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Abstract 

Over the last decade, increasing numbers of multi-national corporations, public institutions 

and individual property owners have become interested in installing solar photovoltaics and 

small wind turbines. To best inform this broad range of actors, this research aims to assess 

the financial viability of such investments across broad city regions whilst maintaining 

accuracy at individual properties. Publicly available digital representations of urban surfaces 

are central to meeting this aim because they can be used to assess the area, slope and 

orientation of potential solar photovoltaic (PV) installation sites and to define how vertical 

wind profiles are altered by urban areas. 

A first study utilised digital surface models (DSMs) across seven UK cities to assess the roof 

spaces available for solar PV and also incorporated socio-economic factors to define the 

propensity for cities to install the technology. Despite changes to financial incentives that 

had recently occurred, the technologies remained viable at a very large number of locations 

and could theoretically meet large percentages (16% to 43%) of the cities’ electricity 

demands. 

The accuracy of slope, orientation and available area estimation in roof geometry modelling 

was then improved through the development of a neighbouring buildings method. In 87% of 

536 validated results, the method identified the correct roof shape and roof slope was 

estimated to a mean absolute error of 3.76° when compared to 182 measured roofs.  

Work was then undertaken to improve solar insolation modelling. A radiative transfer model 

was created that incorporated shading based on DSM data. It estimated the power output 

of 17 solar PV installations across four UK cities with +2.62% mean percentage error when 

its 2013 insolation estimates were converted to power outputs using a 0.8 performance 

ratio. The validation data showed that the RTS model outperformed the market-leading esri 

ArcMap solar radiation software which incurred a -15.97% mean percentage error. This 

method was then adapted to be deployable on a city scale and predicted solar insolation 

with a mean percentage error of -4.39% despite the process being made far more 

computationally efficient. 

A method to estimate long-term average wind speeds for urban areas was then developed 

that produced results of comparable accuracy to an existing model but with considerably 

reduced computational demand and complexity in deployment. The mean absolute error in 
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wind speed estimation was just 1.75% greater using the simplified methodology than the 

existing model. 

Finally, the improved modelling of roof geometries, solar insolation and long-term mean 

wind speed were brought together to evaluate the city-scale potential for solar PV and small 

to medium wind microgeneration. The research has shown that wind and solar PV 

microgeneration at sites that pay back within nine years could theoretically meet 88.5% of 

annual domestic electricity demand in the city of Leeds, or would be the equivalent of 

providing electricity to 300,319 homes. Current financial contexts were used to define a 

baseline scenario from which hypothetical changes to a variety of factors influencing 

microgeneration viability were investigated. When the costs and revenues were defined 

from a pessimistic, but still realistic, perspective the percentage of the study area’s electricity 

demand that could theoretically be met by wind and solar PV microgeneration fell to 0.1%. 

This suggests that government policy will continue to play a key role in the future growth of 

UK wind and solar PV deployment.  
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Chapter 1 Introduction to City-scale Microgeneration Appraisal 

1.1 Research Overview 

Almost a decade has passed since the publication of The Stern Review which stated that 

evidence of climate change was overwhelming and demanded an urgent response (Stern and 

Treasury, 2007). Lord Stern (2007) stated that attitudes and investment over the coming 

decades would profoundly influence the future climate and stated that there could be dire 

consequences from inaction, warning of major disruption to economic and social activity on 

a scale similar to those associated with the great wars and the 1920’s economic depression. 

The review identified climate change as a cause of market failure due to the environment 

and environmental services being regarded as an unquantifiable externality to global 

economies. It led to the 2008 UK Climate Change Act that introduced numerous initiatives 

that sought to accelerate the growth of renewable energy deployment in the UK. Most 

importantly, the Act defined a target to reduce UK greenhouse gas emissions by 80% against 

1990 baseline data (Climate Change Act, 2008); a binding target that has helped to focus the 

efforts of policy makers across many sectors of government to reduce emissions. The Act 

also created a new carbon budgeting system whereby successive four-year strategies assess 

progress towards meeting emissions reductions targets and layout plans for the following 

four years (Climate Change Act, 2008). In this way the targets would maintain their 

prevalence in the policy arena which would be further protected by the Climate Change Act’s 

creation of the Committee on Climate Change (CCC), an independent, statutory body to 

advise the UK Government on climate change matters (CCC, 2015).  

In the same year the Climate Change Act passed to law, the Energy Act received royal assent 

and brought the Feed in Tariff (FiT) mechanism to the UK (Energy Act, 2008). FiTs had proven 

successful at encouraging the uptake of small-scale generation of renewable electricity in 

other European countries such as Germany (Barker, 2013). The FiT mechanism rewards 

small-scale generators of renewable electricity with payments scaled relative to power 

output which the government supplements with a flat rate export tariff (DECC, 2013a). 

Therefore, solar and wind technologies can generate revenue for their owners in addition to 

providing electricity at substantially lower greenhouse gas emissions than traditionally 

available from the national grid (Bush et al., 2014; Goe and Gaustad, 2014). However, not all 

wind and solar systems are eligible for these incentives because the government has also 

introduced the Microgeneration Certification Scheme (MCS) to protect consumers from 
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misleading claims about performance from manufacturers. This system ensures that the 

technologies have been tested to specific standards to guard against bogus claims. 

The commitments made in the Energy Act were reaffirmed in 2011 by the then newly elected 

government’s ‘Carbon Plan’ (DECC, 2011). However, the most recent developments in policy 

have undermined confidence in the UK government’s commitment to reducing greenhouse 

gases (Harrabin, 2015). The government has announced cuts in subsidies to large onshore 

wind (Rudd, 2015), commercial solar (Truss, 2014) and industrial biomass burning (DECC, 

2015b). In addition, the Green Deal, a scheme to provide housing with improved insulation, 

has been withdrawn (DECC, 2015c) and no replacement mechanism has been offered. A 

significant delay on legislation to ensure house builders move towards zero-carbon buildings 

(Harvey, 2013) and reduced taxation on polluting industries (Harrabin, 2015) have further 

emphasised a direction in policy that is less supportive of CO2 reduction.  Furthermore, the 

Climate Change Levy has been extended to the renewables industry (Macalister and 

Vaughan, 2015), penalising the very companies it was designed to promote. Then, in 2016, 

the decision was made to close DECC completely and move its responsibilities to the 

Department of Business, Energy and Industrial Strategy (Harrabin, 2016a). Although too early 

to assess the consequences to climate related policies, the halving of cabinet ministers with 

an environmental brief (Huhne, 2016 in Vaughan (2016a)) and the symbolism of removing a 

department dedicated to tackling climate change has led many environment-focused 

institutions to conclude that climate change has been significantly de-prioritised (Friends of 

the Earth, 2016; Clark and Ward, 2016). Set against such a shifting policy context that can be 

interpreted as increasingly disinterested in the support of renewable energy, it is interesting 

to note the continued growth of the UK renewable energy industry and its success in 

delivering renewable capacity. Specifically, solar and wind microgeneration has now 

demonstrated substantial potential to become a significant contributor to the UK’s energy 

mix and could yet go on to form an important part of meeting the UK’s 15% renewable energy 

by 2020 target set by the European Commission (DECC, 2013b). Of the microgeneration 

technologies available, solar photovoltaics (PV) has shown the most potential to meet energy 

demand. At the end of June 2016, UK installed capacity from registered installations (of less 

than 50 kW) was 4.31 GW from a total of 866,473 sites (DECC, 2016b). To put the present 

capacity of UK solar PV into a more relatable context, the electricity it generated exceeded 

that generated by coal for the first time in April 2016 (Vaughan, 2016b). 
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Figure 1-1 UK Solar PV Installed Capacity December 2009 to August 2015 (DECC, 2015d) 

The growth of solar PV installed capacity since December 2009 to August 2015, shown in 

Figure 1-1, features particularly rapid increases prior to government adjustments to the FiT 

but becomes steadier and more predictable following FiT Change 3. To place the growth of 

the industry across recent years in an appropriate context, Figure 1-2 presents a map of 

International Energy Agency (IEA) data to show that PV deployment in the UK is not the most 

impressive among countries with similar economies despite its promising growth. It is clear 

that Germany has built a very strong solar PV microgeneration industry and that Ireland has 

performed especially poorly, achieving only 1-10 W per capita by 2014. When viewed in this 

context, the UK appears middle-ranking at best, but to have achieved this given the country’s 

northerly latitudes must be regarded as success. 

The small and medium wind energy market has not experienced the same growth as 

domestic solar PV but recent DECC statistics show installed capacity of FiT-supported wind 

installations contribute 585.8 MW (DECC, 2016b). Beyond the more immediately apparent 

factors for this, such as the greater visual intrusion of a wind turbine, there have been other 

obstructions to the development of wind energy microgeneration. Gipe (2013) and Marsh 

(2004) have made the argument that poor understanding of wind speeds in urban areas has 

led to the siting of turbines in locations of inadequate wind resource. Confidence in the 

technology as a whole has then diminished as investor expectations have not been met 
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(Stankovic et al., 2009). This is despite academic studies that show there are large numbers 

of sites in specific urban areas that offer a viable wind resource (Millward-Hopkins et al., 

2013b; Drew et al., 2013; Sunderland et al., 2013).  

 
Figure 1-2 Growth of installed PV capacity per capita across Western Europe from 2009 to 2014. Data from 

IEA-PVPS annual reports (IEA-PVPS, 2015) 

The figures for solar PV suggest that microgeneration could be a significant part of the future 

energy mix but it is important to understand that this would require a very large number of 

organisations and individuals to make a decision to invest. The US National Renewable 

Energy Laboratory (NREL) state that the availability of reliable, accurate, and easily accessible 

solar and wind energy resource data can help tackle this issue and greatly accelerate the 

deployment of the technologies (NREL, 2012).  The methods for the provision of this resource 

data across broad geographical areas are now briefly discussed.  

In support of its region’s recent growth in microgeneration investment, Leeds City Council 

(LCC) commissioned AECOM, an engineering consultancy, to produce a report to establish 

the potential of the Yorkshire and Humber Region in 2011 (AECOM, 2011). The report 

identified potential resources LCC could exploit by providing a top-down estimate of the 

maximum economic potential for each type of renewable energy technology across Leeds. 
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LCC has also actively engaged with the University of Leeds to produce a report investigating 

the potential for the development of a low carbon local economy with specific reference to 

the role that microgeneration could play. ‘A Low Carbon Leeds City Region’ investigated the 

most cost effective and efficient methods to decarbonise a city using Leeds as its focus and 

incorporating microgeneration as one of a plethora of strategies (Gouldson et al., 2012). 

Further industry-led investigations have been researched on similar regional scales (JBA, 

2012) but all are subject to a similar problem. In the studies described above, the physical 

capacity estimations are based on trends in uptake derived from complex socio-economic 

factors and result in highly optimistic if not unrealistic capacity estimations. For example, the 

AECOM study presumed that a 6 kW turbine could be installed at set distances apart 

regardless of building layout and wind resource. It is more beneficial, therefore, to 

investigate the potential for solar and wind microgeneration technologies from a bottom-up 

perspective, evaluating the underlying resource at every individual location across the study 

area to avoid the sweeping generalisations that top-down methodologies make. This is 

especially true given the requirement for property owners to make a decision in favour of 

microgeneration investment. This thesis is dedicated to explaining and enhancing the latest 

and most accurate methods to estimate city-scale solar and wind resources from a bottom-

up perspective. 

1.2 The Need for Research 

There are many barriers to microgeneration investment that challenge the UK industry’s 

ability to deliver a significant contribution of renewable electricity to the grid. Limited 

investment capital coupled with a lack of awareness of potentially profitable projects are key 

barriers that are strengthened by complex and frequently changing government subsidy 

mechanisms (Allman et al., 2004; Kelly and Pollitt, 2011). These barriers are common to a 

great many cities around the world and can only be tackled with affordable advice on the 

technological capabilities of renewable energy systems (Bale et al., 2012) which must be built 

on accurate estimations of wind and solar resource. 

Therefore, the development of rapidly deployable models of wind and solar resource that 

are accurate at individual properties and also capable of informing city-scale decision making 

forms the central focus of this thesis. This is made all the more important by the fact that 

alerting property owners to the potential benefits of microgeneration with an accurate 

assessment will increase the deployment of the technologies. However, individual property 

owners are not the only parties that may benefit from such information as large private 

property owners and local authorities around the world are increasingly conscious of the 
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need for long-term strategy in the deployment of renewable technologies across their 

portfolios (Bale et al., 2012). Furthermore, UK national government policy explicitly states a 

presumption that local authorities lead in the development of local energy generation 

through support to local communities, investment in local energy schemes and targeted 

approaches for specific subsets of public buildings, such as schools (DECC, 2014b; DECC, 

2014a). With limitations to local government budgets showing no signs of easing, authorities 

have been, and will continue to be, forced to consider broad ranges of cost cutting and 

revenue raising projects with solar and wind microgeneration investment one such option. 

There are then wider benefits that could be attained from accurate predictions as they could 

increase investor confidence in the technologies as a whole. An integrated appraisal of both 

wind and solar options could raise awareness of the potential for small wind amongst those 

previously only considering PV and protect investors from the potentially turbulent costs and 

incentives context of an individual technology.  

1.3 Research Aims 

Given the barriers to the wider deployment of solar and wind microgeneration technologies 

and the current gaps in the literature, the primary aim of this thesis is to improve the 

accuracy of solar and wind resource appraisal at the city scale and to demonstrate how such 

tools could be used to inform investment decision making. This is achieved through the use 

of a case study based on the city of Leeds, UK. All models must be executable without 

requiring high power computing to widen the locations where they can be deployed. 

1.4 Bibliography of Published Work 

Over the course of the research project described in this thesis, the following papers have 

been published or submitted: 

Chapter 3: 

Gooding, J., Edwards, H., Giesekam, J., Crook, R. (2013) ‘Solar City Indicator: A Methodology 

to Predict City Level PV Installed Capacity by Combining Physical Capacity and Socio-

economic Factors’, Solar Energy, 95, pages 325-335 DOI: 10.1016/j.solener.2013.06.027 

Jacques, D.A., Gooding J., Giesekam J.J., Tomlin A.S., Crook R. (2014) ‘Methodology for the 

assessment of PV capacity over a city region using low-resolution LiDAR data and application 

to the City of Leeds (UK)’, Applied Energy, 124, 28-34. 
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Gooding, J., Tomlin A.S., Crook R. (2015) ‘Modelling of roof geometries from low-resolution 

LiDAR data for city-scale solar energy applications using a neighbouring buildings method’, 

Applied Energy, 148, Pages 93–104, DOI: 10.1016/j.apenergy.2015.03.013 

Chapter 4: 

Gooding, J., Smith, C.J., Crook, R., Tomlin, A.S. (2015) ‘Solar Resource Estimation Using a 

Radiative Transfer with Shading (RTS) Model’, Proceedings of the 31st European Photovoltaic 

Solar Energy Conference and Exhibition, DOI: 10.4229/EUPVSEC20152015-6AV.4.25 

Chapter 5: 

Gooding, J. and Tomlin, A.S. (2016) ‘Simplified Methods for Estimating Aerodynamic 

Parameters and Wind Profiles for Height Heterogeneous Surfaces’, submitted to Wind Energy 

Chapter 6: 

Adam, K., Hoolohan, V., Gooding, J., Knowland, T., Bale, C.S.E., Tomlin, A.S., (2015) 
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Chapter 2 The Fundamentals of Wind and Solar Electricity and 

Progress in City-scale Microgeneration Viability Assessment 

This chapter presents a discussion of the state-of-the-art in physically derived city-scale 

microgeneration viability assessment. To better understand the foundations of such 

methodologies, however, it is important to first appreciate the fundamental properties of 

how electricity is generated from wind and solar energy. Therefore, this chapter opens with 

an introduction to the properties of wind and solar energy and how the performance of 

technologies that convert this energy to electricity is impacted by a variety of factors. There 

then follows a discussion of how different approaches have been developed to evaluate the 

environment in which the technologies are placed, leading to the research presented in 

Chapter 3, Chapter 4 and Chapter 5. 

