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Abstract
This thesis concerns the representation theory of diagram algebras and related

problems. In particular, we consider subalgebras and generalisations of the partition

algebra. We study the d-tonal partition algebra and the planar d-tonal partition

algebra. Regarding the d-tonal partition algebra, a complete description of the

J -classes of the underlying monoid of this algebra is obtained. Furthermore, the

structure of the poset of J -classes of the d-tonal partition monoid is also studied

and numerous combinatorial results are presented. We observe a connection between

canonical elements of the d-tonal partition monoids and some combinatorial objects

which describe certain types of hydrocarbons, by using the alcove system of some

reflection groups.

We show that the planar d-tonal partition algebra is quasi-hereditary and generically

semisimple. The standard modules of the planar d-tonal partition algebra are

explicitly constructed, and the restriction rules for the standard modules are also

given. The planar 2-tonal partition algebra is closely related to the two coloured

Fuss-Catalan algebra. We use this relation to transfer information from one side to

the other. For example, we obtain a presentation of the 2-tonal partition algebra

by generators and relations. Furthermore, we present a necessary and sufficient

condition for semisimplicity of the two colour Fuss-Catalan algebra, under certain

known restrictions.
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Chapter 1

Background

We devote this chapter to set up the notation of the thesis and recall some necessary

background for the later chapters. While we are developing the notation, we state

the aims of this thesis, and record some of the history of the development of this

area of research.

In section 1 we define the partition algebras. Roughly speaking the partition algebras

are a tower of finite dimensional algebras that possess a basis which can be described

by diagrams. Multiplication of the basis can be described by concatenating of

diagrams. Many well known algebras are embedded in the partition algebra, for

example the symmetric group algebra, Temperley-Lieb algebra, full transformation

semigroup algebra, and the Brauer algebra, see Figure 1.4. In the first section

we define all the mentioned algebras and describe their relation with each other.

Further, we define two other new classes of algebras which are going to be the main

focus of the thesis, namely the d-tonal partition algebra and the planar d-tonal

partition algebra.

The Schur-Weyl duality phenomenon relates the representation theory of some

subgroups of the general linear group with some subalgebras of the partition algebra.
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Describing this phenomenon is going to be the main concern of the subsection 1.1.4.

In Theorem 1.1.9 we see the d-tonal partition algebra occurs naturally as a centraliser

algebra of the unitary reflection groups.

In section 2, we formulate the questions that we would like to answer regarding

the representation theory of the d-tonal partition algebra and the planar d-tonal

partition algebra in the later chapters. In short, we would like to know the answer

of the following questions, whether these algebras are simisimple or not? What

are precisely the simple modules? Can we describe the blocks? Possibly in a

geometrical way by using the action of some reflection groups, and what are their

Cartan matrices? The answer to these questions is known, at least over the field of

complex numbers, for the partition algebras. To demonstrate the aims of this thesis,

in section 2, we recall the known answers for the above questions in the case of the

partition algebra.

Beside recalling the definition of Green’s relations about monoids one of the purposes

of section 3 is to state the so called the Clifford-Munn-Ponizovskĭi theorem. This

theorem describes the relation between the J -classes of a finite monoid and the

irreducible representations of its monoid algebra. One can look at Clifford-Munn-

Ponizovskĭi theorem as one of the motivations for Chapter 2, since in Chapter 2 of

this thesis we give a complete description of the J -classes of the underlying monoid

of the d-tonal partition algebra.

The final section of this chapter concerns reminding the reader of the definition of

two closely related classes of finite dimensional algebras, namely quasi-hereditary

algebras and cellular algebras.
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1.1 The partition algebra Pn(δ).

The partition algebra is defined by Martin in [52] as a generalisation of two

dimensional statistical mechanics into higher dimensions. In this section we recall

the definition of the partition algebra and some of its subalgebras.

1.1.1 The basic partition category

Fix n,m, l ∈ N, define n := {1, 2, . . . , n}, n′ := {1′, 2′, . . . , n′}, n′′ := {1′′, 2′′, . . . , n′′}.

Consider the following set maps:

ι+ : n ∪m′ → n′ ∪m′′

i 7→ i′

and

ι− : n ∪m′′ → n ∪m′

i 7→ i for i ∈ n

i′′ 7→ i′ for i ∈ m

Denote by PS the set of all set partitions of a given set S. Let e ∈ Pn∪m′ with parts

e1, e2, . . . , ek then we define ι+(e) := {ι+(e1), ι+(e2), . . . , ι+(ek)}, similarly we define

ι−(f) where f ∈ Pn∪m′′ .

There is a bijection between the set of all equivalence relations on S and PS. For a

partition d ∈ PS we denote by d̂ the equivalence relation obtained from d.

For a ∈ Pn∪m′ and b ∈ Pm∪l′ define their multiplication a◦b to be the corresponding

partition to the equivalence relation ι−((â ∪cl ι̂+(b))�n∪l′′) in Pn∪l′ , here â ∪cl ι̂+(b)

denotes the smallest equivalence relation containing â and ι̂+(b), and �n∪l′′ denote

the restriction to the set n ∪ l′′. We will give an example when we define the notion

of diagram.

For a positive integer n, let 1n = {{1, 1′}, {2, 2′}, . . . , {n, n′}}.
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Proposition 1.1.1 (Proposition 1 [52]). The multiplication ◦ defined above is

associative. Furthermore, for any a ∈ Pm∪l′ we have 1m ◦ a = a = a ◦ 1l.

The basic partition category , denoted by (N,P−∪−, ◦), is constructed in the following

way: the objects are given by natural numbers. The morphisms are given by the

set Pm∪l′ , for any m, l ∈ N. The composition of morphisms is given by ◦.

1.1.2 Partition diagrams

In this subsection we give an alternative useful construction to the objects of the

basic partition category.

An (n,m)-partition diagram (or just a diagram when it is clear from the context) is

a graph drawn inside a rectangle with n vertices positioned on the top edge labelled

by 1, 2, . . . , n from left to right, and m vertices on the bottom edge labelled by

1′, 2′, . . . ,m′ from left to right, for example see diagram a in Figure 1.1.

The connected components of an (n,m)-partition diagram determines a partition of

n∪m′. Two such diagrams are defined to be equivalent if they determine the same

partition. On the other hand any partition of n ∪m′ gives an equivalence class of

(n,m)-diagrams, by letting two vertices be in the same connected component if and

only if they are in the same part. Using the above correspondence we use the same

symbol for a partition and its equivalence class of diagrams.

Example 1.1.2. The set partition {{1, 4}, {2, 5′}, {3, 1′}, {5}, {2′, 3′, 4′}} of 5 ∪ 5′

is represented by the diagram a in Figure 1.1.

Given an (n,m)-partition digram a and an (m, l)-partition diagram b we define their

multiplication to be an (n, l)-diagram a?b, in the following way. Place the digram a

above the digram ι+(b) and stack them in the matching vertices, denote the resulting

diagram by a ?′′ ι+(b). Then remove all the connected components that lie entirely

in the middle. Thereafter remove the vertices that come from m′ without causing
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1′ 5′

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

1 2 3 4 5

1′ 2′ 3′ 4′

a =

b =

a ?′′ ι+(b) = a ? b =

1′ 2′ 3′ 4′

1 2 3 4 5

1 2 3 4 5

1′′ 2′′ 3′′ 4′′

Figure 1.1: Example of the product of partition diagrams

any cut in the strings that they are lying on. This gives a partition of n∪ l′′, denote

it by a ?′ ι+(b). Finally set a ? b := ι−(a ?′ ι+(b)). See Figure 1.1. The operation ?

is associative, see for example Proposition 4.7 of [55] .

Lemma 1.1.3 (Section 4 [55]). For a ∈ Pn∪m′ and b ∈ Pm∪l′, we have a?b = a◦b.

We recall from Section 6 of [55], the horizontal product ⊗ : Pn∪m′ × Pk∪l′ →

Pn+k∪(m+l)′ is given by placing diagrams side by side in a new diagram, see Figure

1.2 below.

A BB =⊗ A

Figure 1.2: Horizontal product of diagrams

Example 1.1.4. Let n = 3,m = 1, k = 2 and l = 4. If a = {{1, 1′}, {2, 3}} and

b = {{1, 4′}, {2, 1′, 2′, 3′}} then a⊗ b = {{1, 1′}, {2, 3}, {4, 5′}, {5, 2′, 3′, 4,′ }}.

Note that the horizontal product gives the basic partition category a monoidal

structure, see [55].
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In Figure 1.3 we defined some special elements in the partition category. As a set

k − vertices

mk :=

k − vertices

uk :=

Figure 1.3: The elements uk and mk

mi = {{1, , 2, . . . , i, 1′, 2,′ , . . . , i′}} and ud = {{1, 2, . . . , d}, {1′, 2′, . . . , d′}}. We set

m⊗ki := mi ⊗mi ⊗ · · · ⊗mi
k− times

and u⊗kd := ud ⊗ ud ⊗ · · · ⊗ ud
k− times

, where k + 1, d, i ∈ Z>0.

Note that the empty set is the identity with respect to ⊗ in (N,P−∪−, ◦).

1.1.3 The partition algebra Pn(δ) and some of its

subalgebras.

The pair (Pn∪n′ , ◦) is a monoid with identity 1 := 1n, denote it by

Pn := (Pn∪n′ , ◦) (1.1)

and call it the partition monoid.

Definition 1.1.5 (Partition algebra, see Definition 10 in [52]). Let R be a

commutative ring, δ ∈ R and n ∈ N. The partition algebra, denoted by Pn(δ),

is an associative R-algebra with identity 1 and defined as follows. The Pn(δ) is a

free R-module has basis given by the set Pn, that is Pn(δ) = R-span (Pn), and the

multiplication of basis elements e, d ∈ Pn is given by

d.e := δkd,ed ◦ e (1.2)

where kd,e is the number of connected components removed when we multiply d and

e.
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From now on we do not write the ◦ and . while multiplying its elements whenever

we believe it is clear from the context.

Let τ = {{1, 2′}, {2, 1′}}, we define the following elements:

sk := m⊗k−1
1 ⊗ τ ⊗m

⊗(n−k−1)
1

µi := m⊗i1 ⊗m2 ⊗m
⊗(n−i−2)
1

νj := m⊗j1 ⊗ u1 ⊗m
⊗(n−j−1)
1

(1.3)

Where 0 ≤ i, k − 1 ≤ n− 2 and 0 ≤ j ≤ n− 1, and m0
1 = φ.

In the next theorem we present a characterisation of the partition algebra as an

abstract algebra defined by generators and relations.

Theorem 1.1.6 (see [25]Lemma 35,[35]Theorem 1.11). For δ ∈ F the partition

algebra Pn(δ) is presented by generators µ0 . . . ,µn−2,ν0, . . . ,νn−1, s1 . . . , sn−1

subject to the following relations:

s2
i = 1

si+1sisi+1 = sisi+1si

sisj = sjsi

ν2
i = δνi, µ2

j = µj

siµi−1 = µi−1si = µi−1

siνi−1νi = νi−1νisi = νi−1νi

νiνj = νjνi

µiµj = µjµi

νiµj = µjνi, siνj = νjsi

νi = siνi−1si

µi = sisi+1µi−1si+1si

µi = µiνjµi

1 ≤ i ≤ n− 1,

1 ≤ i ≤ n− 2,

| i− j |> 1,

0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2

1 ≤ i ≤ n− 1

0 ≤ i, j ≤ n− 1

0 ≤ i, j ≤ n− 2

j 6= i, i+ 1

i 6= j − 1, j

1 ≤ i ≤ n− 1

1 ≤ i ≤ n− 2

j = i, i+ 1

(1.4)
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Lemma 1.1.7. Let R be a commutative ring and δ ∈ R. Let M be a submonoid

of Pn. Denote by RM the free R-module with a basis given by the set M. Then

(RM, .) is a subalgebra of the partition algebra (Pn(δ), .).

Proof. To prove the Lemma it is enough to show that RM is closed under . , but

this follows from the fact that M is a submonoid of the partition monoid.

We call M the underlying monoid of the algebra RM.

For d, e ∈ Pn and p ∈ d, we say p is a propagating part if p ∩ n 6= φ and

p∩n′ 6= φ otherwise call it a non-propagating part . We denote by #(d) the number

of propagating parts of d. one can easily show that

#(de) ≤ min({#(d),#(e)}). (1.5)

A non-propagating part p ∈ d is called northern if p ⊆ n, and it is called southern

if p ⊆ n′. It is straightforward to see that a non-propagating part is either northern

or southern.

For example, the part {1′, 2′, 3′, 4′} ∈ u4 ⊗ m2 ∈ P6 is a southern non-propagating

part but {5, 6, 5′, 6′} ∈ u4 ⊗m2 is a propagating part, and #(u4 ⊗m2) = 1.

A partition of d ∈ Pn∪m′ is called planar if the equivalence class of diagrams of d

contains a diagram with the property that no two edges, or strings, cross each other.

Denote the set of all planar partitions of n∪n′ by T 1
n , we shortly explain the reason

behind this notation.

For example, u2⊗m1 ∈ T 1
3 is planar, but the partition {{1, 2′}, {2, 1′}, {3, 3′}} ∈ P3

is not planar.

In the rest of this section we use Lemma 1.1.7 to define some subalgebras of the

partition algebra.
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Let T Ln := {d ∈ T 1
n | |p| = 2 for any p ∈ d}. The set T Ln with the operation ◦ is

a monoid and it is called the Temperley-Lieb monoid, see [78] and [51].

Lemma 1.1.8 (cf. Equation 1.5 [35], [51]). The set T 1
n with the operation ◦ is a

submonoid of Pn. Moreover, we have T 1
n ' T L2n as a monoid.

The Temperley-Lieb algebra, see [78], denoted by T Ln(δ), is a subalgebra of Pn(δ)

with the basis given by the set T Ln. The structure of Temperley-Lieb algebra is

well understood and we refer the reader to [50, 51, 68, 79] for the representation

theory of T Ln(δ). Figure 1.4 describes where the Temperley-Lieb algebra is located

in the poset of some other subalgebras of the partition algebra.

The Brauer monoid [9], denoted by Bn, defined by Bn = {d ∈ Pn∪n′ | |p| =

2 for each p ∈ d} is a submonoid of the partition monoid Pn. Using Lemma 1.1.7

one can define the Brauer algebra as a subalgebra of the partition algebra, denoted

by Bn(δ). See Figure 1.4 for the location of Bn(δ) in the poset of subalgebras of the

partition algebra that we are interested in here. The representation theory of the

Brauer algebra over the field of complex numbers (that is R = C) has been studied

extensively. The closest reference to the kind of questions that we are interested in

and would like to answer for our algebras (the planar d-tonal partition algebras and

the d-tonal partition algebras ) in this thesis are answered for the Brauer algebras

in [13, 56, 70].

The symmetric group, denoted by Sn, defined by Sn = {d ∈ Pn∪n′ | |p ∩ n| =

|p ∩ n′| = 1 for each p ∈ d} is a subgroup of the partition monoid Pn. Using

Proposition 1.1.7 one can define the symmetric group algebra as a subalgebra of the

partition algebra, denoted by RSn. See Figure 1.4 for the location of RSn(δ) in the

poset of subalgebras of the partition algebra. Note that the symmetric group algebra

does not depend on the parameter δ, since #(d) = n for each d ∈ Sn. References

for the representation theory of the symmetric group are [42, 71].

The full transformation monoid, cf. [28, 39], Tn = 〈Sn ∪ {τn}〉, where τn =
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T Ln(δ)

T 2
n(δ), T 3

n(δ), . . . , T dn(δ), . . .

T 1
n(δ)

RSn

RTn Bn(δ)

P2
n(δ),P3

n(δ), . . . ,Pdn(δ), . . .

Pn(δ)

. . .

. . . . . .. . .

. . . . . .

. . .. . .. . .

Figure 1.4: A poset describes the embedding of some subalgebras of the partition

algebra.

{{1, 2, 1′}, {2′}, {3, 3′}, . . . , {n, n′}}, is also a submonoid of the partition monoid.

Similar to the symmetric group one can define the monoid algebra of the full

transformation monoid , denote it by RTn. Hewitt and Zuckerman in [37] initiated

the representation theory CTn, see Theorem 3.2 [37], and they showed that the

irreducible representations of CTn are indexed by the union of the sets of partitions

of of k, where 1 ≤ k ≤ n. Putcha in [66] Theorem 2.1 constructed the simple

modules of CTn, and in [67] Theorem 4.3 he showed that CTn has two blocks.

Further, Steinberg recently in [76] computed the global dimension of CTn.

We describe the reminder parts of the Figure 1.4 in the next section.
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1.1.4 Schur-Weyl duality for some subalgebras of the

partition algebra.

Let N be a positive integer fix a basis {e1, . . . , eN} for an N -dimensional C-vector

space V , then EndC(V ⊗n) ' MNn×Nn(C). The following map which is defined on

the generators of Pn(N) is a morphism of C-algebras:

ρN : Pn(N)→ EndC(V ⊗n)

µi 7→ µ̂i

νi 7→ ν̂i

si 7→ ŝi

(1.6)

Where

µ̂r(ei1 ⊗ · · · ⊗ ein) = δir+1,ir+2ei1 ⊗ · · · ⊗ ein ,

ν̂r(ei1 ⊗ · · · ⊗ ein) =
N∑
k=1

ei1 ⊗ · · · ⊗ eir−1 ⊗ eik ⊗ eir+1 ⊗ · · · ⊗ ein

ŝr(ei1 ⊗ · · · ⊗ ein) = ei1 ⊗ · · · ⊗ eir−1 ⊗ eir+1 ⊗ eir ⊗ eir+2 ⊗ · · · ⊗ ein ,

for a basis element ei1 ⊗ · · · ⊗ ein ∈ V ⊗n. See, for example, Section 6 of [55] and

Section 4 of [54] for details.

Let d be a positive integer, and Pdn := {d ∈ Pn | d divides |p ∩ n| −

|p ∩ n′| for each p ∈ d}. Then Pdn is a submonoid of the partition monoid, see

Theorem 2.1.1. The d-tonal partition algebra, denoted by Pdn(δ), is a subalgebra of

the partition algebra and defined in a similar way to the Brauer algebra. We denote

by T dn(δ) the subalgebra of Pdn(δ) which is spanned by all the planar partitions in

Pdn, see Proposition 3.1.2 for the formal definition of T dn(δ). We call T dn(δ) the planar

d-tonal partition algebra. The representation theory of T dn(δ) is going to be one of

the main concerns of this thesis.
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Let GLN(C) be the group of all N by N invertible matrices over C. The vector

space V defined above is the natural module for GLN(C). This natural action can

be extended diagonally to make V ⊗n a GLN(C)-module. On the other hand, the

group Sn acts from right on V ⊗n by permuting the tensor factors. In general, these

two actions on V ⊗n commute, and gives V ⊗n the structure of (CGLN(C),CSn)-

bimodule. The “classical Schur-Weyl duality” [72] states that if ρ ∈ EndC(V ⊗n) and

ρ commutes with the action of GLN(C) on V ⊗n then ρ ∈ CSn, and vice versa. In

other words, the action of a CGLN(C) and CSn have the double-centraliser property.

We will see in Theorem 1.1.9 that the d-tonal partition algebra has the double

centraliser property.

The classical Schur-Weyl duality has been generalised in many different ways.

Brauer in [9] replaced GLN(C) by the orthogonal group ON(C) and obtained the so

called Brauer algebra Bn(N).

The d-tonal partition algebra is defined by Tanabe in [77] in the context of Schur-

Weyl duality, and as a generalisation of partition algebras in this context. In the

remainder of this section we describe Tanabe’s duality.

Let ζd = e
2πi
d , and let Gd = 〈ζd〉 be the cyclic group of order d. The wreath product

of Gd with the symmetric group SN , denoted by Sd,N = GdoSN , is a unitary reflection

group, cf. [49]. In matrix notation, Sd,N can be identified with N by N permutation

matrices with entries from Gd. If d = 1 then S1,N is the symmetric group on N

letters, and if d = 2 then S2,N is known as the Weyl group of type BN , see Example

2.11 of [49].

The group Sd,N is a subgroup of GLN(C) and acts on V ⊗n by restricting the action

of GLN(C). On the other hand, Pdn(N) also acts on V ⊗n by restricting the action

of the partition algebra Pn(N), see Equation 1.6.

The following theorem is a generalisation of the classical Schur-Weyl duality. When
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d = 1 it was originally proved by Jones in [43]. Then Tanabe in [77] proved the

result for any d.

Theorem 1.1.9. Let R = C. Then the action of the group algebra CSd,N and the

d-tonal partition algebra Pdn(N) have double centraliser property on V ⊗n. That is,

if N ≥ 2n then:

1. We have Pdn(N) ' EndCSd,N (V ⊗n).

2. The group Sd,N generates EndPdn(N)(V
⊗n).

1.2 Representation theory of Pn(δ) over the

complex field.

In this section we state the questions that we are interested in regarding the

representation theory of finite dimensional algebras. Some of these questions are

motivated by physics in the case of the Temperley-Lieb algebra [51] and the partition

algebra [52, 54, 58]. But in general non-semisimple algebras can be understood by

the answer to these questions. All of the questions that we would like to ask in

this section are answered in the case of the partition algebra over the complex field,

mainly by Martin. Therefore, we recall his results to give the flavour of the results

that we wish to obtain.

Suppose we are given a finite dimensional A over an algebraically closed field F, for

us A later is going to be either the d-tonal partition algebra or the planar d-tonal

partition algebra. We are interested in the answer to the following questions:

1. Whether A is semisimple or not?

The answer of this question about the partition algebras over the field of complex

numbers is due to Martin and Saleur.
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Theorem 1.2.1 ([58]). Let R = C. The partition algebra Pn(δ) is semisimple if

and only if δ 6∈ {0, 1, 2, 3, . . . , 2n− 1}.

We obtain a similar result for T 2
n(δ). Furthermore, we show that the algebra T dn(δ)

is generically semisimple, for each n and d.

2. Describing the simple modules of A. This includes,

i) giving an indexing set for the simple modules of A,

ii) and constructing the simple modules of A explicitly.

Martin has given an indexing set to the simple modules of the partition algebra

in terms of partitions of some positive integers. Therefore, to state his result we

need to recall the following piece of standard notation, which also going to be used

intensively in Chapter 2. A k-tuple λ = (λ1, λ2, . . . , λk) is called a partition of n if

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and
∑k

i=1 λi = n, write λ ` n. By definition we may assume

0 to be the only partition of 0.

Let Λ(A) denote an indexing set of the simple modules of A. Then the following

result is a partial answer to the question 2.

Theorem 1.2.2 (Corollary 6.1 [52]). Let R = C and δ 6= 0. Then we have

Λ(Pn(δ)) = {λ | λ ` n, n− 1, . . . , 1, 0}.

Let l ≤ n, and Ln,l be the L-class of Pn(see Section 1.3 for the definition of L-

classes) containing el := {{1, 1′}, . . . , {l, l′}, {l + 1}, {(l + 1)′}, . . . , {n}, {n′}}. Then

CLn,l = C-span(Ln,l) is a left Pn(δ)-module with the following action (defined on

basis of Pn(δ) and CLn,l):

ρ : Pn(δ)× CLn,l → CLn,l

(d, t) 7→

d.t if d ◦ t ∈ Ln,l

0 otherwise

(1.7)

For simplicity we write d.t to denote ρ(d, t).
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Furthermore, CLn,l is a right CSl-module. The action of Sl on Ln,l is given by

permuting the first (from the left hand side) l vertices of the bottom part of a

diagram p ∈ Ln,l.

Recall from [42, Theorem 2.1.11], we have Λ(CSl) = {λ | λ ` l}. Let {S(λ) | λ ` l}

be a representative of the isoclasses of simple CSl-modules. The modules S(λ) are

known as Specht modules.

Let λ ∈ Λ(Pn(δ)), and ∆n(λ) := CLn,l ⊗CSl S(λ). Then ∆n(λ) is a left Pn(δ)-

module, with the following action. Let d ∈ Pn and p ⊗CSl s be a basis element of

∆n(λ). Then the action of Pn(δ) on ∆n(λ) is defined by

d.(p⊗CSl s) = (d.p)⊗CSl s

Before stating the next theorem we recall some necessary definitions, from [4, Section

1.2]. For a left A-module M , denote by rad(M) the intersection of all maximal

submodules of M . The socle of M , written as soc(M), is the maximal semisimple

submodule of M . Finally, we write head(M) to denote M/ rad(M).

Theorem 1.2.3 (Proposition 4, Proposition 6[53]). Let R = C and δ 6= 0. Then

the partition algebra Pn(δ) is quasi-hereditary( see Section 1.4) with the follwoing

hereditary chain:

Pn(δ)e0Pn(δ) ⊂ Pn(δ)e1Pn(δ) ⊂ · · · ⊂ Pn(δ)enPn(δ)

Furthermore, the set {∆n(λ) | λ ` n, n−1, . . . , 1, 0} is a complete set of pairwise non-

isomorphic standard modules of Pn(δ). Each head(∆n(λ)) is a simple module, and

every simple module of Pn(δ) arises in this way. In addition, if Pn(δ) semisimple

then each standard module is simple.

Remark 1.2.4. One can define the modules ∆n(λ) over Z. This is because the

Specht modules are defined over Z, and it is possible to consider the Z-span of the

set Ln,p instead of CLn,l, see [44] for such approach. However, we believe defining
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them over C is enough for the purpose of showing the flavour of the results that we

desire at the moment.

Let {P (λ)}λ∈Λ(A) and {S(λ)}λ∈Λ(A) be complete lists of pairwise non-isomorphic

indecomposable projective and simple modules of A respectively. Then the next

question that we are interested in is:

3. What are the blocks of A? That is, describing the equivalence classes of the

equivalence closure of a relation on Λ(A) given by λ ∼ µ if the simple A-modules

S(λ) and S(µ) are composition factors of the same indecomposable projective A-

module. See Section 1.8 of [4] for general definition of block.

A Young diagram corresponding to a partition λ = (λ1, . . . , λk) ` n is, denoted by

[λ], defined by

[λ] := {(i, j) | (i, j) ∈ N2 with 1 ≤ i ≤ k and 1 ≤ j ≤ λi}.

Let δ be a positive integer, and λ, µ be two partitions such that [λ] ⊂ [µ]. Then the

pair (λ, µ) is called δ-pair if there exist non-negative integers i, j1 and j2 such that

µ \ λ = {(i, j1), (i, j1 + 1), . . . , (i, j1 + j2)}, and j1 + j2 − i = δ − |λ|.

For example let µ = (5, 4, 1) and λ = (5, 2, 1). Then (λ, µ) is 10-pair, here j1 = 3,

j2 = 1 and i = 2. Hence, (λ, µ) are differing in the 2nd row.

