

The University of Sheffield

Department of Molecular Biology and Biotechnology

STUDIES ON MICROBES INCLUDING POTENTIAL

HUMAN PATHOGENS

FROM INSECTS AND OTHER INVERTEBRATES

By: Amer Aldahi

Supervisor: Professor (Hon. Cardiff) Milton Wainwright

Dedication

For my father God forgive him, my mother, may God prolong her age, my wonderful wife, my sons Abdulrahman and Abdulaziz, my brothers, my relatives, friends and colleagues.

ACKNOWLEDGMENTS

I would like to express my gratitude to Almighty Allah

I extend my thanks and appreciation to my supervisor Professor Milton Wainwright for his support, helpful advice guidance, encouragement given to me during this study and completion of my thesis.

I would also like to special thanks to Dr Jim Gilmour for his advice, throughout my project, I am also grateful to Dr Lynda Partridge for her advice. Finally, I would like to thank The Kingdom of Saudi Arabia Government, King Fahd Security College for financial scholarship and supports.

LIST OF CONTENTS

List of Figures	10
List of Tables	13
Summary	14
CHAPTER ONE ISOLATION OF BACTERIA FROM INVERTEBRATE SURFACES AND INTERNAL BODY FLUIDS	16
1: Introduction	16
1:1 Aim	18
1:2 PCR techniques	18
1:3 Materials and Methods	20
1:4 Bacterial Isolations	20
1:5 Nutrient agar media	20
11:6 Gram stain	21
1:7 LB media	21
1:8 DNA Quality and Quantity	21
Agarose gel electrophoresis	21

Nanodrop	23
1:9 PCR techniques	23
1:10 Methods for DNA extraction	24
Used QIA prep Spin miniprep kit from Qiagen	24
Glass bead	25
1:11 PCR Amplification	25
1:12 Quantity Types	26
1:13 16SrRNA sequencing	27
1:14 Identification of unknown bacteria	27
1:15 RESULTS AND DISCUSSION	28
CHAPTER TWO -ISOLATION OF BACTERIA FROM THE HAEMOLYMPH OF LEPIDOPTERA	32
2: The Lepidopteran life cycle	32
2:1 The aim of the work	34
2:2 The study focus	34
2:3 PCR Techniques	35
2:4 Materials and Methods	36
2:5 Setting of imagoes for future use	38

2:6 Isolation of bacteria from larvae and chrysalids of the Peacock Butterfly	40
2:7 Feeding of Peacock larvae with bacteria and subsequent isolation of the	41
same bacteria from the larval gut contents	
2:8 Nutrient agar media	41
2:9 LB medium	42
2:10 Nutrient Broth Medium	42
2:11 Agarose gel electrophoresis	43
2:12. Results and Discussion	43
Feeding larvae from different bacteria species	50
2:13 Results of feeding larvae from different bacteria species	51
CHAPTER THREE-ISOLATION OF BACTERIA FROM A	52
DERMESTIDAE LARVA OBTAINED FROM HUMAN CADAVERS	
DURING FORENSIC ANALYSIS IN SAUDI ARABIA	
3:1 Introduction	52
3:2 Using insect data for determining the site of crime	54
3:3 Entomotoxicology	55
3:4 Aims	56
3:5. Materials and Methods	56

3:6 Results and Discussion	57
CHAPTER FOUR-POTENTIAL ROLE OF B. THURINGIENSIS AND	61
PAEBIBACILLUS POPILLIAE IN ENVIRONMENTAL MINERAL	
CYCLING	
4:1 INTRODUCTION	61
4.2 Pacillus thuringiongis	62
4:2 Bacillus thuringiensis	02
4:3 Uses of Bt in Agriculture	64
4:4 Development of insect resistance	64
4:5 Potential Lepidopteran toxicity	64
4:6 Milky Spore (Paenibacillus popilliae)	65
4:7 The Nitrogen Cycle	66
4:8 Ammonification	66
4:9 Nitrification	66
4:10 Urea hydrolysis	67
4:11 The Sulphur cycle	67
4:12 The Phosphorus Cycle	68
4:13 Materials and Methods	69
4:14 Results and Discussion	70

CHAPTER FIVE. ISOLATION OF BACTERIA AND FILAMENTOUS	81
FUNGI FROM INSECTS SAMPLED DURING FLIGHT	
5:1 Introduction	81
5:2 Aims	81
5:3 Methods used to detect airborne microbes	83
Passive monitoring	84
5:4 Active monitoring	84
Impingers	84
Impactors	85
5:5 MATERIALS AND METHODS	86
5:6 Drone sampler	86
5:7 Octanol-based midge samplers	87
5:8 Bacterial isolation	89
5:9 Fungi isolation	89
5:10 Results and Discussion	89
5:11 Fertilizer Potential of collected midge biomass	93
5:12 Materials and Methods	93
5:13 Results and Discussion	93

5:14 DISCUSSION	96
CHAPTER SIX-FUNGI ASSOCIATED WITH THE SURFACE OF	99
LARGER MOTHS CAUGHT USING A MERCURY VAPOUR TRAP	
6:1 Introduction	99
6:2 Materials and Methods	99
RESULTS AND DISCUSSION	102
Erysiphe alphitoides	103
Marssonina betulae	104
Ceratocystis fimbriata	104
CHAPTER SEVEN GENERAL DISCUSSION	106
Suggestion for Future Work	111
REFERENCES	112
APPENDIX	124

Figures	Title	Page .n
1:1	An Elephant Hawk Moth (<i>Deilephila elpenor</i>) and a Silk Moth (<i>Hyalophora cecropia</i>)	16
1:2	Example of moth traps and an entomological net used in these studies	
1:3	A standard hyper ladder I with 14 lanes indicating higher intensity bands	22
1:4	Shows a successful nucleic acid fragment from bacteria extraction from ten bacteria	22
1:5	Shows Finch TV software as ladder for nitrogen base pair	27
1:6	Shows example of <i>Bacillus thuringiensis</i> gene sequences	28
1:7	Bacteria (number of isolates) obtained from the surface of a range of insects and arthropods species	30
2:1	The Lepidopteran life cycle (showing a Monarch Butterfly, Danaus plexippus)	34
2:2	Author collecting samples using a sweep net	37
2:3	A killing bottle used with ethyl acetate to kill imagoes (Showing European Swallowtail butterfly).	37

LIST OF FIGURES

2:4	A perspex container showing chrysalids	38
2.1	ripersper container showing empounds	50
2:5	A European Swallowtail butterfly being prepared for setting,	39
	showing setting board groove to left	
2:6	Examples of various moths undergoing setting and the resultant ongoing insect collection	40
2:7	The isolation of bacteria from chrysalis body fluid	41
2:8	Moth pupae (first three) and a butterfly chrysalis (extreme	42
	right)	
2:9	An example of electrophoresis band in expected region 1500	44
	bp	
2:10	Summary of bacteria isolated from various butterflies and	50
	moth species	
3:1	Dermestid larvae obtained from human cadaver	56
3:2	Bacteria extracted from the Dermestid larva isolated from a	59
	human cadaver.	
4:1	Containers showing commecial Thuricide and Milky Spore	63
	powders	
4:2	(A). Dipsticks container contianing dipsticks used for ion	71
	determination showing concentration chart	
4:2	(B). Dipsticks used for ion determination showing	71
	concentration chart set used for determination of phosphate.	

4:3	The Effect of Bacillus thuringiensis (Thuricide) on in vitro	74
	transformations relevant to the major nutrient cycles.	
4:4	The Effect of Paenibacillus popiliae (Milky Spore) on in vitro	76
	transformations relevant to the major nutrient cycles.	
4:5	The Effect of Bacillus thuringiensis Paenibacillus popiliae	80
	(Thuricide and Milky Spore respectively) on transformations	
	relevant to the major nutrient cycles when added to an	
	agricultural soil and incubated for 28 days at 25°C	
5:1	The drone used to capture airborne insects	88
5:.2	The Predator midge collector	89
6:1	Mercury Vapour (Robinson) Trap used to catch large night	101
	flying moths	
6:2	Lesser Yellow Underwing Moth (Noctua comes)	101
6:3	Garden Tiger Moth (<i>Artia caja</i>)	102
6:4	Small Elephant Hawk Moth (Deilephilia porcellus)	102
I		

Table.	Title	Page. n
1:1	PCR process	26
1:2	Bacteria isolated from external surface of insects and arthropods	29
2:1	Bacteria isolated from the Lepidoptera (butterfly) haemolymph	45
2:2	Results obtained following the feeding of larvae of the Peacock butterfly	52
	with leaves covered in various bacteria	
3:1	Bacteria isolated from larvae of Dermestids obtained from a human	58
	cadaver	
4:1	Effect of <i>Bacillus thuringiensis</i> (Thuricide) on <i>in vitro</i> transformations	73
	relevant to the major nutrient cycles	
4:2	Effect of Paenibacillus popiliae (Milky Spore) on in vitro transformations	75
	relevant to the major nutrient cycles	
4:3	Effect of Bacillus thuringiensis Paenibacillus popiliae(Thuricide and	79
	Milky Spore respectively) on transformations relevant to the major nutrient	
	cycles when added to an agricultural soil and incubated for 28 days at 25°C	
	(all changes are significantly different from control, p=0.05) µg ml-1	
5:1	Insects and associated bacteria isolated using a drone from a height of 500	91
	meters.	
5:2	Bacteria isolated from midges-identified to species level	92
5:3	Fungi isolated from midges-identified using classical methods	93
5:4	Concentration of ammonium and nitrate (µg ml ⁻¹ dry weight) extracted	95
	from soil amended with midge-biomass	
6:1	Filamentous fungi isolated from the body surface of larger moths	104

LIST OF TABLES

Summary

A wide range of bacteria were obtained from the exterior, and from the body fluids, of insects collected locally, and Lepidoptera species obtained from an Entomological supplier. The insects were found to contain a wide range of bacteria, both internally and externally including *Bacillus thuringiensis*, a bacterium used in the biocontrol of larval pests. Although not major pathogens, many of the bacterial isolates can cause infection in immune-compromised patients, a possibility which is discussed.

Larvae of the Peacock butterfly (*Vanessa io*) were fed nettle leaves which were deliberately covered with a range of bacteria. Feeding with *B. thuringiensis* not surprisingly, lead to the death of all of the larvae after 4 hours. The results show that feeding with *B. subtilis* and *E. coli* can lead to larval death, while MRSA was shown to be less toxic. Feeding the larvae with the other bacteria killed some larvae, with the death rate after feeding *B. subtilis* and *E. coli* being identical. *Bacillus cereus* was isolated from the larvae fed *B. thuringiensis* and *B. subtilis*.

Bacteria were isolated from the Dermestidae (beetle larvae) obtained from human cadavers. The dominant species of bacteria was *Enterococcus faecalis* which was isolated from inside the larvae extracted from a human corpse. Two species of *Clostridium* were also isolated; *Clostridium cochlearium* was isolated from the Dermestid larva, the other, *Clostridium paraputrificum* was isolated from inside the larva. *Brevibacterium ravenspurgense, Staphylococcus hominis, Lishizhenia tianjinensis* and *Bacillus safensis*, were also isolated from inside larvae, extracted from human body.

The biocontrol agents *Bacillus thuringiensis* and *Paenibacillus popiliae* were shown to be capable of mediating *in vitro*, transformations which are important in the major environmental mineral cycles These bacteria are likely to reach the agriculture soils following treatment and, on germination can presumably participate in mineral cycling Both bacteria

were shown to be capable *in vitro* hydrolysis of urea, and were shown to oxidize ammonium and elemental sulphur and also to solubilize a source of insoluble phosphate. It is not clear however, to what extent the ability of these bacteria to participate in these reactions *in vitro* correlates with the same activity in soils and other environments.

Insects were sampled at a height of 120 meters using a drone-towed fabric sleeve and their microbial content studied. The major point of interest behind this work is the use of a drone-towed sleeve to sample the insects. As far as can be determined, this is the first reported use of this approach to sample high flying insects in relation to a study of their microbiology. The use of a drone was shown to be ideal for the high altitude sampling of insects since it proved to be both powerful and highly manoeuvrable and there is no doubt that the drone used could have been used to sample at greater heights than the 120 m used here. The results relating to the microbiology of the insects sampled using the drone are not surprisingly similar to those obtained using other sampling methods, since the drone, of course, does not necessarily sample insects which differ from those obtained using more traditional approaches.

An octanol-based midge sampler (Predator) was used to obtain large numbers of midges from the air, in relations to studying their microbiology this approach appears to be novel. The midge-biomass collected was found to contain microbes and was shown to break down in an agricultural soil to release ammonium and nitrate. The potential use of this material as an agricultural or home fertilizer is discussed. Finally, larger moths were trapped using a Robinson UV light trap. The moths were found to carry filamentous fungi on their bodies, some of which are plant pathogens, notably of trees.

CHAPTER ONE: ISOLATION OF BACTERIA FROM INVERTEBRATE SURFACES

1: Introduction

Countless numbers of insect species occur around the world. With the exception of some pest species, surprisingly little is known however, about the relationship between insects and bacteria (Broderick *et al.* 2004, Robinson *et al*, 2010). Insect comprise some 53.1 percent (751,000 species) of all the known species (1.4 million) living species found on this planet. Furthermore, beetles constitute 20.5 percent of all living species (290,000) and Lepidoptera like those shown in Fig1.1 make up approximately 9.9 percent (140,000) of insects (Shalaway, 2004).

Fig.1:1. An Elephant Hawk Moth (*Deilephila elpenor*) and a Silk Moth (*Hyalophora cecropia*) (obtained from an entomological supplier).

Insects possess very efficient immune system allowing them to deal with pathogenic infections and consists of a wide range of defence mechanisms which can act individually or in combination in order to stop foreign organisms entering or to suppress pathogens after they have gained access to their tissues. The epithelium is the first line of defence, which acts as a barrier and produces local antimicrobial peptides (AMP) following infection or wounding (Davis and Engström, 2012). The innate immune system provides a second line of defence which involves a) the systemic production of AMP largely from the fat body (the insect equivalent to the mammalian liver) (Ganesan et al., 2011); b) cellular responses by insect haemocytes (equivalent to mammalian white blood cells) that are involved in immune surveillance, c) phagocytosis, and the encapsulation of foreign intruders (Marmaras and Lampropoulou, 2009); d) melanization and clotting or coagulation of the haemolymph (equivalent to vertebrate blood), which needs active phenoloxidase and the involvement of both humoral and cellular factors that bring about the rapid production and deposition of melanin around wounds (Eleftherianos and Revenis, 2011); e) the generation of large amounts of reactive oxygen species (ROS) and AMP in epithelial cells and the production of nitric oxide (NO) which is involved in the regulation of innate immune responses both to bacteria and parasites (Ryu et al., 2010) and which is stimulated by the gut microbiota; and finally f) RNA interference (RNAi) and inducible innate immune responses against invading viruses (Kemp and Imler, 2009).

In addition to their native microflora, insects carry symbiotic bacteria which can occupy specialized cells and tissues within the host. These symbiotic microbes live under an active immune system and therefore must devise approaches allowing them to avoid the negative effects of the host's immune defence systems (*Gross et al.*, 2009). Such symbiotic bacteria present in various insect species are associated with increased host resistance to both pathogens and parasites.

Although we have made advances in the field of insect innate immunity, our recognition of the part played by endosymbiotic bacteria in the host immune response to pathogenic infections is incomplete. Studies have begun to determine the phenotypic response of a variety of insects carrying endosymbionts to infection by pathogenic bacteria, viruses as well as parasites. Substantially more detailed and comprehensive knowledge is needed to show exactly how endosymbiotic bacteria regulate insect immune defence mechanisms against pathogens and parasites. A further challenge is to characterize the interplay between different endosymbionts, including *Wolbachia*, which co-exist in an insect host, and effectiveness of the immune function. It is also important to determine the precise mechanisms used by endosymbiotic bacteria to modulate insect immune signalling. From a more applied viewpoint, the discovery that the presence of *Wolbachia* endosymbionts in mosquitoes has a direct effect on insect sensitivity to pathogens has suggested the possibility that they might be used in medicine (Hancock *et al.*, 2011), including potential implementation in the field of practices that are effective disruption of dengue transmission by mosquitoes.

1:1 Aim of the work described in Chapter 1

The aim of the research discussed in this Chapter is to study the relationship between insects and bacteria, by isolating bacteria from insects and identifying the isolates using 16S rRNA gene sequencing via PCR amplification for the identification and characterization of the isolates. The study initially focused on moths and butterflies which are likely to be associated with *Bacillus thuringiensis* (du Rand, 2009, Roh, *et al*, 2007), and other bacteria and determine if these occur throughout the developmental life cycle of Lepidoptera, i.e. ova, larva, pre-pupa, pupa and adult (imago).

1:2 PCR techniques

DNA is required for all cellular life cell and contains four nitrogen bases (pyrimidine) cytosine (C), thymine (T) and (purine) guanine (G), adenine (A). DNA bases pair up with

each other, A with T and C with G, to form units called base pairs. Each base is attached to a sugar molecule and also a phosphate molecule. A base, sugar, and phosphate molecule are together called a nucleotide. Nucleotides are organized in two long strands forming a spiral. i.e. a double helix. The structure of the double strand helix resembles a ladder, with the base pairs forming the rungs of the ladder and the sugar and phosphate molecules forming the vertical components of the ladder (Sinden, 1994, Baker *et al.*, 2006).

The PCR (polymerase chain reaction) is a tool now routinely used in most diagnostic and medical and biological research laboratory. This technique has been used in forensic investigation, sequencing mutations and pathogens, eukaryotic classification, and the sequencing of the human genome (Prada-Arismendy, 2011, Hadidi and Candresse, 2003, Erlich, 1988). It is an excellent method for use in the detection of nucleic acids, eukaryotic species, human identification, disease identification, forensic science and to the identification of pathogens (Chambers, et al. 2014, Randall et al., 1985). The identification of organisms to the species level has usually been allocated to specialist field of taxonomists, providing a classification as key prerequisite and mainstay for numerous biological studies. In 1990s there emerged the idea of a consolidated molecular identification system with the development of PCR-based approaches for species identification, particularly. The great benefit appeared in molecular identification Studies and surveys on microbial biodiversity is done by the use of bacteria in these applications (e.g. Kyrpides, 1996 and Zhou et al., 1997) and the routine identification of pathogens (e.g. Maiden et al., 1996, Sugita et al., 1998 and Wirth et al., 2006), all of which are based on the need for systems based on cultureindependent identifications. Methods which are based on the use of PCR have also been regularly applied to taxonomy, also food such is Food and Drug agencies around the world and forensic molecular identification (Teletchea et al., 2008) and for eukaryotic pathogens and vector identification.

1:3 Materials and Methods

The entomological samples were obtained from the local environment. Moths were collected using light traps, while others were sampled from vegetation and flowers using nets (Fig.1:2).

Fig.1:2. Example of moth traps and an entomological net used in these studies

After the insects were collected they were photographed to aid in future identification.

1:4 Bacterial isolations

A wet cotton swab was used to isolates bacteria from the surface of insects, arthropods, a shield bug and slugs. The swab was then spread onto the surface of the isolation medium, in addition by using a fine hypodermic needle to isolate bacteria from haemolymph.

1:5 Nutrient agar media

Nutrient agar medium was prepared by dissolving 23 g of Nutrient Agar (Oxoid) in 1000 ml of distilled water in a flask and autoclaving at 121°C for 30 min.; the medium was then poured in Petri dishes and allowed to cool.

Identification of isolates

1:6 Gram stain

Bacteria are divided into two types depending on the interaction with the Gram Stain. Bacteria that retain the primary stain crystal violet (purple) are "Gram-positive," while those that de-stain and are coloured red with safranin or carbol fuchsin are "Gram-negative". This response is based on the staining chemical composition and structural walls of the cells from both species of bacteria. Gram-positives have, relatively impermeable thick wall resists the removal of colour and consists of peptidoglycan polymers and mucopeptide. Gram-negatives have a thin layer of peptidoglycan in addition to the bi-layer overlying fat, protein, known as the outer membrane, which can be disrupted to allow by the removal of colour.

1:7 LB media

LB is one of the most commons used bacterial culture medium used today. It was developed by Guiseppi Bertani while attempting to optimize plaque formation on a *Shigella* indicator strain. LB broth was prepared here from 10 g peptone, 5 g yeast extract and 5 g sodium chloride in 1000 ml distilled water, with autoclaving at 121°C for 30 min.

1:8 DNA quality and quantity

Agarose gel electrophoresis

Agarose (1%) is use to separate DNA fragments. The gels were prepared as follows: 0.5g of molecular biology grade agarose was dissolved in 50 ml of 1x TAE buffer by heating in a microwave on a medium high power for approximately 2 minutes and then 2.5 μ l ethidium bromide (after the temperature decline to 60°C to avoid ethidium bromide steam) to visualize the DNA before setting the solution in a gel tray and then the gel was poured in the gel rack. The comb was inserted at one side of the gel and left at room temperature. The gel then was immersed in TAE buffer 1x and the DNA samples (10 μ l) were added, mixed with 2 μ l loading dye, to wells. To determine the size of fragments, 6 μ l of Hyper Ladder was used.

The samples were then electrophoresed for 40 minutes at 80V. The DNA was visualized on the gel and all PCR products were analysed on agarose gels to check for the successful amplification of the 16S rRNA gene in the samples band and a digital image was taken using UVitec "Uvidoc", attached to a digital camera (Fig.1:3; 4).

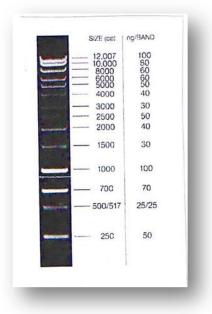


Fig.1:3. A standard hyper ladder I with 14 lanes indicating higher intensity bands, 1000 and 10,000 and each lane (5µl) provides 720ng of DNA (BIOLINE supplier)

Fig.1:4. Shows a successful 16-DNA amplification genomic DNA from bacteria extraction from ten bacteria (taken from haemolymph) which were unknown prior to DNA sequencing *Bacillus licheniformis, Bacillus thuringiensis, Bacillus cereus, Bacillus* sp, *Stenotrophomonas, Microbacterium* sp, *Bacillus weihenstephanensis, Bacillus safensis, Bacillus pumilus* and *Bacillus mycoides*.

Nanodrop

DNA concentration and purity was determined by electrophoresis after DNA extraction for quality and quantity of the genomic DNA was evaluated spectrophotometrically by using a Nanodrop 1000 spectrophotometer. A 1 ul sample was used to measure the quantity of DNA (NanoDrop Technologies, Wilmington, DE, USA); DNA absorbance was measured at 260 nm.

1:9 PCR Techniques

PCR is a molecular procedure for amplifying the target gene and permit accessing to the genomic information from eukaryotic and prokaryotic cells. Three main stages are performed in PCR, which are repeated for a number of cycles to significantly increase the number of copies of a specific goal area (Henson and French, 1993).

1: Initial denaturation (melting of DNA), involves the denaturation of the double stranded DNA into two single strands of template DNA by heating the DNA to 94 °C during 3 min.

2: annealing of primers (annealing of two oligonucleotide primers to the denatured

DNA strands), encompass lowered the temperature around 60°C during 1 min to allow the primers to match DNA fragments.

3: involves the extension by a polymerase (primer extension by a

thermo-stable DNA polymerase) involves the incorporation of (dNTPs; A, C, G, T), thereby extending the DNA sequence in the 5 \degree to 3 \degree directions by raised the temperature (72-75°C) .5 min time which depends on the period DNA polymerase used.

1:10 Methods for DNA extraction used QIA prep Spin miniprep kit from Qiagen.

The following is provided in a "manual style":

The DNA extraction procedure was as follows: Add lyse Blue reagent to Buffer P1 at ratio of 1 to 1000.Add RNase A solution (200µl) to Buffer P1at ratio 1-100 and store at 2-8 °C. Add ethanol (96-100%) to buffer PE. After being incubated, in LB overnight take 1-5 ml from LB culture then centrifuge at 8,000 rpm for 3 min at room temperature. Decant the supernatant and keep residual (suspended).Add 250 µl Buffer P1 (Resuspension buffer) mixed the solution gently by inverting 4-6 time. Add 250 µl buffer P2(Lysis buffer it contains salts used to break down the cell and nuclear membranes allowing the DNA to be released); mix the solution gently by inverting 4-6 time the solution became blue colour (protein denaturation) Add 350 µl Buffer N3 (After the addition of acetate-containing neutralization buffer the large and less supercoiled chromosomal DNA and proteins precipitate, but the small bacterial DNA plasmids stay in solution) and mix immediately by inverting 4-6 time the solution became colourless. (Homogenization)Centrifuge for 10 min at 13,000 rpm.

Apply the supernatant from previous step to QIA prep spin column (filter) by decanting. Centrifuge for 30-60 s and discard the flow through. (Loading to column)Wash the filter by adding 750 μ l Buffer PE (washing buffer) Centrifuge for 30-60 s and discard the flow through. Centrifuge for 1 min to remove residual wash Buffer. Transfer the filter to the new 1.5 ml micro centrifuge tube. Add 50 μ l buffer EB (Elution buffer) to elute DNA incubate for 1 min then centrifuge for 1 min. Through the filter and the DNA extract was stored at -4 °C (DNA elution).

Glass bead

Glass beads were used for the extraction DNA:

add a small amount of cultured of bacteria by loop to Eppendorf tube containing 100 μ l of molecular water and mixed by Pipette up and down the suspension then added glass beads diameter of 0.1 mm (ten balls) then rubbing gently by pipetting up-and-down repeatedly. Vortex for ten second subsequently centrifuges at 13 rpm for 5 minutes then carefully discharges the supernatant to new Eppendorf tube

1:11 PCR Amplification

The 16S rRNA gene was amplified with the universal bacterial forward primer (5[°] CCG AAT TCG TGG ACA ACA GAG GAT CCT GGC TCA G 3[°]) (34) and universal reverse primer (5[°] CCC GGG ATC CAA GCT TAC GGC TAC CTT GTT ACG ACT T 3[°]) Table 1:1) (Weisburg *et al.*, 1991)

A typical PCR mixture (20 µl in volume) contained the following components: 6 µl sterile molecular water, 10 µl Ampli Taq Gold or Master Mix, 1 µl forward Primer, 1 µl Reverse primer (before using the primer need to diluted to 90% with molecular water by add 90 µl molecular water to 10 µl from primer stock) 2 µl dNTPs. The following standard conditions were used for bacterial 16S rRNA gene amplification: initial denaturation at 94°C for 3 min; 35 cycles of denaturation for 1 min at 94 °C, annealing for 1 min at 60°C, elongation for 1 min at 72°C; and a final extension at 72°C for 5 min. various process are available now to isolate DNA from many different samples. Such as, tissues or cells are broken then the cells are lysed by using enzymes or detergents then centrifuged to separate the DNA from other components followed by cleaning from other molecules (Amann *et al.*, 1995).

1:12 Quantities

Add 47 μ l molecular water for volume 100pmol/ μ l to 16s reverse primer Add 69 μ l molecular water for volume 100pmol/ μ l to 16s forward primer Storage in the freezer at -4°C (Stock)

Steps	Temperature	Time	Cycle
			No
Initial denature	94°C	3 min to separate the double strand	1
		of DNA to single strand	
RNA.denature	94°C	1 min. Annealing	
Annealing	60°C	1 min to allow primers to match	35
		DNA fragments	
Elongation	72°C	1 min	
Final elongation	72°C	5 min by using Tag polymerase	1
Hold	4° C	Until continue procedure	

Table 1:1. The PCR process

1:13 16SrRNA sequencing

DNA was extracted from bacteria then amplification and copy to bacteria by using a PCR protocol with the suitable primers to produce large quantities of the 16SrRNA gene then by genotyping machine and protocols we can identify the genus or species from specific loci in DNA strand. Genomic DNA was isolated by using (Qiagen- Bacterial DNA Extraction) the following procedures. DNA was extracted from the bacterial cells using a commercial kit (Qiagen)

1:14 Identification of unknown bacteria:

This stage was achieved by sending samples to the University of Sheffield Medical School Genetics Unit for more sequencing. Finch TV software was used to check the nitrogen base sequencing result after that used BLAST software to identify gene sequences of bacteria determination from 16SrRNA (NCBI) (<u>http://www.ncbi.nlm.nih.gov</u>). The bacteria, isolated from the relevant species of Lepidoptera, and their potential pathogenicity are shown in Table 1:2.

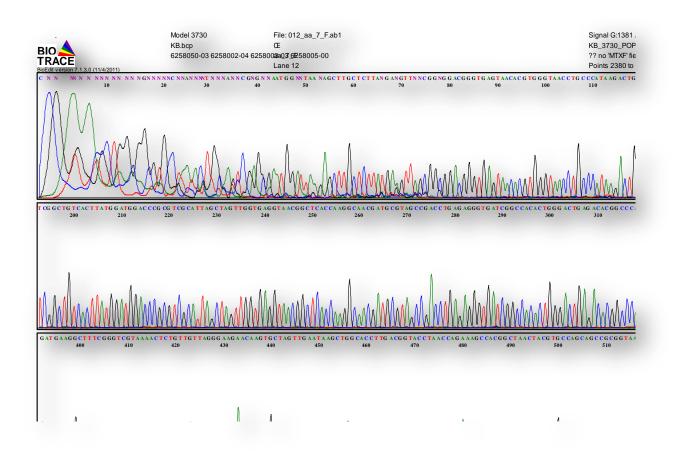


Fig.1:5. Shows Finch TV software as ladder for nitrogen base pair

Bacillus thuringiensis strain ATCC 10792	16S ribosomal RNA gene, partial sequence
Sequence ID: ref[NR_114581.1] Length: 1482	Number of Matches: 1

Score 1294 bits	s(1434)	Expect 0.0	Identities 743/759(98%)	Gaps 1/759(0%)	Strand Plus/Plus	
Query	4				-CACGTGGGTAACCTGCCCA	62
Sbjct	61			111111111111111		12
Query	63				ATAACATTTTGAACCGCAGG	12
Sbjct	121	TAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTGAACTGCA			18	
Query	123				GGACCCGCGTCGCATTAGCT	18
Sbjct	181				GGACCCGCGTCGCATTAGCT	24
Query	183				CCGACCTGAGAGGGTGATCG	24
Sbjct	241				TAGCCGACCTGAGAGGGTGATCG	30
Query	243				GGAGGCAGCAGTAGGGAATCTTC	30
Sbjct	301					36
Query	303				GATGAAGGCTTTCGGGTCGT	36
Sbjct	361					42
Query	363				AGCTGGCACCTTGACGGTAC	42
Sbjct	421				ATAAGCTGGCACCTTGACGGTAC	48
Query	423				GGTAATACGTAGGTGGCAAG	48
Sbjct	481		CACGGCTAACTACGTGCCAGCAGCC			54
Query	483				GCAGGTGGTTTCTTAAGTCTGATGTGAA 	54
Sbjct	541					60
Query	543				GACTTGAGTGCATAAGAGGA	60
Sbjct	601					66
Query	603				TGGAGGAACACCAGTGGCGA	66
Sbjct	661					72
Query	663				GCGTGGGGGGGGCAAACAGGAT	72
Sbjct	721	AGGCGACTTTCTGGTCTGTAACTGACAC			GAGGCGCGAAAGCGTGGGGGAGCAAACAGGAT	
Query	723		FAGTCCACGCCGTA		761	
Sbjct	781				819	

Fig.1:6. Shows example of *Bacillus thuringiensis* gene sequences

1:15 RESULTS AND DISCUSISON

No	Bacteria	Insects and arthropods	Repetition
1	Bacillus thuringiensis	Butterfly pupa and butterfly (<i>Aglais io</i>) larva, Garden Snail(<i>Cornus asperum</i>) and slug (<i>Lehmannia valentiana</i>)- external wet swab, Shield Bug (<i>Paromena prasina</i>)	7
2	Bacillus cereus	Snail, Housefly, Earthworm (<i>Lumbricus terrestre</i>)	7
3	Stenotrophomonas maltophilia	External butterfly larva swab (<i>Aglais io</i>), Shield bug(<i>Paromena prasina</i>)	2
4	Microbacterium sp	Moth (Abraxas grossulariata)	2
5	Bacillus weihenstephanensis	Moth (Abraxas grossulariata	1
6	Bacillus sp.	Snail (Cornus asperum)	1
7	Enterococcus sp.	Slug (Lehmannia valentiana)-	1
8	Bacillus licheniformis	Moth (Abraxas grossulariata	1
9	Bacillus safensis	Ladybird (Adalia bipuncta)	1
10	Bacillus pumilus	Ladybird (Adalia bipuncta)	1
11	Exiguobacterium sibiricum	Butterfly larva(Aglais io)	1
12	Staphylococcus succinus	Moth (Abraxas grossulariata	1
13	Vagococcus sp.	External swab butterfly pupav(<i>Aglais io</i>)	1
14	Bacillus mycoides	Moth (Abraxas grossulariata	1
15	Clostridium litorale	External swab butterfly pupa (Aglais io)	1
16	Enterococcus mundtii	Slug, external dry swab (<i>Lehmannia</i> valentiana)	1

Table 1:2. Bacteria isolated from external surface of insects and arthropods.

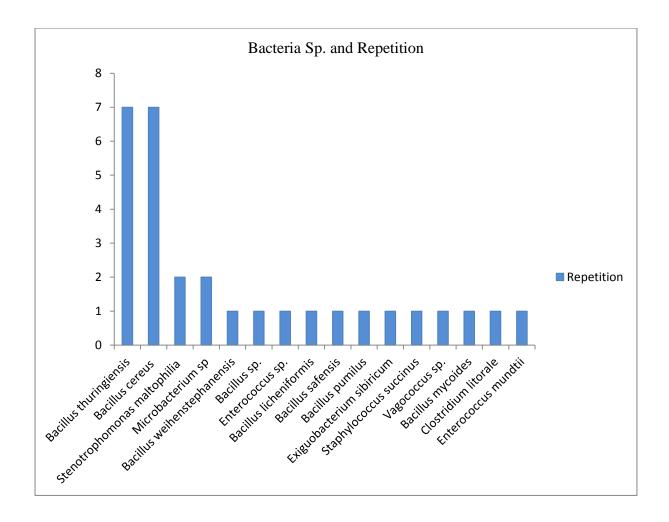


Fig.1:7. Bacteria (number of isolates) obtained from the surface and from haemolymph of a range of insects and arthropods species.

As the results given in Table 1:2 and Fig.1.5 show, *Bacillus thuringiensis* was the most commonly isolated bacterial species from the insects and the other invertebrates studied (being isolated from all samples). The next most frequently isolated species of bacterium was *B. cereus* (which is closely related to *B. thuringiensis*). Bacilli in general were widely represented amongst the isolates, with *Bacillus weihenstephanensis, Bacillus licheniformis* and *Bacillus mycoides* being isolated from moths and *Bacillus safensis* and *Bacillus pumilus* from a Ladybird and *Bacillus* sp from the snail sample. Other bacterial species isolated include *Stenotrophomonas maltophilia, Microbacterium* sp, *Enterococcus* sp, *Exiguobacterium sibiricum, Staphylococcus succinus, Vagococcus sp* and *Clostridium*

litorale all these bacteria were found outside the bodies of butterflies and moths and other arthropods. Most of the bacteria shown in Table 1:2 are capable of causing opportunistic bloodstream infections, and problems with the respiratory tract, urinary tract and surgicalsites (Cunha, 2011). The association of Enterococci with a variety of insects points to the potential of these organisms as transmitters of gastroenteritis, i.e. food poisoning. *Enterococcus* sp bacteria also cause important clinical urinary tract infections, bacterial endocarditis, bacteraemia, meningitis, and diverticulitis. The Gram positive bacterium, *Staphylococcus succinus* is not generally regarded as a pathogen, but could doubtless cause problems in immunocompromised patients. The Gram positives, *Exiguobacterium sibiricum* and *Vagococcus* sp are similarly not reported to be human pathogens, the same applying to *Bacillus safensis* and *Bacillus pumilus*. In contrast, *Bacillus thuringiensis and Bacillus cereus* can cause non-serious infections of the digestive tract; again, any problem they may cause in immunocompromised patients is not immediately evident.

The work described relates to the isolation of bacteria from a wide range of entomological specimens obtained from the local environment. This initial screening programme allowed the author to become acquainted with the handling of insects and arthropods and with their anatomy. The results show that bacteria are present in all of the entomological specimens sampled. Some of these bacteria are potential pathogens of humans and therefore could present a risk in hospital settings, especially in relation to immunocompromised patients. The most frequently isolated bacteria were two bacilli, *B.thuringiensis* and *B. cereus*. This is perhaps not surprising, since Bacillus species are spore formers and are known to survive in a wide variety of environments. The finding that *B. thuringiensis* is widely distributed amongst insects and arthropods is of particular importance because they produce an anti-larval protein which may impact on the survival of these entomological specimens (du Rand, 2009, Roh, *et*

*al.*2007). The finding of bacteria (*Bacillus thuringiensis, Enterococcus mundtii* and *Clostridium litorale*) in the intestines of the slug confirms early work by Walker *et al.* (1999).

It is surprising that relatively little attention has been given to the microbiology of insects, especially, since these organisms are frequently found in medical settings, both as living and dead specimens. Of course it is unlikely that large insects like the ones studied here would provide a major focus, and route, for infection when compared with, for example, blowflies or biting insects. A perhaps surprising means of transfer of potentially pathogenic bacteria from insects to man relates to the entomophagy, i.e. the consumption of living or dead insects (Ramous Elorduy 2009). The human consumption of insects a major source of nutrition for people in some 130 countries. In Mexico, for example, some 100 varieties of edible insects have been consumed over a period of some 500 years, from the Spanish conquest until modern times. The consumption of insects is becoming increasingly fashionable in rich Western societies and has even been considered as a source of nutrition during space flight, and colonization planets like mars (Katagama *et al.*, 2005).

CHAPTER TWO-ISOLATION OF BACTERIA FROM THE HAEMOLYMPH OF LEPIDOPTERA

The Lepidopteran life cycle

There is generally no problem in distinguishing between butterflies and moths, because:

1. Most butterflies are active during the day, while most moths are active at dusk or at night (there are however day flying moths)

2-Most butterflies have clubbed antenna, while in moths they tend to be feather-like.

3-Most butterflies have slender bodies covered with hair, while most moths have fuller bodies, and have a fur-like covering.

