatty acid composition dataset using Gas 

Chromatography 

For each F2 plant, 20-25 whole seeds were mechanically ground using domestic coffee grinders until a fine 

homogenous powder was formed. Triplicate samples were taken from this material for Gas Chromatography 

(GC) according to published methodology (He et al., 2011). Briefly 10-30 mg of material was transferred to 2 

ml glass vials containing 1 m HCL (in methanol), hexane, and a 15 carbon internal standard. Vials were 

sealed with Teflon lined screw caps, vortexed to ensure thorough mixing and subject to an 2 hr incubation at 

85 oC. After cooling, cell components were partitioned by the addition 0.9 % KCL, before removal and 

transfer of the hexane layer containing fatty acids, into tapered vials for GC analysis. Negative controls 

containing hexane and the external standard SUPELCO 37 FAME mix were included for every GC run. Each 

sample was injected in triplicate as a control against machine variation. Raw GC data was scored by first 

creating a template trace containing each fatty acid peak from the external standard. Automatic scoring was 

then carried out using software, before manual checks of each sample to ensure correct assignment of each 

peak. Raw data was processed to produce % of each fatty acid compared to total seed oil in each sample. 

2.8.2: Non-seed traits: branching and seed yield 

Non-seed traits were collected in the field by Luis Montes (Biocombustibles de Guatemala, Guatemala 

Ciudad, Guatemala, and Plant Breeding Wageningen UR, Wageningen, The Netherlands) at the mapping 

population field site in Guatemala. 
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2.9: QTL mapping 

2.9.1: Trait Analysis 

Two approaches were used to integrate genetic and phenotypic datasets for QTL analysis. In the first 

approach the complex population structure consisting of multiple subpopulations and semi-informative 

markers were used, with data analysis occurring in GridQTL (Seaton G., 2006) software which is compatible 

with such population structures/markers. This approach assumed that shared alleles in the parental lines e.g. 

‘a’ alleles at semi-informative loci, are due to these loci being conserved or the same in both parents. As a 

result this QTL mapping approach places greater emphasis on loci alleles rather than parent of origin effects.  

In the second approach the complex population structure was converted to a standard F2 population by 

converting semi-informative markers to informative markers, either by inferring genotype by closely flanking 

(<15 cM) informative marker genotypes or by conversion to dominant markers in non-informative 

subpopulations where flanking markers were not available. This results in all alleles from a particular parent 

being labelled one genotype class e.g. ‘a’ and the alleles from the other parent the other genotype class e.g. 

‘b’ as in a standard F2 population. This approach therefore assumes all loci from the parental lines are unique 

and ignores any difference between the non-uniform F1 used in the cross. Therefore in contrast to the first 

approach this places greater emphasis on parentage of origin effects rather than loci alleles. By integrating 

subpopulations it also increases the QTL mapping population size and gives all markers the same relative 

information content. The mapping population size in this second approach was compatible with MapQTL 

(Ooijen, 2004) software.  

2.9.2: GridQTL 

Genotype, map and trait data were converted into GridQTL compatible files as described by GridQTL 

protocols. QTL analysis was run using both additive and dominative models, with experimental and 

chromosomal wide permutation analysis set at the maximum 10,000 iterations. F-values were calculated 

every 1 cM along each linkage group. F-values were converted to LOD scores to allow -1 LOD and -2 LOD 

QTL boundaries to be calculated, using the following formula: 

𝐿𝑂𝐷 =
𝐿𝑅𝑇

2 ln(10)
  

where, 

 𝐿𝑅𝑇 = {𝑑𝑓(𝑅𝑆𝑆𝑓) − 0.5(2− 𝑑𝑓(𝑄𝑇𝐿))} ln (
𝑅𝑆𝑆𝑟

𝑅𝑆𝑆𝑓
) 

And, 

𝑅𝑆𝑆𝑟

𝑅𝑆𝑆𝑓
= {1 + 𝐹--𝑣𝑎𝑙𝑢𝑒 ×

𝑑𝑓(𝑄𝑇𝐿)

𝑑𝑓(𝑅𝑆𝑆𝑓)
} 

Where, RSSf is the residual SS for the full model (including QTL) 

             RSSr is the residual SS for the reduced model (without QTL) 

             df(QTL) are the degrees of freedom for the QTL 

             df(RSSf) are the degrees of freedom associated with the residual for the full model 

Source: The above formulae were derived from 'Multivariate statistical analysis for biologists' (1964), 

personal communications with Dr. Sarah Knott, contributing author and software support for GridQTL. 
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The author of this thesis study integrated the above formulae for excel data manipulation: 

F-value to LOD conversion: 

𝐿𝑂𝐷 =
𝑑𝑓(𝑅𝑆𝑆𝑓) × ln {1 + (

𝐹𝑣𝑎𝑙𝑢𝑒 × 2
𝑑𝑓(𝑅𝑆𝑆𝑓)

)}

2ln-(10)
 

 

Excel format: LOD =(df(RSSf)*LN(1+((Fvalue*2)/df(RDDf))))/(2*(LN(10))) 

-1 LOD QTL boundary, F-value: 

𝐹𝑣𝑎𝑙𝑢𝑒(𝑎𝑡 − 1-𝐿𝑂𝐷) =
𝑑𝑓(𝑅𝑆𝑆𝑓)

2
-× {(𝑒

(
(𝐿𝑂𝐷𝑚𝑎𝑥)−1
𝑑𝑓(𝑅𝑆𝑆𝑓)

×2ln-(10))
)− 1} 

Excel format: Fvalue(at-1 LOD) =(df(RSSf)/2)*(EXP(((LODmax-1)/df(RSSf))*(2*LN(10)))-1) 

  Where, LODmax is the LOD score at the QTL position 

-2 LOD QTL boundary, F-value: 

𝐹𝑣𝑎𝑙𝑢𝑒(𝑎𝑡 − 2-𝐿𝑂𝐷) =
𝑑𝑓(𝑅𝑆𝑆𝑓)

2
-× {(𝑒

(
(𝐿𝑂𝐷𝑚𝑎𝑥)−2
𝑑𝑓(𝑅𝑆𝑆𝑓)

×2ln-(10))
)− 1} 

Excel format: Fvalue(at-2 LOD) =(df(RSSf)/2)*(EXP(((LODmax-2)/df(RSSf))*(2*LN(10)))-1) 

Where, LODmax is the LOD score at the QTL position 

2.9.3: MapQTL 

2.9.3.1: Data manipulation to convert subpopulations and semi-informative markers 

to a standard F2 population and informative markers 

Semi-informative markers were informative in 1 out of 4 subpopulations (where the heterozygous F1 was 

selfed). All other subpopulations were either semi-informative (for F1 sib crosses where ‘H’ genotypes were 

produced), or non-informative for the homozygous selfed F1 containing indistinguishable ‘a’ alleles from 

each parent. The genotype scores in these semi- and non-informative populations were deleted and the parent 

of origin genotype inferred through flanking informative markers, under the assumption that double 

crossovers do not occur within a distance of <15 cM due to crossover interference (Ooijen et al., 2013). In 

some cases the distance between flanking informative markers was greater than 15 cM, or flanking markers 

had different genotypes and so in these cases genotype scores were not able to be inferred. Where these 

markers were previously ‘h’, they were converted to dominant scores e.g. –b, since a minimum of one ‘b’ 

allele had to be present for the ‘h’ score to occur. Semi-informative markers with at least one ‘b’ allele, that 

were flanked by an ‘a’ informative and either a ‘h’ or ‘b’ informative marker (within 15 cM) were converted 

to the ‘h’ or ‘b’ genotype of the informative marker, since the ‘a’ genotype was excluded by the presence of 

the ‘b’ informative allele in the original marker score, and a differing ‘h’ or ‘b’ score excluded due to 

crossover interference. Where flanking informative markers within 15 cM were ‘h’ and ‘b’ the semi-

informative marker score was changed to a dominant score since the marker had to be ‘h’ or ‘b’ and so 

contain a minimum of one ‘b’ allele represented by the dominant ‘-b’ genotype score. After conversion of the 
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dataset into fully informative markers and a single F2 population, the genotype and phenotype datasets were 

converted to MapQTL format and imported into MapQTL for analysis. 

2.9.3.2: QTL mapping 

Following import of MapQTL compatible datafiles, a Kruskall-Wallis (One way ANOVA) test was carried 

out to analyse single marker/trait associations. A permutation test was carried out to determine QTL 

significance thresholds for interval and composite interval mapping. Both linkage group wide and genome 

wide significance tables were created for a range of p-values using the ‘Permutation’ function with 1,000 

iterations and 1,000 repeats.  

Composite interval mapping was carried out for all Quantitative traits. After an initial mapping round, 

markers nearest the maximum of significant QTL were selected as co-factors, before repeating the composite 

interval mapping function. Markers flanking the co-factors that were still above the significance threshold 

after this second mapping round were also selected as co-factors and the mapping analysis repeated until the 

minimum QTL region was produced. 

2.9.4: Cosegregation analysis 

Cosegregation analysis was carried out using visual box and whisker plots and by statistical means.  

For Box and whisker plots, the nearest marker to the QTL position, or markers flanking the QTL position 

(the QTL interval), were used to group phenotypic scores according to the marker genotype. Box and whisker 

plots were generated using SPSS software (IBM, 2013). This enabled a visualisation of the difference 

between genotype means, interquartile ranges and ranges. Percentage increase between the different genotype 

means, and Percentage of Variation Explained by genotype (PVE) was used to quantify the strength of the 

QTL on phenotype. 

An analysis of variance (ANOVA) test was carried out to test cosegregation statistically. ANOVA looks at 

the level of variation within and between the grouped data. The ratio of variation between genotype groups 

compared to the total variation within the dataset gives an indicator as to the strength of the genetic 

component of the variation present. To test which genotype classes were statistically different from 

eachother, and therefore indicate if the QTL was dominant/recessive/semi-dominant/overdominant, a post 

hoc Tukey’s test was carried out using SPSS (IBM, 2013). 

2.9.5:  Correlation and Linear Regression Analysis 

SPSS software (IBM, 2013) was used to carry out correlation analysis to look at association between 

different traits. A Pearson two way correlation analysis was used to quantify the strength of association 

between pairwise traits. After integration of multiple traits to calculate oil yield per plant (seed oil content x 

seed mass x seed yield), linear regression analysis was used to calculate the relative contribution of each trait 

to oil yield, to determine the most important trait. 
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Chapter 3: Identification and validation of SSR markers from J. curcas 

genotypes selected primarily on the basis of seed oil quantity and quality 

3.1: Introduction 

3.1.1: Identification and validation of SSR markers 

One of the requisites of QTL mapping and marker assisted selection (MAS), is the production of DNA 

markers (Dekkers and Hospital, 2002). An advantage of co-dominant markers is that they display both 

dominant and recessive alleles at a given locus (Staub et al., 1996). Short Sequence Repeat markers (SSRs) 

are one class of co-dominant marker that can be genotyped using polymerase chain reaction (PCR) 

(Schlotterer, 2004). 

SSR’s are repeat sequences that expand and retract over time due to a number of processes related to DNA 

replication (Li et al., 2002). They are both abundant and hypervariable (Oliveira et al., 2006); consequently 

they serve as excellent genetic markers. 

SSR positions, or microsatellites, can be identified by searching for repeat sequences in genome sequence 

(Stieneke, 2007, Martins et al., 2009). This search can be carried out in a reference genome sequence, 

preventing the need to sequence the genome of parent plants of a given mapping population. Once identified 

in the reference genome sequence, SSR positions can be checked for polymorphism in the mapping 

population by PCR amplification. 

Since the physical positions of SSRs are known in a reference genome sequence, specific SSRs can be 

targeted to map regions of interest, which is particularly useful for mapping gaps in a linkage map or for the 

mapping of candidate genes. This approach is dependent on the coverage of the reference genome sequence, 

whether SSRs exist close enough to the region of interest, and if the SSRs are polymorphic in the mapping 

population. Candidate genes; genes known or suspected to regulate a trait of interest (Pflieger et al., 2001), 

such as seed oil content or quality, can be mapped in this way.  

The candidate gene approach is reliant on information being present on the genes associated with the trait of 

interest, including reliable sequence data (Pflieger et al., 2001). Well studied model species with 

characterised genes, such as Arabidopsis, serve as excellent resources from which to compile candidate gene 

lists. Since Arabidopsis is an oilseed species it is particularly useful for identifying candidate genes 

associated with oil quantity and quality in Jatropha, using a reference genome sequence and search 

algorithms. 

Once a candidate gene is mapped on a genetic linkage map its involvement with identified QTL can be 

hypothesised based on whether it falls within the QTL confidence interval. This process can occur in both 

directions. Once a QTL is identified, markers within the confidence interval can be used to pull out genome 

sequence in that region and scanned for likely candidate genes. For long generation plants such as Jatropha (9 

months seedling to seed, first substantive harvest in Year 2), where phenotypic data for QTL analysis may 

take considerable time to obtain, candidate genes involved in the regulation of important traits can be mapped 

first, so that once QTL are identified the position of candidate genes has already been determined. Phenotypic 

variation in parental lines can inform which traits are likely to have QTL associated with them. If a mapped 
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candidate gene does fall within a QTL confidence interval, the gene sequence and any surrounding regulatory 

sequences, can then be amplified and sequenced to detect potentially causative polymorphisms. 

The seed oil biosynthetic pathway is particularly important for a biofuel crop such as Jatropha for obvious 

reasons. It is fortunate that, due to the economic value of plant oils for both food and industry, the seed oil 

biosynthetic pathway is one of the most well studied and understood pathways in plants (Li-Beisson et al., 

2013). Genes within this pathway are known to regulate both seed oil content (a component trait of oil yield) 

and oil quality (fatty acid composition); two traits that are vital for developing economically viable biofuel 

cultivars. Vegetative and plant architecture traits such as the amount of branching, seed yield, or seed mass, 

can also contribute towards final oil yield and so are important traits to map if variation is present in parental 

lines. The mapping of candidate genes associated with oilseed metabolism, provides a basis to investigate 

QTL that impact on oil yield and oil quality in this study and others, since it is relatively easy to align 

different genetic maps using bridging and anchor markers. 

Genetic linkage mapping benefits from large population sizes and high numbers of markers (Mackay et al., 

2009). Since genetic mapping counts the crossover/recombination frequency between different markers; an 

event that is proportional to the genetic distance between those markers and independent from external, 

environmental conditions, genetic data from independent mapping populations can be combined to increase 

the amount of genetic data available to calculate recombination frequency. For this reason the same marker 

can be used in multiple mapping populations to increase the data available for its recombination frequency, 

whilst increasing marker density in the individual maps. There is also a greater chance that a marker will be 

polymorphic if tested across multiple populations rather than single populations, which is particularly 

important for the mapping of candidate genes, since once positioned on one map, the candidate gene position 

can be inferred on all other maps.  

3.2:  Results 

3.2.1: SSR mining leads to the identification of over 300 SSR positions, of which 288 

had flanking sequence suitable for validation by PCR amplification 

Figure 3-1, shows the results of SSR mining for the Jatropha project. Over 300 SSR positions were identified 

from reference genome sequence, of which 288 had flanking sequence suitable for validation via PCR, 

according to criteria required for PCR multiplexing and scoring using an ABI3730 capillary sequencer (80-

450 bp amplicon size, and a melting temperature (Tm) of 55 oC; see materials and methods). As outlined in 

the materials and methods, the majority of this search occurred in silico, using the Jatropha reference genome 

sequence and web-based programmes to identify repeat sequences, candidate gene homologues and suitable 

primer binding sites (Sato et al., 2011, Stieneke, 2007, Martins et al., 2009, Untergasser et al., 2012). 

3.2.2: 39.59 % of validated SSRs were polymorphic in 1 or more mapping 

populations, providing data for these loci to be mapped in a combined genetic linkage 

map and subsequent QTL analysis 

Of the 288 SSRs tested, 39.59 % (114) were polymorphic in 1 or more mapping populations: 46 SSRs in 

G51xCV only (the principle population of this thesis study), 25 SSRs in G33xG43 only, and 43 SSRs in 2 or 

more populations (34 SSRs in 2 populations, 4 SSRs in 3 populations, and 5 SSRs in all 4 populations). 

Mapping of markers in multiple populations increases the amount of genetic data available to calculate 
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marker recombination frequency; increasing the accuracy of the resulting genetic linkage map. It also enables 

independent maps from different mapping populations to be aligned for the purpose of gap 

filling/comparative mapping. Post-genetic linkage mapping, it also provides usable genetic markers for QTL 

mapping in each of the populations in which the markers are mapped.  

3.2.3: SSRs were developed primarily for the mapping of candidate genes (58.33 %, 

168 SSRs) or for gap filling during linkage mapping (41.67 %, 120 SSRs)  

The primary function of the SSRs identified and validated were for the mapping of candidate genes (133 for 

seed oil-related genes, 25 for branching genes, 10 for flowering genes) or for gap filling during linkage 

mapping (120 SSRs). SSRs are ideally suited for mapping specific regions of the genome in a targeted way. 

A query sequence can be used to find SSRs in a specific region using a reference genome sequence. For 

example, candidate genes can be used as query sequences, or markers corresponding to gaps in a linkage map 

when aligning different genetic linkage maps (comparative mapping).  

Genes that carry out a core metabolic function, such as seed oil candidate genes, tend to be highly conserved 

at the protein level, enabling homologues to be found relatively easily using BLAST algorithms. For gap 

filling, due to the presence of markers that were polymorphic in multiple populations, their resulting genetic 

linkage maps could be aligned, and markers corresponding to regions requiring additional mapping in one 

map, used as the query sequence to mine for additional SSRs in that region in other maps. This approach also 

works across species; castor bean, a close Euphorbiacea relative of Jatropha, can be aligned using transcribed 

amino acid sequences from annotated gene models (which are more highly conserved than nucleotide 

sequence), and transcribed amino acid sequences corresponding to the target region used to search the 

Jatropha genome for nearby SSRs; provided synteny and gene-colinearity exists between the species in the 

target region.   
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Figure 3-1 Short Sequence Repeat markers developed as part of this thesis study for 

Jatropha mapping populations at the University of York.  

In total, 288 SSRs were identified and validated from reference genome sequence. (A) 114 

(39.59 %) SSRs were polymorphic in the principle mapping population (G51xCV) and up to 

3 other populations, providing data for a combined linkage map and subsequent QTL 

analysis. (B) SSRs were developed for the mapping of candidate genes or for gap filling 

during linkage mapping.  
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3.2.4: Candidate genes were identified for seed oil related traits (seed oil content and 

seed oil composition), and branching 

As can be seen by figure 3-1, the majority of SSRs (168, 58.33 %) were developed for the mapping of 

candidate genes for the traits seed oil content, fatty acid composition, branching and flower ratio. Genes 

relevant to these traits were mined from Jatropha genome sequence using comparative genomics. A table 

listing the identified gene-linked SSRs is provided in the appendix to this chapter. The majority of candidate 

genes were first identified in the model species Arabidopsis, before sequence homologues were identified in 

Jatropha curcas genome sequence, using transcribed amino acid sequences which are more highly conserved 

across species than nucleotide sequence (due to redundancy of triplicate codons).  

Once genes were identified in Jatropha curcas genome sequence, nucleotide sequence was used to search for 

nucleotide and mRNA Jatropha accessions in GenBank, in order to provide one indicator of likely 

functionality (gene expression) of the identified gene sequences. 

3.2.4.1: Seed oil content candidate genes 

_______________________________________________________________________________________ 

 

Figure 3-2. The major steps fatty acid synthesis in seed storage oil in plants.  

Compiled from ‘The Arabidopsis Book’ (Li-Beisson et al., 2013). Major steps of the seed fatty acid pathway (represented 

by arrows), and the genes responsible (in bold) are presented. In general, fatty acid biosynthesis can be divided into de 

novo synthesis in the chloroplast, and four separate fatty acid pools; the acyl-CoA pool (both cytoplasmic and 

endoplasmic reticulum pools), the phosphatidylcholine pool, and the tri-acyl-glycerol (TAG) pool. Fatty acids from each 

fatty acid pool or compartment have unique carrier proteins; acyl carrier protein (ACP), co-enzyme A (CoA), 

phosphatidylcholine (PC) or glycerol. Detail on relevant candidate genes in this pathway are explained in the text below.   

_______________________________________________________________________________________ 

3.2.4.1.1: Acetyl-CoA Carboxylase (ACC) 

ACC converts the main output of the Calvin cycle, pyruvate (after its been hydrogenated to Acetyl-CoA), to 

Malonyl-CoA using bicarbonate ions and ATP, and represents the first committed step in fatty acid synthesis 

in the plastid (Li-Beisson et al., 2013). It is made up of 4 subunits; BC, BCCP, CAC2 –α, CAC2-β (Sasaki 
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and Nagano, 2004). Since there is competition for pyruvate for other metabolic processes such as amino acid 

production, and since pyruvate, and hence Acetyl-CoA production, can be high at points for instance during 

periods of high rates of photosynthesis and respiration, the activity of ACC is thought to affect the proportion 

of pyruvate that is committed to fatty acid synthesis (Paul K. Stumpf, 2012, Li-Beisson et al., 2013), and is 

also thought to be a rate limiting step in fatty acid synthesis (Sasaki and Nagano, 2004). Its activity is known 

to be regulated by certain mechanisms, such as the amount of free fatty acid and light/dark (Shintani and 

Ohlrogge, 1995, Li-Beisson et al., 2013), suggesting that a mutation that overrides its negative regulation by 

other signals (such as the amount of free fatty acid), could provide a mechanism by which to continue 

shuttling pyruvate into fatty acid synthesis to increase seed oil content. Alternatively a mutation that 

increases its substrate turnover rate (enzyme activity) could also be envisaged to increase seed oil content. 

There are examples where overexpression of ACCase has increased seed oil content in rapeseed (Brassica 

napus) (Roesler et al., 1997). There are also crop breeding examples where seed oil content QTL associate 

with ACC polymorphisms, in plants such as oat (Kianian et al., 1999).  

3.2.4.1.2: Acyl carrier protein (ACP) 

Acyl carrier protein is responsible for binding to and shuttling malonyl, the two carbon building block, to the 

fatty acid synthase (FAS) complex, before shuttling the growing fatty acid chains through progressive 

elongation cycles, and then shuttling them out of the FAS complex, onto modification steps (such as 

desaturation) before ACP is exchanged for CoA for export to the cytoplasm. ACP can therefore be thought of 

as one of the main players that are associated with fatty acids throughout the plastid stage of synthesis. One 

can envisage that a mutation in ACP could potentially affect its interaction with the host of metabolic 

enzymes and transport proteins that make up fatty acid synthesis in the plastid, potentially affecting both seed 

oil content and seed oil composition. 

3.2.4.1.3: The Keto-Acyl Synthases (KASI, KASII, KASIII)   

The fatty acid synthase (FAS) complex, made up of 4 independent catalytic subunits (KASI, KAR, HAD, 

ENR), and two additional enzymes that control fatty acid entry and exit into FAS (KASIII, KASII), controls 

the elongation reactions of fatty acid synthesis in the plastid. The initial condensation reaction is carried out 

by KASIII, linking Malonyl-ACP to Acetyl-CoA to form the 4 carbon fatty acid, 3-Ketoacyl-ACP. 

Subsequent steps are carried out by KASI, through the addition of Malonyl-ACP, from a 4 carbon fatty acid 

up to a 16 carbon fatty acid, in two carbon increments. A final elongation reaction from a 16 carbon to an 18 

carbon fatty acid is carried out by the KASII enzyme.  

There is an extensive array of studies proving the central roles of the KAS genes in regulating both fatty acid 

synthesis and fatty acid composition. From a mechanistic point of view the relative activities of these three 

enzymes to eachother and other genes, such as the thioesterases (that release fatty acids from ACP to halt 

elongation), are proposed as a mechanism by which they can affect the proportion of different fatty acids in 

seed storage oil, such as the relative amounts of Palmitate (16C) and Stearate (18C) for example. Upregulated 

activity of KASIII tends to push more fatty acid into the FAS complex, and has been proposed as a rate 

limiting step in fatty acid synthesis and a target for increasing seed oil content with success (Yu et al., 2015, 

JUN LI, 2008, Stoll et al., 2006). The activity of KASI compared to KASII, seems to compensate better by 

this increased flux, elongating fatty acids up to the 16 carbon length and out of the FAS complex, quicker 
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than KASII can carry out the final elongation to 18 carbon fatty acid, resulting in higher levels of palmitate in 

the seed storage oil.  

There have also been studies looking at these genes in plants with naturally differing seed oil compositions 

(Voelker and Kinney, 2001). Plants high in palmitate compared to stearate often have highly active KASI 

genes to produce high levels of 16 carbon fatty acid, and FATB thioesterase genes (that release palmitate 

from the FAS complex for export) with a much higher activity than the KASII gene. KASII and FATB can be 

thought to be in competition for the 16 carbon palmitate substrate so their relative activities determine what 

proportion of fatty acid is released as palmitate or converted to stearate. They work in conjunction with 

different thioesterases which have differing substrate preferences, determining at what stage elongation is 

halted and preventing metabolic bottlenecks that could be self-limiting. 

3.2.4.1.4: Stearoyl-ACP desaturases (SAD) 

After KASII has elongated palmitate-ACP to Stearoyl-ACP, the first fatty acid modification step can occur 

by desaturation of the ninth carbon by SAD (a delta 9 desaturase) in the plastid. Whilst the majority of fatty 

acid modification occurs on the endoplasmic reticulum, this step differs in that it occurs in the plastid. A 

mutation resulting in a change of activity of the SAD gene could be hypothesised to cause a change in fatty 

acid composition. Reduced activity could reduce the proportion of oleic acid, and downstream linoleic, and 

alpha linoleic acids, and increase the proportion of saturated fatty acids in seed storage oil. Increased activity 

could be hypothesised to increase the proportion of desaturated fatty acids, by converting more stearate into 

oleate, and downstream polyunsaturated fatty acids. Demonstration of this principle can be seen by the anti-

sense suppression of a SAD gene in Brassica napus and Brassica rapa, resulting in dramatically increased 

stearate levels (Knutzon et al., 1992).      

