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Abstract 

 

Serologically defined colon cancer antigen-3 (SDCCAG3) is a coiled-coil domain 

containing protein that has been implicated in various cellular processes such as 

endosomal sorting, vesicular trafficking, and cytokinesis. The current study has 

identified two novel roles of SDCCAG3 i.e. regulation of Fas mediated apoptosis 

and ciliogenesis. 

This study demonstrates that SDCCCAG3 is involved in post-endocytic sorting of 

Fas receptors (a type I transmembrane receptor involved in apoptotic signalling). 

Depletion of SDCCAG3 by RNA interference led to a delay in transitioning of 

internalized Fas receptors from early to late endosomes/lysosomes, which resulted in 

an increased surface population of Fas receptors and consequently increased 

apoptotic signalling. Further in depth analysis revealed a defect in the intraluminal 

vesicle sorting of Fas receptors in the absence of SDCCAG3. Dysbindin, a cytosolic 

protein known to link proteins with the ESCRT machinery, was found to be involved 

with SDCCAG3 in sorting of Fas receptors for lysosomal degradation. This study 

also proposes the plausible complex formation between SDCCAG3 and a known 

negative regulator of Fas receptors, PTPN13, at the early/sorting endosomes. In 

conclusion, this study identified a novel role of SDCCAG3 in negative regulation of 

apoptotic signalling.  

Current research also defines a role of SDCCAG3 in ciliogenesis. Unpublished data 

from the Erdmann lab suggested a direct interaction between SDCCAG3 and 

intraflagellar transport protein-88 (IFT88), a central protein involved in ciliogenesis 

and ciliary trafficking (Yu, unpublished data). Similar to IFT88, SDCCAG3 was also 

found to localize at the basal body, regulate cilia formation and ciliary length in 

IMCD3 cells in this study. Additionally, depletion of SDCCAG3 affected 

localization of a transmembrane protein called Polycystin-2 and not Rab8 to cilia. 

Defects in Polycystin-2 trafficking to cilia have been linked to polycystic kidney 

disorder in numerous studies. Thus, this study establishes SDCCAG3 as a novel 

ciliary protein involved in ciliogenesis and trafficking.        
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1 Introduction 

 

1.1 Intracellular trafficking  

All cells are enclosed in a membrane which isolates the inside of a cell from its 

surroundings, therefore creating a barrier that needs to be overcome for 

communication. Cells need to communicate with each other and their environment to 

carry out various physiological processes for growth and survival. They 

communicate through cell surface receptors which are present on the surface and 

bind with extracellular signalling molecules to induce signal transduction. For 

instance, growth factors and stem cells factors bind to receptor tyrosine kinases 

(RTKs) that span the plasma membrane and undergo conformational changes to 

activate downstream signalling cascade upon ligand biding. This RTK-Ras 

signalling cascade is crucial for various developmental processes, such as regulation 

of cell proliferation, differentiation, and promotion of cell survival [1]. Similarly, 

another signalling receptor called prolactin receptor (PRLR) is present on the surface 

of mammary gland cells and binds to prolactin and growth hormone (GH) to initiate 

JAK/STAT signalling pathway for upregulating casein gene for milk production [2]. 

Integrins are also well studied receptors that have been implicated in bi-directional 

signalling between cell, and extra-cellular matrix for cell growth, division, and 

differentiation. Hence, surface representation of transmembrane receptors is an 

obvious prerequisite for the cell to carry out their normal functions.  

 

Receptors are transported to the surface via vesicular transport in which proteins are 

synthesised in the cytosol and packed into secretory vesicles to fuse with the plasma 

membrane. Upon ligand activation, these receptors are internalized from the cell 

environment and travel inside via various endocytic pathways. The two types of 

major intracellular trafficking pathways (exocytosis and endocytosis) operate 

continuously to support cellular survival and homeostasis. The fate of cell surface 

receptors upon internalization and deregulation of endocytosis in human diseases has 

been discussed in detail later in this section.  
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1.1.1 Trafficking pathways of cell surface receptors   

Primary pathways involved in shuttling surface receptors in and out of the cell are 

exocytic and endocytic pathways. The exocytic pathway exports surface receptors 

from the endoplasmic reticulum (ER) through Golgi to the plasma membrane (PM) 

or from endosomes to PM. In the ER and Golgi, many surface receptors undergo 

post-translational modifications by the addition of sugar and lipid moieties and are 

packed into vesicles formed at the trans-Golgi which later fuse with the PM. Hence, 

two important steps in this pathway are ER-to-cis Golgi and trans-Golgi-to-PM. The 

characteristics of the vesicles involved in these two types of routes vary. ER-to-cis 

Golgi transition occurs via intermediate compartment (IC) which is packed with 

vesicles and tubules. This transition is highly regulated as multiple pieces of 

evidence suggest that surface receptors undergo a ‘quality check’ before exiting ER 

[3]. During intra-Golgi transport, receptors packed in vesicles are passed through the 

three Golgi cisternae by moving the vesicles forward and resident proteins 

backwards between the Golgi cisternae[4]. However, two other types of models have 

also been proposed to explain the intra-Golgi transport-‘The cisternal maturation’ 

model and ‘The Rapid partitioning’ model. The first model suggests that cisternae, 

packed with surface receptors, mature by fusing with retrograde vesicles arising from 

older cisternae. In the rapid partitioning model, Golgi enzymes are distributed 

differentially throughout the cisternae and the cargo moves at an exponential rate 

proportional to their total abundance in the Golgi[4]. After passing through Golgi, 

cargo proteins are sorted to recycling endosomes or plasma membrane in a network 

of tubular structures derived from trans-Golgi cisternae, known as the trans-Golgi 

network (TGN). In polarized epithelial cells, different types of sorting signals have 

been characterized for apical (like O- and N-glycosylation) and basolateral sorting 

(like tyrosine based motifs- NPXY or YXXɸ and di-leucine motifs- [DE]XXXL[LI] 

or DXXLL). These signals are recognized by coat adaptors like AP1 and AP3, and 

GGAs that help in TGN to PM transport by recruiting clathrin on cargo laden tubular 

domains of TGN[5, 6].   

In the endocytic pathway, cell surface receptors are internalized from the plasma 

membrane by either clathrin dependent or independent routes (like caveolae or raft 

mediated) into early endosomes where they are sorted further into recycling or late  
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Figure 1.1: The exocytic pathways. They are involved in the transport of surface receptors 

from endosomes or biosynthetic machinery to the plasma membrane. The trans-Golgi 

network originates form cis-Golgi cisternae and consists of tubular networks that sort cargo 

to different destinations like plasma membrane, recycling endosomes or late endosomes. 

Surface receptors that are newly synthesised or have been transported from the endosomes to 

TGN are returned to the plasma membrane unless destined for lysosomal degradation via 

exocytic pathways. In a polarized epithelial cell, different sorting mechanisms operate based 

on specific signals for apical (e.g. glycosyl phosphatidylinositol (GPI)-anchored proteins) or 

basolateral targeting of surface receptors. Clathrin coated vesicles are generated form the 

tubular structures of TGN involving different types of adaptor proteins. AP1A and GGAs 

recognise signals for late endosomal trafficking while AP1B, AP3, and AP4 have been 

implicated in basolateral trafficking of some receptors. (Figure adopted from De Matteis and 

Luini, 2008 [6]).                 
  

endosomes. Cargo destined for degradation is transferred to the lysosome which is 

the primary degradation site for internalized proteins. Clathrin mediated endocytosis 

(CME) is the most common route for internalizing most of the signalling family  

receptors such as RTKs like epidermal growth factor receptors (EGFR) and GPCRs 

like ß2-andregenic receptors (ß2AR). However, some GPCRs, RTKs and other 

receptors like TGFß, Wnt and Notch also undergo clathrin independent endocytosis 

(CIE) [7]. Receptors undergoing CME can be recruited directly into clathrin coated 

pits via adaptor proteins like AP2 that interacts with tyrosine and di-leucine motifs in 

the cytoplasmic domains of some receptors [8]. Maturing clathrin coated pits at the 

plasma membrane are budded into vesicles, called clathrin coated vesicles (CCVs) 

by the action of a mechanochemical enzyme, dynamin which  is recruited by 

curvature sensing-BAR domain containing proteins like amphiphysin, endophilin, 
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and sorting nexin 9 (SNX9) [9]. Following scission, CCVs are transported into the 

cytoplasm where the vesicles are uncoated and fused with early endosomes. 

Subsequently, signalling of ligand bound activated receptors is either sustained or 

attenuated inside the endosomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The endocytic pathway consists of various routes for entry of cargo like fluid 

phase uptake by micropinocytosis, clathrin dependent, and independent pathways. Most of 

the signalling receptors are known to internalize by clathrin mediated endocytosis while 

some receptors internalize via clathrin independent but dynamin dependent pathway using 

caveolins. All these routes lead to internalization of surface receptors into early endosomes. 

(Figure adopted from McMahon and Boucrot, 2011) [9].    

 

Receptor mediated internalization is an important mechanism to terminate signalling 

mediated by the ligand bound receptors. Endocytosis of activated receptors can 

affect the strength and duration of signalling by physically eliminating or limiting 

the number of receptors available to the ligand at the surface. For instance, 

endocytosis of EGFR inhibits PLCγ1 and phosphoinositide 3-kinase (PI3K) 

signalling due to the absence of their lipid substrate, PtdIns(4,5)P2 in endosomes 

[10]. However, numerous studies also support endosomal signalling largely 

categorized into two groups: signalling that occurs exclusively in endosomes, for 

which receptor mediated endocytosis is imperative and signalling that occurs both in 

endosomes and at the plasma membrane [7]. EGFR, for example, remain in their 
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ligand bound, active (phosphorylated) state until late stages of endocytosis as 

demonstrated by the presence of downstream RTK signalling components in the 

endosomes allowing continuous signalling of internalized EGFR [11]. It was also 

shown that in some cases complete activation of ERK1 and ERK2 required 

endocytosis because of the availability of MAPK scaffold complex, MEK partner-1 

(MP1)-p14 complex, which is docked to the endosomal membrane via p18 adaptor 

protein and aids in phosphorylating ERK1 [12]. EGFR are also known to act through 

specialized signalling endosomes that are decorated with Rab5 and its two adaptors, 

APPL1 and 2 [7].           

 

Following endocytosis, sorting of activated receptors back to the plasma membrane 

can reinitiate  the signalling or delivery to the lysosomes can terminate the signalling 

process. Thus, post-endocytic sorting is another crucial event that decides the fate of 

receptors and their signalling process.   

 

1.1.2 Endosomal sorting of cell surface receptors  

Within minutes of internalization, sorting of cargo in early endosomes is initialized. 

Early endosomes are highly dynamic, undergo homotypic fusion and are composed 

of complex pleomorphic structures containing both large vesicles and thin tubular 

extensions [13]. The limiting membrane of EE contains many subdomains that are 

not only structurally but also functionally distinct owing to different proteins 

residing on these subdomains. One of the most crucial residents of early endosomes 

is Rab 5 which is generated in its active GTP-bound form by Rabex-5. Rab5 recruits 

numerous effectors on the early endosomes that carry out various functions. PtdIns 

(3) kinase/hVPS34 is amongst the earliest set of effectors of Rab5 at EE which is 

required for generation of PtdIns(3)P, the most abundant phosphoinositide in the EE 

membrane. PtdIns(3)P imparts compartment identity to the EE and help in recruiting 

other Rab 5 effectors such as early endosomal antigen-1 (EEA-1) and sorting nexins 

(SNXs)  [13]. The fusion events are mediated by a specialised set of membrane 

proteins called SNAREs (soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors) such as syntaxin6 and syntaxin13, vit1a and VAMP4 that 

constitute the core machinery for EE fusion [14]. EEA-1 directly interacts with 
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syntaxin6 and syntaxin13 and localizes them to EE [15, 16]. Newly formed 

endosomes laden with cargo, fuse with one another and with pre-existing sorting 

endosomes which are vesicular structures with a pH of ~6.0 in their lumen. The 

endosome maturation model suggests that sorting endosomes accept incoming 

endosomes for only some time before translocating along the microtubules from the 

cell periphery towards the microtubule organizing centre (MOTC) [17]. 

Subsequently, their lumens become more acidic which leads to uncoupling of the 

ligands from their respective receptors. Therefore, endocytic sorting is initiated in 

the maturing sorting endosomes where surface receptors destined for recycling are 

segregated into tubular membranes that are pinched off and fused either with 

endocytic recycling compartments (ERC) or delivered directly to the plasma 

membrane. In contrast, surface receptors that contain lysosomal targeting 

information are separated out and delivered to late endosomes/lysosomes or remain 

in the EE which mature into lysosomes (according to the endosomal maturation 

model). In fact, there is now a growing appreciation of the notion that early and late 

endosomes are just stages of a continuum representing distinct membrane domains 

of an evolving sorting endosome also referred to as tubular endosomal network 

(TEN) [18]. This view supports the following ideas- firstly, endocytic recycling 

compartment (ERC) is not a separate compartment but rather a subdomain of TEN. 

Secondly, TEN represents a hub where many sorting machineries associate on 

different subdomains to sort cargo from endosome to TGN, lysosomes or PM. 

 

Sorting for recycling-Surface receptors such as transferrin are sorted at EE to the 

plasma membrane via two major recycling pathways-‘fast’ and ‘slow [19]. The 

process of endosomal sorting for recycling has been described as the “geometry-

based sorting” where membranes containing receptors like transferrin are pinched off 

from narrow tubular structures since the surface-area-to-volume ratio of tubules is 

larger than that of vesicular part of the sorting endosomes [19]. It has been described 

rather as a pre-sorting step where receptors destined for recycling are delivered 

directly to the plasma membrane. Multiple evidence show that upon internalization, 

transferrin is enriched more in static early endosomes which are only Rab5 positive 

rather than dynamic early endosomes that are both Rab5/Rab7 positive and hosts 

other receptors like EGFR [20]. Many GTPase regulators have been implicated in 
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directing transferrin towards recycling compartments like Rab4 by supporting 

tubular formations. Alternatively, transferrin can be trafficked to slow endocytic 

recycling compartment (ERC) in Rab4/Rab11 dependent manner [13, 21]. 

 

 

 

Figure 1.3 Illustrative presentation of proposed tubular endosomal network (TEN) 

consisting of a vacuolar region connected to dense tubular endosomes. The vacuolar region 

is coated with ‘bilayered’ clathrin coats and Hrs to recruit ESCRT machinery for sorting out 

cargo into the degradative pathway. Vacuolar endosome subsequently mature into late 

endosomes. The tubular network has specific subdomains occupied by different sorting 

devices such as retromer for TGN trafficking or direct recycling to apical membrane in 

polarized cells. Clathrin and its associated proteins like AP1 and dynamin are also involved 

in transport to TGN and fast recycling to the plasma membrane (basolateral) in polarized 

cells. A slow recycling route has been shown to be regulated by RME-1/EHD1 complex 

along with Rab11. AP3 has also been implicated in the transport of cargo vesicles to 

lysosomes or to melanosomes in pigmented cells. Other proteins like phosphofurin acidic-

cluster-sorting protein-1 (PACS-1) and EpsinR are involved in retrograde transport to TGN 

[18].           

 

A study also suggested that effectors of Rab4 such as Rabaptin-5/Rabex-5 bind to 

γ1-adaptin subunit of AP1 and prevent the association of clathrin with it in order to 

prevent budding of vesicles from the endosomes thereby promoting transport of 

transferrin to ERC compartments [22]. An associate of Rabaptin-5/Rabex-5 

complex, Rabenosyn-5, could potentially act as a linker between Rab4 complex and 
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Eps15 homology domain (EHD1) on ERC membranes as depletion of Rabenosyn-5 

led to the accumulation of transferrin in an EEA-1 positive EE compartment [23]. 

Receptor mediated endocytosis/Eps15 homologue domain (RME-1/EHD) proteins 

family regulate recycling of transferrin from ERC compartments through actin 

regulators like Arf6 [24]. Other Rabs like Rab35, Rab22 and Rab8 have also been 

implicated in controlling transferrin recycling by various groups in different cell 

lines [25]. Another family of proteins that have been implicated in sorting is sorting 

nexins (SNX). Cullen and co-workers demonstrated that sorting nexin-4 (SNX4) 

regulates sorting of transferrin to recycling compartments since siRNA mediated 

depletion of SNX4 missorted transferrin receptors to lysosomal compartment. They 

hypothesized that SNX4 might mediate sorting via its association with kidney and 

brain expressed protein (KIBRA) that binds to dynein, a motor protein responsible 

for membrane tubulation [26].             

 

Retromer mediated sorting- Retromer complex is an evolutionarily conserved unit 

that plays a vital role in the endosome-to-TGN retrieval of cargo. In higher 

eukaryotes, it consists of two main components- the cargo selective complex and 

membrane bending SNX-Bar dimer [27]. The cargo selective complex (CSC) is 

made up of Vps35, Vps26 and Vps29 proteins and the SNX component is made up 

of SNX1 or SNX2 and SNX5 or SNX6 in humans [18]. Cozier et al., demonstrated 

that SNX component is recruited to the endosomes by PtdIns(3)P that binds to the 

phox homology domain (PX) in all SNX proteins [28]. The CSC has been shown to 

be recruited to the endosomes by direct interaction of SNX3 and Rab7a with Vps35 

[29]. The observation that SNX3 are known to present on early endosomes and 

Rab7a on late endosomes suggests that retromer is present in distinct microdomains 

of maturing/sorting endosomes that are positive for both SNX3 and Rab7a. Recent 

studies have also shown an association of WASH complex in retromer sorting 

complex by direct interaction between FAM21 (a WASH complex) and Vps35 [30, 

31]. WASH complex is responsible for activation of Arp2/3, a nucleation promotion 

factor (NPF) that generates actin filaments on endosomes. Association of WASH 

complex gives mechanistic details into retromer mediated sorting as promotion of F-

actin nucleation owing to WASH complex can explain segregation of endosomal 

domains and scission of endosomal domains by recruiting dynamin-2 [32]. Growing 
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number of evidence support the role of WASH complex in the recycling of receptors 

like EGFR in MEFs [33], glucose transporter-1 Glut-1 and CD28 in T-cells [34]. 

Inhibition of actin polymerisation by specific drugs resulted in defects in endosomal 

sorting and maturation [29]. A recent study elucidated the role of the SNX27-

retromer-WASH complex that is responsible for sorting multiple receptors from the 

endosomes-to-cell surface. Silencing of Vps35 or SNX27 resulted in missorting of 

receptors into lysosomes for degradation [35]. Knockdown of WASH has also been 

shown to disrupt recycling of transferrin and integrin α5ß1 receptors [36]. Therefore, 

retromer-WASH complex mediate sorting of receptors to both TGN and PM while 

WASH can mediate sorting of proteins into TGN, cell surface or lysosomes 

(discussed later).                      

 

Sorting for degradation- Surface receptors that are destined for lysosomal 

degradation contain distinct sorting signals like dileucine based [DE]XXXL[LI] 

peptide that aids in their rapid internalization and endo-lysosomal targeting e.g. CD4, 

GLUT4 etc [5]. A post-translational modification like ubiquitination is also a well-

studied signal for receptor internalization and lysosomal sorting. Receptors can be 

subjected to diverse modes of ubiquitination such as  monoubiquitination, multiple 

monoubiquitination, and   polyubiquitination. The attachment of ubiquitin generally 

occurs in three sequential steps by ubiquitin activating (E1), ubiquitin conjugating 

(E2) and ubiquitin ligating (E3) enzymes. Their actions can be reversed by 

deubiquitinating enzymes (DUBs). Ubiquitin modifications are recognized by 

proteins containing ubiquitin-binding domains (UBDs) [37]. Some of these ubiquitin 

binding proteins reside at the limiting membranes of the sorting endosomes and 

participate in directing ubiquitinated surface receptors to the multivesicular bodies 

(MVBs). For example:   

HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) is an 115 kDa 

protein containing FYVE domain that interacts with phosphatidylinositol 3-

phosphate [PtdIns3P] and aids in its recruitment to the endosomal membrane. HRS 

contains one double sided ubiquitin interaction motif (UIM) and one VHS (Vps27, 

HRS, and STAM) domain which help in recognizing the ubiquitinated cargo. It is a 

component of the endosomal sorting complex required for transport (ESCRT-0). 

Other members of ESCRT-0 complex like STAM (signal transducing adaptor 
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molecule) also contain a UIM and VHS domain for sorting [38]. Recent studies 

suggested a complex assembly that contains many UBDs collectively and mediates 

ILV sorting. A number of other proteins such as Esp15b contain two UIMs, forms a 

complex with HRS and STAM to mediate sorting of EGFR [39]. A Few studies have 

also reported ubiquitin independent sorting by HRS via hydrophobic amino acid 

cluster in interleukin-2 receptor ß (IL-2Rß) and interleukin-4 receptor α (IL-4Rα) 

[40]. 

            

1.1.3 Transport of surface receptors to MVB/Lysosome 

In the sorting endosomes, most of the membrane material is recycled but as 

described above, the sorting of membrane proteins for degradation requires stringent 

selection. Endosomal sorting complex required for transport (ESCRT-0) initiates the 

multivesicular body (MVB) formation pathway. It is recruited by the cargo in the 

EE/sorting endosome, which further helps in recruiting flat clathrin coats on the 

endosomal membrane and helps in clustering specific cargo destined for degradation 

in the microdomains of the limiting membrane [41, 42]. Subsequently, ESCRT I and 

II complexes are also recruited at these microdomains that help in membrane 

deformation and budding to form intraluminal vesicles (ILVs). ESCRT I consists of 

proteins such as TSG101, Vps28, Vps37 and ubiquitin associated protein-1 

(UBAP1) while ESCRT-II consists of Vps36, Vps22, and two Vps25 molecules. The 

membrane deforms into a bud and multiple pieces of evidence suggest that ESCRT I 

and II localize to the neck of this budding vesicle to stabilize it [38]. Once the bud is 

created, ESCRT III complex is recruited to carry out the membrane scission. The 

core subunits of ESCRT III consist of Vps20, Snf7, Vps24, and Vps2. It assembles 

transiently and recruits deubiquitination enzymes in order to recycle ubiquitin before 

sorting forming ILVs [41]. Several models have been proposed to understand how 

vesicles bud exactly into the endosomes. On the basis of the available data so far, it 

has been proposed that subunits of ESCRT III complex such as Vps20 and Snf7 are 

recruited and polymerized at the tip of the neck. It then recruits deubiquitinases such 

as AMSH (associated molecule with the SH3 domain of STAM) or USP8 (ubiquitin 

specific protease 8) for cargo deubiquitination. ESCRT III complex subunits 

coordinate to stabilize and constrict the neck of the vesicle in an energy driven 
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process which is provided by recruitment of type I AAA-ATPase Vps4 to release the 

vesicle from  the limiting membrane. It also disassembles and recycles the ESCRT 

III complex after the vesicle is released [38, 41]. Formation of ILVs in vacuolar 

domains of the early endosomes containing transmembrane proteins destined for 

degradation gives rise to multi vesicular bodies (MVBs). According to the endosome 

maturation model, this vacuolar domain of EEs which is a Rab5/Rab7 hybrid 

separate out  from the tubular endosomes by an unknown mechanism. This marks 

the beginning of a late endosome (LE) compartment. As the late endosome matures, 

it shifts to the perinuclear area, fuses with lysosomes, drops its pH and acquire 

lysosomal characteristics [17]. The presence of V-ATPases in the vacuolar domains 

of EEs enriches them in the newly formed LEs which results in an initial drop in the 

pH by 0.5 units in LEs [43]. Mature LEs have numerous ILVs (up to 30 or more 

depending on the cell type), pH ranges between 6.0-4.9 and their limiting membrane 

get enriched in lysosomal associated membrane protein-1 (LAMP-1) [44]. Later 

upon fusion with the lysosomes, the pH drops further to 4.5-5. Movement of mature 

LEs towards lysosomes in the perinuclear area is mediated by minus end directed, 

dynein-dependent motor [45].     

 

In summary, this section described the basic pathways underpinning the transport of 

surface receptors which regulate their signalling and in turn determine cellular fate. 

Defects in these pathways or mutation in the components of trafficking pathways has 

been reported in several human diseases.    
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Figure 1.4: Proposed model for intraluminal vesicle formation by ESCRT complexes. 

(a) Transmembrane proteins undergo post-translational modifications such as ubiquitination 

to mediate their sorting into ILVs. ESCRT-0 complex binds to the ubiquitinated cargo and to 

clathrin which further recruits ESCRT I and II into specialized microdomains of the 

endosomal membrane. (b) Next step is to deform the membrane to form an involution into 

the endosome. ESCRT I and II have been shown to concentrate on the neck of the budding 

vesicle and initiate membrane deformation. They recruit ESCRT III complex that is formed 

transiently into spiral-shaped filaments to concentrate and stabilize cargo into the 

intraluminal vesicle. At this step, deubiquitinases are recruited by ESCRT III and ubiquitin 

is recycled back while the diffusion of cargo out of the vesicle is restricted by ESCRT III 

filaments. (c) Deformation is followed by membrane abscission. ESCRT III filaments 

continue to form the bud and subsequently, recruit Vps4 which helps in abscission of the 

neck and release of the intraluminal vesicle as well as disassembly of ESCRT III complex 

[41].                
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1.1.4 Endosomal sorting defects in human diseases  

Both recycling and degradation of signalling receptors on the surface are tightly 

regulated to maintain cellular homeostasis. Defects in the sorting of surface receptors 

towards either of these pathways create an imbalance in signalling leading to 

diseases. As described before the retromer complex mediates sorting of several 

transmembrane receptors towards TGN and PM. Defects in retromer have been 

linked to growing number of neurodegenerative diseases  [46]. For instance, 

haploinsufficiency of a retromer component called Vps35 in mice has been 

implicated in the defective sorting of amyloid precursor protein (APP) leading to its 

delay in endosome-to-TGN transition [47, 48]. Abnormal cleavage of APP is a well-

known hallmark of Alzheimer’s disease [49]. Another mutation in Vps35 gene, 

D620N, has been linked to Parkinson’s disease [50]. A study by Cullen and co-

workers demonstrated that this mutation in Vps35 resulted in decreased affinity for 

FAM21 and WASH complex from the retromer resulting in defects in endosome-to-

TGN transport of CI-MPR [51]. Another recent study demonstrated an interaction 

between VPS35 and dopamine receptor D1 (DRD1) such that loss of VPS35 

decreased cell surface levels of these receptors [52]. Loss of dopamine neurons in 

brain substantia nigra region leads to Parkinson’s disease [53].  

 

Disruption of endosome-to-lysosomal sorting pathway has also been linked to 

various diseases. For example, Hermansky-Pudlak syndrome (HPS) which is 

characterised by defects in four complexes such as adaptor protein -3 (AP-3) and the 

biogenesis of lysosome-related organelles complexes (BLOC-1 to 3) implicated in 

trafficking from endosomes to lysosomes or melanosomes, or synaptic vesicles. 

Therefore, it is characterized by hypopigmentation, platelet dysfunction, and other 

neurological defects [54-57] . A BLOC-1 component such as dysbindin has been 

shown to describe post-endocytic sorting of GPCRs [58, 59]. Downregulation of 

dysbindin leads to mislocalization of these receptors from the lysosomes to the cell 

surface which results in altered signalling. This study specifically focuses on the 

altered trafficking of one particular receptor called Fas receptor involved in apoptotic 

signalling. Cancer cells have been often reported to exhibit no or very little  surface 

expression of Fas receptors leading  to cells evading apoptosis. Therefore, further 

sections discuss apoptosis and Fas receptor trafficking in detail.     
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1.2  Programmed cell death or Apoptosis 

During the process of growth and development of embryo or tissues, some cells die 

selectively while others survive. One of the signalling mechanisms in cells that 

control the process of cell death during such events is called programmed cell death 

or apoptosis (derived from ancient Greek-“apo”-off, “ptosis”-falling). It is a tightly 

regulated physiological process that leads to morphological changes in the cell such 

as  rounding up, blebbing, cellular shrinkage and finally DNA fragmentation leading 

to cell death. Apoptosis can be differentiated from other types of cell death 

mechanisms based on the signalling pathway and mechanism of inducing cell death. 

For instance, Necrosis, another form of cell death is often elicited by external cues 

such as injury and trauma. In contrast to apoptosis, there is minimal chromatin 

condensation during necrosis; the plasma membrane is ruptured due to organelle 

swelling as opposed to cellular shrinkage in apoptosis [60].                   

 

Apoptosis is a vital component of our immune surveillance; defects in apoptotic 

signalling are known to cause autoimmune disorders and diseases like cancer. The 

immune system uses apoptosis during the selection process to eliminate those 

lymphocytes that are autoreactive to self-antigens or those that do not recognize 

foreign antigens. When a foreign antigen is recognized by T-cells, they undergo 

clonal expansion to produce effector cells in a typical immune response. T-cells are 

resistant to apoptotic signalling during the expansion phase but become sensitive via 

activation induced cell death (AICD) during the decline of the immune response. 

Memory T-cells are also resistant to apoptosis [61, 62].  

 

The signalling mechanism of apoptosis has been characterized into two: intrinsic and 

extrinsic signalling pathways [63-65]. The intrinsic pathway can be activated by 

external stress such as UV rays and γ-irradiation or internal factors such as oxidative 

stress. It is executed by a Bcl-2 family of proteins containing orchestration of many 

cytosolic proteins that are either pro- or anti-apoptotic. In short, apoptotic signals 

lead to oligomerization of two of the Bcl-2 family members,- Bax and Bak, that can 

the insert themselves into the mitochondrial membrane. This causes mitochondrial 

outer membrane permeabilisation (MOMP) releasing its contents into cytoplasm like 

cytochrome-c which then binds to apoptotic protease-activating factor 1 (Apaf-1) in 
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the cytosol. Apaf-1 further recruits procaspase 9, an initiator caspase that further 

activates caspase 3/7. Caspases (cysteine-aspartic proteases) are a class of enzymes 

that carry out the actual process of apoptosis. The complex created by cytochrome c, 

Apaf-1 and procaspase 9 is called as ‘apoptosome’. The Extrinsic pathway of 

apoptosis is carried out by a set of transmembrane receptors called death receptors 

(DR) that respond to death inducing ligands to carry out apoptotic signalling [66].   

 

1.2.1 Death Receptors  

Receptors characterized by a homologous sequence of 87 amino acids called death 

domain (DM) in their cytoplasmic tail are known as death receptors. They belong to 

the tumour necrosis factor receptors (TNFR) superfamily that contains receptors 

against cytokines collectively called tumour necrosis factors (TNFs) [62, 63, 66]. 

TNF receptors exhibit extracellular cysteine rich domains that aid in binding 

cytokines. Death receptors carry out signal transduction for apoptotic or non-

apoptotic pathway upon binding to their ligands. Death receptors in TNF 

superfamily are namely- TNFR (tumour necrosis factor receptor), Fas receptor also 

known as CD95 or Apo-1, TRAIL-R1 (TNF related apoptosis inducing ligand 

receptor-1), TRAIL-R2 (TNF related apoptosis inducing receptor-2). Another 

common feature of these death receptors is the recruitment of adaptor proteins to 

their cytoplasmic death domains upon activation by their ligand and formation of 

death inducing signalling complex (DISC) which recruits and cleaves procaspase 8. 

However, it should be noted that only TNFR and FASR are known to recruit 

adaptors called TRADD (TNFR associated death domain) and FADD (Fas 

associated death domain) respectively and adaptor proteins for TRAIL-R1 and 

TRAIL-R2 are still unknown [63]. Another group of death receptors in TNF 

superfamily consists of TNFR-1, DR5 (also known as KILLER, TRICK2), DR6 

(also known as CD358), ectodysplasin A2 receptor (XEDAR) and nerve growth 

factor receptor (NGFR). These receptors do not form DISC signalling platforms 

upon activation by their ligand, instead, they use different downstream signalling 

molecules for apoptotic or non-apoptotic signalling [63]. For example, DR6 recruit 

TRADD to its death domain to activate NF-κB and MAPK8/JNK signalling to 

induce apoptosis in thymus, spleen, and white blood cells [67].  
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Figure 1.5: Schematic representation of death receptors belonging to the Tumour 

necrosis factor receptor superfamily. All the death receptors exhibit some common features 

like an extracellular domain for recognizing death inducing ligands, a transmembrane 

domain and a cytoplasmic domain containing death domain that recruits adaptor proteins 

like TRADD in the case of TNF-R1 and FADD in the case of FasR (Image adopted from 

Apoptosis Cell membrane receptors-Death receptors, www.abdserotec.com).        