Theorem 1.2.5 (Proposition 9 [53]). Each block of Pn(δ) is given by a chain

partition

λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r)

where for each i, (λ(i−1), λ(i)) is a δ-pair. Furthermore, there is an exact sequence

of Pn(δ)-modules associated to the above chain:

0→ ∆n(λ(r))→ ∆n(λ(r−1))→ · · · → ∆n(λ(0))→ head(∆n(λ(0)))→ 0

such that the image of each morphism in the above sequence is simple. In

particular, for each i we have head(∆n(λ(i))) and rad(∆n(λ(i))) are both simple,

and head(∆n(λ(r))) = ∆n(λ(r)).
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Remark 1.2.6. The notation used in Theorem 1.2.5 is slightly different from

Martin’s original notation. In fact we follow [44] in our notation. Bowman and

others in [44] have given a reformulation of Theorem 1.2.5 in terms of the action of

reflection group of type An. Furthermore, a description of the blocks of the partition

algebra over a field of positive characteristic is also given in [44].

4. Describing the composition multiplicities of the indecomposable projective

modules of A. Let λ ∈ Λ(A) and M be a left A-module. Then we write [M : S(λ)]

for the number of occurrences of the simple module S(λ) in the Jordan-Holder series

of M . Let cλ,µ = [P (λ) : S(µ)] then the integral matrix (cλ,µ) is called a Cartan

matrix of A, see for e.g. section 1.9 of [4]. A Cartan matrix of A is unique up to

conjugation by permutation matrices. Therefore, one might say (cλ,µ) is the Cartan

matrix of A.

Note that if the Cartan matrix of A is known one can obtain the blocks of A in

the following way. Let ∼′c be a relation defined by λ ∼′c µ if cλ,µ 6= 0, for each

λ, µ ∈ Λ(A). Let ∼c be the equivalence closure of ∼′c. Then S(λ) and S(µ) are in

the same block if and only if λ ∼c µ.

Suppose A possess an involutory anti-automorphism of algebras, denote it by a 7→ at.

Then a right A-module N can be regarded as a left A-module with the following

action

a.x := xat. (1.8)

The right A-module M̂ := HomF(AM,F) is called the dual of AM . By using the

involutory anti-automorphism t we may regard M̂ as a left A-module, denote it by

M o to stress the left action of A via t. The map M 7→M o is called the contravariant

duality, M o is the contravariant dual of M . In addition, AM is called self dual if

AM ' AM
o.

Let A be a quasi-hereditary algebra such that each simple A-module is self dual,
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in which case some times A is called a BGG algebra in the literature. Let dλ,µ =

[∆(λ) : S(µ)], then the matrix (dλ,µ) is called the decomposition matrix of A. We

have the following identity, see Corollary 3.4 of [41],

(cλ,µ) = (dλ,µ)tr(dλ,µ). (1.9)

In the case of the partition algebra the Cartan matrix can be computed from

Equation 1.9 and Theorem 1.2.5.

Unfortunately, we have not been able to compute the Cartan matrix of the planar

d-tonal partition algebra yet. However, we have shown that T dn(δ) is a BGG algebra,

and hence satisfies the Equation 1.9.

1.3 Green’s Relations.

Recall from [32] for a finite monoidM two elements α, β ∈M we define the following

three relations,

1. The elements α and β are J - related if and only if MαM =MβM.

2. The elements α and β are L- related if and only if Mα =Mβ.

3. The elements α and β are R- related if and only if αM = βM.

These relations are equivalence relations and they are known as Green’s relations.

We write ᾱ for the J -equivalence class containing α.

Note that, there is a partial order relation on M/J induced from the inclusion of

J -classes of M, in the following way; for ᾱ, β̄ ∈ M/J we say β̄ � ᾱ if and only if

β ∈MαM.

An element α of monoid M is called regular if α ∈ αMα, cf. [28, 39]. A monoid

M is called regular monoid if every element in M is regular. In fact, it is not
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hard to see that a finiteM is regular if and only if every J -class ofM contains an

idempotent.

Let e ∈M be an idempotent then we denote by Ge the group of units of eMe.

Definition 1.3.1. Let R be a commutative ring and (M, •) be a finite monoid.

Then the R-monoid algebra (RM,+, .) is the free R-module with basis given by M,

and the operation . is given by extending • R-linearly.

The following result might answer partially the question, for a given monoid M

why should we care about its J -classes when we are interested in the representation

theory of M?

Theorem 1.3.2 (Clifford, Munn, Ponizovskĭi, Theorem 7 [29]). Let F be

an algebraically closed field, and ε1, ε2, . . . , εk be a complete list of idempotent

representatives of the J -classes of of a finite monoid M which contains an

idempotent. Then there is a bijection between Λ(FM) and the disjoint union⊔k
i=1 Λ(FGεi).

1.4 Quasi-hereditary and Cellular algebras.

We devote this section to recall in the definition of two classes of finite dimensional

algebras. Later in this thesis we show that the algebras we interested in belong to

both of the classes.

The quasi-heredity algebras were defined by Ringel, Cline, Parshall and Scott , see

p.280 of [73], in the study of algebraic groups to describe the so called highest

weight categories.

Through this thesis F will denote an algebraically closed field.

Fix a finite dimensional F- algebra A. A two sided ideal J in A is called hereditary

ideal if;
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I. There is an idempotent e ∈ A with J = AeA.

II. AJ is a projective module.

III. EndA(Ae) ' eAe is a semisimple F-algebra.

The algebra A is quasi-hereditary algebra if there is a chain of of two sided

ideals

0 =: Jr ⊂ Jr−1 ⊂ · · · ⊂ J1 ⊂ J0 := A

such that Ji/Ji+1 is a hereditary ideal in A/Ji+1 for 0 ≤ i ≤ r− 1. The above chain

is called a hereditary chain.

Let C be a class of left A-modules and M be a left A-module. We say M is filtered

by members of C if there is a sequence of submodules of M :

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk−1 ⊂Mk = M

such that for each 1 ≤ i ≤ k the quotient Mi/Mi−1 is in C up to isomorphism of left

A-modules.

In [12] another useful characterisation of the quasi-hereditary algebras is given, which

we recall it in the following theorem.

Theorem 1.4.1 (see Theorem 3.6 of [12]). Let A be a finite dimensional F-algebra.

Fix a complete set of pairwise non-isomorphic simple A- modules {S(λ) | λ ∈ Λ(A)},

where Λ(A) is an indexing set of the simple modules of A. Then A is a quasi-

hereditary algebra if and only if there is a partial order relation ≤ on the set Λ(A),

such that for any λ ∈ Λ(A) there exists a left A-module ∆(λ) satisfying the following

two conditions;

I. There exists a surjective morphism θλ : ∆(λ) → S(λ), such that if S(µ) is a

composition factor of the ker(θλ) then µ < λ.

II. Let P (λ) be the projective cover of S(λ). There exists a surjective morphism
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ϑλ : P (λ) → ∆(λ) such that the kernel of ϑλ is filtered by modules ∆(µ) with

µ > λ.

We recall from p 137 of [22] the modules ∆(λ), λ ∈ Λ(A) defined in Theorem 1.4.1

are called standard modules and they are unique up to isomorphism.

Let A be a quasi-hereditary algebra, and C be a set of representatives of isoclasses of

standard modules of A. If M is a finite dimensional A-module filtered by members

of C, then we say M has a standard filtration. Further, we denote by (M : ∆(λ))

the number of times when ∆(λ) appear in a standard filtration of M . See A1 − 7

of [22] for the well definedness of the multiplicity of standard modules in a standard

filtration of finite dimensional modules of quasi-hereditary algebras.

For a finite dimensional F- algebra A we denote the category of finite dimensional

left A- modules by A-mod. Given any idempotent e ∈ A there are functors (see §6.2

of [33] for more details, and [14] for further development and applications of these

functors to diagram algebras)

Fe : A−mod→ eAe−mod

M 7→ eM
(1.10)

and

Ge : eAe−mod→ A−mod

N 7→ Ae⊗eAe N
(1.11)

We call Fe the localisation, and Ge the globalisation functor associated to e, we

shall write F and G when it is clear from the context. This pair of functors have

interesting properties; G is a right inverse to F , F is exact, and G takes simple eAe-

modules to indecomposable A-modules . We denote by N(e) the largest submodule

of an A-module N contained in (1 − e)N . Let S be a simple eAe- module, then

G(S)/G(S)(e) is a simple A- module (the proof of all of these claims can be found in

[33] page 55-57).
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Theorem 1.4.2 ([33]). For any finite dimensional F-algebra A and an idempotent

e ∈ A we have

Λ(A) ' Λ(eAe) t Λ(A/AeA).

The globalisation and localisation functors behave very nicely with quasi-hereditary

algebras. Indeed the following two Propositions explain how these functors preserve

standard modules, which we will make use of this property in Chapter 3.

Proposition 1.4.3 (A1-4 of [22], Proposition 3 of [57]). We keep the notation of

Theorem 1.4.1. Let A be a quasi-hereditary algebra and e ∈ A be an idempotent

such that eAe is also quasi-hereditary. For λ ∈ Λ(eAe) we have:

1. Fe(∆(λ)) = ∆e(λ), where ∆e(λ) is the standard module of eAe labelled by λ.

2. Fe(P (λ)) = Pe(λ), where Pe(λ) is the indecomposable projective module of eAe

labelled by λ.

Proposition 1.4.4 (Proposition 4 [57]). Let A be a quasi-hereditary algebra and e

be part of a hereditary chain of A. Let M be a finite dimensional left eAe-module

having a standard filtration. Then Ge(M) also has a standard filtration (in the sense

of Section 1.4 ). Further, the standard multiplicity is

(Ge(M) : ∆(λ)) =

(M : ∆e(λ)) if λ ∈ Λ(eAe)

0 otherwise

(1.12)

Where ∆e(λ) is the standard module of eAe labelled by λ.

Finally, we recall the definition of Cellular algebras.

Definition 1.4.5 ( Definition 1.1 of [30]). A Cellular algebra is an associative

R-algebra A with identity possessing a tuple (known as a cell datum) (Λ,M,C, ?)

satisfying the following conditions:

C1. Λ is a poset with the property that for each λ ∈ Λ, M(λ) is a finite set such

that C :
⊔
λ∈ΛM(λ)×M(λ)→ A is an injective map and A is a free R-module with
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basis C(
⊔
λ∈ΛM(λ)×M(λ)).

C2. For λ ∈ Λ and S, T ∈ M(λ) write Cλ
S,T = C(S, T ). Then ? is an anti-

automorphism of R-algebras such that ?(Cλ
S,T ) = Cλ

T,S.

C3. For λ ∈ Λ, S, T ∈M(λ) and each α ∈ A we have

α.Cλ
S,T =

∑
S′∈M(λ)

rα(S ′, S)Cλ
S′,T (mod A) < λ

where rα(S ′, S) is independent of T , and A(< λ) is the R-module generated by

{Cµ
S′′,T ′′ | µ < λ and S ′′, T ′′ ∈M(µ)}.

Lemma 1.4.6. Let A be a cellular algebra with a cell datum (Λ,M,C, ?), and let ◦

be the contravariant duality defined on page 17 with t = ?. Then we have AS ' A(S)◦

for each simple A-module.
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Chapter 2

On the number of principal ideals

in d-tonal partition monoids

Tanabe in [77] defined a family of subalgebras of the partition algebras for each

d ∈ Z>0. We call them d-tonal partition algebras, see also Theorem 1.1.9. Kosuda

studied these algebras under the name of the modular party algebra in [46, 47, 48].

In particular, Kosuda characterised the d-tonal partition algebras by generators and

relations, and showed that these algebras are cellular, in the sense of Graham and

Lehrer [30]. In Kosuda’s proof the cell modules are not constructed because the

method of Changchang Xi [81] is used. Orellana independently constructed the

Bratteli diagram for the d-tonal partition algebras in [63, 64]. Moreover, Orellana

studied the representation theory of these algebras over the field of complex numbers

by using the double centraliser theorem, and described the simple modules in the

semisimple case.

In this chapter, as a step toward the study of the representation theory of the d-

tonal partition algebras over an algebraically closed field we study the ideal structure

of the d-tonal partition monoids. For each d, the d-tonal partition monoid is the

underlying monoid of the d-tonal partition algebra. We will denote this monoid
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by Pdn where n is a non-negative integer. We start by giving the definition of the

Pdn in the first section. In the second section, we define a special type of elements

in Pdn called canonical elements. Canonical elements turn out to be crucial for

representation theory as they are in a bijection with the J -classes of Pdn. Moreover,

each canonical element is idempotent, this proves the regularity of Pdn. In fact, the

set of all canonical elements of Pdn form a partially ordered set with the order induced

from the inclusion of principal two sided ideals of Pdn. We denoted the induced order

by �d. In section 3, we define a family of graded posets combinatorially which will

be denoted by (I (ne1),≤Xd). In the fourth section, we show in Theorem 2.4.5

that these two posets are isomorphic. This will provide a useful combinatorial

characterisation for the set of all canonical elements of Pdn.

In section 5, a closed formula is obtained for the number of canonical elements of

Pdn which is denoted by I
(d)
n . The sequence I

(d)
n is a two parameter sequence. When

d ≤ 3 these sequences are known but the other cases seems to be new. In particular,

they have have no match on Slone [1] at the moment. Furthermore, we show that

(I (ne1),≤Xd) is isomorphic to the quotient of the poset of partitions of a positive

integer, partially ordered by refinement, by some equivalence relation.

In the partition monoid, which is equal to P1
n, two elements are J - equivalent if and

only if they have the same number of propagating parts. However, this statement is

not true in general when d > 1 in Pdn. This observation lead us to study the set of

canonical elements with h propagating parts, denote it by I
(d)
n,h. In general we still do

not know a closed formula for this three parameter sequence. In Section 6, for small

vales of d the two parameter sequence I
(d)
n,h is studied and some explicit formulas are

achieved.

The polycyclic hydrocarbons are aromatic chemical compounds whose molecular

shape may be represented by the so called hollow hexagons, see [16, 18, 17].

Furthermore, the “Cyvin sequence”, which matches the sequence A028289 in [1],
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counts the number of equivalence classes of hollow hexagons. We devote section 7

to defining explicitly these hollow hexagons and construct a representative element

for each equivalence class. In Theorem 2.7.5 we construct an explicit isomorphism

between the set of rank n hollow hexagons and the poset I (ne1), where d = 3.

This isomorphism leads to a new way of constructing the hollow hexagons and puts

a partial order on them.

2.1 Definition and order of the d-tonal monoid

Pdn.

For a fixed d, n ∈ Z+, define

Pdn := {d ∈ Pn | d divides |α ∩ n| − |α ∩ n′| for any α ∈ d}

For example, the left hand side diagram in 2.1 is an example of an element in P2
6 ,

but the right hand side diagram in 2.1 does not belong to P2
6 .

Figure 2.1: An example and a non-example of an elements in P2
6

Theorem 2.1.1 ([77]). The set Pdn is a submonoid of Pn.

Proof. By definition of Pdn we have 1 ∈ Pdn, for all d and n. It only remains to show

that Pdn is closed under ◦. Let d, e ∈ Pdn, and p ∈ d◦ e. Then from the definition of ◦

there exist a unique r ∈ d?′′ ι+(e) such that after removing all the vertices that come

from n′, denote it by r′ , we have ι−(r′) = p. Definition of ?′′ implies that r consists
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of k parts of d, say p1, . . . ,pk, and l parts of ι+(e), say q1, . . . ,ql. Furthermore we

have
k∑
i=1

|pi ∩ n′| =
l∑

i=1

|qi ∩ n′|.

Then

|r ∩ n| − |r ∩ n′′| =
k∑
i=1

|pi ∩ n| −
l∑

i=1

|qi ∩ n′′|

=

(
k∑
i=1

|pi ∩ n| −
k∑
i=1

|pi ∩ n′|

)
+

(
l∑

i=1

|qi ∩ n′| −
l∑

i=1

|qi ∩ n′′|

)
(2.1)

Since d, e ∈ Pdn, the right hand side of the second equality of Equation 2.1 is divisible

by d. Therefore, after removing the vertices come from n′ from r′ and applying ι−

we obtain that the expression |p ∩ n| − |p ∩ n′| is divisible by d. Hence d ◦ e ∈ Pdn,

and the claim follows.

We will call Pdn the d-tonal partition monoid. Note that P1
n = Pn.

Some small values of the cardinality of Pdn, denoted by |Pdn|, is given in Table 2.1, the

first two rows occur on [1]. The first row matches the even Bill numbers A000110(2n)

and the second row matches A005046. The following recursion formula can be found,

for example, on p611 in [64],

|P2
n| =

n∑
k=1

(
2n− 1

2k − 1

)
|P2

n−k|

The final row of Table 2.1 describes the cardinality of Pdn as d → ∞, denote it by

P∞n , that is:

P∞n := {d ∈ Pn | |α ∩ n| = |α ∩ n′| for any α ∈ d}

Remark 2.1.2. The monoid algebra of P∞n is studied by Kosuda in [45] and it is

called party algebra.
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d

n

0 1 2 3 4 5 6 7 . . .

1 1 2 15 203 4140 115975 4213597 190899322 . . .

2 1 1 4 31 379 6556 150349 4373461 . . .

3 1 1 3 17 155 2041 . . . . .

4 1 1 3 16 132 1531 . . . . .

...

d→∞ 1 1 3 16 131 1496 22482 426833 . . .

Table 2.1: Cardinality of Pdn, for some small values of d and n.

However, for d ≥ 3 the sequences |Pdn| seems to be new.

Problem 2.1.3. Find a closed formula for |Pdn| for all n and d ≥ 3.

In the following remark we present some ideas that might help to solve the

Problem 2.1.3

Remark 2.1.4. We note that the d-tonal partition algebras are generically

semisimple, see Theorem 5.4 in [64]. They form a chain of embedding of algebras

with multiplicity free restriction. The Bratteli diagram for the semisimple cases

is constructed in [64], see subsection 3.8.2 for the definition of Bratteli diagram.

Therefore, the dimension of each simple module is given by the number of different

walks from the top of the Bratteli diagram to the vertex representing it. Hence, by

Artin-Wedderburn theorem the Problem 2.1.3 admits a combinatorial description in

terms of number of walks on a certain Bratteli diagram.
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a = b =

Figure 2.2: The diagram a is a canonical element in P3
13 while the digram b is not

a canonical element in P2
12.

2.2 Canonical representatives of the J -classes of

Pdn.

In this section we give the definition of special kind of elements of Pdn, called canonical

elements. Then, we show each element of Pdn is J -equivalent to a canonical element.

In Lemma 2.2.2 we show that the set of all canonical elements of Pdn is minimal with

this property.

We start by introducing a linear order on the set n ∪ n′. Let n′ < · · · < 2′ < 1′ <

1 < 2 < · · · < n, and let 6 be the reflexive transitive closure of the relation < on

the set n ∪ n′, then (n ∪ n′,6) is linearly ordered set.

Definition 2.2.1. Let d ∈ Pdn we say d canonical whenever it is of the form

(
⊗r

l=1 mil)⊗ u⊗kd such that 1 ≤ ir ≤ ir−1 ≤ · · · ≤ i1 ≤ d and kd+
∑r

l=1 il = n.

For example of a canonical element and a non-canonical element see Figure 2.2.

Note also that each canonical element in Pdn is planar.

Before stating the next result we would like to define the following elements in

Pdn;

µi := m⊗i1 ⊗m2 ⊗m
⊗(n−i−2)
1

νj := m⊗j1 ⊗ ud ⊗m
⊗(n−j−d)
1

(2.2)

Where 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ n− d, and m0
1 = φ.

We would like to remark that in P1
n the µi defined in Equation 2.2 is the same µi



Chapter 2. On the number of principal ideals in d-tonal partition monoids 31

defined in Equation 1.3, for all 0 ≤ i ≤ n− 2. However, the νj in Equation 2.2 can

be considered as a generalisation of νj in Equation 1.3. In fact if d = 1 then the

elements defined in Equation 2.2 are the same as the elements in Equation 1.3.

Let d ∈ Pdn we say a propagating part p ∈ d is of type k ∈ {1, 2, . . . , d} if |p∩n| = k

(mod d).

Lemma 2.2.2. Let d ∈ Pdn then there exist a unique canonical element p ∈ Pdn such

that dJ p.

Proof. First note that Sn is a subgroup of Pdn. Hence by using the action of Sn we

can permute any two vertices in the northern (respectively southern) part of any

element in Pdn. Therefore, there exist s, t ∈ Sn such that sdt is planar and has the

following property; If p ∈ sdt is a northern non-propagating part then for any two

positive integers k1 and k2 we have min (p)− k1 and max (p) + k2 are not in the

same part, similarly for the southern non-propagating part. Let q be any part of

sdt with |q ∩ n| > d and let max (q) = q, then νq−dsdt is the same as sdt except

the part q is split to two parts; one of the parts contains q and it is a subset of n

with cardinality d. Note that sdt = µq−d−1νq−dsdt, this means the above type of

cutting process can be reversed. Similar steps can be taken if there is a part q of sdt

with |q ∩ n′| > d. Proceeding inductively, we may assume that there is an element

r ∈ Pdn such that dJ r, and for each part r ∈ r we have |r ∩ n| < d and |r ∩ n′| < d.

Finally there are permutations s′, t′ ∈ Sn such that s′rt′ is canonical. The existence

of a canonical element follows.

To prove the uniqueness, from Equation 1.5 we have any two elements in the same

J -class have the same number of propagating parts. To change the type of a

propagating part we must connect it to another propagating part, and this process

reduces the number of the propagating parts. Moreover, if n = kd then the only

canonical element with no non-propagating parts is u⊗kd . Hence, there exist a unique

canonical element in each J -class.
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Corollary 2.2.3. The monoid Pdn is regular.

Proof. By Proposition 2.2.2 each J -class contains a canonical element, and each

canonical element is idempotent. Hence Pdn is a regular monoid.

Corollary 2.2.4. The monoid Pdn is generated by µ0, ν0 and the symmetric group

Sn.

Proof. It is not hard to see that each canonical element is generated by µ0, ν0 and

the symmetric group Sn, for example for the canonical element in Figure 2.2 we

have a = µ0µ1µ3ν10. By Lemma 2.2.2 each element of Pdn is J -equivalent to a

canonical element, and in the proof of Lemma 2.2.2 we only used canonical elements

and permutations to convert arbitrary element to a canonical element.

2.3 Graded posets related to the set of all

canonical elements of Pdn.

In this section we define combinatorially a family of posets. The motivation for

defining and studying these posts manifests itself in Theorem 2.4.5.

Consider the free Z-module Zd, we define the following two maps

ht : Zd → Z

(v1, v2, . . . , vd) 7→ (1, 1, . . . , 1)1×d(v1, v2, . . . , vd)
tr

(2.3)

wt : Zd → Z

(v1, v2, . . . , vd) 7→ (1, 2, . . . , d)1×d(v1, v2, . . . , vd)
tr

(2.4)

call ht height function and wt weight function. Both of these maps are surjective

Z-module homomorphisms.
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For a finite poset (P,≤) and x, y ∈ P , we say x is covered by y (or y covers x) and

denote it by xl y if x < y and there is no z ∈ P with x < z < y. The relation l is

called the covering relation of ≤, cf. [20] Section 1.14. In this case the relation ≤ is

the transitive reflective closure of l.

Let ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Zd be a vector having all components zero except

the ith component which is one. Then the set {ei| i = 1, 2, . . . , d} forms a Z-basis of

Zd, they are called standard basis vector. Note that ht(ei) = 1 for each i.

Let

Ωd = {v ∈ Zd | vi ≥ 0 for all i ∈ d},

and for a fixed integer h let

Ω
(h)
d = {v ∈ Zd |ht(v) = h}.

For any subset X ⊆ Ω
(h)
d we define the following relation, denote it by lX , on

Ωd;

for v,w ∈ Ωd we have v lX w if and only if there is x ∈ X such that v = w + x

Note that from the definition of ht map if wlX v we cannot have vlX w, therefore

lX is antisymmetric.

Let ≤X be the transitive reflexive closure of lX . Then (Ωd,≤X) is a poset with the

covering relation lX .

Lemma 2.3.1. Let X,X ′ ⊆ Ω
(h)
d . If X 6= X ′ then ≤X 6=≤X′.

Proof. Without loss of generality we may assume X 6⊆ X ′. Suppose we have

≤X=≤X′ . Let x ∈ X and x 6∈ X ′. Then for any v ∈ Ωd we have v + x lX v.

This implies that v + xlX′ v and we obtain x ∈ X ′, which is a contradiction. The

result follows.
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If X ⊆ Ω
(−1)
d then for any v,w ∈ Ωd and x ∈ X with v ≤X w we have ht(w) =

1 + ht(w + x) and ht(v) ≤ ht(w). Therefore, (Ωd,≤X) is a graded poset with the

rank function ht : Ωd → N.

We define an infinite sequence of sets {Xd}∞d=1 as follows:

Xd := {ek − ei − ej | (i, j, k) ∈ d3 such that d is a divisor of k − i− j}

We record the first few values of the above sequence:

X1 = {(−1)};

X2 = {(−2, 1), (0,−1)};

X3 = {(−2, 1, 0), (0, 0,−1), (1,−2, 0), (−1,−1, 1)};

X4 = {(−2, 1, 0, 0), (0, 0, 0,−1), (0, 1,−2, 0), (−1,−1, 1, 0), (−1, 0,−1, 1),

(1,−1,−1, 0), (0,−2, 0, 1)};
...

One can use the following lemma as a verification tool while writing the elements of

Xd.

Lemma 2.3.2. We have |Xd| = d(d−1)
2

+ 1.

Proof. We keep the notation of the definition of Xd. There are
(
d
2

)
ways of choosing

an not necessarily different pair i and j from d− 1. If the set {i, j} is given then

the value of k is forced as follows: If i + j ≤ d then since we have k ∈ d we must

have k = i+ j, and if i+ j > d then k = i+ j − d.

We claim different choices of {i, j} lead to different elements of Xd. To this end, let

{i, j} 6= {i1, j1} then without loss of generality we have the following case;

Case1 If i+ j ≤ d and i1 + j1 ≤ d then ei+j − ei − ej 6= ei1+j1 − ei1 − ej1 .

Case2 If i+ j > d and i1 + j1 ≤ d then ei+j−d − ei − ej 6= ei1+j1 − ei1 − ej1 .
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Case3 If i+ j > d and i1 + j1 > d then ei+j−d − ei − ej 6= ei1+j1−d − ei1 − ej1 .

Finally, we have ek−ei−ej = −ed if {i, j}∩d 6= φ. Therefore, |Xd| = d(d−1)
2

+1.

We denote by Pd the poset (Ωd,≤Xd), and for any vector v ∈ Ωd we define I (v)

as follows:

I (v) := {w ∈Pd|w ≤Xd v} (2.5)

That is, I (v) is the principal ideal of Pd generated by v, for example see Figure

2.3.

For any non-negative integer n we denote by I
(d)
n the cardinality of I (ne1), and

define I
(d)
n,h := |I (ne1) ∩ Ω

(h)
d |, note that ht(ne1) = n. Therefore, we have

I(d)
n = I

(d)
n,0 + I

(d)
n,1 + · · ·+ I(d)

n,n (2.6)

We would like to observe the following structural property of Pd, for k ∈

{1, 2, . . . , d} consider the set

Ωd,k := {v ∈ Ωd | d divides wt(v)− k}

Denote by Pd,k the poset with the underlying set Ωd,k obtained by restricting the

relation ≤Xd to the set Ωd,k. For a non-negative integer h, set Ω
(h)
d,k := Ωd,k ∩ Ω

(h)
d .

