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ABSTRACT

This study investigates the stratigraphy of the newly defined mid-
Carboniferous boundary. The selection of the mid-Carboniferous stratotype
section should reconcile problems between the different mid-Car?oniferous
biostratigraphies developed throughout the world and provide a standard

against which other successions can be correlated.

The nature of the mid-Carboniferous boundary in the Clare Basin has been
investigated. Various geochemical analyses have been conducted on a mid-
Carboniferous section and it has been possible to construct a chart relating
these various geochemical parameters to relative sea-level. It is shown that

although deposition is complete through the interval, there is a
geochemical expression of a lowstand during the lowest Chokierian.
Additionally, doubt is cast on the presumption that all sediments deposited
outside ‘marine bands’ are non marine. A model has been developed for
mid-Carboniferous deposition in the Clare Basin. It is envisaged that the
shelves of the Clare Basin were flooded during the early Namurian leading
to an environment suitable for phosphate authigenesis. During a major
regression in the Pendleian/lower Afnsbergian the phosphate was
reworked into a lag. The lowstand of the basal Chokierian is marked by a
thin lag on the shelves, whilst deposition was continuous in the basin
centre. Later Chokierian times are marked by a widespread transgression.

The mid-Carboniferous stratotype has been chosen at Arrow Canyon,
Nevada. Microfacies studies show that deposition was on a winnowed
carbonate platform showing reworking of bioclasts. Faunal diversity and
eveness studies have also been conducted on this section. No drop in
diversity is seen at the mid-Carboniferous boundary, although a drop in
eveness is seen, whether this relates to a specialised fauna or selective
winnowing of bioclasts is unknown.

Correlations between America and western Europe show that conodonts are
strongly facies controlled and it is unlikely that the appearance of
Declinognathodus noduliferus is truly isochronous between sections, and
thus is an unwise choice for defining the mid-Carboniferous boundary.
Additionally it 1s suggested that Arrow Canyon was a poor choice for the
stratotype section due to both the possibility of reworking, the presence of an
unconformity in the section and possible doubts over the conodont record
at this locale.

- The Rhachistognathus minutus zone is recognized as a new conodont zone
across the Arnsbergian/Chokierian boundary. | )
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Chapter1

INTRODUCTION

1.1 INTRODUCTION

Over the last two decades an intensive worldwide search for an
uninterrupted section spanning the mid-Carboniferous boundary has taken
place, with the ultimate goal to find a Global Boundary Stratotype Section
and Point. Only at this stratotype is the 'golden spike' placed at a specific
point in the section, representing a unique instant in time and a standard
against which other sequences can be correlated (Bassett, 1990). This
selection of the mid-Carboniferous boundary stratotype section should
reconcile problems between the different mid-Carboniferous
biostratigraphies developed throughout the world.

1.2  AIMS OF THE THESIS

This study aims to investigate the stratigraphy and changing
palaeoenvironments across the mid-Carboniferous boundary, utilising a
number of different approaches, from studies of the Clare Basin in western

Ireland and at the mid-Carboniferous boundary stratotype at Arrow Canyon
in Nevada, and at other sections within the Antler Basm

LA kg

There are four main objectives addressed in this study:-

. The Clare Basin is used as a case study to anestlgate depositional
ounda

environments across the mid-Carboniferousa Deposmon was
continuous across the mid-Carboniferous boundary in the basin
centre, whilst on the basin shelves a phosphatized unconformity 1s
present. Thus the basin was chosen with the objective to provide

a model of mid-Carboniferous deposition utilising sedimentological,
palaeontological and geochemical data.
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. The mid-Carboniferous boundary stratotype at Arrow Canyon is
examined to test the completeness of the section both at this
locale and within a basinal context.

. With the decision on the choice of mid-Carboniferous boundary
stratotype, ideally the problems of correlating the different
biostratigraphic schemes that exist between America and western
Europe should be solved. This assumption is examined and an
attempt at biostratigraphic correlation is provided.

. The choice of both stratotype section and defining fauna are
discussed and questioned in the light of developments over the
last two decades since the inception of the search for a boundary

stratotype.

1.3 APPROACHES USED IN THIS STUDY
A number of varied techniques were used in this study and are listed below.

. Detailed field logging of sections and utilisation of data collected
from the literature has led to clarification of the depositional history
of the Clare Basin, Ireland. Field logging of sections in the
southern Antler Basin, Nevada facilitated correlation of the mid-
Carboniferous throughout that basin, together with providing
an insight into the completeness of the mid-Carboniferous

boundary in this area.

. Intensive geochemical study has been employed to determine
the palaeoenvironmental changes across the mid-Carboniferous

boundary at a section in the Clare Basin. The geochemical
methods used in this study were U/Th, C/S, degree of
pyritization and reactive: total iron ratios. These methods allow
the salinity, and degree of anoxia within this mid-Carboniferous
basin to be investigated.

. Petrographic and 5.E.M. study of thin and polished sections has been

employed to elucidate the mode of formation of the phosphorite
deposits of County Clare.
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. Standard microfacies analysis was applied to petrographic
samples taken from the mid-Carboniferous boundary stratotype at
Arrow Canyon, Nevada, to elucidate the depositional
palaeoenvironment. Statistical analysis (Shannon-Wiener
Index) was applied to total counts of biodebris from the same
samples to investigate faunal diversity changes around the mid-
Carboniferous boundary.

. To facilitate comparison of the western European and American

mid-Carboniferous biostratigraphies, range charts for selected
conodont species have been produced for both regions. Integration
of these charts with ammonoid occurrence data from both areas

results in a cross-correlation of both the biostratigraphic schemes.

Many of these approaches have not been applied to the areas in question
before. The integration of the detailed geochemical analysis has not
previously been applied to ancient sediments, and is particularly applicable
to the Irish section due to its good biostratigraphic control and thus known
sea-level variations. A model for the mid-Carboniferous deposition in the
Clare Basin is presented from the integration of a variety of data (e.g.
sedimentological, palaeontological and geochemical).

The detailed study of the palaeoenvironment and faunal diversity changes
across the mid-Carboniferous boundary at Arrow Canyon likewise has not
been completed before.

1.4 BACKGROUND TO THE THESIS

14.1 Mid-Carboniferous stratigraphy

This work concentrates on the mid-Carboniferous stratigraphy of western
Europe and America and thus the following description of the history of
stratigraphic studies of the Carboniferous is primarily focused on these
areas.

1.4.1.1. History of Carboniferous stratigraphic studies

Much interest has been focused on various aspects of Carboniferous geology
and is largely due to the widespread economic coal deposits of the
Westphalian. The first formal designation of the term Carboniferous was by
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Conybeare and Phillips (1822) who also divided up the Carboniferous
system into Carboniferous Limestone, Millstone Grit and Coal Measures.
These divisions were initially adopted by workers in Europe, America and
Russia, however numerous local stratigraphic terms were employed in
Europe by the early twentieth century (Ramsbottom, 1991). A congress, with
the stated objective to compare the stratigraphy of the Carboniferous in the
different coal regions of Europe, was held at Heerlen in 1927. It was here
that the notion of a single west European Carboniferous Classification was
proposed. A further three congresses followed in 1935, 1951 and 1958. At
the third congress in 1951 it was decided that the Carboniferous should
remain as a system, although it would be divided into two subsystems, this
was later rejected and the general opinion on the formation of a single
worldwide classification was rather pessimistic! (Ramsbottom, 1991).

