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Abstract 

Despite decades of research and the availability of effective medications, malaria remains a 

significant global health issue. The vast majority of infections are caused by two species: 

Plasmodium falciparum and Plasmodium vivax. There is currently no licensed malaria vaccine 

but an effective vaccine is widely considered necessary to maintain the progress towards 

eradication, particularly given the increasing issues of insecticide and antimalarial resistance 

developing. The manifestations of malaria disease are caused by the blood-stage of the 

parasite against which endemic populations, who are exposed to multiple episodes of malaria, 

develop some degree of natural immunity. It is therefore considered that vaccines against the 

blood-stage may mimic the immunity seen in these individuals. This thesis describes three 

early-phase clinical trials for blood-stage malaria vaccines, all carried out in healthy volunteers 

at the Jenner Institute in Oxford.  

The first of these was a Phase Ia trial of a novel P. vivax blood-stage vaccine, ChAd63/MVA 

PvDBP. This is the only blood-stage vivax vaccine to reach clinical trial and was safe and 

immunogenic, with functional activity of the antibodies induced by vaccination demonstrated 

in vitro. 

The second trial was a Phase I/IIa trial of a candidate P. falciparum vaccine, FMP2.1/AS01B. 

Vaccine efficacy was assessed by blood-stage controlled human malaria infection (CHMI) using 

a model developed for this trial. Although the vaccine did not demonstrate any efficacy, the 

CHMI model was highly reproducible. 

The final Phase Ia trial examined novel P. falciparum vaccines, ChAd63/MVA RH5. This is the 

first clinical trial in which purified IgG demonstrated inhibition of growth of P. falciparum in 

vitro in all strains tested. 

These studies have demonstrated the potential for developing an effective vaccine against 

blood stage vivax and falciparum malaria as well as the potential for using the CHMI model for 

proof-of-concept efficacy testing of novel malaria vaccines. 
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Chapter One: 

Introduction 
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1.1 Background 

There are five Plasmodium species that cause human malaria, by far the most common being 

P. falciparum, which is also the species which causes the vast majority of mortality relating to 

malaria. P. vivax is the second most common species to cause human malaria. The remaining 

three species, P. ovale, P. malariae and P. knowlesi, cause a much lower proportion of cases 

worldwide, with P. knowlesi only relatively recently recognised as a human malaria, although 

primarily a zoonosis (1). Plasmodium species are apicomplexan protozoan parasites 

transmitted by the female Anopheles mosquito which injects sporozoites into the human host 

when it takes a blood meal. The Apicomplexa phylum is so named because of the specialised 

apical complex of organelles within this group of parasites which is essential for invasion (2). 

According to the World Malaria Report 2015 there were an estimated 438,000 deaths annually 

worldwide. Globally, there are thought to be around 3.2 billion people at risk of malaria, with 

sub-Saharan African populations at highest risk of acquiring malaria: approximately 90% of 

deaths are estimated to occur in the World Health Organisation (WHO) African Region. The 

number of global cases of malaria has decreased from an estimated 262 million in 2000 to an 

estimated 214 million cases in 2015. Of the 106 countries with ongoing malaria transmission, 

33 have achieved significant progress towards elimination, estimating fewer than 1000 malaria 

cases in 2015 compared with 13 countries in 2000 (3). The decrease in malaria cases, 

particularly in Africa, has been observed since concerted efforts have been made within the 

framework of the United Nations Millennium Development Goals (MDGs) and with the Roll 

Back Malaria (RBM) initiative. However, challenges to the success of current strategies to 

combat malaria (such as insecticide treated nets (ITNs), indoor residual spraying, and 

antimalarial drugs) include: the development of resistance of Anopheles mosquitoes to certain 

insecticides; the development of resistance of malaria parasites to chemotherapeutic agents 

(4); the absence of a gametocidal drug suitable for mass administration (5); and the risk of re-

importation of malaria into geographic regions previously cleared of malaria using 

environmental elimination measures.  
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The RBM Partnership was launched in 1998 by the WHO, the United Nations Children’s Fund 

(UNICEF), the United Nations Development Programme (UNDP) and the World Bank. A major 

goal of the RBM Partnership is to support the development of a vaccine against malaria as a 

key future strategy for reducing mortality from malaria. The development of an effective 

vaccine may indeed be necessary for the greater goal of global eradication of malaria (6). The 

recently updated Malaria Vaccine Technology Roadmap calls for the development of a vaccine 

against P. falciparum and P. vivax by 2030, that will have protective efficacy of at least 75% 

against clinical malaria, suitable for administration to appropriate at-risk groups and 

development of vaccines to reduce malaria transmission suitable for administration in mass 

campaigns (7). 

1.2 Plasmodium falciparum malaria 

The vast majority of cases of falciparum malaria occur in sub-Saharan Africa. There were an 

estimated 187 (132 – 259) million clinical cases of P. falciparum malaria in sub-Saharan Africa 

in 2015. It is estimated that 663 (542 – 753) million cases have been averted in Africa since the 

introduction of control measures in 2000, the most effective of which has been the 

widespread use of ITNs which is thought to account for 68 (62 – 73)% of the averted cases (8). 

Despite these improvements, malaria still remains the biggest killer of the parasitic diseases, 

with many challenges to the goal of eradication.  

1.2.1 The lifecycle of P. falciparum malaria 

The P. falciparum parasite is injected into the human host (when the female Anopheles 

mosquito takes a blood meal) in the form of sporozoites. The number of sporozoites injected 

varies widely, but has been estimated as an average of 15 in the case of falciparum malaria (9). 

Once injected, the majority of sporozoites make their way from the dermis through the 

bloodstream to the host’s liver, although they may also be transported in the lymphatic system 

(10). In the liver the sporozoites invade hepatocytes and form liver schizonts. These are cells 

full of mitotically dividing parasites (2). This process occurs over 6 – 7 days, at the end of which 
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merosomes are budded from the cell and enter the hepatic sinusoids (11). When these 

merosomes eventually rupture, thousands of merozoite-stage parasites are released into the 

bloodstream, moving from the ‘pre-erythrocytic’ stage of the parasite life cycle to the 

‘erythrocytic’ stage (Figure 1-1). Merozoites invade erythrocytes, where they develop into ring 

stages, trophozoites and then into schizonts. These rupture, releasing merozoites into the 

bloodstream to begin a new cycle. Unlike P. vivax, the P. falciparum parasite can invade 

erythrocytes of all ages, enabling it to achieve far higher levels of parasitaemia. Cycles of 

replication occur every 48 hours and are responsible for the clinical manifestations of malaria 

infection (11). Some trophozoites do not develop into schizonts, but instead develop into 

gametocytes, the sexual-stage of the Plasmodium parasite. These develop over a period of 10 

– 12 days and are essential for the ongoing transmission of malaria (12).  

Inside the mosquito the sporogonic cycle takes place. The microgamete exflagellates and 

enters the macrogamete to form a zygote within the mosquito midgut. The zygotes become 

motile (ookinetes) and penetrate the midgut wall where they develop into oocysts. These 

rupture and release sporozoites which migrate to the mosquito salivary glands, ready to be 

injected when the mosquito takes another blood meal (13). 

 
Figure 1-1: Life cycle of Plasmodium falciparum. 

Reprinted from Cell, Volume 124, Cowman and Crabb, Invasion of red blood cells by malaria parasites, 
755-66., Copyright (2006), with permission from Elsevier 
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Plasmodium merozoite invasion of erythrocytes is a complex process. Merozoites are released 

into the bloodstream when schizonts rupture and then make contact with red blood cells. The 

malaria parasite utilises a complex secretory system, and contains multiple secretory 

organelles, including micronemes and rhoptries. Merozoites are usually only free in the 

circulation for less than a minute, but may take several minutes to make a successful contact 

(14, 15). After an initial interaction with the erythrocyte, the merozoite reorients, so that its 

apical end faces the surface of the cell. A tight junction is formed between the merozoite and 

erythrocyte, and this then moves from the apical to the posterior end of the merozoite. During 

this movement ligands involved in the invasion process are removed, and the erythrocyte 

membrane subsequently encases the merozoite, creating a parasitophorous vacuole around 

the invading parasite along with the rest of the rhoptry contents (proteins and lipids). This 

separates the parasite from the host-cell cytoplasm, providing a hospitable environment for 

development (2, 16). The micronemal parasite ligands (erythrocyte binding antigens, EBAs, or 

Duffy-binding proteins, DBPs) and rhoptry ligands (reticulocyte binding-like proteins, RBLs or 

RBPs) are two families of antigens that are functionally conserved across Plasmodium species 

and are thought to be involved in the tight attachment step between the parasite and new 

host red blood cell. It appears that parasites need at least one member of each of these 

families to invade erythrocytes.  

P. falciparum has multiple erythrocyte binding proteins, including EBA-175, EBA-140, EBA-181 

and EBL-1. The P. falciparum RBL proteins are referred to as reticulocyte-binding protein 

homologues (PfRH), and there have been six identified currently – namely, PfRH1, PfRH2a, 

PfRH2b, PfRH3, PfRH4 and PfRH5 (2). These proteins contribute towards multiple invasion 

pathways for P. falciparum, and therefore redundancy, which may be advantageous for host 

immune invasion and contribute to the ability of the parasite to invade erythrocytes of all ages 

(2, 17, 18). 



24 
 

1.2.2 Clinical manifestations of Plasmodium falciparum malaria 

The symptoms and pathology attributable to P. falciparum occur during the erythrocytic 

(blood) stage of infection; the pre-erythrocytic stage is asymptomatic. Children under five 

years of age are the most severely affected; accounting for 70% of deaths from this infection. 

Pregnant women are also at increased risk, and malaria causes indirect mortality from 

abortion and intrauterine growth retardation (19). The reason mortality decreases after the 

age of five is due to the acquisition of natural immunity in children living in endemic areas, 

which decreases the risk of death and severe disease. Those who are not repeatedly exposed 

to malaria infection lose their immunity and remain at risk. Repeated, fairly constant exposure 

occurs in populations with ‘stable’ transmission. In these populations the entomological 

inoculation rate is >10/year and natural immunity is acquired in early childhood. In areas 

where there is unstable transmission, with wide fluctuations in the intensity of malaria 

transmission (entomological inoculation rate <5/year), populations do not develop natural 

immunity and both children and adults are at risk of severe disease. These populations are at 

particular risk of malaria epidemics if there is a sudden increase in the inoculation rate, with 

high incidence of malaria in all age groups and high rates of severe malaria if those infected are 

not promptly and effectively treated (3). 

The initial symptoms of malaria are non-specific, and often described as ‘flu-like’, with fever, 

headaches, myalgia and malaise. If untreated, malaria will progress to cause more severe 

disease. Children are particularly susceptible to severe anaemia and hypoglycaemia, whereas 

adults are more likely to develop pulmonary oedema, acute kidney injury and jaundice. 

Cerebral malaria (causing coma) and acidosis occur in all age groups (19). The features of 

severe malaria are shown in Table 1.1. 
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Clinical features of severe malaria Laboratory and other findings 

 Impaired consciousness (including 
unrousable coma) 

 Prostration, i.e. generalised weakness so 
that the patient is unable to sit, stand or 
walk without assistance 

 Multiple convulsions: more than two 
episodes within 24h 

 Deep breathing and respiratory distress 
(acidotic breathing) 

 Acute pulmonary oedema and acute 
respiratory distress syndrome 

 Circulatory collapse or shock, systolic 
blood pressure < 80mm Hg in adults and < 
50mm Hg in children 

 Acute kidney injury 

 Clinical jaundice plus evidence of other 
vital organ dysfunction 

 Abnormal bleeding 

 Hypoglycaemia (< 2.2mmol/l or < 
40mg/dl) 

 Metabolic acidosis (plasma bicarbonate < 
15mmol/l) 

 Severe normocytic anaemia (haemoglobin 
< 5g/dl, packed cell volume < 15% in 
children; <7g/dl, packed cell volume < 
20% in adults) 

 Haemoglobinuria 

 Hyperlactataemia (lactate > 5mmol/l) 

 Renal impairment (serum creatinine > 
265μmol/l) 

 Pulmonary oedema (radiological) 

High parasitaemia is a risk for increased 
mortality from malaria but the relationship is 
complex and varies depending on transmission 
levels. In low-transmission areas, mortality 
from acute falciparum malaria begins to 
increase with a parasitaemia >2.5%, whereas 
in areas of higher transmission much higher 
parasite densities may be well tolerated. 
Parasitaemia > 20% is associated with a high 
risk in any epidemiological context. 

Table 1.1: Overview of severe malaria manifestations.  

These may occur in isolation or, more commonly, in combination (20). 

1.2.3 Treatment of P. falciparum malaria 

The recommended treatment of falciparum malaria is based on the severity of disease. 

Uncomplicated cases should be treated with an oral Artemisinin combination therapy (ACT) 

such as artemether and lumefantrine or artesunate and amodiaquine, except in pregnant 

women in their first trimester. Quinine + clindamycin therapy is recommended in this group. 

Severe falciparum malaria should be treated with intravenous (IV) or intramuscular (IM) 

artesunate for at least 24 hours and until they can tolerate oral medication. Once a patient has 

received at least 24 hours of IV or IM artesunate, and is able to tolerate oral medication, 

treatment should be completed with 3 days of an ACT (21). 
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1.3 Plasmodium vivax malaria 

Plasmodium vivax is the most common non-falciparum malaria. It is the most geographically 

widespread malaria because the parasite is able to survive in colder climates and at higher 

altitudes than P. falciparum. Infection with P. vivax accounted for approximately 50% of global 

malaria cases outside of Africa in 2015, the majority of which occurred in South-East Asia (3).  

The global incidence of vivax malaria is very difficult to quantify as detection of P. vivax 

infections is more difficult, due to lower parasitaemias than are seen with P. falciparum 

malaria. The WHO estimate that there were 13.8 million cases globally in 2015 (3) but others 

have previously put the estimated figure much higher at 132 – 391 million cases/year and 2.6 

billion people at risk of infection (13). Having long been thought of as a ‘benign’ malaria, it has 

more recently been recognised as a cause of significant morbidity with severe and even fatal 

manifestations (22). There were an estimated 1400 – 14,900 deaths due to P. vivax in 2015, 

the vast majority of which occurred outside sub-Saharan Africa (3). 

Control of P. vivax is challenging, with some re-emergence seen in areas where eradication has 

previously been achieved. This is due to multiple factors including relapses, difficulty detecting 

asymptomatic infection, resistance to antimalarials and a lack of understanding of parasite 

biology (23). Recent calls for control and ‘eradication’ of malaria worldwide (24) have focused 

attention on this neglected disease and the need for development of an effective P. vivax 

vaccine to be used alongside current control methods (7, 25). 

1.3.1 The Plasmodium vivax Lifecycle 

The process of parasite invasion from the skin to the liver is the same in P. vivax as for P. 

falciparum. However, not all P. vivax parasites that enter the liver develop into tissue 

schizonts; some develop into hypnozoites, a dormant form of the parasite not seen in P. 

falciparum infections, that can cause relapse of disease weeks to months (or rarely even years) 

later (Figure 1-2).  
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Similar to P. falciparum, after around 7 days the tissue schizont ruptures, releasing merozoites 

into the bloodstream to begin the erythrocytic cycle. Unlike P. falciparum, which invades 

normocytes, P. vivax preferentially invades reticulocytes. This difference is thought to be due 

to the RBP proteins expressed by the vivax parasite. P. vivax was initially thought to express 

two reticulocyte binding proteins, PvRBP1 and PvRBP2 which bind specifically to reticulocytes 

(2). However, since the P. vivax genome sequence became available it has been demonstrated 

that there are in fact many more than two members in the Pvrbp gene family, with 8 genes 

predicted to be protein-coding (2 of these correspond to the genes encoding the originally 

discovered PvRBP1 and PvRBP2 proteins, Pvrbp1a and Pvrbp2c) (26). These proteins only form 

a committed attachment with reticulocytes and not normocytes (2, 16, 18, 27). This preference 

for reticulocytes limits the parasitaemia seen with P. vivax as reticulocytes only make up 1-2% 

of circulating erythrocytes (13). The equivalent family of proteins in P. falciparum is PfRH1-5. 

 

Figure 1-2: Life-cycle of Plasmodium vivax  

(Reprinted from The Lancet Infectious Diseases, Volume 9, Issue 9, Mueller et al., Key gaps in the 

knowledge of Plasmodium vivax, a neglected human malaria parasite., Pages 555–566, Copyright 
(2009), with permission from Elsevier). 

 

http://www.sciencedirect.com/science/journal/14733099/9/9
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Invasion of erythrocytes requires the formation of a moving junction between the merozoite 

and erythrocyte, involving direct interaction between apical ligands of the Duffy-binding like 

(DBL) protein family and erythrocyte receptors. The DBL protein in P. vivax is the Duffy-binding 

protein (PvDBP) which is located in the micronemes and released to the merozoite surface, 

along with other ligands, when required for erythrocyte invasion. This delayed release is 

thought to be a mechanism for evading the host immune system (28, 29). The receptor-

binding domain of P. vivax Duffy-binding protein (PvDBP) maps to a conserved cysteine-rich 

region, referred to as region II (PvDBP_RII), and an interaction between this ligand and the 

Duffy antigen receptor for chemokines (DARC) on erythrocytes is required for invasion. DARC is 

a chemokine receptor, also known as Fy glycoprotein or CD234. Individuals lacking the Duffy 

blood group antigen are resistant to blood-stage P. vivax infection. The high levels of Duffy 

blood group negativity in much of sub-Saharan Africa has essentially led to the disappearance 

of P. vivax from most of the continent, and has arisen independently in Papua New Guinea 

(16).  

The formation of the sexual-stages and development within the mosquito in P. vivax is similar 

again to that of P. falciparum, but gametocytes are present earlier in infection, appearing as or 

before clinical symptoms develop (13). This enables transmission to occur before the onset of 

symptoms, and therefore before any treatment is given, which has important implications for 

control and elimination. 

1.3.2 Clinical Manifestations of P. vivax infection 

The majority of P. vivax infections occur in South and South-East Asia, with children under 5 

years of age being the most at-risk group (30). In endemic areas repeated exposure leads to 

the development of immunity, and in these populations asymptomatic infection may occur. 

Natural immunity is a complex process, with humoral immunity playing an important role. 

Binding-inhibitory antibodies to PvDBP_RII have been associated with natural protection 

against P. vivax blood-stage infection (31). There are many other processes linked to infection 
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and disease from P. vivax, however, including strain-specific virulence (22) and differences in 

the Duffy blood-group antigen (Fy). The Duffy blood-group antigen has two distinct alleles 

which result from a single point mutation in the N terminal region, Fya and Fyb. The ancestral 

allele is believed to be Fyb, but the Fya allele looks to be advancing to fixation in many 

populations in Asia. PvDBP_RII binding has been shown to be significantly lower to Fya than 

Fyb, with the Fyb phenotype associated with a higher risk of infection and disease. This is not 

fully understood but may be due to differences in electrostatic charge between the positively 

charged PvDBP_RII and negatively charged N-terminal region of Fy or differences in Fy 

sulfation. PvDBP_RII-specific antibody titres are not significantly different between the 

phenotypes, suggesting that naturally-acquired immunity may be more effective in 

populations where Fya is the predominant allele (32). 

1.3.2.1  Symptoms of P. vivax malaria 

Features of P. vivax malaria include fever (which may be periodical), headache, myalgia, 

gastrointestinal disturbance, abdominal pain and cough. Symptoms alone cannot differentiate 

P. vivax malaria from P. falciparum malaria (33). Most infections are uncomplicated but severe 

disease can occur. Disease severity is assessed using the severity scoring developed by the 

WHO for falciparum malaria (21) as a severity score specific for vivax malaria has not been 

developed but the severe manifestations are similar.  

1.3.2.2  Severe Manifestations and Mortality 

Having long been considered a ‘benign’ malaria, there is increasing evidence that P. vivax 

causes significant morbidity and some mortality. Splenic rupture has long been accepted as a 

complication of vivax malaria (34) but more recently severe manifestations and complications 

have been recognised. Children aged 0-5 years appear to be at highest risk in endemic 

countries, with more cases of severe malaria associated with P. vivax mono-infection than P. 

falciparum mono-infection reported in this age group (35). The most common severe 

manifestation is anaemia, but other severe manifestations including coma, acute respiratory 
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distress syndrome (ARDS), abnormal bleeding, hepatic dysfunction and renal dysfunction are 

reported (22, 35-38).  

Severe malarial anaemia is most profound in young children in endemic regions and the 

mechanisms for this are not fully understood. In Papua New Guinea severe anaemia 

(haemoglobin <5g/dL) has been reported more commonly in children admitted with severe 

vivax malaria than severe falciparum malaria (39). In the study by Kochar et al. in Bikaner, 

India, severe anaemia was seen in 75% of children presenting with severe vivax malaria 

compared with 81% of those presenting with severe falciparum malaria. However, in the 0-5 

years age group, 75% of those severe vivax had severe anaemia whereas this was only the case 

for 26% of those with severe falciparum malaria. Thrombocytopenia is also commonly seen 

and can be severe, with the need for platelet transfusion reported (35).  

Respiratory distress has been reported as more commonly occurring in young children (aged 

less than 2 years) with vivax malaria than falciparum (35, 38), and there have been several 

reports of ARDS secondary to vivax, including fatal cases (22, 33, 36, 40, 41). 

Cerebral malaria (including status epilepticus and coma) is reported in several studies (37, 42), 

although it occurs much less frequently than in falciparum malaria (33) and has a better 

outcome in terms of mortality. 

Mortality from vivax malaria was originally recognised decades ago when P. vivax was used in 

malaria therapy for the treatment of neurosyphilis. It was recognised that certain strains were 

more virulent and had higher mortality rates in these patients. S.F. Kitchen’s description of 

vivax malaria as ‘benign’ in the Boyd malariology text in 1949, which described death due to 

vivax alone as rare, had a substantial impact on the field. The reduction in vivax malaria 

research in the 1950s, which continued until very recently, meant there was little information 

to contradict this belief (22). Several studies have now reported vivax-associated mortality, 

with similar case fatality rates in those presenting to hospital with severe vivax malaria as is 

seen with severe falciparum (35, 38, 43). An autopsy series carried out in Manaus concluded 
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that in 13 of the 17 patients studied, P. vivax was the cause of death or a significant 

contribution to decompensation of a pre-existing condition, leading to death (44).  

Differences in presentation and in the populations most affected by vivax is likely to be due to 

several confounding factors including comorbidities (for example, malnutrition), strain-specific 

virulence, host genetic factors (for example Fyb blood group antigen), parasite resistance to 

antimalarials and differences in the collection and reporting of data.  

1.4.3 Relapse 

Unlike P. falciparum, P. vivax has a dormant liver-stage known as a hypnozoite which enables it 

to relapse and cause multiple episodes of disease following a single infection (45, 46). Relapse 

is a major cause of morbidity, particularly in young children, and contributes significantly to 

on-going vivax transmission. Relapse periodicity is very variable, occurring within weeks 

(particularly in ‘tropical zones’) to several months later in temperate zones. Not all vivax 

infections relapse; relapse is seen in 20-80% of people following primary infection (46, 47).  

Severe malarial anaemia related to vivax infection may be worsened by relapse. There is a 

significant drop in haemoglobin seen with acute vivax infection (48) but relapses occurring 

before the erythrocyte levels have had chance to return to normal can lead to severe, and 

even life-threatening anaemia (49).  

1.4.4 Treatment of P. vivax malaria 

The recommended treatment for uncomplicated vivax malaria is chloroquine, except in areas 

where chloroquine-resistant vivax has been identified, and in this case an artemisinin-based 

combination therapy (ACT) should be used. For severe vivax malaria, as for severe falciparum 

malaria, treatment should be with an injectable artesunate followed by a full course of ACT 

(21). These drugs are active against the blood-stages of vivax infection but not against the 

hypnozoite. 
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Treatment to avoid relapse is limited as primaquine is currently the only licensed drug that is 

active against the hypnozoite. Primaquine is not 100% effective and causes haemolysis in 

individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, so is by no means an 

ideal drug (46). G6PD deficiency is widespread, with an estimated 350 million people thought 

to be affected, many of these living in vivax-endemic regions (50). Recently it has also been 

shown that different genotypes of the cytochrome P450 allele CYP2D6 lead to variations in the 

ability for individuals to metabolise primaquine, with those heterozygous or homozygous for 

the null allele demonstrating reduced metabolism and therefore risk of treatment failure and 

vivax relapse (51). This has obvious implications for the efficacy of primaquine as a drug for 

radical cure of hypnozoites and therefore as a control/elimination mechanism.  

1.5 Naturally-acquired immunity to malaria 

Individuals frequently exposed to malaria do develop natural immunity after a period of time. 

It is for this reason that in endemic settings the mortality rates from malaria are lower after 

the age of five as, for those who have survived repeated infection in early childhood, a level of 

immunity is achieved and they are protected from severe disease and high parasitaemia (52). 

Immunity may also be seen in the form of premunition, where individuals maintain a low-

grade parasitaemia, which is usually asymptomatic, but provides protection against new 

infections (53). The rate of acquisition of immunity is dependent on the level of exposure, i.e. 

in high intensity transmission settings immunity is acquired at an earlier age than in low or 

medium transmission settings. The dominant presentation of severe malaria also differs 

depending on the age of the individual, for example, severe malarial anaemia is more likely in 

young infants whereas the proportion of severe cases manifest by cerebral malaria increases 

with age, indicating that aged-related physiological changes as well as the intensity of 

exposure contribute to the dominant clinical syndromes associated with malaria infection (52). 

Immunity to malaria is compromised in pregnancy (especially in the first pregnancy) and in 

individuals whose frequent exposure to infection ceases (for example, by moving to a non-

endemic area) (53). This has important implications for interventions which reduce malaria 
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exposure as there is the possibility of catastrophic rebound if malaria is reintroduced into a 

population who have lost their naturally-acquired immunity, as was seen in Madagascar in the 

late 1980s following the malaria control campaigns in the 1950s and 1960s which successfully 

removed the Anopheles funestus vector from the central highlands. The vector was gradually 

reintroduced and following population movement there were huge outbreaks of malaria 

leading to an estimated 40,000 deaths in a population which was no longer immune (54). 

The mechanisms of natural immunity are not fully understood. Presumed mechanisms of 

adaptive immunity include antibody responses against the pre-erythrocytic and erythrocytic 

stages to block hepatocyte invasion by sporozoites, block erythrocyte invasion by merozoites, 

prevent binding of infected erythrocytes to the vascular endothelium and contribute to 

inhibition of the development of the sexual-stages. T cells are also thought to play a role in 

inhibiting development of the parasite during the liver stage (CD8+) and in activating 

macrophages (CD4+) to phagocytose blood-stage parasites. More recently, the role of the 

innate immune system has been more closely studied and studies both in malaria naïve 

individuals exposed to P. falciparum malaria in an experimental infection, as well as data from 

populations exposed to repeated malaria infections indicate that innate immune mechanisms 

are triggered by malaria infection and serve to limit the maximum parasite density (55). 

Although multifactorial, it is widely believed that naturally-acquired immunity is primarily 

directed towards blood-stage parasites, and in P. vivax these arise from both primary infection 

and relapses (56). 

Natural immunity to P. vivax malaria is acquired more rapidly than to P. falciparum but is still 

seen to the highest degree in adults in holoendemic areas. The peak of P. vivax disease occurs 

in young infants at 1.0 – 1.9 years old, whereas for P. falciparum it peaks at 2.0 – 3.9 years of 

age and the proportion of P. vivax infections presenting with severe symptoms rapidly declines 

with age; so that by 1 year of age there is a significantly lower incidence of severe illness 
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attributable to P. vivax compared with P. falciparum in children living in areas endemic for 

both infections (56). 

1.6 Vaccine-induced immunity to malaria 

There is currently no licensed vaccine for malaria, and attempts at developing a vaccine have 

been met with many challenges. Only one malaria vaccine candidate, RTS,S, based on the P. 

falciparum circumsporozoite (CS) protein (the major component of the sporozoite coat) has 

reached Phase III efficacy trials to date (57). 

Attempts to develop an effective malaria vaccine have been ongoing for decades. Initial 

experiments in the 1940s in birds exposed to repeated injections of large numbers of 

inactivated sporozoites of the avian malaria P. gallinaceum demonstrated partial efficacy 

against infection with the homologous parasite delivered by mosquito bite (58, 59). In the 

1960s immunisation studies in mice with X-irradiated sporozoites of the rodent parasite P. 

berghei demonstrated that it was possible to achieve sterile protection (i.e. no patent 

parasitaemia as detected by blood film) in some immunised mice (60), supporting the theory 

that a malaria vaccine was possible. Studies by Clyde et al in Maryland, USA in the 1970s 

demonstrated that protective immunity could be induced in humans following exposure to 

large numbers of X-irradiated sporozoites, both for P. falciparum and P. vivax. However, the 

immunity was species-specific and short lived (lasting between 3 – 5 months), and required 

exposure to hundreds of mosquito bites (61-64). 

Since the 1980s malaria vaccine development has focused more on subunit vaccines than 

whole sporozoites vaccination, although more recently this has been re-examined. The 

discovery that cellular immunity had an important role in protection against the liver-stage of 

the parasite led to the development of different vaccination techniques from protein-in-

adjuvant preparations to DNA vaccines and later viral vectors, which induce strong T cell 

responses (65). Most subunit malaria vaccines target a specific stage of the malaria life cycle- 

either the pre-erythrocytic (sporozoites or liver-stage), erythrocytic or sexual-stages as shown 
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in Figure 1-3. The whole sporozoite vaccination techniques for P. falciparum that have been re-

examined are led by two main approaches. The first of these is immunising malaria naïve 

volunteers by exposing them to the bites of infected mosquitoes whilst preventing the 

development of clinical disease by simultaneous chloroquine administration, as demonstrated 

by Sauerwein’s group in Nijmegan (66). The immunity induced by this approach has been 

shown to remain effective over 2 years after immunisation in some volunteers (67). The 

second approach is the use of cryopreserved sporozoites, as developed by Sanaria®, which 

allow administration without the need for mosquitoes. These have been administered as 

aseptic, radiation-attenuated, metabolically active, purified, cryopreserved sporozoites 

(PfSPZ), which showed protective efficacy when administered intravenously (68). 

Administration of viable sporozoites with simultaneous chloroquine prophylaxis (PfSPZ-CVac) 

has been claimed to have high-level protective efficacy with fewer sporozoites required than 

PfSPZ (69), but this is not the case if the sporozoites are inoculated intradermally (70). 
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Figure 1-3: Plasmodium life cycle stages relevant to vaccine design 

(Reprinted from Philosophical Transactions of the Royal Society B under Creative Commons licence 4.0 
https://creativecommons.org/licenses/by/4.0/legalcode) 

 

1.6.1 Pre-erythrocytic vaccines 

Pre-erythrocytic vaccines target sporozoite- and liver-stage parasites. The most widely 

investigated sporozoite target antigen is the CS protein, which has been developed by 

GlaxoSmithKline (GSK) as the RTS,S vaccine in which the CS protein is fused to hepatitis B 

surface antigen (HBsAg) expressed together with unfused HBsAg (71). After expression, the 

hybrid proteins form particles spontaneously, similar to naturally-occurring HBsAg particles 

(72). When given with GSK’s potent Adjuvant System AS01, RTS,S is able to protect healthy 

adult volunteers against malaria infection with a vaccine efficacy of around 50% (73). This 

vaccine has been administered to thousands of children in endemic countries in a Phase III 

trial, and demonstrated only moderate efficacy (57). The thrombospondin-related adhesion 

protein (TRAP) is perhaps the most studied liver-stage antigen. This has been administered to 
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Life cycle of the malaria parasite illustrating the various stages that are relevant to vaccine design. These are (1) the anopheline 

mosquito vector, used in experimental protocols to immunize with irradiated sporozoites administered by mosquito bite; (2) the 

sporozoite, the target of several vaccines, including RTS,S; (3) the liver-stage, usually targeted by vectored vaccines; (4) the blood-
stage, usually targeted by protein in adjuvant vaccine candidates. Merozoite antigens have been most often included in blood-stage 

vaccines; (5) the gametocyte which along with the ookinete, formed after fertilization in the mosquito midgut, is the source of 

parasite antigens used in sexual-stage transmission-blocking vaccines. Pre-erythrocytic vaccines, which target the sporozoite and the 
liver-stage parasite are intended to prevent infection as well as disease while blood-stage vaccines are intended to prevent clinical 

illness and death. 
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healthy volunteers in the viral vectored heterologous prime-boost vaccination regime using 

the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) ME-TRAP 

(TRAP combined with a multiple epitope string) with a vaccine efficacy of 21% against 

sporozoite controlled human malaria infection (74). It has also been administered to adults 

and children in endemic settings with no safety concerns and some early efficacy noted in a 

trial in Kenyan adults who were monitored for 8 weeks after vaccination (75). 

The only vivax pre-erythrocytic antigen to reach clinical trials has been PvCSP, an antigen 

derived from the P. vivax circumsporozoite protein. Differences in the amino acid composition 

of the circumsporozoite protein divide this P. vivax antigen into two subtypes; the dominant 

VK210 form and the variant VK247 (76). This antigen has been used in several trials, including 

an efficacy trial in which a chimeric protein containing repeat sequences from both subtypes 

was given as a protein-in-adjuvant formulation with the AS01 adjuvant (VMP001/AS01B). This 

vaccine demonstrated no sterile efficacy, but a significant delay in development of patent 

parasitaemia (thick blood film positivity) in vaccinees compared with controls (77). 

1.6.2 Erythrocytic vaccines (blood-stage) 

There has been less progress in the blood-stage malaria vaccine field than in pre-erythrocytic 

vaccines (65). There are many proteins involved in the invasion of erythrocytes by merozoites, 

and the process is not fully understood. The merozoite is committed to invasion following high 

affinity binding interactions between erythrocyte membrane proteins and merozoite adhesins 

such as the the erythrocyte-binding ligand (EBL) and PfRH proteins. In P. falciparum infection, 

invasion is classically divided into two main pathways: sialic acid (SA)-dependent and SA-

independent.  

The antigens involved in SA-dependent invasion include EBA-175, which binds to the 

glycophorin A (GPA) receptor; EBL-1, which binds to the glycophorin B receptor; EBA-140, 

which binds to the glycophorin C receptor as well as EBA-181 and PfRH1, the receptors for 

which have not yet been identified (78). EBA-175 has been assessed in Phase I trials as a 
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protein-in-adjuvant formulation alone and with the blood-stage antigen merozoite surface 

protein 1 (MSP1), but the vaccine has not progressed to Phase II trials to date (79, 80).  

SA-independent invasion pathway antigens include PfRH4, which binds to complement 

receptor 1; PfRH5, which binds to basigin; MTRAP (found on all motile forms of the malaria 

parasite, including merozoites, sporozoites and ookinetes), which binds to semaphorin 7a; 

MSP1, which binds to band 3 and GPA (which, together, represent the most abundantly 

expressed protein within the plasma membrane of the erythrocyte) and, finally, apical 

membrane antigen 1 (AMA1), which binds to the merozoite rhoptry neck (RON) complex 

protein RON2 after it has been inserted into the erythrocyte membrane (78). The most widely 

studied antigens as blood-stage vaccine candidates are MSP1 and AMA1, both of which are 

considered vital for merozoite attachment to the erythrocyte and subsequent invasion, and 

both of which are antibody targets following infection with P. falciparum (81).  

MSP1 has been developed as a vaccine candidate in protein-in-adjuvant formulations as well 

as in viral vectors (82-84). None of the vaccines have demonstrated efficacy in human trials, 

but studies with MSP1 vaccines in Aotus monkeys have shown that sterile protection can be 

achieved after vaccination (85, 86), however, very high antibody titres are required and 

protection is strain-specific (86). This has significant implications for vaccine development as 

the adjuvants available for human use are not able to induce the same level of antibody 

response as adjuvants (such as Freunds) used in preclinical studies. Furthermore, the 

polymorphism of this antigen also has implications, and presumably leads to the strain-

specificity of vaccine efficacy. In one study site in Mali there were 14 haplotypes of the MSP1 

fragment involved in erythrocyte invasion, MSP119, found in 1363 malaria infections, indicating 

that even in one geographical site multiple polymorphisms are present (87).  

P. falciparum AMA1 is a precursor protein of 83 kDa (88) which is synthesised in the late stages 

of schizont development, before the N terminus is cleaved to give a 66 kDa form (89, 90). Prior 

to schizont rupture the 83 kDa AMA1 is located in the apical end of the merozoite in the 
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micronemes, whereas following schizont rupture AMA1 is localised both apically (in the 83 kDa 

form) and on the merozoite surface (in the 66 kDa form) (89). This surface protein binds to the 

rhoptry neck parasite protein, PfRON2, inserted by the parasite into the host red cell 

membrane, thus forming the tight / moving junction. At the merozoite surface further 

proteolytic cleavage occurs, producing two soluble fragments: a 44-kDa molecule and a 48-kDa 

molecule (91). Antibodies to AMA1 have been shown to prevent processing and circum-

merozoite redistribution and shedding of the protein. Without AMA1 undergoing these 

processes red blood cell invasion is inhibited (92). Vaccines against AMA1 have been 

developed using both protein-in-adjuvant and viral vector approaches. A study in Oxford with 

the viral vectored vaccines ChAd63/MVA AMA1 administered alone or with ChAd63/MVA 

MSP1 demonstrated low-level efficacy, but this was likely due to a pre-erythrocytic effect 

rather than efficacy during the blood-stage of infection (83). The leading recombinant protein 

vaccine, known as FMP2.1, was developed by the Walter Reed Army Institute of Research 

(WRAIR) and based upon the 3D7 clone sequence of AMA1 (93). This vaccine was formulated 

in the Adjuvant System AS01 or AS02 from GlaxoSmithKline (GSK) and had previously been 

tested in Phase I/IIa trials in the USA (94, 95) and in field trials in Malian adults and children 

(96, 97). The Phase IIb field trial in 400 Malian children using the FMP2.1/AS02 formulation 

was reported to show 64.3% efficacy (hazard ratio 0.36, 95% CI 0.08-0.86, P=0.03) in a pre-

defined secondary analysis against clinical malaria with 3D7-type parasites (defined by eight 

immunologically important AMA1 polymorphisms in the cluster 1 loop of domain I), although 

the number of cases meeting this definition was small (97, 98). This allele-specific efficacy, 

seen in the first malaria season, did not extend into the second season of follow-up (99). 

P. falciparum reticulocyte-binding protein homologue 5 is expressed in merozoites and 

localises to the apical complex. It is not found in P. vivax parasites but is expressed in all P. 

falciparum strains tested so far. Two reports have demonstrated that the gene is essential for 

parasite survival (i.e. cannot be knocked out) (100, 101). PfRH5 binds to its receptor basigin, 

the Ok blood group antigen, in a complex with two other P. falciparum proteins, PfRh5-
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interacting protein (PfRipr) and cysteine-rich protective antigen (CyRPA). During invasion, the 

three proteins co-localise and the junction formed between the merozoite and red blood cell. 

Binding of the complex to basigin triggers the release of Ca2+ and formation of the tight 

junction (102).  This interaction is essential for red blood cell invasion (103). No vaccines 

against the RH5 protein have previously entered clinical trials, but pre-clinical data have shown 

very promising results with high-level efficacy induced by PfRH5 vaccination against 

heterologous strain challenge in an in vivo Aotus monkey P. falciparum challenge model (104).  

No blood-stage P. vivax vaccines have previously reached clinical trial. The most promising 

antigen currently in clinical development is the Duffy-binding protein. As described above, 

interaction between DARC on the surface of red blood cells and region II of the Duffy-binding 

protein (PvDBP_RII) on the vivax parasite is essential for merozoite invasion of erythrocytes. 

Antibodies induced by a vaccine to this protein should therefore inhibit invasion. This is 

supported by i) the demonstration of naturally-acquired antibodies to this antigen in 

individuals living in vivax-endemic regions which can partially inhibit merozoite invasion in 

short term in vitro culture (105) and ii) the association of natural responses with protection 

against blood-stage P. vivax infection (31). The serological response to PvDBP_RII increases 

with age, which suggests a boosting effect through recurrent infections (106). A recombinant 

PvDBP_RII protein from the Salvador I reference strain has been expressed in E. coli and used 

to immunise Aotus monkeys with Freund’s adjuvant or Montanide ISA 720. This demonstrated 

the induction of high-titre specific antibodies and partial protection against challenge with 

Salvador I strain P. vivax blood-stage parasites, with the demonstration of longer pre-patency 

periods (i.e. before thick blood film positivity) as well as lower parasitaemias in the monkeys 

immunised with recombinant protein in Freund’s adjuvant compared with controls (107). 

There are conflicting arguments regarding the issue of polymorphism. The fact that PvDBP_RII 

is under positive selection has been demonstrated by the fact that most of the polymorphic 

residues in PvDBP are found in region II (28). This effect of immune pressure is also supported 
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by a higher frequency of non-synonymous mutations compared to synonymous mutations, 

suggesting that in populations tested PvDBP is under strong positive selection, and a decline in 

the frequency and diversity of PvDBP_RII haplotypes in blood samples from individuals living in 

an endemic area with increasing age. This was assumed to be due to the development of 

partial immunity to multiple vivax strains in adults, meaning that parasitaemias following 

infections are lower and more rapidly cleared compared with children who have not 

developed any natural immunity. However, this finding may also be due to difficulties in 

detecting variants in blood samples from adults in endemic areas due to the low parasitaemias 

(108). Polymorphism in PvDBP is likely to be a challenge for vaccine development. A study by 

Chootong et al in Thailand demonstrated that naturally-acquired PvDBP_RII antibodies do 

inhibit binding between PvDBP_RII and Duffy-positive erythrocytes, but inhibition activity did 

not correlate with the level of anti-PvDBP_RII responses seen (i.e. some ‘low responders’ 

showed high levels of inhibition whilst ‘high responders’ showed low levels). One explanation 

for this is a strain-specific response (109). However, it is claimed that conservation of the 

contact residues that form the DARC-recognition site would mean that vaccine-induced 

antibodies would provide protection across diverse strains (16). A study using monoclonal 

antibodies generated against PvBDP_RII examined their reactivity to a panel of seven allelic 

variants and showed that some monoclonal antibodies were broadly inhibitory when 

functionally assessed in an erythrocyte binding assay, whereas others were not. This 

demonstrates that a high titre of antibody alone may not be sufficient for protection, but the 

optimisation of antibody specificity is vital (28). Recently the structure of the first inhibitory 

monoclonal antibody (mAb) bound to PvDBP_RII has been identified, along with two other 

inhibitory mAbs against this antigen. These were found to recognise broadly conserved 

epitopes in the DBP sequence and will likely be effective against multiple strains. Using these 

structures, DBP vaccines can be designed to confer strain-transcending protection (110). 

Interestingly, the use of adjuvants which are Toll-like receptor (TLR) 4 agonists (e.g. AS02) has 

been shown to increase the breadth of the antibody response to PvDBP_RII and improve 
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antigen neutralisation when the recombinant protein is formulated with these (111), indicating 

that correct adjuvant choice for a blood-stage protein vaccine is also very important. 

The three blood-stage antigens used in the vaccines described in the trials in this thesis are 

AMA1, RH5 and PvDBP. Unlike AMA1, which does not have a known host receptor, but instead 

binds to the RON complex which is deposited in the erythrocyte by the merozoite (102), the 

receptors for RH5 (basigin) and PvDBP (DARC) are found on the surfaces of many different cells 

throughout the body. This potentially has implications for these vaccines as the antigen could 

potentially bind to cells expressing these receptors. Furthermore, other molecules also bind 

these receptors, for example, IL-8 and melanoma growth stimulating activity (MGSA) 

chemokines which bind DARC. The binding of these chemokines can block the binding of Duffy 

positive erythrocytes to P. vivax DBL domains, demonstrating that these binding sites overlap 

with those of the parasite but also that these chemokines bind competitively (16). Basigin also 

has a large number of molecules which interact with it in its various isoforms in different sites 

in the body (112). Notably, the binding of RH5 to basigin is a low affinity interaction, and easily 

blocked with a low concentration of anti-basigin monoclonal antibodies (103), suggesting RH5 

antigen would unlikely outcompete natural ligands if RH5 protein is administered as a vaccine. 

The competitive binding of other molecules to both of these receptors would perhaps also 

reduce the potential for binding of vaccine antigen. However, the main question arises as to 

what extent vaccine antigen would bind to these receptors in the context of immunisation. In 

the case of vaccines described in this thesis, viral vectored vaccines encoding the PvDBP and 

RH5 antigens are administered intramuscularly and it is therefore unlikely that antigen will be 

distributed widely beyond the draining lymph nodes; as has been demonstrated in mouse 

models comparing vaccination routes with MVA vaccines where intramuscular injection was 

associated with highly localised priming of the immune response (113). Most importantly, the 

immune responses induced by the vaccinations will be targeting parasite antigens rather than 

human receptors, so there should not be a risk in safety in inducing these immune responses, 



43 
 

whereas that would obviously not be the case if the responses were directed at widely 

distributed receptors. 

1.6.3 Transmission-blocking vaccines (sexual/mosquito-stages) 

The final class of malaria vaccines in development are the transmission-blocking vaccines 

(TBV). These aim to prevent onward transmission of the disease in endemic communities by 

blocking development of the parasite within the mosquito vector. Low levels of 

polymorphisms are expected in antigens expressed in the sexual- or mosquito-stages given 

they are under low human immune pressure, if any. The aim of a transmission-blocking 

vaccine is in control and elimination of malaria, particularly in areas of low endemicity or 

epidemics (23, 114). This type of vaccine potentially has issues regarding acceptability as it is 

an ‘altruistic’ vaccine. It does not offer direct protection to the individual, but if a community is 

vaccinated with a successful TBV the rates of malaria for that community will fall. These 

vaccines could also be used in combination with a pre-erythrocytic or blood-stage vaccine 

candidate to afford protection to the vaccinated individual as well as preventing transmission 

(115).  

Two transmission-blocking candidate vaccine antigens have reached Phase I clinical trials: P25 

(including the P. falciparum antigen Pfs25 and the equivalent P. vivax antigen, Pvs25) and 

Pfs230. A clinical study of a Pfs230 vaccine is currently being conducted in Mali but no results 

are yet available (NCT02334462). P25 is the most developed candidate in the clinical pipeline 

and the only TBV for which trial results have been published.  

P25 proteins are present on the ookinete surface of all Plasmodium species and are important 

for survival of the parasite within the mosquito midgut. P25 is expressed on the surface of 

Plasmodium gametes from the initiation of emergence through to ookinete invasion of the 

mosquito mid-gut (116). The flat, triangular P25 molecule forms a protective interlocking sheet 

on the surface of the ookinete, along with the Pfs28 protein. Pre-clinical studies have 
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demonstrated that vaccination with both Pfs25 and Pvs25 can produce transmission-blocking 

antibodies (117).  

Both Pfs25 and Pvs25 vaccines have reached Phase I clinical trials. Both antigens were given 

with the adjuvant Montanide ISA 51 but the trial had to be stopped early due to unexpected 

reactogenicity, which was thought to be due to the specific antigen-adjuvant combination 

(118). Another vivax transmission-blocking vaccine, Pvs25H adsorbed onto the adjuvant 

Alhydrogel, also reached Phase I clinical trials. Transmission-blocking activity was assessed by 

the ability of vaccine-induced antibodies to inhibit oocyst development in a mosquito 

membrane feeding assay using P. vivax infected blood from 12 patients. A positive correlation 

between antibody level (as measured by enzyme-linked immunosorbent assay [ELISA]) and the 

number of infected mosquitos was seen, with the five sera with the highest antibody levels at 

day 194 giving a 20-30% reduction in number of infected mosquitos, however transmission-

blocking activity was insufficient for a practical malaria transmission-blocking vaccine (114).  

A Phase Ia study of the Pfs25 antigen fused to a molecular adjuvant IMX313 (a chimeric version 

of the oligomerisation domain from chicken complement inhibitor C4bp) expressed in the 

ChAd63 and MVA viral vectors is currently ongoing in Oxford (NCT02532049). This follows 

promising pre-clinical data showing that vaccination with the Pfs25-IMX313 fusion led to a 10-

fold improvement in antibody immunogenicity as well as significantly better transmission-

blocking activity in a membrane feeding assay (119). Whether this improvement in 

immunogenicity (and efficacy) will be seen following vaccination in humans remains to be 

seen. 

1.7 Immune responses to vaccine adjuvants 

Adjuvants have long been used to increase the adaptive immune response to vaccination, 

particularly for subunit vaccines. Access to effective adjuvants has historically been difficult 

and therefore, one of the main advantages of the viral vectors used in two of the clinical trials 

described in this thesis was that, because they are live viruses, an adjuvant is not required. 
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One of the trials described in this thesis (VAC054; Chapter four) used an adjuvant, namely the 

Adjuvant System AS01, developed by GSK, with a recombinant protein antigen.  

The development of adjuvants has progressed from just aiming to increase the adaptive 

immune response to vaccination to also guide the type of response, thereby producing the 

most effective response for a particular pathogen. This has meant developing adjuvants to 

focus the response produced, e.g. inducing a T helper 1 (Th1) skewed response versus Th2 

cells; increasing memory cell generation; inducing a more rapid initial response and altering 

the breadth, affinity or specificity of the response (120). Developing improved adjuvants, 

especially for more challenging pathogens such as malaria, has meant recognising that a 

broader response than merely inducing antibodies is likely to be required, including cell 

mediated immunity with activated CD4+ and CD8+ T cells. Cytokines secreted by CD4+ T cells 

are able to activate macrophages as well as assisting the development of high-affinity 

antibodies and memory B cells by antibody-producing cells (121). Viral vectors are particularly 

effective at inducing a T cell response, and due to their direct infection of cells and the 

endogenous MHC class I antigen presentation pathway, are able to induce CD8+ T cell 

immunity directly. Protein vaccines however are exogenous and therefore require formulation 

with an adjuvant which facilitates entry into the MHC class I processing pathway, triggers 

activation of dendritic cells and the production of interferon (120). 

Adjuvants interact with the innate immune system initially, and through mimicking some 

aspects of the natural response to pathogens, can be used to tailor the adaptive response in 

order to maximise vaccine efficacy (121). The AS01 adjuvant used in VAC054 is liposome-based 

and contains 3-0-desacyl-4’ monophosphoryl lipid A (MPL), derived from the cell wall 

lipopolysaccharide of the Gram negative Salmonella minnesota R595 strain and QS21, a 

triterpene glycoside purified from the bark of the South American tree Quillaja saponaria 

(122).  
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MPL stimulates the activation of the innate immune system via Toll-like receptor 4 (TLR4), 

directly activating antigen-presenting cells (APCs) which express this receptor. This occurs 

through activation of NF-κB transcriptional activity and subsequent proinflammatory cytokine 

expression (e.g. TNF-α and IL-6) (123). The immune response to MPL has been found to be 

skewed towards a Th1 profile (required for protection against intracellular pathogens), with 

the promotion of IFN-γ production by Ag-specific CD4+ T cells (123, 124). Use of MPL in 

vaccines has been shown to typically boost serum antibody titres 10 to 20-fold compared with 

vaccine alone (125). QS21 stimulates CD8+ T cells and promotes antigen-specific antibody 

production, although the signalling pathways are not fully understood (121). 

Studies in mice have demonstrated that following intramuscular injection of AS01 cytokine 

levels increase in the muscle within 3 hours, suggesting production by local cells, including 

stromal cells. The antigen and adjuvant were cleared rapidly from the muscle, excluding a local 

depot effect that has been demonstrated with other adjuvants. The production of cytokines 

leads to the recruitment of neutrophils and monocytes to the muscles. Simultaneously, 

adjuvant and antigen are rapidly transported to the draining lymph nodes. There is an influx of 

neutrophils, monocytes, dendritic cells and T cell populations into the lymph node (121). The 

immune responses at the injection site following vaccination with the AS01 adjuvant are 

demonstrated in Figure 1-4. During migration to draining lymph nodes, dendritic cells recruited 

at the vaccination site present antigens and mature into efficient APCs. Within the lymph 

node, AS01 and antigen may activate resident dendritic cells and the activated dendritic cells 

go on to activate T cells which then differentiate into effector populations and later, into 

memory cells. CD4+ T cells secrete cytokines which stimulate antigen-specific B cells to divide 

into antibody-secreting cells and memory B cells. Memory cells and effector cells will 

ultimately enter the bloodstream from the lymph nodes (121).  

The differences between AS01 and other adjuvants include: a lack of depot effect; increased 

populations of activated APCs and a higher antigen-specific response with a synergistic effect 
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of MPL and QS21. The response is also directed towards a predominantly IFN-driven pathway, 

which is thought to contribute towards a stronger cellular immune response and promote 

antibody isotype switching (121).  

 

Figure 1-4: Immune responses following intramuscular vaccination with AS01-adjuvanted 
vaccine at the injection site. 

The immune response to an AS01-adjuvanted vaccine injected into a muscle involves multiple cellular 
interactions. The adjuvant effect requires the spatial and temporal co-localization of AS01 and antigen. 
The two immune-stimulatory components of AS01, MPL and QS-21, act synergistically together to 
stimulate the release of immune mediators by innate cells allowing an enhanced neutrophil and 
monocyte recruitment at the injection site. The AS01-adjuvanted vaccine induces an early and transient 
activation of the innate immune response. Cellular and cytokine responses peak at day 1 and are fully 
resolved by day 7 (121).  

(Reprinted from Expert Review of Vaccines, DOI: 10.1080/14760584.2016.1213632, Didierlaurent et al, 
with permission from Taylor and Francis) 
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1.8 Methods for investigating immune responses to vaccination 

Vaccines aim to induce a targeted immune response against the pathogen of interest. For most 

vaccines this equates to inducing a specific antibody response against the antigen or antigens 

in the vaccine. Antibodies are a particularly important immune mechanism for extracellular 

pathogens, but intracellular pathogens are better targeted by activated T cells. The most 

successful malaria vaccine to date, RTS,S, demonstrated that the main correlate of protection 

was a high antibody titre against the circumsporozoite protein, although low levels of induced 

CD4+ T cells may also contribute to vaccine efficacy (126-128). 

Measurement of vaccine-induced antibody can be done ELISA, which measures the presence 

of antigen-specific antibody in serum from a vaccinated or exposed individual. Antibody levels 

following ChAd63/MVA viral vectored vaccines typically peak around 4 weeks after the MVA 

boost vaccination (129). Protein-in-adjuvant vaccines are typically given in three doses 4 weeks 

apart, with the peak response seen 2 – 4 weeks after the final vaccination. This assay allows 

quantification of the antibody response by determining the antibody level as a µg/mL 

measure, although this requires conversion either by calibration free concentration analysis 

(CFCA) of antigen-specific antibody or by affinity purification of antigen-specific IgG (130). 

ELISAs can also be carried out to evaluate the avidity of the antibodies induced by vaccination, 

which gives an indication of antibody quality, and to assess the isotypes of the antibodies. 

Functional assays can be carried out to evaluate antibodies induced by vaccination using in 

vitro techniques. An example of this type of assay in P. vivax is the DARC binding inhibition 

assay, which measures functional binding of P. vivax Duffy-binding protein region II (PvDBP – 

the vaccine antigen) to the Duffy antigen receptor for chemokines. The presence of functional 

anti-PvDBP antibodies results in a relative level of percentage binding inhibition (16). In P. 

falciparum malaria, the growth inhibition activity (GIA) assay is used to assess antibody 

function. This involves adding purified IgG from vaccinated (or naturally immune) volunteers to 

a culture of parasitised human erythrocytes and measuring subsequent parasite growth after 
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40 hours of culture using a biochemical assay specific for parasite lactate dehydrogenase 

(LDH). Results are then compared with results obtained from parasites incubated with a pool 

of malaria-naïve human serum (control) and with uninfected erythrocytes (131). Antibodies 

with functional activity against blood-stage malaria will inhibit growth of P. falciparum in 

culture, and this has been found to correlate with the antibody level induced by vaccination 

(130). This assay cannot be used to assess the functional activity of P. vivax blood-stage 

vaccine candidates as the parasite does not survive long-term culture, but an ex vivo invasion 

inhibition assay has been developed for use in endemic countries (as it requires access to 

clinical isolates of P. vivax) which has demonstrated that a monoclonal antibody against DARC 

is able to almost completely inhibit invasion and provides a potential method for assessing 

antibodies induced by vaccination (132). 

Cell-mediated vaccine-induced immune responses can be measured by the production of 

interferon gamma (IFN-γ) by antigen-specific T cells. This is done using the ex-vivo IFN-γ 

enzyme-linked immunospot (ELISPOT). This assay allows enumeration of T cells and detection 

of individual IFN-γ-secreting cells from stimulated human peripheral blood lymphocytes (133). 

T cell responses typically peak 2 weeks after vaccination with a simian adenoviral vectored 

vaccine and a week after MVA boost. Protein-in-adjuvant vaccines typically do not induce a 

marked T cell response, but the AS01 adjuvant developed by GSK has been designed with a 

specific aim to improve cell-mediated immunity (122). 

1.9 Methods for evaluating malaria vaccine efficacy 

Whilst the in vitro methods described above give some information about the functional 

activity of antibodies induced by vaccination, this does not necessarily translate to vaccine 

efficacy. Animal models have been used for many years to study the mechanisms of 

Plasmodium infection, immunity against the parasite and in the development of vaccines 

(which first began in the 1940s) (58, 59) and antimalarial drugs. The most widely used model is 

the murine model in which mice can be infected with one of four rodent malaria species (P. 
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berghei, P. chabaudi, P. vinckei, or P. yoelii) or, more recently, with P. falciparum malaria in 

Severe Combined Immunodeficiency (SCID) mice receiving continuous injection of human 

erythrocytes (134). The mouse model has been very useful in furthering understanding of the 

malaria parasite(s), but there are limitations in the comparisons that can be made between 

murine and human malaria. Non-human primate models have also been used, with various 

primate malarias providing useful models for studying syndromes seen with human malaria- 

for example, P. cynomolgi which is very similar to P. vivax (135). Whilst these models provide 

key pre-clinical data for vaccine development, an effective vaccine in an animal model often 

does not translate into an effective human vaccine, necessitating human trials to assess 

efficacy. 

The traditional method for assessing vaccine efficacy is to vaccinate a population at risk of the 

disease and compare the outcome to unvaccinated controls in Phase II or Phase III efficacy 

trials. These trials typically require large numbers of participants and there are many 

unpredictable and confounding factors such as differences in annual rainfall and co-infections 

with other pathogens. The only malaria vaccine to have reached Phase III trials to date is the 

RTS,S vaccine developed by GSK. The efficacy of this vaccine was assessed in over 15,000 

children at eleven centres in seven sub-Saharan African countries with moderate efficacy 

which waned during the follow-up period (57). These types of study obviously involve huge 

cost and logistics, and therefore it is prudent only to take forward vaccines which have shown 

promise at an earlier phase into these large studies. 

For many years the malaria field has used the controlled human malaria infection (CHMI) 

model to enable small proof-of-concept efficacy studies to take place in non-endemic settings 

and allow early indications of vaccine efficacy. These studies have several advantages over the 

traditional field efficacy trials as they require much smaller numbers of participants, can be 

conducted in non-endemic settings in a controlled environment, allow specific strains of 

malaria to be assessed and are not subject to the unpredictability of seasonal malaria 
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outbreaks. The CHMI model has particularly been used for P. falciparum studies, but several P. 

vivax CHMI studies have also now been carried out (77, 136, 137). There are several methods 

for CHMI, including via mosquito bite (11, 83, 95, 138), via injection of cryopreserved 

sporozoites (139) and by intravenous injection of parasitised red blood cells (11, 140, 141).  

CHMI vaccine efficacy studies involve deliberately infecting volunteers vaccinated with the 

candidate vaccine alongside unvaccinated infectivity controls and monitoring them for 

development of clinical malaria. Patent parasitaemia is either diagnosed by thick blood film or 

when a predetermined threshold is reached on parasite level detected by quantitative 

polymerase chain reaction (qPCR). Treatment is commenced either at the point of diagnosis or 

at the end of the follow-up period if the volunteer has been protected from malaria. This 

method of assessing vaccine (or drug) efficacy is used in several centres around the world and 

has been found to be a safe and useful tool for early vaccine efficacy assessment. The ease 

with which the infection can be diagnosed, as well as its well-known time course and the 

availability of completely effective treatment mean that this mechanism for studying malaria 

has been accepted. These studies are obviously still subject to limitations from both an ethical 

point of view (using as few volunteers as possible to answer the study question) and a logistical 

point of view given the close follow-up of volunteers that is required after infection. 

1.10 Development of viral vectored malaria vaccines 

Development of effective malaria vaccines is difficult for many reasons. Immunity to malaria is 

complex and not fully understood, and vaccines have struggled to elicit adequate levels of 

protective antibody or a broad enough response. Protein vaccines have been the most 

commonly developed vaccines. Proteins have to be given with a potent adjuvant in order for 

them to achieve adequate immunogenicity. Access to adjuvants is limited and combination 

with an adjuvant may produce unacceptable side effects. Protein vaccines also have other 

drawbacks. Producing conformationally correct proteins to Good Manufacturing Practice 

(GMP) standard can be difficult, as has been seen with production of the PvDBP_RII protein 
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(Chetan Chitnis, International Centre for Genetic Engineering and Biotechnology, India; 

personal communication).  

For some years viral vectors have been being developed as an alternative method of 

vaccination to bypass some of these issues. The viruses encode malaria antigens of interest 

that are then expressed when the viruses are taken up in the body. Viral vectored vaccines 

have been used in a wide range of pathogens including respiratory syncytial virus (RSV) (142), 

human immunodeficiency virus (HIV) (143, 144), malaria (84, 145-148), tuberculosis (149), 

Hepatitis C (150), influenza (151, 152), Ebola (153). and human papilloma virus (HPV) (154) The 

simian adenovirus ChAd63 and MVA vectors have been used in previous vaccine trials in 

Oxford encoding the P. falciparum malaria antigens ME-TRAP, AMA1, MSP1 and CS (83, 84, 

129, 138, 155). The viral vectors are unable to replicate in human cells but are able to produce 

strong antigen-specific antibody and T cell responses following heterologous prime-boost 

vaccination (83, 84, 129, 148). Viral vectors had not previously been used in clinical trials of P. 

vivax vaccines but have been shown to be immunogenic in pre-clinical models (156, 157). Viral 

vectored vaccines have also been developed for the P. falciparum antigen RH5, which have 

been shown to be immunogenic in pre-clinical studies, with efficacy against blood-stage CHMI 

in Aotus monkeys (104, 158). 

1.10.1 The ChAd63 Viral Vector 

ChAd63 is a simian adenovirus. These adenoviruses exhibit hexon structures homologous to 

human adenoviruses and are not known to cause pathological illness in humans. Hexons are 

the major capsid proteins in adenoviruses; they are potently immunogenic and the main target 

of neutralising antibodies. Simian adenoviruses have been developed as viral vectors following 

concerns that pre-existing immunity to human adenoviral serotypes could limit future 

widespread use of these viruses (159). Low titres of neutralising antibodies to chimpanzee 

adenoviruses are found in less than 5% of humans in the US (160). The essential E1 gene 

region of the virus has been deleted so the ChAd63 vaccine vector is replication-deficient. The 
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virus cannot propagate in human cells within the body as it requires cells expressing E1 gene 

products. The E3 locus is additionally deleted, and the E4orf6 region has been replaced with 

that from AdHu5. These measures prevent homologous recombination with the E1 gene from 

the producer cell line and subsequent production of replication competent virus, and improve 

the yield of the ChAd63 virus during production. 

The ChAd63 viral vector encoding various malaria antigens, including ME-TRAP, AMA1, MSP1 

and CS has been administered to over 1000 individuals through studies conducted by the 

Jenner Institute in the UK and Africa. There have been no significant safety concerns relating to 

these vaccines. ChAd63 vaccine doses are measured in viral particles (vp). Doses of up to 2 x 

1011 vp have been safely administered to healthy UK adults. 

1.10.2 The MVA Viral Vector 

MVA is a highly attenuated poxviral vector and as such, is unable to replicate efficiently in 

human and most other mammalian cells (161). The vector’s viral and recombinant gene 

expression is unimpaired as the replication defect occurs at a late stage of virion assembly 

(162). The MVA vector was attenuated by continually passaging the chorioallantois vaccinia 

Ankara (CVA) strain on chicken embryo fibroblast cells over 570 times, resulting in six deletions 

in the CVA genome and multiple mutations (163, 164). MVA was licensed for use in Germany 

in 1977 and administered to over 120,000 individuals as a pre-vaccine before the second 

traditional smallpox vaccination was administered. Pre-vaccination with MVA led to lower 

reactogenicity following the smallpox vaccine (163). 

MVA-based vaccine constructs have now been developed for use in studies of a wide range of 

infections including HIV (143, 144), malaria (83, 84, 129, 145, 148), Hepatitis C (150), 

tuberculosis (149) and Ebola (153). These studies have demonstrated that the vector is safe 

and immunogenic and, despite being highly attenuated, induces strong cellular immune 

responses (165). Previous vaccine regimes using MVA boost following an adenovirus prime 

have shown significant boosting of the cellular and humoral immune responses against the 
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encoded transgene in clinical studies (83, 84, 129). MVA vaccine doses are measured in 

plaque-forming units (pfu). 

1.11 Hypothesis and aim of work 

The hypothesis relating to work in this thesis is that blood-stage Plasmodium falciparum and 

Plasmodium vivax vaccines can be developed by targeting antigens which the parasites require 

in order to invade human red blood cells. 

The aim of this work is to evaluate three candidate malaria vaccines, one P. vivax vaccine and 

two P. falciparum vaccines, in three clinical trials. Two of these trials (VAC051 and VAC057) will 

be Phase Ia first-in-human studies assessing the safety and immunogenicity of the vaccines in 

healthy volunteers. The vaccines in both of these studies are based on the ChAd63 and MVA 

viral vectors encoding a blood-stage malaria antigen.  

Chapter three describes a Phase Ia trial (VAC051) of ChAd63 and MVA encoding the PvDBP 

transgene for the P. vivax vaccine. The hypothesis for this vaccination regime is that the 

vaccine will be safe and antibodies induced by vaccination will have activity against P. vivax 

Duffy-binding protein, as assessed in a functional assay examining binding between DBP and 

its receptor, DARC. 