4. Most butterflies rest with upright wings, while the majority of moths rest with their wings flat.

Butterflies and moths have a worldwide occurrence, with the majority being found in tropical rainforests. These insects however, range from fields and forests and some live on cold mountain peaks or even hot deserts. Many butterflies (and fewer moths) migrate to spend the winter in warmer areas, the classic example being the annual migration of the Milkweed or Monarch butterfly from the USA and Canada to central Mexico. The life cycle of butterflies and moth (Fig.2:1) begins with the egg which is produced after the female is fertilized by sperm which is stored in her body after mating; eggs vary in size from one to two millimetres and are usually deposited, from an ovipositor, onto the underside of a food plant leaf or stem. Within the egg the embryo grows quickly and hatches, usually within a week, although some species overwinter in the egg stage. The eggs eventually hatch and produce tiny larvae (i.e. caterpillars) which then feed voraciously and grow rapidly.

Fig. 2:1.The Lepidopteran life cycle (showing a Monarch Butterfly, *Danaus plexippus*) (F.W. Frohawk, 1914, out of Copyright).

Larvae have soft bodies and covered by hair or spines; on the head they also have small eyes, tiny antennae and relatively massive jaws consisting of keratin which allows for chewing of even tough plants. The larval stage is essentially an "eating machine". The first meal is the shell of the egg, followed by the food plant on which it was deposited. Larvae often eat their equivalent weight several times per day. Metamorphosis, the transformation from the egg via the larva and pupa, to the adult then occurs; the caterpillar often shedding its skin three to five times. Eventually hormonal changes take place which stop the larva from eating and allow its digestive system to empty before it finds a suitable pupation site. Moth pupae are often covered in a silk cocoon while butterfly pupae (i.e. chrysalides) are usually naked and attached to the substratum by a single silk thread. The pupal stage may overwinter, or occupy only a few days. The pupal-case then splits and the adult butterfly or moth emerges. The

wings unfurl and harden in several hours to allow the imago to begin its primary mission to life, i.e. reproduction. Most butterfly and moths have a short life span depending to the species, with some living only days to a few weeks. Some species also exhibit more than one brood over a single year and may overwinter as eggs, pupae or adults (Shalaway, 2004). The male Emperor moth (*Saturnia pavonia*) can detect a female-released pheromone over a distance of some 1.5 km.

Relatively little is known is about the microbiology of insects, notably species of Lepidoptera (Goff, 1987, Schoenly, Reid, 1987, Ashworth and Wall, 1994).

What is known relates largely to species which are pests or which transmit disease in humans. For example, it is unclear if bacteria and other microbes persist for long periods within the growth stages of Lepidoptera (ova, larva or pupa and imago and whether or not bacteria, for example bacteria can be transmitted throughout the Lepidopteran life cycle.

2:1The aim of the work described here

The aim of this research was a) to determine the bacteria present in Lepidoptera-imagohaemolymph, b) to study the bacteria in the haemolymph of larvae and pupae and c) the passage of bacteria supplied on the food plant to the larvae.

2:2 Study focus

The study initially focused on moths and butterfly species (i.e. Lepidoptera) in order to determine if bacteria can be isolated throughout the developmental life cycle, i.e. ova, larva, pre-pupa, pupa and adult (imago). Various species and life-stages of Lepidoptera were obtained locally or from entomological suppliers. Where killing was required, ethyl acetate was used in a standard glass killing bottle. Samples from the inside of the organisms were obtained using a fine, sterile, hypodermic syringe (the surface was first sterilized with a bleach (10% v/v) swab. Bacteria were then isolated from the extracted contents and subsequently identified.

After obtaining the haemolymph, the imagoes were immediately set for future identification and use. If the imagoes could not be directly set they were stored and then relaxed, using relaxing fluid (Worldwide Butterflies), in a relaxing box. The gut contents were then transferred to Nutrient Agar plates which were incubated at 37°C overnight.

2:3 PCR Techniques

PCR (polymerase chain reaction) is a tool used routinely in every diagnostic and medical and biological research laboratory. This technique has been used in the detection of forensic investigations, sequencing mutations and pathogens, eukaryotic classification, human genome (Prada-Arismendy, 2011) to exponentially DNA sequencing profiling involved and producing millions copies from specific area on DNA profiling or specific gene to be able for us to study the genetic information (Hadidi and Candresse, 2003, Erlich, 1988) it is an excellent method for the detection of nucleic acids, eukaryotic species, human identification, disease identification, forensic science and to the discovery of pathogens their use in determining multiple paternity, relies on Alec Jeffreys' pioneering work (Chambers, et al. 2014, Randall et al., 1985). In 1990s the idea emerged of using a consolidated molecular identification system with the development of PCR-based approaches for species identification. The great benefit appeared in Molecular identification applied to bacterial studies, microbial biodiversity surveys (e.g. Kyrpides, 1996 and Zhou et al., 1997) and routine pathogenic strains diagnoses (e.g. Maiden et al., 1996, Sugita et al., 1998 and Wirth et al., 2006) due to a need for culture-independent identification systems. PCR-based methods have also been frequently applied to areas of study related to taxonomy, food and forensic identification (Teletchea et al., 2008) and for the identification of eukaryote which are pathogens and vectors.

2:4 Materials and Methods

Fig.2:2. Author collecting samples using a sweep net (The Ponderosa Park Sheffield).

The samples where obtained locally in the Sheffield region from vegetation (Fig.2.2) and where required killed using ethyl acetate in a killing bottle (Fig.2.3); other species obtained from Entomological supply houses.

Fig.2:3. A killing bottle used with ethyl acetate to kill imagoes (Showing European Swallowtail butterfly).

Chrysalids, pupae and larvae were kept in perspex boxes contains a wetted wad of cotton wool to maintain humidity (Fig.2:4); examples of typical moth pupae and a butterfly chrysalid are shown in Fig 2:5.

Fig.2:4. A perspex container showing a variety of chrysalids.

2:5. Setting of imagoes for future use

The imagoes were set using standard entomological setting techniques (Fig.2:4, 2:5, 2:6). A steel entomological pin was inserted into the thorax at a slight forward angle and the imago was then pinned into the grove of an adjustable pinning board (Worldwide Butterflies). The wings were then spread and tracing paper strips and pins were used to keep them in place. After an appropriate period of drying the images were transferred to a mite-tight collection box for storage.

Fig.2:5. A European Swallowtail butterfly being prepared for setting, showing setting board groove to left.

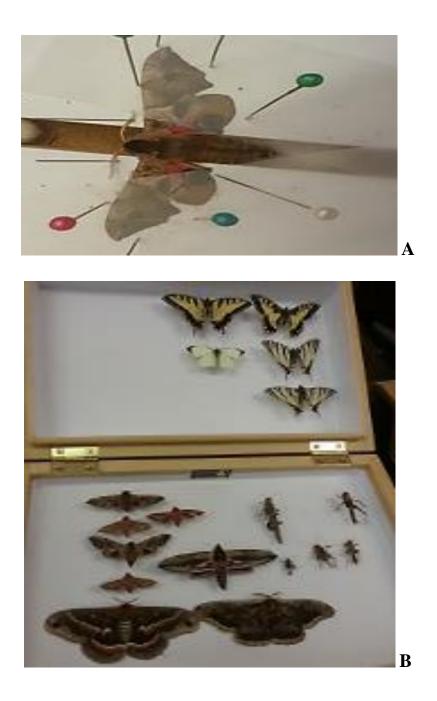


Fig.2:6. A, a moth undergoing setting and B, the resultant on-going collection of insects, mainly Lepidoptera.

2:6 Isolation of bacteria from larvae and chrysalids of the Peacock Butterfly (*Aglais io*, formally *Vanessa io*)

The larvae (first instar) were collected from local nettle patches and transferred to Perspex boxes in which were placed fresh nettle leaves and beaker containing water (added to maintain the desired humidity). When the larvae reached the second instar their stomach contents were removed by using a fine hypodermic needle (Fig.2:7) and the contents were spread on Nutrient Agar (as above) and any bacteria which grew were isolated. The same procedure was used for chrysalids obtained from pupae obtained by allowing members of the same batches of larvae to pupate (Fig: 2.8).

Fig.2:7. The isolation of bacteria from chrysalis body fluid.

Fig.2:8. Moth pupae (first three) and a butterfly chrysalis (extreme right).

2:7 Feeding of Peacock larvae with bacteria and subsequent isolation of the same bacteria from the larval gut contents

Samples of fresh nettle leaves from local nettle patches were soaked in Nutrient Broth cultures of various bacteria (MRSA *Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis,* and *Escherichia coli*) and allowed to dry at room temperature. The bacteria-treated leaves were then transferred to separate plastic food containers (which had fine holes made in the lid to allow for gas exchange). Ten, third instar larvae were then added to each container. Control leaves, which were not treated with bacteria, were also included in a separate container. After 48 hours, fresh nettles which had not been treated with bacteria were added. After a further 24 hours, the bacterial contents of the larvae were then determined as described above.

2:8 Nutrient agar media

Nutrient agar media was prepared by weighing 23 g nutrient agar then dissolved in 1000 ml Distilled water in a flask with magnetic spin-bar until the solution dissolved than transfer class flask with covered or lid into autoclave at 120°C for 30 min for sterilization. Then the

solution was poured in Petri dishes carefully when solution temperature decline to 60-55 C. Preliminary identification is based on the colour the isolated bacterial colony developed when samples are grown on nutrient agar medium.

2:9 LB medium

LB is a most common used bacterial culture medium today. LB broth media was prepared by dissolving 10 g Peptone 140, 5 g yeast extract and 5 g of sodium chloride in 1000 ml distilled water in flask, followed by autoclaving at 121^oC for 30 min. When cooled to room temperature, it was the inoculated with a loopful of culture and incubated at 37^oC (Sambrook and Russell, 2001 Gerhardt, *et al.* 1994).

2:10 Nutrient Broth medium

Nutrient Broth medium (25g) was dissolved in a litter of sterile water, mixed thoroughly and then autoclaved at 121 °C for 30 minutes. Then it will be ready to grown the bacteria which is transformed from nutrient agar media cultured, by using loop attach with bacteria culture and dipping in nutrient broth after that incubate at 37 °C for 18 hours.

2:11 Agarose gel electrophoresis

Agarose gel electrophoresis was conducted as described above.

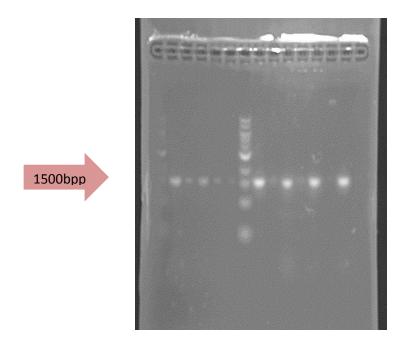


Fig.2:.9. An example of electrophoresis band in expected region 1500 bp.

2:12. Results and Discussion

The following Tables show that bacteria were isolated from the pupae and imago-body fluids of both butterflies and moths. Table 2:1(see also Appendix), shows that *Bacillus subtilis* was isolated from the chrysalid of the European Swallowtail. Species of the broad family of Streptococci, *Staphylococcus* (including MRSA) and *Stenotrophomonas* were also isolated from the body fluid of the imago of this butterfly has the highs repetition. Species of these Genera also predominate in the LGS of moths as shown in Table 2.1 and Fig.2.9.

No	Bacteria sp.	Repet	Isolate
		ition	
1	Bacillus subtilis strain 168	3	Pupa(chrysalis) European Swallowtail Butterfly
			(Papilio machaon)
2	Granulicatella elegans	1	Body fluid, European Swallowtail Butterfly
	strain B1333		(Papilio machaon)
3	Enterococcus mundtii QU	1	Body fluid, European Swallowtail Butterfly
	25		(Papilio machaon)
4	Staphylococcus	5	Body fluid, European Swallowtail Butterfly
	saprophyticus strain		(Papilio machaon)
	ATCC 15305		
5	Staphylococcus	5	Body fluid, European Swallowtail Butterfly
	saprophyticus subsp		
6	Staphylococcus capitis	2	Body fluid long tail Zebra Swallowtail
	strain ATCC 27840		Butterfly.
7	Staphylococcus capitis	2	Body fluid European Swallowtail butterfly
	strain JCM 2420		
8	Staphylococcus aureus	3	Body fluid European Swallowtail butterfly
	subsp. aureus N315 strain		yellow and black
9	Stenotrophomonas	8	Body fluid European Swallowtail butterfly
)		0	
	maltophilia R551-3 strain		yellow and black
	R551-3		
10	Stenotrophomonas	8	Body fluid European Swallowtail butterfly,
	maltophilia R551-3 strain		yellow and bright green

	R551-3		
11	Brevibacterium	1	Body fluid from Eyed Hawk-Moth (<i>Smerinthus</i>
	frigoritolerans strain DSM		ocellatus).
	8801		
12	Staphylococcus aureus	3	Pupa chrysalis Eyed Hawk Moth Smerinthus
	subsp. aureus N315 strain		ocellatus
	N315		
13	Bacillus subtilis strain 168	3	Pupa chrysalis Eyed Hawk Moth (Smerinthus
			ocellatus).
14	Staphylococcus sciuri	3	Body fluid Elephant Hawk Moth (Deilephila
	strain DSM 20345		elpenor).
15	Stenotrophomonas	8	Body fluid, Silk Moth Bombyx mori
	maltophilia R551-3 strain		
	R551-3		
16	Solibacillus silvestris	1	Body fluid from Atlas Moth (Attacus atlas)
	strain HR3-23		
17	Staphylococcus	5	Body fluid, Elephant Hawk Moth (Deilephila
	saprophyticus strain		elpenor).
	ATCC 15305		
18	Stenotrophomonas	8	Body fluid Elephant Hawk Moth (Deilephila
	maltophilia R551-3 strain		elpenor).
	R551-3		
19	Stenotrophomonas pavanii	1	Body fluid, Elephant Hawk Moth (Deilephila
	strain LMG 25348		elpenor).
20	Staphylococcus succinus	1	Body fluid, Elephant Hawk Moth (Deilephila

	strain AMG-D1		elpenor).
21	Staphylococcus sciuri	3	Body fluid, Elephant Hawk Moth (Deilephila
	subsp. carnaticus strain		elpenor).
	GTC 1227		
22	Staphylococcus	5	Body fluid Eyed Silk moth
	saprophyticus strain		
	ATCC 15305		
23	Staphylococcus	5	Body fluid Small White
	saprophyticus strain		
	ATCC 15305		
24	Pantoea agglomerans	1	Body fluid, Atlas Moth
	strain ATCC 27155		(Attacus atlas).
25	Bacillus subtilis strain 168	3	Body fluid Silk moth
26	Micrococcus yunnanensis	1	Body fluid Silk moth
	strain YIM 65004		
27	Bacillus licheniformis	1	Body fluid, Comma Butterfly (Polygonia c-
	strain DSM 13		album)
28	Stenotrophomonas	8	Wet swab from butterfly larvae(outside)
	maltophilia R551-3 strain		
	R551-3		
29	Staphylococcus sciuri	3	Wet swab from butterfly larvae(outside)
	subsp. carnaticus strain		
	GTC 1227		
30	Lysinibacillus fusiformis	1	Isolated from inside butterfly larvae body
	strain NBRC15717		

31	Stenotrophomonas	1	Isolated from inside butterfly larvae body
	<i>rhizophila</i> strain e-p10		
32	Bacillus cereus ATCC	3	Isolated from inside butterfly larvae body
	14579		
33	Lysinibacillus macroides	1	Isolated from inside butterfly larvae body
	strain LMG 18474		
34	Bacillus cereus ATCC	3	Isolated from inside die butterfly larvae body
	14579		treated by <i>B. thuringiensis</i>
35	Stenotrophomonas	8	Isolated from inside die butterfly larvae body
	maltophilia R551-3 strain		treated by <i>E.coli</i>
	R551-3		
36	Bacillus cereus ATCC	3	Isolated from inside butterfly larvae body
	14579		treated by <i>B. subtilis</i>
37	Staphylococcus aureus	3	Isolated from inside die butterfly larvae body
	subsp. aureus N315 strain		treated by MRSA bacteria
	N315		
38	Stenotrophomonas	8	Isolated from inside butterfly larvae
	maltophilia strain IAM		body(Control)
	12423		
39	Stenotrophomonas	8	Isolated from inside butterfly adult
	maltophilia R551-3 strain		body(Control)
	R551-3		

Table 2:1. Bacteria isolated from the Lepidoptera (butterfly) haemolymph.

Unusual species of bacteria such as *Granulicatella elegans*, *Solibacillus silvestris*, *Pantoea agglomerans* and *Lysinibacillus fusiformis* were also isolated.

Figure 2:10 provides a summary of the bacterial species isolated from butterfly haemolymph, which emphasises the predominance of species of Staphylococcus. Stenotrophomonas *maltophiliait* is a Gram negative species which is an important cause of nosocomial infection in the respiratory tract and urinary catheters. Staphylococcus saprophyticus despite its name can cause urinary tract infections and Staphylococcus sciuri bacteria species is an important human pathogen responsible for endocarditis, peritonitis, septic shock, urinary tract infection. (Chen, et al., 2007). Granulicatella elegans is a part of the normal microflora of the oral cavity, the genitourinary and intestinal tracts (Luca, 2013), and *Enterococcus mundtii*, is a gram positive non-pathogen (Esteban, 2012). Brevibacterium frigoritolerans, is a gram positive species which is of interest because it is present on the human skin, where it causes foot odour. Micrococcus yunnanensis, is a gram positive bacteria which is also found in human skin, animal and dairy products. Lysinibacillus fusiformis is gram positive and causes infections in humans relating to tropical ulcer formations and dermal and respiratory infections (Calandrini, et al., 2014). Pantoea agglomerans is gram negative and causes wound, blood, and urinary-tract infections. It is frequently isolated from the surface of a variety of plants and is linked with bacteraemia associated with the use of catheters. (Cruz, et al.,2007). Finally, Lysinibacillus macrolides is associated with infections such as periodontitis and has previously been isolated from butterfly larvae (Coorevits, et al.2012).

Nearly all of these bacteria are capable of causing pathogenicity in humans, especially amongst immunocompromised patients. Lepidopteran species do not, of course, generally interact closely with humans, so it is unlikely that these insects will form reservoirs of pathogenic bacteria which could infect patients having reduced immunity, who reside in hospitals, so the pathogenicity of these isolates is likely to be of passing interest only, except perhaps where dead Lepidopteran imagoes are not removed from the medical setting

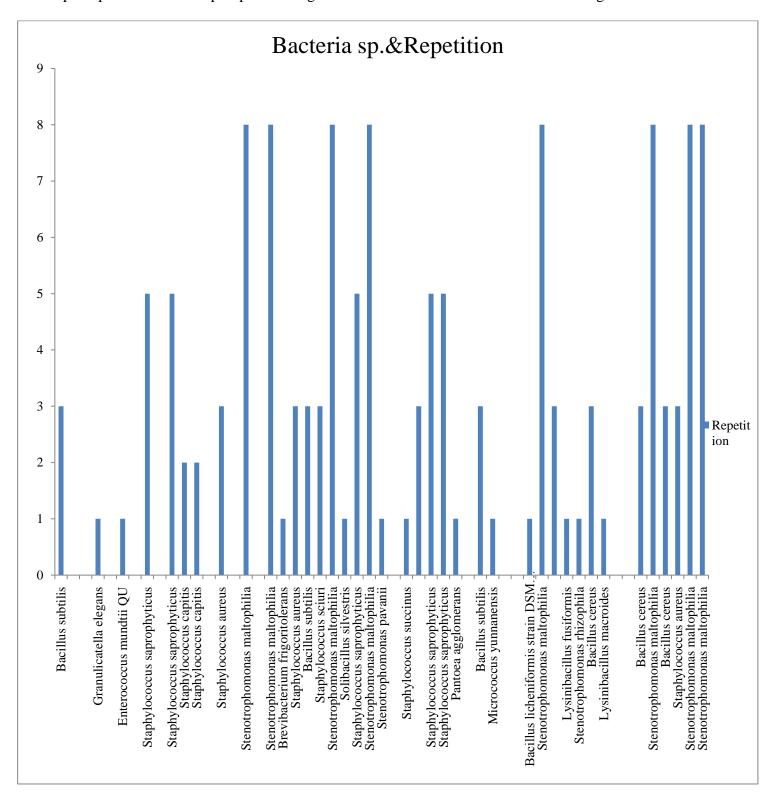


Fig.2.10. Summary of bacteria isolated from various butterflies and moth species (for more detail see appendix table 2).

Feeding larvae from different bacteria species

Perhaps of more scientific interest is the question of how these bacteria survive inside the body fluids of chrysalids and imagoes. This is especially true of the pupal stage, where complex body fluid transformations which involve a complex mixture of enzymes are taking place. As a result of these changes, one might assume that the LGS is sterile, which is clearly not the case. Again, it might be incorrectly assumed that the only bacteria which can survive inside Lepidopteran growth stages would be species of Bacilli, which produce resistant endospores. Again, the prevalence of non-spore forming species of *Staphylococcus* runs contrary to this view (Fig.2:10).

2:13 Results of feeding larvae from different bacteria species:

Bacteria Fed	Larvae	Larvae	Larvae Alive	Result of isolation
To Larvae	Alive after 24hours	Alive after 48hours	after72hours	(from 2 dead larvae)
MRSA	10	10	5	Staphylococcus aureus
Bacillus thuringiensis	1	0	0	Bacillus cereus.
Bacillus subtilis	8	6	3	Bacillus cereus
E. coli	8	6	3	Stenotrophomonas maltophilia
Control	10	10	10	Stenotrophomonas maltophilia

Table: 2.2. Results obtained following the feeding of larvae of the Peacock butterfly with leaves covered in various bacteria.

Larvae of the Peacock butterfly were fed nettle leaves covered with a range of bacteria (Table 2:2). The number of larvae reaming alive after 24, 48 and 72 hours varied with the type of bacteria used. None of the control larvae died when fed non-contaminated nettles over the length of the experiment. Feeding of the larvae with MRSA covered leaves lead to a fifty per cent death rate after 72 hours, although no larvae were killed after 24 and 48 hours; *S. aureus* was isolated. Not surprisingly, since it is toxic to many insect larvae, feeding with *B. thuringiensis* lead to the death of all of the larvae after 4hours. The results how that feeding with *B. subtilis* and *E. coli* can lead to larval death, while MRSA was shown to be less toxic. Feeding the larvae with the other bacteria killed some larvae, with the death rate after feeding *B. subtilis* and *E. coli* being identical. *Bacillus cereus* was isolated from the larvae fed *B. thuringiensis* and *B. subtilis*.

CHAPTER THREE-ISOLATION OF BACTERIA FROM A DERMESTIDAE LARVA OBTAINED FROM HUMAN CADAVERS DURING FORENSIC ANALYSIS IN SAUDI ARABIA

3:1 Introduction

Forensic entomology is the study of the application of insects and other arthropods to criminal investigations (Catts and Goff, 1992). Insects or arthropods are located on or within decomposing vertebrate corpse or carrion (LeBlanc, 2010) These insect colonizers can be used to make a crude determination of a) the time of death i.e., the time interval between the corpse and its discovery which is generally referred to as the post-mortem index (PMI), b) whether or not the corpse has been moved at the scene of death. As soon as death occurs, cells start dying and enzymes begin to digest the body cells from the inside via the process of autolysis, i.e. the body starts decomposing. Bacteria which are present in the gastrointestinal tract begin destroying the soft tissue producing liquids and gases such as hydrogen sulphide, carbon dioxide, methane, ammonia, sulphur dioxide and hydrogen. Volatile molecules referred to as apeneumones escape from the decomposing body and attract insects. Researchers have been able to isolate these volatile chemicals which are liberated at different stages of cadaver- decomposition. Volatiles, released during each stage, can also modify insect behaviour and putative sulphur compounds are responsible for initiating the process which attracts flies to the decomposing carcass. Subsequent egg laying by flies is induced by ammonium-rich compounds present on the carrion (Ashworth et al. 1994).

Four categories of insects can be found on decomposing bodies: a) necrophagous species which feeding on the carrion; b) predators and parasites feeding on the necrophagous species; c) omnivorous species feeding on the carrion and other arthropods such as ants, wasps and some beetles; d) species such as springtails and spiders which use the corpse as an extension of their environment. The first two groups are generally most important in relation to forensic entomology, i.e. mainly species of the order Diptera (flies) and Coleoptera (beetles) (Fig.3:1) and the waves of succession whereby arthropods colonize the carrion relates to the decomposition state of the carrion (LeBlanc, 2010). The insects which are mainly involved in forensic investigations are true flies or Diptera, with main species in this order being Calliphoridae (blow flies), Sacrophagidae (flesh flies) and Muscidae (house flies). Calliphoridae (blow flies), Sacrophagidae (flesh flies) often arrive within minutes after death. Muscidae (house flies) do not however, begin colonizing until the body reaches the bloat stage of decomposition. The fresh stage (Days 1-2) begins at the point of death and terminates with the observation of carcass-bloating. Autolysis occurs at this stage, but this process is not associated with gross morphological changes at this juncture. The estimation of the time of death using entomological data (after a period of 24 hours) is notably more accurate than is soft tissue examination by a medical examiner. Insects arrive at the cadaver within ten minutes of death. Insect larvae which then develop on the dead body can be used to determine the post-mortem interval (PMI) for up to a period of one month (LeBlanc, 2010). The initial step of the forensic process is the correct identification of insect species, since different species vary in their growth rates and maturation, so that it is necessary to determine the correct age of the cadaver-invading larvae. The age of the larvae can be estimated by measuring the length or dry weight of the most mature larvae and comparing it with the reference data; larval development rates are recognized as being dependent on the surrounding ambient temperatures

3:2 Using insect data for determining the site of crime

There occur differences in the range of insects involved with decomposing corpses located in a variety of habitats and environments and such differences can often be used to determine the geographical location of a corpse at time of death if it has been transported long distances and into different ecological zones following death.

3:3 Entomotoxicology

Those fly larvae which feed on carrion can accumulate drugs ingested by the dead person. However, it is almost impossible to determine the presence of toxicological substance such as drugs when the cadaver is in an advanced state of decomposition, or is skeletonized. Toxins can have a major impact on the stages of development of larvae; cocaine and heroin for example are both known to accelerate the development of larvae while poisons, including Malathion often reduce the rate of insect colonization of carrion and cadavers (Tullis, Goff, 1987, Schoenly, Reid, 1987, Ashworth and Wall, 1994).

Fig.3:1. Dermestid larvae and Blow fly obtained from human cadaver.

3:4 Aims

The aim of the work reported in this section of the Report was to determine the surface and gut-related bacteria of larvae associated with a human cadaver (sampled in Saudi Arabia). This work is currently preliminary in nature and relates to the possibility of using insect-associated bacteria in Forensic Entomology.

3:5. Materials and Methods

Dermestid fly larvae (*Dermestidae*) and adult Blow fly (*calliphoridae*) were obtained from a decomposed human body by a forensic entomologist working in Riyadh, Saudi Arabia. They were then separately placed in a sterilised plastic tube and stored at -20° C. Bacteria were isolated from the surface of the imagoes and larvae using a cotton wool swab, moistened with sterile distilled water. Some of the samples were then surface-sterilized by rapid transfer to sterile ethanol (70% v/v).In addition by using a fine hypodermic needle to isolate bacteria from haemolymph the contents were removed and their bacterial content determined as described above.

3:6 Results and Discussion

Table 3:1Results of bacteria species isolate from larvae of Dermestidae and Blow fly

obtained from a human cadaver.

No	Bacteria sp.	Repeti	Isolate
		tion	
1	Brevibacterium	1	Isolated from inside larvae of Dermestidae extracted
	ravenspurgense strain 20		from human dead body.
2	Staphylococcus hominis	1	Isolated from inside larvae of Dermestidae extracted
	subsp. novobiosepticus		from human dead body.
	strain GTC 1228		
3	Enterococcus faecalis V583	1	Isolated from inside adult blow fly (Calliphora)
	strain V583		extracted from human dead body.
4	Lishizhenia tianjinensis	1	Isolated from inside larvae of Dermestidae extracted
	strain H6		from human dead body
5	Clostridium cochlearium	1	Isolate from inside larvae of <i>Dermestidae</i> extracted
	strain JCM 1396		from human dead body.
6	Bacillus safensis strain	1	Isolated from inside larvae of <i>Dermestidae</i> extracted
	NBRC 100820		from human dead body
7	Enterococcus faecalis strain	1	Isolated from inside larvae of <i>Dermestidae</i> extracted
	NBRC 100480		from human dead body.
8	Clostridium paraputrificum	1	Isolated from inside blow fly (<i>Calliphora</i>)
	strain JCM 1293		

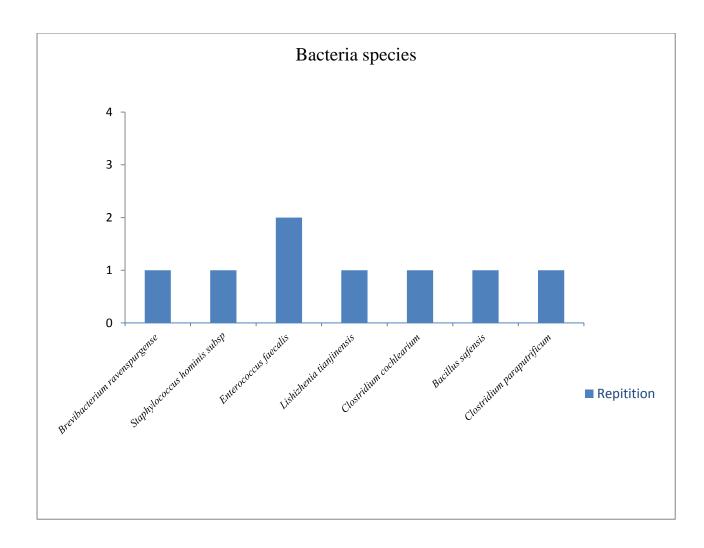


Fig.3:2. Bacteria extracted from the Dermestid larva and Blow fly isolated from a human cadaver.

Insects have considerable potential position in this science for use in apprehending criminals, especially those involving toxins and drug intake by the victim; more commonly, they can be used to determine time and broad location of death. Dermestidae like the ones studied here are a family of beetles (Coleoptera) commonly known as skin, larder, leather or hide beetles, of which there are 500 to 700 species worldwide. They can range in size from 1–12 mm. Most Dermestids scavenge on dry animal or plant material, including skin, pollen, animal hair, feathers, dead insects and natural fibers and are found in animal carcasses, and a variety

of nests. These beetles are significant in forensic entomology since some are associated with decaying carcasses, which aids criminal investigations. *Dermestes maculatus*, hide beetles, can offer investigators an estimation of the time since death in homicide or questionable cases. This use is based on the fact that the arrival to carrion and cadavers of *D. maculatus* generally takes place in a regular succession; for example, adult *D. maculatus* beetles usually arrive some five to ten days after death. The appearance of Dermestids is temperature dependent, being optimal at 30°C. Of particular interest to forensic scientists is the fact that the feaces and shed larval skins of this beetle can be analyzed for toxins, including drugs.

Figure 3:2 and Table 3:1 show eight bacteria species were extracted from the Dermestid larvae obtained from a human decomposed body. The dominant species of bacteria was *Enterococcus faecalis* which was isolated from inside the adult blow fly and from inside larvae extracted from the human corpse. Two species of *Clostridium* were also isolated, *Clostridium cochlearium* was isolated from outside larvae blow fly (*Calliphora*) removed from the human cadaver; the other, *Clostridium paraputrificum* was isolated from inside the blow fly (*Calliphora*) larvae obtained from the cadaver. *Brevibacterium ravenspurgense*, *Staphylococcus hominis*, *Lishizhenia tianjinensis* and *Bacillus safensis*, were also isolated from outside and inside larvae, extracted from the human body.

Microbes play major and sometimes essential roles in the growth and development of insects. Insects which harbour endosymbionts depend on them for reproduction, digestion and for the supply of essential nutrients and also in the production of pheromones (Gil and Moya, 2004, Wernegreen, 2002). Bacteria present on the gut of some specialized niche feeders like termites and aphids, have been widely studied because of interest in the diverse microbial enzymes involved (Brauman *et al.*1992). In comparison, relatively little is known about the microbiology of foliage–feeding insects which involve no strict symbiotic

interactions. Since most lepidopteran larvae are herbivores their gut content (food bolus) is far from sterile (Dillon and Dillon, 2004). The gut flora of lepidopteran and other insects plays a role in detoxifying harmful secondary metabolites (Morrison *et al.*, 2009) and also protects the host against the pathogen colonization. The gut flora is also involved in a) the aggregation pheromones of locusts (Dillon *et al.*2000) b) maintenance of the host fitness (Freitek *et al.*2007) and c) homeostasis of plant defence elicitors in certain lepidopteran larvae (Ping *et al.*2007).

Whether or not autochthonous bacterial strains exist in these insect guts is largely unknown (Dillon and Dillon,2004). The problems of isolating the total microbiota of insect guts is illustrated as follows: Less than half of the bacterial phylotypes identified with terminal-restriction fragment-length polymorphism of 16S rRNA genes from gypsy moth (*Lymantria dispar*) have been found to grow in the laboratory (Broderick *et al.*,2004), while none of the bacteria isolated from the laboratory-bred tobacco hornworm (*Manduca sexta*) (van der Hoeven, 2008) belong to the abundant phylotypes revealed by PCR-single-strand conformation polymorphism of the 16S rRNA genes (Brinkman,2008). Denaturing gradient gel electrophoresis coupled with 16S rRNA gene sequencing has shown that 72% of the mid gut bacteria of the "old world" cotton bollworm (*Helicoverpa armigera*) share less than 98% sequence identities to known species (Xiang *et al.* 2006).

CHAPTER FOUR-POTENTIAL ROLE OF *B. THURINGIENSIS* AND *PAENIBACILLUS POPILLIAE* IN ENVIRONMENTAL MINERAL CYCLING

4:1 INTRODUCTION

As has already been mentioned, *Bacillus thuringiensis* is widely used as an insecticide, notably in the USA. As a result, it is inevitable that this bacterium will reach soils, particularly those of the rhizosphere, and here can grow and be able to participate in mineral cycling. Martin and Travers (1999) found that *Bacillus* thuringiensis. *Bacillus thuringiensis* occurs naturally, and has a world-wide distribution and was found in some three quarters of all soils tested; over 60% being toxic to the larvae of Lepidoptera and Diptera (Martina and Travers, 1999) Saleh et al (1970) isolated the bacterium from muck soil which had been treated with Thuricde (Fig.4:1) to control insect pests on lettuce and cabbage; spores of the bacterium added to soil, remained viable for at least a month. The fact that *Bacillus thuringiensis* remains viable in treated soils means that it can germinate, grow and contribute to the major biochemical cycles involving the most important plant nutrients, i.e. nitrogen phosphorus and sulphur.

Fig.4:1. Containers showing commecial Thuricide and Milky Spore powders.

4:2 Bacillus thuringiensis

Bacillus thuringiensis (or Bt) is a gram positive, soil-living bacterium which is frequently used as a biological pesticide (du Rand, 2009, Roh, *et al.*2007) During sporulation many Bt strains produce insecticidal crystal protein inclusions called δ -endotoxins which can be used to control caterpillars on crops, especially when genetically modified (Yamamoto and Dean, 2000, da Silva and Valicente, 2013). *Bacillus thuringiensis* and several strains of *B. cereus* cause gastrointestinal diseases in insect larvae that are attributed to enterotoxins (Hansen and Hendriksen, 2001). This bacterium is common throughout the world (Vilas-Boas *et al.* 2002). *Bacillus thuringiensis* is a gram positive, bacterium which is readily isolated from soil and in the gut of a variety of caterpillars of Lepidoptera species; it can also occur on leaf surfaces, in aquatic environments, animal faeces, insect-inhabited environments, and in grainstorage facilities and on associated dead insects. *B. thuringiensis* was first isolated from a silkworm larva in Japan, 1901 by Ishiwata Shigetane; some ten years later it was rediscovered in Germany, by Ernst Berliner who isolated it from the Mediterranean flour moth in the town of Thuringia. *Bacillus thuringiensis* species have been isolated and classified into subspecies primarily based on the flagella antigenicity. B. thuringiensis is closely related to B. cereus, a soil bacterium, and B. anthracis, the cause of anthrax in Man and animals, the three organisms differing mainly in their plasmid content; all three grow aerobically reproduce by the production of endospores. On sporulation, B. and *thuringiensis* forms crystals of the protein insecticide δ -endotoxins (also referred to as crystal proteins or cry proteins), which are encoded by cry genes. In most strains of *B. thuringiensis*, the cry genes are located on a plasmid and the gene is generally not chromosomal. Cry toxins specifically attack insect species of the orders Lepidoptera, Diptera, Coleoptera, Hyymenoptera, and nematodes. This bacterium provides an important reservoir of Cry toxins, which can be utilized to produce biological insecticides and genetically modified crops in which insect-resistant is induced. Insects consume the toxin crystals insoluble crystals are denatured in their digestive tract making them soluble and able to be cut by proteases present in the insect gut, thereby liberating the toxin from the crystal. The cry toxin then enters the insect gut cell membrane and causes marked paralysis of the digestive tract and produces a pore which prevents the insect eating, leading to death by starvation. An active mid-gut bacterial population of susceptible larvae needs to be present in order to induce B. thuringiensis insecticidal activity. Spores and crystalline insecticidal proteins produced by B. thuringiensis have been used in insect to control since the 1920s and are today, are often applied in the form of liquid sprays under trade names such as the formulations, DiPel and Thuricide. Because of their specificity, these bio-pesticides are considered to be environmentally friendly, and appear not to affect humans, wildlife and, insect pollinators, and other useful insects and so can be utilized in organic farming. Bacillus thuringiensis serovar israeliensis is now extensively employed as a larvicide for the control of mosquito larvae and is considered to provide an environmentally friendly form of mosquito control (Hellmich, et al. 2001)

4:3 Uses of Bt in agriculture

In 1995, potato plants producing CRY 3A *Bacillus thuringiensis* toxin were approved safe for use by the US Environmental Protection Agency, thereby making it the first human-modified pesticide-producing plant to be successfully approved in the USA. A number of naturally growing plants are also able to produce the pesticide, including tobacco, coffee and cocoa. In 1996, a corn plant was genetically modified to produce Cry protein which killed the European corn borer and related species; subsequent *Bacillus thuringiensis* genes were introduced which endowed it with the ability to kill corn rootworm larvae. The *Bacillus thuringiensis* genes which have been engineered into crops and approved for release include, singly and stacked: Cry1A.105, CryIAb, CryIF, Cry2Ab, Cry3Bb1, Cry34Ab1, Cry35Ab1, mCry3A, and VIP, while the engineered crops include, corn and cotton; corn, genetically modified to produce VIP was first approved in the USA in 2010. Monsanto then produced a soybean which expresses Cry1Ac and the glyphospate -resistance gene which was accepted for use in Brazil. (Roh, *et al.* 2007) (Ars et al, 2014)

4:4 Development of insect resistance

Monsanto-based scientists found that, in India, the pink bollworm has developed resistance to the first-generation *Bacillus thuringiensis* cotton- which expresses one Bt gene, Cry1Ac. This turned out to be the first case of *Bacillus thuringiensis* resistance anywhere in the world. The company immediately introduced second-generation cotton with a number of *Bacillus thuringiensis* proteins, which was rapidly adopted. Bollworm resistance to first-generation *Bacillus thuringiensis* cotton has also been reported in Australia, China, Spain, and the USA (Cheng and Thomas, 1984)

4:5 Potential Lepidopteran toxicity

The most publicised problem which is claimed to be associated with the use of Bt crops is that pollen derived from Bt maize can kill the Monarch Butterfly. However, by 2001 the USDA had shown that the most common types of Bt maize pollen are not toxic to Monarch larvae in concentrations the insects would encounter in the field environment.