Understanding the physical wind and solar resource is only one step towards predicting 

microgeneration viability because the financial aspects are complex and have been in 

fluctuation over recent years but are vitally important. So much so, a significant part of this 

chapter is dedicated to introducing the relevant cost and revenue streams and how the 

relative importance of each has changed in recent times. Understanding of the financial 

considerations can be improved by studying how possible future policies could shape the 

solar and wind microgeneration industry which is a key aim of Chapter 6. Finally, there is a 

brief section to summarise the key datasets that are used in the research.  

2.1 Wind 

Electricity from wind energy is generated by the kinetic energy of the wind that passes 

through the swept area of a rotor that turns in response to the force applied. The blade is 

connected to a shaft that turns a magnet inside a turbine, generating electricity. The need 

for accuracy in wind speed estimation for investment appraisal is increased by the cubic 

relationship between wind speeds (U) and the available power in the wind described in 

equation (2-1) (Gipe, 2004): 

𝑊𝑖𝑛𝑑 𝑃𝑜𝑤𝑒𝑟 = 0.5𝜌𝐴𝑈3, (2-1) 

where 𝜌  is the density of air and 𝐴  is the swept area the wind is passing through. This 

relationship is caused by the kinetic energy in a particular mass (𝑚) of air being 0.5𝑚𝑈2, 

while the mass of air passing through a turbine’s swept area in one second is ρAU. It means 

that significant errors in wind power estimations can result from minor inaccuracies in 

predicted wind speeds. This is important because Peacock et al. (2008) stated that although 
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small wind turbines may offer a possible route for reducing CO2 emissions, widespread 

investment is unlikely without an accurate method to calculate energy yield at a specific site. 

For sites without detailed anemometry, such as all those considered in a typical city-scale 

viability analysis, an intrinsic part of the energy yield estimation is a prediction of long-term 

average mean wind speed.  

There are physical limits to the power that can be extracted from the wind and there is an 

absolute limit related to the mass flow rate before and after a turbine. Mass flow must 

remain constant on both sides of a turbine so it acts to expand the flow of air whilst also 

slowing the flow. The reduction in velocity is achieved by converting some of the kinetic 

energy of the flow to mechanical. There is, therefore, a maximum limit where the mass flow 

rate equilibrium of both sides of the turbine can be maintained regardless of turbine design 

which is defined by the power coefficient (𝐶𝑝) described in equation (2-2) (Burton, 2001). 

𝐶𝑝 =
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟

0.5𝜌𝐴𝑈3
. (2-2) 

The coefficient can be calculated using the equation above and momentum theory to define 

a maximum limit (the Betz limit) to the amount of power that can be extracted from the 

wind: 

𝐶𝑝 =
16

27
= 0.593. (2-3) 

Hence it will never be possible to extract more than 59.3% of the total power in the wind. 

There are further physical limits on the power that may be extracted from the wind including 

the losses as heat or sound energy involved in converting kinetic to electrical energy, the 

time required for turbines to respond to changes in wind direction and the effects of 

turbulence in the flow. Due to these physical limits, it is found that turbines typically convert 

a maximum of 30% of the total energy available in the wind to electrical energy. This further 

emphasises the importance of accuracy in wind speed prediction. The following section seeks 

to describe the variety of approaches that have been devised to obtain the greatest accuracy 

for different scales of interest. 

2.1.1 Mesoscale Models 

Mesoscale meteorology is the study of weather systems of the synoptic scale. This means 

weather systems generally ranging in horizontal dimension from tens of kilometres to several 

hundred kilometres and its outputs interest prospective wind farm investors looking to 

calculate average annual wind speeds for large areas. The UK Met Office offer a product 

called Virtual Met MastTM (VMM) that produces long term, site-specific wind predictions 
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based on their numerical synoptic-scale weather prediction model (Met Office, 2009). The 

key problem is that mesoscale models of this type tend to fail in urban areas and are not a 

suitable method for this research. For example, VMM has undergone extensive verification 

using 58 sites (Met Office, 2012b), however, there were no sites in dense urban settings such 

as those that will be found in the study areas of this research. Instead, the validation 

described in the report relates only to open land with different terrains and to offshore 

locations. In the literature, mesoscale modelling has not been applied in the context of small 

to medium wind turbines in urban areas. These types of models can be used to define the 

boundary conditions for models that incorporate a more detailed representation of the 

complex surfaces that exist in urban areas but are not, by themselves, the most appropriate 

model for the scales of interest to this research.  

2.1.2 Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) is a field of research dedicated to solving the equations 

of momentum using powerful computer simulations. CFD holds the potential to advance 

wind energy resource assessments for complex urban areas as it seeks to accurately model 

wind circulation processes around complex obstacles. The main reason for not selecting 

mesoscale modelling for this research was that the geometry in urban areas is significantly 

more complex than in open rural spaces and has a critical influence on wind flow at the scales 

relevant to small and micro-wind installations in urban areas. Therefore, the possibility that 

CFD may be able to accurately account for such obstacles marks it out as a field worthy of 

further investigation. Kalmikov (2010) presents a simulation of the complex wind flows of 

urban areas using a model called UrbaWind to solve Reynolds Averaged Navier-Stokes 

(RANS) equations with a method which allows for representation of the turbulence and 

wakes around buildings. The study focused on a campus scale of roughly 1.5km by 3km 

situated in an urban area and was carried out to optimally site a single small turbine. This 

demonstrates the different aims and scales of a CFD study to this research as only two sites 

were investigated in contrast to the many thousands of sites that are to be investigated in 

this research, even in a small city.  

By contrast, a larger section of a city is investigated in a study by the San Francisco 

Department of the Environment (2007). A combination of two approaches is used in which a 

simplified 3D reconstructed model of the city-centre is run through the established wind flow 

analysis software ANSYS Fluent, whilst buildings to the outskirts of the city centre and 

suburbs are modelled as roughness elements of the surface as they have less individual 

influence on flow. A big problem in looking to apply this methodology, or any CFD simulation, 
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is that the city-centre of San Francisco had a high resolution city-centre 3D building model of 

a quality that may be difficult to source for many cities given presently available data. If the 

3D building model on which the CFD calculations are based is of the resolution that is 

available publicly, the wind speed estimations will be unreliable. However the key reason for 

not taking a CFD approach to this research is the requirement for considerable computing 

power and time to complete and validate just one city-scale study; let alone many studies in 

a rapid manner. Furthermore, in all studies there is still the requirement to develop a wealth 

of physical wind speed measurements in order to set up the boundary conditions that CFD 

models are particularly sensitive to and to validate the predicted wind speeds (Rodrigo, 2010; 

Kalmikov, 2010; San Francisco Department of the Environment, 2007). This represents a 

considerable increase in the cost and time required to generate the wind speed predictions 

as well as further increasing the computational demand and is another reason why CFD will 

not be taken further in this research project.  Whilst deployment at the city scale might be 

impracticable, CFD models have been shown to accurately model flows at the individual 

building scale (Castro et al., 2006; Lim et al., 2009; Cheng et al., 2007). The findings from 

these CFD models can be used to develop less computationally intensive methods to 

estimate the influence of the surface on the flow, such as in the estimation of wake lengths 

caused by cuboid obstructions, for example. 

2.1.3 Semi-empirical Methods 

Predicting wind speeds without having to build an extensive database of physical 

measurements saves considerable costs in a wide variety of instances which would remove 

one of the barriers to small-scale wind energy investment. In city-scale wind feasibility 

studies, it is entirely impractical to measure wind speeds at every potential site or run CFD 

simulations and mesoscale modelling techniques do not accurately reflect the changes to 

flow caused by urban areas but there is another route to creating a city-scale wind resource 

map. The following section describes how a wind speed prediction can be made using the 

logarithmic wind profile equation, a reference wind speed and an understanding of the 

surface over which the wind has travelled, thus avoiding the need for impractical or costly 

physical measurements or CFD simulations. Semi-empirical methodologies achieve this 

through mathematical adaptations to reference wind speed databases such as Numerical 

Objective Analysis of Boundary Layer (NOABL) (BWEA, 2012) or the Met Office NCIC following 

the rules of boundary layer physics. The databases consist of mean wind speeds at a height 

of 10 m above ground level, estimated over 1 km grid squares using geostatistical 
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interpolation from observations made over a period of years. For NOABL, this collection 

period is ten years whilst NCIC has a thirty-year collection period (Weekes, 2014). 

A boundary layer forms when the surface over which the wind flows changes significantly, 

such as at the outer periphery of a city (see Figure 2-1). In this region, friction at the surface 

leads to slower wind speeds downwind of the surface obstructions and an urban boundary 

layer (UBL) between altered and unaltered flow begins to form on the outskirts of urban 

areas which commonly reaches heights of 500-1,000 m (Britter and Hanna, 2003). The 

bottom half of the UBL, approximately 100 to 200 m (Britter and Hanna, 2003), is referred to 

as the Surface Layer (SL) which has a further two sublayers within it, namely: the inertial 

sublayer (ISL) and the roughness sublayer (RSL). The unifying feature of the two sublayers is 

that they are strongly affected by obstructions on the surface with the RSL’s highly 

heterogeneous flow being predominantly controlled by local surface geometry. For this 

reason, SL wind flows are commonly modelled using simplified geometrical parameters to 

describe the surface which include the mean building height (ℎm) and the plan area density 

of buildings covering the surface (𝜆𝑝). 

 
Figure 2-1 The development of the UBL and various sublayers (Best et al., 2008)  

Historically, the log profile was only considered to be relevant to wind flows in the ISL which 

is problematic for this research as small to medium (< 50 kW) turbines occupy the RSL. 

However, for urban-like surfaces, it has been found that a single logarithmic profile can be 

applied throughout both the RSL and the ISL to ℎ𝑚, provided the profile in the RSL has been 

spatially averaged (Cheng and Castro, 2002b; Rooney, 2001; Britter and Hanna, 2003).  
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The geometric parameters can be incorporated into the logarithmic wind profile equations 

described below to calculate the effect of surface objects on wind speed within the urban 

boundary layer. The fundamental underpinning of logarithmic wind profile theory stems 

from a trend in turbulence within the atmospheric boundary layer under the following 

conditions. When it is assumed that there is a flat, homogenous terrain with a constant wind 

speed of a constant direction, turbulent diffusion (𝐾) in the lowest tens of metres of the 

atmosphere increases with altitude and eddy intensity in the relationship described in 

equation (2-4): 

𝐾 = 𝜅𝑢∗𝑧, (2-4) 

where 𝜅  (the empirical von Kármán constant) ≈ 0.4 (von Kármán, 1930), 𝑢∗  is frictional 

velocity and z height. The equation shows that the size of turbulent eddies is an influence on 

K which is limited by height above ground (𝑧).  

A more precise definition of 𝑢∗is to consider stresses at the surfaces with which the flow 

interacts. To do this, the perturbations in the 𝑢  and 𝑤  directions of flow (𝑢′𝑤′̅̅ ̅̅ ̅̅ ) can be 

represented as: 

𝑢∗
2 = −𝑢′𝑤′̅̅ ̅̅ ̅̅  (2-5) 

Combining (2-4) and (2-5) gives: 

𝑢∗
2 = −𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝐾

𝜕�̅�

𝜕𝑧
=  𝜅𝑢∗𝑧

𝜕�̅�

𝜕𝑧
 (2-6) 

𝜕�̅�

𝜕𝑧
=  
𝑢∗
𝜅𝑧

 (2-7) 

with the reorganised form of the equation (2-7) showing that mean wind speed is roughly 

logarithmic.  Equation (2-7) can be integrated to give: 

�̅� =  
𝑢∗
𝜅
log (

𝑧

𝑧0
) (2-8) 

in which 𝑧0 represents surface roughness which characterises obstructions to the flow on 

the surface boundary (Garratt, 1990). At a target site, 𝑧0 can be a range of values depending 

on the type of landscape, be that: open country; land with a low density of development; a 

semi-rural area with a small number of buildings; a forest or; an urban core. Although there 

is agreement for 𝑧0 in open country settings to be 0.14 m (Grimmond and Oke, 1999a; Crago 

et al., 2012), it is not possible to categorize 𝑧0 urban and semi-urban values into groupings 

and maintain an accurate portrayal of the obstructions to the wind. For example, values for 

dense urban areas are always > 2 m (Best et al., 2008) but there is significant variation across 
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an urban area. Given the strong bearing of 𝑧0 in the calculation of 𝑢(𝑧), recent studies have 

sought to estimate 𝑧0 values from digital surface models (DSMs) for localised subsections of 

cities or ‘neighbourhoods’ (Sunderland et al., 2013; Millward-Hopkins et al., 2013a). DSMs 

are grids of height above sea-level measurements in metres with coordinate positions where 

individual height measurements are made using an airborne light detection and ranging 

(LiDAR) system. A laser is fired to the ground from an aircraft with satellite location tracking 

at a spatial interval that defines the resolution of the DSM. The distance between the height 

measurements can be very low but the resolution that is most commonly available for entire 

cities is currently around 2 m. The great advantage of DSMs over other city-scale data, such 

as aerial photography, is that there is a relatively accurate (±0.15 m (The GeoInformation 

Group, 2008)) height measurement at the given spatial interval without the need for any 

complex processing or interpretation. DSMs give a more accurate representation of the 

obstructions influencing the flow than generalising the type of surface to a broad category. 

They provide the height and area of obstructions so they can be used to estimate 𝑧0 through 

the measurement of frontal area obstructing the wind (𝐴f) for various directions of flow. 

Equation (2-9) has been adapted from Best et al. (2008) using 𝐶D (the drag coefficient) and 

total neighbourhood area (𝐴T) to calculate z0. 

𝑧0
ℎm

= (1 −
𝑑

ℎm
) exp [− (0.5𝐶D𝜅

−2
𝐴f
𝐴T
)
−0.5

]. (2-9) 

In which 𝑑 is a corrective factor to 𝑧 that accounts for the rate of fluid flow immediately 

following an obstacle being equal to zero (Raupach, 1992). Values for this parameter vary 

between academia and industry standard software with the latter estimating 𝑑 as two thirds 

the maximum building height (Li-COR, 2012) whilst academic models have formulas that 

incorporate the density of surface roughness elements for grid-square neighbourhoods (of 

size 𝐴T ) across a city (Grimmond and Oke, 1999b; Raupach, 1994). Grimmond and Oke 

(1999b) provide reference tables for 𝑑 in four types of urban area, namely: low, medium, 

high and high-rise density morphometry. These values are built from comparisons of 

observed building layouts with values obtained from analysis of wind and turbulence 

observations. The authors carried out a survey of 60 field studies and 14 laboratory studies 

of real and scale model cities. However, categorising these aerodynamic values to such broad 

groupings loses a large degree of fidelity so this research seeks to quantify surface elements 

more precisely. 
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Figure 2-2 Airborne LiDAR data generation (Bureau of Economic Geology (2009)) 

𝐴T is a grid-square of a smaller size than the 1km2 resolution of the reference wind speed 

database grid and defines the size of neighbourhood that 𝑧0 is being calculated for. Breaking 

down the study area to neighbourhoods provides a more refined interpretation of the 

obstructions to the wind flow rather than trying to use a value for the entire area. The most 

advanced methods have a neighbourhood size that is adaptive to building density (Millward-

Hopkins et al., 2013a) which helps to isolate areas that will have a more significant influence 

on wind speeds. 
𝑑

ℎm
 is displacement height (𝑑) normalised by the mean building height (ℎ𝑚) 

for the neighbourhood.  