Chapter four examines a vaccine which has previously demonstrated evidence of some strain-

specific efficacy in a field trial but not against CHMI. This study will assess the safety, 

immunogenicity and efficacy of the P. falciparum candidate blood-stage vaccine FMP2.1/AS01. 

Efficacy will be assessed using blood-stage CHMI with a malaria strain homologous to the 

vaccine strain. The hypothesis is that the parasite multiplication rate (PMR) in vaccinated 

volunteers will be lower than in unvaccinated infectivity controls due to the vaccine-induced 

immune response to the P. falciparum antigen AMA1. 

Chapter five describes the Phase Ia trial (VAC057) of the ChAd63 and MVA vectors encoding 

the RH5 transgene for a P. falciparum vaccine. The hypothesis for this trial is that the 
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ChAd63/MVA RH5 vaccination regime will be safe and immunogenic in healthy volunteers, and 

induce functional antibodies which are able to inhibit parasite growth in vitro. 

1.12 Authorship statement  

The work presented in this Thesis relating to the clinical trials described in Chapters three to 

five is part of a collaborative effort. Unless otherwise stated, I undertook the work described. 

The conduct of the trials was greatly assisted by the Jenner Institute Clinical Trials team, 

including Alison Lawrie, Rachel Roberts, Ian Poulton, Natalie Lella, Mary Smith, Raquel Lopez 

Ramon, Oliver Griffiths, Megan Baker, Celia Mitton, Paula Marriott, Charlotte Tyson, Emma 

Bakpa, Tommy Rampling, Navin Venkatraman and Morven Wilkie. The VAC054 trial (Chapter 

four) was also conducted at sites in London (Imperial NIHR/ Wellcome Trust Clinical Research 

Facility [WTCRF]) and Southampton (NIHR WTCRF). VAC057 (Chapter five) was also conducted 

in Southampton. I am very grateful to all staff involved in the study teams at both sites for 

their help in recruiting and following-up participants for these studies. All trials were 

sponsored by the University of Oxford, and Professor Adrian Hill was Chief Investigator. 

Sarah Silk, Sean Elias and Kathryn Milne processed and stored samples for immunological 

analyses (Chapters three to five) and Nick Edwards performed the qPCR (Chapter four). 

Rebecca Brown and Simon Draper prepared the blood-stage inoculum for blood-stage CHMI 

(Chapter four). Simon Draper and Alexander Douglas assisted with the parasite modelling 

(Chapter four).  

Blood samples for haematology, biochemistry and serology (for Epstein Barr virus [EBV], 

cytomegalovirus [CMV], HIV, Hepatitis B and C) were processed at the Oxford University 

Hospitals’ NHS Foundation Trust laboratories, Oxford (Chapters three to five), at the University 

Hospital Southampton NHS Foundation Trust laboratories, Southampton (Chapters four and 

five) and at Imperial College Healthcare NHS Trust laboratories, London (Chapter four). 
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Chapter two: 

Materials and Methods 
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2.1 Materials 

2.1.1 Vaccines 

2.1.1.1  ChAd63 PvDBP 

ChAd63 is a replication-deficient simian adenovirus, as described in Section 1.9.1. ChAd63 

PvDBP expresses the Plasmodium vivax antigen PvDBP, which is a synthetic gene insert 

encoding the conserved, cysteine-rich Region II of the P. vivax Duffy-binding protein. The 

sequence in the vaccines is based on the Salvador I (SalI) strain of P. vivax, amino acids (αα) 

194–521. The PvDBP_RII sequence was fused with the human tissue plasminogen activator 

(tPA) secretory leader sequence and the transgene is driven by a CMV promoter (157). tPA 

ensures the PvDBP_RII antigen is secreted from the immunised (virally infected) cell. In the 

vast majority of cases P. vivax requires interaction between the Duffy-binding protein and 

DARC in order to invade red blood cells. 

ChAd63 PvDBP was manufactured under GMP conditions by the Clinical Biomanufacturing 

Facility (CBF), University of Oxford, and supplied as a liquid in sterile aliquots in 2.0 mL clear 

glass vials. ChAd63 PvDBP was supplied to the clinical site by the CBF having been labelled for 

investigational use only. The vaccine was stored in a locked, temperature controlled freezer 

between -70⁰C and -90⁰C, and all movements/ administration of the vaccine were recorded in 

an accountability log. 

2.1.1.2  MVA PvDBP 

MVA is a highly attenuated vector that is unable to replicate efficiently in human and most 

other mammalian cells, as described in Section 1.9.2 (161). MVA PvDBP is a recombinant MVA 

expressing the P. vivax antigen PvDBP. The insert is the same as that used in the ChAd63 

PvDBP vaccine. 

MVA PvDBP was manufactured under GMP conditions by IDT, Germany and supplied as a 

liquid formulation in Tris buffer. The virus suspension was supplied as sterile aliquots in 2.0 mL 

clear glass vials. Final batch certification and associated labelling took place at the CBF. The 
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vaccine was stored in a locked, temperature controlled freezer between -70⁰C and -90⁰C, and 

all movements/ administration of the vaccine were recorded in an accountability log. 

2.1.1.3  FMP2.1/AS01B 

The vaccine FMP2.1 is a recombinant protein of the Plasmodium falciparum 3D7 clone of 

AMA1. It was produced under GMP at the WRAIR BioProduction Facility. FMP2.1 is a 

lyophilised preparation of the majority of the ectodomain of P. falciparum AMA1. The gene 

encoding the FMP2.1 protein was chemically synthesized to contain an E. coli-optimized codon 

usage to encode 478 amino acids representative of amino acids 83 to 531 of the AMA1 protein 

with two attached His-tags. The amino acid sequence is: MAHHHHHHPGGSGSGTMH-[AMA1 

amino acids 83 to 531]-AAALEHHHHHH. 449 of the amino acids are derived from the merozoite 

protein AMA1 of the 3D7 clone of P. falciparum. The protein is produced in and purified from 

E. coli bacteria (93, 95, 97). The vaccine was administered with AS01B, a liposome-based 

Adjuvant System developed by GlaxoSmithKline (GSK) (122). Mixing of the vaccine and AS01B 

took place immediately before vaccination. 

The vaccine and adjuvant were labelled and released for investigational use only in trial 

VAC054 by the CBF, and then transferred to the clinical sites. Both the vaccine and adjuvant 

were stored between +2 and +8°C in a locked fridge. 

Further details about the vaccine and adjuvant can be found in Chapter four. 

2.1.1.4  ChAd63 RH5 

ChAd63 RH5 is a recombinant replication-defective chimpanzee adenovirus expressing the 

Plasmodium falciparum antigen RH5; a synthetic gene insert encoding the reticulocyte-binding 

protein homologue 5 (PfRH5) which is one of the reticulocyte binding-like (RBL or P. falciparum 

RBP homologue (PfRH)) proteins which are involved in parasite invasion of red blood cells. 

PfRH5 is expressed in all P. falciparum strains tested so far, and is essential for parasite survival 

given two reports that the gene cannot be knocked out (100, 101). PfRH5 binds to its receptor 

basigin, the Ok blood group antigen, and this interaction mediates an essential interaction 
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required for red blood cell invasion by all tested strains of P. falciparum (103). A full-length 

PfRH5 transgene based on the 3D7 clone of P. falciparum was used in the ChAd63 RH5 vaccine 

(104). Similar to the ChAd63 PvDBP vaccine described above, the antigen was fused with the 

tPA secretory leader sequence and the transgene is driven by a CMV promoter. 

ChAd63 RH5 was manufactured under Good Manufacturing Practice (GMP) conditions by 

ADVENT S.r.l. (GSK) and supplied as a liquid in sterile aliquots in 2.0 mL clear glass vials. Final 

batch certification and associated labelling took place at the CBF before transfer to the clinical 

sites. The vaccine was stored in a locked, temperature controlled freezer between -70⁰C and -

90⁰C, and all movements/ administration of the vaccine were recorded in an accountability 

log. 

2.1.1.5  MVA RH5 

MVA RH5 is a recombinant MVA expressing the P. falciparum antigen PfRH5. MVA RH5 used 

the same vector described above for MVA PvDBP and the same antigen insert as ChAd63 RH5. 

MVA RH5 was manufactured under GMP conditions by IDT, Germany and supplied as a liquid 

formulation in Tris buffer. The virus suspension is supplied as sterile aliquots in 2.0 mL clear 

glass vials. Final batch certification and associated labelling took place at the CBF before 

transfer to the clinical sites. The vaccine was stored in a locked, temperature controlled freezer 

between -70⁰C and -90⁰C, and all movements/ administration of the vaccine were recorded in 

an accountability log. 

2.1.2 Plasmodium falciparum Controlled Human Malaria Infection Inoculum 

The infectious inoculum for the CHMI study (VAC054; Chapter four) was produced by Drs 

Gregor Lawrence, Allan Saul and colleagues at the Queensland Institute of Medical Research 

(QIMR) in Brisbane, Australia in 1994 (166). The protocol for the study was reviewed and 

approved by the QIMR Ethics Committee and the Healthy Volunteer Studies Research Ethics 

Subcommittee, Lothian Health Board (Edinburgh). Procedures were designed to minimise the 

risk of other infectious agents in the cryopreserved samples. 
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Laboratory-reared Anopheles stephensi mosquitoes were infected with the P. falciparum clone 

3D7 (a chloroquine-sensitive strain) by membrane feeding on a blood meal containing 

gametocytes. Ten and fourteen days later, the mosquitoes were fed on two volunteers. 

Parasitaemia in the volunteers was followed by daily microscopy from day 4 after infection. 

Blood was taken from the volunteers 6 hours after they developed fever, when both were 

microscopically parasite positive. The volunteers were treated with chloroquine soon after 

blood was drawn with complete recovery. 

Initial development of the blood inoculum used in VAC054 is described by Cheng et al. 1997 

(166). The inoculum used for all volunteers comes from one of the donors described above. 

This is because the second donor (whose blood has not been used) had a much lower 

parasitaemia (140).Blood was collected at the Australian Red Cross Blood Bank in an aseptic 

manner using standard blood bank equipment. The leukocytes were removed with a leukocytic 

filter. The thawing and washing of the cells reduced the amount of serum transferred with the 

red cells by a factor of 1000, compared to injecting the same volume of blood. The volume of 

inoculum to be given to each volunteer contains a very small volume of red blood cells, 

equivalent to only 1.5 to 4 microlitres of blood.  

The red cells were cryopreserved using a protocol from the American Association of Blood 

Banks Technical Manual that is normally employed for freezing blood from patients and donors 

with rare blood groups. Blood from both volunteers was group O and Rhesus negative (166).  

The P. falciparum CHMI inoculum is stored cryopreserved in vapour phase liquid nitrogen at -

178⁰C (-160⁰C to -196oC) at Fisher BioSciences in Herefordshire, UK, in compliance with the 

requirements of ISO 9001:2015. The inoculum has been temperature monitored throughout 

the long term storage at this facility. 
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2.1.3 Buffers and solutions 

LymphoprepTM: ready-made, sterile and endotoxin tested solution for isolation of pure 

lymphocyte suspensions (Axis Shield 1114545). 

R0: Cell culture media consisting of 500mL RPMI (Sigma R0883) with 5 mL Pen/strep (0.1 

mg/mL) (Gibco BRL/Invitrogen 15140-122) and 5mL L-glutamine (4mM) (Gibco 25030-24). 

R10: Cell culture media consisting of 500mL RPMI (Sigma R0883) with 5mL Pen/strep (0.1 

mg/mL) (Gibco BRL/Invitrogen 15140-122), 5mL L-glutamine (4mM) (Gibco 25030-24) and 

50mL heat-inactivated, filtered standard foetal calf serum (FCS) (Biosera S1810). 

Red blood cell (RBC) lysis solution: (Qiagen 158902/4). 

Phosphate buffered saline (PBS): 0.01 M (Sigma P3813): NaCl 0.138 M; KCl - 0.0027 M, pH 7.4. 

Sachets reconstituted in distilled or deionised water. 

PBS/Tween: PBS (Gibco 21600-069) 0.01M Tween 0.05%: made by dissolving sachets in dH2O. 

Dimethyl sulfoxide (DMSO): sterile filtered and endotoxin tested (Sigma D2650). 

Staphylococcal enterotoxin B (SEB): Superantigen consisting of a single polypeptide chain 

containing 239 amino acids which induces apoptosis in T cells (Sigma S4881). 

StartingBlockTM T20 Solution: T20 in PBS blocking buffer (Fisher 10270404). 

Development Buffer (DB): 4-Nitrophenylphosphate tablets (Sigma N2765) dissolved in 

diethanolamine buffer (Fisher 34064) to give final concentration of 1mg/ml. 

Casein: blocking buffer (ThermoFisher 37528). 

DPBS: Dulbecco’s phosphate buffered saline (Sigma D8537). 

NaSCN: Sodium thiocyanate (Sigma 251410). 

Extravidin-AP: Extravidin-alkaline phosphatase buffered aqueous solution in 0.05 M Tris-HCl 

buffer, pH 8.0, containing 1 mM MgCl2, 1% bovine serum albumin and 15 mM sodium azide 

(Sigma E2636). 
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BCIP/NBT: 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium plus solution – 

ELISPOT developing buffer (Europa bioproducts Ltd M0711A-1000). 

Diphtheria toxoid: diluted in PBS to 10 µg/mL (NIBSC 02/176) 

SAC: Staphylococcus aureus Cowans Strain (Calbiochem 507858). 

CpG-2006: 0.2mg/mL (TCG-TCG-TTT-TGT-CGT-TTT-GTC-GTT) (Invivogen) 

PWM: Pokeweed mitogen made up to 1 mg/mL stock (Sigma L-9379) 

2.1.4 Recombinant proteins 

Recombinant PvDBP_RII protein was produced at the Jenner Institute in the Drosophila S2 

expression system (Expres2ion). Recombinant DARC (His-tagged) was produced at the Jenner 

Institute. Recombinant PfAMA1 was produced at the Jenner Institute in HEK293 cells (3D7 

clone) (167) and provided by an external collaborator, Dr Mike Blackman (NIMR, London, UK) 

(FVO clone). Recombinant PfMSP119-GST fusion proteins were produced in E. coli (168) and 

purified by affinity chromatography according to Jenner Protocol J136. Recombinant PfRH5 

was produced at the Jenner Institute in Drosophila S2 cells (169). These recombinant proteins 

were used for secondary assays described below. 

2.2 Methods: Study preparation, participant enrolment and 

safety analysis  

For each trial I prepared the study documents which were then reviewed and approved by the 

Sponsor (Clinical Trials Research Governance department, CTRG, University of Oxford). 

Following Sponsor approval, each trial was submitted for ethical approval to the National 

Research Ethics Service (NRES) Oxford A ethics committee and to the Medicines and 

Healthcare products Regulatory Agency (MHRA). For VAC054 (Chapter four) and VAC057 

(Chapter five) approval from the Research and Development departments at the NHS 

collaborating sites was applied for and gained prior to starting the trials at these sites. The 

VAC054 trial also underwent ethical review by the Western Institutional Review Board (WIRB) 
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in the USA as a condition of funding (the trial was funded by USAID). The VAC051 (Chapter 

three) and VAC057 trials also received approval by the Genetic Modification Safety Committee, 

Oxford University Hospitals NHS Trust to use the viral vectored vaccines as a Class I activity 

under the Genetically Modified (Contained Use) Regulations 2000.  

The Chief Investigator for all trials was Professor Adrian Hill, but the conduct of the trials was 

delegated to me as lead clinician. All trials were monitored to ensure the rights and wellbeing 

of human subjects were protected and that the conduct of the study was in compliance with 

the protocol, regulatory and ICH GCP requirements. All monitoring for these studies was 

carried out by CTRG. 

Study-specific methods, such as study design, approvals and inclusion/exclusion criteria are 

described in the Chapters relating to each trial (see Chapters three to five). 

2.2.1 Recruitment of volunteers 

Healthy volunteers were recruited to the studies by various means. Advertising was carried out 

with posters approved by the Oxford ethics committee in public places and in 

newspapers/advertising leaflets. There are healthy volunteer databases at the sites used in 

Oxford, Southampton and London through which some volunteers were contacted. The 

department has a website through which information about the trials and contact details for 

arranging a screening visit can be found. Social networking sites (Facebook and Twitter) were 

also used to inform potential participants about the trials. Recruitment of volunteers was 

coordinated in Oxford and London by the Recruitment Coordinator (Sam French and Natalie 

Lella) and in Southampton by their local study team. Once interest in a trial had been 

registered the volunteer was sent the Participant Information Sheet (Appendix 1) by email and 

invited to attend a screening visit. For all studies there was a minimum of 24 hours between 

the information sheet being sent out and the volunteer attending a screening visit. 
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2.2.2 Screening Visit and Informed Consent 

The screening visits took place up to 90 days before participants were enrolled in the study 

(participants were considered to be enrolled once they had received a vaccination). At this visit 

the information sheet is explained to the volunteer and they were given the opportunity to ask 

any questions. This was carried out by me for volunteers recruited in Oxford and London, and 

by the local study team in Southampton. The details of the trial, the potential risks and the 

responsibilities of the participant once enrolled were explained before volunteers signed a 

consent form (Appendix 2). For the VAC054 trial (Chapter four) volunteers were also required 

to complete an informed consent questionnaire (Appendix 3) to ensure they had understood 

the information and risk relating to the trial, in particular to malaria infection. Participants had 

to answer all questions correctly but were allowed to re-take the same questionnaire following 

further discussion if they failed to do this on their first attempt. The following general 

principles were emphasised: 

 Participation in the study is entirely voluntary. 

 Refusal to participate involves no penalty or loss of medical benefits. 

 The volunteer may withdraw from the study at any time. 

 The volunteer is free to ask questions at any time to allow him or her to understand 

the purpose of the study and the procedures involved. 

 The study involves research of an investigational vaccine. 

 There is no direct benefit from participating. 

 The volunteer’s GP will be contacted to corroborate their medical history. 

 The volunteer will be registered on the TOPS database (The Over-volunteering 

Prevention System; www.tops.org.uk). 

 The volunteer’s blood samples taken as part of the study will be stored indefinitely and 

samples may be sent outside of the UK and Europe to laboratories in collaboration 

with the University of Oxford. These will be anonymised. 
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If the volunteer consented to participate in the study, they were then asked details of their 

medical history and underwent a physical examination, as well as baseline blood tests (full 

blood count, urea & electrolytes, liver function tests and serology for Hepatitis B, Hepatitis C 

and HIV). Their GP was contacted by letter, giving information about the trial, and asked to 

respond to try to ensure any medical or psychiatric reasons for exclusion from the trials (which 

had not been disclosed by the volunteer at screening) were picked up. For VAC054 an ECG was 

carried out, and cholesterol and magnesium levels were also checked with the other 

biochemistry tests. 

The inclusion and exclusion criteria for each trial are detailed in each trial Chapter. 

2.2.3 Study design and procedures 

The study design for each trial is detailed in the Chapter relating to that trial (i.e. Chapter three 

for VAC051, Chapter four for VAC054 and Chapter five for VAC057). The schedules of 

attendance for volunteers taking part in each study can be found in Appendix 4. Data at clinic 

visits were recorded into the case report form (CRF) by study staff. This was a paper CRF in the 

VAC051 trial, with anonymised data subsequently entered into an OpenClinica database, with 

double data entry carried out by two members of the study team for each visit entry. In the 

VAC054 and VAC057 trials, data were entered directly into an electronic CRF (eCRF) in clinic so 

this functioned as both source data and database. Blood tests carried out at the NHS 

laboratories were received as paper reports which were signed off by me in Oxford, or one of 

the clinicians at other trial sites. These results were then entered into the OpenClinica 

database by study staff. For all interim and final analyses data were exported from the 

OpenClinica database and processed by the data manager (Jack Quaddy) before I analysed the 

data.  

2.2.4 Assessment of Safety 

The safety of the vaccines in the three clinical trials discussed in this thesis was assessed using 

actively and passively collected data on any adverse events (AEs) as described in the ‘Methods’ 
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section of each trial Chapter. Participants were asked to record both solicited and unsolicited 

AEs on diary cards (paper or electronic) given to them on the day of vaccination. Examples of 

the diary cards used are included in Appendix 5. Data from paper diary cards were entered into 

the OpenClinica database by study staff. The electronic diaries (eDiaries) were analysed 

directly as AE data were exported already processed into an Excel spreadsheet directly from 

the diaries. Safety was assessed by the frequency, incidence and nature of AEs and serious 

adverse vents (SAEs) arising during the study. 

For each vaccine a Development safety update report (DSUR) was submitted to the regulatory 

authority annually whilst the trials were ongoing. This contained safety information relating to 

the vaccine over the preceding year. In addition, the Investigator Brochures were also updated 

annually with new safety information. 

2.2.4.1  Definitions 

Adverse Event (AE) 

An AE is any untoward medical occurrence in a volunteer, which may occur during or after 

administration of an Investigational Medicinal Product (IMP) and does not necessarily have a 

causal relationship with the intervention. An AE can therefore be any unfavourable and 

unintended sign (including an abnormal laboratory finding), symptom or disease temporally 

associated with the study intervention, whether or not considered related to the study 

intervention. 

Adverse Reaction (AR) 

An AR is any untoward or unintended response to an IMP. This means that a causal 

relationship between the IMP and an AE is at least a reasonable possibility, i.e., the 

relationship cannot be ruled out. All cases judged by the reporting medical Investigator as 

having a reasonable suspected causal relationship to an IMP (i.e. possibly, probably or 

definitely related to an IMP) will qualify as adverse reactions. 
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Unexpected Adverse Reaction  

An adverse reaction, the nature or severity of which is not consistent with the applicable 

product information (e.g. the Investigator’s Brochure [IB] for an unapproved IMP) is 

considered as an unexpected adverse drug reaction (ADR). 

Serious Adverse Event (SAE) 

An SAE is an AE that results in any of the following outcomes, whether or not considered 

related to the study intervention. 

 Death  

 Life-threatening event (i.e., the volunteer was, in the view of the Investigator, at 

immediate risk of death from the event that occurred). This does not include an AE 

that, if it occurred in a more severe form, might have caused death. 

 Persistent or significant disability or incapacity (i.e. substantial disruption of one’s 

ability to carry out normal life functions). 

 Hospitalisation, regardless of length of stay, even if it is a precautionary measure for 

continued observation. Hospitalisation (including inpatient or outpatient 

hospitalisation for an elective procedure) for a pre-existing condition that has not 

worsened unexpectedly does not constitute a serious AE. 

 An important medical event (that may not cause death, be life threatening, or require 

hospitalisation) that may, based upon appropriate medical judgment, jeopardise the 

volunteer and/or require medical or surgical intervention to prevent one of the 

outcomes listed above. Examples of such medical events include allergic reaction 

requiring intensive treatment in an emergency room or clinic, blood dyscrasias, or 

convulsions that do not result in inpatient hospitalisation. 

 Congenital anomaly or birth defect. 

 

Serious Adverse Reaction (SAR) 

An adverse event (expected or unexpected) that is both serious and, in the opinion of the 

reporting Investigator or Sponsors, believed to be possibly, probably or definitely due to an 

IMP or any other study treatments, based on the information provided. 
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Suspected Unexpected Serious Adverse Reaction (SUSAR) 

A serious adverse reaction, the nature and severity of which is not consistent with the 

information about the medicinal product in question set out in the IB or Summary of Product 

Characteristics (SmPC). 

Solicited AEs 

Solicited AEs are those commonly seen after vaccination, and are divided into local and 

systemic AEs. Local AEs include redness, swelling, itching, warmth and pain at the injection 

site. Systemic AEs include fever/ feverishness, headache, nausea, malaise, myalgia and 

arthralgia. Solicited AEs are expected to occur, and generally resolve, within the first seven 

days after vaccination. Any adverse events not listed as a solicited AE or occurring after the 

defined time (usually seven days after vaccination) are termed unsolicited AEs. Local AEs are 

graded by severity according to the criteria shown in Table 2.1. Criteria for assessing 

abnormalities in physical observations (vital signs) are shown in Table 2.2. These criteria were 

not specified for the VAC051 trial, and were developed through VAC054 and VAC057. The 

table shows the criteria for VAC057 and VAC054 where they differed. Changes were made to 

reflect the UK National Institute for Health and Care Excellence (NICE) clinical guidelines on 

stages of hypertension (170). Systemic AEs other than fever (solicited and unsolicited) are 

graded according to the criteria shown in Table 2.3 

The maximum reported severity of an AE is reported in the results section of each trial 

Chapter, i.e. if a volunteer had an AE which lasted 3 days and was mild for 2 days but severe 

for one this has been reported as ‘severe’. 
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Adverse Event  Grade  Intensity  

Pain at injection site 

1 Pain that is easily tolerated 

2 Pain that interferes with daily activity 

3 Pain that prevents daily activity 

Erythema at injection site* 

1 >3 - ≤50 mm 

2 >50 - ≤100 mm 

3 >100 mm 

Swelling at injection site 

1 >0 - ≤20 mm 

2 >20 - ≤50 mm 

3 >50 mm 

Table 2.1: Severity grading criteria for fever, injection site pain, erythema and swelling.  

*erythema ≤3mm is an expected consequence of skin puncture and will therefore not be 
considered an adverse event. 

 

Physical observations  Grade 1  

(mild) 

Grade 2  

(moderate) 

Grade 3  

(severe) 

Fever (oral) °C 
 

37.6°C - 38.0°C 38.1°C – 39.0°C >39.0°C 

Tachycardia (beats per minute 

[bpm]) 

 
101 - 115 116 – 130 >130 

Bradycardia (bpm)* 
 

50 – 54 40 – 49 <40 

Systolic hypertension (mmHg) 
VAC057 141 - 159 160 – 179 ≥180 

VAC054 141 - 150 151 - 155 >155 

Diastolic hypertension (mmHg) 
VAC057 91 - 99 100 – 109 ≥110 

VAC054 91 - 95 96 - 100 >100 

Systolic hypotension (mmHg)** 
 

85 - 89 80 – 84 <80 

Table 2.2: Criteria for grading severity of clinically significant abnormal physical 
observations. 

Observations should have been taken at rest (after ≥10 minutes at rest defined for VAC057) 

*Applicable only when resting heart rate is between 60 – 100 beats per minute. Use clinical 
judgement when characterising bradycardia among some healthy subject populations, for 
example, conditioned athletes. This criterion was not defined for VAC054. 

**Only if symptomatic (e.g. dizzy/ light-headed) 

 

 

 



70 
 

GRADE 0 None 

GRADE 1 Mild: Transient or mild discomfort (< 48 hours); no medical intervention/therapy 

required 

GRADE 2 Moderate: Mild to moderate limitation in activity - some assistance may be needed; no 

or minimal medical intervention/therapy required 

GRADE 3 Severe: Marked limitation in activity, some assistance usually required; medical 

intervention/therapy required, hospitalisation possible 

Table 2.3: Severity grading criteria for systemic AEs. 

 

2.2.4.2  Causality Assessment 

In each trial, for each unsolicited AE, an assessment of the relationship of the AE to the study 

intervention(s) was undertaken. Solicited AEs occurring within the first seven days after 

vaccination were considered to be at least possibly related to vaccination. I categorised the 

relationship of the AE as unrelated, unlikely to be related, possibly related, probably related or 

definitely related (Table 2.4). Alternative causes of the AE, such as the natural history of pre-

existing medical conditions, concomitant therapy, other risk factors and the temporal 

relationship of the event to vaccination were considered.  

0 No 

Relationship 

No temporal relationship to study product and 

Alternate aetiology (clinical state, environmental or other interventions); and 

Does not follow known pattern of response to study product 

1 Unlikely Unlikely temporal relationship to study product and 

Alternate aetiology likely (clinical state, environmental or other interventions) and 

Does not follow known typical or plausible pattern of response to study product. 

2 Possible 

 

Reasonable temporal relationship to study product; or 

Event not readily produced by clinical state, environmental or other interventions; or 

Similar pattern of response to that seen with other vaccines 

3 Probable 

 

Reasonable temporal relationship to study product; and 

Event not readily produced by clinical state, environment, or other interventions or  

Known pattern of response seen with other vaccines 

4 Definite 

 

Reasonable temporal relationship to study product; and 

Event not readily produced by clinical state, environment, or other interventions; 

and  

Known pattern of response seen with other vaccines 

Table 2.4: Guidelines for assessing the relationship of vaccine administration to an AE. 
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2.2.4.3  Laboratory AEs 

Blood samples were taken during each trial to monitor for any AEs relating to haematological 

or biochemical changes following vaccination of volunteers. These blood samples were 

analysed either at the Oxford NHS laboratory or at the local NHS laboratories in trials involving 

other sites. For VAC051, laboratory abnormalities were assessed according to Table 2.5. After 

this trial I set up a more comprehensive laboratory AE severity grading table to be used across 

trials conducted at the Jenner Institute. It was also recognised that each laboratory has 

different normal reference ranges for some blood tests, so site-specific grading tables were 

produced by me, with support from other clinical research fellows based at the Jenner 

Institute and Southampton. These can be found in Appendix 6. 

 

Laboratory Test Grade 1 Grade 2 Grade 3 

Hgb (female) – decrease from testing 
laboratory LLN in gm/dl 

>1.0 - <1.5 ≥1.5 & <2.0 ≥2.0 

Hgb (male) – decrease from testing 
laboratory LLN in gm/dl  

≥1.5 & <2.0 ≥2.0 & <2.5 ≥2.5 

Absolute neutrophil count (ANC, cells/mm
3
) 1000-1499 500-<1000 <500 

Leukopenia (WBC, cells/mm
3
) <3500 - ≥2500 <2500 - ≥1500 <1500 

Lymphocytes Decrease  (cell/mm
3
) 750 – 1,000 500 – <750 250 – <500 

Platelets (cells/mm
3
) 125,000 – 

135,000 
100,000 – 
<125,000 

20,000-<100,000 

Bilirubin – when accompanied by any 
increase in Liver Function Test increase by 
factor  

1.1–1.25 x ULN  >1.25–1.5 x ULN  >1.5–1.75 x ULN  

ALT 1.25–2.5 x ULN >2.5–5.0 x ULN >5.0 x ULN 

Creatinine 1.1–1.5  x ULN >1.6–3.0 x ULN >3.0 x ULN 

Table 2.5: Severity grading criteria for clinically significant abnormalities for VAC051 trial 

(171). 

Hgb = Haemoglobin, LLN = lower limit of normal, ANC = absolute neutrophil count, WBC = 
white blood cells, ALT = alanine transferase, ULN = upper limit of normal. 
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2.2.5 Compensation for trial participants 

Compensation for volunteers taking part in the trials described in this thesis was calculated on 

a pro rata basis. Participants were compensated according to the following: 

 Travel expenses: 

o £10 per visit. Where travel expenses were greater than £10 per visit because 

the volunteer lived outside the city of the trial site, the volunteer was given 

further reimbursement to meet the cost of travel necessary for study visits. 

 Inconvenience of blood tests: 

o £10 per blood donation 

 Time required for visit:  

o £20 per hour 

Volunteers taking part in the VAC054 CHMI trial (Chapter four) were also compensated 

£20/hour illness compensation for 24 hours following CHMI. 

2.3 Methods: Immunology 

2.3.1 Blood separation 

In all trials detailed in this thesis, blood samples for immunology were collected before 

vaccination (as baseline) and at several time-points following vaccination(s), as per the study 

designs. Blood was collected in serum and lithium heparinised vacutainer tubes (BD 

bioscience) and transported to the Jenner Institute laboratories for processing. This was 

carried out by Kathryn Milne, Sarah Silk and Sean Elias. 

Separation of peripheral blood mononuclear cells (PBMC) and serum were carried out as per 

Jenner Standard Operating Procedure (SOP) ML002: Malaria PBMC Separation and Freezing 

(Appendix 8). Briefly: 

 Serum tubes were spun at 706 xg for five minutes; serum was collected with a transfer 

pipette and stored in aliquots. These were then stored at -80⁰C. 

 Heparinised blood was poured into Leucosep tubes (Greiner 227209) which had been 

pre-prepared with 15 mL LymphoprepTM, spun so that it was below the porous filter 

disc. Leucosep tubes containing heparinised blood were spun at 1000 xg for 13 

minutes at room temperature (brakes off). The plasma fraction was aliquoted and 
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stored at -80⁰C before the excess plasma containing PBMC was poured into a Falcon 

tube. This was then topped up with R0 and spun at 706 xg at room temperature for 

five minutes. The supernatant was poured off, cells were re-suspended in R0 and the 

spin/wash process was repeated. RBC lysis solution was used if there was significant 

contamination of the pellet with RBC. The cells were then re-suspended in 10 mL of 

R10 for counting. Cells were counted using a CasyCounter. Following counting, cells 

were re-suspended and used for the ex-vivo IFN-γ ELISPOT assay or stored in 1mL 

aliquots of 5 - 10 million cells/cryovial in filtered, heat-treated FCS and 20% DMSO. 

These were initially stored at -80⁰C before transfer to liquid nitrogen storage 1 – 3 

days later. 

2.3.2 Thawing of PBMC 

ASC and mBC ELISPOTS were carried out using frozen PBMC for most assays. PBMC had been 

stored in liquid nitrogen following the separation process described above. Vials were 

removed from liquid nitrogen on the day of the assays and thawed in a water bath at 37⁰C 

before being added to warmed (37⁰C) R10 media in Falcon tubes. Cells were spun at 706 xg for 

5 minutes at room temperature, supernatant was discarded and cells were then re-suspended 

in R10. Benzonase was added to each Falcon tube (1 µL per 1 x 106 PBMC in the thawed 

cryovial) and suspended cells were incubated for at least 1 hour at 37⁰C. Tubes were spun 

again at 706 xg for 5 minutes, supernatant was discarded and 10 mL of R10 was added to 

resuspend cells prior to counting using a Casycounter. After counting, cells were suspended in 

R10 at 5 x 106 cells/mL for ASC ELISPOTs and 2 x 106 cells/mL for mBC ELISPOTs. 

2.3.3 Ex-vivo IFN-γ ELISPOTs 

Ex-vivo IFN-γ ELISPOTs were carried out on fresh PBMC for all participants in each trial to 

assess the kinetics and magnitude of the vaccine-induced T cell responses over time. Samples 

were processed and analysed according to the Jenner Institute SOP ML006: Ex Vivo ELISPOT 

(Appendix 8). Assays were carried out within 4 hours of blood being collected from the 

participant. These assays were carried out by Kathryn Milne, Sarah Silk and Sean Elias.  
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ELISPOT plates (Millipore, MAIPS4510) were prepared the preceding day with 50 µL of coating 

solution (10 µL of catcher antibody [1-D1K] per 1 mL of ELISPOT coating buffer) added to each 

well and then left overnight at 4⁰C. Peptide pools (5 µg/mL) were pre-aliquoted into 96 well 

plates at the start of the trial and stored at -80⁰C until needed.  

On the day of sample processing the plates were blocked with R10 for 1 – 8 hours after being 

washed three times with sterile PBS. The PBMC isolated from whole blood (as described in 

Section 1.3.1) were plated at 250,000 cells per well for an 18-20 hour re-stimulation with 

overlapping peptides spanning the antigen of interest: P. vivax DBP_RII (Salvador I allele) for 

VAC051; P. falciparum AMA1 (3D7) for VAC054; and P. falciparum RH5 (3D7) for VAC057. The 

positive control for the assay was 10 µg/mL PHA plus 0.02 mg/mL SEB and negative control 

was R10 media + DMSO. All samples were tested in triplicate for each peptide pool. After 

overnight incubation, cells were discarded, plates were washed and 50 µL of a second, 

biotinylated monoclonal antibody against human IFN-γ (7-B6-1-Biotin, concentration 1 µg/mL) 

(Mabtech, 3420-2A) was added and the plate incubated for 2 - 4 hours (room temperature). 

After another wash step, streptavidin alkaline phosphate (Mabtech, 3420-2A) (diluted 1:1000 

in PBS) was added before a further incubation at room temperature for 1-2 hours. Plates were 

washed and the alkaline phosphate substrate (developer) was added (50 µL/well). The plate 

was left to develop for approximately 3 – 15 minutes until spots were clearly visible. Spots 

were counted using an automated plate counter and results obtained by subtracting any 

background response (from negative control wells) and then taking the average of the 

triplicate wells. Results are expressed as IFN-γ spot-forming-units (SFU) / million PBMC. 
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2.3.4 ELISAs 

2.3.4.1  Antigen-specific IgG ELISAs 

The kinetics and magnitude of the serum IgG antibody responses against the antigen of 

interest for each trial (PvDBP_RII for VAC051, AMA1 for VAC054 and RH5 for VAC057) were 

assessed over time by ELISA. Following CHMI in VAC054 an anti-MSP119 ELISA was done 

looking for evidence of seroconversion in infectivity control volunteers and in control 

volunteers from six previous CHMI studies with samples from before CHMI (dC-1) and 4 weeks 

after blood stream infection (74, 83, 138, 172, 173). These assays were carried out by me and 

Sarah Silk. 

Anti-PvDBP_RII IgG ELISA (VAC051; Chapter three) 

This ELISA was carried out as per Jenner Institute SOP ML026: DBP ELISA (Appendix 8). Briefly, 

96 well Nunc-Immuno Maxisorp plates were coated with recombinant PvDBP_RII (Salvador I 

strain) at a concentration of 2µg/ml in PBS and left overnight. Plates were washed with 

PBS/Tween six times and blocked for 1 hour with StartingBlockTM T20 buffer (Fisher, UK). A 

standard curve and internal control samples were prepared from the reference serum (VAC051 

volunteer 028 day 84 serum sample) and added to the plate with the serum samples from trial 

volunteers. All samples were diluted in StartingBlockTM T20 solution. The serum samples were 

added in triplicate to the ELISA plate (Figure 2-1). After a two hour incubation the plates were 

washed and alkaline phosphatase conjugated goat anti-human IgG (γ-chain) (Sigma) diluted 

1:1000 in StartingBlockTM T20 solution was added. After a further one hour incubation, 

followed by a wash step, 4-nitrophenyl phosphate substrate (Sigma) diluted in diethanolamine 

buffer (Fisher Scientific, UK) (DB) was added to detect antibodies. An ELx800 microplate reader 

(BioTek, UK) was used to read optical density at 405nm (OD405). The reciprocal of the dilution 

giving an OD405 of 1.0 in the standardised assay was used to assign an ELISA unit value of the 

standard. The standard curve and Gen5 ELISA software v2.07 (BioTek, UK) was used to convert 

the OD405 of individual test samples into ELISA units. 
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Figure 2-1: Antigen-specific IgG ELISA plate layout 

Blue S1 – S22 = test sera (added in triplicate); Pink 1 – 10 = standard curve dilutions (in duplicate); 
Internal control (as per ELISA protocol); Blank = blocking solution (as per ELISA protocol, e.g. 
StartingBlock

TM
 T20) 

 

Anti-AMA1 and anti-MSP1 IgG ELISAs (VAC054; Chapter four) 

These ELISAs were carried out as per Jenner Institute SOP ML023: P. falciparum MSP1 and 

AMA1 ELISA (Appendix 8). Briefly, 96 well Nunc-Immuno Maxisorp plates were coated with 

recombinant AMA1 or recombinant MSP119 at a concentration of 2µg/ml in PBS and left 

overnight. Plates were washed six times with PBS/Tween and then blocked for 1 hour with 

Casein blocking buffer. A standard curve and internal control samples were prepared from the 

reference serum (human hyperimmune serum from Kilifi, Kenya diluted 1:100) and added to 

the plate with the serum samples from trial volunteers. The serum samples were diluted and 

added in triplicate to the ELISA plate (see Figure 2-1). After a two hour incubation the plates 

were washed and the alkaline phosphatase-conjugated secondary polyclonal goat anti-human 

IgG (γ-chain) antibody was added. After a further one hour incubation, followed by a wash 

step, developer (DB) was added. The developer was left for 10 - 25 mins (antigen dependent) 

and the absorbance at 405nm (OD405) was read using a plate reader. The result was obtained 

by taking an average of the triplicate wells for each test sample, and using the standard curve 

to assign MSP1 or AMA1 ELISA arbitrary units (AU). Samples with an OD <0.15 were considered 

negative. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

B S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

D S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 
Internal Control 

 
E S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

F S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

G 1 2 3 4 5 6 7 8 9 10 
Blank 

H 1 2 3 4 5 6 7 8 9 10 
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Calibration-free concentration analysis (VAC054; Chapter four) 

CFCA was used to convert AMA1 OD-based ELISA units to antigen-specific µg/mL using a 

Biocore T200 instrument, a Biotin CAP chip and T200 control and evaluation software (all from 

GE Lifesciences, UK) with methodology previously published (167). This work was performed 

by Sandy Douglas using serum samples from three individuals with a range of ELISA-measured 

anti-AMA1 IgG responses. The CFCA-measured antigen-specific antibody concentrations for 

each individual against 3D7 and FVO sequence AMA1 were combined with the known total IgG 

ELISA AU measurements for the same samples to derive an AU-to-μg/mL conversion factor. For 

each AMA1 allele, the mean of the conversion factors measured for the three subjects was 

calculated and applied to the AU ELISA measurements for other participants so that all ELISA 

results could be expressed in μg/mL units. 

Anti-RH5 IgG ELISA (VAC057; Chapter five) 

Anti-RH5 IgG ELISAs were carried out as per Jenner Institute SOP ML011: RH5 ELISA (Appendix 

8). Briefly, 96 well Nunc-Immuno Maxisorp plates were coated with recombinant PfRH5 at a 

concentration of 2µg/ml in PBS and left overnight. Plates were washed six times with 

PBS/Tween and then blocked for 1 hour with Casein blocking buffer. A standard curve and 

internal control samples were prepared from the reference serum (VAC057 Volunteer 1020 

G2B d84 serum sample) and added to the plate with the serum samples from trial volunteers. 

The serum samples were diluted and added in triplicate to the ELISA plate (see Figure 2-1). 

Secondary antibody, development and ELISA result readout steps were carried out as 

described above for PvDBP, AMA1 and MSP1 ELISAs. 

2.3.4.2  Avidity ELISAs 

The avidity ELISAs for all trials were carried out as per Jenner Laboratory Protocol J177: Human 

Whole IgG Avidity ELISA. Briefly, 96 well Nunc-Immuno Maxisorp plates were coated with the 

recombinant protein of interest (e.g. AMA1) diluted in DPBS to a concentration of 2 µg/mL and 

left overnight. Following a wash step with PBS/Tween, plates were blocked with Casein for 1 

hour and then a further wash step was carried out. Serum samples were diluted using 
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standardised ELISA results so that each individual serum would reach an OD of 1 when read 

(e.g. if sample has an ELISA result of 3000 AU, dilute serum 1:3000) and added in duplicate 

down the plate. After a 2 hour incubation, plates were washed and an increasing 

concentration of NaSCN diluted in PBS was added down the plate from 0M to 7M (Figure 2-2). 

Plates were left for 15 minutes before a further wash step. Secondary goat anti-human γ-chain 

whole IgG alkaline phosphatase conjugate antibody (diluted 1:1000 in Casein) was added and 

plates were left for 1 hour. After a final wash step, DB was added and plates were left to 

develop until the OD of the wells in row A (see Figure 2-2) reached 1. The OD was the read at 

405 nm on a Biotek ELx800 microplate reader with Gen5 software. 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 0 S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

B 1M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

C 2M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

D 3M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

E 4M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

F 5M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

G 6M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

H 7M S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 

Figure 2-2: Avidity ELISA plate layout 

S1 – S6: Diluted serum samples are added in duplicate down the plate. NaSCN is added in increasing 
concentration (0 - 7M down the plate). 

 

2.3.4.3  Isotype ELISAs 

The isotype ELISAs for all trials were carried out as per Jenner Laboratory Protocol J255: 

Human Isotype ELISA. Briefly, six 96 well Nunc-Immuno Maxisorp plates were coated with the 

recombinant protein of interest (e.g. AMA1 at a concentration of 2 µg/mL), native human 

IgG1-4, IgA and positive control serum diluted 1:1000 as per Figure 2-3. One plate was coated 

for each isotype measured (IgG1-4, IgA and IgM). Plates were labelled IgG1, IgG2, IgG3, IgG4, 

IgA and IgM. All antigens and isotype controls were diluted in DPBS. Coated plates were left 

overnight. 
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 1 2 3 4 5 6 7 8 9 10 11 12 

A CA CA CA CA CA CA CA CA CA CA CA CA 

B CA CA CA CA CA CA CA CA CA CA CA CA 

C CA CA CA CA CA CA CA CA CA CA CA CA 

D CA CA CA CA CA CA CA CA CA CA CA CA 

E CA CA CA CA CA CA CA CA CA CA CA CA 

F CA CA CA CA CA CA CA CA CA CA CA CA 

G 1 2 3 4 A K CA CA CA CA CA CA 

H 1 2 3 4 A K CA CA CA CA CA CA 

Figure 2-3: Plate coating layout for isotype ELISA 

1-4 – Native human IgG1-4. 

A – Native human IgA. 

K – Kilifi serum, 5H at 1:1000 dilution. 

CA- Coating antigen (e.g. AMA1)  

Following a wash step (PBS/Tween x 6) plates were blocked for 1 hour with Casein. Serum 

samples were diluted at 1:100 and added to plates in duplicate after a wash step. Following a 2 

hour incubation, plates were washed again with PBS/Tween before the corresponding 

secondary antibody (1:1000) was added (e.g. anti-human IgG1 added to IgG1 plate). Plates 

were left for 1 hour before a further wash step, then Extravidin-AP (1:5000) was added to all 

plates except the IgA plate (Extravidin-AP not required for this plate as anti-IgA antibody is 

already conjugated to AP) and plates were left for 30 minutes. Following a final wash step, DB 

was added and OD read at 405 nm on a Biotek ELx800 Microplate Reader with Gen5 software. 

2.3.5 ASC ELISPOTs 

ASC ELISPOTs were carried out as per Jenner Protocol J205: Blood Stage Malaria Human ex-

vivo ASC ELISPOT. These assays were carried out by me, Sarah Silk and Sean Elias and were 

done in a Class II microbiological safety cabinet. Briefly, plates were coated with the antigen of 

interest (e.g. AMA1) (to detect antigen-specific IgG-secreting cells), PBS (negative control 

wells), polyvalent goat anti-human IgG (for detection of total IgG secreting cells) and 

diphtheria toxoid (positive control) and left overnight. Plates were washed three times with 

sterile PBS and then blocked with R10 for at least 1 hour. PBMC were retrieved from liquid 

nitrogen storage, thawed and counted using a Casycounter (see Section 2.3.2). Cells were then 
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re-suspended in R10 at a concentration of 5 x 106 cells/mL. The cell suspension was added to 

the plate with around 250,000 cells per well in the control wells (negative and positive) and 

some of the IgG and antigen wells. Dilutions of 125,000 cells and 50,000 cells were also added 

for the antigen wells, and a dilution of 10,000 cells per well was also added for two of the IgG 

wells. The plates were incubated at 37⁰C overnight. The following day, plates were washed 

with PBS/Tween (six times) and secondary goat-anti-human IgG (γ chain specific) antibody was 

added (1:5000). Plates were left for 4 hours before a further wash step. BCIP/NBT 

development buffer was then added until spots had developed (3 - 5 minutes). Plates were 

washed and left to dry before spots were counted using an AID ELISPOT reader. The 

automated counts were checked and corrected by eye to ensure only spots consistent with IgG 

secreting ASCs were counted. 

2.3.6 mBC ELISPOTs 

mBC ELISPOT assays were carried out as per Jenner Protocol J204: Blood-Stage Human 

Memory B cell ELISPOT. These assays were carried out in a Class II microbiological safety 

cabinet by me, Sarah Silk and Sean Elias. PBMC were removed from liquid nitrogen storage and 

thawed as described in Section 2.3.2, before being re-suspended in R10 at a concentration of 2 

x 106 cells/mL. A minimum of 6 million cells/volunteer were prepared. For each volunteer, 500 

µL of the cell suspension were added to 6 wells of a 24 well plate, yielding 1 x 106 cells/well. A 

stimulation mix containing SAC (diluted 1:2400), PWM (diluted 1:6000) and CpG (diluted 

1:200) was added to 5 of the 6 wells per volunteer, with R10 added to the final ‘unstimulated’ 

well. The 24 well plates were transferred to an incubator at 37⁰C and 5% CO2 for 6 days. 

MAIP ELISPOT plates were prepared on day five by coating with the antigen of interest (e.g. 

AMA1) at the concentration specified in the protocol (typically 5 µg/mL) of the antigen 

solution for peak time-points for the stimulated cells. The antigen was also added to wells for 

the unstimulated cells for each volunteer. Positive and negative control wells were coated with 

Diphtheria toxoid and PBS respectively. Wells were also coated with polyvalent goat anti-
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human IgG at 50 µg/mL, and at serial dilutions of 1:100 and 1:1000. The plate layout is shown 

in Figure 2-4. Once coated, plates were left overnight at 4⁰C. 

 

Figure 2-4: Plate layout for mBC ELISPOTs at peak time-points. 

ELISPOT plates were coated with PBS (green) for negative control wells, the antigen of interest (e.g. 
AMA1) (pink) for stimulated cells and unstimulated cells (undiluted), polyvalent goat anti-human IgG 
(purple) and diphtheria toxoid (blue) for positive control wells. Remaining wells (blanks) were coated 
with PBS (grey). 

 

On day six, plates were washed with sterile PBS and then blocked with R10 for at least 1 hour 

at 37⁰C. The cultured cells from the 24 well plates were harvested by gentle resuspension in 

R10. All stimulated cells from a single volunteer were re-suspended in the same 50 mL Falcon 

tube. Unstimulated cells were re-suspended in a 15 mL Falcon tube and all tubes were spun at 

706 xg for 5 minutes. Supernatant was discarded and cells were re-suspended in R10 for a 

further wash step. Following this, cells were again re-suspended in R10 before being counted 

using the Casycounter. Cells were then re-suspended in R10 to a concentration of 2 x 106 

cells/mL for stimulated cells and 1 x 106 cells/mL for unstimulated cells. Stimulated cells were 

added to the ELISPOT plate at 100 µL/well for control wells and for six of the antigen wells as 

well as two of the IgG wells for each volunteer. Dilutions of 1:2 and 1:5 of the cell suspension 

were added to six wells for each volunteer, and dilutions of 1:100 and 1:1000 were added to 

two wells for each volunteer. 100 µL of the unstimulated cell suspension was added to 3 wells 

for each volunteer. Plates were transferred to an incubator and left at 37⁰C and 5% CO2 

overnight.  

e.g. 

AMA1

(unstim)

IgG

Volunteer 

1

Volunteer 

2

Diphtheria 

toxoid

PBS Antigen of interest (e.g. AMA1)
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On day seven, plates were developed using the same method described above for ASC 

ELISPOTs, and after being left to dry were counted on the ELISPOT reader as described for ASC 

ELISPOTs. 

2.3.7 Preparation of P. falciparum inoculum for blood-stage CHMI (Chapter 

four) 

The inoculum used for CHMI was produced by Drs Gregor Lawrence, Allan Saul and colleagues 

at QIMR in Brisbane, Australia in 1994 and consists of aliquots of P. falciparum (clone 3D7) 

infected erythrocytes taken from a single donor (140, 141, 166). Aliquots have been 

cryopreserved in vapour phase liquid nitrogen at -178⁰C in the UK, and one of these was used 

for the VAC054 trial to infect all participants with P. falciparum malaria. Preparation was 

carried out as per Jenner Institute SOP ML021: Preparation of malaria-infected blood for 

injection (Appendix 8). This was carried out by Rebecca Brown and Simon Draper. Briefly, a 

single vial was thawed in a derogated containment level III laboratory area using solutions 

licensed for clinical use and single-use disposable consumables. A class II microbiological safety 

cabinet (MSC) was used to prepare the inocula. The MSC was fumigated with hydrogen 

peroxide and decontamination validated prior to use. 0.2 volume 12 % saline was added 

dropwise to 1.6 mL of thawed infected blood, left for 5 min, and an additional 10 volumes of 

1.6% saline added dropwise. This was centrifuged for 4 min at 830 xg, the supernatant was 

removed, and 10 mL of 0.9% saline was added dropwise. The cell pellet was washed twice in 

0.9% saline and re-suspended in 0.9% saline in a sterile syringe for injection. The injection 

volume per volunteer was 5 mL containing an estimated 1000 parasitised erythrocytes based 

on microscopic estimates of the donor’s parasite density prior to freezing. The clinical 

inoculum was also added to aerobic and anaerobic culture bottles (BACTECTM) following 

preparation and shown to be negative for bacterial contamination. 

Parasite viability was assayed by limiting dilution assay with a 10 day culture period as per 

Jenner Institute SOP ML022: Blood Stage Challenge Viability Assay (Appendix 8). The methods 
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were similar to those described previously for blood-stage CHMI trials at the Jenner Institute 

using the same inoculum (174, 175). Wells were scored positive or negative for replicating 

parasites using qPCR. A plate of identical dilutions of the inoculum that had been frozen 

without incubation was used as a negative control because the qPCR assay (see Section 2.3.9) 

can also detect dead parasites. There was no detectable amplification from negative control 

wells, and unincubated wells which had received a 100-fold greater parasite inoculum gave 

results of 323-445 arbitrary amplification units. Cultured wells plated at an estimated 1.5 

parasites/well gave a clear bimodal distribution, with 20/40 wells giving results of <54 units 

(suggesting they contained no viable parasite), while 20/40 wells gave results of >24,000 units 

(suggesting they had contained at least one viable parasite at the start of the culture period). 

The number of viable parasites/mL of inoculum could then be calculated with reference to the 

Poisson distribution, and viability expressed as a percentage of the pre-freezing microscopy-

estimated parasitaemia calculated using the RBC count/mL of inoculum. This was calculated to 

be 69%, i.e. approximately 690 viable parasites injected per volunteer. 

2.3.8 Thick blood film preparation and interpretation (Chapter four) 

Thick blood films were prepared and interpreted according to Jenner Institute SOP ML009: 

Collection, preparation and slide reading: Malaria Challenge Studies (Appendix 8). This work 

was carried out by experienced microscopists from Kemri, Kenya (Joseph Muita, Pauline Titus 

and Kebba Konteh), who were resident in Oxford for the duration of the CHMI period in 

VAC054. Briefly, a small drop of blood, collected from the volunteer in an EDTA vacutainer 

tube, was prepared on a microscope slide by spreading the drop thinly and allowing it to dry. 

The slide was then dipped in Field’s stain A for 3 seconds, before being rinsed in clean water 

for 3 seconds and then dipped in Field’s stain B for a further 3 seconds. The slide was allowed 

to dry and was then examined under oil immersion at high power (1000x) with 200 fields read 

by an experienced microscopist. Any parasites identified by the microscopist were reviewed by 
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either me or another clinical research fellow for visual confirmation. Thick blood films were not 

quantified for parasite density. 

2.3.9 Parasite qPCR (VAC054; Chapter four) 

Quantitative PCR was carried out on EDTA blood samples collected from participants after 

CHMI in the VAC054 trial and processed as per Jenner Institute SOP ML008: Malaria qPCR 

(Appendix 8). This work was led by Nick Edwards, with support from Jenner laboratory staff. 

Briefly, blood was filtered to reduce white cell content and DNA was extracted from filtered 

blood using the Qiagen Blood Mini Kit. 10% of each extraction (total eluate volume = 50 μL, 

with 5 μL used per assay) was run in triplicate for qPCR – equivalent to 150 μL blood directly 

assessed. The qPCR assay used Forward and Reverse primers 80 µMol scale (Custom; Applied 

Biosystems, 4304971), Taqman FAM-NFQ-MGB Probe 20 µMol scale (Custom; Applied 

Biosystems, 4316033) and Taqman Universal PCR Master Mix (with Amperase UNG; Applied 

Biosystems, 4304437). The Taqman probe-based PCR amplifies a 133 base pair (bp) product 

from the multicopy (three per parasite) 18S (small subunit) ribosomal RNA genes of P. 

falciparum. The probe then binds to the PCR product and is hydrolysed on each PCR cycle, 

releasing the fluorophore which is detected in a quantitative manner (176). 

Parasites per mL (p/mL) equivalent mean values were generated by a standard Taqman 

absolute quantitation, against a defined plasmid standard curve with an ABI StepOne Plus 

machine and v2.3 software. Default Universal qPCR and quality control (QC) settings were used 

apart from the use of 45 cycles and 25 μL reaction volume. Based upon results obtained using 

dilution series of microscopically-counted cultured parasites, this method has a lower limit of 

quantification (LLQ, defined as % coefficient of variation [CV] <20%) of around 20 p/mL blood 

(177). Counted parasite dilution series results suggest that the lower limit of probable 

detection (LLD, i.e. a probability of >50% of ≥1 positive result among three replicate qPCR 

reactions) is in the region of 5 p/mL, while samples at 1 p/mL are consistently negative (24/24 

qPCR reactions). Positive results in this assay are therefore essentially 100% specific for 
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genuine parasitaemia, with positive results beneath the LLQ likely to signify parasitaemia in the 

range 2-20 p/mL. 

For quality control purposes, qPCR samples were re-tested if; 

 Replicates included a mixture of positive and negative (in terms of amplification) 

results with one or more positive results >100 p/mL.  

 The % CV of any results were high outliers.  

Following the QC steps above, qPCR data, including any 0 values, were used to generate the 

mean result for each time-point. 

2.3.10  Parasite multiplication rate (PMR) modelling (Chapter four) 

Modelling of qPCR-derived PMR was carried out by Sandy Douglas and Simon Draper. This had 

been pre-specified in the VAC054 trial protocol as the primary study endpoint, and the 

comparison of the endpoint between the two groups constituted the pre-specified primary 

analysis for vaccine efficacy.  

The arithmetic mean of the three replicate qPCR results obtained for each individual at each 

time-point was used for model-fitting. Negative individual replicates were assigned a value of 0 

p/mL for the purposes of calculating the arithmetic mean of triplicates (where at least one of 

the three readings was positive). As previously reported, qPCR data points which, based upon 

the mean of the three replicates, are negative or below the LLQ (< 20 p/mL) up until the first 

quantifiable result for that subject (i.e. ≥20 p/mL) were treated as missing, while negative or 

sub-quantifiable data points after that subject’s first quantifiably positive result were replaced 

with values of half the LLQ (i.e. 10 p/mL) (177). PMR was then calculated using a linear model 

fitted to log10-transformed qPCR data (177).  

On the day of CHMI, all volunteers were inoculated by 11:30am, within 2 hours and 13 minutes 

of the inoculum being thawed. For modelling purposes, the follow-up visits, where blood 

samples were collected for thick blood film and qPCR were taken to occur at 9:00am in the 

morning (i.e. dC+1 was 0.9 d post-infection), and 6:00pm in the evening (i.e. 0.37 d later). As 
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previously, fitted lines were constrained to pass through the known starting parasitaemia, 

calculated from the results of the limiting-dilution-based assay of the number of viable 

parasites in the inoculum, and a weight-based estimate of each volunteer’s blood volume (70 

mL/kg) (83). PMR was modelled for all volunteers that underwent blood-stage CHMI, given 

they all had ≥5 data points above the LLQ (the criterion for proceeding to model the PMR) (83). 

2.3.11  Functional assays of immunity 

2.3.11.1  PvDBP – DARC Binding inhibition assays (Chapter three) 

The functional activity of IgG induced by vaccination with ChAd63/MVA PvDBP in VAC051 was 

assessed by a binding inhibition assay. These assays were carried out at the Jenner Institute by 

David Llewellyn and Tom Rawlinson, according to Jenner Laboratory Protocol J363: DARC-Duffy 

binding protein binding inhibition assay with human and mouse serum. Briefly, 96-well ELISA 

plates were coated with recombinant DARC (His-tagged) and incubated at 4⁰C overnight. 

Plates were washed with PBS/Tween (x 6) the following day and blocked with 2% milk (diluted 

in PBS) for 2 hours at 37⁰C. Recombinant PvDBP_RII was diluted to 0.1 µg/mL in 0.25% milk (in 

PBS). Serum was also diluted in 0.25% milk. Recombinant PvDBP and sera were combined 30 

minutes before the end of the blocking incubation and left at room temperature. Following the 

blocking incubation, the ELISA plates were washed in PBS/Tween (x 6) and the PvDBP_RII-

serum mix was added to each well, excluding negative control wells (PvDBP_RII incubated with 

day 0 serum or no serum). The plates were then incubated at 37⁰C for 1 hour. After a further 

wash step, diluted serum from rabbits immunised with PvDBP_RII (157) (1:1000 in 0.25% milk) 

was added to each well. Plates were left for 1 hour then washed again before anti-rabbit IgG 

AP 1:1000 antibody was added to each well. The plates were left for a further hour before a 

final wash step. DB was then added and the OD read at 405 nm on Bio-tek ELx800 Microplate 

Reader with Gen5 software. Plates were developed to a point determined by the OD of the 

development controls wells (i.e. when the negative control wells, which did not contain any 

potential blocking agents, reached an OD = 1.0). 
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Serum was also sent to the International Centre for Genetic Engineering and Biotechnology 

(ICGEB), India were DARC-PvDBP binding inhibition was assessed by Rushdi Shakri (178). At 

ICGEB, sera were analysed for binding inhibition against four variants of PvDBP_RII: Sal I 

(homologous to the vaccine), PvP, PvAH and PvO. Two kinds of binding assays were used. The 

first of these was a Bioplex-based assay in which recombinant DARC-Fc was coated on 

magnetic, fluorescent beads and recombinant PvDBP_RII with C-terminal 6-His tag was 

allowed to bind in the presence or absence of sera from volunteers in VAC051. Binding was 

detected with anti-6-His monoclonal antibodies. The second of these assays was an ELISA-

based assay (178). Briefly, recombinant DARC-Fc was coated on an ELISA plate and 

recombinant PvDBP_RII was allowed to bind in the presence or absence of sera from VAC051 

volunteers. Binding was detected with antibodies against the 6-His tag. Standard curves based 

on known amounts of PvDBP_RII were developed for both the Bioplex and ELISA based binding 

assays and used to determine the percent inhibition. 

2.3.11.2  In vitro assay of GIA (Chapters four & five) 

Serum samples for vaccinated volunteers in VAC054 and VAC057 were sent to the NIH 

Reference Center in the USA to assess GIA. This work was led by Kazutoyo Miura. The methods 

used in this assay have been published previously (130, 131). Briefly, IgG was purified from 

serum and concentrated to 10 mg/mL. The purified IgGs were preadsorbed with uninfected 

human O+ red blood cells for 1 hour in order to remove any anti-human erythrocyte antibodies 

and were sterilised and heat inactivated before being used in the assay. Each test IgG was 

incubated with human erythrocytes which contained late trophozoite and schizont stages of P. 

falciparum parasites prepared by Percoll gradient and/or 5% sorbitol treatment. GIA was 

assessed over a single growth cycle, measuring parasite LDH after 40 hours of culture and 

using this to calculate relative parasitaemia levels. Results obtained using the test IgGs were 

compared with those obtained with parasites incubated with a pool of malaria-naïve human 

serum and uninfected erythrocytes as controls (131). The IgG samples were all initially tested 
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at 10 mg/mL, followed by a dilution series for positive samples to determine the concentration 

of purified IgG that gave 50% GIA (EC50).  

2.4 Statistical analyses 

The immunology data for all trials were analysed using GraphPad Prism version 5.04 for 

Windows (GraphPad Software Inc., California, USA). A value of P < 0.05 was considered 

significant. Safety data were analysed in Microsoft Excel 2010; studies were not powered to 

analyse statistically significant differences in safety data so these were assessed descriptively. 

The Phase Ia trials (VAC051 and VAC057) were powered to detect a mean two-fold 

improvement in either T cell or antibody immunogenicity between the two boosted groups 

(Group 2B and Group 2C) at a significance level of P = 0.05 with 76% power. 

The VAC054 study was powered to detect a 33% decrease in mean PMR in vaccinees 

compared with controls with ≥80% power. The power calculations for this study were 

performed by Nicola Williams at the Centre for Statistics in Medicine at the University of 

Oxford using data from previous blood-stage CHMI trials in Oxford and at the Radboud 

University Nijmegen Medical Centre in the Netherlands (179). These historical data suggested 

the CV in the controls may range from 22% (Nijmegen where the mean PMR was 10) to 33% 

(Oxford where the mean PMR was 12). Given the logistical challenges of a blood-stage CHMI 

study, the decision was made not to include any more than thirty volunteers. A study design 

with 15 controls versus 15 vaccinees consistently provided the best power to observe a 33% 

reduction in mean PMR when allowing for this CV in the controls, and an increased CV in the 

vaccinees. 
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Chapter three: 

A Phase Ia clinical trial to assess the 

safety and immunogenicity of new 

Plasmodium vivax malaria vaccine 

candidates ChAd63/MVA PvDBP 

(VAC051) 
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3.1 Authorship statement 

I set up the VAC051 clinical trial with the assistance of Alison Lawrie, Rachel Roberts, Ian 

Poulton, Susanne Hodgson, Adrian Hill and Simon Draper. This involved preparation of the 

study documents with submission for ethical and regulatory approval. The Chief Investigator 

(CI) for this trial was Adrian Hill. 

I screened and enrolled volunteers for the trial. Vaccinations and follow-up visits were 

conducted by me and also by the nursing team: Ian Poulton, Mary Smith and Adrienne Cook. 

Laboratory assays in Oxford were carried out by me and by Kathryn Milne, Sarah Silk, Sean 

Elias and Tom Rawlinson. Assays were also carried out at the ICGEB by Rushdi Shakri. Details 

about who carried out each assay can be found in Section 1.3.3.  

3.2 Introduction 

3.2.1 Development of a blood-stage P. vivax vaccine 

A viral vectored Plasmodium vivax vaccine has been developed at the University of Oxford in 

collaboration with Chetan Chitnis at the ICGEB, India. Similar to vaccine candidates for P. 

falciparum previously developed at the Jenner Institute in Oxford, this uses the simian 

adenovirus ChAd63 and MVA in a heterologous prime-boost regime. The antigen in these 

vaccines is the Duffy-binding protein region II (PvDBP) of the P. vivax malaria parasite Salvador 

I strain, and these vaccines are therefore referred to as ChAd63 PvDBP and MVA PvDBP (157). 