Note that if k 6= k′ then Ωd,k and Ωd,k′ are disjoint.

Proposition 2.3.3. i. We have Pd = Pd,1 ∪Pd,2 ∪ · · · ∪Pd,d.

ii. For k = 1, 2, . . . , d the poset Pd,k is indecomposable(can not be written as a

union of two disjoint subposets).

Proof. i. The claim follows from the Euclid’s division Lemma for integers.

ii. We have ej ∈ Pd,k if and only if j = k, since wt(ek) = k. Let v ∈ Pd,k such

that ht(v) ≥ 2 we claim ek ≤Xd v. To prove the claim, assume ht(v) ≥ 2.

Then either v has a component greater than or equal to 2, or it has at least two
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Figure 2.3: Case d = 3, I (14e1) poset
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non- zero components. In either cases there is x ∈ Xd such that v+x ∈ Ωd and

hence v + x lXd v. Further, for any x ∈ Xd we have wt(x) ∈ {−d, 0}, which

implies that v + x ∈Pd,k. Therefore, using induction on the hight of v implies

that ek ≤Xd v. Which completes the proof.

Note that in the proof of the above result we showed that if k does not divide d

then ek is the minimum element of the poset Pd,k, and (0, . . . , 0) is the minimum

of Pd,d.

Proposition 2.3.4. For any d ∈ Z>2 and 1 ≤ r < d the posets Pd,d−r and Pd,r

are isomorphic.

Proof. The symmetric group Sd acts on Zd in the following way: For v =

(v1, . . . , vd−1, vd) ∈ Zd and π ∈ Sd set π.v := (vπ(1), . . . , vπ(2), . . . , vπ(d)). Let

π := (1, d − 1)(2, d − 2) . . . (dd
2
e − 1, dd+1

2
e) ∈ Sd, then for ek − ei − ej ∈ Xd we

have π.(ek − ei − ej) = ed−k − ed−i − ed−j ∈ Xd.

Restricting the action of π to the set Ωd and considering the fact that the set Xd

is invariant under this action we obtain a poset automorphism of Pd. Under this

automorphism and for 1 ≤ r < d the vectors er and ed−r are mapped to each other.

The claim follows.

We record the following lemma which will be used later to obtain a characterisation

of the elements of I (ne1) in terms of the weight function.

Lemma 2.3.5. If v ∈ I (ne1) then wt(v) ∈ {n, n− d, n− 2d, . . . , n− dbn
d
c}.

Proof. Keep the notations of the definition of Xd and let v ∈ Xd then wt(v) = k −

i− j, which is either 0 or −d. We also have wt(ne1) = n, now let v ∈ I (ne1) hence

w <Xd ne1, thus there exist vectors x1,x2, . . . ,xr ∈ Xd such that v =
∑r

l=1 xl+ne1.

Therefore, wt(v) ∈ {n, n− d, n− 2d, . . . , n− dbn
d
c}.



Chapter 2. On the number of principal ideals in d-tonal partition monoids 38

2.4 Relation between the set of canonical

elements of Pdn and I (ne1).

Define a set map

Ψ : Pdn → Ωd (2.7)

as follows: For an element p in Pdn with the propagating parts p1,p2, . . . ,pk, we set

Ψ(p) = (v1, v2, . . . , vd) where vr is equal to the cardinality of the set {pl : |pl ∩ n| =

r mod d} for each r ∈ d.

It is evident from the definition of the maps ht and Ψ that for any element p in Pdn
we have the following equality:

#(p) = ht(Ψ(p)) (2.8)

We recall that, by#(p) we mean the number of propagating parts of p.

Example 2.4.1. Let a and b be as given in Figure 2.2. Then Ψ(a) = (3, 2, 1) and

Ψ(b) = (2, 3).

Proposition 2.4.2. We have Ψ(Pdn) = I (ne1) and Ψ�C is bijection, where C is

the set of all canonical elements of Pdn.

Proof. Let d ∈ Pdn and c be the canonical element J -equivalent to d. Then by the

proof of Lemma 2.2.2 the element d has the same number of propagating parts of

each type as c. Therefore Ψ(d) = Ψ(c) and hence Ψ(Jc) = Ψ(c) where Jc is the

J -class containing c. Hence to prove Ψ(Pdn) = I (ne1) it is enough to show that

Ψ(C) = I (ne1).

We prove Ψ(C) ⊆ I (ne1) by downward induction on the number of propagating

parts of canonical elements. The only canonical element with n propagating parts is

the identity and Ψ(1) = ne1, hence we have the base case. Let p ∈ Pdn be canonical

and #(p) = k, for some k ≤ n − 1. Then v = (v1, v2, . . . , vd) = Ψ(p) where v is

described in the definition of Ψ. We have the following two cases:
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i) If wt(v) 6= n then p has at least two non-propagating parts one contains wt(v)+

1 and the other contains (wt(v) + 1)′, call them p and p′ respectively. Let

p′ = p \ {p,p′} ∪ {p ∪ p′} then p′ is canonical element with k + 1 propagating

parts and Ψ(p′) = v+ed. By induction we have Ψ(p′) ∈ I (ne1), and from the

definition of <Xd we obtain v lXd v + ed hence Ψ(p) = v ∈ I (ne1).

ii) If n = wt(v), that is p has no non- propagating parts, we let i be minimum with

the property i > 1 and vi 6= 0. Let q1 = {v1 +1, (v1 +1)′} and q2 = p\q1 where

p is the part of p containing n−v1, then p′ := p\p∪{q1,q2} is canonical element

with k + 1 propagating parts and Ψ(p′) = v + (e1 + ei−1 − ei). By induction

Ψ(p′) ∈ I (ne1), and definition of ≤Xd implies that Ψ(p) = v ∈ I (ne1).

To show I (ne1) ⊆ Ψ(C), let v = (v1, . . . , vd) ∈ I (ne1) then by Lemma 2.3.5

we have wt(v) ∈ {n, n − d, n − 2d, . . . , n − dbn
d
c}. Therefore, there is a canonical

element p with vl propagating parts of size 2l, for l ∈ d, and hence Ψ(p) = v.

Finally, the injectivity of Ψ�C follows from the definition of canonical elements and

the map Ψ.

Corollary 2.4.3. Let v ∈ Ωd then v ∈ I (ne1) if and only if wt(v) ∈ {n, n−d, n−

2d, . . . , n− dbn
d
c}.

Proof. The if part is Lemma 2.3.5, for the only if part let v ∈ Ωd and wt(v) ∈

{n, n − d, n − 2d, . . . , n − dbn
d
c}. Then by the first part of Proposition 2.4.2 there

is a canonical element p ∈ Pdn such that v = Ψ(p) ⊆ I (ne1).

Lemma 2.4.4. Let p ∈ Pdn then

i. If τ ∈ Sn then Ψ(τp) = Ψ(pτ ) = Ψ(p).

ii. For 0 ≤ l ≤ n− 2, we have Ψ(µlp) ≤Xd Ψ(p) and Ψ(pµl) ≤Xd Ψ(p).

iii. For 0 ≤ l ≤ n− d, we have Ψ(ν lp) ≤Xd Ψ(p) and Ψ(pν l) ≤Xd Ψ(p).
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Proof. i. Follows from the fact that pτ J p and pJ τp.

ii. We only prove Ψ(µlp) ≤Xd Ψ(p), one can prove the other case similarly. There

are two cases to be considered;

(a) If l and l + 1 are in the same part of p, or at least on of them is in a

non-propagating part then pJ µlp, hence Ψ(µlp) = Ψ(p).

(b) If l and l + 1 are in different propagating parts of p, namely pl and pl+1

respectively. Then Ψ(µlp) = Ψ(p) + ek − ei − ej where i = |pl ∩ n|

(mod d), j =
∣∣pl+1 ∩ n

∣∣ (mod d), and ek − ei − ej ∈ Xd.

iii. We only prove the first part, one can prove the second part by a similar

argument. Let l = {l + 1, l + 2, . . . , l + d} we assume l ⊆ p for some part

p of p. If not then ν lp = ν lµlµl+1 . . .µl+d−2p and by ii of this Lemma

Ψ(µlµl+1 . . .µl+d−2p) ≤Xd Ψ(p), moreover µlµl+1 . . .µl+d−2p has the desired

property. Therefore we may only need to consider the following two cases:

(a) If p is a propagating part, we then have two more cases;

i. If |p ∩ n| > d then pJ ν lp, and hence Ψ(ν lp) = Ψ(p).

ii. If |p ∩ n| = d then Ψ(ν lp) = Ψ(p)− ed.

(b) If p is a non-propagating part then pJ ν lp.

We recall from Section 1.3, there is a natural partial order relation on the set Pdn/J

induced from the inclusion of two sided ideals of Pdn, and here we denote this partial

order relation by �d.

Theorem 2.4.5. The induced map Ψ : (Pdn/J ,�d) → (I (ne1),≤Xd) is an

isomorphism of posets.

Proof. By Proposition 2.4.2 and Lemma 2.2.2 the map Ψ is a set bijection.
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Let p, q ∈ Pdn such that p̄ �d q̄ then there exist r, s ∈ Pdn such that p = rqs. By

Corollary 2.2.4 and Lemma 2.4.4 we have Ψ(p) ≤Xd Ψ(q).

Let v,w ∈ I (ne1) such that v lXd w and p ∈ Pdn such that Ψ(p) = w. From the

definition of ≤Xd there exist ek − ei − ej ∈ Xd such that w + ek − ei − ej = v.

Consider the element q = p \ {pi,pj} ∪ {pk} where pi and pj are both propagating

parts of p, and they have the following property: |pi∩n| = i and |pj ∩n| = j. Then

pq = q hence q̄ �d p̄ and Ψ(q) = v.

Moreover, it is not hard to see that the covering relation of (Pdn/J ,�d) and

(I (ne1),≤Xd) match via the map Ψ.

2.5 Relation between (I (ne1),≤Xd) and integer

partition combinatorics.

Let Π≤dn denote the set of all partitions of n with at most d parts, then define

P
(d)
n := |Π≤dn |. The generating function of the sequence P

(d)
n is given by the following

formula, cf. Equation 1.76 of [75],

∑
n≥1

P (d)
n tn =

d∏
i=1

1

1− ti
(2.9)

Proposition 2.5.1. We have I
(d)
n = P

(d)
n + P

(d)
n−d + P

(d)
n−2d + · · ·+ P

(d)
n−dbn/dc.

Proof. Let (d, d, . . . , d︸ ︷︷ ︸
vd−times

, d− 1, d− 1, . . . , d− 1︸ ︷︷ ︸
vd−1−times

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
v1−times

) be a partition of n−kd,

for k = 0, 1, . . . , bn/dc, then (v1, v2, . . . , vd) is a an element in I (ne1) with weight

n − kd. The converse is also true. Therefore, the result follows from the Corollary

2.4.3.
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d

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

2 1 1 3 3 6 6 10 10 15 15 21 21 28 28 36 36 45 . . .

3 1 1 2 4 5 7 11 13 17 23 27 33 42 48 57 69 78 . . .

4 1 1 2 3 6 7 11 14 21 25 34 41 56 67 83 99 120 . . .

...

Table 2.2: Some values of I
(d)
n , n ≤ 16 and d ≤ 4

Note that the second row of Table 2.2 is the sequence A008805(n)[1]. However, we

do not know a general formula for the other rows, n ≥ 4, for example they do not

occur on [1] at the moment.

Corollary 2.5.2. For d ≥ 1, we have∑
n≥1

I(d)
n tn =

1

(1− td)(1− t)(1− t2)(1− t3) . . . (1− td)
.

Proof. The proof follows from combining equation 2.9 and Proposition 2.5.1.

Let Πn be the set of all partitions of n, and Pn = |Πn|. For any two elements

λ = (λ1, λ2, . . . , λk) and µ = (µ1, µ2, . . . , µl) of Πn we say λ refines µ, denote it

by µ ≤Πn λ, if k ≥ l and there exist a set partition J1 ∪ J2 ∪ · · · ∪ Jl of k such

that for each i ∈ l we have µi =
∑

j∈Ji λj. This makes the pair (Πn,≤Πn) a poset.

Moreover, it is a graded with the rank function (λ1, λ2, . . . , λk) 7→ k. For example

see the Figure 2.4.
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The poset (Πn,≤Πn) is originally defined by Birkhoff (see [5]) then later discussed

in [7] and studied in detail by G.Ziegler in [83].

Let λ = (λ1, λ2, . . . , λk) and µ = (µ1, µ2, . . . , µl) be two partitions of n, then we

write λ ∼d µ if k = l and there exist a permutation σ ∈ Sk such that for each i ∈ k

d divides λi − µσ(i). The relation ∼d is an equivalence relation and we denote the

∼d-class of λ by λ̄(d). Then the set Πn,d := Πn/ ∼d has a partial order relation on it,

denote by ≤∼d , induced from ≤Πn as follows. For λ, µ ∈ Πn we have λ̄(d) ≤∼d µ̄(d) if

for all λ′ ∈ λ̄(d) there exist µ′ ∈ µ̄(d) such that λ′ ≤Πn µ
′. This is well-defined and it

is easy to check the requirements. Moreover, (Πn,d,≤∼d) is also a graded poset with

the induced rank function on Πn.

Define the poset Π∗n,d as follows: If d does not divide n, set Π∗n,d := Πn,d with the

order ≤∼d , if d divides n, define Π∗n,d as a poset obtained from (Πn,d,≤∼d) by adding

a minimum element, denoted ∅ (for simplicity, we will keep the notation ≤∼d for

the partial order on Π∗n,d). The structure of a graded poset on Πn induced the

structure of a graded poset on Π∗n,d by defining the degree of ∅ to be zero. The class

(1, 1, . . . , 1)
(d)

of the partition (1, 1, . . . , 1) is the maximum element in (Π∗n,d,≤∼d).

For example see the Figure 2.4.

Theorem 2.5.3. The graded posets (Π∗n,d,≤∼d) and (I (ne1),≤Xd) are isomorphic.

Proof. For λ ` n define a vector (vλ1 , v
λ
2 , . . . , v

λ
d ) ∈ Ωd such that the component vλi ,

for 1 ≤ i ≤ d, is obtained as follows:

vλi := |{j |λj = i (mod d)}|

It is evident that wt((vλ1 , v
λ
2 , . . . , v

λ
d )) ∈ {n, n − d, n − 2d, . . . , n − dbn

d
c} then by

Corollary 2.4.3 we have (vλ1 , v
λ
2 , . . . , v

λ
d ) ∈ I (ne1).

Let λ ∼d µ then for each 1 ≤ i ≤ d we have vλi = |{j |λj = i (mod d)}| =

|{j |µσ(j) = i (mod d) for some σ ∈ Sd}| = vµi . Thus, the assignment is a well-
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(1, 1, 1, 1, 1, 1, 1)

(2, 1, 1, 1, 1, 1)

(3, 1, 1, 1, 1)

(4, 1, 1, 1)

(5, 1, 1)

(6, 1)

(7)

(5, 2) (4, 3)

(3, 3, 1)
(3, 2, 2)

(2, 2, 2, 1)

(2, 2, 1, 1, 1)

(3, 2, 1, 1)

(4, 2, 1)

(1, 1, 1, 1, 1, 1, 1)
(2)

(2, 1, 1, 1, 1, 1)
(2)

(3, 1, 1, 1, 1)
(2)

(4, 1, 1, 1)
(2)

(5, 1, 1)
(2)

(6, 1)
(2)

(7)
(2)

(2, 2, 1, 1, 1)
(2)

(2, 2, 2, 1)
(2)

(4, 2, 1)
(2)

(Π7,≤Π7 ) (Π?7,2,≤∼2 )
∼2

Figure 2.4: Quotient of the poset Π7 by the equivalence relation ∼2.

defined map from Πn,d to I (ne1). If d divides n then extend this map to Π?
n,d by

sending ∅ to the zero vector in Zd. Call the defined map Φ.

If λ ` n has k parts then ht(Φ(λ)) = k and hence Φ preserves the degree.

We claim that Φ is an isomorphism of graded posets. To this end, we start by

showing that Φ is a morphism of posets. Any refinement of µ ` n can be obtained

as a composition of a sequence of elementary refinements, by elementary refinement

we mean a partition λ ` n obtained from µ by refining one part into two smaller

parts, in this case µ ≤∼d λ. Further, if µ has k parts then λ has k + 1 parts, hence

these elementary refinements determine the covering relation of ≤∼d , denote it by

l∼d .

Let µl∼d λ be obtained by refining µi to λs and λt, that is µi = λs + λt. Then we
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have

µi (mod d) = λs (mod d) + λt (mod d)

Let a, b, c ∈ {1, 2, . . . , d} such that µi = a (mod d), λs = b (mod d) and λt = c

(mod d), then ea− eb− ec ∈ Xd. Therefore, we have Φ(µ)lXd Φ(λ). It follows that

Φ is a morphism of posets.

The injectivity of Φ follows from the definition. We prove the surjectivety of Φ by

downward induction on the height of the elements of I (ne1). One can see directly

from the definition that Φ((1, 1, . . . , 1)
(d)

) = ne1 hence the base case is hold.

For the inductive step h → h − 1, let v ∈ I (ne1) such that ht(v) = h − 1 then

there is w ∈ I (ne1) with ht(w) = h and v lXd w. This implies that there are

i, j, k ∈ {1, 2, . . . , d} such that w + ek − ei − ej = v. By using the inductive step

there is a partition λ ` n such that Φ(λ) = w. Let λs and λt be two different parts

of λ with λs = i (mod d) and λt = j (mod d). Define µ as the partition obtained

from λ by uniting λs and λt. Then Φ(µ) = v. Therefore, Φ is a bijection.

The above argument shows that if v,w ∈ I (ne1) with v lXd w then Φ−1(v) l∼d
Φ−1(w). This implies that the covering relations of (Π∗n,d,≤∼d) and (I (ne1),≤Xd)

match under the morphism Φ. This completes the proof.

Corollary 2.5.4. For n ∈ Z≥0 and d ∈ Z>0, we have |Π∗n,d| = P
(d)
n + P

(d)
n−d + · · · +

P
(d)
n−dbn/dc.

Proof. Follows from Theorem 2.5.3 and Proposition 2.5.1.

Proposition 2.5.5. If n− h < d and n < 2h, then I
(d)
n,h = Pn−h.

Proof. We prove the result by establishing a set bijection between Πn−h and

I (ne1) ∩ Ω
(h)
d . For any v ∈ Ωd, set α(v) = wt(v) − ht(v). For a given

ei+j − ei − ej ∈ Xd with i+ j < d we have α(v + ei+j − ei − ej) = α(v) + 1.
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Fix n− h < d and let v ∈ I (ne1) with height h. Then v can be obtained from ne1

by adding n − h vectors from Xd with the above property. Therefore, v2 + 2v3 +

· · ·+ (d− 1)vd = α(v) = n− h and hence (d− 1, d− 1, . . . , d− 1︸ ︷︷ ︸
vd−times

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
v2−times

) is

a partition of n− h. The injectivity of α is evident.

To show that the map α is surjective, let v2 + 2v3 + · · · + (d − 1)vd + · · · = n − h

for some non- negative integers v2, v3, . . . . Then from assumption condition n < 2h

and Corollary 2.4.3 we have v := (h−
∑d

i=2 vi, v2, . . . , vd) ∈ I (ne1), and it is clear

that ht(v) = h. Moreover, from the definition of α we have α(v) = v2 + 2v3 + · · ·+

(d− 1)vd.

Problem 2.5.6. Find a closed formula for I
(d)
n,h for all n, h, and d.

2.6 Combinatorial results about Pd, for small

values of d.

In this section we try to answer the Problem 2.5.6 partially and for small values of

d. On the other hand, one might see the results in this section as a demonstration

of the level of difficulty of the problem.

2.6.1 The case d = 1.

This is the easiest case to describe, in fact we have the following isomorphism of

posets;

P1 → (N,≤)

(i) 7→ i
(2.10)

Moreover, for n ∈ N we have I (ne1) = {(0), (1), . . . , (n)}. Therefore, the poset

of principal two sided ideals of the partition monoid P1
n is isomorphic to the poset
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(n+ 1,≤).

2.6.2 The case d = 2.

It follows from Proposition 2.3.3 that the poset P2 decomposes in to the disjoint

union of the indecomposable posets P2,1 and P2,2. Moreover, the following map is

isomorphism of posets:

P2,1 →P2,2

v 7→ v− (1, 0)
(2.11)

In particular, we have I ((2n + 1)e1) is isomorphic to I ((2n)e1) as a poset.

Therefore, combining this isomorphism with Corollary 2.5.2 we obtain

I
(2)
2n+1 = I

(2)
2n =

(n+ 1)(n+ 2)

2
. (2.12)

for each n ∈ N. Moreover, we have I
(1)
n,h = 1 for all 0 ≤ h ≤ n.

We also note that the poset I (2ne1) is an ideal in I (2(n + 1)e1) for all n ∈ N,

and ⋃
n∈N

I (2ne1) = P2,2.

Proposition 2.6.1. For 0 ≤ h ≤ n we have I
(2)
2n,2n−h = I

(2)
2n,h = dh+1

2
e and I

(2)
2n+1,h+1 =

I
(2)
2n,h .

Proof. The first equation I
(2)
2n,2n−h = I

(2)
2n,h is a direct consequence of the following set

bijection:

I (2ne1) ∩ Ω
(h)
2 → I (2ne1) ∩ Ω

(2n−h)
2

(v1, v2) 7→ (2n− 2h+ v1, v2).
(2.13)

Moreover, for 0 ≤ 2k < n the following set map is also a bijection:

I (2ne1) ∩ Ω
(2k)
2 → I (2ne1) ∩ Ω

(2k+1)
2

(v1, v2) 7→ (v1, v2 + 1).
(2.14)
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This implies that I
(2)
2n,2k = I

(2)
2n,2k+1.

If (v1, v2) ∈ I (2ne1) ∩ Ω
(2k)
2 then both v1 and v2 have to be even non-negative

integers. Therefore, (v1, v2) ∈ I (2ne1)∩Ω
(2k)
2 if and only if (v1, v2) ∈ {(2k, 0), (2k−

2, 2), . . . , (0, 2k)}. The first part of the claim follows.

The equality I
(2)
2n+1,h+1 = I

(2)
2n,h is an immediate consequence of isomorphism between

I ((2n+ 1)e1) and I ((2n)e1).

2.6.3 The case d = 3.

The case d = 3 seems to have a very rich combinatorial structure. We are going to

focus on it in more detail and study its relation with other integral sequences.

We try to construct the poset P3 from Z3 by restriction instead of constructing it

directly from Ω3. Consider the relation l′3 on the set Z3 defined as follows:

for v,w ∈ Z3 we have v l′3 w if and only if there is x ∈ X3 such that v = w + x

Let ≤′3 denote the partial order on Z3 induced by this covering relation l′3 . Our

main observation here is the following:

Proposition 2.6.2. The relation ≤X3 coincides with the restriction of the relation

≤′3 to Ω3.

Proof. Denote by ≤′3�Ω3 the restriction of the relation ≤′3 to Ω3. It follows from

the definition of both of the relations that ≤X3⊆ ≤′3�Ω3 . It remains to show that

≤′3�Ω3 ⊆≤X3 .

Let v,w ∈ Ω3 be such that v ≤′3 w. We would like to show that v ≤X3 w. Suppose

the claim is not true. Choose a pair (v,w) with v ≤′3 w and v 6≤X3 w such that

ht(w − v) = k ∈ Z>0 is minimum. As v ≤′3 w, there is a sequence of elements
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x1,x2, . . . ,xk ∈ X3 such that

v = w + x1 + x2 + · · ·+ xk.

Let vi := v − xi for i = 1, 2, . . . , k. We claim that vi 6∈ Ω3 for all i. Assume this

is not the case and vi ∈ Ω3 for some i, then we have v ≤X3 vi and vi ≤′3 w. This

would imply vi 6≤X3 w which would contradict the assumption that k is minimum.

Particularly, for i = 1, 2, . . . , k we must have xi 6= (0, 0,−1) since y− (0, 0,−1) ∈ Ω3

for any y ∈ Ω3.

Next we show that xi 6= (−1,−1, 1) for i = 1, 2, . . . , k. Otherwise, without loss

of generality we may assume that xk = (−1,−1, 1). Since vk 6∈ Ω3 we obtain

v = (∗, ∗, 0) and vk = (∗, ∗,−1). Furthermore, we have

vk = w + x1 + x2 + · · ·+ xk−1

Then w3 ≥ 0 since w ∈ Ω3, and this implies that xi = (0, 0,−1) for some i. However,

we have already proven that xi 6= (0, 0,−1) for all i, which is a contradiction.

Therefore each xi is equal to either (−2, 1, 0) or (1,−2, 0). Firstly, we may assume

that xi = (−2, 1, 0) for all i, the case when x1 = x2 = · · · = xk = (1,−2, 0)

can be treated similarly. Then v = w + k(−2, 1, 0). For i = 1, 2, . . . , k we have

w + i(−2, 1, 0) ∈ Ω3 since v,w ∈ Ω3. Hence v ≤X3 w, a contradiction.

Therefore, each of the equation xi = (1,−2, 0) and xi = (−2, 1, 0) has at least one

solution. This implies v − (−2, 1, 0) − (1,−2, 0) = v + (1, 1, 0) ≤′3 w. At the same

time, we have

v + (0, 0, 1),v + (1, 1, 0) ∈ Ω3

as v ∈ Ω3 and

v ≤X3 v + (0, 0, 1) ≤X3 v + (0, 0, 1) + (1, 1,−1) = v + (1, 1, 0).

This implies v + (1, 1, 0) 6≤X3 w which again contradicts our minimal choice of k.

The claim follows.
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We recall that from [1] we have P
(3)
n = A001399(n). The following result tells us the

values of the sequence I
(3)
n,h for sufficiently large h.

Proposition 2.6.3. For h ≥ dn
2
e we have I

(3)
n,h = P

(3)
n−h.

Proof. We prove the result by showing that the following assignment is a set

bijection:

π : Π≤3
n−h → I (ne1) ∩ Ω

(h)
3

(a, b, c) 7→ (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1)

The condition h ≥ dn
2
e implies that 2a + b ≤ n. We have a ≥ b ≥ c ≥ 0, hence

Proposition 2.6.2 implies that π(a, b, c) ∈ I (ne1) ∩ Ω
(h)
3 . Therefore the relation π

is a set map.

The set {(−2, 1, 0), (−1,−1, 1), (0, 0,−1)} is Q-linearly independent . Therefore, the

map π is injective.

Let a, b, c be three non-negative integers such that a+ b+ c = n− h and

v(a,b,c) := (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) ≤X3 (n, 0, 0) (2.15)

Then v(a,b,c) ∈ Ω3 implies that (a, b, c) is a partition of n− h.

To prove that π is onto we only need to show that any v ∈ I (ne1) ∩ Ω
(h)
3 is of the

form of Equation 2.15 for some (a, b, c) ∈ Ω3 with a+ b+ c = n− h. Suppose this is

not the case, and let v ∈ I (ne1)∩Ω
(h)
3 be not of the desired form for the maximum

possible h.