Equation (2-10) adapted from (Jasinski et al., 2005) incorporates 𝑑  into the logarithmic 

downscaling equation shown in (2-8). 

�̅�𝑧 =
𝑢∗
𝜅
[ln (

𝑧 − 𝑑

𝑧0
)] (2-10) 

An early formula to calculate 𝑑 is that suggested by Macdonald et al. (1998) in which the 

subscript ‘𝑢’ denotes indicates that they are relevant for arrays of uniform height: 

𝑑𝑢
ℎ𝑚

= 1 + 𝐴−𝜆𝑝(𝜆𝑝 − 1), (2-11) 

in which hm is mean building height, A is an empirical constant for which values of 3.59 and 

4.43 have been suggested. 𝜆𝑝 is the ratio of building plan area (𝐴𝑝) to ground surface area 

(𝐴𝑇) which are depicted in Figure 2-3 along with frontal area (𝐴𝑓), therefore: 

𝜆𝑝 =
𝐴𝑓

𝐴𝑇
. (2-12)  
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Figure 2-3 Illustration of the basic geometric measures: 𝑨𝒑, 𝑨𝒇 and 𝑨𝑻. 

As stated, Macdonald’s model has a fundamental assumption of homogeneous arrays –  

Macdonald et al. (1998) use 𝑑𝑢/ℎ𝑚 in place of 𝑑 in equation (2-9) to estimate z0u. This is an 

inaccurate way to consider the layout of actual urban areas which vary greatly in height. To 

calculate d for heterogeneous arrays, where the heights of obstructions vary, Millward-

Hopkins et al. (2011) horizontally slice the height data of neighbourhoods into layers at a 

number of height regimes, calculate 𝑑 for each of those layers and then sum the results.  The 

division of the array into height regimes is illustrated in Figure 2-4, where each unique 

building height defines the start of a new layer.  

 
Figure 2-4 Millward-Hopkins et al. (Millward-Hopkins et al., 2011) method of estimating d using height 

regimes. Adapted from figure 8 of Millward-Hopkins et al. (2011) 
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A weighting is applied to each layer which is defined by the density, distancing and heights 

of obstructions in the neighbourhood. Essentially, 𝑑  is defined by wind flow within the 

canopy layer which can increase or decrease the minimum height at which drag occurs. It is 

the distinct flow behaviour at different heights that inspires the layer-by-layer approach to 

estimating 𝑑. An example of two separate flow patterns around a heterogeneous array is 

provided in Figure 2-4A where there are two clear flow patterns occurring simultaneously. 

There is a skimming flow amongst layer 1 and a more penetrative flow observed in layer 2. 

The skimming flow means the flow passes the obstacles largely unhindered and so there is 

less drag whereas the more penetrative flow of layer 2 interacts more with the obstacles to 

affect a greater drag force. For each layer, 𝑑 can be calculated using equation (2-13) (from 

Millward-Hopkins et al. (2011)). 

𝑑

ℎ𝑚
=

{
 
 

 
 

19.2𝜆𝑝 − 1 + exp (−19.2𝜆𝑝)

19.2𝜆𝑝[1 − exp(−19.2𝜆𝑝)]
 (𝑓𝑜𝑟 𝜆𝑝 ≥ 0.19)

117𝜆𝑝 + (187.2𝜆𝑝
3 − 6.1)[1 − 𝑒𝑥𝑝(−19.2𝜆𝑝)]

(1 + 114𝜆𝑝 + 187𝜆𝑝
3)[1 − exp(−19.2𝜆𝑝)]

(𝑓𝑜𝑟 𝜆𝑝 < 0.19)

 
(2-13) 

 

 The height of each layer then needs to be taken into account which is achieved by 

multiplying the values for 𝑑 of each layer by that layer’s height, i.e.:  

𝑑1 = ℎ1𝑓𝑑(𝜆𝑝1)  

𝑑2 = ℎ2𝑓𝑑(𝜆𝑝2). 
(2-14)  

It may then be assumed that when the original layout of the obstructions to the flow is 

reconstituted by stacking the two layers in order, 𝑑 of the original configuration is the sum 

of 𝑑1  and 𝑑2 . The simple example provided in Figure 2-4 can be applied to obstruction 

layouts of any degree of heterogeneity so long as the canopy is subdivided into a sufficient 

number of distinct horizontal layers and so, 

Once 𝑑 has been calculated, equation (2-9) can be completed by estimating the unsheltered 

frontal area of a building (𝐴𝑓
∗ ) that obstruct wind flows. This is calculated using building wakes 

defined by Millward-Hopkins et al. (2011) that was informed by detailed CFD models from 

Castro et al. (2006), Lim et al. (2009) and Cheng et al. (2007). 

𝑑 =∑𝑑ℎ𝑖𝑓𝑑(𝜆𝑝𝑖)

𝑛

𝑖=1

. (2-15)   
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The definition of 
𝐴𝑓
∗

𝐴𝑇
 in Macdonald et al. (1998) differs significantly to Millward-Hopkins et al. 

(2011). Macdonald et al. (1998)  assumes that drag below 𝑑 is negligible and whilst this may 

be suitable for arrays of homogeneous height, Bottema (1996; 1997) presents a more 

appropriate method to estimate 
𝐴𝑓
∗

𝐴𝑇
 for arrays of heterogeneous heights. It considers the 

mutual sheltering of all buildings within an array by modelling the wake shapes of the flow 

caused by the array’s form. 𝑧0 can then be estimated by iteratively solving the drag balance 

equation (2-16) for each wind direction. 

2𝐴𝑇𝜅
2 = 𝐶𝐷 [ln (

ℎ𝑚−𝑒𝑓𝑓 − 𝑑

𝑧0
)]

2

𝐴𝑓
∗(ℎ < ℎ𝑚−𝑒𝑓𝑓) + ∫ 𝐶𝐷

′ [ln (
ℎ − 𝑑

𝑧0
)]
2

𝑑𝐴𝑓
∗

ℎ𝑚𝑎𝑥

ℎ𝑚−𝑒𝑓𝑓

 (2-16) 

ℎ𝑚𝑎𝑥 in equation (2-16) refers to the maximum height of buildings within a neighbourhood 

and 𝐶𝐷
′  to the drag coefficient for the heights between ℎ𝑚−𝑒𝑓𝑓  and ℎ𝑚𝑎𝑥 . ℎ𝑚−𝑒𝑓𝑓  is an 

approximation of the mean height of only the buildings that have an influence on the flow 

because small buildings that are sheltered by surrounding tall buildings will have a negligible 

effect on the flow but a significant influence on ℎ𝑚 . To estimate ℎ𝑚−𝑒𝑓𝑓 , 𝜆𝑝−𝑒𝑓𝑓  is 

introduced which is the plan area density without the contribution of sheltered blocks in an 

array.  For each height regime described in Figure 2-4, the wake shapes of the blocks are 

calculated, the plan area of sheltered buildings is removed and the remaining area summed 

across all layers in the same way that 𝑑 was calculated. 𝜆𝑝−𝑒𝑓𝑓 is then applied in equation 

(2-17) to give ℎ𝑚−𝑒𝑓𝑓. 

ℎ𝑚−𝑒𝑓𝑓

=

{
 
 

 
 𝑑

19.2𝜆𝑝−𝑒𝑓𝑓[1 − exp(−19.2𝜆𝑝−𝑒𝑓𝑓)]

19.2𝜆𝑝−𝑒𝑓𝑓 − 1 + exp(−19.2𝜆𝑝−𝑒𝑓𝑓)
 (𝑓𝑜𝑟 𝜆𝑝−𝑒𝑓𝑓 ≥ 0.19)

𝑑
(1 + 114𝜆𝑝−𝑒𝑓𝑓 + 187𝜆𝑝−𝑒𝑓𝑓

3)[1 − exp(−19.2𝜆𝑝−𝑒𝑓𝑓)]

117𝜆𝑝−𝑒𝑓𝑓 + (187.2𝜆𝑝−𝑒𝑓𝑓
3 − 6.1)[1 − exp(−19.2𝜆𝑝−𝑒𝑓𝑓)]

(𝑓𝑜𝑟 𝜆𝑝−𝑒𝑓𝑓 < 0.19)

 
(2-17) 

The entire hm-eff calculation is repeated for eight wind directions to incorporate the different 

sheltering that occurs in each direction. 

As with 𝑑, Grimmond and Oke (1999b), have developed 𝑧0 reference tables for categories of 

urban development which are useful for comparing morphometric models to but are too 

restricted to accurately portray the nuances in urban form that occur from neighbourhood 

to neighbourhood across a city. 
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The application of 𝑧0 and 𝑑 to estimate wind speeds using the logarithmic equation (2-10) 

will now be described. The UK Met Office (Best et al., 2008) have presented a methodology 

which is summarised in Figure 2-5 (from Weekes (2014)). 

 
Figure 2-5  Summary of the Met Office mean wind speed prediction method (Weekes, 2014)  

In the Met Office method, regional wind climate data such as the Numerical Objective 

Analysis of Boundary Layer (NOABL) or the National Climate Information Centre (NCIC) 

database is used that provide wind speeds over the whole of the UK at a resolution of 1 km 

that are valid at a height of 10 m above a smooth surface. The databases also account for the 

influence of topographical features on scales greater than 1 km (Best et al., 2008) but not 

vegetation or buildings. The arrow from I to II in Figure 2-5 shows the scaling of the reference 

wind speed up to a height that is independent of the friction caused by surface objects at the 

boundary layer. There are then two downscaling steps to account for surface objects in first 

the wider fetch area and then a more localised area. In doing so, the parameters in the first 

downscaling step are suitable for describing the RSL profile and the parameters in the second 

are suitable for the ISL profile. The first downscale (from II to III in Figure 2-5) is from the UBL 

to the blending height which is the top of the RSL, both of which were shown in Figure 2-1. 

To complete the logarithmic equation for this change in height, 𝑧0 and 𝑑 are defined for 

areas 5 km from the target site in eight wind directions and are called 𝑧0−𝑒𝑓𝑓 and 𝑑𝑒𝑓𝑓. The 

wind directions used are the four compass points and four directions that fall between those 

compass points, i.e. North-East, South-East, South-West and North-West because reference 

wind speed data is available in this format. 𝑑𝑒𝑓𝑓 is calculated by averaging the calculations 

of 𝑑  in each of the wind direction sector areas. In contrast, 𝑧0−𝑒𝑓𝑓  is estimated using a 

slightly more complex scaling process that is described in Bou-Zeid et al. (2007) to weight 𝑧0 

of neighbourhoods closer to the target site more than those further away. 
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The second downscale (from III to IV in Figure 2-5) then uses 𝑧0 and 𝑑 for a more localised 

neighbourhood that typically range in size from 250 m x 250 m to 1 km x 1 km. This downscale 

extends to the hub height of a target site if that site is exposed. However, if the hub height 

is less than the heights of surrounding objects, and is therefore sheltered, the logarithmic 

equations can become unreliable. ℎ𝑚 has been used to define the height to which the final 

logarithmic downscaling should be applied (Cheng and Castro, 2002a; Rooney, 2001; Britter 

and Hanna, 2003) and where the power law should then take over as the scaling method for 

lower sites. However, Millward-Hopkins et al. (2011) use anemometry data to show that it is 

inaccurate to extend the logarithmic wind profile down to ℎ𝑚 and so use the effective mean 

building height  

With the height to which the final downscale can be extended defined by ℎ𝑚−𝑒𝑓𝑓 , the 

process of adapting a reference wind speed to an estimate at another location is complete. 

This approach has been validated by Millward-Hopkins et al. (2013b) by comparison to 

anemometry data collected at 12 sites across four of UK cities where the mean error was 0.3 

ms-1.  

A variety of approaches to predicting urban and semi-urban wind speeds at the city scale 

have been discussed and it is clear that mesoscale models and CFD are not appropriate for 

this thesis. This section shows where the research described in Chapter 5 builds from. 

Similarly, the following section introduces solar PV electricity generation and the 

methodologies used to assess variations in yield caused by the physical setting of the 

installation, which are the foundations to the research presented in Chapter 3 and Chapter 

4. 

2.2 Solar PV 

Solar energy is a term that describes all the energy that reaches Earth from the Sun as a result 

of fusion and fission reactions that occur inside the star. However, solar PV technologies only 

absorb electromagnetic radiation with wavelengths between approximately 400 and 1100 

nm (Markvart, 2003) so when the words “solar energy” are used in the context of solar PV, 

it is usually in reference to a limited part of the total energy that comes from the Sun. The 

radiation from this smaller section of the electromagnetic spectrum can be received at a PV 

panel in three ways: as either direct (or beam); diffuse; or reflected which are referred to 

collectively as global radiation. Diffuse radiation describes radiation that has been deflected 

by components of the atmosphere to arrive at the solar PV cell whilst direct radiation is that 

which has not undergone any deviation in its path from the Sun. Reflected radiation is the 
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radiation that has been reflected by the Earth’s surface towards the solar PV panel and is a 

relatively minor contributor to the total irradiance occurring at a particular surface. The term 

irradiance is used frequently throughout this thesis and is the rate at which solar energy falls 

onto a surface, measured in W m-2.  

The following paragraphs describe the processes that occur if that solar radiation happens 

to fall on a p-n junction in a mono-crystalline silicon solar PV cell. A p-n junction is the point 

of contact between an n-doped silicon semi-conductor and a p-doped semiconductor 

material (Largent et al., 2003). They are usually created in a single crystal of semiconductor 

with each side receiving a different doping. The n-doped side has excess electrons due to 

being doped with phosphorus whilst the p-doped side has excess holes for electrons to pass 

through due to having been doped with boron (Semikron, 2012b). Here, the term doping 

means a very pure silicon material that has had a very small number of phosphorus or boron 

atoms added to it in a ratio of approximately one dopant atom to every 5x10
6 silicon atoms 

(Sproul, 2003). When covalently bonded to silicon by four of its five outer orbit electrons, the 

phosphorus atom in the n-doped silicon has a single electron that is very weakly attracted to 

the nucleus. At room temperature this electron is unbound from the phosphorus atom 

altogether and travels freely through the n-doped silicon-phosphorus crystal. By contrast, p-

doped silicon contains boron which can only form covalent bonds with three of its outer 

electrons. A neighbouring electron is pushed into this vacancy creating another vacancy, or 

hole, in the atom that provided the electron. This pattern reoccurs so that, effectively, the 

holes move around the p-doped silicon which can be thought of as positive charge moving 

across the crystal. 

When brought together, electrons diffuse from the n-doped to p-doped side with holes 

diffusing in the opposite direction (Crook, 2012). Positively charged phosphorus ions are left 

behind in what is called the depletion region when the electrons move to the p-doped side. 

Negatively charged boron ions are left there when the holes move to the n-doped side. 