Separate to these meetings were the meetings of the International
Geological Congress (I.G.S.). At the fourth meeting of the Heerlen Congress
in 1958 the Heerlen temporary committee on Carboniferous Stratigraphy
merged with the International Subcommission on Carboniferous
Stratigraphy (5.C.C.S.) of the Commission on Stratigraphy of the 1.G.S,,
resulting in a committee (5.C.C.S.) charged initially with the erection of a
single classification for western Europe. When the International Union of
Geological Sciences (I.U.G.S.) was founded in 1961 the Commission on
Stratigraphy and the S.C.C.S. became part of the Union (Nudds and Palmer,

1990; Bouroz et al., 1980).

Since the formation of the S.C.C.S. in 1961, the S.C.C.S. has become more

formalised and bureaucratic with the formation of various committees and
restrictions on voting rights. The S.C.C.S. has since its inception widened its
field of research to investigate the Carboniferous both globally and in
specific areas with the formation of Working Groups covering these specific
topics. The ultimate aim of the S5.C.C.S. is to select stratotypes representing
specific chronostratigraphic horizons, that are applicable globally.
Communication between members is biennially at Meetings of the 5.C.C.S,,
held in conjunction with the International Carboniferous Congress (every
four years) and at Field Meetings of the S.C.C.S. . The publication of the
annual Newsletter on Carboniferous Stratigraphy also aids communication.

At present in western Europe the Carboniferous system is divided into five

series which are then subdivided into stages based on their faunal content
(Table 1.1).
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Table 1.1 Chronostratigraphic classification for western Europe (from
Wagner and Winkler Prins, 1991)

SYSTEM SERIES STAGES

C
Stephanian B

Barruelian (A)
Cantabrian

D
Westphalian Bolsovian (C)
Duckmantian (B)
Langsettian (A)

Yeadonian

Marsdenian
Kinderscoutian
Namurian Alportian
Chokierian
Arnsbergian

Pendleian

Brigantian
Asbian
Viséan Holkerian

N C ORFmTM—~2Z 00 wWR >N

Arundian
Chadian

Ivorian
Tournaisian Hastarian

The American Carboniferous, however is divided into two subsystems, the
Mississippian and Pennsylvanian. These are further subdivided into series,
these further subdivisions being based on both faunal and lithological
characteristics (Wagner and Winkler Prins, 1991) (Table 1.2).
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Table 1.2 Chronostratigraphic classification for North America (from
Wagner and Winkler Prins, 1991)

SYSTEM SUBSYSTEM SERIES

Virgilian

Missourian

Desmoinesian

Pennsylvanian

Atokan

Morrowan

Chesterian

wn COR" oM~ Z 0O wW =" > 0

Meramecian
Mississippian

Osagean

Kinderhookian

1.4.1.2 History of Carboniferous biostratigraphic studies

The mid-Carboniferous is typified in many regions of the world by siliclastic
deposits, and thus biostratigraphic correlation between these deposits is
principally limited to the three groups found in these facies: conodonts,
goniatites and spores. Additionally brachiopod and foraminiferal schemes
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have also been employed predominately in carbonate areas. In this study
the ammonoid and conodont schemes are utilised and investigated.

Much of the early biostratigraphic work was principally based in England:
Phillips (1832, 1836, 1841) and Brown (1841) being notable as the first workers
to attempt a correlation in the Westphalian based on goniatites. Late
nineteenth century work focused on the systematic description of faunas
(e.g., Haug, 1898; Foord, 1903). These important works provided the basis for
the milestone work of Bisat (1924) ‘The Carboniferous Goniatites of the
North of England and their Zones’. This presented a refined
biostratigraphic zonation for the Viséan, Namurian and Westphalian,
together with systematic descriptions of virtually all the Carboniferous
ammonoids known at that time. Other works in the middle part of this

century utilised this landmark work of Bisat and looked at areas of the
zonation in more detail (e.g., Bisat, 1940; Bisat and Hudson, 1943; Hudson,
1945; Moore, 1945; Holdsworth, 1965) and also tried to correlate the scheme
to regions both within and outside the British Isles (e.g., Bisat, 1928; Hodson,
1954a, 1957; Yates, 1962). The latter part of this century sees the work of

ammonoid stratigraphy in Britain dominated by the work of Ramsbottom
(e.g., 1962, 1969, 1977, 1978, 1979, 1980, 1981), with the development of
schemes related to worldwide eustatic changes, and more recently by Riley

(e.g. 1987, 1990, 1993, 1994) by the utilisation of a highly refined
biostratigraphic zonation in sequence stratigraphical studies.

Although the ammonoids of predominantly the North American
Midcontinent in the late nineteenth and early twentieth centuries were

studied (e.g. Smith 1896, 1903; Girty, 1909, 1910), the works were
predominantly of a descriptive nature. It was not until the work of Gordon
(1964) that a zonation using these faunas was attempted. The various works
of Gordon (e.g. 1968, 1969, 1970) and refinement of his biostratigraphic
scheme dominated the American literature up until the 1970’s. More recent
works, principally by Saunders (e.g. 1973, 1975, 1977) have improved the
biostratigraphic zonation, and attempted correlations with the western
European stratigraphy. Present research is focusing on the newly discovered
Chokierian age faunas from Nevada (Titus, 1992, 1993)

Early references to the occurrence of conodonts in mid-Carboniferous rocks
in Britain were commonly incidental, and no attempt at zonation was made

e.g., Moore (18€3) Young (1880a, 1880b), Hind¢(1900) and Smith (1900). It was
not until the later part of this century that zonations were put forward for
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Britain and Ireland, e.g., Rhodes et al., (1969), Austin (1973) and Higgins
(1975). Varker and Sevastopulo (1985) and Higgins (1985) have built on
these earlier works and presented schemes applicable to the British
succession. Comparisons with fauna both within and outside Europe have

been made by numerous workers, however, correlation is hampered by
facies control of the conodont faunas.

The presence of conodonts in strata in North America was not recognised
until the 1920’s (e.g. Bassler, 1925; Roundy, 1926). The following forty years
saw the publication of predominately descriptive works primarily of
samples collected from the mid-Continent. The first comprehensive
zonation was proposed by Collinson et al., (1962). An important work by
Webster (1969) identified the existence of late Mississippian strata in Nevada
and provided an extension of previous Mississippian zonations. Research
from the seventies until the present day has been dominated by Lane (e.g.
1971, 1974, 1977, 1982, 1985), Rexroad (e.g. 1979, 1985) and Sandberg (e.g. 1979,
1980). Again, many of these workers have presented correlations with the
western European zonation.

1.4.2 Geochronometry

There are predominantly three recent geochronometric schemes applied to
the Carboniferous: Lippolt et al., (1984) and Hess and Lippolt, (1986), Harland

et al., (1990) and the recent work of Claoué-Long et al., (1993) and Riley et al.,
(1994).

Figure 1.1 Recent geochronometric charts for the Carboniferous.
Ma
— 290
a2
s
Lippolt et al., (1984) Harland et al., (1990) Claoué-Long et al., (1993)
& Hess and Lippolt, (1986) & Riley et al., (1994)
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The most recent scheme (shown in Figure 1.1) shows a dramatic reduction
in the age range of the Namurian and consequently will have implications
for a wide range of applications to Carboniferous geology.

1.4.3 The mid-Carboniferous boundary

14.3.1.  What is the mid-Carboniferous boundary?

The mid-Carboniferous boundary is a new boundary allowing worldwide

correlation of the Carboniferous. Previously, the primary division of the
Carboniferous was into five divisions in western Europe (Tournaisian,
Viséan, Namurian, Westphalian and Stephanian). The mid-Carboniferous
boundary now bisects the Carboniferous system into two subsystems,
equivalent to the Mississippian and Pennsylvanian subsystems of the
U.S.A.. However, the Mississippian-Pennsylvanian boundary as defined in
North America does not have a formally accepted position (Wagner and
Winkler Prins, 1991) and thus cannot be used as the stratotype.