 

1.2.2 Fas receptor mediated apoptosis 

Fas or CD95 receptors mediated apoptotic signalling is one the most extensively 

studied pathways. Fas gene has been suggested to code 18 different proteins  out of 

which variant 1 encodes for full length Fas receptor consisting of 335aa long protein. 

While variant 2 lacks exon 6 that encodes for the transmembrane domain thereby 

producing a soluble receptor and variant 3 has shorter c-terminus encoding for a 

220aa long protein [68]. So far 6 different soluble Fas receptors have been described 

but their precise function and signalling are not well known. Fas receptors are a type 

I transmembrane glycoprotein with three cysteine rich extracellular domains (CRD). 

Binding to Fas ligand is mediated by CRD 2 and the first loop of CRD3 [62, 69]. 

Many studies have suggested that Fas receptors exist as an associated trimer on the 

cell surface mediated by pre-ligand association domain (PLAD) [70, 71]. A 

transmembrane domain enables plasma membrane localization and an intracellular 

death domain of ~80aa executes apoptotic signalling for these receptors. C-terminus 

region contains a peptide (SLV) that interacts with a negative regulator of Fas 

signalling called Fas associated phosphatase (FAP-1) [72, 73]. This interaction exists 

only in the human Fas receptors, pointing towards a specialized mode of regulation 

that has been discussed in detail later.                  
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Figure 1.6: Modular structure of Fas receptor. Fas receptor is a 335 amino acid long type 

I transmembrane glycoprotein. The upper panel shows the structure of mRNA coding for 

full length Fas receptor in humans. The lower panel shows different domains of Fas 

receptors as described in the figure. The N-terminal region contains a signal peptide 

followed by a pre-ligand assembly domain (PLAD) and cysteine rich domains (CRD). The 

cytoplasmic domain contains an 87 amino acid long death domain followed by C-terminal 

FAP-1 (Fas associated phosphatase-1) binding domain. Figure adopted from Atlas of 

Genetics and Cytogenetics in Oncology [68].    

 

Post-translational modifications (PTMs) of Fas receptor have been described in 

many studies out of which N-glycosylation is the best characterized [74]. It is known 

that addition of variable oligosaccharides chains increases the molecular weight of 

Fas receptor from up to 54kDa [75]. Inhibition of glycosylation or its enzymatic 

removal from the Fas receptors did not affect their surface expression levels but 

increased the apoptotic sensitivity of cells [75].  IFNγ treatment was shown to 

increase the amount of N-glycosylated form of Fas receptors and also increased 

surface expression levels of FasR leading to increased apoptotic sensitivity [76]. 

Palmitoylation of FasR has also been described before [77, 78] . A recent study 

demonstrated that FasR palmitoylation by palmitoyl acyltransferase DHHC7 

(aspartate-histidine-histidine-cysteine) regulates the stability of Fas by preventing its 

lysosomal degradation [79]. Silencing of DHHC7 led to decreased expression levels 

of Fas receptors thereby affecting apoptotic signalling as well [79]. Previously, a role 

of palmitoylation in the formation of stable DISC has also been reported [77]. Fas 

receptors have been shown to be phosphorylated in PLAD domain in the 

extracellular region and some potential sites in the death domain (intercellular 

region) have also been described [80]. Phosphorylation at tyrosine 291 in human 

FasR has been implicated in mediating internalization of activated receptors and 
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signalling. PMTs of Fas receptor occur in ER compartments of all cells from where 

they are transported to the cell surface, however, surface expression levels of Fas 

receptors vary in different cell lines. It is not clear whether different PMTs contribute 

to the differences in the surface expression levels of Fas receptors in different cell 

lines.     

 

As mentioned before, Fas and TNF receptors might exist as pre-associated trimers on 

the cell surface and upon binding to their ligand undergo conformational changes to 

expose their cytoplasmic death domains to aid homotypic interactions between death 

domains of other receptors and adaptor proteins [71]. FADD, Fas associated death 

domain, are adaptor proteins that are known to be recruited to the activated receptors 

by their death domains within seconds. The N-terminus region of FADD contains 

death effector domain (DED) that rapidly recruits procaspase 8 by binding to DED 

domains embedded in procaspase 8, which is then cleaved to produce active caspase 

8 molecules that act in a positive feedback loop enabling assembly of DISC [62-64, 

68]. The presence of Fas aggregates upon receptor activation has been demonstrated 

for various cell lines in multiple studies. Evidence from most of the studies points 

towards the existence of Fas aggregates upon activation in specialized areas of 

plasma membrane called lipid rafts. These rafts are rich in cholesterol and 

sphingolipid; they are less fluidic and highly ordered, and biochemical purification 

of Fas aggregates showed that they were present in detergent resistant distinct 

domains of PM [81-83]. The event of partitioning Fas aggregates into lipid rafts has 

been shown to be actin dependent and is supported by the study that implicated ezrin 

to be the adaptor protein linking Fas receptors to the actin cytoskeleton [84].  

 

Palmitoylation was also shown to be involved in lipid raft partitioning of Fas 

aggregates [77]. Fluorescent microscopy can detect these aggregates, often called as 

‘signalling protein oligomerization transduction structures’ (SPOTS) [85]. Fas 

aggregates, DISC formation or activation of caspase 8 has been described as one of 

the early events in Fas mediated apoptosis that take place within 5 to 10 minutes of 

receptor activation [64, 82]. 
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Figure 1.7: In silico modelling of FasR-FasL complex. Modelling of FasR or CD95 

showing predicted sites for glycan attachment on the extracellular domain (ECD). The trimer 

of Fas ligand (or CD95L) also contains predicted glycan sites binds to FasR and engages 

them in a homotrimer formation. This brings intracellular death domains of these Fas 

receptors in association with each other resulting in an active conformation of the death 

domains. Figure adopted from Shatnyeva et.al. 2011[74].           

 

Microscopic and sub-cellular fractionation analyses of Fas aggregates have revealed 

that they undergo internalization into endocytic vesicles positive for Rab4, EEA-1, 

and cathepsin D [82, 86]. Clathrin mediated endocytosis has been implicated as the 

major internalization route for Fas receptors [86]. Strong evidence suggests that 

internalization of Fas aggregates is a pre-requisite for effective DISC formation. 

Inhibition of internalization blocked proper DISC formation and inhibited apoptotic 

signalling [82]. Internalization of FasR has been shown in response to both 

crosslinking agonistic antibodies and recombinant soluble Fas ligand. Co-culturing 

cells together with cells expressing membrane bound Fas ligand, representing a more 

accurate physiological scenario, induced internalization of FasR [86]. However, in 

contrasting studies, the formation of Fas aggregates and their internalization were 

observed only in case of agonistic antibodies and not recombinant soluble Fas 

ligand. Inability to aggregate FasR did not alter the rate or extent of apoptotic 

signalling induced by soluble Fas ligand suggesting that formation of Fas aggregates 

might be a unique property of agonistic antibodies [87].           
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Figure 1.8: Proposed model for FasR compartmentalization and signalling. Fas 

receptors exist as pre-associated trimers on PM which rapidly form SDS-stable 

microaggregates upon ligand binding. Post translational modification of FasR like 

palmitoylation and association with ezrin enables translocation of these aggregates into lipid 

rafts on PM. At this stage, FasR microaggregates are referred to as ‘signalling protein 

oligomerization transduction structures (SPOTS), recruit moderate levels of Fas associated 

death domain (FADD) adaptor and caspase 8 which can onset non-apoptotic signalling 

through activation of mitogen-activated protein kinase (MAPK) and the transcription factor 

nuclear factor-κB (NF-κB). Within 15 minutes of activation of FasR, they are internalized 

into clathrin coated vesicles via CME where they form high molecular weight structures and 

recruit high levels of DISC components, FADD and caspase 8. At this stage, FasR are able 

to mediate non-apoptotic signalling via caspase cascade [83].    

 

1.2.3 Types of apoptotic signalling 

Different cell types respond differently to the stimulation of Fas receptors by its 

ligand. This variation has been addressed by different researchers over the past few 

years. The consensus view seems to be that cells undergoing apoptosis can be 

categorized into two types: Type I and II. Many studies support the claim that 

difference between the two cell types does not lie in the sensitivity towards the 
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ligand but the intracellular signalling pathways that are used to induce apoptosis. In 

simple terms, it can be explained as type I cells that undergo extrinsic pathways and 

type II cells that undergo intrinsic pathways to induce apoptosis [64]. A Few studies 

argued that differences in the apoptotic pathways do not represent the physiological 

scenario and exist in tissue culture cells due to artificial stimulation by antibodies 

that induce aggregation [87]. This argument was refuted by the studies using 

transgenic mouse models expressing Bcl-2, an apoptotic regulator that protect from 

mitochondrial disruption by inhibiting pro-apoptotic protein (Bax and Bak) as 

mentioned before [88]. In such a mouse model, Peripheral T cells were sensitive to 

Fas ligand stimulation while hepatocytes were insensitive suggesting that T-cells 

were type I cell in which apoptotic signalling did not require mitochondria whereas 

hepatocytes were type II cells that required mitochondria. Therefore hepatocytes 

became insensitive to apoptosis upon overexpression of a mitochondrial protection 

factor [89]. Along a similar line, another mouse model deficient for Bid (a pro 

apoptotic protein required for inserting Bax into the mitochondrial membrane to 

disrupt it) turned hepatocytes insensitive towards apoptosis but did not affect the 

sensitivity of thymocytes as they do not require a mitochondrial pathway to induce 

apoptosis [90]. Therefore, these studies provided confirmatory evidence that our 

tissues undergo either type I (extrinsic) or type II (intrinsic) apoptotic signalling.  

 

Additionally, there are overwhelming pieces of evidence suggesting that pre-

association of FasR on PM, lipid-raft partioning, SPOT formation, DISC assembly 

and internalization of Fas receptor aggregates are features of type I cells and that 

these events are not observed in type II cells [83, 91]. Disruption of actin filaments 

by Latrunculin A did not inhibit apoptosis in type II cells like Jukart T cells and 

CEM lymphoblasts but affected the apoptotic signalling in type I cells [92]. This 

data reinforces the significance of internalization and compartmentalization of FasR 

in apoptotic signalling in type I cells.  

 

1.2.4 Caspase 

Caspases are a family of protease enzymes that play an essential role in apoptotic 

signalling. Inhibition of caspase activities by their peptide inhibitors such as zVAD-
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fmk (benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone) inhibits apoptotic 

signalling. They have a cysteine protease activity and cleave at C-terminus of an 

aspartic acid within their target proteins [93]. Caspases are present as non-apoptotic 

proenzymes that get activated once cleaved into a larger and a smaller fragment. 

They are activated by either mutual processing or autocatalysis, or both. In the 

apoptotic pathway, caspases are classified into two distinct classes-initiator caspases 

and executioner caspases [94]. Upon activation of Fas receptors, initiator caspases 

like caspase 8 and 9 are activated depending upon the type of apoptotic signalling 

pathway. In type I cells or extrinsic pathway, recruitment of DISC is followed by 

recruitment of caspase 8 that in turn activates executioner caspases like caspase -3,-

7-,6. Once activated, executioner caspases can cleave other executioner or initiator 

caspases creating a positive feedback circuit. In type II cells, the initiator caspase is 

caspase 9 which is recruited and activated by APAF-1 upon cytochrome c release 

during mitochondrial stress. Activated caspase 8 also plays a role in type II 

signalling by cleaving pro apoptotic protein Bid into truncated Bid (tBid) that is 

capable of inducing mitochondrial outer membrane permeabilisation [64, 93, 95-97].      

  

Executioner caspases (-3,-6,-7) are highly homologous caspases. They carry out the 

actual process of apoptosis in the late stages where they cleave their substrates 

resulting in nuclear and cytoskeleton fragmentation. Studies using transgenic mice 

lacking caspase 3 activities have revealed that caspase 3 is an important player in 

membrane blebbing, DNA degradation, and nuclear fragmentation [98]. Caspase 3 

has been shown to trigger caspase 6 upon stimulation with Fas ligand in Jukart cells 

[94]. Caspase 7 engages in the induction of apoptotic signalling in a different manner 

than caspase -3 and -6. The activity of caspase 7 has been shown to be not redundant 

with caspase 3 and a study also showed that caspase 7 was able to also compensate 

for some of the biochemical activities mediated by caspase 3 during Fas signalling 

[99]. In summary, the activity of caspases is a crucial event during apoptotic 

signalling capable of executing multiple biochemical events simultaneously resulting 

in the generation of a wide range of morphological changes in the cell.         
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1.2.5 Apoptotic signalling in cancer progression  

Immune cells like CD8+ cytotoxic lymphocyte (CTLs) and CD4+ cytolytic effector 

T-cells use Fas receptor mediated apoptosis to eliminate pre-cancerous cells or 

cancerous cells by infiltrating the tumour site[100]. Very often cancer cells develop 

resistance to Fas mediated apoptosis through various mechanisms like- blocking of 

apoptotic signalling at the DISC level by reduced expression of DISC components 

(FADD and caspase 8) [101, 102] or via increased expression levels of apoptotic 

inhibitors like c-FLIP [103]. Alterations in the expression levels of Bcl-2 family 

members to promote tumour survival have also been reported as one of survival 

tactics used by the cancer cells [104]. Direct modulation of surface expression levels 

of Fas is another survival mechanism adopted by cancer cells. Surface expression of 

Fas receptors is a pre-requisite for induction of apoptosis but many reported cancer 

cells are able to escape immune surveillance cells by lowering down the surface 

expression levels of Fas receptors [100]. Several studies showed a correlation 

between decreased surface levels of Fas receptors and increased expression levels of 

its negative regulator called Fas associated phosphatase (FAP-1) also known as 

protein tyrosine phosphatase 13 (PTPN13) [105, 106]. PTPN13 has no or very low 

constitutive expression levels in the pancreas but high expression level has been 

reported in pancreatic cancer cells that correlated with decreased sensitivity to 

apoptosis [107, 108]. FAP-1 or PTPN13 has been reported to bind directly to Fas 

receptors [72]. The inverse correlation between PTPN13 expression and Fas receptor 

surface levels suggest a defect in the intracellular trafficking of the Fas receptors as 

the total protein or mRNA levels of FasR are not affected by PTPN13.  

 

1.3 Regulation of apoptosis by PTPN13 

1.3.1 Protein tyrosine phosphatase, non-receptor type-13 

Cellular equilibrium of protein tyrosine phosphorylation by protein tyrosine kinases 

and dephosphorylation by protein tyrosine phosphatases is an important homeostasis 

event; defects in protein tyrosine phosphatase have been involved in signalling 

defects causing diseases. PTPN13 (protein tyrosine phosphatase, non-receptor type 

13) alias FAP-1and PTPL1 is the largest phosphatase from the family of non-
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receptor type phosphatases characterized by the presence of a C-terminus 

phosphatase domain [109]. It is around 270kDa in size and contains multiple 

domains [110]. The N-terminus of PTPN13 has a KIND (kinase noncatalytic C-lobe) 

domain. Not much is known about the function of this domain in PTPN13 but has 

been suggested to mediate protein-protein interactions not identified yet [111]. 

KIND domain is followed by a FERM (Four-point-one/Ezrin/Radixin/Moesin) 

domain. This domain binds to PtdIns(4,5)P2 and therefore mediates plasma 

membrane localization of PTPN13 [112]. It has also been suggested to connect 

PTPN13 to the actin cytoskeleton by binding to F-actin [113]. PTPN13 contain 5 

PDZ (PSD-95/Drosophila discs large/Zonula occludence) domains that are involved 

in protein-protein interactions. Owing to five PDZ domains, PTPN13 interacts with a 

large number of proteins and is therefore involved in several kinds of signalling 

pathways [109]. PDZ mediated interactions of PTPN13 with actin regulators 

suggests a role of PTPN13 in actin modulation. For example, PDZ 2 domain 

interacts with a tumour suppressor APC (adenomatous polyposis coli protein) 

involved in cell adhesion regulation through ß-catenin [114]; secondly, PDZ 3 

domain interacts with PRK2 (protein kinase C-related kinase 2), a rho effector kinase 

involved in apical junction formation, cell-cell adhesion, and actin cytoskeleton 

regulation [115].  Also, there is now overwhelming evidence to support the 

involvement of PTPN13 in cancer both as a tumour suppressor and promoter [110].       

 

 

 

 

Figure 1.9: Modular structure of PTPN13. PTPN13 contains multiple domains such as N-

terminus KIND (kinase nonctalytic C-lobe) domain followed by FERM (Four-point-

one/Ezrin/Radixin/Moesin) domain, 5 PDZ domains, and a C-terminus phosphatase domain 

[109] 

 

1.3.2 Negative regulation of apoptotic signalling by PTPN13 

As mentioned in the previous section, PTPN13 has been implicated in negative 

regulation of FasR surface levels. FasR was shown to interact with PDZ 2 or PDZ 4 

domain of PTPN13 via its C-terminus ‘SLV’ motif [72]. This interaction exists only 

in humans as the mouse homologue does not contain PTPN13 binding motif [116]. 
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Several lines of evidence show that expression levels of PTPN13 regulate Fas 

mediated apoptotic signalling. Overexpression of PTPN13 reduced the sensitivity of 

pancreatic, liver and colon cancer cells towards apoptosis induced by either Fas 

ligand or agonistic anti-Fas antibodies as determined by cell viability assays, annexin 

v labelling, and analysis of PARP cleavage [73, 105-108, 117, 118]. Regulation of 

Fas mediated apoptosis was shown to be specifically controlled by PTPN13 in the 

following studies: (i) Introduction of a synthetic peptide against PTPN13 binding 

‘SLV’ motif of FasR enhanced apoptosis. The synthetic peptide was suggested to 

block the interaction between PTPN13 and FasR through competitive binding [73], 

(ii) Cell viability was decreased in a dose dependent manner upon treatment with 

orthovanadate which blocks the tyrosine phosphatase activity suggesting that 

PTPN13 might be controlling FasR by dephosphorylating a tyrosine residue in FasR 

[107]. (iii) In glioma cells, an increase in phosphorylation at tyrosine 275 in the 

cytoplasmic DD of FasR was observed upon treatment with Fas ligand. PTPN13 was 

also co-immunoprecipitated with endogenous FasR upon activation. However, a 

point mutation in tyrosine 275 resulted in increased cell surface levels of FasR and 

decreased association with PTPN13 [119]. Therefore, this data supported the idea 

that PTPN13 dephosphorylates the cytoplasmic tail of FaR in complex with its 

ligand at the cell surface to block apoptotic signalling. Phosphorylation of Fas 

receptor has therefore been implicated in internalization of FasR [117]. Thus, it 

could be hypothesised that dephosphorylation by PTPN13 might block the 

intracellular trafficking of FasR either from Golgi-to-PM or endosome-to-PM 

alternatively; PTPN13 might also enhance internalization of FasR or interfere in the 

recycling pathway of FasR. A study reported the localization of PTPN13 with ß-

COP in the Golgi and the staining was found to be Brefeldin A sensitive [107].     

 

In 2010, Schickel et. al., proposed a molecular mechanism to explain the correlation 

between increased expression of PTPN13 in cancer cells and downregulation of 

surface levels of FasR to escape apoptosis. They demonstrated that microRNA, 

mir200c which is an inhibitor of epithelial-mesenchymal-transition (EMT) 

transcriptional factors ZEB1 and ZEB2, targets PTPN13 and regulate its levels by 

translational repression. The expression level of PTPN13 correlated with the levels 

of mesenchymal markers like vimentin, fibronectin, and N-cadherin. Upon 



- 33 - 

 

transfection with mir200c, cancer cell lines like CAKI-1, HeyA8, and ACHN that 

displayed mesenchymal features altered their morphological characteristics to more 

epithelial like in addition to increased sensitivity towards apoptosis. The difference 

in the sensitivity towards Fas-mediated apoptosis upon transfection with mir200c 

was observed only upon triggering extrinsic apoptotic pathway and not the intrinsic 

pathway (that involves mitochondrial disintegration) suggesting a direct role of 

PTPN13 in regulating apoptosis in cancer cells [117].  

 

 

 

Figure 1.10: Proposed model of regulation of apoptosis by PTPN13. Basal autophagic 

flux within a population regulates PTPN13 protein levels thereby controlling FasR surface 

levels and apoptotic signalling [120] 

 

A recent study proposed yet another molecular mechanism by which PTPN13 might 

regulate Fas mediated apoptosis. They suggested that upon stimulation with Fas 

ligand in type I cells, autophagy adaptor protein p62 interacts with PTPN13 to target 

it for lysosomal degradation and increase cell surface levels of FasR to induce 

apoptosis. They also demonstrated that cancer cells under normal tissue culture 

conditions have either high or low basal levels of autophagic flux in their population.  

Sensitization of type I cells towards extrinsic apoptosis was seen only during high 

autophagy flux [121].             
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1.4 SDCCAG3    

Serologically defined colon cancer antigen 3 (SDCCAG3) was first isolated from 

cDNA expression libraries obtained from human colon cancer patients [122]. It is a 

435aa long, 45kDa protein although it has four different splicing variants. It contains 

a coiled-coil domain but no catalytic activity has been assigned to it [123, 124]. 

Immunoblot analysis of SDCCAG3 revealed that it is extensively phosphorylated as 

multiple bands corresponding to SDCCAG3 were detected around 55kDa in HeLa 

cells [123]. A recent study showed a high level of expression of SDCCAG3 in 

mouse testis although it was found to be expressed in other tissues as well such as 

liver, thymus, lung, heart, small intestine and kidney. The study also described tissue 

distribution of SDCCAG3 in the seminiferous epithelium in the testis, at the base of 

the crypts in the small intestine and in the pancreatic islets [125].  

 

Figure 1.11: Modular structure of serologically defined colon cancer antigen. 

SDCCAG3 consist of 435 amino acids containing a coiled-coil domain towards the C-

terminus [123].    

 

1.4.1 SDCCAG3 interacts with PTPN13 

The N-terminus region of SDCCAG3 has been shown to interact with the FERM 

domain of PTPN13 and both the proteins have been shown to co-localize at the 

midbody. However, localization of SDCCAG3 to the midbody at the end of 

cytokinesis was not dependent on PTPN13 [123]. Both the proteins have been 

implicated in the regulation of cytokinesis [113], however, the mechanism behind 

this regulation still remains elusive. A correlation was observed between the 

expression levels of SDCCAG3 and multinucleated cells phenotype. PTPN13 and 

SDCCAG3 were also proposed to act together as a complex to regulate cytokinesis 

since silencing of both SDCCAG3 and PTPN13 give rise to a multinucleate 

phenotype which is not affected any further upon simultaneous knockdown of both 

the proteins.  SDCCAG3 was found to interact with ARF GTPase-activating protein 

GIT1. Alterations in the expression levels of GIT-1 also correlated with the number 

of multinucleated cells in the same manner as SDCCAG3. This suggested a role of 

GIT-1 in SDCCAG3 mediated regulation of cytokinesis [123]. GIT-1 has been 
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implicated in negative regulation of Arf-6 [126], a known regulator of trafficking 

and cytokinesis [127]. Recently, SDCCAG3 was identified as an Arf-6 interacting 

protein via yeast-two hybrid screening. Overexpression of a mutant version lacking 

Arf-6 binding region in SDCCAG3 failed to localize at the midbody. Therefore, the 

formation of a hypothetical complex between SDCCAG3, GIT-1 and Arf6 was 

suggested where SDCCAG3 was proposed to act as a scaffold to regulate the activity 

of Arf6 via GIT-1[125]. However, further research is required to understand the 

functional relevance of the interaction between PTPN13 and SDCCAG3 in the 

regulation of cytokinesis.              

1.4.2 SDCCAG3 in endocytic trafficking  

Immunofluorescence analysis with an antibody against SDCCAG3 revealed its 

partial co-localization with EEA-1 and transferrin suggesting that SDCCAG3 was 

involved in early/recycling endosomal trafficking [123]. Another study confirmed 

this data and suggested that SDCCAG3 might be recruited to the endosomes owing 

to its interaction and co-localization with Vps35, a component of the retromer 

complex [35]. Later, it was shown that interaction of SDCCAG3 with Vps35 was 

mediated by FAM21/WASH complex [51]. SDCCAG3 has also been implicated in 

the sorting of some retromer dependent cargo like Glut-1[35]. It was also shown to 

regulate surface representation of tumour necrosis factor receptor-1 (TNFR1) [124]. 

Therefore, multiple pieces of evidence suggest that SDCCAG3 plays a role in 

vesicular trafficking. 
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1.5 Trafficking in the primary cilium   

1.5.1 The structure of cilia  

Primary cilia are specialized organelles projecting out into the extracellular space 

from the plasma membrane in almost every type of cells in a human body. They are 

evolutionarily conserved structures and are referred to as ‘cell’s antennae’. They 

sense chemical, light and mechanical stimuli along with regulating fluid flow like 

mucus or cerebrospinal fluid [128]. They serve important roles in various 

development and homeostasis pathways like sonic hedgehog and Wnt signalling 

pathways [129]. It is now well established that defects in cilia give rise to a wide 

range of human disorders collectively called as ciliopathies [130]. Cilia can be 

divided into two classes called primary and motile cilia. Motile cilia are found on the 

epithelial cell of the trachea, oviduct etc. where they beat in a wave like motion to 

control fluid flow. On the other hand, the primary cilium is immotile and is found on 

the apical surface of most  epithelial cells [131].       

 

The core structure of the primary cilium is called ‘axoneme’ which is composed of 

nine parallel doublet microtubule bundles in (9+0) arrangement. These microtubules 

arise from a structure beneath the plasma membrane called ‘basal body’. It is derived 

from mother centriole that acts as microtubule organising centres (MOTC) and forms 

a foundation for a cilium in mature cells [132]. Cilia are assembled during the G1 

phase of the cell cycle when basal bodies (formed either from pre-existing or de novo 

centrioles) dock onto the ‘actin-rich cortex’ in the plasma membrane. Afterwards, 

basal bodies nucleate to give rise to axoneme that elongates and protrudes out of the 

plasma membrane. The region of the basal body where microtubules begin to form 

the outer doublet of the axoneme is called as ‘transition zone’. The region of the 

plasma membrane that invaginates at the base of the cilia is called as ‘ciliary pocket’ 

[132]. Cilia are highly dynamic structures with an active transport system since they 

require continuous supply of proteins synthesised in the cytoplasm to grow and 

function. These transport systems maintain the length of cilia by both retrograde and 

anterograde transport of proteins long the length of the cilia [129].     
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Figure 1.12: The structure of cilia: Illustration of the primary cilium structure showing 

cross sectional view of the microtubule arrangement (9+0) in the axoneme making the 

ciliary skeleton. Axoneme is covered by a ciliary membrane. The region of cilia in contact 

with the plasma membrane is called the transition zone. It connects the axoneme with the 

base of the cilia called as the basal body. Basal body is made up of the mother and daughter 

centrioles that migrate below the surface of the cell to assemble cilia during interphase. 

Distal appendages arise from the basal body and connect to the ciliary pocket. Ciliary pocket 

has been suggested to be the site of endocytosis where clathrin coated vesicles (CCV) fuse 

with the ciliary membrane. It might also be the site for docking incoming vesicles form the 

Golgi region. Growing cilia are assembled by proteins transported by via polarized vesicular 

transport. Actin helps in maintaining the shape and orientation of the growing cilia  [133].   
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1.5.2 Ciliary trafficking pathways  

The existence of active transport systems like polarized vesicle trafficking and 

intraflagellar transport (IFT) has been described in many studies that deliver proteins 

to and fro from the primary cilium. The transition zone (TZ) between the basal body 

and the axoneme serves as a barrier that impedes diffusion of lipids and proteins 

above a certain molecular weight and control selective entry/exit of the cargo 

through structures called transition fibres. Proteins like CEP20 are TZ components 

that have been described to restrict the entry of non-ciliary proteins [134, 135]. To 

aid in the selection of ciliary proteins, many ciliary targeting sequences (CTS) have 

been described, for example, polycystin-2 receptor possesses an N-terminal RVxP 

motif [136]. Other than motifs, PTMs like palmitoylation and myristoylation also aid 

in the sorting of protein to cilia [129, 137]. Ras superfamily members like Rabs 

along with Arl/Arf proteins have been described in polarized vesicle trafficking to 

cilia [138]. Rab8, a master regulator of cilia trafficking, is recruited to the basal body 

where it interacts with Rabin 8 to get activated [129]. Rabin 8 (a nucleotide 

exchange factor for Rab8) is recruited to the centrosome during initiation of 

ciliogenesis by Bardet-Biedl-Syndrome (BBS) protein-1, part of a larger BBSome 

complex that is involved in vesicle transport form golgi-to-basal body-to cilia [139]. 

Rab11, a recycling regulator, is also known to regulate the accumulation of Rabin 8 

at the centrosome in turn regulating Rab8 activity during ciliogenesis [140]. 

Transport of ciliary cargo from Golgi-to-basal 

body has also been described by conserved 

complexes called exocysts [141]. For instance 

Sec 10, an exocyst component, has been 

implicated in trafficking of IFT88 (intraflagellar 

transport protein 88) to the cilium [142] .  

Figure 1.13: Polarized vesicle trafficking during 

ciliogenesis. Cilia are enriched with receptors and 

proteins synthesised in the cytoplasm and 

transported from Golgi-to-PM from where they can 

be sorted into cilia. Alternatively, vesicles arising 

from the Golgi can be transported to the basal body 

by Rab proteins, IFT20 or exocysts[129]. 
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The highly conserved IFT system consists of two main complexes namely IFT 

complex A and IFT complex B. Ciliary protein associate with IFT-B which mediates 

anterograde transport towards the tip of the cilium through molecular motors like 

kinesin-2. In contrast, IFT-A is involved in retrograde transport of protein from cilia 

to the cilium base through dynein-2 [129, 143]. A well-studied component of IFT-B 

complex, IFT88 or Polaris has been shown to be important for cilia assembly and 

cargo transport [144]. Depletion of IFT88 in mice led to reduced and shortened cilia 

[145]. IFT complexes are also important in mediating cilia dependent signalling. For 

instance, depletion of IFT88 in mice studies showed loss of ventral neuronal cell 

types and polydactyly which resembled phenotypes observed with reduced sonic 

hedgehog signalling [129, 143, 146]. Another component of IFT-B complex called 

IFT20 localizes to Golgi via GMAP20 (Golgi anchoring protein). Loss of IFT20 

interfered with transport of a transmembrane protein polycystin-2 to cilia leading to 

development of polycystic kidney disorder [147]. Therefore, defects in polarized 

transport system of ciliary trafficking can lead to development of ciliopathies. 

 

1.5.3 Trafficking defects in ciliopathies  

Ciliopathies can be loosely classified into two main types- renal and multi-organ 

ciliopathies [148]. Renal ciliopathies include polycystic kidney disease in which 

defective trafficking of transmembrane receptors like polycystin-1, 2 or fibrocystin 

to cilia has been implicated in pathogenesis of this disease [130, 149] (figure 1.14, 

b). Multi-organ ciliopathies include diseases like Bardet-Biedl syndrome (BBS) 

which leads to multi-organ defects including renal abnormalities, obesity, 

polydactyly etc. It is caused due to mutation in genes that are a part of BBSome 

complex which meditates ciliary trafficking at the basal body, IFT particles turnover 

etc.[148] Another multi-organ disease, Lowe syndrome, results in defects in 

ciliogenesis overall leading to mental retardation, renal abnormalities and cataracts 

[150, 151]. It is caused by mutations in the gene OCRL1 (Oculo-Cerebro-Renal 

syndrome of Lowe). OCRL1 has been shown to interact with Rab8 and many other 

effectors that have been implicated in sorting and delivery of ciliary cargo from 

Golgi or endosomes [152, 153]. 
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Figure 1.14: Modes of trafficking defects in ciliopathies: (a) Normal primary cilium 

showing normal trafficking of ciliary cargo to the tip of the cilium. PM is Plasma membrane 

protein. (b) Normal primary cilium, defects in transport of specific ciliary proteins. (c) 

Defects in ciliogenesis due to defective transport of proteins required for ciliogenesis. (d) 

Defects in ciliogenesis due to loss of transition zone (TZ) components leading to loss of 

ciliary boundary. Figure modified from [148].       