3.2.4.1.5:  The Thioesterases (FATA and FATB) 

The thioesterases are responsible for removing the ACP carrier proteins that are associated with fatty acids as 

they are elongated and modified in the plastid. Removal of ACP prevents further modifications in the plastid 

and, with the addition of a CoA carrier protein, enables their transport to the cytosol for the next stage of the 

seed storage oil pathway. The two isoforms, FATA and FATB have differing substrate preferences that affect 

seed oil composition. FATB hydrolyses shorter chain, saturated fatty acids preferentially (palmitic-ACP), 

although they can also hydrolyse stearoyl-ACPs and oleic-ACP to a lesser extent. FATA hydrolyses oleic-

ACP preferentially, with lower activity towards palmitic-ACP and stearoyl-ACP. Their relative activities in 

conjunction with the KAS genes has a large effect on the fatty acid output of the plastid during synthesis 

(Voelker and Kinney, 2001). Plants with high KASII, SAD and FATA activities channel more fatty acid 

through to oleic acid. Plants with lower FATB and SAD activity tend to channel more fatty acid towards 

stearic acid. Those with lower KASII activity and higher FATB activity channel more fatty acid towards 

palmitic acid. Mutations resulting in changes of activities of these enzymes have been proven to substantially 

alter fatty acid composition (Moreno-Perez et al., 2012).  

3.2.4.1.6: Long Chain Acyl-CoA Synthases (LACS) 

After the fatty acid thioesterases have liberated fatty acids from their acyl carrier proteins, the LACS are 

responsible for conjugating them to CoA proteins for export to the cytosol. Since it has been proven that free 

fatty acids can have negative feedback regulation on fatty acid synthesis as a whole, including the activity of 
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ACC, the efficiency of conjugation and subsequent export into the cytosol is a critical factor in seed oil 

content (Zhao L, 2010). Similarly the LACS gene family is known to have different substrate turnover rates in 

Arabidopsis (Shockey et al., 2002), and along with other acyl modifying genes, regulates fatty acid 

compartmentation and subsequent modification (Chapman and Ohlrogge, 2012), and so it could be 

hypothesised that changes in the activity of different LACS could affect oil composition in plants such as 

Jatropha.   

3.2.4.1.7: Compartmentation and shuttling genes on the cytoplasmic, endoplasmic 

reticulum (LPCAT, GPAT, LPAAT, PP, MAGAT, PDCT, DAG-CPT, PDAT, DGAT, 

DAGTA, Pla2g4b) 

Once exported into the cytosol, Acyl-CoAs are shuttled between 3 fatty acid pools, that act as 

compartmentation mechanisms to carry out further modification, or storage, mechanisms. This is controlled 

by the associated carrier protein. The Acyl-CoA pool represents newly exported fatty acids from the plastid. 

The phosphotidyl-Choline (PC) pool represents another compartment where modification steps such as 

desaturation can occur. Finally the Triacylglycerol (TAG) pool is the storage pool that enables fatty acids to 

accumulate to high levels without interfering with other cellular reactions. The exchange of the CoA and PC 

carrier proteins, and the incorporation of both pools onto the glycerol backbone for TAG storage, is carried 

out in a number of steps by different genes (see figure 3-2). The relative activities of these genes can easily 

be hypothesised to control both seed oil content and seed oil composition (Chapman and Ohlrogge, 2012, 

Bates et al., 2013). For example the efficiency with which newly synthesised Acyl-CoAs from the plastid are 

incorporated into TAG storage oil could regulate seed oil content, by controlling the amount of excess fatty 

acid in solution that is known to negatively feedback on overall fatty acid synthesis. Oil composition could 

be affected by the rates at which differing fatty acids are incorporated into TAG in a substrate specific 

manner, and also the rate at which fatty acids are shuttled to the Acyl-PC pool for further modification. There 

are a number of examples where this has already been hypothesised and experimentally tested (Chapman and 

Ohlrogge, 2012, Li-Beisson et al., 2013, Sharma and Chauhan, 2012, Xu et al., 2012, Andrianov et al., 2010, 

Zheng et al., 2008, Lardizabal et al., 2008). 

3.2.4.1.8: Endoplasmic fatty acid desaturases (FAD2, FAD3) 

Further modification can occur once fatty acids have been transported out of the plastid onto the endoplasmic 

reticulum. The desaturation reactions that convert oleate (18:1) to linoleate (18:2) and downstream linolenate 

(18:3), occur in the Acyl-PC pool, by the action of desaturases. FAD2, a delta 12 desaturase, is responsible 

for desaturating the twelfth carbon position of oleate to convert it to the polyunsaturated linoleate, followed 

by FAD3 which desaturates linoleate to linolenate. Since the majority of these modified fatty acids end up in 

TAG storage oil in seed tissue, altering the activities of these genes has been shown to substantially alter fatty 

acid composition of TAG (Qu et al., 2012, Belo et al., 2008, Sandhu et al., 2007, Schuppert et al., 2006, Hu 

et al., 2006, Hernandez et al., 2005, Patel et al., 2004). Similarly because these desaturated fatty acids are 

predominantly stored, particularly when looking at seed specific FAD isoforms, modification has not been 

found to affect overall cell metabolism or plant fitness. In plants, the FAD2 gene seems to be the sole 

pathway for oleate desaturation, with a seed specific isoform that regulates seed oil desaturation. Therefore 

mutations that affect FAD2 genes seem to be very effective at altering seed oil composition. Active site 

mutations, and other naturally occurring knockout polymorphisms have been shown to produce high oleate 

oil, which is the preferred seed oil fatty acid profile for biofuel production. This is an attractive target for 
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manipulation to produce designer oil, and has been exploited for a wide range of plant species both 

experimentally and commercially. 

3.2.4.1.9: Seed oil body associated storage proteins (Oleosins, Caleosins) 

Once free fatty acids and their associated carrier proteins, PC or CoA, have been exchanged for a glycerol 

backbone, to form TAG, the compound becomes insoluble and starts to form inclusion bodies. This groups 

TAG molecules together, effectively storing them as large bodies separate from cellular reactions. Caleosins 

and Oleosins bind to the outside of these bodies, providing an interface between the hydrophilic cytoplasm 

and the hydrophobic oil body and ultimately stabilising them, regulating flux in and out of these bodies, and 

enabling them to become bigger without breaking up (Hyun et al., 2013, Jolivet et al., 2013, Parthibane et al., 

2012, Gitte I. Frandsena, 2001). These molecules have been shown to be critical for allowing higher 

concentrations of seed oil to accumulate, with studies showing QTL association of oleosins with high seed oil 

content in crops including Jatropha (Liu et al., 2011).  

3.2.4.1.10: Fatty acid synthesis master regulator, Wrinkled 1 (WRI1) 

WRI1, is a transcription factor that has been proved to be important for regulating fatty acid synthesis as well 

as other metabolic processes (Baud and Lepiniec, 2009)(Tajima et al., 2013). It is an APETELA-ethylene 

responsive binding element, that has been proved to regulate genes of late glycoloysis, and the plastidial fatty 

acid synthesis gene network (Baud and Lepiniec, 2009), including the fatty acid synthase (FAS) machinery 

directly. The WRI gene is necessary for normal seed storage oil accumulation, with seed storage oil severely 

impaired in the wri1 mutant (although basal fatty acid synthesis is maintained to enable vegetative growth) 

(To et al., 2012). Conversely, WRI1 overexpressors accumulate higher levels of seed oil, both at the per seed 

and per hectare level in maize (Shen et al., 2010), and in other species (Vanhercke et al., 2013). Also, unlike 

upstream regulators such as LEC1, the storage fatty acid specificity of WRI1 means that modulation has little 

effect on overall plant fitness and does not have any known pleiotropic effects on other processes. 

3.2.4.2: Branching candidate genes and flower ratio genes 

A number of candidate gene classes were identified for the branching and flower ratio traits.  

Key genes, and gene families, identified for branching included: (1) the MAX gene family (Bennett et al., 

2006); (2) genes encoding F-box proteins; TIR1, AFB (Kepinski and Leyser, 2005, Dharmasiri et al., 2005); 

(3) AXR1 gene (Stirnberg et al., 1999, Ongaro and Leyser, 2008); (4) the PIN1 gene (Bennett et al., 2006); 

(5) the MOC1 gene of rice and the Arabidopsis equivalent LAS (Sun et al., 2010, Wang and Li, 2008); and (6) 

the transcription factor ABI3 (McSteen and Leyser, 2005, Ehrenreich et al., 2007, Ongaro and Leyser, 2008).  

Genes and gene families identified for flower ratio include: (1) the lipoxygenase gene family (LOX) 

(Caldelari et al., 2011, Feussner and Wasternack, 2002); (2) the maize sex-determination TASSELSEED 

genes, and Arabidopsis homologues, ATA1, ADH1 (DeLong et al., 1993, Thompson and Hake, 2009, 

Barazesh and McSteen, 2008); (3) the MADS-box flower developmental genes; PI, SHP2, AG (Dornelas et 

al., 2011, Adam et al., 2007, Becker and Theissen, 2003, Liljegren et al., 2000, Favaro et al., 2003). 
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3.3: Discussion 

A key requirement of QTL mapping, after parental lines have been selected, is the development of DNA 

markers. Ideally DNA markers should be spread throughout the genome so that all regions of the genome can 

be tracked throughout the mapping population, and spaced so that minor effect QTL (<10 cM)  (Darvasi et 

al., 1993) and all crossover events (<15 cM) (Ooijen et al., 2013), including double crossovers, can be 

detected(Darvasi et al., 1993). To get this coverage, genome-wide non-selective marker strategies can be 

used (Davey et al., 2011). In this project the Complexity Reduction of Polymorphic Sequences (CRoPS) 

technique (a modified AFLP sequencing, genome reduction strategy) (Davey et al., 2011, van Orsouw et al., 

2007) was used to develop SNPs dispersed across the genome in a non-selective manner. SNPs mined from 

comparative sequencing of transcribed DNA (cDNA) (King et al., 2011), developed a small number of SNPs 

spread throughout transcribed genes, increasing the chance of picking up a mutation in functional DNA, 

although still in a non-selective manner within the Jatropha transcriptome. To complement this approach, 

SSR markers were used to place additional markers on the genetic linkage map in a more specific and 

targeted manner.  

As can be seen, the majority of SSRs were developed to map specific genes, or to fill in remaining gaps in 

the linkage map. As a result of this work, over 300 SSR positions were identified, of which 288 had flanking 

sequence suitable for amplification via PCR. Validation testing across parental lines, showed that 114 (39.59 

%) of amplified SSRs were polymorphic in at least 1 mapping population and could be used for genetic 

linkage mapping. In addition, a significant proportion were polymorphic in more than one population, 

increasing the utility of the marker for QTL mapping in multiple populations, and providing additional data 

on its recombination frequency for a combined genetic linkage map. Markers that were mapped in more than 

one mapping population, also enabled accurate alignment of individual maps and facilitated subsequent gap 

filling using comparative mapping strategies. 

Such SSR markers were designed to complement the less specific genome wide SNP markers. Each SSR 

marker either marked a potential candidate gene or metabolic gene identified through research, or 

corresponded to gaps in the linkage maps after genetic mapping had been carried out using the genome wide 

SNPs. This targeted rational approach enhanced the robustness and information content of the overall DNA 

marker set for this project. In addition since it is relatively easy to anchor new linkage maps onto existing 

ones, by mapping shared markers, the position of all mapped candidate genes can be used to inform future 

QTL mapping projects. 

Candidate genes identified for this project were primarily obtained for marking seed oil biosynthetic genes, 

for obvious reasons in the Jatropha biofuel crop. Identification of candidate genes, either a priori or post 

QTL analysis and gene sequencing, requires existing knowledge to be available, if predictions on gene 

function are to be achieved before investing in functional characterisation; a core function of the candidate 

gene approach (Pflieger et al., 2001). It is fortunate that, due to the high economic and industrial value of 

plant seed oils for food and industry, the seed oil biosynthetic metabolic pathway is one of the most well-

known and characterised pathways in plants (Li-Beisson et al., 2013). The main challenge is translating 

existing knowledge into a previously understudied species such as Jatropha (at least at the gene functional 

level) (Morrell et al., 2012). Essentially it is dependent on the degree of sequence conservation between 

functional homologues (Peregrin-Alvarez et al., 2009). The sheer diversity of mutations that have been 
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shown to modulate seed oil content and composition across different species (Gupta, 2015, Napier et al., 

2014, Bates et al., 2013, Sanyal and Randal Linder, 2012, Sharma and Chauhan, 2012, Weselake et al., 

2009), with new mutations being discovered all the time, means mapping as much of the metabolic pathway 

as possible, is more likely to capture all potential mutations. In the age of comparative genomics (Morrell et 

al., 2012) this type of approach is readily achievable. 

It is advantageous that firstly the core metabolic pathway for seed oil biosynthesis has been extensively 

studied, and that the majority of translative processing to find functional homologues can occur in silico. 

With SSR marker development also occurring predominantly in silico, a comprehensive approach can be 

used to maximise the chance of capturing as many relevant genes as possible. Since Jatropha is a relatively 

novel crop under study, particularly at the genetic level, marking of these vitally important genes has on-

going utility both inside and outside of this project, and complements the rapidly improving genomic 

resources available for Jatropha development (King et al., 2015, Wu et al., 2015, Yue et al., 2013, King et al., 

2013, Sun et al., 2012).     

Whilst the majority of metabolic pathway and candidate gene research can occur in silico, using model 

species (Li-Beisson et al., 2013), online gene databases, published literature and the Jatropha reference 

genome sequence (Li-Beisson et al., 2013, Hirakawa et al., 2012, Sato et al., 2011), there are further 

advantages of using SSRs as markers. 

SSRs have the advantage of being easily identified in a reference genome sequence due to their repetitive 

sequence (Stieneke, 2007, Martins et al., 2009). SNPs on the other hand require comparative sequencing to 

be detected. Once identified, SSRs can be validated and checked for polymorphism in parental lines via PCR 

amplification. Since SSR polymorphisms result in different SSR repeat sizes, and hence different PCR 

fragment sizes, sequencing is not needed and the actual nucleotide sequence itself is irrelevant. This reduces 

the technological requirements of developing reliable DNA markers, which for lower numbers of bespoke 

markers targeted to specific regions of the genome e.g. to mark candidate genes or to fill gaps, may be a more 

suitable approach than the implementation of genome-wide sequencing approaches.  

Genes that carry out a core metabolic function, such as seed oil candidate genes, tend to be highly conserved 

at the protein level (Peregrin-Alvarez et al., 2009), enabling functional homologues to be found relatively 

easily using BLAST algorithms (Gish and States, 1993). For gap filling, due to the presence of shared 

markers that were mapped in multiple populations, independent linkage maps could be aligned, and markers 

corresponding to regions requiring additional mapping could be used as query sequences to search the 

Jatropha genome for additional SSRs in the target region, highlighting the utility of polymorphism testing of 

SSR markers across multiple mapping populations.  

SSR markers provide substantial value to the marker set available for genetic linkage mapping in the 

G51xCV mapping population. Marker coverage and information content is increased through the targeting of 

SSRs to gaps in the linkage map after initial rounds of genetic linkage mapping, and by the marking of 

candidate genes related to a number of agronomically-relevant traits.   

3.4: Appendix 

List of candidate gene linked SSR markers.  
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Table 3-1 Candidate gene linked SSR markers 

  Source Arabidopsis thaliana gene model Nearest 

sequenced 

relative 

Evidence for Expression (Jatropha curcas mRNA) 

  

    

Marker Contig 

(r3.0) 

Contig 

(r4.5) 

Gene 

Symbol 

(At) 

Gene description At 

Homolo

gue 

Rc 

Homologue 

NCBI 

accessio

n 

Nucleo. 

Coverage 

(%) 

Nucleo. 

Similarity 

(%) 

Accession Title Authors Journal 

3.2.4.1: Acetyl-CoA Carboxylase (ACC) 

JcSSR_G352   Jcr4S02200 ACC1 acetyl-CoA carboxylase 

1 

AT1G361

60.2 

29908.m00599

1 

DQ63274

6.1 

98 99 Amplification and sequencing of 

cytosolic ACCase gene from Jatropha 
curcas 

Krishna 

Kumar,R., 
Jain,D., 

Parameswaran,S

. and 

Johnson,T.S. 

NCBI 

submission 
(2009) 

JcSSR_G353   Jcr4S01232 BCCP1 Acetyl-CoA carboxylase 

BCCP subunit 

AT5G163

90.1 

29929.m00456

0 

HQ15309

8.1 

96 100 Molecular cloning and expression of 

heteromeric ACCase subunit genes 

from Jatropha curcas 

Gu,K., 

Chiam,H., 

Tian,D. and 

Yin,Z. 

Plant Sci. 180 

(4), 642-649 

(2011) 

JcSSR_G354 ` Jcr4S01222 BCCP2 biotin carboxyl carrier 

protein 2 

AT5G155

30.1 

29630.m00080

9 

GQ24172

1.1 

80 100 Identification and characterization of a 

novel biotin carboxyl carrier protein 

subunit from Jatropha curcas L. 

Wei,Q., 

Wu,P.Z., 

Zeng,L., 

Li,M.R., 
Chen,Y.P., 

Jiang,H.W. and 

Wu,G.J. 

NCBI 

submission(200

9) 

JcSSR_G355   Jcr4S03449 CAC2 -α acetyl Co-enzyme a 

carboxylase biotin 

carboxylase subunit 

AT5G353

60.1 

30185.m00095

4 

FJ952146.

1 

80 100 Identification and characterization of a 
novel ACCase from Jatropha curcas L. 

Wei,Q., 
Wu,P.Z., 

Zeng,L., 

Chen,Y., 

Li,M.R., 
Jiang,H.W. and 

Wu,G.J. 

NCBI 
submission(200

9) 

`JcSSR_G359   Jcr4S02200 ACC1 acetyl-CoA carboxylase 

1 

AT1G361

60.2 

29908.m00599

1 

DQ63274

6.1 

98 99 Amplification and sequencing of 

cytosolic ACCase gene from Jatropha 

curcas 

Krishna 

Kumar,R., 

Jain,D., 
Parameswaran,S

. and 

Johnson,T.S. 

NCBI 

submission 

(2009) 

JcSSR_G360   Jcr4S00416 CAC2-β  acetyl Co-enzyme a 

carboxylase 

carboxyltransferase 

alpha subunit 

AT2G380

40.2 

27798.m00058

5 

GQ84501

3.1 

98 99 Identification and characterization of a 
novel alpha-carboxyltransferase subunit 

from Jatropha curcas L. 

Wei,Q., 
Zeng,L., 

Wu,P.Z., 

Chen,Y.P., 

Li,M.R., 
Jiang,H.W. and 

Wu,G.J. 

NCBI 
submission 

(2009) 

JcSSR_G361   Jcr4S00075 CAC2-β acetyl Co-enzyme a 

carboxylase 

carboxyltransferase 

alpha subunit 

AT2G380

40.2 

30174.m00899

9 

GAHK010

16038.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M. 

PLoS ONE 8 

(12), E82817 
(2013) 
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JcSSR_G366   Jcr4U29862 ACCD acetyl-CoA carboxylase 

carboxyl transferase 

subunit beta 

ATCG005

00.1 

28890.m00000

6 

HQ15309

6.1 

96 99 Molecular cloning and expression of 
heteromeric ACCase subunit genes 

from Jatropha curcas 

Gu,K., 
Chiam,H., 

Tian,D. and 

Yin,Z. 

Plant Sci. 180 
(4), 642-649 

(2011) 

3.2.4.1.2: Acyl Carrier Protein (ACP) 

JcSSR_G38 JCCA030

8711 

Jcr4S00106 ACP Acyl carrier protein AT4G250

50.1 

29726.m00398

0 

EZ418424

.1 

100 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 
Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G42 JcCB0042

491 

Jcr4S00742 mtACP Acyl carrier protein AT5G476

30.2 

29826.m00073

2 

GAHK010

27354.1 

98 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G353   Jcr4S01232 mtACP2  Acyl carrier protein AT1G652

90.1 

29929.m00455

1 

EF179617 100 100 Cloning and characterization of 

Jatropha curcas ACP gene 

Jiang,L.D., 

Zhang,Y., 

Wang,Y.X., 

Wang,Y.C., 
Xu,Y. and 

Chen,F. 

NCBI 

submission 

(2009) 

JcSSR_G401   Jcr4S00649 ACP3 acyl carrier protein 3 AT1G546

30.1 

29739.m00365

4 

GAHK010

26238.1 

30 99 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G408   Jcr4S00546 ACP3 acyl carrier protein 3 AT1G546

30.1 

30128.m00867

0 

EZ412266

.1 

100 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G411   Jcr4S00546 ACP3 acyl carrier protein 3 AT1G546

30.1 

30128.m00867

0 

EZ412266

.1 

100 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G415   Jcr4S00190 ACP4 acyl carrier protein 4 AT4G250

50.1 

30147.m01442

5 

GAHK010

13596.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

3.2.4.1.3: The Keto-Acyl Synthases (KASI, KASII, KASIII, FAE) 

JcSSR_G33 JcCA0143

871 

Jcr4S04655 KAS2 Beta-ketoacyl-ACP 

synthase II 

AT1G749

60.3 

29739.m00371

1 

DQ98770

0.2 

100 99 Cloning and characterization of a beta-

ketoacyl-acyl carrier protein synthase II 

from Jatropha curcas 

Wei,Q., Li,J., 

Zhang,L., 

Wu,P., Chen,Y., 
Li,M., Jiang,H. 

and Wu,G. 

J. Plant Physiol. 

169 (8), 816-

824 (2012) 

JcSSR_G34 JCCB004

3371 

Jcr4S00903 KAS3 Beta-ketoacyl-ACP 

synthase III 

AT1G626

40.2 

28455.m00036

8 

DQ98770

1.1 

100 99 Molecular cloning and expression 

analysis of a gene encoding a putative 
beta-ketoacyl-acyl carrier protein 

(ACP) synthase III (KAS III) from 

Jatropha curcas 

Li,J., Li,M.R., 

Wu,P.Z., 
Tian,C.E., 

Jiang,H.W. and 

Wu,G.J. 

Tree Physiol. 28 

(6), 921-927 
(2008) 

JcSSR_G386   Jcr4S02541 KAS1 3-ketoacyl-acyl carrier 

protein synthase I 

AT5G462

90.1 

29693.m00203

4 

GAHK010

17251.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G389a   Jcr4S04655 KAS2 Beta-ketoacyl-ACP 

synthase II 

AT1G749

60.3 

29739.m00371

1 

DQ98770

0.2 

100 99 Cloning and characterization of a beta-

ketoacyl-acyl carrier protein synthase II 
from Jatropha curcas 

Wei,Q., Li,J., 

Zhang,L., 
Wu,P., Chen,Y., 

Li,M., Jiang,H. 

and Wu,G. 

J. Plant Physiol. 

169 (8), 816-
824 (2012) 

JcSSR_G396   Jcr4S08397 KAS1  3-ketoacyl-acyl carrier 

protein synthase I 

AT5G462

90.1 

30068.m00251

5 

GAHK010

07871.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 
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JcSSR_G409   Jcr4S27123 KAS2/FAB

1 

fatty acid biosynthesis 1 AT1G749

60.3 

29739.m00371

1 

GT976545

.1 

64 91 Transcriptome analysis of the oil-rich 

seed of the bioenergy crop Jatropha 

curcas L 

Costa,G.G.L., 

Cardoso,K.C., 

Del 

Bem,L.E.V., 
Lima,A.C., 

Cunha,M.A.S., 

de Campos-

Leite,L., 
Vicentini,R., 

Papes,F., 

Moreira,R.C., 

Yunes,J.A., 
Campos,F.A.P. 

and Da 

Silva,M.J. 

BMC Genomics 

11 (1), 462 

(2010) 

JcSSR_G413   Jcr4S00903 KAS3 Beta-ketoacyl-ACP 

synthase III 

AT1G626

40.2 

28455.m00036

8 

DQ98770

1.1 

100 99 Molecular cloning and expression 

analysis of a gene encoding a putative 
beta-ketoacyl-acyl carrier protein 

(ACP) synthase III (KAS III) from 

Jatropha curcas 

Li,J., Li,M.R., 

Wu,P.Z., 
Tian,C.E., 

Jiang,H.W. and 

Wu,G.J. 

Tree Physiol. 28 

(6), 921-927 
(2008) 

JcSSR_G418   Jcr4S00288 FAE/KCS

2 

3-ketoacyl-CoA synthase 

2 

AT1G042

20.1 

29844.m00318

6 

GAHK010

19920.1 

95 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G419   Jcr4S00731 FAE/KCS

4 

3-ketoacyl-CoA synthase 

4 

AT1G194

40.1 

30190.m01090

3 

GW87937

4.1 

27 99 Profiling gene expression of the 
reproductive organs of Jatropha curcas 

Wang,W., 
Wei,B., Sing,P., 

Jin,Q.D., 

Wong,W.S., 

Zhang,S.H. and 
Li,N. 

NCBI 
submission 

(2010) 

JcSSR_G421   Jcr4S00865 FAE/KCS

19 

3-ketoacyl-CoA synthase 

19 

AT5G045

30.1 

29690.m00041

2 

No 

evidence 

for 

expression 

          

3.2.4.1.4: Stearoyl-ACP desaturases (SAD, FAB2) 

JcSSR_G36 JcCB0395

461 

Jcr4S01370 FAB2 Plant stearoyl-acyl-

carrier-protein 

desaturase 

AT2G437

10.2 

30020.m00020

3 

DQ08449

1.1 

100 99 Jatropha curcas stearoyl-ACP 

desaturase cDNA 

Luo,T., Xu,Y., 

Deng,W., 
Wang,S., 

Tang,L., 

Xiao,M., 

Zeng,N., 
Guo,L., 

Zhang,Y. and 

Chen,F. 