14.3.2.  When is the mid-Carboniferous boundary?

Through the work of the Subcommission on Carboniferous Stratigraphy it
has been decided that the mid-Carboniferous boundary corresponds
approximately to the time of change from Eumorphoceras to Homoceras
goniatite faunas (Arnsbergian/Chokierian boundary in the Namurian of

Great Britain). HowevVer, Homoceras was not considered a suitable taxon
- for worldwide recognition of the boundary as it was thought, until recently,

to have been restricted to Europe, and thus not a suitable defining taxon
R worldwide (Saunders, 1984; Titus, 1992; Riley et al., 1994).

- Mg g o

Conodonts were one of the most widely distributed faunal groups during
the Carboniferous and are therefore used to define the mid-Carboniferous
boundary, with the first appearance of Declinognathodus noduliferus s.l.
marking the level of the boundary (Saunders, 1984).

1433  Why is the mid-Carboniferous boundary needed?

The mid-Carboniferous boundary is needed to allow worldwide correlation
of the Carboniferous using a common classification scheme. Previously
correlation was difficult, if not impossible, due to the development of
regional classification schemes; correlation is supposedly now permitted by
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using a widespread fauna as the defining biostratigraphic marker. The mid-
Carboniferous marks a time of eustatic sea level low (Figure 1.2). Many
areas show non-deposition and erosion lasting from late Arnsbergian to
early Kinderscoutian times, for example a paleokarst showing relief of up to
100 m, extending over thousands of kilometres is developed on limestones
of late Arnsbergian age in North Africa (Lemosquet. et al-y~ 1983). As a
consequence of this regressive period, significant changes in the fossil record
are also seen at this level (Saunders and Ramsbottom, 1986) e.g., 82% of
ammonoid genera became extinct between the end of the Arnsbergian and
the end of the Alportian (Manger and Saunders 1982).

A stratotype defining the mid-Carboniferous boundary is therefore needed
as a worldwide reference point. Work has progressed over the last ten years
on the evaluation of potential stratotype sections by the mid-Carboniferous
boundary Working Group of the Subcommission on Carboniferous
Stratigraphy. A section at Arrow Canyon, Nevada was selected as the mid-
Carboniferous boundary stratotype early this year (Lane, 1995).

1.4.4 General overview of the Carboniferous

144.1  Mid-Carboniferous Palaeogeography

During the Carboniferous, collision was occurring between Gondwanaland
and Laurasia, (Leeder, 1988a; Besley 1988; Fraser and Gawthorpe 1990) and
resulted in the formation of the Hercynian (Variscan) orogenic belt in
western Europe and the Appalachian-Ouachita-Marathon orogenic belt in
northern America. The assembly of the supercontinent Pangea resulted
from the closure of the 'proto-Tethys' Ocean during the suturing of
America and Eurasia (Laurasia) and Africa, South America, Antarctica and
Australia (Gondwana) (Leeder, 1988a; Hatcher, 1988). Figure 1.3 shows the
palaeogeography during mid-Carboniferous times. Laurasia was situated in
a palaeoequatorial/low northern latitudes area, with Gondwana sited
primarily in the lower parts of the southern hemisphere.

During the Viséan freely interconnected. equatorial seas and extensive areas
of shallow shelf seas were prevalent and led to the accumulation of large
volumes of shallow-water carbonates at low-mid latitudes (Ross and Ross,
1985a). By the beginning of the Namurian the Hercynian-Appalachian
orogeny had closed the equatorial seaway. Clastic debris began to be shed
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from uplifted terranes (e.g., Fenno-Scandinavia, Appalachian-Ouachita
Mountains) and led to the cessation of carbonate deposition in many areas. -
Ramsbottom (1980) has envisaged that the whole depositional area in the
Carboniferous from the late Viséan was a vast, flat, low lying plain,
virtually at sea-level and stretching from the USA, through Europe to the
Urals. Thus, rather than the wide connected seas of the lower
Carboniferous the mid-Carboniferous was marked by smaller depositional
basins, intermittently linked dufing transgressive periods.

1.4.4.2 Mid-Carboniferous Palaeoclimate

Leeder (1988a) summarised a wide range of data and ventilated the idea that
during Lower Carboniferous times monsoonal conditions were prevalent,

with a broad, non-seasonal equatorial humid belt developing in the
Namurian as the northern and southern continents collided and clustered
around low latitudes.

High latitude warming occurred during the Viséan and the very earliest
Namurian, and is attributed to the collision of Laurasia with Gondwana and
the deflection of warm equatorial currents to high latitudes (Raymond et 4],
1989). The same workers note that the subsequent early Namurian was
marked by equatorial warming and high latitude cooling and relate this to
the onset of glaciation in the southern hemisphere. Alternatively Ross and
Ross (1985a) suggest that the tectonic closure of the equatorial seaway
resulted in blocking of the equatorial currents and thus caused high-latitude
warming as the currents were deflected to high latitudes, where the surface
waters were subsequently cooled, resulting in a worldwide drop in surface
water temperatures.

Many workers have found evidence that during the Carboniferous parts of
Gondwana (and to a minor extent Laurasia) were glaciated (Crowell, 1982,
Caputo and Crowell, 1985, Veevers and Powell, 1987; Frakes et al., 1992))
with the glaciated areas laying predominantly within 45° of the Gondwanan
palaeopole (what is now South Africa, South America and Antarctica).
Glaciation was initiated in the late Devonian and three main events have
" been recognised by Veevers and Powell (1987): Fammenian, Viséan and
Namurian.
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1443  Mid-Carboniferous Sedimentation and Cyclicity

Many workers have recognised cyclothemic deposition in the Carboniferous
deposits of Europe, Urals, North Africa and North America (e.g. Saunders et
al., 1979.) These cycles are commonly asymmetric showing a rapid
deepening followed by slow shallowing. The marine flooding event at the
base of these transgressive-regressive cycles is often correlatable over vast
distances (e.g. the Homoceras beyrichianum marine band has been

recognised from the Urals, through Europe to western America).

Cyclical deposition in both the Dinantian and Silesian of western Europe

has been documented by numerous workers, (notably Ramsbottom, 1969;
1973, 1977, 1979; Ramsbottom et al., 1962; Calver, 1969; Holdsworth and
Collinson, 1988 and Martinsen, 1990, 1993), with the cycles termed
'cyclothems’, the smallest cycle seen within a mesothem (Ramsbottom,
1977) or 'minor lithological cycles' (Holdsworth and Collinson, 1988).
Essentially each cyclothem consists of limestone/shale/coal or
marine/non-marine shales with occasional sandstones, defined by a thin
marine ftlooding surface at the base, termed a 'marine band'. Salinity is
thought to be fully marine only at this horizon with a faunal cycle present
in the marine band representing the change from non-marine strata to fully
marine strata and back (Ramsbottom et al., 1962). The marine portion of
each of these cyclothems may only be a few cms thick and may represent
only 5% of the total thickness of the cyclothem (Ramsbottom, 1969),
however, from estimates of sedimentation rates and decompaction values
Holdsworth (1966) argued that the time indicated by the deposition of the

shaly deposits during marine bands may represent much of the time
available for the formation of the entire cyclothem. Ramsbottom (1977,
1979) has also grouped these smaller scale cycles into larger mesothems,
with an attempt to correlate these cycles worldwide made by Ross and Ross
(1985b). However, the validity of these cycles is questioned by Leeder (1988a)
and Holdsworth and Collinson (1988).