4:6 Milky Spore (Paenibacillus popilliae)

Milky Spore contains Paenibacillus popilliae (formerly known as Bacillus popilliae) is a gram positive, rod shaped soil bacterium (Glare and Callaghan, 2003; Fig.4:1). It is responsible for milky spore disease of the white grubs of the Japanese beetle. The adult beetles feed on flowers and leaves of shrubs and garden plants, where they mate, with the female laying eggs under the soil in late July – early August. The eggs hatch soon afterwards and in the larval (grub) stage, feeds on the roots of grasses and other plants. At the approach of winter, the grubs move deeper in the soil and stops feeding in order to over-winter. It is during August when the grubs are close to the surface and actively feeding that they succumb to infestation by Milky Spore. The Milky Spore biological control agent is applied during this period. The spores contained in the product are swallowed by grubs as they feed on roots. The spore then germinates and reproduces rapidly to produce internal bacteria which eventually kill the grub. Within a period of 1-3 weeks, the grub dies and as it decomposes vast numbers of new spores are liberated into the soil. The presence of Milky Spore in the soil does not however, harm beneficial insects, birds, bees, pets or man. Milky Spore-derived bacteria are capable of surviving in drought conditions but suffer when exposed to low temperatures.

The aim of the work described in this Chapter was therefore to determine if *Bacillus thuringiensis* (as Thuricide) and *Paenibacillus popilliae* (as Milky Spore) can participate in major nutrient transformations *in vitro*, namely urea hydrolysis, the oxidation of ammonium to nitrate (nitrification) and the solubilisation of a source of insoluble phosphate

4:7 Nitrogen cycles

Nitrogen is the predominant component of amino acids which are themselves the building blocks of peptides and proteins, and since this element is essential for growth and reproduction in both plants and animals the N-cycle is regarded being the most important biogeochemical cycle (Pidwirny, 2004). Nitrogen is part of the genetic make-up of cells, the nucleic acids and as a result, makes up about 80% of the Earth's atmosphere and some 12% of cell dry weight (Maier *et al*, 2009).

Five main processes operate in the N-cycle (Harrison, 2003):

- Nitrogen fixation: the process by which atmospheric nitrogen (N₂) is converted to ammonia (NH₃).
- Nitrogen uptake (organismal growth or assimilation): where microorganisms make use of ammonium to build organic nitrogen compounds
- Nitrogen mineralisation (decay): which organic nitrogen is converted to inorganic nitrogen (ammonium NH₄⁺).
- 4) Nitrification: the ammonium (NH_4^+) is oxidized to nitrate (NO_3^-) .
- Denitrification: the reduction of nitrate (NO₃⁻) and nitrite (NO₂⁻), to nitrous oxide (N₂O), then to a nitrogen gas into the atmosphere (Figure 2.1).

4:8 Ammonification

In the decomposition processes, the nitrogen component of proteins is transformed to ammonia (NH₃) or ammonium (NH₄) by a wide range of microorganisms (bacteria and fungi). This brings about the release of N from the organic matter which makes up decomposing plants and dead animals or dung (Hart *et al.*, 1994).

4:9 Nitrification

Nitrification is of major importance for the N-cycle in both aquatic and terrestrial environments; it involves the oxidation of ammonia (NH_4^+) to nitrite. (NO_2^-) then nitrite to

nitrate (NO₃⁻) by chemoautotrophic bacteria and by some heterotrophic organisms including, fungi and bacteria, which can also bring about these oxidations (Maier et al., 2009). Two types of nitrification exist (Killham, 1994): The first relies upon the activity of chemoautotrophic nitrifying bacteria (*Nitrosomonas*) by which ammonia (NH₃) or ammonium (NH₄⁺) ions are oxidised to nitrite (NO₂⁻).

$$NH_4^+ + 1.5O_2 \rightarrow NO_2^- + 2H_2 + H_2O$$
 $\Delta G = -267.5 \text{ kJ.mol}^{-1}$

The second, involves the activities of chemoautotrophic Gram-negative bacteria which oxidize nitrite (NO_2^{-}) is oxidized to nitrate (NO_3^{-}) *Nitrobacter*.

 $NO_2^- + 0.5O_2 \rightarrow NO_3^ \Delta G = -86.96 \text{ kJ.mol}^{-1}$

4:10 Urea hydrolysis

Urea has a highly water-soluble fertilizer whose nitrogen content is higher than that of ammonium, nitrate and ammonium sulphate (Ferguson *et al.*, 1984). Ureases are enzymes which are released by microorganisms into soil, plants and animals. Urea is converted to carbon dioxide and ammonia by soil ureases by a diverse range of microorganisms which are able to hydrolyse urea, including bacteria, predominantly *Pseudomonas, Achromobacter, Bacillus, Micrococcus* and some fungi, including *Penicillium* species as well as most other members of the Deuteromycetes (Maier *et al.*, 2009).

4:11 Sulphur cycle

Sulphur, the tenth most abundant element in the earth's crust is an essential element for the growth of all organisms being essential for the synthesis of the amino acids, cysteine and methionine, and vitamins such as vitamin B1 (thiamine), hormones, including biotin, coenzymes and lipoid acid (*Maier et al*, 2009). The S-cycle can be summarized as a) the mineralization of organic sulphur to inorganic sulphate, b) the oxidation of reduced, inorganic forms to sulphate, c) the anaerobic reduction of sulphate to sulphides, and finally d) the immobilisation of sulphate as organic sulphur.

Filamentous fungi also play a major role in the S- cycle; the soil fungus *Fusarium solani* for example, oxidizes elemental sulphur to polythionates, thiosulphate and sulphate (Wainwright, 1984; Wainwright and Killham, 1980). Fungi are also able of oxidizing sulphur to sulphate with the production of tetrathionate and thiosulphate. It has been suggested that these oxyanions protect fungi from the toxic effects of heavy metals (Wainwright *et al.*, 1997).

Several factors affect sulphur oxidation in environment, including:

- **1.** pH: sulphur oxidation can take place between pH 2 and 9 and sulphur oxidation increases with increasing pH (Vitolins and Swaby, 1969).
- Temperature: the optimum temperature for S-oxidation range is between 25°C to 40°C, while some thermophilic bacteria and fungi can also grow at 55°C (Wainwright, 1984).
- **3.** Microbial composition: S-oxidation is influenced by the size and composition of the soil microbial community (Soomro, 2000).
- **4.** Moisture and aeration: the moisture content for most rapid sulphur oxidation processes is near field capacity (Mahfouz, 2005).

4:12 Phosphorus cycle

Phosphorus is an element which is essential to the growth of all organisms and as a result it is essential that we gain a thorough understanding of how it is cycled in the environment (Goldstein, 1994). This is vital because phosphorus plays a central role in many important biomolecules, especially adenosine triphosphate (ATP), DNA (deoxyribonucleic acid) and in phospholipids (Hyland et al., 2005). Bacteria, actinomycetes and fungi, can all solubilise insoluble phosphates (Hattori, 1973; Paul and Clark, 1996). Such microbes release phosphorus when growing in culture amended with calcium phosphate, apatite or other insoluble source of phosphate; phosphate solubilizing fungi include species of *Aspergillus*,

Fusarium, and *Penicillium* (Al-Turk, 1990). Microbial processes which play a role in the transformation of phosphorus into an available nutrient source include:

- 1) Altering the solubility of inorganic P compounds.
- 2) The mineralization of organic compounds to form inorganic phosphorus.
- 3) The immobilisation of inorganic phosphorus into cell components.

The aim of the work presented below was to determine if *Bacillus thuringiensis* (as Thuricicde) and *Paenibacillus* popiliae (as Milkyspore formulation) can participate in some of the important nutrient cycling transformations when grown *in vitro* in soil.

4:13 Materials and Methods

The two bacteria were separately inoculated into 100 of autoclaved medium (Nutrient broth) in 250 ml sterile Erlenmeyer flasks. The medium was then amended with 0.25 gm of the individual substrate, i.e. urea, ammonium sulphate, elemental sulphur and calcium phosphate. The flasks were set up in triplicate and un-amended controls were also included (No element added to inoculate). Triplicates were used throughout and the flasks were incubated at 25°C. At seven day intervals the presence of the various ions in the medium was checked using the relevant Quantofix dipstick.

Fig. 4:2.(A). Dipsticks container containing dipsticks used for ion determination showing concentration chart, 22.(B), Dipsticks used for ion determination showing concentration chart set used for determination of phosphate.

4:14 Results and Discussion

A note on the use of Dipsticks for ion analysis. Over the last forty years, the standard approach in this laboratory to the determination of ions (such as nitrate and sulphate) which are important in environmental geochemistry has been to use colorimetric methods of analysis. These approaches have served us well, but of late we have gone over to the use of Dipsticks (Fig.4.2). These cheaper, less dangerous (i.e., when replacing the use of chromotropic acid) and can be used to quickly test a large number of samples. They also tend to be less influenced by interference. For example, the use of chromotrophic acid to measure nitrate is often hindered by the presence of carbohydrates in the soil or medium sample; this is not the case with Dipsticks.

It could be argued that the use of this approach sacrifices accuracy, but in most case, as when determining if a bacterium or fungus participates in a particular biogeochemical cycle, the result needed is generally a plus or minus, and it is not relevant to measure the exact concentration to one or two decimal places. Tests showed that results from Dipsticks were between 5 percent, plus or minus, of those obtained by the colorimetric methods previously employed. Of course it assumed here that the colorimetric methods provide the gold standard, and this may not be the case; in any event, the closeness of the results shows that, for the purpose of the experiments described here; dipstick analysis is both simple and appropriate.

Table 4:1 provides data showing that *Bacillus thuringiensis* (as Thuricicde): a) hydrolyze urea to ammonium, b) oxidize ammonium to nitrate, c) oxidize elemental sulphur to sulphate and d) solubilize insoluble phosphate. In all cases, the amount of ion released increased over the incubation period and these increase were significantly different from the control (p=0.05), where small amounts of the products were produced as the result of non-microbial processes. The data given in Table 4:2 shows that *Paenibacillus popiliae*, growing from the Milky spore formulation, was also able to a) hydrolyze urea to ammonium, b) oxidize ammonium to nitrate, c) oxidize elemental sulphur to sulphate and d) solubilize insoluble phosphate. In all cases, the amount of ion released over the incubation period and these increase were significantly different from the control of the products were produced as the result of non-microbial phosphate. In all cases, the amount of ion released increased over the incubation period and these increase were significantly different from the control (p=0.05), where small amounts of the products were produced as the result of non-microbial phosphate. In all cases, the amount of ion released increased over the incubation period and these increase were significantly different from the control (p=0.05), where small amounts of the products were produced as the result of non-microbial processes.

Table 4:1. Effect of *Bacillus thuringiensis* (Thuricide) on *in vitro* transformations relevant to the major nutrient cycles (all changes after day 0 are significantly different from control, p=0.05) µg ml⁻¹

Days	control	Hydrolysis of urea to ammonium	control	Oxidation of Ammonium to Nitrate (Nitrate N)	control	Oxidation of Elemental Sulphur to Sulphate	control	Solubilisation of Insoluble Phosphate to Soluble Phosphate
0	1	1	5	5	2	5	2	15
7	2	15	5	12	5	15	4	15
14	5	25	5	35	5	30	5	35
21	5	35	5	50	5	40	2	60
28	10	40	10	55	15	65	10	80

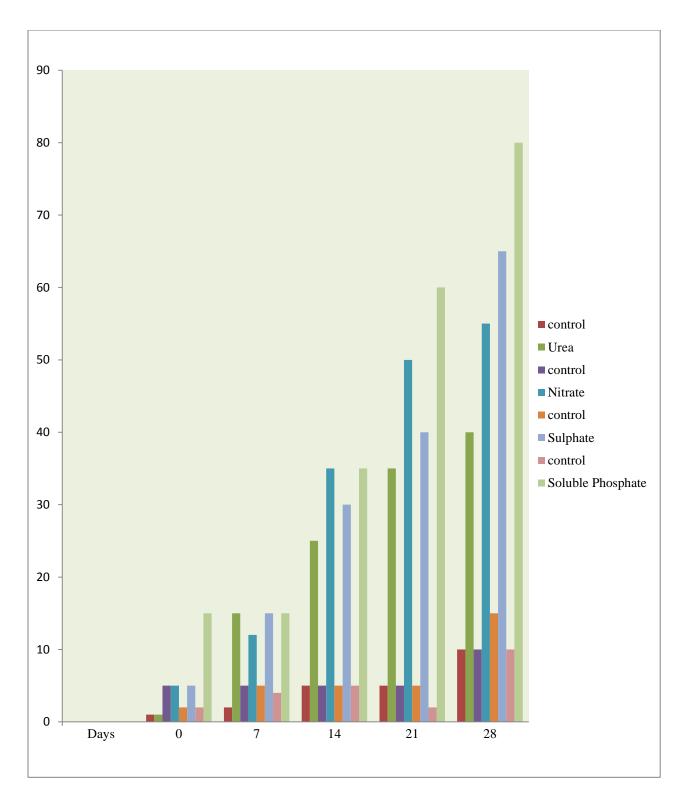


Fig. 4:3The Effect of *Bacillus thuringiensis* (Thuricide) on *in vitro* transformations relevant to the major nutrient cycles.

Table 4:2. Effect of *Paenibacillus popiliae* (Milky Spore) on *in vitro* transformations relevant to the major nutrient cycles (all changes after day 0 are significantly different from control, p=0.05). μ g ml⁻¹

Days	control	Hydrolysis of urea to ammonium	control	Oxidation of Ammonium to Nitrate (Nitrate N)	control	Oxidation of Elemental Sulphur to Sulphate	control	Solubilisation of Insoluble Phosphate to Soluble Phosphate
0	5	1	5	15	2	5	2	5
7	5	30	2	20	2	35	2	35
14	5	35	5	35	5	60	5	65
21	8	40	10	70	5	80	2	80
28	10	60	10	85	10	120	5	110

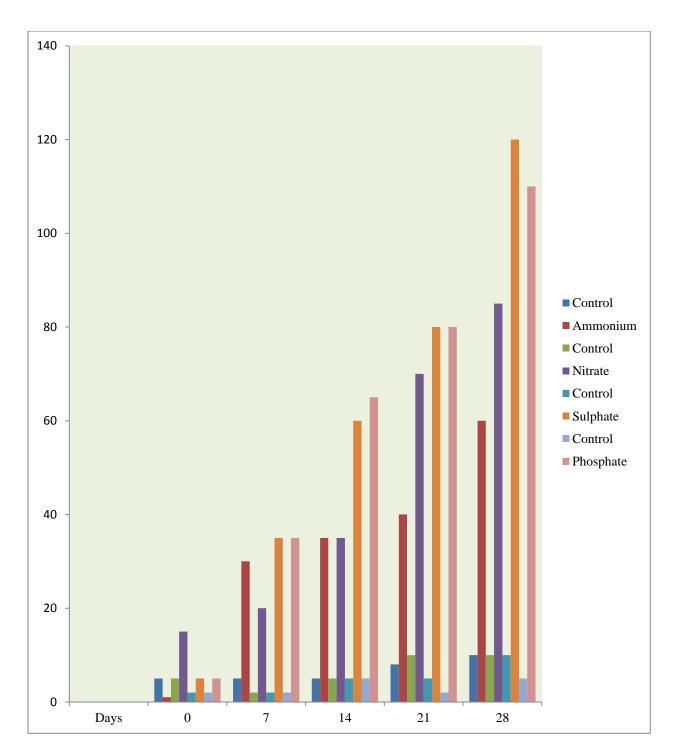


Fig.4:4 The Effect of *Paenibacillus popiliae* (Milky Spore) on *in vitro* transformations relevant to the major nutrient cycles.

The use of analytical dipsticks (Quantifix) as opposed to the more complicated colorimetric analysis proved highly successful in providing data on the ability of these two bacteria to participate (in vitro) in some important process involved in the major biogeochemical transformations which occur in the environment. While not as accurate as the colorimetric analysis techniques used previously in this laboratory, this approach, as was mentioned above, is less time consuming and does not involve the use of dangerous reagents (such as chromotropic acid), nor are the results readily subject to interference from media constituents. The dipsticks used have been checked for accuracy by previous workers in this laboratory and have been shown to give results which are broadly comparable to colorimetric analysis. As a result, for merely demonstrating the ability of microorganisms to participate in these important environmental reactions in vitro, this approach proved ideal.

The rationale behind these experiments is that, following spraying onto crops and other plants, some spores of *Bacillus thuringiensis* and *Paenibacillus popiliae* will reach soils (and other environments, including fresh waters) either directly in the sprays, by rain wash off, or in when the plant degrades. This means that potentially significant numbers of spores of these bacteria will reach the soil and be able to germinate, from where cells can potentially participate in various component parts of the major biogeochemical cycles, including carbon, nitrogen, sulphur and phosphorus.

While showing the potential to participate in reactions in the soil, in vitro studies do not provide confirmatory evidence that a bacterium, or other microorganism which can, for example oxidise ammonium in culture medium will do so in soil. A variety of factors will of course influence the ability of any microbe introduced into the soil, or environment in general (by accident or by purposeful inoculation) to grow and participate in biogeochemical transformations. Factors such a competition from indigenous organisms, environmental parameters such as a suitable ambient temperature and water regime, will markedly influence microbial growth. However, the fact that the in vitro studies discussed above show that the bacteria under investigation can perform essential environmental reactions in vitro show that they have the potential to do so in the environment. Clearly if these organisms were shown to be incapable of mediating these transformations when growing in culture it would be highly unlikely that they would be able to do so in the environment where conditions are likely to be far more challenging. Two important features of in vitro work which are likely to be far more variable in most environments is the presence of large amounts of carbon and a constant temperature. Most natural environments are considered to contain only small amounts of available nutrients for which both indigenous and introduced bacteria will have to compete. In contrast, large, often "pathological" amounts of carbon substrates are generally provided in nutrient media and bacteria growing in the presence of such large amounts of carbon are unlikely to show the same physiological responses likely to be seen in the highly rigorous, low nutrient, conditions present in most environments.

Table 4:3. Effect of *Bacillus thuringiensis Paenibacillus popiliae* (Thuricide and Milky Spore respectively) on transformations relevant to the major nutrient cycles when added to an agricultural soil and incubated for 28 days at 25°C (all changes are significantly different from control, p=0.05) μ g ml⁻¹

Process	Hydrolysis of urea to ammonium	Oxidation of Ammonium to Nitrate (Nitrate N)	Oxidation of Elemental Sulphur to Sulphate	Solubilisation of Insoluble Phosphate to Soluble Phosphate
Control	22	15	15	30
Bacillus thuringiensis	50	25	40	50
Paenibacillus popiliae	120	40	65	90

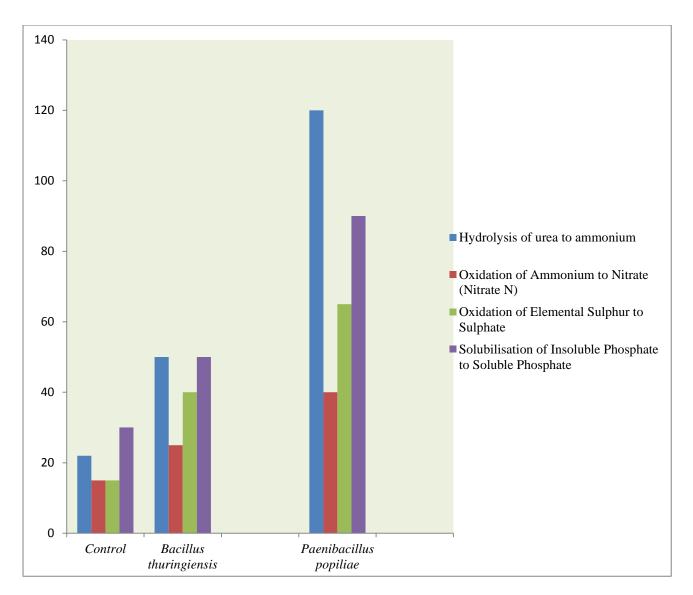


Fig.4:5 The Effect of *Bacillus thuringiensis Paenibacillus popiliae* (Thuricide and Milky Spore respectively) on Transformations Relevant to the major nutrient cycles when added to an agricultural soil and incubated for 28 days at 25°C

Table 4:3 shows that, when added to soil, the two bacteria used here were able to participate in the nutrient transformations. This suggest that when these bacterial formulations are applied to vegetation an additional benefit is potentially provided (when the spores reach the soil) in that the bacteria can contribute to mineral cycling and improve soil fertility following the spraying of these biological insecticides.

CHAPTER FIVE- ISOLATION OF BACTERIA AND FILAMENTOUS FUNGI FROM INSECTS SAMPLED DURING FLIGHT

5:1 Introduction

Up to this point, this Thesis has described studies of Lepidopteran larvae, sampled in the field, and imagoes sampled in the same way or else obtained from dealers. The following discussion is devoted to an evaluation of two novel techniques used for the isolation of insects in flight and a subsequent study of their bacterial and yeast outer body flora. The main rationale behind this work was to determine if these techniques can be usefully employed in studies such as these. The following techniques were used for in-flight sampling:

- 1) A drone elevated sampler.
- 2) An octanol-based midge/mosquito sampler.

These are novel approaches to sampling airborne insects. The rationale behind the studies is based on the fact that 1) insects are known to be transported over long distances in the upper atmosphere and can thereby transmit a wide variety of human, animal and plant pathogens over long distance, including across continents and (2) that vast amounts of midges and mosquitoes are hatched each year (in the UK, being mainly found in Western Wales and the Scottish Highlands) and act as carriers of microbes.

5:2 Aims- The aim of the work discussed here is to evaluate the use of the two sampling approaches mentioned above to isolate bacteria, filamentous fungi and yeasts from the surface of airborne insects. Using the drone sampler, insects were isolated at a height of 120 meters (the drone had remote-activated solenoid opener/closure devise), while the octanol-based sampler isolates a large number of female midges/mosquitoes from the air when placed at ground level.

Glick (1939) collected insects from high altitudes by means of special traps fitted to various types of airplanes over Southern USA during 1926 to 1931, Some 30,000 specimens of insects were sampled from altitudes ranging from 20 to 4500 metres. Eighteen orders of insects and the orders of spiders and mites were collected and represented 216 families, 824 genera, 4 new genera, 700 species, and 24 new species. The order Diptera was the most abundant order in the air, nearly three times as many specimens being taken than any other order. Coleoptera followed next after Diptera, Homoptera and Hymenoptera were sampled at 4,270 meters, the highest altitude at which insects were found, while the highest altitude at which any specimen was taken was 4,570 meters, at which a spider was caught. Not surprisingly, insect numbers decreased with sampling height. The size, weight, and buoyancy of an insect were shown to contribute directly to the height to which it is carried by air currents. Many species of the other orders represented at high altitudes were also small insects. Evidence showed that insects taken in the upper air were alive at the time of sampling. The relative distribution and abundance of insects in the upper altitudes depended on weather conditions with temperature being undoubtedly the most important The intensity of air currents is a great factor in the distribution and dispersal of insects. Most insects were taken at the lower altitudes when the surface wind velocity was from 5 to 6 miles per hour, and fewest when it was calm. The direction of the wind has influenced to a great extent the migrations of insects. In the airplane flights at Tallulah it was found that the greatest numbers of insects were taken when the surface wind direction was from the north-northeast, southeast, or southwest. Some insects were apparently moving with the wind during the spring and summer when the surface prevailing winds were from a southerly direction, and again with the wind from a northerly direction in the fall. Convection and turbulence was shown to play an important role in determining the insect population in the upper air.

As has already been noted, millions of metric tons of insects exist in the Earth's atmosphere at any given moment, most of which comprises insects involved in high-altitude, wind-borne migration, often at heights several hundred meters above ground level, where they take advantage of the strong winds found in this region to cover considerable distances, frequently tens or even hundreds of kilometres (Drake and Farrow, 1988, Holyhoak, 1997). This vast aerial "bioflow" has major implications for ecological, physiological, and genetic studies of insects, and added applications relevant to pest management, conservation, and environmental change programs (Drake and Gatehouse, 1995). In the past, the study of insect migration has relied primarily on data from long-distance flights, catches in light traps and other ground-based observations. Maintaining sampling platforms in the air) is however, expensive and impracticable over long periods. The insect fauna flying at high altitude can now be monitored continuously and for long time periods, using autonomous vertical looking radar systems (VLR systems) (Smith et al. 2000). Combined with aerial sampling technology and sources of bio-meteorological information, these systems have considerable potential for area-wide monitoring of economically important pests and could clearly be used for pest management and forecasting systems (Smith et al.2000). VLR is clearly a powerful new tool that will revolutionize the study of insect migration and provide us with significant new information on both pure and applied entomology.

5:3 Methods used to detect airborne microbes

Microbiological air quality is critical in the medical and pharmaceutical sectors, where maintaining sterility is the aim. Both passive and active methods exist for monitoring the microbial population of the air (extensive details are given in Gregory 1973 and Schulster and Chinn, (2003). Active sampling methods have become an essential environmental monitoring

tool in the pharmaceutical and medical device sectors, but much of the food industry still relies on passive monitoring.

Passive monitoring

Passive monitoring typically employs 'settle plates' – petri dishes containing culture media, which are opened and exposed for a given time and then incubated. This approach is obviously only capable of monitoring biological particles that sediment out of the air and settle over the exposure time period and, as a result, they do not detect smaller particles or droplets remaining suspended in the air. They are also unable to sample specific volumes of air, so the results, at best, can only be considered semi-quantitative. Settle plates are also vulnerable to interference and contamination and may become easily overgrown in heavily contaminated conditions. Settle plates are however, inexpensive and easy to use and require no specialised equipment. By employing a range of culture media, they can also estimate the numbers of specific groups of micro-organisms in the air. They are generally useful for the qualitative analysis of airborne microbes and they produce data which indicates underlying trends in airborne contamination and they can provide an early warning of problems.

5:4 Active monitoring

An Octanol-based midge sampler was used for the following experiments. However, as the following discussion shows, other airborne-insect sampling devises is available.

Active monitoring requires the use of a microbiological air sampler to physically draw a pre-determined volume of air over, or through, a particle collection device. Two main types are in general use:

Impingers

Impingers use a liquid medium for particle collection, sampled air being drawn by a suction pump through a narrow inlet tube into a small flask containing the collection medium; speeds up the air towards the surface of the collection medium, the flow rate being determined by the diameter of the inlet tube. When the air hits the surface of the liquid, it changes direction abruptly and any suspended particles impinge into the collection liquid. Once the sampling is deemed finished, the collection liquid can be cultured to determine the number of viable micro-organisms in the sample. Since the sample volume can be calculated using the flow rate and sampling time, the result is quantitative.

Impactors

Impactor samplers use a solid or adhesive medium, such as agar gel, rather than a liquid for particle collection. Typically, air is drawn into a sampling head by a pump or fan and accelerated, usually through a perforated plate (sieve samplers), or through a narrow slit (slit samplers). This produces a laminar air flow onto the collection surface, generally a normal agar plate filled with a suitable medium. Air velocity is determined by the diameter of the holes in sieve samplers and the width of the slit in slit samplers. When the air hits the collection surface it changes its direction and any suspended particles are thrown out by inertia, impacting onto the collection surface. When the correct volume of air has been passed through the sampling head, the agar plate is removed and incubated directly without further treatment. Following incubation, the number of visible colonies gives a direct quantitative estimate of the number of colony forming units in the volume of air sampled. Impaction samplers are convenient and can handle the higher flow rates and large sample volumes necessary to monitor air quality in controlled environments where microbial numbers are likely to be low; microbial cells may however, be damaged by stress induced by the sampling process and become less viable.

One of the best known impact samplers is the Andersen sampler, a multi-stage 'cascade' sieve sampler that uses perforated plates with progressively smaller holes at each stage, allowing particles to be separated according to size. Another is the Casella slit sampler, in

86

which the slit is positioned above a turntable on which is placed an agar plate. Air is drawn through the slit and an e agar plate rotates, so that particles are deposited evenly over its surface. Automated air sampling

Semi-automated systems usually based on sieve type impaction samplers, for monitoring clean rooms and controlled production areas. Such devices typically use a number of sampler heads linked to a central control unit, which can be programmed to follow a pre-set sampling programme.

5:5 MATERIALS AND METHODS

Fungi media

Czapek Dox Agar media was prepared by suspend 50 g Czapek Dox agar then dissolved in 1000 ml Distilled water in a flask with magnetic spin-bar until the solution dissolved than transfer class flask with covered or lid into autoclave at 120°C for 30 min for sterilization. Then the solution was poured in Petri dishes carefully when solution temperature decline to 60-55 °C. Preliminary identification is based on the colour the isolated Fungi colony developed when samples are grown on Czapek Dox agar medium.

5:6 Drone samplers

The drone sampler consisted of a piece of muslin sleeve (length) (used for a pipe cover) sealed at one end and held open by a circular piece of wire (diam.). The sampling sleeve was attached to the drone which possessed a thin plastic circular cover which, on command from the ground, could open and close the circular end (i.e. aperture) of the sampling sleeve; small flying insects were caught inside the sleeve and sampled on its return to the surface. The drone was fitted with a camera, an altimeter and GPS (Fig.5:1). The done was launched as

single event in open field near Bakewell, Derbyshire to a high 120 meters and horizontal distance of 500 meters (to comply with current regulations) above the town for 3 minutes.

Fig.5.1. (A).Drone used to capture airborne insects and (B). muslin sleeve (length).

5:7 Octanol-based midge samplers

A commercial midge sampler (Predator Dynamic) (Fig.5:2) was used to catch large quantities of airborne midges and mosquitoes. It contains a strong vacuum fan which sucks the insects into the trap and dehydrates them.

The Predator Dynamic midge collector mimics a perspiring person by producing the following 6 cues to attract the female:

Breath-carbon dioxide, moisture and heat

Heat-body skin temperature

Sweat – Rapid Action Attractant.

Movement-Blinking LED light

Moisture-wet tray in collector

Light UV-LED Lights

Fig.5:2. The Predator midge collector.

The manufacturers claim that it can collect vast numbers of females (i.e. the ones that bite) from a large area of up to 5000 square meters. It uses octanol, which is produced by heat evaporation, as a lure and to mimic human breath and sweat. The machine was located at Tan y Bedw, (OS 254, 437508), Caernarfon, Gwynedd, North Wales and left running for 7 days, following which time the contents were transferred to

polythene bags; 20 g. of biomass were isolated.

5:8 Bacterial isolation

The total bacterial load of the midges and high flying insects was obtained by macerating the whole body in a small amount of sterile ¹/₄ strength Ringers' solution, plating onto Nutrient Agar and then incubating overnight at 25^oC. Identification was achieved by the use of 16SrRNA and classical methods following Bergey's Manual (aided by Professor Wainwright).

5:9 Fungi isolation

Using a cotton wool swab, moistened with sterile distilled water to isolates fungi from the surface of midges. The swab was then spread onto the surface of the isolation Czapek Dox Agar media.

5:10 Results and Discussion

Three types of insects were obtained at a height of 120 meters using the drone-towed sampler, namely a Hoverfly, a Vinegar Fly and an Aphid (Table 5:1). It is likely that these insects were carried to this height by a combination of flying and uplift on wind currents. Table 5:1 also shows the bacteria obtained from these sampled insects. The bacteria are commonly isolated environmental organisms, showing a preponderance of spore forming Bacilli, an expected finding considering the high level of resistance to adverse conditions shown by Bacilli-endospores.

Table 5:1. Insects and associated bacteria isolated using a drone from a height of 500 meters. Bacteria (identified using classical methods).

Insects	Hoverfly (Eristalis intracarius)	Vinegar fly (Drosophila funebris)	Aphid (Pemphigus burarius)
	Acetobacter aurantius	Azotobacter vinelandii	Bacillus licheniformis
	Actinomyces israelii	Bacillus licheniformis	Bacillus megaterium
Bacteria	Bacillus brevis	Bacillus megaterium	Enterococcus faecium
	Bacillus licheniformis	Bacillus mycoides	Psedomona aeruginosa
	Bacillus megateroium	Enterococccus durans	Rothia dentocariosa
	Bacillus mycoides		Streptococcus sanguis
	Wolbachia		S. sobrinus

In contrast, no Bacilli were isolated from the midge samples sampled at ground level (Table

5:2), the reasons for which are not immediately apparent.

Table 5:2. Bacteria isolated from	middag identified to	anaging loval using	r alaggical mathoda
Table J.Z. Daciella Isolaleu Ilolli	innuges-identified to		
	0	1	

Insects	Midges
	Pseudomonas aeruginosa
	Wolbachia sp.
	Moraxella catarrhalis
Bacteria	Staphylococcus pasteuri
	Acinetobacter baumannii
	Stenotrophomonas maltophillia
	Comommonas terrigena
	Flavobacterium columnare
	Chryseobacterium indologenese
	Citrobacter brakkii
	Ehrlichia ewinii

Of interest is the isolation of *Stenotrophomonas maltophillia*, a bacterium which is increasingly being recognized as an important pathogen of immunocompromised patients. *Stenotrophomonas maltophillia. Stenotrophomonas* infections have been associated with high morbidity and mortality in severely immunocompromised and debilitated individuals (Denton and Kerr, 1998). Risk factors associated with this pathogen include: HIV infection, malignancy, cystic fibrosis, the use of catheters, recent surgery and trauma. It is also enhanced by the use of broad spectrum antibiotics

Insects	Midges
	Aspergillus niger
	Penicillium brevicopmatcum
Fungi	Penicllium citrinum
	Penicllium chrysogenum
	Aternaria tenuis
	Fusarium oxysporum
	Fusarium solanum

Table: 5:3. Fungi isolated from midges-identified using classical methods.

Fungi were also isolated from the midges. Table 5:3 shows that the isolates are common spore-forming Deuteromycetes, all of which are commonly found on most environmental samples.

5:11 Fertilizer Potential of collected midge biomass

The vast quantity of midges which can be collected by octanol-based midge collectors, like the one used here, opens up the potential of using midge biomass as a fertilizer. The aim of the following experiment was to test this possibility.

5:12Materials and Methods

A sieve less than (5 mm) was sued to screen an agricultural loam soil (previous crop potatoes, pH 6.4) which used in these studies. It was amended with fresh midge biomass (5g per 100 g soil) and moistened (circa 10% water content) and incubated at 25°C in polythene bags with a small hole to allow for gas exchange. Controls without biomass were included and all treatments were set up in triplicate. At weekly intervals, 5g of soil was transferred to 1M KCl (100ml) to extract N-ions; the container was then vigorously shaken by hand. On settling, the concentration of ammonium and nitrate in the extract was determined using dipsticks as described above.

5:13 Results and Discussion

Octanol- based midge collectors are used in areas of the world which have very large midge and mosquito populations, i.e. wet, relatively warm mountainous areas, such as N. Western Scotland, North Wales and British Columbia and Nova Scotia, Canada. Most of the large amounts of biomass caught by individual traps are likely to be casually dumped, sent to landfill or incinerated.

Days	Amended soil Ammonium	Amended soil Nitrate	Control (un- amended soil)Ammonium	Control (un- amended soil)Nitrate
0	25	10	20	10
7	60	25	25	15
14	105	30	30	10
21	110	45	25	12
28	125	60	30	20

Table 5:4. Concentration of ammonium and nitrate (μ g ml⁻¹ dry weight) extracted from soil amended with midge-biomass (Means of triplicates, all treatment values significantly different from control, p=0.05).

The results of this short study suggest however, that such biomass could have fertilizer potential. Table 5:4 shows that the addition of fresh midge biomass to an agricultural loam

led to a substantial increase in the concentration of the two main fertilizer sources of nitrogen, i.e. ammonium and nitrate, with ammonium predominating. It is likely that dried biomass would provide even larger amounts of fertiliser-nitrogen. This practice would have the advantage of reducing transport costs, but of course the amount of such dried material would be limited by the high costs of heat-drying. For this reason, only wet midge biomass was evaluated here for its fertilizer potential. Such biomass could be applied to soils directly or after a period of composting and could be used alone or together with waste plant materials. One could envisage large amounts of such biomass being produced by individuals or perhaps council-run midge collectors (and co-operatives) and, as a result, relatively large amounts of material could be made locally available to farmers and the public. Transport costs might however, limit the wide-spread collection and use of midge biomass on an industrial scale. Certainly however, an individual octanol-based collector, when located in a high midge area, could supply useable nitrogen fertiliser to homes, allotments, and even small to medium sized fruit and commercial fruit and vegetable growers. The production costs of midge biomass could be offset by local authorities, hotels or other tourist locations, where the waste is produced when attempts are being made to reduce the tourist-nuisance potential of vast numbers of midges or mosquitoes. The fact that this study shows that the midge of biomass collected here does not contains major pathogenic bacteria means that its use need not be limited by safety reasons and, as a result, there is no obvious need for it to undergo expensive sterilization; heat-based sterilization could however, be advantageous in producing a concentrated product, capable of being economically transported, which could be bagged and sold by garden-supply shops.