NCBI 

submission 
(2005) 

JcSSR_G393   Jcr4S13936 stearoyl-

ACP 

desaturase 

 Plant stearoyl-acyl-

carrier-protein 

desaturase family protein 

AT3G026

30.1 

29929.m00451

5 

EZ418900

.1 

67 99 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 
Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011)  

JcSSR_G398   Jcr4S01370 FAB2 Plant stearoyl-acyl-

carrier-protein 

desaturase 

AT2G437

10.2 

30020.m00020

3 

DQ08449

1.1 

100 99 Jatropha curcas stearoyl-ACP 

desaturase cDNA 

Luo,T., Xu,Y., 

Deng,W., 
Wang,S., 

Tang,L., 

Xiao,M., 

Zeng,N., 
Guo,L., 

Zhang,Y. and 

Chen,F. 

NCBI 

submission 
(2005) 
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JcSSR_G399   Jcr4S03070.

3 

stearoyl-

ACP 

desaturase 

Plant stearoyl-acyl-

carrier-protein 

desaturase family protein 

AT3G026

30.1 

29929.m00451

4 

GAHK010

04511.1 

100 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G400   Jcr4S03070.

4 

stearoyl-

ACP 

desaturase 

Plant stearoyl-acyl-

carrier-protein 

desaturase family protein 

AT3G026

30.1 

29929.m00451

4 

GAHK010

26581.1 

82 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G407   Jcr4S03522 stearoyl-

ACP 

desaturase 

Plant stearoyl-acyl-

carrier-protein 

desaturase family protein 

AT1G438

00.1 

27985.m00087

7 

EZ412266

.1 

100 100 Profiling the Developing Jatropha 
curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 
and Graham,I.A. 

Bioenergy Res 
(2011) 

             

3.2.4.1.5: The Thioesterases (FATA and FATB) 

JcSSR_G39 JcCB0017

291 

Jcr4S00539 FATA fatA acyl-ACP 

thioesterase 

AT3G251

10.1 

30217.m00026

2 

EU267122

.2 

100 96 Identification and characterization of a 

novel acyl-ACP thioesterase (FATA) 

from Jatropha curcas L. 

Wu,P.Z., Li,J., 

Li,M.R., 

Jiang,H.W. and 
Wu,G.J. 

NCBI 

submission 

(2010) 

JcSSR_G416   Jcr4S00062 FATB fatty acyl-ACP 

thioesterases B 

AT1G085

10.1 

29841.m00274

4 

JX966083.

1 

100 96 Cloning and characterization of an 

acyl-acyl carrier protein thioesterase 

like from Jatropha curcas 

Zhang,L., 

Wu,P.Z., 

Jiang,H.W. and 
Wu,G.J. 

NCBI 

submission 

(2012) 

JcSSR_G417   Jcr4S02908 FATB  fatty acyl-ACP 

thioesterases B 

AT1G085

10.1 

29660.m00078

2 

JX966081.

1 

100 99 Cloning and characterization of an 

acyl-acyl carrier protein thioesterase 

like from Jatropha curcas 

Zhang,L., 

Wu,P.Z., 

Jiang,H.W. and 

Wu,G.J. 

NCBI 

submission 

(2012) 

3.2.4.1.6: Long Chain Acyl-CoA Synthases (LACS) 

JcSSR_G27 JcCB0175

451 

Jcr4S01110 LACS9 Long-chain-fatty-acid 

CoA ligase 

AT1G775

90.1 

29908.m00618

6 

GAHK010

14712.1 

100 99 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G40_L

1 

JcCB0030

361 

Jcr4S00733 LACS2 long-chain acyl-CoA 

synthetase 

AT1G494

30.1 

29851.m00247

3 

GAHK010

16749.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G356   Jcr4S05261 LACS1 Long-chain-fatty-acid 

CoA ligase 

AT2G472

40.2 

30076.m00461

6 

GW61132

7.1 

27 100 Profiling gene expression of the 

reproductive organs of Jatropha curcas 

Wang,W., 

Wei,B., Sing,P., 
Jin,Q.D., 

Wong,W.S., 

Zhang,S.H. and 

Li,N. 

NCBI 

submission 
(2010) 

JcSSR_G362   Jcr4S00096 LACS4 Long-chain acyl-CoA 

synthetase 4 

AT4G238

50.1 

30190.m01083

1 

GAHK010

04006.1 

97 92 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G363   Jcr4S00818 LACS7 long-chain acyl-CoA 

synthetase 7 

AT5G276

00.1 

30128.m00877

7 

GAHK010

02069 

94 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G367   Jcr4S00733 LACS2 long-chain acyl-CoA 

synthetase 

AT1G494

30.1 

29851.m00247

3 

GAHK010

16749.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G368   Jcr4S05261 LACS1 Long-chain-fatty-acid AT2G472 30076.m00461 GW61132 27 100 Profiling gene expression of the 
reproductive organs of Jatropha curcas 

Wang,W., 
Wei,B., Sing,P., 

NCBI 
submission 
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CoA ligase 40.2 6 7.1 Jin,Q.D., 

Wong,W.S., 

Zhang,S.H. and 

Li,N. 

(2010) 

3.2.4.1.7: Compartmentation and shuttling genes (LPCAT, GPAT, LPAAT, PP, MAGAT, PDCT, DAG-CPT, PDAT, DGAT, DAGTA) 

JcSSR_G41 JcCA0009

631 

Jcr4S00582 GPAT3 glycerol-3-phosphate 

acyltransferase 

AT4G019

50.1 

30076.m00461

8 

No 

evidence 

for 

expression 

          

JcSSR_G45 JcCA0084

251 

Jcr4S08388 ATS1 Plastid glycerol-3-

phosphate 

acyltransferase 

AT1G322

00.2 

30068.m00266

0 

GAHK010

04097.1 

72 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G356   Jcr4S05261 GPAT3 glycerol-3-phosphate 

acyltransferase 3 

AT4G019

50.1 

30076.m00461

8 

GAHK010

29922.1 

70 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G357   Jcr4S00121 GPAT3 glycerol-3-phosphate 

acyltransferase 3 

AT4G019

50.1 

29908.m00596

7 

GT969993

.1 

30 99 Transcriptome analysis of the oil-rich 

seed of the bioenergy crop Jatropha 

curcas L 

Costa,G.G.L., 

Cardoso,K.C., 

Del 

Bem,L.E.V., 
Lima,A.C., 

Cunha,M.A.S., 

de Campos-

Leite,L., 
Vicentini,R., 

Papes,F., 

Moreira,R.C., 

Yunes,J.A., 
Campos,F.A.P. 

and Da 

Silva,M.J. 

BMC Genomics 

11 (1), 462 

(2010) 

JcSSR_G358   Jcr4S08802 GPAT3  glycerol-3-phosphate 

acyltransferase 3 

AT4G019

50.1 

29908.m00596

7 

GAHK010

31716.1 

19 90 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G364   Jcr4S00582 GPAT3 glycerol-3-phosphate 

acyltransferase 

AT4G019

50.1 

30076.m00461

8 

No 

evidence 

for 

expression 

          

JcSSR_G368   Jcr4S05261 GPAT3 glycerol-3-phosphate 

acyltransferase 3 

AT4G019

50.1 

30076.m00461

8 

GAHK010

29922.1 

70 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G369   Jcr4S01535 GPAT8 glycerol-3-phosphate 

acyltransferase 8 

AT4G004

00.1 

30174.m00861

5 

GAHK010

15603.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G370   Jcr4S00361 GPAT5 glycerol-3-phosphate 

acyltransferase 5 

AT3G114

30.1 

29736.m00207

0 

No 

evidence 

for 

expression 

          

JcSSR_G371   Jcr4S00686 GPAT6 glycerol-3-phosphate AT2G381 29736.m00207 No           
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acyltransferase 6 10.1 0 evidence 

for 

expression 

JcSSR_G373   Jcr4S11460 GPAT7  glycerol-3-phosphate 

acyltransferase 7 

AT5G060

90.1 

27568.m00026

6 

No 

evidence 

for 

expression 

          

JcSSR_G380   Jcr4S03010 GPAT6 glycerol-3-phosphate 

acyltransferase 6 

AT2G381

10.1 

29969.m00026

7 

GAHK010

13941.1 

70 100 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G427   Jcr4S01398 ATS1 seed gene 1 AT4G267

40.1 

30008.m00082

0 

EZ409221

.1 

100 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G28 JcCA0153

351 

Jcr4S00343 LPAT1 Lysophosphatidic acid 

acyltransferase 

AT4G305

80.1 

29687.m00057

2 

GAHK010

03393.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G29 JcCA0151

201 

Jcr4S01477 LPAT4 Lysophosphatidic acid 

acyltransferase 

AT1G750

20.2 

30170.m01399

0 

GAHK010

19129.1 

61 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G30 JcCB0037

171 

Jcr4S00971 LPAT5 Lysophosphatidic acid 

acyltransferase 

AT3G188

50.4 

29851.m00244

8 

GAHK010

23279.1 

51 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G365   Jcr4S00971 LPAT5 Lysophosphatidic acid 

acyltransferase 

AT3G188

50.4 

29851.m00244

8 

GAHK010

23279.1 

51 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G372   Jcr4S00017 LPAT2 1-acylglycerol-3-

phosphate 

acyltransferase 

AT3G576

50.1 

30169.m00643

2 

No 

evidence 

for 

expression 

          

JcSSR_G374   Jcr4S01622 LPAT1 

(ATS2) 

Phospholipid/glycerol 

acyltransferase family 

protein 

AT4G305

80.1 

29666.m00143

0 

GAHK010

20046.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G375   Jcr4S22362 LPAT2 lysophosphatidyl 

acyltransferase 2  

AT3G576

50.1 

27810.m00064

6 

GAHK010

04915.1 

95 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G376   Jcr4S01477 LPAT4 Lysophosphatidic acid 

acyltransferase 

AT1G750

20.2 

30170.m01399

0 

GAHK010

19129.1 

61 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G31 JcCA0311

711 

Jcr4S09416 LPP3 lipid phosphate 

phosphatase 3 

AT3G026

00.1 

29586.m00062

0 

GAHK010

20421.1 

78 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G377   Jcr4S02521 LPP2  lipid phosphate 

phosphatase 2 

AT1G150

80.1 

29747.m00107

5 

GAHK010

17362.1 

42 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G378   Jcr4S09416 LPP3 lipid phosphate AT3G026 29586.m00062 GAHK010 78 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Wang,H., 

Zou,Z., Wang,S. 

PLoS ONE 8 

(12), E82817 
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phosphatase 3 00.1 0 20421.1 Profiles to Cold Stress of Jatropha 

curcas L 

and Gong,M. (2013) 

JcSSR_G37 JcCB0022

101 

Jcr4S04735 MCAAT Malonyl-CoA : ACP 

Acyltransferase 

(MCAAT) 

AT2G302

00.1 

30113.m00144

8 

GAHK010

18914.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G32 JcCA0249

341 

Jcr4S00514 ROD1 

(PDCT) 

phosphatidic acid 

phosphatase-related / 

PAP2-related 

AT3G158

20.1 

29841.m00286

5 

GAHK010

11904.1 

97 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G382   Jcr4S00514 PDCT 

(ROD1), 

FAD5 

phosphatidic acid 

phosphatase-related / 

PAP2-related 

AT3G158

20.1 

29841.m00286

5 

GAHK010

11904.1 

97 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G381   Jcr4S01903 AAPT1 

(DAG-

CPT) 

Diacylglycerol 

Cholinephosphotransfera

se 

AT1G135

60.2 

30138.m00384

5 

GAHK010

12179.1 

95 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G385   Jcr4S00804 PDAT1 Phosphatidylcholine: 

Diacylglycerol 

Acyltransferase 

AT3G448

30.1 

29706.m00130

5 

GAHK010

10861.1 

98 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G388   Jcr4S01037 PDAT1 phospholipid:diacylglyce

rol acyltransferase 

AT5G136

40.1 

29912.m00528

6 

HQ82779

6.1 

91 100 Expression profiles of genes involved 

in fatty acid and triacylglycerol 

synthesis in developing seeds of 

Jatropha (Jatropha curcas L.) 

Xu,R., Wang,R. 

and Liu,A. 

Biomass 

Bioenergy 35 

(5), 1683-1692 

(2011) 

JcSSR_G403   Jcr4S08851 PDAT2 Phospholipid:diacylglyc

erol acyltransferase 2 

AT3G448

30.1 

29991.m00062

6 

No 

evidence 

for 

expression 

          

JcSSR_G404   Jcr4S19008 PDAT2 Phospholipid:diacylglyc

erol acyltransferase 2 

AT3G448

30.1 

29991.m00062

6 

No 

evidence 

for 

expression 

          

JcSSR_G432   Jcr4S01037 PDAT1 phospholipid:diacylglyce

rol acyltransferase 

AT5G136

40.1 

29912.m00528

6 

HQ82779

6.1 

91 100 Expression profiles of genes involved 

in fatty acid and triacylglycerol 

synthesis in developing seeds of 

Jatropha (Jatropha curcas L.) 

Xu,R., Wang,R. 

and Liu,A. 

Biomass 

Bioenergy 35 

(5), 1683-1692 

(2011) 

JcSSR_G379   Jcr4S00709 DGAT3 Acyltransferase-like 

protein 

AT1G545

70.1 

30128.m00865

6 

GAHK010

02587.1 

90 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G383   Jcr4S01935 DGAT3 transferases, transferring 

acyl groups other than 

amino-acyl 

groups;acyltransferases 

AT3G020

30.1 

30131.m00701

0 

GAHK010

00294.1 

99 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G384   Jcr4S04966 DGAT3 transferases, transferring 

acyl groups other than 

amino-acyl 

groups;acyltransferases 

AT3G020

30.1 

30131.m00701

0 

GAHK010

00294.1 

97 91 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G387   Jcr4U29423 DGAT2 diacylglycerol 

acyltransferase 

AT3G515

20.1 

29682.m00058

1 

JQ319813.

1 

100 99 Characterization of DGAT1 and 

DGAT2 from Jatropha curcas and their 

nonredundant functions in storage lipid 

biosynthesis 

Xu,R. and 

Liu,A. 

NCBI 

submission 

(2011) 
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JcSSR_G394   Jcr4S00406 DGAT Diacylglycerol 

acyltransferase 

AT1G545

70.1 

30128.m00865

6 

GAHK010

02587.1 

95 85 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G395   Jcr4S03244 DGAT Diacylglycerol 

acyltransferase 

AT3G020

30.1 

30131.m00701

0 

GAHK010

00294.1 

96 91 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G402   Jcr4S04033 DGAT Phospholipid/glycerol 

acyltransferase family 

protein 

AT1G809

50.1 

30170.m01400

2 

GAHK010

10064.1 

81 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G43 JcCB0021

271 

Jcr4S15605, 

Jcr4S05766 

Pla2g4b Phospholipase A2, group 

IVB (cytosolic) 

AT3G458

80.1 

29489.m00017

0 

GAHK010

37072.1 

24 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G365   Jcr4S00971 n/a phospholipase A-2-

activating protein 

AT3G188

60.2 

29851.m00244

9 

GAHK010

18279.1 

71 100 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M. 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G422   Jcr4S02881 DGD1 UDP-

Glycosyltransferase 

superfamily protein 

AT3G116

70.1 

28726.m00006

9 

GAHK010

14347.1 

99 100 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

3.2.4.1.8: Endoplasmic reticulum desaturases (FAD2, FAD3) 

JcSSR_G32   Jcr4S00514 FAD5 fatty acid desaturase 5 AT3G158

50.1 

29841.m00286

3 

GAHK010

15790.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G35   Jcr4S04563 FAD8 Omega-3 fatty acid 

desaturase, endoplasmic 

reticulum 

AT5G055

80.1 

29681.m00136

0 

EU267121

.1 

95 84 Functional characterization of two 

microsomal fatty acid desaturases from 

Jatropha curcas L 

Wu,P., 

Zhang,S., 

Zhang,L., 

Chen,Y., Li,M., 
Jiang,H. and 

Wu,G. 

J. Plant Physiol. 

170 (15), 1360-

1366 (2013) 

JcSSR_G35 JcCA0269

921 

Jcr4S27172 FAD3/7 Microsomal omega-3 

fatty acid desaturase 

AT3G111

70.1 

29681.m00136

0 

EU267121

.1 

67 99 Identification and characterization of a 

novel microsomal omega-3 fatty acid 
desaturase from Jatropha curcas L. 

Wu,P.Z., Li,J., 

Li,M.R., 
Jiang,H.W. and 

Wu,G.J. 

NCBI 

submission 
(2007) 

JcSSR_G390   Jcr4S09407 FAD2 fatty acid desaturase 2 AT3G121

20.2 

29613.m00035

8 

EZ409947

.1 

100 98 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 
Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G391   Jcr4S01187 FAD3 Microsomal omega-3 

fatty acid desaturase 

AT5G055

80.1 

29681.m00136

0 

EU267121

.1 

100 97 Functional characterization of two 

microsomal fatty acid desaturases from 

Jatropha curcas L 

Wu,P., 

Zhang,S., 

Zhang,L., 

Chen,Y., Li,M., 
Jiang,H. and 

Wu,G. 

J. Plant Physiol. 

170 (15), 1360-

1366 (2013) 

JcSSR_G392   Jcr4S01217 FAD4 fatty acid desaturase A AT4G270

30.1 

29666.m00145

6 

GAHK010

13623.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G397   Jcr4S03307 FAD8  fatty acid desaturase 8 AT5G055

80.1 

29814.m00071

9 

DQ45208

9.1 

100 100 A plastidial omega-3 fatty acid 

desaturase from Jatropha curcas 

Guo,L., Qing,R., 

Huang,M., 
He,W., Xu,Y., 

Tang,L. and 

Chen,F. 

NCBI 

submission 
(2006) 
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JcSSR_G405   Jcr4S02981 FAD3  fatty acid desaturase 3 AT2G299

80.1 

29681.m00136

0 

EU267121

.1 

100 94 Functional characterization of two 

microsomal fatty acid desaturases from 

Jatropha curcas L 

Wu,P., 

Zhang,S., 

Zhang,L., 

Chen,Y., Li,M., 
Jiang,H. and 

Wu,G. 

J. Plant Physiol. 

170 (15), 1360-

1366 (2013) 

JcSSR_G406   Jcr4S04563 FAD8 Omega-3 fatty acid 

desaturase, endoplasmic 

reticulum 

AT5G055

80.1 

29681.m00136

0 

EU267121

.1 

95 84 Functional characterization of two 

microsomal fatty acid desaturases from 

Jatropha curcas L 

Wu,P., 

Zhang,S., 

Zhang,L., 
Chen,Y., Li,M., 

Jiang,H. and 

Wu,G. 

J. Plant Physiol. 

170 (15), 1360-

1366 (2013) 

JcSSR_G410   Jcr4S00514 FAD5 fatty acid desaturase 5 AT3G158

50.1 

29841.m00286

3 

GAHK010

15790.1 

100 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G414   Jcr4S03452 FAD6  fatty acid desaturase 6 AT4G309

50.1 

29696.m00010

5 

EU106889

.1 

95 100 Identification and characterization of a 
novel chloroplast omega-6 fatty acid 

desaturase from Jatropha curcas L. 

Wu,P.Z., Li,J., 
Li,M.R., 

Jiang,H.W. and 

Wu,G.J. 

NCBI 
submission(200

7) 

3.2.4.1.9: Seed oil body-associated storage protein genes; Oleosins and Caleosins 

JcSSR_G412   Jcr4S06252 Oleosin Oleosin family protein AT3G185

70.1 

30174.m00872

8 

GW61916

2.1 

100 100 Profiling gene expression of the 

reproductive organs of Jatropha curcas 

Wang,W., 

Wei,B., Sing,P., 

Jin,Q.D., 
Wong,W.S., 

Zhang,S.H. and 

Li,N. 

NCBI 

submission 

(2010) 

JcSSR_G420   Jcr4S01276 OLEO1 oleosin 1 AT4G251

40.1 

30147.m01433

3 

EZ417041

.1 

100 100 Profiling the Developing Jatropha 
curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 
and Graham,I.A. 

Bioenergy Res 
(2011) 

JcSSR_G423   Jcr4S05922 Caleosin Caleosin-related family 

protein 

AT1G706

70.1 

29673.m00093

2 

GAHK010

23742.1 

97 99 Global Analysis of Transcriptome 

Responses and Gene Expression 
Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 
and Gong,M 

PLoS ONE 8 

(12), E82817 
(2013) 

JcSSR_G424   Jcr4S28232 Oleosin Oleosin family protein AT2G258

90.1 

29794.m00337

2 

EZ412177

.1 

100 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G428   Jcr4S00534 Oleosin Oleosin family protein AT2G258

90.1 

29794.m00337

2 

EZ412177

.1 

96 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G429   Jcr4S05992 Oleosin Oleosin family protein AT3G015

70.1 

29917.m00199

2 

EZ418548

.1 

100 100 Profiling the Developing Jatropha 
curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 
and Graham,I.A. 

Bioenergy Res 
(2011) 

3.2.4.1.10: Fatty acid synthesis master regulators 

JcSSR_G425   Jcr4S00084 WRI1 Integrase-type DNA-

binding superfamily 

protein 

AT3G543

20.3 

29736.m00202

9 

No 

evidence 

for 

expression 

          

JcSSR_G426   Jcr4S07197 WRI1 Integrase-type DNA-

binding superfamily 

protein 

AT3G543

20.3 

29736.m00202

9 

No 

evidence 

for 

expression 
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JcSSR_G430   Jcr4S03855 WRI1 Integrase-type DNA-

binding superfamily 

protein 

AT3G543

20.3 

30069.m00044

0 

JF703666.

1 

100 99 Isolation and characterization of 

JcWRI1 gene from Jatropha curcas 

Zhang,L., 

Yang,Z. and 

Shen,S. 

NCBI 

submission 

(2011) 

JcSSR_G431   Jcr4S05417 WRI1 Integrase-type DNA-

binding superfamily 

protein 

AT3G543

20.3 

29822.m00347

7 

No 

evidence 

for 

expression 

          

3.2.4.2: Branching candidate genes 

JcSSR_G56 JcCA0154

071.10 

Jcr4S00260 TIR1 TRANSPORT 

INHIBITOR 

RESPONSE 1 (F-

box/RNI-like 

superfamily protein) 

AT3G629

80.1 

29647.m00202

2 

GAHK010

14281.1 

100 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G57 JcCA0074

811.10 

Jcr4S05147 AFB5 auxin F-box protein 5 AT5G499

80.1 

29908.m00622

3 

GAHK010

04749.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G58 JcCA0133

141.20 

Jcr4S00529 ABI3 AP2/B3-like 

transcriptional factor 

family protein 

AT3G246

50.1 

30204.m00180

3 

EZ411848

.1 

57 98 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G59 JcCB0165

711.10 

Jcr4S02351 MAX2 RNI-like superfamily 

protein 

AT2G426

20.1 

29451.m00004

9 

GAHK010

32867.1 

16 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G60 JcCA0141

181.10 

Jcr4S16834 MAX4 carotenoid cleavage 

dioxygenase 8 

AT4G328

10.1 

29794.m00338

2 

No 

evidence 

for 

expression 

          

JcSSR_G61_A

1 

JcCA0306

791.10 

Jcr4S22672 PIN1 Auxin efflux carrier 

family protein 

AT1G735

90.1 

29651.m00029

6 

GAHK010

24416.1 

73 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G428   Jcr4S00534 MAX4 carotenoid cleavage 

dioxygenase 8 

AT4G328

10.1 

29794.m00338

2 

No 

evidence 

for 

expression 

          

JcSSR_G435   Jcr4S05086 AXR1 NAD(P)-binding 

Rossmann-fold 

superfamily protein 

AT1G051

80.1 

29600.m00055

2 

GAHK010

25428.1 

68 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G436   Jcr4S00105 TIR1 TRANSPORT 

INHIBITOR 

RESPONSE 1 protein 

AT3G629

80.1 

29933.m00142

7 

GAHK010

07122.1 

79 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G437   Jcr4S03655 AFB2 auxin signaling F-box 2 AT3G268

10.1 

30131.m00686

3 

GAHK010

14896.1 

99 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G438   Jcr4S00335 MAX1 Fatty acid/sphingolipid 

desaturase 

AT2G462

10.1 

29794.m00330

8 

EF208109.

1 

100 100 Characterization of D8-sphingolipid 

desaturase from Jatropha curcas 

Qing,R., Guo,L. 

and Chen,F. 

NCBI 

submission 
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(2007) 

JcSSR_G439   Jcr4S01087 MAX2 RNI-like superfamily 

protein 

AT2G426

20.1 

29682.m00060

1 

GAHK010

22914.1 

45 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G440   Jcr4S01272 MAX3 carotenoid cleavage 

dioxygenase 7  

AT2G449

90.1 

30174.m00879

6 

No 

evidence 

for 

expression 

          

JcSSR_G441   Jcr4S10204 AtPIN1 Auxin efflux carrier 

family protein 

AT1G735

90.1 

30180.m00106

4 

No 

evidence 

for 

expression 

          

3.2.4.2: Flower ratio genes 

JcSSR_G46 JcCB0031

471 

Jcr4S00778 PI like K-box region and 

MADS-box transcription 

factor family protein 

AT5G202

40.1 

29648.m00197

8 

GW61452

7.1 

100 100 Profiling gene expression of the 

reproductive organs of Jatropha curcas 

Wang,W., 

Wei,B., Sing,P., 
Jin,Q.D., 

Wong,W.S., 

Zhang,S.H. and 

Li,N. 

NCBI 

submission 
(2010) 

JcSSR_G47 JcCB0402

301 

Jcr4S01776 SHP2 like K-box region and 

MADS-box transcription 

factor family protein 

AT2G428

30.2 

30026.m00150

1 

EZ417572

.1 

88 100 Profiling the Developing Jatropha 

curcas L. Seed Transcriptome by 

Pyrosequencing 

King,A.J., Li,Y. 

and Graham,I.A. 

Bioenergy Res 

(2011) 

JcSSR_G48 JcCB0462

581 

Jcr4S00750 LOX5 PLAT/LH2 domain-

containing lipoxygenase 

family protein 

AT3G224

00.1 

30178.m00085

9 

GAHK010

38599.1 

10 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G49 JcCB0292

551.10 

Jcr4S06599 LOX2 lipoxygenase 2 AT3G451

40.1 

30152.m00244

9 

GW61816

6.1 

27 100 Profiling gene expression of the 
reproductive organs of Jatropha curcas 

Wang,W., 
Wei,B., Sing,P., 

Jin,Q.D., 

Wong,W.S., 
Zhang,S.H. and 

Li,N. 