Similar cycles to those described from Europe have been documented from
the Appalachians and Midcontinent U.S.A. (e.g., Wanless and Shepard

(1936); Busch and Rollins (1984); Heckel (1977, 1986; Klein, 1990; Boardman
and Heckel, 1989).

The controlling factor on this deposition has been linked to glacio-eustatic
fluctuations during the Gondwanan glaciation by many workers (e.g.
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Wanless and Shepard, 1936; Crowell, 1978; Veevers and Péwell, 198'7;’Leeder

1988a), due to the asymmetric nature of the cycles, wide correlation,
periodicity and apparent correlation with the initiation of ice-sheet growth

in Gondwanaland. Other workers have also emphasised a tectonic
influence for the origin of the cycles (e.g. Bott and Johnson, 1967; Klein and
Willard, 1989). Ross and Ross (1985b) also mention that crustal processes
such as changes in the volume of ocean basins by heating or cooling of the
oceanic crust and increases or decreases in ocean trench activity or a
combination of these and the above factors may be responsible for eustatic
changes during the Carboniferous.

Previous estimates of the mean periodicity between marine bands (e.g.,
Leeder, 1988a) have used the Lippolt et al., (1984) time scale in which the
Namurian lasts 11 Ma and the stratigraphy of Ramsbottom (1969) of 64
marine bands in the Namurian, and resulted in a periodicity of 190 000
years. Heckel (1986) estimated the duration of Midcontinent major
cyclothems as lying within the range 0.235 to 0.393 Ma, with the minor
cyclothems recording a periodicity of 40 000 to 120 000 years. Similarly
Veevers and Powell (1987) calculate a period of 250 000 to 375 000 of glacial
boulder beds in western Australia, using the time scale of Harland et al.,

"'_'-""'-_'-q—'—_-w_-.!

It has been shown (Hays et al., 1976, Imbrie et al., 1984) that late Quaternary
glacio-eustatic changes were related to the Milankovitch parameters of
orbital cyclicity. The range of Carboniferous periodicity values has been
attributed to a Milankovitch-type orbital eccentricity forced cyclicity with
recurrence periods of 100 000 and 400 000 years by Busch and Rollins (1984),
Collier et al., (1990), Holdsworth and Collinson (1988) and Maynard, (1991),
with the spread in values resulting from the sum of the combination of
eccentricity, precession and obliquity cycles. (Additional distortion of the
periodicity’s calculated by different workers is likely to result from the use of
different time scales). Further calculation yields an average sea-level rise of
45 m (range 37-105 m) from the 100 000 year periodicity, which is analogous
to a 300-400 km transgressive landward shift in the position of the shoreline
of the modern Mississippi delta (Collier et al., 1990).

Thus, in summary the regions studied in this thesis were situated at low
latitudes during the mid-Carboniferous. Palaeoequatorial deposits of the

mid-Carboniferous are characterised by frequent (190 000 to 393 000 year) sea-
level fluctuations. These periodic changes resulted in the formation of

Introduction



-16-

cyclical deposits characterised by often deep water, marine transgressive
deposits at the base followed by regressive shallower water or
terrestrial/fluvial facies. Correlation between these cycles and between
basins is facilitated by the presence of a distinctive marine biota at the base of
the cycle, with commonly basins being linked infrequently and then, only
during transgressive periods. A glacio-eustatic origin for these cyclothems
due to Milankovitch-driven climatic fluctuations has been invoked by
many workers.

1.5 OUTLINE OF THE THESIS

This introductory chapter examines the background and aims of the project.

Chapter 2 describes the western European and American biostratigraphic
-schemes used in this study. The history of the mid-Carboniferous boundary

is discussed, together with the developments leading up to the final choice
of stratotype.

Chapter 3 provides the geochemical methodology utilised in this study.

The geological background to the mid-Carboniferous of Ireland
(predominantly the Clare Basin) is introduced in chapter 4. Studied mid-
Carboniferous sections are described to provide an understanding of the

basin history of the Clare Basin. Comparisons between the mid-
Carboniferous biostratigraphy of western Ireland and northern Britain are

made, together with inferences of sea-level changes.

Chapter 5 introduces current knowledge on the mode of formation and
occurrences of phosphorite deposits. The nature of mid-Carboniferous

phosphorite deposits of County Clare is described with a model provided for
their formation.

Chapter 6 provides geochemical paleoenvironmental determination of the
section spanning the mid-Carboniferous boundary at Inishcorker, County
Clare, Ireland Various geochemical techniques are described and employed
to determine geochemical facies through a period spanning the late
Arnsbergian to early Alportian. The combination of a number of

techniques elucidates the influence of sea-level changes on the Clare Basin
during the mid-Carboniferous.

Introduction
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Using the work presented in chapters 4, 5 and 6 a model for the deposition
of the mid-Carboniferous of the Clare Basin is presented in chapter 7.

Chapter 8 describes sections through the mid-Carboniferous of the southern
Antler Basin. Using detailed microfacies analysis and statistical methods,
the palaeoenvironment and faunal diversity across the mid-Carboniferous
boundary stratotype section at Arrow Canyon is investigated. Cross
correlation of the Arrow Canyon section with other sections in the Antler
Basin is made.

Chapter 9 discusses the choice of both the mid-Carboniferous boundary
stratotype and the defining faunal group. Previous cross correlation
schemes between Europe and America are presented. An attempt at a cross-
correlation between the two biostratigraphic schemes is made in the light of
recent work.

Chapter 10 forms the conclusions to this thesis and reviews the findings of
this work, together with some suggestions for future work.

Introduction



Chapter 2

MID-CARBONIFEROUS BIOSTRATIGRAPHY
AND THE MID-CARBONIFEROUS BOUNDARY

2.1 INTRODUCTION

This chapter explores the biostratigraphic background to the mid-
Carboniferous boundary, both in Britain and North America. The history of
the mid-Carboniferous boundary and the final choice of the mid-
Carboniferous boundary stratotype are discussed.

2.2 MID-CARBONIFEROUS BIOSTRATIGRAPHY

2.2.1  British biostratigraphy
2.2.1.1 Ammonoid biostratigraphy

The ammonoid biostratigraphy of Great Britain has been extensively
studied (é.g. Bisat, 1924, 1928; Moore, 1945; Ramsbottom et al., 1962;
Ramsbottom, 1977, 1979), and is the most complete ammonoid stratigraphy
across the mid-Carboniferous in western Europe, if not the world. The most
recent ammonoid biostratigraphy as defined by Riley (1993) and Riley et al.,
(1994) (shown in Table 2.1) is used in this study. The ammonoids occur at
discrete horizons (‘marine bands’) usually separated by barren strata from
the succeeding marine band. The individual horizons are named after a

distinctive ammonoid occurring at that horizon, although other
ammonoids are commonly present.

2.2.1.2 Conodont biostratigraphy

The works of Rhodes et al., (1969), Austin, (1973), Varker and Austin, (1974),

George et al., (1976), Johnston and Higgins, (1981), Metcalfe, (1981), Higgins

and Varker, (1982), Varker and Sevastopulo (1985), and Riley (1990, 1993)
have been used for determination of the ‘_D'inan'ti"an conodont zonation.