5:14 DISCUSSION

The UK supports some 40 species of biting midge, but only five are thought to regularly attack people, with the Highland midge, Culicoides impunctatus, being the most troublesome, and only the bloodthirsty female causing problems (Hendry, 2011). This midge is particularly common around dawn and dusk and in the Highlands and north-west Wales, where damp conditions provide it with perfect breeding grounds. Individual midges are almost invisible to the human eye, at about a millimetre long. The male feeds on plants and nectar, while his mate requires blood in order to form her eggs. Midges become aware of humans when they detect carbon dioxide on the breath and a swarm can inflict about 3000 bites each hour using a distinctive feeding technique. While mosquitos pierce the skin and suck up blood through a syringe-like mouthpiece, midges cut the skin, and then lick up the resultant pool of blood. A midge's saliva stops the blood in the wound from clotting allowing it keep on drinking indefinitely. It is the saliva which irritates the human body and leads to skin reactions and swelling at the site of a bite. Some people appear immune to midge bites; women tend to react more badly than men to the bites and the tendency to be targeted is hereditary. Midges also attack cattle, deer, sheep, cats, dogs, rabbits and mice, and spread bluetongue, a debilitating disease affecting sheep and cattle caused by a virus belonging to the family Reoviridae. Midges prefer damp, sheltered conditions, woodland and forest areas, avoid breeze, and unlike most other insects, prefer dark-coloured clothing to light (Hendry, 2011).

Chemical solutions are available to deter midges, including insect repellents containing DEET, or the natural alternative, citronella, a product of lemongrass extract which can be bought as a spray or infused into candles. These work by blocking the insect's odour receptors on the antennae and mouthparts, thereby confusing the midge so that it avoids the person. Homemade repellents include bog myrtle which grows wild in the Highlands, and thyme. There are also several traps on the market, including the Predator (i.e. the trap

employed here), which it is claimed, simulates a large smelly cow and attracts midges by replicating breath, heat, body odour and movement - then catching the creatures on sticky paper. In trials during 2010, a single Predator trap collected 800,000 midges over a five-day period. Midges cost Scotland's tourist industry an estimated £286m per year and midges are threatening the economy of the Lake District and North Wales and as far south as Cornwall. However, midges play a crucial role in the Scottish ecosystem, providing food for bats, birds and even carnivorous plants like sundews and butterworts, and they may have been partially responsible for restricting the development of the Highlands, and thereby maintaining this area as a remarkable wilderness (Hendry, 2011).

Of particular interest was the isolation of *Wolbachia* from the trapped midges. *Wolbachia* is a bacterial genus which infects arthropods, including insects and nematodes and is therefore one of the most common parasites in the biosphere (Werren *et al.*, 2008). It sets up a mutualist, rather than parasitic relationship with its host, some of which cannot survive and reproduce in its absence. It is estimated that some 25 to 70 percent of all insects are potential hosts. The genus was first identified in 1924 by Hertig and Wolbach in the common house mosquito and is now of considerable interest, not least as a potential biocontrol agent. *Wolbachia*. Bacteria can infect many different organs, but most notably the testes and ovaries. They are ubiquitous in mature eggs, but not mature sperm and as a result, only infected females pass the infection on to their offspring (Werren *et al.*, 2008).

Wolbachia has been linked to viral resistance in *Drosophila* and mosquito species, flies infected with the bacteria being more resistant to RNA viruses, including the West Nile virus and can also confer insecticide resistance (Li et al., 2014). In species of *Phyllonorycter blancardella* (leaf miners), *Wolbachia* bacteria help produce green islands on yellowing tree leaves, allowing the hosts to continue feeding while developing into their adult forms and larvae treated with an antibiotic which kills *Wolbachia*, lose this ability and as a result only

13% emerge as adult moths. In parasitic filarial nematodes which cause elephantitis, *Wolbachia* has become an obligate endosymbiont and supplies the host with the chemicals required for its reproduction and survival; elimination of the *Wolbachia* symbionts by antibiotics therefore prevents nematode reproduction, and eventually results in death. Some *Wolbachia* that are infect arthropods and mediate iron metabolism under nutritional stress, and can also help the host to synthesize vitamin B.

Wolbachia species infect a variety of isopods, including spiders, mites and filarial nematodes including those causing River Blindness and elephantitis in humans and heat worms in dogs. The elimination of *Wolbachia* from filarial nematodes generally results in either death or sterility of the nematode; as a result, these diseases can be controlled using the antibiotic doxycycline to kill the bacterium (Li *et al.*, 2014). *Wolbachia* can also be used to control dengue and malaria and a recent study has shown that *Wolbachia* can prevent the spread of Zika virus in mosquitos in Brazil.

CHAPTER SIX-FUNGI ASSOCIATED WITH THE SURFACE OF LARGER MOTHS CAUGHT USING A MERCURY VAPOUR LAMP TRAP

6:1 Introduction

The aim of the work was to isolate fungi from the body surfaces of some larger moths isolated using a Robinson mercury vapour light trap. This type of moth trap is very successful at trapping some of our most attractive, large moths. It relies on the use of a mercury vapour lamp. The lamp is housed in a large, clear plastic funnel which is itself contained in a plastic bowl, inside which is placed foam pieces or broken cardboard egg boxes which provide cover for the trapped moths (Fig.6:1). The lamp is covered by a circular piece of perspex which protects it from rain.

6:2 Materials and Methods

The moth trap was set up during fine weather during June, 2016 at Tann y Bedw, Caernarfon in North Wales and left running overnight. The trapped moths were removed using sterile forceps and their bodies were gently rubbed onto the surface of either Potato Dextrose or Czapek Dox agar in petri dishes, which were incubated at 25^oC for 7 days. Any isolated fungi were then identified using traditional morphological characteristics (Aided by Professor Wainwright).

Fig.6:1 Mercury Vapour (Robinson) Trap used to catch large night flying moths.

Fig. 6:2. Lesser Yellow Underwing Moth (Noctua comes).

Fig. 6.3. Garden Tiger Moth (Artia caja).

Fig.6.4. Small Elephant Hawk Moth (Deilephilia porcellus).

RESULTS AND DISCUSSION

Fungal species isolated from the body surfaces of three larger moths, caught during June 21016 (Figs.6.2-4), are shown in Table 6:1. Fungi were found to be associated (presumably mainly as spores) on all of the moths examined. Of particular interest are the human pathogen *Aspergillus flavus* (found on the Lesser Underwing and the Garden Tiger) and the plant pathogens *Botrytis cinerea* (Garden Tiger), *Erysiphe alphitoides, Marssonina betulae* and *Ceratocystis fimbriata*, The spores of *Aspergillus flavus* cause farmer's lung, but only when inhaled in large quantities over extended periods, so its presence on individual moths is unlikely to be of any pathogenic significance to humans (Reboux *et al.*,2001) The plant pathogen *Botrytis cinerea* on grapes can also cause "winegrower's lung", a rare form of allergic reaction in predisposed individuals (Williamson *et al.* 2007). The moth-associated fungi which are likely to be of most importance are the three tree pathogens, *Erysiphe alphitoides, Marssonina betulae* and *Ceratocystis fimbriata*; *Marssonina betulae* and *Ceratocystis fimbriata*.

Table 6:1. Filamentous fungi isolated from the body surface of larger moths.

Insects	Lesser Yellow Underwing Moth (Noctua comes) Aspergillus niger	Garden Tiger Moth (Artia caja) Botrytis cinerea	Small Elephant Hawk Moth (Deilephilia porcellus) Aspergillus flavus
Fungi	Aspergillus flavus Ceratocystis fimbriata	Erysiphe alphitoides Verticillium albo-atrum	Erysiphe alphitoides Marssonina betulae
isolated	Erysiphe alphitoides		Penicillium brevicompactum
	Fusarium oxysporum		Penicillium italicum
	Penicillium citrinum		

Erysiphe alphitoides

This is a species of fungus which causes powdery mildew on oak trees. Oak powdery mildew is one of the most common fungal diseases in the forests of Europe (Mougou *et al.*, 2008). Only young developing leaves are susceptible to colonization by *E. alphitoides* and it only causes necrosis when infection occurs during the very earliest periods of leaf development. It also tends to be more common on the second and third flushes of leaves which appear in July and August, a feature which reduces the severity of the disease on mature trees. The disease can be very severe on *Quercus robur* and *Quercus petraea*, notably on young trees, while in

mature trees the disease is usually less severe. A study of the effects of *E*. *alphitoides* on *Quercus robur* found that it led to impairment of stomatal conductance by some 15-30%, decreased leaf N-content and stimulated dark respiration. Carbon fixation was also impaired by about 40–50% in fully infected leaves and these tended to be shed earlier than uninfected ones. Generally speaking, the disease has only moderate consequences on tree health despite the general appearance of heavy infections (Mougou *et al.*, 2008)

Marssonina betulae

Birch Leaf Spot is a leaf disease affecting Birch, Aspen and Cottonwood trees and other members of the *Betulaceae* family. Dissemination is usually considered by wind-borne spores which overwinter in dormant buds and twigs, to become active during the following spring. Early symptoms include the presence of small black spots that grow bigger and join to form a mass of necrotic tissue which can lead to complete defoliation during summer in affected trees. Untreated trees tend to weaken over consecutive years of defoliation allowing them to become open to secondary insect pests and diseases.

Ceratocystis fimbriata

Ceratocystis fimbriata causes oak wilt a major disease of forest trees.

The fungus achieves entry into the xylem vessels of trees through newly formed wounds to which it is transferred by air or insects as well as via natural root grafts. Tree parts beyond then point of infection begin to wilt, become brown, wilt and die, while dark streaks appear in newly infected wood. The fungus then spreads to uninfected trees by nitidulid beetles such as *Carpophilus lugubris, Colopterus niger* and *Cryptarcha ample*, and several species of *Glischrochilus*.

The fact that moths carry these tree pathogens on their bodies obviously means that they could act as vectors of these diseases. This is of particular interest in the case of oak wilt,

since this fungus causes obvious signs of this disease on some small oak trees at Tan y Bedw. Although insects (notably wood boring beetles) can transfer pathogenic fungi to trees, there appears to have been no published interest in the potential role of moths in transmitting such infections.

CHAPTER SEVEN-GENERAL DISCUSSION

While the microbiology of insects, such as mosquitoes and house flies, which carry important human pathogens, has been widely studied, the distribution of saprophytic microbes on nondisease carrying insects has been largely ignored. This is of course not surprising, since the study of the epidemiology of major disease is a fundamental subject for study and nonpathogenic microbes, unless they are of biotechnological importance are of lesser interest. The insects studied in the first Chapter of this thesis are not generally regarded as disease carriers and no evidence was found here to show that that the species of Lepidoptera studies, for example, carry major disease-causing bacteria on their surface or within their body fluids. They do however carry organisms which could cause problems in immune-compromised patients. The question then becomes; since Lepidoptera do not regularly interact with humans in the same way as mosquitoes, midges or house flies is the fact that thy carry bacteria of any significance to human health. House flies in contrast are commonly found in the home and also, if not controlled, in hospital settings, where they can contaminate surfaces and food with bacteria which cause food poisoning. Butterflies and moths, while entering these indoor environments do not usually settle on foodstuffs and are therefore not important vectors of intestinal disease. In the same way, Lepidoptera species are not biting insects and therefore do not directly transmit disease. So while the results of this study show that insects carry bacteria they are not transmitters of major human disease and their ability to carry organism causing disease in immune-compromised patients is likely to be of limited importance. Nevertheless, it remains of academic interest to study the relationship between insects and microorganisms, not least because of the possibility of finding new bacteria which have the potential for controlling insect pests. This study confirmed the fact that Bacillus thuringiensis is a commonly carried by insects and the fact they are not killed or impaired by such contamination presumably suggest that they are either immune to such pathogens, or that the bacteria are not present in sufficiently high numbers to cause pathogenicity.

Larvae of the Peacock butterfly were fed nettle leaves which were deliberately covered with a range of bacteria. Not surprisingly, since it is toxic to many insect larvae, feeding with *B. thuringiensis* lead to the death of all of the larvae after 4 hours. The results how that feeding with *B.subtilis* and *E.coli* can lead to larval death, while MRSA was shown to be less toxic. Feeding the larvae with the other bacteria killed some larvae, with the death rate after feeding *B.subtilis* and *E.coli* being identical. *Bacillus cereus* was isolated from the larvae fed *B.thuringiensis* and *B.subtilis*.

As had already been discussed, insects have considerable potential position in forensic science for use in apprehending criminals. The dominant species of bacteria was *Enterococcus faecalis* which was isolated from inside the adult blow fly and from inside larvae extracted from the human corpse. Two species of *Clostridium* were also isolated, *Clostridium cochlearium* was isolated from outside larvae blow fly (*Calliphora*) removed from the human cadaver; the other, *Clostridium paraputrificum* was isolated from inside the blow fly (Calliphora) larvae obtained from the cadaver. *Brevibacterium ravenspurgense*, *Staphylococcus hominis*, *Lishizhenia tianjinensis* and *Bacillus safensis*, were also isolated from outside and inside larvae, extracted from human body.

The biocontrol agents *Bacillus thuringiensis* and were shown to be able to mediate, in vitro, transformations which are important in the major environmental mineral cycles The background to these experiments is that, following spraying onto crops and other plants, spores of *Bacillus thuringiensis* and *Paenibacillus popiliae* will reach soils (and other environments, including fresh waters) either directly in the sprays, by rain wash off, or in when the plant degrades. As a result, potentially significant numbers of spores of these bacteria will reach the soil and be able to germinate, from where bacterial cells can

potentially participate in the various reactions which make up the major biogeochemical cycles, including carbon, nitrogen, sulphur and phosphorus. As was discussed above while the potential to participate in reactions in the soil was demonstrated, in vitro studies do not provide direct confirmatory evidence that a bacterium, or other microorganism which can, for example oxidise ammonium in culture medium, will do so in soil. Numerous factors will of course influence the ability of any microbe introduced into the soil, or environment in general (by accident or by inoculation) to grow and participate in biogeochemical transformations. These factors include competition from indigenous organisms; environmental parameters such as a suitable ambient temperature and water regime will markedly influence microbial growth. However, the fact that the in vitro studies discussed above show that the bacteria a under investigation can perform essential environmental reactions in vitro show that they have the potential to do so in the environment. Clearly if these organisms were shown to be incapable of mediating these transformations when growing in culture it would be impossible for them to do so in the environment where conditions are likely to be far more challenging. Two important features of in vitro work which are likely to be far more variable in most environments is the presence of large amounts of carbon and a constant temperature. Natural environments are generally considered to contain only small amounts of available nutrients for which both indigenous and introduced bacteria will have to compete. In contrast, large, often "pathological" amounts of carbon substrates are generally provided in nutrient media and bacteria growing in the presence of such large amounts of carbon are unlikely to show the same physiological responses likely to be seen in the highly rigorous, low nutrient, conditions present in most environments.

The latter part of this Thesis was devoted to a study of microorganisms associated with insects sampled from a height of 120 meters. The main point of interest behind this work is the use of a drone-towed sleeve to sample the insects. As far as can be determined, this is the

first reported use of this approach to sample high flying insects in relation to a study of their microbiology. A discussion is given above of the standard approaches to sampling flying insects and while these approaches have been widely and successfully used over a long period there is always utility in the use of different sampling approaches. The use of a drone was shown to be ideal for the high altitude sampling of insects since it proved to be both powerful and highly manoeuvrable. There is no doubt that the drone used could have been used to sample at greater heights than the 120 meters used here. The results relating to the microbiology of the insects sampled using the drone are not surprisingly similar to those obtained using other sampling methods, since the drone, of course, does not necessarily sample insects which differ from those obtained using more traditional approaches. The use of drones for high-altitude sampling of microorganisms, insects and other organisms (such as pollen) is of considerable future potential. The use of an octanol-based midge sampler (Predator) to obtain large numbers of midges from the air, in relation to studying their microbiology, also appears to be novel. This approach worked extremely well and although the biomass of midge's samples did not approach that reported by the makers of the Predator machine it was sufficient to study the microbiology of these insects and also to suggest a possible agriculture use for such waste biomass. As was mentioned in the Introduction of Chapter five, the presence of vast numbers of biting midges in the Highlands of Scotland and other damp mountainous regions of the world which support an active tourist industry acts as an important economic loss that runs into millions. While Predator-like machines are used locally by homes and hotels to successfully reduce midge populations locally, it would appear uneconomic to use them on an industrial scale in order to completely remove the midge population of a large area, mainly because of the cost of octanol and the butane (propane) fuel which is required. One could imagine however that large midge collector could be powered by their own wind turbine or river-based electric generators. Midge biomass could

also be fermented to produce methane which could then be burned directly or used to generate electricity to power the midge collectors, so that large–scale collection systems could be self-reliant in energy. While the reduction, or better still, elimination of midges from tourist regions would be of enormous benefit to the economy it might have a negative environmental impact because of the use of midges as a food source for wildlife. There might therefore be considerable opposition to the use of large-scale midge collectors from environmentalists or planners. As was pointed out above, biomass collected could be put to good use as a fertiliser either directly or following composting. While this approach could be used on an agricultural scale it is more likely to be used locally on a small scale for gardens and allotments. The fact that midge biomass can be used as a fertilizer and or soil conditioner in this way has an obvious positive environmental impact in that it reduces the amount sent to landfill.

Finally, larger moths were trapped using a Robinson UV light trap. The moths were found to carry filamentous fungi on their bodies, some of which are plant pathogens, notably of trees.

In conclusion, this Thesis contains results relating to the isolation of bacteria and fungi from insects. The work described has implications for the transfer of potential human pathogenic bacteria, notably to immunocompromised patients and also plant pathogenic fungi, in this case notably of trees. The use of, what appear to be, novel insect collectors, i.e. a drone-carried sampler and the Predator midge collector has been described; further studies will determine if these methods can be added to, and improved upon, the large number of insect collectors already in use.

Suggestion for Future Work

As was mentioned in the Introduction to this Thesis, relatively little is known about the interplay between bacteria and non-disease carrying insects (e.g. mosquitos); As a result this Thesis has taken a broad brush approach where various aspects of this topic have been studied. As a result, nearly every Chapter could be revisited and the work detailed within could be studied in greater detail and could even form the basis of an individual Thesis. Of particular potential interest are:

- The possibility that bacteria, and other microbes, could be used in forensic studies to determine the time of death of a cadaver. Because of the ubiquitous distribution of bacteria, it seems unlikely however, that microbes could be used to determine the previous location of a body.
- 2) It would be of particular interest to study the ways in which moths and larvae can transmit tree diseases. While then major insect-related diseases are, in the main, caused by tree boring beetles and their larvae it is likely, as has been shown here, that moths transmit plant diseases on their outer surfaces.
- 3) It would also be interesting to study the transmission of bacteria through the life cycle using mutants or bacterial cell which have in some way been labelled, so as to properly determine if they can be carried from the egg through the larval and pupal stages into the imago. Similarly, it would be interesting to determine how bacteria evade any immune protection afforded at each stage of the life cycle.

REFERENCES

Adamaska, I. (2005). Parasitic fungi of the genera *Betul*a and *Salix. Acta Agrobotanica*, 58, 417-428.

Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Müller, H., and Berg, G. (2013). *Stenotrophomonas* comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. *BMC Genomics*, 15, 482-482.

Amann, R.I., Ludwig, W., and Schleifer K.H.(1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. *Microbiology Review*, 59,. 143–169.

Ars Tian, J. C., Wang, X. P., Long, L. P., Romeis, J., Naranjo, S. E., Hellmich, R. L., and Shelton, A. M. (2014). Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid *Cotesia marginiventris*. *Transgenic Research* 23, 257-264.

Ashworth, J.R. and Wall, R., 1994. Responses of the sheep blowflies *Lucilia sericata* and *L.cuprina* to odour and the development of semi-chemical baits. *Medical and Veterinary Entomology*, 8, 303-309.

Bal, Z. S., Sen, S., Karapinar, D. Y., Aydemir, S., and Vardar, F. (2015). The first reported catheter-related *Brevibacterium casei* bloodstream infection in a child with acute leukemia and review of the literature. *Brazilian Journal of Infectious Diseases*, 19, 213-215.

Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., Gass, J., Rademakers, R., Lindholm, C. and Hutton, M. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. *Nature* 442, 916-919.

Bergan, T., and Kocur, M. (1982). *Stomatococcus mucilaginosus* gen. nov., sp. nov., ep. rev., a member of the family Micrococcaceae. *International Journal of Systematic Bacteriology*, 32, 374-377.

Brinkmann N, Martens R, Tebbe C.C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of *Manduca sexta* (Sphingidae, Lepidoptera, Insecta). *Applied and Environmental Microbiology*.74, 7189–7196.

Broderick N.A., Raffa K.F., Goodman R.M., Handelsman J. (2004). Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. *Applied and Environmental Microbiology*. 70, 293-300.

Burke A Cunha. (20 eMedicine. July 22, 2011;

http://emedicine.medscape.com/article/237024-overview. Accessed 7/29/2014.

Calandrini, C. A., Ribeiro, A. C., Gonnelli, A. C., Ota-Tsuzuki, C., Rangel, L. P., Saba-

Chujfi, E., and Mayer, M. P. A. (2014). Microbial composition of atherosclerotic plaques. *Oral Diseases*, 20, 128-134.

Catts E.P., Goff M.L. Forensic entomology in criminal investigations. *Annual Review of Entomology*. 37, 253–72.

Chambers, Geoffrey K., *et al.* (2014). DNA fingerprinting in zoology: past, present, future. *Investigative Genetics* 5.1-3.

Chen, S., Wang, Y., Chen, F., Yang, H., Gan, M., and Zheng, S. J. (2007). A highly pathogenic strain of *Staphylococcus sciuri* caused fatal exudative epidermititis in piglets. *PLoS One*, 2 (1), e147.

Chen, L. P., Xu, H. Y., Fu, S. Z., Fan, H. X., Zhou, Y. G., and Liu, Z. P. (2009). *Lishizhenia tianjinensis* sp. nov., isolated from coastal seawater. *International Journal of Systematic and Evolutionary Microbiology*, 59, 2400-2403.

Coorevits, A., Dinsdale, A. E., Heyrman, J., Schumann, P., Van Landschoot, A., Logan, N. A., and De Vos, P. (2012). *Lysinibacillus macroides* sp. nov., nom. rev. *International Journal of Systematic and Evolutionary Microbiology* 62, 1121-1127.

Cruz, A. T., Cazacu, A. C., and Allen, C. H. (2007). *Pantoea agglomerans*, a plant pathogen causing human disease. *Journal of Clinical Microbiology* 45.1989-1992.

Da Silva, R. B., and Valicente, F. H. (2013). Molecular characterization of *Bacillus thuringiensis* using rep-PCR. Springer Plus, 21, 1-6.

Davis M. M., Engström Y. (2012). Immune response in the barrier epithelia: lessons from the fruit fly *Drosophila melanogaster*. *Journal of Innate Immunity* 4, 273–283.

Dean, D. H. (1984). Biochemical genetics of the bacterial insect-control *agent Bacillus thuringiensis*: basic principles and prospects for genetic engineering. *Biotechnology and Genetic Engineering Reviews* 2, 341-363.

De Luca, M., Amodio, D., Chiurchiù, S., Castelluzzo, M.A., Rinelli, G., Bernaschi, P., Carducci, F.I.C. and D'Argenio, P., 2013. *Granulicatella* bacteraemia in children: two cases and review of the literature. *BMC Pediatrics*, 13, 1.

Denton, M., and Kerr, K. G. (1998). Microbiological and clinical aspects of infection associated with *Stenotrophomonas maltophilia*. *Clinical Microbiology Reviews* 11, 57–80.

Deurenberg, R. H., Vink, C., Kalenic, S., Friedrich, A. W., Bruggeman, C. A., and Stobberingh, E. E. (2007). The molecular evolution of methicillin-resistant *Staphylococcus aureus*. *Clinical Microbiology and Infection* 13, 222-235.

Dillon RJ, Dillon VM. (2004). The gut bacteria of insects: Nonpathogenic Interactions. *Annual Review of Entomology* 49, 71–92.

Dillon RJ, Vennard CT, Charnley, A.K. (2000). Pheromones: exploitation of gut bacteria in the locust. *Nature* 403,851–851.

Du Rand, N. (2009). Isolation of Entomopathogenic Gram Positive Spore Forming Bacteria Effective Against Coleoptera (PhD Thesis). Pietermaritzburg, South Africa: University of KwaZulu-Natal.

Drake V.A. and Farrow R.A. (1988). The influence of atmospheric structure and motions on insect migration. *Annual Review of Entomology* 33, 183-210.

Eleftherianos I., Revenis C. (2011). Role and importance of phenoloxidase in insect hemostasis. *Journal of Innate Immunity* 3, 28–33.

Erlich, H. A., Gelfand and R.K. Saiki (1988). Specific DNA amplification. *Nature* 331, 461 – 462.

Esteban V, P,, Svetoslav D. Todorov, Sesma, F.,Gombossy F.D.del Melo Franco. (2012) Application of bacteriocinogenic *Enterococcus mundtii* CRL35 and *Enterococcus faecium* ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. *Food Microbiology* 32, 38–47.

Falih,A.M.K. and Wainwright, M. (1995). Nitrification, S-oxidation and P-solubilization by the soils yeast *Williopsis californica* and *by Saccharomyces cerivisiae*. *Mycological Research* 99, 200-204.

Falih.A.M. K. and Wainwright, M. (1995b). Nitrification *in vitro* by a range of filamentous fungi and yeasts. *Letters in Applied Microbiology* 21, 18-19.

Farrow, R.A. and Dowse, J.E. (1984). Method of using kites to carry tow nets in the upper air for sampling migratory insects and it application to radar. *Bulletin of Entomological Research* 74, 87-95.

Freitak D., Wheat C., Heckel D., Vogel H. (2007). Immune system responses and fitness costs associated with consumption of bacteria in larvae of *Trichoplusiani*. *BMC Biology* 7, 56.

Ganesan S., Aggarwal K., Paquette N., Silverman N. (2011). NF-kB/Rel proteins and the humoral immune responses of *Drosophila melanogaster*. *Current Topics in. Microbiology and Immunology* 349, 25–60.

Goff M.L., Lord W.D. (1994). Entamotoxicology;a new area of forensic investigation. *American Journal of Forensic and Medical Pathology* 15:51–7.

Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschläger, N., Endres, S., ... & Mocsai, A. (2009). Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. *Nature* 459, 433-436.

Gil R., Latorre, A., Moya, A. (2004). Bacterial endosymbionts of insects: insights from comparative genomics. *Environmental Microbiology* 6, 1109–1122.

Glare, T.R. and O, Callaghan, M. (2003). Environmental impact of bacterial pesticides. In Hokkanen, H.M.T. and Hajeck, A.E., Amsterdam, pp.119-150.

Glick. P.A. (1936). The distribution of insects, spiders and mites in the air. *USDA Technical Bulletin* No.673.

Grayston, S.J., Nevell, W. and Wainwright, M. (1986). Sulphur oxidation by fungi. *Transactions* of the British Mycological Society 87, 193-198.

Grayston, S. J. and Wainwright, M (1988). Sulphur oxidation by soil fungi including somespeceis of myccorhizae and wood rotting Basidiomyctes, *FEMS Microbiology Letters* 53,1-8.

Gross R., Vavre F., Heddi A., Hurst G. D., Zchori-Fein E., Bourtzis K. (2009). Immunity and symbiosis. *Molecular Microbiology*. 73, 751–759.

Hancock P. A., Sinkins S. P., Godfray H. C. (2011). Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. *PLoS* Negl. Trop. Dis. 5: e1024 10.1371/journal.pntd.0001024.

Hansen, B. M., and Hendriksen, N. B. (2001). Detection of enterotoxic *Bacillus cereus* and *Bacillus thuringiensis* strains by PCR Analysis. *Applied and Environmental Microbiology*, 67,185-189.

Hellmich, Richard L.; Siegfried, Blair D.; Sears, Mark K. et al. (2001). Monarch larvae sensitivity to *Bacillus thuringiensis-* purified proteins and pollen. *Proceedings of the National Academy of Sciences* 98, 11925–30.

Higashide, T., Takahashi, M., Kobayashi, A., Ohkubo, S., Sakurai, M., Shirao, Y and Sugiyama, K. (2005). Endophthalmitis caused by *Enterococcus mundtii*. *Journal of Clinical Microbiology* 43, 1475-1476.

Holyoak M. (1997). Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). *Environmental Entomology* 26, 1283-1290.

Hendry, J, (2011). The Midges of Scotland, London, Birllin.

Irwin, M.E., Tresh, J.M. and Harrison, B.D. (1988). Long range aerial dispersal of cereal aphids and virus vectors in North America. *Philosophical Transactions of the Royal Society*, *B*. 321-4.

Katayama, N., Yamashita, M., Wade, H. and Mitsuhahsi J. (2005), Entomophagy as part of a space diet for habitation of Mars. *Journal of Space Technology and Science* 21, 272-238.

Kemp C., Imler J. L. (2009). Antiviral immunity in *Drosophila*. *Current Opinion in Immunology* 21, 3–9

Kyrpides, N. C., Woese, C. R., and Ouzounis, C. A. (1996). KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. *Trends in Biochemical Sciences* 21, 425-426.

LeBlanc H.N., Logan J.G. (2010). Exploiting insect olfaction in forensic entomology. In: Amendt J., Goff M..L., Campobasso C.P., Grassberger M, Eds. *Current Concepts in Forensic Entomology*. Netherlands: Springer, pp. 205–21.

Li, Y.Y, Floate, K.D., Fields, B., Pang, P. (2014). Review of treatment methods to remove *Wolbachia* from arhropods. *Symbiosis* 62, 1-15.

Looney, W. J., M. Narita, et al. (2009). *Stenotrophomonas maltophilia*: an emerging opportunist human pathogen. *Lancet Infectious Diseases* 9, 312-323.

Martin, P. and Travers, R.S.. (1999). Worldwide abundance and distribution of *Bacillus thuringiensis* isolates. *Applied and Environmental Microbiology* 55, 2437-2442.

Marmaras V. J., Lampropoulou M. (2009). Regulators and signalling in insect haemocyte immunity. *Cell. Signalling* 21, 186–195.

Mani, M.S. (1968). Ecology and Biogeography of High Altitude Insects. New York, Springer.

Morrison M, Pope P.B., Denman S.E., McSweeney C..S. (2009). Plant biomass degradation by gut microbiomes: more of the same or something new? *Current Opinion in Biotechnology* 20,358–363.

Mougou, A., Dutech, C., Desprez-Loustau, M. L. (2008). New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. *Forest Pathology* 38, 275–287.

Maiden, M. C., Malorny, B., and Achtman, M. (1996). A global gene pool in the *Neisseriae*. *Molecular Microbiology* 21, 1297.

Morrison M, Pope P.B., Denman S.E., McSweeney C.S. (2009). Plant biomass degradation by gut microbiomes: more of the same or something new? *Current Opinion in Biotechnology*. 20, 358–363.

Nickerson,K.W.and Schnell, D.W.(1983). Toxicity of cyclic peptide antibiotics to larvae of *Aedes aegypti. Journal of Invertebrate Pathology* 42, 407–409

Palma, L et al. (2012). Vip3C, a novel class of vegetative insecticidal proteins from *Bacillus thuringiensis*. *Applied and Environmental Microbiology* 78, 7163–7165.

Prada-Arismendy, J., and Castellanos, J. E. (2011). Real time PCR. Application in dengue studies. *Colombia Médica*, 42, 243-258.

Ping, L., Büchler, R., Mithöfer, A., Svatoš, A., Spiteller, D., Dettner, K., ... and Boland, W. (2007). A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. *Environmental Microbiology*, 9, 1572-1583.

Pfaller, M. A., Jones, R. N., Doern, G. V., Sader, H. S., Kugler, K. C., Beach, M. L., and Group, T. S. P. (1999). Survey of blood stream infections attributable to gram-positive cocci: frequency of occurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada, and Latin America from the SENTRY antimicrobial surveillance program. *Diagnostic Microbiology and Infectious Disease* 33, 283-297.

Poehlein A., Alghaithi H.S., Chandran L., Chibani C.M., Davydova E., Dhamotharan K., Ge W., Gutierrez-Gutierrez D.A., Jagirdar A., Khonsari B., Nair K.P.P.R, Daniel R. (2014. First insights into the genome of the amino acid-metabolizing bacterium *Clostridium litorale DSM 5388. Genome Announc*. 2(4):e00754-14. doi:10.1128/genomeA.00754-14.

Ramos, P. L., Van Trappen, S., Thompson, F. L., Rocha, R. C., Barbosa, H. R., De Vos, P., and Moreira-Filho, C. A. (2011). Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of *Stenotrophomonas pavanii* sp. nov. *International Journal of Systematic and Evolutionary Microbiology*, 61, 926-931.

Ramous_Elorduy, J. (2009). Anthropo-entomology: Cultures, evolution and sustainability. *Entomological Research*, 39, 271-288.

Randall K. Saiki, Stephen Scharf, Fred Faloona, Kary B. Mullis, Glenn T. Horn, Henry A. Erlich, Norman Arnheim. (1985). Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. *Science* 230: 1350–1354.

Reboux G,, Piarroux R, Mauny F, et al. (2001). Role of moulds in farmer's lung disease in eastern France. American Journal of Respiratory Critical Care Medicine 163, 1534–1539.

Robinson C.J, Schloss P, Ramos Y, Raffa K, Handelsman J.(2010). Robustness of the bacterial community in the cabbage white butterfly larval midgut. *Microbial Ecology* 59,199-211.

Roh, J,Y., Choi, J.Y., Li, MS; Jin, B.R; Je, Y.H. (2007). *Bacillus thuringiensis* as a specific, safe, and effective tool for insect pest control. *Journal of Microbiology and Biotechnology* 17, 547–59.

Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J.(2010). Robustness of the bacterial community in the cabbage white butterfly larval midgut. *Microbial Ecology 59,199-211*.

Ryu J. H., Ha E. M., Lee W. J. (2010). Innate immunity and gut-microbe mutualism in *Drosophila*. *Developmental and Comparative Immunology* 34, 369–376.

Schnell, D. J., and Nickerson, K. W. (1983). Toxicity of *Bacillus thuringiensis* var. israelensis crystals to *Aedes aegypti* larvae: carbonate reversal. *Applied and Environmental Microbiology* 45, 1691-1693.

Scherer S. (1998). *Bacillus weihenstephanensis* sp. nov. is a new psychrotolerant species of the *Bacillus cereus* group. *International Journal of Systematic Bacteriology*. 48, 1373-82.

Schoenly, K., and Reid, W. (1987). Dynamics of heterotrophic succession in carrion arthropod assemblages: discrete series or a continuum of change? *Oecologia*, 73, 192-202.

Sinden, R. R. (1994). DNA Structure and Function. New York, Gulf Professional Publishing.Shalaway, S. (2004). Butterflies in the Backyard. New York, Stackpole.

Shivaji, S., Srinivas, T. N. R., and Reddy, G. S. N. (2014). The Family Planococcaceae. In:*The Prokaryotes* (pp. 303-351). Berlin, Springer. Smith A.D., Reynolds D.R. and Riley J.R. (2000). The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England. *Bulletin of Entomological Research*. 90, 265-277.

Sugita, H., Matsuo, N., Hirose, Y., Deguchi, Y. (1998). Production of an antibacterial substance by *Bacillus sp.* strain NM 12, an intestinal bacterium of Japanese coastal fish. *Aquaculture Journal*. 65,269–280.

Teletchea1, F., Bernillon, J., Duffraisse, M., Laudet, V., and Hänni, C. (2008). Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. *Journal of Applied Ecology*. 45, 967–975.

Tullis K, Goff M L. (1987). Arthropod succession in exposed carrion in a tropical rainforest on O'ahu Island, Hawai. *Journal of Medical Entomology* 24,332–9.

Van der Hoeven R, Betrabet G, Forst S. (2008). Characterization of the gut bacterial community in *Manduca sexta* and effect of antibiotics on bacterial diversity and nematode reproduction. *FEMS Microbiology Letters* 286, 249–256.

Wernegreen J, J. (2002). Genome evolution in bacterial endosymbionts of insects. *National Review of Genetics* 3,850–861.

Vilas-Boas, G., Sanchis, V., Lereclus, D., Lemos, M. V. F., and Bourguet, D. (2002). Genetic differentiation between sympatric populations of *Bacillus cereus* and *Bacillus thuringiensis Applied and Environmental Microbiology* 68, 1414-1424.

Wainwright, M. and Grayston, S.J. (1991), Oxidation of heavy metal sulphides by *Aspergillus* niger and Trichoderma harzianum Mycological Research 95, 1169-1174.

Wainwright, M. and Falih, A.M.K (1995). Involvement of yeasts in urea hydrolysis and nitrification in soil amended with a natural source of sucrose. *Mycological Research* 100, 307-310.

Walker,A.J., Glen,D.M. and. Shewry, P.R. (1999). Bacteria associated with the digestive system of the slug *Deroceras reticulatum* are not required for protein digestion. *Soil Biology and Biotechnology* 31, 387–1394.

Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., and Aroian, R. V. (2003). *Bacillus thuringiensis* crystal proteins that target nematodes. *Proceedings of the National Academy of Sciences* 100, 2760-2765.

Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., and Aroian, R. V. (2003).Bacillus thuringiensis crystal proteins that target nematodes. *Proceedings of the National Academy of Sciences*, 100, 2760-2765.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. *Journal of Bacteriology* 173,697-703.

Werren, J.H., Baldo, L. and Clark, M.E. (2008). *Wollbachia:* master manipulators of invertebrate biology. *Nature Reviews Microbiology* 6, 741-751.

Wernegreen, J. J. (2002). Genome evolution in bacterial endosymbionts of insects. *Nature Reviews Genetics*, 3, 850-861.

Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L. H., and Achtman, M. (2006).
Sex and virulence in *Escherichia coli:* an evolutionary perspective. *Molecular Microbiology*, 60, 1136-1151.

Williamson B, Tudzynski B, Tudzynski P, Van Kan JA. (2007). Botrytis cinerea: the cause of grey mould disease. *Molecular Plant Patholology* 8,561-80.