The VAC051 Phase Ia clinical trial was the first trial to use the ChAd63/MVA PvDBP vaccines in 

humans. 

3.2.2 PvDBP as an antigen 

The micronemal parasite ligands (Duffy-binding proteins, DBP or erythrocyte binding antigens, 

EBAs) are a family of antigens that are functionally conserved across Plasmodium species and 

are thought to be involved in the tight attachment step between the parasite and new host 

cell, but only one gene copy exists in P. vivax. Knockout studies of the orthologous P. knowlesi 
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DBPα gene prevent invasion of Duffy-positive erythrocytes by this highly related parasite in 

vitro (180). 

Unlike P. falciparum which utilises multiple redundant invasion pathways for human 

erythrocyte invasion (2, 17), P. vivax requires interaction with DARC in the vast majority of 

cases. Interaction with DARC is mediated by PvDBP, in particular with the receptor-binding 

domain which maps to a conserved cysteine-rich region, referred to as region II. The Duffy-

binding protein belongs to the EBL family of proteins found in all Plasmodium species. The 

other family of Plasmodium proteins known to be involved in red blood cell invasion are the 

RBL family. In Plasmodium vivax this family of proteins are referred to as reticulocyte binding 

proteins (PvRBPs), whereas in P. falciparum they are referred to as reticulocyte binding protein 

homologues (PfRHs) (26). P. vivax was initially thought to express two reticulocyte binding 

proteins, PvRBP1 and PvRBP2 which bind specifically to reticulocytes and not normocytes, 

presumably explaining the host-cell preference of P. vivax (2). However, since the P. vivax 

genome sequence became available it has been demonstrated that there are in fact many 

more than two members in the Pvrbp gene family, with 8 genes predicted to be protein-coding 

(2 of these correspond to the genes encoding the originally discovered PvRBP1 and PvRBP2 

proteins, Pvrbp1a and Pvrbp2c) (26). There are some significant similarities between some of 

the PvRBP proteins and some of the PfRH proteins, which are known to be involved in invasion 

of red blood cells in P. falciparum infection. This suggests that these proteins may be involved 

in reticulocyte sensing, and even in erythrocyte invasion (26, 181). In particular, the PvRBP2a 

protein shows significant similarity with PfRH5 which is essential for the invasion erythrocytes 

by P. falciparum (this protein is discussed in more detail in Chapter five). The crystal structures 

for both of these proteins have been determined (181, 182) and show similar general 

architecture, although also some striking differences have also been identified, particularly in 

terms of the surface properties. PvRBP2a has been shown to bind erythrocytes (not only 

reticulocytes) but the erythrocyte surface receptor has not yet been identified (181). 
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Individuals who lack the Duffy blood group antigen are resistant to blood-stage P. vivax 

infection, providing evidence for the non-redundant nature of this invasion pathway. Duffy 

blood group negativity has essentially led to the disappearance of P. vivax from much of sub-

Saharan Africa and has arisen independently in Papua New Guinea (16). However, it is likely 

there are other invasion pathways possible, in which the RBPs may be implicated, as P. vivax 

infections have been reported to occur in Duffy-negative individuals (183-187), although 

infections are still less likely than in Duffy-positive individuals (187). 

The induction of binding inhibitory antibodies against the receptor binding residues within 

PvDBP region II does not commonly occur following natural exposure (188, 189). However, 

these antibodies (when they occur) were associated with strain-transcending protection 

against P. vivax re-infection in a prospective cohort study in Papua New Guinea (31). 

Importantly, the presence of naturally-acquired high-titre binding inhibitory antibodies against 

PvDBP_RII were associated with reduced risk of P. vivax infection, as well as lower P. vivax 

parasite densities, following infection in the prospective study. This observation suggests that 

antibodies produced following vaccination with PvDBP_RII should be able to block diverse 

strains of P. vivax (16). Similar observations show that antibodies raised against recombinant 

SalI strain PvDBP_RII in rabbits can inhibit binding of heterologous polymorphic PvDBP_RII 

domains derived from diverse field isolates (105).  

Immunisation with recombinant PvDBP_RII can elicit high-titre antibodies in mice and monkeys 

that block binding of this antigen to recombinant DARC or Duffy-positive erythrocytes by in 

vitro assay (157, 190, 191). Following intravenous challenge of New World Aotus monkeys with 

blood-stage P. vivax, longer pre-patent periods and lower parasitaemias were observed in 

immunised animals in comparison to controls. Protection was conferred following 

immunisation with protein vaccine in Freund’s adjuvant but not Montanide ISA 720 (although 

antibody levels induced by ISA 720 were surprisingly low in this study) (107).  
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In this Chapter I will describe the first clinical trial to assess a vaccine against the blood stage of 

P. vivax, using the viral vectored vaccines previously developed in Oxford, ChAd63 PvDBP and 

MVA PvDBP. As this was a first-in-human trial it was primarily conducted to assess safety in 

healthy malaria-naïve adult volunteers, through collection and analysis of adverse event data. 

The immunogenicity of the vaccines was also assessed and the results of these assays are also 

discussed in this Chapter, along with the safety data. 

3.3 VAC051 Methods 

Detailed methods of the recruitment and enrolment of volunteers, as well as the assays used 

in this trial can be found in Chapter two: Materials and Methods.  

3.3.1 VAC051 Study Design 

This study was a Phase Ia open-label, dose escalation, first-in-human, non-randomised trial of 

the viral vectored vaccines ChAd63 PvDBP and MVA PvDBP given in a prime-boost regime with 

an eight week interval (Figure 3-1). The study was conducted at the Centre for Clinical 

Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK. Healthy, malaria-naïve 

males and non-pregnant females aged 18-50 were invited to participate in the study. 

Allocation to study groups occurred at screening based on sequential recruitment of groups 

and volunteer preference.  

Groups 1 and 2A received ChAd63 PvDBP alone on Day 0. Groups 2B and 2C received the 

ChAd63 PvDBP vaccine at day 0 and the MVA PvDBP vaccine at day 56 (nominal study days are 

reported throughout; a window of 7 days either side of day 56 was permitted in the study 

protocol). The sample size for this study was chosen to allow determination of the magnitude 

of the outcome measures, especially of serious and severe adverse events, rather than aiming 

to obtain statistical significance. Four volunteers were enrolled into Groups 1 and 2A as initial 

safety cohorts. The decision to enrol eight volunteers into Groups 2B and 2C was based on a 

power calculation to have 76% power (1-β) to detect a mean two-fold improvement (two-
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tailed) at a significance level (α) of P = 0.05 in immunogenicity (IgG and T cell response) 

between Groups 2B and 2C following MVA PvDBP boost vaccination. 

Group 

Number 

Number 

of 

volunteers 

Dose ChAd63 PvDBP Dose MVA PvDBP 

1 4 5 x 109 vp IM -- 

2 

A 4 5 x 1010 vp IM -- 

B 8 5 x 1010 vp IM 1 x 108 pfu IM 

C 8 5 x 1010 vp IM 2 x 108 pfu IM 

Figure 3-1: VAC051 study groups 

3.3.2 VAC051 Ethics 

The study received ethical approval from the Oxfordshire Research Ethics Committee A in the 

UK (REC reference 13/SC/0001). The study was also reviewed and approved by the MHRA 

(reference 21584/0312/001-0001). Volunteers signed written consent forms and consent was 

verified before each vaccination. The trial was registered on Clinicaltrials.gov (NCT 01816113). 

3.3.3 VAC051 Study Objectives and Endpoints 

Primary Objective 

To assess the safety of ChAd63 PvDBP when administered alone, and in heterologous prime-

boost with MVA PvDBP in healthy volunteers. 

Primary Outcome Measures 

The specific endpoints for safety and reactogenicity were actively and passively collected data 

on adverse events. These data were collected using diary cards which were completed by 

volunteers for 14 days following ChAd63 PvDBP and 7 days following MVA PvDBP, as well as 



95 
 

recording any adverse event reported or detected (e.g. laboratory abnormalities) at clinic visits 

throughout the trial. 

Secondary Objectives 

To assess the cellular and humoral immunogenicity of ChAd63 PvDBP when administered 

alone, and in a heterologous prime-boost regime with MVA PvDBP in healthy volunteers.  

Secondary Outcome Measures 

Immunogenicity outcome measures following ChAd63/MVA PvDBP included: 

 Induction of antigen-specific T cells (assessed by ex-vivo IFN-γ ELISPOT) 

 Induction of antigen-specific IgG (assessed by anti-PvDBP ELISA) 

 Measurement of antigen-specific ASCs and mBCs following vaccination. 

 Functional activity of antigen-specific IgG (assessed using a PvDBP – DARC binding 

inhibition assay). 

T cell ELISPOT assays, PvDBP ELISA assays, ASC ELISPOT assays and mBC ELISPOT assays were 

carried out in the Jenner Institute laboratories in Oxford. Kathryn Milne and Sarah Silk carried 

out the T cell ELISPOT s, Sarah Silk and I carried out the ELISA assays and I carried out the ASC 

and mBC ELISPOT assays, with support from Sean Elias. The PvDBP – DARC binding inhibition 

assays were carried out both Oxford by Tom Rawlinson and in a collaborating laboratory 

outside of the UK by Rushdi Shakri- at the ICGEB. Volunteers were consented for samples to be 

shipped to collaborating laboratories. 

3.3.4 VAC051 Participants 

All volunteers were recruited and vaccinated at the Centre for Clinical Vaccinology and Tropical 

Medicine (CCVTM), part of the Oxford Vaccine Centre (OVC) at the University of Oxford. 

Twenty four volunteers were enrolled in total. All volunteers signed written consent forms, 

and consent was checked to ensure volunteers were willing to proceed before each 

vaccination. The inclusion and exclusion criteria for participation are described below. 
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3.3.4.1  VAC051 Inclusion Criteria 

The volunteer had to satisfy all the following criteria to be eligible for the study: 

 Healthy adult aged 18 to 50 years. 

 Able and willing (in the Investigator’s opinion) to comply with all study requirements. 

 Willing to allow discussion of their medical history with their GP. 

 For females only, willingness to practice continuous effective contraception during the 

study and a negative pregnancy test on the days of screening and vaccination. 

 Agreement to refrain from blood donation during the course of the study. 

 Provision of written informed consent. 

3.3.4.2  VAC051 Exclusion Criteria 

The volunteer could not enter the study if any of the following applied: 

 Participation in another research study involving receipt of an investigational product 

in the 30 days preceding enrolment or during the study period.  

 Prior receipt of an investigational malaria vaccine or any other investigational vaccine 

likely to impact on interpretation of the trial data. 

 Administration of immunoglobulins and/or any blood products within the three 

months preceding vaccination. 

 Any confirmed or suspected immunosuppressive or immunodeficient state, including 

HIV infection; asplenia; recurrent, severe infections and chronic (more than 14 days) 

immunosuppressant medication within the past 6 months (inhaled and topical steroids 

were allowed). 

 History of allergic disease or reactions likely to be exacerbated by any component of 

the vaccine, e.g. egg products, Kathon. 

 History of clinically significant contact dermatitis. 

 Any history of anaphylaxis in reaction to vaccination. 

 Pregnancy, lactation or willingness/intention to become pregnant during the study. 

 History of cancer (except basal cell carcinoma of the skin and cervical carcinoma in 

situ). 

 History of a serious psychiatric condition. 
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 Any other serious chronic illness requiring hospital specialist supervision. 

 Suspected or known alcohol abuse as defined by an alcohol intake of greater than 42 

units every week. 

 Suspected or known injecting drug abuse in the 5 years preceding enrolment. 

 Seropositive for hepatitis B surface antigen (HBsAg). 

 Seropositive for hepatitis C virus (antibodies to HCV) with positive PCR for hepatitis C 

at screening. 

 History of clinical malaria (any species). 

 Travel to a malaria endemic region during the study period or within the previous six 

months. 

 Any clinically significant abnormal finding on screening biochemistry or haematology 

blood tests or urinalysis. 

 Any other significant disease, disorder or finding which may significantly increase the 

risk to the volunteer because of participation in the study, affect the ability of the 

volunteer to participate in the study or impair interpretation of the study data. 

 Inability of the study team to contact the volunteer’s GP to confirm medical history 

and safety to participate. 

3.3.5 ChAd63 PvDBP and MVA PvDBP Vaccines 

The ChAd63 PvDBP and MVA PvDBP vaccines are described in Chapter two, Section 2.1.1. Final 

certification of these products and associated labelling took place at the CBF in Oxford by a 

qualified person (QP).  

An eight week interval between adenovirus prime and heterologous MVA boost has been 

shown to optimise IgG induction in animal models as well as previous clinical trials (192). This 

was therefore chosen as the regime for this study. 

3.3.6 VAC051 Interventions 

Vaccination of volunteers was carried out at the CCVTM in Oxford. Vaccines were stored at -

80°C in a locked freezer. Administration of vaccines was carried out by me and a research 

nurse after I had checked consent and ongoing eligibility (i.e. no change in medical status or 
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medications that would exclude the volunteer from the trial). One of us was required to give 

the vaccine and the other to check the volume drawn and countersign the procedure. Vaccines 

were all administered intramuscularly (IM) into the deltoid muscle. If more than one vaccine 

was given (i.e. volunteers in Groups 2B and 2C) these were given into opposite arms. The 

Investigator administering the vaccine wore an apron, gloves and eye protection. The vaccines 

are genetically modified organisms (GMOs) and therefore all waste from a vaccination 

procedure was autoclaved to minimise dissemination of the recombinant vectored vaccine 

virus into the environment. This is in accordance with UK Genetically Modified Organisms 

(Contained Use) Regulations (2000). 

Volunteers were required to remain at the CCVTM for an hour after vaccination (2 hours for 

the first recipient of a new vaccine dose). Their vital signs and the vaccination site were 

checked at 30 minutes (at which time the vaccination site dressing was removed and discarded 

as GMO waste) and 60 minutes to check for evidence of any immediate reactions to the 

vaccine.  

Four volunteers were vaccinated with 5 x 109 vp ChAd63 PvDBP (diluted in 0.9% NaCl and 

administered in 310 µL) in Group 1. Following a safety review, twelve volunteers (Groups 2A 

and 2B) were vaccinated with 5 x 1010 vp ChAd63 PvDBP. Volunteers in Group 2B were boosted 

with MVA PvDBP 1 x 108 pfu in the opposite arm 8 weeks later. A further safety review was 

carried out before the final eight volunteers received full dose (2 x 108 pfu) MVA PvDBP eight 

weeks after vaccination with ChAd63 PvDBP 5 x 1010 vp (Group 2C). Volunteers in Group 1 

were followed up for approximately 3 months, and volunteers in Group 2 were followed up for 

approximately 5 months. Volunteers attended follow-up visits on days 2, 14, 28, 56 and 84 in 

Group 1; days 0, 2 ,14, 28, 56, 63, 84 and 140 in Group 2A; and days 0, 2, 14, 28, 56, 58, 63, 84 

and 140 in Groups 2B and 2C. Safety data were collected throughout the study, as detailed in 

the next Section. Baseline antibody and T cell responses were checked on day 0. 



99 
 

3.3.7 Assessment of Safety of ChAd63/MVA PvDBP 

Safety data were assessed by actively and passively collected data on adverse events occurring 

throughout the VAC051 trial. Volunteers were asked to complete a paper diary card for 14 

days after vaccination with ChAd63 PvDBP and a second diary for7 days after vaccination with 

MVA PvDBP, with details of any adverse events experienced during these periods, and any 

medication taken. Severity grading of adverse events was as described in Chapter two. A 

longer diary card period was chosen following the initial vaccination because, at the time, 

there had been less experience of the ChAd63 viral vector compared with MVA. Adverse event 

data were also collected at all follow-up visits by study staff who asked the participant to recall 

any adverse events since the last visit, which were then recorded in the participant’s CRF. 

Blood tests for safety (full blood count [FBC], liver function tests [LFTs], urea and electrolytes 

[U&Es]) were carried out at all visits after vaccination except days 2 and 58.  

Prior to each dose escalation (i.e. between Groups 1 and 2 for ChAd63 PvDBP, and between 

Groups 2B and 2C for MVA PvDBP) safety of the vaccines was reviewed by the Local Safety 

Monitor (LSM), who chairs the Local Safety Committee (LSC). The LSC consists of at least two 

other appropriately qualified committee members. The LSM reviewed a report on the adverse 

event profiles of the vaccines (solicited and unsolicited adverse events) and advised on 

whether the study should proceed. The LSM for this study was Dr Brian Angus, a Clinical Tutor in 

Medicine, Honorary Consultant Physician and Director, Centre for Tropical Medicine at the 

University of Oxford. 

3.4 VAC051 Results  

3.4.1 VAC051 Participant Flow 

Thirty volunteers were screened in total, of which twenty four were enrolled. Recruitment 

took place between May 2013 and February 2014. Four volunteers were recruited to Groups 1 

and 2A, and eight volunteers to Groups 2B and 2C. In total, fifteen females and nine males 

were enrolled. The mean age of volunteers was 25 years 9 months (range 18 – 40 years). Four 
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volunteers were enrolled into Group 1 and received 5 x 109 vp of the ChAd63 PvDBP vaccine. 

There was a 3 week interval between vaccination of the final Group 1 volunteer and the first 

Group 2 volunteer to allow a safety review prior to dose escalation of ChAd63 PvDBP to 5 x1010 

vp. Four volunteers in Group 2A received ChAd63 PvDBP alone. Eight volunteers were enrolled 

into Groups 2B and 2C. These volunteers received ChAd63 PvDBP followed 8 weeks later with a 

‘boost’ vaccination of MVA PvDBP at a dose of 1 x 108 pfu (Group 2B) or 2 x 108 pfu (Group 2C). 

There was a 2 week interval between the final vaccination in Group 2B with MVA PvDBP at the 

lower dose of 1 x 108 pfu and the first vaccination with MVA PvDBP 2 x 108 pfu in Group 2C, 

with a safety review prior to dose escalation. One volunteer withdrew from Group 2B prior to 

the MVA PvDBP vaccination due to personal commitments. Following a discussion with the 

safety monitor, the decision was made not to replace her but continue the study with a total of 

7 volunteers in Group 2B. The trial flow diagram is shown in Figure 3-2. 

 

Figure 3-2: VAC051 flow chart of study design and volunteer recruitment. 

 

Excluded (n = 6) 

   Not meeting inclusion criteria (n = 2) 

   Declined to participate (n = 3) 

   Other reasons (n = 1) 

Group 1  (n = 4) 

 

ChAd63 PvDBP 

5 x 109 vp 

Group 2A  (n = 4) 

 

ChAd63 PvDBP 

5 x 1010 vp 

 

Group 2B  (n = 8) 

 

ChAd63 PvDBP 

5 x 1010 vp 

 

Group 2C  (n = 8) 

 

ChAd63 PvDBP 

5 x 1010 vp 

Enrollment 

MVA PvDBP 

1 x 108 pfu 

(n= 7) 

MVA PvDBP 

2 x 108 pfu 

(n= 8) 

 

Withdrew (n = 1) 
(personal reasons) 

Completed follow-up 

(n = 7) 

Completed follow-up 

(n = 8) 

Completed follow-up 

(n = 4) 

Completed follow-up 

(n = 4) 

Follow-Up 

Assessed for eligibility (n = 30) 

Day 0 

Day 56 



101 
 

3.4.2 VAC051 Vaccine safety and reactogenicity 

There were no SAEs or unexpected reactions during the course of the trial and no volunteers 

withdrew due to vaccine-related AEs. ChAd63 PvDBP and MVA PvDBP demonstrated 

favourable safety profiles, similar to those seen in previous clinical trials with the same viral 

vectors (with different malaria antigens) at similar doses in healthy adults (84, 155). 

The maximum severity of solicited AEs reported by volunteers following ChAd63 PvDBP is 

shown in Figure 3-3. All AEs following ChAd63 PvDBP 5 x 109 vp were mild, as were the vast 

majority following the higher dose in Group 2, although some volunteers did report moderate 

or severe adverse events following the higher dose. The majority of solicited adverse events 

following ChAd63 PvDBP occurred within 48 hours of vaccination (Figure 3-5A, B). 

Unsolicited adverse events occurring after ChAd63 PvDBP and deemed possibly, probably or 

definitely related to vaccination were all mild in nature. These are shown in Table 3.1. 

There was only one laboratory adverse event following ChAd63 PvDBP that was considered 

possibly, probably or definitely related to vaccination. This was mild lymphopenia in one 

volunteer vaccinated with ChAd63 PvDBP 5 x 1010 vp which resolved spontaneously. 
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Figure 3-3: Solicited local and systemic AEs following ChAd63 PvDBP.  

Only the highest intensity of each AE per subject is listed. Data are combined for all AEs for all volunteers 
receiving the same vaccine at the stated dose. (A) Local AEs post ChAd63 PvDBP at 5 x 10

9
 vp (G1; 4 

volunteers) and 5 x 10
10

 vp (G2; 20 volunteers). (B) Systemic AEs post ChAd63 PvDBP at 5 x 10
9
 vp (G1) 

and 5 x 10
10

 vp (G2). Data were exported from the OpenClinica database into Excel and the percentages 
of volunteers experiencing each AE following vaccinations at different doses were calculated.  

Unsolicited AEs post ChAd63 PvDBP 5 x 109 vp  AE start day Severity 

Bad dreams overnight 1 Mild 

General malaise following lack of sleep and drinking alcohol  2 Mild 

Unsolicited AEs post ChAd63 PvDBP 5 x 1010 vp  AE start day Severity 

Arthralgia in hip area  0 Mild 

Blocked nose 0 Mild 

Bruising at site of vaccination 1 Mild 

Coryzal symptoms 1 Mild 

Unsolicited AEs post MVA PvDBP 1 x 108 pfu  AE start day Severity 

Bruise at vaccine site 0 Mild 

Unsolicited AEs post MVA PvDBP 2 x 108 pfu AE start day Severity 

Sore throat  0 Mild 

Dry cough  1 Mild 

5mm diameter red mark 2 inches from vaccination site, felt warm  1 Mild 

Slight tightness of the chest 5 Mild 

Raised lymph nodes in neck 3 Mild 

Table 3.1: Unsolicited adverse events considered possibly, probably or definitely related to 
vaccination with ChAd63 PvDBP or MVA PvDBP. 

AE data were extracted from the Openclinica database and grouped by vaccination dose. 
Causality was assessed as per the criteria in Table 2.4 
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Solicited adverse events following MVA PvDBP at 1 – 2 x 108 pfu are shown in Figure 3-4A 

(local) and Figure 3-4B (systemic). The higher dose of MVA PvDBP was more reactogenic with 

half of the volunteers reporting at least 1 severe AE, although no systemic AE was reported as 

severe for more than 24 hours. Reactogenicity following MVA PvDBP peaked in the first two 

days after vaccination (Figure 3-5C, D). 

Unsolicited AEs following MVA PvDBP that were considered possibly, probably or definitely 

related to vaccination were mild in nature and are shown in Table 3.2.  

There was only one laboratory AE following MVA PvDBP that was considered possibly, 

probably or definitely related to vaccination. This was moderate eosinophilia in one volunteer 

vaccinated with MVA PvDBP 1 x 108 pfu which peaked more the 4 weeks after vaccination and 

resolved spontaneously. 

 

Figure 3-4: Solicited local and systemic AEs following MVA PvDBP.  

Only the highest intensity of each AE per subject is listed. Data are combined for all AEs for all volunteers 
receiving the same vaccine at the stated dose. There were no immunisation related serious AEs. (A) Local 
AEs post MVA PvDBP 1 x 10

8
 pfu (G2B; 7 volunteers) and MVA PvDBP 2 x 10

8
 pfu (G2C; 8 volunteers). (B) 

Systemic AEs post MVA PvDBP (G2B and G2C). Data were exported from the OpenClinica database into 
Excel and the  percentage of volunteers experiencing each AE following vaccinations at different doses 
were calculated. 
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Figure 3-5: VAC051 Percentage of volunteers reporting solicited adverse events by day. 

Data shown for all volunteers post ChAd63 PvDBP (A, B) and MVA PvDBP (C, D), regardless of dose 
received. Data were exported from the Openclinica database into Excel and the percentages of 
volunteers reporting each solicited AE by day post vaccination were calculated. 

 

3.4.3 ChAd63/MVA PvDBP T cell immunogenicity assessed by ex-vivo IFN-γ 

ELISPOT 

The kinetics and magnitude of the T cell response to PvDBP were assessed over time by ex-vivo 

IFN-γ ELISPOT following re-stimulation of PBMC with overlapping peptides spanning the entire 

PvDBP_RII insert present in the viral vectored vaccines.  

Vaccination with ChAd63 PvDBP and MVA PvDBP induced antigen-specific T cell responses in 

all volunteers as measured by ex-vivo IFN-γ ELISPOT, with median group responses shown in 

Figure 3-6A Following the ChAd63 PvDBP prime at doses of 5 x 109 vp (Group 1 [G1]) and 5 x 

1010 vp (Group 2 [G2]) there was no significant difference between the groups two weeks after 

vaccination, Figure 3-6B. However, one week after the MVA PvDBP boost (Figure 3-6C) there 
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were significantly stronger median responses in G2B and G2C compared to G2A who did not 

receive the boost (median of 368, 2061 and 2459 SFU/million PBMC in G2A, G2B and G2C 

respectively). There was a trend towards better maintained responses at day 140 in G2C 

compared with G2B (median 1871 vs 385.3 SFU/million PBMC). 

 

Figure 3-6: T cell responses following ChAd63/MVA PvDBP vaccination.  

T cell responses were measured by ex vivo IFNγ ELISPOT using fresh PBMC following ChAd63 PvDBP 
prime vaccination (d0) for G1 (5x10

9
 vp; n=4) and G2 (5x10

10
 vp; n=20) and heterologous boost with MVA 

PvDBP (d56) to G2B (1x10
8
 pfu; n=7) and G2C (2x10

8
 pfu; n=8). All vaccinations were given IM. (A) Group 

median responses. (B) Two weeks post ChAd63 PvDBP vaccination (d14) low dose G1 vs full dose G2. (C) 
One week post MVA PvDBP boost vaccination (d63) in G2B and G2C compared to G2A (ChAd63 PvDBP 
prime only). (D) 12 weeks post boost of G2B and G2C compared to G2A prime only. Spots were counted 
using an automated plate counter and exported into an Excel worksheet where results were obtained by 
subtracting any background response (from negative control wells) and then taking the average of 
triplicate wells. Data were then imported into GraphPad Prism for statistical analyses. *P<0.05, Kruskal-
Wallis test with Dunn’s correction for multiple comparisons. 

 

3.4.4 ChAd63/MVA PvDBP antibody response assessed by ELISA 

The kinetics and magnitude of the serum IgG antibody responses were assessed over time by 
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ChAd63 PvDBP (5x1010vp) induced antigen-specific antibody responses in all volunteers, with 

responses boosted following the MVA PvDBP vaccination in Groups 2B and 2C. Median 

responses are shown in Figure 3-7A. Following the ChAd63 PvDBP prime doses of 5 x 109 vp 

and 5 x 1010 vp there was no significant difference between the two groups four weeks post 

vaccination, but only volunteers in G2 seroconverted to above the threshold of 20 AU. 

However, four weeks post MVA DBP boost (Figure 3-7C), there were significantly stronger 

median responses in G2C compared with G2A who received ChAd63 PvDBP alone (median 

3899 vs 95.5 anti-PvDBP_RII IgG AU), and responses were still significantly higher at day 140 in 

G2C compared to G2A (median 1378 vs 71.70 anti-PvDBP_RII IgG AU). 

 

Figure 3-7: Serum IgG antibody responses following ChAd63/MVA PvDBP measured by ELISA. 

PvDBP_RII-specific IgG responses are shown following ChAd63 PvDBP (d0) in G1 (5x10
9
 vp; n=4) and G2 

(5x10
10

 vp; n=20) and MVA PvDBP boost (d56) in G2B (1x10
8
 pfu; n=7) and G2C (2x10

8
 pfu; n=8). (A) 

Group median responses. (B) Four weeks post ChAd63 PvDBP (d28) low dose G1 vs full dose G2. (C) Four 
weeks post MVA PvDBP boost (d84) in G2B and G2C compared G2A prime only. (D) 12 weeks post boost 
of G2B and G2C compared to G2A prime only. The absorbance at 405nm (OD405) was read using a Biotek 
ELx800 microplate reader with Gen5 software. Data were exported into an Excel worksheet and values of 
internal controls and samples in triplicate were assessed for any aberrant readings. The results were 
obtained by taking an average of triplicate wells, and using the standard curve to assign ELISA arbitrary 
units (AU). The limit of the assay is 20 AU (marked by a dotted line), below which is classed as negative. 
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Data were then imported into GraphPad Prism for statistical analyses. **P<0.01, Kruskal-Wallis test with 
Dunn’s correction for multiple comparisons.  

 

3.4.5 Anti-PvDBP IgG avidity and antibody isotype response profiles  

An avidity ELISA was carried out on Group 2 samples four weeks post MVA PvDBP boost (d84; 

the peak timepoint for IgG response). This assay used displacement of sodium thiocyanate at 

different concentrations to ascertain the avidity of the IgG antibodies for each volunteer. The 

avidity of the anti-PvDBP IgG was similar for all responders in G2 (Figure 3-8) with the IC50 

ranging from 2.5-3.3 M, similar to antibodies produced in boosted PfMSP1 vaccinees (193) and 

higher than PfAMA1 vaccine induced IgG (167).  

An isotype ELISA was also carried out in order to determine the antibody subclass response 

profile following ChAd63/MVA PvDBP vaccination. The response was predominantly composed 

of IgG1, and IgG3 (Figure 3-9), as has been seen previously with viral vectored vaccines (193). 

 

 
Figure 3-8: IgG Avidity assessment following ChAd63/MVA PvDBP vaccinations.  

Anti-PvDBP total IgG avidity was assessed by NaSCN-displacement ELISA against Sal1 PvDBP_RII protein 
and is reported as the molar concentration of NaSCN required to reduce the OD405 to 50% of that without 
NaSCN (IC50). Sera were diluted to give an OD405 = 1.0 and exposed to a dilution curve of NaSCN (0-7M). 
The IC50 is shown for individual responses in each group at the peak time-point (d84) (G2A n=1, G2B n=7, 
G2C n=8). Avidity for samples negative for Total IgG ELISA could not be measured. The absorbance at 
405nm (OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. Data were 
exported into an Excel worksheet and the average value of duplicate readings calculated. Data were 
then imported into GraphPad Prism for statistical analyses. There were no significant differences 
between groups using the Kruskal-Wallis test with Dunn’s correction for multiple comparisons. 
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Figure 3-9: Antibody isotype profile following ChAd63/MVA PvDBP vaccination.  

Antibody isotype was assessed by ELISA. Baseline (d0) response for all Groups (n=20), 12 weeks post 
ChAd63-PvDBP prime for G1 (n=2) and G2A (n=4) and 4 weeks post MVA-PvDBP boost for G2B (n=7) and 
G2C (n=8) (d84) are shown. Individual and median responses are shown for every isotype. The 
absorbance at 405nm (OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. 
Data were exported into an Excel worksheet and the average OD values of duplicate samples calculated. 
Data were then imported into GraphPad Prism for statistical analyses *P<0.05, ***P<0.001, Kruskal-
Wallis test with Dunn’s correction for multiple comparisons. 

 

3.4.6 Detection of anti-PvDBP ASCs following ChAd63/MVA PvDBP 

Previous studies have demonstrated that ASC responses are detectable in peripheral blood 

around 7 days after boost vaccination using a ChAd63/MVA viral vectored heterologous prime-

boost regime (194). Samples from boosted volunteers (G2B and G2C) were assessed by ex-vivo 

ASC ELISPOT at the d63 timepoint using frozen PBMC. There was no significant difference in 

the responses between the two groups (Figure 3-10). 
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Figure 3-10: ASC responses following ChAd63/MVA PvDBP vaccination.  

PvDBP-specific peripheral blood ASCs measured from frozen PBMC isolated 7 days following MVA PvDBP 
vaccination (d63) using ex-vivo ELISPOT from volunteers in G2B (n=7) and G2C (n=8). Spots were counted 
using an AID ELISPOT reader and automated counts were corrected by eye to ensure only spots 
consistent with IgG secreting ASCs were counted. Data were exported into an Excel worksheet and then 
imported into GraphPad Prism for statistical analyses. There was no significant difference between the 
two groups using a Mann Whitney t test. 

 

3.4.7 Anti-PvDBP peripheral mBC responses following ChAd63/MVA PvDBP 

Peripheral mBC responses were assessed by identifying PvDBP-specific mBC-derived plasma 

cells by ex-vivo ELISPOT following a 6-day polyclonal culture of PBMC (Figure 3-11). The 

responses were measured at the peak IgG response (d84) and demonstrated a significant 

difference between the median response in G2B and G2C, both as a measure of mBC-derived 

ASC per million PBMC (Figure 3-11A), and when comparing antigen-specific cells as a 

percentage of total IgG+ (Figure 3-11B). As has been seen previously (194), the mBC derived 

ASC response correlated with the peak (d84) antibody response measured by ELISA (Figure 3-

11C, D). 
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Figure 3-11: mBC responses following ChAd63/MVA PvDBP vaccination.  

mBC derived ASC measured at the peak of the response at d84 using ex-vivo ELISPOT. (A) Comparison 
between vaccine Groups 2B (n=7) and 2C (n=8) (mBC derived ASC per million cultured PBMC). (B) 
Comparison between vaccines Groups 2B and 2C (mBC derived ASC as a % of total IgG ASC). Individual 
and median responses are shown. (C-D) Correlations between mBC derived ASC and peak (d84) antibody 
response as measured by anti-DBP ELISA mBC ELISPOT spots were counted using an AID ELISPOT reader 
and automated counts were corrected by eye .Data were exported into an Excel worksheet and then 
imported into GraphPad Prism for statistical analyses. *P<0.05, Mann-Whitney test for comparing 
groups, Spearman rank for correlation analysis. 

 

3.4.8 PvDBP_RII – DARC Binding Inhibition Assay 

The functional activity of the antibodies induced by vaccination with ChAd63/MVA PvDBP was 

assessed in a binding inhibition assay using recombinant PvDBP_RII and its receptor, DARC 

(Figures 3-12 and 3-13). These assays were carried out both in Oxford and in a collaborating 

laboratory at ICGEB in India. Both assays demonstrated inhibition of binding in all volunteers 

who received the prime-boost regime and one volunteer who received full-dose ChAd63 

PvDBP alone. The assay carried out in Oxford demonstrated that as serum was diluted the 

G ro u p  (d 8 4 )m
B

C
 d

e
r
iv

e
d

 A
S

C
/M

il
li

o
n

 C
u

lt
u

r
e

d
 P

B
M

C

2 B 2 C

0

5 0

1 0 0

1 5 0

G ro u p  (d 8 4 )

m
B

C
 d

e
r
iv

e
d

 A
S

C
 a

s
 %

 o
f 

T
o

ta
l 

Ig
G

 A
S

C

2 B 2 C

0 .0

0 .5

1 .0

1 .5

2 .0

A n ti-P v D B P _ R II Ig G  (A U )m
B

C
 d

e
r
iv

e
d

 A
S

C
/M

il
li

o
n

 C
u

lt
u

r
e

d
 P

B
M

C

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

0

5 0

1 0 0

1 5 0

A n ti-P v D B P _ R II Ig G  (A U )

m
B

C
 d

e
r
iv

e
d

 A
S

C
 a

s
 %

 o
f 

T
o

ta
l 

Ig
G

 A
S

C

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

0 .0

0 .5

1 .0

1 .5

2 .0

*

*

P =  0 .0 4 9 3

r s =  0 .5 1 5 3

P =  0 .0 1 5 7

r s =  0 .6 1

A B

C D



111 
 

binding inhibition decreased (Figure 3-12). The assay carried out at ICGEB (Figure 13-3) 

demonstrated that the antibodies induced by vaccination were able to block the binding of not 

just the homologous PvDBP allele (Sal I) but three other variants as well. This is important as 

an effective P. vivax vaccine based on PvDBP would need to have strain-transcending activity, 

particularly given the concerns about polymorphism in this antigen. 

 

 

Figure 3-12: PvDBP_RII – DARC Binding Inhibition Assay (Oxford).  

Sera were tested for ability to block binding of PvDBP_RII protein to its receptor DARC in an ELISA-based 
assay carried out in Oxford for the Sal I allele using a serum dilution series. Percentage binding inhibition 
is shown for Groups 1 (n=4), 2A (n=4), 2B (n=7) and 2C (n=8). The OD of the ELISA plates was read at 405 
nm on Bio-tek ELx800 Microplate Reader with Gen5 software. Plates were developed to a point 
determined by the OD of the development controls wells (i.e. when the negative control wells reached an 
OD = 1.0). Data were exported into and Excel worksheet and then imported into GraphPad Prism for 
graphical presentation and analyses.  
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Figure 3-13: PvDBP_RII – DARC Binding Inhibition Assay (ICGEB).  

Sera from G2A (n=4), G2B (n=7) and G2C (n=8) were independently tested in an ELISA-based assay at 
ICGEB in India using four different alleles (Sal I, AH, O and P) and serum diluted in series (1:10, 1:50, 

1:100, 1:500 and 1:1,000). Each serum dilution was pre-incubated with the relevant test variant of 

PvDBP_RII (0.025 µg/mL) before being added to DARC-coated plates. A standard curve was generated 
from a series of concentrations (0 – 0.025 µg/mL) of the relevant test PvDBP_RII protein variant. The OD 
was measured at 492 nm using SoftMax Pro software, that interpreted the OD values as concentrations 
of bound PvDBP_RII based on the standard curve on each plate. Percent inhibition at each dilution was 
determined as (100 % – % binding). 
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3.5 Discussion  

There are an estimated 2.5 billion people living at risk of P. vivax malaria globally (195). The 

revised 2030 Malaria Vaccine Technology Roadmap now recognises the urgent need for a 

vaccine to tackle P. vivax if the goal of malaria eradication is to ever be achieved (7). This is 

particularly important given the development of resistance to standard P. vivax treatment, 

with associated mortality (43). In 2015, the World Health Assembly endorsed the target of 

eliminating malaria from 35 countries and reducing case incidence and mortality rates by 90% 

globally by 2030 (196). This is an ambitious goal, for which P. vivax presents particular 

challenges. In countries with few cases of malaria each year, where eradication would appear 

more feasible, P. vivax is the predominant form of malaria accounting for over 70% of cases 

(197). The difficulty of detecting asymptomatic infection, the ability of P. vivax to relapse, and 

the appearance of gametocytes prior to the onset of disease all contribute to difficulties in 

eradication of this infection. A blood-stage P. vivax vaccine, even if only partially effective, 

would allow natural immunity to develop with reduced disease severity (198). A blood-stage 

vaccine would also, importantly, protect against relapses due to the hypnozoite (as long as 

relapses occurred within the duration of protective blood-stage immunity provided by 

vaccination), which would not be the case for pre-erythrocytic or transmission-blocking 

vaccine candidates.  

There are many hurdles to be overcome in development of an effective vaccine against P. 

vivax. Polymorphism of the parasite has been well described, particularly in blood-stage 

antigens (199, 200) with limited polymorphism described in transmission-blocking candidates – 

presumably due to reduced human immune pressure as these antigen targets occur within the 

mosquito (201). This is likely to cause significant problems in vaccine development unless a 

conserved antigen can be found or multiple antigens are included in a vaccine. Cost-effective 

formulation and ease of delivery are also likely to be challenges, particularly if vaccines are 

used as a control method where vaccine coverage will have to be extremely high and migrant 

populations will pose some difficulty. A vaccine will have to be acceptable to the populations 
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targeted with the intervention, and a vaccine active against disease may be more readily 

accepted than a transmission-blocking vaccine. 

For many years the P. vivax Duffy binding protein has been considered a leading vaccine 

candidate but has never previously reached clinical trial. The VAC051 Phase Ia clinical trial was 

the first study to evaluate this antigen (and, in fact any blood-stage P. vivax antigen) as a 

vaccine candidate. Having long been considered an attractive antigen for vaccine 

development, production of the protein to GMP standards has proved difficult (202). The use 

of the viral vectors meant that a vaccine regime suitable for human use was successfully 

produced (157). This trial demonstrated that the vaccines were well tolerated, with no safety 

concerns, and an acceptable reactogenicity profile. As has been seen in previous vaccine trials 

with the same viral vectors (84, 155), the higher doses of both vaccines were associated with 

increased frequency and severity of AEs. 

The ChAd63/MVA PvDBP heterologous prime-boost regime was immunogenic, producing both 

antigen-specific T cells and B cells. There was no significant difference between either of the 

boosted groups (2B or 2C) in the levels of antigen-specific T cells or IgG at peak time-points, 

although there was a trend towards better maintenance of T cell levels at the final time-point 

following the higher MVA PvDBP dose.  

The T cell response seen in the VAC051 trial was similar in magnitude to other malaria vaccines 

using the same viral vectors (83, 84). The ChAd63/MVA heterologous prime-boost regimen has 

previously been shown to induce increases in both CD4+ and CD8+ T cells, with broader and 

more potent responses than those seen using prime-boost regimens of DNA and poxvirus 

vectors. (148). This broader response is anticipated to not only act by helping to facilitate an 

antibody response through CD4+ helper cells but also to contribute to direct clearance of 

pathogens through cell-mediated effector mechanisms. The role of cell-mediated immunity in 

a blood-stage malaria vaccine is not fully understood. However, both CD4+ and CD8+ T cells 

have been shown to be activated in acute blood-stage malaria infection, and probably 
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maintained after infection, in a mouse model (using the murine parasite P. yoelli), with cells 

phenotypically similar to those seen after other bacterial and viral infections (203). This 

supports the view that an optimised blood-stage malaria vaccine should be tailored to induce 

both an antibody and T-cell immune response. 

The ChAd63/MVA PvDBP vaccines were able to induce an antigen-specific IgG response, with a 

predominance of IgG1 and IgG3 isotypes, as has been seen previously with viral vectored 

vaccines (193). I also demonstrated induction of antigen-specific memory B cells in boosted 

volunteers, and the appearance of antigen-specific antibody-secreting cells in peripheral blood 

around 7 days post boost vaccination with MVA PvDBP. This has been described previously 

following ChAd63/MVA viral vectored vaccines and these cells are thought to arise from mBC 

re-stimulation in the lymphoid system (following the boost vaccination). They are seen 

transiently in the blood stream and this is likely to be as they travel to the bone marrow where 

they remain as plasma cells (194). The antibodies induced by vaccination were able to block 

the binding of the Duffy-binding protein to its receptor, DARC, in an in vitro assay carried out in 

Oxford, with similar results seen in both Groups 2B and 2C. This functional activity was also 

demonstrated in an independent experiment carried out in a collaborating laboratory in the 

ICGEB. Encouragingly, the antibodies were able to block not only the reference strain (Salvador 

I) but several other P. vivax strains as well. This is encouraging as one of the potential 

problems of using viral vectored vaccines is that they cause protein expression to occur in situ 

following vaccination, meaning that the immunogen produced cannot be fully characterised 

and may not have folded correctly or been transported through secretory pathways 

successfully (204). The ability of the antibodies produced by vaccination to bind to 

recombinant PvDBP and block binding of the protein to DARC implies that expression of a 

correctly folded protein occurred following ChAd63/MVA PvDBP vaccination.  

The functional activity seen in the VAC051 trial may, however, not translate into vaccine 

efficacy. Assays to determine invasion inhibition of antibodies against P. vivax blood-stage 
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antigens are more complicated to carry out than in P. falciparum studies due to the lack of 

ability for long term culture of vivax parasites in vitro. This generally limits these assays to 

being carried out in countries where P. vivax is endemic, and necessitates collection of blood 

from vivax-infected individuals for use in the assays (132). Translation of in vitro blocking 

activity to efficacy in an in vivo infection setting has not previously been assessed.  

The use of a standardised, reproducible CHMI model for early proof-of-concept efficacy testing 

has been a useful tool in the development of P. falciparum antimalarial drugs (205, 206) and 

vaccines (11). The ability to induce infection consistently and closely observe infected 

individuals means that much smaller numbers are needed for these Phase IIa clinical trials than 

would be needed to test efficacy in a Phase IIb field trial. This has substantial implications for 

cost and time, with only candidates that show efficacy being taken forward to larger, more 

expensive trials. CHMI for P. vivax has been far less utilised than for P. falciparum, with only a 

small handful of studies reported in the last few years, with only one published study assessing 

the efficacy of a vaccine against vivax malaria, the pre-erythrocytic vaccine candidate VMP001 

(77). Deliberate infection with P. vivax was practiced for the treatment of neurosyphilis 

patients almost a century ago by the Austrian psychiatrist Julius Wagner-Jauregg. This initially 

involved injecting neurosyphilis patients with blood taken from soldiers hospitalised with 

malaria, and later passaging malaria through patients (207). The practice was widely adopted 

as it was the only effective treatment for neurosyphilis available at the time, with up to 50% 

efficacy in curing or improving the disease, but was not without risk – mortality rates of 5-15% 

were reported in treated patients, although these patients had significant comorbidities (22). 

CHMI studies conducted in the USA in the 1940s to 1970s explored the biology of P. vivax and 

the potential for inducing immunity through exposure to irradiated sporozoites delivered by 

mosquito bite which conferred short term (3 – 5 months) protection from subsequent 

exposure to infection (61, 64). CHMI studies with P. vivax were discontinued, and only 

relatively recently have been reinstated as a potential method for assessing vaccine and drug 

efficacy.  
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Several CHMI trials by mosquito bite have been assessed by a group in Cali, Columbia using 

mosquitoes infected with P. vivax from patients presenting for treatment (136, 137, 208). 

Additionally, the VMP001 candidate vaccine was assessed at WRAIR in the USA using 

mosquitoes infected from a donor in Thailand and then transported to the USA (77). These 

studies have demonstrated that the mosquito-bite CHMI model is possible for vivax malaria, 

but there are several limitations with this method. Fresh gametocytes from an infected patient 

are required because long-term P. vivax culture is not currently possible. This poses significant 

logistical challenges as it requires at least part of the trial to be undertaken in an endemic 

setting with appropriate entomological facilities established to produce an infected mosquito 

lot after screening and enrolling a donor patient. Subsequently, the mosquito lot can be used 

in trials in the same location, or transported to non-endemic areas but the timing for this in 

the setting of vaccine efficacy testing will be crucial. Furthermore, a different isolate of P. vivax 

will inevitably be used for every trial, meaning CHMI assessment of vaccines is almost certainto 

be with a heterologous strain to that used in the vaccine; that the parasites may have different 

susceptibility to antimalarial treatment between strains; and these differences will be 

unknown at the time of CHMI. As seen in the trials carried out in Cali, different strains are 

likely to have different pre-patent periods which can limit comparability between trials (137). 

The use of sporozoites for CHMI also necessitates a liver-stage of infection, with a high risk of 

hypnozoite formation and potential relapse. This requires participants to be screened for G6PD 

deficiency in order to avoid haemolysis with primaquine, and now also requires assessment of 

the volunteers’ ability to metabolize primaquine (requiring analysis of cytochrome P450 2D6 

phenotype) to maximise safety. Volunteers with poor or intermediate metaboliser CYP2D6 

phenotypes should not be enrolled for such studies (51).  

An alternative approach to mosquito-bite CHMI is to use blood-stage CHMI, as has been 

developed for P. falciparum (Chapter four, (209)). There have been four P. vivax blood-stage 

CHMI studies to-date successfully carried out at QIMR Berghofer in Brisbane, Australia using 

two different inocula (James McCarthy, personal communication). The first pilot study, carried 
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out in two healthy volunteers, demonstrated that infection with P. vivax from a frozen 

inoculum was possible and there were no safety concerns (210). Blood-stage CHMI is obviously 

limited to studies of vaccines or drugs targeting the blood-stage of infection so cannot be used 

for pre-erythrocytic vaccine candidates. It does however have several advantages in situations 

where it can be used. Practical advantages include the ability to carry out CHMI studies more 

easily in a non-endemic setting; having access to the P. vivax strain genetic data before CHMI; 

being able to carry out multiple studies with the same strain (for which a safety database can 

be established); and being able to use the same inoculum size for each volunteer. There are 

also advantages for participants with this method – the use of blood-stage parasites means 

there is no liver-stage of infection, and therefore no risk of hypnozoite formation or relapse. 

This means participants do not require primaquine treatment, and therefore do not require 

G6PD deficiency or cytochrome P450 2D6 phenotype screening. The sensitivity of the parasite 

to antimalarial treatment can also be known in this scenario prior to CHMI, removing the risk 

of using a drug-resistant strain which is a potential possibility with the mosquito-bite CHMI 

model. 

In this Chapter I have described the results of the first Phase Ia clinical trial of a blood-stage P. 

vivax vaccine candidate, ChAd63/MVA PvDBP, demonstrating that in healthy malaria-naïve 

volunteers the vaccine was well tolerated and immunogenic, inducing functional antibodies 

against the PvDBP antigen. Future work will aim at developing the blood-stage CHMI model for 

P. vivax to assess the efficacy of this and other blood-stage P. vivax vaccines. This model has 

proved very useful for P. falciparum, as discussed in Chapter four, for the blood-stage P. 

falciparum vaccine candidate, FMP2.1/AS01B. I conducted a Phase I/IIa study to assess the 

safety, immunogenicity and efficacy of this vaccine using a homologous blood-stage CHMI 

model (209). 

The WHO Malaria Vaccine Technology Roadmap calls for a vaccine with an efficacy against 

clinical disease of 75% for both P. falciparum and P. vivax by 2030 (7). The focus on vaccine 
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development must therefore not be based solely on one parasite or the other but work to 

target both. This is unlikely to be achieved with a single antigen, and will probably require a 

multi-component malaria vaccine. Chapters four and five discuss the development and 

assessment of candidate vaccines against P. falciparum blood-stage antigens conducted 

alongside this P. vivax study with this eventual goal in mind.  
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Chapter Four:

 A Phase I/IIa clinical trial to 

assess the safety, immunogenicity 

and efficacy of FMP2.1/AS01B, an 

asexual blood-stage vaccine for 

Plasmodium falciparum Malaria 

(VAC054) 
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4.1 Authorship statement 

I set up the VAC054 clinical trial with the assistance of Alison Lawrie, Rachel Roberts, Ian 

Poulton, Adrian Hill (CI) and Simon Draper. This involved preparation of the study documents 

with submission for ethical, regulatory approval for all sites, and Research and Development 

(R&D) department approval for NHS sites (in Southampton and London).  

I screened and enrolled volunteers from Oxford and London (NIHR WTCRF, Imperial College 

Healthcare NHS Trust) for the trial. Study staff at the NIHR WTCRF in Southampton carried out 

screening and enrolment of volunteers at this site. Vaccinations and follow-up visits were 

conducted by local site study teams, including myself. The Principal Investigator (PI) in 

Southampton was Saul Faust and the PI in London was Graham Cooke. 

The blood-stage CHMI inoculum was prepared in the Jenner Institute laboratories by Rebecca 

Brown and Simon Draper. It was administered to volunteers at the CCVTM in Oxford by me, 

assisted by Morven Wilkie, Navin Venkatraman, Ian Poulton, Mary Smith, Paula Marriott and 

Raquel Lopez-Ramon. Thick blood films following CHMI were read by qualified microscopists 

Joseph Muita, Pauline Titus and Kebba Konteh from Kemri, Kenya. qPCR was carried out in 

Oxford by Nick Edwards and a team of laboratory staff. 

Laboratory assays assessing vaccine and CHMI immune responses were carried out in Oxford 

by Kathryn Milne, Sarah Silk, Sean Elias and me. The GIA assays were carried out at the NIH 

reference center laboratory in the USA by Kazutoyo Miura. 

The clinical trial described in this Chapter has been published in the Journal of Infectious 

Diseases (209). 
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4.2 Introduction 

4.2.1 Blood stage P. falciparum vaccines 

There has been considerably more research into P. falciparum vaccines than P. vivax vaccines 

in the past. The antigens that have been most widely investigated as blood-stage vaccine 

candidates are AMA1 and MSP1, both of which are proteins found on the merozoite surface. 

Field studies have shown that merozoite surface antigens including AMA1 and MSP1 are 

targets of naturally occurring protective blood-stage immunity (211, 212). Both of these 

antigens have been tested as protein-in-adjuvant formulations (95) and in viral vectored 

vaccines (83), with limited success.  

The ability of a blood-stage vaccine to significantly reduce parasite replication in the blood is 

deemed essential, in order for a blood-stage vaccine to effectively prevent illness when pre-

erythrocytic control measures have failed (25). Numerous factors have hindered development 

of vaccines against the merozoite including:  substantial levels of polymorphism in candidate 

antigens; redundant erythrocyte invasion pathways; and the apparent need for very high 

antibody concentrations to prevent rapid erythrocyte invasion (25, 213). Furthermore, the best 

approach to assessment of vaccine efficacy, including ‘proof of concept’ (POC) studies, against 

the blood-stage parasite in humans has been widely debated (214). 

This trial looked at the safety, immunogenicity and efficacy of a recombinant protein vaccine 

based on the 3D7 clone sequence of P. falciparum AMA1, known as FMP2.1 (93) and 

formulated in the Adjuvant System AS01 from GSK. The vaccine has previously been developed 

and tested in a series of Phase Ia/b safety and immunogenicity trials using the AS01 and AS02 

Adjuvant Systems (94-96, 215). A subsequent Phase IIb field trial in 400 Malian children using 

the FMP2.1/AS02 formulation reported strain-specific efficacy against parasites with 3D7 

AMA1-like sequence in a secondary efficacy endpoint analysis (97). The trial I led, as described 

in this Chapter, aimed to assess POC blood-stage efficacy by inoculating volunteers with blood-
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stage malaria parasites after vaccination and comparing the results in PMR between 

vaccinated volunteers and unvaccinated infectivity controls. 

4.2.2 AMA1 as an antigen 

As described in Chapter one, P. falciparum AMA1 is a precursor protein of 83 kDa (93) located 

in the apical end of the merozoite in the micronemes prior to schizont rupture. The N terminus 

is cleaved to give a 66 kDa form which is found on the merozoite surface following schizont 

rupture, whereas the 83 kDa form is localised apically (89, 90). AMA1 binds to another parasite 

protein, PfRON2, which is inserted by the parasite into the host red cell membrane, forming 

the tight / moving junction and allowing invasion to take place. Antibodies to AMA1 have been 

shown to prevent processing and circum-merozoite redistribution and shedding of the protein. 

Without AMA1 undergoing these processes red blood cell invasion is inhibited (92). 

FMP2.1 is a lyophilised preparation of the majority of the ectodomain of P. falciparum AMA1. 

The gene encoding the FMP2.1 protein was chemically synthesised to contain an E. coli-

optimised codon usage to encode 478 amino acids representative of amino acids 83 to 531 of 

the AMA1 protein with two attached His-tags. The amino acid sequence is: 

MAHHHHHHPGGSGSGTMH-[AMA1 amino acids 83 to 531]-AAALEHHHHHH. 449 of the amino 

acids are derived from the merozoite protein AMA1 of the 3D7 clone of P. falciparum. The 

protein was produced in and purified from E. coli bacteria at the WRAIR BioProduction Facility 

under GMP (93, 95, 97). 

4.2.3 The AS01 Adjuvant System 

Adjuvants have been known to increase the immune response against a given antigen for over 

80 years. GSK Biologicals have developed ‘Adjuvant Systems’ which are formulations of 

classical adjuvants (e.g. aluminium salts, liposomes) mixed with immunomodulatory molecules 

(e.g. Toll-like receptor [TLR] agonists), with an aim of impacting the innate and/or adaptive 

immune responses. AS01 is a liposome-based Adjuvant system with a specific aim to improve 

cell-mediated immunity (122). It is also one of the best adjuvants available for inducing 
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antibody production following vaccination (216). The Adjuvant System contains 3-0-desacyl-4’ 

monophosphoryl lipid A (MPL), a TLR4 ligand derived from the cell wall lipopolysaccharide 

(LPS) of the Gram negative Salmonella minnesota R595 strain. The LPS is detoxified by 

hydrolytic treatment and purification to provide a powerful adjuvant without the toxic effects 

of the parent molecule. The AS01 adjuvant system also contains QS21, a triterpene glycoside 

purified from the bark of the South American tree Quillaja saponaria. QS-21 has been shown 

to impact antigen presentation to antigen presenting cells (APCs) and favours the induction of 

cytotoxic T lymphocytes (122). AS01 is produced in an adult formulation, AS01B and a 

paediatric formulation, AS01E, which contains half the amount of MPL and QS21 as the adult 

version (217). The AS01B adjuvant system used in this trial contains 50 micrograms of MPL and 

50 micrograms of Stimulon QS21 in a liposome-based formulation in a 0.5 mL dose (95). 

AS01 is closely related to another Adjuvant System, AS02, which contains the same 

immunostimulants MPL and QS21. AS02 is an oil-in-water, rather than liposomal, formulation 

so has smaller particle size than AS01 (218). The adult formulation is termed AS02A whilst the 

paediatric formulation is termed AS02D. The clinical evaluation of GSK’s leading malaria 

vaccine candidate RTS,S started with AS02 but a Phase IIa sporozoite CHMI study 

demonstrated that the safety and reactogenicity of RTS,S/AS01 was comparable to that of 

RTS,S/AS02, with a trend towards improved vaccine efficacy (VE) against infection (50.5% [95% 

CI: 32.9, 67.1] vs 31.8% [95% CI: 17.6, 47.6]) (73). This was confirmed in a subsequent study in 

Ghent, Belgium (219). The RTS,S vaccine has been given to thousands of individuals, including 

children in phase I – III trials with no significant safety concerns and moderate efficacy (57). 

AS01 has been taken forward as the preferential Adjuvant System for malaria vaccines given 

the improvement in immunogenicity seen with compared with AS02. The VAC054 trial 

therefore used this rather than AS02. 
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4.2.4 Previous trials of FMP2.1 

4.2.4.1  FMP2.1 with AS02A 

Phase Ia 

FMP2.1 was evaluated with AS02A in a Phase Ia dose escalation study in 23 healthy, malaria-

naïve adult volunteers at WRAIR in 2007 by Polhemus et al. The final dose used was 43 μg of 

lyophilised protein which was mixed with AS02A just prior to immunisation, so that 

approximately 8, 20 or 40 μg of FMP2.1 was delivered in a final volume of 0.5mL of AS02A. 

There were 8 volunteers enrolled into each of the lower dose groups and 7 volunteers in the 

group receiving 40 μg. Three vaccinations were scheduled for each volunteer at 0, 1 and 2 

months. Nineteen volunteers completed the study, receiving all vaccines. There were no SAEs 

related to vaccination and the most common local AE was injection site pain. Swelling at the 

injection site was also noted, particularly in the high dose group, but this was generally mild. 

The most common systemic AEs noted were headache (18 incidents over 63 vaccinations) and 

myalgia (14 incidents over 63 vaccinations). The vast majority of AEs resolved within 72 hours 

of vaccination. The vaccine showed favourable safety data and was immunogenic, with the 

induction of humoral and Th1-biased cellular immune responses (94). 

Phase Ib (Adults) 

A Phase Ib study was carried out in Mali in 60 healthy adults exposed to seasonal malaria. The 

doses used were FMP2.1 25 µg/AS02A 0.25 mL (half dose) or FMP2.1 50 µg/AS02A 0.5 mL (full 

dose). 20 volunteers were recruited into each of the groups to receive FMP2.1/AS02A and the 

remaining 20 received rabies vaccine as controls. The dosing schedule was as for the Phase Ia 

study – 0, 1 and 2 months. Local solicited AEs were higher in the FMP2.1/AS02A vaccine groups 

compared with controls. The most common local AEs were pain and swelling at the injection 

site. Grade 3 swelling was much more common in the full dose FMP2.1/AS02A group. The 

swelling was generally not associated with significant functional impairment, and all local AEs 

resolved within the 8 day follow-up period following vaccination. Headache, myalgia and 
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malaise were the most common systemic AEs, and were more common in the groups receiving 

the full dose FMP2.1 vaccine. There were no severe systemic AEs, and all solicited systemic AEs 

resolved within the 8 day follow up period. There were no SAEs noted in this study. The 

vaccine showed favourable safety data and was immunogenic, with a trend towards higher 

antibody responses in the full dose FMP2.1/AS02A group compared to the half dose group. 

There was also significantly greater in vitro GIA in the post-vaccination sera from the full dose 

group than sera from the control group, but not in sera from the half dose group, against both 

homologous (3D7) and heterologous (FVO) parasites (96). 

Phase Ib (Children) 

A Phase Ib double-blind randomised controlled dose escalation trial was conducted in healthy 

Malian children exposed to seasonal P. falciparum malaria. 100 children aged 1-6 years were 

enrolled, and placed into 3 cohorts (1 group of 20 and 2 groups of 40). Within each cohort, 

participants were randomised in a 3:1 fashion to receive approximately 10, 25 or 50 μg of 

FMP2.1 with a proportionate volume of the AS02A adjuvant system, or rabies vaccine as a 

control. In the first cohort (n=20) 14 of the 15 children vaccinated with 10 μg FMP2.1 with 

0.1mL AS02A received all 3 vaccinations and all 5 controls received 3 vaccinations. The whole 

cohort completed 1 year of follow up. In the second cohort (n=40) 27 of the 30 children 

randomised to receive 25 μg FMP2.1 received all three vaccinations and 8 of the 10 controls in 

this arm received three doses of rabies vaccine. 27 of the 30 children in the vaccine arm and all 

10 controls completed 1 year of follow up. In the third cohort (n=40) 27 children received all 

three vaccinations of 50 μg FMP2.1 with 0.5 mL AS02A and all 10 controls received 3 doses of 

rabies vaccine. 29 children in the vaccine arm and all 10 controls completed 1 year of follow 

up. The most common local AEs were injection site swelling and pain, which tended to 

diminish with subsequent vaccinations (particularly in the lowest dose group). Grade 3 swelling 

was seen in all vaccine groups, but more so in the 50 μg malaria vaccine group. All local AEs 

resolved within the 7 day follow-up period after vaccination. The most common systemic AE 
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was fever and this was more frequent in malaria vaccine recipients than controls. There were 

no severe solicited systemic AEs and all resolved within the 7 day follow-up period. Four SAEs 

were reported in the study. One of these was a raised white blood cell count, which was 

thought to be secondary to malaria infection. The other three SAEs were related to raised liver 

transaminases, one of which was found to be due to acute hepatitis A infection and the other 

two related to hepatitis B, although an additional increase in ALT related to vaccination could 

not be ruled out. All four SAEs resolved within 3 to 4 weeks of follow up with no sequelae. 

FMP2.1/AS02A showed favourable safety data in children, with acceptable tolerability. All 

three dose levels of the FMP2.1/AS02A vaccine elicited high levels of antibodies recognising 

AMA1 after a single vaccination, peaking a month after the third vaccination. Based on this 

study the dose of 50 μg was selected to go forward for further evaluation, although there was 

no significant difference in anti-AMA1 antibody titres between the different dose groups (215). 

Phase IIb (Children) 

A Phase IIb double-blind, randomised efficacy study was carried out in which 400 healthy 

Malian children aged 1 to 6 years were vaccinated with either FMP2.1/AS02A or a control 

(rabies) vaccine and followed up for 6 months. The dose of FMP2.1 used was 50 μg suspended 

in 0.5 mL of AS02A. Children were randomised in a 1:1 ratio to either receive the malaria 

vaccine or control vaccine at 0, 1 and 2 months. The primary endpoint was a clinical episode of 

malaria (defined as fever with an asexual P. falciparum parasite density of >2500 

parasites/mm3). Secondary endpoints included one or more episodes of clinical malaria with 

AMA1 genotypes identical to the 3D7 vaccine strain with respect to eight designated 

immunologically important AMA1 polymorphisms in the cluster 1 loop of domain I and 

multiple episodes of clinical malaria. Children received the vaccines at 0, 1 and 2 months and 

were then followed up for 6 months with blood tests. Blood smears were only read at the time 

of collection if the child was symptomatic. DNA was extracted from dried-blood spots collected 

during clinical malaria episodes, and the gene encoding P. falciparum AMA1 was sequenced. 
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Clinical episodes were classified into those that matched the vaccine strain (in terms of AMA1 

genotype) and those that did not. The unadjusted efficacy of the vaccine was 17.4% (hazard 

ratio for the primary endpoint 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18), 

however, efficacy against clinical malaria with the vaccine strain AMA1 was 64.3% (hazard ratio 

of vaccine vs. control 0.36; CI, 0.08 to 0.86; P=0.03). There were no safety concerns relating to 

the vaccine and no vaccine-related SAEs reported. Swelling was the most common local AE, 

and was more common in the malaria vaccine group than controls. Fever was the most 

common systemic AE and was also significantly more common in the malaria vaccine group 

(97). The allele-specific efficacy against homologous parasites seen in the first malaria season 

did not extend into the second season of follow-up (99). 