 

It can be understood that mutation in OCRL1 might disrupt trafficking of proteins 

required for ciliogenesis therefore disrupting cilia formation and function. Joubert 

Syndrome (JBTS) includes symptoms like cystic kidney, photoreceptor degeneration 

and brain malfunction; caused due to mutations in several genes involved in ciliary 

trafficking [148]. For instance, mutation in Ahi1 disrupts delivery and fusion of 

ciliary cargo carrying vesicles to the primary cilium via its interaction with Rab8 

[154]. It results in reduced number or absence of cilia since trafficking of essential 

proteins required for ciliogenesis is disrupted (figure 1.14, c). A severe form of 

multi-organ ciliopathy called Meckel-Gruber syndrome (MKS) is caused due to 

mutations in genes coding for proteins involved in transition zone (TZ) formation 

[155]. Loss of function of MKS proteins leads to loss of ciliary boundary formation 

resulting in stunted cilia growth and abnormal membrane composition (figure 1.14, 

d).  

 

Taken together it can be understood that formation and maintenance of cilia are vital 

for normal development and functioning of various organs. Since cilia do not 

synthesise proteins on their own therefore it depends on proper sorting and 

trafficking of ciliary cargo from the cytoplasm [143]. The mechanism of transport of 

several important receptors to cilia, and the function of many identified ciliary 

proteins still remains elusive. As SDCCAG3 has been implicated in endocytic 

trafficking and has been shown to co-localize with centrosomal marker [123], its role 

in ciliogenesis was examined in the current study.  
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AIMS 

 

Primary AIM  

Several lines of evidence suggest the role of PTPN13 in negative regulation of Fas 

receptor trafficking, however, it is still not clear which trafficking pathways and 

molecular machineries are exactly involved in this regulation. Cell surface 

trafficking of transmembrane receptors is often described as a function of secretory 

or recycling pathways. Since SDCCAG3 was implicated in regulation of surface 

levels of TNF and Glut-1 receptors therefore it appeared to be an ideal candidate 

which could be involved in mediating Fas receptor trafficking along with PTPN13. 

Hence, the main goals of this study were- 

 

I. To examine if SDCCAG3 was involved in mediating Fas receptor trafficking. 

II. To understand the molecular mechanism behind it 

III. To determine if SDCCAG3 and PTPN13 were involved together as a 

complex to regulate trafficking of Fas receptors and apoptotic signalling.     

 

Secondary AIM 

Another part of this thesis examined if SDCCAG3 affected trafficking to other 

specialized areas of plasma membrane like cilia. This study draws on the research 

conducted by Yu, Erdmann lab in which SDCCAG3 was found to localize to the 

cilium and its depletion affected the number of cilia in RPE cells. It was also found 

to interact with IFT88. Based on this unpublished data from the Erdmann laboratory, 

this study further examined the effect of SDCCAG3 depletion on ciliogenesis in 

another cell line-IMCD3 cells. It also aimed at rescuing the phenotype observed. 

Another aim was to examine localization of transiently expressed SDCCAG3 fusion 

protein in cilia which was not described before.   
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2 Materials and Methods  

2.1 Materials 

2.1.1 Chemicals and reagents  

 

 

3-Amino-1,2,4-triazole (A8056) 

 

Sigma-Aldrich 

Agarose NEEOULTRA Carl Roth® 

Acrylamide solution 40% (BP1402-1) Fisher Scientific 

Bovine Serum Albumin  (BSA) ,Fraction V Fisher Scientific 

BSA ,Microbiological grade Fisher scientific 

Brilliant Blue G-250 (BP100-25) Fisher Scientific 

Caspase 6 (human) (recombinant, active) 

ALX-201-060                   

Enzo® life sciences 

(USA) 

CD261/TRAIL-R1 Mouse Anti-human 

mAb (Clone DR-4-02) FITC conjugate  

Molecular probes, Inc. (USA) 

DAPI (4,’6-Diamidino-2-Phenylindole) Thermo Fisher Scientific 

EGF Alexa Fluor® 647 conjugated (E35351) Thermo Fisher Scientific  

Lipofectamine 2000 Life technologies 

Leupeptin A Sigma Aldrich 

Diluted Bulk SUPERCRIPT II (91681) Life technologies 

Transferrin (from human serum)  

Alexa Fluor® 555 conjugate (T35352) 

Molecular Probes, Inc. (USA) 

Vectashield® hard set mounting media Vector Laboratories 

Vectashield® with DAPI hard set mounting  Vector Laboratories 

z-VAD-fmk (CAS 187389-52-2) Santa Cruz  

Protease cocktail inhibitor EDTA free Roche Diagnostics Deutschland 

GmbH 

PageRuler Plus Pre Stained Protein Ladder Thermo Fisher Scientific 

Ponceau S (P3504) 

 

Sigma-Aldrich 
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2.1.2 Commercial Kits  

 

Mini Trans-Blot ®Electrophoresis and blotting  

 

Bio-rad 

Pierce Cell Surface Biotinylation kit (89881) Thermo Fisher Scientific 

Supersignal West Pico Chemiluminescent substrate Thermo Fisher Scientific 

Supersignal West Femto Chemiluminescent substrate Thermo Fisher Scientific 

GFP-Trap® ChromoTek 

Protino Glutathione Agarose 4B Macherey-Nagel 

Fast SYBR® Green master Mix Applied Biosystems  

GeneJET Gel Extraction Kit #K0692 Thermo Scientific 

GeneJET Plasmid Miniprep Kit #K0503 Thermo Scientific 

RNeasy® Plus Mini Kit Qiagen 

NucleoBond® Xtra Midi 

Quick change II XL Site directed mutagenesis 

Slyde-A-Lyzer™ dialysis cassette  

Macherey-Nagel 

Aligent technologies 

Thermo Scientific 

 

2.1.3 Primary Antibodies 

Name Supplier Application  

Acetyl-α-Tubulin (Lys40) (D20G3) 

XP® rabbit mAb 

Cell Signaling 

Technology® 

IF (1:800) 

Anti-Gamma tubulin antibody [GTU-

88] ab11316 

Abcam® 

 

IF (1:100) 

Anti-Dysbindin antibody (ab124967) Abcam® 

 

WB (1:500) 

Anti-Fas (human, activating) clone  

CH-11 #05-201 

Millipore™ IF(1:300) 

FC (1:500) 

Anti-Lamp-1 antibody ab24170 Abcam® IF (1:800) 

Anti-SDCCAG3 (HPA029303) 

(Atlas antibodies) 

Sigma Life Science 

(Sweden) 

WB (1:250) 

IF    (1:25) 

Anti-VPS35 antibody ab10099 Abcam® WB (1:500) 

Anti-GFP Peden Lab WB (1:2000) 

Caspase 8 (1C12) mouse mAb Cell Signaling  WB (1:1000) 
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CD71 (D7G9X) XP® Rabbit mAb Cell Signaling  WB (1:2000) 

EEA-1 (N-19):sc-6415 Santa Cruz Biotechnology,  IF (1:100) 

EEA-1 (C45B10) Rabbit mAb Cell Signaling  IF (1:200) 

EGF Receptor Antibody  Cell Signaling  WB(1:1000) 

FAP-1 (H-300):sc-15356 Santa Cruz Biotechnology,  WB (1:500) 

Fas (C-20):sc-715 Santa Cruz Biotechnology,  WB (1:500) 

Fas, mAb  (ZB4) Enzo® life sciences IF (1:300) 

FC (1:500) 

GM130 AP lab  IF  

HA-Tag (6E2) Mouse mAb Cell Signaling  WB (1:1000) 

HRS antibody  (14346) Cell Signaling  WB (1:1000) 

IFT88 polyclonal antibody Proteintech WB (1:750) 

Monoclonal ANTI-FLAG®M2, 

Clone M2 

Sigma-Aldrich IF    (1:1000) 

WB (1:500) 

Monoclonal Anti-ß-Tubulin Sigma Aldrich® WB (1:5000) 

Myc-tag (9E10)  mouse Gentaur WB (1:1000) 

IF (1:100) 

N-Cadherin (13A9): sc-59987 Santa Cruz Biotechnology,  WB (1:500) 

Purified Mouse Anti-EEA-1  BD Transduction 

laboratories™ 

IF (1:300) 

Purified Mouse Anti-E-Cadherin BD Transduction 

laboratories™  (USA) 

WB (1:500) 

Polycystin-2 (D-3) sc-28331 Santa Cruz Biotechnology,  WB (1:100) 

PTPN13 Antibody NB100-56139 Novus Biologicals® WB (1:500) 

SDCCAG3 PolyAb  Proteintech™ IF (1:300) 

IF- immunofluorescence; FC-Flow cytometry; WB-Western Blotting  

 

2.1.4 Secondary Antibodies  

Name Supplier Application  

Donkey anti-goat IgG-HRP 

(sc2020) 

Santa Cruz Biotechnology, INC. WB (1:5000) 

Mouse IgG  

Peroxidase conjugate 

Sigma WB (1:5000) 

Rabbit IgG  Sigma WB (1:5000) 
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Peroxidase conjugate 

Alexa Fluor® 680 rabbit  Thermo Fisher Scientific WB (1:10,000) 

DyLight 800 mouse Thermo Fisher Scientific WB (1:10,000) 

Alexa Fluor® 488 m/r Thermo Fisher Scientific IF (1:500) 

Alexa Fluor® 594 m/r Thermo Fisher Scientific IF (1:500) 

Alexa Fluor® 647 goat Thermo Fisher Scientific IF (1:500) 

 

2.1.5 Biological Material  

Plasmids were maintained and propagated in E.coli Nova Blue (XL1) form 

Stratagene GmbH, Heidelberg. Recombinant proteins were expressed in E.coli 

(Rosetta TM2) from Novagene, New Jersey (USA).  

 

2.1.6 Buffers and Solutions  

For Immunofluorescence-  

 PBS (Phosphate-buffered Saline) 20X- Sodium Chloride (160g), potassium 

Chloride (4g), Potassium dihydrogen phosphate (4.8g), sodium phosphate 

dibasic (71.g) in 1L pH 7.4 

 Blocking buffer-1% BSA in 1X PBS 

 Permeabilisation buffer-0.5% TritonX in 1X PBS 

 Paraformaldehyde- 4% PFA dissolved in PBS, pH 7.2-7.4 

For Western Blotting- 

 Laemmli Buffer (4X) - 40% (v/v) Glycerol, 1% (w/v) Bromophenol Blue, 

8% (w/v) SDS, 250mM Tris-HCl pH 6.8, 20% ß-mercaptoethanol 

 Transfer Buffer (10X) - Tris (30.3g), Glycine (144.0g) pH8.3 

 Running Buffer (10X) - Tris (30.3g), Glycine (144.0g), SDS (10g) 

 PBST Buffer (1X) - PBS(1X), 0.05% Tween-20  

 Lysis Buffer- 1% Triton-X in 1X PBS 

 Wash Buffer- 0.5% Triton-X in 1X PBS  
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2.1.7 Primers  

Name Sequence  Application  

SDCCAG3 F: GGCGAATTCGGCATGTCGGGCTACCAGCGC 

R: GGCAGATCTTCAAGAGTCTTCCTCCTCGTC 

qRT-PCR 

Fas F:   ACCCTCCTACCTCTGGTTCTTAC 

R:   GACTGTGCAGTCCCTAGCTT 

qRT-PCR 

GAPDH F:   GGTGAAGGTCGGAGTCAACG 

R:   ATCTCGCTCCTGGAAGATGG 

qRT-PCR 

A6 

(Rescue 1) 

F:ATAAGTTACGACGCGCTAAAGGATGAAAATTCT 

R:AGAATTTTCATCCTTTAGCGCGTCGTAACTTATC 

Site directed 

mutagenesis 

A7 

(Rescue 2) 

F:GAGACACTGAACCTAGTAGCCGAAATCCTTAAATC 

R: GATTTAAGGATTTCGGCTACTAGGTTCAGTGTCTC 

Site directed 

mutagenesis 

A8 

(Rescue 3) 

F: GAAAACCACGTAGTCAAGCTAAAACAGGAA 

R: GATTTCCTGTTTTAGCTTGACTACGTGGTT 

Site directed 

mutagenesis 

 

2.1.8 siRNA 

Name  Sequence-Overhangs Supplier 

AllStar Negative Control n/a Qiagen 

Fas siRNA (h) sc-29311 n/a Santa Cruz  

Hs_SDCCAG3_6 

#SI04185888 (no.1) 

 

CGACGCACUGAAAGAUGAATT 

Qiagen 

Hs_SDCCAG3_7 

#SI04216499 (no.2) 

 

ACUGAAUCUUGUUGCCGAATT 

Qiagen 

SDCCAG3 Silencer® 

#s21238 (no.3) 

 

CCACGUCGUGAAACUAAAATT 

Ambion® life 

technologiees™ 

HRS  CGACAAGAACCCACACGUCTT Dharmacon™ 

DTNBP1Silencer®  

 #s38427 

 

CAGCAAAUCUGACUCAUUUTT 

Ambion® life 

technologies™ 

Mm_Sdccag3_1  

#SI04945885 

 

CGAUAGACUCACUGAUUUATT 

 

Qiagen 

mIFT88 siRNA  

S101457792 

 AAGGCAUUAGAUACUUAUAAATT Qiagen 
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2.1.9 Constructs  

HA-EGFP-FAS and SDCCAG3 expression constructs were from Erdmann lab. 

RNAi resistant SDCCAG3 rescue constructs were created using site directed 

mutagenesis in pcDNA3-myc vector (Invitrogen, Life technologies, Germany). Rab5 

Q79L expression construct was obtained from Andrew Peden. pCS2 HRS-RFP was 

a gift from Edward De Robertis (Addgene plasmid #29685). pCMV3-C-Flag human 

dysbindin gene was purchased from Sino Biological Inc. (HG15072-CF). pGex-6-P1 

vector with glutathione-S-transferase was obtained from GE Healthcare (München).    

 

2.2 Methods 

2.2.1 Bacteria procedures   

2.2.1.1 Competent cell culture 

E.Coli XL1-Blue or BL21 bacteria were spread on a LB (Luria-Bertani) agar plate 

overnight at 37°C. Next day, a single colony was inoculated in 2 ml of LB media and 

incubated overnight at 37°C. Then, 1 ml of the overnight culture was inoculated in 

100ml of LB medium followed by vigorous shaking at 37°C for 2 hours. The culture 

was then incubated on ice for 15 minutes and centrifuged at 3300 xg for 10 minutes 

at 4°C. The supernatant was discarded and pelleted cells were resuspended in ice 

cold 40 ml 0.1M CaCl2. Cells were then incubated on ice for 30 minutes and 

centrifuged again as described above. Supernatant was removed and cells were 

resuspended in 6 ml of ice cold 0.1M CaCl2 containing 15% glycerol. 100 µl of 

freshly prepared competent cells were immediately aliquoted into sterile 1.5 ml 

Eppendorf tubes each and stored at -80°C. 

2.2.1.2 Transformation with DNA  

Competent cells (100 µl) were thawed on ice and mixed with 5 µl of plasmid DNA 

(from 1 µg/µl stock) or 7.5µl of ligation mix and swirled gently. The mixture was 

then incubated on ice for 20 minutes followed by a heat shock treatment at 42°C for 

45 minutes with subsequent cooling on ice for 2 minutes. Transformed bacteria was 

then incubated with 900 µl of pre-warmed LB media and incubated at 37°C for 1 

hour with constant shaking at 220 rpm. Bacterial cells were pelleted by centrifuging 
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briefly at 5000xg, 900 µl form the supernatant was removed and cells were 

suspended in the remaining 100 µl of media to spread on the antibiotic containing 

LB agar plates.XL10 Gold Ultracompetent cells were thawed on ice and mixed with 

10 µl of DNA (ethanol precipitated) obtained from mutagenesis PCR and swirled 

gently. The mixture was treated in the same way as mentioned above. 

2.2.2 Mammalian Cell Culture 

HeLa, HEK293 and HCT116 cell were maintained in DMEM supplemented with L-

glutamine, 10% Fetal Bovine Serum (FBS), 1% Penicillin/streptomycin at 37°C in 

5% CO2 atmosphere. RPE and IMCD3 cells were maintained in DMEM/F-12 

medium supplemented with L-glutamine, 10% FBS, 1% Penicillin/streptomycin, and 

2.625 g/L sodium bicarbonate.   

 

2.2.3 DNA manipulation  

2.2.3.1 DNA transfection 

Cells were cultured in 35 mm dishes and transfected at 60-80% confluency with 1-

2µg of DNA using Lipofectamine™ 2000 according to the manufacturer’s protocol.  

DNA was pre-diluted in 100µl of opti-MEM along with Lipofectamine™ 2000 at a 

ratio of 1:3. The mixture was vortexed briefly and incubated for 15 minutes at room 

temperature. The volume of the mixture was then made up to 500µl and applied to 

the dishes containing cells in 1.5ml of DMEM without antibiotics. Then medium 

was replaced next day in the transfected dishes with DMEM containing antibiotics 

and cells were harvested after 48h of transfection.    

 

2.2.3.2 siRNA transfection  

Small interfering RNA (siRNA) duplexes were used to delete specific protein levels. 

RNA duplexes were either purchased commercially or custom made with a 19 

nucleotide long core sequence towards a unique mRNA target and contained 3’dTdT 

overhangs.  In 6-well plate format, cells were transfected at 30-50% confluency. 5 µl 

of 20 µmol siRNA was pre-diluted in 245µl of Opti-MEM to obtain a final 

concentration of 100pmol. 5µl of Lipofectamine™ 2000 was also diluted in 245µl of 



- 49 - 

 

Opti-MEM in a separate tube. After 5 min of incubation at room temperature, both 

pre-diluted siRNA and Lipofectamine™ 2000 were mixed together. After 15 min the 

mixture was applied to the dishes containing full DMEM supplemented with 

antibiotics and incubated for 72 hours. For 12-wells plate format, final concentration 

of 50pmol of siRNA was transfected using 2.5µl of Lipofectamine™ 2000 and for 

60mm dishes final concentration of 200pm of siRNA was transfected with 10µl of 

Lipofectamine™ 2000.          

2.2.3.3 Site directed mutagenesis  

In order to introduce single point mutations, a commercial site directed mutagenesis 

kit was used. The mutagenic DNA primers were designed to contain three silent 

mutations with at least 10 nucleotides of DNA sequence flanking on either sides. 

1.25 µl of primers were used from 100 ng/µl stock in a 50µl PCR reaction.   50 ng of 

plasmid DNA was amplified with 2.5 U/µl of PfuUltra HF DNA polymerase using 

dNTPs and double distilled water.  PCR was carried out in a PCR machine from 

peQlab, Germany with the following conditions:  

 

 

 

 

 

 

 

After PCR, 1 µl of Dpn 1 restriction enzyme (10U/µl) was added directly to the PCR 

reaction and incubated at 37°C for 3 hours to digest the parental supercoiled dsDNA.  

Digested DNA was then precipitated in the following manner- 1/10 volume of 3 M 

sodium acetate (pH 5.2) was added to DNA and mixed well.  Then 2.5 volume of 

cold 100% ethanol was added and DNA was incubated at -80°C for 20 minutes. 

DNA was then centrifuged at maximum speed for 15 minutes to obtain a transparent 

pellet which was washed with 300µl of 70% ethanol once and the supernatant was 

discarded by another centrifugation for 5 minutes. DNA pellet was air-dried and re-

suspended in 10µl of double-distilled water. 5µl of DNA was used for transforming 

XL gold bacteria using the same protocol as described above 

Segment Cycles  Temperature Time  

1 1 95°C 1 minute 

2 18 95°C  

60°C 

68°C 

50 seconds 

50 seconds 

variable 

3 1 68°C 7 minutes 
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2.2.4 Polymerase Chain reaction 

2.2.4.1 PCR 

Coding sequences were cloned form original plasmid constructs into target plasmid 

constructs via a polymerase chain reaction. Primers with restriction sites were 

designed with at least 15 nucleotides binding to the target sequence. Following 

scheme was used PCR- 

 

Ingredient Final Concentration  Volume (µl) 

ddH2O - up to 50 

5X Phusion HF Buffer 1X 10 

dNTP mix 200 µM 1 

Forward Primer 0.5 µM 1 

Reverse Primer 0.5 µM 1 

Template up to 100 ng  

Phusion polymerase 1U 0.5 

 

2.2.4.2 RT-PCR  

HeLa cells were used to extract RNA by using TRIzol for cell lysis and 

homogenization. Phase separation was achieved by adding 0.2ml of choloform/1ml 

of TRIzol. After 15 minutes of centrifugation at x12000g, only aqueous phase was 

separated by angling the microcentrifuge tubes. RNA was isolated by adding 0.5 ml 

of 100% isopropanol to the aqueous phase followed by 10 minutes incubation at 

room temperature and centrifugation at x12000g for 10 minutes. RNA pellet was 

then treated to remove any RNAases and gDNA contaminants by using RNAeasy 

Plus minikit according to the manufacturer’s protocol. RNA concentration measured 

with the NanoDrop spectrophotometer.   

2µg of RNA was used to prepare cDNA by using superscriptase II in the following 

scheme based on the manufacturer’s instructions- 
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Undiluted synthesized cDNA was used to amplify specific genes by PCR. The        

final PCR products were electrophoresed on 2% gel containing Syber safe stain 

along with 100bp ladder and observed with a Gel Dock™ EZ gel documentation 

system.   

2.2.4.3 Real-Time quantitative PCR 

Relative mRNA levels were quantified using SYBR
®
Green chemistry on a CFX96™ 

Real-Time detection system by Bio-Rad. In a 10µl reaction volume, 1µl of undiluted 

cDNA template, 5µl of Fast SYBR
® 

Green master mix (1X) was used along with 0.4 

µl each of forward and reverse primers (0.2 µM) plus 3.2 µl of RNAase free water. 

Samples were prepared in triplicates in a 96 wells plate format along with control 

wells that had no template. Cycling parameters have been described below:  

 

 

 

 

 

Segment Components Volume Final Conc.  

Denature Total RNA 8.6µl 2 µg 

Oligo dT15 1 µl 1.25µM 

dNTP mix 1 µl 0.5mM 

RNase free H2O 1.9 µl - 

Mixture was heated at 65° 

Anneal 5X buffer 4 µl 1X 

DTT 0.1M 2 µl 0.01M 

RNAse inhibitor 0.5 µl - 

cDNA synthesis Heated at 42°C for 2 minutes 

Superscriptase II 1 µl - 

Heated at 42°C for 50 minutes 

Terminate reaction  Reaction inactivated at 70°C for 15 minutes 
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In order to test the dynamic range of reverse transcription reaction, RNA dilution 

curves were generated by preparing serial dilutions of RNA. Next, each of these 

dilutions was converted via RT in a 20µl reaction volume as described above. Once 

the reaction was over then all the samples were amplified in real-time to obtain ‘ct’ 

values and generate a standard curve. In the end, regression analysis was performed 

to obtain correlation coefficients. 

In order to test the amplification efficiencies of the target and normalizer in this 

assay, a cDNA dilution series was amplified in real time PCR and slope of the 

resulting regression line was examined. Now the ‘ct’ values of normalizer were 

subtracted from the ct values of target for each dilution point to obtain Δct values. 

The cartoon below depicts each of the dilution points as alphabets. These Δct values 

were then plotted in a graph to obtain a regression line. 

 

 

 

 

 

 

Figure2.1: A Cartoon depicting calculation of Δct value. (Figure adopted from 

appliedbiosystems.com)    

 

 

Segment Temperature Time  

Initial denaturation 95°C 3 min 

40 cycles:  

Step 1 

Step 2 

Step 3 

95°C 

60°C 

72°C 

30s 

30s 

30s 
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2.2.5 Protein Methods  

2.2.5.1 Protein Estimation 

Protein concentration was measured using DC Assay kit’s micro-assay plate method 

according to the manufacturer’s instructions. 5µl of protein lysate was mixed with 

25µl of reagent A and 200µl of reagent B, incubated in dark and at room 

temperature. After 15 minutes of incubation, absorbance was read at 680 nm with a 

spectrophotometer. For each experiment, protein samples were equalized by 

equalizing their relative absorbance in the following manner- 

x µl = (Smallest A680 in the experimental set/ A680 sample)*Total volume (µl) 

2.2.5.2 Western blotting  

Cells were lysed with 1% Triton X-100 in PBS supplemented with protease 

inhibitors. Post-nuclear supernatant was obtained by centrifuging the cells at 

15,000xg for 15 minutes followed by boiling the samples with 1X Leammli buffer 

for 5 minutes. Samples were separated using polyacrylamide gels (SDS-PAGE) 

composed of stacking gel (5% (v/v) acrylamide in 0.25M Tris (pH 6.8), 0.2% (w/v) 

SDS) and a separating gel (10% acrylamide in 0.75M Tris (pH 8.8), 0.2% (w/v) 

SDS). Samples were resolved and transferred using nitrocellulose membrane in 1X 

Towbin transfer (20% Methanol) at 250mA for 90 minutes. Resolved proteins were 

visualized with Ponceau S to confirm transfer of proteins on to the membrane 

followed by blocking with 5% non-fat dry skimmed milk for 1 hour. After blocking, 

samples were then incubated with primary antibodies in 0.5% milk at 4°C overnight. 

Either HRP or fluorescently tagged secondary antibodies were used to stain the 

membranes. HRP conjugated secondary antibodies were used at a concentration of 

1:5000 in 0.5% milk for 1 hour at room temperature and blots were developed using 

X-ray films. Fluorescently conjugated secondary antibodies were used at a 

concentration of 1:10,000 in 0.5% milk for 1 hour at room temperature. Licor 

machine was used to develop the blots after washing and drying the membrane 

completely. 

2.2.5.3 Protein expression and purification  

SDCCAG3 with N-terminal GST fusion protein was produced using pGEX 

expression system. Gene encoding full length SDCCAG3 in pGEX vector was 
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obtained from Erdmann lab. This expression construct was transformed into BL21 

strain of E.coli and a single colony was inoculated into 100 ml of LB amp+ medium 

for overnight culture at 37°C at 180 rpm. Next day, this culture was distributed 

equally into 450ml of LB amp+ medium and incubated further at 37°C until desired 

optical density was obtained (OD600 in the range of 0.6-0.8). To induce the 

expression of the recombinant protein, culture was further incubated with 0.5mM 

Isopropyl ß-D-1thiogalactopyranoside (IPTG) for 6 hours at 25°C or overnight at 

18°C. Next, bacteria was harvested from the medium by centrifugation at 4000xg for 

20 minutes and resuspended in 20ml ice-cold lysis buffer (0.5% Triton-X in 1X PBS 

supplemented with protease cocktail inhibitors). Resuspended bacterial pellet was 

also sonicated to aid cell lysis. This suspension was centrifuged further for 30 

minutes at 10,000xg and 4°C. Recombinant protein was recovered from the 

supernatant by incubating it with the pre-washed 400µl of glutathione agarose beads 

4B (to pre-wash the beads, they were washed three times with the lysis buffer at 

1800 rpm for 4 minutes each) at 4°C for 3-4 hours. Glutathione beads with bound 

GST fusion protein were washed and stored at -20°C or eluted further. 

Fusion protein was eluted from the beads by incubating them with glutathione 

containing elution buffer (50mM glutathione and 50mM Tris-HCl (pH 7.9) in water, 

pH 8.0). The beads were incubated in this buffer for 30 minutes at room temperature 

under constant rotation. The process was repeated three times. Purified protein was 

then recovered through dialysis by using Slide-A-Lyzer™ dialysis cassette according 

to the manufacturer’s instructions and measured for protein concentration.              

2.2.5.4 Cell surface biotinylation 

HeLa or HCT116 cells were cultured on 60mm dishes and treated with control or 

three different SDCCAG3 siRNA for 72 hours. On the day of the experiment, 

confluent cell culture dishes were washed once with ice-cold PBS (0.1M disodium 

phosphate, 0.15M sodium chloride; pH 7.2 in ultrapure water). EZ-Link Sulfo-NHS-

SS-Biotin was weighed accordingly and solubilised in ice-cold PBS at a 

concentration 0.25mg/ml. At least 2 ml of biotin solution was applied to each culture 

dish to cover the entire surface area. After 1 hour of incubation on ice, cells were 

washed with 1% BSA/PBS twice in order to remove any unbound biotin. Then cells 

were washed again with 1X cold PBS to remove any remaining labelling (biotin) or 
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quenching (BSA) solution. Dishes were then incubated at a slanted position to 

collect and remove any remaining solution before cell lysis. 1% Triton X-100 in PBS 

supplemented with protease cocktail inhibitors was used for lysing cells and 

obtaining post nuclear supernatant. Cells were maintained on ice throughout the 

labelling and cell lysis process. Following sub-cellular fractionation, relative protein 

concentration was measured using DC Assay kit. 10% of the inputs were kept aside 

as ‘total lysate’ and equal amount of protein was incubated with 10µl of NeutrAvidin 

agarose bead/sample for 1 hour at 4°C under constant rotation. 

Samples were then washed thrice at 3000xg with cold 1X PBS supplemented with 

protease cocktail inhibitor to remove any total lysate solution. After the last wash, 

beads were resuspended in 2X Laemmli buffer and boiled at 95°C for 5 min 

followed by immunoblotting.         

2.2.6 Flow cytometry 

Cells were cultured in 6 well plates and after 72 hours of treatment with specific 

siRNA, confluent dishes were harvested using 500µl of Trypsin-EDTA/well. In 

order to remove the trypsin completely, cells were centrifuged at 166xg for 5 

minutes and resuspended in 500µl of pre chilled 1% BSA/PBS. Hereafter, cell 

suspensions were maintained on ice throughout the labelling process. 100µl aliquots 

were prepared for labelling various surface antigens from each experimental 

condition. Concentration of the primary antibodies used has been described before. 

Samples were mixed with appropriate primary antibodies and incubated at 4°C for 1 

hour under constant rotation. Following incubation, samples were washed thrice with 

1% BSA/PBS by centrifuging at 166xg for 2 minutes. After each wash, cells pellets 

were resuspended by pipetting them up and down gently. In cases were secondary 

antibody labelling was required, samples were incubated with Alexa-488 conjugated 

secondary antibody at 1:500 dilution in 1% BSA/PBS for 1 hour at 4°C under 

constant rotation. Samples were immediately analysed by BD LSRII or 

FACSCalibur flow cytometer. Untreated wild type cells were used as controls 

wherein unlabelled samples cells were used for instrument settings and adjusting the 

background auto fluorescence and secondary only labelled cells were used as a 

negative control for the labelling.                 
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2.2.7 Immunocytochemistry 

Coverslips containing cells were washed once with IX PBS in a 6 well plate and 

fixed with 1.5 ml of 4% PFA /well at room temperature for 20 minutes. Excess PFA 

was removed by extensive washing with 1X PBS three to five times. Cells were then 

permeabilized with 0.5% Triton X-100 in PBS for 10 minutes followed by blocking 

with 1%BSA/PBS at room temperature for 1 hour. Labelling solution containing 

primary antibodies at appropriate dilutions was prepared in 1% BSA/PBS. A 

humidified chamber was prepared for antibody incubation where 60µl of labelling 

solution was used per coverslip on a parafilm.   

2.2.8 Statistical analysis  

 Statistical analysis was performed using Prism (Graph Pad software) for data 

obtained from multiple independent experiments as specified in the figure legends. 

The statistical significance was calculated using student t-test or analysis of variance 

(ANOVA). Multiple tests and corrections were applied where required. 

        

2.2.9  Assays 

2.2.9.1 Rescue of protein levels 

RNAi resistant SDCCAG3 constructs were generated using site directed mutagenesis 

kit according to the manufacturer’s protocol. HeLa cells were transfected with 

siRNA against SDCCAG3 along with 500ng of siRNA resistant DNA in 245 µl of 

OptiMEM. Lipofectamine™ 2000 was also diluted in 245 µl of OptiMEM and 

incubated for 5 minutes at room temperature. The pre-diluted reagents were then 

mixed together and incubated for 15 minutes at room temperature before applying 

them to 1.5 ml of media. The transfected samples were incubated for 72 hours and 

biotinylated as described above. The surface fraction was purified using NeutrAvidin 

beads before processing them for immunoblotting. 

2.2.9.2 Endocytic trafficking  

HeLa cells were treated with control or SDCCAG3 siRNAs for 72 hours. On the day 

of the experiment, cells were harvested from the dishes by using trypsin-EDTA. 

Only surface population of Fas receptors was labelled using 1µg/ml of Anti-Fas CH-
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11 or ZB4 antibody in ice-cold 1% BSA/PBS solution for 1 hour at 4°C with 

constant rotation. Unbound primary antibody was removed by washing the cells 

three times with 1% cold BSA/PBS at 166xg for 2 minutes. Washed cells were 

resuspended in pre-warmed DMEM media and incubated at 37°C for various time 

points. At the end of each time point, endocytosis was stopped by incubating the 

cells on ice. In the end, cells were labelled with Alexa 488 conjugated secondary 

antibody for 1 hour at 4°C with constant rotation and washed thrice to remove any 

unbound labelling antibody. Samples were analysed immediately using BD LSR II 

Flow cytometer or BD FACSCalibur™. Unstained and secondary only labelled 

HeLa cells were also analysed as negative controls.        