Xiang H., Wei G.F., Jia S, Huang J., Miao X.X., *et al.* (2006). Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (*Helicoverpa armigera*). *Canadian Journal of Microbiology* 52, 1085–1092.

Yamamoto, T., and Dean, D. H. (2000). Insecticidal proteins produced by bacteria pathogenic to agricultural pests. In: *Entomopathogenic Bacteria*, Amsterdam, Springer.

Zimmermann, G., 2007. Review on safety of the entomopathogenic fungi *Beauveria bassiana Beauveria brongniartii. Biocontrol Science and Technology* 17, .553-596.

APPENDIX

Table 1. Bacteria species brief demonstrate in relation to pathogenicity isolate fromInvertebrate surfaces and internal body fluids

No	Bacteria sp.	Repeti tion	Activity	Note
1	Bacillus thuringiensis	7	Gram positive	The active ingredient in some insecticides.
2	Bacillus cereus	7	Gram positive	Diarrheal and emetic
3	Stenotrophomonas	2	Gram negative	Present in the hospital environment and may cause infections including those that affect the bloodstream, respiratory tract, urinary tract and surgical-sites(Cunha.2011)
4	Microbacterium sp	2	Gram positive	TB TB bacteria can attack any part of the body such as the kidney, spine, and brain. If not treated properly, TB disease can be fatal.
5	Bacillus weihenstephanensis	1	Gram positive	Diarrhea(Lechner.1998)
6	Bacillus sp	1	Gram positive	Some species are pathogens
7	Enterococcus sp	1	Gram positive	Important clinical infections caused by Enterococcus include urinary tract infections, bacteremia, bacterial endocarditis, diverticulitis, and meningitis.
8	Bacillus licheniformis	1	Gram positive	<i>B. licheniformis</i> is not a human pathogen nor is it toxigenic cultured in order to obtain protease for use in biological laundry detergent. well adapted to grow in alkaline conditions

9	Bacillus safensis	1	Gram positive	Highly resistant to salt.not a pathogen in humans
10	Bacillus pumilus	1	Gram positive	Salt tolerance and inhibits the growth of marine
				pathogens.Not pathogenic to human
11	Exiguobacterium sibiricum	1	Gram positive	Not a recored pathogen
12	Staphylococcus succinus	1	Gram negative	Not a pathogen
13	Vagococcus sp	1	Gram positive	Not a pathogen
14	Bacillus mycoides	1	Gram positive	Found in common pesticides
15	Clostridium litorale	1	Gram positive	Generates ethanol. It is able to utilize amino acids such as glycine, sarcosine, proline, and betaine as sole carbon and energy sources via Stickland reactions (Poehlein A,2014)
16	Enterococcus mundtii	1	Gram positive	Endophthalmitis caused by Enterococcus mundtii (Tomomi,2005) and non-pathogen (Esteban,2012)

No	Bacteria sp.	Repeti	Activity	Note	Isolate
		tion			
1	Bacillus subtilis strain 168	3	Gram	Endospore-forming,	Pupa(chrysalis)
			positive	not a recorded	European Swallowtail
			positive	pathogen	Butterfly (<i>Papilio</i>
				pathogen	
					machaon)
2	Granulicatella elegans strain	1	Gram	This bacterium was	Body fluid, European
	B1333		positive	first described as a	Swallowtail Butterfly
				member of a family	(Papilio machaon)
				of nutritionally	
				variant streptococci.	
				Part of the normal	
				flora of the oral	
				cavity, the	
				genitourinary tract,	
				and the intestinal	
				tract (Luca, 2013).	
3	Enterococcus mundtii QU 25	1	Gram	Endophthalmitis	Body fluid, European
			positive	caused by	Swallowtail Butterfly
				Enterococcus	(Papilio machaon)
				mundtii	
				(Tomomi,2005) and	
				non-pathogen	
				(Esteban,2012)	
4	Staphylococcus saprophyticus	5	Gram	urinary tract	Body fluid, European
	strain ATCC 15305		positive	infections	Swallowtail Butterfiy

					(Papilio machaon)
5	Staphylococcus saprophyticus	5	Gram	urinary tract	Body fluid, European
	subsp		positive	infections	Swallowtail Butterfly,
	L		1		yellow spot
					yenew spor
6	Staphylococcus capitis strain	2	Gram	Coagulase negative	Body fluid long tail
	ATCC 27840		positive	staphylococci are the	Zebra Swallowtail
				principal cause of	Butterfly .
				prosthetic valve	
				endocarditis but are	
				a rare cause of native	
				valve infections	
7	Staphylococcus capitis strain	2	Gram	Coagulase negative	Body fluid European
	JCM 2420		positive	staphylococci are the	swallowtail butterfly
				principal cause of	
				prosthetic valve	
				endocarditis but are	
				a rare cause of native	
				valve infections	
8	Staphylococcus aureus subsp.	3	Gram	Methicillin-resistant	Body fluid European
0	aureus N315 strain N315	5			
	aureus 11515 strain 11515		positive	Staphylococcus	swallowtail butterfly
				aureus (MRSA)	yellow and black
				responsible for many	
				infections such as	
				skin and heart valve	
9	Stenotrophomonas maltophilia	8	Gram	An important cause	Body fluid European
	R551-3 strain R551-3		negative	of nosocomial	swallowtail butterfly

				infection. The respiratory tract and indwelling urinary catheters. Denton and Kerr (1998) Looney, <i>et al.</i>	yellow and black
				(2009).	
10	Stenotrophomonas maltophilia	8	Gram	Present in the	Body fluid European
	R551-3 strain R551-3		negative	hospital environment	swallowtail butterfly,
				and may cause	yellow and bright green
				infections including	
				those that affect the	
				bloodstream,	
				respiratory tract,	
				urinary tract and	
				surgical-	
				sites(Cunha.2011)	
11	Brevibacterium frigoritolerans	1	Gram	Catalase positive	Body fluid from Eyed
	strain DSM 8801		positive	.non spore and non-	Hawk-Moth (Smerinthus
				motile and aerobic	ocellatus).
				.Present on the	
				human skin which is	
				causes foot odour	
				also, report	
				infections in	
				immunocompromise	
				d patients.(Bal,et	
L					

				al,2015)	
12	Staphylococcus aureus subsp.	3	Gram	Methicillin-resistant	Pupa chrysalis Eyed
	aureus N315 strain N315		positive	Staphylococcus	Hawk Moth Smerinthus
				aureus (MRSA)	ocellatus
				responsible for many	
				infections such as	
				skin and heart valve.	
13	Bacillus subtilis strain 168	3	Gram	endospore-forming, ,	Pupa chrysalis Eyed
			positive	Not a recorded	Hawk Moth (Smerinthus
				pathogen	ocellatus).
14	Staphylococcus sciuri strain	3	Gram	Important human	Body fluid Elephant
	DSM 20345		positive	pathogens	Hawk Moth (Deilephila
				responsible for	elpenor).
				endocarditis,	
				peritonitis, septic	
				shock, urinary tract	
				infection.(Chen,et,al.	
				2007)	
15	Stenotrophomonas maltophilia	8	Gram	An important cause	Body fluid, Silk Moth
15		0		-	
	R551-3 strain R551-3		negative	of nosocomial	Bombyx mori
				infection. The	
				respiratory tract and	
				indwelling urinary	
				catheters. Denton	
				and Kerr (1998)	
				Looney, et al.	
				(2009).	

16	Solibacillus silvestris strain	1	Gram	Not pathogen	Body fluid from Atlas
	HR3-23		positive	undetermined, rod-	Moth (Attacus atlas)
				shaped, yellow, non-	
				motile, non-spore-	
				forming (Shivaji, et	
				al. 2014)	
17	Staphylococcus saprophyticus	5	Gram	Urinary tract	Body fluid, Elephant
	strain ATCC 15305		positive	infections	Hawk Moth (Deilephila
					elpenor).
18	Stenotrophomonas maltophilia	8	Gram	An important cause	Body fluid Elephant
	R551-3 strain R551-3		negative	of nosocomial	Hawk Moth (Deilephila
				infection. The	elpenor).
				respiratory tract and	
				indwelling urinary	
				catheters. Denton	
				and Kerr (1998)	
				Looney, et al.	
				(2009).	
19	Stenotrophomonas pavanii	1	Gram	Non-motile and do	Body fluid, Elephant
	strain LMG 25348		negative	not form spores.	Hawk Moth (Deilephila
				Catalase-positive	elpenor).
				and oxidase-	
				negative. Growth is	
				observed at 20–37	
				°C (Ramos, <i>et al.</i> ,	
				2011).	

20	Staphylococcus succinus strain	1	Gram	Not a pathogen	Body fluid, Elephant
	AMG-D1		positive		Hawk Moth (Deilephila
					elpenor).
21	Staphylococcus sciuri subsp.	3	Gram	Important human	Body fluid, Elephant
	carnaticus strain GTC 1227		positive	pathogens	Hawk Moth (Deilephila
				responsible for	elpenor).
				endocarditis,	
				peritonitis, septic	
				shock, urinary tract	
				infection.	
				(Chen, <i>et</i> , <i>al</i> .2007)	
22	Staphylococcus saprophyticus	5	Gram	Urinary tract	Body fluid Eyed Silk
	strain ATCC 15305		positive	infections	moth
23	Staphylococcus saprophyticus	5	Gram	Urinary tract	Body fluid Small White
	strain ATCC 15305		positive	infections	moth
24	Pantoea agglomerans strain	1	Gram	Causing wound,	Body fluid, Atlas Moth
	ATCC 27155		negative	blood, and urinary-	(Attacus atlas).
				tract infections. It is	
				commonly isolated	
				from plant surfaces	
				Associated with	
				penetrating trauma	
				by vegetative	
				material and	
				catheter-related	
				bacteraemia.	
				(Cruz, <i>et al.</i> ,2007)	

25	Bacillus subtilis strain 168	3	Gram	endospore-forming, ,	Body fluid Silk moth
			positive	Not a recorded	
				pathogen	
26	Micrococcus yunnanensis	1	Gram	Found in human	Body fluid Silk moth
	strain YIM 65004		positive	skin, animal and	
				dairy products	
				catalase positive.	
				non-spore-forming	
				spheres (Bergan, and	
				Kocur, (1982) Cause	
				infection and hosts	
				with compromised	
				immune systems	
				Public Health	
				Agency of Canada	
				www.publichealth.g	
				c.ca.	
27	Bacillus licheniformis strain	1	Gram	<i>B. licheniformis</i> is	Body fluid, Comma
	DSM 13		positive	not a human	Butterfly (Polygonia c-
				pathogen nor is it	album)
				toxigenic cultured in	
				order to obtain	
				protease for use in	
				biological laundry	
				detergent. well	
				adapted to grow in	

				alkaline conditions	
28	Stenotrophomonas maltophilia	8	Gram	An important cause	Wet swab from butterfly
	R551-3 strain R551-3		negative	of nosocomial	larvae(outside)
				infection. The	
				respiratory tract and	
				indwelling urinary	
				catheters. Denton	
				and Kerr (1998)	
				Looney, et al.	
				(2009).	
29	Staphylococcus sciuri subsp.	3	Gram	Important human	Wet swab from butterfly
	carnaticus strain GTC 1227		positive	pathogens	larvae(outside)
				responsible for	
				endocarditis,	
				peritonitis, septic	
				shock, urinary tract	
				infection.(Chen,et,al.	
				2007)	
30	Lysinibacillus fusiformis strain	1	Gram	causes infection in	Isolate from inside
	NBRC15717		positive	humans relating to	butterfly larvae body
				tropical ulcer	
				formations and	
				dermal and	
				respiratory	
				infections(Calandrini	
				, <i>e</i> , <i>al</i> ,2014)	
31	Stenotrophomonas rhizophila	1	Gram	Attack Plant roots	Isolate from inside

	strain e-p10		negative	rhizospheres	butterfly larvae body
				Multiple resistances	
				against antibiotics	
				are not only found	
				with clinical strains	
				but also with strains	
				isolated from the	
				rhizosphere	
				(Alavi, <i>et al</i> .2013)	
32	Bacillus cereus ATCC 14579	3	Gram	Diarrheal and emetic	Isolate from inside
			positive		butterfly larvae body
33	Lysinibacillus macroides	1	Gram	Strictly aerobic,	Isolate from inside
	strain LMG 18474		positive	Gram-positive and	butterfly larvae body
			and Gram	Gram-negative	
			negative	motile rods.	
				(Coorevits, et	
				al.2012).	
				The association of	
				infections such as	
				periodontitis with	
				atherosclerotic	
				diseases is well	
				documented. In spite	
				of the high diversity	
				of the human oral	
				microbiota, and its	
				close contact with	

				the circulatory	
				system	
34	Bacillus cereus ATCC 14579	3	Gram	Diarrhea and emetic	Isolate from inside die
54	Dacunus cereus AICC 14579	5		Diarmea and emetic	
			positive		butterfly larvae body
					treated by B. thuringiensis
35	Stenotrophomonas maltophilia	8	Gram	An important cause	Isolate from inside die
	R551-3 strain R551-3		negative	of nosocomial	butterfly larvae body
				infection. The	treated by E.coli
				respiratory tract and	
				indwelling urinary	
				catheters. Denton	
				and Kerr (1998)	
				Looney, et al.	
				(2009).	
36	Bacillus cereus ATCC 14579	3	Gram	Diarrhea and emetic	Isolate from inside
			positive		butterfly larvae body
					treated by B. subtilis
37	Staphylococcus aureus subsp.	3	Gram	Methicillin-resistant	Isolate from inside die
	aureus N315 strain N315		positive	Staphylococcus	butterfly larvae body
				aureus (MRSA)	treated by MRSA bacteria
				responsible for many	
				infections such as	
				skin and heart valve.	
				(Deurenberg, et	
				al.,(2007).	
38	Stenotrophomonas maltophilia	8	Gram	An important cause	Isolate from inside
	strain IAM 12423		negative	of nosocomial	butterfly larvae

				infection. The respiratory tract and indwelling urinary catheters. Denton and Kerr (1998) Looney, <i>et al.</i> (2009).	body(Control)
39	Stenotrophomonas maltophilia	8	Gram	An important cause	Isolate from inside
	R551-3 strain R551-3		negative	of nosocomial	butterfly adult
				infection. The	body(Control)
				respiratory tract and	
				indwelling urinary	
				catheters. Denton	
				and Kerr (1998)	
				Looney, et al.	
				(2009).	

Table 2. Bacteria isolated from Lepidoptera and information regarding pathogenesis.

Table 3. Results of bacteria species isolate from larvae of *Dermestidae* from a human cadaver.

Isolate from inside larvae of <i>Dermestidae</i> extracted from human dead body.
larvae of <i>Dermestidae</i> extracted from
<i>Dermestidae</i> extracted from
extracted from
extracted from
human dead body.
n
Isolate from inside
s, larvae of
se Dermestidae
ith extracted from
human dead body.
Isolate from inside
adult blow
of <i>Dermestidae</i>

				humans and other	extracted from
				mammals (Ryan KJ, Ray	human dead body.
				CG 2004).	
4	Lishizhenia tianjinensis	1	Gram negative	isolated from coastal	Isolate from inside
	strain H6	-	Crain nogari (seawater of Tianjin City,	larvae of
	strain 110			China(Chen, <i>et al.</i> ,2009)	
				China (Chen, et al., 2009)	Dermestidae
					extracted from
					human dead body
5	Clostridium	1	Gram positive	Generates ethanol. It is	Isolate from inside
	cochlearium strain JCM			able to utilize amino	larvae of
	1396			acids such as glycine,	Dermestidae
				sarcosine, proline, and	extracted from
				betaine as sole carbon	human dead body.
				and energy sources via	
				Stickland reactions	
				(Poehlein,2014)	
6	Bacillus safensis strain	1	Gram positive	Highly resistant to salt.	Isolate from inside
	NBRC 100820		-	Not a pathogen in	larvae of
				humans	Dermestidae
					extracted from
					human dead body
7	Enterococcus faecalis	1	Gram positive	Important clinical	Isolate from inside
	strain NBRC 100480			infections caused by	larvae of
				Enterococcus include	Dermestidae
				urinary tract infections,	extracted from
				bacteraemia, bacterial	human dead body.
				endocarditis,	

				diverticulitis, and	
				meningitis.	
8	Clostridium	1	Gram positive	Generates ethanol. It is	Isolate from inside
	paraputrificum strain			able to utilize amino	blow fly
	JCM 1293			acids such as glycine,	(Calliphora) larvae
				sarcosine, proline, and	extracted from
				betaine as sole carbon	human dead body.
				and energy sources via	
				Stickland reactions	
				Poehlein,2014)	

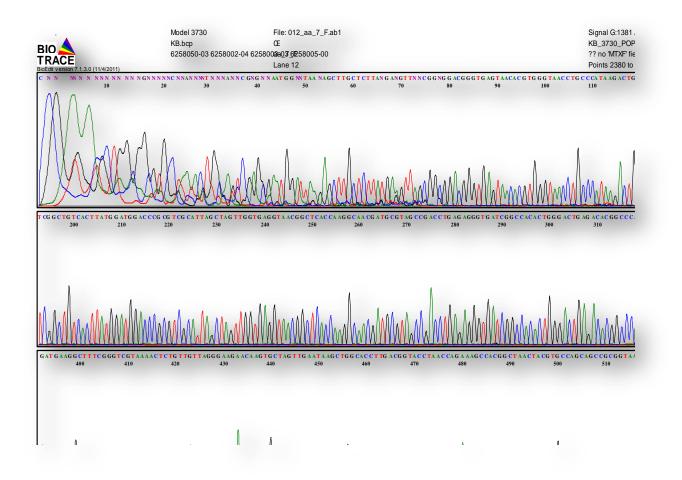


Fig.1 Shows Finch TV software as ladder for nitrogen base pair

Range 1:	51 to 81	9 GenBank Graphics Expect	Identities	Gaps	ext Match 🔺 Previous Match	
1294 bits	(1434)	0.0	743/759(98%)	1/759(0%)	Plus/Plus	
Query	4		1 11 111 111		-CACGTGGGTAACCTGCCCA	62
Sbjet	61	AGAGCTTGCTCTC	AAGAAGTTAGCGGC	GGACGGGTGAGTA	ACACGTGGGTAACCTGCCCA	120
Query	63				ATAACATTTTGAACCGCAGG	122
Sbjct	121				ATAACATTTTGAACTGCATG	180
Query	123				GGACCCGCGTCGCATTAGCT	182
Sbjct	181				GGACCCGCGTCGCATTAGCT	240
Query	183				CCGACCTGAGAGGGTGATCG	242
Sbjct	241				CCGACCTGAGAGGGTGATCG	300
Query	243				GGCAGCAGTAGGGAATCTTC	302
Sbjct	301				GGCAGCAGTAGGGAATCTTC	360
Query	303				GATGAAGGCTTTCGGGTCGT	362
Sbjct	361				GATGAAGGCTTTCGGGTCGT	420
Query	363				AGCTGGCACCTTGACGGTAC	422
Sbjct	421				AGCTGGCACCTTGACGGTAC	480
Query	423				GGTAATACGTAGGTGGCAAG	482
Sbjct	481				GGTAATACGTAGGTGGCAAG	540
Query	483				TTTCTTAAGTCTGATGTGAA	542
Sbjct	541				TTTCTTAAGTCTGATGTGAA	600
Query	543				GACTTGAGTGCATAAGAGGA	602
Sbjct	601				GACTTGAGTGCAGAAGAGGA	660
Query	603				TGGAGGAACACCAGTGGCGA	662
Sbjct	661				TGGAGGAACACCAGTGGCGA	720
Query	663				GCGTGGGGGGGCAAACAGGAT	722
Sbjct	721				GCGTGGGGGGGGCAAACAGGAT	780
Query	723		AGTCCACGCCGTAA		761	
Sbjct	781		AGTCCACGCCGTAA		819	

Fig. 2 Shows *Bacillus thuringiensis* gene sequences

Score		03 <u>GenBank</u> <u>Graphics</u> Expect Identities	Gaps V	Strand	
1402 bit	s(1554)		0/804(0%)	Plus/Plus	
Query	3	GCGGGGGACGGGTGAGTAACACGTGGGTAA			62
Sbjct	100	GCGGCGGACGGGTGAGTAACACGTGGGTAA			15
Query	63	AACCGGGGCTAATACCGGATAACATTTTGA			12
Sbjct	160	AACCGGGGCTAATACCGGATAACATTTTGA			21
Query	123	CGGCTGTCACTTATGGATGGACCCGCGTCG			18
Sbjct	220	CGGCTGTCACTTATGGATGGACCCGCGTCG			27
Query	183	CAAGGCAACGATGCGTAGCCGACCTGAGAG			24
Sbjct	280	CAAGGCAACGATGCGTAGCCGACCTGAGAG			33
Query	243	GCCCAGACTCCTACGGGAGGCAGCAGTAGG			30
Sbjct	340	GCCCAGACTCCTACGGAGGCAGCAGTAGG			39
Query	303	GAGCAACGCCGCGTGAGTGATGAAGGCTTT			30
Sbjct	400	GAGCAACGCCGCGTGAGTGATGAAGGCTTT			4
Query	363	ACAAGTGCTAGTTGAATAAGCTGGCACCTT			4:
Sbjct	460	ACAAGTGCTAGTTGAATAAGCTGGCACCTT			5
Query	423	CTACGTGCCAGCAGCCGCGGTAATACGTAG			48
Bbjct	520	CTACGTGCCAGCAGCCGCGGTAATACGTAG			51
Query	483	TAAAGCGCGCGCANGTGGTTTCTTAAGTCT			54
Sbjct	580	TAAAGCGCGCGCAGGTGGTTTCTTAAGTCT			63
Query	543	GGTCATTGGAAACTGGGAGACTTGAGTGCA			60
Sbjct	640	GGTCATTGGAAACTGGGAGACTTGAGTGCA			69
Query	603	GTGAAATGCGTAGAGATATGGAGGAACACC			60
Sbjct	700	GTGAAATGCGTAGAGATATGGAGGAACACC			7
Query	663	TGACACTGAGGCGCGAAAGCGTGGGGAGCA			7:
Sbjct	760	TGACACTGAGGCGCGAAAGCGTGGGGAGCA			8
Query	723	CGTAAACGATGAATGCTAATTGTTAAAGGG			78
Sbjct	820	CGTAAACGATGAGTGCTAAGTGTTAGAGGG			8
Query	783	TTAACCACTCCGCCTGGGGAGTAC 806			
Sbjct	880	TTAAGCACTCCGCCTGGGGAGTAC 903			

Bacillus cereus ATCC 14579 16S ribosomal RNA (rrnA) gene, complete sequence Sequence ID: refINR_074540.1| Length: 1512 Number of Matches: 1

Fig. 3 Shows Bacillus cereus gene sequences

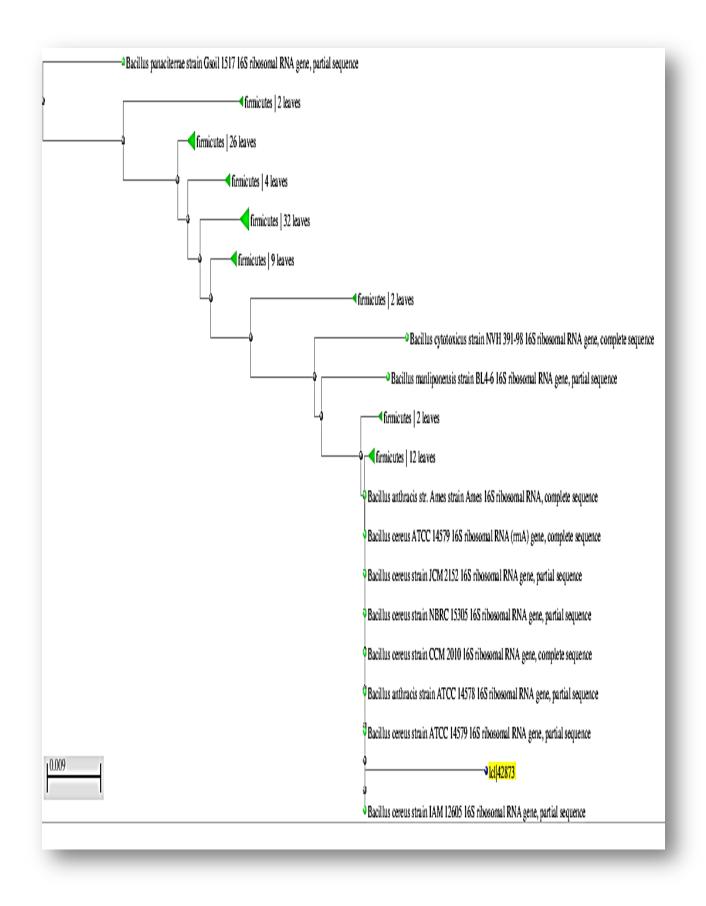


Fig.4 Shows Bacillus cereus tree

Score		Expect	Identities	Gaps	Strand	
1371 bit	s(1520)	0.0	777/794(98%)	0/794(0%)	Plus/Minus	
Query	1				GTATTCACCGCGGCG	
Sbjct	1407		CGGGCGGTGTGTAC			
Query	61	CCGCGATTACI	AGCGATTCCGGCTTC		TGCAGCCTACAATCO	
Sbjct	1347	CCGCGATTACT	AGCGATTCCGGCTTC			
Query	121	GAGAAGCTTTZ	AGAGATTTGCATGAC	CTCGCGGCCTAG	CGACTCGTTGTACTI	CCCATTO
Sbjct	1287	GAGAAGCTTTZ	AGAGATTTGCATGAC	CTCGCGGCCTAG	CGACTCGTTGTACT1	CCCATTO

TAGCACGTGTGTAGCCCAGGTCATAAGGGGGCATGATGATTTGACGTCATCCCCACCTTCC

TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATGTGACGTCATCCCCACCTTCC

TCCGGTTTGTCACCGGCAGTCTCGCTAGAGTGCCCAACTGAATGATGGCAACTAACAATA

TGCACCACCTGTCACTTTGTCCCCGAAGGGAAAGCTCNATCTCTCGAGTGGTCAAAGGAT

GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG

 GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG

TGCGGGCCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT

GCTTAATGCGTTAGCTGCAGCACTGAAGGGCGGAAACCCTCCAACACTTANCACTCATCG

GCTTAATGCGTTAGCTGCAGCACTGAAGGGCGGAAACCCTCCAACACTTAGCACTCATCG

TTTACGGCGTGNACTACCANGGTATCTAATCCTGNTTGCTCCCCACGCTTTCGAGCCTCA

NCGTCAGTTACAGACCANANAGTCGCCTTCGCCACTGGTGTTCCTCCATATATCTACNCA

TTTCACCGCTACACATGGAATTCCACTCTCCNCNTCTGNACTCNAGTCTCCCAGTTTCCN

TTTCACCGCTACACATGGAATTCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCA

AGGGTTGCGCTCGTTGCGGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA

Enterococcus silesiacus strain R-23712 16S ribosomal RNA gene, complete sequence Sequence ID: refINR_042405.11 Length: 1513 Number of Matches: 1

Fig. 5 Shows Enterococcus silesiacus gene sequences

ANGACCCTCCCCGG

ATGACCCTCCCCGG

794

614

Query 181

1227

241

1167

301

1107

361

1047

421

987

481

927

541

867

601

807

661

747

721

687

781

627

Sbjct

Query

Sbjct

1228

240

1168

300

1108

360

1048

420

988

480

928

540

868

600

808

660

748

688

780

628

-	-		h: 1490 Number of Ma			
Score 1400 bits		4 <u>GenBank</u> <u>Graphics</u> Expect 0.0	Identities 773/788(98%)	Gaps 0/788(0%)	ext Match A Previous Match Strand Plus/Plus	
Query	3				TAACTCCGGGAAACCGGAGC	62
Sbjct	77				TAACTCCGGGAAACCGGAGC	136
Query	63				AAAGACGGTTTCGGCTGTCA	122
Sbjct	137				AAAGACGGTTTCGGCTGTCA	196
Query	123				TAATGGCTCACCAAGGCGAC	182
Sbjct	197				TAATGGCTCACCAAGGCGAC	256
Query	183				ACTGAGACACGGCCCAGACT	242
Sbjct	257				ACTGAGACACGGCCCAGACT	316
Query	243				AAAGTCTGACGGAGCAACGC	302
Sbjct	317				AAAGTCTGACGGAGCAACGC	376
Query	303				GTTAGGGAAGAACAAGTGCG	362
Sbjct	377				GTTAGGGAAGAACAAGTGCG	436
Query	363				CCACGGCTAACTACGTGCCA	422
Sbjct	437				CCACGGCTAACTACGTGCCA	496
Query	423				TTATTGGGCGTAAAGGGCTC	482
Sbjct	497				TTATTGGGCGTAAAGGGCTC	556
Query	483				AACCGGGGAGGGTCATTGGA	542
Sbjct	557				AACCGGGGGGGGGGTCATTGGA	616
Query	543				ACGTGTAGCGGTGAAATGCG	602
Sbjct	617				ACGTGTAGCGGTGAAATGCG	676
Query	603				GGTCTGTAACTGACGCTGAN	662
Sbjct	677				GGTCTGTAACTGACGCTGAG	736
Query	663				TAGTCCACGCCGTAAACGAT	722
Sbjct	737				ŦĂĠŦĊĊĂĊĠĊĊĠŦĂĂĂĊĠĂŦ	796
Query	723		TTNGGGGTTTCCGCC		GCTAACGCATTAAGCACTCC	782
Sbjct	797				ĠĊŦĂĂĊĠĊĂŦŦĂĂĠĊĂĊŦĊĊ	856
Query	783	GCCTGGGG 79	0			
Sbjct	857	GCCTGGGG 86	4			

Bacillus pumilus strain YS5 16S ribosomal RNA gene, partial sequence Sequence ID: <u>gb[KF941203.1]</u> Length: 1490 Number of Matches: 1

Fig. 6 Shows Bacillus pumilus gene sequences

mange 21	109 to 2	269 GenBank Graph	lics	👿 N	lext Match 🔺 Previous Match	
Score 279 bits((308)	Expect 4e-75	Identities 159/161(99%)	Gaps 1/161(0%)	Strand Plus/Plus	
Query	36	GGGTGACTAAC	CGTGGGTAACCTGC	CTGTAAGACTGGG	ATAACTCCGGGAAACCGGGGC	94
Sbjct	109	GGGTGAGTAAC	ACGTGGGTAACCTGC	CTGTAAGACTGGG	ATAACTCCGGGAAACCGGGGC	10
Query	95	TAATACCGGAT	GGTTGTTTGAACCGC	ATGGTTCAAACATA	AAAAGGTGGCTTCGGCTACCA	15
Sbjct	169	TAATACCGGAT	GGTTGTTTGAACCGC	ATGGTTCAAACAT	AAAAGGTGGCTTCGGCTACCA	22
Query	155	CTTACAGATGG	ACCCGCGGCGCATTA	GCTAGTTGGTGAG	ST 195	
Sbjct	229				 ≆rr 269	

Fig. 7 Shows Bacillus subtilis gene sequences

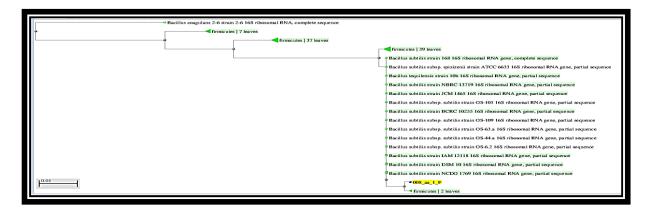


Fig. 8 Shows Bacillus subtilis tree

Fig. 9 Shows Butterfly larvae which used to isolate the bacteria(author's image picture)

Bacillus subtilis strain 168 16S ribosomal RNA gene, complete sequence Sequence ID: <u>ref NR_102783.1</u> Length: 1555 Number of Matches: 1						
Range 1: Score	Range 1: 109 to 269 GenBank Graphics Score Expect Identities			Vext Match A Previous Match Gaps Strand		
279 bits((308)	4e-75	159/161(99%)	1/161(0%)	Plus/Plus	
Query	36	GGGTGACTAAC-		CTGTAAGACTGGGA	TAACTCCGGGAAACCGGGGC	94
Sbjct	109	GGGTGAGTAAC	ACGTGGGTAACCTGC	CTGTAAGACTGGGA	TAACTCCGGGAAACCGGGGC	168
Query	95	TAATACCGGAT	GTTGTTTGAACCGC	ATGGTTCAAACATA	AAAGGTGGCTTCGGCTACCA	154
Sbjct	169	TAATACCGGAT	GTTGTTTGAACCGC	ATGGTTCAAACATA	AAAGGTGGCTTCGGCTACCA	228
Query	155	CTTACAGATGG	ACCCGCGGCGCATTA	GCTAGTTGGTGAGG	т 195 I	
Sbjct	229	CTTACAGATGG	ACCCGCGGCGCATTA	GCTAGTTGGTGAGG	т 269	

Fig. 10 Shows Bacillus subtilis gene sequences

Bacillus coagulans 2-6 strain 2	-6 16S ribosomal RNA, complete sequence
a firmicutes	7 leaves
•	firmicutes 37 leaves
•	Firmicutes 39 leaves
	P Bacillus subtilis strain 168 165 ribosomal RNA gene, complete sequence
	Bacillus subtilis subsp. spizizenii strain ATCC 6633 165 ribosomal RNA gene, partial sequence
	Bacillus tequilensis strain 10b 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain NBRC 13719 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain JCM 1465 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis subsp. subtilis strain OS-105 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain BCRC 10255 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis subsp. subtilis strain OS-109 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis subsp. subtilis strain OS-63.a 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis subsp. subtilis strain OS-44.a 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis subsp. subtilis strain OS-6.2 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain IAM 12118 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain DSM 10 16S ribosomal RNA gene, partial sequence
	Bacillus subtilis strain NCDO 1769 16S ribosomal RNA gene, partial sequence
10.01	
· · · · · · · · · · · · · · · · · · ·	firmicutes 2 leaves

Fig. 11 Shows Bacillus subtilis tree

Sequence	ID: <u>ref N</u>	R_042405.1 Length: 1513 Number of Ma	tches: 1	
	614 to 14	07 GenBank Graphics	Vext Match 🔺 Previous Match	
Score 1371 bit	s(1520)	Expect Identities 0.0 777/794(98%)	Gaps Strand 0/794(0%) Plus/Minus	
Query	1		AGGNCCGGGAACGTATTCACCGCGGCGTGCTGAT	60
Sbjct	1407		AGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT	1348
Query	61		ATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA	120
Sbjct	1347			1288
Query	121		CTCGCGGCCTAGCGACTCGTTGTACTTCCCATTG	180
Sbjct	1287			1228
Query	181		3GGGCATGATGATTTGACGTCATCCCCACCTTCC	240
Sbjct	1227		GGGCATGATGATTTGACGTCATCCCCACCTTCC	1168
Query	241			300
Sbjct	1167		AGAGTGCCCAACTGAATGATGGCAACTAACAATA	1108
Query	301		CCCAACATCTCACGACACGAGCTGACGACAACCA	360
Sbjct	1107		CCCAACATCTCACGACACGAGCTGACGACAACCA	1048
Query	361		AGGGAAAGCTCNATCTCTCGAGTGGTCAAAGGAT	420
Sbjct	1047		AGGGAAAGCTCGATCTCTCGAGTGGTCAAAGGAT	988
Query	421		FTGCTTCGAATTAAACCACATGCTCCACCGCTTG	480
Sbjct	987		FTGCTTCGAATTAAACCACATGCTCCACCGCTTG	928
Query	481		TTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT	540
Sbjct	927		FTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT	868
Query	541		AGGGCGGAAACCCTCCAACACTTANCACTCATCG	600
Sbjct	867		AGGGCGGAĂĂĊĊĊŦĊĊAĂĊĂĊŦŤĂGĊĂĊŤĊĂŤĊĠ	808
Query	601		PAATCCTGNTTGCTCCCCACGCTTTCGAGCCTCA	660
Sbjct	807		PAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA	748
Query	661		CTTCGCCACTGGTGTTCCTCCATATATCTACNCA	720
Sbjct	747		ĊŦŦĊĠĊĊĂĊŦĠĠŦĠŦŦĊĊŦĊĊĂŦĂŦĂŦĊŦĂĊĠĊĂ	688
Query	721		PCTCCNCNTCTGNACTCNAGTCTCCCAGTTTCCN	780
Sbjct	687		PCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCA	628
Query	781	ANGACCCTCCCCGG 794		
Sbjct	627	ATGACCCTCCCCGG 614		

Enterococcus silesiacus strain R-23712 16S ribosomal RNA gene, complete sequence Sequence ID: <u>refINR_042405.1</u> Length: 1513 Number of Matches: 1

Fig. 12 Shows Enterococcus silesiacus gene sequences

-		NR_074540.11 Length: 1512 Number of Matches: 1 003 <u>GenBank</u> <u>Graphics</u> ▼ Next Match ▲ Previous Match	
Score 1402 bit		Expect Identities Gaps Strand 0.0 793/804(99%) 0/804(0%) Plus/Plus	
Query	3	GCGGGGGACGGGTGAGTAACACGTGGGTAACCNGCCCATAAGACTGGGATAACTCCGGGA	62
Sbjct	100	GCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGGATAACTCCGGGA	159
Query	63	AACCGGGGCTAATACCGGATAACATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTT	122
Sbjct	160	AACCGGGGCTAATACCGGATAACATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTT	219
Query	123	CGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCAC	182
Sbjct	220	CGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCAC	279
Query	183	CAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACG	242
Sbjct	280	CAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACG	339
Query	243	GCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACG	302
Sbjct	340	GCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACG	399
Query	303	GAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGA	362
Sbjct	400	GAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGA	459
Query	363	ACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAA	422
Sbjct	460	ACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAA	519
Query	423	CTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCG	482
Sbjct	520	CTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCG	579
Query	483	TAAAGCGCGCGCANGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAG	542
Sbjct	580	TAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAG	639
Query	543	GGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCG	602
Sbjct	640	GGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGGAAAGTGGAATTCCATGTGTAGCG	699
Query	603	GTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAAC	662
Sbjct	700	GTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAAC	759
Query	663	TGACACTGAGGGGGGAAAGCGTGGGGGGGGGGGGAGCAAACAGGATTAAATACCCTGGTAGTCCACGC	722
Sbjct	760	TGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC	819
Query	723	CGTAAACGATGAATGCTAATTGTTAAAGGGTTTCCCCCCTTTAATGCTGAATTTAACGCA	782
Sbjct	820	CGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCA	879
Query	783	TTAACCACTCCGCCTGGGGAGTAC 806	
Sbjct	880	TTAAGCACTCCGCCTGGGGAGTAC 903	