Mid-Carboniferous biostratigraphy
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Table 2.1 Late Brigantian and Namurian ammonoid stratigraphy and

the cross correlation with ammonoid stratigraphy for
western Europe.
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The studies by Varker, (1964), Varker and Austin, (1974) and Higgins (1975,

1985) and Riley et al., (1987) are used to define the Namurian and early
Westphalian conodont biostratigraphy.

Although the current conodont zonation of the Brigantian and Namurian
has primarily been developed from sections in England, it is commonly
used as a standard western European biostratigraphy. In all cases both single
and multielement species are referred to as cited in the relevant papers. The

conodont zonation used in this study is shown in Table 2.1 and is discussed
below.

Gnathodus bilineatus zone

Recognised by the first appearance of Gnathodus bilineatus and G.
praebilineatus together with the occurrence of Synclydognathus cuspidatus,
S. libratus, S. petilus, S. scalenus, Cavusgnathus cristatus, C. regularis, C.
unicornis, Gnathodus girtyi girtyi, G. homopunctatus, Hindeodus? cf.
cristulus, Lochriea commutata, Mestognathus beckmanni and
Neoprioniodus singularis.

The conodont assemblage zone ranges from the base of the Goniatites
hudsoni (B2a) to the early Neoglyphioceras subcirculare (P2b) ammonoid

zones (mid-Asbian to mid-Brigantian).
Lochriea mononodosa zone

Recognised by the first appearance of Locliriea mononodosa and
Mestognathus bipluti together with occurrences of Synclydognathus
cuspidatus, S. libratus, S. petilus, S. scalenus, Cavusgnathus cristatus, C.
reqularis, C. unicornis, Gnathodus bilineatus , G. girtyi girtyi, Hindeodus? cf.
cristulus, Lochriea commutata and Neoprioniodus singularis.

The first occurrence of Polygnathius nodosus occurs within this zone.
This conodont zone ranges from the early Neoglyphioceras subcirculare

(P2b) to the early Lyrogoniatites georgiensis (P2c) ammonoid zones (mid- to
late Brigantian).

Mid-Carboniferous biostratigraphy
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Gnathodus girtyi collinsoni zone

Recognised by the first occurrence of Gnathodus girtyi collinsoni together
with the occurrences of Synclydognathus cuspidatus, S. libratus, S. petilus, S.
scalenus, Cavusgnathus cristatus, C. naviculus, C. regula%is, C. unicornis,
Gnathodus bilineatus , G. girtyi girtyi, G. girtyi rhodesi, Hindeodus? cf.
cristulus, Kladognathus macrodentatus, Lochriea commutata, L.
mononodosa, Mestognathus bipluti, Neoprioinodus parvus, N. singularis,
Ozarkodina collinsoni and Polygnathus nodosus

—rh e gk

The Gnathodus girtyi collmsom zone ranges from the early Lyrogoniatites
georgiensis (P2c) biohorizon to the base of the Cravenoceras leion (Eqal)

marine band (late Brigantian to base Namurian).

-
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Kladognathus-Gnathodus girtyi simplex zone

Recognised by the first appearance of Gnathodus girtyi simplex and G. girtyi
sonige together with occurrences of Synclydognathus cuspidatus, S. petilus,
S. scalenus, Cavusgnathus claviger, C. naviculus, Gnathodus bilineatus , G.

girtyi girtyi, G. girtyi intermedius, G. homopunctatus,  Kladognathus
macrodentatus, Lochriea commutata, L. mononodosa, Mestognathus

bipluti, Neoprioinodus spathatus and Polygnathus nodosus

This conodont assemblage zone embraces the PendleianStage (E1)
Gnathodus bilineatus bollandensis zone

The lower limit of the zone is marked by the first appearance of Gnathodus
bilineatus bollandensis together with occurrences of Adetognathus
unicornis, Cavusgnathus claviger, C. naviculus, Gnathodus bilineatus
bilineatus, G. girtyi girtyi, G. girtyi intermediatus, G. girtyi soniae, Lochriea
mononodosa and Polygnathus nodosus.

- The zone ranges from the base of the Arnsbergian (E2) to the
lower part of the Nuculoceras nuculum (E2¢4) cyclothem.

Rhachistognathus minutus zone

The base of the zone is delineated by the appearance of Rhachistognathus
minutus. It appears as if this - zone can be recognised by the

Mid-Carboniferous biostratigraphy
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occurrence of Rhachistognathus minutus and Adetognathus gigantus. The
zone ranges from within the lower part of the Nuculoceras nuculum (E2c?)

cyclothem to the base of the Isoliomoceras subglobosum (Hj az)g_l_;a_fine band,

Declinognathodus noduliferus zone

The base of the zone is marked by the appearance of Declinognathodus

inaequalis, D. lateralis, D. noduliferus and Neognathodus bassleri together

with Adetognathus gigantus and Rhachistognathus minutus. The first
occurrence of D. japonicus occurs within this zone.

The Declinognathodus noduliferus zone ranges from the
secondlsohomoceras subglobosum marine band (H1a2) to top Alportian
(H2c?).

Idiognathoides corrugatus-Idiognathoides sulcatus zone

The base of the zone is marked by the entrance of Idiognathoides corrugatus,
I. macer, 1. sinuatus and I. sulcatus together with Declinognathodus
inaequalis, D. lateralis, D. noduliferus and Neognathodus bassleri.

This conodont assemblage zone corresponds to the Kinderscoutian Stage (R1
ammonoid zone).

Idiognathoides sinuatus-Idiognathodus primulus zone

The base of the zone is marked by the entry of Idiognathodus primulus,
together with the occurrence of Declinognathodus lateralis, 1. delicatus,
Idiognathoides attenuatus, 1. corrugatus, l. macer, 1. sinuatus, I. sulcatus and

Neognathodus bassleri. The entry of Streptognathodus nodosus occurs
within this zone.

This zone includes the Marsdenian (R2), Yeadonian (G1) and early
Westphalian A Stages (Gastrioceras subcrenatum).

Except for the Rhachistognathus minutus zone, all other zones have been

previously recognised in the works quoted above. This new zone is defined
since it contains a distinct low diversity fauna. It is represented in the strata
spanning the Arnsbergian-Chokierian boundary.

Mid-Carboniferous biostratigraphy
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2.2.2 American biostratigraphy.
2.2.2.1 Ammonoid biostratigraphy

Unlike European Namurian ammonoid occurrences along particular
horizons, the American ammonoids occur throughout the strata, thus the
Chesterian and Morrowan ammonoid biostratigraphy is defined in terms of

zones (cf. European Dinantian ammonoid zones) rather than marine bands.

The studies of Gordon, (1970), Saunders, (1973), Saunders et al,(1977),
Manger and Saunders (1980), Webster et al., (1984) and Titus (1992) have
been used to determine the American ammonoid biostratigraphy. No early
Pennsylvanian ammonoid zones are known from Nevada, and thus the
Mississippian and very early Pennsylvanian zones are those of the Antler
Basin (where a more complete record is available) and the younger

Pennsylvanian zones are those of Midcontinent. A hiatus is present in the
Midcontinent across the Mississippian-Pennsylvanian Boundary and thus
any lower Pennsylvanian assemblages have been removed; likewise in
Nevada an unconformity removed lower Pennsylvanian assemblages.
Thus, the composite biostratigraphy presented in Table 2.2 provides the full

known biostratigraphy across the boundary in America. (N.B. Cross

correlations with the conodont biostratigraphy are poorly known in the late
Chesterian).