4.2.4.2  FMP2.1 with AS01B and AS02A 

Phase I/IIa (Adults) 

AS01B has been used with FMP2.1 in 20 healthy volunteers in a trial by Spring et al. at WRAIR 

(95). This trial compared FMP2.1 given with the AS02A and AS01B adjuvant systems. Five 

volunteers received low dose FMP 2.1/AS01B with 3 doses of 10 μg FMP2.1 in 0.5 mL of 

AS01B. 14/15 volunteers received 3 doses of full dose FMP2.1/AS01B (50 μg FMP2.1 in 0.5 mL 

of AS01B). A further 14/15 volunteers received 3 doses of full dose FMP2.1/AS02A (50 μg 

FMP2.1 in 0.5 mL of AS02A). There was no significant difference in the antibody titres across 

the groups, except at day 42 (two weeks after the second vaccination) when full dose 

FMP2.1/AS01B induced higher concentrations than low dose FMP2.1/AS01B and full dose 

FMP2.1/AS02A. The geometric mean concentration (with 95% CI) for anti-AMA1 IgG measured 

by ELISA two weeks after the third vaccination were 196 µg/mL (103–371 µg/mL) in the low 

dose FMP2.1/AS01B group, 279 µg/mL (210–369 µg/mL) in the full dose FMP2.1/AS01B and 

216 µg/mL (169–276 µg/mL) in the full dose FMP2.1/AS02A group. Some boosting of IgG was 

seen after the third vaccination but the levels were not significantly higher than those reached 

after the second vaccination in any vaccine group. 
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There were no safety concerns with the FMP2.1/AS01B vaccine and no SAEs were noted. Local 

AEs following vaccination were common, and tended to increase with subsequent 

vaccinations. The most common local AEs were injection site pain, erythema and swelling. No 

severe pain was noted and the erythema and swelling were not associated with significant 

functional impairment. Headache, malaise and fatigue were the most common systemic 

effects noted. Systemic AEs also tended to increase with subsequent vaccinations, and were 

most severe in the full dose AS01B group, with 5 volunteers reporting a grade 3 systemic AE in 

this group. The majority of AEs occurred and resolved within 72 hours of vaccination. Vaccine 

efficacy of both vaccines was tested following CHMI via five infectious mosquito bites (3D7 

clone parasites). Six of the volunteers vaccinated with full dose FMP2.1/AS01B and ten of the 

volunteers vaccinated with full dose FMP2.1/AS02A underwent CHMI, along with six 

unvaccinated controls. All vaccinees became parasitaemic with no delay to parasitaemia as 

determined by thick blood film compared with controls. Level of parasitaemia was examined 

by qPCR post-CHMI from day 7 to day 12 (inclusive). There was a statistically significant 

difference among both vaccination groups and the infectivity control group in the longitudinal 

measurement of peripheral parasitaemia on days 7-9 when parasitaemia was detectable by 

qPCR but antimalarial treatment had not yet been initiated (P=0.0002). Post-test analysis using 

Tukey’s Test showed a significantly lower parasitaemia in the volunteers who received full 

dose FMP2.1/AS02A (P=<0.0001) and a trend towards lower parasite burden in the volunteers 

who received full dose FMP2.1/AS01B P=0.084). There was a trend towards a decreased 

hepatic parasite burden with both vaccines, but this was not statistically significant. 

4.2.5 Blood-stage controlled human malaria infection (CHMI) 

As discussed in Chapter one, an alternative to infecting volunteers with malaria via mosquito 

bite is the intravenous administration of infected erythrocytes. This enables the blood-stage of 

infection to be examined in isolation, unlike the more widely used sporozoite CHMI models 

which have historically been used to assess vaccine efficacy of pre-erythrocytic vaccine 
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candidates in small proof-of-concept Phase IIa clinical trials (11, 220), although a few 

mosquito-bite CHMI trials have also been carried out for blood-stage vaccine candidates (83, 

95). More typically, the efficacy testing of blood-stage vaccines has relied on larger-scale, 

expensive Phase IIb field trials in endemic populations. Reasons for this include the assumption 

that blood-stage vaccine efficacy could not be assessed in the short time interval between 

parasite emergence from the liver (around days 6 or 7 post-sporozoite CHMI) and diagnosis of 

blood-stage infection by thick-film microscopy (typically 4-6 days later). 

The work in this Chapter aimed to further develop the blood-stage P. falciparum CHMI model 

to enable more accurate and rapid efficacy assessment of blood-stage vaccine candidates prior 

to field trial assessment. The underlying hypothesis for this study was that an effective blood-

stage vaccine should demonstrate a measurable effect on the PMR in malaria-naïve 

individuals, most likely to be seen against homologous challenge. PMR can be modelled for 

each individual from quantitative real-time PCR (qPCR) data of blood-stage parasitaemia, prior 

to patency and diagnosis by thick-film microscopy (177). This CHMI model should allow for a 

longer period of qPCR monitoring, homologous challenge and, in comparison to the mosquito-

bite CHMI model, consistency in the initial number of blood-stage parasites in all volunteers. 

The uniformity of the known starting inoculum and more datapoints available for modelling 

should also lead to improved confidence of the calculated PMRs and thus greater power to 

observe partial vaccine efficacy (141, 175, 214). 

The infectious inocula used in this study were produced by Drs Gregor Lawrence, Allan Saul 

and colleagues at QIMR in Brisbane, Australia in 1994 (166). Procedures were designed to 

minimise the risk of other infectious agents in the cryopreserved samples. A volunteer with 

blood group O, Rhesus negative was deliberately infected with a chloroquine-sensitive strain of 

the P. falciparum clone 3D7 (homologous to the vaccine candidate antigen) via the bites of 

laboratory-reared Anopheles stephensi mosquitoes. Blood was taken from the volunteer after 

fever developed, when parasites were visible on thick blood film.  
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Initial development of the blood inoculum to be used in this study and its use in five volunteers 

is described by Cheng et al. 1997 (166). Blood was collected at the Australian Red Cross Blood 

Bank in an aseptic manner using standard blood bank equipment. The blood was leukocyte-

depleted prior to cryopreservation and the amount of serum potentially transferred is reduced 

by a factor of approximately 1000 by the thawing and washing process. The volume of 

inoculum to be given to each volunteer contains a very small volume of red blood cells, 

equivalent to only 1.5 to 4 microlitres of blood. The red cells were cryopreserved using a 

protocol from the American Association of Blood Banks Technical Manual that is normally 

employed for freezing blood from patients and donors with rare blood groups.  

Prior to this trial, over 100 volunteers had received the inoculum with a varied number of 

infected erythrocytes (from 30 to 6000). CHMI using this method has always resulted in 

parasitaemia as detected by PCR (140).  

4.2.6 VAC054 Hypothesis 

Vaccination with FMP2.1/AS01 will induce antibodies against AMA1 which will inhibit P. 

falciparum invasion of red blood cells, detectable as a reduced PMR in vaccinated volunteers 

compared with unvaccinated infectivity controls following a blood-stage CHMI with a 

homologous parasite. 

4.3 VAC054 Methods 

Detailed methods of the recruitment and enrolment of volunteers, as well as the assays used 

in this trial can be found in Chapter two: Materials and Methods. 

4.3.1 VAC054 Study Design 

This study was an open-label non-randomised phase I/IIa trial of the blood-stage malaria 

vaccine candidate FMP2.1/AS01, with efficacy assessed by blood-stage CHMI in vaccinated 

volunteers compared with infectivity controls (Figure 4-1). The study was conducted at the 

CCVTM, University of Oxford, Oxford, UK. Volunteers were also recruited and vaccinated at 
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two other trial sites (the NIHR WTCRF, University Hospital Southampton NHS Foundation Trust 

and the NIHR WTCRF, Imperial College Healthcare NHS Trust) but CHMI for all volunteers took 

place in Oxford. Allocation to study group was based on time of enrolment (vaccinees were 

enrolled before controls) and volunteer preference. 

The sample size for the study was determined from power calculations performed by the 

Centre for Statistics in Medicine at the University of Oxford. Data were available from small 

studies undertaken with the same inoculum in Oxford (174, 175), as well as at the Radboud 

University Nijmegen Medical Centre in the Netherlands (179). These historical data suggested 

the coefficient of variation in the controls may range from 22% (Nijmegen where mean PMR = 

10) to 33% (Oxford where mean PMR = 12). A study design (where the maximum number of 

volunteers = 30) with 15 controls versus 15 vaccinees consistently provided the best power 

(≥80% ) to observe a 33% reduction in mean PMR when allowing for the coefficients of 

variation.  

Group 1 

FMP2.1/AS01B  

Day 0: 50 µg/0.5 mL IM 

(n=15) 

 

Group 2 

Unvaccinated Infectivity 

Controls 

(n=15) 

  

 

  

FMP2.1/AS01B 

Day 28: 50 µg/0.5 mL IM 

  

FMP2.1/AS01B 

Day 56: 50 µg/0.5 mL IM 

  

Blood-Stage CHMI 

Day 70 

Blood-Stage CHMI 

Day 70 

Figure 4-1: VAC054 Overview of trial groups.  

IM = intramuscular; CHMI = controlled human malaria infection 
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4.3.2 VAC054 Ethics 

The study received ethical approval from the Oxfordshire Research Ethics Committee A in the 

UK (Ref 13/SC/0596), and the Western Institutional Review Board (WIRB) in the USA (Ref 

20131985). The study was approved by the UK MHRA (Ref 21584/0326/001-0001). The trial 

was registered with Clincaltrials.gov (NCT02044198) and was conducted according to the 

principles of the current revision of the Declaration of Helsinki 2008 and in full conformity with 

the ICH guidelines for Good Clinical Practice. 

4.3.3 VAC054 Objectives and Endpoints 

Primary objective 

To establish whether the FMP2.1/AS01B vaccine can demonstrate a reduced PMR in 

vaccinated subjects compared to infectivity controls against vaccine-homologous 3D7 clone 

parasites in a Phase I/IIa blood-stage CHMI model. 

Primary endpoint 

PCR-derived PMR was the primary study endpoint, and comparison of the endpoint between 

the two groups constituted the primary analysis for efficacy. The secondary analyses for 

efficacy were: 

 Time to microscopic patency compared between the two groups. 

 A test of the hypothesis that there is a relationship between in vitro GIA induced by 

the FMP2.1 vaccine and PMR. 

 A test of the hypothesis that there is a relationship between anti-AMA1 antibody 

responses induced by the FMP2.1 vaccine and PMR. 

 

Secondary objectives 

To assess the safety of FMP2.1/AS01B in healthy malaria-naïve adults in the UK. 

To assess immunological readouts for association with a reduced parasite multiplication rate. 
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Secondary endpoints 

The safety of the FMP2.1/AS01 vaccine was assessed according to the following endpoints: 

 Occurrence of each solicited AE within a 7-day follow-up period (day of vaccination 

and 6 subsequent days) after each vaccination. 

 Occurrence of unsolicited AEs within 30 days (day of vaccination and 29 subsequent 

days) after each vaccination*. 

 Occurrence of a serious adverse event from the first vaccination to the end of the 

study. 

Solicited and unsolicited AE data was collected at each clinic visit from diary cards, clinical 

review, clinical examination (including observations) and laboratory results. These AE data 

were tabulated and frequency, duration and severity of AEs were compared between groups. 

* The occurrence of unsolicited AEs was in fact monitored until the day 90 post-CHMI visit, but 

only those events occurring within 30 days of each vaccination were used for the analysis of 

this safety endpoint. 

4.3.4 VAC054 Participants 

Healthy, malaria-naïve males and non-pregnant females aged 18-45 were invited to participate 

in the study. All volunteers gave written informed consent prior to participation. Volunteers 

were recruited and vaccinated at three sites in the UK (Oxford, Southampton and London), 

with blood-stage CHMI and follow-up for all volunteers carried out at the CCVTM, University of 

Oxford. The inclusion and exclusion criteria for participation are described below. 

4.3.4.1  VAC054 Inclusion Criteria 

 Healthy, male or non-pregnant female adult aged 18 - 45 years. 

 Subject willing and able to give written informed consent for participation in the study. 

 Resident in or near Oxford for the duration of the CHMI part of the study. Or for 

volunteers not living in Oxford: agreement to stay in arranged accommodation close to 

the trial centre during a part of the study (from the day before CHMI until anti-malarial 

treatment is completed). 
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 Female subjects of child bearing potential willing to practice continuous effective 

contraception for the duration of the study. 

 Able (in the Investigator’s opinion) and willing to comply with all study requirements. 

 Willing to allow his or her GP and consultant, if appropriate, to be notified of 

participation in the study. 

 Agreement to permanently refrain from blood donation, as per current UK Blood 

Transfusion and Tissue Transplantation Services guidelines (221). 

 Reachable (24 hours a day) by mobile phone during the period between CHMI and 

completion of antimalarial treatment. 

 Willingness to take a curative anti-malaria regime following CHMI. 

 Answer all questions on the informed consent questionnaire correctly. 

4.3.4.2  VAC054 Exclusion Criteria 

 History of clinical malaria (any species). 

 Travel to a malaria endemic region during the study period or within the preceding six 

months with significant risk of malaria exposure. 

 Use of systemic antibiotics with known antimalarial activity within 30 days of CHMI 

(e.g. trimethoprim-sulfamethoxazole, doxycycline, tetracycline, clindamycin, 

erythromycin, fluoroquinolones and azithromycin). 

 Prior receipt of an investigational malaria vaccine or any other investigational vaccine 

likely to impact on interpretation of the trial data.  

 Receipt of an investigational product in the 30 days preceding enrolment, or planned 

receipt during the study period. 

 History of sickle cell anaemia, sickle cell trait, thalassaemia or thalassaemia trait or any 

haematological condition that could affect susceptibility to malaria infection. 

 Any confirmed or suspected immunosuppressive or immunodeficient state, including 

HIV infection; asplenia; recurrent, severe infections and chronic (more than 14 days) 

immunosuppressant medication within the past 6 months (inhaled and topical steroids 

are allowed). 

 Use of immunoglobulins or blood products within 3 months prior to enrolment or 

previous severe adverse reaction to a blood transfusion.  
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 History of allergic disease or reactions likely to be exacerbated by any component of 

the vaccine (or malaria infection). 

 Any history of anaphylaxis post vaccination. 

 Pregnancy, lactation or intention to become pregnant during the study. 

 Use of medications known to cause prolongation of the QT interval and existing 

contraindication to the use of Malarone. 

 Use of medications known to have a potentially clinically significant interaction with 

Riamet and Malarone. 

 Contraindications to the use of all three proposed anti-malarial medications; Riamet, 

Malarone and Chloroquine. 

 Any clinical condition known to prolong the QT interval. 

 Family history of congenital QT prolongation or sudden death. 

 Positive family history in 1st and 2nd degree relatives < 50 years old for cardiac 

disease. 

 History of cardiac arrhythmia, including clinically relevant bradycardia. 

 An estimated, ten year risk of fatal cardiovascular disease of ≥5%, as estimated by the 

Systematic Coronary Risk Evaluation (SCORE) system (222). 

 Any clinically significant abnormal finding on biochemistry or haematology blood tests, 

urinalysis or clinical examination. In the event of abnormal test results, confirmatory 

repeat tests may be requested at the discretion of the Investigator.  

 History of cancer (except basal cell carcinoma of the skin and cervical carcinoma in 

situ). 

 History of serious psychiatric condition that may affect participation in the study. 

 Any other serious chronic illness requiring hospital specialist supervision. 

 Suspected or known current alcohol abuse as defined by an alcohol intake of greater 

than 42 standard UK units every week. 

 Suspected or known injecting drug abuse in the 5 years preceding enrolment. 

 Seropositive for hepatitis B surface antigen (HBsAg). 

 Seropositive for hepatitis C virus (antibodies to HCV) at screening. 
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 Any other significant disease, disorder, or finding which may significantly increase the 

risk to the volunteer because of participation in the study, affect the ability of the 

volunteer to participate in the study or impair interpretation of the study data. 

 Volunteers unable to be closely followed for social, geographic or psychological 

reasons. 

4.3.5 VAC054 Assessment of Safety 

Safety data were assessed by actively and passively collected data on adverse events (AEs) 

occurring throughout the VAC054 trial. Volunteers were asked to complete a paper diary card 

for seven days after each vaccination, recording both solicited and unsolicited AEs, as well as 

any medication taken. Solicited AEs included local AEs (injection site pain, redness, swelling, 

itch and warmth) and systemic AEs (fever, feverishness, myalgia, arthralgia, nausea, malaise, 

headache and fatigue). The information from the diary card was then entered into the 

OpenClinica eCRFs.  

Adverse event data for were also collected at follow-up visits throughout the trial, until the 

visit 90 days after CHMI. Following this, only data on serious adverse events and adverse 

events of special interest were collected. The adverse events of special interest in this trial 

were: 

 Severe hypersensitivity reactions (eg. Anaphylaxis). 

 Any new, suspected auto-immune disease. 

 Meningitis. 

Baseline safety blood tests (FBC, U&Es, LFTs) were carried out at a volunteer’s screening visit 

and at Days 0, 7, 14, 28, 35, 42, 56 and 63 for vaccinees, and days 69 (C-1), C+9, day of 

diagnosis, C+28 and at C+90 for both groups. Any laboratory AEs were graded as per site-

specific grading tables, using local laboratory reference ranges (see Appendix 6). Causality 

relating to vaccination was assigned by the lead investigator and peer-reviewed. 

Following CHMI volunteers were seen twice daily from C+2 (once on day C+1). At each visit 

they were asked a list of symptoms commonly associated with malaria infection (‘solicited’ 
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symptoms). These included pyrexia, low back pain, chills, rigors, feverishness, myalgia, 

arthralgia, headache, fatigue, nausea, sweats, vomiting and diarrhoea. In addition, following 

commencement of antimalarials, volunteers were also asked about the following symptoms, 

which may be associated with antimalarial treatment: dizziness, abdominal pain, palpitations, 

itchy skin, rashes, cough and insomnia. If any of these symptoms were present they were 

asked to grade the severity from 1 (mild) to 3 (severe), using the same severity grading criteria 

as used for AEs after vaccination. Any other symptoms reported by the volunteers were also 

recorded.   

4.3.5.1  Stopping and Holding Rules 

For this trial, safety stopping and holding rules were introduced to ensure participant safety 

during the trial. These applied to Group 1 volunteers only as Group 2 volunteers did not 

receive any vaccinations. The holding and stopping rules used in the VAC054 protocol are 

shown below. 

Holding rules (only applicable to Group 1) 

Solicited local adverse events: 

 A Grade 3 solicited local adverse event beginning within 2 days after vaccination (day 

of vaccination and one subsequent day) and persisting at Grade 3 for >48 hrs in more 

than 3/15 of Group 1 participants. 

Solicited systemic adverse events:  

 A Grade 3 solicited systemic adverse event beginning within 2 days after vaccination 

(day of vaccination and one subsequent day) and persisting at Grade 3 for >48hrs in 

more than 3/15 of Group 1 participants. 

Laboratory adverse events: 

 Immunisation of Group 1 could be put on hold if 3/15 participants developed a Grade 

2 laboratory AE which lasted for ≥ 48 hours or 2/15 participants developed any Grade 

3 laboratory AE considered to be associated with immunisation. 

A serious adverse event considered possibly or probably related to vaccination occurred 
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Individual stopping rules (for all vaccinated individuals) 

In addition to the above stated group holding rules, stopping rules for individual subjects 

applied (i.e. indications to withdraw individuals from further vaccinations): 

Local reactions:  

 Injection site ulceration, abscess or necrosis. 

Laboratory adverse events: 

 If a participant developed a Grade 3 laboratory AE considered possibly or probably 

related within 2 days after vaccination (day of vaccination and one subsequent day) 

which persisted continuously at Grade 3 for > 72hrs, they should not continue in the 

trial. 

Systemic solicited adverse events: 

 If a participant developed a Grade 3 systemic solicited adverse event considered 

possibly or probably related within 2 days after vaccination (day of vaccination and 

one subsequent day) which persisted continuously at Grade 3 for > 72hrs, they should 

not continue in the trial. 

Unsolicited adverse events: 

 If a participant had any Grade 3 adverse event considered possibly or probably related 

to vaccination, persisting continuously at Grade 3 for >72hrs, they should not continue 

in the trial. 

 If a participant had a serious adverse event considered probably related to vaccination 

they should not continue in the trial. 

 If a participant had an acute allergic reaction or anaphylactic shock following the 

administration of vaccine investigational product they should not continue in the trial. 

4.3.6 VAC054 Interventions 

4.3.6.1  FMP2.1/AS01 vaccine preparation 

The vaccine FMP2.1 was produced under GMP at the WRAIR BioProduction Facility and 

supplied as a lyophilised preparation. FMP2.1 was mixed with the AS01 adjuvant system from 

GSK immediately prior to vaccination. A 50 µg dose of FMP2.1 was administered in 0.5 mL of 

AS01 as an IM injection into the deltoid muscle of the non-dominant arm. The vaccine was 
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administered at days 0, 28 and 56 (nominal study days are used) with an allowed window 

between vaccinations of a minimum of 21 days and maximum of 35 days. Volunteers also 

attended follow-up visits on days 3, 7, 14, 31, 35, 42, 59, 63 and 69 before CHMI on day 70. 

4.3.6.2  Blood-Stage CHMI 

CHMI took place 2 weeks (range 14-16 days) after the final vaccination (day 70/ day of CHMI 

[dC]) at the CCVTM in Oxford, with the 15 infectivity controls (Group 2) inoculated at the same 

time as the vaccinees. Inoculation was carried out in three clinic rooms simultaneously 

alternating between Group 1 and Group 2 volunteers in each room. A single vial of blood-stage 

inoculum was thawed, washed & diluted under aseptic conditions (see Chapter two). 

Sequencing of the parasite’s AMA1 gene confirmed 100% identity with the FMP2.1 vaccine.  

The intended inoculum was 1000 parasitised erythrocytes per volunteer. A limiting dilution 

assay on the inoculum was set up at the time the last volunteer was infected which 

demonstrated 69% viability (i.e. an effective inoculum of 690 parasites per volunteer).  

Following CHMI, blood samples were taken once on the day after CHMI (dC+1) and twice daily 

from dC+2 for P. falciparum qPCR and thick blood film. Diagnosis of malaria was made 

according to Table 4.1. The PMR was calculated from qPCR data as per the methods described 

in Chapter two. 

 

 THICK FILM MICROSCOPY  

MALARIAL SYMPTOMS Positive Negative 

Symptomatic Positive diagnosis Positive diagnosis if any 
available PCR result is ≥ 500 

parasites/mL 

Asymptomatic Positive diagnosis if any 
available PCR result is ≥ 500 

parasites/mL 

(Otherwise delay 
treatment) 

 

Negative diagnosis 

Table 4.1: VAC054 Malarial Diagnosis Criteria. 
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4.4 Results  

4.4.1 VAC054 Participant Flow 

Forty-five volunteers were screened in total and fifteen were recruited to each group, with 

more males recruited than females in both (Group 1 = 66.7% male; Group 2 = 73.3% male). The 

age range of volunteers in Group 1 was 23 – 43 years (mean 33 years) and 19 – 34 years in 

Group 2 (mean 22 years). Three volunteers in Group 1 withdrew from the trial prior to 

completing the vaccination phase, and one volunteer in Group 1 also withdrew post-CHMI 

(time-point dC+8.5), all for personal reasons. The trial flow diagram is shown in Figure 4-2. 
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Figure 4-2: VAC054 trial flow diagram. 

Vaccinations began on 28
th

 April 2014, blood-stage CHMI occurred on 4
th

 July 2014 and all follow-up 
visits were completed by 23

rd
 December 2014. All vaccinees received their immunisations as scheduled, 

except for three volunteers in Group 1 who withdrew during the vaccination phase. 

 

4.4.2 VAC054 Vaccine Safety and Reactogenicity 

There were no SAEs or unexpected reactions during the course of the trial and no volunteers 

withdrew due to vaccine-related AEs. The safety profile of the FMP2.1/AS01 vaccine was 
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Excluded (n= 15) 

Not meeting inclusion criteria (n= 7) 
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Analysed (n= 12) 
Excluded from analysis (n= 3) 

- 3 volunteers withdrew prior to CHMI 
*One volunteer withdrew during CHMI follow-up 
(time-point dC+8.5) but was qPCR positive, 
therefore included in the primary endpoint 
analysis 

Allocated to Group 1 (n= 15) 

Received 3 doses FMP2.1/AS01B vaccine (n= 12) on 
days 0, 28 and 56 

Did not receive 3 doses FMP2.1/AS01B vaccine (n= 3) 

 2 volunteers withdrew due to personal reasons 
(no longer able to commit to trial dates) 

 1 volunteer withdrew due to an aversion to 
venipuncture 

Followed up to 90 days post-CHMI (n= 15) 

Lost to follow-up (n= 0) 

Allocated to Group 2 (n= 15) 

Infectivity control group; no intervention prior to 
CHMI 

 

Analysed (n= 15) 

Excluded from analysis (n= 0) 

 

Allocation 

Analysis 

Follow-Up 

Enrollment 

Day 70: Blood-stage CHMI with 690 parasites 

(n=12) 

Blood-stage CHMI with 690 parasites (n=15) 

Followed up to 170 days post-CHMI (n= 11) 

Withdrew from 
follow-up (n= 1*) 
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similar to that reported previously in healthy US adult volunteers (95), with the second and 

third vaccinations reported as more reactogenic than the first. 

Information on solicited (expected) AEs was collected for 7 days after each vaccination by 

means of a diary card completed daily by volunteers and at clinic visits during this time. The 

percentage of volunteers experiencing these AEs at the maximum severity they reported is 

shown in the graph in Figures 4-3 and 4-4, and in Table 4.2. The grading of AEs is described in 

Chapter two. 

 

Figure 4-3: Maximum severity of Local AEs following FMP2.1/AS01B. 

Only the highest intensity of each AE per subject is listed. Data were exported from the OpenClinica 
database into Excel and the percentages of volunteers experiencing each AE following each vaccination 
were calculated (Vacc 1: n= 15, Vacc 2: n=13, Vacc 3: n=12). 
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Figure 4-4: Maximum reported severity of systemic AEs following FMP2.1/AS01B. 

Only the highest intensity of each AE per subject is listed. Data were exported from the OpenClinica 
database into Excel and the percentages of volunteers experiencing each AE following vaccinations at 
each timepoint were calculated (Vacc 1: n= 15, Vacc 2: n=13, Vacc 3: n=12). 
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Table 4.2: Maximum Solicited Reactogenicity Summary Following FMP2.1/AS01B Vaccination. 

This Table shows the maximum severity of all solicited adverse events reported by volunteers (i.e. those for which a severity score was required in the diary card for 7 days 

following each vaccination). Frequency is calculated as the number of subjects counted once at worst severity.

 1
st

 Vaccination FMP2.1/AS01B (n= 15) 2
nd

 Vaccination FMP2.1/AS01B (n= 13) 3
rd

 Vaccination FMP2.1/AS01B (n= 12) 

Mild Moderate Severe Total Mild Moderate Severe Total Mild Moderate Severe Total 

Local 
Adverse 
Events 

Pain 53.3% 20.0% 6.7% 80.0% 46.2% 38.5% 0.0% 84.6% 66.7% 8.3% 0.0% 75.0% 

Redness 20.0% 13.3% 0.0% 33.3% 15.4% 30.8% 30.8% 76.9% 16.7% 16.7% 8.3% 41.7% 

Warmth 60.0% 0.0% 0.0% 60.0% 46.2% 15.4% 0.0% 61.5% 41.7% 16.7% 0.0% 58.3% 

Swelling 13.3% 6.7% 13.3% 33.3% 15.4% 0.0% 38.5% 53.8% 25.0% 0.0% 25.0% 50.0% 

Itch 0.0% 0.0% 0.0% 0.0% 30.8% 0.0% 0.0% 30.8% 16.7% 0.0% 0.0% 16.7% 

Systemic 
Adverse 
Events 

Fatigue 33.3% 13.3% 0.0% 46.7% 38.5% 23.1% 23.1% 84.6% 16.7% 25.0% 0.0% 41.7% 

Feverish 0.0% 6.7% 0.0% 6.7% 23.1% 15.4% 30.8% 69.2% 25.0% 33.3% 0.0% 58.3% 

Malaise 33.3% 6.7% 6.7% 46.7% 30.8% 23.1% 15.4% 69.2% 25.0% 0.0% 0.0% 25.0% 

Headache 6.7% 0.0% 13.3% 20.0% 23.1% 23.1% 15.4% 61.5% 25.0% 8.3% 0.0% 33.3% 

Arthralgia 26.7% 0.0% 0.0% 26.7% 30.8% 7.7% 15.4% 53.8% 25.0% 0.0% 0.0% 25.0% 

Myalgia 13.3% 13.3% 0.0% 26.7% 15.4% 15.4% 15.4% 46.2% 50.0% 0.0% 0.0% 50.0% 

Fever 0.0% 0.0% 0.0% 0.0% 15.4% 30.8% 0.0% 46.2% 25.0% 8.3% 8.3% 41.7% 

Nausea 6.7% 0.0% 0.0% 6.7% 23.1% 7.7% 0.0% 30.8% 16.7% 0.0% 0.0% 16.7% 
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Data on unsolicited AEs were also collected. These were AEs reported either outside of the 

diary card period or adverse events other than those listed above reported within 7 days of 

vaccination. These AEs were collected throughout the trial. Unsolicited AEs were assigned a 

causality score, relating to vaccination, as described in Chapter two. This was agreed between 

myself, as lead clinician of the trial, and an independent clinician who provided peer review. 

All unsolicited AEs were assigned a Medical Dictionary for Regulatory Activities (MedDRA) 

code. Unsolicited AEs following vaccination are shown in the tables below classed by MedDRA 

System Organ Class, Higher Level Term and Preferred Term. AEs occurring before CHMI and 

considered possibly, probably or definitely related to vaccination are shown in Table 4.3. AEs 

considered unlikely or unrelated to vaccination occurring before CHMI are shown in Table 4.4 

 

Vaccination  System Organ Class Higher Level Term Preferred Term 
No. of volunteers 
reporting AE (%) 

1 
Gastrointestinal (GI) 
disorders 

GI and abdo pains (excl 
oral and throat) Abdominal pain 

1   (6.7%) 

1 
Nervous system disorders 

Neurological signs and 
symptoms NEC  Dizziness 

1   (6.7%) 

2 

General disorders and 
administration site 
conditions Pain and discomfort NEC Chest pain 1   (7.7%) 

2 
Nervous system disorders 

Neurological signs and 
symptoms NEC  Dizziness 1   (7.7%) 

2 Psychiatric disorders  Parasomnias Nightmare 1   (7.7%) 

2 
Skin and subcutaneous 
tissue disorders  Erythemas  Erythema (arm) 1   (7.7%) 

3 
Skin and subcutaneous 
tissue disorders  Erythemas  Erythema (arm) 1   (8.3%) 

Table 4.3: Related unsolicited AEs reported following vaccination with FMP2.1/AS01B. 

AEs considered possibly, probably or definitely related to vaccination. The number of volunteers 
reporting each AE is shown; the percentage of volunteers is calculated based on the numbers 
vaccinated at each vaccination timepoint (i.e. 15 volunteers for the first vaccination, 13 for the 
second vaccination and 12 for the third vaccination). 
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Vaccination  System Organ Class Higher Level Term Preferred Term 
No. of volunteers 
reporting AE (%) 

1 Ear and labyrinth disorders Ear disorders NEC Ear pain 1   (6.7%) 

1 Endocrine disorders  Thyroid hypofunction disorders Hypothyroidism 1   (6.7%) 

1 Eye disorders 
Conjunctival infections, irritations 
and inflammations  

Seasonal allergy  1   (6.7%) 

1 
General disorders and 
administration site 
conditions 

Asthenic conditions 
Fatigue 1   (6.7%) 

Malaise 1   (6.7%) 

1 
Musculoskeletal and 
connective tissue disorders  

Musculoskeletal and connective 
tissue pain and discomfort 

Pain in extremity  1   (6.7%) 

Musculoskeletal 
pain 

1   (6.7%) 

1 Nervous system disorders Headaches NEC  Headache 3 (20.0%) 

1 
Reproductive system and 
breast disorders 

Menstruation with increased 
bleeding  

Menorrhagia  1   (6.7%) 

1 
Respiratory, thoracic and 
mediastinal disorders  

Upper respiratory tract infections 
NEC  

Nasopharyngitis 1   (6.7%) 

Sinus headache 1   (6.7%) 

Oropharyngeal 
pain  

1   (6.7%) 

Nasal congestion and 
inflammations  

Nasal congestion  1   (6.7%) 

Upper respiratory tract signs and 
symptoms  

Sinus headache 1   (6.7%) 

1 
Skin and subcutaneous 
tissue disorders  

Erythemas  Erythema (neck) 1   (6.7%) 

2 Ear and labyrinth disorders Ear disorders NEC Ear pain 1   (7.7%) 

2 Eye disorders 
Lid, lash and lacrimal infections, 
irritations and inflammations  

Erythema of 
eyelid  

1   (7.7%) 

2 Gastrointestinal disorders 
Gastrointestinal and abdominal 
pains (excl oral and throat) 

Abdominal pain 1   (7.7%) 

2 Immune system disorders  Atopic disorders Seasonal allergy  2 (15.4%) 

2 Infections and infestations 

Dental and oral soft tissue 
infections  

Gingivitis 1   (7.7%) 

Upper respiratory tract infections Nasopharyngitis 1   (7.7%) 

2 
Musculoskeletal and 
connective tissue disorders  

Joint related signs and symptoms Arthralgia 1   (7.7%) 

Musculoskeletal and connective 
tissue pain and discomfort  

Musculoskeletal 
pain 

1   (7.7%) 

2 Nervous system disorders Headaches NEC  Headache 1   (7.7%) 

2 Psychiatric disorders  Parasomnias Nightmare 1   (7.7%) 

2 
Respiratory, thoracic and 
mediastinal disorders  

Upper respiratory tract infections 
NEC  

Sinusitis 1   (7.7%) 

Coughing and associated symptoms  Cough 1   (7.7%) 

Bronchospasm and obstruction  Wheezing 1   (7.7%) 

Upper respiratory tract signs and 
symptoms  

Oropharyngeal 
pain  

1   (7.7%) 

Rhinorrhoea 1   (7.7%) 

Coughing and associated symptoms  Cough 1   (7.7%) 

2 
Skin and subcutaneous 
tissue disorders  

Photosensitivity and 
photodermatosis conditions  

Sunburn 1   (7.7%) 

3 Immune system disorders  Atopic disorders Seasonal allergy  2 (16.7%) 

3 
Injury, poisoning and 
procedural complications  

Muscle, tendon and ligament 
injuries 

Ligament sprain  1   (8.3%) 

3 Nervous system disorders Headaches NEC  Headache 1   (8.3%) 

3 
Skin and subcutaneous 
tissue disorders  

Apocrine and eccrine gland 
disorders  

Miliaria  1   (8.3%) 

3 
Surgical and medical 
procedures 

Contraceptive methods female 
Intra-uterine 
contraceptive 
device insertion 

1   (8.3%) 

Table 4.4: Unrelated unsolicited AEs reported following vaccination with FMP2.1/AS01B. 

AEs considered unlikely related or unrelated to vaccination. The number of volunteers reporting 
each AE is shown; the percentage of volunteers is calculated based on the numbers vaccinated 
at each vaccination timepoint (i.e. 15 volunteers for the first vaccination, 13 for the second 
vaccination and 12 for the third vaccination). 
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Laboratory adverse events were graded as per the site-specific grading tables, using local 

laboratory reference ranges (Appendix 6). Causality relating to vaccination was assigned by the 

lead investigator and peer-reviewed. The agreed causality score is shown in Table 4.5 below. 

Lab AE  Volunteer Timepoint(s) Max severity Resolved by C-1 Causality 

No. of 
volunteers with 
lab AE (%) 
(n=15) 

Anaemia 
1054005 Day 56 Mild Yes 1 

2 (13.3%) 
1054008 Days 0 to C-1 Moderate No 0 

Elevated leukocytes 

2054102 Day 14 Moderate NA- withdrew 
before C-1 visit 

2 

2 (13.3%) 
2054105 Day 7 Mild 2 

Hyperbilirubinaemia 1054002 D63 Mild Yes 1 
1   (6.7%) 

Elevated alanine 
transaminase (ALT) 

1054004 Day 35 Mild Yes 3 

2 (13.3%) 
2054101 Day 63 Mild Yes 3 

Elevated Alkaline 
phosphatase 1054010 

Day 14, Day 
28 Mild Yes 1 

1   (6.7%) 

Hypernatraemia 1054002 Day 42 Mild Yes 1 
1   (6.7%) 

Hypokalaemia* 

1054001 C-1 Mild NA 0 

4 (26.7%) 

1054010 Day 56 Mild Yes 0 

1054011 Day 56 Mild Yes 0 

2054101 C-1 Moderate NA 0 

Elevated creatinine 2054103 Days 7, 56 Mild Yes 1 
1   (6.7%) 

Table 4.5: Laboratory AEs following vaccination and prior to CHMI. 

*Hypokalaemia is considered likely to be pseudohypokalaemia due to storage of samples 
before processing without centrifugation at the point of care, as described in a previous study 
in Oxford (223). 

 

4.4.3 CHMI Safety 

There were no serious adverse events or withdrawals from the trial due to CHMI-related 

adverse events. Participants were reviewed twice daily from day 2 following CHMI. The AEs 

relating to CHMI are shown in Figure 4-5, with maximum severity reported at each time-point. 

Data on AEs relating to treatment (with Riamet in 26 volunteers and Malarone in 1 volunteer) 

were collected at the visits 24 and 48 hours after diagnosis. These AEs are shown in Figure 4-6. 
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Figure 4-5: VAC054 Maximum reported severity of CHMI-related AEs before, at and after 
diagnosis/ treatment. 

Only the highest intensity of each AE per subject is listed. Data were exported from the OpenClinica 
database into Excel and the percentages of volunteers experiencing each AE following CHMI were 
calculated (n=27). 
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Figure 4-6: VAC054 Maximum reported severity of AEs considered possibly related to anti-
malarial therapy after initiation of treatment. 

These adverse events were only specifically asked about after initiation of antimalarial therapy. If these 
symptoms occurred before treatment they were recorded as ‘unsolicited AEs’. Only the highest intensity 
of each AE per subject is listed (n=27). Data were exported from the OpenClinica database into Excel and 
the percentages of volunteers experiencing each AE following treatment for CHMI were calculated. 

As well as the list of solicited adverse events collected at each visit participants were also 

asked to report any other adverse events that occurred, and these were recorded and assigned 

a MedDRA code. Any unsolicited adverse events reported by vaccinated volunteers were also 

assigned a causality score, as described above (causality relating to vaccination rather than 

CHMI). AEs occurring after CHMI are shown in Tables 4.6 and 4.7 (≤30 days and >30 days post-

CHMI respectively), and include AEs occurring in both vaccinated and control volunteers. None 

of the AEs occurring after CHMI were considered possibly, probably or definitely related to 

vaccination. 
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Group System Organ Class Higher Level Term Preferred Term 

No. of volunteers 

reporting AE (%)  

Vaccinees 

(Group 1) 

Gastrointestinal disorders 

Gastrointestinal and abdominal pains 

(excl oral and throat)  Abdominal pain lower 1   (3.7%) 

Diarrhoea (excl infective) Diarrhoea  1   (3.7%) 

Gastrointestinal signs and symptoms 

NEC  Abdominal discomfort  1   (3.7%) 

General disorders and 

administration site 

conditions 

Feelings and sensations NEC Hangover 1   (3.7%) 

Infusion site reactions 
Infusion site paraesthesia  1   (3.7%) 

Infusion site bruising  1   (3.7%) 

Immune system disorders  Atopic disorders Seasonal allergy  1   (3.7%) 

Infections and infestations 

Urinary tract infections Urinary tract infection  1   (3.7%) 

Abdominal and gastrointestinal 

infections  Gastroenteritis 1   (3.7%) 

Upper respiratory tract infections  Pharyngitis 1   (3.7%) 

Musculoskeletal and 

connective tissue disorders  

Joint related signs and symptoms Arthralgia  1   (3.7%) 

Musculoskeletal and connective tissue 

pain and discomfort  Pain in extremity  1   (3.7%) 

Nervous system disorders 
Neurological signs and symptoms NEC  Dizziness  1   (3.7%) 

Paraesthesias and dysaesthesias  Paraesthesia  1   (3.7%) 

Psychiatric disorders  Parasomnias Nightmare 1   (3.7%) 

Respiratory, thoracic and 

mediastinal disorders  

Lower respiratory tract infections NEC  

Lower respiratory tract 

infection 1   (3.7%) 

Upper respiratory tract signs and 

symptoms  

Oropharyngeal pain  1   (3.7%) 

Rhinorrhoea 1   (3.7%) 

Skin and subcutaneous 

tissue disorders  

Dermatitis and eczema  Dermatitis  1   (3.7%) 

Skin injuries and mechanical 

dermatoses Skin abrasion  1   (3.7%) 

Photosensitivity and photodermatosis 

conditions  Sunburn 1   (3.7%) 

Controls 

(Group 2) 

Gastrointestinal disorders 

Gastrointestinal and abdominal pains 

(excl oral and throat)  Abdominal pain lower 
1   (3.7%) 

Stomatitis and ulceration  Mouth ulceration 1   (3.7%) 

General disorders and 

administration site 

conditions  

Infusion site reactions  Infusion site erythema  1   (3.7%) 

Administration site reactions NEC 

Vessel puncture site 

haematoma 2   (7.4%) 

Vessel puncture site pain  1   (3.7%) 

Immune system disorders  
Atopic disorders Seasonal allergy  7.4% 

Allergic conditions NEC Allergy to plants  1   (3.7%) 

Metabolism and nutrition 

disorders Appetite disorders Decreased appetite 1   (3.7%) 

Musculoskeletal and 

connective tissue disorders 

Musculoskeletal and connective tissue 

pain and discomfort 

Musculoskeletal chest 

pain 1   (3.7%) 

Pain in extremity  1   (3.7%) 

Nervous system disorders 

Neurological signs and symptoms NEC  Dizziness  2   (7.4%) 

Paraesthesias and dysaesthesias  Paraesthesia  1   (3.7%) 

Disturbances in initiating and 

maintaining sleep  Insomnia  1   (3.7%) 

Renal and urinary disorders  Urinary abnormalities  Chromaturia 1   (3.7%) 

Respiratory, thoracic and 

mediastinal disorders  Breathing abnormalities  Dyspnoea 1   (3.7%) 

 
Upper respiratory tract signs and 

symptoms  
Oropharyngeal pain  

3 (11.1%) 

Table 4.6: VAC054 Unsolicited AEs reported in the first 30 days following CHMI.  

(n=27) CHMI occurred 2 weeks after the final vaccination. All AEs were considered unlikely 
related or unrelated to vaccination.  
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Group System Organ Class Higher Level Term Preferred Term 
No. of volunteers 
reporting AE (%) 

Vaccinees 
(Group 1) Infections and 

infestations 

Neisseria infections Gonorrhoea 
1   (3.8%) 

Upper respiratory tract infections  Rhinitis  
1   (3.8%) 

Investigations 
Physical examination procedures 
and organ system status Weight decreased 

1   (3.8%) 

Nervous system disorders Headaches NEC  
Headache 

2   (7.7%) 

Psychiatric disorders  Increased physical activity levels  
Psychomotor 
hyperactivity 

1   (3.8%) 

Renal and urinary 
disorders  

Renal infections and 
inflammations (excl nephritis) Kidney infection  

1   (3.8%) 

Controls 
(Group 2) 

Injury, poisoning and 
procedural complications  Bone and joint injuries NEC  Joint injury 

1   (3.8%) 

Respiratory, thoracic and 
mediastinal disorders  

Upper respiratory tract signs and 
symptoms  

Sneezing 
1   (3.8%) 

Oropharyngeal pain  
2   (7.7%) 

Table 4.7: VAC054 Unsolicited AEs reported more than 30 days after CHMI. 

(n=26) All AEs were considered unlikely related or unrelated to vaccination. 

Volunteers had blood tests prior to CHMI (C-1) and then at C+6, diagnosis, C+28 and C+90. 

Blood tests were also carried out at other timepoints if clinically indicated. Causality relating to 

vaccination was not assigned after CHMI. AEs were as expected following malaria infection and 

there were none which caused clinical concern. The laboratory AEs following CHMI are shown 

in Table 4.8. 

The donor of the infected blood for the CHMI inoculum was seropositive for EBV and CMV, so 

it was previously required for volunteers taking part in blood-stage CHMI studies with this 

inoculum to be seropositive for both viruses (174). However, this is no longer deemed to be 

necessary as the blood was leukodepleted prior to inoculum preparation and has since tested 

negative by PCR for both viruses. Several volunteers who were seronegative for one or both 

viruses had previously received the inoculum at other challenge centres in Australia (140) and 

the Netherlands (179) and none had seroconverted. To add to the safety database regarding 

this I checked serostatus prior to CHMI (the day before CHMI; C-1) and at the visit 90 days after 

CHMI (C+90). 37% of the 27 volunteers who underwent CHMI were seropositive for CMV and 

89% were seropositive for EBV. None of the volunteers who were seronegative for either virus 

at C-1 seroconverted during the trial, as demonstrated in Table 4.9. 
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Laboratory AE  Volunteer Timepoint(s) Max severity 
Resolved 
by C+28 

Resolved 
by C+90 

No. of volunteers 
with lab AE  (%) 

Anaemia 
1054008 

C+2, C+6, Diagnosis 
(C+10), C+28 Moderate No Yes 

2   (7.4%) 1054026 
Diagnosis (C+9), C+28, 
C+90 Mild No No 

Neutropenia 1054022 C-1, C, C+6 Mild Yes Yes 1   (3.7%) 

Lymphopenia 

1054008 C+2 Severe Yes Yes 

6 (22.2%_ 

1054010 Diagnosis (C+10.5) moderate Yes Yes 

1054016 Diagnosis (C+10) Severe Yes Yes 

1054017 Diagnosis (C+10.5) Mild Yes Yes 

1054020 C+6, Diagnosis (C+8.5) Mild Yes Yes 

1054026 Diagnosis (C+9) Mild Yes Yes 

Eosinophilia 

1054012 C+90 Mild NA NA 

3 (11.1%) 

1054018 C-1, Diagnosis (C+8.5) Mild Yes Yes 

3054208 
C+6, Diagnosis (C+9), 
C+28, C+90 Mild No No 

Thrombocytopenia 
1054011 Diagnosis (C+10) Severe Yes Yes 

2   (7.4%) 1054016 Diagnosis (C+10) Severe Yes Yes 

Hyperbilirubinaemia 

1054017 C+28 Moderate NA Yes 

4 (14.8%) 

1054007 C+90 Mild NA NA 

2054106 
C-1, C+6, Diagnosis 
(C+8.5) Mild Yes No 

3054208 
C-1, C+6, Diagnosis 
(C+9), C+28 Mild No Yes 

Elevated alanine 
transaminase (ALT) 

1054017 C+28 Mild NA Yes 

2   (7.4%) 3054208 C+28 Mild NA Yes 

Hypernatraemia 

1054010 C+28 Mild NA Yes 

2   (7.4%) 

1054013 C+28 Moderate NA Yes 

1054018 C+28 Moderate NA Yes 

1054026 C+28 Mild NA Yes 

Hypokalaemia* 

1054001 Diagnosis (C+8.5) Mild Yes Yes 

9 (33.3%) 

1054008 C+2 Mild Yes Yes 

1054016 C+28 Mild NA Yes 

1054018 Diagnosis (C+8.5) Mild Yes Yes 

1054019 
C-1, Diagnosis (C+8.5), 
C+28 Severe No Yes 

2054101 Diagnosis (C+8.5) Moderate 

Withdrew 
before 
C+28 

Withdrew 
before 
C+90 

3054201 Diagnosis (C+8.5) Moderate Yes Yes 

3054202 Diagnosis (C+9) Mild Yes Yes 

3054208 C-1 Mild Yes Yes 

Elevated urea 
2054104 C+28 Mild NA Yes 

2   (7.4%) 2054103 Diagnosis Mild Yes Yes 

Table 4.8: VAC054 Laboratory AEs following CHMI in vaccinated and control volunteers. 

*Hypokalaemia is considered likely to be pseudohypokalaemia due to storage of samples 
before processing without centrifugation at the point of care, as described in a previous study 
in Oxford (223). 
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CMV EBV 

Volunteer Timepoint C-1 Timepoint C+90 Timepoint C-1 Timepoint C+90 

1054001 Detected 
 

Detected  

1054002 Not Detected Not Detected Detected  

1054004 Not Detected Not Detected Detected  

1054005 Detected  Detected  

1054007 Detected  Detected  

1054008 Not Detected Not Detected Not Detected Not Detected 

1054010 Not Detected Not Detected Detected  

1054011 Not Detected Not Detected Detected  

1054012 Not Detected Not Detected Not Detected Not Detected 

1054013 Detected 
 

Detected  

1054016 Not Detected Not Detected Detected  

1054017 Detected 
 

Detected  

1054018 Not Detected Not Detected Not Detected Not Detected 

1054019 Not Detected Not Detected Detected  

1054020 Not Detected Not Detected Detected  

1054022 Not Detected Not Detected Detected  

1054024 Detected 
 

Detected  

1054026 Not Detected Not Detected Detected  

1054027 Not Detected Not Detected Detected  

2054101 Not Detected * Detected  

2054103 Not Detected Not Detected Detected  

2054104 Detected 
 

Detected  

2054106 Not Detected Not Detected Detected  

3054201 Detected 
 

Detected  

3054202 Not Detected Not Detected Detected  

3054206 Detected  Detected  

3054208 Detected  Detected  

Table 4.9: VAC054 EBV IgG and CMV IgG serostatus in volunteers before and after blood-
stage CHMI. 

C+90 data is shown for seronegative volunteers. *The volunteer who withdrew during the CHMI 
phase (2054101) was CMV seronegative and EBV seropositive at C-1; his serostatus was not 
rechecked after CHMI as he withdrew from the trial and declined any further blood tests.  

 

4.4.4 Blood-Stage CHMI and Vaccine Efficacy 

All volunteers developed patent blood-stage parasitaemia following CHMI and were diagnosed 

by thick blood film microscopy by dC+10.5 (Table 4.10), except for the one volunteer who 

withdrew on dC+8.5. This volunteer was asymptomatic and thick blood film negative so had 

not reached the criteria for commencing treatment, but was qPCR positive at the time of 

withdrawal and was included in the primary analysis. There was neither a delay to diagnosis in 
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vaccinees compared to controls, nor any difference in parasitaemia between the groups during 

follow-up (Figure 4-7). 

ID Number 
Group 

Diagnosis 
timepoint 

Symptomatic/ 
asymptomatic 

No. of parasites 
on TBF 

PCR at diagnosis 
(p/mL) 

MVT-1054001 1 8.5 Asymptomatic 2 7397 

MVT-1054002 1 8.5 Asymptomatic 1 27518 

MVT-1054004 1 7.5 Symptomatic 1 2371 

MVT-1054005 1 9 Asymptomatic 2 16585 

MVT-1054007 1 9 Asymptomatic 3 3276 

MVT-1054008 1 10 Asymptomatic 2 11882 

MVT-1054010 1 10.5 Symptomatic 3 29937 

MVT-1054011 1 10 Asymptomatic 3 164509 

MVT-2054101* 1 8.5 Asymptomatic 0 1697 

MVT-2054103 1 10 Asymptomatic 2 73615 

MVT-3054201 1 8.5 Asymptomatic 2 10320 

MVT-3054202 1 9 Asymptomatic 2 41198 

MVT-1054012 2 7.5 Asymptomatic 1 1645 

MVT-1054013 2 10.5 Symptomatic 2 70367 

MVT-1054016 2 10 Symptomatic 2 273247 

MVT-1054017 2 10.5 Symptomatic 1 16911 

MVT-1054018 2 8.5 Symptomatic 1 19670 

MVT-1054019 2 8.5 Asymptomatic 1 6932 

MVT-1054020 2 8.5 Asymptomatic 1 15025 

MVT-1054022 2 10 Asymptomatic 1 8865 

MVT-1054024 2 10 Asymptomatic 2 43707 

MVT-1054026 2 9 Symptomatic 1 9132 

MVT-1054027 2 9 Symptomatic 1 13421 

MVT-2054104 2 9 Asymptomatic 2 54085 

MVT-2054106 2 9 Symptomatic 3 14395 

MVT-3054206 2 10 Symptomatic 3 185576 

MVT-3054208 2 9 Symptomatic 1 1439 

Table 4.10: VAC054 CHMI thick blood film and PCR results at diagnosis 

Data are shown for all volunteers at diagnosis. All volunteers had a positive thick blood film 
(TBF), except 2054101 (*) who withdrew before diagnostic criteria were reached. Fifteen 
volunteers were asymptomatic at diagnosis and diagnosed on TBF and PCR criteria.  
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Figure 4-7: VAC054 Blood-stage CHMI efficacy outcomes. 

Individual qPCR data are shown for the VAC054 Phase IIa study including (A) Group 1 AMA1 vaccinees 
(n=12), and (B) the Group 2 unvaccinated infectivity controls (n=15). (C) The mean ± SEM parasitaemia is 
shown over time for each group. The lower limit of quantification is indicated by the dotted line at 20 
parasites/mL. (D) Kaplan-Meier plot of time to patent parasitemia in days for the VAC054 study. Median 
time to patent parasitemia = 9.0 d for both groups. Secondary pre-specified analysis in the protocol 
compared time to microscopic patency between the groups; P=0.81, Mann-Witney test of time to 
diagnosis (excluding the volunteer in Group 1 who withdrew on dC+8.5). Time = days (d) post blood-
stage CHMI. The PCR standard curve was generated automatically by the QIASymphony SP instrument. 
Data were imported into GraphPad Prism for graphical presentations and statistical analyses. 

 

The protocol pre-specified primary analysis for efficacy was comparison of PMR between the 

two groups. There was no difference in the mean PMRs between the two groups (Figure 4-8). 

The mean PMR for Group 1 was 10.32 (95% confidence interval (CI) 8.97-11.67; standard 

deviation (SD) =2.13) and for Group 2 was 10.31 (95% CI 9.00-11.62; SD=2.36), P=0.99 using 

two-tailed unpaired t test. 
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Figure 4-8: VAC054 PMR analysis. 

Primary endpoint analysis of PMR, showing each individual in Group 1 (AMA1; n=12) and Group 2 
(Controls; n=15), and the mean ± SD.  

 

4.4.5 T cell Responses in Vaccinees and Controls 

The FMP2.1/AS01 vaccine elicited T cell responses as assessed by ex-vivo IFN-γ ELISPOT, with 

median responses of 577 and 396 SFU/million PBMC at d42 and d69/C-1 respectively (Figure 4-

9A, C). These responses did not boost post-CHMI with a median of 148 SFU/million PBMC seen 

at d98/C+28. Modest responses were induced in the controls (median 29 SFU/million PBMC at 

the same time-point), with only two volunteers showing responses > 150 SFU/million PBMC 

(Figure 4-9B, D-F). There was a significant increase in IFN- γ secreting T cells following the 

second vaccination with FMP2.1/AS01 (day 14 vs day 42) (P = 0.01, Friedman non-parametic 

test with Dunn’s correction for multiple comparisons), but not following the third vaccination 

or after CHMI. 
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Figure 4-9. VAC054 T cell responses in vaccinees and controls. 

(A,B) T cell responses were assessed in each group by ex-vivo IFN-γ ELISPOT using fresh PBMC. (C) 
Median and individual responses are shown for vaccinees (Group 1; n=12) at the d14, d42 and d69/C-1 
time-points. (D-F) Median and individual responses are shown for vaccinees (G1; n=12) and controls (G2; 
n=15) at the d69/C-1, d98/C+28 and d160/C+90 time-points. Spots were counted using an automated 
plate counter and exported into an Excel worksheet where results were obtained by subtracting any 
background response (from negative control wells) and then taking the average of triplicate wells. Data 
were then imported into GraphPad Prism for statistical analyses. 

 

4.4.6 Antibody Responses in Vaccinees and Controls 

AMA1-specific serum IgG responses were measured by ELISA at the Jenner Institute 

laboratories in Oxford with median responses of 85 and 97 µg/mL at d42 and d69/C-1 

respectively. These responses did not boost post-CHMI with a median of 56 µg/mL seen at 
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d98/C+28. Only 1 of the 15 controls showed a de novo anti- AMA1 IgG response at d98/C+28 

(59 µg/mL) (Figure 4-10). 

 

Figure 4-10: VAC054 Serum antibody responses in vaccinees and controls (Oxford). 

(A,B) Serum anti-AMA1 (3D7) IgG responses were assessed in Oxford for each group by ELISA. Mean and 

individual responses are shown over time. Blood-stage CHMI took place on D70. (C) Median and 

individual responses are shown for the vaccinees (Group 1; n=12) at the d14, d42 and d69/C-1 time-

points. (D-F) Median and individual responses are shown for the vaccinees (G1; n=12) and controls (G2; 

n=15) at the d69/C-1, d98/C+28 and d160/C+90 time-points. The absorbance at 405nm (OD405) was read 

using a Biotek ELx800 microplate reader with Gen5 software. Data were exported into an Excel 

worksheet and values of internal controls and samples in triplicate were assessed for any aberrant 

readings. The results were obtained by taking an average of triplicate wells, and using the standard 

curve to assign ELISA arbitrary units. These were converted to µg/mL using a conversion factor as 

detailed in Section 2.3.4.1. Converted data were imported into GraphPad Prism for graphical 

presentation and analyses. 
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As well as measuring the anti-AMA1 antibody response by ELISAs, the avidity of antibodies 

induced by vaccination and the different isotypes present were also determined by ELISA. The 

avidity of the anti-AMA1 IgG was similar at d42, d69/C-1 and post-CHMI in the vaccinees 

(Figure 4-11), and very similar to that observed with other AMA1 vaccines in humans (167, 

193). The response was composed of IgG1, IgG3, IgA and IgM, and this profile was not affected 

by CHMI (Figure 4-12). 

 

 

Figure 4-11.VAC054 AMA1 antibody avidity. 

Avidity of serum IgG responses was assessed by NaSCN-displacement 3D7 AMA1 ELISA and is reported as 
the molar (M) concentration of NaSCN required to reduce the starting OD in the ELISA by 50% (IC50). 
Individual and mean responses are shown for Group 1 volunteers (n=12). The absorbance at 405nm 
(OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. Data were exported into 
an Excel worksheet and the average value of duplicate readings calculated. Data were then imported 
into GraphPad Prism for graphical presentation and analyses. 
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Figure 4-12 VAC054 AMA1 antibody isotype profile 

Isotype profiles of serum antibody responses were assessed by 3D7 AMA1 ELISA. Responses are shown at 
baseline (d0), d42, d69/C-1 and post-CHMI at d98/C+28 for vaccinated volunteers in Group 1 (n=12). In 
all panels, individual and median responses are shown. The absorbance at 405nm (OD405) was read using 
a Biotek ELx800 microplate reader with Gen5 software. Data were exported into an Excel worksheet and 
the average value of duplicate readings calculated. Data were then imported into GraphPad Prism for 
graphical presentation and analyses. 

 

4.4.7 Measurement of antibodies to MSP1 in vaccinees and controls 

MSP1 is one of the most abundant proteins on the surface of the merozoite and antibodies 

against MSP1 can often be detected in those exposed to malaria in endemic areas (81). In 

order to see whether blood-stage CHMI induced antibodies against MSP1, sera from the 

control volunteers (Group 2) was analysed by ELISA for anti-MSP1 antibodies before CHMI (dC-

1) and 4 weeks after CHMI (dC+28). Sera from controls from six previous CHMI studies were 

also analysed in the same experiment for comparison (74, 83, 138, 172, 173). These previous 

studies used mosquito-bite (sporozoite) CHMI so the comparative timepoint is C+35 (i.e. 4 

weeks after the parasites enter the blood stream following the liver-stage of infection). This 

experiment demonstrated that only 4 of the 15 Group 2 volunteers seroconverted and 

developed antibodies against MSP1 following CHMI, whereas 30 of the 37 control volunteers 

across the other studies had seroconverted after CHMI (Figure 4-13). 
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Figure 4-13 VAC054 Antibody response to MSP1 in Group 2 (control) volunteers after CHMI. 

Anti-MSP1 antibodies were measured by ELISA in Group 2 volunteers (n=15) and in control volunteers 
from six previous CHMI studies (n=37) with samples from before CHMI (dC-1) and 4 weeks after blood 
stream infection (dC+28 in blood-stage CHMI and C+35 in mosquito-bite CHMI) (74, 83, 138, 172, 173). 
The absorbance at 405nm (OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. 
Data were exported into an Excel worksheet and values of internal controls and samples in triplicate 
were assessed for any aberrant readings. The results were obtained by taking an average of triplicate 
wells, and using the standard curve to assign ELISA arbitrary units (AU). Data were then imported into 
GraphPad Prism for graphical presentation. 

 

4.4.8 Anti-AMA1 peripheral mBC responses following FMP2.1/AS01 

Peripheral mBC responses were assessed in vaccinated volunteers (Group 1) by identifying 

AMA1-specific mBC-derived plasma cells by ex vivo ELISPOT following a 6-day polyclonal 

culture of PBMC (Figure 4-14). Responses were measured at d69/ dC-1 and 4 weeks after CHMI 

(dC+28). There was no significant difference in detectable AMA1-specific mBC-derived ASCs at 

the two timepoints, either as a proportion of the cultured PBMC or as a percentage of 

detected total IgG.  
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Figure 4-14: Anti-AMA1 mBC responses following FMP2.1/AS01 vaccination. 

mBC- derived ASC in Group 1 volunteers (n=12) measured two weeks after final vaccination (dC-1) and 
four weeks after CHMI (dC+28) using ex vivo ELISPOT. (A) Comparison between timepoints dC-1 and 
dC+28 (mBC derived ASC per million cultured PBMC). (B) Comparison between timepoints dC-1 and 
dC+28 (mBC derived ASC as a % of total IgG ASC). Individual and median responses are shown. mBC 
ELISPOT spots were counted using an AID ELISPOT reader and automated counts were corrected by eye 
.Data were exported into an Excel worksheet and then imported into GraphPad Prism for graphical 
presentation and analyses. 

 

4.4.9 Measurement of in vitro GIA 

Serum was analysed at the GIA Reference Center at NIH, USA and IgG was purified from each 

sample. Samples from Group 1 volunteers prior to vaccination (d0) and Group 2 volunteers 

prior to CHMI (d69/dC-1) did not demonstrate any GIA above baseline. At a concentration of 

10 mg/mL purified IgG dC-1 samples from Group 1 volunteers following three vaccinations 

demonstrated in vitro GIA of median 59.5 % (range 38.5-86.5 %) (Figure 4-15A). As the purified 

IgG was diluted, GIA decreased (Figure 4-15B) and was related to AMA1-specific IgG 

concentration (Figure 4-15C), in close agreement with other independent studies (130, 167). 

The EC50 was calculated for each purified IgG, with a median of 8.1 mg/mL. To relate these 

results (using a normalised concentration of purified IgG) back to the original sera, the 

concentration of IgG in each original serum sample was also measured. This enabled 

calculation of the GIA50 serum titre, defined previously as the dilution factor of each serum 

sample required to reach the concentration of purified IgG that gives 50% GIA (104). The 

 

    



164 
 

median GIA50 titre for Group 1 was 1.5, with the maximum observed being a dilution factor of 

3.0 (Figure 4-15D). 

 

Figure 4-15: Assessment of functional GIA induced by FMP2.1/AS01. 

(A) In vitro GIA of purified IgG was assessed at 10 mg/mL against 3D7 clone P. falciparum parasites at 
the NIH GIA Reference Center. Each test IgG was incubated with synchronised human erythrocytes which 
contained late trophozoite and schizont stages of P. falciparum parasites prepared by Percoll gradient 
and/or 5% sorbitol treatment. GIA was assessed over for a single growth cycle, measuring parasite LDH 
after 40 hours of culture and using this to calculate relative parasitaemia levels. Individual data and 
medians are shown for each group (Group 1 shown in blue; n=12, Group 2 shown in red; n=15) at dC-1 as 
well as d0 for Group 1. Responses >12% are typically regarded as positive for 3D7. (B) Dilution series of 
purified IgG from Group 1 dC-1 samples. (C) Relationship between GIA and anti-3D7 AMA1 serum IgG 
concentrations measured by ELISA at the NIH. Non-linear regression curve is also shown (n=60). The EC50 
(level of anti-3D7 AMA1 response in this ELISA assay that gives 50% GIA, indicated by the dotted line) 
was 75.5 µg/mL, (95% CI 68.3-84.2). (D) Individual EC50 of each purified IgG is shown as well as the GIA50 
titres. Individual data and medians are shown for Group 1 dC-1. 
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4.5 Discussion 

AMA1 has long been considered a leading candidate antigen for a blood-stage malaria vaccine 

(224), but despite evidence that antibodies to AMA1 inhibit red blood cell invasion (92), 

significant efficacy has not been demonstrated as a primary endpoint of any Phase IIa/b clinical 

trial (25). Previous CHMI trials initiated by mosquito-bite have suggested some pre-

erythrocytic immunity can be afforded by vaccines encoding AMA1 alone (83, 95), or in 

combination with the circumsporozoite protein (CSP) (225). The traditional method for 

assessing blood-stage vaccines has been through large field trials rather than CHMI trials. A 

Phase IIb field trial in Malian children with the FMP2.1/AS02 vaccine reported 64.3% efficacy 

(hazard ratio 0.36, 95% CI 0.08-0.86, P=0.03) in a pre-defined secondary analysis. This reported 

efficacy was against clinical malaria with 3D7-type parasites, but the number of cases meeting 

this definition was small (97, 98) and the reported efficacy did not extend into the second 

malaria season (99). The aim of this Chapter was to use the blood-stage CHMI model to assess 

the FMP2.1/AS01 vaccine against homologous 3D7 clone parasites, and therefore evaluate 

whether the vaccine is able to induce immunity active against the erythrocytic stage of the 

malaria parasite life cycle. 

There were no safety concerns relating to vaccination with FMP2.1/AS01, and the AE profile 

was similar to that reported previously in healthy US adult volunteers, with injection site pain, 

erythema, warmth and swelling reported as the most frequent local AEs and headache, 

malaise and fatigue reported frequently as systemic AEs in both studies (95). The vaccine was 

more reactogenic than the viral vectored vaccines used in the VAC051 trial (Chapter three), 

with higher frequencies of volunteers reporting severe AEs, particularly following the second 

vaccination. Vaccine-related AEs were of short duration and all resolved spontaneously. There 

were also no safety concerns relating to the CHMI inoculum, and the cessation of only 

enrolling EBV and CMV seropositive volunteers into studies using this inoculum was further 

supported by the data from this trial which demonstrated no seroconversion in volunteers 

who were EBV and/or CMV seronegative prior to blood-stage CHMI. 
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The FMP2.1/AS01 vaccine was immunogenic in this trial, eliciting AMA1-specific T cell and 

antibody responses. IFN-γ T cell responses, measured by ELISPOT, were higher than those seen 

with other AMA1 protein-in-adjuvant vaccines tested using the same assay (174). This is likely 

to be due to the use of the AS01B adjuvant system which was specifically designed to improve 

Th1 responses (122). The actions of the AS01 adjuvant system are though to involve both the 

innate and adaptive immune systems. The MPL in the adjuvant stimulates the innate immune 

system via TLR4 receptors, thereby directly activating APCs which express TRLR4 (123). The 

response to MPL promotes production of IFN- γ by antigen specific CD4+ T cells (123, 124) and 

the QS21 in the adjuvant has been shown to stimulate CD8+ T cells (121). As discussed in 

Chapter three, it is thought likely that an optimised blood-stage malaria vaccine will have both 

T cell and antibody-inducing properties.  