Figure 2-6 shows this and also that a second force pushes the holes and electrons the 

opposite way which is the “drift” effect caused by the electric fields of the electrons and 

holes.  
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Figure 2-6 The p-n junction as described in Crook (2012)  

The two competing forces reach equilibrium in the depletion region meaning that there is no 

net flow of holes or electrons and only the fixed charges of the dopant atoms are present. 

This creates a very resistant insulator. However, if an external electrical field is applied to the 

equilibrium, the depletion region’s resistance can be modified. Short-circuit current will flow 

if: a low resistance wire is connected the two sides of the cell; a negative voltage is applied 

to the n-doped side; and a positive voltage is applied to the p-doped side (Sproul, 2003). This 

set-up is called a forward biased configuration. It is important to recognise that despite the 

flow of current, there is no voltage across the solar cell in this configuration and so no useful 

power is generated yet. If the wire connecting the two sides externally had a gap in it, 

however, the current would not have a route to flow out of the solar cell. With the excited 

electrons and holes continuing to move across the depletion region, a voltage would start to 

build across the PV cell (Semikron, 2012b). Hence, in order to get useful power from a solar 

PV cell, a resistor must be added to the circuit that finds an optimum balance between flow 

of current and voltage (Semikron, 2012a). Once this happens, an illuminated solar PV cell will 

generate electricity.  

When solar radiation illuminates a solar PV cell on Earth, the energy is great enough to break 

a very small number (1 in 1x108 atoms) of the bonds holding electrons in place in a silicon 

crystal, creating excited electrons of a higher energy state (Sproul, 2003). The excited 

electrons move across the material freely just as the electrons from the phosphorus atoms 

in the n-doped side of the cell. The holes they leave also move freely across the crystal. 

However, the electrons are excited for only a short period of time depending on the energy 

intensity of the solar radiation and when this energy falls they recombine with a 

neighbouring hole, losing the electrical energy as heat. Therefore, the intensity of sunlight 

plays a crucial role in the power output of a solar PV cell. There is greater intensity of sunlight 

when a solar cell is angled toward the sun so modelling roof geometry is fundamental to 

estimating the potential output of a solar cell. 
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By multiplying the number of solar cells to make a solar PV panel, then multiplying the 

number of panels to make an array and then multiplying the number of arrays across a 

country, solar PV technology provides a renewable source of electricity that can make a 

significant contribution to meeting national electricity demands. Chapter 1 described how 

this has started to become reality through the rapid growth of the solar PV industry. 

2.2.1 EU JRC PVGIS Solar Databases 

As the microgeneration market has grown, so too has interest in the viability of PV at 

individual properties, leading to an increasing number of academic and industry studies of 

solar resource. One popular methodology is the European Solar Radiation Atlas (ESRA) model 

(Scharmer and Grief, 2000) that has been used in many studies (Bergamasco and Asinari, 

2011a; Ŝúri and Hofierka, 2004; Šúri et al., 2007; Wiginton et al., 2010). It was used to create 

the popular European Union Joint Research Council (EU JRC) PVGIS solar databases by 

interpolating and correcting near-by solar insolation measurements. It has also been 

incorporated into the open-source GRASS Geographic Information System (GIS) software by 

Hofierka (2002) and more recently into the r.sun routine (Hofierka, 2007). This model has 

three major components: the estimation of clear-sky global irradiation for a horizontal 

surface and a clear-sky index; the calculation of diffuse and direct components of overcast 

global irradiation; and the conversion of horizontal surface global irradiation estimations for 

inclined surfaces (EU-JRC, 2012). These components combine to account for the interaction 

of solar radiation with Earth’s geometry, topographical shading and the constitution of the 

atmosphere. A site’s location on Earth alters the calculation of solar irradiance as it defines 

the declination, latitude and solar hour angle of a particular site. The site’s location also 

impacts the amount of atmosphere that solar radiation encounters before reaching the 

surface which has an impact on the wavelengths that will reach the site. Each of the three 

components will now be further described in turn, starting with the estimation of clear-sky 

global irradiation for a horizontal surface and the estimation of a clear-sky index value. 

Clouds have a significant impact on the global radiation received at a surface and make it 

difficult to predict the split between direct and diffuse radiation. Therefore, a clear-sky 

condition is assumed whereby there are no clouds. This allows a reasonably accurate first 

approximation of global solar radiation to be made using solar geometry and data about the 

concentrations of water vapour and particulates in the atmosphere. Prior to considering the 

constitution of the atmosphere, it is important to consider the amount of atmosphere that 

the radiation has passed through (the path length) which is defined by the relative optical air 

mass, 𝑚, described in equation (2-18) from Kasten (1989): 
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𝑚 =
(𝑝/𝑝0)

{sin 𝛾𝑆 + 0.50572(𝛾𝑆 + 6.07995°)
−1.6364}

, (2-18) 

in which 𝑝 is the atmospheric pressure at the site and (𝑝/𝑝0) is a correction for the site’s 

altitude. (𝑝/𝑝0)  can be approximated using the site elevation above sea level, 𝑧 , and a 

reference height, 𝐻𝑅 = 8,400 m. 

(𝑝/𝑝0) = exp (
−𝑧

𝐻𝑅
). (2-19) 

𝛾𝑆 in equation (2-18) is the solar altitude angle (°) which is the vertical angle between the 

site’s surface and the position of the Sun in the sky. 

With 𝑚, the scattering and absorption impacts of the constituents of that atmosphere can 

be estimated using the Linke turbidity factor (TLK) (Remund J., 2003). This approach compares 

an observed optical depth from a weather station near-by to a theoretical completely clean 

and dry reference Rayleigh atmosphere, 𝛿𝑟  (m) that is a function of air mass. Using 𝑚 from 

equation (2-18), the clear sky direct irradiance normal to the beam, 𝐼𝑐 (W m-2), at the surface 

is: 

𝐼𝐶 = 1367. 𝜀 exp(−0.8662 𝑇𝐿𝐾 𝑚 𝛿𝑟(𝑚)), (2-20) 

where 𝛿𝑟(𝑚) is the Rayleigh optical depth at air mass 𝑚 and 𝜀 is a correction factor to mean 

solar distance. The clear sky direct irradiance on a horizontal plane,  

𝐵𝐶  (W m-2), can then be calculated by incorporating 𝛾𝑆 to account for the site’s position on 

the Earth. 

𝐼𝐶 = 1367. 𝜀 exp(−0.8662 𝑇𝐿𝐾 𝑚 𝛿𝑟(𝑚)) sin 𝛾𝑆 (2-21) 

𝑇𝐿𝐾  is set to specific values that reflect broad categories of atmospheric conditions. For 

example, a value of 2 is used for very clear cold air in winter whilst polluted air is given a 

value greater than 6. Both equations (2-20) and (2-21) require the calculation of 𝛿𝑟  which 

Kasten (1996) defines for two regimes of 𝑚 using: 

1

𝛿𝑟(𝑚)
= {

6.630 + 1.751 𝑚 − 0.120 𝑚2 + 0.007 𝑚3 − 0.0001 𝑚4 (𝑚 ≤ 20)

10.4 + 0.718 𝑚 (𝑚 > 20)
 (2-22) 

It is worth noting at this point that the academic models discussed later seek to utilise 

satellite measurements of atmospheric matter such as cloud water vapour, ozone and 

aerosol particles to move away from such sweeping generalisations of atmospheric 

conditions caused by TLK. However, the continued use of EU JRC datasets to project solar 
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insolation in industry and as a source of validation data in the aforementioned academic 

models warrants the full description of its methodology presented here. 

To estimate a clear-sky diffuse radiation value, the ESRA model uses the measured 

proportion of beam to diffuse radiation from near-by weather stations which Šúri et al. 

(2007) explore in greater detail. This proportion is altered for the different TLK that occurs at 

the target site in comparison to the weather station sites. The clear sky global irradiation on 

a horizontal surface is then given by the sum of the clear sky direct and diffuse components. 

Once clear sky global irradiance is estimated, the ESRA model considers the effects of cloud 

cover using an averaged index value of how clear the sky is at the target site (Clearness Index) 

which is based on satellite and near-by weather station data (Scharmer and Grief, 2000). The 

Clearness Index (𝐺𝑑/𝐺0𝑑) is the ratio of daily global irradiation observed at a weather station 

(𝐺𝑑) to the daily irradiance falling on a horizontal plane outside of the atmosphere (𝐺0𝑑). 

𝐺0𝑑is known to fluctuate with latitude and time of the year as Figure 2-7 shows.  

 
Figure 2-7 Fluctuation of 𝑮𝟎𝒅with Julian day and latitude from Scharmer and Grief (2000)  

The clearness index is denoted as (𝐾𝑇𝑑)𝑚 and its calculation from weather stations in the 

vicinity of the site depends on the monitoring of monthly mean sunshine duration (𝜎𝑑)𝑚 

along with site dependent monthly regression coefficients 𝑎𝑚 and 𝑏𝑚 so: 

(𝐾𝑇𝑑)𝑚 = 𝑎𝑚 +𝑏𝑚(𝜎𝑑)𝑚 (2-23) 

in which the subscript 𝑚 refers to the values being monthly. This means that monthly mean 

global radiation (𝐺𝑑)𝑚 is: 

(𝐺𝑑)𝑚 = 𝑎𝑚 + 𝑏𝑚(𝜎𝑑)𝑚(𝐺0𝑑)𝑚. (2-24) 

Taking this value and splitting it into direct and diffuse components again uses (𝐾𝑇𝑑)𝑚 and 

coefficients derived from weather station data of measured diffuse radiation to give the 

polynomial function shown below. 
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(𝐷𝑑)𝑚/(𝐺𝑑)𝑚 = 𝑐0 + 𝑐1(𝐾𝑇𝑑)𝑚 + 𝑐2((𝐾𝑇𝑑)𝑚)
2 + 𝑐3((𝐾𝑇𝑑)𝑚)

3 

 

𝐼𝑓 (𝐷𝑑)𝑚/(𝐺𝑑)𝑚 > 1, (𝐷𝑑)𝑚/(𝐺𝑑)𝑚 = 1 

(2-25) 

where (𝐷𝑑)𝑚 is the monthly mean daily sky diffuse irraditation (Wh m-2). It has been found 

that if (𝐾𝑇𝑑)𝑚 is as small as 0.2, there is practically no direct radiation. Most commonly, the 

typical proportion of direct to diffuse irradiance is 40% to 60% which serves to underline the 

significance of diffuse radiation and the ESRA model’s sensitivity to the ratio.  

When converting the horizontal surface irradiation to tilted surfaces, the calculations are 

altered in a number of ways. The orientation of inclined surfaces has a significant impact on 

solar irradiation and the effects of clouds and shadows from topological features are 

increased which serves to underline the importance of accuracy in roof geometry modelling. 

The ESRA model that underlies the EU JRC PVGIS data is highly sensitive to the ratio of direct 

to diffuse radiation which are impacted by these effects. Hence, the global radiation for an 

inclined surface differs significantly to a horizontal surface. Classically, the conversion from 

horizontal to tilted global irradiance (𝐸𝑆 – in which “s” refers to the tilt angle (°) of the sloped 

plane) estimation takes the form: 

 𝐸𝑆 = 𝐼𝐵 + cos 𝜃 + 𝐼𝐷𝑅𝑑 + 𝜌𝐸𝑅𝑟  (2-26) 

where 𝐼𝐵  is direct horizontal irradiance, 𝜃  is polar direction angle of incidence (°), 𝐼𝐷  is 

diffuse horizontal irradiance, 𝑅𝑑  is a diffuse transposition factor, 𝜌  is the albedo of the 

surrounding terrain, 𝐸  is global horizontal irradiance and 𝑅𝑟  is a ground reflection 

transposition factor.  

2.2.2 Esri ArcGIS Solar Radiation Toolset 

Another solar insolation prediction technique that is increasingly being used to estimate 

global solar insolation is the solar radiation toolset within the market-leading GIS software, 

Esri ArcGIS (Gooding et al., 2013; Brito et al., 2012a) that is based on the methods of Fu and 

Rich (Fu, 2000; Fu and Rich, 2000; Rich et al., 1994; Rich and Fu, 2000). In their method a 

hemispherical viewshed is generated for each point of interest to account for shading effects 

from surrounding objects and topography.  The tallest obstructions across a DSM in 32 

directions from the point of interest are determined before the horizon is approximated by 

interpolating between the returned data points. The horizon line is then converted into a 

hemispherical coordinate system resulting in a figure showing areas of the sky that are 

obstructed from view at the point of interest (the black regions of Figure 2-8). This 

perspective is the same as would be observed if looking up from the point of interest at an 

angle perpendicular to the ground with 360° vision to sea-level. 
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Figure 2-8 A: Example viewshed model in which parts of the sky that are obstructed from view are shown in 

black. B: A sky map. C: A sun map for 53.8° latitude.  

The viewshed model shown in Figure 2-8A can be used to determine if the point of interest 

is exposed to direct radiation once the position of the Sun is established in the hemispherical 

coordinate system. Sun position can be calculated using a latitude-defined Sun map (Figure 

2-8C) in which each coloured polygon, called a Sun map sector, represents the approximate 

position of the Sun for a half-hour period of the day in a specific month. 

Overlaying the viewshed model onto the Sun map shows the times of a year when the Sun is 

visible from the point of interest and is exposed to direct radiation. Equation (2-27) from Fu 

and Rich (2000) is used to estimate direct radiation (𝐷𝑖𝑟𝜃,𝛼) for each of the sun map sectors 

that are not completely obscured by the viewshed model: 

𝐷𝑖𝑟𝜃,𝛼 = 𝑆𝑐𝑜𝑛𝑠𝑡 𝛽
𝑚(𝜃) 𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼  𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼  cos𝐴𝑛𝑔𝐼𝑛𝜃,𝛼 (2-27) 

where 𝑆𝑐𝑜𝑛𝑠𝑡 is the solar constant (1367 W m-2), 𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼 is the time duration represented 

by the sunmap sector and 𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼 is the gap fraction for the sun map sector. Gap fraction 

is the proportion of visible sky for each sector. 𝐴𝑛𝑔𝐼𝑛𝜃,𝛼 is the angle of incidence between 

centroid of sky sector and axis normal to the surface and 𝛽𝑚(𝜃) is the transmittivity of the 

atmosphere with respect to the optical path, calculated using: 

𝑚(𝜃) =
exp (−0.000118 𝑒𝑙𝑒𝑣−1.638×10−9 ℎ𝑒𝑖𝑔ℎ𝑡2)

cos𝜃
, (2-28) 

in which ℎ𝑒𝑖𝑔ℎ𝑡 is height above sea level in metres. The result is the direct radiation at the 

sun map sector’s centroid zenith angle (θ) and its azimuth angle (𝜙). 
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In contrast to direct radiation, diffuse radiation is received from all visible parts of the sky. 

Fu and Rich (1999) overlay the viewshed model onto a uniformly divided hemispherical 

perspective of the sky to determine which parts of the sky contribute diffuse radiation to the 

point of interest. 