NCBI 
submission 

(2010) 

JcSSR_G50_A

1 

JcCA0044

701.10 

Jcr4S09208 LOX5 PLAT/LH2 domain-

containing lipoxygenase 

family protein 

AT3G224

00.1 

29726.m00389

1 

GAHK010

03986.1 

58 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G52 JcCA0308

701.10 

Jcr4S00435 Lipooxyge

nase 

Lipase/lipooxygenase, 

PLAT/LH2 family 

protein  

AT4G397

30.1 

30147.m01425

1 

GW61796

2.1 

97 100 Profiling gene expression of the 

reproductive organs of Jatropha curcas 

Wang,W., 

Wei,B., Sing,P., 

Jin,Q.D., 
Wong,W.S., 

Zhang,S.H. and 

Li,N. 

NCBI 

submission 

(2010) 

JcSSR_G53_A

1 

JcCA0317

961.10 

Jcr4S03289 Lipooxyge

nase 

Lipase/lipooxygenase, 

PLAT/LH2 family 

protein 

AT2G221

70.1 

28206.m00010

1 

GO24761

4.1 

96 97 Expressed sequence tags from Jatropha 
curcas root cDNA library 

Nalini,E., 
Parmeshwaran,S

., Balaji,S., 

Bhagyam,A. and 

Johnson,T.S. 

NCBI 
submission 

(2009) 

JcSSR_G54 JcCA0154

881 

Jcr4S00285 LAS, 

AGAMOU

S-like 

GRAS family 

transcription factor 

AT1G555

80.1 

28966.m00053

5 

GAHK010

43718.1 

10 100 Global Analysis of Transcriptome 
Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Wang,H., 
Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 
(12), E82817 

(2013) 

JcSSR_G55 JcCB0046 Jcr4S01162 MOC1- Mitochondrial AT4G146 30190.m01096 GAHK010 80 100 Global Analysis of Transcriptome Wang,H., PLoS ONE 8 
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511.10 like transcription termination 

factor family protein  

05.1 5 20523.1 Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 

curcas L 

Zou,Z., Wang,S. 

and Gong,M 

(12), E82817 

(2013) 

JcSSR_G58   Jcr4S00529 ADH1 alcohol dehydrogenase AT1G771

20.1 

27985.m00088

5 

GT969949

.1 

30 99 Transcriptome analysis of the oil-rich 

seed of the bioenergy crop Jatropha 
curcas L 

Costa,G.G.L., 

Cardoso,K.C., 
Del 

Bem,L.E.V., 

Lima,A.C., 

Cunha,M.A.S., 
de Campos-

Leite,L., 

Vicentini,R., 

Papes,F., 
Moreira,R.C., 

Yunes,J.A., 

Campos,F.A.P. 

and Da 
Silva,M.J. 

BMC Genomics 

11 (1), 462 
(2010) 

JcSSR_G363   Jcr4S00818 LOX1 lipoxygenase 1  AT1G550

20.1 

30128.m00878

1 

GAHK010

14084.1 

100 100 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M. 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G433   Jcr4S06869 LOX3 lipoxygenase 3 AT1G174

20.1 

29468.m00003

0 

GAHK010

18559.1 

50 99 Global Analysis of Transcriptome 

Responses and Gene Expression 

Profiles to Cold Stress of Jatropha 
curcas L 

Wang,H., 

Zou,Z., Wang,S. 

and Gong,M 

PLoS ONE 8 

(12), E82817 

(2013) 

JcSSR_G434   Jcr4S00095 ATA1 Short chain alcohol 

dehydrogenase 

AT3G429

60.1 

29780.m00137

1 

No 

evidence 

for 

expression 
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Chapter 4: Linkage mapping in an F2 population derived from parents with 

high and low seed oil phenotypes 

Genetic linkage mapping uses genetic markers to measure recombination frequency, or crossover events, that 

occur during DNA replication. The rate of recombination is proportional to the genetic distance between the 

markers; completely unlinked markers recombine in a diploid species 50 % of the time, whereas physically 

linked markers have a lower recombination frequency proportional to physical distance. Each F2 plant in the 

mapping population is effectively a single measurement of recombination between the available DNA 

markers. Therefore the larger the F2 population, the greater the sample size for estimating recombination 

frequency and the greater the accuracy of the inferred genetic linkage map. 

Since DNA replication occurs independently from external, environmental conditions, it is not necessary for 

the F2 plants to experience the same environmental conditions when measuring recombination frequency for 

genetic linkage mapping. This is in contrast to QTL mapping that is dependent on phenotypic measurements; 

a function of Genetic and Environmental factors (GxE). This property has been exploited to increase sample 

size in several ways in this project. Firstly individual mapping populations (such as the principle population 

under study for this thesis, G51xCV) has F2 plants created over 2 rounds of crossing. Secondly the G51xCV 

data has been combined with 3 other mapping populations in order to create a combined dataset and genetic 

linkage map. This was possible due to all populations using the same DNA marker set. 

This results chapter will have two narrative strands. Genetic linkage mapping in the G51xCV mapping 

population will be the central focus, as this was the principle mapping population under study for this thesis. 

This will also set the conditions for the G51xCV QTL analysis in the proceeding chapter.  

The other strand will look at the genetic linkage mapping process overall. It will analyse the DNA marker set 

to determine individual marker characteristics and performance during the genetic linkage mapping process. 

It will also present the combined genetic linkage map, which aside from being the ultimate product of genetic 

data collected from the G51xCV mapping population, also acts as a reference map with which to compare 

this thesis linkage map. This comparison was used in this thesis work for comparative mapping strategies and 

to assess the quality and robustness of G51xCV results against the larger combined dataset.  
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4.1: Genetic linkage mapping in G51xCV 

4.1.1: The G51xCV F2 mapping population has a complex population structure, due 

to heterozygosity in G51, and the asynchronous, self-compatible flowering strategy of 

J. curcas 

The G51xCV mapping population was created from a cross between a homozygous parent (‘CV’) and a 

heterogeneously heterozygous parent (‘G51’), containing 36.5 % heterozygosity. In order to map as many of 

these heterozygous loci as possible, a reciprocal sib-cross of two non-uniform F1’s was carried out, with 

alternate F1 plants acting as the mother plant for each direction of the cross.  

Further complexity was added to this population structure due reproductive characteristics of Jatropha. J. 

curcas is self-compatible, with male and female flowers found on the same inflorescence. Whilst Jatropha is 

protogynous; female flowers reach maturity before males flowers of the same inflorescence, the plant as a 

whole is asynchronous; inflorescences on the same plant flower at different times. With mature male and 

female flowers found on different parts of the plant during the flowering cycle, there is opportunity for self-

pollination to occur (Achten et al., 2010).  

Therefore whilst an F1 sib-cross was the intended crossing strategy for the F2 population, self-pollination was 

also present.  In each direction of the reciprocal sibcross, the mother plant self-fertilised at a high rate, and as 

a result, instead of two F2 subpopulations derived from the F1 sibcross in each direction, a further 2 

subpopulations were created from selfing of each F1 mother plant.  

This cross was repeated on two separate occasions in order to generate more F2 plants for linkage mapping, 

therefore in total this population contained 8 subpopulations for genetic linkage mapping. Please refer to 

Figure 2-1 (materials and methods), for an illustration of the intended and actual population structures.  

4.1.2: Heterozygosity in G51 enabled population structure to be determined through 

the use of informative marker loci 

The complex population structure of G51xCV as described in fig 2-1, was determined through informative 

marker analysis. Whilst selfing of genetically uniform F1 plants would be identical to sib-crossing, selfing 

and sib-crossing of two heterogeneously heterozygous (non-uniform) F1 plants would have different 

outcomes on the genetics of the F2 offspring. To illustrate the non-uniformity of the F1 plants, F1.1 was 86 % 

heterozygous, whereas F1.2 was 82.5 % heterozygous.   

Ironically, the heterozygosity in G51 that gave rise to this complex population structure, also created 

informative marker loci that enabled this population structure to be elucidated. Please refer to Figure 2-2 

(materials and methods) which explains what informative marker loci are, and how they were used to inform 

the population structure and parentage of each F2 plant in this project. 
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4.1.3: Heterozygosity in G51 is likely to represent underlying genetic similarity to CV, 

rather than non-informative marker loci, therefore heterozygous loci have been 

included to maximise accuracy of downstream linkage and QTL mapping 

A model F2 population is created from two homozygous, genetically-distinct lines e.g. Parent 1 would be all 

‘aa’ genotype, whereas parentage 2 would be all ‘bb’ genotype. In this population the parent G51 was 

partially ‘ab’.  

There are two implications for the heterozygosity in G51. Either these ‘a’ alleles indicate that the underlying 

genetic region is identical to the CV parent, in which case the genotype of these markers is fully informative, 

or that the underlying genetic region is different in the two parents and the markers developed for these 

regions are only 50 % informative. In either scenario the parent of origin cannot be distinguished in the F2 

generation, however if the marker allele is informative of the underlying genetic region/alleles, as in the first 

scenario, then the markers can be used to measure the association of genetic alleles to phenotypic 

measurements during QTL analysis, and therefore provide value for QTL mapping.  

All markers used in this study are co-dominant, however SSRs provide an additional level of informativeness 

due to their continuous rather than digital nature in comparison to SNPs. SNPs can have a maximum of 4 

alleles (A,C,T,G), whereas SSRs can potentially have any number of repeats, giving greater ability to 

differentiate the genetic origin of particular sequences. It is because of this that the first scenario would seem 

more likely; that the heterozygous regions in the G51 parents are 50 % identical to the CV parent (rather than 

the loci being completely genetically distinct but just the marker scores being shared). If the heterozygous 

regions in the G51 parent were heterozygous regions originating from a completely genetically distinct line 

from the CV parent, the chance that all heterozygous loci would have identical SSR lengths (or alleles) to the 

CV parent by chance is low (given that there are 93 informative loci that share the identical number of SSR 

repeats as the CV parent).  

It is therefore more likely that the G51 parent shares some genetic relatedness to the CV parent, a scenario 

supported by the small centre of origin for this species and the lack of genetic diversity observed so far in 

comparison to most other (despite being more highly cultivated) crop species. Therefore the marker scores at 

these loci would seem fully informative in terms of the underlying genetic alleles present, and are included in 

downstream analysis for linkage and QTL mapping. 

4.1.4: The G51xCV genetic linkage map, derived from 229 F2 plants, comprises 312 

co-dominant DNA markers spread over 11 linkage groups 

Genetic linkage mapping in the G51xCV mapping population was carried out using 229 F2 plants, and 312 

SNPs and SSR markers. Correct parentage of F2 plants was ascertained using informative marker loci as 

described above, and linkage mapping carried out using Crimap software, which is able to incorporate the 

complex population structure of the G51xCV mapping population. A robust quality control and error 

checking process was also incorporated to maximise robustness of the linkage map. See ‘Materials and 

Methods’ for a detailed description of the Crimapping procedure. 
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_______________________________________________________________________________________ 

 

 

 

Figure 4-1 The G51xCV Genetic Linkage Map, Linkage groups 1-11.   
The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups with a genome 

wide marker density for unique loci of 2.969 cM. Markers physically linked to candidate genes have been highlighted in 

bold. In this population, 44 candidate genes have been mapped for oil content, oil composition, branching and flower 

ratio traits. 

________________________________________________________________________________________________ 
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_______________________________________________________________________________________ 

Table 4-1 The G51xCV genetic linkage map statistics.  
Summary statistics for the G51xCV linkage map are presented below. The G51xCV linkage map consisting of 312 co-

dominant markers, 11 linkage groups and a total genetic distance of 621 cM, has a mean marker density of between 

2.21 cM (LG04) and 7.58 cM (LG09) for unique loci.  

Linkage Group 1 2 3 4 5 6 7 8 9 10 11 All 

Markers 

SSRs 6 9 15 12 10 10 10 9 6 16 14 117 

SNPs 15 5 18 27 27 15 12 30 3 16 13 181 

EST SNPs 4 0 3 0 1 2 0 2 0 2 0 14 

Total 25 14 36 39 38 27 22 41 9 34 27 312 

Total Loci 18 12 26 27 21 17 15 31 8 15 20 210 

Total Distance (cM) 46.1 78.3 55.6 57.5 44.0 50.0 73.2 64.7 53.0 49.8 48.3 621 

Marker 

Density 

(cM) 

All markers 1.92 6.02 1.59 1.51 1.19 1.92 3.48 1.62 6.63 1.51 1.86 2.00 

Unique loci 2.71 7.12 2.23 2.21 2.20 3.13 5.23 2.16 7.58 3.56 2.54 2.97 

_______________________________________________________________________________________ 

Table 4-1 shows the G51xCV genetic linkage map summary statistics. The G51xCV linkage map consisted 

of 312 co-dominant markers, spread over 11 linkage groups and covering a total genetic distance of 621 cM. 

Marker density is 2.97 cM per unique locus across all linkage groups, and ranges from 2.21 cM (LG04) to 

7.58 cM (LG09) per unique loci in individual linkage groups. Markers physically linked to candidate genes 

identified from Jatropha genome sequence (Sato et al., 2011) have been highlighted in bold, Figure 4-1. In 

the 51xCV population, 44 candidate genes have been mapped for oil content, oil composition, branching and 

flower ratio traits.  

The 11 linkage groups presented here are in agreement with cytological evidence on J. curcas chromosome 

number (Carvalho et al., 2008) and a previously published interspecific linkage map (Wang et al., 2011). 

Based on the total genetic distance mapped of 621 cM, and cytological evidence suggesting the Jatropha 

genome size to be 416 Mbp (Carvalho et al., 2008), a genetic distance of 1 cM is corresponds to 

approximately 0.7 Mbp or 700Kbp on this map.   

4.1.5: Physical alignment of the G51xCV linkage map, to independent mapping 

populations and the combined population linkage map, confirms mapping accuracy 

and genome coverage for G51xCV 

Figure 4-7 to 4-19, Appendix 4.6.2, shows the physical alignment of the G51xCV, and other population 

linkage maps that together were used to build the combined linkage map - an example of which is presented 

below, Figure 4-2. This alignment was made possible by the fact that all 4 populations used the same DNA 

marker set. Markers that were mapped in multiple populations have been connected by black lines to 

facilitate comparison. 
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_______________________________________________________________________________________ 

 
Figure 4-2 Physical alignment and comparison of linkage maps from independent mapping populations and the 
combined population dataset.  
Alignment of independent mapping population linkage maps was used as a way to confirm accuracy of individual maps. 

Linkage groups are annotated with the format (linkage group number)_(Mapping population); the above is an example of 

linkage group 1 alignment (LG1) for populations QV01, QV02, G33xG43, G51xCV (the principle population for this thesis 

study), and the combined genetic linkage map. Markers that were mapped in more than one population have been 

connected with dark black lines to aid comparison. As can be seen by the connecting lines, marker order and spacing is 

highly conserved across individual linkage groups, indicating that the markers and datasets generated from independent 

mapping populations are robust and accurate. Marker spacing (genetic distance) is likely to be most accurate in the 

combined genetic map since this represents the largest sample size from which recombination frequency has been 

calculated (a total of 989 F2 plants). As with marker order, genetic distance is also highly conserved across independent 

mapping populations. Comparisons of linkage groups 1-11 are including in the appendix. 

________________________________________________________________________________________________ 

Physical alignment enables the level of consensus between individual linkage maps to be established, and by 

doing so gives an indicator of the relative accuracy and robustness of individual population datasets. This 

comparison works on the principle that marker order and recombination rate should be conserved across each 

population, since the physical position of the DNA markers are constant in the Jatropha genome. Overall one 

can see that marker order and spacing is highly conserved, and for G51xCV, indicates that this is an accurate 

linkage map that contributes robust data to the combined genetic linkage map, as well as providing the 

foundation for accurate QTL mapping in Chapter 5. This alignment technique was used to carry out 

comparative mapping during later rounds of linkage mapping as outlined in the materials and methods of this 

thesis. 

4.1.6: Quantification of gaps on linkage maps highlights regions requiring further 

mapping and also suggests areas of low polymorphism and regions identical by 

descent 

Physical alignment of individual maps, as presented above, enables visual comparison of marker order, 

spacing and coverage between individual linkage maps and the combined genetic linkage map and also 
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highlights areas of low marker density for future improvement of the maps. Whilst this visual comparison 

enables an overall impression to be gained, a quantitative approach enables gaps to be identified more 

systematically, according to predetermined thresholds.  

For example it is reckoned that a spacing of 10-20 cM between markers represents a robust marker coverage 

that is capable of capturing all QTL effects. Similarly for accurate genetic linkage mapping, double 

crossovers are thought unlikely to occur within distances smaller than 15 cM due to crossover interference.  

Quantification of internal gaps can be done by map position of flanking markers. For missing regions at the 

end of linkage groups, comparison to the combined linkage map has been carried out, since this represents 

the most accurate and robust linkage map based on sample size (989 F2 plants). To carry out this comparison, 

the position of the nearest shared end marker between the individual and combined map is used as the 

reference point. The distance of the marker to the end of the linkage group on the two linkage maps gives an 

indication of the amount of the missing region on the individual map, compared to the combined map. 

_______________________________________________________________________________________ 

Table 4-2 Quantitative analysis of the number of regions in individual population maps that could be targeted 
with additional markers 
The table below shows regions that could be targeted with additional markers and highlights that certain regions show 

low polymorphism across multiple independent mapping populations, suggesting regions identical by descent. Gaps are 

measured by flanking markers in the population map containing the gap, whereas end regions are calculated by 

comparison to the combined genetic map, since this represents the best estimation of genetic distance. Numbers are in 

cM, and symbols represent location; G = internal gap, T = top of linkage group, B = bottom of linkage group. Regions of 

low marker density across all maps, suggesting regions identical by descent, are highlighted in red. 

 Mapping Population 

Linkage 

group 
G51xCV G33xG43 QV01 QV02 

Map 

author 

JG Clarke AJ King AJ King AJ King 

1     

2 12.9 B 

21.2 G 

19.9 G 

20.3 G 19.8 B 

23.1 G 

19.8B 

23.1 G 

3  36.3T   

4     

5     

6     

7 36.1G 12.7B   

8     

9 14.4T 

34.1G 

16.3G   

10 19.8G 16.9G 17.9G  

11  15.5G   

Count 7  6 3 2 

_______________________________________________________________________________________ 

As can be seen by the table, alignment of linkage maps using shared markers has enabled regions that require 

further mapping to be identified. Quantitative analysis of the G51xCV map shows that there are just 3 regions 

spanning greater than 20 cM, and 5 regions greater than 15 cM (LG 2,7,9 & 10), and so the probability of 

missing double crossover events, and therefore underestimating genetic distance, is very low for most areas 

of this linkage map. Similarly, high significance QTL are expected to be detected by this marker density, 

although further mapping is required to ensure low significance QTL are not present in the larger gaps on 

linkage groups 7 & 9. 
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It is interesting to note that many of the identified regions tend to cluster around the same linkage groups in 

different populations (highlighted red), suggesting that these regions are areas of low intraspecific 

polymorphism or regions identical by descent from a shared ancestral line. Comparative mapping using 

aligned linkage maps from individual populations, and comparative mapping using castor bean microsynteny, 

did not yield any polymorphic SSR markers in these regions. Similarly, randomly or unbiasedly selected 

genotyping by sequencing SNPs did not fall in these regions by chance. This would suggest that these could 

be low polymorphism regions (similar in both parental lines), or so called ‘identical by descent’ regions (i.e. 

they have remained unchanged from the common ancestral line). Identical by descent regions are thought to 

be maintained by stabilising or positive selection, often at a very early stage in plant development such that 

they can persist through the selective pressures during a plant’s life cycle (Jordan et al., 2005).  

4.1.7: In addition to identifying regions of low marker density in G51xCV, 

comparative mapping also highlights isolated markers that are accurate, that 

otherwise would have been excluded during the genetic linkage mapping process. 

The 5 regions greater than 15 cM in G51xCV, are all present towards the end of linkage groups, and are 

marked by single markers in some cases. Such markers would normally be suggestive of an erroneous marker 

showing a spurious linkage, however alignment of maps from other mapping populations suggest that these 

markers are correct, as either these particular markers have been mapped to the same region in an 

independent mapping population, or they map a region covered by different markers in another population. 

For this reason they have been included on the G51xCV map. 
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4.2: Incorporation of G51xCV data and SSR markers, contributes towards the 

combined genetic linkage map; a robust and comprehensive linkage map for J. curcas 

_________________________________________________________________________ 

 
Figure 4-3 The Combined Genetic Linkage map derived from four F2 mapping populations (989 F2 

plants).  
In total, 589 co-dominant markers map 11 linkage groups and a genetic distance of 733 cM. Average marker density is 

1.62 cM per unique loci. A total of 67 candidate genes and trait-related metabolic genes are mapped (highlighted in 

bold). 
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________________________________________________________________________________________________ 

________________________________________________________________________________________________ 
Table 4-3 The Combined Linkage Map; Marker and Map Statistics.   
Summary statistics for the combined genetic linkage map. The 594 co-dominant markers, spread over 11 linkage groups, 

map a total distance of 733 cM. Genome wide marker density for unique loci is 1.62 cM, individual linkage group marker 

densities range from 0.96 cM (LG11) to 2.98 cM (LG09). 

Linkage group 1 2 3 4 5 6 7 8 9 10 11 All 

Markers 

SSRs 19 15 28 18 18 16 12 39 9 19 20 213 

SNPs 19 16 31 29 40 31 25 48 13 29 37 318 

EST SNPs 6 11 7 2 4 9 3 4 3 2 7 58 

Total 44 42 66 49 62 56 40 91 25 50 64 589 

Total loci 34 35 52 39 49 43 34 71 24 34 49 464 

Total distance (cM) 50.4 85.5 69.2 62.8 60.8 81.4 74.5 67.2 68.5 57.1 55.4 733 

Marker 

density 

(cM) 

All markers 1.17 2.08 1.07 1.31 1.00 1.48 1.91 0.74 2.86 1.16 0.88 1.24 

Unique loci 1.53 2.51 1.36 1.65 1.27 1.94 2.26 0.96 2.98 1.73 1.15 1.62 

_______________________________________________________________________________________ 

Table 4-3 and Figure 4-3, show the combined genetic linkage map and statistics. As can be seen 589 co-

dominant markers were mapped across 11 linkage groups, with a mean marker density of 1.62 cM per unique 

locus. The lowest marker density for individual linkage groups was 2.98 cM (LG09). This map was made 

from 4 independent F2 mapping populations, each containing between 220 to 320 F2 plants. Since all four 

mapping populations used the same set of DNA markers, recombination data for the combined map was 

calculated from a combined population size of 989 F2 plants. Markers physically linked to candidate and 

trait-related metabolic genes have been highlighted in bold. In total 67 candidate gene markers were mapped.  
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4.3: DNA Marker analysis 

4.3.1: DNA markers used throughout the genetic linkage mapping process show 

differing performance 

During the course of genetic linkage mapping for this project, a number of properties were of interest relating 

to how efficiently a DNA marker could be mined, genotyped and mapped. In this section, the DNA marker 

set will be analysed to obtain insight into marker performance within this genetic mapping process.  

_______________________________________________________________________________________ 

Table 4-4 Comparison of EST SNP and SSR marker performance 

(a) Marker Type 

Marker type 

EST 

SNPs Short Sequence Repeats (SSRs) 

Author AJ King All AJ King JG Clarke R Santos 

Number of marker 

primers designed 104 683 371 288 24 

(b) Marker outcome 

Polymorphic 73 317 190 115 12 

Not polymorphic 5 263 114 147 2 

Failed 22 82 57 15 10 

Not tested 4 21 10 11 0 

Total 104 683 371 288 24 

Mapped 58 213 129 74 10 

(c) Success rate (%) 

Fail rate 22 12.4 15.8 5.42 41.7 

Polymorphism rate 93.6 54.7 62.5 43.9 85.7 

Map rate 79.5 67.2 67.9 64.3 67.2 

_______________________________________________________________________________________ 

Table 4-6, gives attribution for the DNA markers developed, and enables a comparison of EST SNP and SSR 

marker performance during the linkage mapping process. Part (a) lists the number of marker sequences 

mined and primers designed over the course of the project. In total 104 EST SNP markers were mined and 

designed (Andy King), of which 73 were polymorphic and 58 were successfully mapped (Andy King, J 

Clarke). In total 683 SSR marker sequences were mined and primers designed (Andy King, Jasper Clarke, 

Roberto Santos), of which 317 were polymorphic and 129 were successfully mapped (Andrew King, Jasper 

Clarke). Individual attribution for each marker type is given in the table. Part (c) highlights the success rate of 

markers throughout the linkage mapping process. Fail rate measured as ‘Total failed/Total tested (Total 

tested = Total designed-Not tested)’, looks at the proportion of markers that failed PCR amplification. This 

can therefore be thought of as a reflection of both the accuracy of the target sequence on which the primers 

were designed, and the success of the primer design since both PCR cycling conditions and PCR reagents 

were kept constant throughout this work. Polymorphism rate, measured as ‘Total Polymorphic/Total 

successfully tested (Total successfully tested = Polymorphic + Not polymorphic)’, looks at the proportion of 

markers that, following successful PCR amplification, were found to be polymorphic in the populations 

tested. This can therefore be thought of as a measure of the polymorphism of the target sequence. 

Polymorphism rate of the target sequence is itself influenced by the type of SSR targeted and level of 

polymorphism between the lines tested. Map rate, measured as ‘Total mapped/total Polymorphic’, asks the 
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question, ‘of the markers found to be polymorphic, what proportion successfully made it through to the final 

linkage map?’ Factors that can affect this rate are the ease of scoring during genotyping, and the robustness 

of amplification throughout the F2 population. 