By definition of ≤X3 there exist a, b, c, f ∈ N such that a+ b+ c+ f = n− h and

v = (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) + f(1,−2, 0)

If f > 1, by using the condition h ≥ dn
2
e and Proposition 2.6.2 we have v −

(1,−2, 0) ≤X3 (n, 0, 0). But ht(v− (1,−2, 0)) = h+ 1 hence by the maximality of h

the vector v − (1,−2, 0) is of the form Equation 2.15 with the desired conditions.
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Therefore, we may assume f = 1. Then one might apply the above argument and see

v− (1,−2, 0) has the form of Equation 2.15. Since v− (1,−2, 0) ∈ I (ne1), we have

a > 0. Using the equality (−2, 1, 0) + (1,−2, 0) = (−1,−1, 1) + (0, 0,−1) enables

us to write v in the form of Equation 2.15 with the desired conditions. Which is a

contradiction. The surjectivity follows.

The next observation is the first step toward determining the value of the sequence

I
(3)
n,h for relatively small vales of h.

Proposition 2.6.4. Let d > 1, for h ≤ dn
d
e we have Ω

(h)
d ∩I (ne1) = Ω

(h)
d,k, where

k ∈ {1, . . . , d} such that n ≡ k (mod d). In particular, I
(d)
n,h = |Ω(h)

d,k|.

Proof. As n = d(dn
d
e − 1) + k for some k ∈ {1, . . . , d}, we have I (ne1) ⊂ Ωd,k.

Hence, to prove the statement of the proposition we need to show that Ω
(h)
d ∩Ωd,k ⊆

Ω
(h)
d ∩I (ne1).

Let v = (v1, . . . , vd) ∈ Ωd,k with ht(v) = h ≤ dn
d
e < n. Then, wt(v) = d.r + k for

some non negative integer r. This implies wt(v) ∈ {k, k+d, k+ 2d, . . . , n−d, n, n+

d, . . . }. But we have wt(v) < dht(v) ≤ d.dn
d
e ≤ d(dn

d
e−1)+k+d−k = n+d−k and

hence wt(v) < n+ d− k. Thus, wt(v) = d.r+ k ∈ {n, n− d, . . . , k}. Corollary 2.4.3

implies that v ∈ I (ne1).

It is necessary to mention that the above result is not true for h > dn
d
e. To see this,

let h = dn
d
e+ 1 and v = ek + (h− 1)ed, then v ∈ Ω

(h)
d ∩Ωd,k. However, v 6∈ I (ne1)

as wt(v) = k + (h− 1)d = k + ddn
d
e > n.

From Figure 2.5 one can see that for all h ∈ N we have

|Ω(h)
3 | =

(h+ 1)(h+ 2)

2
(2.16)

Proposition 2.6.5.

(i) If 3 does not divide h, then |Ω(h)
3,1 | = |Ω

(h)
3,2 | = |Ω

(h)
3,3 |.
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(0, 0, h) (1, 0, h− 1) (2, 0, h− 2) (3, 0, h− 3) (4, 0, h− 4) (5, 0, h− 5) (6, 0, h− 6) . . .

(0, 1, h− 1) (1, 1, h− 2) (2, 1, h− 3) (3, 1, h− 4) (4, 1, h− 5) (5, 1, h− 6) . . .

(0, 2, h− 2) (1, 2, h− 3) (2, 2, h− 4) (3, 2, h− 5) (4, 2, h− 6) . . .

(0, 3, h− 3) (1, 3, h− 4) (2, 3, h− 5) (3, 3, h− 6) . . .

(0, 4, h− 4) (1, 4, h− 5) (2, 4, h− 6) . . .

(0, 5, h− 5) (1, 5, h− 6) . . .

(0, 6, h− 6) . . .

. . .

Figure 2.5: Triangular arrangement of Ω
(h)
d

(ii) If 3 divides h, then |Ω(h)
3,1 | = |Ω

(h)
3,2 | = |Ω

(h)
3,3 | − 1.

Proof. We prove both statements simultaneously by induction on h. We start by

arranging the elements of Ω
(h)
3 in a triangular array as shown on Figure 2.5.

Writing down the residue modulo 3 of the wt(v) for each element v ∈ Ω
(h)
3 in
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Figure 2.5 we get

0 1 2 0 1 2 0 . . .

2 0 1 2 0 1 . . .

1 2 0 1 2 . . .

0 1 2 0 . . .

2 0 1 . . .

1 2 . . .

0 . . .

. . .

For a fixed h the set Ω
(h)
3 corresponds the the first h + 1 columns from left. The

induction step h→ h+ 1 corresponds to adding the next column.

We claim that the residues in each column and each row follow a cyclic order on

0, 1, 2. To this end, let (a, b, c) ∈ Ω
(h)
3 then one step moving down along the column

which (a, b, c) belongs to means going to (a− 1, b+ 1, c), but wt ((a− 1, b+ 1, c)) =

wt ((a, b, c)) + 1. In addition, moving one step directly to right means going to

(a+ 1, b, c− 1), in this case we also have wt ((a+ 1, b, c− 1)) = wt ((a, b, c)) + 1.

Moreover, if we analyse the number of 0’s, 1’s and 2’s in each column we have the

following three cases;

Case 1 If a column starts with 0 then it ends with 0, this means it has one 0 more

than 1’s and 2’s.

Case 2 If a column starts with 1 then it ends with 2, this means it has one 1 more

than 0’s and the number of 1’s and 2’s is the same.

Case 3 If a column starts with 2 then it ends with 1 , this means it has the same

number of of 0’s, 1’s and 2’s.
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The claim follows by using induction on h and having the above information in

hand.

For a set X, we denote by δX the indicator function of X, that is

δX(x) =

1, x ∈ X;

0, x 6∈ X.
(2.17)

Combining Proposition 2.6.5 and Formula 2.16, we obtain the following formula,

for k ∈ {1, 2, 3}

|Ω(h)
3,k| =

(h+ 1)(h+ 2) + (6δ3Z(k)− 2)δ3Z(h)

6
. (2.18)

Corollary 2.6.6. For h ≤ dn
3
e we have

I
(3)
n,h =

(h+ 1)(h+ 2) + (6δ3Z(n)− 2)δ3Z(h)

6
.

Proof. Follows from Equation 2.18 and Proposition 2.6.4.

If 3 does not divide n then

I
(3)
n,h =

(h+ 1)(h+ 2)− 2δ3Z(h)

6
.

Which coincides with the sequence A001840 from [1].

If 3 divides n then

I
(3)
n,h =

(h+ 1)(h+ 2) + 4δ3Z(h)

6
.

Which coincides with the sequence A007997(h+ 2) from [1].

However, it seems that our interpretation of both these sequences does not appear

on [1] at the moment.

Finally, we would like to record the following problem to summarise the remaining

cases, where d = 3.

Problem 2.6.7. Find a closed formula for I
(3)
n,h where dn

3
e ≤ h ≤ dn

2
e.
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2.7 Relation with Hollow Hexagons by using

reflection groups.

We begin this section by recalling the definition of affine Weyl groups which will be

needed for triangular tiling of the Euclidean space R2 by equilateral triangles. Tiling

R2 by regular hexagons, under certain conditions, can be considered as a dual graph

of triangulation of R2 by equilateral triangles. This duality enables us formally to

define the so called t -hexagons and their hexagonal envelope, and consequently

define hollow hexagons.

We follow Chapters 1 and 2 of [40] in our exposition. Let V be a finite dimensional

real vector space with the inner product 〈., .〉. For a non-zero vector α ∈ V and

k ∈ Z the set

Hα,k := {λ ∈ V | 〈λ, α〉 = k}

is an affine hyperplane in V , and if k = 0 then Hα,k is a hyperplane. Moreover, there

is an affine transformation, call it affine reflection throughout Hα,k, associated to α

and k as follows:

sα,k : V → V

β 7→ β − 2
〈α, β〉 − k
〈α, α〉

α
(2.19)

It is evident that for any β ∈ V , sα,k(β) = sα,0(β) + k 2α
〈α,α〉 .

Geometrically, sα,0 fixes the hyperplane Hα,0 pointwise and sends any vector

orthogonal to Hα,0 to its negative.

A finite subset R of V is a root system if it satisfies the following conditions:

i R spans V and it does not contain zero.

ii If α ∈ R then Rα ∩R = {α,−α}.

iii If α ∈ R then sα,0(R) = R.
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iv If α, β ∈ R then 2 〈α,β〉〈α,α〉 ∈ Z.

The Weyl group of R is the subgroup of GL(V ) generated by reflections sα,0 for

α ∈ R, denote it by WR.

A subset B of R is called simple root system (or basis) if

1. The set B spans V .

2. Every root can be written as a linear combination of elements of B such that either

all the coefficients are non-negative integers or all the coefficients are non-positive

integers.

The Weyl group WR is generated sα,0 with α ∈ B.

It is not hard to see that for α ∈ B and k ∈ Z we have λ ∈ Hα,0 if and only if

λ+ kα
(α,α)

∈ Hα,k.

The affine Weyl group of R is the subgroup of the affine linear group Aff(V )

generated by the affine reflections sα,k with α ∈ R and k ∈ Z. Denote it by

W̃R. Note that WR is a subgroup of W̃R and normalizes the translation group

corresponding to the coroot lattice LR, defined by;

LR =
∑
α∈R

Z
2α

〈α, α〉

Therefore, W̃R is the semidirect product of WR acting on the translation group

associated to LR (see p. 88 [40]).

Let H be the collection of all hyperplanes Hα,k, for α ∈ R and k ∈ Z. The open

connected components of the open set V 4 := V \
⋃
H∈HH are called alcoves. Further,

the group W̃R acts regularly (simply transitively) on the set V 4 and permutes the

alcoves. For example see 2.6.

Let e1, e2, e3 be the standard basis for R3 and let V = {(v1, v2, v3) ∈ R3 | v1 +

v2 + v3 = 0}. Let R = {α1, α2, α1 + α2} with α1 = e1 − e2 and α2 = e2 − e3,
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Hα1,0

Hα1,1

Hα1,2

Hα1,−1

Hα1,−2

Hα2,0 Hα2,1 Hα2,2Hα2,−1

Hα1+α2,−1 Hα1+α2,0
Hα1+α2,1

α2

α1

α1 + α2

Figure 2.6: The alcove system of Ã2.

then R is a root system in V with a basis {α1, α2}. Therefore, WR is generated by

the reflections sα1,0 and sα2,0, and WR ' S3. Furthermore, LR = Zα1 + Zα2 and

W̃R = LR o S3. This group is commonly denoted by Ã2 and it has the following

presentation by generators and relations;

Ã2 = {s0, s1, s2 | s2
0 = s2

1 = s2
2 = (s0s1)3 = (s0s2)3 = (s1s2)3 = 1}

The group Ã2 is also known as a triangle group cf. p246 of [62].

We associate to the Ã2 alcove system graph the dual graph and called hexagonal

tiling in the following way; for any alcove we assign a vertex and an edge between

two different vertices whenever the closure of their alcoves intersect non-trivially.

Finally we remove all the affine hyperplanes see Figure 2.7.
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Figure 2.7: The dual graph of the the alcove system of Ã2.

2.7.1 T-hexagons and their H-envelope.

We follow [34] Chapter 8 and [17] in the introduction of this subsection. Assume

p ≥ 6, a cycle C on the hexagonal tiling in Figure 2.7 consists of a list e1, e2, . . . , ep−1

of different edges such that for each 1 ≤ i ≤ p−1 the edges ei and ei+1 have a common

vertex, in addition, e1 and ep have a common vertex. Let C1 and C2 be two cycles

such that C2 is in the interior of the region formed by C1. Then a coronoid system

consists of the vertices and edges on C1 and C2, and in the interior of C1, but exterior

of C2. The cycle C1 is called outer perimeter and C2 inner perimeter, see Figure 2.8.

Furthermore, coronoid systems are mathematical representation of chemical objects

called coronoid hydrocarbons.
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C1

C2

Figure 2.8: An example of a coronoid system.

A hollow hexagon is a coronoid system consisting only a chain of hexagons such that

its interior cycle is a hexagonal envelope of some t-hexagon. We devote the rest of

this chapter to define formally t-hexagons and their hexagonal envelope. Moreover,

we establish a precise bijection between the set of iso-classes of t-hexagons and the

set I (ne1). This bijection allows one to construct efficiently the set of all hollow

hexagons for a given perimeter up to isomorphism.

We call the hyperplanes tiling lines, and for k ∈ Z the hyperplane Hα1,k (resp.

Hα1+α2,k, Hα2,k) is called tiling line of type 1 (resp. type 2, type 3 ).

For i = 1, 2, 3 a tiling stripe of type i is the area between two (not necessarily

different) tiling lines of type i, and if these two tiling lines coincide then the

corresponding tiling stripe coincides with each one of these two lines. See Figure

2.9 for an example of tiling stripe of type 1.

A t-hexagon is defined to be the intersection of three tiling line stripes, one of each

type. For example, the polygon shape in figure 2.10 (with the bold boundary lines)

is a t-hexagon obtained from the intersection of a tiling stripe of type 1 given by the

area between Hα1,0 and Hα1,2, the tiling stripe of type 2 given by the area between

the lines Hα1+α2,0 and Hα1+α2,4 and tiling stripe of type 3 given by the area between

the lines Hα2,0 and Hα2,3 .
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?

? ?

? ? ? ?

? ? ? ?
?

Figure 2.9: Triangles marked with ? form a tiling strip of type 1.

Lemma 2.7.1. A t-hexagon can only be one of the following

i. Empty,

ii. A vertex of an alcove,

iii. A bounded line segment of the tiling line,

iv. A convex polygon with three, four, five or six vertices.

Proof. It is not difficult to construct an example for each of the t-hexagons described

in i − iv. Hence we only need to show that a t-hexagon is convex and it cannot

have more than 6 vertices. The intersection of a tiling stripe of type 1 and 2 has 1

vertex if both of the tiling stripes are actually a tiling line, has two vertices and it

is a bounded line segment if one of the tiling stripes is obtained from a tiling line,

or otherwise it is a parallelogram. The tiling lines of a tiling stripe of type 3 is not

parallel to the tiling lines of type 1 and 2 hence it intersects a point in at most one

point, a bounded line segment in at most two points and a parallelogram in at most

four points. Therefore, the obtained polygon has at most six vertices. It remains

to show that a t-hexagon is convex, but this follows from the fact that if two tiling
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(0, 0)

Figure 2.10: The bold convex polygon is a t-hexagon and its hexagonal envelope is

the doted line shape.

lines are not parallel the angle of their intersection is either π/3 or 2π/3. Hence an

interior angle of a t-hexagon with more than two points is either π/3 or 2π/3.

From now on we set the length of the sides of an alcove in the hyperplane

arrangement of Ã2 to be 1. The perimeter of a t-hexagon is defined to be equal

to its perimeter when it considered as a polygon. In particular, the perimeter of a

vertex is zero and the perimeter of a bounded line segment with length l is equal to

2l. For example, the perimeter of the t-hexagon in Figure 2.10 is 9.

Let H a t-hexagon and e(H) be the set of all hexagons, in the hexagonal tiling,

that intersect H non-trivially. The hexagonal envelope of H is the boundary of the

region obtained from the closure of the set e(H). We write E(H) to refer to the

hexagonal envelope of H and #(E(H)) to refer to the number of vertices of E(H) ,

an example is given in Figure 2.10.

Two t-hexagons are said to be isomorphic if they can be obtained from each other by

applying the elements of Ã2. For n ∈ N we denote by T2n the number isomorphism
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classes of t-hexagons with perimeter 2n.

Lemma 2.7.2. Let T be a t-hexagon of perimeter i for some i ∈ N. Then the

hexagonal envelope of T has 6 + 2i vertices.

Proof. We start by listing all the t-hexagons of perimeter i = 0, 1, 2, 3, 4, 5.

i = 0 i = 2 i = 3 i = 4 i = 5

Let T be a t-hexagon with perimeter i ≥ 6, by definition T is the intersection of

three tiling strips, one of each type. At least one of the tiling strips is obtained from

two tiling lines Hα,k′ and Hα,k with k′ < k and α ∈ {α1, α2, α1 + α2}. Let T ′ be

a t-hexagon obtained from T by moving the tiling line Hα,k to Hα,k−1 or Hα,k′ to

Hα,k′+1. Then, T ′ is a smaller t-hexagon than T , the perimeter is reduced. Therefore

we can use induction on i. In fact we only have the following possible ceases in the

process of obtaining T ′ from T .

Case 1. The t-hexagon T ′ is obtained from T by projecting a line segment to a

vertex as it has be depicted in the following figure:

In this case the perimeter of T ′ is i− 2 and #(E(T ′)) = #(E(T ))− 4.

Case 2. The t-hexagon T ′ is obtained from T by projecting a trapezoid segment
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onto its basis as it has been depicted in the following figure (note that the length of

the segment in the figure is 3 but in general it can be arbitrary):

In this case the perimeter of T ′ is i− 1 and #(E(T ′)) = #(E(T ))− 2.

Case 3. The t-hexagon T ′ is obtained from T by projecting a trapezoid segment

onto its basis as it has been depicted the following figure (note that the length of

the segment in the figure is 4 but in general it can be arbitrary):

In this case the perimeter of T ′ is i− 2 and #(E(T ′)) = #(E(T ))− 4.

Case 4. The t-hexagon T ′ is obtained from T by projecting a trapezoid segment

onto its basis as it has been depicted in the following figure (note that the length of

the segment in the figure is 4 but in general it can be arbitrary):

In this case the perimeter of T ′ is i− 3 and #(E(T ′)) = #(E(T ))− 6.

All the above cases confirm the desired formula, and hence the claim of the lemma

follows by induction.
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v1

v2
v3

1

4

2
35

6

Figure 2.11: Basic vectors and lines .

2.7.2 Characters of t-hexagons

In this subsection we associate a vector with non-negative coordinates to each t-

hexagon in a unique way, this allows us to to construct a bijection between a special

class of t-hexagons with perimeter 2n and the poset I (ne1).

Let v1,v2 and v3 be the three vectors defined in Figure 2.11, each of them has

length 1 and satisfy the condition v1 + v2 + v3 = 0. Given a t-hexagon H we

number the tiling lines of its tiling strips as it has been explained in Figure 2.11. In

particular, if two tingling lines coincide we still number them differently according to

our numbering scheme. This numbering corresponds to walking along the boundary

of H, starting with tiling line numbered by 1 and walking along the path (with the

same initial and terminal point)

v1 → −v3 → v2 → −v1 → v3 → −v2. (2.20)

From the definition of t-hexagons, the intersection of a tiling line of a tiling stripe

of H with the boundary of H is either a vertex or a side of H. For i = 1, 2, 3, 4, 5, 6

let ai be the length of the intersection of a tiling line i with the boundary of H, we
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denote by χ(H) the vector (a1, a2, a3, a4, a5, a6), and it will be called the character

of H. For example, for t-hexagon obtained from the tiling lines 1, 2, 3, 4, 5, 6 in

Figure 2.11 we have χ(H) = (1, 1, 1, 1, 1, 1), and for the t-hexagon in Figure 2.10 we

have χ(H) = (3, 0, 2, 2, 1, 1).

A t-hexagonH with character χ(H) = (a1, a2, a3, a4, a5, a6) is said to be distinguished

if it satisfies the following conditions;

a1 + a3 + a5 ≤ a2 + a4 + a6 and a1 ≥ a3 ≥ a5 (2.21)

A distinguished character is the character of a distinguished t-hexagon.

The action of Ã2 induced on the set of characters of t-hexagons is a finite group

generated by the following three permutations corresponding to the reflection

through the three different types of tiling lines :

Reflecting H through a tiling line of type 1 χ(H) 7→ (a4, a3, a2, a1, a6, a5)

Reflecting H through a tiling line of type 2 χ(H) 7→ (a6, a5, a4, a3, a2, a1)

Reflecting H through a tiling line of type 3 χ(H) 7→ (a2, a1, a6, a5, a4, a3)

Using the action of Ã2 we can change some t-hexagons to a distinguished t-hexagon.

Moreover, each t-hexagon is isomorphic to at most one distinguished t-hexagon up

to isomorphism of t-hexagons. For example the t-hexagon in Figure 2.10 is not

distinguished and it is not isomorphic to any distinguished t-hexagon, while the

t-hexagon in Figure 2.11 is distinguished.

Lemma 2.7.3. An element (a1, a2, a3, a4, a5, a6) ∈ N6 is a character of a t-hexagon

if and only if

(a1 − a4)v1 + (a3 − a6)v2 + (a5 − a2)v3 = 0 (2.22)

Proof. First note that from v1 + v2 + v3 = 0, and linear independence of v1 and v2

the equation 2.22 is equivalent to

a1 + a2 = a4 + a5 and a2 + a3 = a5 + a6 (2.23)
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The only if part follows from the definition of the character of a t-hexagon. To prove

the if part, assume (a1, a2, a3, a4, a5, a6) ∈ N6 satisfies the equation 2.22. Consider

the a t-hexagon H with the tiling stripe of type 1 obtained from the lines Hα1,0 and

Hα1,a2+a3 = Hα1,a5+a6 , the tiling stripe of type 2 obtained from the lines Hα1+α2,0

and Hα1+α2,a1+a6 , and the tiling stripe type 3 obtained from the lines Hα2,−a2 and

Hα2,a1 . Then by construction χ(H) = (a1, a2, a3, a4, a5, a6).

Lemma 2.7.4. Let H be a distinguished t-hexagon with χ(H) = (a1, a2, a3, a4, a5, a6)

then

a1 ≤ a4, a5 ≤ a2 and a3 ≤ a6 (2.24)

Proof. From equation 2.23 we have a1 − a4 = a5 − a2 = a3 − a6, the statement of

the lemma follows by substituting this equality in the first part of the equation 2.21

in the three different ways.

2.7.3 Elementary operations on distinguished t-

hexagons.

In this subsection we define some operations on the distinguished t-hexagons

which allows us to change a distinguished t-hexagon to another distinguished t-

hexagon.

Let H be a distinguished t-hexagon with χ(H) = (a1, a2, a3, a4, a5, a6), we define

four operations on χ(H) and call them elementary operations as follows;

Operation Φ. If a1−a3 ≥ 2 then by using Lemma 2.7.4 the following vector

(a1 − 1, a2, a3 + 1, a4 − 1, a5, a6 + 1)

is in N6 and satisfies the equations 2.21 and 2.23. Therefore, it is the character of

a unique distinguished t-hexagon, and it well be denoted by Φ(H).
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Operation Ψ. If a1 > a3 > a5 then by using Lemma 2.7.4 the following vector

(a1 − 1, a2 + 1, a3, a4 − 1, a5 + 1, a6)

is in N6 and satisfies the equations 2.21 and 2.23. Therefore, it is the character of

a unique distinguished t-hexagon, and it well be denoted by Ψ(H).

Operation Θ. If a5 > 0 then by using Lemma 2.7.4 the following vector

(a1 − 1, a2 + 1, a3 − 1, a4 + 1, a5 − 1, a6 + 1)

is in N6 and satisfies the equations 2.21 and 2.23. Therefore, it is the character of

a unique distinguished t-hexagon, and it well be denoted by Θ(H).

Operation Λ. If a3−a5 ≥ 2 then by using Lemma 2.7.4 the following vector

(a1 − 1, a2 + 2, a3 − 2, a4 + 1, a5, a6)

is in N6 and satisfies the equations 2.21 and 2.23. Therefore, it is the character of

a unique distinguished t-hexagon, and it well be denoted by Λ(H).

It is not hard to see that all the assignments Φ,Ψ,Θ, and Λ are set maps when they

are restricted to their domains. Moreover, they do not change the perimeter of the

distinguished t-hexagons.

For a distinguished t-hexagon H with χ(H) = (a1, a2, a3, a4, a5, a6) we define

sign(H) := (a1 − a3, a3 − a5, a5) ∈ N3 and call it signature of H. For example,

the t-hexagon in Figure 2.11 has a signature (0, 0, 1). Moreover, it is not hard to

see that sign is a map from the set of all distinguished t-hexagons to N3.

For any distinguished t-hexagon H, directly from the definition of signature and the
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maps Φ,Ψ,Θ,Λ we have;

sign(Φ(H)) = sign(H) + (−2, 1, 0) whenever Φ(H) is defined,

sign(Ψ(H)) = sign(H) + (−1,−1, 1) whenever Ψ(H) is defined,

sign(Θ(H)) = sign(H) + (0, 0,−1) whenever Θ(H is defined,

sign(Λ(H)) = sign(H) + (1,−2, 0) whenever Λ(H) is defined.

(2.25)

We define the defect of H to be;

def(H) := a2 + a4 + a6 − a1 − a3 − a5

Theorem 2.7.5. For n ∈ N, the map H 7→ sign(H) induces a set bijection between

the set of isomorphism classes of distinguished t-hexagons of perimeter 2n and the

underlying set of the poset (I (ne1),≤X3).

Proof. Let H be a distinguished t-hexagon with character (n, 0, 0, n, 0, 0), that is a

horizontal line segment with perimeter 2n. Then the signature of H is ne1. Let

A2n be the set of all t-hexagons obtained by applying a sequence of operations

Φ,Ψ,Θ and Λ to H whenever possible. Then each element of A2n has perimeter 2n.

Moreover, from the definition of I (ne1) and 2.25 we have sign(A2n) = I (ne1).

We claim that A2n is the set of all distinguished t-hexagons of perimeter 2n. If

the claim is true, it implies that the image of sign is I (ne1) and hence sign is

surjective. To prove the claim, let K be a distinguished t- hexagon with character

(a1, a2, a3, a4, a5, a6). Assume a5 > 0, then by Lemma 2.7.4 we have a2 > 0 and

hence the vector

(a1 + 1, a2 − 1, a3, a4 + 1, a5 − 1, a6)

is in N6; moreover, it satisfies the equations 2.21 and 2.23. Thus it is the character

of a unique distinguished t-hexagon, say K ′ up to isomorphism. We have Ψ(K ′) = K

and the fifth coordinate of K ′ is smaller than the fifth coordinate of K. Therefore by
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repeating the above sequence of Ψ’s, the t- hexagon K can obtained from another

distinguished t-hexagon K ′′ which has zero in its fifth coordinate.

Let K be a distinguished t-hexagon with character (a1, a2, a3, a4, a5, a6), this time

we assume a3 > 0. Then by an argument similar to the case when a5 > 0 there is a

distinguished t-hexagon K ′′ which has zero in its third coordinate, and Φk(K ′′) = K

for some positive integer k.

Now let K be a distinguished t-hexagon with character (a1, a2, 0, a4, 0, a6). Then by

using Lemma 2.24 we have a4 ≥ a1. If a1 = a4 then by substituting it in equation

2.23 we obtain a2 = a6 = 0 and hence K = H. If a4 > a1 then the vector

(a1 + 1, a2 − 1, a3 + 1, a4 − 1, a5 + 1, a6 − 1)

is in N6; moreover, it satisfies the equations 2.21 and 2.23. Thus it is the character

of a unique distinguished t-hexagon, say K ′. We have Θ(K ′) = K and def(K ′) <

def(K).