The avidity and isotype profiles of the anti-AMA1 IgG antibodies were very similar to those 

observed following vaccination with other AMA1 vaccines in humans (167, 193), although it 

has been suggested that the AS01 adjuvant can aid promotion of antibody isotype switching 

(121). The serum antibody and GIA responses were comparable to another AMA1 vaccine 

candidate that failed to impact on PMR in a much smaller, and under-powered, blood-stage 

CHMI trial in Oxford (174). However, the anti-AMA1 antibody levels reported in this trial were 

substantially lower than those reported by Spring et al using the same vaccine at WRAIR in a 

previous trial (95). The reduced immunogenicity in this trial may have related to the age of the 

FMP2.1 protein, although the vaccine lot had passed all required testing prior to use in the 

VAC054 study.  

In this trial, FMP2.1/AS01 vaccine did not demonstrate any efficacy, with no vaccinees 

protected from malaria infection and no reduction in PMR compared with the infectivity 

control group. The difference in efficacy between this study and the Phase IIb field study could 

be due to a number of possible reasons: reduced vaccine immunogenicity; the use of AS01 

instead of AS02; an impact of this vaccine only at high parasite densities; a pre-erythrocytic 
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effect of the vaccine; or the fact that the Malian children, unlike UK adults, would have 

possessed pre-existing anti-malarial immune responses, including anti-AMA1 IgG, which may 

have acted in conjunction with the vaccine-induced anti-AMA1 responses. 

Despite the lack of efficacy demonstrated in this trial, the antibodies induced by the 

FMP2.1/AS01 vaccine were able to inhibit parasite growth in vitro, as assessed by GIA. 

However, the level of inhibition with 10 mg/mL of purified IgG was only a median of 59.5 % 

(range 38.5-86.5 %). The lack of efficacy in the VAC054 trial is consistent with previously 

reported data in Aotus monkeys (104, 226), including a study showing that only vaccinated 

animals that achieved >60% GIA using a purified IgG concentration of 2.5 mg/mL were 

protected against blood-stage challenge (104). This implies that the levels of anti-AMA1 

antibody required to achieve efficacy are far higher than were induced by FMP2.1/AS01. Given 

that the vaccine was given with a very effective adjuvant, and that the peak antibody response 

was median 97 µg/mL, it may not be possible to achieve high enough antibody levels in 

humans against AMA1 for this to be a successful vaccine candidate. Even if substantially higher 

levels of antibody could be induced, the polymorphism of AMA1 also raises a challenge for an 

effective vaccine, with only homologous efficacy demonstrated in any trial to date (97). 

The VAC054 trial may not have demonstrated vaccine efficacy, but did successfully 

demonstrate the reproducibility of the blood-stage CHMI model, with the largest blood-stage 

CHMI ever trial carried out (174, 175, 227). This has important implications for assessing future 

blood-stage vaccine candidates as it allows modest reductions in PMR to be measured with 

greater power than with a sporozoite CHMI model (209). Being able to assess efficacy with 

smaller numbers of participants whilst retaining power to see modest effects has important 

implications for the ethical conduct of these studies (using the smaller numbers reduces risk) 

as well as financial and logistical implications. With the PMR data from this trial I was able to 

calculate that a similar trial design in the future (i.e. 15 vaccinees vs 15 controls with the same 
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inoculum) would have >80% power to see a 33% mean reduction in PMR even with a standard 

deviation of 4 in PMR data for vaccinated volunteers.  

Given the issues with polymorphism of AMA1 and the difficulty in inducing sufficiently high 

levels of effective antibody, even with a leading adjuvant, a different approach will be needed 

if an effective blood-stage vaccine is to be developed. A multi-allele AMA1 vaccine is one 

approach to tackling the issue of polymorphism, such as the Diversity-Covering (DiCo) P. 

falciparum AMA1 vaccine candidate, which has recently completed a Phase I trial 

(NCT02014727; results not yet published). This vaccine showed cross-strain inhibition activity 

against three laboratory-adapted P. falciparum strains (FCR3, HB3 and NF54) when purified IgG 

from vaccinated rhesus macaques was tested in a GIA assay. Mean GIA levels for the DiCo 

vaccine given with the CoVaccine HT™ adjuvant were 56.3%, 57.8% and 83.7% respectively 

with 10 mg/ mL purified IgG (228). Efficacy against falciparum malaria was not assessed in this 

trial as rhesus macaques cannot be infected with P. falciparum, but given the results of the 

VAC054 trial with similar GIA levels, the levels of functional anti-AMA1 antibodies induced by 

the DiCo/HT vaccine may not be sufficient. 

Another alternative approach is to combine the AMA1 vaccine with another antigen to try to 

improve efficacy. However, this approach is not necessarily an easy one as antigen 

combinations do not necessarily improve efficacy. The co-administration of AMA1 and MSP1, 

using the ChAd63 and MVA viral vectors, has previously been shown to diminish the immune 

response against AMA1, with a dominant response to MSP1, and corresponding decrease in 

GIA compared with IgG from volunteers vaccinated with AMA1 alone (83). The combination of 

AMA1 with the RON2 rhoptry neck protein (which AMA1 binds to during the red blood cell 

invasion process) is a more promising combination, with pre-clinical data demonstrating 

improved efficacy in mice against lethal P. yoelii infection, compared with vaccination with 

AMA1 alone (229). This approach has not yet been tested in humans against P. falciparum 

malaria, so whether this result is relevant with regards to human malaria remains to be seen, 
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but the potential to induce improved quality antibodies could go some way to addressing the 

issue of needing high antibody titres against AMA1. 

The need to induce very high antibody levels for blood-stage vaccines requires very effective 

adjuvants. Despite the use of a leading adjuvant in the VAC054 study, the levels induced by 

vaccination were still insufficient to inhibit parasite growth in vivo. A recently re-evaluated 

approach for improving the immune response following malaria vaccines has been to use a 

delayed fractional dose. This approach was first discovered by chance due to a delay in 

vaccination in one of the early RTS,S vaccine trials due to safety concerns, meaning a reduced 

third dose was given at 7 months (following initial vaccinations at 0 and 1 month) as opposed 

to the planned 0, 1 and 2 month schedule. The vaccine efficacy in this CHMI trial was 86% for 

the RTS,S vaccine given with immune stimulants monophosphoryl lipid A and QS21 (71). This 

was higher than the efficacy reported in subsequent CHMI studies of RTS,S with similar 

adjuvants when given in a 0, 1 and 2 month regime (typically ~50%) (73). A more recent study 

has supported the finding of improved efficacy with a delayed fractional dose with the 

RTS,S/AS01 vaccine, with 86.7% vaccine efficacy reported, compared with 62.5% in volunteers 

who received the standard regime (230). It will be important to evaluate this with other 

vaccines/ target antigens and see whether this effect improves the immune response and 

efficacy, especially for blood-stage candidates where high antibody levels appear to be crucial 

for efficacy. 

In this Chapter, I have demonstrated the safety, immunogenicity and efficacy results of a Phase 

I/IIa clinical trial of the AMA1 candidate vaccine FMP2.1/AS01 which had previously been 

reported to have demonstrated efficacy against homologous parasites in a Phase IIb trial in 

Malian children. Despite the induction of antigen-specific antibodies which demonstrated 

functional activity in vitro, the vaccine demonstrated no efficacy against a homologous blood-

stage infection. The possible reasons for this have been discussed. Although the vaccine did 

not demonstrate any efficacy, I was able to demonstrate the reliability and reproducibility of 
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the blood-stage CHMI model, and its potential for the assessment of future blood-stage 

vaccine candidates. Researchers at the Jenner Institute, University of Oxford have been 

working on alternative targets for a blood-stage P. falciparum vaccine. An improved candidate 

will need to have fewer issues with polymorphism and ideally require lower antigen-specific 

antibody levels to be effective than the leading candidates to date (i.e. AMA1 and MSP1). The 

P. falciparum reticulocyte binding homologue 5 (PfRH5) antigen has been evaluated pre-

clinically as part of this research, with very promising results (104). This has now been 

developed as a vaccine candidate and is discussed in Chapter five. 
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Chapter Five: 

 A Phase Ia clinical trial to assess 

the safety and immunogenicity of 

the Plasmodium falciparum antigen 

RH5 in viral vectors ChAd63 and 

MVA (VAC057)  
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5.1 Authorship statement 

I set up the VAC057 clinical trial with the assistance of Alison Lawrie, Rachel Roberts, Ian 

Poulton, Adrian Hill and Simon Draper. This involved preparation of the study documents with 

submission for ethical, regulatory approval for all sites, and R&D department approval for NHS 

sites (in Southampton). 

I screened and enrolled volunteers for the trial in Oxford. Vaccinations and follow-up visits 

were conducted by me and by the nursing team: Oliver Griffiths, Paula Marriott, Megan Baker, 

Ian Poulton, and Raquel Lopez-Ramon. 

Volunteers were also enrolled at the NIHR WTCRF in Southampton. Enrolment, vaccination and 

follow-up of volunteers there were carried out by local study staff including: Hans de Graaf, 

Nicky Pugh, Prudence Miyanza and Nathan Brendish. The local PI at the site was Saul Faust. 

Volunteer-reported AE data were collected on an electronic diary which was designed by me 

and other members of the clinical team, and developed by Sylwester Pawluk. 

Laboratory assays in Oxford were carried out by me and by Sarah Silk and Sean Elias. The GIA 

assays were carried out at the NIH reference center laboratory in the USA by Kazutoyo Miura. 

5.2 Introduction 

5.2.1 Development of a new candidate blood-stage P. falciparum vaccine 

A viral vectored Plasmodium falciparum vaccine has been developed at the University of 

Oxford using the same viral vectors as were used in the VAC051 study (Chapter three), ChAd63 

and MVA. The viral vectors encode a blood-stage antigen from the P. falciparum parasite, 

reticulocyte-binding protein homologue 5 (RH5) and are therefore referred to as ChAd63 RH5 

and MVA RH5. They are given in a heterologous prime-boost regime, with an eight week 

interval between vaccinations. The VAC057 trial was the first trial in which this vaccine and the 

RH5 antigen were administered to humans. 
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5.2.2 RH5 as an antigen 

P. falciparum reticulocyte-binding protein homologue 5 (PfRH5/ RH5) is one of the reticulocyte 

binding-like (RBL or P. falciparum RBP homologue (PfRH)) proteins which are involved in 

parasite invasion of erythrocytes. It is expressed in merozoites and localises to the apical 

complex. PfRH5 is expressed in all P. falciparum strains tested so far, and is essential for 

parasite survival given two reports that the gene cannot be knocked out (100, 101). PfRH5 

binds to its receptor basigin, the Ok blood group antigen, and this interaction mediates an 

essential interaction required for erythrocyte invasion by all tested strains of P. falciparum 

(103). Low-level antibodies to PfRH5 can be found in the pooled serum of humans from 

malaria-endemic countries, but not from pooled malaria-non-exposed immune sera (231, 232). 

These responses have also been associated with clinical protection in an endemic setting, 

supporting the theory that these antibodies may play a part in controlling malaria infection 

(233). Importantly, although antibodies have been found, it appears that PfRH5 does not come 

under significant immune pressure. This may account for the limited polymorphism in PfRH5 

which was reported from the malaria whole genome sequencing project (234) (using >220 field 

isolates from Africa, Asia and Oceania) where only 12 single nucleotide polymorphisms were 

identified in this 526 amino acid antigen, and of these only 7 showed a frequency of >5% (235). 

The basigin binding site on PfRH5 may also be functionally constrained, thus limiting 

polymorphism, given just a few amino acid substitutions have been reported to affect basigin 

recognition and thus host erythrocyte tropism (101, 236, 237). Blocking of the PfRH5-basigin 

interaction has also been shown to be an important contributor of anti-PfRH5 antibody action 

(238). 

Polyclonal antibodies induced by PfRH5 vaccination (or by natural infection) overcome two of 

the major difficulties for blood-stage vaccination: firstly, antibodies can block erythrocyte 

invasion to high efficiency (requiring lower antibody concentrations than previously studied 

targets, such as PfAMA1) (235), and secondly, and even more importantly, these antibodies 

cross-inhibit in vitro all P. falciparum lines and field isolates tested to date (158, 233, 235, 239, 
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240). Importantly, high-level efficacy induced by PfRH5 vaccination against heterologous strain 

challenge in an in vivo Aotus monkey P. falciparum challenge model has also been 

demonstrated (104). This means that the PfRH5 antigen is a substantial step forward in the 

blood-stage malaria vaccine field. 

5.3 VAC057 Methods 

Detailed methods of the recruitment and enrolment of volunteers, as well as the assays used 

in this trial can be found in Chapter two: Materials and Methods. 

5.3.1 VAC057 Study Design 

VAC057 was a first-in-human, open-label, non-randomised, dose escalation Phase Ia clinical 

trial evaluating the safety and immunogenicity of the viral vectored vaccines ChAd63 Rh5 and 

MVA RH5 in a heterologous prime-boost regime with an eight week interval (Figure 5-1). The 

study was conducted in the UK at the Centre for Clinical Vaccinology and Tropical Medicine, 

University of Oxford, Oxford, and the NIHR WTCRF in Southampton. Healthy, malaria-naïve 

males and non-pregnant females aged 18-50 were invited to participate in the study. 

Allocation to study groups occurred at screening based on sequential recruitment of groups 

and volunteer preference. The sample size for this study was chosen to allow determination of 

the magnitude of the outcome measures, especially of serious and severe adverse events, 

rather than aiming to obtain statistical significance. The decision to enrol eight volunteers into 

Groups 2B and 2C was based on a power calculation to have 76% power (1-β) to detect a mean 

two-fold improvement (two-tailed) at a significance level (α) of P = 0.05 in immunogenicity 

(IgG and T cell response) between Groups 2B and 2C following MVA RH5 boost vaccination.  
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Group 
Number 

Number 
of 

volunteers 
Dose ChAd63 RH5 Dose MVA RH5 

1 4 5 x 109 vp IM -- 

2 

A 4 5 x 1010 vp IM -- 

B 8 5 x 1010 vp IM 1 x 108 pfu IM 

C 8 5 x 1010 vp IM 2 x 108 pfu IM 

Figure 5-1: VAC057 study groups 

 

5.3.2 VAC057 Ethics 

The trial was registered with Clincaltrials.gov (NCT 02181088) and was conducted according to 

the principles of the current revision of the Declaration of Helsinki 2008 and in full conformity 

with the ICH guidelines for Good Clinical Practice. The study received approvals from the UK 

NHS Research Ethics Service (Oxfordshire Research Ethics Committee A, Ref 14/SC/0120) and 

the UK MHRA (Ref 21584/0331/001-0001). 

5.3.3 VAC057 Objectives and Endpoints 

Primary Objective 

To assess the safety of ChAd63 RH5 when administered alone and in a heterologous prime-

boost regime with MVA RH5. 

Primary Outcome Measures 

The specific endpoints for safety and reactogenicity were actively and passively collected data 

on AEs. These data were collected using electronic diary cards which were completed by 

volunteers for 28 days after each vaccination, as well as recording any AEs reported by 
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volunteers or detected by study staff (e.g. laboratory abnormalities) at each clinic visit during 

this period. After 28 days only SAEs were recorded. 

Secondary Objective 

To assess the cellular and humoral immunogenicity of ChAd63 RH5 when administered alone, 

and in a heterologous prime-boost regime with MVA RH5 in healthy volunteers. 

Secondary Outcome Measures 

Immunogenicity outcome measures following ChAd63/MVA RH5 included: 

 Induction of antigen-specific T cells (assessed by ex-vivo IFN-γ ELISPOT); 

 Induction of antigen-specific IgG (assessed by anti-RH5 ELISA); 

 Measurement of antigen-specific antibody secreting cells (ASCs) and memory B 

cells (mBCs) following vaccination; 

 Functional activity of antigen-specific IgG (assessed by GIA assay). 

T cell ELISPOT assays, RH5 ELISA assays, ASC ELISPOT assays and mBC ELISPOT assays were 

carried out in the Jenner Institute laboratories in Oxford using the methods described in 

Chapter two. Sarah Silk and Sean Elias carried out the T cell ELISPOT s and the ASC and mBC 

ELISPOT assays; Sarah Silk and I carried out the ELISA assays. Samples were sent to the NIH 

reference center in the USA for GIA assays conducted by Kazutoyo Miura. Volunteers were 

consented for this. 

5.3.4 ChAd63 RH5 and MVA RH5 Vaccines 

The ChAd63 and MVA viral vectors are the same as those described in the VAC051 trial 

(Chapter three). Both viral vectors express a synthetic gene insert encoding the Plasmodium 

falciparum antigen RH5. The RH5 insert is a codon-optimised transgene encoding the RH5 

sequence from the 3D7 clone of Plasmodium falciparum.  

ChAd63 RH5 was manufactured under GMP conditions by Okairos, Italy (this company is now 

ADVENT S.r.l. since being acquired by GSK). MVA RH5 was manufactured under GMP 
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conditions by IDT, Germany. Both vaccines were labelled and released to trial by a QP at the 

CBF, University of Oxford following regulatory approval. 

5.3.5 VAC057 Participants 

Participants for this clinical trial were enrolled at two sites in the UK, the CCVTM in Oxford and 

the NIHR WTCRF in Southampton. Twenty four volunteers were enrolled in total and all 

completed study follow-up. All volunteers gave written informed consent prior to 

participation, and ongoing consent was confirmed before each vaccination. The inclusion and 

exclusion criteria for participation are described below: 

5.3.5.1  VAC057 Inclusion Criteria 

The volunteer had to satisfy all of the following criteria to be eligible for the study: 

 Healthy adult aged 18 to 50 years.  

 Able and willing (in the Investigator’s opinion) to comply with all study requirements. 

 Willing to allow the discussion of their medical history with their GP. 

 For females only, willingness to practice continuous effective contraception during the 

study and a negative pregnancy test on the days of screening and vaccination. 

 Agreement to refrain from blood donation during the course of the study. 

 Provision of written informed consent. 

 

5.3.5.2  VAC057 Exclusion Criteria 

The volunteer could not enter the study if any of the following applied: 

 Participation in another research study involving receipt of an investigational product 

in the 30 days preceding enrolment or during the study period.  

 Prior receipt of an investigational malaria vaccine or any other investigational vaccine 

likely to impact on interpretation of the trial data. 

 Administration of immunoglobulins and/or any blood products within the three 

months preceding vaccination. 

 Any confirmed or suspected immunosuppressive or immunodeficient state, including 

HIV infection; asplenia; recurrent, severe infections and chronic (more than 14 days) 
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immunosuppressant medication within 6 months preceding vaccination (inhaled and 

topical steroids were allowed). 

 History of allergic disease or reactions likely to be exacerbated by any component of 

the vaccine, e.g. egg products. 

 Any history of anaphylaxis in relation to vaccination. 

 Pregnancy, lactation or willingness/intention to become pregnant during the study. 

 History of cancer (except basal cell carcinoma of the skin and cervical carcinoma in 

situ). 

 History of serious psychiatric condition likely to affect participation in the study. 

 Any other serious chronic illness requiring hospital specialist supervision. 

 Suspected or known current alcohol abuse as defined by an alcohol intake of greater 

than 42 units every week. 

 Suspected or known injecting drug abuse in the 5 years preceding enrolment. 

 Seropositive for hepatitis B surface antigen (HBsAg). 

 Seropositive for hepatitis C virus (antibodies to HCV).  

 History of clinical malaria (any species). 

 Travel to a malaria endemic region during the study period or within the previous six 

months. 

 Any clinically significant abnormal finding on screening biochemistry or haematology 

blood tests or urinalysis. 

 Any other significant disease, disorder or finding which may significantly increase the 

risk to the volunteer because of participation in the study, affect the ability of the 

volunteer to participate in the study or impair interpretation of the study data. 

 Inability of the study team to contact the volunteer’s GP to confirm medical history 

and safety to participate. 

 

5.3.6 VAC057 Assessment of safety 

Following each vaccination, volunteers completed an electronic diary card for 28 days with any 

adverse event data. Further details about the scoring systems for the diary card can be found 

in Chapter two. The electronic diary was developed by Sylwester Pawluk in consultation with 

me, to provide a system which enabled participants to log their AE data in real time. The diary 
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was accessed over the internet and was designed so that it could be used on computers, 

tablets or smart phones. Participants were given a one-time login link and then had to set a 

password to access their diary. They were shown how to use the diary on the day of 

vaccination, and entries were checked at all visits during the 28 day diary period. Study staff 

were able to see all AE data for participants as soon as each day had been completed, and 

were able to edit entries if required (e.g. if further detail was desired). All changes were 

recorded on an audit log so that if changes had been made by study staff this was evident. 

Observations (heart rate, temperature and blood measure) were measured at the clinic visits 

from the day of vaccination until the 28 day follow-up visit. These were recorded directly into 

the OpenClinica eCRFs. Blood samples for safety (full blood count, liver function, urea and 

electrolytes) were carried out at screening, day 0, day 7 and day 28 for all groups, as well as on 

days 56, 63 and 84 for Groups 2B and 2C. These were processed at the NHS laboratories in 

Oxford and Southampton. 

5.3.6.1  VAC057 Stopping and holding rules 

Safety stopping and holding rules were used in this study to ensure participant safety, 

particularly given that this was a first-in-human dose escalation study. For safety reasons the 

first volunteer who received a new vaccine dose was vaccinated alone and there was at least a 

48 hour gap before subsequent volunteers were vaccinated. A further two further volunteers 

could be vaccinated 48 hours after the first, and then at least another 48 hours gap had to 

elapse before the rest of the volunteers receiving that dose of vaccine could be vaccinated. 

Group holding rules 

The study would have been put on hold if any of the following criteria were reached: 

Solicited local adverse events: 

 If more than 25% of doses of a vaccine were followed by Grade 3 solicited local 

adverse event beginning within 2 days after vaccination (day of vaccination and one 

subsequent day) and persisting at Grade 3 for >48 hrs. 
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Solicited systemic adverse events:  

 If more than 25% of doses of a vaccine were followed by Grade 3 solicited systemic 

adverse event beginning within 2 days after vaccination (day of vaccination and one 

subsequent day) and persisting at Grade 3 for >48hrs.  

Unsolicited adverse events: 

 If more than 25% of volunteers developed a Grade 3 unsolicited adverse event 

(including the same laboratory adverse event) that was considered possibly, probably 

or definitely related to vaccination and persisted at Grade 3 for > 48hrs. For the 

ChAd63 RH5 vaccination Groups 2A and 2B were considered as one group as they 

were enrolled simultaneously and received the same vaccine dose.  

A serious adverse event considered possibly, probably or definitely related to vaccination, a 

death or a life-threatening reaction occurred. 

Individual stopping rules (applied to all vaccinated individuals) 

In addition to the above stated group holding rules, stopping rules for individual volunteers 

applied (i.e. indications to withdraw individuals from further vaccinations). Volunteers would 

have been withdrawn from further vaccinations if any of the events listed below occurred and 

were considered possibly, probably or definitely related to vaccination.  

Local reactions:  

 Injection site ulceration, abscess or necrosis. 

Laboratory AEs: 

 If the volunteer developed a Grade 3 laboratory adverse event considered possibly, 

probably or definitely related within 7 days after vaccination which persisted 

continuously at Grade 3 for > 72hrs. 

Systemic solicited adverse events:  

 If the volunteer developed a Grade 3 systemic solicited adverse event considered 

possibly, probably or definitely related within 2 days after vaccination (day of 

vaccination and one subsequent day) which persisted continuously at Grade 3 for > 

72hrs. 
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Unsolicited adverse events: 

 If the volunteer had a Grade 3 adverse event, which persisted continuously at Grade 
3 for >72hrs. 

 If the volunteer had a serious adverse event. 

 If the volunteer had an acute allergic reaction or anaphylactic shock following the 
administration of the vaccine investigational product. 

 

5.3.7 VAC057 Interventions 

Vaccination of volunteers was carried out at the CCVTM in Oxford and NIHR WTCRF in 

Southampton. Vaccines were stored at -80°C in a locked freezer. Administration of vaccines 

was carried out by two members of the local study team (clinician or nurse). One of the clinical 

study staff was required to give the vaccine and the other to check the volume drawn and 

countersign the procedure. In Oxford I checked eligibility and consent prior to vaccination; this 

was done by the trial clinician in Southampton. Vaccines were all administered IM into the 

deltoid muscle, preferentially into the non-dominant arm unless there was a contraindication 

(or the volunteer stated a preference for the other arm). The Investigator administering the 

vaccine wore an apron, gloves and eye protection. The vaccines are GMOs and therefore all 

waste from a vaccination procedure was autoclaved to minimise dissemination of the 

recombinant vectored vaccine virus into the environment, in accordance with UK Genetically 

Modified Organisms (Contained Use) Regulations (2000). 

Volunteers were required to remain at the CCVTM for an hour after vaccination. Their vital 

signs and the vaccination site were checked at 30 minutes (at which time the vaccination site 

dressing was removed and discarded as GMO waste) and 60 minutes to check for evidence of 

any immediate reactions to the vaccine. 

Blood tests for exploratory immunology were taken at all visits except those occurring 2 days 

after each vaccination (i.e. days 2 and 58). The methods used to assess vaccine 
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immunogenicity (T cell ELISPOT, ASC and mBC ELISPOT, IgG ELISA, avidity ELISA, isotype ELISA 

and GIA) are all described in Chapter 2: Materials and methods.  

The four volunteers in Group 1 were vaccinated with 5 x 109 vp of ChAd63 RH5. Following a 

safety review, twelve volunteers (Groups 2A and 2B) were vaccinated with the ‘full dose’ of 

ChAd63 RH5 (5 x 1010 vp), eight of whom (Group 2B) went on to receive MVA RH5 1 x 108 pfu 

eight weeks later. A further eight volunteers were enrolled into the final group (Group 2C), and 

a safety review was carried out prior to the full dose MVA RH5 vaccinations (2 x 108 pfu) given 

eight weeks after ChAd63 RH5 prime with 5 x 1010 vp.  

Vaccination visits occurred on days 0 (all groups) and 56 (Groups 2B and 2C) (nominal study 

days are used throughout). Volunteers also attended follow-up visits on days 2, 7, 14, 28, 56 

and 84 in Group 1, on days 2, 7, 10 14, 28, 56, 63, 84 and 140 in Group 2A and on days 2, 7, 10, 

14, 28, 58, 63, 84 and 140 in Groups 2B and 2C, with a final follow-up phone call for these 

groups on day 240. 

5.4 Results  

5.4.1 VAC057 Participant Flow 

Thirty two volunteers were screened, of whom 24 were enrolled and 8 were excluded (Figure 

5-2). Vaccinations began on 18th August 2014 and all follow-up visits were completed by 28th 

October 2015. All vaccinees received their immunisations as scheduled and there were no 

withdrawals from the study. Similar numbers of males and females were enrolled (13 females, 

11 males). The mean age of volunteers was 28 years (range 19 – 48 years). The four Group 1 

volunteers received 5 x 109 vp of the ChAd63 RH5 vaccine. Following a safety review, the dose 

of ChAd63 RH5 was increased for Group 2 and volunteers received 4.26 – 4.77 x 1010 vp (a 

nominal figure of 5 x 1010 vp will be used throughout the rest of this Chapter). Four volunteers 

in Group 2A received ChAd63 RH5 alone. Eight volunteers were enrolled into Group 2B and a 

further eight into Group 2C. These volunteers received ChAd63 RH5 followed 8 weeks later 

with a ‘boost’ vaccination of MVA RH5 at a dose of 1 x 108 pfu (Group 2B) or 2 x 108 pfu (Group 
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2C). There was a 2 week interval between the final vaccination in Group 2B with MVA RH5 at 

the lower dose of 1 x 108 pfu and the first vaccination with MVA RH5 at the full dose of 2 x 108 

pfu in Group 2C, with a safety review prior to dose escalation. 

 

Figure 5-2: VAC057 Study Flow  

 

5.4.2 VAC057 Vaccine Safety and Reactogenicity 

There were no SAEs or unexpected reactions and no safety concerns during the course of the 

trial. No volunteers withdrew from the study. The reactogenicity of the vaccines was similar to 

that seen in previous malaria vaccine trials using the same viral vectors at similar doses in 

healthy adults (84, 155), with the higher doses of both vaccines associated with an increased 

number and higher severity of reported adverse events. The reactogenicity was also similar to 
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that seen with the P. vivax viral vectored vaccines using the same vectors described in Chapter 

three. 

5.4.2.1  Solicited Adverse Events 

The maximum reported severity of solicited AEs following ChAd63 RH5 are shown in Figure 5-

3A (local AEs) and Figure 5-3B (systemic AEs). The majority of AEs were mild but moderate AEs 

were reported by some volunteers in both groups, and two volunteers who received the full 

dose of ChAd63 RH5 reported severe AEs on the day of vaccination which resolved within 24 

hours. Similarly, solicited AEs following MVA RH5 are shown in Figures 5-4A (local AEs) and 5-

4B (systemic AEs). All moderate or severe solicited systemic AEs following MVA RH5 occurred 

in volunteers who had received the higher dose of vaccine. The majority of solicited AEs 

occurred within the first 2 days after vaccination (Figure 5-5) and the median duration of each 

systemic AE was between 1 and 2 days following either vaccine. 
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Figure 5-3: Solicited local and systemic AEs following ChAd63 RH5.  

Only the highest intensity of each AE per subject is listed. Data are combined for all AEs for all volunteers 
receiving the same vaccine at the stated dose. (A) Local AEs post ChAd63 RH5 in Group 1 (G1) at the 5 x 
10

9
 vp dose (4 volunteers) and Group 2 (G2) at the 5 x 10

10
 vp dose (20 volunteers). (B) Systemic AEs post 

ChAd63 RH5 in G1 and G2 at doses of 5 x 10
9
 vp and 5 x 10

10
 vp respectively. Data were exported from 

the OpenClinica database and the eDiary into Excel worksheets, and data were combined to calculate the 
percentages of volunteers experiencing each AE following vaccinations at different doses. 
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Figure 5-4: Solicited local and systemic AEs following MVA RH5.  

Only the highest intensity of each AE per subject is listed. Data are combined for all AEs for all volunteers 
receiving the same vaccine at the stated dose. (A) Local AEs post MVA RH5 in Group 2B (G2B) at the 1 x 
10

8
 pfu dose (8 volunteers) and Group 2C (G2C) at the 2 x 10

8
 pfu dose (8 volunteers). (B) Systemic AEs 

post MVA RH5 in G2B and G2C at doses of 1 x 10
8
 pfu and 2 x 10

8
 pfu respectively. Data were exported 

from the OpenClinica database and the eDiary into Excel worksheets, and data were combined to 
calculate the percentages of volunteers experiencing each AE following vaccinations at different doses.  
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Figure 5-5: VAC057 Percentage of volunteers reporting solicited local and systemic AEs by 
day  

Data are shown for 7 days after ChAd63 RH5 vaccination (n=24) (A, B) and MVA RH5 (n=16) (C, D) for all 
volunteers receiving each vaccine, regardless of dose. Data were exported from the Openclinica 
database and eDiary into Excel and the percentages of volunteers reporting each solicited AE by day post 
vaccination were calculated. 
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until the end of follow-up). Causality was assigned by the lead clinician and peer-reviewed by 

an independent clinician with an agreed final causality score. Causality was assessed as 

described in ‘Materials and Methods’ (Chapter two). One volunteer reported a severe 

unsolicited adverse event which was considered probably related to vaccination as it occurred 

the day after ChAd63 RH5 5 x 109 vp. This was abdominal cramping lasting around 30 minutes 

which resolved spontaneously and did not recur. There were no severe unsolicited adverse 

events reported after MVA RH5 vaccination. Unsolicited adverse events considered possibly, 

probably or definitely related to vaccination are shown in Table 5.1. 
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As well as the unsolicited adverse events listed below, five volunteers had mild hypertension 

recorded during the trial. This was recorded as a single reading in two volunteers, recorded 

twice in one volunteer and recorded intermittently for a further two volunteers, both of whom 

were noted to have mild hypertension at screening. One volunteer had a mild tachycardia 

recorded at two clinic visits (days 2 and 28) but this was not sustained. 

 

Table 5.1: VAC057 Unsolicited adverse events considered possibly, probably or definitely 
related to vaccination.  

Maximum reported severity shown. Timepoint(s) = days post vaccination. 

 

5.4.2.3  Laboratory Adverse Events 

There were no severe laboratory AEs following ChAd63/MVA RH5 vaccination. One volunteer 

had a moderately raised ALT at day 7 following ChAd63 RH5 which had resolved fully by day 

Unsolicited AEs following ChAd63 RH5 

Group Subject ID Timepoint(s)  Symptom Severity 

1 MVT-0571005 1 Abdominal cramping  3 

2A MVT-0571003 0 Numbness around the lips 1 

2A MVT-0571003 9, 11 Headache 2 

2A MVT-0571003 9 Fatigue 1 

2A MVT-0571009 9 painful injection site 1 

2A MVT-0571010 1 to 2 sore throat 1 

2B MVT-0571015 10 fatigue 2 

2C MVT-0571014 7 to 8 Temp 37.2;  feeling unwell 2 

2C MVT-0571014 8 Weakness 2 

2C MVT-0571014 8 Fatigue 2 

2C MVT-0571014 11 Headache 1 

2C MVT-0572211 2 Felt light headed and dizzy after going for a run. 1 

2C MVT-0572205 1 Palpitations 2 

2C MVT-0572205 1 Insomnia 2 

2C MVT-0572210 7 to 8 Sore throat  1 

2C MVT-0572210 9 to 12 mild sinus/nasal congestion 1 

Unsolicited AEs following MVA RH5 

Group Subject ID Timepoint(s) Symptom Severity 

2B MVT-0571012 1 to 11 Coryzal symptoms, cough and congestion 1 

2B MVT-0571018 0 to 1 abdominal pain  1 

2B MVT-0571020 4 to 5 Coryzal symptoms 1 

2B MVT-0572204 10 Headache 1 

2C MVT-0571014 8 Vomited x 1 2 

2C MVT-0572211 0 to 3 Disturbed sleep  1 

2C MVT-0572205 1 Tinnitus 1 

2C MVT-0571017 0 to 1 Small swelling/haematoma at vaccination site  1 
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28. One volunteer had moderate thrombocytopenia and mild leukopenia at day 28 following 

ChAd63 RH5 but had commenced post-exposure prophylaxis for HIV exposure the day before 

these bloods were taken, so these findings may have been due to the antiretroviral medication 

rather than the vaccination. All other laboratory AEs were mild and had resolved fully by day 

84 except for one volunteer who had a persistent mild anaemia. This had been present at 

screening and had not worsened over the course of the study so was not considered 

significant. 

5.4.3 ChAd63/MVA RH5 T cell immunogenicity assessed by ex-vivo IFN-γ 

ELISPOT 

The ChAd63/MVA RH5 vaccines elicited T cell responses as assessed by ex-vivo IFN-γ ELISPOT, 

with peak responses after the MVA boost (Figure 5-6). The median peak responses (day 63) 

were 2092 SFU/million PBMC for Group 2B and 2281 SFU/million PBMC for Group 2C. This 

difference was not statistically significantly different (P = 0.32; analysed by Mann Whitney 

test). The response at day 140 (final immunology timepoint) was also similar in both groups 

with a median response of 458 and 663 SFU/million PBMC in Groups 2B and 2C respectively. 
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Figure 5-6: VAC057 T cell responses as assessed by ex vivo IFN- γ ELISPOT  

Individual and median group results are shown for volunteers vaccinated with ChAd63 RH5 (all groups) 
and boosted with MVA RH5 (Groups 2B and 2C). Arrows indicate vaccination timepoints. Spots were 
counted using an automated plate counter and exported into an Excel worksheet where results were 
obtained by subtracting any background response (from negative control wells) and then taking the 
average of triplicate wells. Data were then imported into GraphPad Prism for statistical analyses. 

 

5.4.4 ChAd63/MVA RH5 antibody response assessed by ELISA 

The kinetics and magnitude of the serum IgG antibody responses were assessed over time by 

an ELISA to recombinant PfRH5 protein (Figure 5-7). The IgG response was higher in the group 

vaccinated with full dose (5 x 1010 vp) ChAd63 RH5 and peaked after MVA boost with similar 

IgG responses in both boosted groups (Groups 2B and 2C). The median peak response, seen 

four weeks after MVA RH5 (i.e. day 84) was 720 AU in Group 2B and 1696 AU in Group 2C. 

Most volunteers who received the lead-in dose of ChAd63 RH5 alone did not seroconvert 

(Group 1; Figure 5-7B), whereas those who received full dose did. The difference in peak 

median responses between Groups 2B and 2C at day 84 was not calculated to be significant 
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but the response in Group 2C was significantly higher than that in the unboosted volunteers in 

Group 2A (P value = 0.01; analysed by Kruskal-Wallis test).  

 

Figure 5-7: VAC057 Anti-RH5 IgG responses measured by ELISA  

Median responses for all groups (A), and individual and median responses following ChAd63 RH5 (B) (G1, 
n=4; G2, n=20) and following MVA RH5 in G2B (n=8) and G2C (n=8) (C and D) are shown. The absorbance 
at 405nm (OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. Data were 
exported into an Excel worksheet and values of internal controls and samples in triplicate were assessed 
for any aberrant readings. The results were obtained by taking an average of triplicate wells, and using 
the standard curve to assign ELISA arbitrary units (AU). The limit of the assay is 20 AU (marked by a 
dotted line), below which is classed as negative. Data were then imported into GraphPad Prism for 
statistical analyses. 

 

5.4.5 Anti-RH5 IgG avidity and antibody response profile  

A NaSCN-displacement ELISA was carried out to assess the avidity of the serum IgG responses 

following ChAd63/MVA RH5 vaccination (Figure 5-8) and is reported as the molar 

concentration of NaSCN required to reduce the OD 405 to 50% of that without NaSCN (IC50). 

Avidity for samples negative for Total IgG ELISA cannot be analysed. The avidity of the anti-RH5 

IgG was significantly but marginally higher at the peak of the IgG response after MVA boost 
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than following ChAd63 RH5 alone. Avidity was lower with ChAd63/MVA RH5 than seen 

following ChAd63/MVA PvDBP (Chapter three). 

 

Figure 5-8: IgG Avidity assessment following ChAd63/MVA RH5 vaccinations.  

Individual and median responses at four weeks (d28) post ChAd63 PfRH5, twelve weeks post ChAd63 
PfRH5 (G1 and G2A d84) and four weeks post MVA PfRH5 boost (d84 G2B and G2C) are shown. Avidity 
for samples negative for Total IgG ELISA could not be measured. The absorbance at 405nm (OD405) was 
read using a Biotek ELx800 microplate reader with Gen5 software. Data were exported into an Excel 
worksheet and the average value of duplicate readings calculated. Data were then imported into 
GraphPad Prism for statistical analyses.  ***P<0.001 Kruskal-Wallis test with Dunn’s correction for 
multiple comparison. 

 

An isotype ELISA (Figure 5-9) demonstrated a similar antibody profile following ChAd63/MVA 

RH5 as was seen following ChAd63/MVA PvDBP (Chapter three) with a predominant IgG1 and 

IgG3 response. There was also a significant increase in IgA seen following ChAd63/MVA RH5 

vaccination. Although there was a significant increase in IgM, many of the baseline results 

were positive, suggesting there was some interference or background reactivity in the assay 
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Figure 5-9: Antibody isotype profile following ChAd63/MVA RH5 vaccination.  

Antibody isotypes were assessed by ELISA. Baseline (d0) response, and response twelve weeks post 
ChAd63 RH5 for G1 (n=4) and G2A (n=4) and four weeks post MVA RH5 boost for G2B (n=8) and G2C 
(n=8) (d84) are shown. Individual and median responses are shown for every isotype. Dotted line 
represents ELISA cut-off (OD of 0.15, below which samples were considered negative). The absorbance at 
405nm (OD405) was read using a Biotek ELx800 microplate reader with Gen5 software. Data were 
exported into an Excel worksheet and the average OD values of duplicate samples calculated. Data were 
then imported into GraphPad Prism for statistical analyses ***P<0.001, ****P<0.0001 Wilcoxon 
matched-pairs signed rank test. 
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0.15; Mann Whitney test) (Figure 5-10A) or frozen PBMC (P = 0.27; Mann Whitney test) (Figure 

5-10B). There was a trend towards RH5-specific ASC making up a higher percentage of the total 

IgG-secreting ASC in Group 2C but this was not statistically significant (P = 0.80; Mann Whitney 

test) (Figure 5-10C). 
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Peripheral mBC responses were assessed by identifying RH5-specific mBC-derived plasma cells 

by ex-vivo ELISPOT following a 6-day polyclonal culture of PBMC (Figure 5-11). The responses 

were measured at the peak IgG response (d84) and at the final timepoint (d140). There was no 

significant difference between the median response in G2B and G2C, both as a measure of 

mBC-derived ASC. 

 

 

Figure 5-10: ASC responses following ChAd63/MVA RH5 vaccination.  

RH5-specific peripheral blood ASCs measured from fresh PBMC (A) and frozen PBMC (B) isolated 7 days 

following MVA RH5 vaccination (d63) using ex-vivo ELISPOT. (C) RH5-specific ASC as a percentage of 

total IgG detected from frozen PBMC at d63. Data are shown for G2B (n=8) and G2C (n=8). Spots were 

counted using an AID ELISPOT reader and automated counts were corrected by eye to ensure only spots 

consistent with IgG secreting ASCs were counted. Data were exported into an Excel worksheet and then 

imported into GraphPad Prism for graphical presentation and statistical analyses. There were no 

significant differences between Groups 2B and 2C using the Mann Whitney test. 
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Figure 5-11: mBC responses following ChAd63/MVA RH5 vaccination 

mBC derived ASC measured at the peak of the response at d84 and at the final timepoint (d140) using ex-

vivo ELISPOT for Groups 2B (n=8) and 2C (n=8). Individual and median results for both groups are shown 

as (A) mBC derived ASC per million cultured PBMC and (B) as a percentage of total IgG ASC. mBC ELISPOT 

spots were counted using an AID ELISPOT reader and automated counts were corrected by eye .Data 

were exported into an Excel worksheet and then imported into GraphPad Prism for statistical analyses. 

There was no significant difference between the median response in G2B and G2C (assessed by Mann 

Whitney test). 

 

5.4.7 VAC057 Measures of in vitro GIA 

Serum was sent to the GIA Reference Center at NIH, USA and IgG purified from each sample. 

GIA was assessed against the vaccine homologous clone (3D7) for all volunteers who received 

both vaccines (Groups 2B and 2C). IgG was initially assessed at 10 mg/mL (Figure 5-12A) and 

then using a serial dilution. As expected, GIA decreased as the IgG was diluted (Figure 5-13). As 

discussed in Chapter four, a GIA of >60% with 2.5 mg/mL purified IgG was required in the 

Aotus animal model to correlate with protection against P. falciparum malaria (104) and none 

of the volunteers in VAC054 achieved greater than 40% GIA at this concentration of IgG. 

Therefore we expect that GIA levels are required to be >40% (and possibly >60%) at 2.5 mg/mL 

purified IgG if protection against P. falciparum blood-stage CHMI is likely to be seen. Figure 5-

12B demonstrates that none of the volunteers in VAC057 achieved >40% GIA at 2.5 mg/mL 

purified IgG after ChAd63/MVA RH5 vaccination. Nonetheless, the result was encouraging as 

the level of GIA achieved with the ChAd63/MVA RH5 viral vectors in this trial was similar to 

that seen with the FMP2.1 protein vaccine given with the potent AS01 adjuvant (209).  
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GIA was also assessed against a range of other P. falciparum strains (Figure 5-14). These data 

show that the antibodies induced by vaccination were able to inhibit the growth of all strains 

of P. falciparum tested, although the levels of GIA were not equal for all strains. 

 

Figure 5-12: VAC057 GIA against reference clone P. falciparum 3D7 at 10 mg/mL and 2.5 
mg/mL purified IgG. 

GIA for each group with individual and median responses are shown at a purified IgG concentration of 10 
mg/mL (A) and 2.5 mg/mL (B). Results are compared with purified IgG from vaccinees at the same 
dilution from the VAC054 trial (Chapter four). A single-cycle assay was used, with the readout measured 
after 48 hours. Data were received from the NIH reference center in an Excel worksheet and were 
imported into GraphPad Prism for graphical presentation and analyses. 

 

 

 

Figure 5-13: VAC057 GIA against reference clone P. falciparum 3D7 at 10 mg/mL purified IgG 
and serial dilutions.  

A single-cycle assay was used, with the readout measured after 48 hours in samples from volunteers in 
Groups 2B (n=8) and 2C (n=8). Data were received from the NIH reference center in an Excel worksheet 
and were imported into GraphPad Prism for graphical presentation and analyses. 
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Figure 5-14: VAC057 Growth inhibition activity of purified IgG at 10mg/mL against a range of 
P. falciparum strains compared with GIA against the reference 3D7 clone. 

 

5.5 Discussion  

As discussed in Chapter four, the development of vaccines against P. falciparum, and especially 

against the blood-stage parasite has proved extremely challenging, with no blood-stage 

candidate vaccine to date demonstrating significant efficacy against infection. The reasons for 

the lack of efficacy include difficulty in achieving adequate antibody concentrations (given the 

very short time interval in which the merozoite is exposed before erythrocyte invasion) and 

antigen polymorphism. The antibody levels required to block invasion differ according to the 

antigen, for example, higher concentrations of anti-MSP1 antibody are required to block 

invasion in a GIA assay compared with anti-AMA1 antibodies (130). The polymorphisms 

described for both MSP1 (87) and AMA1 (241-243) also create issues for vaccine development. 

One approach is to develop a multi-allele vaccine (244, 245), but covering all antigen variations 

would be difficult and it is possible that parasites may find other mechanisms for invasion. 

The PfRH5 antigen has important advantages over blood-stage antigens such as AMA1 and 

MSP1. Firstly, there is only limited polymorphism (235), presumably because PfRH5 appears 

not to come under significant immune pressure. Secondly, anti-RH5 antibodies are able to 
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block erythrocyte invasion with lower antibody concentrations than anti-AMA1 and anti-MSP1 

antibodies (130, 235) which means that lower antibody levels are potentially needed for an 

effective vaccine than for these candidate antigens. As discussed at the start of this Chapter, 

anti-RH5 antibodies induced by vaccination have been shown to inhibit multiple strains of P. 

falciparum in vitro (158, 235, 239, 240) and vaccination with RH5 vaccines protected Aotus 

monkeys against a heterologous strain challenge in vivo (104).  

In this Chapter, I have decribed the safety and immunogenicity of the candidate vaccines 

ChAd63/MVA RH5 in a first-in-human Phase Ia clinical trial. The vaccines were well tolerated 

with an acceptable reactogenicity profile, no SAEs and all volunteers completed follow-up in 

the study. In this study, as opposed to VAC051 (Chapter three) and VAC054 (Chapter four), I 

implemented an electronic diary to collect volunteer-reported AEs. This enabled the safety 

data to be monitored remotely for all enrolled volunteers in real time, as well as reducing the 

risk of data errors in transcribing from paper diaries to a database. Furthermore, use of the 

electonic diaries meant I collected data daily for 28 days after each vaccination rather than 7 

or 14, improving the accuracy of the data as data collected after day 7 did not rely purely on 

recall at clinic visits. The change of duration for collecting all AEs in this study also meant that 

the most relevant information regarding AEs was collected, i.e. those occurring within the first 

four weeks after vaccination, and any serious AEs. Blood samples for haematological and 

biochemical analyses were taken only over the same period as it was felt that any 

abnormalities attributable to vaccination would be detectable within this timeframe. 

The ChAd63/MVA RH5 vaccines were immunogenic, eliciting RH5-specific T cell and IgG 

reponses in vaccinees who received the higher dose of ChAd63 RH5 and peaking after MVA 

RH5 boost. There was a trend towards higher anti-RH5 IgG responses in Group 2C, who 

received the full dose of both vaccines, but the difference was not statistically significant. 

However, the number of RH5-specific ASCs measured at 7 days post-MVA RH5 were 

significantly higher following full dose MVA RH5 than the 1 x 108 pfu dose. There was also a 
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significant increase in IgG avidity after MVA RH5 boost. The RH5-specific T cell response was 

similar in both boosted groups, with a peak response seen 1 week after the MVA RH5 

vaccinations. Although it is likely that protection against blood-stage malaria is mainly 

antibody-mediated, T cells are important in providing B cell help and also in activating Th1 

responses which help mediate effector mechanisms of both antibodies and cell-mediated 

immunity (246).  

Antibodies induced by vaccination demonstrated in vitro efficacy against P. falciparum in a GIA 

assay. As discussed in Chapter three, the induction of functional antigen-specific antibodies 

provides evidence that the RH5 protein was produced as a correctly folded protein and 

secreted successfully following ChAd63/MVA RH5 vaccination. Most importantly, the purified 

IgG from vaccinated volunteers was able to block not only the strain homologous with the 

PfRH5 in the ChAd63/MVA RH5 vaccines, but also every other strain tested in this assay. This is 

the first time antibodies against a blood-stage antigen have demonstrated cross-strain 

inhibition following vaccination of humans with a monovalent P. falciparum candidate vaccine. 

The level of GIA differed according to strain, with some demonstrating greater inhibition than 

against the 3D7 reference clone whilst others had lower levels. This may be due to several 

reasons including: polymorphisms within the RH5 protein leading to slight differences in the 

binding site with basigin and therefore differences in activity of anti-RH5 antibodies; 

differences in the amount of RH5 expressed by the various strains; or differences in the release 

kinetics of RH5 between strains.  

The level of GIA seen against the 3D7 reference clone was similar to that seen following the 

FMP2.1/AS01 vaccine discussed in Chapter four, with a median GIA at 10 mg/mL purified IgG 

of 40% in Group 2B and around 50% in Group 2C (compared with around 60% in the VAC054 

trial). At 2.5 mg/mL purified IgG the GIA levels fell to a median of 14% for Group 2B and 26% 

for Group 2C (compared with 20% in the VAC054 volunteers). It is therefore unlikely that this 

vaccine regime would be protective against P. falciparum infection in a blood-stage CHMI trial. 
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However, the result is still encouraging as the levels of antibody induced by viral vectored 

vaccines are typically lower than those after protein-in-adjuvant vaccine regimes. A previous 

Phase Ia trial in Oxford demonstrated that purified IgG at 10 mg/mL from volunteers 

vaccinated with AMA1 given in viral vectored vaccines using the same vectors as were used in 

this trial gave less than 20% GIA (167). In this same study, a protein-in-adjuvant AMA1 vaccine 

was given following a ChAd63 AMA1 priming vaccine and this gave similar levels of GIA at 10 

mg/mL purified IgG to those seen in the VAC054 study with the AMA1 vaccine FMP2.1/AS01B 

(167, 209). This implies that antibody levels could be improved upon with a vaccine which was 

tailored to induce a stronger B cell response as the T cell response against this antigen is likely 

to have less of a role. Having said that, the GIA assay only assesses the functional activity of IgG 

and the response against P. falciparum infection may be better than predicted if T cells do play 

a role.  

To conclude, this study marked a major milestone in P. falciparum blood-stage vaccine 

development, showing that induction of antibodies active against multiple parasite strains is 

possible in humans. Future work will aim to develop a vaccine which is better at inducing 

antibodies than viral vectored vaccines, and this will hopefully lead to demonstrable efficacy 

against the parasite. 
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Chapter six: 

Concluding Remarks and Future 

Directions 
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6.1 Summary 

Malaria remains a significant global health burden, affecting millions of individuals each year. 

Most cases of malaria are due to P. falciparum, but a significant proportion of those in Asia and 

South America are due to P. vivax. The development of effective malaria vaccines has proved 

extremely challenging, with only one vaccine candidate (GSK’s P. falciparum pre-erythrocytic 

vaccine, RTS,S) reaching Phase III trials, and demonstrating only moderate efficacy (57). The 

most recent update to the Malaria Vaccine Technology Roadmap calls for a vaccine effective 

against both falciparum and vivax malaria by 2030 (7). Blood-stage malaria vaccines for P. 

falciparum have faced particular difficulties with the need for very high antibody levels and 

issues with polymorphism of candidate antigens. No blood-stage vaccine has demonstrated 

significant efficacy against infection to date, but the concept of a blood-stage vaccine is 

supported by the development of natural immunity in endemic areas with a corresponding rise 

in serum titres of antibodies against blood-stage malaria proteins (247). However, in natural 

immunity responses to a broad range of antigens are required (248) and strain-specificity has 

been demonstrated (249). Even in those who acquire natural immunity, protection is far from 

complete with a reduction in disease severity but ongoing risk of infection (247, 250). There 

had not previously been any blood-stage P. vivax vaccine to reach clinical trial, and there are 

reasons to believe that a vaccine against this parasite may be easier to achieve as in almost all 

cases P. vivax invades erythrocytes via DARC, making this an essential interaction for the 

parasite. Furthermore, there is evidence that antibodies against PvDBP are able to block 

multiple strains of P. vivax, meaning heterologous as well as homologous protection may be 

possible with a PvDBP-based vaccine (251). 

This thesis has described three clinical early-phase vaccine trials carried out in healthy adult 

volunteers at the Jenner Institute in Oxford. Two of the trials investigated P. falciparum 

candidate blood-stage vaccines, and one trial examined a P. vivax vaccine. One of the P. 

falciparum blood-stage vaccine trials also led to the development of a human blood-stage 

CHMI model to assess vaccine efficacy. All vaccines tested were safe and immunogenic. 
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However, despite functional AMA1-specific antibodies being induced by the FMP2.1/AS01 

vaccine, efficacy against homologous blood-stage CHMI was not seen. Similarly, functional 

antibodies against RH5 were seen following the ChAd63/MVA RH5 heterologous prime-boost 

regimen, but the level of GIA seen was thought unlikely to lead to protection against P. 

falciparum infection, although this currently remains untested. Importantly though, the 

functional activity seen was strain-transcending, a novel finding following vaccination of 

humans with a blood-stage vaccine candidate. The ChAd63/MVA PvDBP vaccine regimen was 

the first blood-stage P. vivax vaccine candidate ever to be tested in a clinical trial. Again, anti-

PvDBP antibodies were induced which demonstrated blocking of the PvDBP-DARC interaction 

in an in vitro assay, but as blood-stage vaccine efficacy has never been tested for P. vivax it is 

unknown whether this would be likely to translate into protection against infection in vivo. 

These studies have therefore highlighted some of the difficulties in blood-stage malaria 

vaccine development but have also made important progress in this field.  

6.2 Development of the CHMI model for assessing blood-stage P. 

falciparum vaccines 

The best method for assessing vaccine efficacy for blood-stage P. falciparum vaccines has been 

widely debated (214). It may be that efficacy only occurs at high parasite densities, which do 

not occur in CHMI trials as participants are treated as soon as malaria is diagnosed on thick 

blood film, even if asymptomatic. However, an effective vaccine against malaria will need to be 

able to control parasitaemia before the onset of symptoms if it is to be useful and acceptable. 

In order to assess early effects on parasitaemia, the effect on PMR following vaccination can 

be analysed as an efficacy endpoint. This allows for even small changes in the growth rate of 

the parasite to be detected, demonstrating partial efficacy as well as the potential for 

demonstrating sterile efficacy if a volunteer is protected from developing malaria. 

Demonstration of partial efficacy would still be an important finding as it infers that protection 

is possible and allows further development to produce an improved vaccine going forwards. 
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The vaccine tested in the VAC054 trial (Chapter four) had previously been reported as 

demonstrating evidence of strain-specific efficacy in Malian children. The trial reported 64.3% 

efficacy (hazard ratio 0.36, 95% CI 0.08-0.86, P=0.03) in a pre-defined secondary analysis 

against clinical malaria with 3D7-type parasites (defined by eight immunologically important 

AMA1 polymorphisms in the cluster 1 loop of domain I), although the number of cases meeting 

this definition was small (97, 98) and protection did not extend into the second season of 

follow-up (99). This vaccine was therefore selected to be used in developing the CHMI model, 

as the AMA1 clone (3D7) used in the vaccine was the same as that in the CHMI inoculum. 

Although the trial did not demonstrate any vaccine efficacy, the reproducibility of the CHMI 

model was successfully demonstrated, and the potential improvement in measuring modest 

changes in PMR compared with sporozoite CHMI was also shown (209). The lack of 

FMP2.1/AS01 efficacy in this trial, in contrast to the study in Malian children, could be due to a 

number of possible reasons. Firstly, there may have been reduced immunogenicity of the 

vaccine in the VAC054 trial. ELISA and functional GIA analysis were performed at WRAIR 

(where the vaccine was developed) as well as in Oxford (209) and these showed the responses 

to be modestly, but significantly, lower than those reported in a trial of FMP2.1 administered 

with AS01 or AS02 in healthy US adults (95). Secondly, the use of AS01 instead of AS02 may 

have impacted the immunogenicity and efficacy. Thirdly, the vaccine may only have an impact 

at high parasite densities which would not be detected in a CHMI trial where participants are 

treated before high parasite densities are allowed to develop. Fourthly, the vaccine may have 

had a pre-erythrocytic effect which would not be detected with blood-stage CHMI. Finally, 

Malian children, unlike UK adults, would have possessed pre-existing anti-malarial immune 

responses, including anti-AMA1 IgG, which may have acted in conjunction with the vaccine-

induced anti-AMA1 responses. 

This was the largest blood-stage CHMI trial conducted to date and the model should accelerate 

proof-of-concept testing of new blood-stage malaria vaccines as the study can be powered to 

detect relatively low efficacy even with a small number of participants (fifteen vaccinees and 
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fifteen infectivity controls). This will enable much faster and more cost-effective testing of new 

candidate vaccines compared with the traditional field trial approach, and requires fewer 

participants than the sporozoite model in order to achieve the same power, which is an 

important ethical and logistical consideration.  

It will be very important to the field to correlate any vaccine efficacy seen with future blood-

stage candidate vaccines with levels of GIA. This has been shown to correlate in the Aotus 

monkey model (104, 226, 252) and the rhesus macaque monkey model using P. knowlesi 

parasites (253), but as no blood-stage P. falciparum vaccine has demonstrated efficacy with 

this model it is not definitively known whether the same can be said for a correlation in 

humans between GIA and vaccine efficacy.  

6.3 Development of safety data collection and analysis for early-

phase clinical trials 

Over the course of the clinical trials described in this thesis, which commenced in May 2013 

(VAC051) and were completed by December 2015 (VAC057) I made several changes to the way 

safety data were collected and analysed to improve accuracy and reduce bias. These changes 

included the use of an eCRF for live entry of data in clinic, which removed the risk of 

transcription errors and allowed data to be viewed in real time as there was no delay between 

a participant being seen and the data being available in the database. I also led the 

development of an eDiary system for volunteers to enter AE data into directly, rather than 

using paper diaries which then had to be transcribed into the OpenClinica database. This 

system was developed in conjunction with the other clinicians working across many different 

trials in the Jenner Institute by Sylwester Pawluk. This system enabled me to see when 

volunteers were completing the diary cards and meant I had access to AE data in real time, 

unlike with paper diary cards which were only reviewed when participants were seen in clinic. 

This meant that any severe AEs could be noted quickly and further review of volunteers could 

be planned if necessary, as well as ensuring that the safety stopping and holding rules were 
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adhered to. From anecdotal evidence, as a study team we were aware that volunteers 

sometimes completed paper diary cards on the day they were seen in clinic, which could be 

seven or fourteen days after vaccination. This meant the data were inaccurate as data was 

subject to substantial recall bias, as was the collection of AE data in clinic after the paper diary 

cards had been completed. By introducing a 28 day diary and only collecting SAE data after this 

(as was done in VAC057) I believe I have improved the quality and reliability of AE data 

collected. As safety of the vaccines is a primary endpoint for any Phase I trial, this is extremely 

important. As well as improving data accuracy, the eDiaries have substantially reduced the 

amount of time required for data entry and analysis as the data are already processed when 

the Excel spreadsheet extraction is done; unlike with OpenClinica data extracts which require 

further processing.  

The analysis of laboratory AE data is another area in which I sought to improve accuracy and 

comparability of data. Having recognised that the different study sites in which trials were 

being carried out all had some variability in normal reference ranges for several of the 

parameters we were measuring, I sought to develop site-specific laboratory AE grading tables 

which took these into account. This was done in collaboration with other Jenner and study site 

clinicians and these tables are now used across all Jenner Institute trials. This has improved the 

quality of these safety data as it ensures that laboratory results are correctly defined as an AE 

where necessary, and are graded at an appropriate severity. I believe that for early-phase 

vaccine trials this is extremely important as any haematological or biochemical abnormalities 

need to be assessed and the relationship to vaccination determined. I also introduced day 0 

safety bloods after the VAC051 trial as this is a more accurate baseline than using the bloods 

checked at screening, which could be up to 90 days before vaccination. This means the 

causality of any laboratory AEs noted after vaccination can be more accurately assigned. 

Finally, the other change made to safety data analysis since I started this work is the 

assignment of causality. This was originally done in real time for all AEs by the local site 
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clinician (me) for VAC051, but I was concerned that this meant there was potential for 

significant bias in these data and that rare events may be incorrectly assigned as ‘not related’ 

or ‘unlikely to be related’, especially in multi-site trials. I therefore suggested to the Sponsor 

(University of Oxford) that the process be changed so that causality was assigned at interim 

analyses and at the end of the study by the lead clinician (me). I also changed the causality 

assignment procedure to state that any solicited AEs occurring within the first seven days 

should be considered at least possibly related to vaccination. Furthermore, causality is now 

peer-reviewed by a clinician from another group within the Jenner Institute and any 

discrepancies discussed by the lead clinician for the trial and the clinician who performed the 

peer review. This enables rare events to be assessed more accurately, especially if they occur 

at different trial sites, and reduces bias in the causality assignment.  

There is a need for standardisation across early-phase vaccine trials, with consensus on 

severity grading so that accurate comparisons of vaccines in different populations and settings 

can be made. Some progress has been made in this area by the Brighton Collaboration 

Methods Working Group (254, 255) but there is no globally accepted standard for measuring 

vaccine reactions. The changes mentioned above have enabled standardisation across the 

trials conducted at the Jenner Institute, but global standards would be a further improvement. 

6.4 Future work 

6.4.1 Improving vaccine immunogenicity 

As highlighted in the trials described in this thesis, improvements in vaccine design are needed 

to improve the immunogenicity, specificity and efficacy of blood-stage vaccines. There are 

several methods being evaluated with this goal in mind. These either work to improve the 

immunogenicity of the vaccine itself by improving antigen presentation, for example through 

the use of virus-like particles (VLPs) or molecular adjuvants (e.g. IMX313), improve 

immunogenicity through use of a more potent adjuvant, or design vaccines with specific 
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epitopes known to be involved in antigen binding. This section will discuss the progress being 

made in these areas for blood-stage vaccines in particular. 

6.4.1.1  Viral vectored vaccines 

Two of the trials I conducted used heterologous prime-boost with the ChAd63 adenoviral 

vector followed eight weeks later with an MVA boost. The advantages of these types of 

vaccines are that they can be made to GMP relatively easily and quickly, are extremely good at 

inducing T cell responses and do not require an adjuvant to be co-administered. As access to 

adjuvants has historically been limited, requiring collaboration with pharmaceutical companies 

for access to the most effective, viral vectors were an attractive means of developing vaccines. 

The use of the ChAd63/MVA platform meant that the world’s first blood-stage P. vivax blood-

stage vaccine reached clinical trial. Although the PvDBP antigen had been of interest as a 

vaccine candidate for many years GMP production of the protein had proved difficult (202) but 

use of viral vectors meant a vaccine suitable for human use was successfully produced (157). 

Viral vectors induce moderate antibody responses, and this is a disadvantage for antigens that 

require high antibody levels in order to be effective. Antibody responses are generally lower 

than those seen following protein-in-adjuvant vaccine formulations (167) and there are 

logistical implications for the required storage conditions (stored at -80⁰C). Historically there 

have been concerns about difficulties in scaling up the production process to produce large 

amounts of vaccine but this has been addressed to some extent recently with the rapid 

manufacture of thousands of doses of the ChAd3 ZEBOV Ebola vaccine candidate in response 

to the 2014 – 2015 Ebola outbreak in West Africa (153). Recent work in Oxford has also looked 

at other ways of boosting the response to antigens encoded within viral vectors, including the 

use of a molecular adjuvant IMX313, which is currently being evaluated with the viral vectors 

in a Phase I trial (NCT02532049) of a novel transmission blocking vaccine (ChAd63/MVA Pfs25-

IMX313) after preclinical studies showed improved immunogenicity compared with viral 

vectors encoding the Pfs25 protein alone. The IMX313 causes the Pfs25 antigen to 

heptamerise so that a nanoparticle is expressed from the viral vectors rather than a Pfs25 
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monomer. In preclinical studies, the heptamer induced a significantly higher percentage of 

germinal centre B cells in the draining lymph nodes compared with monomeric Pfs25, which 

was thought to account for the difference in antibody responses (119).  

In 2013 GSK acquired Okairos, the company which owned the ChAd63 viral vector platform 

(256), so trials in Oxford since then have required collaboration with GSK to use this vector. 

This collaboration has led to the Jenner Institute having improved access to GSK adjuvants and 

vaccines (172, 209) for clinical trials, which has broadened the types of vaccines developed and 

tested here.  