Map rate for the EST SNPs is considerably higher than for the SSR markers, probably reflecting the ease and 

unambiguity of scoring, particularly for KASPAR markers.  In contrast, SSRs can have complex patterning, 

particularly for complex or compound repeat sequences and also contain PCR artefacts that can be difficult to 

accurately distinguish (Schlotterer, 2004). Multiplexed primers can sometimes interact in unforeseen ways 

meaning a portion of markers fail the F2 genotyping or mapping process despite being polymorphic when 

tested individually. 

The fail rate of SSR markers is low, averaging 12.4 % across the combined dataset. Polymorphism rate is 

substantially lower than the EST SNPs, as expected, since SSRs are not identified as polymorphic prior to 

PCR amplification. Polymorphism rate, instead, reflects a combination of the level of polymorphism or 

genetic relatedness of the parental lines tested, and the type of SSR targeted. Different SSR sequence lengths 

can differ in polymorphism rate due to the ease in which DNA polymerase slippage and DNA mismatching 

can occur during DNA replication, a point that will be explored later. Since this data has not been grouped by 

the lines tested or type of SSR targeted, these values should represent an averaged value across all markers 

and populations according to those tested by the listed authors.  

The observed variation in polymorphism rate between the individual authors for SSR markers reflects the 

difference in function that these markers were developed for, in terms of the proportion of the total for each 

author. Mapping of gaps in the linkage map represents a drop in polymorphism rate for several reasons. By 

definition these regions tend to have lower polymorphism rates as otherwise the randomly distributed 

markers would have been expected to fall within these regions by chance. Secondly, since mapping of gaps is 

specific to individual maps from individual populations, these markers are only tested in single populations, 

effectively decreasing the chance of polymorphism by 4. Mapping of candidate genes can also have a similar 

effect, since particular candidate genes are developed for specific populations. It is an important aim of this 

type of analysis to deconstruct and differentiate between these various influences on marker performance, so 

that the individual effects of each factor can be clearly seen, as well as the underlying/intrinsic performance 

rate of this particular marker type when such influences are removed. Such data is then informative for future 

use if such markers are used again. 

Influences of the sequence source, function/application for which the markers were developed and the type of 

SSR targeted on SSR marker performance will be explored in greater detail in this chapter. 

This analysis highlights the difference in performance statistics between EST SNPs and SSRs. General rules 

can be identified, such as the difference in fail rate between markers developed from transcribed DNA and 

genomic DNA (due to the presence of introns and regulatory elements), the difference in polymorphism rate 

between markers developed from comparative sequencing data compared to genome sequence (and whether 

polymorphism is identified in silico prior to PCR amplification), and the difference in mapping rate between 

EST SNPs and SSRs (due to the differing systems used to amplify and score these markers). SSR 

performance rates indicate the average rates over the course of the project, without differentiating marker 

source, function or type of SSR targeted.  
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_______________________________________________________________________________________ 

Table 4-5 SSR Marker Source analysis 

(a) SSR Marker Source 
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Total 

Number of 

Marker Primers 

Designed 74 19 3 9 17 23 530 8 683 

Author(s) (A) (A) (A) (A) (A) (A) (A),(B) (A)   

(b) Primer outcome 

    

 

 

 

 Polymorphic 31 12 2 2 11 14 240 5 317 

Not Polymorphic 28 4 1 1 5 8 215 1 263 

Failed 15 3 0 6 1 1 54 2 82 

Not tested 0 0 0 0 0 0 21 0 21 

Total 74 19 3 9 17 23 530 8 683 

Mapped 28 11 2 2 10 13 143 4 213 

(c) Success rate (%) 

    

 

 

 

 Fail rate 20.3 15.8 0 66.7 5.88 4.35 10.6 25.0 12.4 

Polymorphism 

rate 52.5 75.0 66.7 66.7 68.8 63.6 52.7 83.3 54.7 

Map rate 90.3 91.7 100 100 90.9 92.9 59.6* 80.0 67.2 

*Map rate excluding markers developed for gap filling = 77.6 % 

Authors 

SSR mining, primer design and polymorphism  

testing carried out by:  
(A) Dr. Andrew J. King 

(B) Jasper G. Clarke 

_______________________________________________________________________________________ 

 

_______________________________________________________________________________________ 

Table 4-5 analyses the SSR markers according to the sequence source from which they were mined. Part (a) 

lists the different marker sources in the order that they were carried out during the project (from left to right), 

the number of primers designed and the author(s) attributed with this work. Part (b) lists the outcome of 

primer testing, and part (c) the performance statistics including fail rate, polymorphism rate and map rate, 

calculated in the same way as described in the table 4-6 analysis.  

SSR markers were mined from a variety of sources. This included transcribed DNA in the form of EST 

enriched libraries (column 2) or publically deposited mRNA/cDNA submissions (column 3), GenBank 

nucleotide submissions (column 4), markers used to characterise J. curcas genetic variation in previously 

published studies (column 5 & 6), markers mined from the Jatropha genome sequence (column 8), markers to 

anchor previously published linkage maps (column 7), and markers mined from Bacterial Artificial 

Previous studies 

(1) (Sun et al., 2008) 

(2) (Phumichai et al., 2011) 

(3) (Wang et al., 2011) 

(4) (Sato et al., 2011) 
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Chromosome (BAC) sequencing for fine mapping applications (column 9). The majority of markers were 

mined from EST enriched libraries and the Jatropha genome sequence (together accounting for 88.4 % of 

total markers designed).  

Comparison of markers developed from transcribed DNA (columns 2 & 3) to markers developed from 

genomic DNA sequence (columns 6-8) shows the characteristically higher fail rate (as observed with EST 

SNPs table 2) due to the absence of introns and other regulatory sequences in transcribed DNA, leading to a 

greater PCR primer fail rate when amplifying from genomic DNA. Polymorphism rate should not have a bias 

between transcribed and genomic DNA marker sources, since neither of these marker groups have been 

identified as polymorphic prior to polymorphism testing.  

Here we see polymorphism rates that vary between a lower end of just over 50 % (for EST enriched library 

and genome sequence), to the majority of sources being between mid to high 60’s (66.7 %, 66.7 %, 68.8 %, 

63.6 %) to a high score of 75 % (for publically deposited mRNA/cDNA). Polymorphism rate does seem to be 

lower for EST enriched library SSR markers and genome sequence SSRs. In part this can be explained by the 

function for which the markers were developed. For genome sequence derived SSRs, a significant proportion 

were developed to fill in gaps during later rounds of linkage mapping, map candidate genes or fine map QTL. 

All of these applications are specific to individual populations, reducing the number of populations each 

marker was tested in and therefore the chance of polymorphism. In addition, markers designed for gap filling 

are specifically targeting low polymorphism regions, which otherwise would be expected to be covered by 

the randomly distributed markers by chance. The fact that subsequent SSR markers targeted to these regions 

through comparative mapping techniques also show a low polymorphism rate confirm that these gaps tend to 

be low polymorphism regions. Polymorphism rate is expected to be lower in the EST enriched library source 

since greater evolutionary pressures operate on coding DNA, shortening average SSR repeat sequence length 

in comparison to genomic SSRs and limiting the frequency of repeat sequence expansions/contractions that 

would be expected to have an impact on protein function. Given that we know these influences are reducing 

polymorphism rates in genome sequence sourced SSRs, it seems likely that the rate of between 65-70 % 

polymorphism as observed for the majority of the other sources reflects the most accurate indicator of 

underlying polymorphism across these populations for SSR markers.  

Map rate (defined as ‘Total markers mapped/total markers polymorphic’; see table 1.3) should also be 

constant since all markers were scored in the same manner, and each category is composed of a mixture of 

different SSR types. Here we see the majority of markers are within the 90 % or greater range, with the 

exception of Genome Sequence derived SSRs. The drop in map rate observed for genome sequence SSRs can 

be explained by the fact that this group contains markers developed for the mapping of gaps in later rounds of 

linkage mapping, and mapping of candidate gene markers specific to particular populations. The approach 

used to map gaps was to target multiple SSRs per locus with only 1 polymorphic marker needing to be 

mapped during linkage mapping. To illustrate the effect that the application for which the SSR primer was 

developed has on map rate, when markers developing for gap filling are removed from this group, map rate 

increases to 77.6 %. Candidate gene mapping can again be specific to individual populations such that if the 

marker is not polymorphic in that specific population there is no point in mapping in other populations that 

the marker may be polymorphic, particularly if the region is already mapped. It seems likely that a map rate 

of ~90 % represents the most accurate reflection of the rate of mapping SSRs mined from genome sequence 

in this dataset when all other specific influences are removed.  
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 Taken together, these points suggest that the most representative performance statistics for SSR markers 

mined from genome sequence, are a fail rate of between 5-10 % (excluding the influence of markers designed 

from transcribed DNA), a polymorphism rate of ~60-65 % (excluding the influence of markers targeted to 

low polymorphism regions and tested in single populations), and a map rate of around 90 % (excluding 

markers where several SSRs were targeted per locus or markers were developed for specific populations).  

_______________________________________________________________________________________ 

Table 4-6 SSR Marker Function/Application and performance 

(a) SSR Marker Function (ordered by number mapped) 

Function 
Candidate 

Genes 

Gap filling 

(comparative 

mapping) 

Non-specific 

gene 

mapping 

(transcribed 

sequences) 

Non-

specific 

mapping 

Map 

anchoring 
Total

  

Designed 197 284 96 83 23 683 

Author  (A)(B) (A)(B) (A) (A) (A)   

(b) Primer outcome 

Polymorphic 100 116 45 42 14 317 

Not Polymorphic 71 128 33 23 8 263 

Failed 15 30 18 18 1 82 

Not tested 11 10 0 0 0 21 

Total 197 284 96 83 23 683 

Mapped 67 57 41 35 13 213 

(c) Success rate (%) 

Fail rate 8.1 10.9 18.8 21.7 4.3 12.4 

Polymorphism 

rate 58.5 47.5 57.7 64.6 63.6 54.7 

Map rate 67.0 49.1 91.1 83.3 92.9 67.2 

Authors 

SSR mining, primer design and polymorphism testing carried out by:  
(A) Dr. Andrew J. King 

(B) Jasper G. Clarke 

_______________________________________________________________________________________ 

Table 4-8 shows the SSR markers grouped according to function/application in the project. Part (a) lists 

application in order of number of markers mapped (from left to right), the number of primers designed and 

the authors responsible for the work. As can be seen, a total of 683 markers were developed, of which 197 

were for candidate gene mapping, 284 for second generation linkage mapping, 96 were for non-specific gene 

mapping based on transcribed sequence data, 83 were for non-specific mapping and 23 for anchoring linkage 

groups to a previously published linkage map. Part (b) lists the outcome of primer testing. In summary, the 

following number of SSRs were mapped for each application: 67 for candidate gene mapping, 57 for second 

generation linkage mapping, 41 for non-specific gene mapping using transcribed sequence, 35 for 

unspecified mapping, and 13 for anchoring linkage groups to previously published maps. In total this gives 

213 SSR markers mapped. Part (c) lists the performance statistics for each category of SSR, in fail rate, 

polymorphism rate and map rate. 

As can be seen by the statistics listed in parts (a) and (b), Candidate gene mapping was the predominant 

applications of SSR markers used in this project. Total primers for these categories combined account for 

70.4 % of all markers designed. Looking at the fail rates across the groups, we see that the typical ~5-10 % 
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fail rate (4.3 % map anchoring to 10.9 % for gap filling) is observed with the exception of the markers mined 

from transcribed sequences (18.8 %), which, as already discussed, have a characteristically higher fail rate 

due to the presence of introns and other regulatory elements not present in the genomic DNA that PCR 

primers are tested on. This fail rate of 18.8 % is very similar to the EST-SNP marker fail rate (22 %, table 2), 

which were also designed from transcribed DNA.  

Map rate is at the typical ~90 % rate for all groups except candidate genes and gap filling, ranging from 83.3 

% for non-specific mapping to 92.9 % for Map anchoring. As previously discussed, a drop in map rate in gap 

filling is expected due to multiple SSRs being targeted per locus, and for candidate genes, such gene markers 

only being required in the populations harbouring the specific traits of interest.  

To summarise this analysis, SSR markers have been predominantly used for the mapping of candidate genes, 

later stage linkage mapping to improve areas of low marker density. A significant proportion of markers were 

also developed from an EST enriched library to map expressed genes in a less specific manner. As observed 

with previous analyses, markers designed from transcribed DNA show a characteristically higher fail rate 

compared to markers mined directly from genomic DNA. Markers designed for gap filling has a lower 

polymorphism and map rate, due to markers targeting lower polymorphism regions and being specific to 

individual mapping populations. 

_______________________________________________________________________________________ 

Table 4-7 SSR SSR repeat sequence size and performance 

(a) SSR Repeat Sequence          

Repeats seq size 

(x)n 1 2 3 4 5 6 7 Complex Unknown Total 

Number of marker 

primers designed 2 332 119 14 3 10 2 66 135 683 

(b) Author 

          AJ King 0 183 43 4 0 5 0 25 135 395 

JG Clarke 2 149 76 10 3 5 2 41 0 288 

Total 2 332 119 14 3 10 2 66 135 683 

(c) Primer outcome 

         Polymorphic 1 169 41 0 0 5 0 27 74 317 

Not Polymorphic 1 99 64 12 3 4 2 33 45 263 

Failed 0 51 10 1 0 1 0 4 15 82 

Not Tested 0 13 4 1 0 0 0 2 1 21 

Total 2 332 119 14 3 10 2 66 135 683 

Total Mapped 1 123 32 0 0 5 0 18 34 213 

(d) Success rate (%) 

         Fail rate 0 16.0 8.70 7.69 0 10 0 6.25 11.2 12.4 

Polymorphism rate 50 63.1 39.0 0 0 55.6 0 45 62.2 54.7 

Map rate 100 72.8 78.0 0 0 100 0 66.7 45.9 67.2 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

Table 4-7 shows the performance of individual types of SSR SSR. Part (a) lists the number of SSRs mined 

and primers designed for each SSR sequence type. Part (b) lists the authors responsible for the work, and the 

number of primers designed for each SSR type. Part (c) lists the outcome of primer testing and part (d) lists 

the overall success rate of each SSR type in fail rate, polymorphism rate and map rate. 
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In this project, repeat sequences of 1 to 7 nucleotides were targeted for simple repeat SSRs, as well as 

complex SSRs consisting of either or both elements of (a) multiple repeat sequence sizes (compound SSRs) 

or (b)interrupted SSRs (repeat sequences interspersed with non-repeat sequence). Complex SSRs were mined 

using ‘Imperfect SSR’ software as described in Materials and Methods. The most commonly used SSR was 

the dinucleotide (xx)n and trinucleotide (xxx)n repeat sequences with 332 and 119 sequences mined 

respectively. There was also a significant quantity of complex SSRs (66 sequences). Unknown SSRs reflect a 

number of unannotated SSRs included in order to maintain continuity in overall/total marker statistics. As 

can be seen, all authors predominantly targeted the shorter repeat sizes of two and three nucleotides, 

reflecting the fact that these were often the most common SSR type found and often the largest in total 

number of repeats units. 

It can be expected that the shorter the repeat motif and the greater the number of repeat units, the more likely 

the chance of polymorphism (Lai and Sun, 2003, Schlotterer and Tautz, 1992). SSR expansion is thought to 

be caused by a combination of DNA polymerase slippage and DNA mismatching during DNA replication, 

leading to the formation of loop structures that enable these repeat stretches to expand or contract over time 

(Li et al., 2002). Both DNA polymerase slippage and DNA mismatching are more likely to occur with shorter 

repeat motif sequences due to the smaller physical distances between each repeat unit making replication 

errors, such as slippage and mismatching, more likely to occur. Longer repeat stretches facilitate the 

formation of loop structures during replication and can also be expected to facilitate changes in repeat length.  

Part (c) lists the outcome of primer testing and part (d) an analysis of these values to indicate overall marker 

performance. Fail rate was expected to have been constant across all groups since the different marker 

sequence sources (such as transcribed or genomic DNA) were distributed across all groups. Fail rate ranges 

from 6.25 % for complex SSRs to 16 % for dinucleotide repeats, roughly keeping to the 5-10 % fail rate 

observed previously, with a variation from the mean rate of 12.4 % of -6.15 % and +3.6 % for these two most 

extreme groups respectively.  

Polymorphism rate would have been expected to vary depending on the type of SSR targeted. The three 

largest groups, 2, 3 and complex SSRs, are most informative in this regard due to the higher number of 

markers tested. Here we see that dinucleotide repeats have a significantly higher polymorphism rate 

compared to trinucleotide and complex SSRs, as expected. Interestingly, complex SSRs have a higher 

polymorphism rate than trinucleotide repeats, suggesting that elements such as short non-SSR sequences in 

the middle of SSRs, or mixtures of different repeat sequence sizes, are not in themselves a major factor 

limiting repeat expansion over time.  

Map rate, as previously discussed can be thought of as an indicator of the ease of scoring and robustness of 

amplification across the F2 population, after other factors such as the application for which they were 

developed are taken into account. Since this data is not grouped according to application, the effects of 

markers developed for gap filling which have a lower map rate, for example, should be distributed across all 

of the groups being compared here, enabling the relative map rates of each group to be fairly compared.  

Amplified SSRs create a characteristic amplification pattern depending on size and type of repeat sequence, 

and the alleles present. Allele sizes that are very similar can interact to form additional patterns due to 

overlapping peaks. It could therefore be expected that different repeat sizes and types could have different 

emergent map rates, as the number of primers tested increases to greater numbers. We know that the 
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function/application for which the SSR were developed affects map rate, however this effect should be 

reduced since the groupings in this analysis do not have any bias towards function/application, and so the 

effect of these markers should be split between the different SSR repeat categories, such that the relative rates 

of each category can be compared. 

We do see a difference in map rate between the three largest categories, 2, 3 and complex SSRs which have a 

72.8 %, 78 % and 66.7 % map rate observed respectively. This data would suggest that trinucleotide repeats 

are slightly easier to score than dinucleotide repeats, which can be true when the polymorphism level is a 

single repeat unit difference. Here a 3 bp difference in PCR product compared to a 2 bp difference could be 

expected to be easier to differentiate when scoring in terms of less overlapping sequences trace. However, it 

is the authors’ experience that these two categories do not present a substantial difference in ease of scoring, 

and so the differences could be due to the number of markers in each category that were developed for 

different applications, although a slight drop can be observed for complex SSRs which may be due to the 

more complex trace patterning that these class of marker produce. A substantial difference in map rate is not 

observed between different SSR repeat sequence types, suggesting that there is not a great difference in the 

ease of scoring and the robustness of amplification between the different categories. 

A remaining factor that is not covered in this analysis is the number of repeat units and its effect on 

polymorphism rate. As previously discussed, the longer the repeat sequence stretch the higher the 

polymorphism rate is expected to be, due to the greater number of opportunities available for DNA slippage 

and mismatching to occur and the ease at which loop structures would be expected to be formed. However, 

data for this property was not available for analysis.  

Nevertheless, this analysis supports the hypothesis that shorter repeat motifs have a higher polymorphism 

rate, and therefore should be preferentially targeted for the development of DNA markers. This analysis also 

highlights the fact that complex SSRs, particularly those consisting of short repeat sequence sizes, should 

also be considered for SSR marker development, highlighting the importance of using software that is 

capable of recognizing these complex sequence types in genomic or transcribed DNA sequence. 

4.4: Discussion 

Breeding programmes that intend to utilise Marker Assisted Selection (MAS), require a number of genetic 

resources. Genetically and phenotypically distinct lines are required to form mapping populations. 

Phenotypic variation should be present in the trait of interest, and genetic variation should be present to 

ensure that such traits are heritable, and that they can be tracked throughout a segregating population. A 

comprehensive set of DNA markers are required to track individual loci, assess their performance on 

phenotype and ultimately inform selection of lines containing beneficial QTL. DNA markers should cover 

the complete genome, and ideally be placed as close to, and flanking, any QTL present. The chance of 

marking functionally relevant loci and causative mutations is increased by mapping expressed genes and 

candidate genes. DNA markers need to be grouped, ordered and their relative distances calculated so that the 

resulting linkage map can be used to most accurately detect and locate QTL.  

In this study, genotyping and genetic linkage mapping of the G51xCV mapping population was used to 

generate a genetic linkage map and to contribute data towards the combined genetic linkage map along with 

data from three other populations.  
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DNA marker production across these populations was facilitated by the genetic similarity of one parental line 

in each population. This reference line, to which the other lines containing beneficial traits was crossed, was 

genetically very similar to the majority of material used across the world as determined by genetic 

characterisation work (Yue et al., 2014, Montes Osorio et al., 2014, Pecina-Quintero et al., 2014, He et al., 

2011). By using a single reference line in each population, the chances of DNA markers being polymorphic 

across multiple populations was increased. This increased the number of markers available per population, 

and increased the value per marker versus the resources required to produce it. The genetic similarity of the 

reference lines to widely used material will facilitate introgression of beneficial QTL identified by this study, 

as the DNA markers disseminated should be directly transferable, and QTL performance will have been 

established in a genetically-similar background.  

Markers with polymorphism in multiple populations not only improve marker density and facilitate QTL 

mapping in individual populations, but such shared markers have numerous benefits for comparative 

mapping and linkage mapping from combined datasets. 

Alignment of the individual mapping population linkage maps was possible due to these shared markers. 

Since the physical location of these markers in the J. curcas genome remains constant in each population, 

marker ordering and recombination rate should be similar, which should lead to identical marker ordering 

and similar marker spacing in all individual population linkage maps.  Alignment and comparison of shared 

marker positions between maps, enables relatively accuracy and consensus to be determined across each 

population, and serves as an excellent quality control for the overall mapping process. Marker ordering, 

spacing and total distance mapped remains highly conserved between all independent population maps, 

indicating the robustness and accuracy of each dataset. 

Following alignment, such shared markers also become useful for comparative mapping. After linkage maps 

are aligned, markers in one map that correspond to gaps in another, can be used to target additional markers 

to the regions required. The markers corresponding to the gap are used as probes to retrieve J. curcas genome 

sequence contigs; these contigs can then be scanned for additional SSR markers. 

Lastly, shared markers substantially improve the accuracy of the combined linkage map by increasing the 

recombination data available for these markers, which account for a significant portion of the total markers 

mapped. This substantially improves the accuracy of the calculated genetic distances and marker ordering, 

since sample size is effectively increased from individual population numbers to multiple populations, for 

calculating recombination rates of these markers. Marker ordering and spacing for shared markers in the 

combined map, represents data collected from up to 989 F2 plants. The combined map produced from this 

data represented a considerable improvement on the only other available Jatropha linkage map at the time of 

publication; an inter-specific linkage map produced from 93 plants (Wang et al, 2011). 

The 51xCV mapping population utilised a variety of DNA marker types and sequence sources. A genome 

wide, randomly distributed selection of genome sequencing derived SNPs were developed to cover as much 

of the genome as possible. The CRoPs® technique utilised here, harnesses next generation sequencing to 

comparatively sequence amplified fragments produced from a modified DNA fingerprinting technique, 

AFLP (van Orsouw et al., 2007). As with genotyping by sequencing approaches, SNPs can be selected from 

a panel of thousands that offer most use to the user and are genotyped using high throughput methods (work 

conducted by Keygene) (Davey et al., 2011). 
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Whilst this approach amplified random segments of the genome without differentiating between coding and 

non-coding regions leading to a genome-wide non-selective marker set, markers in expressed gene were also 

available  for genotyping and mapping in the G51xCV mapping population (King et al., 2011). Such 

expressed sequence tagged (EST) markers were randomly distributed through expressed genes, adding 

selectivity towards functional DNA, although still randomly distributed throughout the Jatropha 

transcriptome (King et al., 2011, Varshney et al., 2014). 

Simple Sequence Repeat (SSR) markers were utilised for a range of specific tasks. Mapping of markers from 

previous studies enabled comparison of parental material to previously studied germplasm, and linkage maps 

to be anchored to a previously published interspecific linkage map (Wang et al 2011). The main applications 

for SSRs, however, were for gap filling of individual linkage maps during later round linkage mapping, and 

for the mapping of candidate genes. 

SSR mining benefitted from the publication of the Jatropha genome sequence in 2011 (Sato et al, 2011). SSR 

SSRs can be efficiently mined from genome sequence using software (Martins et al., 2009, Stieneke, 2007). 

In contrast to SNPs that require comparative sequencing to identify markers, SSRs are identifiable from a 

single sequence such as a reference genome sequence. Validation of identified SSRs is conducted by PCR 

amplification in parental lines, which is perhaps the biggest drawback of SSRs since the design of PCR 

primers, amplification and scoring in parental lines (polymorphism testing) is more user-intensive than higher 

throughput approaches that utilise genome sequencing. 

For this reason rational selection of SSRs to increase the chance of polymorphism is important to maximise 

efficiency of marker production. As has been explored in this chapter, shorter repeat motifs have a higher 

polymorphism rate, due to the ease at which DNA polymerase slippage and DNA mismatching can occur 

during DNA replication (Li et al., 2002). The length or number of repeat units also increases the probability 

of polymorphism since there are more opportunities for polymerase slippage and mismatching to occur, and 

more sequence in which loop structures can form (Oliveira et al., 2006, Lai and Sun, 2003, Li et al., 2002). 

As highlighted by the analyses in this chapter, the presence of compound or interrupted SSRs (together 

‘complex SSRs’), does not in itself represent a major influence on polymorphism rate, such that complex 

SSRs, particularly those consisting of shorter repeat motif sizes, should be readily included in ones SSR 

mining strategy. Software such as Imperfect SSR is recommended over standard SSR mining software in this 

regard.  

This final point is particularly important for draft genome sequences, which are differentiated from complete 

genome sequences by a lack of physical mapping. Draft genome sequences consist of a series of unordered 

contigs of varying sizes. For the majority of applications the draft genome state is more than adequate, such 

that there is very little incentive to produce physical maps which add another (significant) level of technical 

difficulty, time and cost. In an age where next generation sequencing is becoming cheaper and more 

accessible, and where a greater range of crops are becoming sequenced, draft genome sequences will 

continue to represent the majority of genomes for all but the most widely studied species (Feuillet et al., 

2011). Mining of all effective marker types from potentially small contigs is important to increase the utility 

of such resources. Comparative mapping techniques, utilising comparative genomics, were also extensively 

used in this project for the same reason.  
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SSR markers were utilised for gap filling and the mapping of candidate genes in the G51xCV mapping 

population. Comparative mapping techniques, such as alignment of individual population maps, was used as 

a method of targeting SSRs to gaps in the G51xCV linkage map. Comparative mapping and synteny with 

castor bean (Chan et al., 2010) was also utilised for SSR marker development as an extension of this process.  