Therefore, by using induction on the defect of K and the previous steps we obtain

that any distinguished t-hexagon of perimeter 2n is obtained from a distinguished

t-hexagon having character of the form (a1, 0, 0, a4, 0, 0). But equation 2.23 implies

that a1 = a4 = n and consequently the claim follows.

It remains to show that sign is injective. To this end, let K be a distinguished

t-hexagon with sign(K) = (x, y, z) ∈ I (ne1). Then χ(K) = (x + y + z, a2, y +

z, a4, z, a6) for some non-negative integers a2, a4 and a6. By using 2.23 and the fact

that perimeter of K is 2n we have the following system of equations

x+ y + z − a4 = z − a2 = y + z − a6

x+ y + z + a2 + y + z + a4 + z + a6 = 2n

Which has a unique solution in terms of x, y, z and n, it is given by a2 = z+2k, a4 =

n−k−2z−y and a6 = y+z+2k where 3k = n−x−2y−3z. Thus the character of

K is uniquely determined and hence sign is injective. This completes the proof.
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Corollary 2.7.6. For a non-negative integer n we have T2n = I
(3)
n .

We recall the following equations from page 85 [16].

T6i =
1

8

(
(i+ 1)(2i2 + i+ 1)− 1

2
(1 + (−1)i)

)
T6i+2 =

1

8

(
(i+ 1)(2i2 + 3i− 1) +

1

2
(1 + (−1)i)

)
T6i+4 =

1

8

(
(i+ 1)(2i2 + 5i+ 1)− 1

2
(1 + (−1)i)

) (2.26)

Corollary 2.7.7. For i ∈ Z>0 we have:

I
(3)
3i =

1

8

(
(i+ 1)(2i2 + i+ 1)− 1

2
(1 + (−1)i)

)
I

(3)
3i+1 =

1

8

(
(i+ 1)(2i2 + 3i− 1) +

1

2
(1 + (−1)i)

)
I

(3)
3i+2 =

1

8

(
(i+ 1)(2i2 + 5i+ 1)− 1

2
(1 + (−1)i)

)
Proof. This corollary is a direct consequence of the Corollary 2.7.6 and

Equation 2.26.

Note that the above Corollary can also be obtained from Proposition 2.5.1 and

Equation 2.26 .
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Chapter 3

Representation theory of the

planar d-tonal partition algebra

T dn(δ).

Let R be a commutative ring and δ ∈ R. For each n, d ∈ N, in this chapter

we introduce and study the representation theory of a family of finite dimensional

algebras. We call them the planar d-tonal partition algebra, denote it by T dn(δ). The

bases of T dn(δ) consists of all planar diagrams of Pdn.

In particular, if d = 1 then the planar 1-tonal partition algebra is isomorphic to

the Temperley-Lieb algebra T L2n(δ). If d = 2 then the Temperley-Lieb algebra

is a subalgebra of T 2
n(δ). Therefore, we may consider the planar d-tonal partition

algebras as a generalisation of the Temperley-Lieb algebra.

In the first section we present the definition of T dn(δ) and its underlying monoid T dn .

In section two we make some observations about the order of the monoid T dn . In

particular we show that the order of T 2
n is given by the 2-Fuss-Catalan numbers,

which is the same as A001764 in [1].
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In Section 3 we study the monoid T dn . A complete description of the of the J -classes

of T dn is obtained. We define a planar version of the canonical elements of Pdn, and call

them planer canonical elements of T dn . Precisely, in Theorem 3.3.4 we show that each

element of T dn is J -equivalent to a unique canonical element of T dn . Consequently,

we show that T dn is a regular monoid. Furthermore, a set of generators for T dn is

obtained. The obtained set of generators of T dn are all idempotent, therefore, T dn is

an example of an idempotent generated monoid.

Regarding the Representation theory of T dn(δ), we answer some fundamental

questions. In particular, in Theorem 3.5.7 we show that the simple modules of T dn(δ)

are indexed by the set of all compositions of the integers n, n − d, . . . , bn/dc with

each part less than or equal to d. Further, in Proposition 3.7.4 the simple modules

of T dn(δ) are constructed explicitly. We also show that T dn(δ) is quasi-hereditary and

give the restriction rules for the standard modules. Analogues to the other types of

diagram algebras we show that T dn(δ) is generically semisimple.

When d = 2 in Theorem 3.4.2 it is shown that T 2
n(δ) is isomorphic to the two

colour Fuss-Catalan algebra, defined by Bisch and Jones [6], under some restrictions.

We use this isomorphism to pass our knowledge form one side to the other. For

example the presentation of T 2
n(δ) by generators and relations is obtained from

the Fuss-Catalan algebras. By using the axiomatic frame work developed in [14]

in Theorem 3.9.16 we present a necessary and sufficient condition on T 2
n(δ) to be

semisimple. Consequently, we improve a result of Bisch and Jones regarding the

semisimplicity of the two colour Fuss-Catalan algebras.
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3.1 Definition of the planar d-tonal partition

monoid T dn and the planar d-tonal algebra

T dn (δ).

Proposition 3.1.1. Let T dn := T 1
n ∩ Pdn. Then (T dn , ◦) is a submonoid of Pn.

Proof. The intersection of two submonoids is again submonoid.

We call the monoid T dn the planar d-tonal partition monoid. It is not hard to show

that T Ln is a submonoid of T 2
n . Therefore one might consider the d-tonal partition

monoids as a generalisation of Tepereley-Lieb monoids (later, algebras).

Proposition 3.1.2. Let R be commutative ring and δ ∈ R. Let T dn(δ) be a free

R-submodule of Pn(δ) with basis given by the set T dn . Then T dn(δ) is subalgebra of

Pn(δ).

Proof. It is enough to show that T dn(δ) is closed under multiplication. By equation

1.2 the multiplication of two bases elements of T dn(δ) is scalar multiplication of

another basis element, since (T dn , ◦) is a monoid.

We call the algebra T dn(δ) a planar d-tonal partition algebra and it is going to be

the main object of our study in this chapter.

3.2 On the order of T dn .

Let (S,5) be a finite linear ordered set, a partition d = {p1,p2, . . . ,pr} of S is

called a non-crossing partition if for any w, x, y, z ∈ S with w < x < y < z there

does not exist a distinct pair of i and j in r such that w, y ∈ pi and x, z ∈ pj.
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A non-crossing partition d is said to be d-divisible partition if d divides |pi| for all

i ∈ r.

Example 3.2.1. Let A = {1, 2, 3, 4} and ≤ be the relation defined by, for a, b ∈ A

we have a ≤ b if and only if b− a is non-negative integer. Then, (A,≤) is a linearly

ordered set. The partition {{1, 4}, {2, 3}} is a 2-divisible non-crossing partition of

A, whereas {{1, 3} {2, 4}} is a crossing partition of A

We denote by NCd(n) the number different d-divisible non-crossing partitions of dn,

here we consider dn as a linear ordered set with the usual order of natural numbers.

In [27] it has been shown that

CNd(n) =

(
(d+1)n
n

)
dn+ 1

(3.1)

The numbers CNd(n) are known as d-Fuss-Catalan numbers, see [31] p.347.

The sequence CN2(n) is the same as A001764 in [1] and the first few values of this

is given in the Table 3.1, where d = 2.

The sequence CN2(n) is also known as ternary numbers and it is shown to have

numerous interesting properties, see [2, 11, 21, 65].

Proposition 3.2.2. Let En be the set of all 2-divisible non-crossing partitions of

(n ∪ n′,6) (the order 6 is defined in Section 2.2).Then T 2
n = En as a set. In

particular, |T 2
n | = CN2(n).

6′ 5′ 4′ 3′ 2′ 1′ 1 2 3 4 5 6

Figure 3.1: An example describing the bijection in the Proposition 3.2.2, with n = 6.

Proof. Let d = {p1,p2, . . . ,pr} ∈ T 2
n , then for any i ∈ r there exist an l ∈ Z such

that |pi ∩ n| − |pi ∩ n′| = 2l. Therefore, |pi ∩ n| and |pi ∩ n′| are both even or both

odd, and hence |pi| is also even. Let w, x, y, z ∈ n ∪ n′ such that w < x < y < z
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and w, y are in the same part, say pj where j ∈ r. If x and z are in a part pk, for

the unique k ∈ r, then we must have k = j otherwise it is not possible, by Jordan

curve theorem, in any diagram representing d to connect x and z by an edge without

crossing the edge connecting w and y. Hence d ∈ En. For example see Figure 3.1.

Conversely, given d = {p1,p2, . . . ,pr} ∈ En. Let pi = {x1, x2, . . . , xk},pj =

{y1, y2, . . . , yl} ∈ d be two different parts such that xp < xp+1 and yq < yq+1,

for every p ∈ k − 1 and q ∈ l − 1. Without loss of generality we have following two

cases

i. We have xk < y1.

ii. There is p ∈ k − 1 such that xp < y1 < · · · < yl < xp+1.

In both cases in there is at least a diagrams representing d in which the parts

pi and pj do not intersect for all i 6= j, hence d is planar. It remains to show

that for any i ∈ r, |pi ∩ n| − |pi ∩ n′| is even, but this follows from the fact that

|pi| = |pi ∩ n|+ |pi ∩ n′| is even. For example see Figure 3.1.

In the Table 3.1 some vales of the two parameter sequence |T dn | is given. Note that

the numbers in the first row are the even Catalan numbers, that is A000108(2n) =

CN1(2n) in [1]. However, when d > 2 it seems that the sequence |T dn | is a new

sequences, for example they have no match on [1] at the moment.

3.3 The J -classes of T dn .

In this section we study the monoid T dn . We show that is T dn regular and give a

unique canonical representative for each J -class. Furthermore, a generating set to

T dn is obtained.

Definition 3.3.1. An element in T dn will be called planar canonical if it is of the

form (
⊗r

l=1 mil)⊗ u⊗kd such that 1 ≤ il ≤ d and kd+
∑r

l=1 il = n.
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d

n

0 1 2 3 4 5 6 7 . . .

1 1 2 14 132 1430 16796 208012 2674440 . . .

2 1 1 3 12 55 273 1428 7752 . . .

3 1 1 2 5 16 54 186 689 . . .

4 1 1 2 4 9 24 70 202 . . .

...

d→∞ 1 1 2 4 8 16 32 64 . . .

Table 3.1: Cardinality of T dn , for some small values of d and n.

Every canonical element in Pdn is planar canonical, but the converse is not true. For

example, {{1, 1′}, {2, 3, 2′, 3′}} is a planar canonical element in T 2
3 ⊂ P2

3 but it is

not a canonical element in P2
3 .

Lemma 3.3.2. For any element d ∈ T dn there is a planar canonical element e ∈ T dn
such that dJ e.

Proof. First we claim d can be factorised d = td′t′, for some t, d′, t′ ∈ T dn with

t, t′ 6= d and d′ is constrained as follows. If p ∈ d′ is a northern non- propagating

part then given any positive integer 1 ≤ k ≤ min(p) − 1 we have min(p) − k and

max (p) + 1 are not in the same part. Similarly for the southern non-propagating

part. To prove this claim, let p ∈ d be a northern non-propagating part such

that min(p) − k and max(p) + 1 are in the same part, for some positive integer k

and there is no other part q ∈ d with max(q) < max(p) and min(p) < min(q).
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We set d′′ to be the same as d except the non-propagating part p is shifted to

right one vertex and the vertex max(p) + 1 is shifted to left |p| vertices, this means

d = (m
⊗(min(p)−1)
1 ⊗u|p|⊗m⊗(n−max(p))

1 )d′′. In this way we can move p to right as many

vertices as we would like. Hence, by using the elements defined in Equation 2.2 we

can move any northern non-propagating part as many as vertices to right as we need

to obtain the desired d′, similarly for the southern non-propagating parts. Applying

this process to all the non-propagating parts we achieve the desired d′. By a similar

argument, but this time moving a non- propagating part to left if it is necessary, we

can find k, k′ ∈ T dn such that d′ = kdk′. For example see Figure 3.2.

Now let d′ be given as above, suppose there is a part p ∈ d′ with |p ∩ n| > d. Let

k := max(p∩ n) then d′ = (m
⊗(k−3)
1 ⊗m2⊗m

⊗(n−k+1)
1 )(m

⊗(k−d)
1 ⊗ uk−d⊗m

⊗(n−k)
1 )d′,

and (m
⊗(k−d)
1 ⊗uk−d⊗m⊗(n−k)

1 )d′ is exactly the same as d′ except the part p is replaced

by two other parts namely p(1) := p \ {k, k− 1, . . . , k− d} and {k, k− 1, . . . , k− d},

see the right equality of Figure 3.2. Now if |p(1) ∩ n| > d we apply the previous

step’s mechanism, after repeating this process as many times as required, say r

times, we may assume |p(r) ∩ n| ≤ d, where p(r) is obtained from p(r−1) in the same

way as p(1) obtained from p. We apply a similar technique if |p ∩ n′| > d. Using

this cutting procedure we may assume that d = rfr′ where r, r′, f ∈ T dn and f has

the following property; |f ∩ n| ≤ d and |f ∩ n′| ≤ d for any f ∈ f. Finally, move all

non-propagating parts to right by the moving technique given in the first paragraph.

Therefore, there exist t, t′ ∈ T dn such that d = tet′, where e is a planar canonical. All

the above process can be reversed to obtain g, g′ ∈ T dn such that gd′g′ = e, hence

gkdk′g′ = e.

Proposition 3.3.3. The monoid T dn is generated by identity and the following

elements {1,µ0,µ1, . . . ,µn−2,ν0,µ1, . . . ,µn−d}–see Equation 2.2 for the definition

of µi and νj

Proof. First note that µi,νj ∈ T dn , for 0 ≤ i ≤ n − 2 and 0 ≤ j ≤ n − d. .
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==

Figure 3.2: The first equality illustrates moving a northern non-propagating part

to left, and the second equality explains gluing a non-propagating part to an other

part.

Furthermore, any planar canonical element in T dn is a product of some µi and νj. In

the proof of Lemma 3.3.2 we have seen to change a non-canonical element to a planar

canonical, and conversely, it is enough to only use elements which are products of

µi and νj.

Theorem 3.3.4. Each J -class of T dn contains a unique planar canonical element.

Proof. First note that from Lemma 3.3.2 we have each J -class in T dn contains at least

one planar canonical element. Let a := (
⊗r

l=1 mil)⊗ u⊗kd and b := (
⊗s

l=1 mjl)⊗ u⊗md

be two planar canonical elements in T dn such that aJ b. Then aJ b in Pd(n) and by

Lemma 2.2.2 we have k = m, r = s and b = (
⊗r

l=1 miσ(l)) ⊗ u⊗kd for some σ ∈ Sr,

where Sr is the permutation group on r letters. But aJ b also implies that there

exist x, y ∈ T dn such that a = xby, and hence a = (axb)b(bya). This means there exist

x′, y′ ∈ T dn−kd with
⊗r

l=1 mil = x′(
⊗r

l=1 miσ(l)
)y′. We claim x′b′ = b′ and b′y′ = b′

where b′ =
⊗r

l=1 miσ(l) , and thus a = b as desired.

To prove x′b′ = b′ we first show that each part of x′ is a propagating part. Let

a′ =
⊗r

l=1 mil and suppose x′ has a southern non-propagating part. Then this

southern non-propagating part either glues two propagating parts of b′ or changes at

least one propagating part to non-propagating part, in either cases #(x′b′) < #(b′).
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Hence #(a′) = #(x′b′y′) ≤ #(x′b′) < #(b′) = #(a′) which is absurd. If x′ has

at least one northern non-propagating part, then from the previous step we only

need to consider the possibility that there exist a propagating part p ∈ x′ such that

d < |p ∩ n′| ≤ n − kd. This implies that the part p glues at least two parts of b′.

Thus #(x′b′) < #(b′) which is a contradiction again. Moreover, for any part p ∈ x′

we have |p ∩ n| = |p ∩ n′| ≤ d, since otherwise similar to the previous cases we get

#(x′b′) < #(b′). Therefore, x′ is planar canonical and hence x′ =
⊗t

l=1 mpl . Again

we use the fact #(x′b′) 6< #(b′) to assume no part of x′ can connect two parts of b′.

This means for each 1 ≤ l ≤ r there exist 0 ≤ tl ≤ r such that σ(l) =
∑tl

u=tl−1+1 pu,

consequently, we have x′b′ = b′. Similar steps can be taken to prove b′y′ = b′.

Corollary 3.3.5. For each n and d the monoid T dn is regular.

Proof. Each planar canonical element is idempotent, now use Theorem 3.3.4.

In Theorem 3.3.4 we showed that each J - class contains a unique planar canonical

element, we let this planar canonical element to be representative of its class.

We define another partial order relation on T dn /J and then show that it is

equal to �. However, this new way of considering the relation � enables us to

determine its covering relation which is crucial in the proof that the algebra is

quasi-hereditary.

Let d, d′ ∈ T dn with d = (
⊗l

j=1 mij) ⊗ u⊗rd and 1 ≤ ij ≤ d, that is d is planar

canonical. We say d̄′ l′ d̄ if and only if one of the following holds;

• If d′J (d\{σij , σij+1
})∪{σij∪σij+1

}, where σij is the part containing
∑j−1

k=1 ik+1,

σij+1
is the part containing

∑j
k=1 ik + 1 and j ≤ l. This means d′ obtained

from d by gluing two successive ( neighbouring) propagating parts, and this

can be done by multiplying by a suitable element. For example, d′ = d(m⊗s1 ⊗

mij+ij+1
⊗m⊗t1 ), where s =

∑j−1
k=1 ik and t =

∑l
k=j+2 ik + rd.
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Figure 3.3: The covering relation l′, when d = 2 and n = 5.

• If ij = d and d′J (d\σij)∪{σij ∩n, σij ∩n′}. This can be done by multiplying

by νij , that is d′ = dνij .

Let �′ be the reflexive transitive closure of the relation l′, see Figure 3.3. We then

have the following important lemma.

Lemma 3.3.6. The two relations � and �′ on T dn /J are the same.

Proof. Follows from the definitions of �, �′ and the argument in the proof of

Proposition 3.3.3.

Lemma 3.3.7. The relation l′ is the covering relation of �′.

Proof. Directly from the definition of l′ we see that a necessary condition for d′l′ d

is #(d′) = #(d)− 1. Hence, the relation l′ is a transitive reduction of �′.

Lemma 3.3.8. Let a, b ∈ T dn and a := (
⊗r

l=1 mil)⊗u⊗kd be planar canonical. If aJ b

then #(b) = r, and if we let β1, β2, . . . , βr be the complete list of propagating parts of
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b such that max(βj ∩ n) < min(βj+1 ∩ n) for 1 ≤ j < r, then |βt ∩ n| ≡ |βt ∩ n′| ≡ it

mod d for 1 ≤ t ≤ r.

Proof. The first part of the Lemma is a straightforward application of Equation 1.5.

For the second part of the Lemma, note that in the proof of Lemma 3.3.2 when we

changed a non-canonical element to a planar canonical element we did not permute

the propagating parts, and for 1 ≤ t ≤ r we reduced |βt ∩n| or |βt ∩n′| by d at each

step whenever it was necessary, the rest of the Lemma follows from uniqueness of

the planar canonical elements.

a =b =

Figure 3.4: An example of two different J -equivalent elements in T 2
8 , describing

Lemma 3.3.8.

3.4 Relation between T 2
n(δ

2) and the Fuss-Catalan

algebra.

In this subsection we establish an isomorphism between the Fuss-Catalan algebra

of two colours and the 2-tonal partition algebra. Fuss-Catalan algebras have been

introduced in [6] as a coloured generalisation of Temperley-Lieb algebra and used

in the study of intermediate subfactor. They also appear in other contexts such as

integrable lattice models.

We start by recalling the definition of the Fuss-Catalan algebras. It is necessary to

mention that in [6] Bisch and Jones are working over the field of complex numbers
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aa b b a a b b a a b b

aa b b a a b b a a b b

Figure 3.5: An element of F(6, 1)

but all their results which we refer to here are still true over a commutative ring,

unless we explicitly specify the base field.

Let a0, a1, . . . , ak be k + 1 colours and d ∈ T Ln(k+1), k, n ∈ N, as

defined in Section 1.1.3. Label the top vertices of d by the colours

a0, a1, . . . , ak−1, ak, ak, ak−1, . . . , a1, a0, a0, . . . , ak, ak−1, . . . in order from left to right,

similarly for the bottom vertices. This labelling will replace the original labelling

of the vertices where the labels come from the set n(k + 1) ∪ (n(k + 1))′. Note

that according to this colouring if n is even then the vertex n(k + 1) is going to be

labelled by the colour a0, otherwise by ak. We say d is a Fuss-Catalan diagram if

only vertices with the same colour are connected. Denote by F(n, k) the set of all

Fuss-Catalan (n(k + 1), n(k + 1)) diagrams. An example of an element of F(6, 1) is

given in Figure 3.5.

Fix a commutative ring R and δa0 , . . . , δak ∈ R, let FCk,n(δa0 , δa1 , . . . , δak) be

the free R-module with basis F(n, k). Define the multiplication of basis of

FCk,n(a0, a1, . . . , ak) in the following way; for d, t ∈ FCk,n(a0, a1, . . . , ak) set

d.t := δn0
a0
. . . δnkak d ◦ t (3.2)

Where d ◦ t is the multiplication of diagrams d and t in T Ln(k+1), and ni is the

number of removed connected components of type ai. Extending the multiplication

in 3.2 linearly to all elements of FCk,n(a0, a1, . . . , ak) makes it a R-algebra.
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aa b b a a b b a a b b

aa b b a a b b a a b b

aa b b a a b b a a b b

= δa.δb

Figure 3.6: An element of F(6, 1)

We are mainly interested in the case when we have k = 1 and the following theorem

will give the presentation of FC1,n(δa, δb) by generators and relations. See Figure

3.6 for example.

Theorem 3.4.1 (Proposition 4.1.4 [6], Theorem 4.2.14 [6]). Let δa, δb be two non-

zero elements in F. Then the algebra FC1,n(δa, δb) is presented by generators

G := {1, P1, . . . , Pn−1, E1, . . . , En−1}

and the following relations:

E2
i = δaδbEi

EiEj = EjEi

EiEi±1Ei = Ei

1 ≤ i ≤ n− 1,

1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2,

1 ≤ i, i± 1 ≤ n− 1.

(3.3)

P 2
2i = δaP2i

P 2
2i+1 = δbP2i+1

PiPj = PjPi

1 ≤ 2i ≤ n− 1,

1 ≤ 2i+ 1 ≤ n− 1,

1 ≤ i, j ≤ n− 1.

(3.4)

E2iP2i = P2iE2i = δaE2i

E2i+1P2i+1 = P2i+1E2i+1 = δbE2i+1

PiEj = EiPj

1 ≤ 2i ≤ n− 1,

1 ≤ 2i+ 1 ≤ n− 1,

1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2.

(3.5)
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E2i±1P2iE2i±1 = δbE2i±1

E2iP2i±1E2i = δaE2i

1 ≤ 2i, 2i± 1 ≤ n− 1,

1 ≤ 2i, 2i± 1 ≤ n− 1.
(3.6)

P2iE2i±1P2i = P2i±1P2i

P2i±1E2iP2i±1 = P2iP2i±1

1 ≤ 2i, 2i± 1 ≤ n− 1,

1 ≤ 2i, 2i± 1 ≤ n− 1.
(3.7)

We also recall from [6] Corollary 2.1.7,

dimF(FCk,n(δa0 , δa1 , . . . , δak)) = CNk+1(n). (3.8)

Theorem 3.4.2. Let 0 6= δa = δb = δ ∈ F. There is an isomorphism of F-algebras

Φ : FC1,n(δ, δ)→ T 2
n(δ2) (3.9)

such that Φ(Ei) = νi−1 and Φ(Pi) = δµi−1, for all 1 ≤ i ≤ n− 1.

Proof. Define a set map f : G → T 2
n(δ2) by f(1) = 1, f(Ei) = νi−1 and f(Pi) =

δµi−1, for all 1 ≤ i ≤ n − 1. By the universal property of free associative algebras

there is a unique F-algebra homomorphism Φ̂ : F〈G〉 → T 2
n(δ2) such that Φ̂�G = f ,

where F〈G〉 is the free associative F-algebra generated by the set G. It is elementary

diagram calculation to verify that the elements δµi and νi, for all 0 ≤ i ≤ n − 2,

satisfy the relations 3.3 to 3.7 in Theorem 3.4.1, hence the ideal generated by these

relations is contained in the kernel of Φ̂. Therefore, by using the factor lemma and

Theorem 3.4.1 there is a unique F-algebra homomorphism Φ : FC1,n(δ, δ)→ T 2
n(δ2)

such that Φ̂ = Φπ.

The morphism Φ is onto since by Proposition 3.8 the elements µi and νi, for 0 ≤

i ≤ n− 2 generate the algebra T 2
n(δ2). On the other hand, by Proposition 3.2.2 and

Equation 3.8 both algebras have the same dimension, which is CN2(n). Thus by

the rank-nullity theorem Φ is an isomorphism of F-algebras.
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It is necessary to mention that the isomorphism in Theorem 3.4.2 does not work for

d > 2, since the dimensions are different.

Corollary 3.4.3. For δ ∈ F \ {0} the F-algebra T 2
n(δ2) is presented by generators

G = {1,µ0,µ1, . . . ,µn−2,ν0,ν1, . . . ,νn−2} and the following relations:

ν2
i = δ2ν2

i

νiνj = νjνi

νiνi±1νi = νi

0 ≤ i ≤ n− 2,

0 ≤ i, j ≤ n− 2 and |i− j| ≥ 2,

0 ≤ i, i± 1 ≤ n− 2.

(3.10)

µ2
i = µi

µiµj = µjµi

0 ≤ i ≤ n− 2,

0 ≤ i, j ≤ n− 2 and |i− j| ≥ 1,
(3.11)

µiνi = νiµi = νi

µiνj = νjµi

νi±1µiνi±1 = νi±1

µi±1νiµi±1 = µiµi+1

0 ≤ i ≤ n− 2,

0 ≤ i, j ≤ n− 2 and |i− j| ≥ 2,

0 ≤ i, i± 1 ≤ n− 2,

0 ≤ i, i± 1 ≤ n− 2.

(3.12)

Proof. Follows straightforwardly from Theorem 3.4.2.

3.5 An indexing set for the simple modules of

T dn (δ).

In this subsection we obtain an explicit indexing set for the isomorphism classes of

simple modules of T dn(δ) over an algebraically closed field. Therefore we fulfil one of

the aims of the representation theory of T dn(δ).

From now on we assume R = F and F is algebraically closed field.

Proposition 3.5.1. For n ≥ d we have the following isomorphism of F-algebras

φ : T dn−d(δ)→ e1,dT
d
n(δ)e1,d

d 7→ e1,d(d⊗ ud)e1,d

(3.13)
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i× d+ 1 connected vertices

Figure 3.7: The idempotent ei,d, where 0 ≤ i < bn/dc

where e1,d is as given in Figure 3.7

Proof. To show φ is an onto morphism, let t ∈ e1,dT
d
n(δ)e1,d be a diagram

basis element. We have t = e1,dte1,d = (e1,dνn−de1,d)t(e1,dνn−de1,d) =

e1,d(νn−de1,dte1,dνn−d)e1,d. Let d = νn−de1,dte1,dνn−d\{S, S ′}, where S = {n, n −

1, . . . , n− d− 1}, then d ∈ T dn−d(δ) and t = e1,d(d⊗ ud)e1,d, thus φ is onto. For one

to one, let φ(t) = φ(d) then t⊗ ud = νn−dφ(t)νn−d = νn−dφ(d)νn−d = d⊗ ud, hence

t = d.