For each sky map sector that is not completely obscured by the viewshed model, diffuse 

radiation (𝐷𝑖𝑓𝜃,𝜙) is obtained from: 

𝐷𝑖𝑓𝜃,𝜙 = 𝑅𝑔𝑙𝑏 𝑃𝑑𝑖𝑓 𝐷𝑢𝑟 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝜙 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝜙 cos𝐴𝑛𝑔𝐼𝑛𝜃,𝜙, (2-29) 

where Rglb is the global normal radiation given by: 

𝑅𝑔𝑙𝑏 = 
(𝑆𝑐𝑜𝑛𝑠𝑡∑𝛽

𝑚(𝜃))

(1 − 𝑃𝑑𝑖𝑓)
, (2-30) 

in which 𝑃𝑑𝑖𝑓  is the proportion of global normal radiation flux that is diffused, 𝐷𝑢𝑟 is the half-

hour time interval for analysis and 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝜙 is the gap fraction for sky sector.  

In equation (2-29), 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝜙 is the proportion of diffuse radiation originating from a given 

sky sector which is calculated in one of two ways depending on the selection of the user. The 

default uniform sky diffuse model has incoming diffuse radiation the same from all sky 

directions so that:  

𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝜙 = 
(cos 𝜃2 − cos 𝜃1)

𝐷𝑖𝑣𝑎𝑧𝑖
. (2-31) 

In the standard overcast model, however, the incoming diffuse radiation flux varies with 

zenith angle so that:   

𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝜙 = 
(2cos 𝜃2 + cos 2𝜃2 − 2cos 𝜃1 − cos2𝜃1)

4𝐷𝑖𝑣𝑎𝑧𝑖
 (2-32) 

in which 𝜃1and 𝜃2are the bounding zenith angles of the sky sector and 𝐷𝑖𝑣𝑎𝑧𝑖 is the number 

of azimuthal divisions in the sky map. 

Diffuse irradiance is calculated by summing the estimations of 𝐷𝑖𝑓𝜃,𝜙 for all sky map sectors 

that are not completely obscured by the viewshed model. Finally global irradiation is the sum 

of both the direct and diffuse estimations. 

2.2.3 Roof Geometry Modelling 

The available area, orientation and inclination of surfaces are key inputs to the models 

described above and have a highly significant impact on global solar irradiance at a site. The 

most accurate and practicable methods for the assessment of available roof area, orientation 
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and slope for every property across a city utilise DSMs.  However, a major problem in the use 

of DSMs has been that many properties in urban areas have roof planes that are too small 

for a large number of LiDAR points to have hit them. This is a result of poor resolution DSMs 

in which the distance between LiDAR points is too great to register a large number of height 

measurements on each roof plane. In these instances simplistic interpolations of the few 

data points of each plane lead to inaccurate estimations of orientation and slope. When the 

horizontal resolution of the DSM is 2 m, the smallest size of building that can be appraised 

directly from low resolution DSM data has been found to be roughly 200 m2 in plan area 

(Gooding et al., 2013), although the shape of roofs is important as long and narrow buildings 

may be greater than 200 m2 in area but have very few LiDAR points across the width of the 

building, leading to poor estimation of slope. A number of building reconstruction methods 

have been investigated to find ways to decrease the minimum size of a building that can be 

modelled which are now described. 

The field of building reconstruction from DSM data grew at a considerable rate around the 

turn of the millennium with a number of authors developing methods to construct 3D city 

models (Vosselman and Dijkman, 2001; Maas and Vosselman, 1999; Brenner, 2000; Brenner 

and Haala, 2000). The methodologies, and all that have subsequently followed, generally fall 

into one of two categories identified by Maas and Vosselman (1999). Where DSM data is 

used directly or undergoes a small degree of manipulation is known as a data-driven 

approach but has also been referred to as non-parametric. The second category, model-

driven (or parametric) approaches, involve the comparison of raw DSM data to a series of 

common roof shapes, or ‘templates’, with the quality of the fit then quantified. Tarsha-Kurdi 

et al. (2007) provide analysis and comparison of both approaches to further aid distinction 

between the two, writing that data-driven methods’ have a fundamental assumption that 

buildings are an aggregation of several segmented roof planes. It is the data-driven 

methodologies that are first described in the following section. 

2.2.3.1 Data-driven Approaches 

In broad terms, data-driven approaches generally focus on interpolating values from the 

DSM directly or apply only minor alterations before extracting slope information with 

orientation calculated from building footprints. There are a limited number of methodologies 

that then use additional data sources to provide extra information to improve the accuracy 

of the modelling. Vosselman and Dijkman (2001) generated a triangulated irregular network 

(TIN) from the DSM for a roof and then refined the TIN using the original DSM and building 

footprint information. Other authors have combined entirely separate data sources. 



30 
 

Rottensteiner and Briese (2003) incorporated aerial images to validate a roof plane detection 

methodology but also discuss the possibilities for integrating aerial images into the 

reconstruction process itself as a way to increase the quality of the reconstructed models. 

This idea also formed the central focus of Cheng et al. (2013) who developed a methodology 

to identify step changes in height from visual imagery. By contrast, Suveg and Vosselman 

(2004) present a semi-automated method for constructing building models without a DSM 

using aerial imagery and building footprints. Whilst this is a methodology better suited to 

individual buildings, connecting building footprint size to likely roof shape is an idea that 

could potentially increase the efficiency of any roof recognition algorithm. Despite the 

incorporation of differing additional information, the main underlying similarity is a key first 

stage to identify and define planes of the roofs. There are essentially three main forms of 

plane detection in the literature: 3D Hough Transform; RANdom SAmple Consensus 

(RANSAC) and; region growing which are described in turn below. 

2.2.3.1.1 3D Hough Transform 

Overby et al. (2004) used Hough Transform to identify planes from DSM data. Hough 

Transform was originally intended for 2D problems of forming polygons from points (Hough, 

1962) and is regarded as the de facto standard for line and circle detection in 2D images 

(Borrmann et al., 2011). Hough Transform for 2D essentially establishes straight lines of the 

form y = mx + c between the coordinates of data points. The lines are given an infinite length 

and the location of the intersection gives the parameters of the line in the original data. 

Schindler and Bauer (2003) demonstrate how Hough Transform can be extended to 3D in 

great detail but for the purposes of this research, a brief description adapted from Vosselman 

and Dijkman (2001) will suffice. Firstly, every coordinate (x, y and z) in a single roof segment 

of a DSM is taken to express a plane of the form 

𝑧 =  𝑠𝑥𝑥 + 𝑠𝑦𝑦 +  𝑑  (2-33) 

in 3D parameter space. The axes of the 3D parameter space are the parameters sx, sy, and d, 

where sx and sy are the slopes in x- and y-direction and d is the vertical distance of the plane 

to the origin. The planes of DSM data points are again given an infinite length with the 

intersection points in 3D space defining the slopes and dimensions of the planar face. 

Two key issues arise from the application of 3D Hough Transform to identify roof shape. 

Firstly, it is dependent on high resolution datasets with minimal noise to the point where a 

planar face must, to an extent, be distinct in the data which is often not the case in what are 

noisey DSM datasets. Secondly, the methodologies in the literature consistently require 
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additional actions to fine-tune them: single planar faces are often unnecessarily split in two 

due to a sub-optimal tolerance used to define what a distinct planar face is. This has resulted 

in studies such as Overby et al. (2004) having to implement post-reconstruction diagnostics 

to establish the likelihood that the modelled roof-shape suggested is at least logical which is 

highly inefficient. 

Vosselman and Dijkman (2001) focused on creating 3D city models for the use of town 

planners and the telecommunications industry which perhaps reflects the state of the PV 

sector and climate change awareness at the time. In addition to the DSM data, they formed 

a triangular irregular network (TIN) of the DSM from each building to select points that fell 

into each plane identified using 3D Hough Transform. In effect, their approach refined a TIN 

based on data points of close proximity which is only possible using very fine resolution LiDAR 

as otherwise the TIN would be built from a small number of points with too little discrepancy 

to permit any refinement. Another problem is that the TIN was built by generating planes by 

the simplest intersections of data points. The tolerance values for creating the TIN therefore 

effectively shaped the planes of each roof and it is unlikely that creating a TIN for each of the 

tens of thousands of structures across a city would be the most computationally efficient 

method to pursue. It is also important to note that Vosselman and Dijkman (2001) produced 

results using a resolution of DSM too fine to be generated from current airborne LiDAR 

systems (five to six points per m2). The study also includes a test using a lower resolution 

DSM which was found to lead to failure of the method, bringing into question its suitability 

for this research project.  

2.2.3.1.2 RANSAC 

Tarsha-Kurdi et al. (2008) state that RANSAC is a better method to establish viable roof 

planes from DSM data points than 3D Hough Transform. The method stems from image 

processing studies that sought to detect straight lines amid a dataset with many outliers. 

Whilst the process has been defined in several sources (McGlone et al., 2004; Fischler and 

Bolles, 1981), the process is, in the context of spatial interpolation, most suitably described 

by Nguyen et al. (2005). RANSAC is an algorithm designed to tolerate outliers when fitting 

models that has a small number of key steps that Table 2-1 describes with figures. The main 

advantage of RANSAC is that it is a generic segmentation method and can be used on 

datasets with high noise. A total-least-squares fitting method is used in step 2 (in Table 2-1) 

of the RANSAC method which is for a two-dimensional line. Application in three dimensions 
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is achieved by applying the same principles once distinct multiple planes have been identified 

in the DSM. 

The main disadvantages in the RANSAC method are its reliance on user-defined thresholds, 

namely: the total number of iterations that are permitted for the dataset; the permitted size 

of the ‘inliers’ area and; the number of points in an inliers set that is judged sufficient for that 

line to be refined and stored. These thresholds are most probably specific to types of roof 

and number of data points and may yet then be misjudged in DSM noise. Identifying sets of 

thresholds that can be applied to the DSMs in this research project would require substantial 

time and detailed verification. Also, in the field of roof recognition from low resolution LiDAR, 

defining distinct planes can be problematic. For these reasons, this technique also performs 

best on high resolution datasets so it is not likely that it will play a significant role in future 

work. 
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Step Action Diagram 

A Initial data: A set of N points 

 

B Repeat the following:  

1 Choose a sample of 2 points 

uniformly at random and fit a 

line through them 

 
2 Compute the distances of other 

points to the line 

 
3 Construct the inlier set using 

parameters to define an 

acceptable distance from the 

line. 
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4 If the number of inliers is 

greater than a pre-determined 

threshold, refine the line and 

store its quality of fit, gradient 

and intercept. 

 

5 Remove the inliers from the set 

 
6 Repeat the process with the 

reduced number of points and 

reject poorer fitting lines. 

 
C Stop repeating when 

Max.N.Iterations reached or too few 

points left. Then take the best fitting 

line. 

 
Table 2-1 The RANSAC process (adapted from Nguyen et al. (2005)) 

2.2.3.1.3 Region Growing 

The final plane detection method is region growing which McGlone et al. (2004) describe as 

a process that starts with individual points (seed points) that are connected by a line to other 

neighbouring points according to given criteria such as colour or data value. Whilst McGlone 

et al. (2004) is a source that discusses region growing as a general concept in 

photogrammetry, Rottensteiner et al. (2005) applied the technique to plane detection from 
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LiDAR data. In this context, two points are connected by a line depending on their height 

values relative to other surrounding data points. This technique quickly identifies steep 

edges and places a line there. By allowing the construction lines to intersect, roof planes are 

defined that give the area, orientation and slope of each section of the roof.  

A common problem in region growing occurs when the initial seed points are incorrectly 

identified which in this context could be points on a chimney or the ground. Allowing these 

points to join to points to form planes would be an inaccurate representation of a roof. Also, 

this is a methodology that must have tolerances developed for how much deviation is 

permitted between points else, in noisy data sets like DSMs, incorrect planes can be 

identified. A final problem when applying this method to a study with large datasets is that 

region growing performs far worse than 3D Hough Transform in terms of processing time 

(Borrmann et al., 2011). 

2.2.3.2 Model-driven Approaches 

A more viable option for low density and high noise DSM data may be to test the quality of 

fit of a range of template roof shapes against the raw data. The same conclusion was actually 

reached by two authors of a study using a data-driven approach. In addition to the DSM 

resolution issues, Vosselman and Dijkman (2001) stated that DSM data has frequent flaws 

that mean there would be great benefit to producing “…a more global reasoning strategy 

that incorporates knowledge on the common shapes of buildings…”. Those problems are 

summarized in Oude Elberink and Vosselman (2011) in that DSMs have: systematic and 

stochastic errors in the measurement; variable and relatively low densities of height 

measurements and; data flaws due to occlusion by neighbouring objects (e.g., overhanging 

trees) or the absorption of LiDAR pulses by water features and window reflections. The 

following paragraphs describe how common roof shapes are incorporated into efforts to 

model buildings starting with the disassembly of buildings down to basic shapes. 

2.2.3.2.1 Segmentation to Roof Primitives 

Building from the assertion that most complex buildings can be broken down into 

disaggregated ‘primitives’ (Brenner, 2000), model-driven methodologies seek to find a best 

fit between an idealised roof template and raw DSM data (Tarsha-Kurdi et al., 2007). A 

primitive is a rectangular polygon of a single uncomplicated roof type such as flat, gabled or 

hipped. Figure 2-9 shows a building made up of two distinct roof types: hipped (1) and flat 

(2).  
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Figure 2-9 Plan view of a building with two distinct roof types: hipped (1) and flat (2) 

The first step required to break all properties in a city DSM down to their composite 

primitives is to detect cases where there are multiple roof types or significant changes in 

height at a property. Tarsha-Kurdi et al. (2007) use significant changes in building footprint 

shape as an identifier of where two different roof shapes are adjoined. Once the more 

complex buildings have been identified, their building footprints must be segmented to 

rectangular primitives. Various authors have suggested automated or semi-automated 

methods that could be adopted (Kada and McKinley, 2009; Ortner et al., 2007; Vallet et al., 

2011). Kada (2007), however, provides the simplest explanation of the most suitable 

method. This approach centres on finding substantial sides of buildings from plan view 

building footprint data to the define primitives from their intersections (see Figure 2-10). 

 
Figure 2-10 Segmentation of building to primitives using major façades.  

It is recognised that this stage may lose the finer detail of a building footprint, however, given 

the resolution of the DSM can be as low as one point per 2 m2 and the approximate size of 

the lost features (<10 m2), it is assumed that such features are not suitable for solar PV 

anyway. It is acceptable that then matching a roof shape will not produce a perfect fit to the 

original data but will represent the building in the best detail possible given the data 

constraints. It is worth noting that in such instances, a data-driven model that would 



37 
 

interpolate from any small amount of data would not accurately represent such small 

sections of a roof either. With each primitive defined the comparison to a template roof 

shape can begin. Most studies provide a small library of such templates and a good example 

has been shown in Figure 2-11 but equally comprehensive and succinct catalogues can be 

found in Henn et al. (2013) and Huang et al. (2013). 

 
Figure 2-11 Library of roof primitives (Lafarge et al., 2010) 

The advantages to using roof primitives instead of attempting to identify and define every 

plane as the data-driven methods require have been outlined by Huang et al. (2011). The 

first is that irregular or incomplete roof facets are not permitted as a roof template is forced 

to fit the data so no slight outlier points can alter the contour of the shape. Secondly, a vast 

number of buildings will be represented by those templates in the library. Finally, complex 

roofs can be interpreted more easily through effective combination of multiple simple roof 

shapes. 