2.2.9.3 Degradation assay 

HeLa cells were treated with control or SDCCAG3 siRNA duplex and transfected 

with HA-EGFP-FAS construct in a 12-wells plate format. After 48 hours of 

transfection, medium in each well was replaced with DMEM supplemented with 

500ng/ml Anti-Fas (CH-11) antibody and cycloheximide (50µg/ml) for various 

periods of time. Cells were then washed with 1X PBS once and lysed with 1% Triton 

X-100. The lysates were equalized and processed for immunoblotting in a similar 

manner as described above.   

2.2.9.4 Antibody chase  

HeLa cells were treated with control or SDCCAG3 siRNA for 24 hours and split on 

to coverslips. After 48 hours of further incubation, cells were washed once with ice-

cold 1X PBS and shifted to 0°C on ice to halt trafficking. Live cells were then 

labelled with 1µg/ml of agonistic Anti-Fas (CH-11) antibody for 1 hour on ice in 1% 

BSA/PBS. Unbound antibody was washed away and cells were shifted to 37°C for 

various time points in full DMEM supplemented with 100nM leupeptin. 

Internalization was halted by shifting the cells back to 0°C and fixing them 

immediately in ice-cold 4% PFA. Cells were washed and permeabilized shortly 

followed by blocking with 1% BSA/PBS. Samples were then stained with endocytic 

markers such as EEA-1 or Lamp-1 accordingly. Images were acquired with a 

confocal microscope as described above.    
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2.2.9.5 Antibody uptake  

HeLa cells were treated with control or SDCCAG3 siRNAs. After 24 hours of 

incubation, cells were split on to coverslips and incubated for a further 48 hours. On 

the day of the experiment, cells were pre-incubated with 100 µM leupeptin for 2 

hours and then bathed with 1µg/ml of non-agonistic Anti-Fas (DX-2) antibody in the 

presence of leupeptin. Continuous uptake of antibody was allowed for 6 hours after 

which cells were washed once with ice-cold 1X PBS and fixed with 4% PFA for 20 

minutes. Cells were then permeabilized for staining with Lamp-1 or EEA-1 

antibodies. In the end, cells were stained with Alexa Fluor conjugated secondary 

antibodies and images were acquired using a confocal microscope. Confocal cross 

sections were analysed for co-localization as described below.           

2.2.9.6 Co-localization analysis 

Co-localization analysis was performed on the confocal sections showing maximum 

intensity for Lamp-1 or EEA-1 and Fas antigens using JACoP plugin in Image J 

software. Threshold levels were adjusted uniformly across the conditions to reduce 

background noise from the analysis. Occurrence of co-localization was calculated 

using Pearson’s correlation coefficient (PCC) and quantification of the co-

localization was obtained using overlap coefficients (k1 & k2).  

2.2.9.7 Endosomal lumen localization of Fas receptors  

HeLa cells were split, seeded on to coverslips (super-resolution grade) and co-

transfected with GFP tagged constitutively active Rab 5 (1 µg/µl) along with specific 

siRNA. After 48 hours of transfection, cells were pre incubated with 100 nm of 

Leupeptin in full DMEM medium. Following short pre-treatment, cells were 

stimulated with 1µg/µl of Anti-Fas (CH-11) antibody at 37°C for 1 hour in leupeptin 

supplemented DMEM to induce trafficking. Following incubation, coverslips were 

washed once with ice-cold 1X PBS at room temperature and fixed with 4% PFA. 

After 20 minutes of fixation at room temperature, coverslips were washed three 

times with 1X PBS to remove any remaining PFA solution from the coverslips. Cells 

were then permeabilized with 0.5% Triton X-100 in PBS for 10 minutes followed by 

30 minutes of blocking with 1% BSA/PBS. Finally, cells were incubated with Alexa 

594 conjugated anti-mouse secondary antibody for 1 hour and mounted  using 
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vectashield after washing the coverslips three times with 1X PBS and once with 

water. Images were acquired using spinning disc confocal microscope or super-

resolution microscope.    

Line scale analysis was performed in order to quantify the levels of Fas receptors 

present in the lumen of enlarged endosomes. Confocal cross sections of individual 

endosomes were analysed by using Image J exactly as described before [59]. “A 

straight line was drawn across each endosome to measure the fluorescence intensity 

across their diameter. This intensity was then normalized to account for varying sizes 

of the endosomes analysed. The first and second maximum pixel intensities across 

the diameter were normalized to 0 and 100, respectively, to represent the boundaries 

of the limiting membrane. The location across the line of pixel 0 was then subtracted 

from each pixel situated on the line, and this value was divided by the total diameter 

(in pixels) of the endosomes. Thus normalized pixel distances were generated which 

corresponded to the distance across the line occupied by each pixel and was 

expressed as a percentage. Then for each pixel number, pixel intensities were 

normalized to 0 and 100, respectively, generating normalized fluorescence across the 

line. Pixel values that lay between 40-60% across the diameter were averaged to 

obtain middle fluorescence value for each endosome.” A Microsoft Excel VBA 

(Visual Basic for Applications) program was written to calculate the middle 

fluorescence (40-60) values automatically from the raw pixel intensities obtained 

from line scale analysis as described above. The code has been shown and explained 

in detail in appendix I.          

2.2.9.8 Caspase 8 cleavage  

Cells were treated with control or SDCCAG3 siRNA in 12 wells plate format. After 

72 hours of transfection, normal media was replaced with media supplemented with 

500ng/µl of Anti-Fas (CH-11) antibody and cycloheximide (50µg/ml) for various 

time points. At the end of incubation, cells were washed with 1X PBS once and 

lysed with 1% Triton X-100 in PBS. Post-nuclear supernatant was obtained and all 

the samples were equalized before boiling with 1X Laemmli buffer. Samples were 

then resolved on a 15% acrylamide gel and transferred to a PVDF membrane using 

Trans-Blot
®
 Turbo™ transfer system according to the manufacturer’s instructions. 
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The transferred proteins were blocked with 1% BSA/PBS for 1 hour and blotted for 

Caspase 8 and ß-tubulin.    

2.2.9.9 In-vitro Caspase cleavage 

Purified SDCCAG3 protein with N-terminus GST tag was assessed for its cleavage 

by recombinant active caspase 6 enzyme. Up to 1µg of purified protein was 

incubated with or without Caspase 6 enzyme (1 U) in a 25 µl reaction mix in caspase 

assay buffer (50mM HEPES, 50mM NaCl, 0.1% CHAPS, 10mM EDTA, 5% 

Glycerol, 10mM DTT, pH 7.2) for 2 hours at 37°C. Caspase inhibitor Z-VAD-FMK 

(10µM) was also added to the reaction to test the specificity of the cleavage activity. 

The reaction was terminated by adding 1 X Laemmli buffer and boiling the samples 

at 95°C for 5 minutes. Samples were then separated on a 10% acrylamide gel and 

stained with coomassie dye. Samples were also analysed by western blotting with 

SDCCAG3 antibody.           

2.2.9.10 Ciliogenesis 

IMCD3 cells were split on to coverslips and treated with specific siRNA or 

transfected with DNA as required in a 12 well plate format. After 48 hours of 

transfection, cells were incubated in low serum containing media for 16 hours in 

order to induce ciliogenesis.   

 

For RPE cells, they were split on to coverslips and treated with specific siRNA for 

24 hours after which cells were shifted to low serum environment for 48 hours. At 

the end of serum starvation, cells were incubated on ice for 20 minutes in order to 

dissociate any intracellular tubulin and then fixed with 4% PFA for 20 minutes at 

room temperature.  

2.2.9.11 Rescue of Ciliogenesis defect 

IMCD3 cells were seeded on coverslips in a 12 well plate and transfected with 

control or mSDCCAG3 siRNA along with 1.5µg of human EGFP-SDCCAG3 

constructs or EGFP-vector using Lipofectamine 2000. After 48 hours of transfection, 

cells were incubated in low serum to induce ciliogenesis and further processes for 

immunofluorescence analysis.  
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3 Role of SDCCAG3 in Fas receptor trafficking   

3.1 Introduction  

Fas receptors are type I transmembrane proteins that are expressed on the cell 

surface exposing their extracellular domain to interact with its ligand and mediate 

apoptotic signalling via its cytoplasmic domain [64]. Therefore, surface presentation 

of Fas receptors is a crucial regulatory event for determining the apoptotic activity of 

cells. It is a complex and a multilevel process that can be regulated at various stages 

such as (i) the transcriptional activity of Fas gene; (ii) rate of internalization of the 

receptors; (iii) rate of constitutive turnover or degradation of the receptors. This is 

not an exhaustive list of the events that can influence FasR surface levels but 

highlights the factors discussed in this chapter. As described before, PTPN13 has 

been implicated in down-regulation of Fas receptor surface levels and regulation of 

its transport to the surface. Reduced expression levels of PTPN13 correlated with 

increased surface levels of Fas receptors in many cancer cell lines [72, 73, 105-108]. 

Therefore, expression levels of SDCCAG3 were also perturbed to determine any 

effect on trafficking. HeLa and HCT116 cells were used as a model in this study as 

they were easy to transfect and manipulate, and they were shown to express 

detectable levels of intracellular PTPN13, SDCCAG3 and Fas receptors on the 

surface. RNAi against SDCCAG3 was used to silence its expression levels in these 

cell lines.        

3.2 Aim 

The main aim of this chapter is to establish if SDCCAG3 plays a role in regulating 

the intracellular trafficking of Fas receptors or not. The Following approaches were 

considered for answering this question: 

(i) To investigate changes in the surface levels of Fas receptors upon silencing 

SDCCAG3  

(ii) To examine an effect on the transcriptional activity of Fas gene upon 

silencing SDCCAG3 

(iii) Monitor changes in the rate of internalization and degradation upon 

knockdown of SDCCAG3 

(iv) To observe the effect on the intracellular trafficking of internalized Fas 

receptors upon silencing SDCCAG3 
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3.3 Results 

3.3.1 Knockdown of SDCCAG3 increased cell surface levels of FasR 

Three different approaches were used in order to investigate changes in Fas receptor 

surface levels upon transient knockdown of SDCCAG3: 

(i) Semi-quantitative fluorescent confocal microscopy to stain only 

surface population of FasR by using a specific antibody against an 

extracellular epitope 

(ii) Flow cytometry based measurement of only the surface population by 

fluorescent labelling of a primary antibody targeting an extracellular 

epitope on Fas receptors 

(iii) Cells surface biotinylation and purification of the surface fraction by 

streptavidin pulldown. Quantitative fluorescent western blotting was 

performed to measure only the surface population of Fas receptors 

All the approaches demonstrated an increase in the cell surface levels of Fas 

receptors specifically upon knockdown of SDCCAG3.  

The antibodies used in these assays were validated for their specificity and assays 

were optimized using appropriate controls.  

In addition,the increased cell surface phenotype was rescued by restoring the levels 

of SDCCAG3 in siRNA treated samples and transcriptional activity of Fas was 

monitored to rule out that increase in the surface levels of Fas receptors was due to 

an overall increased expression of Fas gene.  
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3.3.1.1 Validation of Anti-Fas antibodies for immunofluorescence 

Three of the antibodies against Fas receptor were validated for immunofluorescence 

analysis- Anti-Fas (CH-11), anti-Fas (ZB4) that recognize the extracellular epitope 

and anti-Fas (C-20) that recognizes the intracellular epitope on Fas receptors. 

Therefore, both Anti-Fas (CH-11 and ZB4) antibodies stained only the surface 

population of Fas receptors in the case of control siRNA treated cells. This surface 

staining was lost in the case of Fas siRNA treated cells demonstrating the specificity 

of the antibodies. Similarly, Anti-Fas (C-20) antibody stained the intracellular pool 

of Fas receptors in control siRNA treated cells which diminished in the case of Fas 

siRNA treated cells as shown in Figure 3.1. Therefore, antibodies targeting the 

extracellular epitopes of Fas receptors were used for microscopic analysis of cell 

surface levels of Fas receptors.  

 

Figure 3.1: Immunofluorescence analysis of antibodies against Fas receptors in HeLa 

cells. Cells were permeabilized only in case of Anti-Fas (C-20) labelling.  Alexa 488 

conjugated secondary antibodies was used for labelling the cells. The nucleus was stained 

with DAPI in blue. Images were obtained using wide field epifluorescent microscope and 

scale bar represents 5µm.    
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3.3.1.2 Microscopic analysis of Fas R cell surface levels  

Figure 3.2 shows representative confocal images of HeLa cells treated with siRNA 

against SDCCAG3 or with control siRNA and stained for Fas receptors using an 

antibody that recognizes the extracellular domain of Fas receptors (Anti-Fas CH-11). 

Depletion of SDCCAG3 led to increased cell surface levels of Fas receptors as 

shown in figure 3.2. Quantitative analysis of corrected total cell fluorescence 

(CTCF) was calculated as Integrated density-(Area of selected region x Mean 

fluorescence of background). It. revealed that increase in cell surface fluorescence in 

SDCCAG3 depleted cells was significantly higher than in control cells as shown in 

panel b of Figure 3.2.  

 

Figure 3.2: Microscopic analysis of FasR surface levels upon SDCCAG3 knockdown. 

(a) Immunofluorescence analysis of cell surface levels of Fas receptors upon SDCCAG3 and 

control knockdown in HeLa cells. Non permeabilized HeLa cells were stained with Anti-Fas 

(CH-11) followed by incubation with Alexa 594 conjugated secondary antibody. Images 

were obtained using a confocal microscope.  Scale bar,5µm. (b) Quantitative analysis of 

CTCF (corrected total cell fluorescence) represented as scatter plot with bars. Student’s t-

test, n=3, ** (p< 0.05), p = 0.0073, error bars represent ±s.e.m. (c) Immunoblot analysis of 

knockdown efficiency of SDCCAG3. Anti ß-tubulin was used as a loading control.  
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3.3.1.3 Validation of Anti-Fas antibodies for flow cytometry 

Antibodies against Fas receptors were used for flow cytometry based surface 

staining. As show in figure 3.3, Anti-Fas CH-11 (a) and DX-2 (b) showed positive 

staining for Fas receptors (red) on the surface however upon treatment with Fas 

siRNA, the staining reduced considerably as indicated by a shift in the peak (green). 

Alexa 488 conjugated secondary antibody alone served as a negative control (black). 

Unstained HeLa cells (grey) were used as a control for background staining.       

Figure 3.3 (c) shows positive staining for Anti-Fas (DX-2) increased upon 

overexpression of Fas (population shown in green) as compared to the empty vector 

in HeLa cells. Unstained and secondary alone did not show any positive staining for 

Fas receptors (population in red).   

Therefore, Anti-Fas CH-11 and DX-2 staining was found to be specific for Fas 

receptors and was used in subsequent experiments for measuring surface Fas 

population via flow cytometry. 
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Figure 3.3: Validation of Fas antibodies for Flow cytometry. Analysis of surface levels of 

Fas receptors with Anti- Fas    CH-11 (a) or DX-2 (b) antibody upon treatment with control 

or Fas siRNA. Cells were stained with Alexa 488 conjugated secondary antibodies. The 

histograms represent Alexa 488 intensity of the indicated samples on the x-axis and the total 

number of cells analysed on the y-axis. (c) Analysis of Anti-Fas (DX-2) antibody specificity 

upon staining HeLa cells expressing empty vector or HA-Fas. The left panel shows SSC 

(side) vs FSC (forward) scatter. Scatter plot in the right panel shows SSC on the y-axis and 

Alexa 488 intensity on the x-axis for the indicated samples. Analysed cells were gated to 

show Fas negative population in red and Fas positive population in green.     

             

 

3.3.1.4 Flow cytometry analysis of FasR surface levels 

Live HeLa cells were analysed for the surface levels of Fas and other receptors via 

flow cytometry. Cells were treated with three different siRNA against SDCCAG3 

and control siRNA. All three siRNA were able to reduce expression levels of 

SDCCAG3 efficiently as shown in figure 3.4.  In agreement with the previous 

results, elevated levels of Fas receptors were found on the surface of SDCCAG3 

treated cells as compared to the control while other receptors such as EGF and 

Transferrin were not affected (Figure 3.5, a). In addition, another family member of 

TNF receptor family called TRAIL-R1 was tested. SDCCAG3 knockdown did not 

affect surface levels of TRAIL-R1 receptors. Figure 3.5 (b) shows quantification of 

median fluorescence intensities expressed as a percentage where control was 100%. 

The difference between the mean intensities of Fas surface levels upon SDCCAG3 

and control samples was found to be significant. This data demonstrates that surface 

levels of Fas receptors increase upon knockdown of SDCCAG3 in HeLa cells.       

 

  

 

 

 

 

 

 

 

Figure 3.4: Immunoblot analysis of the knockdown efficiency of SDCCAG3 upon 

treatment with SDCCAG3 and control siRNA. ß-tubulin was used as a loading control.  
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Figure 3.5: Flow cytometry analysis of cell surface levels. (a) Analysis of surface levels of 

the indicated receptors in SDCCAG3 and control siRNA treated HeLa cells. Live cells were 
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stained with specific primaries followed by Alexa 488 conjugated secondary antibody in 

some cases and observed via BD LSRII flow cytometer. (b) Bar graphs represent mean 

intensities from at least three independent experiments (n=3, **p<0.05, p=0.0015 for Fas, 

one way ANOVA, Dunnett’s multiple comparisons test). Error bars represent ± s.e.m. 

    

3.3.1.5 Validation of Cell Surface Biotinylation assay 

HeLa cells were biotinylated according to the protocol described before. The 

biotinylated surface fraction was detected with an anti-biotin antibody to 

demonstrate efficient labelling by biotin reagents and streptavidin mediated 

pulldown (figure 3.6). Immunoblotting with anti-ß-tubulin antibody confirmed that 

only surface fraction was labelled in the optimized protocol and that the streptavidin 

purified fraction was free of any intracellular contaminants. The experiment was 

performed in triplicates labelled as samples 1, 2 and 3. Hence, this blot validated the 

experimental procedure for isolating the cell surface fraction only.            

 

Figure 3.6: Immunoblot analysis of biotinylated surface and total fraction of HeLa 

cells. Samples 1, 2 and 3 represent triplicates. Anti-Biotin antibody was used as a positive 

control in order to verify the labelling reaction with biotin reagents. Anti-ß-tubulin antibody 

was used as a negative control for surface labelling.    

 

Anti-Fas (C-20) antibody was validated for its specificity by siRNA against Fas 

receptors. The immunoblot below confirmed the correct band of 42 kDa that 

represents Fas receptors as indicated by the arrow in the figure below. Therefore, 

Anti-Fas (C-20) antibody was used to detect Fas receptors in the subsequent 

immunoblots.  
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Figure 3.7: Immunoblot analysis of Fas receptors upon control or Fas siRNA treatment 

in HeLa cells. Anti-Fas (C-20) antibody was used to detect Fas receptors (indicated by an 

arrow). Anti-ß-tubulin antibody was used as a loading control.  

 

 

3.3.1.6 Biotinylation assay to measure surface levels of FasR 

Effect on the surface levels of Fas receptors upon depletion of SDCCAG3 was 

assessed by cell surface biotinylation. Three independent siRNAs against SDCCAG3 

were tested in order to confirm that the observed phenotype was not due to ‘off-

target’ effects of the siRNA treatment. Figure 3.8 below demonstrates that all three 

siRNAs against SDCCAG3 showed similar efficiency of the knockdown for an equal 

amount of lysate loaded in all the samples (as shown by the ß-tubulin blot). Surface 

expression of Fas receptor was found to be elevated upon treatment with all three 

SDCCAG3 siRNA as compared to the control siRNA. No changes in the total levels 

of Fas receptors were observed in case of SDCCAG3 siRNA no.1 and 2 as compared 

to the control. However, a slight increase in total levels of Fas receptor was observed 

in case of SDCCAG3 no.3 siRNA as compared to the control. Fluorescence based 

quantitative immunoblotting allowed quantification of the protein levels as shown in 

panel b. The increase in the surface levels of Fas receptor was found to be 

significantly higher in SDCCAG3 treated samples as compared to the control. The 

extent of the phenotype observed was similar in case of SDCCAG3 no.2 and 3 

siRNAs but lesser in the case of no.1 siRNA.  

 

Furthermore, an increase in the surface levels of Fas receptors upon SDCCAG3 

knockdown was specific as the similar effect was not observed in case of other 

receptors such as Transferrin, EGF, and N-cadherin in HeLa cells. Quantification of 

the surface levels of these receptors showed no significant difference between 
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SDCCAG3 and control siRNAs treated cells as shown in panel b. Therefore, it can 

be concluded that SDCCAG3 knockdown elevated surface levels of Fas receptors 

specifically.  

 

 

Figure 3.8: Analysis of FasR levels by cell surface biotinylation upon SDCCAG3 

knockdown.  (a) Immunoblot analysis of biotinylated cell surface fraction and total lysate of 

HeLa cells treated with three independent siRNA against SDCCAG3 and control. 

Fluorescence based immunoblots were developed using LI-COR scanner. Fas receptors were 

detected using anti-Fas (C-20) antibody; endogenous levels of other mentioned receptors 

were detected using their specific antibodies; arrow indicates staining specific for 

SDCCAG3, ns stands for non-specific; ß-tubulin was used as a loading control. (b) 

Quantitative analysis of cell surface levels of the indicated receptors represented as bar 

graphs. On x-axis, ‘C’ stands for control siRNA and 1-3 stands for three siRNAs against 

SDCCAG3.  The y-axis represents relative abundance of receptors expressed as a percentage 

when control is 100%.  The quantification shows mean of at least three independent 

experiments (n=3), error bars represent ±s.e.m; one-way ANOVA was performed to 

determine the p-value; **<0.05; p=0.0340 for Fas receptors. 
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3.3.1.7  Rescue of the surface levels of Fas receptors upon SDCCAG3 

knockdown   

In order to exclude that the transfection procedure using siRNA against SDCCAG3 

affected surface levels of Fas receptors by off-target effects, siRNA resistant 

versions of SDCCAG3 were generated by site directed mutagenesis. Three 

consecutive silent mutations were introduced to generate mutants that were resistant 

to their respective SDCCAG3 siRNAs. Box 1 displays the schematic representation 

of the three rescue constructs generated. The base pairs that were mutated are 

highlighted in red and arrows indicate the position of the siRNA targeted region in 

full length SDCCAG3. Co-transfection of siRNAs against SDCCAG3 with their 

respective mutant constructs revealed overexpression of SDCCAG3 even in the 

presence of siRNA (Figure 3.9, a). Samples showing knockdown of SDCCAG3 with 

three different siRNAs showed an increase in Fas receptor surface levels as shown in 

the previous result. However, restoration of SDCCAG3 levels with mutant 

constructs in siRNA knockdown samples rescued the surface phenotype i.e. surface 

levels of Fas receptors in the rescue samples were comparable to the control sample 

as shown in the figure. In line with the previous result, surface levels of transferrin 

receptors were unaffected in both knockdown and rescue samples for all three 

siRNA.  

 

The bar graph represents surface levels of Fas receptors expressed as a percentage 

where control is 100%. Consistent with the previous result, knockdown of 

SDCCAG3 elevated surface levels of Fas receptors significantly as compared to the 

control. However, the difference between the surface levels of Fas receptor in rescue 

samples and control was not significant (Figure 3.9, b) This data confirmed that the 

increase in surface levels of Fas receptors is specific to SDCCAG3 knockdown and 

can be rescued by restoring the intracellular levels of SDCCAG3.        
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Box1: Schematic representation of the 

construct designs used for rescuing the 

surface phenotype of Fas receptors upon 

SDCCAG3 knockdown. 

(a-c) Three silent mutations (red) were 

introduced by site directed mutagenesis 

PCR which did not affect the protein 

sequence (blue). Arrows indicate the 

beginning and end of the sequence targeted 

by siRNAs which is also shown as a boxed 

region on the modular structure of 

SDCCAG3.  

 

 

 

 

 

 

Figure 3.9: Rescue of cell surface levels of FasR upon SDCCAG3 knockdown. (a) 

Immunoblot analysis of surface levels of Fas receptor upon transfection with SDCCAG3 

siRNA alone or co-transfection with siRNAs and siRNA resistant SDCCAG3 constructs 

(labelled as Rescue 1-3) in HeLa cells.  (b) Quantification of surface levels of Fas receptors 

normalized to ß-tubulin and expressed as a percentage. Data was collected form three 

independent experiments (n=3, One way ANOVA, Sidak’s multiple comparisons, *p<0.05, 

p=0.045, ns-not significant). Error bars represent ±s.e.m.      
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3.3.1.8 Fas levels were elevated upon SDCCAG3 knockdown in HCT116 cell 

The effect of SDCCAG3 depletion on Fas levels was also examined in another 

epithelial cell line called HCT116. Cell surface biotinylation analysis in these cells 

revealed an increase in both the surface and total levels of Fas receptors upon 

depletion of SDCCAG3 siRNA as compared to the control as shown in figure 3.10 

(a). Quantification of the surface and total levels revealed a significant increase upon 

SDCCAG3 depletion (b). This data supported the previous data obtained in HeLa 

cells where an increase in surface population of FasR was observed upon knockdown 

of SDCCAG3. However, the total population of FasR did not change as dramatically 

in HeLa cells as compared to HCT116. The reason for this discrepancy could not be 

explained. Whether or not depletion of SDCCAG3 affected total basal levels of FasR 

required further experimentation described later.     

 

           

Figure 3.10: Analysis of FasR levels upon SDCCAG3 knockdown in HCT116 cells. (a) 

Immunoblot analysis of HCT116 cells treated with control or SDCCAG3 no.1 siRNA. The 

surface fraction was isolated by cell surface biotinylation and purified with streptavidin 

coated beads. Total lysate was tested for SDCCAG3 knockdown efficiency and tubulin acted 

as a loading control. (b) Quantification of immunoblots for surface and total levels of Fas 

receptors was performed using Image J. Receptor levels were normalized to their respective 

tubulin controls and expressed as a percentage. Data was collected from three independent 

experiments (n=3, multiple t-tests, *p<0.05, p=0.0100 for surface levels and p=0.0355 for 

total levels).   

 

Surface levels of Fas receptors in HCT116 cells were also analysed using flow 

cytometry as described before. Figure 3.11 (a) shows that treatment with SDCCAG3 
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siRNA led to an increase in the fluorescence intensity of Fas receptors (in red) as 

compared to the control siRNA treated cells (in blue).  Alexa 488 conjugated 

secondary antibody staining was used as a negative control (in black). Quantification 

of the median fluorescence intensities expressed as percentage revealed that 

difference in the two samples was significant (b). Knockdown efficiency of the 

SDCCAG3 siRNA in HCT116 cells was confirmed in (c).    

 

 

Figure 3.11: Flow cytometry analysis for Fas receptor levels in HCT116 cells treated 

with SDCCAG3 no.3 siRNA and control siRNA. (a) Histograms representing intensity 

levels of Fas receptors in siRNA treated cells (red and blue) and negative control 

(black) as indicated. X-axis represents intensity of Alexa 488 conjugated antibody 

signal in the samples. Y-axis represents cell count. (b) Bar graphs representing 

changes in surface levels of Fas receptors in percentage where control is 100%. Data 

represent n=3, *p<0.05, p=0.0314, unpaired t-test, two-tailed, error bars represents 

±s.e.m. (c) Immunoblot analysis of the knockdown efficiency of SDCCAG3 in 

control or SDCCAG3 siRNA treated cells. ß-tubulin was used as a loading control.           

 

 

3.3.2 SDCCAG3 knockdown did not affect the transcriptional activity of 

FasR  

In order to investigate if the increase in the surface levels of Fas receptors was an 

effect of an increased transcriptional activity or not, mRNA levels of Fas receptors 

were measured in control or SDCCAG3 knockdown samples. HeLa cells were 
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transfected with control or three different siRNA against SDCCAG3. After 72 hours 

of transfection, RNA was isolated and cDNA were prepared from each sample. A 

PCR reaction was set up using cDNA from different experimental conditions to 

amplify genes such as Fas, GAPDH, and SDCCAG3. The amplified genes were run 

on 2% agarose gel for semi-quantitative analysis of the Fas mRNA levels as shown 

in figure 3.12. Quantification of the relative gene expression revealed no substantial 

differences in the expression levels of Fas upon silencing SDCCAG3 with three 

different siRNA. GAPDH was used as a negative control. Expression levels of Fas 

were normalized to GAPDH. The blot also reveals a decrease in the expression of 

SDCCAG3 upon its knockdown as expected. However, this approach was semi-

quantitative in nature and required further validation from a more rigorous method of 

quantification.                 

 

 

 

Figure 3.12: Analysis of mRNA levels of Fas upon SDCCAG3 depletion (a) Semi-

quantitative analysis of the changes in gene expressions of Fas in HeLa cells treated with 

control or three different siRNA against SDCCAG3. (b) Band intensities for Fas in 

SDCCAG3 knockdown samples were compared to the control and the relative expression 

ratio was normalized with GAPDH.     

 

In order to measure the changes in the mRNA levels of Fas more accurately, 

quantitative real-time PCR was performed. Firstly, RNA dilution curves were 

generated in order to assess the efficiency of reverse transcriptase reaction (RT). 

Figure 3.13 shows that for different concentrations of RNA, RT efficiency is 

consistent for both Fas (a) and GAPDH (b) across all concentrations as all the 

dilution points were in the same line. Secondly, amplification efficiencies for the 

target and normalizer genes were assessed by generating their cDNA dilution curves. 
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Then slope of these dilution curves was generated in order to evaluate the difference 

between the two curves (i.e. their efficiencies). Figure 3.13 (c) shows the slope of 

0.6. The amplification efficiencies are considered similar only if the slope is between 

-0.1 to 0.1. Therefore, this data showed that Fas and GAPDH were not being 

amplified with similar efficiencies in this assay and hence their expression levels 

were compared using the Pfaffl method.  

          

 

 

Figure 3.13: Optimization of qRT-PCR. Dynamic range of reverse transcription for Fas- 

R
2
 0.98 (a) and GAPDH- R

2
 0.98 (b) was determined. RNA was serially diluted and Cq 

values obtained from the amplification of the genes were plotted on y-axis corresponding to 

the amount of RNA described on the x-axis. (c) Slope generated form the ΔΔCt values of the 

two genes (y-axis) against the varying amounts of cDNA used (x-axis). (d) Representative 

amplification curves of the indicated genes.  

 

Relative expression level of Fas mRNA was determined from three independent 

repeats. cDNAs from control or SDCCAG3 siRNA treated HeLa cells were isolated 

to amplify Fas and GAPDH in real time. Triplicates for each experimental condition 

were prepared. Figure 3.14 shows a graphical representation of the relative fold 

changes in the mRNA levels of Fas in SDCCAG3 knockdown samples as compared 
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to the control. Expression levels of GAPDH were used to normalize the levels of Fas 

in this assay. The data clearly shows that relative changes in the mRNA levels of Fas 

upon treatment with SDCCAG3 were minimal and not statistically significant.   

 

Figure 3.14: Graphical representation of the relative mRNA levels of Fas receptors in 

SDCCAG3 knockdown samples (three different siRNA against SDCCAG3 represented as 1, 

2 and 3) as compared to the control siRNA knockdown sample (C). ΔΔCt (Pfaffl) method 

was used to calculate the relative gene expression where GAPDH was used as the 

normalizer. Data was collected from three independent experiments (N=3) with internal 

triplicates. Ordinary One-way ANOVA was performed to test if the differences among the 

means were significant (p=0.1480; ns= not significant).   

 

3.3.3 SDCCAG3 knockdown did not alter the rate of internalization of 

FasR  

3.3.3.1 Rate of internalization upon stimulation with an agonistic       antibody 

Surface levels of transmembrane proteins are partly a function of the rate of 

intracellular trafficking. Therefore, the rate of trafficking of Fas receptors was 

determined by flow cytometry. Surface population of Fas receptors was stained using 

an agonistic Anti-Fas (CH-11) antibody and incubating the cells for various time 

points at 37°C. Loss of receptors from the surface over a period of time represented 

the event of internalization. Figure 3.15 below shows histograms obtained from the 

flow cytometry analysis of internalized Fas receptors in control or SDCCAG3 

treated HeLa cells (a). Median fluoresce intensity (MFI) obtained was used to 

calculate the amount of receptors remaining on the surface relative to 0 time point. 
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This amount was expressed as a percentage and represented as % Endocytosis (b). 