Bacillus cereus ATCC 14579 16S ribosomal RNA (rrnA) gene, complete sequence Sequence ID: refINR_074540.1| Length: 1512 Number of Matches: 1

Fig.13 Shows Bacillus cereus gene sequences

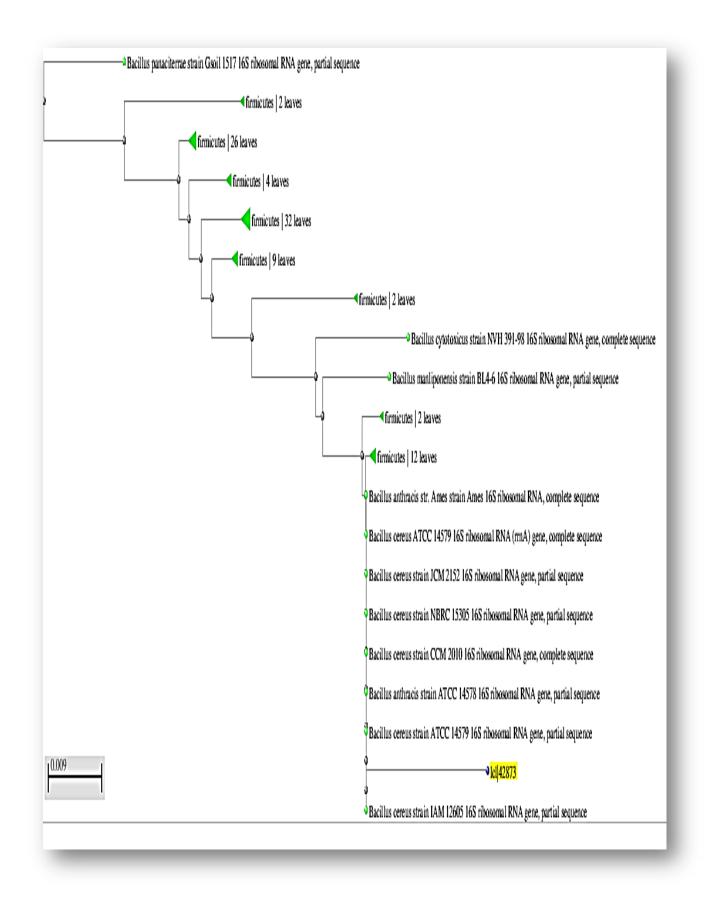


Fig .14 Shows Bacillus cereus tree

Fig.15 Shows European Swallowtail butterfly used to isolate the bacteria(authouir's image)

	Granulicatella elegans strain B1333 16S ribosomal RNA gene, complete sequence Sequence ID: <u>refINR_028682.11</u> Length: 1538 Number of Matches: 1					
Range 1:	Range 1: 863 to 1382 GenBank Graphics Vext Match A Previous Match					
Score 848 bits	(940)	Expect 0.0	Identities 500/520(96%)	Gaps 0/520(0%)	Strand Plus/Minus	
Query	82		CCCGCGTCGTGCTG		GCGATTCCGACTTCATGTAGGCG	141
Sbjct	1382	AACGTATTC	ACCGCGGCGTGCTG	ATCCGCGATTACTA	GCGATTCCGGCTTCATGTAGGCG	1323
Query	142	111111111	111111111111111	IIII IIIIII I	GAGATTCGCTTGCCCTCGCGAGT	201
Sbjct	1322	AGTTGCAGC	CTACAATCCGAACT	GAGAATGGCTTTAA	GAGATTCGCTTACCCTCGCGAGT	1263
Query	202	1 111111	111111111111111		AGCCCAGGTCATAAGGGGGCATGA	261
Sbjct	1262	TCGCTGCTC	GTTGTACCATCCAT	TGTAGCACGTGTGT	AGCCCAAGTCATAAGGGGGCATGA	1203
Query	262				CCGGCAGTCTCACTAGAGTGCCC	321
Sbjct	1202				CCGGCAGTCTCACTAGAGTGCCC	1143
Query	322				GTTGCGGGGACTTAACCCAACATC	381
Sbjct	1142				GTTGCGGGACTTAACCCAACATC	1083
Query	382				CACTTTGGCCCCGAAGGGAATTC	441
Sbjct	1082				CTCTTTGTCCCCGAAGGGAATGC	1023
Query	442				TAAGGTTCTTCGCGTTGCTTCGA	501
Sbjct	1022	TCTATCTCT				963
Query	502				TCAATTCCTTTGAGTTTCAACCT	561
Sbjct	962				IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	903
Query	562		ACTCCCCAGGCGGA		AAC 601	_
Sbjct	902		ACTCCCCAGGCGGA			

Fig. 16 Shows Granulicatella elegans gene sequences

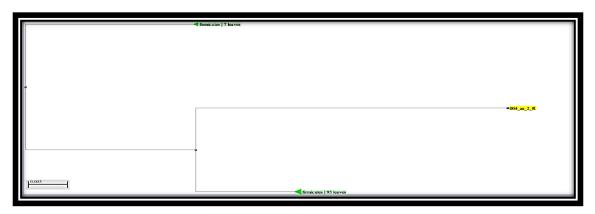


Fig. 17 Shows Granulicatella elegans tree

	Enterococcus mundtii QU 25 16S ribosomal RNA, complete sequence Sequence ID: <u>ref[NR_121694.1]</u> Length: 1564 Number of Matches: 2						
Range 1:	179 to 2	71 <u>GenBank</u> <u>Graphic</u>	5	•	Next Match 🔺 Previous Match		
Score 163 bits((180)	Expect 3e-40	Identities 92/93(99%)	Gaps 0/93(0%)	Strand Plus/Plus		
Query	139	TGCTAATACCGT	ATAACAATCGAAA	CCGCATGGTTTCGI	TTTGAAAGGCGCTTTAC	GGTG 19	8
Sbjct	179	TGCTAATACCGT	ATAACAATCGAAA	CCGCATGGTTTCGI	TTTGAAAGGCGCTTTAC	GGTG 23	8
Query	199	CCGCTGATGGAT	GGACCCGCGGTGC	ATTAACTA 231			
Sbjct	239	CCGCTGATGGAT	GGACCCGCGGTGC	ATTAGCTA 271			
			1.				
Score	1513 to	1535 <u>GenBank</u> <u>Grap</u>	Identities		Previous Match A First Match		
37.4 bits	(40)	Expect 0.030	22/23(96%)	Gaps 0/23(0%)	Plus/Plus		
Query	63	GAAGTCATAAC	AAGGTAGCCGTA	85			
Sbjct	1513	GAAGTCGTAAC	AAGGTAGCCGTA	1535			

Fig.18 Shows Enterococcus mundtii gene sequences

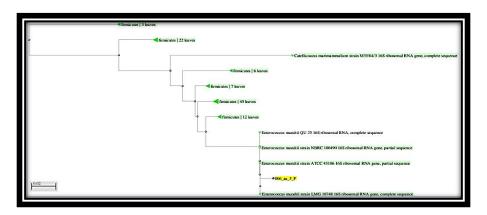


Fig.19 Shows Enterococcus mundtii tree

Range 1: 101 to 560 GenBank Graphics Next Match A Previous Match Score Expect Identities Gaps Strand 791 bits(876) 0.0 452/460(98%) 1/460(0%) Plus/Plus Query 18 CGGTGGAAAGGTGAGTGCTA-GTGGGTAACCTACCTATAAGACTGGTATAACTTCGGGAA 76 Sbjct 101 CGGCGGACGGGTGAGTAACACGTGGGTAACCTACCTATAAGACTGGGATAACTTCGGGAA 16	
791 bits(876) 0.0 452/460(98%) 1/460(0%) Plus/Plus Query 18 CGGTGGAAAGGTGAGTGCTA-GTGGGTAACCTACCTATAAGACTGGTATAACTTCGGGAA 76 Uli 11 111111111111111111111111111111111111	
Query 18 CGGTGGAAAGGTGAGTGCTA-GTGGGTAACCTACCTATAAGACTGGTATAACTTCGGGAA 76 III III IIIIIIII Sbjct 101 CGGCGGACGGGTGAGTAACACGTGGGTAACCTACCTATAAGACTGGGATAACTTCGGGAA 16	
Sbjet 101 CGGCGGACGGGTGAGTAACACGTGGGTAACCTACCTATAAGACTGGGATAACTTCGGGAA 16	
-	:0
Query 77 ACCGGAGCTAATACCGGATAACATTTGGAACCGCATGGTTCTAAAGTGAAAGATGGTTTT 13	36
Sbjet 161 ACCGGAGCTAATACCGGATAACATTTGGAACCGCATGGTTCTAAAGTGAAAGATGGTTTT 22	20
Query 137 GCTATCACTTATAGATGGACCCGCGCCGTATTAGCTAGTTGGTAAGGTAACGGCTTACCA 19	96
Sbjet 221 GCTATCACTTATAGATGGACCCGCGCCGTATTAGCTAGGTAAGGTAACGGCTTACCA 28	30
Query 197 AGGCGACGATACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGT 25	6
Sbjet 281 AGGCGACGATACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGT 34	ŧO
Query 257 CCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGA 31	6
Sbjet 341 CCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGA 40	00
Query 317 GCAACGCCGCGTGAGTGATGAAGGGTTTCGGCTCGTAAAACTCTGTTATTAGGGAAGAAC 37	16
Sbjet 401 GCAACGCCGCGTGAGTGATGAAGGGTTTCGGCTCGTAAAACTCTGTTATTAGGGAAGAAC 46	50
Query 377 AAATGTGTAAGTAACTGTGCACGTCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTA 43	36
Sbjet 461 AAATGTGTAAGTAACTGTGCACGTCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTA 52	20
Query 437 CGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA 476	
Sbjet 521 CGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA 560	

Fig.20 Shows Staphylococcus saprophyticus gene sequences

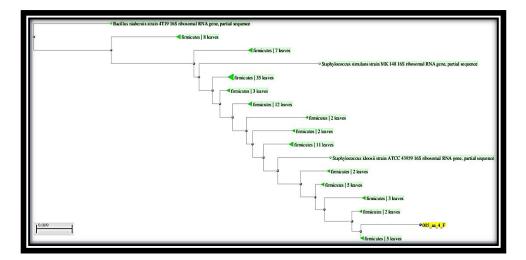


Fig.21 Shows Staphylococcus saprophyticus tree

		ain ATCC 15305 16 th: 1555 Number of Ma		gene, complete sequence	
	849 GenBank Graphics			t Match 🔺 Previous Match	
Score 1326 bits(147	Expect 0) 0.0	Identities 741/744(99%)	Gaps 1/744(0%)	Strand Plus/Plus	
Query 25				GATAACTTCGGGAAACCGG	84
Sbjct 106				GATAACTTCGGGAAACCGG	165
Query 85				TGAAAGATGGTTTTGCTAT	144
Sbjct 166				TGAAAGATGGTTTTGCTAT	225
Query 145				GTAACGGCTTACCAAGGCG	204
Sbjct 226				GTAACGGCTTACCAAGGCG	285
Query 205				AACTGAGACACGGTCCAGA	264
Sbjct 286				AACTGAGACACGGTCCAGA	345
Query 265				GAAAGCCTGACGGAGCAAC	324
Sbjct 346				GAAAGCCTGACGGAGCAAC	405
Query 325				TATTAGGGAAGAACAAATG	384
Sbjct 406				TATTAGGGAAGAACAAATG	465
Query 385				GCCACGGCTAACTACGTGC	444
Sbjct 466				GCCACGGCTAACTACGTGC	525
Query 445				ATTATTGGGCGTAAAGCGC	504
Sbjct 526				ATTATTGGGCGTAAAGCGC	585
Query 505				CAACCGTGGAGGGTCATTG	564
Sbjct 586				CAACCGTGGAGGGTCATTG	645
Query 565				CATGTGTAGCGGTGAAATG	624
Sbjct 646				CATGTGTAGCGGTGAAATG	705
Query 625				TGGTCTGTAACTGACGCTG	684
Sbjct 706				TGGTCTGTAACTGACGCTG	765
Query 685				GTAGTCCACGCCGTAAACG	743
Sbjct 766	ATGTGCGAAAGCG	TGGGGATCAAACAG	GATTAGATACCCTG	GTAGTCCACGCCGTAAACG	825
Query 744	ATGAGTGCTAAGI		67		
Sbjct 826			49		

Fig.22 Shows *Staphylococcus saprophyticus* gene sequences

		s capitis strain JCM 2420 16S ribosomal RNA gene, partial sequence NR_113348.1] Length: 1473 Number of Matches: 1	
Range 1:	46 to 65	2 GenBank Graphics Vext Match 🛦 Previous Match	
Score 1070 bit	s(1186)	Expect Identities Gaps Strand 0.0 602/607(99%) 1/607(0%) Plus/Plus	
Query	27	GACGAGG-GCTTGCTCCTCTGAGGTTCGCGGCGGACGGGTGAGTAACACGTGGATAACCT	85
Sbjct	46	GACGAGGAGCTTGCTCCTCTGACGTTAGCGGCGGACGGGTGAGTAACACGTGGATAACCT	105
Query	86	ACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATACCGGATAACATGTTGAACC	145
Sbjct	106	ACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATACCGGATAACATGTTGAACC	165
Query	146	GCATGGTTCAACAGTGAAAGACGGTCTTGCTGTCACTTATAGATGGATCCGCGCCGCATT	205
Sbjct	166	GCATGGTTCAACAGTGAAAGACGGTCTTGCTGTCACTTATAGATGGATCCGCGCCCCATT	225
Query	206	AGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTG	265
Sbjct	226	AGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTG	285
Query	266	ATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT	325
Sbjct	286	ATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT	345
Query	326	CTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTGAGTGA	385
Sbjct	346	CTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTGAGTGA	405
Query	386	${\tt TCGTAAAAACTCTGTTATTAGGGAAGAACAAATGTGTAAGTAA$	445
Sbjct	406	TCGTAAAACTCTGTTATTAGGGAAGAACAAATGTGTAAGTAA	465
Query	446	${\tt TACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC$	505
Sbjct	466	TACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC	525
Query	506	${\tt AAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGGTTTTTTAANTCTGATGT}$	565
Sbjct	526	AGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGT	585
Query	566	GAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAAAAGA	625
Sbjct	586	GAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAAACTTGAGTGCAGAAGA	645
Query	626	GGAAAGT 632	
Sbjct	646	 Ggaaagt 652	

Fig.23 Shows Staphylococcus capitis gene sequences

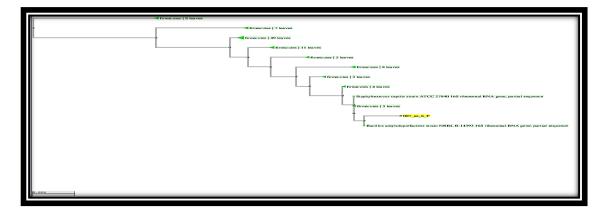


Fig.24 Shows Staphylococcus capitis tree

Range 1:	47 to 81	8 GenBank Graphics		Next Match 🔺 Previous Match	
Score 1359 bit	s(1506)	Expect Identities 0.0 766/773(Gaps 99%) 1/773(0%)	Strand Plus/Plus	
Query	21			rgagtaacacgtggataaccta	80
Sbjct	47	ACGAGGAGCTTGCTCCTCTG			10
Query	81			PACCGGATAACATGTTGAACCG	14
Sbjct	107				16
Query	141			PAGATGGATCCGCGCCGCATTA	20
Sbjct	167				22
Query	201			CGTAGCCGACCTGAGAGGGTGA	26
Sbjct	227			CGTAGCCGACCTGAGAGGGTGA	28
Query	261			CGGGAGGCAGCAGTAGGGAATC	32
Sbjct	287				34
Query	321			rgagtgaagaaggtcttcggat	38
Sbjct	347			FGAGTGAAGAAGGTCTTCGGAT	40
Query	381			FAACTATGCACGTCTTGACGGT	44
Sbjct	407				46
Query	441			CCGCGGTAATACGTAGGTGGCA	50
Sbjct	467				52
Query	501			GCGGTTTTTTAAGTCTGATGTG	56
Sbjct	527				58
Query	561			GGAAAACTTGAGTGCAGAAGAG	62
Sbjct	587				64
Query	621			GATATGGAGGACCACCAGTGGC	68
Sbjct	647	GAAAGTGGAATTCCATGTGT.		JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70
Query	681			GAAAGCGTGGGGGATCAAACAAG	74
Sbjct	707	GAAGGCGACTTTCTGGTCTG			76
Query	741	GATTAGATACCCTGGTAGTC			
Sbjct	766	GATTAGATACCCTGGTAGTC			

Fig.25 Shows *Staphylococcus capitis* gene sequences

			ureus N315 strain N th: 1555 Number of I		al RNA, complete sequence	
Range 1:	71 to 73	8 GenBank Graphics		V Ne	ext Match 🔺 Previous Match	
Score 1193 bits	(1322)	Expect 0.0	Identities 665/668(99%)	Gaps 0/668(0%)	Strand Plus/Plus	
	12				,.	71
Query		1111111111			GGTGAGTAACACGTGGATAA	
Sbjct	71	ACGGACGAGAAG	CTTGCTTCTCTGAT	GTTAGCGGCGGACG	GGTGAGTAACACGTGGATAA	13(
Query	72				AATACCGGATAATATTTTGA	13:
Sbjct	131				AATACCGGATAATATTTTGA	19(
Query	132				TATAGATGGATCCGCGCTGC	19:
Sbjct	191				TATAGATGGATCCGCGCTGC	25
Query	192				TGCATAGCCGACCTGAGAGG	25
Sbjct	251				TGCATAGCCGACCTGAGAGG	31
Query	252	GTGATCGGCCAC	ACTGGAACTGAGAC	ACGGTCCAGACTCC	TACGGGAGGCAGCAGTAGGG	31
Sbjct	311				TACGGGAGGCAGCAGTAGGG	37
Query	312				CGTGAGTGATGAAGGTCTTC	37
Sbjct	371				CGTGAGTGATGAAGGTCTTC	43
Query	372				AGTAACTGTGCACATCTTGA	43
Sbjct	431					49
Query	432				AGCCGCGGTAATACGTAGGT	49
Sbjct	491				AGCCGCGGTAATACGTAGGT	55
Query	492				AGGCGGTTTTTTAAGTCTGA	55
Sbjct	551				AGGCGGTTTTTTAAGTCTGA	61
Query	552				CTGGAAAACTTGAGTGCAGA	61
Sbjct	611				CTGGAAAACTTGAGTGCAGA	67
Query	612				GAGATATGGAGGAACACCAG	67
Sbjct	671					73
Query	672	TGGCGAAG 67	Э			
Sbjct	731	TGGCGAAG 73	В			

Fig.26 Shows Staphylococcus aureus gene sequences

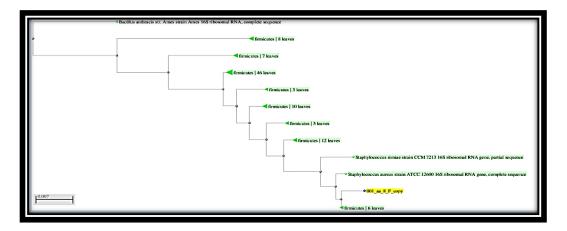


Fig.27 Shows Staphylococcus aureus tree

		as maltophilia R R 074875.1 Leng			al RNA, complete sequence	
		66 GenBank Graphi	-		V Next Match 🔺 Previous Match	_
Score 1278 bit		Expect 0.0	Identities 723/732(99%	Gaps) 2/732(0%)	Strand Plus/Minus	
Query	3				TTCTGGTGCAACAAACTCCCATG	
Sbjct	1466				TTCTGGTGCAACAAACTCCCATG	
Query	63				TCACCGCAGCAATGCTGATCTGC	
Sbjct	1408				TCACCGCAGCAATGCTGATCTGC	
Query	123				AGACTCCAATCCGGACTGAGATAC	
Sbjct	1348				AGACTCCAATCCGGACTGAGATA	
Query	183				CCCTCTGTCCCTACCATTGTAGT	
Sbjct	1288				CCCTCTGTCCCTACCATTGTAGT	
Query	243				GACGTCATCCCCACCTTCCTCCG	
Sbjct	1228				GACGTCATCCCCACCTTCCTCCG	
Query	303				ACGTGCTGGCAACTAAGGACAAG	
Sbjct	1168				ACGTGCTGGCAACTAAGGACAAG	
Query	363				GACACGAGCTGACGACAGCCATG	
Sbjct	1108				GACACGAGCTGACGACAGCCATG	
Query	423				TCTCTGGAAAGTTCTCGACATGT	
Sbjct	1048				TCTCTGGAAAGTTCTCGACATGT	
Query	483				AACCACATACTCCACCGCTTGTG	
Sbjct	988				AACCACATACTCCACCGCTTGTG	
Query	543				ACCGTACTCCCCAGGCGGCGAAC	
Sbjct	928				ACCGTACTCCCCAGGCGGCGAAC	
Query	603				CCCAACATCCAGTTCGCATCGTT	
Sbjct	868				CCCAACATCCAGTTCGCATCGTT	
Query	663				TCCCCACGCTTTCTTGCCTCATT	
Sbjct	808				TCCCCACGCTTTCGTGCCTCAGT	
Query	723	TCAGTGTTGGT				
Sbjct	748	TCAGTGTTGGT				

Fig.28 Shows Stenotrophomonas maltophilia gene sequences

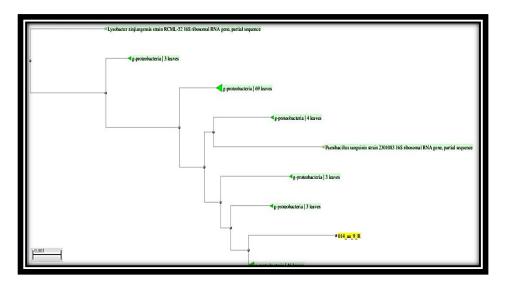


Fig.29 Shows Stenotrophomonas maltophilia tree

	•				al RNA, complete sequence	
		-	ength: 1540 Number			
	989 to 14	10 GenBank Gra			Vext Match 🛕 Previous Match	
Score 735 bits	(814)	Expect 0.0	Identities 416/422(99%)	Gaps 0/422(0%)	Strand Plus/Minus	
Query	53	GGTGTGATG		GCCCGGGAACGT	ATTCCCCGCAGCAATGCTGATCTG	112
Sbjct	1410				ATTCACCGCAGCAATGCTGATCTG	1351
Query	113				GCAGACTCCAATCCGGACTGAGAT	172
Sbjct	1350					1291
Query	173				AGCCCTCTGTCCCTACCATTGTAG	232
Sbjct	1290				AGCCCTCTGTCCCTACCATTGTAG	1231
Query	233		AGCCCTGGCCGTAA		TTGACGTCATCCCCACCTTCCTCC	292
Sbjct	1230				TTGACGTCATCCCCACCTTCCTCC	1171
Query	293				TTACGTGCTGGCAACTAAGGACAA	352
Sbjct	1170				TTACGTGCTGGCAACTAAGGACAA	1111
Query	353		TCGTTGCGGGGACTT		ACGACACGAGCTGACGACAGCCAT	412
Sbjct	1110				ACGACACGAGCTGACGACAGCCAT	1051
Query	413				CATCTCTGGAAAGTTCTCGACATG	472
Sbjct	1050		GTGTTCGAGTTCCC		CATCTCTGGAAAGTTCTCGACATG	991
Query	473	тс 474				
Sbjct	990	TC 989				

Fig.30 Shows Stenotrophomonas maltophilia gene sequences

Fig.31 Shows eyed hawk-moth used to isolate the bacteria (authour's image)

Brevibacterium] frigoriolerans strain DSM 8801 16S ribosomal RNA gene, partial sequence sequence to: rofINR_117474.11 Length: 1503 Number of Matches: 1 Range 11 134 to 800 Genback Graphics Viewth & Previous Match 1173 bits(1100) Expect Identities (of 6067(99%) Of 667(95%) Frand Plus/Plus Ouery 55 ATAACTTCGTGADADAGGGAGCTAATACCGGATACGTCCTTTTTCGCGCATGAGAGGAAGAT 114 Sbjet 134 ATAACTTCGTGGADAACGGGAGCTAATACGGGATACGTCCTTTTTTCGCGCATGAGAGAAGAT 193 Query 55 ATAACTTCGTGGADAACGGGAGCTAATACGGGACCGCGCGCGCCGCATAGCTGAGAGAAGATG 174 Sbjet 134 ATAACTTCGTGGADAACGGGAGCTAATACGGGCCCGCGGCGCCATAGGCAGACAGA							
Range 1: 134 to 800 GenBack Graphic Expect Identifies Gape Strang 50776 1000 0.0 60/607(09%) 0/607(0%) Strang 0uery 55 ATAATCTCCGGAAAAGGGGGCTAATACCGGGATACGTCCTTCTCTCCGCAAGAAGAAGAAGA 103 0uery 15 ATAACTTCGGGAAACCGGAGCCTAATACCGGATACGTCCTTCTTCTCGCCAAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAGAAGA						ne, partial sequence	
Store Exact Identities Gaps Stand 1173 bits(1300) 0.0 660/667(9%) 0/667(0%) Plus/Plus Query 55 ATAACTTCGGGAAAAGGGAGCTAATACCGGAATACGTTCTTTCT	-		_	h: 1503 Number of f			
Duery55ATAACTTCGTGAAAAGGGAGCTAATACCGGATACGTCTTTTCTCGCATGANAGAAGAAG114sbjct134ATAACTTCGGGAAAACGGAAGGCTAATACCGGATACGTCTTTTCTCGCATGANAGAAGAAGA193Query115GAAAGCGGTTTCGGCTGCACTATACGGATACGTCGTTTTCCGCATGANAGAAGAAGA174sbjct194GAAAGCGGTTTCGGCTGCACTTATAGATGGGCCGCCGCGCGCCACTAGCTAG		4 to 8			Gaps	Strand	
Sbjet134ATAACTTCGGGAAAACGGAACGGAACGGAACGGACGGGGGGGAATAGGTAGG	1173 bits(1	1300)	0.0	660/667(99%)	0/667(0%)	Plus/Plus	
Query115GAAAGACGGTTTCGGCTGTCACTTATAGATGGCCCGCGCGCATTAGCTAGTTGGTGGTGGASbjet194GAAAGACGGTTACGCTGTCACTTATAGATGGGCCCGCGCGCATTAGCTAGTGGTGGTGGGCAGGGQuery175GTAATGGCTCACCAAGGCGACGTAGCGTAGCGGACGGACG				1 111111111			
Sbjet194GAAAGACGGTTAACGACGACGATGCGTAGCCGGCCGGCGCGGCGGCGATGGCGACGATGGCGACGCGGCGCGACGGGGGAGGATCGGCGCGCGC	Sbjct 1	L34	ATAACTTCGGGAA	ACCGGAGCTAATA	CCGGATACGTTCTTT	ICTCGCATGAGAGAAGATG	193
Query175GTAATGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGG234Sbjet254GTAATGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGG313Query235GACTGAGACCAGGCCCAGACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCGCCAATGGAC294Sbjet314GACTGAGACCAGGCCCAGACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCGCCAATGGAC373Query295GAAAGTCTGACGGAGCACGCCCGGGAAACGACGCTCCGGGTAGAGAGAG	Query 1	L15					174
sbjet 254 GRAATGGGTCACCAAGGCGAAGGCGAAGCGGAGCGAGCAGTAGGGGAATCTTCCGCCAATGGAC 294 sbjet 314 GACTGAGACACGGCCCAAGGCTACCGACGGAGGCAGCAGTAGGGAATCTTCCGCCAATGGAC 294 sbjet 314 GACTGAGACACGGCCCAAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCCAATGGAC 294 sbjet 314 GACTGAGACACGCCCCAAGCTCCTACGGAGGCAGCAGTAGGGAATCTTCCGCCAATGGAC 373 Query 295 GAAAGTCTGACGAGAGCACGCCCGGTGAACGAAGAAGAGCCTTCGGGTCGTAAAGTCTTGT 333 Query 355 TGTTAGGGAAGAACACGCCCGGGTGAACGACGCCTGCGGCCTTGACCGAAACACAGAAA 414 sbjet 334 GGCCACGGCTAACTACGTGCCCAGGGTAACTACCTGCTTAACGTACCTAACCAGAAA 414 sbjet 434 TGTTAGGAACAAGATACCAGGAGCACGCGCGGAACTACCTGGCTAACCTAACCAGGAAA 414 sbjet 434 TGTTAGGGAAGAACAAGTAACTACGGCGCGGGGAACTACCTGGGTACCTTAACGTACCTAACCAGAAA 493 Query 415 GCCACGGCTAAACTACGTGCCCAGCAGGTGGTCCTTAACGTAGGCAAACGCCACGGGCT 513 Query 475 ATTATTGGGCGGTAAAGCCGCGCGCGCGGGGGGGGTGGTTCCTTAAGTCGAGAAAGGGAAAGTGGGAATC 594 sbjet 514 ATTATTGGGCGTAAAGCCGCGCGGGGGGGGGGGGGGGGG	Sbjct 1	194					253
sbjet254GFAATGGGTCACCAAGGCGAAGCACGTGGGAGGAGCAGCAGGAGGGGGAGGCGAAGGGAATGGCCAACGGAC313Query235GACTGAGACACGGCCCAGGCCCAGGAGCCCCTACGGGAGGCAGCAGTAGGGAATCGTCCGCGAAGGAC294sbjet314GACTGAGACACGGCCCAGGAGCCCCCGGGGAGCAGCAGTAGGGAATCTTCCGCGAAGGAC373Query295GAAAGTCTGACGAGGAGCACCCGCGGGGAAGCAGCAGCAGCAGCAGCA	Query 1	L75					234
sbjet 314 GACTGAGACACGGCCCAGACGCCGGGAGCGAGCGAGAGGAACGCCCATAGGGAACGCCAAACGCGAACGCCAGACGCCATAGGAACGCCATCGGATCGTAAAGTTCTGT 354 ybjet 374 GAAAGTCTGACGGAGCAACGCCCGCGTGAACGAAGAAGGCCTTCGGGTCGTAAAGTTCTGT 433 query 355 TGTTAGGGAAGAACAAGTAACCAAGAACAAGGCCTTCGGGTCGTAAAGTTCTGT 433 query 355 TGTTAGGGAAGAACAAGTAACTACTGCTGGTAACGTACGT	Sbjct 2	254					313
Sbjet 314 GACTGAGACACGGCCCAGACTCCTACGGGAGCAGCAGTAGGGAATCTTCCCCCAATGGAC 373 Query 295 GAAAGTCTGACGGAGCAACGCCGGGGAACGACGAGAAGAAGGCCTTCGGGTCGTAAAGTTCTGT 354 sbjet 374 GAAAGTCTGACGGAGCAACGCCGGGGAACGACGAGAAGAAGGCCTTCGGGTCGTAAAGTTCTGT 354 sbjet 374 GAAAGTCTGACGGAGCAACGCCGGGGAACGACGAGCAGCTTCGGGGCCGTCGTAAAGTTCTGT 433 Query 355 TGTTAGGGAAGAACAACGACACGACGACGAGAACTCGTGGGCGCCGTAACCATGAGCGAAA 493 Query 415 GCCACGGCTAACTACGTGCCAGCAGCGCGGGGAATACGTAGGTGGCAAGCGTTGTCCGGA 474 sbjet 494 GCCACGGCTAACTACGTGCCAGCGGCGGGGGGGCGGGGAGCGTGGCCAGCGTTGTCCGGA 553 Query 475 ATTATTGGGCGGAAGCGCGCGCGGGGGGGGGCGCGGGGGGCCAAGCGCGCGCGGCG	Query 2	235					294
sbjet 374 GAAAGTCTGACGGAGAAACAAGTACCAGAGTAACGGAGCCTTCGGGGCGGTCAAAGTCCTGFT 433 Ouery 355 TGTTAGGGAAAACAAGTACCAGAGTAACTGCTGGGTACCTTGACGGTCCTAAACGAAAAGTACCAGAAA 414 sbjet 434 TGTTAGGGAAAACAAGTACCAGAGTAACTGCTGGGTACCTTGACGGTACCTAACCAGAAA 493 Ouery 415 GCCACGGCTAACTACGTGCCAGCAGCGCGCGGTAACTGCTGGCGGAAGCGTGGCCAAGCGTGTCCGGA 474 sbjet 494 GCCACGGCTAACTACGTGCCAGCGGCGCGGGGTGGTCCTTAAGCGTGGCCAAGCGTTGTCCGGA 553 Ouery 475 ATTATTGGGCGGTAAACGGCGCGCGGGGGGGTGGTTCCTTAAGTCTGGAAAGCCCAAGGGAA 613 sbjet 554 ATTATTGGGCGGCAAAGCGGCAAGTGGTACTGCAGAGGGAAACTGGAAACTGGAAAGCGAAAGTGGAAATTC 594 sbjet 614 CAACCGTGGGAGGGTCATTGGAAACTGGGGAACTTGGAGGGAAACTGGAAAGTGGAAATTC 673 Ouery 595 CAAGCGTGGAAAGCGGTAAGGGAAACTGGGAACTTGGAGGAAACGGGAAAGTGGAAAGTGGAAATCC 674 sbjet 674 CAACCGTGGAAGGGTAATGGAAAGTGGAAACTGGAACCAGAGGGAACGGGAAGTGGAAGGGAATTC 673 Ouery 595 CAAGCGTGGAAAACTGGCGTAGGGAACTTGGAGGAACACACGAGGGAAAGTGGCGAACTTC 654 sbjet 674 CAAGCGTGAAACTGGACGTAGGGAACTTGGAGGAACACACGGAACACGGAATAGGAACCCTG 714 sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGAAAGCGGAAGCGGAGGGGGGGG	Sbjet 3	314	GACTGAGACACGG	CCCAGACTCCTAC	GGGAGGCAGCAGTAG	GGAATCTTCCGCAATGGAC	373
sbjet374GAAGGTCTGACGGGAAGGACGCCGGGAAGGCCGGGAAGGACGTCGGGAAGGCCGTCGGGAAGGCCGTCGGAAGGCCGTCGGGAAGGCCGTCGT433Query355TGTTAGGGAAGGACAGGACGCGGGGGGGGGGGGGGGGGG	Query 2	295					354
Sbjet 434 TESTAGGGAAGAACAAGTACCAGAGTAAACTGCTGGGGAAGCGGTAACCAGGAAA 493 Query 415 GCCACGGCTAACTACGTGCCAGGCAACTGCTGGGCGGGCG	Sbjet 3	374					433
sbjet 434 TETTAGGGAAGAACAAGTACCAGAGAAACTGGGGAACGGGGGAGGGA	Query 3	355					414
sbjet 494 eccacegecraactaccegecacegecacegecacetacacetacetacetacetacetacetacetacet	Sbjct 4	134					493
sbjet 494 GCCACGGCTAACTACCTGCCACGCCGCGCGCAAACCTAAGCCTGCCCAAGCCTTGCCCGAA 553 Query 475 ATTATTGGGCGTAAAGCGCGCGCAGGTGGTTCCTTAAGCCTGGATGGA	Query 4	115					474
sbjet 554 ATTATTGGGCGTAAAGCGCGCGGGGGGGGACTTGAGTGCAAAGCCCACGGCT 613 Ouery 535 CAACCGTGGAGGGCAATGGAAACTGGGGAACTTGAGTGCAGAAAGCGAAAGTGGAAATTC 594 Sbjet 614 CAACCGTGGAGGGCAATGGGAAACTGGGAACTTGAGTGCAGAAAGTGGAAAGTGGAAATTC 673 Query 595 CAAGTGTAACGGGGGAACTTGGAGGAACACGGGCGAACGGGGACTTCC 654 Jbjet 674 CAAGTGTAGCGGTGAAATGCGTAGGGAACACCAGTGGCGAACGCGACTTCC 733 Query 655 TGGTCGTAACTGACACGGAACGCGGCGAAACGCGACACACAGGAATAGATACCCTG 714 sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGAATTAGATACCCTG 793 Query 715 GTAGTCC 721 111111111111111111111111111111111111	Sbjct 4	194					553
sbjet 554 ATTATTGGGCGGAAGGGGGGGGGGGGGGGGGGGGGGGGG	Query 4	175					534
sbjet 614 CAACCGGGAGGGAAAACGGGAAACTGGAGGAAAACGGGAACTGAGAGGAAAACGGGAACTTC 673 Query 595 CAAGTGTAGCGGTGAAAAGGGTAGGAGAATTGGAGGAAAACGGGAAGGGCGAAGGCGAACGCGACTTTC 654 sbjet 674 CAAGTGTAGCGGTGAAATGCGTAGGAGAATTGGAGGAAACGCAGTGGCGAAGGCGAACGCGACTTTC 733 Query 655 TGGTCGTAACTGCACATGAGGCGCGAAAGCGGCGAACGCGACAACACGGAATAGATACGCTC 714 sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGGCAAACAGGAATAGATACCCTG 793 Query 715 GTAGTCC 721	Sbjet 5	554					613
sbjet 614 CAACCCTGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGGGAAAGTGGAAATTC 673 Query 595 CAAGTGTAGCGGTGAAATGCGTAGAGAATTTGGAGGAACACCAGTGGCGAAGCGCGACTTC 654 sbjet 674 CAAGTGTAGCGGTGAAATGCGTAGAGAATTTGGAGGAACACCAGTGGCGAAGCGCGACTTC 733 Query 655 TGGTCTGTAACTGACACTGAGGCGCGAAAGCGGAGCGAACACCAGTGGCGAAGCGCGACTTC 714 sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGCGAAAGCGTGGGGAGCAAACAGGAATAGATACCCTG 793 Query 715 GTAGTCC 721 111111111111111111111111111111111111	Query 5	535					594
Sbjet 674 675 TGGTCTGTAACTGACACTGAGGCGCGAAACCGTGGGGAGCAAACAGGAATAGATACCCTG 714 Sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGAAACCGTGGGGAGCAAACAGGAATAGATACCCTG 714 Sbjet 734 TGGTCTGTAACTGACACCTGAGGCGCGAAACCGTGGGGAGCAAACAGGAATAGATACCCTG 793 Query 715 GTAGTCC 721	Sbjct 6	514					673
sbjet 674 CAAGTGTAGCGGTGAAATGCGTAGAGATTTGGAGGAACACCAGTGGCGAAGGCGACTTTC 733 Query 655 TGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGAATAGATACCCTG 714 Sbjet 734 TGGTCTGTAACTGACACTGAGGCGCGGAAAGCGTGGGGAGCAAACAGGAATAGATACCCTG 793 Query 715 GTAGTCC 721 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Query 5	595					654
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sbjct 6	574					733
sbjet 734 TEGTETETAACTEAESECECEAAAECETEESEGEAAECETEESEGEAACAEEATTAEATAECETE 793 Query 715 ETRESTEC 721 	Query 6	555					714
	Sbjet 7	734					793
	Query 7	715					
	Sbjct 7	794					