We also denote the quotient algebra by;

T d,1n := T dn(δ)/J1 (3.14)

Where J1 = T dn(δ)νn−dT
d
n(δ).

Our strategy is to pass our knowledge of T dn−d(δ) to T dn(δ), and to do this we use

the machinery of functors. We shall use globalisation and the localisation functors,

defined in Equations 1.10,1.11

In particular, using Theorem 1.4.2 we obtain

Λ(T dn(δ)) ' Λ(T dn−d(δ)) t Λ(T d,1n ) (3.15)

Lemma 3.5.2. The set

Λ̂(T d,1n ) := {p + J1 | p is planar canonical with no non-propagating parts} forms a

basis for T d,1n .
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Proof. Let t be a planar canonical element. To prove the Lemma it is enough to

show

I. If t has no non-propagating part then t 6� νn−d.

II. If t has at least two non- propagating parts then t � νn−d.

Both cases are direct consequence of the definition of l′, since we cannot decrease

the number of ud in any element. Moreover, by using the two given conditions, in

the definition of l′, we can reach any other planar canonical element with at least

one ud.

Let p := (
⊗l

j=1 mij)⊗ u⊗rd be a planar canonical diagram, by Sp we mean the set of

all elements covered by p with respect to the relation l′.

Proposition 3.5.3. The F- algebra T d,1n is semisimple and commutative.

Proof. For w + J1 ∈ Λ̂(T d,1n ), T̂ d,1n w := T d,1n (w + J1)/
∑

e∈Sw
T d,1n (e + J1) is a one

dimensional left T d,1n module, since by Lemma 3.3.6 and Lemma 3.3.7 tm � m for

any t + J1 ∈ T d,1n , and sm + J1 = m + J1 if m � s, where s ∈ T d,1n .

Theorem 3.5.4. The F-algebra T dn(δ) obeys

Λ(T dn(δ)) =

bn/dc⊔
i=0

Λ(T d,1n−di)

Proof. The proof follows by using induction on n and Equation 3.15.

A composition of a positive integer r is defined to be, see for e.g. [36] and [75], a

k-tuple of positive integers (a1, . . . , ak) such that
∑k

i=1 ai = r.

Denote by C(r) the set of all compositions of r. By definition we set 0 to be the

only composition of 0.

Let C(r) := |C(r)| then C(r) = 2r−1 ( see Theorem 3.3 of [36]), for convenience we

set C(−r) := 0.
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We write Cd(r) for the set of all compositions of r with ai ≤ d for all 1 ≤ i ≤ k.

Set Cd(r) := |Cd(r)|. Note that if d ≥ r then Cd(r) = C(r), and C1(r) = 1.

Example 3.5.5. Let d = 3 and n = 5. Then we have:

C3(5) = {(1, 1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (2, 2, 1), (2, 1, 2),

(1, 2, 2), (3, 1, 1), (1, 3, 1), (1, 1, 3), (3, 2), (2, 3)}.

Lemma 3.5.6. For d ≥ 2 and a positive integer r, Cd(r) is given by the following

recurrence relation

Cd(r) =
d∑
i=1

Cd(r − i) (3.16)

Proof. Let (a1, . . . , ak) be a composition of r, then (a1, . . . , ak−1) is a composition

of m for some r − d ≤ m ≤ r − 1. Therefore, Cd(r) =
∑d

i=1C
d(r − i).

We recall from [61] a generalised Fibonacci sequence. Here we call it d-Fibonacci

sequence and denoted by F d(r). The sequence F d(r) is recursively given by

F d(r) =
d∑
i=1

F d(r − i) (3.17)

where F d(k) = 0 for 0 ≤ k ≤ d− 2 and F d(d− 1) = 1. The 2-Fibonacci sequence is

the usual Fibonacci sequence.

Theorem 2.2 in [38] states that F d(r) = 2r−d for d ≤ r ≤ 2d− 1. Now, if 1 ≤ r ≤ d

we obtain Cd(r) = 2r−1 = F d(r + d − 1) . Thus, from equations 3.16 and 3.17 we

have the following equation, for all r ∈ N;

Cd(r) = F d(r + d− 1) (3.18)

It has been proven in [23] Theorem 1 that Cd(r) can be computed by the following

formula;

Cd(r) =
d∑
i=1

αi − 1

2 + (d+ 1)(αi − 1)
αr−1
i (3.19)

where α1 . . . , αd are the roots of the polynomial xd − xd−1 − · · · − 1.
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It is time to return to our main story and connect the notion of composition of a

positive integer to an indexing set of simple modules of T dn(δ).

Theorem 3.5.7. There exist a set bijection

Λ(T dn(δ)) '
bn/dc⊔
i=0

Cd(n− id) (3.20)

In particular,

|Λ(T dn(δ))| =
bn/dc∑
i=0

Cd(n− id)

Proof. From Theorem 3.5.4 we note that to prove the result it is enough to show that

Cd(m) ' Λ̂(T d,1m ) for any m ∈ N. To prove this, let (a1, . . . , ak) be any composition

of m such that for each i we have ai ≤ d then
⊗k

i=1 mai is a planar canonical

element with no non-propagating parts in T dm, and hence by Lemma 3.5.2 the element⊗k
i=1 mai + J1 is a basis element of T d,1m . It is not hard to see that the above

assignment is bijective. The claim follows.

We would also like to record the following Lemma which is going to be useful later,

and its proof is quite similar to the above theorem.

Lemma 3.5.8. Let P be the set of all planar canonical elements of T dn then we have

the following set bijection;

Ξ :

bn/dc⊔
i=0

Cd(n− id)→ P

(a1, . . . , ak) 7→ (⊗ki=1mai)⊗ u
⊗(n−

∑k
i=1 ai)/d

d
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3.6 On the quasi-heredity and Cellularity of

T dn (δ).

In this section we show that for δ 6= 0 or d - n the F-algebra T dn(δ) is both quasi-

heredity and cellular.

Let Ji := T dn(δ)ei,dT
d
n(δ) where ei,d be as given in Figure3.7 for 0 ≤ i ≤ bn/dc and

d - n, we let er,d := 1
δ
{n, n′} when n = rd and δ 6= 0. We have the following chain of

two sided ideals

0 ⊂ Jbn/dc ⊂ Jbn/dc−1 ⊂ · · · ⊂ J1 ⊂ J0 := T dn(δ)

For 0 ≤ i ≤ bn/dc we define

T d,in (δ) := T dn(δ)/Ji

Clearly we have T d,0n (δ) = 0 and T d,1n (δ) = T d,1n

Lemma 3.6.1. For 1 ≤ i ≤ bn/dc, δ 6= 0 or d - n the module T d,in (δ)Ji−1/Ji is

projective.

Proof. The module T d,in (δ)T
d,i
n (δ)ei−1,d is projective, since if δ 6= 0 or d - n the

element ei−1,d + Ji is idempotent in T d,in (δ). Furthermore, T d,in (δ)T
d,i
n (δ)ei−1,d '

T d,in (δ)T
d,i
n (δ)ei−1,dd for any d ∈ T dn such that ei−1,dd 6∈ Ji. But we have

T d,in (δ)Ji−1/Ji =
⊕

d∈T dn and ei−1d 6∈Ji
T d,in (δ)T

d,i
n (δ)ei−1,dd

The claim follows from above and the fact that direct sum of projective modules is

again projective.

Lemma 3.6.2. Let 1 ≤ i ≤ bn/dc, δ 6= 0 or d - n we have the following isomorphism

of algebras

ψ : T d,1n−(i−1)d → ei−1,dT
d,i
n (δ)ei−1,d (3.21)
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which is defined on basis of T d,1n−(i−1)d and extended linearly to all T d,1n−(i−1)d as

follows. Let d + J1 ∈ T d,1n−(i−1)d be a basis element then define ψ(d + J1) =

ei−1,d(d⊗ u
⊗(i−1)
d )ei−1,d + Ji.

Proof. We have ψ(1 + j1) = ei−1,d(m
⊗n−(i−1)d
1 ⊗ u

⊗(i−1)
d )ei−1,d + Ji = ei−1,d + Ji,

which means ψ preserves identity. It is straightforward to see that for any two basis

elements a+J1, b+J1 ∈ T d,1n−(i−1)d we have ψ((a+J1)(b+J1)) = ψ(a+J1)ψ(b+J1).

Hence, by extending linearly ψ is an F-algebra homomorphism.

By an argument similar to Proposition 3.5.1 one can show that ψ is one to one.

For onto, let d + Ji be a non-zero basis element in ei−1,dT
d,i
n (δ)ei−1,d, we show that

d = (
⊗l−1

k=1 mrk)⊗ mil+(i−1)d such that 1 ≤ rk ≤ d for 1 ≤ k ≤ l. Let α be the part

containing n then we have (i− 1)d <| α ∩ n |≤ id , since if | α ∩ n |> id we obtain

d ∈ Ji, and the ineqality (i − 1)d <| α ∩ n | follows from the fact that ei−1,d is the

identity element of ei−1,dT
d,i
n (δ)ei−1,d. Similarly one can get (i − 1)d <| α ∩ n′ |≤

id. Moreover, n and n′ are in propagating parts, otherwise we would get a non

propagating part of size id. Let p := max(αn) and q := max (αn′), where αn and αn′

are the parts containing n and n′ respectively. Thus q < n < n′ < p, which implies

that n and n′ has to be in the same part. Consequently we have | α∩ n |=| α∩ n′ |.

Let β is any part does not containing n then 1 ≤| β ∩ n |=| β ∩ n′ |≤ d and it is a

propagating part, since otherwise we would have dJ (d′ ⊗ u⊗id ) for some d′ ∈ T dn−id.

Therefore d = (
⊗l−1

k=1 mrk)⊗mil+(i−1)d, and hence d + Ji = ψ(
⊗l

k=1 mrk + J1).

Theorem 3.6.3. The F-algebra T dn(δ) is quasi-hereditary with the heredity chain

0 ⊂ Jbn/dc ⊂ Jbn/dc−1 ⊂ · · · ⊂ J1 ⊂ J0 := T dn(δ) (3.22)

if and only if δ 6= 0 or d - n.

Proof. By the Lemmas 3.6.1 and 3.6.2 with Theorem 3.5.3 the chain 3.22 is a heredity

chain of T dn(δ), when δ 6= 0 or d - n.
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Conversely, if δ = 0 and n = d, then T dd (0)T
d
d (0)(md) is an indecomposable module

and rad(T dd (0)(md)) ' head(T dd (0)(md)). Therefore, it is not possible to put a partial

order relation on the labelling set of simple modules of T dd (0) for which it becomes

a quasi-hereditary algebra. If n = 2d then [P(d) : head(P(d))] > 1 where P(d) is

the projective cover of the simple T d2d(0)(u⊗2
d ), hence T d2d(0) is not quasi-hereditary

algebra. If n = kd with k ∈ Z>1, the functor G associated to the idempotent

e1,d ∈ T dn+d(δ) is left exact, hence it preserves isomorphisms. Therefore, by induction

on n, T dn(δ) is not quasi-hereditary for all n = kd.

Let R be a commutative ring and δ ∈ R. In this subsection we show that if δ 6= 0

or d - n then the R-algebra T dn(δ) is a cellular algebra.

Let ι be a set map defined as follows:

ι : n ∪ n′ → n ∪ n′

i 7→ i′

j′ 7→ j

For e ∈ T dn with parts e1, e2, . . . , ek we define

e? := {ι(e1), ι(e2), . . . , ι(ek)}.

Pictorially, e? is obtained from e by reflecting the diagram of e around the x-axes.

Note that (e?)? = e and (ef)? = f?e?, for each e, f ∈ T dn .

Lemma 3.6.4. The flipping map

? : T dn(δ)→ T dn(δ)

d 7→ d?

is an anti-automorphism of R-algebras.

Proof. Follows from the definition of ?.
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Remark 3.6.5. The map ? makes T dn a regular ?-semigroup, and consequently

the canonical elements would become some special kind of projections (projections

which are fixed under ?)—see [26] for more details in this direction. We would like

to mention that the above remark is also hold for Pdn.

Proposition 3.6.6. If δ 6= 0 or d - n then the R-algebra T dn(δ) is cellular.

Proof. Let I be the poset (T dn /J ,�) and let p be a canonical element with r northen

non-propagating parts. Denote by Lper,d the L-class of T dn containing per,d. Then

the R-class containing er,dp is equal to (Lper,d)
? and the J -class containing per,d is

equal to Lper,d ◦ (Lper,d)
?. Moreover, the following set map is injective,

Cp : Lper,d × Lper,d → Jp

(d, s) 7→ d ◦ s?.
(3.23)

By using Equation 3.23 and the fact that the L-classes of T dn are pairwise disjoint

the following map also is injective when δ 6= 0 or d - n,

C :
⋃
p∈I

Lper,d × Lper,d → T dn(δ)

where C =
⋃
Cp. The image of C is the union of all J -classes of T dn . Therefore it

forms an R-basis for T dn(δ). Hence, axiom C1 of the definition 1.4.5 is satisfied. The

axiom C2 follows from Lemma 3.9 and the fact that the J -classes are fixed under

?. Finally, the axiom C3 is a consequence of the definition of the partial order � on

the J -classes of T dn .

Remark 3.6.7. One might be able to show that the algebra T dn(δ) is Cellular by

showing that it is a twisted semigroup algebra—see [24, 60, 80]. The above references

tell us that the Proposition 3.6.6 is expected; however, we did not uses these methods

here because we believe that the direct prove of Cellularity is easier.
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3.7 On the standard modules of T dn (δ).

We construct and study the quasi-hereditary standard modules of T dn(δ), in the

context of Theorem 1.4.1. The standard modules of a quasi-hereditary algebra have

simple head. We use this fact about the standard modules of T dn(δ) to construct the

simple modules of T dn(δ). Therefore, we achieve another aim of the representation

theory of T dn(δ).

3.7.1 Construction of the standard modules of T dn (δ)

For q ∈ T dn let Lq be the L-class containing q and Ln(q) be an F-vector space

spanned by the set Lq. Then Ln(q) is a left T dn(δ)-module with the following action

defined on diagram basis of T dn(δ) and Ln(q):

ρ : T dn(δ)× Ln(q)→ Ln(q)

(d, t) 7→

δ
κd,td ◦ t if d ◦ t L q

0 otherwise

(3.24)

and extended linearly to both T dn(δ), Ln(q). Note that the definition of κd,t is given

in Proposition 1.1.5.

We shall write d�t for ρ(d, t), or just simply dt when it is clear from the context.

Fix p =
(⊗l

j=1 mij

)
⊗ u⊗rd a planar canonical element and let λ = Ξ−1(p), where Ξ

is defined in Lemma 3.5.8. Denote by Ln(λ) the left T dn(δ)-module Ln(p).

Example 3.7.1. Let d = 2 and p = m1 ⊗ m2 ⊗ u2, that is λ = (1, 2). Then

Lp = {p,ν2p, ν1ν2p, ν0ν1ν2p, µ0ν1ν2p, µ2p} is a basis for L5((1, 2)). We have

µ1 � p = 0, but ν2 � p = ν2p ∈ L5((1, 2)), and p � p = δp ∈ L5((1, 2)).

Lemma 3.7.2. If δ 6= 0 or d - n then Ln(λ) is a left T d,r+1
n (δ)-module. Furthermore,

1. We have T d+r+1
n (δ)er,dLn(λ) = Ln(λ),
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2. and rad(Ln(λ)) = {t ∈ Ln(λ) | er,dT d,r+1
n (δ)t = 0}.

Proof. For any t ∈ T dn we have #(er+1,dtp) ≤ #(er+1,dp) < #(p), then Jr+1Ln(λ) =

0, hence Ln(λ) is a left T d,r+1
n (δ)-module.

1. From the definition of L-equivalence relation we have T dn(δ)Ln(λ) is a cyclic module

generated by any element of Lp. Since δ 6= 0 or d - n we have p /∈ Jr+1, moreover

p = (per,d + Jr+1) � p ∈ T d,r+1
n (δ)er,dLn(λ) hence T d,r+1

n (δ)er,dLn(λ) = Ln(λ).

2. Let N = {t ∈ Ln(λ) | er,dT d,r+1
n (δ)t = 0} then N ⊆ rad(Ln(λ)), otherwise there

exist a maximal submodule M of Ln(λ) such that N 6⊆ M , and hence M + N =

Ln(λ). By part 1 we have Ln(λ) = T d,r+1
n (δ)er,dLn(λ) = T d,r+1

n (δ)er,d(N + M) =

T d,r+1
n (δ)er,dM ⊆ M which is a contradiction. On the other hand, T d,1n−dr

er,dLn(λ)

is one dimensional F-space, since er,dpL p and #(er,dt) < #(p) if er,dt 6= er,dp,

hence it is simple. Therefore, by part 1 er,d rad(Ln(λ)) = er,d rad(T d,r+1
n (δ))Ln(λ) =

er,d rad(T d,r+1
n (δ))T d,r+1

n (δ)er,dLn(λ) = rad(T d,1n−dr)er,dLn(λ) = 0, and hence N =

rad(Ln(λ)).

Proposition 3.7.3. Let δ 6= 0 or d - n then the left T dn(δ)-module Ln(λ) is

indecomposable with simple head and rad(Ln(λ)) is maximal.

Proof. Let L1 and L2 be two submodules of Ln(λ) such that Ln(λ) = L1 ⊕ L2 then

er,dL1 = 0 or er,dL2 = 0, since er,dLn(λ) is a simple T d,1n−dr module. Without loss

of generality we assume er,dL2 = 0 then by Lemma 3.7.2 part 1 we have Ln(λ) =

T d,r+1
n (δ)er,dLn(λ) = T d,r+1

n (δ)er,d(L1 ⊕ L2) ⊆ L1, hence Ln(λ) = L1. Therefore,

Ln(λ) is indecomposable T d,r+1
n (δ) module.

We prove Ln(λ) has a simple head by showing rad(Ln(λ)) is the unique maximal

submodule of Ln(λ). To this end, let M be a submodule of Ln(λ) such that

rad(Ln(λ)) ⊆M and rad(Ln(λ)) 6= M . If there is an element a ∈M \rad(n(λ)) then

er,dT
d,r+1
n (δ)a 6= 0, and hence er,dLn(λ) = er,dT

d,r+1
n (δ)a ⊆ M . Therefore, er,dp ∈ M ,



Chapter 3. Representation theory of the planar d-tonal partition algebra T dn(δ). 96

hence p = p � er,dp ∈M which implies M = Ln(λ).

Now by restriction of the action of T d,r+1
n (δ) to T dn(δ) we obtain the result.

Proposition 3.7.4. If δ 6= 0 or d - n then Ln(λ) is the projective cover of

head(Ln(λ)) as a left T d,r+1
n (δ)-module. Moreover, the set {head(Ln(λ)) | λ ∈

Λ(T dn(δ))} is a complete list of isomorphism classes of simple T dn(δ)-modules.

Proof. The module T d,1n−dr
er,dLn(λ) is projective simple and Ger,d

preserves the indecomposable projectivity hence it is enough to show

T d,r+1
n (δ)Ger,d(er,dLn(λ)) ' T d,r+1

n (δ)Ln(λ). The pair (Ger,d ,Fer,d) is adjunction

hence HomT d,r+1
n (δ)(Ger,d(er,dLn(λ)), Ln(λ)) ' HomT d,1n−dr

(er,dLn(λ),Fer,d(Ln(λ))) =

EndT d,1n−dr
(er,dLn(λ)). This means there is a non-zero module morphism

θ : T d,r+1
n (δ)Ger,d(er,dLn(λ))→ T d,r+1

n (δ)Ln(λ)

such that θ restricted to er,dLn(λ) is module isomorphism. The map θ is surjective,

for if not by Proposition 3.7.3 we have θ(Ger,d(er,dLn(λ)) ⊆ rad(Ln(λ)) and hence

0 = er,dT
d,r+1
n (δ)θ(Ger,d(er,dLn(λ)) = θ(er,dLn(λ)), which is a contradiction.

We have Ger,d(er,dLn(λ)) = T d,r+1
n (δ)er,d ⊗T d,1n−dr

((er,d + Jr+1) � p) and it is spanned

by the set B = {ter,dper,d + Jr+1 ⊗T d,1n−dr
((er,d + Jr+1) � p) | t ∈ T dn }. Write f(t) for

ter,dper,d + Jr+1 ⊗T d,1n−dr
((er,d + Jr+1) � p), we show that if f(t) 6= 0 then there exist

t′ ∈ Lp such that f(t) = f(t′). Hence we have dimF(Ger,d(er,dLn(λ)) ≤ dimF(Ln(λ)).

Therefore, by the rank-nullity theorem θ is an isomorphism. To this end, let f(t) 6= 0

and ter,dp be J - equivalent to a canonical element p1. Then it is evident from the

definition of � that p̄1 � p̄. Moreover, since Jr+1Ger,d(er,dLn(λ)) = 0 we must have

p1 6� er+1,d. Let ter,dp = t1p1t2 for some t1, t2 ∈ T dn . If p̄1 ≺ p̄ then p1 = p1er,dp1.

Hence f(t) = αf(ter,dp) = αf(t1p1t2) = αf(t1p1er,dp1t2) = 0 for some α ∈ F, which

is a contradiction. Therefore, we have p1 = p, by Lemma 3.3.8 and the fact that

{p ∩ n′ | p ∈ p} = {p ∩ n′ | p ∈ ter,dp} we obtain ter,dpL p and f(t) = αf(ter,dp)

for some 0 6= α ∈ F.
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By restriction of the action of T d,r+1
n (δ) to T dn(δ) we obtain that Ln(λ) is an

indecomposable T dn(δ)-module with simple head. The completeness of the list follows

from Lemma 3.5.8.

We introduce a partial order on the labelling set
⊔bn/dc
i=0 Cd(n− id) of simple modules

of T dn(δ) in the following way; for λ, µ ∈
⊔bn/dc
i=0 Cd(n− id) we say λ ≤∆ µ if and only

if Ξ(µ) � Ξ(λ). Recall that, Ξ is defined Lemma 3.5.8, Ξ(λ) and � are defined in

Section 1.3.

Proposition 3.7.5. Let δ 6= 0 or d - n then the set {Ln(λ) | λ ∈
⊔bn/dc
i=0 Cd(n− id)}

is a complete set of pairwise non-isomorphic standard modules of T dn(δ) with the

hereditary order ≤∆.

Proof. We first show that the given set of modules with the order ≤∆ satisfies I

of Theorem 1.4.1. That is we wish to show if [Ln(λ) : head(Ln(µ))] 6= 0 then

µ ≤∆ λ. Fix λ ∈
⊔bn/dc
i=0 Cd(n − id) and suppose [Ln(λ) : head(Ln(µ))] 6= 0 for

some µ ∈
⊔bn/dc
i=0 Cd(n − id) with µ 6≤∆ λ. From the definition of ≤∆ we have

µ 6≤∆ λ implies that Ξ(λ) 6� Ξ(µ). Further, from 3.24 we have Ξ(µ)Ln(λ) = 0 and

Ξ(µ) head(Ln(µ)) 6= 0. Therefore, head(Ln(µ)) is not a factor of Ln(λ) which is a

contradiction.

Second we show that the given set of modules are standard modules then by the

uniqueness property of the standard modules we will be done. To prove that we fix

d and use induction on n. Assume the result is true for T dn(δ). By using induction

step, Proposition 1.4.4 and the fact that Ln+d(λ) = Ge1,d(Ln(λ)) we have Ln+d(λ) =

Ge1,d(Ln(λ)) is a standard module for each λ ∈ Λ(T dn(δ)). If λ ∈ Λ(T d,1n+d) then

by Proposition 3.7.4 we have Ln+d(λ) = head(Ln+d(λ)). Hence, Ln+d(λ) is also

standard.

Remark 3.7.6. For each λ ∈
⊔bn/dc
i=0 Cd(n− id), from now on we write ∆n(λ) for the

standard module Ln(λ) to match the standard notation of quasi-hereditary algebras.
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3.7.2 Restriction rules for the standard modules of

T dn (δ).

For each n ∈ N the algebra T dn(δ) can be embedded in T dn+1(δ). A natural question

would be, how the modules of T dn+1(δ) behave under the action of T dn(δ)? In this

subsection we answer this question for the standard modules, which arguably are

the most important types of T dn(δ)-modules. One may also ask, why the answer

of the above question is important? One of the main advantages of understanding

the action of T dn(δ) on standard T dn+1(δ)-modules is, it enables us to use the so

called “Frobenius reciprocity”. For example, if d = 2 then as we shall see in

section 3.9 globalising a standard modules using the functor G and then restricting

the globalised module to the action of T 2
n+1(δ) is the same as inducing the initial

standard module. This compatibility of local behaviour reduces considerably the

amount of work needed to understand the structure of T 2
n(δ), see Theorem 3.9.2.

Furthermore, we shall also see that in the subsection 3.8.2 understanding the

restriction of the standard models can be very useful combinatorially.

Theorem 3.7.7. Let resn+1 : T dn+1(δ)→ T dn(δ) be the right restriction corresponding

to the embedding (defined on the diagram basis of T dn(δ) and extended linearly)

incn : T dn(δ) ↪→ T dn+1(δ)

d 7→ d⊗m1

(3.25)

Let λ = (i1, i2 . . . , il) ∈
⊔bn/dc
i=0 Cd(n−id), λ1 = (i1 . . . , il, d−1), λ2 = (i1, . . . , il−1, il−

1), λ3 = (i1, . . . , il−1) and λ4 = (i1, . . . , il−1, d). Let r :=
n−

∑l
i=1 ij
d

then we have the

following short exact sequences of T dn(δ)-modules:

when r 6= 0 and 1 < il ≤ d

0→ ∆n(λ2)→ resn+1(∆n+1(λ))→ ∆n(λ1)→ 0 (3.26)



Chapter 3. Representation theory of the planar d-tonal partition algebra T dn(δ). 99

when r 6= 0 and il = 1

0→ ∆n(λ3)⊕∆n(λ4)→ resn+1(∆n+1(λ))→ ∆n(λ1)→ 0 (3.27)

if r 6= 0 and n = rd we have

resn+1(∆n+1((0))) ' ∆n((d− 1)) (3.28)

and if r = 0 we have

resn+1(∆n+1(λ)) ' ∆n(λ2) (3.29)

Proof. First we would like to remark that the arguments of this proof is a

generalisation of the case when d = 1, which can be found, for example, in [68]

Proposition 4.1.

We begin our proof by the case when r 6= 0 and 1 < il ≤ d. Let H be the set of all

basis elements d ∈ ∆n+1(λ) with the property that n + 1 is in a propagating part.