The graph below demonstrates no significant difference between the rate of 

trafficking in case of SDCCAG3 knockdown cells as compared to the control. 

Therefore, an increase in the surface levels of Fas receptors was not due to the 

inhibition of its internalization upon silencing SDCCAG3.             

 

Figure 3.15: Flow cytometry analysis of the rate of trafficking of Fas receptors.  (a) 

Histograms representing surface levels of Fas receptors at indicated time point in control or 

SDCCAG3 no.3 siRNA treated cells upon activation with agonistic Anti-Fas (CH-11) 

antibody (1µg/ml). (b) Quantification of the receptors levels remaining on the surface after 

various time points represented as % endocytosis. Data was obtained from three independent 

experiments (n=3) and analysed using Tukey’s multiple comparisons test. Data was not 

found to be significantly different. Error bars represent ±s.e.m       

 

3.3.3.2 Rate of internalization upon stimulation with a non-agonistic   antibody 

HeLa cells treated with control or SDCCAG3 no. 3 siRNA were stimulated with a 

non-agonistic Anti-Fas (ZB4) antibody for various time points to observe changes in 

the surface levels of Fas receptors. As expected, no substantial internalization was 

induced upon activation with a non-agonistic antibody even after 30 minutes of 

incubation. Therefore, this data proved that loss of surface population of FasR upon 

stimulation with an agonistic antibody was specifically due to internalization induced 

and not due to antibody  diffusion. Although both the antibodies bind to the same 

target,  ZB4 is an IgG molecule and so it is incapable of inducing receptor 
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oligomerization which is essential for internalizing FasR. In contrast, Anti-Fas (CH-

11) is an IgM molecule that is able to cluster FasR quickly and efficiently to induce 

internalization.        

 

Figure 3.16 Trafficking of FasR upon stimulation with a non-agonistic antibody. (a) 

Flow cytometry analysis of HeLa cells upon stimulation with Anti-Fas (ZB4) antibody under 

different experimental conditions as indicated. Histograms represent surface level intensity. 

(b) Quantification of the histograms obtained in a. Changes in the levels of the surface 

population of Fas receptors were not significant. Tukey’s multiple comparison tests, n=3, 

error bars represent ±s.e.m.    

 

3.3.4 Effect on the basal level of overexpressed Fas receptors upon    

SDCCAG3 knockdown  

For transient overexpression of Fas receptors in HeLa cells, a construct was 

generated containing an N-terminus HA tag and an extracellular EGFP tag placed 

before the transmembrane domain. The modular structure of the construct used has 

been described below in Figure 3.17.      
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Figure 3.17 The modular structure of Fas receptor construct. The construct design 

displaying N-terminus HA tag (black) and EGFP tag (green) placed before the 

transmembrane domain (TM). Three cysteine rich regions on the extracellular domain are 

labelled are CR 1, 2 and 3. Cytoplasmic death domain (DD) is at the C-terminus end.   

Transient transfection of HA-EGFP-Fas construct revealed localization of 

overexpressed Fas on the surface after 72 hours of transfection along with control or 

SDCCAG3 siRNA and no co-localization with the golgi marker GM130 (Figure 

3.18). Depletion of SDCCAG3 did not affect the plasma membrane localization of 

overexpressed Fas receptors. Qualitative analysis of the confocal images with 

overexpressed FAS also revealed an increased expression level of Fas upon 

depletion of SDCCAG3. Therefore, it can be concluded that overexpressed Fas 

retained its correct localization and function.  

 

 

 

 

 

 

 

 

 

Figure 3.18: Surface expression of FasR construct. Representative confocal images 

showing surface localization of overexpressed HA-EGFP-FAS in control or SDCCAG3 no.3 

siRNA treated HeLa cells. Scale bar represents 10µm.    

 

3.3.4.1 Depletion of SDCCAG3 increases basal expression of transiently 

expressed FAS receptors  

Effect of SDCCAG3 depletion on the basal levels of Fas receptors was examined by 

overexpressing tagged Fas receptors in HeLa cells in the presence of SDCCAG3 or 

control siRNA. Quantitative fluorescent microscopy was used to analyse the results.  

HeLa cells that overexpressed Fas receptors in the presence of SDCCAG3 siRNA 
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had increased expression levels of Fas as compared to control siRNA treated cells as 

shown in Figure 3.19 (a). However, levels of untagged overexpressed E-cadherin 

were unaffected by the knockdown of SDCCAG3. This was quantified in (b) which 

confirmed that the increased expression levels of Fas were significant. In case of E-

cadherin, there was a tendency for increased expression levels upon SDCCAG3 

depletion but it was not found to be significant. This data confirmed that SDCCAG3 

depletion affected steady-state levels of transiently expressed Fas receptors 

suggesting its role in regulating constitutive trafficking and turnover of Fas 

receptors.   

      

Figure 3.19: Effect of SDCCAG3 depletion on basal levels of EGFP-SDCCAG3. (a) 

Representative Immunoblots of the steady-state levels of tagged Fas receptors and untagged 

E-cadherin receptors transiently expressed in HeLa cells treated with SDCCAG3 no. 3 or 

control siRNA. SDCCAG3 was blotted to confirm the knockdown efficiency and ß-tubulin 

was used as a loading control. ns stands for non-specific. (b) Quantification of the 

expression levels in (a). Unpaired student’s t-test, n=3, *p<0.05, p=0.0246 for HA-Fas and 

p=0.1132 for E-cadherin, error bars represent ±s.e.m.         

 

3.3.4.2 Depletion of SDCCAG3 delays rate of degradation of HA-GFP-FAS 

Rate of turnover of transiently expressed Fas was analysed in HeLa cells treated with 

control or SDCCAG3 siRNA. Cells were stimulated with an agonistic Anti-Fas (CH-

11) antibody (500 ng/ml) for various time points in the presence of cycloheximide 

(100 µM). Activated HA-GFP-Fas receptors were internalized and their kinetics of 

turnover was analysed by quantitative fluorescent western blotting. Quantification of 

the percentage of receptors remaining revealed that within 30 minutes of stimulation, 

Fas receptors were down-regulated and then upregulated again after 1 hour even in 
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the presence of cycloheximide as shown in figure 3.20 (b). After 2 hours, only 56% 

receptors were remaining in control siRNA treated samples but in case of SDCCAG3 

knockdown, at least 80% receptors were remaining. Differences in the amount of 

receptors after 1 hour and 2 hours of stimulation were found to be significant. This 

delay in the rate of Fas receptor turnover upon stimulation indicated a requirement 

for SDCCAG3 in post-endocytic trafficking of Fas receptors.   

 

Figure 3.20: Rate of degradation of EGFP-SDCCAG3. (a) Immunoblot analysis of the 

kinetics of HA-GFP-FAS degradation following agonist stimulation in control or SDCCAG3 

no.3 siRNA treated HeLa cells. SDCCAG3 was analysed for its knockdown efficiency and 

ß-tubulin was used as a loading control. ns stands for non-specific. (b) Quantification of 

remaining surface receptors expressed as a percentage in terms of control and normalized 

with ß-tubulin. Sidak’s multiple comparisons test was used, n=3, error bars represent ±s.e.m.   

 

3.3.5 SDCCAG3 co-localizes with internalized Fas receptors and sorts them 

into Late Endosomes/Lysosomes.      

3.3.5.1 SDCCAG3 co-localizes with internalized Fas receptors 

In order to investigate the role of SDCCAG3 in the regulation of Fas receptor 

trafficking more closely, internalized Fas receptors were examined for co-

localization with SDCCAG3. Surface Fas receptors were labelled with the agonistic 

anti-Fas (CH-11) antibody in HeLa cells and chased for various time points. At 0 

minutes, only the surface population of Fas receptor was labelled and hence no co-

localization was observed between endogenous puncta of SDCCAG3 and surface 

Fas (Figure 3.21,a). Multiple studies have shown Fas receptor to undergo fast 

internalization (within 2 to 5 minutes) in some cell lines while no internalization has 

been reported for some cell lines upon stimulation. However, in this study, 
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intracellular puncta of Fas receptors could be seen inside the cells after 5, 15 and 30 

minutes of stimulation in contrast with 0 minutes. Therefore, HeLa cells used in this 

study showed internalization of Fas receptors upon their stimulation. In consistence 

with the previous literature, SDCCAG3 also showed intracellular punctate staining. 

A fraction of internalized Fas receptors co-localized with SDCCAG3 as shown 

below. Partial overlap could be seen between Fas receptors (green) and SDCCAG3 

(red). 

 

Figure 3.21: Analysis of co-loclaization between internalized FasR and SDCCAG3. (a) 

Immunofluorescence analysis of co-localization between Fas receptors (green) and 
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SDCCAG3 (red). Fas receptors were surface labelled with Anti-Fas (CH-11) antibody 

(1µg/ml) and were allowed to internalize for the indicated time points. Cropped inset panels 

show examples of non-existent (0 min) or existent co-localization. Images were acquired 

with a confocal microscope. Scale bars, 5µm.  

Quantification of the correlation coefficient from at least five to eight cells revealed 

an increase in the incident of co-localization between FasR and SDCCAG3 after 

stimulation as compared to 0 minutes. (i), Figure 3.22. The extent of co-localization 

increased constantly up to 15 minutes after which it decreased again (ii). The 

increase was due to the presence of more internalized receptors after 5 minutes in 

SDCCAG3 positive compartment. Correlation coefficient value represents the 

correlation between the two intensities and does not quantify the degree of overlap. 

 

 

 

 

 

 

 

 

 

Figure 3.22: Quantification of co-localization between internalized FasR and 

SDCCAG3. Data obtained in figure 3.21 was analysed for co-localization by using Just 

another co-localization plugin (JACoP) in image J to calculate correlation coefficients. Data 

was analysed from 5-8 cell using Tukey’s multiple comparison tests, *p<0.05, ***p<0.01.     

 

3.3.5.2 Sub-cellular localization of SDCCAG3 and internalized Fas receptors 

Previous studies have shown that SDCCAG3 co-localizes with EEA-1 and 

transferrin positive compartments. It also co-localized with Vps35 which is known to 

be present in early/sorting endosomes. Therefore, sub-cellular localization of 

internalized FasR and SDCCAG3 in early endosomes was confirmed by staining for 

early endosomal compartments with anti-EEA-1, a classic marker for early 
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endosomes. As expected, after 5 minutes of internalization, puncta positive for FasR 

and SDCCAG3 were shown to be present in EEA-1 positive compartments. Two 

examples have been highlighted below in insets 1 and 2 (figure 3.23). Partial overlap 

was observed between SDCCAG3 and internalized FasR in the EEA-1 positive 

compartments as indicated in the previous data as well. This data indicates that 

SDCCAG3 might regulate trafficking of Fas receptor soon after its internalization 

into early endosomes. Since SDCCAG3 depletion did not alter the rate of 

internalization of FasR, therefore, it raises a possibility that SDCCAG3 might be 

regulating post-endocytic sorting of Fas receptors in the early endosomes.        

 

Figure 3.23: Subcellular localization of internalized FasR and SDCCAG3: HeLa cells 

were incubated with anti-Fas (CH-11) at 0°C to label only the surface population of FasR. 

The cells were then incubated at 37°C and chased for 5 minutes. Localization between 

endogenous FasR (green), SDCCAG3 (red) and EEA-1 (blue) was observed with a confocal 

microscope.  Scale bar, 5µm.  
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3.3.5.3 SDCCAG3 sorts Fas receptors into Late endosomes/Lysosomes 

To investigate if SDCCAG3 was involved in post-endocytic sorting of internalized 

Fas receptors in the early endosomes, intracellular distribution of FasR was 

examined under both stimulated and steady-state conditions. Two distinct 

intracellular markers -for early endosomes (EEA-1) and for late 

endosomes/lysosomes (Lamp-1) were used. Figure 3.24 (a) shows the distribution of 

internalized Fas receptors upon stimulation with agonistic Anti- Fas (CH-11) 

antibody in HeLa cells treated with control or SDCCAG3 siRNA. Only the surface 

population of Fas receptors was labelled and chased for 30 minutes in the presence 

of leupeptin. In control siRNA treated cells, quantitative analysis shows significant 

co-localization between Fas receptors and Lamp-1 after 30 minutes in contrast to 0 

minutes. However, in case of SDCCAG3 knockdown, minimum co-localization was 

observed between Fas receptor and Lamp-1 after 30 minutes. In contrast with control 

siRNA treated cells where only internalized pool of Fas receptors was observed, 

SDCCAG3 depleted cells had both internalized and a surface pool of Fas receptors 

after 30 min. Co-localization analysis revealed that both the extent of co-localization 

and correlation between Lamp-1 and Fas receptors was significantly higher in 

control cells than SDCCAG3 depleted cells after 30 min as shown in the upper panel 

of figure 3.24 (b). 

Further analysis of co-localization with EEA-1 revealed that the internalized Fas 

receptors in SDCCAG3 depleted cells were present in EEA-1 positive compartments 

as compared to control cells after 30 minutes (Figure 3.24. a) Quantification of this 

co-localization confirmed that a significant population of Fas receptors co-localized 

with EEA-1 in SDCCAG3 depleted cells as compared to control.These results 

suggested that SDCCAG3 is involved in sorting of Fas receptors from early 

endosomes to lysosomes. In the absence of SDCCAG3, Fas receptors were trapped 

inside the early endosomes and did not enter the late endosomes/lysosomal 

compartments efficiently.                  
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Figure 3.24 (a) Immunofluorescence analysis of the sub-cellular localization of Fas 

receptors in HeLa cells upon stimulation with agonistic Anti-Fas (CH-11) antibody (1µg/ml) 

in the presence of Leupeptin (100nM) for the indicated time points. Upon internalization, 

Fas receptors (green) co-localized with Lamp-1 positive vesicles (red) in control siRNA 

treated cells in contrast with SDCCAG3 no.2 siRNA treated cells after 30 minutes of 

antibody chase. Additionally, Fas receptors in control cells (green) did not co-localize with 

EEA-1 (red) substantially as compared to the SDCCAG3 depleted cells after 30 minutes of 

antibody chase. Images were acquired using a confocal microscope. Scale bar represents 

5µm. (b) Quantification of the extent of correlation (Pearson’s correlation coefficient, PCC) 

and co-localization (Mander’s overlap coefficient R) between Fas receptors and endosomal 

markers such as Lamp-1 and EEA-1. Co-localization analysis was performed on confocal 

cross-sections using JACoP (Just another co-localization plugin) in ImageJ. Data was 

collected from three independent experiments n=3, unpaired student’s t-test, **p<0.01, 

***p<0.001, error bars represent ±s.e.m.    

 

Under steady-state conditions, the fate of Fas receptors was similar as compared to 

agonist stimulated receptors in SDCCAG3 depleted cells. A non-agonistic antibody 

Anti-Fas (DX-2) was fed to control or SDCCAG3 siRNA treated HeLa cells for 6 

hours in the presence of leupeptin and stained for intracellular markers like EEA-1 

and Lamp-1. Figure 3.25 (a) shows that internalized Fas receptors co-localized in 

Lamp-1 positive vesicles after 6 hours in control cells but not in SDCCAG3 depleted 

cells. In line with the previous result, quantification of the co-localization analysis 

revealed that amount of Fas receptors in Lamp-1 positive compartments was 

significantly higher in control cells than SDCCAG3 depleted cells (Figure 3.25.b).  

In line with the previous results, steady-state distribution of internalized Fas 

receptors also revealed that depletion of SDCCAG3 increased co-localization 

between EEA-1 and Fas receptors as shown in Figure 3.25 (c) and quantified in (d).  

Above described figures demonstrates that depletion of SDCCAG3 affects 

trafficking of Fas receptors from EEA-1 to Lamp-1 in line with the notion that 

during endocytic trafficking, receptors are sorted towards late endosomes/lysosomes 

from the early endosomes.                     
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Figure 3.25: HeLa cells treated with control or SDCCAG3 no.2 and 3 siRNA were 

subjected to bath application of non-agonistic Anti-Fas (DX-2) antibody (1µg/ml) in the 

presence of Leupeptin (100nM). After 6 hours of antibody feeding, cells were fixed and 

stained for endosomal markers such as Lamp-1 (a) and EEA-1 (c). Arrows indicate co-

localization between Fas R and Lamp-1 (a) or EEA-1 (c). Images were acquired using a 

confocal microscope. Scale bars represent 5µm (a,c). Quantification of Pearson’s correlation 

coefficient observed between Fas receptors and Lamp-1 (b) or EEA-1 (c) under different 

treatment conditions. Co-localization was analysed using JACoP (Just another co-

localization plugin) in ImageJ. At least 300 cells were analysed from three independent 

experiments. One way ANOVA (Dunnett’s multiple comparisons test) was performed, 

****p<0.0001, error bars represent ±s.e.m. 
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4 Molecular mechanism of FasR sorting by SDCCAG3 

 

4.1 Introduction  

Previous data suggested a defect in the early endosome-to-lysosome transitioning of 

FasR upon depletion of SDCCAG3. Early endosomes act as the sorting stations that 

differentiate the recycling cargo from the cargo destined for degradation. The 

membrane of the early endosomes, populated with ubiquitinated receptors, bends and 

invaginates to form intraluminal vesicles (ILVs) to give rise to the multivesicular 

bodies enriched with cargo destined for lysosomal degradation [13]. Protein 

machinery involved in the sorting process to MVBs has been characterized and 

described extensively-the ESCRT complexes. A component of the ESCRT-0 

complex, HRS, is known to be involved in sorting a wide variety of surface receptors 

like EGFR [39]. An ESCRT binding accessory protein called dysbindin has been 

described previously to connect receptors or cytoplasmic adaptor proteins to the 

ESCRT machinery for sorting into ILVs [59]. It mediates sorting via its interaction 

with HRS.  Perturbations in the expression levels of dysbindin have been linked to 

an increased surface expression of transmembrane receptors, a phenotype similar to 

the one observed upon depletion of SDCCAG3 in the current study [58, 59]. 

Furthermore, two independent studies suggested dysbindin as an interacting partner 

of SDCCAG3 through proteomic screenings [156, 157]. Therefore, it was 

hypothesised that SDCCAG3 might be mediating ILV sorting of Fas receptors via its 

interaction with dysbindin and HRS.   

4.2 Aim 

Based on the hypothesis above, the main goal of this chapter was to demonstrate if 

SDCCAG3 regulated sorting of Fas receptors into ILVs or not. If yes, then another 

aim was to examine if Dysbindin and HRS were involved in mediating this sorting.    
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4.3 Results 

4.3.1 Depletion of SDCCAG3 delays sorting of Fas receptors into ILVs 

4.3.1.1 Constitutively active Rab5-GFP to create enlarged endosomal lumen  

The small GTPase Rab5 has been described as the switch involved in the process of 

endosomal maturation from early endosomes to late endosomes/lysosomes. It 

mediates homotypic fusion of early endosomes through GTP-dependent recruitment 

and activation of various effector proteins [158]. Overexpression of GTPase 

defective mutant, Rab5 (Q79L), leads to the formation of enlarged endosomes as 

compared to the wild type Rab5 expression, shown below in figure4.1. These 

enlarged endosomes have been characterised in many studies and shown to contain 

markers for both early and late endosomes/lysosomes. They were also described to 

be similar to MVEs (multivesicular endosomes) with internal vesicles [159]. The 

enlarged size of these endosomes defines the limiting membrane and internal 

vesicles distinctly which has been useful in studying sorting of various receptors into 

the intraluminal vesicles (ILVs).  They are also useful for studying the localization of 

proteins in different microdomains on the endosomes [158, 159]. Therefore, enlarged 

endosomes were used in this study to dissect the molecular mechanism of Fas 

receptor sorting in detail.    

 

 

Figure 4.1: The enlarged endosomes: Immunofluorescence analysis of the intracellular 

punctate of transiently expressed Rab5-GFP as compared to the constitutively active 

Rab5
Q79L

-GFP. Images were acquired using a confocal microscope. Scale bars represent 

5µm.  
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4.3.1.2 SDCCAG3 promotes sorting of activated Fas receptors into Intraluminal 

vesicles  

Cell surface receptors that are destined for lysosomal degradation are transferred 

from the endosomal limiting membrane to the intralumenal vesicles (ILVs) of 

multivesicular bodies (MVBs). Based on the previous data, it can be concluded that 

Fas receptors are also destined for lysosomal degradation following internalization 

into early endosomes. Therefore, it was examined whether SDCCAG3 depletion 

affected the sorting of Fas receptors into ILVs. Constitutively active Rab5
Q79L

 

tagged with GFP was transiently expressed in HeLa cells treated with control or 

SDCCAG3 siRNA for 72 hours. Endogenous Fas receptors were stimulated with 

agonistic Anti-Fas (CH-11) antibody and examined for their intracellular localization 

by confocal microscopy. As shown in Figure 4.2 (a), after 2 hours of stimulation, Fas 

receptors (red) were present inside the lumen in case of control cells. In contrast, in 

SDCCAG3 depleted cells, Fas receptors localized predominantly to the limiting 

membranes of enlarged endosomes occupying distinct subdomains on it. Most of the 

endosomes exhibited minimal or no intraluminal fluorescence in SDCCAG3 

depleted cells. In order to quantify the distribution of Fas receptors across the 

enlarged endosomes, a line scale analysis was performed on confocal cross-sections 

as described before. A representative line scale analysis of the endosomes 

highlighted in insets is shown in (b, c). The two peaks in green represent the 

boundary of the enlarged endosome indicating the limiting membrane. The shaded 

red area represents the distribution of fluorescence intensity inside the enlarged 

endosomes indicating Fas receptor distribution. The analysis clearly shows that in 

control cells Fas receptors are present inside the lumen indicated by a single peak in 

red in between the two peaks in green (b). In case of SDCCAG3 depleted cells, one 

of the peaks in green corresponded with the red peak indicating that Fas receptor was 

present on the boundary of the enlarged endosome (c).   Figure 4.2 (d) shows a 

representative line scale analysis of the endosomes with normalized diameter and 

intensity. The peaks indicate limiting membrane and the hatched box indicates the 

central region of the endosomal lumen. The red line corresponding to SDCCAG3 

depleted cells shows lower fluorescence in the middle region of the endosome as 

compared to the control cells (blue line). An analysis of ~100 endosomes from 

multiple cells and three different experiments revealed 45% reduction in the middle 
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fluorescence i.e. distribution of Fas receptors in the lumen of enlarged endosomes in 

case of SDCCAG3 depleted cells as compared to control cells. In conclusion, this 

data demonstrates the requirement of SDCCAG3 for sorting of Fas receptors into 

ILVs of MVBs. It is in line with the previous data and re-establishes the fact that 

absence of SDCCAG3 disrupts the trafficking of Fas receptors out of early 

endosomes to late endosomes/lysosomes.     

 

                         

 

Figure 4.2 (a) Immunofluorescence analysis of re-distribution of Fas receptors from 

endosomal limiting membrane to intralumenal vesicles in constitutively active Rab5Q79L 

enlarged endosomes. Control or SDCCAG3 no.3 siRNA treated HeLa cells were transfected 

with Rab5 Q79L-GFP and stimulated with agonistic Anti-Fas (CH-11) antibody (1µg/ml) 

for 1 hour in the presence of Leupeptin (100nM). Cell were fixed and observed by a 

confocal microscope. Insets show representative expanded endosomes. Scale bar represents 

5µm. (b, c) Representative line scale analysis of the enlarged endosomes highlighted in inset 

panels.  
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(d) Model of line scale analysis used for quantifying Fas receptors localized to intralumenal 

vesicles. To illustrate this model, two representative endosomes were picked randomly from 

the control and SDCCAG3 knockdown images. The normalized diameter represents the 

diameter of endosomes, where 0 and 100 correspond to the pixel distances with the highest 

and second highest pixel intensities, representing the limiting membranes of the endosomes. 

The blue and red traces represent the normalized fluorescence pixel intensity measured 

across the endosomes in control and SDCCAG3 depleted cells, respectively, with the 

maximum pixel intensity across the line normalized to 100. The region covered by a dotted 

line shows the normalized fluorescence values of pixels from 40-60% of the normalized 

diameter that was used to determine the mean intralumenal fluorescence for each endosome. 

(e) Graphical representation of the compiled results of the line scale analysis for Fas 

receptors. Middle (40-60%) fluorescence value expressed as a percentage of the limiting 

membrane (normalized diameter). Unpaired student’s t-test, n > 100 endosomes from three 

independent experiments, **p<0.01, p=0.0075, error bars represents ±s.e.m.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 95 - 

 

4.3.1.3  Analysis of FasR sorting with Structured Illumination Microscopy  

Defects in the intralumenal sorting of FAS receptors upon depletion of SDCCAG3 

was analysed further with three dimensional modelling (3D) together with ‘super-

resolution’ structured illumination micrsoscopy (SIM). Control or SDCCAG3 

siRNA treated HeLa cells that also transietnly expressed Rab5
Q79L

GFP were 

processed in a similar manner as described previously. The 3D SIM  characterisation 

of the distribution of Fas receptors in enlarged endosomal lumen further validated 

the previous results obtained form confocal microscopy. Qualitative analysis of the 

images obtained from super-resolution light microscopy revealed  the distribution of 

Fas receptors both on the limiting membrane and inside the lumen of the enlarged 

endosomes in control cells. Howerev, in SDCCAG3 depleted cells, Fas receptors 

were localized mostly to the limiting membrane (Figure 4.3.a)   

     

Figure 4.3 3D-SIM analysis of FasR sorting. (a) Immunofluorescence analysis of ILV 

sorting of Fas receptors in control or SDCCAG3 no.3 siRNA treated HeLa cells using 3D-

Structured illumination microscopy. (b) Three-dimensional modelling of endosomes 

highlighted by the insets. Scale bars represent 5µm (a, b).   
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4.3.1.4 SDCCAG3 knockdown delays sorting of Fas receptors into ILVs under 

steady-state 

Distribution of Fas receptor in enlarged endosomes under steady state was examined. 

Control or SDCCAG3 siRNA treated HeLa cells co-expressing Rab5
Q79L

GFP were 

fed with a non-agonistic Anti-Fas (DX-2) antibody (1µg/ml) for various time points. 

After 2 hours of antibody feeding, confocal cross-sections revealed that in control 

cells Fas receptors localized both on the limiting membrane and the lumen of the 

enlarged endosomes. In contrast, in SDCCAG3 depleted cells, Fas receptors 

localized mostly on the limiting membrane or near the periphery inside the enlarged 

endosomes (Figure 4.4 a). Line scale analysis of the representative endosomes 

highlighted in insets showed that in control cells a single peak of the red histogram 

indicating Fas receptors fluorescence was present in between the two green peaks 

indicating the limiting membrane (b). In SDCCAG3 depleted cells, the peak of the 

red histogram representing Fas receptor fluorescence corresponded with one of the 

green peak indicating that receptor is present on the limiting membrane (c). Line 

scale analysis from several endosomes was quantified and analysed for the 

distribution of Fas receptors across the enlarged endosomes. The graphical 

representation of the analysis shows that fluorescence intensity of Fas receptor in 

control cells was at least 30% higher than SDCCAG3 depleted cells. This difference 

was found to be statistically significant.   

 

In conclusion, this data is in line with the previous data showing requirement of 

SDCCAG3 for intraluminal sorting of Fas receptors.        
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Figure 4.4 (a) Representative confocal cross sections depicting the distribution of Fas 

receptors labelled by feeding Anti-Fas (DX-2) antibody for 2 hours in the presence of 

leupeptin (100 nM) to HeLa cells treated with control or SDCCAG3 no. 3 siRNA and co-

expressing Rab5
Q79L

GFP. Examples of the enlarged endosomes have been cropped and 

shown in insets. Scale bars represent 5µm. (b, c) Line scale analysis of the enlarged 

endosomes highlighted in the insets. (d)  Graphical represenation of the quantification of 

fluorescence intensity of Fas receptor in the lumen of the enlarged endosomes expressed as a 

percentage. Data was collected from at least 50 endosomes from multiple cells and three 

different experiments (n=50, N=3). Unpaired student’s t-test was performed, two-tailed, 

****p<0.0001, error bars represent ±s.e.m.                   
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Additionally, ILV sorting of Fas receptors under steady state was analyzed at a later 

time point such as after 6 hours of antibody feeding. Qualitative analysis of the data 

shown in Figure 4.5 (a) revealed that in case of both control and SDCCAG3 siRNA, 

Fas receptors localized in the lumen of the enlarged endosomes predominantly. 

Quantification of this data confirmed that the difference between the mean 

fluorescence intensity of Fas receptors across the enlarged endosomes in control and 

SDCCAG3 knockdown samples was not statistically significant (b). This data 

demonstrates that depletion of SDCCAG3 only caused a delay in the distribution of 

Fas receptors from the limiting membrane to the endosome but did not inhibit the 

process completely.   Therefore, it can be concluded that absence of SDCCAG3 was 

essential for sorting of Fas receptors into ILVs at a normal rate but not an absolute 

requirement for their sorting.   

 

 

 

Figure 4.5 (a) Representative confocal cross sections depicting distribution of Fas receptors 

labelled by feeding Anti-Fas (DX-2) antibody for 6 hours in the presence of leupeptin (100 

nM) to HeLa cells treated with control or SDCCAG3 no. 3 siRNA and co-expressing 

Rab5
Q79L

GFP. Examples of the enlarged endosomes have been cropped and shown in insets. 

Scale bars represent 5µm. (b, c) Line scale analysis of the enlarged endosomes highlighted 

in the insets. (d)  Graphical represenation of the quantification of fluorescence intensity of 

Fas receptor in the lumen of the enlarged endosomes expressed as a percentage. Data was 

collected from at least 30 endosomes from multiple cells and three different experiments 

(n=30, N=3). Unpaired student’s t-test was performed, two-tailed, p=0.15, error bars 

represent ±s.e.m.                    
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4.3.1.5 SDCCAG3 knockdown does not affect sorting of Transferrin      

Transferrin (Tf) is an iron-binding protein which binds to its receptor called Tf 

receptor to undergo endocytic trafficking to early endosomes. It delivers iron and 

then is sorted to be recycled back to the cell surface. It represents an alternative 

trafficking fate than Fas receptors which were found to be entering late 

endosomes/lysosomes. Hence, Alexa Fluor 555 conjugated transferrin (Tf-555) was 

examined for any sorting defects upon depletion of SDCCAG3 in order to 

investigate whether its depletion affected other receptors following different 

endocytic pathways or not. HeLa cells treated with control or SDCCAG3 siRNA and 

co-expressing Rab5
Q79L

GFP were stimulated with recombinant Tf-555 for 1 hour in 

the presence of leupeptin (100nM). Figure 4.7 (a) shows that Tf-555 localized on the 

limiting membrane of the enlarged endosomes predominantly in case of both control 

and SDCCAG3 siRNA depleted cells. Line scale analysis of the representative 

endosomes highlighted in the insets also showed that peaks of the red histogram 

(indicating Tf-555 fluorescence) corresponded with the peaks of the green histogram 

(indicating the limiting membrane) in both control (b) and SDCCAG3 siRNA treated 

cells (c). Quantification of the middle fluorescence for several endosomes from 

multiple cells and different experiments also confirmed that there was no significant 

difference between the mean middle fluorescence of Tf-555 in control and 

SDCCAG3 siRNA treated cells (d).  

 

In conclusion, depletion of SDCCAG3 did not alter the post-endocytic trafficking 

route of transferrin receptors. This data was consistent with the previous observation 

in the current study which stated that depletion of SDCCAG3 did not affect cell 

surface or total levels of transferrin receptors in HeLa cells.    
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Figure 4.6 (a) Confocal cross sections depicting distribution of Alexa Fluor 555 conjugated 

Transferrin after 1 hour of stimulation in the presence of leupeptin (100 nM) in HeLa cells 

treated with control or SDCCAG3 no. 3 siRNA and co-expressing Rab5
Q79L

GFP. Scale bars 

represent 5µm. (b, c) Line scale analysis of the enlarged endosomes highlighted in the insets. 

(d)  Graphical represenation of the quantification of middle fluorescence intensity of Trfn-

555 expressed as a percentage. Unpaired student’s t-test (n=50,N=3), two-tailed, *p<0.05, 

p=0.98, ns stands for not significant, error bars represent ±s.e.m.                     
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4.3.1.6 SDCCAG3 knockdown does not affect sorting of EGF receptor       

Endocytic trafficking of EGF receptors has been characterized extensively. These 

receptors internalize upon stimulation with their ligand and enter into tubulovesicular 

compartments known as sorting endosomes from where they can be either recycled 

back to the plasma membrane or sorted via MVBs into lysosomes for degradation. 