For example after G51xCV linkage groups were aligned to other population maps, markers corresponding to 

gaps were used to pull out J. curcas contigs as before. From there, amino acid sequences from all predicted 

gene models in the contig, were used as probes to search the castor bean genome sequence. Castor bean 

transcribed amino acid sequences that mapped to the same contig and in the same order, suggested a region 

of synteny and gene-colinearity. Transcribed amino acid sequences further upstream or downstream in the 

castorbean genome sequence could then be used as a probe to retrieve J. curcas genome sequence in the 

reverse direction. For syntenous regions, the longer contig sizes of the castor bean genome sequence could be 

used to identify and order the more fragmented J. curcas genome sequence, in order to reach contigs 

corresponding to target regions of the linkage map. Amino acid sequence conservation for transcribed gene 

models was high between the two Euphorbiacea species, Jatropha curcas and castor bean, facilitating this 

approach. Figure 4-6 below, gives a visualisation of this process. 
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_______________________________________________________________________________________  

 

 

 

 

Figure 4-4 Comparative mapping between J .curcas and R. communis during later round linkage mapping.  
Interspecific synteny and gene-colinearity were utilised between J. curcas and its nearest sequenced relative R. 

communis (Hirakawa et al., 2012, Sato et al., 2011, Chan et al., 2010). The more highly conserved transcribed amino 

acid sequences of gene models, from J. curcas and R. communis genome sequence, were used to establish syntenous 

regions and navigate back and forth between genomes in order to identify SSR markers in target regions. Note the 

difference in contig length between J. curcas and R. communis, which made this technique possible. Average contig 

length displayed in the statistics table is misleading, due to the high number of small fragments in each genome 

sequence. More informative is the median contig length (N50) which more accurately reflects the difference in contig 

sizes between the two genome sequences. J. curcas had two genome sequence releases r3.0 and r4.5 (Hirakawa et al., 

2012, Sato et al., 2011). 

________________________________________________________________________________________________ 

As explored in this chapter, mining of SSR markers for different applications produced differing 

polymorphism, and map rates. Analysis of the various components influencing SSR marker success rates, 

such as target sequence source, application, and repeat sequence motif size, showed that with all distorting 

influences removed, SSR performance characteristics were approximately a 5-10 % fail rate, 60-70 % 

polymorphism rate, and a 90 % map rate, highlighting the efficiency and utility of using this readily available 

marker type for the applications suggested. The mapping of candidate genes, as discussed in Chapter 3 was a 

particularly useful addition of developed SSR markers to the genome wide non-selective markers available in 

the G51xCV mapping population.  

Genome Stats Jatropha curcas R. comm. 

Release r3.0 r4.5 1 

Total length of contigs 285 Mbp 297 Mbp 325 Mbp 

Total number of contigs 150,417 39,277 3,500 

Max length of contigs 29,744 277,264 4.7 Mb 

Av. length of contigs 1,900 7,579 13,000 

N50 3,833 15,950 561,400 

GC content 34.3 34 32.5 
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Overall the marker mining strategies employed in this project were designed to produce a comprehensive set 

of DNA markers. A panel of randomly (unbiasedly) distributed SNPs were generated using a reduced 

representation genotyping by sequencing approach (Davey et al., 2011, van Orsouw et al., 2007). Genotyping 

by sequencing based approaches remain the most thorough and powerful marker mining technology 

available, since both SNP discovery and genotyping can be carried out in a single run and the density of 

markers produced is theoretically maximal depending on whether a genome reduction strategy is employed 

and the depth of sequencing (Davey et al., 2011). The power of this approach should only increase as 

sequencing technology improves and costs reduce. Comparative EST library sequencing was used to increase 

the number of mapped expressed genes and increase the chance of mapping functionally relevant loci. Since 

expressed genes make up the majority of functional DNA, mapping of expressed genes would seem like a 

critical component of a comprehensive marker set (depending on the level and coverage of genotyping by 

sequencing if it is employed). SSR markers were mined from the Jatropha genome sequence to improve the 

linkage maps during later round linkage mapping, as well as to map candidate genes and other important 

trait-related metabolic genes. These SSR markers represented an efficient, cost effective and readily available 

source of marker to complement and further improve on the randomly distributed, non-selective (either 

across the entire genome or the transcriptome) markers. 

Genetic linkage mapping in the G51xCV mapping population, produced a robust and reliable genotypic 

dataset and genomic resource that was validated through alignment to 3 other independent dataset linkage 

maps using shared markers. The G51xCV genetic linkage map underpins both accurate QTL detection and 

QTL location in this population, and has also contributed towards the first published intraspecific genetic 

linkage map for Jatropha curcas. Mapping of SSRs linked to seed oil biosynthetic genes in particular, is a 

useful genomic resource for further study into the genetic basis of oil yield and oil quality variation in 

Jatropha curcas populations. 

4.5: Appendix 

Contents: 

(1) The 51xCV linkage map 

(2) Physical Alignment and Comparison of individual mapping population linkage maps 

(3) The Combined linkage map 

(4) Candidate and metabolic gene linked SSR markers 
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4.5.1: The G51xCV Genetic Linkage Map 

 

Figure 4-5 The G51xCV Genetic Linkage Map, Linkage groups 1-6.  

The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups at a density of 2.969 cM per unique loci. Markers linked to candidate genes have been highlighted in bold. 
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Figure 4-6 The G51xCV Genetic Linkage Map, Linkage groups 7-11.  

The 51xCV linkage map is composed of 312 co-dominant markers, distributed over 11 linkage groups at a density of 2.969 cM per unique loci. Markers linked to candidate genes have been highlighted in bold. 
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4.5.2: Physical Alignment and Comparison of individual mapping population linkage maps 

 

Figure 4-7 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  
Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-8 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-9 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-10 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-11 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-12 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-13 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-14 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-15 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-16 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  
Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 
responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 
individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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Figure 4-17 Physical alignment and comparison of linkage maps from independent mapping populations and the combined population dataset.  

Shared markers (markers that were mapped in multiple populations) are linked with black lines to indicate the level of consensus between individual population maps. Note that the author of this study was 

responsible for developing markers that were mapped in all 5 linkage maps, whereas genotyping and linkage mapping was carried out solely in the 51xCV population. This comparison enables the accuracy of 

individual linkage maps to be compared, and the contribution of individual maps to the combined map to be visualised. 
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4.5.3: The Combined Genetic Linkage Map 

 

Figure 4-18 The Combined Genetic Linkage map, groups 1-6.  

This map was generated from four F2 mapping populations. In total, 589 co-dominant markers map 11 linkage groups and a distance of 733 cM. Average marker density is 1.62 cM per unique loci. A total of 67 
candidate genes and trait-related metabolic genes were mapped (highlighted in bold). 
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Figure 4-19 The Combined Genetic Linkage map, groups 7-11  
This map was generated from four F2 mapping populations. In total, 589 co-dominant markers map 11 linkage groups and a distance of 733 cM. Average marker density is 1.62 cM per unique loci. A total of 67 
candidate genes and trait-related metabolic genes were mapped (highlighted in bold)
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Chapter 5: Integration of phenotypic datasets identifies several QTL that 

contribute to oil yield and oil quality in the G51xCV mapping population.  

5.1: Introduction  

5.1.1: Target traits for the genetic improvement of J. curcas 

After a mapping population and linkage map have been produced Quantitative Trait Locus (QTL) mapping 

can be carried out through the integration of phenotypic datasets. QTL mapping uses association to correlate 

genotype with phenotype (Mackay et al., 2009). Two commonly used methods to calculate QTL are (1) 

single marker analysis; the association between phenotypic values and genotype class at each marker position 

independently, and (2) interval mapping, which calculates the association between phenotypic values against 

set intervals across each linkage group (Doerge, 2002). 

There are many traits that are desirable in a crop. Traits that affect overall yield, such as vigour, plant 

architecture, size and biomass, would be desirable within most agronomic plant species. For oilseed crop 

species intended for biofuel production, seed oil content and seed oil composition are also important traits. 

Increasing seed oil content increases the oil yield per seed, and seed oil extraction efficiency. Seed oil 

composition, the relative amounts of different fatty acids in the seed storage oil, in terms of carbon chain 

length and the presence/absence of different functional groups or bonds, has a large effect on the end biofuel 

performance characteristics and therefore determines oil quality (Durrett et al., 2008, Vega-Sanchez and 

Ronald, 2010, Balat, 2011, Atabani et al., 2013, Knothe, 2009). The properties of the different fatty acids 

affect the biofuel performance in combustion engines in several ways. Cetane number (the speed at which a 

fuel combusts, also a measure of explosiveness), the cloud point (the temperature at which the biofuel 

precipitates), coldflow point (a measure of viscosity at low temperatures), and oxidative stability (the rate at 

which fatty acids oxidise and degrade) are all defined by the biofuel fatty acid composition. 

The amount of saturated and unsaturated bonds has been shown to substantially alter these properties. 

Biofuels high in saturated fatty acids such as 16:0 and 18:0 show favourable cetane numbers and oxidative 

stability, but they have reduced cold flow properties due to the increased density of saturated fatty acids. 

Conversely, oils high in unsaturated or polyunsaturated fatty acids have improved cold flow properties due 

the presence of carbon double bonds, that reduce packing density by introducing a kink into the fatty acid 

backbone. However this improved cold flow property is at the expense of both oxidative stability and CN 

number. Current opinion is that oil high in oleic acid (with a single double bond), is the optimal compromise 

between these properties (Vega-Sanchez and Ronald, 2010, Durrett et al., 2008, Graef et al., 2009, Knothe, 

2009, King et al., 2009). 

For Jatropha, a monoecious, self-compatible species, seed yield is thought to be highly correlated with the 

amount and type of branching, and the ratio of female to male flowers (Divakara et al., 2010, King et al., 

2009). Inflorescences (flower nodes) develop at branch points, and within inflorescences, only the female 

flower produces seed (Wu et al., 2011, Fresnedo-Ramirez, 2013). 

Both seed yield and oil yield could be affected by seed mass. Integration of seed mass, seed oil content and 

seed yield datasets, enabled oil yield to be calculated, and the relative contribution of each of these traits 
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could be determined within the G51xCV mapping population. Optimisation of traits that affect final oil yield 

will be vital for the economical production of Jatropha curcas as a biodiesel feedstock.  

5.1.2: The G51xCV mapping population, and phenotypic dataset generation 

Jatropha is perennial and asynchronous in flowering, and does not have a distinct growth and harvest season 

in contrast to the majority of widely cultivated crops. To enable seed to mature and accumulate in situ to a 

level suitable for harvest, seed was collected at 5 time points throughout the year. Similarly, although 

Jatropha is reported to produce seed from the 1st year of growth, seed yield increases with size and maturity 

of plant (Fresnedo-Ramirez, 2013), up to the reported full maturity stage that is reached after 5 years  

(Fresnedo-Ramirez, 2013, Atabani et al., 2013). Seed batches were sent for analysis from years 2 and 3 

(datasets Year 2 and Year 3a). These two collection points roughly equate to the same growth and harvest 

time for each seed batch.  

Due to the high number of seeds produced in Year 3, a second batch of seed was sent which was sampled 

from later in the year (dataset Year 3b). Since Year 3 seed batches experienced slightly different 

environmental conditions (separated by several months growth time between harvests), each seed batch was 

treated as a separate dataset. 

Seed oil related phenotypic datasets; Seed oil content, Seed oil quality (fatty acid composition) and Seed 

weight (100 seed mass), were collected at the University of York using Nuclear Magnetic Resonance (NMR) 

and Gas Chromatography (GC), described in further detail in the Materials and Methods.   

Number of branches datasets were collected in years 1 and 2, prior to pruning of non-seed producing 

branches in year 3 in line with recommended agronomic practice for Jatropha cultivation (personal 

communications Dr. Luis Montez). Seed yield (number of seeds) data was collected at 5 time points per year, 

and a sample period of 1st February to 31st January was used to create a Year 2 and Year 3 seed yield dataset 

(expressed as total number of seeds produced per plant).  

Seed oil content (% of total seed mass), seed mass (average mass per seed) and seed yield (number of seeds 

produced per plant), enabled oil yield per plant to be calculated for Year 2 and 3 datasets, as a product of 

these three traits.  
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_______________________________________________________________________________________ 

Table 5-1 Seed and branching sample dates, and dataset naming. 

Year 2011 2012 2013 

Date 13th 

Dec 

26th 

Jun 

13th 

Sep 
1st Oct 

12th 

Oct 

15th 

Oct 

10th 

Jan 

22nd 

May 

28th 

May 

16th 

Aug 

14th 

Oct 

Years of 

growth 1.76 2.30 2.51 2.56 2.59 2.6 2.84 3.2 3.22 3.44 3.60 

Days after 

transplanting 567 763 842 860 871 874 961 1093 1099 1179 
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for seed sent to 
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 Batch 

1 

     Batch 2 Batch 

3 

 

Trait Dataset name and sample period 

Seed oil content  Year 

2 

 Year 3a Year 

3b 

 

Seed oil 

composition 

 Year 

2 

 

Seed mass  Year 

2 

 Year 3a Year 

3b 

 

Branching Year 

1  

Year 

2 

 

Seed Yield  Year 2 Year 3 

Oil yield  Year 2 Year 3 

_______________________________________________________________________________________ 

5.2: Results 

5.2.1: Phenotypic trait population distributions 

5.2.1.1: Phenotypic traits are normally distributed in the G51xCV mapping 

population.  

Phenotypic traits in the G51xCV mapping population have Normal population distributions (Figure 5-1, 

p120), indicative of quantitative, continuous traits, suitable for QTL mapping. The equal and balanced 

distribution of values around the mean, as indicated by the symmetry and low skewness values for the lines 

of best fit, Figure 5-1, p120 and Table 5-2, p122, shows that this is an unbiased mapping population that is 

not under any distorting selective pressure. In some cases, the dataset means are lower or higher than the 

mean for the Normal line of best fit, due to the presence of outliers that sit outside the normal distribution and 

decrease or increase the dataset mean respectively. In most cases the median value is a more accurate 

reflection of the centre of the distribution. 
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5.2.1.2: Phenotypic traits in the G51xCV population, show a high level of variation in 

seed oil content, seed oil composition and other oil yield related traits that can be 

investigated by QTL mapping 

The G51xCV mapping population was created from parents selected primarily for oil content; CV at 26.00 % 

seed oil content, and G51 at 36.90 % seed oil content. Therefore it is of interest to see if this trait shows 

variation, and segregates, in the F2 population. Seed oil content ranges from 26.00-39.75 % in Year 2, 19-

40.0 % in Year 3a, and 23.60-40.30 % in Year 3b (Table 5-2, p122). The middle 90 % of plants fall between 

30.80-39.40 % in Year 2, 27.50-39.10 % in Year 3a, 29.68-39.21 % in Year 3b. For all three datasets, the 

middle 90 % of plants are within typical seed oil content ranges reported in Jatropha (between ~30-40 % seed 

oil content) (Balat, 2011, Achten et al., 2007, Wang et al., 2008, Yue et al., 2013, Heller, 1996). The 

variation between the minimum and maximum, and the middle 90 % of plants, show that there is significant 

variation in this trait, that is consistent across independent harvests. There are also a number of consistently 

low outliers that are between ~20-25 % seed oil content in all three datasets (Figure 5-1, Parts A-C, p120), 

which is similar to the phenotype of the CV parent at 26 % seed oil content, and a number of high oil F2 

plants at 37 % seed oil content or above, which is similar to the phenotype of the G51 parent at 36.90 % seed 

oil content. 

There is also significant variation in seed oil composition for the four most common fatty acids; stearate, 

palmitate, oleate and linoleate. The middle 90 % of values; Stearate 11.23-13.41 %, Palmitate 6.76-8.71 %, 

Oleate 43.93-49.11 %, Linoleate 28.09-33.87 %, are ranges typically found within Jatropha material (Atabani 

et al., 2013, Balat, 2011, King et al., 2009). For high oleate biodiesel fuels, changes of a few percent oleate 

content have significant effects on biofuel performance (Durrett et al., 2008, Knothe, 2009). In the G51xCV 

mapping population, oleate varies by 5.18 % for the middle 90 % of plants, and 7.90 % between the 

minimum and maximum values. 

Seed yield (number of seeds), seed mass and branching also show significant variation. In contrast to seed oil 

content which has a number of low outliers, both branching and seed yield show a consistent number of high 

outliers that are outside the normally distributed F2 plants, Figure 5-1, parts G-J, p120. 

In summary there is a high level of phenotypic variation in the traits measured, including a portion of plants 

that segregate close to the parental phenotypes for seed oil content, and outliers that are consistent across 

independent harvests, together suggesting that there is a strong genetic component to this phenotypic 

variation. 

5.2.1.3: Correlation analysis shows a number of significant correlations between seed 

and vegetative traits in the G51xCV mapping population 

There are a number of significant correlations between seed and vegetative traits in the G51xCV mapping 

population as identified by Pearson’s correlation analysis, Table 5-3, p123. For all traits measured, there is 

highly significant (p<0.01) correlation between independent harvests/datasets for each trait, showing that 

phenotypes are consistent across multiple harvests in the F2 population. 

The seed related traits, 100 seed mass and seed oil content, show either strong highly significant correlation 

or weak highly significant correlation to each other depending on the harvest, Table 5-3, p123. The positive 

correlation between seed mass and seed oil content, suggests that variation in seed mass can be partly 
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attributable to variation in seed oil content; either partly attributable for weak correlations, or predominantly 

attributable for strong correlations. The difference in magnitude of correlation between different harvests, 

could be due to environmental effects. For example correlation between Seed oil content Y2 and 100 seed 

mass Y2, and seed oil content Y3b and 100 seed mass Y3b, is R=0.440 and R=0.454 respectively, whereas 

correlation between seed oil content Y3a and 100 seed mass Y3a is R=0.700. As can be seen by Table 5-1, 

p110, these seeds were harvested at different times of the year. This correlation data suggests that the year 3a 

dataset experienced environmental conditions where seed mass was most affected by the rate of seed storage 

oil deposition rather than other seed constituents that could affect seed mass, for example proteins, fibre or 

polysaccharides. As mentioned in Materials and Methods, seed mass data was normalised to 7 % water 

content to eliminate this as a variable. 

Weak but significant correlations were detected between the seed related traits; seed oil content and 100 seed 

mass, and the vegetative traits; branching and number of seeds, Table 5-3, p123. Both seed oil content (Y3a) 

and 100 seed mass (Y3a and Y3b) showed weak but significant correlation with number of seeds Y3. The 

positive correlation between seed yield and seed oil content, shows that seed oil content is not mutually 

exclusive with seed yield. Plants that have high seed oil content also tend to have high seed yields in this 

population. This correlation is present in Year 3 datasets but not Year 2 datasets, suggesting that there could 

be an environmental effect or an effect attributable to the maturity of the plants. 

Branching is weakly but significantly correlated with seed yield (number of seeds) in both Y2 and Y3 

(p<0.000). Flower nodes are known to occur at branch points, therefore the more branched a plant the more 

sites available for flower and seed development. The weak correlation despite the high significance, could be 

due to the fact that branching does not take into account the ratio of female to male flowers at each branch 

node, meaning an additional factor is missing when directly correlating branching and seed yield (number of 

seed) traits.  

5.2.1.4: Fatty acid moieties are most highly correlated with other fatty acid moieties 

suggesting that metabolic pathway regulation and the shuttling of fatty acids from 

different pools to seed storage oil is the major regulator of seed oil composition (oil 

quality) in the G51x CV mapping population.  

Correlation between the four most common Jatropha seed oil fatty acids, is negative for nearly all pairwise 

comparisons in this mapping population, Table 5-4, p124. This could be expected due to the fact that these 4 

moieties are part of the same biosynthetic pathway (see chapter 3, figure 3-1), therefore an increase or 

decrease in one fatty acid would be expected to be at the expense of the other fatty acids in the pathway, 

assuming a limited fatty acid pool or limiting rate of de novo synthesis. An exception to this, is the 

correlation between stearate and oleate, which is positive. In this mapping population plants with high oleate 

content also tend to have higher stearate content and visa versa. A possible explanation for this, is that if the 

rate of oleate to linoleate conversion is reduced, it could cause upstream moieties oleate and stearate to 

accumulate and visa versa, since more of these fatty acids would be available for incorporation into the seed 

storage oil. 

Whilst most correlations are weak, the correlation between oleate and linoleate is much stronger (R=-0.835 at 

p<0.000 significance). Since conversion of oleate to linoleate occurs in a single step by the action of the fatty 

acid desaturase 2 gene (of which there is one endoplasmic homologue in J. curcas (Ye et al., 2009, Liu et al., 
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2011, King et al., 2011, Sato et al., 2011, Gu et al., 2012, King et al., 2013, Jiang et al., 2012, Wu et al., 

2013, Costa et al., 2010, Qu et al., 2012, Utomo et al., 2015), this suggests that manipulation of this gene 

would be highly effective at altering the ratio of oleate to linoleate in Jatropha seed storage oil. 

5.2.1.5: Linoleate seed oil content is positively correlated with overall seed oil content, 

and seed mass, suggesting that there is a weak bias towards storing excess fatty acids 

as the linoleate moiety in the seed storage oil of G51xCV F2 plants. 

Linoleate content is positively correlated with both seed oil content and seed mass in the G51xCV mapping 

population, Table 5-4, p124. As mentioned in section 5.2.1.3: p111, seed mass is correlated with, and partly 

determined by, seed oil content. The positive correlation between linoleate content and seed oil content, 

shows that as the amount of oil per seed increases so does the relative amount of linoleate, suggesting that 

there is a bias towards storing excess fatty acids as linoleate in the seed storage oil pool. The bias towards 

storing excess fatty acids as linoleate could be due to the promiscuity of the fatty acid desaturase 2 gene 

located on the endoplasmic reticulum fatty acid pool, which is supported by the strong negative correlation 

between linoleate content and oleate content. This is further supported by the correlations between oleate, 

linoleate and 100 seed mass year 2 datasets. The oleate content is negatively associated with seed mass, 

whilst the linoleate content is positively associated, suggesting that as the seed mass increases, in part due to 

seed oil content, the relative amount of linoleate compared to oleate increases. 

5.2.1.6: Palmitate content is weakly correlated with branching and seed yield, 

suggesting that vegetative traits that contribute towards seed yield can have minor 

effects on seed oil composition (oil quality) in the G51xCV mapping population 

Palmitate content has weak but significant, positive correlation with branching and seed yield in the G51xCV 

mapping population, Table 5-4, p124. This suggests that there is a tendency for the relative proportion of 

palmitate to increase as the amount of branching and seed yield increases, through an unknown mechanism. 

This demonstrates that, although a weak association, it is possible for vegetative traits such as branching and 

seed yield to be correlated with the fatty acid composition of the seed storage oil. 

5.2.1.7: Oil yield is correlated with nearly all seed and vegetative traits measured, 

however it is most strongly correlated with number of seeds per plant, showing that 

seed yield is the strongest determinant of oil yield in the G51xCV mapping 

population. 

Oil yield in Years 2 and 3 is significantly correlated with all seed and vegetative traits measured in the 

G51xCV mapping population with the exception of Seed oil content Year 2 and Seed oil content Year 3b, 

and the seed oil composition fatty acids Stearate, Oleate and Linoleate, Table 5-5, p124. Correlations are weak 

but significant with the exception of seed yield (number of seeds) which is strongly and significantly 

correlated (Oil yield Year 2 and Number of seeds Year 2, R=0.972, and Oil yield Year 3 and Number of 

seeds Year 3, R=0.948). This strong correlation shows that of all the vegetative and seed traits measured, 

seed yield is the strongest determinant of oil yield in the G51xCV mapping population. This stronger 

correlation may be due to the greater level of variation in number of seeds compared to seed oil content and 

seed mass in this population.  
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Given that seed mass is an indirect measurement of seed oil content, the traits seed yield and seed oil content 

are the two most important determinants of oil yield in this population. Since variation in seed yield is much 

greater than variation in seed oil content, seed yield has greater influence on final oil yield in this population. 

Seed oil content and seed mass do have a significant effect on oil yield, therefore they remain important traits 

for QTL analysis, particularly for introgression into cultivars that may be high yielding in terms of seeds, but 

require improvement of seed oil content or seed mass traits. 

5.2.1.8: Palmitate content is weakly associated with oil yield in the G51xCV mapping 

population 

Palmitate content is weakly correlated with oil yield in both year 2 and year 3 datasets, Table 5-5, p124. 

Palmitate content is also correlated with seed yield and branching in this mapping population. In turn seed 

yield and branching are highly correlated with oil yield. There is insufficient evidence to determine whether 

Palmitate and Oil yield are directly regulating each other through an unknown mechanism, or whether the co-

correlation of Palmitate and Oil yield to traits such as seed yield or branching, mean they are indirectly 

correlated. Either way in this population, palmitate is a (weak) marker/predictor of oil yield. 

5.2.2: Quantitative trait locus mapping 

5.2.2.1: Interval mapping reveals a number of QTL for oil quality and oil yield-

related traits in the G51xCV mapping population. 

5.2.2.1.1: Seed oil content analysis identifies two QTL on linkage groups 4 and 10 

Figure 5-2 part A, p126, shows two QTL for seed oil content across the Year 2, 3a and 3b datasets. QTL are 

located on linkages groups 4 and 10 (Year 2), linkage group 4 only (Year 3a) and linkage group 10 only 

(Year 3b). Association reaches LOD4.624, 4.414, 3.527, 3.503 respectively, which is significant at 

experiment wide thresholds (p<0.05 for Year 2, and p<0.01 for Year 3a, and 3b), Table 5-6, p125. PVE 

values for these loci, are 16.56, 15.75, 13.42, and 15.95 percent respectively. The fact that the QTL on 

linkage groups 4 and 10 are both significant in the Year 2 dataset, whereas only one of each is significant in 

the Year 3a and 3b datasets could be due to environmental effects that limit the effects of one of the QTL in 

each dataset. As previously outlined, all three datasets were harvested at different times of the year, Table 

5-1, p110. Alleles at these QTL loci are dominant, as shown by Tukey’s comparison of means tests, with the 

high oil allele originating from the G51 parent, Figure 5-3 parts A, B, C, p129. 