6.4.1.2  Recombinant protein vaccines 

The VAC054 trial (Chapter four) used a recombinant protein vaccine given with the Adjuvant 

System AS01. This approach was chosen to try to achieve as high an anti-AMA1 antibody 

concentration as possible, as this is deemed necessary for protection. Recombinant protein 

vaccines are typically better at inducing an antibody response than a cell-mediated response, 

and are therefore an attractive option for blood-stage vaccine candidates. The main 

disadvantages of recombinant protein subunit vaccines are the difficulties in producing 

soluble, conformationally correct proteins in sufficient quantity to GMP standards (257) and 

access to effective adjuvants, which are essential for inducing a substantial immune response.  

Significant improvements have been made in recombinant protein vaccine production in the 

past few years (258). New expression systems have been developed, for example, the S2 

Drosophila insect-cell system (169, 259), which enables expression of proteins that have not 

been successfully expressed using bacterial or yeast systems. The use of fusion proteins, such 

as the IMX313 carrier protein, can improve immunogenicity of candidate vaccines when 

expressed as a protein nanoparticle (119). Long synthetic peptides enable multi-epitope 

vaccines which can include several B, CD4+ and CD8+ T lymphocyte epitopes capable of 

binding different MHC class I and II molecules in the same peptide(s), overcoming MHC 

restriction. They also allow rapid production of stable proteins (260). Protein complexes of two 
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antigens may also act synergistically to improve the immune response, for example, the 

AMA1-RON2 complex (229), compared with a single antigen. The vaccine candidate GMZ2 

consists of a fusion protein of the blood-stage antigens Glutamate Rich Protein (GLURP) and 

MSP3. This has been assessed in Phase Ia, Ib and IIb trials, in adults and children, and 

demonstrated low level efficacy against malaria in an endemic setting (261-264). The use of 

VLPs which express antigens on their surface are another successful method for improving 

vaccine production and immunogenicity; these will be discussed further in the next section. 

Although these techniques may improve the ease of production of recombinant proteins, it is 

also essential to focus on the quality of the antibody response to ensure that as high a 

percentage as possible of the antibodies induced are functional. Ways of improving antibody 

quality include structure-based immunogen design, where vaccines are designed based on 

how antibodies successfully inhibit the parasite. This potentially enables the identification of 

conserved epitopes which could be utilised in vaccine development (265). Other future 

prospects are the discovery of new antigens (ideally those which are not under significant 

immune pressure in endemic settings but required for invasion), the use of new antigen 

combinations, improved methods for vaccine production and delivery, and improvements in 

adjuvants which augment the immune response (258). 

6.4.1.3  Virus-like particles 

The only malaria vaccine to have reached Phase III trials, RTS,S, is based on a recombinant VLP 

of Hepatitis B surface antigen (HBsAg) displaying repeats from the P. falciparum CS protein 

(57). This enabled a significant improvement in vaccine efficacy compared with recombinant 

CS protein alone (266). VLPs have several advantages as vaccine platforms. Firstly, they are a 

similar size to pathogenic organisms, and are therefore more easily recognised and taken up 

by antigen-presenting cells at the vaccination site (267, 268). Secondly, they typically have a 

high density of repetitive epitopes on the particle surface, which are recognised by pattern 

recognition receptors, triggering the innate immune system, and subsequently the adaptive 
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immune system and leading to higher affinity antibodies. Thirdly, there may be a ‘depot’ effect 

with gradual release of the target antigen from the particle and, finally, the particle may allow 

immunostimulatory adjuvants (e.g. TLR agonists) to be delivered to the same APC as the 

antigen, ensuring a specific APC activation (268).  

Few blood-stage vaccine candidates have been developed using VLP platforms to date. There 

was a suggestion of a protective effect with a virosome-based VLP conjugated with PfAMA1 

and PfCS in children in a Phase Ib trial (269) although the AMA1-virosome and CS-virosome did 

not show any efficacy when assessed individually in a Phase IIa CHMI trial (268). The GLURP-

MSP3 fusion protein has been assessed pre-clinically in a virosome-based vaccine, and induced 

similar antibody levels to the recombinant fusion protein (GMZ2) administered with alum or 

Montanide ISA 20 adjuvants (270). There is therefore potential to further develop these 

platforms to improve blood-stage vaccine production, delivery and immunogenicity, and 

thereby, efficacy.  

6.4.1.4  Whole parasite blood-stage vaccines 

The most advanced whole parasite vaccine to date is the pre-erythrocytic vaccine developed 

by Sanaria, PfSPZ, which involves injection of radiation-attenuated sporozoites intravenously, 

and has demonstrated high-level efficacy, particularly in malaria-naïve individuals (68). A pre-

erythrocytic whole parasite vaccine needs to be 100% effective as even a single parasite 

transmitted by an infected mosquito after vaccination can cause malaria disease if it escapes 

through to the blood-stage. In contrast, a blood-stage whole parasite vaccine could potentially 

be beneficial even if only partially effective, mimicking natural infection and allowing 

asymptomatic infection with lower parasitaemias (271). A vaccine with these qualities would 

need to ensure that parasites were no able to grow above a disease ‘threshold’ 100% of the 

time in order to be safe for use. 

The whole-parasite blood-stage vaccine approach was thought to be supported by a study 

conducted at QIMR, Brisbane, Australia in which four volunteers were exposed to very low 
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doses of red blood cells infected with malaria parasites (using the same inoculum as was used 

for CHMI in VAC054) and treated when malaria DNA was detectable in blood by PCR but 

before they became symptomatic. They received a total of three rounds of submicroscopic 

malaria infections for which they were treated before CHMI, following which three of the four 

were sterilely protected and one had a delay in parasitaemia and asymptomatic infection 

(272). This study was flawed however, as participants were treated with atovaquone-proguanil 

after each malaria infection, and this has subsequently been shown to inhibit parasite 

development for up to six weeks after treatment. This implies that the suppression of malaria 

in these individuals was likely due to residual atovaqone rather than development of immunity 

(273).  

Techniques investigating this approach are ongoing, and involve assessment of regimes using 

killed blood-stage parasites, live radiation-attenuated parasites, chemically attenuated 

parasites or genetically attenuated parasites. There are various challenges to be overcome if 

this approach is to be used, however, including issues relating to the use of human blood 

products (e.g. transmission of other infections), possible underattenuation of parasites or 

reversion of parasites to wild-type,  the need for a potent adjuvant if killed parasites are used 

and the logisitical challenges of culturing large quantities of P. falciparum and producing a 

vaccine to GMP (271). 

6.4.1.5  P. vivax blood-stage vaccines 

The ChAd63/MVA PvDBP vaccines (157) in the Phase Ia clinical trial (VAC051) described in 

Chapter three were the first blood-stage P. vivax vaccines ever to reach clinical trial. The 

results from this trial were encouraging with inhibition of PvDBP-DARC binding in vitro. The 

efficacy of this regime remains to be seen, however, and the in vitro results will need to be 

correlated with efficacy results when data are available. It is likely that a recombinant protein 

platform will induce higher antibody levels than the viral vectors, as discussed previously. 

Other techniques to improve vaccine immunogenicity include using a TLR-agonist in the 
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vaccine formulation, which improved the range of response against polymorphic variants (111) 

and designing a vaccine with fewer of the polymorphic variant epitopes to focus the immune 

response towards more conserved epitopes (DBPII-DEKnull). It is hoped that this might improve 

the breadth of response against PvDBP variants and avoid the development of strain-specific 

immunity (274).  

Although the PvDBP antigen is considered the leading blood-stage vaccine candidate for P. 

vivax, it has now been established that the parasite is able to infect Duffy-negative individuals, 

albeit with a significantly reduced prevalence (187). A highly conserved duplication in the 

PvDBP gene has been identified in parasites in some of the Duffy-negative individuals infected 

with vivax malaria, implying a recent evolutionary change in the parasite (275). These findings 

suggest that other blood-stage antigens may also need to be targeted if a vaccine is going to be 

widely effective, and in order to reduce the risk of the parasite developing resistance to the 

vaccine through use of an alternative invasion pathway. 

P. vivax MSP1 has been evaluated pre-clinically alone and in combination with PvDBP, but has 

not entered clinical testing. Similarly, PvAMA1 has been studied in both a viral vectored 

vaccine and a recombinant protein pre-clinically. The anti-PvAMA1 antibodies were functional 

against diverse P. vivax strains (276). The use of these antigens as vaccine candidates may be 

more effective in combination with, for example, PvDBP, but that will require further clinical 

development and testing to ascertain.  

6.4.2 Assessing vaccine efficacy 

Malaria vaccine efficacy has traditionally been assessed either in large field trials in endemic 

countries or in small CHMI studies in healthy volunteers, the majority of which have been 

conducted in non-endemic settings. CHMI trials are used for proof-of-concept early-phase 

testing and aid decisions in vaccine development but ultimately a malaria vaccine will have to 

be effective in an endemic setting if it is to be useful. Many studies have demonstrated that 

there are significant differences in the efficacy seen in these different populations. RTS,S, for 
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example, had an efficacy of between 50-75% in CHMI trials (73, 172) but only 18-28% in young 

infants and children in Africa (57). The differences in immune response following repeated 

malaria exposure is an area that would benefit from further research, and potentially 

incorporated into vaccine design. Recently a few CHMI trials have taken place in endemic 

populations (139, 277), with the aim of developing a model for early assessment of candidate 

vaccines in endemic settings. These studies also allow a deeper understanding of the 

mechanisms of infection and the immune response in those with previous exposure and 

potentially a degree of natural immunity. 

Chapter four described the development of a CHMI model to assess blood-stage vaccine 

efficacy for P. falciparum with power to see a fairly small effect on parasite multiplication rate. 

The consistency of the model has provided further data for using this model with even greater 

confidence of being able to detect an effect in the future with other blood-stage vaccine 

candidates. Although the ChAd63/MVA RH5 vaccines discussed in Chapter five did not elicit an 

antibody response that was likely to lead to efficacy, a recombinant protein vaccine with this 

antigen has been developed in Oxford (169) and will shortly commence clinical testing. It is 

anticipated that the efficacy of this vaccine will be assessed with blood-stage CHMI. If this 

vaccine demonstrates a reduction in PMR compared with infectivity controls it will be the first 

blood-stage vaccine in humans to do so. The blood-stage CHMI model could also be used to 

further evaluate the response to malaria infection, especially if repeated infections were given, 

mimicking the repeated exposure that occurs naturally in endemic settings. 

As discussed in Chapter three, CHMI models for P. vivax are being developed, with one pre-

erythrocytic vaccine candidate having been assessed in a Phase IIa trial (77). The recently 

developed blood-stage inocula for vivax CHMI should allow for blood-stage vaccine candidates 

to be assessed relatively rapidly in proof-of-concept trials before larger, more expensive field 

trials. This should enable the development of vaccines to progress efficiently with only 

candidates which demonstrate efficacy being taken forward. Similarly, the use of in vitro 
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assays alongside efficacy data could help to inform decisions about vaccine development and 

the likelihood of a novel vaccine succeeding in preventing or reducing infection. It is planned to 

take forward the ChAd63/MVA PvDBP vaccines to a Phase IIa trial where efficacy can be 

assessed against heterologous blood-stage infection using an infected blood inoculum for 

CHMI. 

6.4.3 Closing remarks 

To conclude, this thesis has demonstrated the early-phase testing of three blood-stage malaria 

vaccine candidates, all of which were safe and immunogenic, but also highlighted some of the 

challenges in developing and assessing new vaccines. In recent years there have been 

substantial improvements in the development and production of candidate vaccines, and in 

the adjuvants available meaning that real progress has been made in this field. However, 

despite this, relatively few vaccines have reached efficacy testing, and none of the blood-stage 

vaccine candidates to date have demonstrated significant levels of efficacy. Nonetheless, new 

antigens are being discovered, and as described in this thesis, new vaccines have reached 

clinical trial. There is still much to be understood about the mechanisms used by Plasmodium 

parasites to invade cells and evade the immune system. Further research into these areas is 

likely to aid the design of improved vaccines. 

The clinical trials I led were important milestones in the blood-stage malaria vaccine field. 

VAC051 (Chapter 3) was the first, and only blood-stage P. vivax vaccine to reach clinical trial to 

date. This trial demonstrated that antibodies induced by a vaccine against PvDBP are able to 

block binding between the antigen and its receptor, DARC. This vaccine regime needs to be 

further assessed in an efficacy trial, and a Phase IIa CHMI trial is planned to assess this in the 

future. The VAC054 trial (Chapter 4) was the largest blood-stage CHMI trial ever conducted 

and enabled the development of a proof-of-concept efficacy model which can be used to 

assess other blood-stage vaccine candidates in the future. 
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An effective malaria vaccine, either for P. falciparum, P. vivax or both parasites, is likely to 

require a multi-component approach. This may involve targeting different stages of the life 

cycle or targeting multiple antigens in the same stage. Once a blood-stage vaccine has been 

developed which demonstrates efficacy, this can then be assessed in combination with other 

antigens to look for evidence of synergy as has been suggested pre-clinically for some antigen 

combinations. Early proof-of-concept efficacy testing of candidate vaccines using CHMI models 

should allow more rapid development, especially if these trials are also conducted in 

previously exposed individuals in endemic settings and information from these studies is used 

to inform vaccine design. 
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Appendix 1: Participant information sheets (PIS) 

VAC051 Participant information sheet v3.0 

 

Prof. Adrian Hill 
E-mail:vaccinetrials@well.ox.ac.uk 
Tel: 01865 857401 
 

 
NRES Committee South Central - 
Oxford A ref number: 13/SC/0001 

 

Centre for Clinical Vaccinology and 
Tropical Medicine, 
Churchill Hospital, Old Road, 
Headington 
Oxford, OX3 7LE 
Tel: 01865 857417  

 

PARTICIPANT INFORMATION SHEET: VAC051 

A study to assess new Plasmodium vivax malaria vaccines;  
ChAd63 PvDBP and MVA PvDBP 

A phase Ia clinical trial to assess the safety and immunogenicity of new Plasmodium 
vivax malaria vaccine candidates ChAd63 PvDBP alone and with MVA PvDBP 

We would like to invite you to take part in a research study.  Before you decide, it is 
important for you to understand why the research is being done and what it would 
involve.  Please take time to read the following information carefully and discuss it 
with friends, relatives and your General Practitioner (GP) if you wish.  

 Part 1 tells you the purpose of the study and what will happen to you if you 
take part. 

 Part 2 tells you more information about the conduct of the study. 

Ask us if there is anything that is not clear or if you would like more information. 
Take time to decide whether or not you wish to take part. 

Part 1 

What is the purpose of the study? 

Malaria is caused by 5 different types of malaria parasite. The most common 2 types 
are Plasmodium falciparum and Plasmodium vivax. Although Plasmodium 
falciparum causes the most severe disease and deaths, Plasmodium vivax is 
geographically the most widespread, and accounts for up to 50% of malaria cases in 
South and South East Asia, and up to 81% in South America. There are estimated to 
be between 106 and 313 million cases of vivax malaria per year. Although vivax 
malaria does not cause as many deaths as falciparum malaria it does still cause 
significant levels of illness, and can cause severe illness and death in some cases. It 
is therefore a major problem for those who live in affected areas and for travellers. 
There is a great need for a safe, effective malaria vaccine. Researchers around the 
world, including members of Professor Hill’s group at the University of Oxford, have 
been investigating malaria for over 15 years. Over the last 10 years, we have been 
conducting clinical studies of new malaria vaccines. So far these studies have been 
looking at vaccines for falciparum malaria, but if malaria infection is to be controlled 
worldwide, it is vital to develop a vaccine for vivax malaria as well. 

The purpose of this study is to examine the safety and immune response to two new 
vivax malaria vaccines; ChAd63 PvDBP and MVA PvDBP administered either as 
ChAd63 PvDBP alone or in combination with MVA PvDBP. These vaccines are 
made from viruses which are inactivated so that they are unable to multiply within 
the body. The viruses contain genetic information (DNA) from the vivax malaria 
parasite. This genetic material is a protein named PvDBP, and relates to a part of 
the parasite which it needs to infect human blood cells. PvDBP has not been used to 
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vaccinate humans before but it is believed to be a very important target for vivax 
malaria. This study is therefore the first time these vaccines have been used in 
humans. The aim is to use these vaccines to help the body make an immune 
response against this part of the vivax malaria parasite, and therefore prevent the 
parasite from being able to infect blood cells. 

The viruses used in these vaccines have been used before many times in clinical 
trials for malaria and other infections, and have been safe. We do not expect the 
side effect profiles of these vaccines to be significantly different from previous trials 
where these viruses have been used with different malaria proteins. 

The ChAd63 PvDBP vaccine is based on a weakened version of an adenovirus (a 
common cold virus). The strain of adenovirus we use for this vaccine usually affects 
chimpanzees. The MVA PvDBP vaccine is based on the modified vaccinia virus 
Ankara (MVA), which is a safer form of the vaccine virus previously widely used for 
smallpox vaccination. 

The purpose of this study is to assess the two vaccines at different doses and alone 
or in combination. This study will enable us to assess: 

1. The safety of the vaccine schedules in healthy volunteers. 
2. The response of the human immune system to different vaccine schedules.  

We will do this by giving volunteers one or two vaccinations and doing blood tests to 
assess the response of the immune system to the vaccines. We hope to recruit 24 
volunteers to be vaccinated.   

Do I have to take part? 

No. It is up to you to decide whether or not to take part. If you do decide to take part 
you will be given this information sheet to keep and be asked to sign a consent form. 
You are free to withdraw at any time and without giving a reason but you may be 
asked to return to the clinic for follow up for safety reasons. 

What will happen if I decide to take part? 

This study involves having one or two vaccinations and then being followed up with 
blood tests. Volunteers are enrolled in groups depending on which vaccine schedule 
they will receive. You will be able to choose which group you are enrolled in, 
although as groups fill up there will be less choice. 

Length of research 

If you decide to take part in this study, you will be involved in the trial for 
approximately 3 to 5 months depending on what group you are in. 

Am I eligible to be involved in the trial? 
In order to be involved in the study you must: 

 Be a healthy adult aged between 18 and 50 years. 

 Be able and willing (in the investigators’ opinion) to comply with all study 
requirements. 

 Allow the investigators to discuss your medical history with your GP. 

 Practice continuous effective contraception for the duration of the study (women 
only). 

 Refrain from blood donation during the course of the study and for 6 months 
after the end of your involvement in the study.  

You cannot participate in this study if: 

 You have had malaria before. 

 You have travelled to a malaria endemic region in the six months preceding 
your involvement in the study or are intending to travel to a malaria endemic 
region during the study. 
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 You have participated in another research study in the 30 days preceding 
involvement in this study. 

 You are planning to participate in another study at the same time as 
participating in this study.  

 You have previously received an investigational malaria vaccine.  

 You have had immunoglobulins and/or any blood products in the three months 
preceding your involvement this trial. 

 You have problems with your immune system. 

 You are pregnant, breast feeding or intend to become pregnant during the 
study. 

 You have a history of a severe allergic reaction to a vaccination. 

 You have an allergy to eggs or Kathon (a biocide added to body washes, 
conditioners, liquid soaps, shampoos and wipes as a preservative) 

 You have a history of cancer. 

 You have a history of a serious psychiatric condition that may affect 
participation in the study. 

 You have any other serious chronic illnesses requiring hospital follow-up. 

 You drink on average more than 42 units of alcohol a week (a pint of beer is two 
units, a small glass of wine 1 unit and a shot of spirits one unit).  

 You have injected drugs at any time in the last 5 years. 

 You have hepatitis B, hepatitis C or HIV infection. 

 You have a history of autoimmune disease. 

Mild conditions, such as childhood asthma, which are well-controlled would not 
automatically exclude you from participating. If you are unclear whether you are eligible 
to be involved in the study you can contact the study team who will be able to advise 
you. 

CONSIDERATIONS BEFORE TAKING PART IN THIS STUDY 

Screening Visit: This takes place up to 3 months before the study starts at the 
Centre for Clinical Vaccinology and Tropical Medicine in Oxford and lasts up to one 
and a half hours. The purpose of the screening visit is for you to discuss the trial with 
us and decide if you still wish to enter the study. If you decide to participate, you will 
be asked to sign a consent form. We then need to check that you are eligible to 
participate. You will be asked some medical questions and a doctor will examine 
you. Some blood tests will be taken to check your red and white cells, your liver and 
your kidney function. These tests need to be normal for you to be enrolled in the 
study. Your blood will also be tested for infection with hepatitis B, hepatitis C or HIV. 
These viruses are transmitted by infected blood or sexually and can affect the 
immune response to infection. If you test positive to any of these infections, we will 
inform you of the result and offer referral for medical review and treatment (with your 
permission). 

All participants are asked for urine samples at screening to check for glucose (to 
exclude diabetes), protein and blood (which can indicate kidney disease). For women, 
a urine pregnancy test will also be performed. Pregnancy tests will also be repeated 
prior to each vaccination if you go on to take part in the study. To avoid repeated 
testing, if you are not enrolled into this study and apply to enter another study 
conducted by the Jenner Clinical Trials Group based at the Centre for Clinical 
Vaccinology & Tropical Medicine (CCVTM) the screening blood results may be used in 
that study, where appropriate. 

Blood Donation: Under current UK regulations, volunteers will not be able to donate 
blood during the study or for 6 months after the end of the trial. 

Private Medical Insurance: If you have private medical insurance you are advised to 
contact your insurance company before participating in this trial as involvement in the 
trial may affect the cover provided by private insurance. 
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Malaria Prophylaxis: You should note that the vaccines being tested in this trial are 
experimental. If you travel to a malaria endemic region in the future you should not 
assume that the vaccines you received in this study have given you any protection 
against malaria. Make sure you visit your GP or a travel clinic before travelling to a 
malaria endemic region and use prophylactic anti-malarial medications, bed nets and 
insect repellent during your trip as directed by your GP or the clinic. 

Contraception: The vaccines being tested in this study are at an early stage of 
development and it is currently unknown as to whether they are safe in pregnancy. For 
this reason, it is important that all women use adequate contraception for the duration 
of the trial. 

VACCINATIONS 

What are the vaccines that are being tested? 

We are testing two vaccines; ChAd63 PvDBP and MVA PvDBP These vaccines will 
be given into the muscle of your upper arm(s). Once these vaccinations have been 
given they cannot be undone, so it is important you are clear of the potential risks of 
the vaccines before you agree to be involved in the study. 

1. ChAd63 PvDBP 
ChAd63 PvDBP is based on a virus that infects chimpanzees called chimpanzee 
adenovirus 63 (ChAd63). We have genetically disabled the virus so that it is impossible 
for it to grow in humans, and added a gene encoding a protein from the vivax malaria 
parasite (the “PvDBP” part of the vaccine). We want to try and make the body develop 
an immune response to this malaria protein. This protein has not been given to humans 
before, but side effects from these types of vaccines are usually due to the viruses 
used rather than the proteins. We have given ChAd63 encoding other malaria proteins 
to over 250 volunteers, and it has been safe and well-tolerated. It can however, cause 
some short-lived side effects. 

Expected Side Effects:  
Volunteers receiving ChAd63 PvDBP in this trial may experience injection site pain. 
This is most likely to be mild, however there is a chance this could be moderate or 
severe in intensity. Volunteers may also experience redness, swelling, itching and 
warmth at the vaccine site, although these symptoms are likely to be mild if present. 
Generally volunteers report a transient ‘flu-like illness within 24 hours of vaccination 
which resolves within 48 hours. This can include headache, muscle aches, joint aches, 
feverishness, tiredness and feeling generally unwell. The majority of general symptoms 
are likely to be mild but there is a possibility of moderate or severe headache or feeling 
unwell. 

2. MVA PvDBP 
MVA PvDBP is based on a virus called modified vaccinia virus Ankara (MVA) and 
contains the gene encoding the same malaria protein as ChAd63 PvDBP (PvDBP). 
We have found that giving the MVA vaccine after a ChAd63 vaccine produces the 
best immune response. This regimen is termed a ‘prime-boost’ regimen. MVA 
encoding malaria antigens has been given to over 950 individuals, including 
children, in sub-Saharan Africa with no serious side effects. An MVA ‘boost’ vaccine 
has been given to over 160 healthy UK adults following a ‘prime’ vaccination with 
ChAd63 encoding the same malaria protein. It appears safe and well tolerated but 
can cause short-lived side-effects.  

Expected Side Effects:  
Volunteers receiving MVA PvDBP in this trial may experience injection site pain. This is 
most likely to be mild, but there is a chance this could be moderate in intensity. 
Volunteers may also experience redness, swelling, itching and warmth at the vaccine 
site, although these symptoms are likely to be mild if present.  Generally volunteers 
report a transient ‘flu like’ illness within 24 hours of vaccination which resolves within 48 
hours. This can include headache, muscle ache, joint ache, feverishness, tiredness 
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and feeling generally unwell. The majority of general symptoms are likely to be mild but 
there is a possibility of moderate headache, tiredness, muscle aches or feeling unwell.  

MVA tends to cause more reaction than ChAd63 vaccines so we have used a lower 
dose in this trial compared with previous studies. Part of this study will involve 
comparing a lose dose of MVA with a slightly higher dose to look at the effects on the 
immune response generated, and also compare the reaction to the vaccine. 

It is important to remember these are vaccines in the early stage of development; 
therefore the amount of safety data available is limited. The malaria protein (PvDBP) 
has not previously been used in this type of vaccine in humans before. For this 
reason there is a chance you could experience a side effect that is more severe than 
that described above, or that has not been seen before with these vaccines. You are 
encouraged to consider taking over the counter medications such as paracetamol or 
ibuprofen if you experience symptoms post vaccination as this is likely to reduce the 
intensity of any symptoms you have. 

All volunteers will be given one or two vaccinations. The number and doses of the 
vaccinations will vary between groups. The ChAd63 vaccine dose is measured in 
‘viral particles’ (vp) and the MVA vaccine dose is measured in ‘plaque forming units’ 
(pfu). All of the virus doses to be used in this study have been used safely in 
previous trials with the same viruses encoding different malaria proteins. 

The vaccination groups are summarised in the following table: 

 

Group Number Number of 

volunteers 

Dose ChAd63 PvDBP 

Day 0 

Dose MVA PvDBP 

Day 56 

1 4 5 x 10
9
 vp IM --  

2 A 4 5 x 10
10

 vp IM -- 

B 8 5 x 10
10

 vp IM 1 x 10
8
 pfu IM 

C 8 5 x 10
10

 vp IM 2 x 10
8
 pfu IM 

 
Severe Reactions 
With any vaccination there is a risk of rare serious adverse events, such as an 
allergic reaction, which may be related to the nervous system or the immune system. 
Severe allergic reactions to vaccines (anaphylaxis) are also rare but can be fatal. 
Doctors qualified in the management of anaphylaxis will be present at each 
vaccination. Reactions in the nervous system are also extremely rare following 
vaccination and can cause an illness called Guillain-Barré syndrome. Guillain-Barré 
syndrome is an illness in which people can develop severe weakness and can also 
be fatal. These adverse events have not previously been seen with the types of 
vaccines used in this study. If you experience unexpected events, or become in any 
way concerned you should contact one of the Investigators (who are available 24 
hours a day) using the contact details at the end of Part 2.   
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Vaccination Days 
If you are the first volunteer to receive a new dose of either vaccine we will ask you 
to wait for 2 hours after the vaccination with that new dose of vaccine, to make sure 
there are no immediate problems. For all other volunteers in the groups, we will ask 
you to wait for 1 hour after each vaccination. You will be assessed again before 
leaving and given a diary card, thermometer and tape measure to take away. We will 
ask you to record your symptoms and the size of any redness or swelling every day 
for 7-14 days after each vaccination. Your diary card will be collected from you at 
your next visit. 

We may ask to photograph your vaccination site and you can choose whether or not 
to agree to this when you sign the consent form. You will not be identifiable in these 
photographs, as only the vaccination site and your unique trial number will be visible. 
These photographs may be shown to other professional staff, used for educational 
purposes or included in a scientific publication. 

Number, timing and purpose of visits  
You will receive either 1 or 2 vaccinations and attend between 7 and 10 visits in 
total. Visits may include a medical assessment, temperature, pulse and blood 
pressure readings, examination by a doctor if needed and blood tests. All visits will 
take place at the Centre for Clinical Vaccinology & Tropical Medicine (CCVTM), on 
the Churchill Hospital site in Oxford (OX3 7LE). 
 
Timeline for vaccinations 
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OTHER INFORMATION 

Blood Tests 
We take blood tests as part of the screening visit to help us to assess your general 
health. Blood tests are also taken at the study visits in order for us to assess your 
immune response to the vaccine and for safety reasons. If you would like them, we 
will give you the results of the blood tests. We only send the results to your GP if you 
wish us to and will not report them to anyone without your permission. The total 
volume of blood taken during the study varies according to which group you are 
enrolled in but will not exceed 500 mL over five months. 

The following blood tests will be performed; 

 Tests for Hepatitis B, Hepatitis C and HIV are done at the screening visit. 

 HLA typing, a test of a component of the body’s immune system may be 
done at the first vaccination visit. 

 Tests of red and white blood cells and tests of liver and kidney function are 
done at the screening visit and most of the other visits when you come for 
vaccination or follow up after vaccination in order to check the vaccines are 
safe. 

 Tests of the immune responses to vaccines are done at most of the visits. 

 The volume of blood taken at each visit ranges from 5 to 75 mL. 

The blood samples we collect will be stored after testing, and may be used in future 
malaria research. Samples will be anonymised. You can request that your samples 
are destroyed at any time. As part of our study we may send samples to 
collaborators in other countries, including countries outside Europe. Again, these 
samples would be anonymised. You will be asked to consent specifically for blood to 
be stored, and for samples and anonymised data to be shared with research 
collaborators. 

Discomfort related to blood tests 
Drawing blood may cause slight pain and occasionally bruising at the site where 
blood tests are taken. Sometimes, people feel light-headed or even faint. The total 
volume of blood taken during the study (334-474mL) should not cause any problems 
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for healthy people, and is about the same amount that may be given during one 
donation to the National Blood Transfusion Service (typically 470mL). 

Urine Tests 

 A urine sample will be tested at screening in order to check for glucose (to 
exclude diabetes), protein and blood (which can indicate kidney disease). 

 All women will have urinary pregnancy testing at screening and before each 
vaccination.  

Abnormal Results 
If abnormal results or undiagnosed conditions are found in the course of the study 
these will be discussed with you and, if you agree, your GP will be informed. For 
example, a new diagnosis of high blood pressure might be made. Any newly diagnosed 
conditions will be looked after by your GP within the NHS.  

Expenses and Payments 
You will be compensated for: 
 

o Travel expenses:   £10 per visit 
o Time required for visit:  £20 per hour  
o Inconvenience of blood tests:  £10 per blood donation 

 

Group No Time in Trial 
(approx.) 

No. of 
Visits 

No. of Blood 
Tests 

Maximum Volume 
of Blood Taken 

1 3 months 7 6 334mls 

2A 5 months 9 8 464mls 

2B 5 months 10 8 474mls 

2C 5 months 10 8 474mls 
 

The total compensation for taking part in the study, if all follow-up is completed, will 
be between £330- £520. If you choose to leave the study early or are withdrawn from 
the study, you will be compensated according to the length of your participation 
based on the figures above. You should note that compensation payments received 
in this trial may have an impact on your entitlement to benefits. 

What do I have to do? 

 You must provide a name and 24 hour phone number for someone who lives 
near to you and who will know where you are for the duration of the study.  

 You must attend all the visits that are outlined above  

 You should record in the study diary all the things you notice about injection 
sites, any other  change in your health or the way you feel after each injection. 

 Women must use effective contraception for the duration of the study. 

 Women will be asked to provide urine for pregnancy testing when required. If you 
become pregnant during the study, you must inform us immediately. 

 You must not donate blood during the study or for 6 months after the end of the 
trial (current National Blood Service guidelines). 

 You must not enrol in another clinical trial for the duration of this study. 

What alternatives are present? 
At present, there is no malaria vaccine licensed anywhere in the world. There are 
other malaria vaccines in various stages of development, but very few targeting 
vivax malaria. This study may help develop an effective vivax malaria vaccine. 

What are the possible benefits of taking part? 
This study will not benefit you, but the information gained from the study might help 
to prevent vivax malaria infection and disease in those who live in areas where 
malaria is common and in travellers. 
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What if there is a problem? 
Any complaint about the way you have been dealt with during the study or any 
possible harm you might suffer will be addressed. The detailed information on this is 
given in Part 2. 

What happens when the research study stops? 
If you have any queries or concerns once the study is over please do not hesitate to 
get in touch with us. 

Will my taking part in the study be kept confidential?  
Yes. All the information about your participation in this study will be kept confidential. 
The details are included in Part 2. 
 
This completes Part 1 of the Information Sheet. If the information in Part 1 has 
interested you and you are considering participation, please continue to read 
the additional information in Part 2 before making any decision. 
 

Part 2 

What if relevant new information becomes available? 
Sometimes during the course of a research project, new information becomes 
available about the vaccine that is being studied, for example if unexpected side 
effects occur. If this happens, we will tell you about it and discuss whether you want 
to or should continue in the study. If you decide to continue in the study you will be 
asked to sign an updated consent form. On receiving new information, we may 
consider it to be in your best interests to withdraw you from the study. 
 
What will happen if I don’t want to carry on with the study? 
If, at any time after agreeing to participate you change your mind about being 
involved with this study, you are free to withdraw without giving a reason. Your 
compensation would be paid as a proportion of the total compensation according to 
the length of your participation. Unless you state otherwise any blood taken whilst 
you have been in the study will continue to be stored and used for research as 
detailed above. You are free to request that your blood samples are destroyed at 
any time during or after the study. 
 
What if there is a problem? 
 
Complaints:  
If you have a concern about any aspect of this study, you should ask to speak with 
the researchers who will do their best to answer your questions. If you wish to 
complain formally about any aspect of the way you have been approached or treated 
during the course of this study you should approach the University’s Clinical Trials 
and Research Governance office (Clinical Trials and Research Governance, Joint 
Research Office, University of Oxford, Block 60, Churchill Hospital, Old road, Oxford, 
OX3 7LE. Telephone: 01865 572224, or the head of CTRG- email: 
ctrg@admin.ox.ac.uk). 
 
Harm:  
The investigators recognise the important contribution that volunteers make to medical 
research, and will make every effort to ensure your safety and well-being. In the 
unlikely event of harm during the research, the University has arrangements in place to 
provide for harm arising from participation in the study for which the University is the 
Research Sponsor. In the unlikely event of harm being suffered, while the University 
will cooperate with any claim, you may wish to seek independent legal advice to ensure 
that you are properly represented in pursuing any complaint. At any time during the 
study you will be entirely free to change your mind about taking part, and to withdraw 
from the study. This will not affect your subsequent medical care in any way. 



252 
 

 
Will my taking part in this study be kept confidential? 
All information that is collected about you during the course of the research will be 
coded with a study number and kept strictly confidential. The information is available 
to the study team, the safety monitors, the ethical review committee, the sponsors, 
government regulatory agencies and external monitors who can ask to audit or 
monitor the study. Any information about you that leaves the hospital or clinic will 
have your name and address removed so that you cannot be identified from it. Your 
information is stored on a secure server and any paper notes will be kept in a locked 
filing cabinet. 
 
Involvement of the General Practitioner/Family doctor (GP) 
In order to enrol into this study, you will be required to sign a form, documenting that 
you consent for us to contact your GP. This is to inform them that you are interested in 
being involved in the study and to ensure there are no medical reasons that they are 
aware of why this would not be safe. The researchers will not enrol you in the trial if 
they have any concerns about your eligibility or safety; therefore we need to have 
communication from the GP confirming this before you can be enrolled. We will write to 
your GP to let them know whether or not you are finally enrolled in the study so they 
can update your medical records accordingly. 
 
Prevention of ‘Over Volunteering’ 
Volunteers participating in this study must not be concurrently involved in another 
study. In order to check this, you will be asked to provide your National Insurance or 
Passport number (if you are not entitled to a NI number). This will be entered on to a 
national database which helps prevent volunteers from taking part in too many clinical 
trials. More information can be found at www.tops.org.uk. Your national insurance or 
passport number is also required to allow processing of compensation payments. 
 
What will happen to any samples I give? 
If you consent, some of your leftover blood samples will be stored and may be used 
for further studies of the human body’s immune response to malaria and vaccination. 
Any such tests will have an appropriate ethical review. Tests that may be performed 
include measurements of antibody levels, white blood cell activity and the ability of 
blood to inhibit the growth of malaria parasites in the laboratory. Samples may also 
be used to assess what genes are expressed by cells following vaccination. Upon 
your request at any time, your remaining blood samples will be destroyed. Your 
participation in this study will not be affected by your decision to allow or not allow 
storage and future use of your leftover blood samples.  The blood tests mentioned in 
part 1 will be analysed in the hospital laboratory, and Oxford University research 
laboratories. Other blood tests to look at the response of your body to the vaccine 
may be done with collaborating laboratories in other countries. Any samples or data 
sent to them would be anonymous.  
 
Will any genetic tests be done?   
Yes. Some blood may be used to look at the pattern of your genes that can affect 
the immune system (including the Human Leukocyte Antigen or HLA genes). The 
immune response to vaccines is in part genetically controlled, so knowing your 
pattern of genes that regulate immune responses (such as HLA type) may help us to 
understand the responses to vaccination. We will also look at the expression of 
certain genes which relate specifically to the immune response to the vaccines and 
may also perform DNA sequencing on your blood, so we can understand how 
people respond to the vaccines – you can opt out of DNA testing if you wish, without 
any effect on your participation in the trial.  
 
What will happen to the results of the research study? 

http://www.tops.org.uk/
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The results of this research study may be published in a scientific medical journal. 
This may not happen until 1 or 2 years after the study is completed. If you contact 
the researchers in the future you can obtain a copy of the results. You will not be 
identified in any report or publication. 

Data from this study may be used as part of a student post-graduate degree, for 
example a MD. 

Who is organising and funding the research?   
The study is funded by Okairòs Srl (a clinical-stage biopharmaceutical company), the 
Wellcome Trust, the National Institute of Health Research Biomedical Research Centre 
and the Medical Research Council. 
 
Neither your GP, nor the researchers are paid for recruiting you into this study. 
 
The study is organised by a research team at The Jenner Institute at the University of 
Oxford, headed by Dr Simon Draper. 
 
Who has reviewed the study?  
This study has been reviewed by Oxford Research Ethics Committee and has been 
given a favourable ethical opinion. The Medicines and Healthcare products Regulatory 
Agency (MHRA) which regulates the use of all medicines in the UK has reviewed the 
study design and has granted permission to use these unlicensed vaccines in this 
clinical study. 
 
Thank you for reading this information sheet. If you are interested in being 
involved in the study please contact the study team at the Centre of Clinical 
Vaccinology and Tropical Medicine (details below) to arrange a screening 
appointment.  

 
Contact details for further information: 
E-mail:vaccinetrials@well.ox.ac.uk 

Telephone: 01865 857401 

Centre of Clinical Vaccinology and Tropical Medicine, 
Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE 
 
Out of hours mobile number for emergencies: 07917882967 
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VAC054 Participant Information Sheet v3.0 (Oxford) 

Professor Adrian V.S. Hill (DM FRCP) 
 
E-mail: vaccinetrials@ndm.ox.ac.uk 
Tel: +44 1865 857406 (volunteer co-ordinator) 
 
NRES Committee South Central - Oxford A 
Reference number: 13/SC/0596 

 

 

 
 

 

PARTICIPANT INFORMATION SHEET: VAC054 

A study to assess the safety and effectiveness of an experimental malaria vaccine by 
infecting vaccinated volunteers with malaria parasites using malaria-infected red blood cells 
 

A Phase I/IIa Study of the Safety, Immunogenicity and Efficacy of FMP2.1/AS01B, an Asexual 
Blood-Stage Vaccine for Plasmodium falciparum Malaria 

 
We would like to invite you to take part in a research study. Before you decide, it is important 
for you to understand why the research is being done and what it would involve. Please take 
time to read the following information carefully and discuss it with friends, relatives and your 
General Practitioner (GP) if you wish. 

 Part 1 tells you the purpose of the study and what will happen to you if you take part. 

 Part 2 tells you more information about the conduct of the study. 
 
Ask us if there is anything that is not clear or if you would like more information. Take time to 
decide whether or not you wish to take part. 
 

Part 1 

What is the purpose of the study? 
Malaria remains a major public health problem accounting for an estimated 219 million cases 
of malaria and 660,000 deaths worldwide in 2010. It is a major problem for those who live in 
affected areas and for travellers. There is a great need for a safe, effective malaria vaccine as 
the range of effective medicines for treating malaria is limited and resistance to commonly 
used medicines is increasing. Researchers around the world, including the University of Oxford, 
have been investigating malaria vaccines for many years. Unfortunately there is currently no 
licensed malaria vaccine available. 
 
The purpose of this study is to evaluate an experimental malaria vaccine for its ability to 
prevent malaria infection or disease in a blood-stage challenge model (when volunteers are 
infected with malaria parasites using malaria-infected red blood cells). The vaccine we are 
testing is a protein called FMP2.1, which is given with an adjuvant (a substance to improve the 
body’s response to a vaccination) called AS01B. The protein has been given to over 340 people, 
including over 200 children with no vaccine-related serious adverse events. The AS01B 
adjuvant has been given to several hundred adults, in combination with other proteins, with 
no major concerns, such as illness. The FMP2.1/AS01B combination has been given to 20 
adults without any serious adverse events. 
 
The aim is to use this protein and adjuvant to help the body make an immune response against 
parts of the malaria parasite. This study will enable us to assess: 
 

1. The ability of the vaccine to prevent malaria infection. 
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2. The safety of the vaccine in healthy participants. 
3. The response of the human immune system to the vaccine. 

 
We will do this by giving participants three vaccinations and then exposing them to malaria 
infection by transfusing a small number of red blood cells infected with malaria under carefully 
regulated conditions. We will follow participants closely to observe if and when they develop 
malaria. If the vaccine provides some protection against malaria, participants will take longer 
to develop malaria than usual or will not develop malaria at all. We hope to recruit 15 
participants to be vaccinated and then challenged with malaria. 
 
We will also recruit 15 individuals to be control subjects – these participants won’t receive any 
vaccinations but will be challenged with malaria in the same way. It is extremely important to 
have control participants, as by developing malaria infection, they help us prove our method 
of giving participants malaria is effective. Otherwise we may think our vaccines have worked 
when actually the malaria parasites in the red blood cells weren’t infective. 
 
Do I have to take part? 
No. It is up to you to decide whether or not to take part. Your decision will not result in any 
penalty, or loss of benefits to which you are otherwise entitled. If you do decide to take part, 
you will be asked to complete a questionnaire assessing your understanding of the study in 
order for us to be confident that you fully understand what taking part will involve. You need 
to answer all questions correctly in order to take part in the study. If you don’t answer all the 
questions correctly the first time, you will be able to complete the questionnaire again after 
discussion with the Investigator. You will then be asked to sign a consent form. You are free to 
withdraw at any time without giving a reason, but you may be asked to return to the clinic for 
follow up for safety reasons. 
 
The University of Oxford does not urge, influence, or encourage any employees/students of 
the institution to take part in this research study.  Your decision to not participate in the study, 
or a decision on your part to withdraw from the study, will have no effect whatsoever on your 
employment/student status at the University. 
 
What will happen if I decide to take part? 
You will either; 

 Receive three vaccinations according to the schedule below and then undergo 
challenge infection with malaria (Group 1) 
or  

 Receive no vaccines and undergo challenge with malaria (Group 2) 
 

Group 1 
FMP2.1/AS01B  

 (n=15) 
Vaccine on Day 0 

 

Group 2 
Unvaccinated 

Infectivity Controls 
(n=15) 

  

 
  

FMP2.1/AS01B 
Vaccine on Day 28 

  

FMP2.1/AS01B 
Vaccine on Day 56 

  

Malaria Infection on 
Day 70 

Malaria Infection only 
on Day 70 
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You can choose whether you would like to receive the malaria vaccines or not, providing there 
is space available in the group. 
 
Length of research 
Group 1 participants will participate in the study for approximately 8 months from the time 
they have the first vaccination. Group 2 participants will take part in the study for 
approximately 3 months from the time they are enrolled (1 day before challenge). 

Am I eligible to be involved in the trial? 
In order to be involved in the study you must be: 

 A healthy adult aged between 18 and 45 years. 

 Able and willing (in the Investigators’ opinion) to comply with all study requirements. 

 Willing to allow the Investigators to discuss your medical history with your GP 
(General Practitioner). 

 Willing to refrain from future blood donation in the UK. 

You cannot participate in this study if: 

 You have had malaria before. 

 You have travelled to a malaria endemic region in the last 6 months or are intending 
to travel to a malaria endemic region during the study period. 

 You have used antibiotics which could treat malaria (e.g. doxycycline) in the 30 days 
prior to malaria challenge. 

 You have previously received an investigational malaria vaccine. 

 You have sickle cell anaemia, sickle cell trait, thalassameia trait or thalassemia or any 
other haematological condition that might affect susceptibility to malaria infection. 

 You have had immunoglobulins and/or any blood products in the three months 
preceding your involvement in this trial. 

 You have problems with your immune system. 

 You have an abnormal heart rhythm. 

 You have a family history of congential QT prolongation or sudden death. 

 Close family members have developed heart disease when aged less than 50 years. 

 You are pregnant, breast feeding or intend to become pregnant during the study. 

 You have a history of allergic disease or reactions likely to be exacerbated by any 
component of the vaccine, by malaria infection or by the medications used to treat 
malaria infection. 

 You have had an anaphylaxis after vaccination. 

 You have a history of cancer. 

 You have a history of a serious psychiatric condition that may affect participation in 
the study. 

 You have any other serious long-term illnesses requiring hospital follow-up. 

 You drink on average more than 42 units of alcohol a week (a pint of beer is two units, 
a small glass of wine 1 unit and a shot of spirits one unit). 

 You have injected drugs at any time in the last 5 years. 

 You have hepatitis B, hepatitis C or HIV infection. 

 You are unable to stay in Oxford from the day before challenge to up to 3 weeks 
following the malaria challenge. 

 
Mild conditions, such as childhood asthma which is well controlled would not automatically 
exclude you from participating. If you are unclear whether you are eligible to be involved in 
the study you can contact the study team (details at the end of this information sheet) who 
will be able to advise you. 
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CONSIDERATIONS BEFORE TAKING PART IN THIS STUDY 

Screening Visit: This takes place up to 3 months before the study starts and lasts up to two 
and a half hours. This visit will take place in your local trial site (in Oxford, London or 
Southampton). The purpose of the screening visit is for you to discuss the trial with us and 
decide if you still wish to enter the study. If you decide to participate, you will be asked to 
complete a questionnaire to assess your understanding of the study and to sign a consent 
form. 
 
We then need to check that you are eligible to participate. You will be asked some medical 
questions and a doctor will examine you. Some blood tests will be taken to check your red and 
white cells, your liver and your kidney function. These tests need to be normal for you to be 
enrolled in the study. Your blood will also be tested for infection with hepatitis B, hepatitis C 
or HIV. These viruses are transmitted by infected blood or sexually and can affect the immune 
response to infection and vaccines. If you test positive to any of these infections, we will 
inform you of the result and offer referral for medical review and treatment with your 
permission. Positive results may be reported to the appropriate health authority. Your blood 
will also be tested for cholesterol to calculate your cardiovascular risk over the next 10 years. 
If your cardiovascular risk is > 5% you cannot participate in the trial. An electrocardiogram 
(ECG; to check the rhythm of the heart) will be done at your screening visit, to ensure that 
there are no rhythm problems with the heart. 
 
All participants are asked for urine samples at screening to check for glucose (to exclude 
diabetes), protein and blood (which can indicate kidney disease). For women, a urine 
pregnancy test will also be performed. To avoid repeated testing, if you are not enrolled into 
this study and apply to enter another study conducted by the Jenner Clinical Trials Group 
based at the Centre for Clinical Vaccinology & Tropical Medicine (CCVTM) the screening blood 
results may be used in that study, where appropriate. 
 
Blood Donation: Under current UK regulations, you would not be permitted to donate blood 
after taking part in this trial. This is because the malaria challenge involves the injection of red 
blood cells from another person, which is classified as a small blood transfusion. 
 
Medications: You should not take any drugs other than vitamin pills, contraceptive pills or 
those medications assessed as appropriately safe during a malaria challenge by the doctor at 
screening. This also applies for drugs bought over the counter. Of course, your health and 
well-being is much more important than the conduct of this study and if at any time you need 
any medication then you should take it. However, it is very important that you let us know 
before you start on any treatment. For example, any antibiotics that you take within 4 weeks 
of the planned challenge day may affect the malaria parasite. If you ask the prescribing doctor 
to discuss with a study doctor (contact details at the end of this information sheet) before you 
start treatment then he or she may be able to advise on an appropriate antibiotic that will 
treat you but won’t interfere with the study. If during the study any other treatment, 
especially with antifungal, antidepressant, antipsychotic or anti-arrhythmic drugs becomes 
necessary, it is important that you inform us immediately, since many of these drugs might 
interfere with the treatment against malaria you would receive. 
 
Pregnancy and Contraception: The potential effect of the vaccine used in this study on a 
foetus is unknown. Also, malaria infection can be particularly dangerous during pregnancy to 
both the mother and the foetus. Women are therefore asked to use an effective method of 
contraception for the whole study period to avoid pregnancy during the study. Volunteers will 
take the antimalarial medication, Riamet, for three days, to treat malaria infection. As Riamet 
may temporarily reduce the effectiveness of hormonal contraceptives, women taking 
hormonal contraceptives will need to use an additional form of contraception while taking 
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Riamet and until the start of the next menstruation after Riamet treatment. A urinary 
pregnancy test will be carried out at screening, just prior to each study vaccination (as 
applicable), before malaria challenge and again before anti-malarial treatment is started. 
 
If you are a woman using a hormonal contraceptive, you will need to use an alternative 
method of contraception while you are taking the medication for malaria, and until the start of 
the next menstrual period. 
 
Private Insurance: If you have private medical or travel insurance you are advised to contact 
your insurance company before participating in this trial, because involvement in this study 
may affect the cover provided by private insurance. 
 
VACCINATIONS 
 
What is the vaccine being tested? 
FMP2.1/AS01B is a ‘protein in adjuvant’ vaccination, using the protein FMP2.1 and the 
adjuvant AS01B. FMP2.1 is a part of a malaria protein known as AMA1 which is expressed by 
the malaria parasite during infection. AS01B is an adjuvant – a substance that helps improve 
the body’s immune response to a vaccine. 
 
FMP2.1 has been given to over 340 people, including over 200 children, with no serious safety 
concerns. It has been given with a different adjuvant (AS02A) in the majority of cases, but has 
been given with AS01B in a previous trial to 20 healthy adults with no serious safety concerns. 
AS01B used with other antigens has been used in hundreds of adults with no emerging specific 
safety concerns. The same adjuvant at a paediatric dose, AS01E, has been used in thousands 
of children in the only malaria vaccine to reach Phase III clinical trials, RTS,S. 
 
Vaccinations will be given into the muscle of the upper arm. Control volunteers (Group 2) will 
receive no vaccinations. 
 
Vaccination Visits: Group 1 
Vaccination visits will take place at your local trial site (in Oxford at the CCVTM, Churchill 
Hospital; in Southampton at the NIHR WTCRF; or in London at the Hammersmith Hospital). We 
will ask you to wait for 60 minutes after each vaccination to check there are no immediate 
problems. You will be given a diary card, thermometer and tape measure to take away. We 
will ask you to record your symptoms and the size of any redness or swelling at the injection 
site, every day for 7 days after each vaccination on the diary card. 
 
We may ask to photograph your vaccination site(s) and you can choose whether or not to 
agree to this when you sign the consent form. You will not be identifiable in these 
photographs, as only the vaccination site and your unique trial number will be visible. These 
photographs may be shown to other professional staff, used for educational purposes or 
included in a scientific publication. 
 
Number, timing and purpose of follow-up visits post vaccination: 
The diagram below shows the timing of post vaccination follow-up visits. Visits include a 
medical assessment, temperature, pulse and blood pressure readings, examination by a 
doctor if needed and blood tests. Vaccinations and visits after vaccination will take place at 
your local clinic site (i.e. Southampton, London or Oxford). 
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Group 1 visits up to malaria challenge. Screening visits (S), vaccination visits and pre-
challenge follow-up visits, will take place at your local trial site; whereas the C-1 (the day 
before challenge) and challenge (Day 70) visits will take place at the CCVTM in Oxford. 
 

 
Group 2 visits up to malaria challenge. Screening visits (S) will take place at your local trial 
site; whereas the C-1 (the day before challenge) and challenge (day 0) visits will take place at 
the CCVTM in Oxford. 
 
THE MALARIA CHALLENGE 
 
What happens during the challenge? 
The best way of assessing how well new malaria vaccines work is to test whether they protect 
against malaria – as we plan to do in this trial. The malaria challenge is 70 days after the 
vaccination group (Group 1) receive their first vaccination, and the day after the C-1 visit for 
control volunteers (Group 2), and will take place at the CCVTM in Oxford for all trial 
participants (i.e. including those recruited in Southampton and London). All volunteers will 
need to attend the CCVTM the day before challenge (C-1) where blood tests will be taken and 
female volunteers will have a urinary pregnancy test. On the day of challenge an intravenous 
cannula (‘drip’) will be inserted into a vein in your arm. After this, a small amount (5 ml or 1 
teaspoonful) of a solution containing red blood cells which are infected with malaria parasites 
will be injected into the vein. You will need to stay in CCVTM for 1 hour after being given the 
injection, in case you have an immediate reaction. 
 
What happens at follow up after the Malaria Challenge? 
The malaria challenge follow up visits are very important for your safety. We need to assess 
you once the day after the malaria challenge, (C+1, or day 71) then twice daily until C+12 
(inclusive) and once daily until C+23 or until you have completed antimalarial treatment if you 
develop malaria (see diagram below). All these clinic visits will take place at the Centre for 
Clinical Vaccinology & Tropical Medicine (CCVTM) at the Churchill Hospital in Oxford. It is 

Group 1 (vaccinees) 
 

 

Day 
0 

Day 
3 

Day 
14 

S 

 
  = Blood test 

S = Screening visit 
C= malaria challenge 

Day 
28 

Day 
56 

Day 
59 

Day 
63 

Vaccination: 
FMP2.1/ 
AS01B 

Vaccination: 
FMP2.1/ 
AS01B 

 

Day 
7 

 

Day 
31 

Day 
35 

Day 
42 
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AS01B 

  

C 
(Day 70) 

 

Day 
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C-1 

 

S 

 
  = Blood test 

S = Screening visit 
C = Malaria challenge 

C 
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essential that you reside in Oxford during this time for careful monitoring and regular review 
by the study team. If you do not normally live in or close to Oxford and if you joined the study 
at the Southampton or London sites, accommodation will be provided for this time as well as 
transportation to and from Oxford. You will be required to stay in Oxford until you have had 
two negative malaria films after starting antimalarial treatment, or completing 2 days of 
antimalarial treatment at day 21 if you do not develop malaria. We will give you a medication 
diary card on which you will be asked to record all medications that you take. 
 
Each time we see you, we will assess your symptoms and a doctor will examine you, if 
necessary. A small amount of blood will be taken and examined under the microscope for 
malaria parasites. This is called a thick film and it is the standard test for diagnosing malaria 
infection. Your blood will also be tested for malaria parasite genetic material (DNA) using a 
technique called polymerase chain reaction (PCR). These visits will last approximately 10 
minutes, although you may have to wait to be seen. The total number of visits post challenge 
will vary depending on when and if you get malaria. It is important you are able to attend all 
the visits. If you plan to travel outside of Oxford at any time from the day before challenge 
to 21 days following the challenge, then you should discuss your plans with one of the study 
physicians before participating in this study. 
 

 
 
If you are diagnosed with malaria you will be immediately started on a course of anti-malarial 
tablets. Usually the blood test result is available after you have already left clinic, although if 
you wish to wait for the result after each test you are welcome to do so. If you have left and 
your blood test is positive for malaria we will contact you by telephone and ask you to return 
to the CCVTM as soon as possible to start treatment. It is therefore essential that we are able 
to contact you at all times on your telephone and that you are available to return to the 
CCVTM to start treatment at short notice any time between day 2 – 21 post challenge. The 
drug you will be treated with is called Riamet®. It is a licensed drug in the UK for the treatment 
of malaria caused by Plasmodium falciparum, the type of malaria you will be infected with. 
Each Riamet® tablet is a combination of 20mg artemether and 120mg lumefantrin. Each dose 
is 4 tablets and you will need 2 doses each day for 3 days. We will give you the first dose and 
ask you to take the second dose 8 hours later. The next day and the day after that, you will 
need to take 2 doses, 12 hours apart. We will watch you take one dose each day. Tablets 
should be taken with a meal. 
 
When you start treatment, you may not feel better straight away, but most people start to 
feel better after about 24 hours. After starting treatment, you will need a blood test once 
every day until two blood tests in a row have been negative for malaria parasites. 
 
If you are feeling unwell and your symptoms are like malaria, but no malaria parasites are seen 
in your blood, we may not treat you straight away. If you are feeling ill for one or two days, we 
may decide to start treatment even if no parasites are seen. If you have still not developed 

 

C 

C+2 to C+12 
twice daily visits 

= Blood test 

C+1 C+90 C+28 

Start antimalarial 
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®
) 

C+21 or upon diagnosis 
 

Malaria challenge schedule 
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malaria after 21 days, you will be given the malaria treatment regardless of whether or not we 
have seen malaria parasites in your blood. 
 
If there any problems with Riamet® for any reason, we have different anti-malarial treatments 
available which are called Malarone or chloroquine. 
 
Our experience tells us that the malaria parasites should disappear from your blood within 2 
or 3 days of starting the treatment. If you do develop malaria then you will be seen each day 
during the treatment until there are no malaria parasites in your blood on two consecutive 
days. We will give you a diary card when you finish treatment on which to note when any on-
going symptoms of malaria stop. 
 
If you become unwell with malaria then you may be admitted to the John Warin ward (the 
Infectious Diseases and Tropical Medicine Unit at the Churchill Hospital in Oxford) as a 
precaution until you have recovered, but it is very unlikely that this will be necessary. 
If the vaccines do not work or you are in the control group (group 2) you are most likely to 
develop malaria between day 7 and 9 following challenge. If the vaccines protect you against 
malaria you may develop malaria later than day 9 or not at all. If we do not find malaria 
parasites in your blood by day 21 post challenge then we will presume the vaccines have 
protected you against malaria and give you a course of antimalarial treatment anyway so that 
any parasites that we have not detected are killed. 
 
Days 28 and 90 after malaria challenge 
You will be seen in clinic on day 28 and day 90 post challenge. At these visits a blood sample 
will be taken. The appointments will last about 10 minutes and will take place at your local 
clinic site (i.e. London, Southampton or Oxford). 
 
WHAT ARE THE RISKS OF TAKING PART IN THE STUDY? 
 
The potential risks in the study can be divided into seven categories; 
 

1. Blood Tests 
 

The total volume of blood taken during the study depends on the group. The amount taken at 
each visit will vary between around 3mL (less than a teaspoon) to around 92 mL (about 6 
tablespoons). The volume of blood being taken over the course of the trial should not cause 
any problems in healthy people. There may be some temporary mild discomfort, such as 
bruising and tenderness at the site where the blood tests are taken from. You may experience 
faintness as a result of collecting blood. We will give you a copy of your blood tests if you 
request them, will only send the results to your GP if you wish us to and will not report them 
to anyone without your permission. 
 
If abnormal results or undiagnosed conditions are found in the course of the study these will 
be discussed with you and, if you agree, your GP will be informed. For example, a new 
diagnosis of anaemia might be made. Any newly diagnosed conditions will be looked after by 
your GP within the NHS. 
 
Once malaria has been diagnosed and treated, with 2 consecutive negative thick blood films 
confirmed after treatment, the twice daily / daily blood tests after challenge will no longer be 
required. 
 
Blood tests that will be taken during visits for Participants in GROUP 1:  
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Screenin

g 
Vaccinatio

n Visits 

Vaccinatio
n follow 

ups 
Days Post - Challenge follow up Visits 

Tests of Red and 
White Blood 

Cells* 
X X X 

Within 24 hrs of diagnosis & at Days 6, 28 & 90 
post challenge 

Test of Liver and 
Kidney Function* 

X X X 
Within 24 hrs of diagnosis & at Days 6, 28 & 90 

post challenge 

Hepatitis B, 
Hepatitis C & HIV 

infection  
X    

EBV and CMV
$
   X Day 90 post challenge 

Cholesterol X    

HLA typing  X
£
   

Tests of Immune 
Response to 

Vaccines 
 X X Day of diagnosis and days 28 & 90 post-challenge  

Tests for malaria 
# 

   Days 1-23 post challenge 

 
*We will test your red and white blood cells and liver and kidney function at various points throughout the study to 
check you remain well and whether the vaccines are safe. 
 
$
 EBV and CMV are viruses that cause glandular fever. We will check to see whether you have been exposed to these 

before. Whether you have or not will not affect your ability to take part in the trial.This will be checked once prior to 
malaria challenge (at C-1 visit) and once later in the trial. 
 
# Tests for malaria use only small volumes of blood (3mL). We perform one prior to challenge to ensure we get 
accurate readings during the follow-up post challenge. These tests will be performed until you have had 2 negative 
blood films following starting antimalarial treatment or until day 23 post-challenge if you do not develop malaria. 
 
£
 This will only be performed once 

 

Blood tests that will be taken during visits for Participants in GROUP 2:  
 

 
Screening 

Visit 

Day before 
Malaria 

Challenge 
Follow ups Post Challenge 

Tests of Red & White Blood 
Cells* 

X X 
Within 24 hrs of diagnosis & at Days 6, 

28 & 90 post Challenge 

Tests of Liver & Kidney 
Function* 

X X 
Within 24 hrs of diagnosis & at Days 6, 

28 & 90 post Challenge 

Hepatitis B, Hepatitis C & HIV 
infection  

X   

EBV and CMV
$
  X Day 90 post challenge 

Cholesterol X   

HLA Typing  X  

Tests of Immune Response to 
Malaria 

 X 

Alternate days from day 2 post-
challenge until Day of diagnosis 

(inclusive) and days 28 & 90 post-
challenge 

Tests for malaria 
#
  X Days 1 – 23 post Challenge 

 
* We will test your red and white cells and your liver and kidney function at various points throughout the study in 
order to check you remain well. 
 
$
 EBV and CMV are viruses that cause glandular fever. We will check to see whether you have been exposed to these 

before. Whether you have or not will not affect your ability to take part in the trial.This will be checked once at the 
beginning of the study and once at the end. 
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#
Tests for malaria use only small volumes of blood (3mL). We perform one prior to challenge to ensure we get 

accurate readings during the follow-up post challenge.If you are in the control group you are likely to get malaria 
within 7-9 days after challenge, therefore it is very unlikely that you would continue to have blood tests to day 23. 
These tests will be performed until you have had 2 negative blood films following starting antimalarial treatment or 
until day 23 post-challenge if you do not develop malaria. 
 

2. Vaccination Side Effects (Group 1 only) 
 

Side effects of Vaccination 
It is likely that you will experience some symptoms at the vaccination site as well as general 
symptoms due to vaccination. It is important to remember these are vaccines in the early 
stage of development therefore the amount of safety data available is limited.  
For this reason there is a chance you could experience a side effect that is more severe than 
that described below, or that has not been seen before with these vaccines. 
 
The vaccine being tested in this trial has been used before, in small numbers of healthy 
volunteers, so we can predict from past experience what the symptoms should be like. We 
don’t expect any new symptoms and we expect that symptoms will be mild in strength most 
of the time, but symptoms may also be moderate or severe in how strong they are. All 
symptoms should resolve completely within a few days. 
 
Local Reactions 
You may experience some discomfort at the site as the injection is given. This usually gets 
better in 5 minutes. Later, you might experience pain resulting in some difficulty moving your 
arm but should resolve within a few days. In addition to pain, you may experience redness, 
swelling, or warmth at the injection site. 
 
General reactions 
You may experience flu-like symptoms such as muscle aches, joint aches, feverishness, chills, 
headache, nausea, tiredness and/or feeling generally unwell in the first 24 - 48 hours after the 
injection, which should generally resolve within a few days. 
 
You are encouraged to take over the counter medications such as paracetamol or ibuprofen as 
soon as you experience these symptoms as this is likely to reduce the intensity of any 
symptoms you have. 
 
Serious Reactions 
With any vaccination there is a risk of rare serious adverse events, such as an allergic reaction, 
which may be related to the nervous system or the immune system. Severe allergic reactions 
to vaccines (anaphylaxis) are also rare, but can be fatal. Reactions in the nervous system are 
also extremely rare following vaccination and can cause an illness called Guillain-Barré 
syndrome. Guillain-Barré syndrome is an illness in which people can develop severe weakness 
and can also be fatal. These adverse events have not previously been seen following 
administration of this vaccine. 
 
Autoimmune diseases are a class of diseases resulting from a disordered attack of the immune 
system on the body's own organs and tissues. Such diseases have been reported in individuals 
having received components similar to components present in FMP2.1/AS01B. The 
relationship of the product or any of its components to these events has not been established 
but cannot be excluded. Evaluation of these and similar events continues. 
 
The Investigators are contactable any time if you are concerned about any possible vaccine 
side effects. 
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3. Blood Transfusion Reaction 
 
The malaria challenge in this trial involves receiving a very small number of malaria-infected 
red blood cells. If blood is given from one person to another there is a risk of an allergic 
reaction. Normally, the blood groups of the blood donor and the individual receiving the blood 
must be the same to avoid allergic reactions. The donor of the blood we will be using was 
blood group O, rhesus negative. This means the donor’s blood can be given to people of the 
same or any other blood group, without causing an allergic reaction. 
 

4. Transmission of Blood-borne Infection  
 

The blood transfused in this study has a smaller risk of infection than normal blood 
transfusions. Firstly, the volunteer who donated the malaria-infected blood was screened for a 
wide range of blood borne diseases both before and after the blood was collected. The blood 
was then kept frozen for over 1 year while the donor was observed and retested for any 
evidence of infection. During this time the donor remained healthy and repeat screenings did 
not reveal any infections that may have not been detected by initial tests. This procedure took 
place over 15 years ago and the donor has remained healthy since. Secondly, the volume of 
blood injected for this study (0.1mL) is thousands of times smaller than the volume in a 
transfused unit of blood (400mL). Thirdly, the blood cells have been washed and the white 
blood cells removed, both of which lower the risk of infection due to transfusion. 
 