2.2.2.2 Conodont biostratigraphy

The works of Collinson et al., (1962), Lane (1967), Webster (1969), Dunn

(1970), Collinson et al. (1971), Lane et al., (1971), Lane and Straka (1974), Lane
(1977), Sandberg et al. (1980), Lane and Baesemann (1982), Baesemann and

Lane (1985), Lane, Baesemann, et al., (1985), Weibel and Norby (1992) and

Poole and Sandberg (1991) have been used to delineate the Chesterian and

lower-middle Morrowan conodont stratigraphy of the U.S.A. Again, in all

cases both single and multielement species are referred to as cited in the
relevant papers. The conodont biostratigraphy is shown in Table 2.2.

bilineatus -Upper Cavusgnathus conodont zone

The base 1s delineated by the first occurrence of Gnathodus bilineatus, other

occurring conodonts include Cavusgnathus regularis, Cavusgnathus
unicornis, Cavusgnathus charactus, and Lochriea commutata.

Mid-Carboniferous biostratigraphy
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Table 2.2 Middle Carboniferous ammonoid stratigraphy and

the cross correlation with conodont stratigraphy for
the U.S.A.
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naviculus zone

The base of the zone is limited to the first occurrence of Cavusgnathus
naviculus and the upper limit by the disappearance of Cavusgnathus
cristatus and Kladognathus primus. Other occurring conodonts include
Cavusgnathus regularis, Cavusgnathus wunicornis, Gnathodus Dbilincatus,
Lochreia commutata and Gnathodus girtyi simplex.

UNnicornis zone

The top of the Adetognathus wunicornis zone corresponds with the
appearance of R. muricatus with the base defined by the appearance of the
zonal name-bearer. = Other conodonts noted as occurring within the
Adetognathus unicornis zone include Cavusgnathus altus, C regularis C.

naviculus, C. unicornis, Gnathodus bilineatus, Lochriea commutata and G.
girtyi simplex.

’

muricatus zone

Lower zone

The lower part of the zone is delineated by the occurrence of R. muricatus
below Adetognathus lautus. Conodonts occurring within this zone are
Adetognathus unicornis, Cavusgnathus naviculus, C. wunicornis,
Gnathodus bilineatus, Lochrieca commutatus, and G. girtyi simplex.

Upper zone

The upper muricatus zone delineated by the appearance of Ad. lautus.
Gnathodus bilineatus, Gnathodus girtyi simplex and Adetognathus
unicornis are also present within the zone.

noduliferus-primus zone

Lower zone

The base of the zone is marked by the first occurrence of Rhachistognathus
primus or Declinognathodus noduliferus. The lower zone is divided into
two parts, and is distinguished by the overlap in the upper ranges of G. girtyi

Mid-Carboniferous biostratigraphy
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simplex and G. bilineatus cf. bollandensis and the lower ranges of R.
primus and D. noduliferus.

Other conodonts occurring within the zone include Adetognathus lautus,
A. spathus, Lochrica commutata, and Rhachistognathus muricatus.

Upper zone

The top of the zone is defined by the lowest occurrence of either R. minutus
or Id. sinuatus., and is defined as the range of Declinognathodus
noduliferus and Rhachistognathus above Gnathodus bilineatus cf.

bollandensis and Gnathodus girtyi simplex.  Adetognathus lautus, and
Rhachistognathus muricatus also occur.

sinuatus-minutus zone
Lower zone

The base of the zone is defined with its lower limit coinciding with the first
appearance of Id. sinuatus or R. minutus, the lower part of the zone is
defined as the range of overlap of R. primus and R. minutus. Other
conodonts include Adetognathus lautus, Declinognathodus mnoduliferus
and Rhachistognathus muricatus.

Upper zone.

This zone is limited to the occurrence of Id. sinuatus or R. minutus, above
the range of overlap of R. primus and R. minutus, prior to the first
occurrence of Neognathodus symmetricus. It contains a similar fauna to
the lower part of the zone.

symmetricus zone

The Neognathodus bassleri symmetricus zone was defined as the range of
the name-bearer below the first occurrence of N. bassleri bassleri, with other
conodonts in the zone including Adetognathius lautus, Declinognathodus

noduliferus, Idiognathoides sinuatus, Rhachistognathus muricatus
Rhachistognathus minutus

Mid-Carboniferous biostratigraphy
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bassleri zone

1 basslem
The base is delineated by the first occurrence of N. bassleri;and the top by the
first appearance of Idiognathodus sinuosus. Other occurring conodonts
include Adetognathus lautus, Declinognathodus noduliferus,

Idiognathoides sinuatus and Rhachistognathus minutus, Rhachistognathus
muricatus.

sinuosus Zone

The zone is defined as the overlap in ranges of Idiognathodus sinuosus
with Neognathodus bassleri bassleri. Other conodonts occurring within the

zone include Adetognathus lautus, Declinognathodus noduliferus,
Idiognathoides sinuatus, Rhaclistognathus minutus.

Very recent work by Alan Titus (pers. comm. 1995) at the Nevada Test Site
has led to the discovery of Declinognathodus noduliferus at a much lower
position than it has previously been found (exact level not revealed). This

new work and possible cross correlations between the British and American
stratigraphies are presented and discussed in chapter 9.

2.3 THE MID-CARBONIFEROUS BOUNDARY

2.3.1 The need for a boundary.

To allow worldwide correlation for the Carboniferous System there needs to
be a common classification. Previously, Carboniferous Stratigraphic
schemes were developed on a regional basis, with three main schemes
operating independently in western Europe, North America and the C.I.S.
A proposal at the eighth International Carboniferous congress in Moscow
(1975) for a unified international classification presented a scheme utilising
established units from western Europe, the Soviet Union and North
America (Bouroz et al., 1977, 1978a, 1978b). By using previously defined
units, it was felt that changes could be kept to a minimum. The original
proposals for the subdivision of the Carboniferous utilised the

Mississippian and Pennsylvanian subsystems with further subdivision into
series and stages shown in Table 2.3 below.

Mid-Carboniferous biostratigraphy
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Table 2.3. International Classification of the Carboniferous System
proposed at the 8th International Carboniferous Congress in
Moscow, 1975. (From Bouroz et al, 1977).

sopmanen | sonminn_

Pennsylvanian |Stephanian Kasimovian
i

Carboniferous Unnamed Bashkirian

Serpukhovian
Viséan
Tournaisian

Mississippian Mississippian

At the International Carboniferous Congress Meeting in Beijing, 1987 steps
were taken to formally define the Carboniferous system. It was proposed
that:

“The primary division of the Carboniferous shall be into two not three
divisions, and that the boundary between the two divisions shall be taken at

the level selected...as the mid-Carboniferous boundary and that each of the

two divisions of the Carboniferous be recognised as a subsystem.” (Engel,
1989).

A stratotype defining the mid-Carboniferous boundary is therefore needed
as a worldwide reference point.

2.3.2 The level of the mid-Carboniferous Boundary

- 23.2.1 Preliminary ideas

The boundary between the Mississippian and Pennsylvanian has previously
been investigated by a working group of the S.C.C.S. (initiated in 1971). It
was found that the boundary between the two systems over much of the

U.S.A. is marked by a regional unconformity and the group concluded that
the Mississippian-Pennsylvanian boundary probably correlated with the
base of the European Reticuloceras zone (Gordon and Mamet, 1978).

The 1975 proposal for the subdivision of the Carboniferous followed the
ideas of the Mississippian-Pennsylvanian Working Group and defined the

Mid-Carboniferous biostratigraply
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mid-Carboniferous boundary as occurring at the base of the Kinderscoutian
(R1) in western Europe, with the appearance of Reticuloceras, although
other possible levels such as at the base of the Chokierian (H1) and
Westphalian A (G1) were also noted.