Downregulation of EGF receptor is also important for negatively regulating anti-

apoptotic signalling mediated by it. Therefore, the effect of SDCCAG3 depletion on 

the lysosomal sorting of EGFR was analysed. Alexa 647 conjugated recombinant 

EGF was used to stimulate the internalization of EGFR. After 1 hour of stimulation 

of HeLa cell co-expressing Rab5
Q79L

GFP and treated with control or SDCCAG3 

siRNA, distribution of EGF across the enlarged endosomes was analysed. Figure 4.7 

(a) shows that in case of both control and SDCCAG3 siRNA, EGF was localized 

either inside the lumen or on the limiting membrane of the enlarged endosomes. Line 

scale analysis of the representative endosomes shows that peaks of the red histogram 

indicating fluorescence intensity of EGF was in between the peaks of the green 

histogram (indicating the limiting membrane) and also corresponded with the peaks 

in both control (b) and SDCCAG3 depleted cells (c). Quantification of the 

distribution of mean fluorescence intensity for EGF was not found to be significantly 

different in case of control or SDCCAG3 knockdown cells (d). At the given time 

point and concentration of the EGF used for this experiment, only ~20% of the total 

EGF fluorescence was found to localize to the middle of the enlarged endosomal 

lumen. 

 

In conclusion, EGFR sorting was not affected by the absence of SDCCAG3. This 

data was in line with the previous observation in the current study that depletion of 

SDCCAG3 had no effect on the surface or total levels of EGFR.    
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Figure 4.7 (a) Confocal cross sections depicting distribution of Alexa Fluor 647 conjugated 

EGF after 1 hour of stimulation in the presence of leupeptin (100 nM) in HeLa cells treated 

with control or SDCCAG3 no. 3 siRNA and co-expressing Rab5
Q79L

GFP. Scale bars 

represent 5µm. (b, c) Line scale analysis of the enlarged endosomes highlighted in the insets. 

(d)  Graphical represenation of the quantification of middle fluorescence intensity of EGF-

647 expressed as a percentage. Unpaired student’s t-test (n=33,N=3), two-tailed, *p<0.05, 

p=0.829, ns stands for not significant, error bars represent ±s.e.m.              
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4.3.2 Molecular machinery involved in sorting Fas receptors  

 

4.3.2.1 SDCCAG3 interacts with Dysbindin  

To decipher the molecular mechanism by which SDCCAG3 regulates sorting of Fas 

receptors, an association of SDCCAG3 with endosomal sorting machinery was 

examined. Two studies employing proteomic approaches,  immunoprecipitation, and 

affinity capture-mass spectrometry, identified dysbindin as the interaction partner of 

SDCCAG3 [156, 157]. Dysbindin drew our attention as it interacts directly with the 

core sorting machinery component HRS (ESCRT-0). It has been described 

previously as an accessory protein linking GPCRs to ESCRT machinery [58, 59]. 

Therefore, the interaction between SDCCAG3 and Dysbindin was tested. Lysate 

from HeLa cells was incubated with GST tagged SDCCAG3 protein on glutathione 

agarose beads. Endogenous dysbindin was affinity precipitated as a 50 kDa band 

with GST-SDCCAG3 pulldown only and not with GST on beads alone. Therefore, 

this data confirmed the interaction between SDCCAG3 and dysbindin as suggested 

previously.      

 

     

 

 

       

 

 

 

 

 

 

 

Figure 4.8: Immunoblot analysis of affinity precipitation of endogenous Dysbindin with 

GST-SDCCAG3 immobilized on glutathione sepharose beads in HeLa cells. Input represent 

10% of the total lysate. GST and GST-SDCCAG3 bands were stained with Ponceau S and 

labelled with an arrow.   
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4.3.2.2  Localization of SDCCAG3 and Dysbindin on endosomes  

Next, it was examined whether SDCCAG3 and dysbindin co-localize together to 

form a complex as suggested by the above data. To visualize the distribution of 

SDCCAG3 and dysbindin on endosomes easily, constitutively active Rab5
Q79L

GFP 

was used to create enlarged endosomes. These endosomes enabled localization of 

SDCCAG3, dysbindin, and HRS on the limiting membrane easily. Intracellular 

localization of endogenous SDCCAG3 was examined in HeLa cells treated with 

control or SDCCAG3 siRNA and co-expressing Rab5
Q79L

GFP. SDCCAG3 localized 

to the limiting membrane of the enlarged endosomes only in control cells and not in 

SDCCAG3 depleted cells (Figure 4.9). Therefore, the staining pattern observed for 

endogenous SDCCAG3 was specific.           

 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Immunofluorescence analysis of localization of endogenous SDCCAG3 on 

Rab5
Q79L

 mediated enlarged endosomes in HeLa cells treated with control or SDCCAG3 

no.3 siRNA. Endosomes were labelled with GFP and SDCCAG3 was labelled with Alexa 

594 secondary antibody. Confocal cross sections show localization of SDCCAG3 (red) on 

the enlarged endosomes in control cells only. Cropped panels highlight the representative 

examples. Scale bars, 5µm. 
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Furthermore, localization of dysbindin and HRS was also examined. HeLa cells co-

expressing Rab5
Q79L

GFP and dysbindin-flag were imaged using a confocal 

microscope. Qualitative analysis of the cross-sections revealed that dysbindin 

occupied distinct microdomains on these enlarged endosomes (Figure 4.10.a). In line 

with the previous studies, HeLa cells transiently expressing HRS showed uniform 

staining all over the boundary of the endosomes (b). Next, co-localization between 

SDCCAG3 and dysbindin or HRS was analysed by confocal microscopy. 

Representative cross-sections showed that puncta of endogenous SDCCAG3 co-

localized with the puncta of transiently expressed dysbindin-flag on the enlarged 

endosomes (c). Since HRS-RFP localized evenly on the surface of the endosomes 

therefore, it was present in the SDCCAG3 containing microdomains of the 

endosomes as well (d).   

 

Thus, this data suggest that the complex formed between SDCCAG3 and dysbindin 

might be present in the HRS positive endosomes. Additionally, the presence of HRS 

confirmed the early endosomal origin of the artificially created enlarged endosomes. 

Taken together, this data supports the hypothesis that SDCCAG3 might form a 

complex with dysbindin in the early/sorting endosomes in order to regulate ESCRT 

mediated sorting of Fas receptors into ILVs. However, further analysis of the role of 

dysbindin and HRS in mediating sorting of Fas receptors was required to support this 

hypothesis.   
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Figure 4.10: Immunofluorescence analysis of intracellular localization of SDCCAG3, 

Dysbindin and HRS. (a) Confocal cross sections of HeLa cells co-expressing Rab5
Q79L

 GFP 

(green) and Dysbindin-Flag (red) show localization of Dysbindin on the boundary of the 

enlarged endosomes (inset) as indicated by the arrows in inset panel. (b) Representative 

confocal image showing presence of HRS on the enlarged endosomes in HeLa cells co-

expressing Rab5
Q79L

GFP (green) and HRS-RFP (red). (c) Triple labelling in HeLa cells co-

expressing Rab5
Q79L

GFP (green) and Dysbindin-Flag (red), and stained for endogenous 

SDCCAG3 (blue). SDCCAG3 co-localized with Dysbindin on the enlarged endosomes as 

indicated by the arrows in inset panel. (d) Triple labelling in HeLa cells co-expressing 

Rab5
Q79L

GFP (green) and HRS-RFP (red), and stained for endogenous SDCCAG3 (blue). 

Arrows indicate locations on the enlarged endosomes where SDCCAG3 co-localized with 

HRS. Scale bars represent 5µm. 
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4.3.2.3 SDCCAG3 regulates sorting of Fas receptors via Dysbindin-HRS 

endocytic sorting machinery    

To further investigate the association of SDCCAG3 with dysbindin and HRS, 

surface levels of Fas receptors were examined upon their depletion. It was 

hypothesised that if dysbindin and HRS are forming a complex to regulate Fas R 

trafficking then their depletion should have an effect on its trafficking. HeLa cells 

were treated with control, dysbindin and HRS siRNA and surface levels were 

observed via flow cytometry. Figure 4.11 (a) shows histograms representing 

fluorescence intensity of the surface Fas receptors under different treatment 

conditions as indicated. As compared to the control siRNA treated cells, levels of 

surface Fas receptors increased upon depletion of dysbindin and HRS. Double 

knockdown of dysbindin and SDCCAG3 also showed elevated levels of Fas 

receptors as expected. However, the amount of increase in Fas R surface levels upon 

double knockdown was comparable to dysbindin only knockdown suggesting that 

SDCCAG3 and dysbindin act along the same pathway in regulating intracellular 

trafficking of Fas R. Quantification of the surface levels confirmed that the increase 

in the surface levels of Fas R was significantly higher in dysbindin, HRS and double 

knockdown of SDCCAG3 + dysbindin as compared to the control siRNA treated 

cells (b). Efficiency of the knockdown was also confirmed in all the treated cells (c).                  

 

This data strongly suggest that SDCCAG3 forms an endocytic complex with 

dysbindin and HRS to regulate intracellular trafficking of Fas receptors which in turn 

affects its surface presentation in HeLa cells.      
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Figure 4.11: (a) Flow cytometry analysis of the surface levels of Fas R in dysbindin, HRS 

and dysbindin + SDCCAG3 siRNA treated HeLa cells. Surface Fas R were labelled with 

Anti-FAS (DX-2) antibody for 1 hour on ice. Alexa-488 conjugated secondary antibody was 

used to analyse the surface intensity via FACSCalibur™. Only secondary antibody staining 

was used as the negative control. (b) Quantification of the fluorescence intensity of labelled 

surface Fas R in HeLa cells. One way-ANOVA, Dunnett’s multiple comparisons test from 

three independent experiments (n=3),*p<0.05, p=0.0254, error bars represent ±s.e.m. (c) 

Immunoblot analysis of the knockdown efficiency of the indicated proteins. The arrow 

indicates endogenous SDCCAG3 band. ß-tubulin was used as a loading control.  
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4.3.2.4 Dysbindin and Hrs are involved in the same pathway as SDCCAG3 to 

regulate intracellular trafficking of Fas receptors  

Since depletion of dysbindin and HRS affected intracellular trafficking of Fas R 

therefore, it was hypothesised that they might be involved in intraluminal sorting of 

Fas R into MVBs in the same manner as SDCCAG3. To monitor any such ILV 

sorting defect, HeLa cells that transiently expressed Rab5
Q79L

GFP were treated with 

control, dysbindin and HRS siRNA. Cells were then stimulated with agonistic Anti-

Fas (CH-11) antibody for 1 hour in the presence of leupeptin as described before. 

Qualitative analysis of the immunofluorescence data in Figure 4.12 (a) showed that 

after 1 hour of stimulation Fas receptors in the lumen of the enlarged endosomes in 

case of control cells. In contrast, dysbindin siRNA treated cells showed localization 

of Fas R mostly on the limiting membrane but some amount of fluorescence was 

also observed inside the lumen. Consistent with the previous literature, depletion of 

HRS led to a redistribution of Fas receptors in the limiting membrane of the enlarged 

endosomes predominantly. Fas receptors that localized on the limiting membrane 

occupied discrete subdomains on them and did not stain the limiting membrane 

uniformly. More than 50 endosomes were quantified form three independent 

experiments for each sample and line scale analysis was performed to calculate the 

fluorescence intensity of Fas receptors in the middle of the lumen that was expressed 

as % middle fluorescence. Quantification of the middle fluorescence as shown in (b) 

confirmed that depletion of dysbindin and HRS led to defects in intralumenal sorting 

of Fas receptor as compared to the control significantly. Depletion of HRS had a 

larger impact on the sorting of Fas receptors into MVBs as compared to dysbindin 

depletion.            

 

This data proves that Fas receptor sorting is affected by dysbindin and HRS which 

act together as a sorting complex. It also strongly support the hypothesis that 

SDCCAG3 mediates Fas R sorting via dysbindin-HRS endocytic machinery.            
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Figure 4.12: (a) Immunofluorescence analysis of ILV sorting of Fas receptors into MVBs in 

control, dysbindin and HRS siRNA treated HeLa cells co-expressing Rab5
Q79L

GFP. Cells 
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were stimulated with agonistic Anti-Fas (CH-11) antibody (1µg/ml) for 1 hour in the 

presence of leupeptin (100nM) and stained with Alexa-594 conjugated secondary antibody. 

Images were acquired using a confocal microscope. Representative confocal cross sections 

have been displayed for each treatment condition as indicated. Examples of the cropped 

endosomes have been highlighted in insets. Scale bars represent 5µm in all the panels. (b) 

Graphical representation of the fluorescence intensity of Fas receptors found in the lumen of 

the enlarged endosomes and expressed as a percentage. Quantification was done using line 

scale analysis in Image J as described before. Data was collected from three independent 

experiments and analysed using One way ANOVA, Dunnett’s multiple comparisons test, 

n=52, ****p<0.0001, error bars represent ±s.e.m.  
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5 Role of SDCCAG3 in apoptotic signalling  

 

5.1 Introduction  

Once stimulated by its ligand, Fas receptors cluster together on the surface to initiate 

downstream apoptotic signalling. Therefore, surface levels of Fas receptors greatly 

influence the downstream signalling events i.e. higher expression of Fas receptors 

can lead to faster onset, increased rate of signalling and vice versa. Previous data in 

this study has shown that knockdown of SDCCAG3 increased surface levels of Fas 

receptors in HeLa and HCT116 cells as well as increased their resident time in the 

early endosomes. Death receptors from TNF superfamily have been implicated in 

mediating apoptotic signalling from early endosomes by assembling DISC. 

Therefore, it could be hypothesised that increased levels of surface receptor and 

delay in their transition from early-to late endosomes or lysosomes would increase 

the rate of apoptotic signalling as well. This hypothesis was supported by the 

unpublished data from Erdmann laboratory which showed that HeLa cells subjected 

to different concentrations of agonistic anti-FAS (CH-11) antibody for 6 hours had 

significantly lower amount of viable cells in SDCCAG3 knockdown sample as 

compared to the control. The levels of non-viable cells in SDCCAG3 knockdown 

samples were comparable to PTPN13 knockdown samples. Since PTPN13 has been    

 

Figure 5.1:  Cell viability measured by MTT assay. HeLa cells treated with SDCCAG3 

no.1, PTPN13 or control siRNA were subjected to stimulation with agonistic anti-FAS (CH-

11) antibody at different concentrations in the presence of 2µg/ml of cycloheximide for 6 

hours. A dose response curve was generated to measure the amount of dead cells expressed 
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as % loss of cell viability. Data was obtained from three independent experiments (n=3), 

**p<0.01, ***p<0.001, ± s.e.m. Unpublished data by Fangyan Yu, Erdmann lab.       

 

shown to negatively regulate the surface levels and apoptotic signalling of FasR, 

therefore, it was hypothesised that SDCCAG3 and PTPN13 might act together in the 

same pathway to regulate FasR trafficking.     

As mentioned before in chapter 1, caspases play a pivotal role in carrying out 

programmed cell death or apoptosis. They cleave their substrates in a specific 

manner by using cysteine residue in their catalytic site [95]. Upon stimulation, Fas 

receptors activate caspase 8 that in turn activates executioner caspases like caspase 3. 

Several lines of evidence suggest that in Fas activated apoptosis, caspase 3 cleaves 

pro-caspase 6 to produce active caspase 6 [94].  Recently, a study identified 

SDCCAG3 as a substrate of caspase 6 [160]. 2-dimensional electrophoresis/MALDI-

TOF was performed to identify new substrates of caspase 6 and the analysis revealed 

that recombinant caspase 6 was able to cleave SDCCAG3 in HepG2 cell extracts. 

The study also subjected HeLa cells to staurosporine (STS) treatment to induce 

apoptosis in the presence or absence of caspase inhibitors. The immunoblot analysis 

showed an intact 48kDa band corresponding to endogenous SDCCAG3 in untreated 

and STS + caspase 6 inhibitors treated cells. In contrast, this 48kDa band 

disappeared in STS treated cells suggesting cleavage of SDCCAG3. Therefore, 

levels of SDCCAG3 were being affected upon STS treatment and required further 

analysis. Unpublished data from Erdmann lab showed that transiently expressed 

SDCCAG3 was cleaved during stimulation with an agonistic anti-Fas antibody. This 

cleavage was only observed upon stimulation and not in the absence of stimulation 

or in the presence of caspase inhibitors suggesting the SDCCAG3 was specifically 

cleaved by active caspases only (figure 5.2). Increased surface levels of FasR and 

decreased cell viability upon treatment with SDCCAG3 siRNA along with cleavage 

of SDCCAG3 by an executioner caspase provided compelling pieces of evidence to 

hypothesise that SDCCAG3 negatively regulated apoptosis.  
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Figure 5.2: SDCCAG3 is cleaved upon activation of FasR. Overexpressed SDCCAG3-

myc (55kDa) was cleaved upon activation of Fas mediated apoptotic signalling to a produce 

a 35 kDa band after 3 hours of treatment (indicated by an arrow) with Anti-Fas (CH-11) and 

cycloheximide. In contrast, SDCCAG3-myc by cycloheximide alone or in the presence of 

pan caspase inhibitor (z-vad-fmk).Unpublished data by Fangyan Yu, Erdmann lab. 

 

5.2 Aim 

On the basis of the hypothesis that SDCCAG3 acted along the same pathway as 

PTPN13 for regulating Fas mediated apoptotic signalling, changes in the expression 

levels of SDCCAG3 would affect the rate of apoptosis. Therefore this chapter 

focussed on-  

(i) Determining the rate of apoptotic signalling upon depletion of SDCCAG3   

(ii) To confirm that SDCCAG3 is a substrate of caspase 6 

(iii) To analyse if PTPN13 and SDCCAG3 acted together as a complex to 

mediate trafficking of FasR       
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5.3  Results  

5.3.1  Depletion of SDCCAG3 increases the rate of caspase 8 cleavage   

HeLa cells were treated with control or SDCCAG3 siRNA and subjected to 

stimulation by agonistic anti-Fas (CH-11) antibody. As a result of stimulation, full 

length caspase 8 (p55/54) was cleaved into a larger fragment (p43/41) and a smaller 

fragment (p18). The smaller fragment represents the active caspase enzyme of 18 

kDa as shown by the arrow in figure 5.3 (a) below. No detectable amount of caspase 

8 cleavage occurred after 1 hour of stimulation with 500ng/ml of agonistic antibody 

but after two hours more amount of cleaved caspase 8 fragments were present in 

SDCCAG3 depleted cells. Quantification of the cleaved fragment revealed that the 

difference between the amount of active caspase 8 enzyme present in SDCCAG3 

depleted and control cells was statistically significant (b). Since caspase 8 is the 

initiator caspase therefore more active caspase 8 implies increased and faster 

apoptotic signalling in SDCCAG3 depleted cells. 

 

Figure 5.3: Caspase 8 cleavage upon FasR activation in HeLa cells. Immunoblot analysis 

of HeLa cells treated with control or SDCCAG3 no. 3 siRNA. Cells were activated with 

500ng/ml Anti-Fas (CH-11) and 50 µg/m of cycloheximide for indicated time points. Active 

caspase 8 fragment of 18kDa was detected by anti-caspase 8 antibody. (b) Quantification of 

active caspase 8 fragment (p18) normalized to ß-tubulin in the treated samples. Blots were 

quantified using ImageJ. Data was collected from three independent experiments (n=3), 

Sidak’s multiple comparisons test was performed, *p<0.05, error bars represent ±s.e.m.     

Similar results were obtained in HCT116 cells as well. As compared to the control 

cells, SDCCAG3 depleted HCT116 cells showed accumulation of more active 
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caspase 8 enzyme (p18 fragment) after 2 and 3 hours of stimulation with agonistic 

anti-Fas (CH-11) antibody (a). It can be seen that accumulation of active caspase 8 

fragments increased with time. The difference in the amount of cleaved caspase 8 

was found to be statically significant (b) suggesting that SDCCAG3 negatively 

regulates apoptotic signalling in HCT116 cells.    

 

 

Figure 5.4 Immunoblot analysis of caspase 8 cleavage in HCT116 cells. Cells were 

treated with control or SDCCAG3 no.2 siRNA and incubated with 500 ng/ml of Anti-Fas 

(CH-11) antibody and 50 µg/ml of cycloheximide for the indicated time points. ß-tubulin 

was used as negative control. (b) Quantification of cleaved caspase 8 fragments (p18) in 

control and SDCCAG3 knockdown samples normalized to ß-tubulin. X-ray films were 

scanned and quantified with ImageJ. Sidak’s multiple comparisons (n=3), *p<0.05, 

**p<0.01 error bars represent ±s.e.m. 

 

5.3.2       SDCCAG3 is cleaved upon activation of Fas mediated apoptosis  

Based on the evidence from the literature, recombinant SDCCAG3 was examined as 

a substrate of caspase 6. Since the unpublished data from Erdmann lab indicated 

cleavage of exogenously expressed SDCCAG3, therefore, recombinant SDCCAG3 

was analysed to show its cleavage by caspase 6. N-terminus GST tag version of 

SDCCAG3 was produced and purified from a bacterial strain as shown below in 

figure 5.5. The coomassie staining revealed the presence of non-specific bands along 

with the purified GST tagged SDCCAG3 of the correct molecular weight as 

indicated by the arrow. The presence of these non-specific bands could be attributed 

to bacterial proteins binding non-specifically to GST beads apart from the GST 
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tagged protein or it could be due to degradation of the purified product during 

production.       

 

 

 

 

 

 

 

 

 

Figure 5.5: Coomassie Blue staining for recombinant SDCCAG3. GST-SDCCAG3 

expression construct was transformed and purified from E.Coli. The staining shows fractions 

before and after induction with IPTG, and pull down fraction with GST beads. Recombinant 

SDCCAG3 (marked by an arrow) was then eluted form the beads and used for further 

analysis.   

 

Recombinant GST tagged SDCCAG3 was incubated with active caspase 6 obtained 

commercially. The reaction was carried out in a caspase buffer either in the presence 

or in the absence of pan-caspase inhibitor z-VAD-fmk. As shown in below in figure 

5.6, GST-SDCCAG3 could be detected as a band of ~90kDa which was cleaved only 

in the presence of caspase 6 to produce a smaller band of ~60kDa (highlighted by an 

asterisk). This band was not observed in the samples containing no caspase 6 enzyme 

or caspase 6 enzyme in the presence of z-VAD-fmk. The data is in line with both 

aforementioned literature and unpublished data from Erdmann lab. On logical 

grounds, cleavage of recombinant SDCCAG3 should produce at least two additional 

fragments-larger and a smaller fragment. However, coomassie staining in the data 

above revealed only one additional band (~60kDa) apart from the parent SDCCAG3 

band (~90kDa). It could be due to the limitation of the detection method or the 
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Figure 5.6: Coomassie Blue staining of GST-SDCCAG3 cleavage by Caspase 6. 

Recombinant SDCCAG3 alone, with active caspase 6 enzyme or with caspase 6 in the 

presence of z-VAD-fmk was incubated at 37°C for 1 hour in the caspase assay buffer. GST-

SDCCAG3 was cleaved by capsase6 specifically to produce a ~60kDa band indicated by the 

asterisk. (N=3) 

 

presence of non-specific bands that could interfere with the detection of cleaved 

fragments. Therefore, anti-SDCCAG3 antibody which recognises its C-terminus was 

used to examine the presence of cleaved bands upon incubation with active caspase 6 

enzyme. Recombinant SDCCAG3 was incubated alone or with active caspase 6 

enzyme in the presence or absence of a pan-caspase inhibitor. Immunoblot analysis 

with anti-SDCCAG3 revealed the presence of a ~25kDa band only in the lane 

containing the active enzyme and not in the other two lanes (figure 5.7). This 

indicated that the observed band is a specific cleavage product.  

Taken together, these observations suggest that recombinant GST tagged SDCCAG3 

(~90kDa) is cleaved by caspase 6 enzyme possibly to produce a larger fragment of 

around 60kda and a smaller fragment of approximately 30kDa. This data also 

suggests that most likely that caspase 6 cleavage site might be in the C-terminus 

region of SDCCAG3. However, this data alone cannot exclude the possibility of the 

existence of more than one caspase 6 cleavage site on SDCCAG3.     
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Figure 5.7: Analysis of the caspase 6 cleavage site on SDCCAG3. Immunoblot analysis of 

the recombinant SDCCAG3 under indicated treatments conditions showing a unique cleaved 

product of 30kDa in the middle lane only as indicated by the arrow and highlighted in a 

yellow box.   

 

5.4 Analysis of PTPN13 localization with Fas receptors  

Data obtained in chapter 3 showed co-localization between SDCCAG3 and 

internalized FasR in the early/sorting endosomes. It was also hypothesised that 

SDCCAG3 might be forming a complex with PTPN13 to regulate FasR trafficking.  

However, the available antibodies against SDCCAG3 and PTPN13 were from the 

same species which prevented any examination of direct co-localization between 

them. Hence, co-localization between PTN13 and internalized FasR in early/sorting 

endosomes was examined.            

5.4.1 PTPN13 co-localized with internalized Fas receptors  

Fas receptors in HeLa cells were stimulated with the agonistic CH-11 antibody as 

described before. Before internalization, at 0 minute, receptors can be seen on the 

surface of HeLa cells but after 5 minutes of stimulation they could be observed as 

intracellular punctae. In case of PTPN13, mostly intracellular punctate staining was 

observed at 0 minutes with occasional instance of co-localization with Fas receptors 

on the surface. However, after 5 minutes of stimulation of Fas receptors, PTPN13 

appeared to change its intracellular distribution and co-localize with internalized Fas 

receptors (figure 5.8, a).     
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Figure 5.8: Analysis of co-localization between PTPN13 and FasR. (a) 

Immunofluorescence analyses of the co-localization between endogenous PTPN13 and Fas 

receptors. HeLa cells were stimulated with 1µg/ml of anti-Fas (CH-11) antibody (green) for 

the indicated time points. Cells were fixed and stained for PTPN13 (red). Scale bar 

represents 5µm. (b) Quantification of the co-localization observed in (a). Pearson’s 

correlation coefficient was calculated using JACoP tool in image J. Data represents average 

form three independent experiments (N=3) form at least (n>30 cells). Student’s t-test, 

**p<0.05, error bars represent ±s.e.m.      

 

Quantification of the correlation coefficient of 

co-localization between PTPN13 and FasR 

revealed a significant difference between 0 and 

5 minutes (b). This data suggests that PTPN13 

mainly co-localizes with the internalized FasR 

population. This data is also in line with 

previous studies that suggested co-localization 

between PTPN13 and FasR at the cell surface.     

5.4.2 PTPN13 and Fas receptors co-localize in the early endosomes  

Next, it was examined if PTPN13 co-localized with internalized FasR in early 

endosomes or not. It was hypothesised that PTPN13 might form a complex with 

SDCCAG3 at early endosomes which might serve as a possible link between 

SDCCAG3 and FasR. On the basis of this idea, sub-cellular compartment where 

PTPN13 and internalized FasR co-localised was examined. For this triple labelling, 
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EEA-1, a marker for early endosomes was used since internalized FasR were 

previously shown to enter the EEA-1 positive compartments. At 0 minute time point, 

intracellular staining of PTPN13 and EEA-1 receptors were observed and FasR were 

seen on the surface. However, after 5 minutes of internalization FasR and PTPN13 

were seen in EEA-1 positive compartments. Thus, this data supports the hypothesis 

that PTPN13 might be forming a complex with SDCCAG3 at early endosomes to 

regulate FasR trafficking.      

          

 

Figure 5.9: Sub-cellular localisation of FasR and PTPN13. Immunofluorescence analysis 

of PTPN13 (red), FasR(green) and EEA-1 (white) in HeLa cells stimulated with 1µg/ml anti 

Fas CH-11 antibody for the indicated time points. Arrows highlight the puncta that co-

localized in all three channels. Scale bar represents 5µm.     
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6 Discussion  

 

6.1 SDCCAG3 regulates post-endocytic trafficking of FasR 

The current study demonstrates that SDCCAG3 is a novel player in apoptotic 

signalling such that it negatively regulates Fas mediated apoptosis by sorting Fas 

receptors towards lysosomal degradation. Expression levels of SDCCAG3 were 

shown to affect the surface presentation of Fas receptors, which was investigated 

using three different approaches. Firstly, semi-quantitative fluorescent microscopy 

showed that depletion of SDCCAG3 expression levels led to increased surface levels 

of FasR in HeLa cells. Quantification of the images revealed an almost 2-fold 

increase in the surface intensity of FasR in SDCCAG3 siRNA treated cells (figure 

3.2). This data was further validated as the antibody used for detecting Fas receptors 

was shown to be specific (did not produce any surface staining in the Fas siRNA 

treated cells), and the efficacy of the siRNA was proved by western blotting. The 

antibody detection of endogenous SDCCAG3 produced multiple bands between 70 

and 55kda which disappeared upon treatment with SDCCAG3 siRNA except two 

non-specific bands at the bottom of the multiple bands of SDCCAG3. These multiple 

bands were seen due to phosphorylation as demonstrated previously [123].  

 

Secondly, data obtained from the microscopic analysis was confirmed with  flow 

cytometry that allowed precise quantification of the surface levels. Analysis of the 

histograms obtained in HeLa cells showed statistically significant increases in the 

surface intensity of Fas receptors in the absence of SDCCAG3 expression levels 

(figure 3.5). Three different siRNA against SDCCAG3 showed consistent phenotype 

which supported the specificity of the phenotype observed with individual siRNA. 

However, the reason for difference in the extent of the phenotype observed between 

SDCCAG3 siRNA no.1 and 2 or 3 is not clear since due the knockdown efficiency 

of three siRNA used was comparable. Another TNF receptor superfamily member, 

TRAIL R1 was not affected by the expression levels of SDCCAG3. This data was 

consistent with a previous study which used a custom made siRNA against 

SDCCAG3 and observed no difference in the surface levels of TRAIL R1 upon 

knockdown of SDCCAG3 via flow cytometry [35]. Regulation of TNFR1 surface 
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levels by SDCCAG3 has also been implicated before in a study which showed that 

transient expression of a truncated version of SDCCAG3 containing only the coiled-

coil domain led to decreased surface levels of TNFR1 [124]. The study claimed that 

an expression construct containing only coiled-coil domain represented a dominant 

negative version of SDCCAG3. However, data gathered in the current study does not 

lend support to the view that loss-of-function of SDCCAG3 reduces surface levels of 

the receptors in the TNF family; on the contrary, it could be suggested that 

overexpression of the coiled-coil domain might instead lead to the gain-of-function 

phenotype. Two other receptors that follow distinct endocytic routes like EGFR and 

Transferrin were also not affected by SDCCAG3 expression levels suggesting that 

regulation of FasR surface levels by SDCCAG3 was highly specific.  

 

Thirdly, cell surface biotinylation data was consistent with the previous results i.e. 

depletion of SDCCAG3 increased surface levels of FasR specifically and had no 

effect on other receptors like EGFR, transferrin, and N-cadherin (figure 3.8). 

Independent use of more than two or more siRNA against the same target helps in 

differentiating true phenotype in comparison to the ‘off-target’ effects as well as 

increases confidence in the data obtained. Hence, three different siRNA against 

SDCCAG3 were tested.  A similar phenotype was observed upon knockdown of 

SDCCAG3 with these three different siRNA; however, the severity of the phenotype 

between SDCCAG3 no.1 and 2 or 3 siRNA knockdown samples was different. A 

gold standard in validating the phenotype observed upon siRNA treatment is the 

rescue of the effect by expression of a siRNA-resistant version of the gene. Increased 

surface levels of FasR could be rescued upon restoring the expression levels of 

SDCCAG3 by introducing siRNA resistant constructs (figure 3.9). These results 

provided confirmatory evidence that SDCCAG3 expression levels affected surface 

levels of FasR.  

 

Cell surface biotinylation allowed analysis of both the surface and total pool of the 

receptors. SDCCAG3 expression levels only affected surface levels of FasR and not 

the total levels in case of SDCCAG3 no.1 and 2 siRNA however, a slight increase in 

case of SDCCAG3 no.3 siRNA was observed in HeLa cells (figure 3.8). The effect 

of SDCCAG3 expression levels on the surface presentation of FasR were tested in 
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another epithelial cell line called HCT116. The data obtained in HCT116 cells 

showed an increase in both the surface and total levels of FasR upon depletion of 

SDCCAG3 via cell surface biotinylation (figure 3.10) and flow cytometry (figure 

3.11). Often increase in the total levels of proteins could be attributed to an increased 

transcriptional activity (mRNA levels) of the protein. In order to rule out any 

transcriptional effect on Fas receptors upon depletion of SDCCAG3, mRNA levels 

of Fas receptors were measured. The knockdown of SDCCAG3 had no effect on the 

transcriptional activity of FasR as no significant difference was observed in the 

mRNA levels of Fas upon depletion of SDCCAG3 with three different siRNA 

(figure 3.14). This data further corroborated the notion that SDCCAG3 affects the 

surface presentation of FasR.   