2.2.3.2.2 Statistical Testing of Template Fit 

The actual assessment of fit is, in the simplest instances, the sum of absolute differences in 

height between the raw data and the height value prescribed by the overlaid roof template, 

as used in Brenner and Haala (1999). Huang et al. (2013) have a more nuanced method for 

calculating the error in that it accounts for the fact that multiple planes are being tested for 

goodness of fit. They present the equation below in which M refers to the specific template 

being compared to the data points, D, which leads to a ‘z-error’ value (∆z): 

∆z=
∑ (∑ |𝑧𝑀 − 𝑧𝐷|𝑖𝑖∈Ω𝑓 )𝑓∈ℱ

𝐾
. (2-34) 

𝑓 is an individual facet from the facet-set (ℱ) of the primitive i, the data points in the domain 

of 𝑓 are collectively Ω𝑓, and K is the number of involved data points. Huang et al. (2013) use 
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absolute deviation instead of square deviation as the desired outcome is not the best fit to 

all the data points. Instead, finding a ‘consensus fit’ against outliers is preferred in this 

context as their ∆z calculation is less sensitive to data points caused by clutter objects and 

local maxima. The likelihood of a particular roof template matching a dataset is proportional 

to ∆z getting smaller, which can be described using a likelihood function 𝐿(𝐷) as below: 

Θ ↦ 𝐿(𝐷) = 𝐿(𝑋|Θ) ∝ exp(−Δ𝑧) (2-35) 

with  Θ  the parameters of the template and 𝑋  the observations. Unfortunately, the 

technique shown above has a tendency to score smaller shapes more favourably than larger 

ones and would result in smaller roof shapes than observed being taken forward as the best 

fit. Both Henn et al. (2013) and Huang et al. (2013) seek to compensate for this problem by 

using an Akaike Information Criterion (AIC). Henn et al. (2013) describe roofs classification 

using AICc which is an adapted AIC from Hurvich and Tsai (1989). The basic AIC is best 

described by the following equation from Huang et al. (2013): 

𝐻𝑀 = −𝐾 − 2ln(𝐿(𝐷|𝑀)) (2-36) 

In essence, this equation places additional importance on the number of points being 

considered (K) which is equivalent to the size of a proposed roof template. Whilst this is a 

vital step given the Huang et al. (2013) methodology uses only the DSM, it could easily be 

avoided by having the position and size of the template controlled by a building footprint 

segmented to primitives. This would save a large amount of computational time which is vital 

when looking to appraise individual buildings on a city-scale.   

There are methods that significantly differ from this approach to establishing quality of fit. 

Poullis and You (2009) present a method for roof type identification with a flexible 

parameterized geometric primitive and in doing so determine the best model concurrently 

with the estimation of the model’s parameters. The geometric primitive created consists of 

only two parameters, 𝛼 and 𝛽, with which several building primitives are then created. The 

parameters are determined using a non-linear, bound-constraint minimization by means of 

Gaussian mixture models and an ‘expectation maximization’ algorithm. These complex 

procedures will not be further explored here because of their requirement for high-

resolution data and their processing demands. 

Another complex method for assessing the quality of fit and refining the model is through 

support vector machines (SVM) which have been the subject of many studies into 

classification, regression, and clustering problems common in building reconstruction from 

DSMs. Lodha et al. (2006), Haitao et al. (2007) and Römer and Plümer (2010) are amongst 
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the most significant studies in this area. Given the breadth of studies in this area and the 

complexity in executing such a technique, it is sensible to consider the approach of Henn et 

al. (2013) in a step-wise fashion in the same manner that RANSAC was described in section 

2.2.3.1.2. The outputs created by the algorithm detailed below are: most likely model �̃�; 

corresponding probability 𝑃(�̃�|𝑋, 𝑅, 𝐶) and; corresponding standard deviation 𝜎�̃� where 𝑋 

refers to the DSM data, 𝑅  to the specific primitive rectangle being tested and 𝐶  to the 

classifier.  

 Action Description 

A Initialise feature vector:  

𝑥𝑏 = (𝑥𝐹𝑃 , 𝑥𝑀1, … , 𝑥𝑀1)
𝑇 

To start with, this is a blank list of characteristics 

that will be assigned to the building being tested.  

B Determine model 

independent features 𝑥𝐹𝑃 

In a similar finding to Suveg and Vosselman (2004), 

Henn et al. (2013) state that characteristics of a 

building footprint suggest the building’s specific 

roof type. For example, a rectangular footprint 

with a small area or low average height is very 

likely to have a flat roof. For this reason, they split 

features of the input DSM and footprint data into 

two groups. The first, 𝑥𝐹𝑃 contains information on: 

 general shape of footprint 

 perpendicularity (divergence of polygon 

angles to 90°) 

 number of touching buildings 

 azimuth angle of longest edge in footprint 

 ratio of length to width of rectangle 

(slimness) 

 area of footprint  

 median height of DSM data points 

C Repeat the following for each model from the template library (𝑀𝑖 ∈ 𝑀) 

1 Robust estimation of 𝑀𝑖 This involves an adapted version of RANSAC called 

MSAC (M-estimator Sample Consensus) for the 

formation and refinement of the model template 

to test the data against. With each iteration, the 

model changes to a different shape from the 

primitive library. 

2 Determine model specific 

features 𝑥𝑀𝑖
 

The second group is made up of features that 

depend on the roof model 𝑥𝑀𝑖 containing: 

 inlier rate for the MSAC tests 

 complexity of shape  

 standard deviation of heights  
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3 Determine model 

complexity 𝑥𝐶𝑖 

Assigns an identification that depends on the roof 

template model. E.g. 𝑥𝐶𝑖1  for flat roofs,  𝑥𝐶2 for 

shed roofs etc.  

4 Classify 𝑥𝑏 with C to derive 

the best model �̃�, 

𝑃(�̃�|𝑋, 𝑅, 𝐶) = 𝑃(�̃�|𝑥𝑏) 

and 𝜎�̃�  

These are the key outputs providing model details, 

probability of model fit and standard deviation of 

the data point heights to the model template. 

From this, the best model and its properties can be 

derived. 

 End loop 

Table 2-2 Roof classification by SVM (adapted from Henn et al. (2013)) 

A family of methodologies similar to SVM has been presented by Lafarge et al. (2010), Huang 

et al. (2011) and Huang et al. (2013) who have implemented a reversible jump Markov Chain 

Monte Carlo (rjMCMC) algorithm to search for the best fitting geometry and position of a 

roof template. In this application of rjMCMC, a Markov Chain sampler is able to ‘jump’ from 

one roof template type from the primitive library to another once the maximum likelihood 

of a roof template is established from the varying of each template’s geometric properties 

and location. As such the rjMCMC algorithm applied in the studies can be described as shown 

in Table 2-3. Note that these methodologies are applied to a DSM without the location of 

buildings being defined by building footprint data, hence the first step is a global search to 

establish where a building might be amongst the ‘raw’ DSM. 

 Action Description 

1 Global search of the 

DSM 

One template is applied at different positions and 

with different geometric properties until a most 

likely fit is found (when the fit reaches a certain 

threshold) 

2 Local search There are then refinements to the geometric 

properties of the template 

3 Jump to more 

complicated roof 

template 

More complicated roof template then tested in area 

of maximum likelihood following the switch routine 

described in section 2.2.3.2.3 

3a Accept If there is an improvement to 𝐻𝑀  (from (2-36)), 

accept the new model shape 

3b Reject If there is no improvement to 𝐻𝑀, reject the change 

of shape and try a different model following the 

rules of the switching routine  

 Loop  part 3 Repeat above until 𝐻𝑀  becomes stable or a 

predefined maximum number of iterations is 

reached 

4 Add another primitive When there has been a second primitive identified 

in the segmentation process (see section 2.2.3.2.1) 

there then follows a testing of a second primitive 
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that is allowed to overlap with any preceding 

templates. This continues until a most likely fit is 

found 

5 Merge the primitives The two (or more) primitives are combined  

Table 2-3 rjMCMC algorithm as applied in Huang et al. (2011) and Huang et al. (2013) 

Final and most likely z-errors of individual roof reconstructions vary significantly, even when 

the buildings neighbour one another. With one particular example, Huang et al. (2013) state 

that the range of error in individual accepted primitives was between 0.05 m and 1.10 m for 

buildings within 100 m of each other. It is important to remember that this method is 

founded on an aim to create a plausible model despite a dataset plagued by noise. The values 

of z-error depend on the complexity of the original building shape and the success in building 

segmentation which will often omit smaller building parts. The authors argue, therefore, that 

z-error should be seen as a measurement of consensus, or the most likely fit, and not a 

directly comparable reconstruction error. This also means that a fixed z-error threshold for 

the acceptance of a candidate template is not feasible either so acceptance is defined by 

either 𝐻𝑀 becoming stable or by a predefined maximum number of iterations being reached. 

The example provided in the study shows a building made up of two distinct primitives taking 

4,900 iterations to become stable. This raises questions about the suitability of the method 

for entire city-scale studies and suggests that it may only be applicable for problematic 

buildings either too small or complex for a less intensive method. 

2.2.3.2.3 Template Selection 

Model-driven approaches test multiple templates against the raw data to establish the best 

fit which leads to problems of template selection. Henn et al. (2013) use a sequence to test 

one template after the other in the most logical progression of simplest to complex roof 

shapes. In the same vein, Huang et al. (2013) use a series of switches to prevent a very 

intricate roof type such as a Dutch-gabled roof being tested immediately after the simplest, 

flat template which is shown in Figure 2-12. The progression through the sequence continues 

as long as the quality of fit improves. When it fails, a second switch back to the preceding 

template type occurs. Breaking down roofs to composite primitives permits the modelling of 

buildings with complex roofs as though they are collections of small simple roofs. Many 

methodologies attempt to go one stage further than modelling the major roof shapes of a 

large property and recombine the primitives to give a more detailed roof shape. Whilst this 

may be important for many fields of research where 3D modelling from DSM has to be highly 

accurate, it is not of great importance in the city-scale modelling of solar PV viability.  
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Figure 2-12 A 'jump routine' defined in Huang et al. (2013) for switching between primitive roof templates  

2.2.3.3 Hybrid Approaches 

There have been studies that cannot be described as entirely data- nor entirely model-driven 

as they combine elements of the two approaches. Oude Elberink (2009) presents a target 

based graph matching algorithm that relates model information with data features. These 

features are segments and intersection lines that are matched with ‘graphs’ (roof models) 

from a database. So there are stages of simple interpolations (data-driven) and corrections 

based on idealised roof templates (model-driven). This study presents an interesting 

combination of the two approaches but it requires very high-density LiDAR of 15 points per 

m2 which is very unlikely to be available across the entirety of multiple UK cities in the 

foreseeable future. Lafarge and Mallet (2012) present another hybrid approach to building 

reconstruction from a DSM. Buildings are considered to be assemblages of primitives as per 

the model-driven methods described earlier but then mesh-patches are built from the DSM 

at points where fitting scores are poor and roofs become irregular which is more of a data-

driven approach. The methodology is applied to a city-scale study area and validated in 

Lafarge and Mallet (2012) but as it has elements of data-driven approaches in the building of 

the meshes, it requires a large number of data points to accurately represent the irregular 

buildings. This issue is why the hybrid methods are not described further in this research. 

This section has introduced the fundamental workings of solar PV panels and how insolation 

varies with the positioning of an installation which is defined by roof geometry. Two 

methodologies for the estimation of solar irradiance have been described as have the two 

groups of methodologies to assess roof slope, orientation and available area through roof 

geometry modelling. 
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2.3 City-scale Studies of Microgeneration Viability 

There have been a number of studies to investigate the potential for city or regional 

deployment of renewable energy technologies. This section presents such methodologies 

and makes a distinction between those that have used DSMs and those that have not. As 

discussed earlier, the field of building reconstruction from DSM data grew considerably at 

the turn of the millennium so it follows that there has been somewhat of a lag in the 

refinement and transferal of the underlying techniques to a specific adaptation such as solar 

PV viability analysis. Therefore, there have been studies within the last ten years that have 

utilised other, more established datasets. For example, broad-scale land usage datasets have 

been combined with regional insolation databases to assess provincial and national potential 

for solar PV electricity generation in studies by Šúri et al. (2007) and Izquierdo et al. (2008).  

Šúri et al. (2007) used the ESRA database which has monthly and annual averages of global 

irradiation at a resolution of 1 km x 1 km for 1981 to 1990. They carried out a preliminary 

analysis of regional and national differences in solar energy resource across the 25 EU 

member states and 5 EU candidate countries that they selected due to their affiliation to the 

EU JRC. Šúri et al. (2007) then assessed the potential for solar PV by defining a “standard” 1 

kWp grid-connected PV system and calculating its annual electricity output in each of the 

selected locations. From here, the authors investigated both the theoretical maximum 

potential of solar PV electricity generation for each location and also how much solar PV 

would need to be installed to meet 1% of national electricity demand. This last aim reflects 

just how far the solar PV industry has come in the short time since 2007 as the majority of 

EU countries now meet at least 1 % of national electricity demand from solar PV. The paper 

goes on to discuss how national and supra-national legal and financial frameworks could be 

organised to promote the deployment of solar PV which is an interesting discussion but one 

that is slightly tangential to this research. The use of a “standard” 1 kWp array with optimised 

slope and aspect is a far less nuanced way to appraise broad-scale solar PV potential than 

this research is targeting. This research aims to be accurate at individual properties and yet 

rapidly deployable at the city scale and there are other approaches that offer outputs of a 

finer resolution than regional and national. Izquierdo et al. (2008) argue the case for this 

finer level of accuracy, stating that the development of effective energy policy and regulation 

is dependent upon rigorously founded assessment of the potential for renewable energies 

at the individual property scale. It is their opinion that the greatest barrier to an accurate 

and widely deployed model of solar PV potential is in the estimation of available roof area 

across an area. Their method utilises two groups of data. The first is broad scale land-use, 



44 
 

population and building density data and the second is a set of building footprint data 

samples for a selection of urban areas. Trends between the two groups of data are calculated 

and then applied at a national scale. This scale is of interest to national and supra-national 

bodies but will not aim to accurately estimate the available area of specific properties which 

is a central objective of this research. It is an interesting study because of its novel use of 

sampled building footprint data but there have since been studies in which that data is used 

directly to estimate available roof area across a city, such as Bergamasco and Asinari (2011a).  

Bergamasco and Asinari (2011a) do not calculate roof shape or slope. Instead, they assume 

the most popular roof type (gabled) and use average angles for residential or industrial 

buildings despite acknowledging that typical residential roof slopes in their study area have 

a range of 15° and that industrial properties have a wide variety of roof geometries. There 

are also assumptions in the reduction of roof space to account for chimneys, windows and 

air conditioning units that are defined for residential and industrial buildings separately. The 

orientation of the roofs is defined by a corrective factor to what would be generated by a 

south-facing installation which the authors have defined as 0.9. This is a highly inaccurate 

way to model a specific building and despite improvements made through the incorporation 

of orthorectified aerial imagery (Bergamasco and Asinari, 2011b), it is not an approach to be 

taken further in this research. It is the need to model roof slope and orientation at individual 

properties that means building footprint data cannot be used in isolation and DSMs are 

essential in order for the research aims to be achieved. 

Kodysh et al. (2013) and Brito et al. (2012a) are examples of studies in which DSMs are used 

in combination with building footprint data. Both methods extract DSM data from the areas 

that fall within building footprints which are large enough to install a solar PV system. This 

reduced DSM data is then applied to a roof geometry and solar insolation modelling 

algorithm that is built in to the market-leading GIS software programme, esri ArcGIS. It is this 

level of complexity from which the research into city-scale solar PV power output presented 

in this thesis. 