The donor was known to have had viral infections with Epstein-Barr virus and Cytomegalovirus 
in the past. These are viruses which, over a person’s lifetime, they are very likely to be 
exposed to, and are the most common causes of ‘glandular fever’. They remain within white 
blood cells after the initial infection so there is a theoretical risk of transmitting these 
infections from the donor to someone receiving the transfused blood. This risk is extremely 
small however, given that the white blood cells have been removed from the blood. The blood 
has also been tested since to look for the virus and these tests were negative. Furthermore, 
over 30 volunters who had not had these viruses before have received the inoculum and none 
of them have acquired the infection. 
 

5. Malaria Infection 
 
If untreated, the malaria infection that we propose to give you could result in death. 
Worldwide over 1300 people have been deliberately infected with malaria and all have made 
a complete recovery. In Oxford more than 400 people have been infected with malaria.  The 
risks of taking part in this study are low provided that you return for follow-up as outlined 
above. 
 

The early symptoms of malaria include a flu-like illness, fever, chills, headache, muscle aches, 
diarrhoea and vomiting. If you develop any of these then you must let one of the study 
physicians know immediately. Study doctors can be contacted 24 hours a day. We hope to 
diagnose and treat your infection before the onset of symptoms but in previous studies most 
participants did experience some of the above symptoms. About one-fifth of participants 
temporarily develop symptoms graded as severe (i.e. symptoms that prevent daily activities). 
It is possible that you might need to take one or two days off work due to symptoms of 
malaria. We will prescribe pain-killers such as paracetamol and anti-sickness tablets which you 
can take as required. Symptoms can start or persist after treatment has started but usually last 
no more than 1 to 3 days. If malaria is not treated appropriately, possible complications 
include jaundice, kidney failure, fluid on the lung, low blood sugar and collapse. Seizures, 
altered consciousness, coma and even death may occur. It is for this reason it is crucial that 
you attend all the scheduled follow-up visits and contact us immediately if you have any 
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symptoms at all. 
 
In the unlikely event that it is necessary, you may be admitted to the Infectious Diseases ward 
(the John Warin ward) at the Churchill Hospital, Oxford for observation and treatment. In the 
last 10 years, only 4 participants out of more than 400 challenged with malaria in Oxford have 
required hospital admission. There have been no long term problems in participants 
challenged with malaria. 
 
There have been two unexpected serious adverse events in persons infected in malaria 
challenge studies in The Netherlands. The first individual experienced an episode of chest pain 
diagnosed as acute coronary syndrome that occurred two days after completion of malaria 
treatment with a full recovery. It is uncertain whether this was a form of coronary artery 
spasm or blockage or cardiac inflammation. More recently, a second individual was found to 
have an abnormal blood test suggesting cardiac inflammation. This second individual 
subsequently suffered a very short episode of chest pain. They were also found to be suffering 
with a viral upper respiratory tract infection (common cold virus) at the time. Again, this 
individual made a full recovery. It is unclear at this stage whether these findings were related 
to the malaria vaccine the participants received, the malaria infection, malaria treatment or 
some other cause. As a result of these events we will exclude people at high risk of heart 
disease from involvement in this study. These individuals will be identified by medical history, 
family history, appropriate blood tests, and performing an ECG. 
 

In 2010 in a malaria challenge study in Oxford, a participant failed to attend for a scheduled 
study visit after being infected with malaria. The police were immediately informed and began 
a nationwide search for the individual that involved the national media. The participant was 
found 17 days following challenge when he had mild malaria symptoms. He was admitted to a 
local hospital where he received treatment for malaria and made a full recovery. The reason 
for the participant’s disappearance was unrelated to the malaria vaccine he received or the 
malaria challenge. 
 

It is important that you understand that if you fail to attend a clinic appointment after 
challenge but before you have completed a full course of anti-malarial therapy, the police 
may be notified and your name may be released to the national media in order to find you. 
 

For 6 months after the challenge if you develop any of the symptoms of malaria as detailed 
above please contact one of the study doctors or your General Practitioner and remind them 
that you have been involved in this study. 
 

6. Treatment of Malaria 
 
The drug you will be treated with is called Riamet. It is a licensed drug in the UK for treatment 
of acute uncomplicated malaria caused by Plasmodium falciparum (the type of malaria you 
will be infected with). Riamet is a combination drug consisting of 20mg artemether and 120mg 
lumefantrine per tablet. 
 

A treatment course of Riamet consists of 6 doses of 4 tablets. The first 4 tablets will be given 
when diagnosis is made, followed by additional doses after 8, 24, 36, 48 and 60 hours. We will 
need to watch you take at least three of these doses. We will continue taking blood to look for 
parasites until 2 consecutive blood tests are negative for malaria parasites. Blood tests usually 
become negative for malaria parasites after 24 hours of treatment. Tablets should be taken 
with a meal or snack.  We will provide a light snack with your doses of Riamet which we 
observe at the CCVTM. You should avoid taking grapefruit juice while taking Riamet. 
 

Riamet is generally well tolerated, but may cause some side effects. Side effects can include 
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headache, dizziness, abdominal pain and loss of appetite, sleeping problems, palpitations, 
nausea, vomiting, diarrhoea, skin rash, cough, muscle or joint pain and fatigue. Side effects 
such as dizziness may impact on the performance of skilled tasks such as driving. Riamet can 
have an effect on the electrical conduction in the heart (increase in the QT interval) which 
could potentially increase the risk for a cardiac arrhythmia as an extremely rare side effect; as 
a precaution we will use a different malaria treatment if we find any reason that you would be 
at increased risk. Severe allergic reactions could potentially occur, but the exact frequency is 
unknown. 
  
Signs of severe allergic reactions include rash and itching, sudden wheezing, tightness of the 
chest or throat, or difficulty breathing, swollen eyelids, face, lips, tongue or other part of the 
body. If you experience any of these symptoms you should contact the trial doctor 
immediately on the emergency contact number you will be provided with, or telephone 999 
and ask for an ambulance if you are having difficulty breathing. 
 
Taking some other medicines is not compatible with taking Riamet at the same time. If you 
cannot take Riamet or need to stop taking Riamet during the study, then there are other anti-
malarial drugs that can be used effectively instead. If at screening the doctor thinks you may 
not be able to take Riamet they will discuss with you an alternative medication (Malarone or 
Chloroquine) and give you an information sheet from the manufacturer for this drug to take 
away. 
 

7. Treatment of Symptoms Associated with Challenge 
 
Provided there are no contraindications, all participants will be given some medications to 
help with symptoms associated with malaria challenge. These are licensed, commonly used, 
medications. If you wish you can see the sheets from the manufacturers, provided inside the 
packets of these medications, prior to taking part in the study. As with all medications, these 
drugs can cause a severe allergic reaction in a small number of people. If you develop any 
concerning symptoms you should contact the trial doctor on the emergency contact number 
you will be provided with immediately. 
 
Cyclizine: This is a tablet that can be taken as and when needed to help reduce nausea and 
vomiting. Cyclizine is generally well tolerated however side effects include skin rashes or 
itching, drowsiness, headache, dry mouth, nose or throat, blurred vision, palpitations, 
difficulty passing water, constipation, anxiety, or difficulty sleeping. It should be noted that 
drowsiness may affect your performance of skilled tasks such as driving. 
 
Paracetamol: Is a tablet that can be taken as and when needed to reduce feverishness, muscle 
and joint pain, back ache and headache. Paracetamol is generally well tolerated. 
 
There may be risks, or side effects which are unknown at this time. 
 

OTHER INFORMATION 

Expenses and Payments 
You will be compensated for: 

o Travel expenses: £10 per visit to local clinic  
o Time required for visit: £20 per hour 
o Inconvenience of blood tests: £10 per blood donation  
o Compensation for illness  £480 

 
If you choose to leave the study early or are withdrawn from the study you will be 
compensated according to the length of your participation based on these figures. You should 
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note that compensation payments received in this trial may have an impact on your 
entitlement to benefits. 
 

GroupNo. Time in Trial 
(approx.) 

Maximum No. of 
Clinic Visits* 

Maximum Volume 
of Blood Taken (ml) 

Compensation 
Amount  

1 
 

8 months 51 787-823** £2285 

2 
 

3 months 39 627-639** £1540 

*The exact number of visits depends on when/if you are diagnosed with malaria following challenge. 
 
**The exact amount of blood taken will depend on when/if you are diagnosed with malaria and also where you are 
recruited- blood volumes for volunteers outside of Oxford may be slightly higher than those for Oxford volunteers. 

 

In addition to the 15 participants to be included in group 2, we will also recruit a number of 
‘back-up participants’ for this group. These participants will be asked to be available to take 
part in the study in group 2 at short notice if another participant is unavailable to take part at 
the last minute. ‘Back-up participants’ who are not enrolled in the study will be compensated 
£200 in addition to compensation for visits they may have attended. 
 
What do I have to do? 

 You must provide a name and 24 hour phone number for someone who lives near to you 
and who will know where you are for the duration of the study. If you fail to attend for 
review during the 21 days after challenge and are un-contactable we will contact this 
person. If you cannot be located we will take additional steps to locate you which may 
involve contacting the police and national media. 

 You must attend all the visits that are outlined above. 

 Women must use an effective method of contraception for the duration of the study. If 
you are using a hormonal contraceptive, you will need to use an alternative method of 
contraception while you are taking the medication for malaria, and until the start of the 
next menstrual period. 

 You must not donate blood in the UK following participation in the study. 
 
What alternatives are present? 
Your alternative is not to participate in this study. 
 
What are the possible benefits of taking part? 
This study will not benefit you, but the information gained from the trial might help to prevent 
malaria infection and disease in those who live in areas where malaria is common and in 
travellers. At present, there is no malaria vaccine licensed anywhere in the world. There are 
other malaria vaccines in various stages of development. 
 
What if there is a problem? 
Any complaint about the way you have been dealt with during the study or any possible harm 
you might suffer will be addressed. The detailed information on this is given in Part 2. 
 
What happens when the research study stops? 
If you have any queries or concerns once the study is over, please do not hesitate to get in 
touch with us. 
 
Will my taking part in the study be kept confidential? 
Yes. All the information about your participation in this study will be kept confidential. The 
details are included in Part 2. 
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This completes Part 1 of the Information Sheet.  If the information in Part 1 has interested 
you and you are considering participation, please continue to read the additional 
information in Part 2 before making any decision. 
 

Part 2 
 
What if relevant new information becomes available? 
Sometimes during the course of a research project, new information becomes available.  If this 
happens, we will tell you about it and discuss whether you want to or should continue in the 
study. If you decide to continue in the study you will be asked to sign an updated consent 
form. On receiving new information, we might consider it to be in your best interests to 
withdraw you from the study. Your participation in this study may also be stopped at any time by 
the study doctor or the Sponsor without your consent for other reasons. 
 
What will happen if I don’t want to carry on with the study? 
If at any time after agreeing to participate you change your mind about being involved with 
this study, you are free to withdraw without giving a reason. Your decision will not result in 
any penalty, or loss of benefits to which you are otherwise entitled. However, if you wish to 
leave after malaria challenge then you must take the treatment course of Riamet (or an 
agreed alternative) because of the potentially very serious consequences of untreated 
malaria infection. Your compensation would be paid as a proportion of the total 
compensation according to the length of your participation. 
 
What if there is a problem? 
 
Complaints: 
If you wish to complain about any aspect of the way in which you have been approached or 
treated during the course of this study, you should ask to speak with the researchers who will 
do their best to answer your concerns. You can contact the researchers via the contact details 
provided at the bottom of this information sheet. Alternatively, you may contact the 
University of Oxford Clinical Trials and Research Governance (CTRG) office on 01865 572224 or 
the head of CTRG, email ctrg@admin.ox.ac.uk. 
 
Harm: 
The Investigators recognise the important contribution that participants make to medical 
research, and will make every effort to ensure your safety and well-being.  If you are harmed 
as a result of taking part in this study, the study doctor can advise you of further action and 
refer you to a doctor within the NHS for treatment, if necessary.  The University has a 
specialist insurance policy in place which would operate in the event of any participant 
suffering harm as a result of their involvement in the research (Newline Underwriting 
Management Ltd, at Lloyd’s of London) as you may be entiltled to compensation. NHS 
indemnity operates in respect of the clinical treatment which may be provided if you needed 
to be admitted to hospital. In the event of harm being suffered, while the University will 
cooperate with any claim, you may wish to seek independent legal advice to ensure that you 
are properly represented in pursuing any complaint. At any time during the study you will be 
entirely free to change your mind about taking part, and to withdraw from the study. This will 
not affect your subsequent medical care in any way. 
Will my taking part in this study be kept confidential? 
All information that is collected about you during the course of the research will be coded with 
a study number and kept confidential. The information is available to the study team, the 
safety monitors, the ethical review committee(s), the Western Institutional Review Board 
(WIRB), the Sponsor (University of Oxford), government regulatory agencies, authorised 
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collaborators and external monitors who can ask to audit or monitor the study. Subject’s 
research records may be independently reviewed by United States Agency for International 
Development (USAID) staff and consultants to ensure compliance with USAID regulations for 
protection of human research subjects. Any information about you that leaves the clinic will 
have your name and address removed so that you cannot be identified from it. Your 
information is stored on a secure server and on paper in a locked filing cabinet. Records are 
stored for at least 5 years, and in accordance with the applicable regulations. 
 
Information generated from this study will be shared with GlaxoSmithKline (GSK), who are 
providing the AS01B adjuvant for this trial. GSK is a company that studies and makes vaccines, 
medicines and other health products. GSK will have access to the study data collected, 
however, the link between your name and the code number will not be shared. Only the code 
number and coded information will be sent to GSK. 
 
Involvement of the General Practitioner (GP)/Family doctor 
In order to enrol into this study you will be required to sign a form documenting that you 
consent for us to contact your GP. This is to inform him / her that you are interested in being 
involved in the study and to check there are no medical reasons that they are aware of why 
that would make your participation inappropriate. Your GP may be asked to share information 
about your medical history and give access to any other medical records as required. The final 
decision about your eligibility will be the responsibility of the study Investigators. 
 
Prevention of ‘Over Participating’ 
Subjects participating in this study must not be concurrently receiving medications or vaccines 
in another study. In order to check this, you will be asked to provide your National Insurance 
(NI) or Passport number (if you do not have a NI number). This will be entered on to a national 
database which helps prevent participants from taking part in too many clinical trials. More 
information can be found at www.tops.org.uk. Your national insurance or passport number is 
also required to allow processing of compensation payments. 
 
A description of this clinical trial will be available on http://www.ClinicalTrials.gov, as required 
by U.S. law. This Web site will not include information that can identify you. At most, the Web 
site will include a summary of the results. You can search this Web site at any time. 
 
What will happen to any samples I give? 
All samples will be stored in an anonymised form. The blood tests mentioned in part 1 will be 
analysed in your local hospital laboratory, Oxford University research laboratories, and our 
collaborating research laboratories. If you consent, some of your leftover blood samples will 
be stored and may be used for further studies of the human body’s immune response to 
malaria and/or the vaccines used in this study, and/or your safety. Any such tests will have an 
appropriate ethical review. Upon your request at any time, your remaining blood samples will 
be destroyed. Your participation in this study will not be affected by your decision to allow or 
not allow storage and future use of your leftover blood samples. 
 
Will any genetic tests be done? 
Yes. Some blood will be used to look at the pattern of your genes that can affect the immune 
system (including the Human Leukocyte Antigen or HLA genes). The immune response to 
vaccines is in part genetically controlled, so knowing your pattern of genes that regulate 
immune responses (such as the HLA type) may help us to understand the responses to 
vaccination. 
 
What will happen to the results of the research study? 
The results of this research study may be published in a scientific medical journal or presented 

http://www.tops.org.uk/
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at scientific conferences and meetings. Publication may not happen until 1 or 2 years after the 
study is completed. If you contact the researchers in the future you can obtain a copy of the 
results. You will not be identified in any report or publication. 
 
The anonymised data from this study will be shared with the collaborating partners who are 
organising and funding this research work, including GSK. 
 
Data from this study may be used to file patents, licence vaccines in the future or make profits 
in other ways. You will not be paid for any part of this. 
 
Data from this study may be used as part of a student post-graduate degree, for example an 
MD. 
 
Who is organising and funding the research? 
The study is organised by the University of Oxford. The major collaborators are the PATH 
Malaria Vaccine Initiative, Walter Reed Army Institute of Research (WRAIR), US Agency for 
International Development (USAID) and a division of the pharmaceutical company 
GlaxoSmithKline (GSK Vaccines). The study is funded through financial support to Oxford 
University from several funders, primarily PATH (an international public health organisation) 
with support provided by the Infectious Disease Division, Bureau for Global Health, US Agency 
for International Development (USAID); the UK Medical Research Council (MRC); and the 
National Institutes of Health Research through the Oxford Biomedical Research Centre. 
Neither your GP nor the researchers are paid for recruiting you into this study. 
 
Who has reviewed the study? 
This study has been reviewed by NRES Committee South Central - Oxford A (Reference 
number: 13/SC/0596). Review is also provided by the Western Institutional Review Board, 
USA. The Medicines and Healthcare products Regulatory Agency (MHRA) which regulates the 
use of all medicines in the UK has reviewed the study design and has granted permission to 
use these unlicensed vaccines in this clinical study. 
 
Thank you for reading this information sheet.  If you are interested in being involved in the 
study please contact the study team at your local trial site below to arrange a screening 
appointment. 
 
E-mail:vaccinetrials@ndm.ox.ac.uk 

Telephone: 01865 857406 

Centre of Clinical Vaccinology and Tropical Medicine, 
Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE 
 
Contact Professor Adrian Hill, DM, FRCP, at +44 1865 857401 if you have questions, concerns 
or complaints about the research or if you feel you have been injured due to your 
participation in the study. 
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VAC057 Participant information sheet v4.0 (Oxford) 

Professor Adrian Hill 
E-mail: vaccinetrials@ndm.ox.ac.uk 
Tel: 01865 857401 
 

NRES Committee South Central - 
Oxford A ref number: 14/SC/0120 

 

Centre for Clinical Vaccinology and 
Tropical Medicine (CCVTM) 

Churchill Hospital,  
Oxford,      

OX3 7LE 
 

Recruitment Co-ordinator   01865 857406 
 

PARTICIPANT INFORMATION SHEET: VAC057 

 

A study to assess new malaria vaccines ChAd63 RH5 and MVA RH5 

A Phase Ia clinical trial to assess the safety and immunogenicity of new Plasmodium 
falciparum malaria vaccine candidates ChAd63 RH5 alone and with MVA RH5 

 

We would like to invite you to take part in a research study. Before you make a 
decision, it is important you take the time to understand why the research is being done 
and what it would involve. Please read the following information carefully and discuss it 
with friends, relatives and your General Practitioner (GP) if you wish. Please ask us if 
there is anything that is not clear or if you would like more information. 

 Part 1 tells you the purpose of the study and what will happen to you if you 
take part. 

 Part 2 tells you more information about the conduct of the study. 

Part 1 
What is the purpose of the study? 
Malaria is a major global problem, affecting around 216 million people each year and 
causing around 655,000 deaths. There is a great need for a safe, effective malaria 
vaccine as the range of effective medicines for treating malaria is limited and 
resistance to commonly used medicines is increasing. Currently there is no approved 
vaccine available for malaria. 

The purpose of this study is to assess two new malaria vaccines, ChAd63 RH5 and 
MVA RH5, at different doses and alone or in combination. The study will enable us to 
assess the safety of the vaccines and the extent of the immune response in healthy 
volunteers. We will do this by giving volunteers one or two vaccinations, doing blood 
tests and collecting information about any symptoms that occur after vaccination. This 
is the first trial to use these vaccines in humans. We plan to recruit a total of 24 
volunteers to be vaccinated. 
Do I have to take part? 

No. It is up to you to decide whether or not to take part. If you do decide to take part 
you will be given this information sheet to keep (or sent it electronically) and be asked 
to sign a consent form. You are free to withdraw at any time and without giving a 
reason, but you may be asked to return to the clinic for follow up for safety reasons. 

What will happen if I decide to take part? 

This study involves having one or two vaccinations and then being followed up with 
blood tests. You will be asked to complete a diary, recording any symptoms you 
experience after the vaccination. You will be able to choose which group you are 
enrolled in, although as groups fill up there will be less choice. 

Length of research 
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If you decide to take part in this study, you will be involved in the trial for approximately 
6 to 8 months, depending on what group you are in. 

Am I eligible to be involved in the trial? 

In order to be involved in the study you must: 

 Be a healthy adult aged between 18 and 50 years. 

 Be able and willing (in the Investigator’s opinion) to comply with all study 
requirements. 

 Allow the Investigators to discuss your medical history with your GP. 

 Practice continuous effective contraception for the duration of the study 
(women only). 

 Refrain from blood donation during the course of the study.  

You cannot participate in this study if: 

 You have had malaria before. 

 You have travelled to a malaria endemic region in the last 6 months or are 
intending to travel to a malaria endemic region during the time you would be 
involved in the study. 

 You have participated in another research study in the last 30 days. 

 You are planning to participate in another study at the same time as this study.  

 You have previously received an investigational malaria vaccine.  

 You have had immunoglobulins and/or any blood products (such as a blood 
transfusion) in the 3 months preceding your involvement this trial. 

 You have problems with your immune system. 

 You are pregnant, breast feeding or intend to become pregnant during the 
study. 

 You have a history of a severe allergic reaction to a vaccination. 

 You have a history of cancer. 

 You have a history of a serious psychiatric condition that may affect 
participation in the study. 

 You have any other serious long-term illnesses requiring hospital follow-up. 

 You drink on average more than 42 units of alcohol a week (a pint of beer is 2 - 
3 units, a small glass of wine (125mL) 1 unit and a shot of spirits (25mL) one 
unit).  

 You have injected drugs at any time in the last 5 years. 

 You have hepatitis B, hepatitis C or HIV infection. 

Mild conditions, such as childhood asthma, which are well-controlled, would not 
automatically exclude you from participating. If you are unclear whether you are eligible 
to be involved in the study you can contact the study team who will be able to advise 
you. 

CONSIDERATIONS BEFORE TAKING PART IN THIS STUDY 

Screening Visit: This takes place at your local study site and will last approximately 
one and a half hours. The purpose of the screening visit is for you to discuss the trial 
with us and decide if you wish to enter the study. If you decide to participate, you will 
be asked to sign a consent form and we will check that you are eligible to participate. 

During the screening visit: 

 You will be asked some medical questions 

 A doctor will examine you 

 Blood samples and a urine sample will be taken. These tests will need to be 
normal for you to be enrolled in the study 

 All women will have a urinary pregnancy test  
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Please note – The screening blood tests will look at your blood counts (e.g. to check if 
you are anaemic), your liver function and your kidney function. We will also test your 
blood to see if you are infected with hepatitis B, hepatitis C or HIV, as these conditions 
can affect your body’s response to the vaccines we are assessing. If you test positive 
to any of these, we will let you know and offer to refer you for treatment. We may also 
report positive results to the appropriate health authority. 

Blood Donation: Under current UK regulations, volunteers will not be able to donate 
blood during the course of the study. 

Private Medical Insurance: If you have private medical insurance you are advised to 
contact your insurance company before participating in this trial, as involvement may 
affect the cover provided. 

Malaria Prophylaxis: If in future you travel to an area where malaria is common, you 
should not assume that the experimental vaccines you received in this study will give 
you any protection against malaria. Make sure you visit your GP or a travel clinic before 
travelling to a malaria endemic region and follow their advice on prevention measures. 

Contraception: It is currently unknown whether the vaccines being tested are safe 
during pregnancy. For this reason, it is important that all women use adequate 
contraception throughout the trial. If you were to become pregnant during the trial you 
must tell us immediately and you will be withdrawn from the study, although we will ask 
to follow you up for safety reasons. 

VACCINATIONS 

What are the vaccines that are being tested? 

We are testing two vaccines; ChAd63 RH5 and MVA RH5. These vaccines will be 
injected into the muscle of your upper arm(s). 

ChAd63 RH5 

ChAd63 RH5 is based on a virus (ChAd63) that has been genetically altered so that it 
is impossible for it to grow in humans. To this virus we have added a gene containing a 
protein from the malaria parasite called RH5. The malaria parasite needs this protein in 
order to get into red blood cells, which is when malaria makes people sick. We are 
hoping to make the body develop an immune response to this protein, in order to stop 
the malaria parasite from getting into blood cells. RH5 has not been given to humans 
before, but side effects from these types of vaccines are usually due to the viruses 
used rather than the proteins. We have given the virus with other genes for malaria 
proteins to over 1000 volunteers and it has been safe and well-tolerated. It can, 
however, cause some short-lived side effects as described below. 

MVA RH5  

MVA RH5 is based on a different virus (MVA) but contains the same malaria gene as 
the ChAd63 RH5 vaccine. We have given MVA carrying genes for other malaria 
proteins to over 1000 people with no serious side effects. It appears safe and well 
tolerated but can cause short-lived side-effects. 

What are the expected side effects from these vaccines? 

Once the vaccinations have been given they cannot be undone, so it is important 
you are clear of the potential risks of the vaccines before you agree to be involved in 
the study. 

These particular vaccines have not been used in humans before but we do not expect 
the side effects of these vaccines to be significantly different from previous trials where 
these viruses have been used with different malaria proteins. 
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 Injection site pain (most likely mild; however there is a chance this could be 
moderate or severe in intensity). MVA vaccines have tended to cause more 
reaction than ChAd63 vaccines in previous studies. 

 Redness, swelling, itching and warmth at the vaccine site (symptoms are likely 
to be mild if present). 

 A ‘flu-like illness within 24 hours of vaccination which usually resolves within 48 
hours. (This can include headache, muscle aches, joint aches, feverishness, 
tiredness and feeling generally unwell). The majority of general symptoms are 
likely to be mild but there is a possibility of moderate or severe symptoms 
occurring. 
 

It is important to remember these are vaccines in the early stage of development; 
therefore the amount of safety data available is limited. The malaria protein (RH5) has 
not previously been given to humans before, so there is a chance you could experience 
a side effect more severe than or different to those described. 

Severe Reactions 

With any vaccination there is a rare risk of serious reactions, which may be related to 
the nervous system or the immune system. Severe allergic reactions to vaccines 
(anaphylaxis) are very rare but can be fatal. Doctors qualified in the management of 
anaphylaxis will be present at each vaccination. Reactions in the nervous system are 
also extremely rare following vaccination, but can cause an illness called Guillain-Barré 
syndrome. Guillain-Barré syndrome is an illness in which people can develop severe 
weakness and may be fatal. However, these reactions have not previously been seen 
with the types of vaccines used in this study. If you experience unexpected symptoms, 
or become in any way concerned you should contact one of the Investigators (who are 
available 24 hours a day) using the emergency contact details that you will be given 
once you have been vaccinated. 

Vaccination days 

All women will have a urinary pregnancy test before each vaccination. We will ask you 
to wait for 1 hour after each vaccination to check there are no immediate problems. 
You will be assessed again before leaving and we will ask you to record your 
symptoms and measure any redness or swelling every day for 7 days after each 
vaccination. After these 7 days we will ask you to record if you feel unwell or take any 
medications over the next 3 weeks. 

We may ask to photograph your vaccination site. You will not be identifiable in these 
photographs and you can choose whether or not to agree to this when you sign the 
consent form. Photographs may be shown to other professional staff, used for 
educational purposes or included in a scientific or academic publication. 

Number, timing and purpose of visits 

You will receive either 1 or 2 vaccinations and attend between 8 and 12 visits in total, 
plus a final telephone call. Visits may include a medical assessment, temperature, 
pulse and blood pressure readings, examination by a doctor if needed and blood tests. 
All visits will take place at your local trial site – either the CCVTM in Oxford on the 
NIHR WTCRF in Southampton. During the course of the trial you may be asked to 
attend for an extra visit, for example, if a blood test needs to be repeated. You will be 
compensated for the time and inconvenience of any extra visits. 

You will be able to choose which group you are enrolled in, although as groups fill up 
there will be less choice. 
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The vaccination groups are summarised in the following table: 

Timeline for vaccinations 

 

 

 

Group 1 

 

Day 0 Day 
2 

Day 
14 

 

S 

            KEY 

 

    = Blood test 

 

S = Screening visit 
 

   = Telephone review 

Day 
28 

Day 
56 

Day 
84 

Vaccination: 

ChAd63 RH5 low dose 

Day 
7 

 

Day 
180  

Group 2A 

 

Day 0 Day 
2 

Day 
14 

Day 

 84 

 

Day 
140 

S 
Day 
28 

Day 
56 

Day 
63 

Vaccination:  

ChAd63 RH5 full dose 

Day 
7 

 

Day 
180 

Day 
10 

 

Group 2B 

 

Day 0 Day 
14 

Day 

 84 
Day 
140  

S 
Day 
28 

Day 
56 

Day 
58 

Day 
63 

First Vaccination: 

ChAd63 RH5 full dose 

Second Vaccination:  

MVA RH5 low dose 

Day 
2 

Day 
7 

 

Day 
240 

Day 
10 

 

Group Number Number 
of 

volunteers 

Dose ChAd63 RH5 

Day 0 

Dose MVA RH5 

Day 56 

1 4 Low dose --  

2 A 4 Full dose -- 

B 8 Full dose Low dose 

C 8 Full dose Full dose 



276 
 

 

OTHER INFORMATION 

Blood Tests 

We take blood tests as part of the screening visit and at the study visits in order for us 
to assess your general health, immune response to the vaccine and for safety reasons. 
The volume of blood taken at each visit ranges from 10 to 75 mL. If you would like 
them, we can give you the results of your blood tests. Anonymised blood samples will 
be stored after testing, and may be used in future malaria research. You will be asked 
to consent specifically for blood to be stored and shared with other researchers. 

Group 2 will have an additional blood test at day 10. Some cells from this blood may be 
used to produce specific antibodies with activity against malaria (known as ‘monoclonal 
antibodies’) in the laboratory. We will also use blood from other time-points for this 
work (e.g. 7 days after the boost vaccination). These antibodies will help us investigate 
the response to vaccination in greater detail and could be useful commercially in 
providing antibodies or products for preventing or treating malaria in the future. If this 
occurs there will be no financial or other benefit to participants who have provided the 
blood samples from which products are developed. 

To avoid repeated testing, if you are not enrolled into this study and apply to enter 
another study conducted by the Jenner Clinical Trials Group based at the CCVTM in 
Oxford, the screening blood results may be used in that study, where appropriate. 

Abnormal Results 

If abnormal results or undiagnosed conditions are found in the course of the study 
these will be discussed with you and, if you agree, your GP (or a hospital specialist, if 
more appropriate) will be informed. Any newly diagnosed conditions will be looked after 
within the NHS.  

Expenses and Payments 

You will be compensated for: 

o Travel expenses:   £10 per visit 
o Time required for visit:  £20 per hour  
o Inconvenience of blood tests:  £10 per blood donation 

 

Group 
No. 

Time in 
Trial 

(approx.) 
Number of Visits 

Number
. of 

Blood 
Tests 

Approximate 
Volume of Blood 

Taken 

1 6 months 
8 

(+ telephone review) 
7 400mL 

2A 6 months 
10 

(+ telephone review) 
10 530mL 

2B and 2C 8 months 
11 

(+ telephone review) 
10 570mL 

Group 2C 

 

Day 0 Day 
14 

Day 

 84 
Day 
140  

S 
Day 
28 

Day 
56 

Day 
58 

Day 
63 

First Vaccination: 

ChAd63 RH5 full dose 

Second Vaccination:  

MVA RH5 full dose 

Day 
2 

Day 
7 

 

Day 
240 

Day 
10 
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The total compensation for taking part in this study is between £360 and £540, 
depending on which group you are in. If you choose to leave the study early or are 
withdrawn from the study, you will be compensated according to the length of your 
participation based on these figures. Please note that if you do leave the study early it 
can take several weeks for your final payment to be made. You should note that 
compensation payments received in this trial may have an impact on your entitlement 
to benefits. 

What alternatives are present? 

At present, there is no malaria vaccine approved anywhere in the world. There are 
other malaria vaccines in various stages of development. This study may help develop 
an effective malaria vaccine. 

What are the possible benefits of taking part? 

This study will not benefit you, but the information gained from the study might help to 
prevent malaria infection and disease in those living in areas where malaria is common 
and in travellers to those areas. 

 

Will my taking part in the study be kept confidential?  

Yes. All the information about your participation in this study will be kept confidential. 
The details are included in Part 2. 

 

This completes Part 1 of the Information Sheet. If the information in Part 1 has 
interested you and you are considering participation, please continue to read 
the additional information in Part 2 before making any decision. 

Part 2 

What if relevant new information becomes available? 

Sometimes during the course of a trial, new information becomes available about the 
vaccine being studied. If this happens, we will tell you about it and discuss whether you 
want to or should continue in the study. If you decide to continue to take part you will 
be asked to sign an updated consent form. On receiving new information, we may 
consider it to be in your best interests to withdraw you from the study. 

What will happen if I don’t want to carry on with the study? 

If, at any time after agreeing to participate you change your mind about being involved 
with this study, you are free to withdraw without giving a reason. Unless you state 
otherwise, any blood taken whilst you have been in the study will continue to be stored 
and used for research as detailed above. You are free to request that your blood 
samples are destroyed at any time during or after the study. 

What if there is a problem? 

The University of Oxford, as Sponsor, has appropriate insurance in place in the 
unlikely event that you suffer any harm as a direct consequence of your participation 
in this trial. 

The investigators recognise the important contribution that volunteers make to 
medical research, and make every effort to ensure your safety and well-being. In the 
unlikely event of harm being suffered, while the University will cooperate with any 
claim, you may wish to seek independent legal advice to ensure that you are 
properly represented in pursuing any complaint. At any time during the study you will 
be entirely free to change your mind and withdraw from the study. This will not affect 
your subsequent medical care in any way. 
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Complaints statement 

If you wish to complain about any aspect of the way in which you have been 
approached or treated during the course of this study, you should contact your local 
trial team (contact details at the end of this document) or you may contact the 
University of Oxford Clinical Trials and Research Governance (CTRG) office on 
01865 572224 or the head of CTRG, email ctrg@admin.ox.ac.uk. 

Will my taking part in this study be kept confidential? 

All information that is collected about you during the course of the research will be 
coded with a study number and kept confidential. The information is available to the 
study team, safety monitors, ethical review committee, Sponsors, government 
regulatory agencies and external monitors who can ask to audit or monitor the study. 
Any information about you that leaves the hospital or clinic will have your name and 
address removed so that you cannot be identified from it. Your information is stored 
electronically on a secure server and any paper notes are kept in a locked filing 
cabinet. 

Involvement of the General Practitioner/Family doctor (GP) 

In order to enrol into this study, you will be required to sign a form, documenting that 
you consent for us to contact your GP. This is to inform them that you are interested in 
being involved in the study and to check there are no medical reasons that they are 
aware of why your participation would be unadvisable. The researchers will not enrol 
you in the trial if they have any concerns about your eligibility or safety. We will write to 
your GP to let them know whether or not you are finally enrolled in the study, and 
whether or not you completed the study, so they can update your medical records 
accordingly. 

Prevention of ‘Over Volunteering’ 

Volunteers participating in this study must not be involved in another study at the same 
time. In order to check this, you will be asked to provide your National Insurance or 
Passport number. This will be entered on to a national database which helps prevent 
volunteers from taking part in too many clinical trials. More information can be found at 
www.tops.org.uk. Your national insurance or passport number is also required to allow 
processing of compensation payments. 

What will happen to any samples I give? 

If you consent, some of your leftover blood samples will be stored and may be used for 
further studies of the human body’s immune response. Any such tests will have an 
appropriate ethical review. Upon your request at any time, your remaining blood 
samples will be destroyed. Your participation in this study will not be affected by your 
decision whether to allow storage and future use of your leftover samples.   

Your study visit blood tests will be analysed in the hospital laboratories and Oxford 
University research laboratories. Other blood tests to look at the response of your body 
to the vaccine may be done with collaborating laboratories in other countries. Any 
samples or data sent to them would be anonymous.  

Will any genetic tests be done?   

Yes. Some blood may be used to look at the pattern of your genes that can affect the 
immune system (for example ‘human leukocyte antigen [HLA] type). The immune 
response to vaccines is in part genetically controlled, so knowing your pattern of genes 
that regulate immune responses may help us to understand the responses to 
vaccination. You can opt out of ‘genetic tests’ if you wish, without any effect on your 
participation in the trial.  

What will happen to the results of the research study? 

mailto:ctrg@admin.ox.ac.uk
http://www.tops.org.uk/
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The results of this research study may be presented at scientific meetings or 
conferences and published in a scientific medical journal. This may not happen until 1 
or 2 years after the study is completed. If you contact the researchers in the future you 
can obtain a copy of the results. You will not be identified in any report or publication.  

The anonymised data from this study will be shared with the collaborating partners 
who are organising and funding this research work, including the pharmaceutical 
company GlaxoSmithKline (GSK). Data from this study may be used to file patents, 
licence vaccines in the future or make profits in other ways. You will not be paid for 
any part of this. Data from this study may be used as part of a student post-graduate 
degree, for example a MD or PhD.  

Who is sponsoring, organising and funding the research? 

The study is sponsored by the University of Oxford and funded by European 
Commission funding. 

The study is organised by a research team at The Jenner Institute at the University of 
Oxford, headed by Dr Simon Draper. Neither your GP, nor the researchers are paid for 
recruiting you into this study. 

Who has reviewed the study?  

This study has been reviewed by Oxford Research Ethics Committee A and has been 
given a favourable ethical opinion. The Medicines and Healthcare products Regulatory 
Agency (MHRA) which regulates the use of all medicines in the UK has reviewed the 
study design and has granted permission to use these unlicensed vaccines in this 
clinical study. 

 

Thank you for reading this information sheet. If you are interested in taking 
part in the study please contact the study team at your local study site to 
arrange a screening appointment.  

Contact details for further information: 

 

Recruitment Co-ordinator 

Tel: 01865 857406 

Email: vaccinetrials@ndm.ox.ac.uk  

 

mailto:vaccinetrials@ndm.ox.ac.uk
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Appendix 2: Participant consent forms 

VAC051 Consent form v2.0 

 

A phase Ia study to assess the safety and immunogenicity of new 
Plasmodium vivax malaria vaccine candidate ChAd63 PvDBP alone and 

with MVA PvDBP 
 
Chief Investigator: Prof AVS Hill Study Code: VAC051 

NRES Committee South Central - Oxford A ref number: 13/SC/0001 

 
  Please initial 

1 I confirm that I have read and understand the Volunteer Information Sheet, Version_____, 

dated __________________ for the above study. I have I have spoken 

to__________________________________ and had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily. 

1…………… 

2 I agree to have blood tests for this study, including testing for HIV and Hepatitis B and C. 2………….. 

3 I agree that my blood samples are a gift to the University of Oxford and I understand I will 

not gain any direct personal benefit from these. 
3………….. 

4 I agree that blood tests looking at the immune response to vaccination, including some 

genetic tests, can be carried out. 

(Participation in this study will not be affected by your decision to allow or not allow genetic tests to 

be carried out) 

4………….. 

5 I agree that some of my leftover blood samples will be stored indefinitely and 

that my stored blood may be used for further ethically approved studies of the 

body’s immune response to malaria vaccination and malaria. I understand 

that I can ask for these to be destroyed at any time. 

(Participation in this study will not be affected by your decision to allow or not allow storage and 

future of blood samples) 

5………….. 

6 I agree that samples may be passed in an anonymised form to research collaborators, 

including collaborators in other countries. 
6………….. 

7 I agree to abstain from donating blood for the duration of the study 7………….. 

8 I understand that my participation is voluntary and that I am free to withdraw at any time, 

without giving any reason, without my medical care or legal rights being affected. 
8………….. 

9 I give permission for relevant sections of any of my medical notes and data collected 

during the study to be looked at by responsible individuals from regulatory authorities and 

the University of Oxford, and Clinical Trials Research Governance (CTRG) for the 

purposes of audit. 

9………….. 

10 I understand that I will be given live (attenuated) viral vector vaccine(s) during the course 

of this study. 
10………… 

11 I agree to my GP being contacted and being asked to share information about my medical 

history and give access to any other medical records as required. 
11………… 

Malaria Vaccine Trials 
Centre for Clinical Vaccinology and Tropical Medicine 
University of Oxford  
Churchill Hospital 
Old Road, Headington 
Oxford OX3 7LE 
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12 I agree to my details being registered with and checked against a confidential national 

database (TOPS) to prevent me taking part in more than one trial at a time. 
12………… 

13 I have received enough information about the vaccine and follow up schedule. 13………… 

14 Women only: I agree to use effective contraception for the whole study and understand 

that I will be required to have pregnancy tests at regular intervals during the trial. 
14………… 

15 I agree to allow photographs of the injection site(s) to be taken for clinical comparison. I 

understand I will not be identifiable in these photographs other than by my unique study 

number. 

15………… 

16 I agree to take part in this study. 16………… 

 
 
 
Signature of Volunteer:      Date:    
 
 
Name of Volunteer:     
(in block letters) 

 
 
Signature of Investigator:      Date:    
 
 
Name of Investigator:    
 
(in block letters)                                                            When completed 1 for volunteer, 1 for research file, (both 
original signatures) 
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VAC054 Consent form v2.0 (Oxford) 

 

A Phase I/IIa Study of the Safety, Immunogenicity and 
Efficacy of FMP2.1/AS01B, an Asexual Blood-Stage 

Vaccine for Plasmodium falciparum Malaria  

APPROVED 

Jan 30, 2014 

WIRB


 
 

Chief Investigator: Prof AVS Hill 

E-mail: vaccinetrials@ndm.ox.ac.uk 

Tel: 01865 857401 

Study Code: VAC054 
REC REF : 13/SC/0596 

 
Subject ID:__________  

 

Study Procedures Please initial  

1. I confirm that I have read and understand the Information Sheet pertaining to 

VAC054 Version_____, Dated______________ and have had the opportunity to 

consider the information, ask questions and have had these answered 

satisfactorily. 

 

 

1.............. 

 

2. I have spoken to (name of investigator): 

_____________________________________.  2.............. 

 

3. I agree to have blood tests as part of this trial including testing for HIV, 

Hepatitis B & C,  cytomegalovirus (CMV) and Epstein-Barr Virus (EBV). 

 

3.............. 

 

4. Group 1 only: I understand that I will be given three injections of an 

investigational protein-in-adjuvant malaria vaccine.  
 

4.............. 

N/A 

□ 
5.  I understand that I may develop local and/or general 

13
symptoms after 

vaccination. 5.............. 

 

6.  I understand I will be given blood containing malaria parasites during this trial 

with the intention of giving me malaria. 

 

6.............. 

 

7. I understand that there is potentially a very small risk of acquiring a blood-

borne infection, including EBV or CMV (the viruses that most commonly cause 

glandular fever).  7.............. 

 

8. I understand that I may develop symptoms of malaria which may be severe. 8..............  

9. I understand that I will not be able to donate blood in the UK again. 9..............  

10. I have received enough information about the challenge procedure, the 

follow-up schedule and the proposed anti malarial therapies. 

 

10.............. 

 

Personal Information   

11. I agree to my GP being contacted and being asked to share information 

about my medical history and give access to any other medical records as 

required. 

 

11............. 

 

12. I agree to my details being registered with and checked against a confidential 

national database (TOPS) to prevent me taking part in more than one trial at a 

time.  

 

12............. 

 

13. I give permission for relevant sections of any of my medical notes and data 

collected during the study to be looked at by responsible individuals from the 

study group, regulatory authorities, collaborators, the University of Oxford and 

the external monitor for the purposes of audit. 

 

 

 

13.............. 
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14. I agree that investigators may speak to my nominated contact, next of kin, 

the police and national media if I fail to attend for follow up after being infected 

with malaria. 

 

14............. 

 

Withdrawing from the study   

15. I understand that my participation is voluntary and that I am free to 

withdraw at any time, without giving any reason, without my medical care or 

legal rights being affected.  

 

15............. 

 

16. If I should wish to withdraw from the trial after I have been infected with 

malaria, I understand that I must take a course of anti-malarial medication, and 

that I will be asked to attend for review on at least 2 further days for safety 

reasons.  

 

 

16............. 

 

17. I understand that should I fail to return for review as outlined in the 

volunteer Information sheet that I may become seriously ill and die.  17............. 

 

18. I understand that if I withdraw my consent, the blood samples collected 

before my withdrawal will be used unless I specifically request otherwise. 18............. 

 

Contraception   

19. Women: I understand the crucial need to use an effective method of birth 

control for the whole study and that I will be required to have pregnancy tests at 

regular intervals during this trial.  I understand that Riamet may temporarily 

reduce the effectiveness of hormonal contraceptives, and the need to use an 

additional form of contraception while taking Riamet and until the start of the 

next menstruation after Riamet treatment. 

 

 

19............. 

N/A 

□ 

Consent   

20. I agree to take part in this study.  20.............  

The following are optional, answering "No" to any or all will not affect your 

ability to participate in the study.  

 

21. To avoid repeated testing, I agree that if I am not enrolled into this study and 

apply to enter another study conducted by the Jenner Clinical Vaccine Trials 

Group based at the CCVTM, my screening blood results may be used in that 

study, where appropriate. 

 

 

21............. 

No 

□ 

22. I agree that my leftover blood samples will be a gift to the University of 

Oxford, where they may be stored in accordance with the Human Tissue Act 

2004 indefinitely.  

 

22............. 

□ 

23. I understand that my samples will be identifiable only by a unique ID number 

and I will not be identifiable to researchers. 

 

23............. 
□ 

24. I agree that my stored blood samples may be used for further studies of the 

body’s immune response to malaria in future ethically approved research. 

 

24............. 
□ 

25. I agree that my leftover blood samples may also be shared with other 

collaborating study teams based within the United Kingdom. 

 

25…………… 
□ 

26. I agree that my leftover blood samples may also be shared with other 

collaborating study teams based in the European Union, United States of 

America and with responsible institutions around the world. 26............. 

□ 

27. I understand I am able to withdraw consent for the storage and use of 

samples at any time. 

 

27............. 
□ 
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Signature of 
Volunteer:............................................................Name:.................................................Date:
............................  
 
Signature of 
Investigator:.........................................................Name:.................................................Date:
............................  
 
When completed 1 for volunteer, 1 for research file, (both original signatures) 

28. I agree to allow photographs to be taken for clinical comparison, and I 

understand I will not be identifiable in these photographs other than by the 

unique study number.  

 

28............. 

□ 
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VAC057 Consent form v3.0 (Oxford) 

 

A Phase Ia clinical trial to assess the safety and immunogenicity of new 
Plasmodium falciparum malaria vaccine candidates ChAd63 RH5 alone and with 

MVA RH5 
Chief Investigator: Prof AVS Hill Study Code: VAC057 
NRES Committee South Central - Oxford A ref number: 14/SC/0120 
 

 

 
 

Please 
initial/tick 

1 I confirm that I have read and understand the Participant Information Sheet, Version_____, dated 
__________________ for the above study. I have spoken 
to__________________________________ and had the opportunity to consider the information, 
ask questions and have had these answered satisfactorily. 1…………… 

2 I agree to have blood tests for this study, including testing for HIV and Hepatitis B and C. 2………….. 

3 I agree that my blood samples are a gift to the University of Oxford, to be used for looking at the 
immune response to vaccination, and I understand I will not gain any direct personal benefit from 
these. 3………….. 

4 I agree that blood tests looking at the immune response can include some genetic tests. 
(Participation in this study will not be affected by your decision to allow or not allow genetic tests to be carried 
out) 

4 Yes □ 

   No  □ 

5 I agree that some of my leftover blood samples will be stored indefinitely and that my 

stored blood may be used for further ethically approved studies of the body’s immune 

response to malaria vaccination and malaria. I understand that I can ask for these to be 

destroyed at any time. 
(Participation in this study will not be affected by your decision to allow or not allow storage and future of blood 
samples.) 5………….. 

6 I agree that cells from my blood may be used to produce specific antibodies (‘monoclonal 
antibodies’) which could be used in commercial activity in the future. I understand that I will not gain 
any direct personal benefit from this. 6………….. 

7 I agree that samples may be passed in a coded form to research collaborators, including 
collaborators in other countries. 7………….. 

8 I agree that coded data may be passed on to other organisations, which may include commercial 
organisations. 8………….. 

9 I agree to abstain from donating blood for the duration of the study. 9………….. 

10 I understand that my participation is voluntary and that I am free to withdraw at any time, without 
giving any reason, without my medical care or legal rights being affected. 10………… 

11 I give permission for relevant sections of any of my medical notes and research data collected during 
the study to be looked at by responsible individuals from regulatory authorities, the University of 
Oxford, and University Hospital Southampton NHS Foundation Trust for the purposes of audit and 
monitoring. 11………… 

12 I understand that I will be given live (attenuated) viral vector vaccine(s) during the course of this 
study. 12………… 

13 I agree to my GP being contacted and being asked to share information about my medical history 
and give access to any other medical records as required. 13………… 

14 I agree to my details being registered with and checked against a confidential national database 
(TOPS) to prevent me taking part in more than one trial at a time. 14………… 

 
E-mail: vaccinetrials@ndm.ox.ac.uk 
Tel: 01865 857401 
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15 Women only: I agree to use effective contraception for the whole study and understand that I will be 
required to have pregnancy tests at regular intervals during the trial. 15………… 

16 I agree to allow photographs of the injection site(s) to be taken for clinical comparison. I understand 
I will not be identifiable in these photographs other than by my unique study number. 16 Yes □ 

     No  □ 

17 I agree to take part in this study. 17………… 

 

Signature of Volunteer:     Date:    
 
Name of Volunteer:     
(in block letters) 

 
Signature of Investigator:     Date:    
 
Name of Investigator:    
(in block letters)                                                             
When completed 1 for volunteer, 1 for research file, (both original signatures) 
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Appendix 3: VAC054 Informed Consent Questionnaire v1.0 

Professor Adrian V.S. Hill (DM 
FRCP) 
 
E-mail: vaccinetrials@ndm.ox.ac.uk 
 
Tel: 01865 857401 
 

  

 

 
REC REF : 13/SC/0596 
 

 

A study to assess the safety and effectiveness of an experimental 
malaria vaccine by infecting vaccinated volunteers with malaria 

parasites using malaria-infected red blood cells 
 

A Phase I/IIa Study of the Safety, Immunogenicity and Efficacy of FMP2.1/AS01B, an 

Asexual Blood-Stage Vaccine for Plasmodium falciparum Malaria (VAC054)    

INFORMED CONSENT QUESTIONNAIRE 

This questionnaire is designed to test your understanding of the study in order for us to be 
confident that you fully understand what taking part will involve. Please make sure you 
have read the information sheet in full and asked the Investigator any questions you have. 
You need to answer all questions correctly in order to take part in the study. If you don’t 
answer all the questions correctly the first time, you will be able to complete the 
questionnaire again after discussion with the Investigator. 
 

Volunteer Name:.…………………………………… 

Volunteer Trial Number:…..…………..…..……. 

Date……………..……Time.…………. 

Attempt Number………. of ………… 

 
Please clearly circle one answer for each question; 
 
1. By participating in this study you may develop which of the following:  
A. Tuberculosis 
B. Malaria 
C. Typhoid 
 
2. The study involves volunteers being given malaria by: 
A. Intramuscular injection 
B. Mosquito bite 
C. Transfusion of infected red blood cells 
 
3. Is it likely that a single treatment course will be effective to treat malaria in this study? 
A. Yes 
B. No 
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4. Medical screening for this study will include which of the following? 
A. Laboratory tests (including an HIV test) 
B. Physical examination 
C. Review of medical history 
D. All of the above 
E. None of the above 
 
5. If you wish to withdraw from the study you may: 
A. Withdraw voluntarily at any time provided you complete a course of anti-malarial 
therapy (if needed) 
B. Withdraw from the study only if the investigators say it is ok 
C. Never withdraw from the study 
 
6. Which of the following are true regarding pregnancy and participation in this study? 
A. Pregnant women may participate in this study 
B. Women should not get pregnant for 12 months after getting malaria 
C. An effective method of birth control is required for women while participating in this 
study 
 
7. What are common symptoms associated with malaria infection? 
A. Fever 
B. Chills 
C. Headache 
D. All of the above 
E. None of the above 
 
8. If you develop any concerning symptoms in between clinic visits after being given 
malaria, what should you do? 
A. Wait until your next clinic appointment 
B. Call the 24hr emergency phone number and talk to the trial doctor 
C. Ask a friend for advice 
 
9. What will happen if you fail to attend a follow-up visit after being given malaria?  
A. The police may be informed 
B. Your next of kin may be contacted 
C. Your identity may be given to the press 
D. All of the above 
 
10. How is malaria diagnosed in the study? 
A. Looking at a sample of blood under a microscope 
B. Chest X-ray 
C. Having you walk on a treadmill 
 
11. If you develop malaria, we will: 
A. Treat you immediately with effective medications 
B. See how sick you can get without treating you 
 
12. If you take part in this study, for how long will you be unable to donate blood? 
A. 1 year 
B. 2 years 
C. Never able to donate blood again 
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13. In the follow-up period when you may be diagnosed with malaria, which of the 
following is true? 
A. You must remain in Oxford and the surrounding area 
B. You must be contactable by the study team at all times 
C. You must be able to attend clinic at short notice 
D. All of the above 
 
 
_____________________________________________________________ 
Volunteer signature / date 
 
 
Score: ___/13  Reviewer signature / 
date_________________________________________ 
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Appendix 4: Schedules of attendance 

VAC051 Schedules of attendance 

VAC051: Schedule of attendances for Group 1 

(Windows refer to time since last visit rather than time since scheduled attendance). S = 
screening visit; (x) = If considered necessary; * Biochemistry will include Sodium, Potassium, 
Urea, Creatinine, Albumin, Liver Function Tests; & ^ Physical observations includes blood 
pressure, pulse and temperature. 

$
Exploratory immunology will include PvDBP IFN-γ T cell 

ELISPOT, B cell ELISPOT, and PvDBP antibody ELISA; anti-adenovirus antibodies may be 
measured from serum at a later date.           

 

 

 
S 

ChAd63 
PvDBP 

   
 

 

Attendance number 1 2 3 4 5 6 7 

Timeline (days)  0 2 14 28 56 84 

Window (days)   ±1 ±2 ±7 ±7 ±7 

Inclusion / Exclusion criteria X       

Informed consent X       

Medical History X (x) (x) (x) (x) (x) (x) 

Physical Examination^ X (x) (x) (x) (x) (x) (x) 

Urinalysis  X       

B-HCG urine test (♀) X X      

Review contraindications X X      

Vaccination  X      

Physical observations X X X X X (x) (x) 

AEs reviewed  X X X X X X 

Diary cards provided  X      

Diary cards collected    X    

HLA typing (mL)  4      

HBV,HCV,HIV (mL) 5       

Haematology (mL) 2   2 2 2 2 

Biochemistry (mL)* 3   3 3 3 3 

Exploratory immunology(/ 

serology)
$
 

 60  60 60 60 60 

Blood volume per visit (mL) 10 64  65 65 65 65 

Cumulative blood volume 
(mL) 

10  74 74 139 204 269 334 
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VAC051 Schedule of attendances for Group 2A 
(Windows refer to time since last visit rather than time since scheduled attendance). S = 
screening visit; (x) = If considered necessary; * Biochemistry will include Sodium, Potassium, 
Urea, Creatinine, Albumin, Liver Function Tests; & ^ Physical observations includes blood 
pressure, pulse and temperature. 

$
Exploratory immunology will include PvDBP IFN-γ T cell 

ELISPOT, B cell ELISPOT, and PvDBP antibody ELISA; anti-adenovirus antibodies may be 
measured from serum at a later date. 

 

 
S 

ChAd63 
PvDBP 

    
   

Attendance number 1 2 3 4 5 6 7 8 9 

Timeline (days) ≥-90 0 2 14 28 56 63 84 140 

Window (days)  0 ±1 ±2 ±7 ±7 ±7 ±7 ±14 

Inclusion / Exclusion 
criteria 

X X        

Informed consent X (X)        

Medical History X (X) (X) (X) (X) (X) (X) (X) (X) 

Physical Examination X (X) (X) (X) (X) (X) (X) (X) (X) 

Urinalysis X         

Β-HCG urine test (♀) X X        

Review 
contraindications 

X X        

Vaccination  X        

Physical observations X X X X X (X) (X) (X) (X) 

AEs reviewed  X X X X X X X X 

Diary cards provided  X        

Diary cards collected    X      

HLA typing (mL)  4        

HBV,HCV,HIV (mL) 5         

Haematology (mL) 2   2 2 2 2 2 2 

Biochemistry (mL) 3   3 3 3 3 3 3 

Exploratory 

immunology(/serology)
$
 

 60  60 60 60 60 60 60 

Blood volume per visit 
(mL) 

10 64  65 65 65 65 65 65 

Cumulative blood 
volume (mL) 

10 74  139 204 269 334 399 464 
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VAC051 Schedule of attendances for Groups 2B and 2C 

(Windows refer to time since last visit rather than time since scheduled attendance). S = 
screening visit; (x) = If considered necessary; * Biochemistry will include Sodium, Potassium, 
Urea, Creatinine, Albumin, Liver Function Tests; & ^ Physical observations includes blood 
pressure, pulse and temperature. 

$
Exploratory immunology will include PvDBP IFN-γ T cell 

ELISPOT, B cell ELISPOT, and PvDBP antibody ELISA; anti-adenovirus antibodies may be 
measured from serum at a later date. 

 
S 

ChAd63 
PvDBP 

   
MVA 

PvDBP 
 

   

Attendance number 1 2 3 4 5 6 7 8 9 10 

Timeline  

(days) 
 0 2 14 28 56 58 63 84 140 

Window (days)   ±1 ±2 ±7 ±7 ±1 ±2 ±7 ±14 

Inclusion / Exclusion 
criteria 

X X    X     

Informed consent X (X)    (X)     

Medical History X (X) (X) (X) (X) (X) (X) (X) (X) (X) 

Physical Examination X (X) (X) (X) (X) (X) (X) (X) (X) (X) 

Urinalysis  X          

Β-HCG urine test (♀) X X    X     

Review 
contraindications 

X X    X     

Vaccination  X    X     

Physical observations X X X X X X X X X (X) 

AEs reviewed  X X X X X X X X X 

Diary cards provided  X    X     

Diary cards collected    X    X   

HLA typing (mL)  4         

HBV,HCV,HIV (mL) 5          

Haematology (mL) 2   2 2 2  2 2 2 

Biochemistry (mL) 3   3 3 3  3 3 3 

Exploratory 

immunology(/serology)
$
 

 60  60 60 60  70 60 60 

Blood volume per visit 
(mL) 

10 64  65 65 65  75 65 65 

Cumulative blood 
volume (mL) 

10 74  139 204 269  344 409 474 
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VAC054 Schedules of attendance 

 S 
FMP2.1/
AS01B (1) 

   
FMP2.1/
AS01B (2)  

  
FMP2.1/
AS01B (3)  

 C-1 C C+1 C+2-12 
(Day of 
diagnosis) C+13-23 C+28 C+90 C+170 

Attendance number  1 2 3 4
 

5 6 7 8 9
 

10 11 12 13 14 15 16-37  38-48 49 50 51 

Timeline (days)  0 3 7 14 28 31 35 42 56 59 63 69 70 71 
72-82 

(AM+PM) 
 83-93 98 160 240 

Window (days) (-90)  ±1 ±2 ±2 
 

±1 ±2 ±2  ±1 ±2   0 0  0 ±3 ±7 ±14 

Inclusion / Exclusion 
criteria 

X X    X 
 

  X 
 

  X        

Informed Consent 
Questionnaire 

X                     

Informed consent X                     

Medical History X (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x)        

Physical Examination X (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x)        

Urinalysis X                     

Electrocardiogram X (X)                    

β-HCG urine (♀) X X    X 
 

  X 
 

 X    X     

Review 
contraindications 

X X    X    X 
 

 X X        

Vaccination  X    X    X            

Physical Observations^ X X X X X X X X X X X X X X X X X X X X  

AEs reviewed  X X X X X X X X X X X X X X X X X X X (x)
$
 

Diary card provided  X    X 
 

  X    X        

Diary card collected    X    X 
 

  X       X   
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 S 
FMP2.1/
AS01B (1) 

   
FMP2.1/
AS01B (2)  

  
FMP2.1/
AS01B (3)  

 C-1 C C+1 C+2-12 
(Day of 
diagnosis) C+13-23 C+28 C+90 C+170 

Medic Alert Card Given 
to Volunteers 

             X        

Treatment for Malaria                 X (X)    

HLA typing (mL)  4                    

HBV,HCV,HIV (mL) 5                     

EBV,CMV (mL)             5       5  

Serum for storage             5       5  

Haematology (mL) 2 2  2 2 2  2 2 2  2 2   2
£
 2  2 2  

Biochemistry (mL)** 3 3  3 3 3  3 3 3  3 3   3
£
 3  3 3  

Immunology  60   60 60  10 60 60  10 70    70  60 60  

Blood Film / PCR           
 

 3  3 3 x 22 3 3 x 11    

Blood volume per visit 
(mL) 

10 69 0 5 65 65 0 15 65 65 0 15 88 0 3 71 78 33 65 75 0 

Cumulative blood 
volume (mL) 

10 79 79 84 149 214 214 229 294 359 359 374 462 462 465 536 614 647 712 787 787* 

S = screening visit, (x) = If considered necessary, emphasising any acute complaints. 
^ Physical observations includes blood pressure, pulse and temperature, height and weight, however height and weight will only be measured at screening and dC-1.  

$ 
The visit on day 240 may be conducted by telephone and will involve collection of information about any SAEs that have occurred since the C+90 visit. 

** Biochemistry will include Sodium, Potassium, Urea, Creatinine, Albumin, Liver Function Tests, Magnesium & Cholesterol, however Magnesium and cholesterol will only be 
measured at screening. 

£ 
Biochemistry and haematology bloods will be checked on day 6 post malaria challenge 

*Cumulative blood volume for Oxford volunteers if blood taken as per schedule, and excluding any repeat safety blood test that may be necessary. Southampton and Hammersmith 
volunteers may have a slightly higher cumulative volume due to use of higher volume vacutainers for biochemistry, haematology and serology samples as per local Trust standard 

procedures. The maximum cumulative volume for these volunteers would be up to 823mL. 

VAC054 Schedule of attendances for Group 1 (Windows refer to time since last visit, but windows between vaccinations must be a minimum of 21 days and a 
maximum of 35 days. The window between final vaccination and challenge must be a minimum of 14 days and maximum of 16 days). 
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 S C-1 C C+1 C+2-12 
(Day of 
diagnosis) 

C+13-23 C+28 C+90 

Attendance number  1 2 3 4 5-26  27-37 38 39 

Timeline (days)  -1 0 1 
2-12 

(AM+PM) 
 13-23 28 90 

Window (days) (-90) -2 0 0 0  0 ±3 ±7 

Inclusion / Exclusion criteria X X X       

Informed Consent Questionnaire X         

Informed consent X         

Medical History X (x) (x)       

Physical Examination X (x) (x)       

Urinalysis X         

Electrocardiogram X (X)        

β-HCG urine (♀) X X    X    

Review contraindications X X X       

Vaccination          

Physical Observations^ X X X X X X X X X 

AEs reviewed  X X X X X X X X 

Diary card provided   X       

Diary card collected        X  

Medic Alert Card Given to Volunteers   X       

Treatment for Malaria      X (X)   

HLA typing (mL)  4        
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 S C-1 C C+1 C+2-12 
(Day of 
diagnosis) 

C+13-23 C+28 C+90 

HBV,HCV,HIV (mL) 5         

EBV,CMV (mL)  5       5 

Serum for storage  5       5 

Haematology (mL) 2 2   2
£
 2  2 2 

Biochemistry** (mL) 3 3   3
£
 3  3 3 

Immunology  70   20 x 6
#
 70 20 x 4

#
 60 60 

Blood Film / PCR  3  3 3 x 22 3 3 x 11   

Blood volume per visit(s) (mL) 10 92 0 3 191 78 113 65 75 

Cumulative blood volume (mL) 10 102 102 105 296 374 487 552 627* 

S = screening visit, (x) = If considered necessary, emphasising any acute complaints. 
^ Physical observations includes blood pressure, pulse and temperature, height and weight, however height and weight will only be measured at screening and C-1.     

** Biochemistry will include Sodium, Potassium, Urea, Creatinine, Albumin, Liver Function Tests, Magnesium & Cholesterol, however Magnesium and cholesterol will only be 
measured at screening. 

£ 
Biochemistry and haematology bloods will be checked on day 6 post malaria challenge 

#
 Immunology blood to be taken at AM visits on days 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 (but only until day of diagnosis) 

* Cumulative blood volume for Oxford volunteers if blood taken as per schedule, and excluding any repeat safety blood test that may be necessary. Southampton and Hammersmith 
volunteers may have a slightly higher cumulative volume due to use of higher volume vacutainers for biochemistry, haematology and serology samples as per local Trust standard 

procedures. The maximum cumulative volume for these volunteers would be up to 639mL 

 
VAC054 Schedule of attendances for Group 2 (Windows refer to time since last visit). 
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VAC057 Schedules of attendance 

VAC057 Schedule of attendances for Group 1. 

S = screening visit; (x) = If considered necessary;  

*Biochemistry will include Sodium, Potassium, Urea, Creatinine, Albumin, and Liver Function Tests. 

^ Physical observations include blood pressure, pulse and temperature. 
$
Exploratory immunology will include PfRH5 IFN-γ T cell ELISPOT, B cell assays, PfRH5 antibody ELISA, 

and functional antibody assays; anti-adenovirus antibodies may be measured from serum at a later date. 

**Cumulative blood volume for Oxford volunteers if blood taken as per schedule, and excluding any 

repeat safety blood test that may be necessary. Southampton volunteers may have a slightly higher 

cumulative volume due to use of higher volume vacutainers for biochemistry, haematology and serology 

samples as per local Trust standard procedures. 