Brenckle et al., (1977) proposed that the base of the H zone would be more
uniformly recognised in both the ammonoid and conodont record.

Responding to a proposal of Bouroz et al., (1977), a call was issued by the
Subcommission on Carboniferous Stratigraphy to synthesise all available
biostratigraphic data for all major mid-Carboniferous fossil groups to
evaluate significant changes that might provide useful mid-Carboniferous
boundary choices. A two-day symposium entitled ‘The mid-Carboniferous
boundary’ was organised at the General Meeting of the Subcommission on
Carboniferous Stratigraphy (S5.C.C.S.) of the International Union of
Geological Sciences in Leeds, September, 1981. Much of the biostratigraphic
data evidence for the mid-Carboniferous boundary (Ramsbottom et al., 1982)
was presented and the results of the different fossil groups and preferred
boundaries are shown in Table 2.4.

Table 2.4 Preferred boundaries for specific palaeontological groups
from data presented at the mid-Carboniferous boundary
meeting, Leeds, 1981 (Ramsbottom et al, 1982).

Fauna Preferred boundary level

Ammonoids basal Chokierian

Conodonts basal Chokierian

Foraminifera basal Chokierian and partly basal Kinderscoutian

Brachiopods basal Kinderscoutian

Plant megafossils within the upper Arnsbergian
Palynomorphs within the upper Chokierian (Northern Europe)
or basal Kinderscoutian (North America).
within the upper Alportian
between the basal Chokierian and basal Kinderscoutian

Corals
Crinoids

e e S e o ry et gt b e f e P b i) M O L e

It thus appeared than the main candidates for the level of the mid-
Carboniferous Boundary were at the base of the Chokierian (H1) or at the

base of the Kinderscoutian (R1). As well as the biostratigraphic evidence it
was noted that there was a lack of information of groups during the
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Chokierian and Alportian, and also that these stages are commonly absent
or show an impoverished fauna.

2.3.2.2 The mid-Carboniferous Working Group

At the Leeds Meeting it was decided to establish an ad-hoc working group of
the S.C.C.S. under the chairmanship of Dr. Richard Lane to:-

“.investigate and evaluate the information available with regard to a

possible ‘lower/middle’ Carboniferous boundary with emphasis on
biostratigraphy from all parts of the world based on the information

provided and views expressed at the 1981 symposium in Leeds.” (Lane and
Manger, 1985a; 1985b).

The procedure adopted by the ad-hoc committee in formalising the
boundary was to first decide on the stratigraphic level and then
subsequently examine potential stratotypes.

A comprehensive report by the ad-hoc committee was submitted at the next
S.C.C.S. Meeting in Madrid 1983 where recommendations on the choice of
biostratigraphic level were submitted (Lane, Bouckaert et al., 1985) and later

approved by the Titular Members of the 5.C.C.S ( Saunders, 1984):-

“1) The mid-Carboniferous boundary corresponds approximately to the
time of change from Eumorphoceras to Homoceras faunas. However, the
known distribution of Homoceras is not a suitable taxon for worldwide
recognition of the boundary as it is restricted geographically to Europe and
thus not a suitable defining taxon worldwide.

2) Conodonts were the most widely distributed faunal group during the
Carboniferous and are therefore used to define the mid-Carboniferous
boundary. The widespread conodont Gnathodus girtyi simplex gives rise to
Declinognathodus noduliferus at approximately the same stratigraphic
level. Thus, the first appearance of Declinognathodus noduliferus marks
the mid-Carboniferous boundary. Where Declinognathodus noduliferus is
absent (in the Gondwana realm) the top of the range of Gnathodus girtyi
simplex approximates the same level.

3) Other species and separate fossil groups can also be utilised to recognise
or approximate the mid-Carboniferous boundary. The foraminifers

Globivalvulina sp. D, Millerella pressu and Millerella marblensis are
important stratigraphic markers during the mid-Carboniferous.

Mid-Carboniferous biostratigraphy
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Adetognathus lautus, Rhachistognathus primus and Rhachistognathus
minutus were also noted as being useful marker conodonts.”

Lane, Baesemann and Groves (1985) summarised the points against
choosing the base of the Kinderscoutian as the mid-Carboniferous
boundary. It was stated that the lower limit of the ammonoid Reticuloceras
Zone is not consistent at three important type localities (type
Kinderscoutian, type Morrowan and type Bashkirian). The base of the
Kinderscoutian is defined by the appearance of Reticuloceras circumplicatile

whilst the correlative base of the Reticuloceras Zone (Retites semiretia) in

Arkansas contains Reticuloceras tiro and R. wainwrighti (and is dated as
equivalent to the western European R1b2 ammonoid horizon, see section

9.2.1) The Bashkirian type section in C.I.5. does not even contain
reticuloceratids.

Following the 1983 Madrid Meeting Richard Lane was charged with the
formation and selection of an actual Working Group to begin deliberations
for the selection of a stratotype. The working group consisted of 20 persons
representing 12 countries. The biennial meetings of the S.C.C.S. since 1983
have provided much discussion on the merits of potential stratotypes
together with more general discussion. Relevant field sites and potential
stratotypes were visited in relation to these meetings at separate times by
members of the working group.

2.3.3 Potential stratotype sections

Guidelines were issued to the Working Group for use in their evaluation of
potential sections (Engel, 1990):-

1) The chosen potential locality should be fully accessible without logistical,
political or other restrictions.

2) The section should be reasonably continuous (or composite) with good

exposure, a lack of structural complexity, and a diverse and abundant fossil
content.

3) Faunal studies of evolving lineage’s should be completed or at least well-
advanced; ideally they should include foraminifera, conodonts, ammonoids

or spores where appropriate.
4) The chosen section(s) should have available fossil lists based on the first

occurrence of relevant species on a sample-by-sample basis through the
critical interval.
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5) Each section will require information about its geological setting and the

presence of any tectonic influences. The sedimentology needs to have been
documented or at least be under active investigation.

In addition, as many fossil groups as possible should be present in the
stratotype section to allow correlation with sections outside the

subequatorial paleolatitudinal belt (where particular key fossil groups are
not represented due to palaeoclimate or other differences). Companion
studies also need to be undertaken in paralic or non-marine sections so that

other fossil groups represented in these environments may be studied
(Riley et al., 1987).

A total of 11 sections have been proposed as potential stratotype sections
since 1983 (Table 2.5).

For various reasons (e.g.. imprecise boundary location, political instability
etc.) many of the sections were discounted leaving three main candidates:-

1) Stonehead Beck, Cowling, North Yorkshire, U.K.
2) Arrow Canyon, Nevada, US.A.

3) Aksu-1, Gissar Range, South Tien Shan, Uzbekistan.
2.3.3.1 Stonehead Beck, Cowling, West Yorkshire

The section at Stonehead Beck is situated 35km WNW of Leeds and occurs
within a 40m thick section of the Sabden Shales. The exposed strata consist
predominantly of shales with a thin sandstone at the base; occasional silty
horizons also occur. Deposition was in a low energy basinal
palaeoenvironment. The fauna is concentrated along discrete levels
(‘marine bands’) often associated with calcareous nodules or beds, and
consists of ammonoids, bivalves, gastropod spat, rare brachiopods and
conodonts (not restricted to the so-called marine bands).