The only possible case here is that n+ 1 is connected to the right most propagating

part, since otherwise we would have a non-planar diagram. We also let FH be the

F-subspace of ∆n+1(λ) spanned by the set H. In fact FH is a T dn(δ) ' incn(T dn(δ))

submodule of ∆n+1(λ). To prove that, let s ∈ H and d ∈ T dn (δ). If incn(d) � s 6= 0

then the vertex n + 1 in incn(d)s remains connected to the first propagating part

from right, since incn(T dn(δ)) fixes n + 1 and does not permute the propagating

parts. Moreover, FH is equal to the left incn(T dn(δ))- module generated by q where

q := (m
⊗(

∑l
t=1 it−1)

1 ⊗ u⊗rd ⊗m1)p, since by multiplying by suitable νj as many times

as necessary, where 0 ≤ j ≤ n−d, we can move northern non-propagating parts of q

to left, in the same way as it has been done in the Lemma 3.3.2. For 0 ≤ i ≤ n− 2,

by using an appropriate µi we can connect these northern non-propagating parts

with a desired propagating part.

Let Ξ be as defined in 3.5.8 and d be a diagram basis element of ∆(λ2). Let p

be the part of d containing (
∑l

j=1 ij − 1)′, define dλ2 = (d \ p) ∪ {p′} such that
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p′ = p ∪ {n + 1, (n + 1)′} then dλ2p ∈ H, for example Ξ(λ2)λ2p = q. The following

map which is defined on the diagram basis is an isomorphism of T dn(δ)-modules;

φ : ∆n(λ2)→ FH

d 7→ dλ2p
(3.30)

It is not hard to see φ is invertible map on basis, one way is by reversing the operation

of defining φ. To show φ is a morphism of T dn(δ)-modules, let d be a basis element

of ∆(λ2) then (νid)λ2 = incn(νi)dλ2 and (µjd)λ2 = incn(µj)dλ2 , for 0 ≤ i ≤ n − d

and 0 ≤ j ≤ n− 2. Therefore, φ is a module morphism.

Let q′ = (m
⊗(

∑l
t=1 it+d−1)

1 ⊗ u⊗r−1
d ⊗m1)p then Ln+1(q′) = ∆n+1(λ) as a left T dn+1(δ)-

module. Let d be a diagram basis of ∆n(λ1) and let p be the part of d containing

(
∑l

j=1 ij + 1)′, define dλ1 = (d \ p) ∪ {p′} such that p′ = p ∪ {n+ 1, (n+ 1)′} then

dλ1p + FH ∈ ∆n+1(λ)/FH, for example Ξ(λ1)λ1p = q′.

Similar to the morphism φ we have the following isomorphism of left T dn(δ)-modules

ψ : ∆n(λ1)→ ∆n+1(λ)/FH

d 7→ dλ1p + FH
(3.31)

Hence we have we the short exact sequence 3.26.

Consider the case when r 6= 0 and il = 1, let H1 to be the set of all elements

d ∈ ∆n+1(λ) such that n+1 is in a propagating part p with the property |p∩n| = 1.

Then FH1 is a left T dn(δ)-module. Moreover, one can argue as above and show

that FH1 ' ∆n(λ3) as a left a left T dn(δ)-module. Similarly, we have T dn(δ)FH2 '

T dn(δ)∆n(λ4) where H2 is the set of all elements d ∈ ∆n+1(λ) such that n + 1 is in a

propagating part p such that |p ∩ n+ 1| > 1. Further, since H1 ∩ H2 = φ we have

FH1 ⊕ FH2 = FH1 + FH2.

Arguing as 3.31 we can obtain an isomorphism of T dn(δ) modules ∆n+1(λ)/(FH1 ⊕

FH2) ' ∆n(λ1).
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If r 6= 0 and n = rd, this case also similar to the first case except here we have

H = φ, and hence FH = 0.

Finally, if r = 0 this case can also be proven by the similar way as the first case and

using the fact that both resn(∆n+1(λ)) and ∆n(λ2) are one dimensional modules.

...

φn = 0

n = 1

n = 2

n = 3

n = 4

(1)

(0) (2) (1, 1)

(1) (1, 2) (2, 1) (1, 1, 1)

(0) (2) (1, 1) (2, 2) (2, 1, 1) (1, 2, 1) (1, 1, 2) (1, 1, 1, 1)

Figure 3.8: Right restriction rule, for n ≤ 4 and d = 2

Remark 3.7.8. In Figure 3.8 we explain the first few terms of restriction of

the standard modules T 2
n(δ). If, for each n, the algebra T 2

n(δ) is semisimple (see

later) then the diagram in Figure 3.8 is the Bratteli diagram for {T dn(δ)}∞n=1, see

Section 3.8.2.

The diagram 3.8 appears also in [6, Figure 21]. There the authors describe the

restriction rules when the algebra FC1,n(δa, δb) is semisimple [6, Theorem 3.2.1].

Theorem 3.7.7 generalises the part of Theorem 3.2.1 of [6] regarding FC1,n(δa, δa),

indeed the algebra FC1,n(δa, δb) by generic semisimplicity, in two ways. Firstly,

to any algebraically closed field, secondly to include the non-semisimple cases of
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FC1,n(δa, δa), except when δa = 0.

3.8 On the semisimple cases of T dn (δ).

In this section we prove that for all but finitely many δ ∈ C the algebra T dn(δ) is

semisimple. We then present explicitly the simple modules of T dn(δ) in the semisimple

case. Furthermore, we construct the Bratelli diagram for T dn(δ) which describes the

embedding T dn(δ) in to T dn+1(δ). Finally by using the action of T dn(δ) on V ⊗k we

show that T dn(1) is not semisimple for sufficiently large n.

3.8.1 Generic Semisimplicity of T dn (δ).

Let M be a finite dimensional left A-module, and t be as defined on page 17. An

F-bilinear form 〈−,−〉 on AM is called contravariant if

〈α.a, b〉 = 〈a, αt.b〉 for all α ∈ A and a, b ∈M

We denote by R〈−,−〉 the set of all elements of a ∈ M such that 〈a, b〉 = 0 for

all b ∈ M . In fact R〈−,−〉 is a submodule M and it will be called the radical of

〈−,−〉.

Let ∆n(λ) be as given in Remark 3.7.6. We define a contravariant form on the basis

of ∆n(λ), denote it by 〈−,−〉λ, in the following way: for diagram basis elements

a, b ∈ ∆n(λ), that is a, b ∈ LΞ(λ)
where Ξ is defined in Lemma 3.5.8 and LΞ(λ)

is

the left L-class contains Ξ(λ), we define the following bilinear form on the basis of

∆n(λ) and extend bilinearly to ∆n(λ),

〈a, b〉λ :=

δ
κa?,b if a? ◦ b L Ξ(λ)

0 otherwise

(3.32)

Where ? is defined in Lemma 3.6.4. and κ−,− is defined in Proposition 1.1.5.
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Example 3.8.1. Continue from Example 3.7.1, that is λ = (1, 2) and d = 2. To

illustrate how the bilinear form 〈−,−〉λ works we calculate 〈−,−〉λ for some cases

as follows:

〈p, p〉λ = δ,

〈p,ν0ν1ν2p〉λ = 〈ν0ν1ν2p, p〉λ = 0,

〈ν0ν1ν2p,ν0ν1ν2p〉λ = 〈ν1ν2p,ν1ν2p〉λ = 〈ν2p,ν2p〉λ = δ,

〈µ2p, p〉λ = 〈µ2p,ν2p〉λ = 〈µ2p,µ2p〉λ = 1.

We record some properties the above function in the following Lemma, which has a

straightforward proof.

Lemma 3.8.2. For each λ the function given in equation 3.32 is symmetric

contravariant F-bilinear form on ∆n(λ).

Note this form defined in Equation 3.32 is analogue of the usual contravariant form

on the standard modules of the Temperley-Lieb algebras, see for example Equation

3.5 of [68].

Definition 3.8.3. Let M be a finite dimensional F-vector space with ordered basis

{m1,m2, . . . ,mn}. Suppose 〈−,−〉 is an F-bilinear form on M . Then the matrix

G(M) = (〈mi,mj〉)n×n is called the gram matrix of M with respect to the given

ordered basis and the form 〈−,−〉.

In general there might be more than one contravariant bilinear form on a given

module AM . The following propositions give a necessary and sufficient condition for

the uniqueness of a bilinear form of AM .

Proposition 3.8.4 (Section 2.7 of [33]). Let A be a finite dimensional F-algebra

with an involutory anti-automorphism t, as defined on page 17. For each finite

dimensional module AM , there is a one to one correspondence between contravariant

forms 〈−,−〉 : M ×M → F and morphisms f ∈ HomA(AM, AM
◦) given by

f(a)(b) = 〈a, b〉 for all a, b ∈M.
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Proposition 3.8.5 (see for e.g. Proposition B10,Corollary B 11[10]). Let A and M

be given as in Proposition 3.8.4. Suppose M has a simple head which is self dual

and rad(M) is maximal submodule of M , and [M : head(M)] = 1. Then there exist

only one form on M up to multiplication by scalars.

The form is non-singular if and only if AM is simple if and only if AM self dual.

Lemma 3.8.6. Let δ 6= 0 or d - n. Then for each λ ∈ Λ(T dn(δ)) we have R〈−,−〉λ =

rad(∆n(λ)).

Proof. From Proposition 3.7.3 we have R〈−,−〉λ ⊆ rad(∆n(λ)). Let t ∈ ∆n(λ) \

R〈−,−〉λ then there exist s ∈ ∆n(λ) and α ∈ C (in fact α ∈ Z[δ] ) such that 0 6=

s? � t = αΞ(λ). From the definition of ∆n(λ) we may be able to consider s as an

element of T dn(δ). Let r be the number of northern non-propagating parts of Ξ(λ),

the definition of � implies that ser,d /∈ Jr+1. Therefore, er,ds
? + Jr+1 ∈ er,dT

d,r+1(δ)

and (er,ds
? + Jr+1) � t 6= 0. By Lemma 3.7.2 we have t /∈ rad(∆n(λ)) and hence

R〈−,−〉λ = rad(∆n(λ)).

Lemma 3.8.7. Let F = C. The determinant of the gram matrix of ∆n(λ) with

respect to the form 3.32 is non-zero for all but finitely many δ ∈ C.

Proof. For any two basis elements for a, b ∈ ∆n(λ) we have 〈a, b〉 is a monomial in δ.

Let G(λ) denote the gram matrix of ∆n(λ) with respect to the form 3.32. Hence the

entries of the G(λ) are monomials in δ. Let 1 ≤ k ≤ dimC(∆n(λ)), organise the basis

of ∆n(λ) by the number of non-propagating parts in order to G(λ) has the following

form, if the rows k and k + 1 are the rows of a and b respectively then the number

of northern non-propagating parts of a is greater than or equal to the number of

northern non-propagating parts of b. In this case degree(〈a, b〉) < degree(〈a, a〉),

and hence the rows of G(λ) are linearly independent for all but finitely many δ ∈

C.
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For us the involutory anti-automorphism t defined on page 17 is the flipping map ?

in Lemma 3.6.4.

Corollary 3.8.8. Let δ 6= 0 or d - n. Then for each λ ∈ Λ(T dn(δ)) we have

head(∆n(λ)) ' head(∆n(λ))◦, where ◦ is defined in Lemma 1.4.6.

Proof. Follows from Proposition 3.6.6, Lemma 1.4.6 and Proposition 3.7.3.

Corollary 3.8.9. Let δ 6= 0 or d - n. Then for each λ ∈ Λ(T dn(δ)) the bilinear form

〈−,−〉λ defined on ∆n(λ) is unique up to scalar multiplication. Furthermore, ∆n(λ)

is simple if and only if the determinant of the gram matrix of ∆n(λ) with respect to

the form 〈−,−〉λ is non-zero.

Proof. For each λ, by Theorem 3.6.3 and Proposition 3.7.3 we have ∆n(λ) satisfies

the conditions of Proposition 3.8.5.

Proposition 3.8.10. Let A be a quasi-hereditary algebra with a contavariant

duality, as given on page 17. If each standard module is isomorphic to its

contavariant dual as an A-module then each standard module is simple.

Proof. We denote by ◦ the given contravariant duality. Keep the notation

of Theorem 1.4.1. Let λ ∈ Λ, in general we have A(soc((∆(λ)))◦ '

A ((∆(λ))◦/ rad((∆(λ))◦))(see for e.g. p162 [3]). Hence the socle of A∆(λ) is

isomorphic to the dual of its head. We claim A head(∆(λ)) ' A(head(∆(λ)))o, hence

head(∆(λ)) ' soc(∆n(λ)) and consequently ∆(λ) is simple. To this end, from the

quasi-heredity of A we have (head(∆(λ)))o = head(∆(λ′)) for an other standard

module ∆(λ′). Thus A head(∆(λ)) ' A soc(∆(λ′)), but by the the unitriangular

property of quasi-hereditary algebras this impossible unless A∆(λ′) ' A∆(λ).

Corollary 3.8.11. For all but finitely many δ ∈ C, each standard T dn(δ)-module

∆n(λ) is simple.
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Proof. By Lemma 3.8.7 each standard module is isomorphic to its contravariant

dual for all but finitely many δ ∈ C. Now use Proposition 3.8.10.

Theorem 3.8.12. The algebra T dn(δ) is semisimple for all but finitely many δ ∈ C,

with the complete set of simple modules {∆n(λ) | λ ∈
⊔bn/dc
i=0 Cd(n− id)}.

Proof. By Theorem 3.5.4 and Corollary 3.8.11 the modules ∆n(λ) for λ ∈⊔bn/dc
i=0 Cd(n− id) form a complete list of pairwise non-isomorphic simple modules of

T dn(δ). Let P be the set of all planar canonical elements, Lemma 3.5.8, and Jp denote

the J -class containing p. Denote by J(T dn(δ)) the Jacobson radical of T dn(δ).Then

dimC(T dn(δ)) =
∑
p∈P

|Jp| =
∑
p∈P

|Lp|| ? (Lp)| =
∑
p∈P

|Lp|2

=
∑
p∈P

(dim(∆n(Ξ−1(p))))2 = dimC(T dn(δ)/J(T dn(δ)))

such that ? is the map in 3.9. Therefore, dimC(J(T dn(δ))) = 0 and hence T dn(δ) is

semisimple.

3.8.2 The Bratteli diagram for {T dn (δ)}n in the semisimple

cases.

Let

A0 → A1 → · · · → Ai
ιi−→ Ai+1 → . . . (3.33)

be a chain of embeddings of semisimple F-algebras. Let resi be the restriction

corresponding to the embedding ιi. For each i ∈ N choose a complete set of pairwise

non-isomorphic simple Ai-modules, say {πis | s ∈ {1, 2, . . . , |Λ(Ai)}|}. By definition

if A0 = 0 then we set φ to be the only simple module of A0. The Bratteli diagram

(see [8], and page 13 of [69] for more examples of Bratteli daigrams) corresponding

to the chain 3.33 is a graph constructed pictorially in the following way:
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1. If i = 0 draw |Λ(Ai)| vertices and label them bijectively by π0
s , i ∈

{1, . . . , |Λ(A0)|}. For i ≥ 1 draw |Λ(Ai)| vertices on a horizontal row bellow

the row i− 1. By below we mean the y-coordinate of each vertex of row i− 1

is greater than the y-coordinate of the vertices of row i. Label the vertices of

row i by the labelling set of simple modules of Ai bijectively.

2. For any i > 1, for each s ∈ {1, 2 . . . , |Λ(Ai)|} and r ∈ {1, 2 . . . , |Λ(Ai−1)|} draw

d
πis
πi−1
r

edges between the vertex labelled by πis and the vertex labelled by πi−1
r ,

where d
πis
πi−1
r

is the number of times when Ai−1
πi−1
r appears up to isomorphism

as a composition factor of Ai−1
resi(π

i
s). If A0 = 0 then draw an edge between

each vertex on level 1 and the vertex labelled by φ.

A Bratteli diagram is called multiplicity free if the number of edges between any

two vertices is at most one.

The Bratteli diagram carries both algebraic and combinatorial information about

the sequence of algebras (3.33). Algebraically, it encodes the embedding of Ai in to

Ai+1. Combinatorially, the Bratteli diagram gives information about the dimension

of each irreducible representation. In fact, we have

dimF(πis) =

|Λ(Ai−1)|∑
r=1

d
πis
πi−1
r
dimF(πi−1

r )

In particular, assume the Bratelli diagram is multiplicity free and dimFA1 = 1.

Then the dimension of πis is equal to the number of different paths between π1
1 and

πis.

In Theorem 3.8.12 we showed that {T dn(δ)}n is semisimple for infinitely many values

of δ ∈ C, indeed when δ is an element of some Zariski open set in C. Moreover,

we showed that {∆n(λ) | λ ∈
⊔bn/dc
i=0 Cd(n − id)} is a complete set of pair wise

non-isomorphic simple modules of T dn(δ). When T dn(δ) is semisimple the short exact

sequences in Theorem 3.7.7 are split. Therefore, for each n the value of d
∆n(λ)
∆n−1(µ)

is obtained from the short exact sequences in Theorem 3.7.7. Hence, for each d
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we have constructed the Bratteli diagram {T dn(δ)}n with respect to the inclusion

given Theorem 3.7.7. Furthermore, Theorem 3.7.7 implies that the Bratteli diagram

of {T dn(δ)}n is multiplicity free. Consequently, we obtain the following recurrence

relation regarding the dimension of each simple of T dn(δ) when it is semisimple.

Hence the dimension of each standard modules when T dn(δ) is not semisimple,

Proposition 3.8.13. For each λ ∈ Λ(T dn(δ)) the dimension of the standard module

∆n(λ) obeys the following recurrence relation

dimF(∆n(λ)) =
∑

µ∈Λ(T dn−1(δ))

d
∆n(λ)
∆n−1(µ)dimF(∆n−1(µ)) (3.34)

Proof. Follows from Theorem 3.7.7 and the Bratelli diagram argument.

Example 3.8.14. When d = 2 the graph in Figure 3.8 is the Bratteli diagram of

{T 2
n(δ)}n with respect to the inclusion given Theorem 3.7.7.

3.8.3 Action of T dn (δ) on V ⊗n.

In this subsection we use the action T dn(δ) on V ⊗n to show that T dn(δ) is not

semisimple for some values of δ.

For a finitely generated representation (M,ρ) of A, there is an associated function

χM : A → F defined by χM(α) = tr(ρ(α)), where tr(ρ(α)) is the trace of ρ(α) for

α ∈ A. The function χM is called the character of M afforded by the representation

ρ.

Theorem 3.8.15 (Theorem 54.16 [15]). Let A be a finite dimensional algebra over

an algebraically closed field F, and let f be a primitive idempotent in A. Then for a

finite dimensional left A-module M we have [M : head(Af)] = dimF(fM)].

Lemma 3.8.16. Let F be an algebraically closed field with char(F) = 0 and

{αi, . . . , αm} be an F-basis for A. Let f =
∑m

i=1 aiαi be a primitive idempotent
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in A and S = head(Af). Then for a finite dimensional left A-module M we have

[M : S] =
∑m

i=1 aiχM(αi).

Proof. Let ρ be the representation afforded by M , then by Theorem 3.8.15 we have

[M : S] = dimF(fM). Let rk(ρ(f)) denote the rank of the matrix ρ(f) then we

have dimF(fM) = rk(ρ(f)) = tr(ρ(f)) = tr(ρ(
∑m

i=1 aiαi)) =
∑m

i=1 aitr(ρ(αi)) =∑m
i=1 aiχM(αi).

Proposition 3.8.17. 1. If n > d the C-algebra T dn(1) is not semisimple.

2. If n > d = 2 and n is sufficiently large the C-algebra T 2
n (2) is not semisimple.

Proof. If δ 6= 0 or d - n then ∆n((n − bn
d
cd)) is indecomposable projective T dn(δ)-

module. We shall use the notation of the subsection 1.1.4. The vector space V ⊗n

is a left T dn(N)-module by restricting the action of the partition algebra Pn(N) on

V ⊗n.

1. Since δ = N = 1 we have dimC(V ⊗n) = 1 and by Lemma 3.8.16 [V ⊗n :

head(∆n((n − bn
d
cd)))] = 1. But dimC(∆n((n − bn

d
cd))) > 1, therefore there is

a T dn(1)-morphism from ∆n((n − bn
d
cd)) to V ⊗n with a non-zero kernel. Hence,

∆n((n− bn
d
cd)) is not simple, and consequently T dn(1) is not semisimple.

2. If N = 2 then dimC(V ⊗n) = 2n, and there are two cases;

i. If n = 2k then ρ2(ek,d)(ei1 ⊗ · · · ⊗ ein) =
δi1,i2,...,in

2

∑2
i=1 ei ⊗ · · · ⊗ ei, where

δi1,i2,...,in = 1 if i1 = i2 = · · · = in and zero otherwise. Therefore by Lemma 3.8.16 we

have [V ⊗n : head(∆n((0)))] = 1. On the other hand, dimC(∆n((0))) = CN2(k) > 4k

for all k ≥ 10, and by the same argument as in the first part we have T 2
2k(2) is not

semisimple for k ≥ 10.

ii. If n = 2k + 1 then ρ2(ek,d)(ei1 ⊗ · · · ⊗ ein) = δi1,i2,...,inei1 ⊗ · · · ⊗ ei1 and by

Lemma 3.8.16 [V ⊗n : head(∆n((1)))] = 2. Hence, a necessary condition for T 2
2k+1(2)
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to be semisimple is 22k+1 ≥ 2CN2(k + 1) but by induction on k this only happens

if k < 5.

3.9 A necessary and sufficient condition for the

semisimplicity of T 2
n(δ).

In [14] Cox, Martin, Parker and Xi developed an axiomatic framework to study

the representation theory of a tower of finite dimensional algebras satisfying some

specific axioms. It has been shown in [14] that if a tower of algebra satisfies

their axiomatic framework then in order to understand the morphisms between

the modules and determine whether each algebra is semisimple or not we only

need to study the morphisms between a relatively very small set of modules, see

Theorem 3.9.2. We begin this section by recalling Cox and others axiomatic frame

work and then show that the tower of algebras {T 2
n(δ)}n satisfy their axioms.

We then use this powerful technique to determine explicitly when each T 2
n(δ) is

semisimple.

Let F be algebraically closed, recall from [14] we call a family of F-algebras {An |

n ∈ N} with an idempotent en ∈ An for all n, towers of recollement if it satisfies

the following axioms;

A1) For n ≥ 2 there is an isomorphism of F- algebras Φn : An−2 → enAnen.

Therefore, if we let Λn and Λn be the indexing set for the simple modules of An and

An/AnenAn respectively, then Λn = Λn−2 t Λn.

A2) Each An is quasi-hereditary with a hereditary chain 0 ⊂ Ane1An ⊂ Ane2An ⊂

· · · ⊂ Anen−1An ⊂ AnenAn = An. For each λ ∈ Λn we denote by ∆n(λ) the standard

module of An labelled by λ.
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A3) For n ≥ 0 we have the embedding of F-algebras An ↪→ An+1. This means there

is the restriction functor resn : An-mod → An−1-mod and the induction functor

indn : An-mod→ An+1-mod given by indn(M) = An+1⊗AnM for a left An module

M .

A4) For n ≥ 1 there is an isomorphism Anen ' An−1 of (An−1, An−2)-

bimodules.

For a left An-module M let supp(M) denote the set of all labels µ ∈ Λn−1 such that

∆n−1(µ) occurs in the standard filtration of M , in the sense of Section 1.4.

Let m, l ∈ N such that m − l is even. If m ≥ l we set Λl
m := Λl considered as a

subset of Λm, otherwise we set Λl
m := φ.

A5) For each λ ∈ Λm
n , we have resn(∆n(λ)) is filtered by standard modules of An−1,

and we must have

supp(resn(∆n(λ))) ⊆ Λm−1
n−1 t Λm+1

n−1 .

A6) For each λ ∈ Λn
n there exist µ ∈ Λn−1

n+1 such that

λ ∈ supp(resn+1(∆n+1(µ))).

In order to avoid confusion we write en for the idempotent e1,2 ∈ T 2
n(δ).

Lemma 3.9.1. Let δ 6= 0 then the tower of F-algebras {T 2
n(δ) | n ∈ N} and the set

of idempotents {en | n ∈ N} is a tower of recollement.

Proof. Axiom 1 follows from Proposition 3.5.1. By Theorem 3.6.3 the algebra T 2
n(δ)

is quasi-hereditary when δ 6= 0 or n is odd, therefore A2 is satisfied. The axiom A3

follow from the map defined in Equation 3.25.

To check A4, let d ∈ T 2
n en and dn−1 = (d \ {pn,pn′}) ∪ {p′n, p′n′} such that n ∈ pn,

n′ ∈ pn′ and p′n = (pn \ {n})∪{(n−1)′},p′n′ = pn′ \{(n−1)′, n′}, then dn−1 ∈ T 2
n−1,
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for example (νn−2en)n−1 = 1 ∈ T 2
n−1. By argument similar to 3.30 one can show

that the following map which is defined on the diagram basis of T 2
n(δ)en

ϑ : T 2
n(δ)en → T 2

n−1(δ)

d 7→ dn−1

is a (T 2
n−1(δ), T 2

n−2(δ))-bimodule isomorphism.

Next we show that {T 2
n(δ) | n ∈ N} satisfies A5 and A6. Note that here we have

Λn = C2(n), Λn =
⊔bn

2
c

i=1 C2(n − 2i). To show that the given tower satisfies A5, let

λ ∈ Λm
n = C2(m) then we have the following cases:

i If λ = (0) ∈ Λ0
n then n must be even and by 3.28 we have resn(∆n((0))) =

∆n−1((1)) and (1) ∈ Λ1
n−1.

ii If λ = (i1, . . . , il) ∈ Λn
n = C2(n) then by 3.29 resn(∆n(λ)) = ∆n−1((i1, . . . , il−1))

and (i1, . . . , il − 1) ∈ Λn−1
n−1.

iii If λ = (i1, . . . , il, 1) ∈ Λm
n with m < n then by 3.27 we have supp(resn(∆n(λ))) =

{(i1, . . . , il), (i1, . . . , il, 1, 1), (i1, . . . , il, 2)} ⊂ Λm−1
n−1 ∪ Λm+1

n−1 .

iv If λ = (i1, . . . , il, 2) ∈ Λm
n with m < n then by 3.26 we have supp(resn(∆n(λ))) =

{(i1, . . . , il, 1), (i1, . . . , il, 2, 1)} ⊂ Λm−1
n−1 ∪ Λm+1

n−1 .

Hence the given tower of algebras satisfies A5. It remains to check the axiom A6.

To this end, let λ ∈ Λn
n = C2(n). Then we have the following two cases:

i If λ = (i1, . . . , il, 1) then by 3.27 we have λ ∈ supp(resn+1(∆n+1(i1, . . . , il)), and

(i1, . . . , il) ∈ Λn−1
n+1.

ii If λ = (i1, . . . , il, 2) then by 3.26 we have λ ∈ supp(resn+1(∆n+1(i1, . . . , il, 1)),

and (i1, . . . , il, 1) ∈ Λn−1
n+1.