The city-scale study of wind microgeneration viability in urban and semi-urban areas has 

garnered less interest than solar PV, possibly due to the higher capital expenditure (CAPEX) 

costs entailed. However, it is also possible that the lack of accuracy that results from 

attempting to use broad scale datasets, such as land use, have meant that city-scale studies 

have not been practicable for wind. This conclusion was reached by Peacock et al. (2008) 

who stated that methods to predict wind energy had not yet been suitable for predicting 
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power output in an urban environment despite the bountiful resource that is there 

(Millward-Hopkins et al., 2013c).  

Two studies that have sought to address this issue by translating a wind speed measured at 

a reference across an urban area are Sunderland et al. (2013) and Drew et al. (2013). 

Sunderland et al. (2013) focus on the city of Dublin, Ireland and use detailed wind speed 

measurements from the city’s airport as reference data, a suburban site and an inner city 

site to compare a variety of techniques. They conclude that the log profile predicts wind 

speeds with more accuracy than a range of other techniques but only when the aerodynamic 

parameters are accurately defined. Similarly, the study of Greater London presented Drew 

et al. (2013) finds that extending the log profile from the UBL is a sufficiently accurate 

methodology. Both these studies, however, do not define the aerodynamic parameters from 

DSMs which provide a relatively accurate (±0.5 m) height-above-sea-level measurement grid 

with a horizontal and vertical resolution of at most 2 m. However, since Peacock et al. (2008), 

a small number of studies have sought to increase the accuracy of wind speed modelling 

using DSMs at their core (Millward-Hopkins et al., 2013a; Weekes and Tomlin, 2013) as 

discussed in section 2.1.3. From these datasets, the aerodynamic parameters in the 

logarithmic downscaling equations can be accurately defined for localised areas and the 

reported error in long-term average wind speed is 0.3 ms-1 (Millward-Hopkins et al., 2013b) 

which is sufficient to be used in power output and financial viability estimation. 

Besides the estimation of wind or solar resource, various other factors have an influence on 

whether a site will be financially feasible or not. These include CAPEX and OPEX costs, 

electricity prices and government incentives (Kelleher and Ringwood, 2009). These factors 

have been highly variable in recent years which presents a complex problem when trying to 

best communicate the potential for wind and solar microgeneration. Two studies that have 

looked in detail at the issue of how to communicate the financial upside in two very different 

countries are Li et al. (2014) and Sun et al. (2013) which were focused on Ireland and Fujian 

Province (China) respectively. Unfortunately, the two studies are based on optimised 

individual installations in different parts of their study. However, that is not to say that their 

approaches to defining financial viability are any less useful, they just have not been applied 

on the scale that is of interest to this research. Both methods present clear frameworks of 

the costs and revenues associated with solar PV microgeneration and make use of payback 

time (years) and net present value (NPV (£)) viability metrics that are highly useful for this 

research. It is encouraging that studies of wind and solar microgeneration viability can also 
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be found in the literature that directly involve communities (Van Hoesen and Letendre, 

2010), local authorities (Bristol City Council, 2012) and large private land owners (JBA, 2012). 

2.4 Datasets  

Sections 2.1 and 2.2 have described how wind and solar electricity is generated. Section 2.3 

introduced studies that estimate the amount of electricity that could be generated by 

modelling the physical environment in which the technologies are installed. In order to then 

assess the financial viability of those installations, a range of costs and revenues have to be 

applied. All of the datasets that are required by each of these steps are summarised in Table 

2-4. It is important to note that the DSM and DTM datasets are now free to the general public 

but that academic licenses were required in order to use the building footprint data. 

However, the DSM and DTM datasets that are available through this route are lower in 

resolution than those that are offered commercially but those privately sold datasets are 

prohibitively expensive for city-scale studies. This is an important theme that is returned to 

in later sections of the thesis. One further note is that the export and FiT rates have more 

than one source due to the changes made to them during the course of the research. 

Name Description Units Source(s) 

Building 

footprints 

Plan view outlines of buildings with 

vectorised height data attached 

m Landmap (2014b), 

MasterMap 

(2011)  

DSM First returned LiDAR measurement of 

surface height above sea level 

m Environment 

Agency (2016) 

DTM DSM data filtered to remove surface 

objects like vegetation and buildings 

m Environment 

Agency (2016) 

DEM Subtraction of spatially aligned DSM 

and DTM data to leave only the 

height above ground of surface 

elements 

m N/A 

Domestic 

electricity costs 

The average cost of domestic 

electricity per KWh, as calculated by 

DECC 

£/kWh DECC (2015a) 

Export tariff  rates Payment for every unit of electricity 

exported to the grid from a 

renewable energy source 

£/kWh DECC (2013a); 

ofgem (2015) 

FiT rates Payment for every unit of electricity 

exported to the grid from a 

renewable energy source 

£/kWh DECC (2013a); 

ofgem (2015) 

Solar PV & 

installation costs 

The one-off total costs of a solar PV 

system including the cost of 

installation  

£ Platt (2016b); 

Roberts (2016); 

Platt (2016a) 
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Wind turbine & 

installation costs 

The one-off total costs of a wind 

turbine including the cost of 

installation 

£ Kerr (2016); 

Bjerknäs (2016) 

Table 2-4 Summary of data sources 

2.5 Summary 

This chapter has set the context for the research by explaining the fundamental physics of 

how electricity is generated from wind and solar energy and the causes of variation in yield 

caused by an installation’s location and positioning. City-scale methodologies to assess the 

positioning and localised contexts in which the technologies are placed have been introduced 

and their propensity to generate error has been discussed. Also in this chapter, the financial 

considerations that determine installation viability have been defined and the sources of key 

datasets have been summarised. The themes of the literature discussed in this chapter are 

central to meeting the research aims of the thesis and the chapters that follow aim to 

improve the accuracy or practicability of the approaches that have been described.   
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Chapter 3 Solar Resource Appraisal 

The preceding chapters have explained how solar PV panels can be installed on the rooftops 

of individual properties and offer substantial emission savings (Bush et al., 2014; Goe and 

Gaustad, 2014). The sector has experienced tremendous growth in recent years (Cherrington 

et al., 2013; Muhammad-Sukki et al., 2013; Chen et al., 2014) but its expansion remains 

mostly dependent on a very large number of decisions to invest in separate projects (Sauter 

and Watson, 2007). The absence of reliable performance projections has been identified as 

a major barrier to the uptake of such low carbon technologies among individuals (Bergman 

and Eyre, 2011), land owners and local governments (Gouldson, 2011). The roll-out of solar 

technologies on a city wide scale could be supported by mapping the feasibility of solar 

installations (Bergman and Eyre, 2011) to influence not only individual property owners but 

also those responsible for entire portfolios. This process must be supported by accurate 

installation performance projections (Bull, 2012; Kanters et al., 2014) not on a case-by-case 

basis, but at the city scale where many thousands of potential investment decisions require 

information. The city scale approach has further advantages beyond influencing small-scale 

investment as policy makers would have access to estimations of the regional and national 

potential of the technologies underpinned by locally accurate appraisals. This could move 

decision making away from top-down studies based on generalised socio-economic trends 

that, by their nature, cannot be inspected to the individual property level. 

Section 2.2 explained in great detail how electricity is generated from solar radiation and 

how the incident solar radiation on a surface varies due to its slope and orientation. 

Therefore, an accurate assessment of a proposed solar PV installation’s performance 

requires detailed knowledge of the property’s geometry and positioning (Hong et al., 2014). 

Height above-sea-level LiDAR data aggregated into a digital surface model (DSM) is a data 

source that can be used to estimate this information for buildings across an entire city as 

various sources demonstrate (Lukac et al., 2013; Jakubiec and Reinhart, 2013; Brito et al., 

2012b; Kucuksari et al., 2014). This chapter aims to build on those methods and to explore 

how LiDAR data can be used for the appraisal of roof geometries at the city scale that are 

sufficiently accurate to underpin solar PV viability calculations. 

3.1 Solar City Indicator 

In order to meet the research objective of estimating the viability of solar PV installations at 

the city-scale, research has been undertaken to appraise both physical and socio-economic 

controls on solar PV uptake across of a number of major UK cities. A ‘Solar City Indicator’ has 
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been calculated and used to rank the cities by their capacity to generate electricity from roof-

mounted PV. Seven major UK cities were chosen for analysis based on available DSM and 

building class data; Dundee, Derby, Edinburgh, Glasgow, Leicester, Nottingham and Sheffield 

which are shown in Figure 3-1 to emphasise the distribution in both northern and central 

areas.  

 
Figure 3-1 Locations of the seven selected cities  

The physical capacity of each city was established using a GIS-based methodology to extract 

data from DSMs with distinct methodologies for large and small properties. To this, a socio-

economic model was added using factors including income, education, environmental 

consciousness, building stock and ownership that were chosen based on existing literature 

and correlation with current levels of PV installations. The two groups of factors were then 

combined to produce a value reflective of each city’s potential to install PV. 

3.1.1 Methodology 

3.1.1.1 Physical Capacity 

The physical capacity of each city was established using a GIS-based methodology, employing 

esri’s Solar Radiation Toolset (ESRI, 2014) which exploits digital surface models (DSM) 
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generated from Light Detection and Ranging (LiDAR) data. With the location and plan area 

of buildings defined by building footprint data, a DSM can define slope, aspect and annual 

incident insolation for each rooftop. During this process a series of physical limits were 

imposed to restrict the evaluated insolation to areas where it would be feasible to install PV. 

These included:  

 limiting the suitable area to the south facing component of roofs (i.e. an aspect 

between 90° and 270° from North) 

 removing areas where insolation is estimated to be less than 850 kWh m-2, as such 

sites are unlikely to prove economic under conceivable tariffs, technology costs or 

electricity prices 

 10% of rooftop area was removed to allow for chimneys, aerials and other rooftop 

obstructions that 2 m horizontal resolution LiDAR data is too coarse to consistently 

capture 

 limiting the suitable area of roofs to regions with slopes below 60°. 

The restriction on slope was partly included to limit inclusion of crests, areas where 

transitions between two levels were encountered (which would likely be shaded), and sharp 

curvatures. The analysis also made an underlying assumption that roofs displaying a low and 

consistent slope were flat planes and not curved surfaces. 

The ArcGIS Area Solar Radiation tool accounts for atmospheric effects, site latitude and 

elevation, slope and aspect, daily and seasonal shifts of the sun angle, and effects of shadows 

cast by surrounding topography (ESRI, 2014) and was described in section 2.2.2. However, 

the toolset does not account for weather and temperature. Fortunately, whilst regional 

temperature variations across the UK do exist, they are insufficient to cause a significant 

change in PV cell efficiency and output and can reasonably be ignored. Met Office data for 

1981 to 2010 (Met Office, 2016) shows that the smallest annual mean minimum temperature 

of all the cities in this study is  5.3 °C for Dundee whilst the greatest annual mean minimum 

temperature is 6.6 °C for Sheffield. There is a similarly minor difference in annual mean 

maximum temperatures with 12.2 °C in Glasgow and 13.8 °C in Leicester (Met Office, 2016). 

Solar cell efficiency typically falls by only 0.4% to 0.5% for every 1 °C increase in ambient 

temperature (Markvart, 2003) so this study does not investigate this minor effect any 

further.  

The influence of weather was accounted for using a corrective factor that was developed 

using Met Office weather data on the hours of direct sunlight observed in each of the 
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selected cities. For example, Glasgow receives fewer hours of direct sunlight in comparison 

to Dundee so its insolation estimations require a reduction that is proportional. The 

correction factor was derived from Met Office (2012a) data shown in Table 3-1 reflecting the 

number of hours of direct sunlight at each location. It was assumed that when experiencing 

periods of direct sunlight the computed insolation was broadly correct, whilst during times 

without direct sunlight panels would still benefit from a certain amount of diffuse radiation 

(about 31%). Thus the correcting weather factor, 𝛾, was calculated using the formula shown 

in equation (3-1): 

𝛾 =  
(100 × 𝛽) + ((1 − 𝛽) × 31)

100
, (3-1) 

where 𝛽  is the recorded proportion of daylight hours featuring direct sunlight. This 

correction factor was applied to the insolation values derived from the ArcGIS Area Solar 

Radiation calculations. The weather factors employed are summarised in Table 3-1. 

City 
Proportion of 

daylight hours to 
direct sunlight hours 

Weather factor 
(𝜸) 

Dundee 0.3385 0.5436 

Manchester 0.3135 0.5263 

Nottingham 0.3139 0.5266 

Edinburgh 0.3376 0.5429 

Glasgow 0.2815 0.5042 

Sheffield 0.3016 0.5181 

Leicester 0.314 0.5267 

Derby 0.3139 0.5266 

Liverpool 0.3135 0.5263 
Table 3-1 Proportion of daylight hours for which there is direct sunlight from Met Office (2012a) data and the 

output weather factor for each of the seven selected cities 

Whilst this approach is limited in its accuracy when compared to approaches that use 

minutely weather data to assess if direct radiation is reaching a PV panel, the computational 

requirements to do so for seven city-scale studies were deemed impracticable. The final 

output of this part of the method was an estimation of insolation incident on exploitable 

areas of each large rooftop across each city. 

For roofs of less than 200 m2 an alternative methodology was devised to tackle digital 

representation inaccuracies that result from the insufficient number of incident DSM data 

points on smaller roofs. The methodology for smaller properties centred on extrapolating 

values typical to larger properties of the same building class in the same study area. Building 

classifications followed National Building Database criteria which categorise buildings based 
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on age and structure type (The GeoInformation Group, 2008). The potential output from 

small properties was estimated using the EU-JRC PVGIS model which required three inputs 

related to the buildings in the study areas, namely: the area of roof space available; the slope 

angle of the roof space; and the orientation of that roof space (EU-JRC, 2012).  

Angles of slope for small property rooftops were estimated by identifying a characteristic 

slope for each building class from trends observed in large properties. The calculation of 

small property orientation distribution was again approximated using trends observed 

amongst different large property building classes. It was assumed that small properties 

would be arranged with a similar distribution of orientations to large properties, as both 

would be subject to the effects of defining features such as major rivers, motorways or 

coastlines. Finally the calculation of small property rooftop area suitable for a PV array was 

performed using building footprint data. This figure was then corrected for the typical roof 

being only half south-facing and for the presence of chimneys, skylights and other roof 

obstacles with 10% of remaining roof space removed following Bergamasco and Asinari 

(2011a). The EU-JRC PVGIS model tool takes into account insolation, weather patterns, 

topological shading, and system losses. An estimated correction for non-topography shading 

based on values suggested in Izquierdo et al. (2008) of 16% was applied to represent the 

impact of near-by trees and buildings.  

The resultant outputs for large and small properties were used to determine the financial 

viability of available sites. This was achieved by computing the likely payback period based 

on energy bill savings and income from government incentives. In the UK, the FiT is paid for 

the total electricity generated, being independent of the amount of electricity used internally 

or exported at sites with installations except for larger installations. If the generator does not 

have separate import and export meters then the export tariff is usually calculated under the 

assumption that half of the electricity generated by PV will be exported to the grid and half 

used internally. The same assumption was used in these calculations. Electricity bill savings 

were calculated using DECC data on the average consumption of domestic properties in each 

city. The cost of installation for each array was then divided by the annual income achieved 

by the array to provide a payback time in years which is shown in equation (3-2): 

Payback =
𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

EBS𝐴𝑛𝑛𝑢𝑎𝑙 + ETI 𝐴𝑛𝑛𝑢𝑎𝑙 + FiT𝐴𝑛𝑛𝑢𝑎𝑙
, (3-2) 

where 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 represents the cost of the installation, 𝐸𝐵𝑆𝐴𝑛𝑛𝑢𝑎𝑙 is the annual electricity 

bill saving, 𝐸𝑇𝐼𝐴𝑛𝑛𝑢𝑎𝑙  the annual export tariff income and 𝐹𝑖𝑇𝐴𝑛𝑛𝑢𝑎𝑙  the annual FiT income. 
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A full list of costs and revenues has been provided in the following tables (Table 3-2 to Table 

3-6). 