 

 
S 

ChAd63 
RH5 

      
Telephone 

review 

Attendance number 1 2 3 4 5 6 7 8 9 

Timeline (days) ≤90 0 2 7 14 28 56 84 180 

Window (days; since 
last visit rather than 

since scheduled 
attendance) 

  ±1 ±1 ±2 ±7 ±7 ±7 ±14 

Inclusion / Exclusion 
criteria 

X        
 

Informed consent X         

Medical History X (x) (x) (x) (x) (x) (x) (x)  

Physical Examination^ X (x) (x) (x) (x) (x) (x) (x)  

Urinalysis  X         

B-HCG urine test (♀) X X        

Review 
contraindications 

X X       
 

Vaccination  X        

Physical observations X X X X X X (x) (x)  

AEs reviewed  X X X X X (x) (x)  

SAEs reviewed  X X X X X X X X 

Diary cards provided  X  (x)      

Diary cards collected    (x)  X    

HLA typing (mL)  4        

HBV,HCV,HIV (mL) 5         

Haematology (mL) 2 2  2  2    

Biochemistry (mL)* 3 3  3  3    

Exploratory 
immunology

$
 

 60 0 60 60 60 60 60  

Blood volume per visit 
(mL) 

10 69 0 65 60 65 60 60  

Cumulative blood 
volume (mL) 

10 79 79 144 204 269 329 389**  
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VAC057 Schedule of attendances for Group 2A 
S = screening visit; (x) = If considered necessary;  

*Biochemistry will include Sodium, Potassium, Urea, Creatinine, Albumin, and Liver Function Tests. 

^ Physical observations include blood pressure, pulse and temperature. 
$
 Exploratory immunology will include PfRH5 IFN-γ T cell ELISPOT, B cell assays, PfRH5 antibody ELISA, 

and functional antibody assays; anti-adenovirus antibodies may be measured from serum at a later date. 

**Cumulative blood volume for Oxford volunteers if blood taken as per schedule, and excluding any 
repeat safety blood test that may be necessary. Southampton volunteers may have a slightly higher 
cumulative volume due to use of higher volume vacutainers for biochemistry, haematology and serology 
samples as per local Trust standard procedures. 

 

 
S 

ChAd
63 

RH5 
         

Telephone 
review 

Attendance 
number 

1 2 3 4 5 6 7 8 9 10 11 12 

Timeline (days)  0 2 7 10 14 28 56 63 84 140 180 

Window (days; 
since last visit 

rather than since 
scheduled 

attendance) 

  ±1 ±1 ±1 ±2 ±7 ±7 ±2 ±7 ±14 ±14 

Inclusion / 
Exclusion criteria 

X            

Informed consent X (x)           

Medical History X (x) (x) (x) (x) (x) (x) (x) (x) (x) (x)  

Physical 
Examination^ 

X (x) (x) (x) (x) (x) (x) (x) (x) (x) (x)  

Urinalysis  X            

B-HCG urine test 
(♀) 

X X           

Review 
contraindications 

X X           

Vaccination  X           

Physical 
observations 

X X X X X X X (x) (x) (x) (x)  

AEs reviewed  X X X X X X (x) (x) (x) (x)  

SAEs reviewed  X X X X X X X X X X X 

Diary cards 
provided 

 X  (x)         

Diary cards 
collected 

   (x)   X      

HLA typing (mL)  4           

HBV,HCV,HIV 
(mL) 

5            

Haematology 
(mL) 

2 2  2   2      

Biochemistry 
(mL)* 

3 3  3   3      

Exploratory 
immunology

$
 

 60  60 20 60 60 60 60 60 60  

Blood volume per 
visit (mL) 

10 69 0 65 20 60 65 60 60 60 60  

Cumulative blood 
volume (mL) 

10 79 79 144 164 224 289 349 409 469 
529*

* 
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VAC057 Schedule of attendances for Groups 2B and 2C 

S = screening visit; (x) = If considered necessary;  

*Biochemistry will include Sodium, Potassium, Urea, Creatinine, Albumin, and Liver Function Tests. 

^ Physical observations include blood pressure, pulse and temperature. 
$
 Exploratory immunology will include PfRH5 IFN-γ T cell ELISPOT, B cell assays, PfRH5 antibody ELISA, 

and functional antibody assays; anti-adenovirus antibodies may be measured from serum at a later date. 

**Cumulative blood volume for Oxford volunteers if blood taken as per schedule, and excluding any 
repeat safety blood test that may be necessary. Southampton volunteers may have a slightly higher 
cumulative volume due to use of higher volume vacutainers for biochemistry, haematology and serology 
samples as per local Trust standard procedures. 

 
S 

ChAd63 
RH5 

     
MVA 
RH5 

    
Telephone 

review 

Attendance 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Timeline  
(days) 

 0 2 7 10 14 28 56 58 63 84 140 240 

Window (days; 
since last visit 

rather than since 
scheduled 

attendance) 

  ±1 ±1 ±1 ±2 ±7 ±7  ±1 ±7 ±14 ±14 

Inclusion / 
Exclusion criteria 

X X      X      

Informed consent X (X)      (X)      

Medical History X (X) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X)  

Physical 
Examination 

X (X) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X)  

Urinalysis  X             

Β-HCG urine test 
(♀) 

X X      X      

Review 
contraindications 

X X      X      

Vaccination  X      X      

Physical 
observations 

X X X X X X X X X X X (X)  

AEs reviewed  X X X X X X (x) X X X (x)  

SAEs reviewed  X X X X X X X X X X X X 

Diary cards 
provided 

 X  (X)    X  (X)    

Diary cards 
collected 

   (X)   X   (X) X   

HLA typing (mL)  4            

HBV,HCV,HIV 
(mL) 

5             

Haematology (mL) 2 2  2   2 2  2 2   

Biochemistry (mL) 3 3  3   3 3  3 3   

Exploratory 
immunology

$
 

 60  60 20 60 60 60  70 70 60  

Blood volume per 
visit (mL) 

10 69 0 65 20 60 65 65 0 75 75 60  

Cumulative blood 
volume (mL) 

10 79 79 144 164 224 289 354 354 429 504 
564*

* 
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Appendix 5: Participant diary cards 

Generic paper diary card (example page) 
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Generic eDiary screenshots 
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Appendix 6: Site-specific severity grading tables for laboratory 
adverse events 

GRADING OF LABORATORY ADVERSE EVENTS- OXFORD v1.0 

Severity grading criteria for clinically significant laboratory abnormalities; adapted from FDA 

guidelines (1) using Oxford University Hospitals NHS Trust laboratory reference ranges. 

Laboratory Test Grade 1 Grade 2 Grade 3 

Hgb (female) – gm/dL 
Ref range 12.0 – 15.0 

10.5 – 11.5 9.0 – 10.4 <9.0 

Hgb (male) – gm/dL  
Ref range 13.0 – 17.0 

11.5 – 12.5  10.0 – 11.4 <10.0 

WBC- elevated (x10*9/L) 
Ref range 4.0-11.0 

11.50 – 15.00  15.01 – 20.00 >20.0 

WBC- low (x10*9/L) 
Ref range 4.0-11.0 

2.50 – 3.50 1.50 – 2.49 <1.50 

Neutrophils decrease (x10*9/L) 
Ref range 2.0-7.0 

1.00 – 1.49 0.50 – 0.99 <0.50 

Lymphocytes decrease (x10*9/L) 
Ref range 1.0-4.0 

0.75 – 1.00 0.50 – 0.74 <0.50 

Eosinophils (x10*9/L) 
Ref range 0.0-0.5 

0.65 – 1.50 1.51 – 5.00 >5.00 

Platelets (x10*9/L) 
Ref range 150-400 

125 – 135 100 – 124 <100 

Bilirubin – when accompanied by any increase in 
Liver Function Test increase by factor  
Ref range 3-17 (umol/L) 

1.1 – 1.25 x ULN  >1.25 – 1.5 x 
ULN  

>1.5 – 1.75 x 
ULN  

Bilirubin- when LFTs normal; increase by factor 
Ref range 3-17 (umol/L) 

1.3 – 1.5 x ULN 1.6 – 2.0 x ULN >2.0 x ULN 

ALT, AST; increase by factor 
Ref range 10-45 (IU/L) 

1.25 – 2.5 x ULN >2.5 – 5.0 x 
ULN 

>5.0 x ULN 

Alkaline phosphate- increase by factor 
Ref range 95-280 (IU/L) 

1.1 – 2.0 x ULN 2.1 – 3.0 x ULN >3.0 x ULN 

Albumin- low (g/L) 
Ref range 35-50 

28 – 31 25 – 27 <25 

Creatinine  
Ref range 54-145 (umol/L) 

1.1–1.5  x ULN >1.6–3.0 x ULN >3.0 x ULN 

Urea (mmol/L) 
Ref range 2.5-6.7 

8.2 – 8.9 9.0 – 11.0 >11.0 

Sodium- elevated (mmol/L) 
Ref range 135-145 

146 – 147 148 – 149 ≥150 

Sodium- low (mmol/L) 
Ref range 135-145 

132 – 134 130 – 131 ≤129 

Potassium- elevated (mmol/L) 
Ref range 3.5-5.0 

5.1 – 5.2 5.3 – 5.4 ≥5.5 

Potassium- low (mmol/L) 
Ref range 3.5-5.0 

3.2 –3.3 3.0 – 3.1 ≤2.9 

1. FDA. Toxicity Grading Scale for Healthy Adult & Adolescent Volunteers Enrolled in 
Preventative Vaccine Clinical Trials



306 
 

GRADING OF LABORATORY ADVERSE EVENTS- SOUTHAMPTON v1.0 

Severity grading criteria for clinically significant laboratory abnormalities; adapted from FDA 

guidelines (1) using University Hospital Southampton NHS Foundation Trust laboratory 

reference ranges. 

Laboratory Test Grade 1 Grade 2 Grade 3 

Hgb (female) – gm/L 
Ref range 120 – 150 

105 – 115 90 – 104 <90 

Hgb (male) – gm/L  
Ref range 130 – 170 

115 – 125  100 – 114 <100 

WBC- elevated (x10*9/L) 
Ref range 4.0-11.0 

11.50 – 15.00  15.01 – 20.00 >20.0 

WBC- low (x10*9/L) 
Ref range 4.0-11.0 

2.50 – 3.50 1.50 – 2.49 <1.50 

Neutrophils decrease (x10*9/L) 
Ref range 2.0-7.5 

1.00 – 1.49 0.50 – 0.99 <0.50 

Lymphocytes decrease (x10*9/L) 
Ref range 1.5-4.0 

0.75 – 1.00 0.50 – 0.74 <0.50 

Eosinophils (x10*9/L) 
Ref range 0.0-0.5 

0.65 – 1.50 1.51 – 5.00 >5.00 

Platelets (x10*9/L) 
Ref range 150-400 

125 – 135 100 – 124 <100 

Bilirubin – when accompanied by any increase 
in Liver Function Test increase by factor  
Ref range 0-20 (umol/L) 

1.1 – 1.25 x ULN  >1.25 – 1.5 x ULN  >1.5 – 1.75 x 
ULN  

Bilirubin- when LFTs normal; increase by factor 
Ref range 0-20 (umol/L) 

1.2 – 1.5 x ULN 1.6 – 2.0 x ULN >2.0 x ULN 

ALT, AST; increase by factor 
Ref range 7-40 (IU/L) 

1.25 – 2.5 x ULN >2.5 – 5.0 x ULN >5.0 x ULN 

Alkaline phosphate- increase by factor 
Ref range 30-130 (IU/L) 

1.1 – 2.0 x ULN 2.1 – 3.0 x ULN >3.0 x ULN 

Albumin- low (g/L) 
Ref range 35-50 

28 – 31 25 – 27 <25 

Creatinine  
Ref range 53-97 (umol/L) 

1.1–1.5  x ULN >1.6–3.0 x ULN >3.0 x ULN 

Urea (mmol/L) 
Ref range 2.5-7.8 

8.2 – 8.9 9.0 – 11.0 >11.0 

Sodium- elevated (mmol/L) 
Ref range 133-146 

147 – 148 149 – 150 >150 

Sodium- low (mmol/L) 
Ref range 133-146 

131 – 132 129 – 130 <129 

Potassium- elevated (mmol/L) 
Ref range 3.5-5.3 

5.4 – 5.5 5.6 – 5.7 >5.7 

Potassium- low (mmol/L) 
Ref range 3.5-5.3 

3.2 –3.3 3.0 – 3.1 ≤2.9 

1. FDA. Toxicity Grading Scale for Healthy Adult & Adolescent Volunteers Enrolled in 
Preventative Vaccine Clinical Trials
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GRADING OF LABORATORY ADVERSE EVENTS FOR HAMMERSMITH 

HOSPITALS v1.1 

Severity grading criteria for clinically significant laboratory abnormalities; adapted from FDA 

guidelines (1) using Hammersmith Hospitals NHS Trust laboratory reference ranges. 

Laboratory Test Grade 1 Grade 2 Grade 3 

Hgb (female) – gm/L 
Ref range 130 – 168 

105 – 115 90 – 104 <90 

Hgb (male) – gm/L  
Ref range 130 – 168 

115 – 125  100 – 114 <100 

WBC- elevated (x10*9/L) 
Ref range 4.2-10.6 

11.50 – 15.00  15.01 – 20.00 >20.0 

WBC- low (x10*9/L) 
Ref range 4.2-10.6 

2.50 – 3.50 1.50 – 2.49 <1.50 

Neutrophils (x10*9/L) 
Ref range 2.0-7.1 

1.00 – 1.49 0.50 – 0.99 <0.50 

Lymphocytes Decrease (x10*9/L) 
Ref range 1.1-3.6 

0.75 – 1.00 0.50 – 0.74 <0.50 

Eosinophils (x10*9/L) 
Ref range 0.0-0.5 

0.65 – 1.50 1.51 – 5.00 >5.00 

Platelets (x10*9/L) 
Ref range 130-370 

110 – 120 95 – 109 <95 

Bilirubin – when accompanied by any increase 
in Liver Function Test increase by factor  
Ref range 0-21 (umol/L) 

1.1 – 1.25 x ULN  >1.25 – 1.5 x ULN  >1.5 – 1.75 x ULN  

Bilirubin- when LFTs normal; increase by 
factor 
Ref range 0-21 (umol/L) 

1.2 – 1.5 x ULN 1.6 – 2.0 x ULN >2.0 x ULN 

ALT, AST; increase by factor 
Ref range 0-40 (IU/L) 

1.25 – 2.5 x ULN >2.5 – 5.0 x ULN >5.0 x ULN 

Alkaline phosphate- increase by factor 
Ref range 30-130 (IU/L) 

1.1 – 2.0 x ULN 2.1 – 3.0 x ULN >3.0 x ULN 

Albumin- low (g/L) 
Ref range 35-50 

28 – 31 25 – 27 <25 

Creatinine  
Ref range 60-125 (umol/L) 

1.1–1.5  x ULN >1.6–3.0 x ULN >3.0 x ULN 

Urea (mmol/L) 
Ref range 2.5-7.8 

8.2 – 8.9 9.0 – 11.0 >11.0 

Sodium- elevated (mmol/L) 
Ref range 133-146 

146 – 147 148 – 149 ≥150 

Sodium- low (mmol/L) 
Ref range 133-146 

132 – 134 130 – 131 ≤129 

Potassium- elevated (mmol/L) 
Ref range 3.5-5.3 

5.4 – 5.5 5.6 – 5.7 ≥5.8 

Potassium- low (mmol/L) 
Ref range 3.5-5.3 

3.2 –3.3 3.0 – 3.1 ≤2.9 

1. FDA. Toxicity Grading Scale for Healthy Adult & Adolescent Volunteers Enrolled in 
Preventative Vaccine Clinical Trials
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Appendix 7: Standard Operating Procedures 

ML002: Malaria PBMC Separation and Freezing 
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ML006: Ex Vivo ELISPOT 

 

 

 



314 
 

 



315 
 

 



316 
 

 



317 
 

 



318 
 

 



319 
 

 



320 
 

 

  



321 
 

ML026: DBP ELISA 

 

1 Purpose 

During malaria vaccine trials, the Enzyme-Linked ImmunoSorbent Assay (ELISA) is the 
primary assay for monitoring the antibody responses induced by vaccination in the 
serum of human volunteers. This SOP contains the detailed experimental protocol for 
performing this assay for the antigen Plasmodium vivax Duffy-Binding Protein 
(PvDBP). There are multiple alleles of the PvDBP antigen, but only one is tested in this 
ELISA assay: PvDBP_RII (Salvador I allele). This SOP details the experimental 
protocol for performing this assay for this allele of PvDBP. 

2 Introduction 

The aim of our clinical vaccine trials is to induce protection against malaria in human 
volunteers and characterize the cells and/or antibodies involved in inducing protective 
immune responses. One of the primary endpoints in Phase I and Phase II trials of 
blood-stage malaria vaccines is immunogenicity as measured by ELISA, which 
quantifies the level of antigen-specific antibodies in the serum of immunized volunteers. 
In this case, the PvDBP antigen was provided by Jing Jin. The ELISA protocol has 
been standardised according to published methods (see reference in section 8). This 
protocol uses a reference serum on each ELISA plate to detect antibodies induced by 
experimental malaria vaccines. 

 
Different types of controls are included; reference serum from a high responding 
volunteer is included on each ELISA plate to produce a standard curve which is used to 
quantify and assign ELISA units to each unknown sample on the plate; also an internal 
positive control sample and negative control / no serum (“blank wells”) are used to 
perform QC analysis on each ELISA plate.  

 
ELISA plates are coated over-night with PvDBP_RII. The assay is performed by 
preparing a standard curve and internal controls from the reference serum and adding 
these samples to the plate. Unknown test serum samples from immunized volunteers 
are diluted and added in triplicate to the ELISA plate. After a two hour incubation 
period, the diluted sera are discarded, the plate is washed and a secondary polyclonal 
antibody against the γ–chain of human IgG is added. This secondary antibody is 
conjugated to the enzyme alkaline phosphatase. After another hour of incubation, 
followed by a wash step, the alkaline phosphatase substrate is added. The substrate is 
left to develop for 15-20 min and the absorbance at 405nm is read using a plate reader. 
The result is obtained by taking an average of the triplicate wells for each test sample, 
and using the standard curve to assign DBP_RII ELISA arbitrary units (AU). 
 

3 Scope 

This SOP covers all serum samples taken from volunteers in PvDBP_RII blood-stage 
malaria vaccine trials in Oxford for which ELISA is one of the primary readouts. It does 
not cover booking in of samples to the laboratory, which is described in ML001 Malaria 
lab sample handling. 
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4 Definitions 

ELISA = Enzyme-Linked ImmunoSorbent Assay. 

5 Responsibilities 

All staff employed by the University of Oxford who work on the blood-stage malaria 
vaccine trials, including clinicians or visiting scientists working in the lab, must follow 
these protocols. 

 
The Senior Immunologist ensures that staff are competent to perform these 
procedures. 
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6 Procedure 

6.1 Equipment & Reagents 

Where appropriate, equipment and reagents used in the processing of samples from 
clinical trials is dedicated to study work. Equipment used forms part of the laboratory 
maintenance and monitoring plan. 

  

Equipment: 
Fridge at +4oC 
Freezer at -20oC and -80oC 
Vortex 
Eppendorf Racks 
Pipettes including 8- or 12-well multi-channel and automatic multi-channel 
Pipetteboy 
Bio-tek ELx800 Microplate Reader with Gen5 ELISA software v1.10 
Timer 
Sufficient tips for pipettes. 0.1-10μl, 2-20μl, 20-200μl, 100-1000μl 
Safety Glasses 
PBS-Tween Hand Washer 
Timer 
 
Consumables & Reagents: 
 

Reagent Company Cat # 

NUNC Immuno Plates (442404) Fisher DIS-971-030J 

Blocker Starting Block T20 in PBS Fisher 10270404 

Goat anti-human IgG (γ-chain)-alk phos Sigma A3187 

Dulbecco’s PBS (DPBS) Sigma D8537 

5x Diethanolamine Buffer Fisher 34064 

4-Nitrophenyl Phosphate Tablets (20mg) Sigma N2765 

Tween-20 Sigma P7949 

Aluminium Foil Fisher AKL-300-040J 

1.5mL Eppendorf tubes Fisher FB74031 

Reagent Reservoirs (Costar 4870) Fisher PMP-331-010C 

10L PBS powder Invitrogen 21600-069 

 

Recombinant Protein Antigen:   

The recombinant protein antigen required for this SOP is: PvDBP (Salvador I allele) 

The PvDBP protein is provided by Jing Jin. It is stored in small aliquots (typically 
enough to coat two ELISA plates) at -20ºC in the human immunology freezer until 
needed. Coating antigen concentration is standard at 2µg/ml. 

Reference Serum: 

VAC051 Volunteer 028 day 84 serum is stored in the Equipment Bay MVT -80oC 
freezer. 

 

Buffers and Solutions:   

Make up buffer and solutions as follows: 

PBS/T (PBS with 0.05% Tween) for washing plates. Dissolve 10L PBS tub in 
10L deionised water (15.0 MΩ setting). Add 5mL Tween-20. Shake and return 
to the ELISA plate wash station. 
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6.2 Day 1: Coating ELISA plates on the bench.  

1. Print off a new MVT ELISA record sheet for each experiment. Number the 
experiment with the next experiment number and fill this in with the required 
information throughout the experiment. The next available experiment number can 
be found in the Excel spreadsheet contained in the same folder. Sign off the 
experiment number in the spreadsheet and re-save the file. Sheets can be found at: 

 
V:\1.Malaria\1. Master Files\5. Lab general trial info\Blood-Stage MVT\ Templates & 
Record Sheets 

 
2. Calculate the number of Nunc Immuno ELISA plates required (max number of 22 

test samples per plate). Thaw an aliquot of the recombinant antigen required. Make 
the coating solution by adding recombinant antigen to DPBS at a final concentration 
of 2µg/mL. Working on the bench, add 50 µl per well of the coating solution to the 
ELISA plate using a multi-channel pipette. Store the plates at 4°C (≥16 h), wrapped 
in cling film. Note time of coating and record on the experiment layout sheet.  

6.3 Day 2: Blocking plates.  

 
1. Bring Starting Block T20 to RT for >30mins and flick off the coating solution into 

the sink (wear eye protection). 
 
2. Wash the plates 6x in PBS/T using the handheld washer. 
 
3. Block the wells with 200 µL per well of Starting block T20 blocking buffer.  
 
4. Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 1h 

(max 1h 30min) at RT. Note time of blocking and record on the experiment sheet. 
 
5. During blocking prepare test samples and reference standard dilutions as below.  
 

6.4 Sample Preparation 

 
i) Standard Curve 
 

1. Prepare dilutions of Volunteer 028 day 84 reference serum in Starting block T20 
Block buffer: 

 
Take the serum and prepare one 1:100 dilution in an eppendorf tube: add 9µL to 
891µL of blocking buffer. Label 1. Vortex to mix. 

 
Prepare a dilution curve in eppendorf tubes. To make a 1:3 dilution set (enough for 4 

ELISA plates): 
  
1. Add 600µL of Starting block T20 block to nine eppendorfs labelled 2-10.  

2. Add 300µL of the first dilution 1 to tube 2. Vortex to mix. 

3. Add 300µL of 2 to tube 3. Vortex to mix. And so on, repeat this through to tube 

10. 

4. Each tube should now contain 600µL of liquid (except 10 which contains 900µL), 

with a 3-fold dilution series running from tube 1 to 10. 

 
ii) Positive Control Sample 

 



325 
 

Prepare the positive control serum sample in Starting block T20 Block buffer and vortex 
to mix: 
 
For DBP, make a 1:81 dilution of the reference serum by adding 3µL to 240µL of 
blocking buffer. Then make a 1:8100 dilution by adding 3µl of the 1:81 stock to 297µl 
blocking buffer. 
 
Repeat this 2 more times to make 3 independent 1:8100 dilutions.  
 
iii) Test Serum Samples 

 
Prepare the test serum sample in Starting block T20 Block buffer. A dilution is required 
that will give an OD 405nm reading that is in the linear part of the standard curve (0.26 
≤ OD 405nm ≤ 2.1). Test samples can be tested at a single or multiple dilutions. The 
dilutions must be recorded on the ELISA record sheet. 
 
Typical dilutions for serum from the vaccine trials include 1:300 for samples taken from 
Adenovirus only immunised volunteers, or for most samples from volunteers receiving 
Adeno-MVA regimes taken between d0 – d56. Do not test samples at a dilution lower 
than 1:300. Serum samples taken on or after d63 should be typically tested at higher 
dilutions in the range e.g. 1:1000-1:5000 – the necessary dilution will depend on the 
strength of the response and may range from 1:600-1:40,000. 

 

 To prepare 1:300 dilutions: dilute 3µl serum in 897µl of Starting block T20 block. 
 

 To prepare higher dilutions: dilute the 1:300 dilution appropriately in Starting 
block T20 block.  

 

 Record all dilutions for each sample on the experimental record sheet. 
 

 Vortex all samples to mix. 

6.5 Plating Serum  

1. After blocking is complete, wash the plates 6x in PBS/T. Tap them dry on blue 
roll. 

 
2. Plate serum out using plate layout below. Each well should contain 50μl of 

sample. 

 
 
S1 to S22 (blue) = test sera (added in triplicate). 
Standard Curve (pink) = dilution 1 (column 1) to dilution 10 (column 10). Transfer 50μl 
from tubes 1-10 (see step 6.4.2) to the appropriate wells of rows G and H of the ELISA 
plate. Repeat for subsequent ELISA plates, etc. 
Blank = 50μl of Starting block T20 block solution. 
 
Internal control = 1:8100 V028 day 84 reference serum (see step 6.4.3).  

 1 2 3 4 5 6 7 8 9 10 11 12 

A S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

B S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

D S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 Internal 

Control 

 
E S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

F S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

G 1 2 3 4 5 6 7 8 9 10 
Blank 

H 1 2 3 4 5 6 7 8 9 10 
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3. Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 2h 
(max 2h 30min) at RT. Note time of plating and record on the experiment sheet. 

 

6.6 Secondary Antibody  

 
1. After this time, wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
2. Dilute the secondary antibody 1:1000 in Starting block T20 block solution. 6mL is 

required per plate, i.e. 6μl secondary antibody in 6mL Starting block T20 block. 
Secondary antibody is goat anti-human IgG (γ-chain) Sigma A3187 (stored at 
+4˚C). Vortex to mix. 

 
3. Add 50μl secondary antibody per well. 

 
4. Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 1h 

(max 1h 30min) at RT. Note time and record on the experiment sheet. 
 
5. Prepare development buffer – for each plate 10ml is required. Buffer must be 

made up in units of 20ml. Dilute 5x diethanolamine buffer (stored at +4˚C) in 
deionised water (18.2 MΩ setting). For each unit of 20ml, add one 20mg 4-
nitrophenylphosphate tablet (stored at -20˚C) to give a final concentration of 
1mg/ml. Prepare the buffer in a suitable tube wrapped in foil, to prevent exposure 
to light. Leave to stand at RT until required, and shake to mix before use. 

6.7 Development  

 
1. Wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
2. Make sure the computer and plate reader are available and turned on, 

before developing. 
 
3. Using a multi-channel automatic pipette, add 100µl development buffer to each 

well of plate one. Using the timer, wait 60-90s and then add development buffer 
to plate 2. Continue adding development buffer to each plate in turn at the same 
60-90s interval. Cover the plates in foil and leave on the bench. Make sure there 
are no bubbles in any of the wells, as this can aberrantly increase the 
absorbance readings. If bubbles are present, pop these with a clean yellow 
pipette tip (use a separate tip for each bubble to avoid cross-contamination of 
development buffer between wells). 

6.8 Reading Plates and Analysis  

1. During the development period, log on to ELISA station computer. 

2. Load Gen5 ELISA software. 

3. Create a new experiment using an existing protocol. 

4. Select DBP ELISA protocol stored in X:\S Draper\Clinical Trials\ELISA 

Protocols\150622 MVT PvDBP_RII SS and click OK. 

5. Click file menu and save as. 

6. Save experiment files as “MVT E xx followed by initials and date (yymmdd) in 

V:\1.Malaria\1.Master files\2.VAC Studies\VAC051\11.Immunology\ELISA 

data\Experiments. 

7. If you have more than one ELISA plate, right click on Plate 1 and select add 

plates. Add the number of extra plates required. 

8. Click on the + icon next to plate 1 to expand the menu, and select Sample IDs. 

9. Enter IDs for samples 1-22 (typically numbered 1-22) and then click OK. 
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10. Right click on Plate 1 and choose custom plate layout and select Yes. 

11. Double click on custom layout in the menu for plate 1. 

12. For Sample 1, select 3 vertical replicates and enter the dilution used. Click on 

Square A1. 

13. Enter the dilution used for sample 2 and then click on square A2. Repeat for 

Sample 3 and click on A3 and so on, until all 22 samples have been accounted 

for. For Samples 13-22 click on squares D1-D10. Click OK at the end. 

14. Repeat these steps for any extra plates in the experiment. 

15. After approximately 15 min, read the Abs at 405nm of Plate 1 using the Bio-tek 

ELx800 microplate reader. Right click on Plate 1 and then “read plate 1” or click 

green play button in toolbar, click READ and then OK. 

16. The Abs 405nm of the six wells of the internal control serum should have an 

average OD = 1.0 The typical total development time for DBP_II is ~ 20 min 

hence initial plate reading (in step 6.8.15) begins ~5min prior to this. 

17. Repeat step 6.8.15 until the mean OD of the internal controls wells on plate 1 = 

~ 1.0. 

18. Wait for the plate to read and then select Plate 2. Click read plate after the 60-

90s interval has expired.. 

19. Repeat for subsequent plates, reading each in order with the appropriate 60-

90s time interval between reading each plate. 

20. When you have read all the plates, save the experiment again (File menu, then 

save). 

21. Now right click on Plate 1 and select Export. 

22. Now right click on Plate 2 and select Export. Repeat this process for all plates in 

turn. 

23. Once finished, exit Gen5 software. 

24. Save the Excel worksheet on the V;\ drive in the correct experiment folder with 

the same name as the Gen5 Experiment. 

25. Each plate is displayed on a separate worksheet. For each plate: 

26. Check the R2 value for the standard curve is >0.994. 

27. Carefully review the Abs405 data for each well. Check for no aberrant readings 

in the triplicate values for each sample CV should be <20%. Check the Abs405 of 

the blank wells is <0.15. 

28. Check the reference value is within 20% of 8100. 

29. The worksheet will analyse the data and provide a readout in the bottom table 

for the antibody units of each sample (AU).  

30. Any readings that are below the Abs405 threshold of 0.26 should be regarded 

as negative. 

31. Any readings that are above the Abs405 threshold of 2.1 should be repeated in 

another ELISA assay at higher dilution. 

32. Fill in the volunteer number and timepoint for each sample. 

33. Copy the final data set to the DBP MVT ELISA database found at: 

V:\1.Malaria\1. Master Files\VAC Studies\ VAC051\ Immunology\ ELISA data. 

ELISA plates can be discarded once read.  

34. MVT ELISA record sheets should be stored in the relevant trial ring-binder 

folder. 
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7 Associated documents 

ELISA Experiment Record Sheets and Spreadsheet of MVT Exx numbers. Found at: 
 
V:\1.Malaria\1. Master Files\Lab general trial info\Blood-stage MVT\ Templates & 
Record Sheets 
 
MVT ELISA database stored at: 
 
V:\1.Malaria\1. Master Files\VAC Studies\ VAC051\ Immunology \ ELISA data  
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Range of expected O.D values in the positive 
control has changed as well as the 

development time. 
 

N/A 

13/Nov/15 Sarah Silk 2.0 Updated version of SOP for new batch of DBP 
protein, new reference serum and change of 
blocking agent. 

1.0 

   
 

 



329 
 

ML023 P. falciparum MSP1 and AMA1 ELISA 

 

1 Purpose 

During malaria vaccine trials, the Enzyme-Linked ImmunoSorbent Assay 
(ELISA) is the primary assay for monitoring the antibody responses induced by 
vaccination in the serum of human volunteers. This SOP contains the detailed 
experimental protocol for performing this assay for the antigens Plasmodium 
falciparum Merozoite Surface Protein 1 19kDa fragment (PfMSP119) and Apical 
Membrane Antigen 1 (PfAMA1). There are two alleles of the PfMSP119 antigen: 
i) 3D7/Mad20/ETSR – referred to here as ETSR, and ii) 
Wellcome/K1/FVO/QKNG – referred to here as QKNG. There are multiple 
alleles of the PfAMA1 antigen, but only two are tested in this ELISA assay: i) 
3D7 AMA1, and ii) FVO AMA1. This SOP details the experimental protocol for 
performing this assay for both these alleles of PfMSP119 and PfAMA1.  

2 Introduction 

The aim of our clinical vaccine trials is to induce protection against malaria in 
human volunteers and characterise the cells and/or antibodies involved in 
inducing protective immune responses. One of the primary endpoints in Phase I 
and Phase II trials of blood-stage malaria vaccines is immunogenicity as 
measured by ELISA, which quantifies the level of antigen-specific antibodies in 
the serum of immunized volunteers. In this case, the PfMSP119 antigens are 
recombinant GST-PfMSP119 fusion proteins produced in E. coli (Jenner 
Protocol J136) and the PfAMA1 antigens are provided by external collaborators 
(3D7 AMA1 (1) was provided by Dr Chetan Chitnis (ICGEB, New Delhi, India) 
and FVO AMA1 (2) was provided by Dr Mike Blackman (NIMR, London, UK)). 
The ELISA protocol has been standardized according to published methods (3). 
This protocol uses a reference serum on each ELISA plate to detect antibodies 
induced by experimental malaria vaccines. 
 
Different types of controls are included; a high-titre reference serum from 
naturally-immune African adults is included on each ELISA plate to produce a 
standard curve which is used to quantify and assign ELISA units to each 
unknown sample on the plate; also an internal positive control sample and 
negative control / no serum (“blank wells”) are used to perform QC analysis on 
each ELISA plate. A separate ELISA against GST only is also included for 
selected samples as a negative control for the PfMSP119 antigens.  
 
ELISA plates are coated over-night with the relevant recombinant GST or GST-
PfMSP119 fusion proteins or PfAMA1. The assay is performed by preparing a 
standard curve and internal controls from the reference serum and adding these 
samples to the plate. Unknown test serum samples from immunized volunteers 
are diluted and added in triplicate to the ELISA plate. After a two hour 
incubation period, the diluted sera are discarded, the plate is washed and a 
secondary polyclonal antibody against the γ–chain of human IgG is added. This 
secondary antibody is conjugated to the enzyme alkaline phosphatase. After 
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another one hour incubation, followed by a wash step, the alkaline phosphatase 
substrate is added. The substrate is left to develop for 10-25 mins (antigen 
dependent) and the absorbance at 405nm is read using a plate reader. The 
result is obtained by taking an average of the triplicate wells for each test 
sample, and using the standard curve to assign MSP1 or AMA1 ELISA arbitrary 
units (AU). 
 

3 Scope 

This SOP covers all serum samples taken from volunteers in MSP1 or AMA1 
malaria vaccine trials in Oxford for which ELISA is one of the primary readouts. 
It does not cover booking in of samples to the laboratory, which is described in 
ML001 Malaria lab sample handling. 
 

4 Definitions 

ELISA = Enzyme-Linked ImmunoSorbent Assay. 

5 Responsibilities 

All staff employed by the University of Oxford who work on the malaria vaccine 
trials, including clinicians or visiting scientists working in the lab, must follow 
these protocols. 
 
The Senior Immunologist ensures that staff are competent to perform these 
procedures. 
 

6 Procedure 

6.1 Equipment & Reagents 

Where appropriate, equipment and reagents used in the processing of samples 
from clinical trials is dedicated to study work. Equipment used forms part of the 
laboratory maintenance and monitoring plan. 

  

Equipment: 
Fridge at +4oC 
Freezer at -20oC and -80oC 
Vortex 
Eppendorf Racks 
Pipettes including 8- or 12-well multi-channel and automatic multi-channel 
Pipetteboy 
Bio-tek ELx800 Microplate Reader with Gen5 ELISA software 
Timer 
Sufficient tips for pipettes. 0.1-10μl, 2-20μl, 20-200μl, 100-1000μl 
Safety Glasses 
PBS-Tween Hand Washer 
Timer 

 

 
 Consumables & Reagents: 
 

Reagent Company Cat # 

NUNC Immuno Plates (442404) Fisher DIS-971-030J 

Blocker Casein in PBS Pierce 37528 

Goat anti-human IgG (γ-chain)-alk phos Sigma A3187 
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Dulbecco’s PBS (DPBS) Sigma D8537 

5x Diethanolamine Buffer Fisher 34064 

4-Nitrophenyl Phosphate Tablets (20mg) Sigma N2765 

Tween-20 Sigma P7949 

Aluminium Foil Fisher AKL-300-040J 

1.5mL Eppendorf tubes Fisher FB74031 

Reagent Reservoirs (Costar 4870) Fisher PMP-331-010C 

10L PBS powder Invitrogen 21600-069 

 

Recombinant Protein Antigens:   

Recombinant protein antigens required for this SOP include: 

i) GST-PfMSP119 ETSR [“ETSR”] 
ii) GST-PfMSP119 QKNG [“QKNG”] 
iii) GST control [“GST”] 
iv) PfAMA1 (3D7) 
v) PfAMA1 (FVO) 
These GST (fusion) proteins are produced in E. coli and purified by affinity 
chromatography according to Jenner Protocol J136. The PfAMA1 proteins are 
provided by collaborators. These are stored in small aliquots (typically enough 
to coat five ELISA plates) at -20ºC in the human immunology freezer until 
needed. Coating antigen concentration is standard at 2µg/ml. 

 

Reference Serum: 

Human hyperimmune serum (sample 5H) from Kilifi Kenya. Diluted 1:100 and 
stored in aliquots in the MVT -20°C freezer. 

 

Buffers and Solutions:   

Make up buffer and solutions as follows: 

i) PBS/T (PBS with 0.05% Tween) for washing plates. Dissolve 10L PBS 
tub in 10L deionised water (15.0 MΩ setting). Add 5mL Tween-20. 
Shake and return to the ELISA plate wash station. 

 

Day 1. 

6.2 Coating ELISA plates on the bench.  

 
1 Print off a new MVT ELISA record sheet for each experiment. Number the 

experiment with the next experiment number and fill this in with the required 
information throughout the experiment. The next available experiment number 
can be found in the Excel spreadsheet contained in the same folder. Sign off 
the experiment number in the spreadsheet and re-save the file. Sheets can be 
found at: 

 
V:\1.Malaria\1. Master Files\VAC Studies\VAC037\12. Immunology\ELISAs\ 
Templates & Record Sheets 

 
2 Calculate the number of Nunc Immuno ELISA plates required (max number of 

22 test samples per plate). Thaw an aliquot of the recombinant antigen 
required. Make the coating solution by adding recombinant antigen to DPBS at 
a final concentration of 2µg/mL. Working on the bench, add 50 µl per well of the 
coating solution to the ELISA plate using a multi-channel pipette. Store the 
plates at RT over-night (≥16 h), covered in foil (do not stack the plates, but 
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leave flat on the bench). Note time of coating and record on the experiment 
layout sheet. 

 
3 Store any spare recombinant protein antigen at 4°C for maximum 1 week. 
 
 
Day 2. 

6.3 Blocking plates.  

 
1  Flick off the coating solution into the sink (wear eye protection). 
 
2 Wash the plates 6x in PBS/T using the handheld washer. 
 
3 Block the wells with 200 µL per well of Casein blocking buffer.  
 
4 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 

1h (max 1h 30min) at RT. Note time of blocking and record on the experiment 
sheet. 

 
5 During blocking prepare test samples and reference standard dilutions as 

below.  
 

6.4 Sample Preparation 

 
iv) Standard Curve 
 
1 Standard curve dilution: Thaw an aliquot of the 1:100 reference serum (stored 

at -20°C in the human immunology freezer). 
 
2 Prepare dilutions of this reference serum in duplicate in Casein Block buffer: 

 

 For MSP1: Take the aliquot and prepare one 1:900 dilution in an eppendorf 
tube: add 100µL 1:100 to 800µL of blocking buffer. Label 1. Vortex to mix. 

 For AMA1: Take the aliquot and prepare one 1:1000 dilution in an eppendorf 
tube: add 100µL 1:100 to 900µL of blocking buffer. Label 1. Vortex to mix. 

 
Prepare a dilution curve in eppendorf tubes. To make a 1:2 dilution set (enough 
for 4 ELISA plates): 
  

 Add 450µL of Casein block to nine eppendorfs labelled 2-10.  

 Add 450µL of the first dilution 1 to tube 2. Vortex to mix. 

 Add 450µL of 2 to tube 3. Vortex to mix. And so on - repeat this through to 
tube 10. 

 Each tube should now contain 450µL of liquid (except 10 which contains 
900µL), with a 2-fold dilution series running from tube 1 to 10. 
 
 

v) Positive Control Sample 
 

3 Prepare the positive control serum sample in Casein Block buffer and vortex to 
mix: 

 
For MSP1, make a 1:3600 dilution of the reference serum by adding 50µL 1:100 
to 1750µL of blocking buffer.  
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For AMA1, make a 1:8000 dilution of the reference serum by adding 25µL 1:100 
to 1975µL of blocking buffer.  
 

 
vi) Test Serum Samples 

 
4 Prepare the test serum sample in Casein Block buffer. A dilution is required that 

will give an OD 405nm reading that is in the linear part of the standard curve 
(0.15 ≤ OD 405nm ≤ 1.6). Test samples can be tested at a single or multiple 
dilutions. The dilutions must be recorded on the ELISA record sheet. 

 
Typical dilutions for serum from the vaccine trials include 1:300 for samples 
taken from Adenovirus only immunised volunteers, or for most samples from 
volunteers receiving Adeno-MVA regimes taken between d0 – d56. Do not test 
samples at a dilution lower than 1:300. Serum samples taken on or after d63 
should be typically tested at higher dilutions in the range e.g. 1:3000-1:6000 – 
the necessary dilution will depend on the strength of the response and can 
range from 1:600-1:40,000. 
 
To prepare 1:300 dilutions: dilute 3µl serum in 897µl of casein block. 
 
To prepare higher dilutions: dilute the 1:300 dilution appropriately in casein 
block.  
 
Record all dilutions for each sample on the experimental record sheet. 
 
Vortex all samples to mix. 

 

6.5 Plating Serum  

 
1 After blocking is complete, wash the plates 6x in PBS/T. Tap them dry on blue 

roll. 
 
2 Plate serum out using plate layout below. Each well should contain 50μl of 

sample. 

 
 S1 to S22 (blue) = test sera (added in triplicate). 
  

Standard Curve (pink) = dilution 1 (column 1) to dilution 10 (column 10). 
Transfer 50μl from tubes 1-10 (see step 6.4.2) to the appropriate wells of rows 
G and H of the ELISA plate. Repeat for subsequent ELISA plates, etc. 
Blank = 50μl of casein block solution. 
Internal control = 1:3600 MSP1 or 1:8000 AMA1 reference serum (see step 
6.4.3).  

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

B S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

D S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 Internal 

Control 

 
E S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

F S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

G 1 2 3 4 5 6 7 8 9 10 
Blank 

H 1 2 3 4 5 6 7 8 9 10 
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3 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 
2h (max 2h 30min) at RT. Note time of plating and record on the experiment 
sheet. 

 

6.6 Secondary Antibody  

 
1 After this time, wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
2 Dilute the secondary antibody 1:1000 in casein block solution. 5mL is required 

per plate, i.e. 5μl secondary antibody in 5mL casein block. Secondary antibody 
is goat anti-human IgG (γ-chain) Sigma A3187 (stored at +4˚C). Vortex to mix. 

 
3 Add 50μl secondary antibody per well. 
 
4 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 

1h (max 1h 30min) at RT. Note time and record on the experiment sheet. 
 
5 Prepare development buffer – for each plate 10ml is required. Buffer must be 

made up in units of 20ml. Dilute 5x diethanolamine buffer (stored at +4˚C) in 
deionised water (18.2 MΩ setting). For each unit of 20ml, add one 20mg 4-
nitrophenylphosphate tablet (stored at -20˚C) to give a final concentration of 
1mg/ml. Prepare the buffer in a suitable tube wrapped in foil, to prevent 
exposure to light. Leave to stand at RT until required, and shake to mix before 
use. 

 

6.7 Development  

1 Wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
2 Make sure the computer and plate reader are available and turned on, before 

developing. 
 
3 Using a multi-channel automatic pipette, add 100µl development buffer to each 

well of plate one. Using the timer, wait 60-90s and then add development buffer 
to plate 2. Continue adding development buffer to each plate in turn at the same 
60-90s interval. Cover the plates in foil and leave on the bench. Make sure 
there are no bubbles in any of the wells, as this can aberrantly increase the 
absorbance readings. If bubbles are present, pop these with a clean yellow 
pipette tip (use a separate tip for each bubble to avoid cross-contamination of 
development buffer between wells). 

 

6.8 Reading Plates and Analysis  

1. During the development period, log on to ELISA station computer. 

2. Load Gen5 ELISA software. 

3. Create a new experiment. 

4. Select either the MSP1 or AMA1 MVT Clinical Trail ELISA Protocol v1 (links 

below if required) and click OK. 

V:\1.Malaria\1. Master Files\VAC Studies\VAC037\12. Immunology\ELISAs\ 

MSP1 Protocol 

V:\1.Malaria\1. Master Files\VAC Studies\VAC036\13. Immunology\ELISAs\ 

AMA1 Protocol 

5. Click file menu and save as. 
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6. Save experiment files as “MVT E xx followed by the date (yymmdd). It should 

save automatically to C:\Program Files\BioTek\Gen5 1.10\Experiments. 

7. If you have more than one ELISA plate, right click on Plate 1 and select add 

plates. Add the number of extra plates required. 

8. Click on the + icon next to plate 1 to expand the menu, and select Sample IDs. 

9. Enter IDs for samples 1-22 (typically numbered 1-22) and then click OK. 

10. Right click on Plate 1 and choose custom plate layout and select Yes. 

11. Double click on custom layout in the menu for plate 1. 

12. For Sample 1, select 3 vertical replicates and enter the dilution used. Click on 

Square A1. 

13. Enter the dilution used for sample 2 and then click on square A2. Repeat for 

Sample 3 and click on A3 and so on, until all 22 samples have been accounted 

for. For Samples 13-22 click on squares D1-D10. Click OK at the end. 

14. Repeat these steps for any extra plates in the experiment. 

15. After approximately 20mins (for MSP1) and 10mins (for AMA1), read the Abs at 

405nm of Plate 1 using the Bio-tek ELx800 microplate reader. Select Plate 1 

and then “read plate” in the toolbar menu (grey box with green arrow pointing 

left) and then click READ and then OK. 

16. The Abs 405nm of the six wells of the internal control serum should have an 

average OD = 1.0 (approx range 0.8 – 1.2). This value does not need to be 

exact, as the analysis takes this into account and antibody units are calculated 

in relation to the standard curve on each plate. The typical total development 

time for MSP1 is ~25mins and for AMA1 ~15mins, hence initial plate reading (in 

step 6.8.15) begins ~5mins prior to this. 

17. Repeat step 6.8.15 until the mean OD of the internal controls wells on plate 1 = 

~1.0. 

18. Wait for the plate to read and then select Plate 2. Click read plate after the 60-

90s interval has expired (from step 6.7.2). 

19. Repeat for subsequent plates, reading each in order with the appropriate 60-

90s time interval between reading each plate. 

20. When you have read all the plates, save the experiment again (File menu, then 

save). 

21. Now right click on Plate 1 and select power export. 

22. If the Excel format box appears on the screen, click Continue. Excel will remain 

open after power export, but no worksheet will be visible. 

23. Now right click on Plate 2 and select power export. Repeat this process for all 

plates in turn. 

24. Once finished, exit Gen5 software. 

25. An Excel worksheet should be saved in C:\Program Files\BioTek\Gen5 

1.10\Experiments with the same name as the Gen5 Experiment. 

26. Open the worksheet. 

27. Each plate is displayed on a separate worksheet. For each plate: 

 

28. Check the R2 value for the standard curve is >0.994. 

29. Carefully review the Abs405 data for each well. Check for no aberrant readings 

in the triplicate values for each sample. Check the Abs405 of the blank wells is 

<0.15. 

30. The worksheet will analyse the data and provide a readout in the bottom table 

for the antibody units of each sample (AU). These are multipled by a conversion 
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factor if the internal reference (highlighted in green) is > ±10% of the expected 

value. 

31. Any readings that are below the Abs405 threshold of 0.15 will be highlighted in 

bright blue. These should be regarded as negative. 

32. Any readings that are above the Abs405 threshold of 1.6 will be highlighted in 

bright yellow. These should be repeated in another ELISA assay at higher 

dilution. 

33. If you have tested two dilutions (e.g. sample positions 1&13, 2&14 etc), these 

are averaged in the final table and % difference calculated. This table can be 

ignored if only one dilution was tested for each sample. 

34. Fill in the volunteer number and timepoint for each sample. 

35. Copy the final data set to the MSP1 or AMA1 MVT ELISA database found at: 

V:\1.Malaria\1. Master Files\VAC Studies\VAC037\12. Immunology\ELISAs\ 

MSP1 ELISA Data. Note the data for each antigen are stored on separate 

worksheets (see tabs at the bottom). 

36. Copy the Gen5 Experiment and Excel sheet into a folder labelled with the MVT 

Exx number in the appropriate Immunology / ELISA data folder for the Vac 

study on the V:// drive. 

37. ELISA plates can be discarded once read.  

38. MVT ELISA record sheets should be stored in the ring-binder folder in the MVT 

office. 

 

7 Associated documents 

ELISA Experiment Record Sheets and Spreadsheet of MVT Exx numbers. 
Found at: 
 
V:\1.Malaria\1. Master Files\VAC Studies\VAC037\12. Immunology\ELISAs\ 
Templates & Record Sheets 
 
 
MVT ELISA database stored at: 
 
V:\1.Malaria\1. Master Files\VAC Studies\VAC037\12. Immunology\ELISAs\ 

MSP1 ELISA Data 
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ML011: RH5 ELISA 

 

1 Purpose 

During malaria vaccine trials, the Enzyme-Linked ImmunoSorbent Assay 
(ELISA) is the primary assay for monitoring the antibody responses induced by 
vaccination in the serum of human volunteers. This SOP contains the detailed 
experimental protocol for performing this assay for the antigen Plasmodium 
falciparum reticulocyte-binding protein homologue 5 (PfRH5).  

2 Introduction 

The aim of our clinical vaccine trials is to induce protection against malaria in 
human volunteers and characterize the cells and/or antibodies involved in 
inducing protective immune responses. One of the primary endpoints in Phase I 
and Phase II trials of blood-stage malaria vaccines is immunogenicity as 
measured by ELISA, which quantifies the level of antigen-specific antibodies in 
the serum of immunized volunteers. In this case, the PfRH5 protein is cultured 
in S2 cells by Jing Jin. This assay will use RH5 v2 CTAG (batch: P0184). 
 
The ELISA protocol has been standardized according to published methods (1). 
This protocol uses a reference serum on each ELISA plate to detect antibodies 
induced by experimental malaria vaccines. 
 
Different types of controls are included; a reference serum from a high 
responding volunteer is included on each ELISA plate to produce a standard 
curve which is used to quantify and assign ELISA units to each unknown 
sample on the plate; also an internal positive control sample and negative 
control / no serum (“blank wells”) are used to perform QC analysis on each 
ELISA plate.  
 
ELISA plates are coated over-night with the RH5 protein. The assay is 
performed by preparing a standard curve and internal controls from the 
reference serum and adding these samples to the plate. Unknown test serum 
samples from immunized volunteers are diluted and added in triplicate to the 
ELISA plate. After a two hour incubation period, the diluted sera are discarded, 
the plate is washed and a secondary polyclonal antibody against the γ–chain of 
human IgG is added. This secondary antibody is conjugated to the enzyme 
alkaline phosphatase. After another one hour incubation, followed by a wash 
step, the alkaline phosphatase substrate is added. The substrate is left to 
develop for 25 minutes and the absorbance at 405nm is read using a plate 
reader. The result is obtained by taking an average of the triplicate wells for 
each test sample, and using the standard curve to assign RH5 ELISA arbitrary 
units (AU). 
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3 Scope  

This SOP covers all serum samples taken from volunteers in RH5 malaria 
vaccine trials in Oxford for which ELISA is one of the primary readouts. It does 
not cover booking in of samples to the laboratory, which is described in ML001 
Malaria lab sample handling. 
 

4 Definitions 

ELISA = Enzyme-Linked ImmunoSorbent Assay. 

5 Responsibilities 

All staff employed by the University of Oxford who work on the malaria vaccine 
trials, including clinicians or visiting scientists working in the lab, must follow 
these protocols. 
 
The Senior Immunologist ensures that staff are competent to perform these 
procedures. 
 

6 Procedure 

6.1 Equipment & Reagents 

Where appropriate, equipment and reagents used in the processing of samples 
from clinical trials is dedicated to study work. Equipment used forms part of the 
laboratory maintenance and monitoring plan. 

  

Equipment: 
Fridge at +4oC 
Freezer at -20oC and -80oC 
Vortex 
Eppendorf Racks 
Pipettes including 8- or 12-well multi-channel and automatic multi-channel 
Pipetteboy 
Bio-tek ELx800 Microplate Reader with Gen5 ELISA software 
Timer 
Sufficient tips for pipettes. 0.1-10μl, 2-20μl, 20-200μl, 100-1000μl 
Safety Glasses 
PBS-Tween Hand Washer 
Timer 

 
 Consumables & Reagents: 
 

Reagent Company Cat # 

NUNC Immuno Plates (442404) Fisher DIS-971-030J 

Blocker Casein in PBS Pierce 37528 

Goat anti-human IgG (γ-chain)-alk phos Sigma A3187 

Dulbecco’s PBS (DPBS) Sigma D8537 

5x Diethanolamine Buffer Fisher 34064 

4-Nitrophenyl Phosphate Tablets (20mg) Sigma N2765 

Tween-20 Sigma P7949 

Aluminium Foil Fisher AKL-300-040J 

1.5mL Eppendorf tubes Fisher FB74031 

Reagent Reservoirs (Costar 4870) Fisher PMP-331-010C 

10L PBS powder Invitrogen 21600-069 
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Recombinant Protein Antigens:   

Recombinant protein antigens required for this SOP include: 

i) RH5 v2 Ctag  
RH5 protein is cultured in S2 cells and purified by affinity chromatography by 
Jing Jin. The protein is stored in 28µl aliquots (enough to coat 2 ELISA plates) 
at          -80ºC in the blood stage trial freezer until needed. Coating antigen 
concentration is standard at 2µg/ml. 

 

Reference Serum: 

VAC057 Volunteer 1020 G2B d84 serum is stored in the blood stage trial -80°C 
freezer. 

 

Buffers and Solutions:   

Make up buffer and solutions as follows: 

ii) PBS/T (PBS with 0.05% Tween) for washing plates. Dissolve 10L PBS 
tub in 10L deionised water (15.0 MΩ setting). Add 5mL Tween-20. 
Shake and return to the ELISA plate wash station. 

 

Day 1. 

6.2 Coating ELISA plates on the bench.  

6.2.1 Print off a new MVT ELISA record sheet for each experiment. Number the 
experiment with the next experiment number and fill this in with the required 
information throughout the experiment. The next available experiment number 
can be found in the Excel spreadsheet contained in the same folder. Sign off 
the experiment number in the spreadsheet and re-save the file. Sheets can be 
found at: 

 
V:\1.Malaria\1. Master Files\5. Lab general info/blood stage mvt \Templates & 
Record sheets \ MVT ELISA record sheet 

 
6.2.2 Calculate the number of Nunc Immuno ELISA plates required (max number of 

22 test samples per plate). Thaw an aliquot of RH5 for >15minutes. Make the 
coating solution by adding RH5 to DPBS at a final concentration of 2µg/mL (DO 
NOT VORTEX). Working on the bench, add 50 µl per well of the coating 
solution to the ELISA plate using a multi-channel pipette. Store the plates at 4°C 
over-night (≥16 h), wrapped in cling film. Note time of coating and record on the 
experiment layout sheet. 

 
Day 2. 

6.3 Blocking plates.  

 
6.3.1 Bring casein to RT for >30mins and flick off the coating solution into the sink 

(wear eye protection). 
 
6.3.2 Wash the plates 6x in PBS/T using the handheld washer. 
 
6.3.3 Block the wells with 200 µL per well of Casein blocking buffer.  
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6.3.4 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 
1h (max 1h 30min) at RT. Note time of blocking and record on the experiment 
sheet. 

 
6.3.5 During blocking prepare test samples and reference standard dilutions as 

below.  
 

 

6.4 Sample Preparation 

 
vii) Standard Curve 
 
 
6.4.1 Prepare dilutions of VAC057 Volunteer 1020 day 84 reference serum in 
duplicate in Casein Block buffer: 

 

 For RH5: Take the serum and prepare one 1:100 dilution in an eppendorf 
tube: add 6µL to 594µL of blocking buffer. Label 1. Vortex to mix. 

 
Prepare a dilution curve in eppendorf tubes. To make a 1:2 dilution set (enough 
for 2 ELISA plates): 
  

 Add 300µL of Casein block to nine eppendorfs labelled 2-10.  

 Add 300µL of the first dilution 1 to tube 2. Vortex to mix. 

 Add 300µL of 2 to tube 3. Vortex to mix. And so on - repeat this through to 
tube 10. 

 Each tube should now contain 300µL of liquid (except 10 which contains 
600µL), with a 2-fold dilution series running from tube 1 to 10. 
 
 

viii) Positive Control Sample 
 
6.4.3 Prepare the positive control serum sample in Casein Block buffer and 
vortex to mix: 

 
For RH5, make a 1:100 dilution of the reference serum by adding 3µL to 297µL 
of blocking buffer. Then make a 1:3200 dilution by adding 28µL of the 1:100 
stock to 868µL blocking buffer. 
 
Repeat this 2 more times to make 3 independent 1:3200 dilutions. 
 

 
ix) Test Serum Samples 

 
6.4.4 Prepare the test serum sample in Casein Block buffer. A dilution is required that 

will give an OD 405nm reading that is in the linear part of the standard curve 
(0.15 ≤ OD 405nm ≤ 2.5). Test samples can be tested at a single or multiple 
dilutions. The dilutions must be recorded on the ELISA record sheet. 

 
Typical dilutions for serum from the vaccine trials include 1:100 for samples 
taken from Adenovirus only immunised volunteers, or for most samples from 
volunteers receiving Adeno-MVA regimes taken between d0 – d56. Do not test 
samples at a dilution lower than 1:100. Serum samples taken on or after d63 
should be typically tested at higher dilutions in the range e.g. 1:100-1:3000 – 
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the necessary dilution will depend on the strength of the response and can 
range from 1:100-1:40,000. 
 
To prepare 1:100 dilutions: dilute 3µl serum in 297µl of casein block. 
 
To prepare higher dilutions: dilute the 1:00 dilution appropriately in casein block.  
 
Record all dilutions for each sample on the experimental record sheet. 
 
Vortex all samples to mix. 

 

6.5 Plating Serum  

 
6.5.1 After blocking is complete, wash the plates 6x in PBS/T. Tap them dry on blue 

roll. 
 
6.5.2 Plate serum out using plate layout below. Each well should contain 50μl of 

sample. 

 
 S1 to S22 (blue) = test sera (added in triplicate). 
  

Standard Curve (pink) = dilution 1 (column 1) to dilution 10 (column 10). 
Transfer 50μl from tubes 1-10 (see step 6.4.2) to the appropriate wells of rows 
G and H of the ELISA plate. Repeat for subsequent ELISA plates, etc. 
 
Blank = 50μl of casein block solution. 
 
Internal control = 1:3200 RH5 reference serum (see step 6.4.3).  

 
 
6.5.3 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 

2h (max 2h 30min) at RT. Note time of plating and record on the experiment 
sheet. 

 

6.6 Secondary Antibody  

 
6.6.1 After this time, wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
6.6.2 Dilute the secondary antibody 1:1000 in casein block solution. 6mL is required 

per plate, i.e. 6μl secondary antibody in 6mL casein block. Secondary antibody 
is goat anti-human IgG (γ-chain) Sigma A3187 (stored at +4˚C). Vortex to mix. 

 
6.6.3 Add 50μl secondary antibody per well. 
 

 1 2 3 4 5 6 7 8 9 10 11 12 

A S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

B S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

D S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 Internal 

Control 

 
E S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

F S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 

G 1 2 3 4 5 6 7 8 9 10 
Blank 

H 1 2 3 4 5 6 7 8 9 10 
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6.6.4 Stack the plates (with an empty blank plate on top) and cover in foil. Leave for 
1h (max 1h 30min) at RT. Note time and record on the experiment sheet. 

 
6.6.5 Prepare development buffer – for each plate 10ml is required. Buffer must be 

made up in units of 20ml. Dilute 5x diethanolamine buffer (stored at +4˚C) in 
deionised water (18.2 MΩ setting). For each unit of 20ml, add one 20mg 4-
nitrophenylphosphate tablet (stored at -20˚C) to give a final concentration of 
1mg/ml. Prepare the buffer in a suitable tube wrapped in foil, to prevent 
exposure to light. Leave to stand at RT until required, and shake to mix before 
use. 

 

6.7 Development  

 
6.7.1 Wash the plates 6x in PBS/T. Tap them dry on blue roll. 
 
6.7.2 Make sure the computer and plate reader are available and turned on, 

before developing. 
 
6.7.2 Using a multi-channel automatic pipette, add 100µl development buffer to each 

well of plate one. Using the timer, wait 60-90s and then add development buffer 
to plate 2. Continue adding development buffer to each plate in turn at the same 
60-90s interval. Cover the plates in foil and leave on the bench. Make sure 
there are no bubbles in any of the wells, as this can aberrantly increase the 
absorbance readings. If bubbles are present, pop these with a clean yellow 
pipette tip (use a separate tip for each bubble to avoid cross-contamination of 
development buffer between wells). 

 

6.8 Reading Plates and Analysis  

1. During the development period, log on to ELISA station computer. 

2. Load Gen5 ELISA software. 

3. Create a new experiment using an existing protocol. 

4. Select the MVT PfRH5 ELISA Protocol (link below if required) and click OK. 

a. X:\S Draper\Clinical Trials\ELISA Protocols\150820 MVT PfRH5 ELISA 

protocol  

5. Click file menu and save as. 

6. Save experiment files as “MVT E xx followed by initials and the date (yymmdd) 

in  

a. V:\1.Malaria\1.Master files\2.VAC 

Studies\VAC057\12.Immunology\ELISA data\Standardised 

ELISAs\Experiments 

7. If you have more than one ELISA plate, right click on Plate 1 and select add 

plates. Add the number of extra plates required. 

8. Click on the + icon next to plate 1 to expand the menu, and select Sample IDs. 

9. Enter IDs for samples 1-22 (typically numbered 1-22) and then click OK. 

10. Right click on Plate 1 and choose custom plate layout and select Yes. 

11. Double click on custom layout in the menu for plate 1. 

12. For Sample 1, select 3 vertical replicates and enter the dilution used. Click on 

Square A1. 

13. Enter the dilution used for sample 2 and then click on square A2. Repeat for 

Sample 3 and click on A3 and so on, until all 22 samples have been accounted 

for. For Samples 13-22 click on squares D1-D10. Click OK at the end. 



344 
 

14. Repeat these steps for any extra plates in the experiment. 

15. After approximately 20minutes (for RH5), read the Abs at 405nm of Plate 1 

using the Bio-tek ELx800 microplate reader. Right click on Plate 1 and then 

“read plate 1” or click green play button in the toolbar menu, click READ and 

then OK. 

16. The Abs 405nm of the six wells of the internal control serum should have an 

average OD = 1.0. The typical total development time for RH5 ~25minutes, 

hence initial plate reading (in step 6.8.15) begins ~5mins prior to this. 

17. Repeat step 6.8.15 until the mean OD of the internal controls wells on plate 1 = 

~1.0. 

18. Wait for the plate to read and then select Plate 2. Click read plate after the 60-

90s interval has expired (from step 6.7.2). 

19. Repeat for subsequent plates, reading each in order with the appropriate 60-

90s time interval between reading each plate. 

20. When you have read all the plates, save the experiment again (File menu, then 

save). 

21. Now right click on Plate 1 and select export. 

22. Now right click on Plate 2 and select export. Repeat this process for all plates in 

turn. 

23. Once finished, exit Gen5 software. 

24. Save the Excel worksheet on the V:\ drive in the correct experiment folder with 

the same name as the Gen5 experiment. 

25. Each plate is displayed on a separate worksheet. For each plate: 

26. Check the R2 value for the standard curve is >0.994. 

27. Carefully review the Abs405 data for each well. Check for no aberrant readings 

in the triplicate values for each sample CV should be <20%. Check the Abs405 

of the blank wells is <0.15. 

28. The worksheet will analyse the data and provide a readout in the bottom table 

for the antibody units of each sample (AU). 

29. Any readings that are below the Abs405 threshold of 0.3 should be regarded as 

negative. 

30. Any readings that are above the Abs405 threshold of 2.5 should be repeated in 

another ELISA assay at higher dilution. 

31. Fill in the volunteer number and timepoint for each sample. 

32. Copy the final data set to the RH5 MVT ELISA database found at: 

V:\1.Malaria\1. Master Files\VAC Studies\VAC057\12. Immunology\ELISAs\ 

VAC057 ELISA Database. 

33. ELISA plates can be discarded once read.  

34. MVT ELISA record sheets should be stored in the relevant trial ring-binder 

folder. 

 

7 Associated documents 

ELISA Experiment Record Sheets and Spreadsheet of MVT Exx numbers. 
Found at: 
 
V:\1.Malaria\1. Master Files\5. Lab general info \ blood stage mvt \ Templates & 
Record sheets \ MVT ELISA record sheet 
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MVT ELISA database stored at: 
 
V:\1.Malaria\1. Master Files\VAC Studies\VAC057\12. Immunology\ELISA data 

\ VAC057 ELISA database 
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ML022: Blood Stage Challenge Viability Assay 
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ML009: Collection, preparation and slide reading: Malaria Challenge Studies 
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ML008: Malaria qPCR 
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