Thus, the given tower of algebras satisfies the axioms of tower of recollement.
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The following result from [14] shows that to find all the maps between the standard

modules in the non-semisimple case it is enough to study the maps between certain

standard modules of T 2
n(δ). Moreover, the result helps to find the precise values

where T 2
n(δ) is non-semisimple.

Theorem 3.9.2. Let {An | n ∈ N} be a tower of algebras satisfy the axioms A1 to

A6.

i)For all pairs of weights λ ∈ Λm
n and µ ∈ Λl

n we have

Hom(∆n(λ),∆n(µ)) =

Hom(∆m(λ),∆m(µ)) if l ≤ m

0 otherwise

(3.35)

ii) Let m be a positive integer. Suppose for all 0 ≤ n ≤ m and all pairs λ ∈ Λn
n and

µ ∈ Λn−2
n we have

HomAn(∆n(λ),∆n(µ)) = 0

then the algebra Am is semisimple.

Proof. For the proof of part i see part i of Theorem 1.1 of [14]. Part ii is a mild

generalisation of the statement of part ii of Theorem 1.1 [14], and the proof is

identical to the proof of part ii of Theorem 1.1 [14].

In our case, if λ ∈ Λn
n then ∆n(λ) is always simple T 2

n(δ)-module, therefore by the

above theorem and using the fact that dimF(∆n(µ)) > 1 for µ ∈ Λn−2
n to show that

T 2
n(δ) is semisimple it is enough to prove for µ ∈ Λn−2

n the module ∆n(µ) is simple,

for each µ.

It is necessary to mention that if An = T 2
n(δ) for all n, then we have

Λn−2
n = C2(n− 2) (3.36)

In the remainder of this section, we obtain a general formula to the determinant of

the gram matrix of ∆n(λ) when d = 2, which be considered as a function depending
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d-vertices

d+ 1-vertices

i

wi =

Figure 3.9: The element wi ∈ T dn , where 0 ≤ i < n− d

on the Chebyshev polynomial of the second kind. We start by fixing a planar

canonical element p = (
⊗l

j=1 mij)⊗ u2, and λ = Ξ−1(p).

Lemma 3.9.3. Let d = 2 and wi be as given in Figure 3.9 and ni = µi−1wi.

Then B(λ) = {p,wn−3p,wn−4p, . . . ,w0p, n∑l
j=1 ij

p, n∑l−1
j=1 ij

p, . . . , ni1p} is the L-class

contains p. Hence B(λ) is a basis for the T 2
n(δ)-module ∆n(λ).

Proof. It is not hard to see that each element of B(λ) is L-related to p. Let a ∈ T dn
and a L p. Then we have a = ap. By Lemma 3.3.8 the element a can not join two

propagating parts of p. Hence, a either moves the only northern non-propagating

part of p to left or join it to a propagating part, in either cases a = ap ∈ B(λ).

To make the calculation of the gram matrix of ∆n(λ) easier for each µ =

(i1, i2, . . . , il) ∈ Zl>0, we define the matrix Bµ where its transpose denoted by Bt
µ, is
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given by:

Bt
µ :=

1 2 3 . . . il + 1 . . . il + il−1 + 1
∑l

j ij + 1



1 1 1 . . . 1 1 0 . . . 0 0 0 . . . 0 . . . 0 1

0 0 0 . . . 0 1 1 . . . 1 1 0 . . . 0 . . . 0 2

0 0 0 . . . 0 0 0 . . . 0 1 1 . . . 1 . . . 0 3

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...

0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . 1 l

In general, for any matrix M we denote its transpose by M t.

Lemma 3.9.4. For each λ ∈ C2(n − 2) the Gram matrix of ∆n(λ) with respect to

the form (3.32) is given by the following matrix

G(λ) =


Dn−1 Bλ

Bt
λ Il×l


(3.37)

Where

Dn−1 :=



δ 1 0 0 0 . . . 0 0 0

1 δ 1 0 0 . . . 0 0 0

0 1 δ 1 0 . . . 0 0 0

. . .

0 0 0 0 0 . . . 1 δ 1

0 0 0 0 0 . . . 0 1 δ


n−1×n−1
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Proof. Keep the notation from Lemma 3.9.3 and let the row r of the gram matrix

G(λ) of ∆n(λ) with respect to the form (3.32) to be the row of gr := wn−1−rp where

1 ≤ r ≤ n − 1, and the row n − 1 + s to be the row of fs := n∑l−s+1
j=1 ij

p where

1 ≤ s ≤ l, and ni be as given in Lemma 3.9.3. The rest of the lemma follows from

the following equations;

〈gp, gq〉 =


1 if |p− q| = 1

δ if p = q

0 otherwise

(3.38)

〈gp, fs〉 = bp,s (3.39)

〈fs, fs′〉 =

1 if s = s′

0 otherwise

(3.40)

Where bp,s is the (p, s)-th entry of the matrix Bλ.

Example 3.9.5. Let λ = (2, 1) then p = m2 ⊗ m1 ⊗ u2. The gram matrix of

T 2
5 (δ)∆5(λ) with respect to the ordered basis {g1, . . . , g4, f1, f2} and the form 〈−,−〉λ

is

G((2, 1)) =



δ 1 0 0 1 0

1 δ 1 0 1 1

0 1 δ 1 0 1

0 0 1 δ 0 1

1 1 0 0 1 0

0 1 1 1 0 1


.

Corollary 3.9.6. Let λ ∈ C2(n − 2) and Gλ(δ) = det(G(λ)) then Gλ(δ) =

det(Dn−1 −BλB
t
λ).

Proof. From Lemma 3.9.4 we have

Gλ(δ) = det

(
Dn−1 Bλ

Bt
λ Il×l

)
= det

((
In−1×n−1 Bλ

0 Il×l

)(
Dn−1 −BλB

t
λ 0

Bt
λ Il×l

))
.

Which implies that Gλ(δ) = det(Dn−1 −BλB
t
λ).
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Before stating our main result about the Gram matrices of T 2
n(δ), we recall the

definition and some facts about the Chebyshev polynomial of the second kind. The

determinant of the Gram matrix of ∆n(λ) is expressible in terms of Chebyshev

polynomials. We use this information to factorise the Gλ(δ) into linear factors.

We follow [59] in our exposition.

Definition 3.9.7. The Chebyshev polynomial of the second kind, denoted by Un(x),

is recursively given by the following formula

Un+2(x) = 2xUn+1(x)− Un(x) (3.41)

with U0(x) = 1 and U1(x) = 2x.

The Chebyshev polynomials of the second kind are pairwise orthogonal in the

interval [−1, 1]. Furthermore Un(x) is a polynomial of degree n, having n different

real roots in [−1, 1].

For each n, the polynomial Un(x) satisfies the following relation,

Un(x) =
rn+1

+ (x)− rn+1
− (x)

r+(x)− r−(x)

=
n∑
k=0

(−2)k
(
n+ k + 1

2k + 1

)
(1− x)k

(3.42)

where r+(x) = x +
√
x2 − 1 and r−(x) = x −

√
x2 − 1. See, for example, Equation

9 of [19] for the second equality.

The Chebyshev polynomial of the second kind is also expressed as a determinant of

some tridiagonal matrix as follows:

Um(x) = det



2x 1 0 0 0 ... 0 0 0

1 2x 1 0 0 ... 0 0 0

0 1 2x 1 0 ... 0 0 0

...

0 0 0 0 0 ... 1 2x 1

0 0 0 0 0 ... 0 1 2x


m×m

.
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For each m ∈ N and an indeterminate x we define a matrix Mm+1(x) as follows:

Mm+1(x) =



x−2 −1 0 0 0 ... 0 0 0

−1 x−2 −1 0 0 ... 0 0 0

0 −1 x−2 −1 0 ... 0 0 0

...

0 0 0 0 0 ... −1 x−2 −1

0 0 0 0 0 ... 0 −1 x−1


m+1×m+1

Let

Mm+1(x) := det(Mm+1(x)) (3.43)

then the proof of the following lemma is straightforward.

Lemma 3.9.8. Let m be a non-negative integer, then we have

Mm+1(x) = (−1)m
(

(x− 1)Um

(
2− x

2

)
+ Um−1

(
2− x

2

))
. (3.44)

Lemma 3.9.9. For each non-negative integer l we have

(x− 1)l((x− 1)Ml(x)−Ml−1(x)) = (−1)lx(x− 1)l Ul

(
2− x

2

)
.

Proof. We have

(x− 1)Ml(x)−Ml−1(x) = (−1)l−1x

(
(x− 2)U l−1

(
2− x

2

)
+ U l−2

(
2− x

2

))
= (−1)l−1x

(
−2

(
2− x

2

)
U l−1

(
2− x

2

)
+ U l−2

(
2− x

2

))
= (−1)lxU l

(
2− x

2

)
.
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The first six values of Mn(δ) are

M0(x) = 1,

M1(x) = x− 1,

M2(x) = x2 − 3x+ 1,

M3(x) = x3 − 5x2 + 6x− 1,

M4(x) = x4 − 7x3 + 15x2 − 10x+ 1,

M5(x) = x5 − 9x4 + 28x3 − 35x2 + 15x− 1,

...

Lemma 3.9.10. Let x =
(

2−δ
2

)
, the polynomial Mm+1(δ) obeys

Mm+1(δ) = (−1)m
r−(x)− 1

r+(x)− r−(x)

(
rm+2

+ (x) + rm+1
− (x)

)
Where r+(x) = x+

√
x2 − 1 , r−(x) = x−

√
x2 − 1.

Proof. From Equation 3.42 and definition of Mm+1(δ) we have,

Mm+1(δ) = (−1)m
1

r+(x)− r−(x)

(
(1− 2x)(rm+1

+ (x)− rm+1
− (x)) + (rm+ (x)− rm− (x))

)
= (−1)m

r−(x)− 1

r+(x)− r−(x)

(
rm+2

+ (x) + rm+1
− (x)

)
such that x = 2−δ

2
.

Part i of the the following theorem can be found, for example, on p 59 of [74], and

part ii is Theorem 1 of [82].
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Lemma 3.9.11 ([74], [82]). Let

Qm =



b c 0 0 0 . . . 0 0 0

a b c 0 0 . . . 0 0 0

0 a b c 0 . . . 0 0 0

. . .

0 0 0 0 0 . . . a b c

0 0 0 0 0 . . . 0 a b− β


m×m

with a, b, c, β ∈ C then we have the following:

i If β = 0 then the eigenvalues of Qm are

λk = b+ 2
√
ac cos

(
kπ

m+ 1

)
, k = 1, 2, . . . ,m.

ii If β =
√
ac 6= 0 then the eigenvalues of Qm are

λk = b+ 2
√
ac cos

(
2kπ

2m+ 1

)
, k = 1, 2, . . . ,m.

Lemma 3.9.12. For each m ∈ Z≥1 we have the following equations:

Um

(
2− x

2

)
= (−1)m

m∏
k=1

(
x− 4 cos2

(
kπ

2(m+ 1)

))
. (3.45)

Mm(x) =
m∏
k=1

(
x− 4 cos2

(
kπ

2m+ 1

))
. (3.46)

Proof. We first proof Equation 3.45. By substituting 2−x
2

in 3.42 we obtain

Um

(
2− x

2

)
=

m∑
k=0

(−1)k
(
m+ k + 1

2k + 1

)
xk. (3.47)

Hence, the leading coefficient of Um
(

2−x
2

)
is (−1)m. On the other hand, we have

Um
(

2−x
2

)
= det(xIm − Qm), where Qm is given in Lemma 3.9.11 with a = c = 1,
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b = 2 and β = 0. Now we may apply Lemma 3.9.11 part i to obtain the eigenvalues

of Qm, which are given by,

λk = 2 + 2 cos

(
kπ

m+ 1

)
, k = 1, 2, . . . ,m.

Furthermore, the eigenvalues of Qm are the roots of Um
(

2−x
2

)
. Combining the above

information about the roots and the coefficient of the leading term of Um
(

2−x
2

)
implies 3.45.

Next we proof Equation 3.46. By substituting 3.47 in 3.44, and then examining

the cases when m is either even or odd we conclude that the leading coefficient of

Mm(x) is 1. Furthermore, we haveMm(x) = det(xIm−Qm), where Qm is given in

Lemma 3.9.11 with a = c = 1, b = 2 and β = 1. By using Lemma 3.9.11 part ii and

a similar argument as in the proof of 3.45 we obtain 3.46.

Let λ = (i′1, i
′
1, . . . , i

′
1︸ ︷︷ ︸

k1−times

, . . . , i′v, i
′
v, . . . , i

′
v︸ ︷︷ ︸

kv−times

) ∈ Λ(T 2
n(δ)), we shall say (i′1

k1 , i′2
k2 , . . . , i′v

kv)

is frequency representation of λ, and write λ = (i′1
k1 , i′2

k2 , . . . , i′v
kv), if i′s 6= i′s+1 for

1 ≤ s ≤ v − 1.

We say λ is of the form (2k1 , 1k2 , 2k3 , . . . , 1k2v , 2k2v+1) if it satisfies one of the following

conditions

1. We have k1 = 0 and λ = (1k2 , 2k3 , . . . , 1k2v , 2k2v+1) is frequency representation

of an element of Λ(T 2
n(δ)).

2. We have k2v+1 = 0 and λ = (2k1 , 1k2 , 2k3 , . . . , 1k2v) is frequency representation

of an element of Λ(T 2
n(δ)).

3. We have k1 = k2v+1 = 0 and λ = (1k2 , 2k3 , . . . , 1k2v) is frequency representation

of an element of Λ(T 2
n(δ)).

For example, (23) ∈ Λ(T 2
8 (δ)) is of the form (23), (16) ∈ Λ(T 2

8 (δ)) is of the form

(20, 16, 20) and (2, 14) ∈ Λ(T 2
8 (δ)) is of the form (2, 14, 20).
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Proposition 3.9.13. For each λ = (i1, i2, . . . , il) ∈ C2(n−2) the polynomial Gλ(δ) =

det(G(λ)) has one of the following forms:

1. If λ is of the form (2l) then Gλ(δ) = (−1)lδ(δ − 1)l Ul
(

2−δ
2

)
.

2. If λ is of the form (2k1 , 1k2 , 2k3 , . . . , 1k2v , 2k2v+1) with v 6= 0 then Gλ(δ) = α(δ−

1)
∑v
t=0 k2t+1(δ−2)

∑v
t=1 k2t−vΠv−1

t=1Uk2t+1+1

(
2−δ

2

)
Mk1+1(δ)Mk2v+1+1(δ), where α ∈

{−1, 1}.

Proof. First we prove part 1 of the proposition. If λ = (2l) then n− 1 = 2l+ 1 and

Bt
(2l) =


1 1 1 0 0 0 0 0 ··· 0

0 0 1 1 1 0 0 0 ··· 0

0 0 0 0 1 1 1 0 ··· 0

...
...

0 0 0 ··· 0 1 1 1 0 0

0 0 0 0 0 ··· 0 1 1 1


l×n−1

.

We have

Dn−1 −B(2l)B
t
(2l) =



δ−1 0 −1 0 0 0 0 0 ··· 0

0 δ−1 0 0 0 0 0 0 ··· 0

−1 0 δ−2 0 −1 0 0 0 ··· 0

0 0 0 δ−1 0 0 0 0 ··· 0

0 0 −1 0 δ−2 0 −1 0 ··· 0

...
...

0 0 0 ··· 0 −1 0 δ−2 0 −1

0 0 0 ··· 0 0 0 0 δ−1 0

0 0 0 ··· 0 0 0 −1 0 δ−1


.

Hence by the above step, Laplace expansion, Corollary 3.9.6, Equation 3.43 and

Lemma 3.9.9 we obtain

G(2l)(δ) = det(Dn−1 −B(2l)B
t
(2l)) = (δ − 1)l((δ − 1)Ml(δ)−Ml−1(δ))

= (−1)lδ(δ − 1)l Ul

(
2− δ

2

)
.

Regarding part 2 of the proposition we only need to consider the following special

cases, since the general case can be obtained by combining these special cases,
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Case 1. If λ = (2p, 1n−2(p+1)) with p > 0 then λ is of the form (2p, 1n−2(p+1), 20)

Bt
(2p,1n−2(p+1)) =



1 1 0 ... 0
0 1 1 0

...

0 1 1 0
0 0 1 1 1

...
...

...

... 0 1 1 1 0 0
0 ... 0 1 1 1


l×n−1

.

such that the row of Bt
(2p,1n−2(p+1))

in which three 1’s occur in the same row for the

first time is the (n− 2(p+ 1) + 1)-th row.

Hence

Dn−1 −BλB
t
λ =



δ−1 0 0
0 δ−2 0
...

...
...

0 δ−2 0
0 ··· 0 δ−2 0 −1 0

0 0 δ−1 0 0 0
0 −1 0 δ−2 0 −1 0

0 δ−1 0 0
−1 0 δ−2 0 −1
0 0 0 δ−1 0

...
...

...

−1 0 δ−2 0 −1
0 0 0 δ−1 0

0 ... 0 0 −1 0 δ−1


such that the row of Dn−1 − BλB

t
λ in which −1 occurs for the first time is the

(n− 2(p+ 1) + 1)-th row. By using Equation 3.43 and Laplace expansion we obtain

det(Dn−1 −B(2p,1n−2(p−1))B
t
(2p,1n−2(p−1))) = (δ − 1)p(δ − 2)n−2(p+1)−1M1(δ)Mp+1(δ).

Case 2. If λ = (1l) then λ is of the form (20, 1l, 20) and it is not hard to see

Dn−1 −BλB
t
λ =



δ−1 0 ··· 0

0 δ−2 0

0 δ−2 0
...

...
... δ−2 0

0 ··· 0 δ−1


n−1×n−1

Laplace expansion implies that

det(Dn−1 −B(1l)B
t
(1l)) = (δ − 2)l−1M1M1 = (δ − 1)2(δ − 2)n−3.
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Case 3. If λ = (1s1 , 2s2 , 1s3) such that s1, s2 and s3 are positive integers then λ is

of the form (20, 1s1 , 2s2 , 1s3 , 20) and

Dn−1−BλB
t
λ =



δ−1 0 ··· 0
0 δ−2 0 ···
...

...
...

··· 0 δ−2 0 0 0 0
0 ··· 0 δ−2 0 −1 0

0 0 δ−1 0 0 0
0 −1 0 δ−2 0 −1 0
0 0 0 0 δ−1 0 0
0 0 0 −1 0 δ−2 0 −1

0 0 0 δ−1 0
...

...
...

δ−2 0 −1 0
0 δ−1 0
−1 0 δ−2 0

0 δ−2 0
0 δ−2 0

...
...

0 δ−2 0
0 ··· 0 0 0 0 ··· 0 δ−1


such that the row of Dn−1 − BλB

t
λ in which −1 occurs for the first time is the

(s3 + 1)-th row, and the row of Dn−1 − BλB
t
λ in which −1 occurs for final time is

(n− s1 − 1)-th row. Since n− 1− s1 − s3 = 2s2 + 1 we have

Gλ(δ) = (δ − 2)s3+s1−2M1(δ)M1(δ)X2s2+1(δ)

such that

X2s2+1(δ) = det



δ−2 0 −1 0 ··· 0

0 δ−1 0 0 0

−1 0 δ−2 0 −1 0

0 0 δ−1 0 0

0 −1 0 δ−2 0 −1

0 0 0 δ−1 0

...
...

...

δ−2 0 −1

0 0 δ−1 0

0 ··· 0 −1 0 δ−2


2s2+1×2s2+1

.

By applying Laplace expansion to X2s2+1(δ) and using the determinant form of the

Chebyshev polynomial of the second kind we obtain X2s2+1(δ) = (δ−1)s2Us2+1

(
2−δ

2

)
,
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and hence

Gλ(δ) = (δ − 1)s2(δ − 2)s3+s1−2M1(δ)M1(δ)Us2+1

(
2− δ

2

)
Now let λ be of the form (2k1 , 1k2 , 2k3 , . . . , 1k2v , 2k2v+1) with v 6= 0. By an argument

similar to the Case 1, we have Gλ(δ) = (δ − 1)k1+k2v+1Mk1+1(δ)Mk2v+1+1(δ)G′λ(δ),

for some polynomial G′λ(δ).

By the argument in Case 2 the existence of k2, k4, . . . , k2v implies that Gλ(δ) =

(δ − 1)k1+k2v+1(δ − 1)k2+k4+···+k2v−vMk1+1(δ)Mk2v+1+1(δ)G′′λ(δ) for some polynomial

G′′λ(δ).

By the argument in Case 3 the existence of k3, k5, . . . , k2v−1 implies that Gλ(δ) = (δ−

1)
∑v
t=0 k2t+1(δ − 2)

∑v
t=1 k2t−vΠv−1

t=1Uk2t+1+1

(
2−δ

2

)
Mk1+1(δ)Mk2v+1+1(δ)G′′′λ (δ) for some

polynomial G′′′λ (δ).

It remains to show thatG′′′λ (δ) ∈ {−1, 1}. To this end, let Yn(δ) = (δ−1)
∑v
t=0 k2t+1(δ−

2)
∑v
t=1 k2t−vΠv−1

t=1Uk2t+1+1

(
2−δ

2

)
Mk1+1(δ)Mk2v+1+1(δ). First note that deg(Gλ(δ)) =

n − 1 = deg(Yn(δ)). Hence, G′′′λ (δ) is a constant polynomial. From Equation 3.46

we have Mm(δ) is monic polynomial, for each m. By Equation 3.45 the leading

coefficient of Um
(

2−δ
2

)
is equal to (−1)m. Therefore, the leading coefficient of Yn(δ)

is in {−1, 1}. By Corollary 3.9.6 and Laplace expansion of determinant of a matrix,

one can see that the leading coefficient of Gλ(δ) is 1. The claim follows.

Corollary 3.9.14. For each λ ∈ C2(n − 2) all the roots of the polynomials Gλ(δ)

are real and lie in the interval [0, 4).

Proof. Follows directly from the Lemma 3.9.12.

Example 3.9.15. We continue from Example 3.9.5.Then λ is of the form (2, 1, 20)

and by Laplace expansion we have G(2,1)(δ) = (δ − 1)2(δ2 − 3δ + 1).

If we compare this result with the Proposition 3.9.13 we see, according to the

Proposition 3.9.13 we have G(2,1)(δ) = (δ − 1)1(δ − 2)0M2(δ)M1(δ) which agrees

with our direct calculation.
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We define the following sequence of polynomials and then use their zeros to obtain

a necessary and sufficient condition for the semisimplicity of T 2
n(δ).

K2r(δ) =
r−1∏
i=1

Mi(δ)Ui

(
2− δ

2

)
(3.48)

K2r+1(δ) =
r∏
i=1

Mi(δ)
r−1∏
i=1

Ui

(
2− δ

2

)
(3.49)

Let Kn = {α ∈ C | Kn(α) = 0}. Then we have

K3 ⊂ K4 ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · (3.50)

Theorem 3.9.16. If δ 6= 0 then the C-algebra T 2
n(δ) is semisimple if and only if

δ 6∈ Kn. In particular, if δ /∈ [0, 4) then T 2
n(δ) is semisimple. Furthermore, T 2

2n(0)

is not semisimple.

Proof. By using Theorem 3.6.3 the algebra T 2
2n(0) is not quasi-hereditary, hence it

is not semisimple.

For the rest of the proof we assume δ 6= 0. Let δ 6∈ Kn to show that T 2
n(δ) is

semisimple. By Lemma 3.9.1, the sequence of C-algebras {T 2
n(δ) | n ∈ N} and

the set of idempotents {en | n ∈ N} satisfies the axioms towers of recollement.

Therefore, by Theorem 3.9.2 for n ∈ Z>0 to show T 2
n(δ) is semisimple it is enough

to prove T 2
m(δ)∆m(λ) is simple, for each m ≤ n and λ ∈ Λm−2

m = C2(m − 2). By

Corollary 3.8.9, for any λ ∈ Λ(T 2
m(δ)) the module T 2

m(δ)∆m(λ) is simple if and only

if Gλ(δ) 6= 0. By Proposition 3.9.13 for each λ ∈ Λm−2
m the polynomial Gλ(δ) can be

factorised into products of the polynomials δ,Mi(δ) and Uj(
2−δ
δ

), for some positive

integers i, j ∈ Z>0. Therefore, to prove the if part of the result it is enough to check

which degrees of the polynomials δ,Mi(δ) and Uj(
2−δ
δ

) occur as a factor of∏
λ∈Λm−2

m
m≤n

Gλ(δ).

In fact we have the following two cases:
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Case 1. If n = 2r, then by Proposition 3.9.13 we have∏
λ∈Λm−2

m
m≤n

Gλ(δ) = δk
r−1∏
i=1

(Mi(δ))
ki

(
Ui

(
2− δ

2

))si

for some k, ki, si ∈ Z>0, where i ∈ r − 1.

Case 2. If n = 2r + 1, then by Proposition 3.9.13 we have∏
λ∈Λm−2

m
m≤n

Gλ(δ) =
r∏
i=1

(Mi(δ))
ki

r−1∏
j=1

(
Uj

(
2− δ

2

))sj

for some ki, sj ∈ Z>0, where i ∈ r, j ∈ r − 1. If δ 6= 0 then from the definition of Kn

and Proposition 3.9.13 we have

Kn =

α ∈ C |
∏

λ∈Λm−2
m

m≤n

Gλ(α) = 0

 =

α ∈ C |
∏

λ∈C2(n−2)

Gλ(α) = 0

 (3.51)

Hence if δ /∈ Kn we have for each m ≤ n and λ ∈ Λm−2
m = C2(m − 2) the module

T 2
m(δ)∆m(λ) is simple, as desired.

Let T 2
n(δ) be semisimple to show that δ /∈ Kn. If δ ∈ Kn then by Equation 3.51,

there exist λ ∈ C2(n − 2) such that Gλ(δ) = 0. Hence, T 2
n(δ)∆n(λ) is not simple,

which is a contradiction.

Corollary 3.9.14 implies that for each λ ∈ C2(n− 2) if δ 6∈ [0, 4) then δ 6∈ Kn, hence

T 2
n(δ)∆n(λ) is simple. Consequently, T 2

n(δ) is semisimple.

In Proposition 2.2.3 [6] Bisch and Jones have shown that if δ ≥ 2 then the C-algebra

FC1,n(δ, δ) is semisimple. In the next Corollary we improve their result by presenting

a necessary and sufficient condition for FC1,n(δ, δ) to be semisimple.

Corollary 3.9.17. Let δ 6= 0. Then the C-algebra FC1,n(δ, δ) is semisimple if and

only if δ 6∈ Kn. In particular, if δ /∈ (−2, 2) then the the Fuss-Catalan algebra

FC1,n(δ, δ) is semisimple.
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Proof. Follows from Theorems 3.4.2 and 3.9.16.

We list the first few terms of the sequence {Kn}n∈N, which describes the values

where T 2
n(δ) is not semisimple,

K2 = φ

K3 = {1},

K4 = {1, 2},

K5 =

{
1, 2,

3

2
±
√

5

2

}
,

K6 =

{
1, 2, 3,

3

2
±
√

5

2

}
,

K7 =

{
1, 2, 3,

3

2
±
√

5

2
, 4 cos2

(π
7

)
, 4 cos2

(
2π

7

)
, 4 cos2

(
3π

7

)}
,

...
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