 

It was hypothesised that an increase in the surface levels could be a consequence of 

the altered trafficking and so the rate of endocytosis of FasR was analysed by flow 

cytometry. However, depletion of SDCCAG3 did not appear to affect the rate of 

FasR endocytosis (figure 3.15).  In type I and not in type II cells, activation of FasR 

is often described to be preceded by internalization. In this study, around 60% of 

FasR were internalized rapidly within 15 minutes of stimulation leaving a smaller 

fraction of FasR on the surface. On the basis of this data, it could be speculated that 

HeLa cells in this study had a tendency to behave more like type I cells. Instead of 

altered trafficking, SDCCAG3 was found to be rather involved in regulating the 

basal turnover and degradation of internalized Fas receptors (figure 3.19). In steady- 

state cells, SDCCAG3 depleted sample showed an increased expression of 

exogenous FasR specifically as it had no effect on the overexpressed E-cadherin 

receptors. This upregulation in the expression levels could be explained due to 

defects in the degradation of internalized FasR as SDCCAG3 depletion slowed down 

the rate of degradation upon stimulation with an agonistic antibody (figure 3.20). It 

is not clear as to why total levels of endogenous FasR did not change upon 

SDCCAG3 depletion in HeLa cells, although increased expression was found in 

HCT116 cells. In summary, depletion of SDCCAG3 increased surface levels of Fas 

receptor without inhibiting its rate of endocytosis but delaying the rate of 

degradation of exogenous Fas receptors suggesting that SDCCAG3 might interfere 

in the endosomal sorting of FasR.  
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6.2 SDCCAG3 co-localizes with FasR in early endosomes and regulates their 

sorting towards late endosome/lysosome 

SDCCAG3 has been shown to localize to early endosomes and partially co-localize 

with EEA-1 before [123]. Microscopic analysis data in the current study showed that 

SDCCAG3 co-localizes with internalized FasR in EEA-1 positive endosomes (figure 

3.23). The instance of co-localization measured as correlation coefficient decreased 

after 15 minutes of internalization suggesting that co-localization was rather 

transient, giving insight into the molecular events following internalization of FasR 

in HeLa cells (figure 3.22). Systematic analysis of the localization with different 

endosomal markers (EEA-1 and Lamp-1) revealed that depletion of SDCCAG3 traps 

FasR into early endosomes that are internalized following stimulation with an 

agonistic antibody (figure 3.24). Since depletion of SDCCAG3 only delayed the rate 

of degradation and did not inhibit it completely, therefore, it can be understood that 

depletion of SDCCAG3 might be causing only a delay in transitioning of FasR from 

early to late endosomes (figure 3.20). Similarly, continuous uptake of a non-

agonistic antibody against FasR also revealed the accumulation of FasR in early 

endosomes in SDCCAG3 depleted cells (figure 3.25). Similar studies have been 

performed that tested free uptake of an antibody to reveal intracellular localization of 

receptors under different treatment conditions [161]. The current data is not 

consistent with a previous study that showed depletion of SDCCAG3 mislocalized 

receptors like Glut1 and CD97 to lysosomes and reduced their surface as well as 

total levels in HeLa cells [35]. Although authors of that study showed depletion of 

SDCCAG3 reduced levels of Glut1 (which could be rescued by bafilomycin, a 

lysosomal blocker) but no accumulation of Glut-1 in Lamp-1 positive vesicles was 

shown in that study. Furthermore, only a minor phenotype was observed by them in 

case of CD97 receptor which showed a slight but significant reduction in the surface 

level upon depletion of SDCCAG3 along with mild phenotype of mislocalization to 

lamp-1 that was not analysed statistically. The authors used a different siRNA 

(custom made) against SDCCAG3 as compared to the current study to knockdown 

SDCCAG3. It is not clear if use of a different siRNA could be the reason for the 

discrepancy observed between their data and the current study.  
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As described before, surface receptors destined for degradation are sorted into the 

intraluminal vesicles of the multi-vesicular bodies that mature into late endosomes 

and fuse with the lysosomal bodies where the protein degradation is executed [17]. 

Clathrin mediated internalization of FasR to form signalling platforms in the early 

endosomes has been described before [86]. It can be speculated that this pathway 

might lead to sorting of Fas receptors towards lysosomes in order to attenuate 

apoptotic signalling. However, endolysosomal pathway of Fas receptors has not been 

described yet. Therefore, the current study explored the mechanism behind post-

endocytic trafficking of Fas receptors. Enlarged endosomes created by constitutive 

expression of Rab5 was used as the main tool in this study to examine the transport 

of Fas receptors into ILVs. This approach has been used in many other studies in the 

past to demonstrate sorting of receptors in to ILVs [33, 59, 162-164].     

 

In-depth analysis of the molecular mechanism of sorting of FasR into lysosomes in 

the current study lends firm support to the claim that SDCCAG3 is involved in 

sorting of FasR to the lysosomes. Depletion of SDCCAG3 increased accumulation 

of FasR in the limiting membrane of the enlarged endosomes suggesting a defect in 

sorting of FasR into intraluminal vesicles of MVBs (figure 4.2). This data was 

consistent with the previous observations and provided an explanation as to why 

depletion of SDCCAG3 led to an accumulation of FasR in early endosomes 

ultimately leading to a delay in degradation. Super resolution microscopy also 

confirmed these observations and three dimensional reconstructions of the images 

enabled clear localization of FasR at the limiting membrane in SDCCAG3 depleted 

cells in contrast with localization inside intraluminal vesicle in control cells (figure 

4.3). Since depletion of SDCCAG3 affected trafficking of FasR not only after 

stimulation but at steady-state levels as well, therefore, sorting of FasR into ILVs 

was analysed using a non-agonistic antibody. Continuous uptake of a non-agonistic 

antibody against FasR showed accumulation inside the intraluminal vesicle only in 

case of control cells and not in SDCCAG3 depleted cells (figure 4.4). This data was 

consistent with the previous results and established the requirement for SDCCAG3 

in sorting of FasR under steady-state conditions. However, it should be noted that 

SDCCAG3 depletion did not inhibit the entry of FasR into the intraluminal vesicle 

but caused merely a delay in sorting as longer time points for antibody feeding 
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showed no significant difference in the intraluminal localization of FasR between 

control and SDCCAG3 depleted cells (figure 4.5). This observation could be due to 

either impartial knockdown of SDCCAG3 or due to involvement of other molecular 

components, compensatory pathways mediating sorting of FasR under steady-state.          

 

Defects in FasR sorting were found to be specific as depletion of SDCCAG3 did not 

affect sorting of EGF (figure 4.6) and transferrin receptors (figure 4.7). The current 

data about transferrin receptor sorting is in agreement with the literature as an 

overwhelming amount of evidence supports that transferrin receptors are sorted 

towards the recycling pathway and not into the intraluminal vesicle [20, 159]. 

Previous studies have shown that EGFR is ubiquitinated using ubiquitin ligase called 

Cbl which has been implicated in facilitating its clathrin mediated endocytosis and 

sorting into MVBs [39].  

 

SDCCAG3 was described as a retromer-WASH complex associated protein [51] and 

as a part of the retromer-SNX27 complex, it was implicated in endosome-to-PM 

sorting as mentioned above [35]. Hence, the current study describes a function of 

SDCCAG3 that is inconsistent with its role as a retromer associated protein. 

However, on logical grounds, there is no compelling reason to argue that retromer 

associated proteins cannot be involved in opposing or multiple intracellular 

trafficking pathways. In fact, some sorting nexins like SNX5 and SNX1 which are a 

part of the core retromer machinery have been shown previously to mediate 

endosome-to-lysosomal trafficking of some surface receptors.  For example, a study 

highlighted the role of PIPKIγi5 (type 1 gamma phosphatidylinositol phosphate 5-

kinase) in collaborating with SNX5 to facilitate interaction between HRS and 

ubiquitinated EGFR. SNX5 is a known retromer associated protein. While loss of 

other retromer components such VPS35 or VPS26 did not have any effect on the 

lysosomal degradation of EGFR, loss of SNX5 prevented sorting of EGFR into ILVs 

resulting in a prolonged EGFR signalling [165]. These observations demonstrate a 

retromer independent function of SNX-5 in the lysosomal sorting. Similarly, SNX-1 

was also shown to mediate sorting of a GPCR called protease-activated receptor-1 

(PAR-1) independently of the retromer complex [166]. Furthermore, role of SNX-1 

and 2 in Rho-GTPase modelling has been described to be independent of retromer 
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[167]. Therefore, it can be understood that proteins involved in the retromer 

mediated endosome-to-TGN trafficking can operate on different trafficking 

pathways also like endosome-to-lysosome independently of retromer. On the basis of 

the evidence collected in this study, it can be argued that SDCCAG3 might also be 

involved in the endosome-to-lysosomal targeting of FasR conceivably independently 

of retromer.  

 

6.3 SDCCAG3 mediates endosome-to-lysosome sorting of Fas receptors via 

Dysbindin-HRS axis 

The current research provides molecular insight into the mechanism by which 

SDCCAG3 regulates lysosomal sorting of FasR. SDCCAG3 has been implicated as 

an interacting partner of dysbindin in two independent proteomic studies previously 

[156, 157]. This interaction was demonstrated in the current study as endogenous 

dysbindin was detected in the pull down fraction of GST tagged SDCCAG3 (figure 

4.8). However, this interaction was not characterized completely in this study; 

therefore on the basis of the available data, the nature of this interaction cannot be 

defined. SDCCAG3 was shown to be localized in the limiting membrane of the 

enlarged endosomes specifically as the siRNA mediated knockdown of SDCCAG3 

abolished the punctate staining from the limiting membrane (figure 4.9). Similarly, 

overexpression of dysbindin also showed punctate staining on the limiting 

membrane of enlarged endosomes. These puncta co-localized with the endogenous 

SDCCAG3 which further strengthened the possibility of a complex formation 

between SDCCAG3 and dysbindin in the subdomains of the sorting endosomes 

(figure 4.10). Recent studies have shown that dysbindin is involved in the lysosomal 

sorting of G-protein coupled receptors (GPCRs) like δ-opioid receptor (DOP) and 

dopamine-2 receptor (D2R), chemokine receptor type 4 (CXCR4) [58, 59]. The 

phenotype observed upon depletion of SDCCAG3 in the current study resembled 

that of dysbindin depleted cells shown in other studies. For instance, surface levels 

of the aforementioned receptors were upregulated in dysbindin depleted cells. No 

effect was observed on the rate of endocytic trafficking instead the rate of proteolysis 

was perturbed due to intraluminal sorting defects. Additionally, depletion of 

dysbindin did not affect lysosomal degradation of EGFR [58] suggesting that 
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SDCCAG3 and dysbindin might act in a similar endosome-to-lysosomal route which 

is distinct from the route taken up by EGF receptors. Furthermore, dysbindin was 

implicated as an accessory sorting protein that linked cellular regulators of GPCRs 

sorting like Gαs and GASP-1 (GPCR-associated binding protein-1) to HRS, a 

component of the ESCRT-0 machinery [59]. Evidence of an interaction between 

dysbindin and HRS was demonstrated by co-immunoprecipitation [58] and yeast-

two hybrid screening [168] suggesting that there is a direct interaction between them. 

Based on the available evidence so far, it can be understood that dysbindin is an 

accessory protein of the ESCRT-0 sorting machinery that acts in the early steps of 

the endolysosomal sorting such that it facilitates the connection between cellular 

regulators and the ESCRT machinery.    

  

Next, it was hypothesised that SDCCAG3 might be executing its sorting activity by 

forming a complex with dysbindin which would connect it to HRS and therefore the 

ESCRT machinery. In other words, depletion of dysbindin and HRS should affect 

the intracellular trafficking of FasR in a similar manner as SDCCAG3 if they all act 

in the similar pathway. This was indeed true as HeLa cells with dysbindin and HRS 

knockdown showed upregulated cell surface levels of FasR suggesting that they 

acted in a similar pathway as SDCCAG3 (figure 4.11). Additionally, co-transfection 

of siRNA against SDCCAG3 and dysbindin did not increase the levels of FasR any 

further as compared to only SDCCAG3 or only dysbindin depleted cells. Therefore, 

this data provided confirmatory evidence that dysbindin and HRS might be involved 

with SDCCAG3 in the same pathway to regulate FasR trafficking. Apart from the 

surface levels, sorting of FasR into intraluminal vesicles of MVBs upon silencing of 

HRS and dysbindin revealed a defect in the sorting as less FasR accumulated inside 

the lumen of the enlarged endosomes (figure 4.12). This data was consistent with the 

previous literature, as mentioned earlier, that sorting of some GPCRs and dopamine 

receptors were shown to be perturbed by silencing of dysbindin. Similarly, depletion 

of HRS was also shown to produce defects in the ILV sorting of receptors [169]. 

However, it is not clear whether FasR sorting by SDCCAG3 is ubiquitination 

dependent or independent. Nevertheless, HRS has been implicated in the sorting of 

receptors in both ubiquitination dependent and independent manner. The presence of 

an adaptor protein has often been implicated in mediating sorting of non-
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ubiquitinated cargo by HRS. Taken together, current data appears to suggest strongly 

that SDCCAG3 regulates endo-lysosomal sorting of FasR by mediating its ILV 

sorting via dysbindin thereby connecting it to the ESCRT machinery which mediates 

the sorting of FasR into ILVs. The model below depicts the molecular machinery 

involved with SDCCAG3 in ILV sorting of the internalized Fas receptors as 

suggested by the current study. It is currently not known how SDCCAG3 might 

access FasR at the early endosomes. But it can be speculated that PTPN13 might be 

the most likely candidate to connect FasR with the SDCCAG3 at the endosomes. 

 

 

Figure 6.1: Predicted model for SDCCAG3 mediated sorting of FasR into ILVs. 

SDCCAG3 was shown to regulate sorting of FasR into ILVs via dysbindin and ESCRT 

machinery. It was shown to interact and co-localize with dysbindin. siRNA mediated 

depletion of both dysbindin and HRS resulted in an increased surface levels of FasR and 

defective sorting of FasR into ILVs.  
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6.4 SDCCAG3 is a novel negative regulator of Fas mediated apoptosis  

Since SDCCAG3 was shown to regulate FasR trafficking, therefore, the effect of its 

depletion on apoptotic signalling was analysed. FasR mediated apoptotic signalling 

has been studied extensively in the past. The overwhelming amount of literature 

supports the idea that cleavage of procaspase 8 into active caspase 8 is one of the 

hallmarks of apoptotic signalling. Hence, levels of cleaved fragments of caspase 8 

representing active caspase 8 were analysed by immunoblotting. The data observed 

in figure 5.3) revealed that depletion of SDCCAG3 led to an increased accumulation 

of active caspase 8 after stimulation of FasR with an agonistic antibody. Higher 

levels of active caspase 8 were due to enhanced cleavage of procaspase 8 since the 

cytosolic levels of procaspase 8 (p55/54 fragment) did not appear to be more in 

SDCCAG3 depleted cells. This observation clearly reflects that larger quantity of 

procaspase 8 was being cleaved thus the larger quantity of DISC complex was being 

assembled in SDCCAG3 depleted cells. It is not surprising since SDCCAG3 

depleted cells had higher levels of FasR on the surface which would have enabled 

engagement and oligomerisation of more FasR leading to more homotypic 

interactions between death domains (DD) of FasR and FADD to form a larger DISC 

platform. It could be imagined that higher amount of FADD would automatically 

lead to recruitment of more procaspase 8 via homotypic interaction between their 

death effector domains (DED). On the basis of this data, it can be concluded that 

SDCCAG3 is a negative regulator of apoptotic signalling.         

 

However, data obtained from agonistic monoclonal antibodies cannot be 

extrapolated directly to the natural Fas ligand due to subtle differences in the 

mechanism of triggering apoptosis by them. Firstly, based on molecular modelling it 

was predicted that CH-11 binds to the same domains (CRD 2 and 3) on FasR as the 

ligand but on the opposite side such that binding of Fas ligand brings two 

hydrophobic patches together with the ligand on the inside and receptors clustered on 

the outside. In contrast, an IgM antibody like CH-11 clusters multiple Fas receptors 

back-to-back rather than in a face-to-face configuration. [170] Secondly, stimulation 

with agonistic antibodies triggered microaggregates formation of FasR in both Fas 

sensitive and insensitive cell lines which was not found to be the case upon 

stimulation with the soluble Fas ligand. This microaggregation, however, did not 



- 132 - 

 

affect the kinetics of apoptosis induction by the ligand and the antibody as they were 

found to be comparable [87]. Therefore, it can be understood that aggregation of 

FasR by agonistic antibodies cannot be correlated with the ability to induce Fas 

mediated apoptosis and that the induction of apoptosis by the Fas ligand versus 

antibodies is comparable but might employ slightly different mechanisms. 

Nevertheless, agonistic antibodies have been used in various studies in the past to 

induce apoptotic signalling. O’ Reilly et al., 2009 propounded the view that it is only 

the membrane bound Fas ligand that is required for mediating apoptosis in 

lymphocytes and not the soluble Fas ligand [171]. They demonstrated that at 

physiological levels, soluble Fas ligand was indeed involved in non-apoptotic 

signalling like NFκ-B signalling for survival. On the basis of these arguments, it can 

be concluded that use of agonistic antibodies for inducing apoptosis in cultured cells 

can be viewed as a justifiable alternative to soluble Fas ligand because they can 

efficiently induce apoptosis in all cell types as compared to the soluble Fas ligand.            

 

Increased levels of active caspase 8 were observed in both HeLa and HCT116 cells 

in the current study. As mentioned before, HeLa cells appeared to behave like type I 

while HCT116 cell line has been characterised as type II in the previous studies 

[172]. Since depletion of SDCCAG3 upregulated surface levels of FasR in both the 

cell lines, therefore, enhanced caspase 8 cleavage was also observed in both. The 

consensus view seems to be that type I and II cell lines vary in the downstream 

signalling mechanisms after receptor stimulation (i.e. the mitochondrial pathway is 

either involved or not) and not in the initial signalling events like DISC assembly 

and recruitment of pro-caspase 8 to DISC. This might explain why SDCCAG3 might 

affect apoptotic signalling in a type II cell line like HCT116 which do not even 

internalize FasR into endosomes upon stimulation [64].  

 

Caspases are crucial components of the apoptotic signalling. Data obtained in this 

study confirmed that SDCCAG3 is a substrate of caspase 6 and also demonstrated its 

cleavage in vitro (figure 5.6). Recombinant caspase 6 enzyme cleaved GST-tagged 

SDCCAG3 specifically and the cleaved SDCCAG3 was detectable via coomassie 

blue staining. However, the available data is not sufficient to judge if SDCCAG3 had 

one or multiple cleavage sites and where the cleavage site might be located on 
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SDCCAG3. However, unpublished data from Erdmann lab showed that 

overexpressed N-terminus myc tagged SDCCAG3 (55 kDa) was cleaved upon 

stimulation with an agonistic anti-Fas antibody (figure 5.2). Immunoblot analysis 

revealed that anti-myc antibody was able to recognize a cleaved fragment of around 

35 kDa suggesting that caspase 6 cleavage sites might be located near C-terminus 

region since the larger fragment contained an intact N-terminus myc tag. To 

complement this data, an antibody against the C-terminus region of SDCCAG3 was 

used to identify the smaller fragment predicted to contain the intact C-terminus 

region of SDCCAG3. As expected, anti-SDCCAG3 antibody identified a fragment 

close to 25 kDa which matched with the predicted size of the smaller fragment based 

on the previous data (figure 5.7). To conclude, this data is sufficient to demonstrate 

that SDCCAG3 is a substrate of caspase 6. Identifying the exact cleavage sites of 

caspase 6 on SDCCAG3 was outside the scope of this study. Furthermore, caspase 6 

has been implicated in Alzheimer and other neurodegenerative diseases [173]. 

Association of SDCCAG3 with dysbindin also points towards plausible roles of 

SDCCAG3 in neurodegenerative disorders [174]. Therefore, it could be 

hypothesised that SDCCAG3 might play a role in neuronal apoptosis as well.     

 

6.5 Does SDCCAG3 form a complex with PTPN13 to regulate trafficking of 

Fas receptors and apoptotic signalling?  

The current study demonstrated that SDCCAG3 was involved in the post-endocytic 

sorting of FasR towards lysosomal degradation such that its depletion led to an 

accumulation of these receptors on the surface and increased sensitivity towards 

apoptosis. Similarly, depletion of PTPN13 has also been shown to increase cell 

surface levels of FasR and sensitivity towards Fas mediated apoptosis in the past 

suggesting that PTPN13 and SDCCG3 might act together to mediate regulation of 

FasR trafficking and signalling. Following arguments can be advanced to support the 

hypothesis that SDCCAG3 forms a complex with PTPN13; firstly, SDCCAG3 was 

shown to interact directly with the FERM domain of PTPN13 via yeast two hybrid 

screening and co-immunoprecipitation [123]. Secondly, PTPN13 were also shown in 

this study to co-localize with FasR in the early endosomes like SDCCAG3 (figure 

5.9). It is the first time that PTPN13 has been shown to co-localize to the early 



- 134 - 

 

endosomes. However, co-localization between FasR and PTPN13 has been shown 

before [108]. Hence, localization of both SDCCAG3 and PTPN13 with FasR in the 

early endosomes place them in the correct location for regulating sorting of FasR. 

However, these observations require further experimentation to judge the specificity 

of the anti-PTPN13 antibody staining. Thirdly, PTPN13 can localize to the plasma 

membrane via its interaction with PI[4,5]P2  and bind to the cytoplasmic tail of FasR 

via its PDZ 2 domain [109]. Therefore, it can convincingly hypothesised that most 

likely PTPN13 connects FasR with SDCCAG3 in order to regulate endocytic 

trafficking of FasR.    

 

6.6 Proposed model for SDCCAG3 mediated regulation of apoptosis   

Taken together, this study describes a novel function of SDCCAG3 in Fas mediated 

apoptotic signalling where it regulates intracellular sorting of FasR towards 

lysosomal degradation and shuts off the apoptotic signalling.  

Further research is required to explain the exact mechanism behind elevated surface 

levels of FasR. Increase in the surface levels of FasR can be a function of the 

following aspects that have not been explored in this study-firstly, enhanced 

recycling by an unknown mechanism can explain the increase in the surface 

population of FasR; secondly, increased trafficking of the Golgi pool of Fas receptor 

to the plasma membrane can also contribute to the increased surface population. 

However, increased synthesis of FasR can be ruled out since SDCCAG3 depletion 

was shown not to affect the mRNA levels of Fas.  
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Figure 6.2: Hypothetical model of negative regulation of apoptotic signalling by 

SDCCAG3.  

The above model summarises the main findings of the current study.  In case of 

control cells, stimulated FasR internalize and assemble DISC complex in the early 

endosomes. It is tempting to speculate that once DISC is assembled then it would 

cleave the executioner caspases including caspase 6 which might cleave SDCCAG3 

and prevent sorting of FasR towards lysosomes to sustain apoptotic signalling by a 

positive feedback loop. In this scenario, sorting of FasR by SDCCAG3 might act as 

a checkpoint for sustaining or blocking apoptotic signalling further. In case of 

SDCCAG3 depleted cells, externally stimulated Fas receptors internalize into early 

endosomes and sustain apoptotic signalling for a longer period due to delayed 

transitioning from early to late endosomes. This enables assembly of a large amount 

of DISC complex as shown by faster and more accumulation of active caspase 8 in 

SDCCAG3 depleted cells (figure 5.3, 5.4) leading to a higher rate of cell death in 

these cells as shown in the unpublished data from the Erdmann lab (figure 5.1). 

Thus, this model explains the suggested anti-apoptotic role of SDCCAG3 in the 

current study.           
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7 SDCCAG3 in ciliogenesis  

7.1 Introduction 

A yeast-two hybrid screening performed in Dr. Kai Erdmann’s laboratory identified 

intraflagellar transport protein-88 (IFT88) as one of the potential binding partner of 

SDCCAG3 by using its first N-terminal one hundred amino acids as a bait. This 

interaction was found to be specific as SDCCAG3 (1-100aa) did not interact with 

FERM domain of PTPN13, C-terminus FRMPD4 or empty pGBT9 vector used as 

controls (figure 7.1, a). IFT88 belongs to intraflagellar complex B (IFT B) which is 

involved in anterograde trafficking of proteins, formation and maintenance of cilia 

[129]. Therefore, IFT88 was a suitable candidate to characterise its interaction with 

SDCCAG3 further and understand the functional relevance of this interaction. 

Transiently expressed myc-SDCCAG3 (full length) was pulled down with EGFP-

IFT88 specifically and not with EGFP-Rab8 thereby confirming the interaction (b).    

 

 
Figure 7.1: SDCCAG3 interacts with intraflagellar transport protein-88: (a) Yeast-two 

hybrid analysis of interaction between SDCCAG3 (1-100) amino acids (used as bait) with 

full length IFT88, FERM domain of PTPN13, C-terminus FRMPD4 (FERM and PDZ 

containing protein 4) and empty pGBT9 vector. Interaction was tested by monitoring the 

growth of yeast in tryptophan (Trp), leucine (Leu) and histidine (His) deficient media. A 

positive interaction was observed only in case of IFT88 and SDCCAG3 (aa1-100) as 

compared to the negative control. (b) Full length myc tagged SDCCAG3 was transiently 

expressed in Cos7 cells and analysed for its presence detected by anti-myc antibody in the 

lysate pulled down EGFP-IFT88 coated beads. EGFP alone and EGFP-Rab8 were used as 

negative control. (Unpublished data- Fangyan Yu, Erdmann lab)   
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IFT88 is involved in the polarized vesicle trafficking of proteins in cilia which is the 

foundation of functional cilia. Disruption of normal ciliary trafficking results in 

improper ciliogenesis and many ciliopathies in humans. Although bioinformatics and 

proteomic screenings have identified a large number of proteins to be associated with 

cilia but their functional relevance still remains elusive. Our understanding of 

polarized trafficking pathways in cilia is limited. Many molecular machinery and 

pathways such as recycling of cargo back to the cilium remain to be identified. As 

SDCCAG3 has been localized to the early endosomes [123], retromer positive 

vesicles [35]and has been implicated in trafficking pathways [124] before therefore 

localization and function of SDCCAG3 in cilia was studied further in detail. 

 

 

7.2 Aim   

Based on its interaction with IFT88, SDCCAG3 was hypothesised to act along with 

IFT88 in the process of ciliogenesis and trafficking of ciliary cargo. The primary 

aims of this study was- 

 

1. To identify localization of exogenously expressed SDCCAG3 in the primary 

cilium 

 

2. To investigate the role of SDCCAG3 in formation and maintenance of cilia 

in IMCD3 cells 

 

3. To explore ciliary cargo dependent on SDCCAG3 for their trafficking in cilia      
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7.3 Results 

 

7.3.1 Localization of transiently expressed SDCCAG3 in cilia 

In order to examine the localization of SDCCAG3 in the primary cilium, an 

expression construct of SDCCAG3 was used and cells were labelled with antibodies 

against cilia markers such as acetylated-α-tubulin ( a marker for axoneme) and γ-

tubulin ( a marker for the basal body). Human EGFP-SDCCAG3 was transiently 

overexpressed in the inner medullary collecting duct-3 (IMCD3) cells and co-stained 

with ciliary markers such as acetylated-α-tubulin and γ-tubulin to investigate the 

localization of SDCCAG3 in cilia. Full length SDCCAG3 showed punctate staining 

in the cytoplasm of the IMCD3 cell and co-localized predominantly with γ-tubulin in 

the basal body. No co-localization was observed with the acetylated α-tubulin in the 

axoneme (figure 7.2, a). Yeast-two hybrid analysis and biochemical data from the 

Erdmann lab showed that N-terminal 1-100 amino acids of SDCCAG3 were 

sufficient for mediating its interaction with IFT88, therefore, localization of 

SDCCAG3 to the basal body without first 1-100aa was analysed. As shown in figure 

(b), SDCCAG3 expression construct without 1-100aa region failed to accumulate in 

the basal body anymore. Furthermore, only 1-100aa region of SDCCAG3 was also 

analysed for its localization in cilia and as expected, just 1-100aa N-terminal region 

was sufficient for its recruitment to the basal body (c).  

 

Thus, the above data demonstrated that transiently expressed SDCCAG3 localized to 

the basal body in cilia. The first N-terminal region of SDCCAG3 (1-100aa) was both 

necessary and sufficient for its localization to the basal body. This region contains an 

IFT88 binding site and therefore it was hypothesised that molecular interaction with 

IFT88 might be necessary for localization of SDCCAG3 to the basal body.                                   
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Figure 7.2: Localization of transiently expression EGFP-SDCCAG3 expression 

constructs in IMCD3 cells. Human SDCCAG3 expression constructs with N-terminal 

EGFP tags were transfected into inner medullary collecting duct-3 (IMCD3) cells. After 48 

hours of transfection, cells were serum starved to induce ciliogenesis and stained for markers 

like acetylated-α-tubulin (blue), γ-tubulin (red). Full length SDCCAG3 accumulated in the 

basal body (a). While the deletion construct of SDCCAG3 lacking the first 100 amino acids 

(Δ1-100aa) failed to localize at the basal body (b). A truncated version of SDCCAG3 

containing only 1-100 amino acids was sufficient for localization of SDCCAG3 into basal 

body (c). DAPI was stained in cyan and SDCCAG3 is shown in green. Images are 

representative of three independent experiments. Scale bar represents 5µm.  

(d) Schematic representation of the various SDCCAG3 expressions constructs used in the 

experiment- Full length (I), truncated construct containing only N-terminal 1-100aa (II) and  

a shorter version lacking  first 1-100aa region (III).       
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7.3.2 SDCCAG3 localization to centrosome is not dependent on IFT88 

Gamma-tubulin was used as the centrosomal/basal body marker to assess the 

localization of SDCCAG3. IMCD3 cells, transiently expressing wild-type 

SDCCAG3, were treated with non-specific scrambled or mouse IFT88 siRNA. Cells 

were serum starved to induce ciliogenesis and stained to analyse SDCCAG3 

localization. As shown in figure 7.3 (a), wild-type EGFP-SDCCAG3 accumulated 

with γ-tubulin in both scrambled or mIFT88 treated cells. Therefore, localization of 

SDCCAG3 did not depend upon IFT88 as it was recruited to centrosome/basal body 

even in the absence of IFT88. Quantification of the percentage of co-localization 

between SDCCAG3 and γ-tubulin in cells collected from three independent 

experiments also confirmed that SDCCAG3 was present at centrosomes 

independently of IFT88 (b). However, immunoblot analysis of the knockdown 

efficiency of IFT88 revealed that the knockdown was not complete and that the 

remaining amount of IFT88 could be sufficient for recruiting SDCCAG3 to the 

centrosomes.              

                        

Figure 7.3: SDCCAG3 is recruited to centrosomes independently of IFT88. (a) IMCD3 

cells expressing wild-type SDCCAG3 (green) were treated scrambled or mIFT88 siRNA and 
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stained with γ-tubulin (red). DAPI was stained in blue. Inserted panels show co-localization 

between EGFP-SDCCAG3 and γ-tubulin from the representative cells in both the cases. 

Scale bar represents 5µm. (b) Extent of co-localization between SDCCAG3 and γ-tubulin 

was analysed from cells collected form three independent experiments (N=3). Student’s t-

test was used to analyse the statistical significance of the data, ns-not significant (p=0.231). 

(c) Immunoblot analysis of the knockdown efficiency of IFT88 in IMCD3 cells using 

scrambled or mIFT88 siRNA. ß-tubulin was used as a loading control.         

 

7.3.3 SDCCAG3 depletion impairs ciliogenesis 

Next, it was analysed if SDCCAG3 was involved in the formation of cilia since 

IFT88 is a well-established protein to be involved in ciliogenesis. IMCD3 cells were 

treated with scrambled or mouse SDCCAG3 siRNA.    