Ramsbottom et al., (1983) first mentioned the section at Stonehead Beck as a
possible reference section for the mid-Carboniferous boundary at the
S.C.C.S. Meeting in Madrid 1983, and stated that the mid-Carboniferous
boundary occurred at the base of the Chokierian.  Riley et al.,, (1987)

formally proposed the section as a possible stratotype section and

thoroughly studied the biostratigraphy (Figure 2.1). The conodont defined
mid-Carboniferous boundary was re-evaluated as occurring 0.40 m below

Mid-Carboniferous biostratigraphy
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Carboniferous boundary at
Stonehead Beck. Scale 1:240. (From Owens et al., 1990). The

Conodont ranges across the mid-

Figure 2.1

mid-Carboniferous boundary is marked by the appearance of

Declinognathodus s.l., which first appears in sample 26032.
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the base of the Hla2 marine band (ie., 9.4 m above the Arnsbergian-
Chokierian boundary), with the appearance of Declinognathodus inaequalis.

The biostratigraphy for this section was refined by Varker et al., (1990, 1994)
and Owens et al., (1990). It was found that the upper part of the Gnathodus
.y bollandeasis : :
bilineatus,zone was represented solely by Rhachistognathus minutus. The
Rhachistognathus biofacies typically represents a shallow water fauna and
additionally evidence for a shallower water environment at the close of the
Arnsbergian is provided by the presence of the nearshore alga Botryococcus

(Varker et al., 1990, 1994; Owens et al. , 1990)

There is no change in the composition of miospore populations across the
boundary at Stonehead Beck, with the boundary lying in the middle of the

SO (Lycospora subtriquetra-Kraeuselisporites ornatus) zone. It has been
noted (Owens, 1982) that two other miospore species may be important in
delineating the boundary. Schulzospora campyloptera occurs up to 5 m
below the Arnsbergian/Chokierian boundary and Grandispora spinosa has
its youngest occurrence 16 m above the same boundary at Stonehead Beck.

There is good evidence that there i1s no break in deposition at the locality as,
apart from there being no physical evidence of a break, there is a complete
ammonoid and conodont zonal sequence. Geochemical work (Sr and clay
mineral studies) by Riley cf al., (1994) also provided supporting evidence
that there is continuous deposition through the mid-Carboniferous at this
locality.

The section at Stonehead Beck is already the boundary stratotype for the
Arnsbergian/Chokierian boundary (Ramsbottom ¢t al., 1981) and the type
locality for Isoliomoceras subglobosum (Bisat, 1924; Riley, 1987). The
section has been bought by English Nature and designated a Site of Special

Scientific Interest (5.5.5.1.) to guarantee its preservation (John Varker, pers
comm., 1995).

The section was visited by the working group in 1985 (Lane, 1988; Skipp et
al., 1989).

2.3.3.2 Arrow Canyon, Nevada.

The potential stratotype in Nevada is situated 80 km north-east of Las
Vegas. Arrow Canyon exposes formations from late Devonian to Permian

Mid-Carboniferous biostratigraphy
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in age with rocks of mid-Carboniferous age being represented by the Indian
Springs and Bird Spring Formations. The Chesterian Indian Springs
Formation (early Namurian) is 70 m thick and consists of interbedded
limestones and shales in the lower part with bioclastic limestones in the
upper. The Bird Spring Formation is 750 m thick and comprises sandy,
cherty bioclastic limestones. The Bird Spring Formation ranges in age from
Chesterian (late Mississippian) to Early Permian. Both formations are very
fossiliferous with a shallow water fauna comprising conodonts,
foraminifera, ostracods, bivalves, algae, brachiopods, bryozoa, corals and
crinoids. The section at Arrow Canyon is further detailed in chapter 8.

Due to the virtually continuous exposure much work has been centred on
the area. Langenheim and his students from the University of Illinois have

published numerous reports on various aspects of the palaeontology and

geology of the Arrow Canyon Section (e.g., Langenheim et al., 1962;
Langenheim and Langenheim, 1965). After being recognised from these

early works as being one of the most depositionally complete exposures of
Late Mississippian-Early Pennsylvanian strata in the USA, further

biostratigraphic work (Webster and Lane, 1967; Webster, 1969) was
conducted with the result that the section became the basis for conodont
zonation in the USA (e.g., Lane and Baesemann, 1982).

Lane, Baesemann et al., (1985) proposed Arrow Canyon as a potential
stratotype due to its extensive exposure and completeness. The
Mississippian-Pennsylvanian boundary occurs within the lower part of the
Bird Spring Formation. The actual boundary shown by the presence of
Declinognathodus noduliferus occurs “ less than 1m below a conglomeratic

horizon” (Lane, Baesemann et al,. 1985) in the lower part of the Bird Spring
Formation ™ _within the togm‘iof a limestone bed, 85.4 m above the base of

the Indian Springs (Wé%éter et al., 1985) (Figure 2.2). Prior to this work it
was thought that the unconformity shown by the conglomerate marked the

Mississippian/Pennsylvanian boundary.

There are multiple faunal events in the 9 m boundary interval which do
not occur at the same stratigraphic levels. Foraminiferal and brachiopod
zonation schemes have been erected for the Arrow Canyon section,

however they do not coincide with each other nor with the conodont
zonation.

Mid-Carboniferous biostratigraphy
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Figure 2.2 Ranges of important conodonts, foraminifera and
brachiopods in a 30 m interval of the Bird Spring Formation
across the mid-Carboniferous boundary at Arrow Canyon.

'A’ numbers are spaced every 1.5 m. Numbers to the right of
the stratigraphic column are sample positions. Taxa from A.
unicornis to Id. minutus are conodonts, from E. robertsoni
to M. pressa are calcareous foraminifera and the remainder

are brachiopods. Sequence between A53 and A55 is not scale.
(From Lane et al., 1985).
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The working group visited the section in 1989 and it was suggested that the

section potentially was a good choice for the mid-Carboniferous boundary
stratotype. However, it was noted that there were imperfections at the

locality although these were stressed to be at the level of the conglomerate
above the Mississippian-Pennsylvanian boundary (Engel, 1990).

2.3.3.3 Aksu-1 Section, Gissar Ridge, South Tien Shan, Uzbekistan.

The Aksu-1 section is situated in the Surchandarjinskaya district of

Uzbekistan, on the south point of the Surkhantau Ridge (part of the Gissar
Ridge), Tien Shan. Nemirovskaya and Nigmadganov (1992) proposed the
20 m thick section, which is exposed on the left bank of the Aksu River

south of the village of Badava. = The lower part of the section consists of
micritic and interbedded cherts of the Badavinskaya Suite and contains

Eumorphoceras ammonoids. The overlying Suffinskaya Suite is
homoceratid-bearing and comprises interbedded shales, cherts and
limestones (Figure 2.3).

A deep water fauna is present in the section at Aksu and includes
conodonts, ammonoids, foraminifera, brachiopods and other groups. A co-

occurrence on one bedding plane of the Eumorphoceras and Isohomoceras
faunas is evident. The Isoliomoceras faunas in this section also occur with

Idiognathoides and Neognathodus conodont faunas and thus have a longer
time range than the British sections.

It was suggested (Nemirovskaya and Nigmadganov, 1992) that the overlap
in eumorphoceratid-homoceratid ammonoid ranges and the presence of

intermediate conodont species (e.g., Gnathodus postbilineatus) suggest that
the Aksu section is one of the most complete candidate sections,

Eva Paproth (Chairman S5.C.C.S5.) visited and reported to the
Subcommission on the site in 1993

2.3.4 The decision

The procedure adopted by the L.U.G.S. Subcommission on Carboniferous

Stratigraphy in the deciding a stratotype is detailed by Bouroz et al., (1980).
Basically the s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>