Fig.32 Shows Brevibacterium frigoritolerans gene sequences

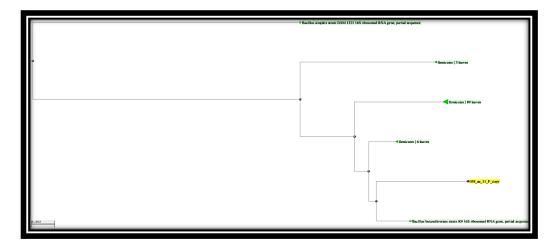


Fig.33 Shows Brevibacterium frigoritolerans tree

Fig.34 Shows Pupa of Eyed Hawk-moth used to isolate the bacteria(authour's image)

•		NR_075000.1 Length: 1555 Nu		Next Match 🔺 Previous Match	
Score 767 bits		Expect Identities 0.0 435/440(99	Gaps	Strand Plus/Plus	
Query	84			AATATTTTGAACCGCATGGTT	142
Sbjct	142			AATATTTTGAACCGCATGGTT	201
Query	143			TCCGCGCTGCATTAGCTAGTT	202
Sbjct	202			TCCGCGCTGCATTAGCTAGTT	26
Query	203			ACCTGAGAGGGTGATCGGCCA	262
Sbjct	262			ACCTGAGAGGGGTGATCGGCCA	323
Query	263			AGCAGTAGGGAATCTTCCGCA	322
Sbjct	322			AGCAGTAGGGAATCTTCCGCA	38:
Query	323			GAAGGTCTTCGGATCGTAAAA	382
Sbjct	382			GAAGGTCTTCGGATCGTAAAA	44:
Query	383			CACATCTTGACGGTACCTAAT	442
Sbjct	442			CACATCTTGACGGTACCTAAT	50
Query	443			ATACGTAGGTGGCAAGCGTTA	502
Sbjct	502			ATACGTAGGTGGCAAGCGTTA	56
Query	503	TCCGGAATTATTGGGCGTAA	522		
Sbjct	562	TCCGGAATTATTGGGCGTAA	581		

Fig.35 Shows *Staphylococcus aureus* gene sequences

Bacillus subtilis strain 168 16S ribosomal RNA gene, complete sequence Sequence ID: <u>refINR_102783.1</u> Length: 1555 Number of Matches: 1								
Range 1:	148 to 4	99 GenBank Graphics	V N	ext Match 🔺 Previous Match				
Score 618 bits((684)	Expect Identities 9e-177 348/352(99%)	Gaps 0/352(0%)	Strand Plus/Plus				
Query	77	ATAACTCCGGGAAACCGGGGCTAAT		GAACCGCATGGTTCAAACAT	136			
Sbjct	148	ATAACTCCGGGAAACCGGGGCTAAT	ACCGGATGGTTGTT	GAACCGCATGGTTCAAACAT	207			
Query	137	AAAAGGTGGCTTCGGCTACCACTTA			196			
Sbjct	208	AAAAGGTGGCTTCGGCTACCACTTA			267			
Query	197	GTAACGGCTCACCAAGGCAACGATG			256			
Sbjct	268	GTAACGGCTCACCAAGGCGACGATG			327			
Query	257	GACTGAGACACGGCCCAGACTCCTA			316			
Sbjct	328	GACTGAGACACGGCCCAGACTCCTA	CGGGAGGCAGCAGTA	AGGGAATCTTCCGCAATGGAC	387			
Query	317	GAAAGTCTGACGGAGCAACGCCGCG			376			
Sbjct	388	GAAAGTCTGACGGAGCAACGCCGCG			447			
Query	377	TGTTAGGGAAGAACAAGTGCCGGTC	GAATAGGGCGGTATO	TTGACGGTAACT 428				
Sbjct	448	TGTTAGGGAAGAACAAGTGCCGTTC	GAATAGGGCGGTACO	TTGACGGTACCT 499				

Fig.36 Shows Bacillus subtilis gene sequences

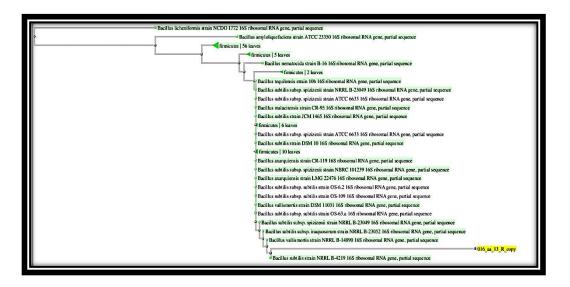


Fig.37 Shows Bacillus subtilis tree

Fig.38 Shows Elephant Hawk- moth used to isolate the bacteria (authour's image)

Range 1: 92 to 619 GenBank Graphics V Next Match A Previous Match							
Score 953 bits	(1056)	Expect 0.0	Identities 528/528(100%)	Gaps 0/528(0%)	Strand Plus/Plus		
Query	3				GGAAACCGGGGGCTAATACCGGA	62	
Sbjct	92				GGAAACCGGGGGCTAATACCGGA	151	
Query	63				TTTCGGCTGTCACTTATAGATG	122	
Sbjct	152				TTTCGGCTGTCACTTATAGATG	211	
Query	123				TACCAAGGCGACGATACGTAGC	182	
Sbjct	212				TACCAAGGCGACGATACGTAGC	27	
Query	183				ACGGTCCAGACTCCTACGGGAG	242	
Sbjct	272				ACGGTCCAGACTCCTACGGGAG	331	
Query	243				ACGGAGCAACGCCGCGTGAGTG	302	
Sbjct	332				ACGGAGCAACGCCGCGTGAGTG	391	
Query	303				AGAACAAATTTGTTAGTAACTG	362	
Sbjct	392				AGAACAAATTTGTTAGTAACTG	451	
Query	363				AACTACGTGCCAGCAGCCGCGG	422	
Sbjct	452				AACTACGTGCCAGCAGCCGCGG	511	
Query	423				CGTAAAGCGCGCGTAGGCGGTT	482	
Sbjct	512				CGTAAAGCGCGCGTAGGCGGTT	571	
					AGGGTCATTG 530		

Fig.39 Shows Staphylococcus sciuri gene sequences

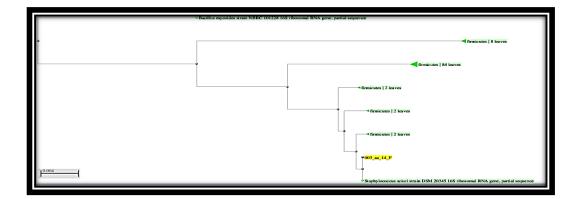


Fig.40 Shows Staphylococcus sciuri tree

Fig.41 Shows Silk moth used to isolate the bacteria(authour's image)

Sequence ID: <u>ref NR_074875.1 </u> Length: 1540 Number of Matches: 1								
	188 to 3	363 GenBank Graph			ct Match 🔺 Previous I	Match		
Score 174 bits	(192)	Expect 2e-43	Identities 150/181(83%)	Gaps 6/181(3%)	Strand Plus/Plus			
Query	123	TGAACGTATGG	GATCTTCCGGAACTTG	CCGATTGAGTGAG	GCCAATGTCGGAT	TAggggg	182	
Sbjct	188	TGAAAGCAGGG	GATCTTC-GGACCTTG	GCGATTGAATGAG	SCCGATGTCGGAT	TAGCTAG	246	
Query	183	11 1111 aaaaaaaaaaaa	gTAAAGGCCCACC-AGG		CTGGACCGAGAG	GATGATC	241	
Sbjct	247		-TAAAGGCCCACCAAGG	CGACGATCCGTAC	GCTGGTCTGAGAG	GATGATC	303	
Query	242	ATCCTCAACTG	GAACTGAAACACGGCCC	CAAACTCCTACGGO	GAGGCACCAGTGG	GGAATAT	301	
Sbjct	304	AGCCAC-ACTG	GAACTGAGACACGGTCO	AGACTCCTACGG	SAGGCAGCAGTGG	GGAATAT	362	
Query	302	т 302 I						
Sbjct	363	т 363						

Fig.42 Shows Stenotrophomonas maltophilia gene sequences

Fig.43 Shows Atlas moth used to isolate the bacteria(authour's image)

			3 16S ribosomal R h: 1507 Number of M	NA gene, partial se atches: 1	equence		
Range 1: 32 to 782 GenBank Graphics 🖤 Next Match 🛦 Previous Match							
Score 1310 bits	s(1452)	Expect 0.0	Identities 741/751(99%)	Gaps 0/751(0%)	Strand Plus/Plus		
Query	1				GTGAGTAACACGTGGGTAA	60	
Bbjct	32				GTGAGTAACACGTGGGTAA	91	
Duery	61				ATACCGAATAATACTTTTT	120	
Bbjct	92				ATACCGAATAATACTTTTT	151	
Query	121				ATAAAATGGACCCGCGGCG	180	
Bbjct	152				PATAAGATGGACCCGCGGCG	211	
Query	181				TGCGTAGCCGACCTGAGAG	240	
Bbjct	212				TGCGTAGCCGACCTGAGAG	271	
Query	241				TACGGGAGGCAGCAGTAGG	300	
Bbjct	272				TACGGGAGGCAGCAGTAGG	331	
Query	301				CGTGAGTGAAGAAGGATTT	360	
Bbjct	332	GAATCTTCCACAA	TGGACGAAAGTCTG	ATGGAGCAACGCCG	CGTGAGTGAAGAAGGATTT	391	
Query	361				AGTAACTGGCGCTACCTTG	420	
Sbjct	392	CGGTTCGTAAAAC	TCTGTTGCAAGGGA	AGAACAAGTAGCGI	PAGTAACTGGCGCTACCTTG	451	
Query	421				AGCCGCGGTAATACGTAGG	480	
Bbjct	452				agccgcggtaatacgtagg	511	
Query	481				AGGTGGTTCCTTAAGTCTG	540	
Sbjct	512				AGGTGGTTCCTTAAGTCTG	571	
Query	541				CTGGGGAACTTGAGTGCAG	600	
Bbjct	572				CTGGGGAACTTGAGTGCAG	631	
Query	601				AAGATTTGGAGGAACACCA	660	
Sbjct	632				GAGATTTGGAGGAACACCA	691	
Query	661				GCGAAAGCGTGGGGGAGCAA	720	
Bbjct	692				GCGAAAGCGTGGGGGAGCAA	751	
Query	721		CCCTGGTAGTCCAC				
Bbjct	752		CCCTGGTAGTCCAC				

Fig.44 Shows Solibacillus silvestris gene sequences

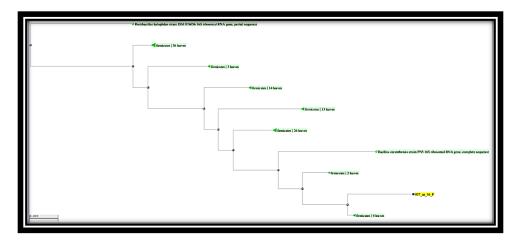


Fig.45 Shows Solibacillus silvestris tree

			strain ATCC 15305 f ngth: 1555 Number of		A gene, complete sequence	
Range 1:	883 to 13	399 <u>GenBank</u> <u>Grap</u>	hics	V 1	Next Match 🔺 Previous Match	
Score 902 bits((1000)	Expect 0.0	Identities 511/517(99%)	Gaps 1/517(0%)	Strand Plus/Minus	
Query	63				GATTACTAGCGATTCCAGCTTC	122
Sbjct	1399	AGACCCGGGA			GATTACTAGCGATTCCAGCTTC	1340
Query	123				AACTTTATGGGATTTGCATGAC	182
Sbjct	1339					1280
Query	183				ACGTGTGTAGCCCAAATCATAA	242
Sbjct	1279					1220
Query	243				GTTTGTCACCGGCAGTCAACCT	302
Sbjct	1219				GTTTGTCACCGGCAGTCAACCT	1160
Query	303				TTGCGCTCGTTGCGGGACTTAA	362
Sbjct	1159					1100
Query	363				CCACCTGTCACTTTGTCCCCCG	422
Sbjct	1099				CCACCTGTCACTTTGTCCCCCG	1040
Query	423				CAAGATTTGGTAAGGTTCTTCG	482
Sbjct	1039					980
Query	483				CGGGTCCCCGTCAATTCCTTTG	542
Sbjct	979				CGGGTCCCCGTCAATTCCTTTG	920
Query	543		TTGCGGTCGTACTCC		578	
Sbjct	919		IIIIIIIIIIIIIIII PTGCGGTCGTACTCC		883	

Fig.46 Shows Staphylococcus saprophyticus gene sequences

Stenotrophomonas maltophilia R551-3 strain R551-3 16S ribosomal RNA, complete sequence Sequence ID: <u>refINR_074875.1</u> Length: 1540 Number of Matches: 1							
Range 1:	979 to 13	379 <u>GenBank</u> <u>Gra</u>	aphics	7	🛚 Next Match 🔺 Previous Match		
Score 693 bits	(768)	Expect 0.0	Identities 394/401(98%)	Gaps 0/401(0%)	Strand Plus/Minus		
Query	1		CCCGCATCAATGCT		AGCGATTCCGACTTCATGGAGTC	60	
Sbjct	1379				AGCGATTCCGACTTCATGGAGTC	1320	
Query	61				TGGGATTGGCTTACCGTCGCCGG	120	
Sbjct	1319				TGGGATTGGCTTACCGTCGCCGG	1260	
Query	121				TAGCCCTGGCCGTAAGGGCCATG	180	
Sbjct	1259				TAGCCCTGGCCGTAAGGGCCATG	1200	
Query	181				ACCGGCGGTCTCCTTAAAGTTCC	240	
Sbjct	1199				ACCGGCGGTCTCCTTAGAGTTCC	1140	
Query	241				CTCGTTGCGGGACTTAACCCAAC	300	
Sbjct	1139				CTCGTTGCGGGGACTTAACCCAAC	1080	
Query	301		CACGAGCTGACGAC		TGTGTTCTAGTTCCCGAAGGCAC	360	
Sbjct	1079				TGTGTTCGAGTTCCCGAAGGCAC	1020	
Query	361		TCTGGAAAGTTCTC				
Sbjct	1019		TCTGGAAAGTTCTC				

Fig.47 Shows Stenotrophomonas maltophilia gene sequences

D 1.	70 4- 61	Contraction Contraction	ngth: 1497 Number of I		ext Match 🔺 Previous Match	
Score		9 <u>GenBank</u> <u>Graphics</u> Expect	Identities	Gaps	Strand	
948 bits	(1050)	0.0	536/542(99%)	1/542(0%)	Plus/Plus	
Query	36				GGGGATAACGTAGGGAAACT	95
Sbjct	79				GGGGATAACGTAGGGAAACT	137
Query	96				ATCTTCGGACCTTGCGCGAT	155
Sbjct	138				ACCTTCGGGCCTTGCGCGAT	197
Query	156				GGCCCACCAAGGCGACGATC	215
Sbjct	198				GGCCCACCAAGGCGACGATC	257
Query	216				AGACACGGTCCAGACTCCTA	275
Sbjct	258				AGACACGGTCCAGACTCCTA	317
Query	276				CCTGATCCAGCCATACCGCG	335
Sbjct	318				CCTGATCCAGCCATACCGCG	377
Query	336				GGAAAGAAATCCAGCCGGCT	395
Sbjct	378				GGAAAGAAATCCAGCTGGCT	437
Query	396		GGATGACGGTACCC.		GGCTAACTTCGTGCCAGCAG	455
Sbjct	438				GGCTAACTTCGTGCCAGCAG	497
Query	456				TGGGCGTAAAGCGTGCGTAG	515
Sbjct	498				TGGGCGTAAAGCGTGCGTAG	557
Query	516				TGGGAACTGCAGTGGATACT	575
Sbjct	558				TGGGAACTGCAGTGGATACT	617
Query	576	GG 577				
Sbjct	618	 GG 619				

Fig.48 Shows Stenotrophomonas pavanii gene sequences

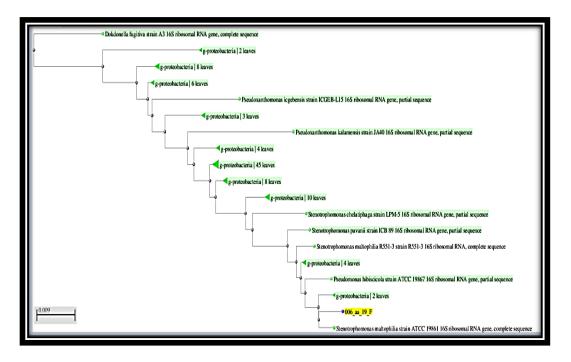


Fig.49Shows Stenotrophomonas pavanii tree

Fig.50 Shows Elephant Hawk-moth Deilephila elpenor used to isolate the bacteria(authour's

own image)

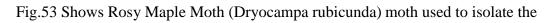

			AMG-D1 16S ribosor gth: 1548 Number of M	u .	mplete sequence	
-		73 GenBank Graphic	-		xt Match 🔺 Previous Match	
Score		Expect	 Identities	Gaps	Strand	_
1108 bits	5(1228)	0.0	628/637(99%)	0/637(0%)	Plus/Plus	_
Query	68				ACATATAGAACCGCATGGT	
Sbjct	137	GACTGGAATAAC				·
Query	128				CCGCGCCGTATTAGCTAGT	_
Sbjct	197				CCGCGCCGTATTAGCTAGT	·
Query	188				CCTGAGAGGGGTGATCGGCC	_
Sbjct	257				CCTGAGAGGGGTGATCGGCC	·
Query	248				GCAGTAGGGAATCTTCCGC	
Sbjct	317				GCAGTAGGGAATCTTCCGC	
Query	308				AAGGTTTTCGGATCGTAAA	
Sbjct	377				AAGGTTTTCGGATCGTAAA	·
Query	368				GCATCTTGACGGTACCTAA	
Sbjct	437				GCATCTTGACGGTACCTAA	·
Query	428				FACGTAGGTGGCAAGCGTT	
Sbjct	497				TACGTAGGTGGCAAGCGTT	
Query	488				FAAGTCTGATGTGAAAGCC	_
Sbjct	557				PAAGTCTGATGTGAAAGCC	
Query	548				GAGTGCAGAAGAGGAAAGT	
Sbjct	617				GAGTGCAGAAGAGGAAAGT	·
Query	608				GAACACCAGTGGCGAAGGC	
Sbjct	677					
Query	668		GTAACTGACGCTGAT		04	
Sbjct	737		GTAACTGACGCTGAT		73	

Fig.51 Shows *Staphylococcus succinus* gene sequences

			nrnaticus strain GTC ngth: 1454 Number of N		al RNA gene, partial sequence	e
Range 1:	834 to 13	92 GenBank Graph	hics	V Ne	ext Match 🔺 Previous Match	
Score 1009 bit	s(1118)	Expect 0.0	Identities 559/559(100%)	Gaps 0/559(0%)	Strand Plus/Minus	
Query	39				GTATTCACCGTAGCATGCTGA	98
Sbjct	1392				GTATTCACCGTAGCATGCTGA	1333
Query	99				TGCAGACTACAATCCGAACTG	158
Sbjct	1332				IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1273
Query	159				CTGCCCTTTGTATTATCCATT	218
Sbjct	1272				CTGCCCTTTGTATTATCCATT	1213
Query	219				ATTTGACGTCATCCCCACCTTC	278
Sbjct	1212				ATTTGACGTCATCCCCACCTTC	1153
Query	279				TTAATGATGGCAACTAAGCTT	338
Sbjct	1152				TTAATGATGGCAACTAAGCTT	1093
Query	339				CGACACGAGCTGACGACAACC	398
Sbjct	1092				CGACACGAGCTGACGACAACC	1033
Query	399				CTATCTCTAGAGCGGTCAAAG	458
Sbjct	1032				CTATCTCTAGAGCGGTCAAAG	973
Query	459				TTAAACCACATGCTCCACCGC	518
Sbjct	972				TTAAACCACATGCTCCACCGC	913
Query	519				CCGGTCGTACTCCCCAGGCGG	578
Sbjct	912	TTGTGCGGGT		FGAGTTTCAACCTT	GCGGTCGTACTCCCCAGGCGG	853
Query	579	AGTGCTTAATC				
Sbjct	852	AGTGCTTAATC	SCGTTAGCT 834			

Fig.52 Shows Staphylococcus sciuri gene sequences

bacteria(authour's own image)

	Staphylococcus saprophyticus strain ATCC 15305 16S ribosomal RNA gene, complete sequence Sequence ID: <u>refINR_074999.11</u> Length: 1555 Number of Matches: 1						
Range 1:	Range 1: 114 to 839 GenBank Graphics V Next Match 🛦 Previous Match						
Score 1297 bit	s(1438)	Expect Identities Gaps Strand 0.0 723/726(99%) 0/726(0%) Plus/Plus					
Query	1	AGTAACACGTGGGTAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	60				
Sbjct	114	AGTAACACGTGGGTAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	173				
Query	61	${\tt CCGGATAACATTTGGAACCGCATGGTTCTAAAGTGAAAGATGGTTTTGCTATCACTTATA}$	120				
Sbjct	174	CCGGATAACATTTGGAACCGCATGGTTCTAAAGTGAAAGATGGTTTTGCTATCACTTATA	233				
Query	121	${\tt GATGGACCCGCGCCGTATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATACG}$	180				
Sbjct	234	GATGGACCCGCCCGTATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCGACGATACG	293				
Query	181	TAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGGGACACGGTCCAGACTCCTACG	240				
Sbjct	294	TAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTACG	353				
Query	241	GGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG	300				
Sbjct	354	GAGGCAGCAGTAGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG	413				
Query	301	AGTGATGAAGGGTTTCGGCTCGTAAAACTCTGTTATTAGGGAAGAACAAATGTGTAAGTA	360				
Sbjct	414	${\tt AGTGATGAAGGGTTTCGGCTCGTAAAACTCTGTTATTAGGGAAGAACAAATGTGTAAGTA$	473				
Query	361	ACTGTGCACATCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC	420				
Sbjct	474	${\tt ACTGTGCACGTCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC}$	533				
Query	421	${\tt GCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGC$	480				
Sbjct	534	GCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCCGTAGGC	593				
Query	481	GGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGG	540				
Sbjct	594	GGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGG	653				
Query	541	GAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGA	600				
Sbjct	654	GAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGA	713				
Query	601	TATGGAGGAACACCAGTGGCGAANGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGA	660				
Sbjct	714	TATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGA	773				
Query	661	AAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC	720				
Sbjct	774	AAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC	833				
Query	721	TAAGTG 726					
Sbjct	834	IIIII TAAGTG 839					

Fig.54 Shows Staphylococcus saprophyticus gene sequences

Fig.55 Shows Small white moth used to isolate the bacteria(authour's own image)

		saprophyticus strain ATCC 15305 IR_074999.1 Length: 1555 Number o	16S ribosomal RNA gene, complete seque f Matches: 1	nce			
Range 1:	Range 1: 114 to 839 GenBank Graphics Vext Match 🛦 Previous Match						
Score 1297 bits	s(1438)	Expect Identities 0.0 723/726(99%)	Gaps Strand 0/726(0%) Plus/Plus				
Query	1		AAGACTGGGATAACTTCGGGAAACCGGAGCTA				
Sbjct	114		AAGACTGGGATAACTTCGGGAAACCGGAGCTA				
Query	61		TTCTAAAGTGAAAGATGGTTTTGCTATCACTT				
Sbjct	174		TTCTAAAGTGAAAGATGGTTTTGCTATCACTT				
Query	121		TTGGTAAGGTAACGGCTTACCAAGGCAACGAT				
Sbjct	234		TTGGTAAGGTAACGGCTTACCAAGGCGACGAT				
Query	181		CACACTGGAACTGAGACACGGTCCAGACTCCT				
Sbjct	294		CACACTGGAACTGAGACACGGTCCAGACTCCT				
Query	241		CAATGGGCGAAAGCCTGACGGAGCAACGCCGC				
Sbjct	354		CAATGGGCGAAAGCCTGACGGAGCAACGCCGC				
Query	301		AACTCTGTTATTAGGGAAGAACAAATGTGTAA				
Sbjct	414	AGTGATGAAGGGTTTCGGCTCGTAA	AACTCTGTTATTAGGGAAGAACAAATGTGTAA	GTA 473			
Query	361		ATCAGAAAGCCACGGCTAACTACGTGCCAGCA				
Sbjct	474	ACTGTGCACGTCTTGACGGTACCTA	ATCAGAAAGCCACGGCTAACTACGTGCCAGCA	GCC 533			
Query	421		TATCCGGAATTATTGGGCGTAAAGCGCGCGTA				
Sbjct	534	GCGGTAATACGTAGGTGGCAAGCGT	TATCCGGAATTATTGGGCGTAAAGCGCGCGTA	.GGC 593			
Query	481		CCACGGCTCAACCGTGGAGGGTCATTGGAAAC	111			
Sbjct	594		CCACGGCTCAACCGTGGAGGGTCATTGGAAAC				
Query	541		TGGAATTCCATGTGTAGCGGTGAAATGCGCAG	111			
Sbjct	654	GAAACTTGAGTGCAGAAGAGGAAAG	TGGAATTCCATGTGTAGCGGTGAAATGCGCAG				
Query	601		CGACTTTCTGGTCTGTAACTGACGCTGATGTG	111			
Sbjct	714		CGACTTTCTGGTCTGTAACTGACGCTGATGTG				
Query	661		ATACCCTGGTAGTCCACGCCGTAAACGATGAG	111			
Sbjct	774		ATACCCTGGTAGTCCACGCCGTAAACGATGAG	TGC 833			
Query	721	TAAGTG 726					
Sbjct	834	TAAGTG 839					

Fig.56 Shows *Staphylococcus saprophyticus* gene sequences

Fig.57 Shows Atlas moth (Attacus atlas) moth used to isolate the bacteria(authour's own

image)

Range 1:	705 to 11	1 79 <u>GenBank</u> Gr	aphics	7	🛚 Next Match 🔺 Previous Ma	atch	
Score 829 bits	(918)	Expect 0.0	Identities 467/475(98%)	Gaps 0/475(0%)	Strand Plus/Minus		
Query	1				IGTACAAGGCCCGGGAZ		60
Sbjct	1179				IGTACAAGGCCCGGGAA		1120
Query	61				GACTTCACGGAGTCGAG		120
Sbjct	1119				FACTTCACGGAGTCGAG		1060
Query	121				CTTGCTCTCGCGAGGTC		180
Sbjct	1059				CTTGCTCTCGCGAGGTC		1000
Query	181				CGTAAGGGCCATGATG		240
Sbjct	999				CGTAAGGGCCATGATG		940
Query	241				CTCCTTTGAGTTCCCG		300
Sbjct	939				CTCCTTTGAGTTCCCGF		880
Query	301				GACTTAACCCAACATTI		360
Sbjct	879				GACTTAACCCAACATTI		820
Query	361		GACAGCCATGCAGC		TCCCGAAGGCACAAAA		420
Sbjct	819				TCCCGAAGGCACCAAF		760
Query	421				CTTCGCGTTGCATCGA		
Sbjct	759				TTCGCGTTGCATCGA		

Fig.58 Shows Pantoea agglomerans gene sequences

Fig.59 Shows Slik moth used to isolate the bacteria(authour's own image)

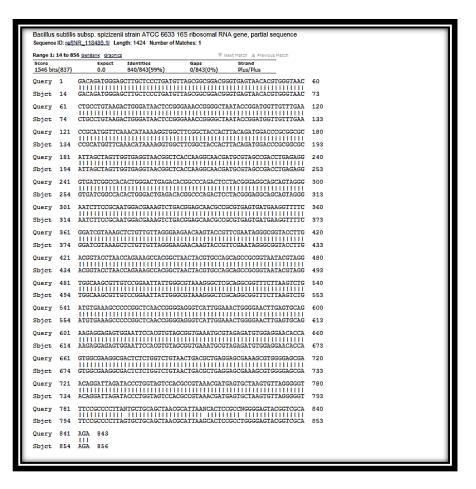


Fig.60 Shows Bacillus subtilis gene sequences

		nnanensis strain YIM 65004 16S ribosomal RNA gene, partial sequence R_116578.11 Length: 1426 Number of Matches: 1	
Range 1:	719 to 13	338 <u>GenBank</u> <u>Graphics</u> Vext Match A Previous Match	
Score 1115 bit	s(1236)	Expect Identities Gaps Strand 0.0 619/620(99%) 0/620(0%) Plus/Minus	
Query	1	TGACTTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTTGCTGATCT	60
Sbjct	1338	TGACTTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTTGCTGATCT	1279
Query	61	GCGATTACTAGCGACTCCGACTTCATGGGGTCGAGTTGCAGACCCCAATCCGAACTGAGA	120
Sbjct	1278	GCGATTACTAGCGACTCCGACTTCATGGGGTCGAGTTGCAGACCCCAATCCGAACTGAGA	1219
Query	121	CCGGCTTTTTGGGATTAGCTCCACCTCACAGTATCGCAACCCATTGTACCGGCCATTGTA	180
Sbjct	1218	CCGGCTTTTTGGGATTAGCTCCACCTCACAGTATCGCAACCCATTGTACCGGCCATTGTA	1159
Query	181	GCATGCGTGAAGCCCAAGACATAAGGGGCATGATGATTTGACGTCGTCCTCACCTTCCTC	240
Sbjct	1158	GCATGCGTGAAGCCCAAGACATAAGGGGCATGATGATTTGACGTCGTCCTCACCTTCCTC	1099
Query	241	CGAGTTGACCCCGGCAGTCTCCCATGAGTCCCCACCATTACGTGCTGGCAACATGGAACG	300
Sbjct	1098	CGAGTTGACCCCGGCAGTCTCCCATGAGTCCCCACCATTACGTGCTGGCAACATGGAACG	1039
Query	301	AGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGGTGACGACAACCN	360
Sbjct	1038	AGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA	979
Query	361	TGCACCACCTGTGAACCCGCCCCAAAGGGGAAACCGTATCTCTACGGCGATCGAGAACAT	420
Sbjct	978	TGCACCACCTGTGAACCCGCCCCAAAGGGGAAACCGTATCTCTACGGCGATCGAGAAAAA	919
Query	421	GTCAAGCCTTGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCGCATGCTCCGCCGCTTG	480
Sbjct	918	GTCAAGCCTTGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCGCATGCTCCGCCGCTTG	859
Query	481	TGCGGGCCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGC	540
Sbjct	858	TGCGGGCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGC	799
Query	541	ACTTAATGCGTTAGCTGCGGCGCGGGAAACCGTGGAATGGTCCCCACACCTAGTGCCCAAC	600
Sbjct	798	ACTTAATGCGTTAGCTGCGGCGCGGGAAACCGTGGAATGGTCCCCACACCTAGTGCCCAAC	739
Query	601	GTTTACGGCATGGACTACCA 620	
Sbjct	738	GTTTACGGCATGGACTACCA 719	

Fig.61 Shows Micrococcus yunnanensis gene sequences

Fig.62 Shows Eastern Comma(Polygonia comma) moth used to isolate the bacteria(authour's

own image)

		formis strain DSM 13 16S ribosomal RNA gene, complete sequence NR 118996.1 Length: 1545 Number of Matches: 1				
Range 1: 62 to 854 GenBank Graphics Vext Match						
Score 1459 bits		Expect Identities Gaps Strand 0.0 792/793(99%) 0/793(0%) Plus/Plus				
Query	1	GACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGGACGGGTGAGTAACACGTGGGTAAC	60			
Sbjct	62	GACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGGACGGGTGAGTAACACGTGGGTAAC	121			
Query	61	CTGCCTGTAAGACTGGGATAACTCCGGGGAAACCGGGGGCTAATACCGGATGCTTGATTGA	120			
Sbjct	122	CTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGATTGA	181			
Query	121	${\tt CCGCATGGTTCAATCATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCG}$	180			
Sbjct	182	CCGCATGGTTCAATCATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCG	241			
Query	181	CATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAG	240			
Sbjct	242	CATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAG	301			
Query	241	GGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGG	300			
Sbjct	302	GTGATCGGCCACACTGGGACTGGGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGG	361			
Query	301	GAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGA	360			
Sbjct	362	GAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGA	421			
Query	361	CGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTT	420			
Sbjct	422	${\tt CGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTT}$	481			
Query	421	GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG	480			
Sbjct	482	GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG	541			
Query	481	GTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGC	540			
Sbjct	542	GTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGC	601			
Query	541	GATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCA	600			
Sbjct	602	GATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGGGCATTGGGAAACTGGGGAACTTGAGTGCA	661			
Query	601	GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACC	660			
Sbjct	662	GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACC	721			
Query	661	AGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCG	720			
Sbjct	722	AGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCG	781			
Query	721	AACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAAAGGG	780			
Sbjct	782	AACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGG	841			
Query	781	TTTCCGCCCTTTA 793				
Sbjct	842	TTTCCGCCCTTTA 854				

Fig.63 Shows *Bacillus licheniformis* gene sequences

Fig.64 Shows Eastern Comma(Polygonia comma) which used to isolate the bacteria

(authour's own image)

			551-3 strain R551-3 ath: 1540 Number of M		NA, complete sequence	
Range 1:	759 to 13	86 GenBank Graphi	<u></u>	V N	ext Match 🔺 Previous Match	
Score 1128 bit	s(1250)	Expect 0.0	Identities 627/628(99%)	Gaps 0/628(0%)	Strand Plus/Minus	
Query	1	GCCCGGGAACG		TGCTGATCTGCGA	 ATTACTAGCGATTCCGACTTCA	60
Sbjct	1386				ATTACTAGCGATTCCGACTTCA	1327
Query	61				GTTTCTGGGATTGGCTTACCG	120
Sbjct	1326				GTTTCTGGGATTGGCTTACCG	1267
Query	121				CGTGTGTAGCCCTGGCCGTAAG	180
Sbjct	1266				CGTGTGTAGCCCTGGCCGTAAG	1207
Query	181				TTGTCACCGGCGGTCTCCTTA	240
Sbjct	1206				TTGTCACCGGCGGTCTCCTTA	1147
Query	241				STTGCGCTCGTTGCGGGACTTA	300
Sbjct	1146				TTGCGCTCGTTGCGGGACTTA	1087
Query	301				AGCACCTGTGTTCGAGTTCCCG	360
Sbjct	1086				AGCACCTGTGTTCGAGTTCCCG	1027
Query	361				AGGCCAGGTAAGGTTCTTCGC	420
Sbjct	1026				AGGCCAGGTAAGGTTCTTCGC	967
Query	421				GGCCCCCGTCAATTCCTTTGA	480
Sbjct	966				GGCCCCCGTCAATTCCTTTGA	907
Query	481				PAACGCGTTAGCTTCGATACTG	540
Sbjct	906				TAACGCGTTAGCTTCGATACTG	847
Query	541				AGGGCGTGGACTACCAAGGTAT	600
Sbjct	846				AGGGCGTGGACTACCAGGGTAT	787
Query	601		TGCTCCCCACGCTTT			
Sbjct	786		TGCTCCCCACGCTTT			

Fig.65 Shows Stenotrophomonas maltophilia gene sequences

Fig.66 Shows Butterfly larvea which used to isolate the bacteria(authour's own image)

		sciuri subsp. carnaticus strain GTC 1227 16S ribosomal RNA gene, partial s $R_{041327,11}$ Length: 1454 Number of Matches: 1	sequence	9
Range 1:	855 to 13	98 GenBank Graphics Vext Match 🛦 Previous Match		
Score 895 bits	(992)	Expect Identities Gaps Strand 0.0 525/544(97%) 0/544(0%) Plus/Minus		
Query	3	CAAGCGCTCGTGGGGTGACGGGCGGTGTGTACAAGACCCGGAAACGTATTCACCG		62
Sbjct	1398	CAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGACCCCGGAACGTATTCACCG		1339
Query	63	TGCTGATCTACGATTACTAGCGATTCCAACTTCATGTAGTCGAGTTGCAGACTAC		122
Sbjct	1338	TGCTGATCTACGATTACTAGCGATTCCAGCTTCATGTAGTCGAGTTGCAGACTAC		1279
Query	123	GAACTGAGAATAATTTTATGGGATTTGCTTGGCCTCGCGGATTCGCTGCCCTTTG		182
Sbjct	1278	GAACTGAGAATAATTTTATGGGATTGCTTGGCCTCGCGGATTCGCTGCCCTTTG		1219
Query	183	TCCATTGTAGCACGTGTGTAGCCCAGATCATAAGGGGCATGATGATTGACGTCA		242
Sbjct	1218	TCCATTGTAGCACGTGTGTGTGCCCCAAATCATAAGGGGCATGATGATGTTGACGTCA		1159
Query	243	ACCTTCCTCCGGTTTGTCACCGGCAGTCTACCTAGAGTGCCCAACTTAATGAGGG	GAACT	302
Sbjct	1158	ACCTTCCTCCGGTTTGTCACCGGCAGTCAACCTAGAGTGCCCAACTTAATGATGG		1099
Query	303	AAACTTAAGGGTTGCGCTCGTTGCGGGACTTATCCCAACATCTCACGACACGAGC		362
Sbjct	1098	AAGCTTAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGC		1039
Query	363	ACAACCATGCGCCACCTGTGAGTTTGACCCCCGAAAGGGAACACTCTATCTCTAG		422
Sbjct	1038	ACAACCATGCACCACCTGTCACTTTGTCCCCCGAAGGGGAAGACTCTATCTCTAG		979
Query	423	TCAAAGGATGTCAAGATTTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACA		482
Sbjct	978	TCAAAGGATGTCAAGATTTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACA		919
Query	483	CACCGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTAC		542
Sbjct	918	CACCGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTAC		859
Query	543	AGGC 546		
Sbjct	858	AGGC 855		