 

 

Figure 7.4: Depletion of SDCCAG3 impairs ciliogenesis. (a) IMCD3 cells, treated with 

scrambled or mouse SDCCAG3 siRNA, were serum starved for the indicated time points in 

order to induce ciliogenessis. Cells were stained with acetylated-tubulin (green) and DAPI 

(blue). Arrow indicate nascent cilia. Scale bars represent 5µm. (b) Quantification of ciliated 

cells expressed as a percentatge and analysed using student’s t-test (N=3,***p<0.001, error 

bars represent ±s.e.m). (c) Immunoblot analysis of knockdown efficiency of SDCCAG3 

upon treatement with scrambled or mSDCCAG3 siRNA. ß-tubulin used as a loading control.   

Cells were serum startved for 0 or 16 hours to induce ciliogenesis. As shown in 

figure 7.4  (a), at 0 hours mostly nascent cilia was observed in case of both 

scrambled and mSDCCAG3 siRNA treated cells as indicated by the arrows. 
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However after 16 hours, more cells had mature cilia in scrambled sample as 

compared to mSDCCAG3 cells which still showed the presence of nascent cilia. (b) 

Quantification of the number of ciliated cells present in both the samples revealed 

that there were at least 50% less ciliated cell in mSDCCAG3 siRNA samples as 

compared to the scrambled.  

Furthermore, lenghth of the cilia was also quantified and compared between the two 

samples. As shown in figure 7.5, depletion of SDCCAG3 led to a significant 

decrease in the average length of cilia. Based on the data above, it could be 

concluded that SDCCAG3 is involved in the formation of cilia and also controls cilia 

length. 

 

Figure 7.5: Depletion of SDCCAG3 decreases 

length of cilia. Quantification of the length of cilia 

from the data shown in figure 7.4. The average 

length of cilia decreased significantly upon 

depletion of SDCCAG3 (N=3, F-test, ***p<0.001, 

error bars represent ±s.e.m). Cilia length was 

measure using ImgaeJ analytical tools.  

 

 

 

 

     

                                                                                                                 

7.3.4 Rescue of ciliogenesis defect upon SDCCAG3 re-expression   

Next, it was analysed whether defects in ciliogenesis and cilia length observed upon 

depletion of SDCCAG3 could be rescued upon restoring the levels of SDCCAG3. 

Human SDCCAG3 expression construct was introduced in IMCD3 cells treated with 

mouse SDCCAG3 siRNA since it targeted only the endogenous SDCCAG3 and did 

not affect the human expression construct. IMCD3 cells treated with scrambled or 

mSDCCAG3 siRNA and transfected with human wild type EGFP SDCCAG3 

showed localization of SDCCAG3 at the base of the cilium (figure 7.6, a) as 
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observed before. Quantification of the data revealed that expression of EGFP-

SDCCAG3 in mSDCCAG3 siRNA treated cells restored the percentage of ciliated 

cells completely such that they were comparable to the scrambled sample. The 

phenotype could not be rescued upon expression of EGFP alone (b). Expression of 

EGFP-SDCCAG3 (Δ1-100) was also analysed but it did not restore the levels of 

ciliated cells. In contrast, it reduced the percentage of ciliated cells in scrambled 

siRNA treated cells as well suggesting that this mutation exerted a dominant 

negative effect and disrupted the normal functioning of endogenous SDCCAG3.               

 

 

Figure 7.6: Rescue of ciliogenesis defect by transient expression of SDCCAG3. (a) 

IMCD3 cells were transfected with scrambled or mouse SDCCAG3 siRNA along with wild 

type human EGFP-SDCCAG3, mutant EGFP-SDCCAG3 (Δ1-100) or EGFP alone. Only 

wild type SDCCAG3 and not the mutant, accumulated at the base of the cilium stained with 

acetylated-tubulin (red) in case of both scrambled and mSDCCAG3 siRNA. Insets show 

representative cilium. Scale bars represent 5µm. (b) Quantification of ciliated cells expressed 

as a percentage in samples transfected with the indicated constructs (N=3, unpaired t-test, 

*p<0.05, ***p< 0.001, error bars represent ±s.e.m).      

 

 

Additionally, Cilia length was also observed in the above mentioned experiment. 

Expression of wild type human EGFP-SDCCAG3 was able to rescue the average 

length of cilia in mouse SDCCAG3 siRNA treated cells in contrast with EGFP 

expression alone (figure 7.7)  
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Figure 7.7: Rescue of cilia length upon expression EGFP-SDCCAG3. Samples from 

figure 7.6 were used to quantify the length of cilia upon expression of wild type human 

EGFP-SDCCAG3 construct to rescue shortened cilia phenotype in mSDCCAG3 siRNA 

treated cells. In contrast to EGFP alone, EGFP-SDCCAG3 restored the length of cilia in 

mSDCCAG3 sample such that the cilia length in both scrambled and mSDCCAG3 siRNA 

treated cells was comparable. (N=3, F-test, ***p<0.001, ns-not significant, error bars 

represent ±s.e.m).      

 

 

7.3.5 SDCCAG3 and IFT88 function in the same pathway  

Role of IFT88 in the formation and maintenance of cilia has been described before. 

Depletion of IFT88 and SDCCAG3 in RPE cells reduced the number of ciliated 

cells; however, simultaneous transfection of both SDCCAG3 and IFT88 siRNA 

together did not reduce the number of ciliated cells any further. Statistical analysis of 

the data revealed that the difference between the percentage of ciliated cells in IFT88 

alone or with SDCCAG3 depleted cells was not significant. This data suggested that 

SDCCAG3 and IFT88 might coordinate together in the same pathway for 

ciliogenesis (figure 7.7 a). The efficiency of the knockdown was confirmed using 

specific antibodies (b).             
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Figure 7.8: SDCCAG3 coordiate with IFT88 in the same pathway. (a)  A number of 

ciliated cells were analysed and expressed as a percentage in RPE cells treated wih indicated 

siRNA (N=3, unpaired t-test, ***p<0.01, ns-not significant, error bars represent ±s.e.m). (b) 

Immunoblot analysis of the knockdown efficiency of IFT88 or SDCCAG3. ß-tubulin was 

used a loading control.  

 

7.3.6 Depletion of SDCCAG3 impairs trafficking of Polycystin-2 to cilia 

Polycystin-2 (PC-2) is a ciliary membrane receptor which is transported to the 

mature cilium via polarised trafficking pathways. Loss of IFT88 has been shown to 

disrupt trafficking of PC-2 before. Since SDCCAG3 appeared to act in the same 

pathway as IFT88, therefore, ciliary trafficking of PC-2 was examined upon 

depletion of SDCCAG3. IMCD3 cells were serum starved for 16 hours and stained 

for endogenous PC-2 with an established antibody along with a cilia marker. 

Immunofluorescence analysis revealed a defect in the transport of cytoplasmic PC-2 

to the cilia in the absence of SDCCAG3. PC-2 could be seen co-localizing along the 

length of the axoneme stained with anti-acetylated tubulin in case of the scrambled 

siRNA transfected cells only and not SDCCAG3 depleted cells (Figure 7.9,a). 

Quantification of the above data revealed a significant reduction in the percentage of 

PC-2 receptors transported to the cilium upon silencing SDCCAG3 (b). Thus, this 

data suggests that SDCCAG3 might be involved in transport of a transmembrane 

receptor, PC-2, into cilia.   
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Figure 7.9: Depletion of SDCCAG3 disrupts trafficking of Polycystin-2 to cilia. (a) 

Immunofluorescence analysis of ciliary localization of Polycystin-2 in IMCD3 cells treated 

with scrambled or mSDCCAG3 siRNA and serum starved for 16 hours. Cilia were stained 

with anti-acetylated tubulin antibody (red) and anti-polycystin-2 antibody (green). DAPI was 

stained in blue. Scale bars represent 5µm. (b) Quantification of Polycystin-2 localization to 

cilia under different treatment conditions expressed as a percentage (N=3, unpaired t-test, 

**p<0.05, error bars represent ±s.e.m). (Data obtained in collaboration with Yu, Erdmann 

lab)      



- 147 - 

 

7.3.7 Rescue of Polycystin-2 trafficking defect with EGFP-SDCCAG3 

The phenotype observed upon depletion of SDCCAG3 i.e. defect in PC-2 trafficking 

to cilia was confirmed by a rescue experiment. A human SDCCAG3 expression 

construct was co-transfected with a mouse siRNA against SDCCAG3 in IMCD3 

cells. As mentioned before, this expression construct was resistant to the mouse 

siRNA and was able to restore the expression levels of SDCCAG3 successfully as 

the phenotype could be rescued upon transfection (figure 7.10, a). EGFP-SDCCAG3 

showed accumulation at the base of the ciliary axoneme and rescued the localization 

of PC-2 to cilia. While overexpression of EGFP alone showed diffused cytoplasmic 

staining and failed to rescue the ciliary localization of PC-2. Quantification of this        

 

 
 

Figure 7.10: Defect in Polycystin-2 localization to cilia was rescued upon restoring 

SDCCAG3 levels. IMCD3 cells treated with scrambled or mouse SDCCAG3 siRNA were 

transfected with human EGFP-SDCCAG3 expression construct that was not targeted by 

mouse siRNA. (a) Representative immunofluorescence images showing localization of PC-2  

(red) to the axoneme (blue) in control and mSDCCAG3 cells transfected with EGFP-

SDCCAG3. While no co-localization could be observed in case of EGFP treated cells. Scale 

bar, 9µm. (b) Quantification of the above data showing percentage of PC-2 localization in 
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ciliated cells under indicated treatment conditions. Data obtained from three independent 

studies, n=3, t-test, **p<0.01, ns-not significant, ±s.e.m           

 

 

 
 

Quantification of this data revealed that difference between the percentage of co-

localization between PC-2 and cilia was significantly different for scrambled and 

mSDCCAG3 siRNA treated cells overexpressing EGFP alone. However, no 

significant difference could be observed between scrambled and mSDCCAG3 

treated cells overexpressing EGFP-SDCCAG3. Therefore, it can be concluded that 

localization of SDCCAG3 into cilia is crucial for the transport of PC-2 to cilia.  

      

7.3.8 Depletion of SDCAAG3 does not alter Rab8 trafficking to cilia    

Rab8 has been implicated in the process of cilia formation and trafficking such that it 

localizes to the developing cilia and exits from the mature cilia. Therefore, 

trafficking of Rab8 to cilia upon depletion of SDCCAG3 was observed in order to 

examine if SDCCAG3 regulated ciliogenesis via regulating trafficking of Rab8. 

Immunofluorescence analysis revealed that in contrast to PC-2, depletion of 

SDCCAG3 did not have any effect on the localization of Rab8 to cilia. Since Rab8 

has been shown to localize to the cilium during initial phases of the ciliogenesis, 

therefore, its localization was examined 8 hours (figure 7.11) after serum starvation. 

Quantification in (b) revealed no significant difference in the percentage of 
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localization between Rab8 and ciliary marker acetylated-α-tubulin. Hence, it can be 

concluded that absence of SDCCAG3 does not disrupt Rab8 transport to cilia.                       

 
 

 

Figure 7.11: SDCCAG3 does not regulate Rab 8 localization to cilia. (a) IMCD3 cells 

were treated with scrambled or mSDCCAG3 siRNA and subjected to serum starvation for 8 

hours. Cilia were stained with anti-acetylated tubulin (red) and Rab8 was stained with anti-

Rab8 (green). DAPI was stained in blue. Insets have been magnified in the separate panels. 

(b) Quantification of the co-localization between cilia and Rab8 expressed as a percentage 

(N=3, unpaired t-test, ns-not significant, error bars represent ±s.e.m).  
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7.4 Discussion  

This study was based on the previous data collected in the Erdmann lab that 

identified SDCCAG3 as a novel interaction partner of a well-known ciliary protein 

called IFT88. The current study demonstrated that SDCCAG3 is required for 

ciliogenesis and trafficking to the cilium.  

7.4.1 SDCCAG3 localizes to cilia  

It was shown to localize to the basal body upon overexpression in IMCD3 cells 

(figure 7.2). The wild type EGFP tagged SDCCAG3 co-localized with γ-tubulin 

which is a known marker for the basal body. It was also shown that N-terminal 1-

100 amino acids of SDCCAG3 were both sufficient and necessary for localizing 

SDCCAG3 to the base of the cilium as the mutant SDCCAG3 expression construct 

lacking 1-100 amino acids failed to localize to the basal body. A recently published 

large scale proteomics study by Gupta et. al., 2015  characterized protein-protein 

interactions in the centrosome and cilium interface by using in vivo proximity 

dependent biotinylation (BioID) analysis [175]. They identified SDCCAG3 to be in 

the proximity of centrosomal proteins. Previous unpublished data from Erdmann lab 

also showed that first 1-100 amino acids of SDCCAG3 were sufficient to mediate its 

interaction with  intraflagellar transport protein 88 (IFT88). Therefore, localization 

of SDCCAG3 to cilia and its association with an important ciliary transport 

component formed the basis of further investigation into the role of SDCCAG3 in 

ciliogenesis.   

7.4.2 Regulation of cilia formation and length by SDCCAG3 

In this study, IMCD3 cells were used as a model to understand the effect of 

SDCCAG3 depletion on ciliogenesis. Endogenous SDCCAG3 was depleted by using 

siRNA which was shown to knockdown SDCCAG3 efficiently. Depletion of 

SDCCAG3 was found to reduce the number (figure 7.4) and the average length of 

the cilia (figure 7.5). This phenotype was generated specifically due to the depletion 

of endogenous SDCCAG3 as it could be rescued upon introducing a siRNA resistant 

SDCCAG3 expression construct (figure 7.6).  In consistence with the unpublished 

data from the Erdmann lab (figure 7.1), mutant SDCCAG3 construct lacking 1-100 

amino acids failed to rescue the ciliogenesis defects. It rather acted as a dominant 
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negative and its introduction reduced the number of cilia further (figure 7.6). This 

data proves that N-terminus 1-100aa region of SDCCAG3 is responsible for its 

localization to cilia. This region also contains the IFT88 binding site in SDCCAG3. 

However, interaction with IFT88 was not found to be the exclusive event responsible 

for ciliary localization of SDCCAG3 as partial knockdown of IFT88 in IMCD3 cells 

did not prevent localization of SDCCAG3 to cilia (figure 7.3). Nevertheless, 

SDCCAG3 and IFT88 act together in the same pathway for promoting ciliogenesis 

as simultaneous depletion of both SDCCAG3 and IFT88 in RPE cells showed no 

additional reduction in the number of cilia when compared to the samples with their 

individual knockdowns.   

The current data provides strong evidence to support the claim that SDCCAG3 

promotes ciliogenesis but it is still unclear how exactly SDCCAG3 is involved in 

controlling the formation and length of cilia. It can be speculated that SDCCAG3 

might be involved in the early stages of ciliogenesis such as centrosome maturation 

or membrane docking or IFT docking and transport. Since SDCCAG3 has been 

shown to be associated with the early/recycling endocytic compartments [35, 123] 

and with the retromer-WASH complex [51] therefore it is tempting to speculate its 

role in the regulation of endocytic trafficking to support ciliogenesis. The role of 

endocytic trafficking during early stages of ciliogenesis has been described in many 

studies suggesting an interplay between vesicular trafficking and ciliogenesis [129]. 

For example, IFT20 has been localized to both Golgi and cilia. It was suggested to 

be involved in the transport of ciliary protein from Golgi to cilia as its depletion of 

reduced the amount of polycystin-2 localization to cilia [147]. Some IFT proteins 

(which are a part of ciliary transport system) have been implicated in regulating 

recycling of CD3 complex in a polarized manner in non-ciliated cells also, therefore, 

suggesting that cellular endocytic transport machinery might serve a role in 

ciliogenesis as well [176]. Another set of player involved in both vesicular and 

ciliary trafficking are Rab proteins such as Rab8 that are involved in Golgi to cilia 

transport and Rab11 in the endocytic recycling compartment (ERC) that has been 

associated with the initial stages of cilia formation [177] Small GTPase, ARF-like 6 

(Arl6), has been implicated in both vesicle transport and sorting of receptors, like 

SSTR3, to cilia [129] and in regulation of Wnt signalling [178].  
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IFT88 has been shown previously to promote growth and maintenance of ciliary 

length [143]. It accumulates at the base of the cilium from where it regulates the 

trafficking of particles in to the developing axoneme as a part of a bigger complex 

called IFT-B. IFT particles are involved in ‘in’ and ‘out’ trafficking of materials 

from the cilia continuously; and so it can be speculated how they maintain the length 

of the cilium. Theoretical model proposed for ciliary length states that it is a result of 

the balance between the rates of assembly and disassembly of cilia [143]. Thus it can 

be hypothesised that since IFT88 is known to affect the rate of assembly of the 

cilium, therefore, its loss can result in a stunted axoneme. While it is easy to 

understand how trafficking by IFT particles control the length of the cilium, it is 

difficult to imagine how SDCCAG3- a centrosomal protein localized at the base of 

the cilium would control its length. Other modes of ciliary length regulation that 

have been described previously include regulation by actin modulation, axoneme 

modifications or intracellular signalling [179]. Therefore, mechanism of regulation 

of ciliary length remains to be determined in the future. It should be noted that 

current data does not suggest a failure in maintaining the length of the mature cilium 

upon loss of SDCCAG3; instead, it suggests stunted growth of the axoneme.   

7.4.3 SDCCAG3 regulates trafficking of ciliary cargo 

This study also demonstrated a role of SDCCAG3 in the trafficking of 

transmembrane receptors like polycystin-2 to cilia (figure 7.9). Defects in the 

polycystin-2 trafficking could be rescued upon restoring the expression levels of 

SDCCAG3 (figure 7.10). In contrast, it had no effect on the trafficking of Rab8 

during very early stages of ciliogenesis (figure 7.11). IFT88 has been implicated in 

the transport of polycytin-2 to cilia before. Given the localization of SDCCAG3 at 

the base of the cilia, it can be hypothesised that it might be involved in either fusion 

of Golgi-derived vesicle laden with polycystin-2 or docking of these vesicles or both. 

Interestingly, a recent proteomic data has identified SDCCAG3 in the interactome of 

proteins involved in vesicle docking and fusion at the ciliary base [175]. On the basis 

of this data, a more general role of SDCCAG3 can be proposed in regulating 

trafficking into the primary cilium. Moreover, a defect in the transport of polycytin-2 

to cilia has been associated with the pathogenesis of polycystic kidney disease. 
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Therefore, in-depth analysis of the mechanism by which SDCCAG3 regulated ciliary 

trafficking of polycystin-2 can open new avenues into ciliopathy research.             

7.5 SDCCAG3 at the crossroads  

7.5.1 Cell cycle and ciliogenesis 

Centrosomes play a crucial role in both cell cycle and ciliogenesis which are tightly 

connected. Several pieces of evidence have been presented to support the notion of 

bidirectional crosstalk between cell cycle and ciliogenesis. Cells that undergo 

improper or defective cell divisions often result in abnormal cilia formation. 

Similarly, cells with improper ciliogenesis show defects in cell division [131, 133]. 

For instance, some overproliferative cancer cell lines fail to form proper cilia and 

undergo unchecked cell division [133]. IF88 has also been described to restrain cell 

cycle progression and promote ciliogenesis. It was shown that loss of IFT88 

promoted cell cycle progression and overexpression of IFT88 suppressed G1/S phase 

transition along with inducing apoptotic cell death [180]. Since SDCCAG3 has been 

implicated in both cell division [123] and ciliogenesis (current study) therefore it can 

be speculated that SDCCAG3 might have a role in this bidirectional signalling. 

7.5.2 Endocytic trafficking and ciliogenesis    

Association of SDCCAG3 with an active form of Arf6 i.e. GTP-Arf6 [125] can also 

account for multiple functions mediated by SDCCAG3 like endocytic trafficking of 

surface receptors and cytokinesis. Arf6 is an endocytic recycling protein that has 

been implicated in surface trafficking of various receptors and regulating the 

transport of endocytic cargo during cytokinesis at the midbody and intercellular 

bridge [24]. Interestingly, a cilium localizing protein called Arl13b was implicated in 

endocytic recycling and surface expression of CD1a receptor. It was shown to co-

localize with the recycling compartment residents such as Arf6 and Rab22a [181]. 

Mutations in Arl13b have been associated with disrupted sonic hedgehog signalling 

possibly due to improper cilia functioning [182]. On the basis of such pieces of 

evidence, it can be argued that SDCCAG3 might be a link mediating endocytic 

trafficking and ciliogenesis through Arf6.  
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7.5.3 Ciliogenesis and Apoptosis 

Signalling pathways involved in ciliogenesis and cell cycle regulation such as 

hedgehog (Hh) signalling was shown to negatively regulate the surface levels of Fas 

receptors and inhibit apoptosis [183]. It has been implicated in promoting cell 

proliferation by inducing G1-S phase transition. Many components of Hh signalling 

pathways localize to cilia to regulate cellular functions [184]. The view that 

inhibition of apoptosis can be mediated by ciliary and cell cycle regulatory proteins, 

is in line with the fact that cell death, proliferation and ciliogenesis are can influence 

each other dynamically. Future research on the functions of SDCCAG3 can be 

helpful in understanding the complex nature of the interplay between these 

pathways.                      
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8 Summary and future perspectives  

 

The current study demonstrated two novel functions of SDCCAG3 in the regulation 

of Fas receptor trafficking and ciliogenesis. The advent of proteomic approaches 

enabled identification of new interacting partners and cellular functions of 

SDCCAG3 in the recent past. Taken together, most of these studies suggested a role 

of SDCCAG3 in the regulation of intracellular trafficking. It could be speculated that 

SDCCAG3 might be acting at the intersection of multiple cellular pathways such as 

cytokinesis, ciliogenesis, and apoptosis by regulating vesicular trafficking involved 

in these pathways. Although, current study and other studies have identified 

associations of SDCCAG3 with different endocytic machineries but the exact 

function of SDCCAG3 in trafficking remains elusive.             

8.1 Overview of the role of SDCCAG3 in FasR trafficking and apoptosis 

In summary, the negative regulation of Fas mediated apoptosis by PTPN13 had been 

described in several studies previously but the exact mechanism of how PTPN13 

controlled the surface presentation of Fas receptors was not known. Therefore, it was 

hypothesised that interaction with SDCCAG3 might provide the missing link 

between PTPN13 and regulation of surface trafficking of Fas receptors. Data 

provided in this study demonstrated that expression levels of SDCCAG3 indeed 

affected the surface presentation of Fas receptors. Surface levels of FasR increased 

in both HeLa and HCT116 cells upon depletion of SDCCAG3. In this case, the 

effect on the surface presentation of FasR was not due to any defects in their 

internalization but rather due to an altered rate of their proteolysis. Overexpression 

of Fas receptors in SDCCAG3 depleted cells resulted in an increase in their basal 

expression levels and a slight reduction in the rate of degradation. Given the fact that 

SDCCAG3 were found to localize on the early endosomes, it was further 

hypothesised that SDCCAG3 might be involved in the post-endocytic sorting of Fas 

receptors. This idea was examined by analysing the subcellular localization of 

internalized Fas receptors which revealed an accumulation in the early endosomes 

and a concomitant decrease in late endosome/lysosome localization upon depletion 

of SDCCAG3. This defect was observed under both stimulated and steady-state 

trafficking of FasR. As expected, endogenous staining against SDCCAG3 showed a 
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partial overlap with the internalized Fas receptors upon stimulation. Additionally, 

internalized FasR co-localized with SDCCAG3 possibly in the sorting endosomes. 

In-depth analysis revealed the mechanism behind the SDCCAG3 mediated 

regulation of Fas receptor trafficking. Depletion of SDCCAG3 led to a delay in 

sorting of internalized Fas receptors from the limiting membrane of the enlarged 

endosomes into the lumen. Therefore, it could be concluded that SDCCAG3 is 

involved in the endo-lysosomal sorting of Fas receptors. Furthermore, this study 

described the molecular mechanism behind sorting by SDCCAG3. Dysbindin, which 

was shown before to connect cytoplasmic adaptors of GPCRs to the ESCRT 

machinery via its interaction with HRS[59], was found to interact with SDCCAG3. 

In this study, both dysbindin and HRS were shown to act in the same pathway and 

coordinate with SDCCAG3 in mediating the intraluminal sorting of Fas receptors.   

Effect on the surface presentation of FasR upon depletion of SDCCAG3 also 

translated into altered apoptotic signalling as demonstrated by increased active 

caspase 8 accumulation. It was also suggested to be cleaved during Fas mediated 

apoptotic signalling (Yu, Erdmann lab). This work demonstrated its cleavage by 

caspase 6 as shown earlier in a study. Thus, SDCCAG3 was shown to be a negative 

regulator of apoptosis. To conclude, this study established (a) a new role of 

SDCCAG3 in lysosomal sorting involving dysbindin and HRS mediated pathway (b) 

a new mode of regulation of Fas mediated apoptosis, and (c) suggested a possible 

mechanism that PTPN13 might employ to regulate FasR surface expression.   

8.2 SDCCAG3 and PTPN13 in apoptosis: future perspectives  

This work lays the foundation for future research into understanding the details of 

the molecular mechanism of Fas trafficking and signalling by PTPN13. A complex 

formation between PTPN13 and SDCCAG3 at the early endosomes was suggested to 

be involved in the regulation of FasR trafficking in this study. In order to support 

this claim, more detailed analysis is required such as (a) analysing the significance of 

the interaction between SDCCAG3 and PTPN13 for FasR trafficking. A mutant 

expression construct of SDCCAG3 lacking PTPN13 binding site or containing point 

mutations that disrupt the binding should not have any effect on the surface levels of 

FasR if they act together as a complex to regulate trafficking. The binding region and 

the point mutation affecting the interaction between SDCCAG3 and PTPN13 have 
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been elucidated previously in a study [123]. (b) Surface levels of transmembrane 

receptors can also be a function of the secretory pathway. Therefore, analysis of this 

complex in TGN-to-PM trafficking of Fas receptor should also be examined. (c) 

PTPN13 was shown to be degraded by autophagy in p62 (an autophagosomes cargo 

protein) dependent manner in order to promote Fas mediated apoptosis [121]. 

Recently, WASH was implicated in inhibiting autophagy by supressing Beclin-1 

ubiquitination. It was also shown to co-localize with p62 in autophagosomes [185]. 

An interaction between SDCCAG3 and WASH has been identified in a proteomic 

screen as well [186]. Could SDCCAG3 be also involved in preventing the 

autophagic degradation of PTPN13 via WASH mediated inhibition of autophagy? 

This model could explain how SDCCAG3 might be involved in negative regulation 

of Fas mediated apoptosis along with PTPN13.                  

8.3 Overview of the role of SDCCAG3 in ciliogenesis 

This study was premised on the data collected previously in the Erdmann lab which 

showed that SDCCAG3 interacts directly with IFT88 via its first 100 N-terminal 

amino acids (Yu, unpublished data). Subsequently, it was found to localize at the 

basal body upon transfection of SDCCAG3 expression construct in the current study. 

This study also showed that depletion of SDCCAG3 led to reduced formation and 

length of cilia in IMCD3 which could be rescued upon transient expression of 

SDCCAG3 construct. It acted along the same pathway as IFT88 to regulate 

ciliogenesis. However, it’s localization to the centrosome was independent of IFT88. 

SDCCAG3 was also shown to regulate trafficking of a receptor, polycystin-2, that is 

also regulated by IFT88. Depletion of SDCCAG3 did not affect the trafficking of 

Rab8, an essential player in cilia formation and trafficking. Therefore, this study 

demonstrated SDCCAG3 in the control of ciliogenesis but the underlying 

mechanism remains unknown.                 

8.4 Concluding remarks  

SDCCAG3 can shed a new light into the regulation of Fas mediated apoptosis which 

is exploited by cancer cells to avoid cell death by natural defence system and 

chemotherapeutic drugs. Further research is required to examine if there is any 

correlation between the expression levels of SDCCAG3 and surface levels of Fas 
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receptors in various cancer cells, a phenomenon that has been reported for PTPN13. 

Data from this study can also be extended to further study the role of SDCCAG3 in 

regulating Fas mediated apoptosis upon stimulation with its physiological ligands 

and intracellular trafficking of other death receptors from the TNF receptor 

superfamily. Therefore, future research should be directed towards establishing the 

physiological relevance for control of SDCCAG3 in apoptosis which will also help 

in identifying a novel therapeutic target. For instance, the lower efficacy of the drug 

called Oxaliplatin, which is used for treatment of colon cancer, could be improved 

upon silencing PTPN13 [118]. Lowering the expression levels of PTPN13 led to 

increased cellular toxicity and reduced proliferation. PTPN13 is expressed at 

abnormally high levels in most forms of colon cancer and surgery or chemotherapy 

are the only available forms of treatments that are partly effective due to high 

resistance against apoptosis in these cancer cells. Also, a peptide targeting PTPN13 

was used as a novel therapeutic tool against Fas resistant cancer cells to treat chronic 

myeloid leukemia in in vivo murine model [187]. Deeper understanding of the 

regulator pathways for Fas receptors such as the one described in this study lays the 

foundation for the development of novel therapeutics against cancer.  

Growing number of ciliopathies identified recently indicates the importance of 

proper formation and functioning of cilia. SDCCAG3 has been implicated in 

trafficking of a polycystin-2 receptor that is involved in the pathogenesis of 

polycystic kidney disease. Therefore, further elucidation of its role in ciliary 

trafficking can open new avenues of research into the trafficking of polycystin-2 or 

other ciliary receptors involved in ciliopathies.            

To conclude, SDCCAG3 is emerging as an important regulatory protein involved in 

disease related trafficking pathways, a notion supported by previous studies and 

corroborated in the current study. 
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Appendix I        

  

MS Excel VBA code for calculation of middle fluorescence intensity in ILVs  

Sub main() 

    'For multiple data sets (x-y coordinates) of pixel vs intensity we identify last column / last 

row for normalization 

    lastColumn = Sheet1.Cells(1, Columns.Count).End(xlToLeft).Column 

    For colNum = 1 To lastColumn 

        lastRow = Columns(colNum).SpecialCells(xlCellTypeConstants, 23).Cells.Count 

        minVal = Application.WorksheetFunction.Min(Range(Cells(1, colNum), 

Cells(lastRow, colNum))) 

        maxVal = Application.WorksheetFunction.Max(Range(Cells(1, colNum), 

Cells(lastRow, colNum))) 

        For rowNum = 1 To lastRow 

            'Normalized value for pixel or intensity is set 

            Cells(rowNum, colNum) = (Cells(rowNum, colNum).Value - minVal) * 100 / 

(maxVal - minVal) 

        Next rowNum 

    Next colNum 

     

    For colNum = 1 To lastColumn 

        'For all odd columns i.e. pixel columns identify the 40 to 60 pixel range and color them 

        If colNum Mod 2 <> 0 Then 

            Set fortySixtyIntensitiesColl = New Collection 

            lastRow = Columns(colNum).SpecialCells(xlCellTypeConstants, 23).Cells.Count 

            For rowNum = 1 To lastRow 

                If Cells(rowNum, colNum).Value >= 40 And Cells(rowNum, colNum).Value <= 

60 Then 

                    fortySixtyIntensitiesColl.Add Cells(rowNum, colNum + 1).Value 

                    Cells(rowNum, colNum).Interior.ColorIndex = 37 

                    Cells(rowNum, colNum).Interior.ColorIndex = 37 

                    Cells(rowNum, colNum + 1).Interior.ColorIndex = 37 

                    Cells(rowNum, colNum + 1).Interior.ColorIndex = 37 

                End If 

            Next rowNum 

             

            Dim fortySixtyIntensities() As Variant 

            ReDim fortySixtyIntensities(fortySixtyIntensitiesColl.Count) 

            Dim i As Integer 

            For i = 1 To fortySixtyIntensitiesColl.Count 

                fortySixtyIntensities(i - 1) = fortySixtyIntensitiesColl.Item(i) 

            Next i 

             

            'Calculate avg. intensity within 40 to 60 pixel range 
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            Dim lCounter As Long 

            Dim dTotal As Double 

            Dim dAverage As Double 

             

            dTotal = 0 

            For lCounter = 0 To UBound(fortySixtyIntensities) 

               dTotal = dTotal + fortySixtyIntensities(lCounter) 

            Next 

            dAverage = dTotal / UBound(fortySixtyIntensities) 

            Cells(lastRow + 1, colNum) = "Avg. Intensity" 

            Cells(lastRow + 1, colNum + 1).Interior.ColorIndex = 27 

            Cells(lastRow + 1, colNum + 1) = dAverage 

            Cells(lastRow + 1, colNum + 1).Interior.ColorIndex = 27 

        End If 

    Next colNum 

    Cells.Select 

    Cells.EntireColumn.AutoFit 

End Sub 
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