Figure 5-3, part A, p129, examines the effect of both QTL (linkage group 4 & 10) on seed oil content in the 

Year 2 dataset. From left to right, the number of G51 ‘b’ alleles increases at both loci, from AA (homozygous 

A at both QTL positions) to BB (homozygous B at both QTL positions). As can be seen, as the number of ‘b’ 

alleles increase at both loci, so does the seed oil content. However, in part due to the low number of plants in 

each genotype class (N=145, Table 5-2, p122, for 9 genotype classes, Figure 5-3, part A, p129), Tukey’s post 

hoc comparison of means test shows that we can only be statistically confident that AA, and HH/HB/BH are 

statistically different. Nevertheless, we can see from these groups alone that as the number of ‘b’ alleles at 

each loci increases, so does the average and minimum and maximum oil content values. This shows that 

these QTL loci act in a synergistic manner, and that they could be stacked or pyramided in a single cultivar 

for greater enhancement of seed oil content.  
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5.2.2.1.2: 100 seed mass analysis identifies one QTL on linkage group 4 

One QTL was detected for 100 seed mass on linkage group 4 in Years 2, 3a and 3b datasets, Figure 5-2 part 

A, p126. This QTL reaches experiment wide significance thresholds (p<0.01 for Year 2 and 3a, and p<0.05 

for Year 3b). The calculated QTL position differs by ≤8 cM across the 3 datasets. For Year 2, 3a and 3b 

datasets association reaches LOD7.776, 4.964, 3.285 with PVE values of 29.39, 19.39, and 14.89 percent 

respectively, Table 5-6, p125. Alleles at these loci are dominant, with the beneficial allele originating from 

the G51 parent Figure 5-3 parts A, B, C, p129. 

5.2.2.1.3: Branching (number of branches) analysis identifies one QTL on linkage 

group 1 

One QTL was detected for branching @763days on linkage group 1 at the p<0.05 experiment wide 

significance threshold, Figure 5-2 part D, p126. Association at the QTL is LOD3.477, which accounts for a 

PVE of 12.115 percent, Table 5-6, p125. The allele at this QTL is dominant as determined by Tukey’s 

comparison of means test, with the beneficial allele originating from the CV parent, Figure 5-3 part G, p129, 

which is in contrast to the seed oil content and seed mass QTL where the high allele is G51. 

5.2.2.1.4: Seed yield (number of seeds) identifies one QTL on linkage group 10 

One QTL was detected for number of seeds Year 3, linkage group 10 at the p<0.05 experiment wide 

significance threshold, Figure 5-2 part E, p126. Association was LOD 3.966 with a PVE of 14.15 percent, 

Table 5-6, p125. As with branching, the beneficial allele is dominant and originates from the CV parent, 

Figure 5-3 part H, p129. 

5.2.2.2:  Oil quality (composition) traits  

5.2.2.2.1: Palmitate content analysis identifies two QTL on linkage groups 5 and 7 

Two QTL were detected for palmitate content on linkage groups 5 and 7 at the p<0.01 and p<0.05 

experiment wide significance thresholds respectively, Figure 5-2, Part C, p126. Association reached 

LOD7.929 and 3.24 which accounted for 30.54 and 11.51 percent PVE respectively, Table 5-6, p125. The 

linkage group 5 QTL has a semidominant character according to Tukey’s post hoc comparison of means test, 

with the high palmitate allele originating from the CV parent, , p130. For the linkage group 7 QTL, the high 

palmitate allele is recessive and also originates from the CV parent according to the Tukey’s comparison of 

means test.  

5.2.2.2.2: Stearate content analysis identifies three QTL on linkage groups 1, 4 and 7 

Three stearate QTL were identified on linkage groups 1, 4 and 7, Figure 5-2, Part C, p126. All three QTL 

surpassed the p<0.01 experiment wide significance threshold, with peak association at LOD4.144, 4.226 and 

6.606 respectively, Table 5-6, p125. PVE for the 3 QTL were 14.95, 15.26 and 24.86 percent respectively. 

The linkage group 1 QTL was dominant according to Tukey’s comparison of means test, with the high 

stearate allele originating from the G51 parent, Figure 5-4, p130. The linkage group 4 QTL is semi-dominant 

with the high stearate allele originating from the CV parent. The linkage group 7 QTL is also semi-dominant 

but the high stearate allele originates in the G51 parent. 
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5.2.2.2.3: Oleate content analysis identifies one QTL on linkage group 6 

A single oleate QTL was identified on linkage group 6, at LOD3.398 which surpassed the p<0.05 experiment 

wide significance threshold, Figure 5-2, Part C, p126. This QTL was attributable for a PVE value of 12.10 

percent, Table 5-6, p125 . The high oleate allele originated from the CV parent, and has a recessive nature, 

Figure 5-4, p130, however interestingly the homozygous G51 genotype (‘B’) was not significantly different 

from either the homozygous CV genotype (‘A’, high oleate) or the heterozygous genotype (‘H’, low oleate). 

This may be due to a heterosis effect whereby when one of each allele is present in the same genotype a low 

oleate phenotype is generated, presumably due to interaction between the two alleles or factors within 

physically linked DNA. 

5.2.2.2.4: Linoleate content identifies three QTL on linkage groups 4, 6 and 8 

Three linoleate content QTL were identified on linkage groups 4, 6 and 8 at the p<0.05 (linkage groups 4 and 

8 QTL) and p<0.01 (linkage group 6 QTL) experiment wide significance thresholds, Figure 5-2, Part C, p126. 

Association at the QTL loci reached LOD3.995, 4.307 and 3.287, which accounted for 14.37, 15.58 and 

11.68 percent PVE, for linkage groups 4, 6 and 8 QTL respectively, Table 5-6, p125. For linkage group 4 and 

6 QTL, the high linoleate content allele originated from the G51 parent and was dominant, whereas for the 

linkage group 8 QTL the high linoleate content allele originated from the CV parent but was also dominant, 

Figure 5-5, p130.   

5.2.2.2.5: Multiple QTL for palmitate, stearate, oleate and linoleate co-locate to the 

same linkage groups, providing evidence that these loci contain genes responsible for 

the shuttling of fatty acids through parts of the seed fatty acid synthesis and 

modification metabolic pathway. 

5.2.2.2.6: A Palmitate and Stearate QTL co-locate to linkage group 7 

Conversion of Palmitate to Stearate occurs in a single step by the action of the Keto-Acyl Synthase 2 (KASII) 

gene, through the addition of a 2 carbon acyl ACP group (see chapter 3, fig 3-1). The KASII gene would be 

the most likely candidate gene to be contained within QTL regions that co-locate for both traits, since 

conversion of one moiety into the other, mediated through a change in KASII activity, would affect both 

traits. This is supported by the strong negative correlation between Palmitate and Stearate content according 

to Pearson’s correlation analysis, 5.2.1.4: p112 and Table 5-4, p124. In the G51xCV mapping population a 

Palmitate and Stearate QTL co-locate to linkage group 7, Figure 5-2, p126. The Jatropha KASII gene was 

mapped using a nearby SSR marker (Marker G33, J. Clarke) which maps to linkage group 11. One 

explanation is that a causative gene on linkage group 7 could regulate the expression of the KASII gene on 

linkage group 11. A way to investigate this would be to carry out expression QTL mapping (eQTL mapping) 

since if this hypothesis was correct both the linkage group 7 and linkage group 11 loci would associate with 

palmitate and stearate phenotypes. 

5.2.2.2.7: An oleate and linoleate QTL co-locate to linkage group 6 

Oleate is converted to linoleate through desaturation of the delta-12 carbon of the fatty acid backbone, 

through the action of the Fatty Acid Desaturase II gene (FAD2), (see chapter 3, fig 3-1). A single locus that 

associates with changes in both oleate and linoleate would suggest that this locus is controlling the 
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conversion of oleate to linoleate, or the activity of the FAD2 gene. The linkage group 6 oleate and linoleate 

QTL map to within 2 cM of each other (2 cM and 4 cM respectively), supporting the hypothesis that a single 

locus is regulating both traits. The FAD2 gene was mapped using SSR’s (marker G390, J. Clarke, see chapter 

3 appendix), and maps to linkage group 6 at position 55.9 cM, which unfortunately is outside of the Bayes’ 

95 % confidence interval for these QTL. Given the known activity and predominance of the FAD2 gene for 

this metabolic conversion, this QTL could be a trans regulator of the FAD2 gene located on the same linkage 

group. Other mapped candidate genes, that lie within the QTL region are a GPAT and DGAT (markers G41, 

G394, J. Clarke, see chapter 3 appendix). These genes are responsible for incorporating fatty acids onto a 

glycerol backbone to form triglycerides, that are subsequently stored in the seed storage oil bodies. Some 

GPATs and DGATs have been known to show selectivity towards certain types of fatty acids (in terms of the 

rate at which they incorporate different molecules into triacylglycerol) (Snyder et al., 2009, Cahoon et al., 

2007, Graham et al., 2007, Yen et al., 2008, Zheng et al., 2008, Baud and Lepiniec, 2010, Li-Beisson et al., 

2013, Bates and Browse, 2012, Bates et al., 2012) which could lead to accumulation of one fatty acid over 

the other. 

5.3: Discussion 

Overall, a number of agronomically-relevant QTL were identified in the G51xCV mapping population. The 

primary purpose of this mapping population was the identification of seed oil content QTL, due to the 

variation present in the parents; G51 (36.9 % seed oil) and CV (25 % seed oil), of which 2 QTL were 

identified that were responsible for a combined PVE of 32.31 % seed oil content. Due to its intended use as a 

biofuel crop, any trait that contributes towards final oil yield was also of interest in this mapping population. 

Of particular note was the identification of branching and seed yield (number of seeds) QTL, that were 

responsible for PVE of 12.115 % and 14.15 % respectively, and which were strongly correlated with final oil 

yield in this population. Lastly a number of oil quality (oil composition) QTL were identified, of which, a 

single QTL regulating oleate to linoleate conversion was identified opening up the possibility of producing 

high oleate designer oil in future research through investigation of this QTL. 

Analysis of the phenotypic datasets showed that all had normal distributions. This indicated that the 

phenotypes measured were complex traits with a continuous distribution. The low skewness values for the 

normal distributions also demonstrated that the mapping population was unbiased and not under any 

distorting selective pressure. There were a number of outliers for most datasets, and some indications of 

segregation according to parental phenotypes in traits such as seed oil content. Plant phenotypes tended to be 

very consistent across the independent harvests as indicated by the high level of correlation between 

individual datasets, suggesting that a genetic component contributed to the variation displayed. Often there 

were a number of outliers both above and below the rest of the distribution. For seed oil content these were 

similar phenotypic values to the parents, suggesting a level of segregation in the F2 population. 

Correlation between seed oil content and seed mass suggested that seed mass was to a large extent 

determined by seed oil content, which is hardly surprising given that Jatropha seed is typically 30-40 % oil 

by weight. There was also significant correlation between the number of branches and the number of seeds 

produced per plant, which can also be expected given that flower inflorescences develop at branch nodes. 

Although highly significant (p<0.001), correlation was weak which could be due to the fact that an additional 

factor; female to male flower ratio at each inflorescence, also determines the number of seeds that can be 
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produced per plant. The four most common fatty acid moieties in Jatropha seed oil, palmitate, stearate, oleate 

and linoleate, which are all produced by the same metabolic pathway were nearly all negatively correlated 

with eachother, which supports the hypothesis that plants high in a particular fatty acid tend to have reduced 

amounts of the other fatty acids due to greater partitioning of the available fatty acid sink into the ‘high’ fatty 

acid at the expense of the other fatty acids. To highlight the metabolic relationship between these 4 moieties, 

each fatty acid is the building block of the next fatty acid in the pathway, so this is an expected result. Oil 

yield, calculated as the product of seed oil content (average percentage of oil per seed) x seed mass (the 

average mass of a seed) x seed yield (the number of seeds produced per plant), gave insight into which of 

these 3 traits had most impact on final oil yield. All 3 traits significantly affected final oil yield, with seed 

yield having the greatest influence on oil yield in the G51xCV mapping population. This could be partly 

explained by the greater level of variation in seed yield in this mapping population, in comparison to seed oil 

content or seed mass variation. This suggests that vegetative traits that affect seed yield are of utmost 

importance for creating high oil-yielding Jatropha. In addition both seed oil content and seed mass have 

significant impact on oil yield, and for material that has optimised vegetative traits but may require 

optimisation of seed oil content and seed mass, introgression of QTL for these traits will also be of great 

importance for maximising final oil yield. 

The specialisation of different Jatropha material can be seen even within the G51xCV mapping population. 

High seed oil content and high seed mass alleles originated from the G51 parent, whereas high branching and 

high seed yield alleles originated from the CV parent, Chapter 5.2.2.1: p114. The G51 line contains QTL 

alleles that enhance seed related traits, whereas the CV parent contains QTL alleles that enhance vegetative 

traits. Correlation analysis of the F2 progeny show that plants high in seed yield also tend to be high in seed 

oil content (Chapter 5.2.1.3: p111), suggesting that these traits are synergistic and not mutually exclusive. 

Combining QTL alleles to optimise both vegetative growth and oil productivity into a single cultivar, would 

be desirable to get the best of both types of traits to optimise overall oil yield. This could also be 

symptomatic of a heterosis effect; hybrid material created from genetically distinct lines is well known to 

produce vigorous offspring in some cases. If this is the case, the generation of genetically fixed parental 

material from which to reliably breed heterozygous cultivars will be important, or the development of 

efficient propagation strategies and protocols such as the use of cuttings. 

The mapping of candidate genes, particularly for well-studied metabolic pathways such as seed oil 

biosynthesis, has great utility in non-model species such as Jatropha. Likely candidate genes that could be 

responsible for observed phenotypic variation can be identified through knowledge of the biosynthetic 

pathway and previous examples of mutants with similar phenotypes. Immediately the candidate can be either 

confirmed or eliminated if they have already been mapped, by comparing its physical position to the 

confidence intervals for the identified QTL. Should a candidate gene lie within the confidence interval, it is 

simple, in theory, to clone and sequence the gene since its position and the surrounding sequence have 

already been identified. Unfortunately, although most of the genes in the fatty acid biosynthetic pathway 

were identified and mapped as part of this project, no causative mutations in these genes were present in this 

mapping population. However the positions of these genes have now been placed for future studies into 

Jatropha. Future Jatropha QTL mapping projects need only anchor their linkage map to the one developed in 

this study for the positions of all these genes to be of use. Or novel flanking markers could be developed 

using the candidate gene sequences as probes to pull out the physically linked genome sequence contig.   
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For the purpose of crop breeding the identification of QTL and their flanking markers are all that is required 

for introgression of the QTL into another cultivar. However from a conceptual perspective it would be 

interesting to determine the causative gene behind the QTL, and by doing so, begin to form a hypothesis on 

the mechanism by which they could regulate the phenotype. Of great utility for this purpose is the availability 

of genome sequence. Contigs harbouring a DNA marker physically linked to the QTL enables that contig to 

be searched for potential candidate genes. The nearest flanking marker may be some physical distance from 

the QTL position, therefore the greater the quality of the genome sequence and size of contig, the greater the 

chance of identifying the QTL sequence.  

QTL confidence intervals were relatively large in this mapping population. Confidence intervals can be 

reduced by increasing the mapping population size which increases the number of crossovers at the genetic 

level, and the number corresponding phenotypic measurements to correlate them to. Confidence intervals 

may also be reduced by increasing the density of genetic markers to more accurately determine the position 

of crossovers. Marker density is partly reliant on the type of marker used and the method by which they are 

produced, for example genotyping by sequencing in theory should produce the highest density of markers 

since all sequence variation is detected down to individual SNPs (within the limitations of the sequencing 

technology). Genetic marker density is also restricted by the genetic diversity of the starting material used for 

the cross, since the more genetically similar the parental lines, the fewer sequence polymorphisms that are 

available for use as markers. Whilst genotyping by sequencing on its own would undoubtedly increase the 

density of markers on this map, using it as part of an association mapping project would have several 

advantages. Association mapping would use a panel of genetically diverse Jatropha from which to produce 

markers and populations. By starting with genetically diverse material, a greater number of genotypes and 

polymorphisms would be available, effectively looking at genetic crossover events and mutations 

accumulated over evolutionary timescales. Such an approach would also have the advantage of having a 

larger library of germplasm with which to start a breeding programme from after identification of desirable 

QTL. This combined with genotyping by sequencing markers to create a dense genetic linkage map would 

maximise the resolution of individual QTL and reduce the confidence interval. The smaller the confidence 

interval and the more precise the introgression of the QTL sequence into the recipient cultivar whilst 

minimising hitchhiking or unwanted physically linked sequence.    
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5.4: Chapter 5 Appendix 

5.4.1: Phenotypic trait distributions 

 

 

Figure 5-1. The population distribution of phenotypic traits in the G51xCV mapping population.  
The distributions are plotted as frequency (number of F2 plants) on the y-axis, over the phenotypic unit of measure on 
the x-axis.  A Normal line of best fit has been drawn to demonstrate that these traits have a normal distribution as 
expected from a quantitative continuous trait. Traits measured include, from A-J, seed oil content Year 2, seed oil content 
Year 3a, seed oil content Year 3b, seed mass year 2, seed mass year 3a, seed mass year 3b, number of branches at 

A B C 

D E F 

G H I 

J 



 121 | P a g e  

 

567days, number of branches at 763days, seeds per plant year 2, seeds per plant year 3. Dataset mean, standard 
deviations and number of measurements (N) are also included. 

 

Figure 5-1. The population distribution of phenotypic traits in the G51xCV mapping population.  

The distributions are plotted as frequency (number of F2 plants) on the y-axis, over the phenotypic unit of measure on 

the x-axis. A Normal line of best fit has been drawn to demonstrate that these traits have a normal distribution as 

expected from a quantitative continuous trait. Traits measured include, from K-P, oil yield year 2, oil yield year 3, 

palmitate content of seed oil year 2, stearate content of seed oil year 2, oleate content of seed oil year 2, linoleate 

content of seed oil year 2. Dataset mean, standard deviations and number of measurements (N) are also included. 
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Table 5-2. Phenotype dataset statistics for the G51xCV mapping population.  
Statistics include N (number of F2 plants measured), Mean, Median, Std. Deviation (standard deviation), Skewness, Standard Error of Skewness, Range, Minimum value, Maximum value, 5th and 95th 
Percentile values. All values are correct to 2 decimal places. Trait and dataset are listed in columns from left to right (Y2= Year 2, Y3a = Year 3a, Y3b= Year 3b). 

 

 

 

 

 

  

Seed oil content (%) 100 seed mass (g) Number of 

branches 

Seed yield 

(number 

of seeds) 

Oil yield 

(g/plant) 

Stearate 

content 

(%) 

Palmitate 

content 

(%) 

Oleate 

content 

(%) 

Linoleate 

content 

(%) 

Y2 Y3a Y3b Y2 Y3a Y3b 
@567 

days 

@763 

days 
Y2 Y3 Y2 Y3 Y2 Y2 Y2 Y2 

N (F2 plants) 145 132 114 145 132 114 145 143 140 141 139 132 141 141 141 141 

Mean 35.97 35.47 35.21 71.14 65.67 67.35 10.71 29.9 323.45 881.97 83.29 219.42 12.31 7.66 46.56 31.12 

Median 36.16 36.3 35.61 71.07 65.98 68.68 10 28 309.5 883 81.39 215.09 12.32 7.61 46.45 31.26 

Std. Deviation 2.415 3.55 2.97 6.82 7.44 7.33 5.274 13.778 191.02 479.92 49.66 125.1 0.64 0.59 1.67 1.67 

Skewness -1.55 -2.04 -1.28 0.14 -0.68 -0.27 0.696 1.075 0.64 0.54 0.67 0.73 0.12 0.22 -0.04 -0.19 

Std. Error of 

Skewness 
0.2 0.21 0.23 0.2 0.21 0.23 0.201 0.203 0.21 0.2 0.21 0.21 0.2 0.2 0.2 0.2 

Range 13.76 20.94 16.7 36 42.48 41.63 27 79 894 2310 228.54 612.18 3.42 3.17 7.91 8.68 

Minimum 26 19.01 23.6 55.14 37.34 48.73 1 4 10 12 2.74 12.13 10.66 6.08 42.63 26.65 

Maximum 39.75 39.95 40.3 91.14 79.81 90.36 28 83 904 2322 231.28 624.31 14.08 9.24 50.53 35.33 

Percentiles 
5 30.77 27.55 29.68 60.19 53.26 52.34 3 11 53.15 195.2 14.92 40.79 11.23 6.76 43.93 28.09 

95 39.37 39.14 39.21 82.06 77.00 78.38 21 59.4 721.75 1780.5 182.77 444.11 13.41 8.71 49.11 33.87 
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Table 5-3. Pearson correlations of phenotypic traits in the 51xCV mapping population. 
In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in 
dark green (p<0.01) and light green (0.01<p<0.05). 

 

Seed oil 

content Y2 

Seed oil 

content Y3a 

Seed oil 

content Y3b 

100 seed mass 

Y2 

100 seed mass 

Y3a 

100 seed mass 

Y3b 

Branches @ 

567 days 

Branches @ 

763 days 

Number of 

seeds Y2 

Number of 

seeds Y3 

Seed oil 

content Y2 

 1 .482 .440 .440 .373 .370 .056 .054 -.138 -.094 

  .000 .000 .000 .000 .000 .510 .526 .104 .271 

Seed oil 

content Y3a 

 .482 1 .782 .431 .700 .575 -.033 .109 .066 .191 

 .000  .000 .000 .000 .000 .704 .212 .454 .028 

Seed oil 
content Y3b 

 .440 .782 1 .322 .448 .454 -.011 .078 -.075 -.042 

 .000 .000  .001 .000 .000 .909 .414 .438 .665 

100 seed mass 

Y2 

 .440 .431 .322 1 .615 .643 -.006 .101 .014 -.026 

 .000 .000 .001  .000 .000 .948 .234 .873 .762 

100 seed mass 

Y3a 

 .373 .700 .448 .615 1 .815 -.033 .121 .040 .232 

 .000 .000 .000 .000  .000 .711 .167 .655 .007 

100 seed mass 

Y3b 

 .370 .575 .454 .643 .815 1 .141 .202 .124 .268 

 .000 .000 .000 .000 .000  .138 .033 .197 .004 

Branches @ 

567 days 

 .056 -.033 -.011 -.006 -.033 .141 1 .731 .333 .357 

 .510 .704 .909 .948 .711 .138  .000 .000 .000 

Branches @ 

763 days 

 .054 .109 .078 .101 .121 .202 .731 1 .312 .448 

 .526 .212 .414 .234 .167 .033 .000  .000 .000 

Number of 
seeds Y2 

 -.138 .066 -.075 .014 .040 .124 .333 .312 1 .565 

 .104 .454 .438 .873 .655 .197 .000 .000  .000 

Number of 

seeds Y3 

 -.094 .191 -.042 -.026 .232 .268 .357 .448 .565 1 

 .271 .028 .665 .762 .007 .004 .000 .000 .000  
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Table 5-4 Pearson correlations between oil quality (oil composition) and other phenotypic traits measured in the G51xCV mapping population.  
In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in 
dark green (p<0.01) and light green (0.01<p<0.05). 

Correlations 

 

Seed oil 

content 

Year 2 

Seed oil 

content 

Year 3a 

Seed oil 

content 

Year 3b 

Seed 

mass 

Year 2 

Seed 

mass 

Year 3a 

Seed 

mass 

Year 3b 

Branches 

Year 1 

Branches 

Year 2 

Seeds 

per plant 

Year 2 

Seeds 

per plant 

Year 3 

Palmitat

e content 

Year 2 

Stearate 

content 

Year 2 

Oleate 

content 

Year 2 

Lineolea

te 

content 

Year 2 

Palmitate content Year 2 -.152 -.028 -.124 .157 .114 .070 .142 .229 .145 .238 1 -.293 -.395 .078 

.072 .754 .194 .063 .197 .464 .094 .007 .090 .005  .000 .000 .355 

Stearate content Year 2 -.021 -.078 -.090 -.134 -.043 -.108 .156 .058 .115 .042 -.293 1 .267 -.494 

.808 .381 .350 .113 .632 .260 .065 .496 .180 .628 .000  .001 .000 

Oleate content Year 2 -.009 -.072 -.066 -.191 -.163 -.101 -.067 -.184 -.072 -.079 -.395 .267 1 -.835 

.918 .419 .490 .023 .065 .290 .433 .031 .403 .359 .000 .001  .000 

Lineoleate content Year 2 .180 .190 .208 .237 .207 .170 -.035 .076 -.015 -.010 .078 -.494 -.835 1 

.033 .031 .028 .005 .018 .075 .681 .375 .859 .911 .355 .000 .000  

 

Table 5-5 Pearson correlations between oil yield and other phenotypic traits measured in the the G51xCV mapping population.  
In each cell, the upper value represents the Pearson correlation coefficient (R), and the lower value the significance as a p-value, for each pairwise comparison. Significant correlations have been highlighted in 
dark green (p<0.01) and light green (0.01<p<0.05). 