Fig.67 Shows *Staphylococcus sciuri* gene sequences

Fig.68 Shows Butterfly larvea which used to isolate the bacteria(authour's own image)

Range 1:	625 to 13	393 GenBank Graphics Vext Match 🛦 Previous Match	
Score 1377 bits	(1526)	Expect Identities Gaps Strand 0.0 766/769(99%) 0/769(0%) Plus/Minus	
Query	1	TGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGA	60
Sbjct	1393	TGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGA	1334
Query	61	TTACTAGCGATTCCGGCTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGAGAACGA	120
Sbjct	1333	TTACTAGCGATTCCGGCTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGAGAACGA	1274
Query	121	CTTTATCGGATTAGCTCCCTCTCGCGAGTTGGCAACCGTTTGTATCGTCCATTGTAGCAC	180
Sbjct	1273	CTTTATCGGATTAGCTCCCTCTCGCGAGTTGGCAACCGTTTGTATCGTCCATTGTAGCAC	1214
Query	181	GTGTGTAGCCCAGGTCATAAGGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGT	240
Sbjct	1213	GTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGT	1154
Query	241	TTGTCACCGGCAGTCACCTTAGAGTGCCCAACTAAATGATGGCAACTAAGATCAAGGGTT	300
Sbjct	1153	TTGTCACCGGCAGTCACCTTAGAGTGCCCAACTAAATGATGGCAACTAAGATCAAGGGTT	1094
Query	301	GCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACC	360
Sbjct	1093	GCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACC	1034
Query	361	ACCTGTCACCGTTGCCCCCGAANGGGAAACNATATCTCTACAGTGGTCAACGGGATGTCA	420
Sbjct	1033	ACTGTCACCGTTGCCCCCGAAGGGGAAACTATATCTCTACAGTGGTCAACGGGATGTCA	974
Query	421	AGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCG	480
Sbjct	973	AGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCG	914
Query	481	GGCCCCCGTCAATTCCTTTGAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTT	540
Sbjct	913	GGCCCCCGTCAATTCCTTTGAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTT	854
Query	541	AATGCGTTAGCTGCAGCACTAAGGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTA	600
Sbjct	853	AATGCGTTAGCTGCAGCACTAAGGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTTA	794
Query	601	CGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGT	660
Sbjct	793	CGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGT	734
Query	661	CAGTTACAGACCAGATAGTCGCCTTCGCCACTGGTGTTCCTCCAAATCTCTACGCATTTC	720
Sbjct	733	CAGTTACAGACCAGATAGTCGCCTTCGCCACTGGTGTTCCTCCAAATCTCTACGCATTTC	674
Query	721	ACCGCTACACTTGGAATTNCACTATCCTCTTCTGCACTCAAGTCTCCCA 769	

Fig.69 Shows Lysinibacillus fusiformis gene sequences

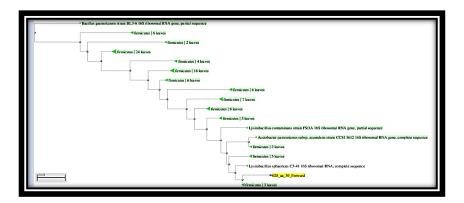


Fig.70 Shows Lysinibacillus fusiformis bacteria Tree

Fig.71 Shows Butterfly larvea which used to isolate the bacteria(authour's own image)

		as rhizophila strain e-p10 16S R_121739.1] Length: 1546 Numbe	ibosomal RNA gene, complete r of Matches: 1	sequence	
Range 1:	888 to 13	89 GenBank Graphics	V Next Match	Previous Match	
Score 906 bits((1004)	Expect Identities 0.0 502/502(100%)	Gaps Strand 0/502(0%) Plus/Mir	านร	
Query	70		ATGCTGATCTGCGATTACTAGCG		129
Sbjct	1389				1330
Query	130		CGGACTGAGATAGGGTTTCTGGG		189
Sbjct	1329				1270
Query	190		TACCATTGTAGTACGTGTGTAGC(249
Sbjct	1269		PACCATTGTAGTACGTGTGTAGC		1210
Query	250		CACCTTCCTCCGGTTTGTCACCG		309
Sbjct	1209		CACCTTCCTCCGGTTTGTCACCG		1150
Query	310		ACTAAGGACAAGGGTTGCGCTCG!		369
Sbjct	1149				1090
Query	370		ACGACAGCCATGCAGCACCTGTG'		429
Sbjct	1089		ACGACAGCCATGCAGCACCTGTG		1030
Query	430		TTCTCGACATGTCAAGACCAGGT		489
Sbjct	1029				970
Query	490		CCACCGCTTGTGCGGGCCCCCGT		549
Sbjct	969				910
Query	550	TCAGTCTTGCGACCGTACTCCC	571		
Sbjct	909	TCAGTCTTGCGACCGTACTCCC	888		

Fig.72 Shows Stenotrophomonas rhizophila gene sequences

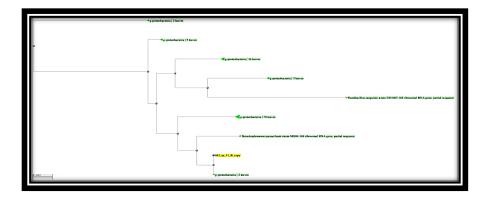


Fig.73 Shows Stenotrophomonas rhizophila tree

Fig.74 Shows Butterfly larvea which used to isolate the bacteria(authour's own image)

Score 852 bits		537 <u>GenBank</u> <u>Grap</u>	hics	▼	Next Match 🔺 Previous Match	
	(044)	Expect 0.0	Identities 502/518(97%)	Gaps 3/518(0%)	Strand Plus/Plus	
Query	63				GAAACCGGGGGCTAATACCGGAT	1
		11 11111				
Sbjct	120	ACGTGGGTAA	CCTGCCCATAAGACI	GGGATAACTCCGGG	GAAACCGGGGGCTAATACCGGAT	1
Query	121				ITCGGCTGTCACTTATGGATGG	1
Sbjct	180					2
Query	181	ACCCGCGTCG	CATTAGCTAGTTGGI	GAGGTAACGGCTC	ACCAAGGCAACGATGCGTAGCC	2
- Sbjct	240				ACCAAGGCAACGATGCGTAGCC	2
2						
Query	241				CGGCCCAGACTCCTACGGGAGG	3
Sbjct	300	GACCTGAGAG	GTGATCGGCCACAC	TGGGACTGAGACAG	CGGCCCAGACTCCTACGGGAGG	3
Query	301				CGGAGCATCGCCGCGTGAGTGA	3
Sbjct	360				CGGAGCAACGCCGCGTGAGTGA	4
Query	360	TGAAGGCTTT	CGGGTCGTAAAACTC	TGTTGTTAGGGAAG	GAACAAGTGCTAGTTGAATAAG	4
Sbjct	420					4
2						
Query	420				AACTACGTGCCAACATCCGCGG	4
Sbjct	480	CTGGCACCTT	GACGGTACCTAACCA	GAAAGCCACGGCTZ	AACTACGTGCCAGCAGCCGCGG	5
Query	480				CGTAAAGCGCGCGCAGGTGGTT	5
Sbjct	540					5
Query	540	TCTTAAATCT	GATGTGAAATCCCAC	GGCTCAACCGTGG	577	
Sbjct	600				637	

Fig.75 Shows Bacillus cereus gene sequences

Fig.76 Shows Butterfly larvea which used to isolate the bacteria(authour's own image)

Bacillus Sequence		omplete sequence		
Range 1:	63 to 56	3 GenBank Graphics	Vext Match 🔺 Previous Match	
Score 926 bits	(501)	Expect Identities Gaps 0.0 501/501(100%) 0/501(0	Strand %) Plus/Plus	
Query	1	ACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGG.		
Sbjct	63	ACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGG		
Query	61	TGCCTGTAAGACTGGGATAACTCCGGGAAACCGGG		
Sbjct	123	TGCCTGTAAGACTGGGATAACTCCGGGAAACCGGG		
Query	121	CGCATGGTTCAATCATAAAAGGTGGCTTTTAGCTA		
Sbjct	183	CGCATGGTTCAATCATAAAAGGTGGCTTTTAGCTA		
Query	181	ATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGC		
Sbjct	243	ATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGC		
Query	241	GTGATCGGCCACACTGGGACTGAGACACGGCCCAG		
Sbjct	303	GTGATCGGCCACACTGGGGACTGAGACACGGCCCAG	ACTCCTACGGGAGGCAGCAGTAGGG 362	
Query	301	AATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA		
Sbjct	363	AATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA	CGCCGCGTGAGTGATGAAGGTTTTC 422	
Query	361	GGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGT.		
Sbjct	423	GGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGT	ACCGTTCGAATAGGGCGGTACCTTG 482	
Query	421	ACGGTACCTAACCAGAAAGCCACGGCTAACTACGT		
Sbjct	483	ACGGTACCTAACCAGAAAGCCACGGCTAACTACGT	SCCAGCAGCCGCGGTAATACGTAGG 542	
Query	481	TGGCAAGCGTTGTCCGGAATT 501		
Sbjct	543	TGGCAAGCGTTGTCCGGAAFT 563		

Fig.77 Shows Lysinibacillus macroides gene sequences

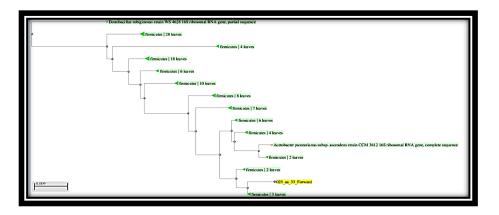


Fig.78 Shows Lysinibacillus macroides tree

Fig.79 Shows Nettle leaf which treated by *Bacillus thuringiensis* used to feed butterfly

larveas(authour's own image)

			ribosomal RNA (rr h: 1512 Number of M	nA) gene, complete latches: 1	esequence	
Range 1:	82 to 79	4 GenBank Graphics		V Nex	t Match 🛕 Previous Match	
Score 1261 bits	s(1398)	Expect 0.0	Identities 707/713(99%)	Gaps 0/713(0%)	Strand Plus/Plus	
Query	1				TGGGTAACCTGCCCATAAG	60
Sbjct	82				TGGGTAACCTGCCCATAAG	141
Query	61				ATTTTGAACCGCATGGTTC	120
Sbjct	142				ATTTGAACCGCATGGTTC	201
Query	121				CGCGTCGCATTAGCTAGTT	180
Sbjct	202				CGCGTCGCATTAGCTAGTT	261
Query	181				CTGAGAGGGTGATCGGCCA	240
Sbjct	262				CTGAGAGGGGTGATCGGCCA	321
Query	241				CAGTAGGGAATCTTCCGCA	300
Sbjct	322				CAGTAGGGAATCTTCCGCA	381
Query	301				AGGCTTTCGGGTCGTAAAA	360
Sbjct	382				AGGCTTTCGGGTCGTAAAA	441
Query	361				GCACCTTGACGGTACCTAA	420
Sbjct	442				GCACCTTGACGGTACCTAA	501
Query	421				ATACGTAGGTGGCAAGCGTT	480
Sbjct	502				TACGTAGGTGGCAAGCGTT	561
Query	481				TAAGTCTGATGTGAAAGCC	540
Sbjct	562				TAAGTCTGATGTGAAAGCC	621
Query	541				GAGTGCAGAAGAGGAAAGT	600
Sbjct	622				GAGTGCAGAAGAGGAAAGT	681
Query	601				GAACACCAGTGGCGAAGGN	660
Sbjct	682				GAACACCAGTGGCGAAGGC	741
Query	661			GGCGCGAAAGCGTG		
Sbjct	742					

Fig.80 Shows Bacillus cereus gene sequences

Fig.81 Shows Nettles leave treated by *E.coli* and feed butterfly larvae then Isolate from inside larvea died body (authour's own image)

			ngth: 1540 Number of		RNA, complete sequence		
Range 1: 760 to 1408 GenBank Graphics 💎 Next Match 🔺 Previous Match							
Score 1171 bit	s(1298)	Expect 0.0	Identities 649/649(100%)	Gaps 0/649(0%)	Strand Plus/Minus		
Query	1				ACCGCAGCAATGCTGATCTGC		
Sbjct	1408				ACCGCAGCAATGCTGATCTGC		
Query	61				ACTCCAATCCGGACTGAGATA		
Sbjct	1348				ACTCCAATCCGGACTGAGATA		
Query	121				CTCTGTCCCTACCATTGTAGT		
Sbjct	1288				CTCTGTCCCTACCATTGTAGT		
Query	181				CGTCATCCCCCACCTTCCTCCG		
Sbjct	1228				CGTCATCCCCACCTTCCTCCG		
Query	241				JTGCTGGCAACTAAGGACAAG		
Sbjct	1168				TGCTGGCAACTAAGGACAAG		
Query	301				CACGAGCTGACGACAGCCATG		
Sbjct	1108				CACGAGCTGACGACAGCCATG		
Query	361				CTGGAAAGTTCTCGACATGT		
Sbjet	1048				CTGGAAAGTTCTCGACATGT		
Query	421				CACATACTCCACCGCTTGTG		
Sbjct	988				CCACATACTCCACCGCTTGTG		
Query	481				CGTACTCCCCAGGCGGCGAAC		
Sbjct	928				CGTACTCCCCAGGCGGCGAAC		
Query	541				CAACATCCAGTTCGCATCGTT		
Sbjct	868				CAACATCCAGTTCGCATCGTT		
Query	601		CTACCAGGGTATCT				
Sbjct	808		CTACCAGGGTATCT				

Fig.82 Shows Stenotrophomonas maltophilia gene sequences

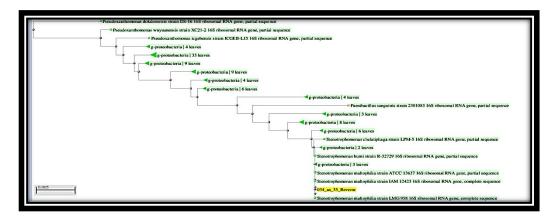


Fig.83 Shows Staphylococcus saprophyticus tree

Fig.84 Shows Nettles leave treated by by *B. subtilis* and feed butterfly larvae then Isolate from inside larvea died body (authour's own image)

		ATCC 14579 16S			te sequence	
-		0 GenBank Graphics	II: 1312 Number of W		ext Match 🔺 Previous Match	
Score 1339 bit		Expect 0.0	Identities 747/750(99%)	Gaps 0/750(0%)	Strand Plus/Plus	
Query	1	GCTTGCTCTTATG	AGGTTCGCGGGGGZ		ACGTGGGTAACCTGCCCATAA	60
Sbjct	81				ACGTGGGTAACCTGCCCATAA	140
Query	61				ACATTTTGAACCGCATGGTT	120
Sbjct	141				ACATTTTGAACCGCATGGTT	200
Query	121				ACCCGCGTCGCATTAGCTAGT	180
Sbjct	201				ACCCGCGTCGCATTAGCTAGT	260
Query	181				SACCTGAGAGGGTGATCGGCC	240
Sbjct	261				ACCTGAGAGGGTGATCGGCC	320
Query	241				CAGCAGTAGGGAATCTTCCGC	300
Sbjct	321				CAGCAGTAGGGAATCTTCCGC	380
Query	301				IGAAGGCTTTCGGGTCGTAAA	360
Sbjct	381				I	440
Query	361				CTGGCACCTTGACGGTACCTA	420
Sbjct	441				TGGCACCTTGACGGTACCTA	500
Query	421				TAATACGTAGGTGGCAAGCGT	480
Sbjct	501					560
Query	481				PCTTAAGTCTGATGTGAAAGC	540
Sbjct	561					620
Query	541				CTTGAGTGCAGAAGAGGAAAG	600
Sbjct	621					680
Query	601				GAGGAACACCAGTGGCGAAGG	660
Sbjct	681				AGGAACACCAGTGGCGAAGG	740
Query	661				STGGGGAGCAAACAGGATTAG	720
Sbjct	741				IIIIIIIIIIIIIIIIIIIIIIIII FTGGGGAGCAAACAGGATTAG	800
Query	721		CCACGCCGTAAACG			
Sbjct	801		CCACGCCGTAAACG			

Fig.85 Shows Bacillus cereus gene sequences

Fig.86 Shows Nettles leave treated by MRSA bacteria and feed butterfly larvae then Isolate from inside larvae died body (author's own image)

			reus N315 strain N3 h: 1555 Number of Ma		RNA, complete sequence	
	_	Bank Graphics			Match 🔺 Previous Match	
Score 1135 bits(1	.258)	Expect 0.0	Identities 642/651(99%)	Gaps 0/651(0%)	Strand Plus/Plus	
Query 1					CACGTGGATAACCTACCTA	60
Sbjct 7					CACGTGGATAACCTACCTA	138
Query 6					TAATATTTTGAACCGCATG	120
Sbjct 1					TAATATTTTGAACCGCATG	198
Query 1					ATCCGCGCTGCATTAGCTA	180
Sbjct 1					ATCCGCGCTGCATTAGCTA	258
Query 1					GACCTGAAAGGGTGATCGG	240
Sbjct 2					GACCTGAGAGGGTGATCGG	318
Query 2					CAGCAGTAGGGAATCTTCC	300
Sbjct 3					CAGCAGTAGGGAATCTTCC	378
Query 3					TNAAGGTCTTCGGATCGTA	360
Sbjet 3						438
Query 3					GCACATCTTGACGGTACCT	420
Sbjct 4					GCACATCTTGACGGTACCT	498
Query 4					AATACGTAGGTGGCAAGCG	480
Sbjct 4					AATACGTAGGTGGCAAGCG	558
Query 4					TTTAAGTCTGATTTGAAAG	540
Sbjct 5					TTTAAGTCTGATGTGAAAG	618
Query 5					TTGAGTGCAGAAGAGGAAA	600
Sbjet 6						678
Query 6			TGTACCGGTGAAATG			
Sbjct 6			TGTAGCGGTGAAATG			
	_					

Fig.87 Shows Staphylococcus aureus gene sequences

Fig.88 Shows Nettles leave (Control)feed butterfly larvae then Isolate from inside larvea

died body (author's own image)

			train IAM 12423 16 gth: 1538 Number of		ene, complete sequence	
Range 1:	183 to 7	722 GenBank Graphic	<u>15</u>	V Nez	ct Match 🔺 Previous Match	
Score 933 bits((1034)	Expect 0.0	Identities 531/540(98%)	Gaps 0/540(0%)	Strand Plus/Plus	
Query	6				GAGCCGATGTCGGATTAGCT	65
Sbjct	183				SAGCCGATGTCGGATTAGCT	242
Query	66				CTGGTCTGAGAGGATGATCA	125
Sbjct	243				CTGGTCTGAGAGGATGATCA	302
Query	126				GCAGCAGTGGGGAATATTG	185
Sbjct	303				GCAGCAGTGGGGAATATTG	362
Query	186				SAAGAAGGCCTTCGGGTTGT	245
Sbjct	363				GAAGAAGGCCTTCGGGTTGT	422
Query	246				CGGGTTGGGATGACGGTACC	305
Sbjct	423				CCGGTTGGGATGACGGTACC	482
Query	306				STAATACGAAGGGTGCAAGC	365
Sbjct	483				TAATACGAAGGGTGCAAGC	542
Query	366				CGTTTAAGTCCGTTGTGAAA	425
Sbjct	543				CGTTTAAGTCCGTTGTGAAA	602
Query	426				ACTAGAGTGTGGTAGAGGGT	485
Sbjct	603				ACTAGAGTGTGGTAGAGGGT	662
Query	486				AGAGGAACATCCATGGCGAA	545
Sbjct	663		GGTGTAGCAGTGAA		GAGGAACATCCATGGCGAA	722

Fig.89 Shows Stenotrophomonas maltophilia gene sequences

Fig.90 Shows Nettles leave (Control)feed butterfly larvae then Isolate from inside larvea

died body (author's own image)

	•		R551-3 strain R55 gth: 1540 Number o		RNA, complete sequence	
Range 1:	828 to 12	61 GenBank Graph	ics		🛛 Next Match 🔺 Previous Match	
Score 551 bits((200)	Expect 2e-156	Identities 389/434(90%)	Gaps 1/434(0%)	Strand Plus/Minus	
					· · · ·	
Query	185	GGCGTGCAACC			TGCAGCCCTGGCCGTATCGGCCA	244
Sbjct	1261				TGTAGCCCTGGCCGTAAGGGCCA	1202
Query	245			TTCCTCCGGTTTG	TCACGGGTAGTCTCCTTAGAGTT	304
Sbjct	1201				TCACCGGCGGTCTCCTTAGAGTT	1142
Query	305				CGCTCGTTGCGGGGACTTAAACCA	364
Sbjct	1141				CGCTCGTTGCGGGACTTAACCCA	1082
Query	365				CCTGTGTTCGAGTTCCCAAAGGC	424
Sbjct	1081				CCTGTGTTCGAGTTCCCGAAGGC	1022
Query	425				CAAGGTAACGCTCTTCACGATGC	484
Sbjct	1021				 CCAGGTAAGGTTCTTCGCGTTGC	962
Query	485				CCCCGTCAATTCCTTTGAGTTTC	544
Sbjct	961				CCCCGTCAATTCCTTTGAGTTTC	902
Query	545				GCGTTAGCTTCGATACTGCCTGC	603
Sbjct	901					842
Query	604	AAAATTGAACO				
Sbjct	841	CAAATTGCACC				

Fig.91 Shows Stenotrophomonas maltophilia gene sequences

Fig.92 Shows larvae blow fly (Calliphora) appeared from human body(author's own image)

Range 1: Score	554 to 13	146 <u>GenBank</u> <u>Graphi</u> Expect	<u>cs</u> Identities	Gaps	Next Match A Previous Match	
1393 bit	s(1544)	0.0	787/794(99%)	2/794(0%)	Plus/Minus	
Query	79 1346				FGCGATTACTAGCGACTCCGACT	137 128
Query	138				ACCGGCTTTAAGGGATTCGCTCC	197
3bjct	1286				CCGGCTTTAAGGGATTCGCTCC	122
Query	198				AGCATGCGTGAAGCCCAAGACAT	257
Bbjct	1226				AGCATGCGTGAAGCCCAAGACAT	116
Query	258				CCGAGTTGACCCCGGCAGTCTCC	317
Sbjet	1166				CCGAGTTGACCCCGGCAGTCTCC	110
Query	318				BAGGGTTGCGCTCGTTGCGGGAC	377
Sbjet	1106	TATGAGTTCCC	ACCATCACGTGCTG	GCAACATAGAACO	SAGGGTTGCGCTCGTTGCGGGGAC	104
Query	378				ATGCACCACCTGTACACCAGCCC	437
Bbjct	1046				TGCACCACCTGTACACCAGCCC	987
Query	438				STCAAGCCTTGGTAAGGTTCTTC	497
Sbjet	986				JTCAAGCCTTGGTAAGGTTCTTC	927
Query	498				IGCGGGCCCCCGTCAATTCCTTT	557
Sbjct	926				FGCGGGCCCCCGTCAATTCCTTT	867
Query	558				ACTTAATGCGTTAGCTACGGCGC	617
Sbjct	866				CTTAATGCGTTAGCTACGGCGC	807
Query	618				STTTACGGCATGGACTACCAGGG	677
Sbjct	806	GGAATCCGTGG	AATGGACCCCACAC	CTAGTTCCCAAC	TTTACGGCATGGACTACCAGGG	747
Query	678				AGCGTCAGTAACAGCCCAGAGTC	737
Sbjct	746				AGCGTCAGTAACAGCCCAGAGTC	687
Query	738				CATTTCACCGCTACACCAGGAAT	797
Sbjct	686	CCGCCTTCGCC	ACCGGTGTT-CCTC	CTGATATCTGCG	CATTTCACCGCTACACCAGGAAT	628
Query	798				CACTGCACGCGCACCGTTAAGCG	857
Sbjet	627				CACTGCACGCGCCCCGTTAAGCG	568
Query	858	GCACGATTCCA				
Sbjet	567	GCACGATTCCA	CAG 554			

Fig.93 Shows Brevibacterium ravenspurgense gene sequences

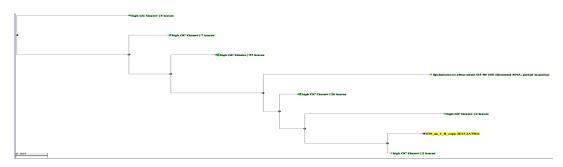


Fig.94 Shows Brevibacterium ravenspurgense tree

Range 1:	208 to 3	305 <u>GenBank</u> <u>Graphi</u>	3	V	Next Match 💧 Previo	us Match	
Score		Expect	Identities	Gaps	Strand	_	
129 bits	(142)	8e-30	88/98(90%)	1/98(1%)	Plus/Plus	_	
Query	198	TGCGCGGGAT-2	AGCTAGATGATAACG	TAACGGCTTACC	AAGGCAACGATAC	CGAGCCGAC	256
Sbjct	208	TGCGCCGTATT2	AGCTAGTTGGTAAGG	TAACGGCTTACC	AAGGCAACGATAC	GTAGCCGAC	267
Query	257	CTGAGACGGTG2	ATCGGCCACAATGGA	ACTGAGACACGG	294		
Sbjct	268	CTGAGAGGGTG2	ATCGGCCACACTGGA	ACTGAGACACGG	305		

Fig.95 Shows Staphylococcus hominis gene sequences

Fig.96 Shows Staphylococcus hominis tree

Fig.97 Shows adult blue fly (Calliphora) appeared from human body(author's own image

tange 1:	587 to 13	96 GanBank Graphic			🔻 Next Match 🔺 Prev	ious Match	
Score 1395 bit	s(1546)	Expect 0.0	Identities 799/811(99%)	Gaps 4/811(0%)	Strand Plus/Minus		
Query	81	CGGGANACGTA	PTCACCGCGGCGTG	CTGATCCGCGA	TTACTAGCGATTC	CGGCTTCATGC	140
Bbjet	1396	CGGGA-ACGTA	TCACCGCGGCGTG	CTGATCCGCGA	TTACTAGCGATTO	CEGETTCATEC	1338
Query	141		ACCTCCARTCCGA				200
sbjet	1337	AGGCGAGTTGC	SCCTGCAATCCGA	ACTGAGAGAAG	CTTTAAGAGATTI	GCATGACCTCG	1278
Query	201		TCGTTGTACTTCC				260
sbjet	1277	CGGTCTASCGA	TCGTTGTACTTCC	CATTGTASCAC	STGTGTGTGGCCCAC	STCATAAGGGG	1218
Query	261		ACGTCATCCCCAC				320
Sbjet	1217	CATGATGATT	JACGTCATCCCCAC	CTTCCTCCGGT	TTGTCACCGGCA	TCTCGCTAGAG	1158
Duery	321		TGATGGCAACTAA				380
Bbjat	1157	TGCCCAACTAA	TGATGGCAACTAA	CAATAAGGGTT	SCECTCETTECE	GACTTAACCCA	1098
Query	381		CGASCTGACGAC				440
Sbjet	1097	ACATCTCACGA	ACGAGCTGACGAC	AACCATGCACC	ACCTGTCACTTTC	TCCCCGAAGGG	1038
Juery	441		CTAGAGTGGTCAA				500
Bbjat	1037	AAAGCTCTATC	CTAGAGTGGTCAA	AGGATGTCAAG	ACCTGGTAAGGTI	CTTCGCGTTGC	978
Query	501		CACATGCTCCACC				560
Sbjat	977	TTCGAATTAAA	CACATGCTCCACC	SCTTGTGCGGG	CCCCCGTCAATTO	CTTTGAGTTTC	918
Query	561		CGTACTCCCCAGGC				620
Bbjat	917	AACCTTGCGGT	GTACTCCCCAGGC	GGAGTGCTTAA	recentrectecz	SCACTGAAGGG	858
Query	621		CAACACTTAGCACT				679
sbjet	857		CAACACTTAGCACT				798
Query	680		CCACGCTTTCGAG				739
Bbjct	797		CCACGCTTTCGAG				738
Query	740		CCTCCATATATCT				799
sbjet	737	GCCACTGGTGT	rectecatatatet	ACCCATTCAC	CGCTACACATGG	ATTCCACTCTC	678
Query	800		CAAGTCTCCCAGT				858
sbjat	677	CTOTTOTOCAC	CAAGTOTOCCAGT	TTCCAATGACC	CTCCCCCGGTTGA	ccccccrr	618
Query	859		TAA-AAACCGCCGG				

Fig.98 Shows Enterococcus faecalis gene sequences

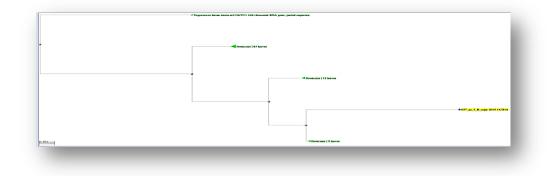


Fig.99 Shows Enterococcus faecalis tree

Fig.100 Shows Larvae blow fly (Calliphora) appeared from human body(author's own image

Range 1:	211 to 3	245 <u>GenBank</u> <u>Graph</u>	ics		🔻 Next Match 🔺 Previou	us Match
Score 37.4 bits(40)		Expect Identities	Identities	Gaps	Strand Plus/Plus	
		0.033	29/35(83%)	0/35(0%)		
Query	215	ATTAACTAATT	AGTGAGGTAACTGT	TCAGCTAGGC	249	
Sbjct	211	ATTAGCTAGTT	GGTGAGGTAACTGC	TCACCAAGGC	245	

Fig.101 Shows Lishizhenia tianjinensis gene sequences

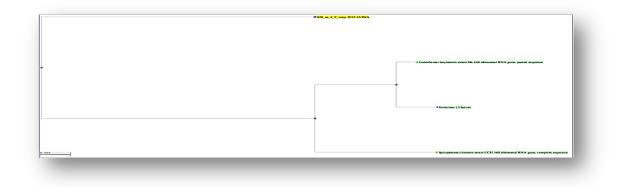


Fig.102 Shows Lishizhenia tianjinensis tree

	99 to 84	9 GenBank Graphics	Identities	▼ Ne Gaps	xt Match A Previous Match	
Score 1314 bits	(1456)	Expect 0.0	745/752(99%)	Gaps 3/752(0%)	Plus/Plus	
Query	41				AGCCCTCCGAAAGGAGGATT	99
Sbjct	99				AGCCCTCCGAAAGGAGGATT	158
Query	100				AAAGGAGTAATCTGCTTTGA	159
Sbjct	159	AATACCGCATAA	AGTTAGAGTTTCGCA	TGAAACTTTAACC	AAAGGAGTAATCTGCTTTGA	218
Query	160				CTTACCAAGGCAACGATGGG	219
Sbjct	219				CTTACCAAGGCAACGATGGG	278
Query	220				ACACGGTCCAGACTCCTACG	279
Sbjct	279				ACACGGTCCAGACTCCTACG	338
Query	280				TGACGCAGCAACGCCGCGTG	339
Sbjct	339				TGACGCAGCAACGCCGCGTG	398
Query	340				GACGATAATGACGGTACCAG	399
Sbjct	399				GACGATAATGACGGTACCAG	458
Query	400				AATACGTAGGTGGCAAGCGT	459
Sbjct	459	ATGAGGAAGCCA	CGGCTAACTACGTGC	CAGCAGCCGCGGT	AATACGTAGGTGGCAAGCGT	518
Query	460				CTTAAGTGAGATGTGAAATA	519
Sbjct	519				CTTAAGTGAGATGTGAAATA	578
Query	520				TAGAGTACAGGAGAGGGAAA	579
Sbjct	579				TAGAGTACAGGAGAGGGAAA	638
Query	580				AAGAACACCAGTGGCGAAGG	639
Sbjct	639				AAGAACACCAGTGGCGAAGG	698
Query	640				TGGGTAGCAAACAGGATTAA	699
Sbjct	699				TGGGTAGCAAACAGGATTAG	758
Query	700				GTAGGAAGGTCCCACCCTTC	758
Sbjct	759	ATACCCTGGTAG	ICCACGCCGTAAACG	ATGAATACTAGGT	GTAGGAGGGT-CCAACCTTC	817
Query	759		AACACATTAAGTATI			
Sbjct	818		AACACATTAAGTATI			

Fig.103 Shows Clostridium cochlearium gene sequences

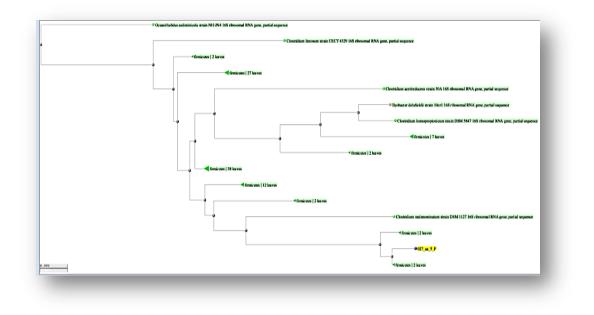


Fig.104 Shows Clostridium cochlearium tree

	044 to 13	96 GenBank Gr	Identities		Next Match 🛕 Previous Match	
Score 733 bits	(812)	Expect 0.0	1dentities 496/553(90%)	Gaps 2/553(0%)	Strand Plus/Minus	
Query	17				ACGTATTC-CCGCGGCATGTTGA	74
Sbjct	1396				ACGTATTCACCGCGGCATGCTGA	1337
Query	75	TTCCCGATT			ATTGCAAACTGACATCCCAACTG	134
Sbjct	1336				TTGCAGACTGCGATCCGAACTG	1277
Query	135				FGCATCCCTTTGTTCTGTCCATT	194
Sbjct	1276				FGCAGCCCTTTGTTCTGTCCATT	1217
Query	195				SATTTGACGTCATCCCCACCTTC	254
Sbjct	1216				GATTTGACGTCATCCCCACCTTC	1157
Query	255				ACTGAATGCTGGCAACTAACATC	314
Sbjct	1156				ACTGAATGCTGGCAACTAAGATC	1097
Query	315				CACGACACGAGCTGACGACAACC	374
Sbjct	1096				CACGACACGAGCTGACGACAACC	1037
Query	375				CTATCTCTATGGTTGTCAGAGGA	434
Sbjct	1036				CTATCTCTAGGGTTGTCAGAGGA	977
Query	435				TTAAACCACATGGTCCACCGCTT	494
Sbjct	976				TAAACCACATGCTCCACCGCTT	917
Query	495				GCAACGTACTCCCCAGGGGGAA	554
Sbjct	916				GCGACCGTACTCCCCAGGCGGAG	857
Query	555	TGATTAATG				
Sbjct	856	TGCTTAATG				

Fig.105 Shows Bacillus safensis gene sequences

Fig.106 Shows Bacillus safensis tree

Range 1:	155 to 4	72 GenBank Graphics	V N	ext Match 🔺 Previous Match	
Score 544 bits	(602)	Expect Identities 2e-154 311/318(98%)	Gaps 0/318(0%)	Strand Plus/Plus	
Query	118	TACCACAGAGCTGTTTATGCCGC		AGGCGCTTTCGGGTGTCGCTG	17
Sbjct	155	TACCGCATAACAGTTTATGCCGC			21
Query	178	ATGGATGGACCCACGGTGCATTA			23
Sbjct	215	ATGGATGGACCCGCGGTGCATT		ACGGCTCACCAAGGCCACGAT	27
Query	238	GCATAGCCGACCTGAGAGGGTGA			29
Sbjct	275	GCATAGCCGACCTGAGAGGGTG			33
Query	298	ACGGGAGGCAGCAGTAGGGAATC			35
Sbjct	335	ACGGGAGGCAGCAGTAGGGAATO			39
Query	358	GTGAGTGAAGAAGGTTTTCGGAI			41
Sbjct	395	GTGAGTGAAGAAGGTTTTCGGAT		TAGAGAAGAACAAGGACGTTA	45
Query	418	GTAACTGAACGTCCCCTG 435	i		
Sbjct	455	GTAACTGAACGTCCCCTG 472	-		

Fig.107 Shows Enterococcus faecalis gene sequences

Range 1:	131 to 4	488 <u>GenBank</u> <u>Grap</u>	nics	🔻 Next Match 🔺 Previous Match		
Score 619 bits((686)	Expect 2e-177	Identities 353/358(99%)	Gaps 1/358(0%)	Strand Plus/Plus	
Query	35		TCCGAG-GGAAGATT		ATTGTAGCTTCGCATGAAGTA	93
Sbjct	131	GGGAATAGCCI	TCCGAAAGGAAGATT	AATACCGCATAAGA	ATTGTAGCTTCGCATGAAGTA	190
Query	94				CGCATTAGCTAGTTGGTGAGG	153
Sbjct	191				CCATTAGCTAGTTGGTGAGG	25(
Query	154				AGGGTGATCGGCCACATTGGG	213
Sbjct	251				AGGGTGATCGGCCACATTGGG	31(
Query	214				GGAATATTGCACAATGGGGG	273
Sbjct	311				GGAATATTGCACAATGGGGG	370
Query	274				TCGGGTTGTAAAGCTCTGTC	333
Sbjct	371				TCGGGTTGTAAAGCTCTGTC	430
Query	334				GCTAACTACGTGCCAGCA	391
Sbjct	431					488

Fig.108 Shows *Clostridium paraputrificum* gene sequences

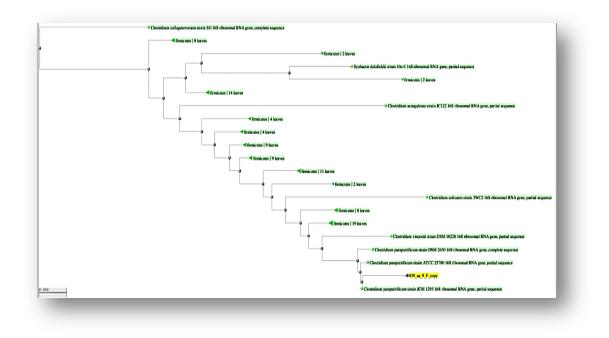


Fig.109 Shows Clostridium paraputrificum tree