Correlations 

 

Seed oil 

content 

Year 2 

Seed oil 

content 

Year 3a 

Seed oil 

content 

Year 3b 

Seed 

mass 

Year 2 

Seed 

mass 

Year 

3a 

Seed 

mass 

Year 

3b 

Branches 

Year 1 

Branches 

Year 2 

Seeds 

per 

plant 

Year 2 

Seeds 

per 

plant 

Year 3 

Palmitate 

content 

Year 2 

Stearate 

content 

Year 2 

Oleate 

content 

Year 2 

Lineoleate 

content 

Year 2 

Oil 

yield 

Year 2 

Oil 

yield 

Year 3 

Oil yield Year 2 .050 .185 .079 .205 .185 .291 .328 .319 .972 .541 .151 .086 -.103 .040 1 .522 

.559 .035 .410 .015 .035 .002 .000 .000 .000 .000 .078 .319 .232 .639  .000 

Oil yield Year 3 .100 .402 .115 .233 .470 .489 .343 .474 .477 .948 .274 -.005 -.091 .050 .522 1 

.255 .000 .236 .007 .000 .000 .000 .000 .000 .000 .002 .953 .307 .576 .000  
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Table 5-6. Summary statistics for QTL identified by interval mapping in the G51xCV mapping population. 

Trait Dataset Linkage 

group 

Position 

(cM) 

LOD p-value 

(p<x) 

PVE (%) Bayes 95 % 

CI (cM) 

-1 LOD 

interval (cM) 

-2 LOD 

interval (cM) 

Beneficial 

(high) allele 

Effect 

Seed oil content Year 2 4 33 4.624 0.0027 16.56 2.0-56.0 7.0-36.0 6.0-39.0 G51 Dominant 

10 31 4.414 0.0044 15.75 8.0-40.0 23.0-34.0 3.0-47.0 G51 Dominant 

Year 3a 4 46 3.527 0.0291 13.42 0.0-57.0 43.0-55.0 39.0-57.0 G51 Dominant 

Year 3b 10 27 3.503 0.0322 15.95 22.0-46.0 23.0-49.0 20.0-49.0 G51 Dominant 

Seed mass Year 2 4 11 7.776 0.0000 29.39 0.0-53.0 2.0-12.0 0.0-22.0 G51 Dominant 

Year 3a 4 10 4.964 0.0011 19.39 0.0-51.0 0.0-19.0 0.0-23.0 G51 Dominant 

Year 3b 4 3 3.285 0.0507 14.89 2.0-53.0 0.0-12.0 0.0-38.0 G51 Dominant 

Seed oil composition Palmitate content Year 2 5 32 7.929 0.0000 30.54 28.0-41.0 27.0-36.0 25.0-37.0 CV Semi-dominant 

7 58 3.24 0.0548 11.51 26.0-70.0 44.0-75.0 25.0-75.0 CV Recessive 

 10 33 2.917 0.1056 9.34 0.0-38.0 30.0-38.0 23.0-46.0 G51/CV Heterosis 

Stearate content Year 2 1 35 4.144 0.0010 14.95 4.0 - 41.0 28.0-38.0 22.0-43.0 G51 Dominant 

4 27 4.226 0.0079 15.26 7.0-53.0 23.0-34.0 21.0-47.0 CV Semi-dominant 

7 22 6.606 0.0000 24.86 1.0-36.0 19.0-31.0 12.0-41.0 G51 Semi-dominant 

Oleate content Year 2 6 2 3.398 0.0387 12.10 0.0-19.0 0.0-13.0 0.0-17.0 CV Recessive 

Linoleate content Year 2 4 24 3.995 0.0117 14.37 1.0-49.0 17.0-39.0 0.0-41.0 G51 Dominant 

6 4 4.307 0.0055 15.58 0.0-15.0 0.0-14.0 0.0-17.0 G51 Dominant 

8 11 3.287 0.0505 11.68 1.0-48.0 1.0-14.0 0.0-30.0 CV Dominant 

Number of Branches @ 763 days 1 25 3.477 0.0024 12.115 0.0-26.0 17.0-30.0 0.0-32.0 CV Dominant 

Seed yield (number of seeds) Year 3 10 33 3.966 0.0104 14.15 0.0-33.0 0.0-39.0 0.0-49.0 CV Dominant 
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Figure 5-2. The output of a QTL analysis using GridQTL software.  
The level of QTL association, as determined by Haley and Knott interval mapping, is indicated as the F statistic (y-axis). 
Linkage groups 1-11 (x-axis) are separated by vertical lines. Horizontal lines represent experiment wide significance 
thresholds (long dash, p= 0.05, short dash, p= 0.01) calculated from bootstrap analysis using 10,000 iterations. 
Phenotypic traits showing significant QTL association include: Seed oil content, A; Seed mass, B; Seed oil composition, 
C; Number of branches, D; Seed yield (number of seeds), E.  

  

A 

B 
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Figure 5-2. The output of a QTL analysis using GridQTL software.  

The level of QTL association, as determined by Haley and Knott interval mapping, is indicated as the F statistic (y-axis). 

Linkage groups 1-11 (x-axis) are separated by vertical lines. Horizontal lines represent experiment wide significance 

thresholds (long dash, p= 0.05, short dash, p= 0.01) calculated from bootstrap analysis using 10,000 iterations. 

Phenotypic traits showing significant QTL association include: Seed oil content, A; Seed mass, B; Seed oil composition, 

C; Number of branches, D; Seed yield (number of seeds), E.  

  

 

 

 

 

 

C 



 128 | P a g e  

 

 

 

Figure 5-2. The output of a QTL analysis using GridQTL software  

The level of QTL association, as determined by Haley and Knott interval mapping, is indicated as the F statistic (y-axis). 

Linkage groups 1-11 (x-axis) are separated by vertical lines. Horizontal lines represent experiment wide significance 

thresholds (long dash, p= 0.05, short dash, p= 0.01) calculated from bootstrap analysis using 10,000 iterations. 

Phenotypic traits showing significant QTL association include: Seed oil content, A; Seed mass, B; Seed oil composition, 

C; Number of branches, D; Seed yield (number of seeds), E.  
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 A:H p=0.002  A:H p=0.010  AA:HH p=0.012 

 A:B p=0.002  A:B p=0.002  AA:BH p=0.002 

       AA:HB p=0.001 

         

 
 A:H p=0.028  A:H p=0.002  A:H p=0.000 

 A:B p=0.003  A:B p=0.002  A:B p=0.000 

         

 
 A:H p=0.000  A:H p=0.008  A:B p=0.000 

 A:B p=0.007  A:B p=0.026  H:B p=0.005 
 

Figure 5-3. Boxplot showing correlation between phenotype and genotype at identified Quantitative Trait Loci in 
the G51xCV mapping population.  
The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges 
(upper and lower) represent the interquartile range. The median value is indicated by the thick line within the box. 
Statistically different groups, as determined by a Tukey’s post hoc comparison of means test, have been labelled in red, 
with the p value for each comparison indicated below the box and whisker plot. Phenotypic traits and datasets include: 
Seed oil content; Year 2 (A), Year 3a (B), Year 3b (C), Seed mass; Year 2 (D), Year 3a (E), Year 3b (F), Number of 
branches at 763days (G). 

A 

E F G 
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 A:B p=0.008  A:H p=0.001  A:H p=0.002 

 H:B p=0.007  A:B p=0.000  A:B p=0.006 

    H:B p=0.000    

 
 A:B p=0.129  A:H p=0.009  A:H p=0.058 

 H:B P=0.003  A:B p=0.011  A:B p=0.000 

       H:B p=0.028 

 

              
 A:H p=0.000  A:H p=0.000    

 A:B p=0.000       

 H:B p=0.018 

 

      

Figure 5-4 Boxplot showing correlation between phenotype and genotype at identified Quantitative Trait Loci in 
the G51xCV mapping population 
The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges 
(upper and lower) represent the interquartile range. The median value is indicated by the thick line within the box. 
Statistically different groups, as determined by a Tukey’s post hoc comparison of means test, have been labelled in red, 
with the p value for each comparison indicated below the box and whisker plot. Phenotypic traits and datasets include: 
Seed Yield (number of seeds), Year 3 (H); Palmitate seed oil content, Year 2 (I); Stearate seed oil content, Year 2 (J); 
Oleate seed oil content, Year 2 (K). 

H I 

J 

K 



 131 | P a g e  

 

 

 A:H p=0.000  A:H p=0.000  A:B p=0.004 

 A:B p=0.000  A:B p=0.007  H:B p=0.001 

         

Figure 5-5 Boxplot showing correlation between phenotype and genotype at identified Quantitative Trait Loci in 
the G51xCV mapping population 
The whiskers represent the dataset range, with outliers shown as circles (p<0.05) or stars (p<0.01). The box edges 

(upper and lower) represent the interquartile range. The median value is indicated by the thick line within the box. 

Statistically different groups, as determined by a Tukey’s post hoc comparison of means test, have been labelled in red, 

with the p value for each comparison indicated below the box and whisker plot. Phenotypic traits and datasets include: 

Linoleate seed oil content, Year 2 (L). 
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Chapter 6: Summary and conclusions 

Population growth, economic development and climate change necessitate an increase in world energy 

production with concurrent reductions in greenhouse gas emissions (Intergovernmental Panel on Climate 

Change, 2014, US Energy Information Administration, 2016). Plant based biofuels, offer the only renewable, 

low-carbon alternative to liquid transportation fuels (Blanch, 2010); the single largest sector of the most 

widely-used fossil fuel; oil (British Petroleum, 2016). In the midst of food security concerns due to 

population growth and predicted effects of climate change on food crop production (Godfray et al., 2010), 

de-confliction of biofuel and food crops particularly for agricultural land, suggests a greater utilisation of 

marginal land (Tilman et al., 2009), and the harnessing of novel crop species more adaptable to alternative 

models of farming (Tester and Langridge, 2010). For bioethanol and biodiesel production, perennial species 

are generating much interest as biomass and oilseed crops respectively, as they are more amenable to growth 

on marginal land, and could be intrinsically more-efficient at using nutrients, water and sequestering carbon, 

than currently-cultivated annual crops (Somerville et al., 2010, Kantar et al., 2016). 

Jatropha curcas, a perennial oilseed crop from the Euphorbiacea, is a biodiesel candidate that has generated 

interest due to a high seed oil content, a protein rich seed meal suitable for use as an animal feed, and an 

adaptability to a wide range of soil types, nutrient and precipitation levels (King et al., 2009, Achten et al., 

2010). Before economic cultivation of Jatropha can be assessed, optimisation of oil yield and oil quality -

related traits is required in order to domesticate current semi-wild/wild material and create a genetically-

improved cultivar.  

Jatropha presents several challenges to selective breeding. Jatropha is monoecious and self-compatible, 

which leads to a propensity for self-fertilisation. Jatropha is a long-life perennial and has a life span of 50 

years; Jatropha plants reach maturity and express full phenotypes after approximately 5 years from seedling. 

Seedling-to-seed generation time is approximately 9 months. Material distributed outside its centre of origin 

in Meso-America contains very little genetic variation and is almost clonal (King et al., 2015, Montes Osorio 

et al., 2014, Pecina-Quintero et al., 2014, He et al., 2011). These point towards the requirement for 

Quantitative Trait Locus (QTL) mapping, so that breeding technologies such as Marker Assisted Selection 

(MAS) can guide selection of breeding material based on the genetics underpinning key traits. Ultimately the 

stacking of multiple, desirable QTL in a single Jatropha line will be required to create a cultivar suitable for 

economic cultivation. The aim of this study was to identify and locate QTL underlying oil yield- and oil 

quality-related traits (seed oil content, seed oil composition, seed mass, seed yield, branching), in the 

G51xCV mapping population; a biparental F2 population created from parental lines selected primarily on the 

basis of seed oil content; G51 at 36.90 % and CV at 26.00 %, seed oil content respectively. 

Reduced-representation genome sequencing, using the Complexity Reduction of Polymorphic Sequences 

(CRoPS) approach (van Orsouw et al., 2007), was used to generate a high-coverage, genome-wide marker set 

and this formed the majority of markers used for genetic linkage mapping in the G51xCV population (181 

markers, 58.01 %). In addition a small number of expressed sequence tagged (EST) markers were available 

to map expressed genes (14 markers, 4.49 %) (King et al., 2011). The development of SSR markers formed 

the principle output of marker development in this thesis study, and accounted for the second largest group of 

markers available for linkage mapping in the G51xCV population (117 markers, 37.50 %). 
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In total, over 300 SSR positions were identified using reference genome sequence (Hirakawa et al., 2012, 

Sato et al., 2011), of which 288 SSRs had flanking sequence suitable for PCR amplification. Polymorphism 

testing across parental lines from 4 independent mapping populations, showed that of the 288 SSRs tested, 

114 SSR markers (39.59 %) were polymorphic in at least 1 mapping population, and 43 SSR markers (14.93 

%) were polymorphic in 2 or more populations. Markers that were mapped in multiple populations (shared 

markers), increased recombination data available for these loci in a combined dataset, and also enabled 

alignment and comparison of individual population linkage maps, providing both a validation method for 

individual population datasets, and a means to conduct comparative mapping to mine additional SSRs in 

regions that required them. Marker ordering, marker spacing and total genetic distance mapped was highly 

conserved across all 4 independent linkage maps, indicating the robustness of the markers and datasets, from 

all 4 populations. This robust approach led to a substantial increase in the accuracy of estimated genetic map 

size, over a previously published interspecific linkage map (Wang et al., 2011, King et al., 2013). SSR 

markers developed in this study, and the dataset produced from the genotyping and linkage mapping of 229 

plants from the G51xCV mapping population, contributed data towards the first intraspecific linkage map 

published for Jatropha curcas in 2013 (King et al., 2013).   

SSR marker development was carried out for several functions. As can be seen from this project, SSR 

markers are ideally suited for the mapping of smaller numbers of loci in a more selective and targeted 

manner, in comparison to more highly-parallel, high-throughput sequencing-based strategies used for the 

other marker types in this study. As such the SSR markers developed in this study added value to the existing 

genome-wide marker set, by enhancing both the coverage and information content of mapped loci. For 

example, 120 SSR markers were developed to map gaps in the linkage map using comparative mapping, after 

genetic linkage mapping with the genome-wide marker set, thereby reducing the number of regions where 

marker spacing was greater than the recommended 10 cM required for complete QTL detection (Darvasi et 

al., 1993). Information content of the genetic linkage map was significantly enhanced through the mapping of 

candidate genes. 

In total, 133 SSR markers (42.63 %) developed from this thesis study, were physically linked to candidate 

genes of the fatty acid biosynthetic pathway; a pathway responsible for regulating oil yield and oil quality 

related traits (seed oil content and fatty acid composition), as well as a smaller number of SSR markers (35 

SSRs or 11.22 %) that were linked to branching and flower ratio candidate genes. The utility of such genes 

for plant biotechnology, and their central role in regulating both oil yield and oil quality (seed oil 

composition) (Napier et al., 2014, Bates et al., 2013, Vega-Sanchez and Ronald, 2010, Durrett et al., 2008), 

as has been extensively demonstrated in research and agriculture(Napier et al., 2014, Bates et al., 2013, 

Vega-Sanchez and Ronald, 2010, Durrett et al., 2008), highlights the importance of these genes in an oilseed 

crop such as Jatropha. In silico identification of candidate genes through the compilation of genes from 

model species such as Arabidopsis (Li-Beisson et al., 2013), and comparative genomic approaches utilising 

search algorithms, enables a comprehensive approach to mapping of this pathway; ensuring as much of the 

genetic architecture of complex traits such as oil yield, and its component trait, seed oil content, are mapped. 

Since alignment of genetic linkage maps is relatively easy using anchor and bridging markers, as has been 

demonstrated in this study, the positioning of such key genes, is of on-going utility to genetic research in 

Jatropha curcas, for example for the investigation of QTL associated with oil yield or oil quality related 

traits. 
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Integration of additional SSRs mined for gap filling and the marking of candidate genes, in the G51xCV 

mapping population during this thesis study, enabled the updating of the combined genetic linkage map 

published in 2013 (King et al., 2015, King et al., 2013); modestly but significantly increasing marker density 

and coverage, and substantially increasing information content of the linkage map through the addition of 

candidate gene markers (King et al., 2015). This led to dissemination of a refined intraspecific linkage map 

for Jatropha curcas in 2015 (King et al., 2015), that was validated through subsequent genome sequencing 

efforts from the Chinese Academy of Sciences (Wu et al., 2015), that together enabled the physical mapping 

of 51 % of the Jatropha genome sequence, and 64 % of protein encoding sequences (King et al., 2015); a key 

genomic resource for the investigation of QTL in Jatropha curcas. 

Collection of seed-related phenotypic data using Nuclear Magnetic Resonance spectroscopy and FAMES gas 

chromatography enabled QTL mapping of traits from up to 3 separate sample points (years 2, and years 3a 

and 3b) in the G51xCV mapping population.  

A combination of single marker analysis and interval mapping, combined with correlation analysis, enabled 

the investigation of phenotypic traits in the G51xCV mapping population. A hierarchical trait relationship 

(Alonso-Blanco and Mendez-Vigo, 2014) could be established for oil yield per plant, based on the product of 

seed oil content, seed mass and seed yield traits. It was therefore of interest to determine the relative 

importance of these component traits to overall oil yield. Similarly, positive and negative correlations 

between traits gave an indicator of the level of independence or causality between traits. Key findings of 

correlation analysis in G51xCV population was that seed yield, seed oil content and seed mass were all 

positively correlated with eachother, suggesting that increases in any one of these traits is not at the expense 

of the others, and that optimisation of all three of these key traits is compatible within a single cultivar. Of 

these three traits, seed yield was most strongly correlated with oil yield per plant, showing that seed yield was 

most important for regulating final oil yield in the G51xCV mapping population.  

Negative correlations, for example between oleic and linoleic acid, suggested causality between these traits; a 

suggestion supported by the fact that both fatty acids exist in the same metabolic pathway. This finding is 

consistent with the concept of limited fatty acid pools, or limited rates of synthesis, such that conversion of 

one fatty acid into the other, leads to an increase in one fatty acid at the expense of the other, ultimately 

producing differing fatty acid ratios. The fact that QTLs for both these fatty acid moieties co-located to a 

single region, suggests that this conversion is controlled by a single locus and perhaps a single gene. This is 

supported by the known pathway for this conversion, which is the result of the single step conversion by the 

fatty acid desaturase gene, FAD2, in the oilseed model species, Arabidopsis thaliana (Li-Beisson et al., 

2013). The fact that a high oleate fatty acid composition is the key attribute for developing biodiesels that 

meet international fuel standards (Durrett et al., 2008, Knothe, 2009), suggests that elucidation of this locus is 

of high value for optimising oil quality of Jatropha curcas. This has been proven recently in J. curcas using 

gene silencing of the FAD2 gene, to produce high oleate Jatropha oil (Utomo et al., 2015, Ye et al., 2009). 

QTL were identified in all component traits of oil yield per plant and oil quality; seed oil content, seed mass 

and seed yield (including the component trait of seed yield; branching), and through QTL mapping of the 

major fatty acids that make up Jatropha curcas seed fatty acid composition. In total, 15 QTL were detected 

for seed oil content (2QTL), seed oil composition; palmitate, stearate, oleate, linoleate content (10 QTL), 

seed mass (1 QTL), number of branches (1 QTL) and seed yield (1QTL). Strongest QTL effects were 
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detected for seed oil content, the principle trait of interest in the G51xCV population. Combined PVE for 

seed oil content in year 2, accounted for 32.26 % of observed variation. Similarly large effect QTL were 

detected for the other component traits of oil yield per plant; seed yield, 14.15 % PVE and seed mass, 

between 14.89 % and 29.39 % PVE. Multiple QTL located to linkage groups 4 and 10; suggesting regions on 

these linkage groups are important for regulating a variety of traits (or that some QTL could be pleiotropic), 

and are therefore key target regions for introgression into a cultivar. Analysis of the parent-of-origin for QTL 

alleles, showed that beneficial vegetative/architecture QTL alleles (branching, seed yield traits) originated 

from the CV parent, whereas beneficial alleles for seed related QTL (seed oil content, seed mass traits) 

originated from the G51 parent. This suggests that breeding of hybrid plants may be an advantageous strategy 

to combine favourable components of both seed and vegetative/architecture related traits in a single cultivar. 

Since the CV parent is genetically similar to widely distributed Jatropha material, the seed related trait QTL 

as found in G51, may be more beneficial for introgression to improve widely distributed material. That being 

said, in G51xCV, seed yield was ultimately the most important trait for regulating oil yield, and so, alongside 

seed oil content and seed mass traits, generating Jatropha cultivars with high seed yields will be of utmost 

importance for creating high yielding varieties.  

6.1: Future recommendations 

The major limitations of this study were the confidence intervals for identified QTL which were relatively 

large; ranging from 13 cM (palmitate year 2) to 57 cM (seed oil content year 3a) for the Bayes 95 % 

confidence interval. For crop breeding delimiting QTLs to the smallest interval possible is advantageous so 

that QTL can be introgressed and/or stacked (combined) with greatest precision (Dekkers and Hospital, 

2002). It also enables desirable alleles to be found across diverse germplasm collections with greatest 

accuracy, as the genotype for flanking markers of QTL, are more likely to be informative of the underlying 

genetic alleles, the closer the markers are together. 

The resolution of QTL location is dependent on the number of recombination events and independent 

phenotypic measurements with which to correlate them to, and the density of DNA markers to most 

accurately locate recombination points (Mackay et al., 2009). During a single meiosis event, between zero 

and two crossover events per linkage group, were most common according to linkage mapping data used in 

this study (data not shown), which is consistent with findings in Arabidopsis despite differences in 

chromosome length between the two species (Giraut et al., 2011). Therefore in a Jatropha F2 population, 

which is the product of recombination in two F1 gametes as it is a diploid species, 0 to 2 times the F2 

population size per gamete, can be used as an estimation of the number of recombination events sampled per 

linkage group (i.e. between 0 and 4 recombinations, per linkage group, per F2 plant). One can increase 

recombination data, by using shared markers that are mapped in independent populations, as utilised by 

linkage mapping in the combined genetic linkage map, however unless independent populations phenotype 

the same traits, and experience identical environmental conditions, there may not be corresponding 

phenotypic measurements to correlate these recombination events to, for QTL mapping of particular traits.  

Another way to increase the number of recombinations sampled per plant, is to conduct association mapping 

using a diverse germplasm panel (Hamblin et al., 2011, Davey et al., 2011, Rafalski, 2010). By doing so 

recombination events are sampled over the many generations since divergence of the germplasm panel from 

a common ancestor, substantially increasing the resolution of QTL mapping (Hamblin et al., 2011). This, 
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combined with genome-wide sequencing of the germplasm collection (Davey et al., 2011), produces a 

maximal marker density - depending on the depth of sequencing and the sequencing approach used (i.e. 

complete vs reduced representation) (Davey et al., 2011), which determines the completeness of the genome 

sequences that can be compared for marker generation. Surveying a diverse germplasm collection also 

enables investigation of a wider selection of genotypes and phenotypes, potentially capturing more 

advantageous phenotypic and genetic variation that can be investigated (Hamblin et al., 2011). This 

germplasm collection can then form the basis of a breeding programme, once relevant QTL have been 

discovered. Whilst increasing population size, recombination events per plant, and marker density are well-

known strategies to increase the power to detect and locate QTL (Mackay et al., 2009, Davey et al., 2011), 

the importance of accurate and suitable phenotyping to increase QTL detection, particularly for complex 

traits such as oil yield, is also important (Alonso-Blanco and Mendez-Vigo, 2014). 

Complex traits such as oil yield are known to be the result of the interaction of a myriad of loci, affecting 

different areas of plant development and metabolism, each potentially contributing minor effects that are 

subject to modulation by the environment (Holland, 2007, Alonso-Blanco and Mendez-Vigo, 2014). As such 

QTL mapping of a complex trait such as oil yield, limits the power to detect minor effect QTL that 

nevertheless, in aggregate, may be important for regulating oil yield (Alonso-Blanco and Mendez-Vigo, 

2014). One method to increase the power to detect QTL is to determine hierarchical trait relationships 

(Alonso-Blanco and Mendez-Vigo, 2014); splitting oil yield into component traits, such as oil content, seed 

mass and seed yield – as conducted in this study. Whilst QTL may have only minor effects at the oil yield 

level, the effects on component traits that QTL may more-directly regulate would be bigger, effectively 

increasing the power to detect these QTL. This can be seen by seed oil composition QTL detected in this 

study. Whilst variation of only a few percent seed oil composition were observed for some fatty acid 

moieties, strong QTL associations were able to be detected, due to precision phenotyping of individual fatty 

acids using gas chromatography.  

Oil yield per plant in this study, was broken down into component traits, seed oil content, seed mass and seed 

yield. Whilst seed mass could have been broken down further, for example into seed components, such as 

proteins, carbohydrates and fats, or different seed tissues, to give further information on seed mass variation, 

this, whilst interesting from a biological perspective, would have less significance for overall oil yield and the 

breeding of improved Jatropha varieties. Seed yield however, could have significantly more scope for 

phenotypic dissection.  

In this study branching was one trait that was measured as a component of seed yield; which itself was the 

most strongly associated with oil yield per plant in G51xCV (in years 2 and 3, seed yield and oil yield 

showed a correlation of R=0.972, and R=0.948 respectively). Although branching was significantly 

associated with seed yield variation (p<0.000), showing that this is an important contributor to seed yield, the 

fact that correlation was incomplete (between R=0.312 and R=0.448) suggested that additional factors were 

present. A key trait that would be expected to be correlated with branching and seed yield, would be flower 

ratio. Flower inflorescences, which produce seed through the female flowers, are highly dependent on 

branching, since flower inflorescences occur at positions along branches. Whilst branching may determine 

the number of possible flower points on a plant, the actual extent of flowering and the ratio of female to male 

flowers, may well also contribute towards seed yield and so this would be a key trait to measure in future 

studies along with branching. Other vegetative traits were measured in the G51xCV mapping population as 
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part of a wider study outside of this thesis work (King et al., 2015). Plant height and stem diameter were also 

shown to be significant to seed yield (King et al., 2015), demonstrating the complex genetic architecture 

likely to underlie seed yield in Jatropha.  

As such, seed yield, could perhaps be the trait that could most benefit from future genome wide association 

studies, including precision and hierarchical trait phenotyping, to dissect this complex trait and determine the 

genetic basis of observed variation through the study of diverse germplasm collections. This will provide the 

basis to add to QTL discovered in this study, whilst expanding the collection of suitable starting material for 

the breeding of improved cultivars of Jatropha curcas. 
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