Name Value Source 

Cinstallation See Table 3-3 and 

Table 3-4  

Various 

EBSAnnual See Table 3-5 DECC (2010) 

ETIAnnual 4.5 p kWh-1 DECC (2012) 

FiTAnnual See Table 3-6 DECC (2012) 

Table 3-2 Costs, revenues and their sources as of 09/11/2012 

 

Size  
(kWp) 

Panel 
Cost  
(£) 

Source 

0.69 

Panasonic HIT-H250E01 2,923 

Solar Essence 
(2012) 

Sharp NU-R250 2,923 

Kinve KV250-60M 2,565 

Komaes KM 240(6) 2,461 

1.25 

Panasonic HIT-H250E01 5,295 

Solar Essence 
(2012) 

Sharp NU-R250 5,295 

Kinve KV250-60M 4,647 

Komaes KM 240(6) 4,459 

1.5 

Panasonic HIT-H250E01 5,618 

Solar Essence 
(2012) 

Sharp NU-R250 5,618 

Kinve KV250-60M 4,788 

Komaes KM 240(6) 4,676 

1.75 

Panasonic HIT-H250E01 6,033 

Solar Essence 
(2012) 

Sharp NU-R250 6,033 

Kinve KV250-60M 5,024 

Komaes KM 240(6) 4,907 

2 

Leeds Solar (value) 4,295 
Leeds Solar 

(2012) 
Leeds Solar (high-spec) 4,999 

Leeds Solar (ultra-efficient) 5,995 

3 

Leeds Solar (value) 4,995 
Leeds Solar 

(2012) 
Leeds Solar (high-spec) 5,750 

Leeds Solar (ultra-efficient) 6,495 

4 

Leeds Solar (value) 5,750 
Leeds Solar 

(2012) 
Leeds Solar (high-spec) 7,195 

Leeds Solar (ultra-efficient) 8,495 

5.5 

Panasonic HIT-H250E01 12,584 

Solar Essence 
(2012) 

Sharp NU-R250 12,584 

Kinve KV250-60M 8,925 

Komaes KM 240(6) 9,274 

7 Panasonic HIT-H250E01 16,016 
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Sharp NU-R250 16,016 
Solar Essence 

(2012) 
Kinve KV250-60M 11,359 

Komaes KM 240(6) 11,803 

8.5 

Panasonic HIT-H250E01 19,448 

Solar Essence 
(2012) 

Sharp NU-R250 19,448 

Kinve KV250-60M 13,793 

Komaes KM 240(6) 14,332 

10 

Panasonic HIT-H250E01 22,880 

Solar Essence 
(2012) 

Sharp NU-R250 22,880 

Kinve KV250-60M 16,227 

Komaes KM 240(6) 16,861 
Table 3-3 Solar PV panel prices as of 14/12/2012 

 

Size  
(kWp) 

Approximate Cost  
(£ kWp-1) 

>10 - 50 1650 

>50 - 150 1500 

>150 - 1000  1200 

>1000 - 5000 1200 

>5000 1000 
Table 3-4 Approximate solar PV panel and installation costs as of 14/12/2012. Developed by linear 

interpolation from quotes by Anesco (2012) 

Installation costs were adapted from quotes which were correct as of 09/11/2012. Mid-

ranging values were used for the kWp rating categories. Prices for larger installations were 

based on rough estimates per kWp obtained from communication with Anesco, a prominent 

UK-based energy services provider. Additional values for intermediary installation sizes were 

obtained by interpolation. 
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City 
Total Electricity 

Consumption (kWh) 
Average household 
consumption (kWh) 

Dundee 811728506.5 5183.0 

Manchester 2609606891.2 4140.4 

Nottingham 1364510371.6 3759.5 

Edinburgh 2642224648.3 4304.4 

Glasgow 2956080911.5 4107.8 

Sheffield 2448090110.9 3650.9 

Leicester 1454341909.2 3752.0 

Derby 1131908499.5 3958.2 

Liverpool 1961985581.4 3993.7 
Table 3-5 Total and household electricity consumption 2009 data (DECC, 2009) 

 

Installation Size 

(kWp) 

Value  

(p kWh-1) 

4 21 

>4 - 10 16.8 

>10 - 50 15.2 

>50 - 250 12.9 

> 250 8.5 

Stand-alone 8.5 

Table 3-6 Feed-in Tariff Rates prior to 03/03/2012 (DECC, 2012) 

The results were presented in a format to show total viable generation in kWh for one year 

increments in payback period up to 25 years, which was the FiT payments lifetime at the time 

of the study (2012) but has been set to 20 years since late 2013.  

3.1.1.2 Socio-economic Potential 

Research into the socio-economic factors that influence investment in solar PV is, at present, 

limited. Studies to date have only extended as far as survey and interview based experiments 

that are limited in scope. The importance of individual socio-economic factors is difficult to 

infer from the literature due to the wide range of aims amongst the studies. However, 

consensus has been found among a number of studies for the influencing factors presented 

in Table 3-7. All of the studies described here state that upfront costs represent a major 

barrier to the installation of solar PV. Two studies, Willis et al. (2011) and Claudy et al. (2011) 

found that the mean maximum price that investors would be willing to pay for a residential 

(2–4 kWp) solar PV system was £2,831 and £3,635 respectively. However, in this time period 

the actual cost of installation was generally closer to £6,000 for a 3 kWp solar PV unit (Solar 

Century, 2012). It has also been found that consumers desire payback periods to be around 

nine years (Claudy et al., 2011), whereas Willis et al. (2011) reported that in 2010, the time 

required is more likely to be over 10 years. Age and social class are linked closely to 
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knowledge of the technologies by Ellison (2004) and Caird et al. (2008) which has an obvious 

impact on the likelihood of investment. An interesting theme emerges in the literature that 

places great importance on the social acceptance of technologies such as solar PV, 

specifically in relation to installation on existing properties (Jager, 2006; Faiers and Neame, 

2006). Whilst the public may only be interested in the passive consent of large scale 

deployment of energy technologies, microgeneration requires active acceptance and also 

then the drive to make the installation a reality (Sauter and Watson, 2007). Therefore, it is 

necessary to understand the impact that socio-economic factors can have on the uptake of 

solar PV in order to inform policy in this area, which was the focus of Keirstead (2007) and 

Candelise et al. (2010). 

Socio-economic factor Reference 

Social influences 
Claudy et al. (2011); Jager (2006); Faiers and 

Neame (2006) 

Level of education 
Claudy et al. (2011); Sauter and Watson 

(2007) 

Level of grant support 
Keirstead (2007); Candelise et al. (2010); 

Faiers and Neame (2006) 

Age Willis et al. (2011); Ellison (2004) 

Environmental consciousness Jager (2006); Sauter and Watson (2007) 

Knowledge of the technology 
Candelise et al. (2010); Caird et al. (2008); 

Ellison (2004); Sauter and Watson (2007) 

Social class Ellison (2004); Caird et al. (2008) 

Table 3-7 Influencing socio-economic factors identified from the literature for the uptake of solar PV. 

The first step in assessing the socio-economic potential was to determine which of the 

factors from the literature (Table 3-7) could be quantified for each city.  Education levels of 

4 to 5 (degree level), environmental consciousness (represented by recycling rates) and 

higher social class all showed significant correlations with current solar PV installations per 

household, across 20 UK cities. However, a strong correlation was found between social class 

and education level, and therefore, it was decided to remove social class from the analysis 

to prevent double counting. 

Education level and environmental consciousness are considered to be factors that 

determine the desire of individuals to install solar PV. In addition, three ability factors were 

also included; mean income, proportion of houses/bungalows to flats and owner occupation. 

Income did not show a significant correlation with installed PV levels, however, this can be 

explained by the fact that under the FiT scheme prior to December 2011, a large number of 

“rent-a-roof schemes” were promoted. With favourable FiT rates it was profitable for 
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companies to offer free solar panels and installation to customers in return for the majority 

of subsequent FiT revenues. However, since the FiT rates have decreased these schemes 

have become less popular, and therefore it was decided that mean income should be 

included in the analysis. Data for these factors were collected from the following sources: 

 Education level, owner occupation, proportion houses/bungalows: Census 2001 

(SCROL, 2011; Office for National Statistics, 2010), 

 Income: Survey of Personal Incomes 2007–2008 (Office for National Statistics, 2010), 

 Environmental consciousness, represented by percentage of household waste 

recycled, Local authority collection data 08–09 (Defra, 2011) and Waste Data Digest 

11: 2009 (SEPA, 2011). 

The data for each socio-economic factor was then normalised by assigning a value between 

0 and 1 across all cities. Each city was then assigned a socio-economic indicator, being the 

sum of the normalised socio-economic factors. It is acknowledged that quantifying socio-

economic influences brings inherent complexities due to the strong connections between 

factors. Furthermore, it is simply not possible to assign a value to certain factors that may be 

important in overall decision making. Therefore the five factors analysed in this study had to 

be treated as dependent factors, although analysis looks at them separately in order to 

discover whether there are stand-out influences. 

3.1.1.3 Solar City Indicator Calculation 

Once both physical resource and socio-economic factors were quantified, the SCI was 

calculated by multiplying financially viable output per capita estimations by the 

corresponding socio-economic indicator for each city. The financially viable output was 

normalised by the relevant city’s population to create a ‘per capita’ physical output 

calculation that allowed the comparison of the physical solar resource and final SCI across 

the different sized cities. This then permitted more detailed analysis of the impact of socio-

economic effects on the overall results.   

3.1.2 Results 

3.1.2.1 Physical Resource 

The theoretical limit in this analysis refers to the cumulative output if all of the suitably 

sloped and oriented south-facing areas of all the buildings in the study areas were to have 

solar PV installed on to them. Put simply, it is the generation that is possible when no 

consideration is given to the costs or payback periods, human behaviours or logistics. In 



58 
 

order to use this information for comparing the selected study areas, Figure 3-2 shows the 

percentage of each study area’s electricity demand that could be met under such an 

assumption. 

 
Figure 3-2 Theoretical limit to percentage of electricity demand met by all properties 

Clearly, if cost, logistics and human behaviours held no influence, roof-mounted solar PV has 

the potential to meet a significant proportion of each city’s electricity demand, up to 43% in 

the best case (Leicester). The results show no clear trend for latitude to strongly influence 

the physical resource when measured against a city’s electricity demand and there was no 

discernible North-South divide as might be expected.  

It is important to note that the theoretical limit is of little practical use but has been included 

to demonstrate the ultimate potential contribution of city-scale roof-mounted solar PV and 

to show that there are differences between the cities even at this low level of analytical 

complexity.  

Figure 3-3 shows the percentage of each city’s total electricity demand could be met from all 

installations to pay back within 15 years under baseline scenario. It is evident from Figure 

3-3 that Dundee has the biggest potential which, whilst performing very well in terms of 

viable small properties, is primarily due to the high proportion of large buildings that are 

viable in terms of installation of solar PV. Dundee is characterised by buildings that are 

aligned to the Firth of Tay and so typically have a roof facet that is close to directly south-

facing. The area also has an industrial legacy of large buildings with vast roof spaces. Owing 

to the economic decline of the area, many of the buildings are empty so their effect is two-

fold: not only are the roof-spaces large and south-facing but there is not the increase to the 

city’s total electricity demand that would be expected from a functioning large industrial 
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building. The worst performer is Edinburgh. The city has large annual electricity consumption 

for its size which may be related to large numbers of multi-occupancy, multi-level residences. 

To add context to this suggestion, Edinburgh and Glasgow both contain large numbers of 

tenement buildings meaning that many contributors to the city’s electricity demand will 

share the same roof. Also, Edinburgh does not have the industrial heritage of the other study 

areas which provides a possible explanation for its contribution from large properties being 

the smallest in the analysis. 

 
Figure 3-3 Percentage of total electricity demand met from all installations to pay back within 15 years under 

baseline scenario 

3.1.2.2 Socio-economic Results 

When averaged across all factors, Derby outperformed all other cities in terms of the socio-

economic factors that would suggest tendency to invest in solar PV (see Figure 3-4). By 

contrast, Glasgow showed the least potential in the selected study areas. Manchester and 

Liverpool were removed from the physical analysis due to a lack of DSM data but have been 

retained for the socio-economic factor analysis to provide greater context. 

The individual factors that contribute to the overall potential of a city to install solar PV show 

that Derby performs well in all areas. It is also very clear that Edinburgh performs 

exceptionally well in terms of education and income compared to the other cities, as well as 

performing very well in terms of ownership of homes. As previously stated, however, the 

prevalence of tenement flats and high-rise apartment buildings in the city means that many 

inhabitants will not own the roof-space where they live which greatly reduces the city’s 

overall potential to install. This is also true for Glasgow, although Glasgow performed very 

poorly in terms of environmental consciousness (recycling) also. The income measure for 

Nottingham was comparatively poor but was compensated by the city’s high levels of home 

ownership and proportion of houses to flats. 
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Figure 3-4: Individual indicators of potential to install solar PV for each city 

The results of the socio-economic method have been validated by comparison to the actual 

installed solar PV per capita. Figure 3-5 shows that there is a positive correlation between 

the two with an r2 value of 0.5048 although this figure should be treated with caution given 

that there are only eight data points. Reference table data (Turner, 2014) for this number of 

observations show that there is a 90% confidence level to support the hypothesis of a 

correlation between the socio-economic indicator and installed capacity at the time of 

writing.  

 
Figure 3-5: Correlation between socio-economic indicator values and installed PV per capita (as of December 

2012) for each city 



61 
 

3.1.2.3 Solar City Indicator 

The combined physical and socio-economic results of the analysis can be seen in Figure 3-6. 

It is clear that Derby has the greatest overall potential when physical and socio-economic 

potentials are combined and Glasgow has the lowest SCI.  

 
Figure 3-6 The Solar City Indicator values incorporating physical and socio-economic factors 

The SCI (Figure 3-6) results are significantly different to both the normalised physical 

indicator values (Figure 3-3) and the socio-economic indicator values (Figure 3-4). The 

methodology has been designed so that when the physical and socio-economic results are 

combined, socio-economic factors have a strong influence on the potential installed PV 

capacity of each city which has been supported by the correlation of the socio-economic 

indicator to actual solar PV uptake (Figure 3-5).  

3.1.3 Conclusions 

There is significant potential for solar PV microgeneration in the UK to the extent that a 

sizeable percentage of all cities’ electricity demand could be met by the technology. This is 

despite the recent changes to the FiT which is shown to still provide incentive to investors at 

a large number of viable sites. Interestingly, the results did not show a clear north-south 

divide in physical resource as might have previously been expected based on climate as the 

most northerly city, Dundee, was found to provide one of the strongest physical resources. 

Dundee is characterised by a large number (relative to its population) of large industrial 

properties with roofs that face due South because of building alignment to the North bank 

of the Firth of Tay.  

Differences in FiT rates and array costs between small and large arrays led to small arrays 

having shorter payback periods than large arrays. This showed the FiT mechanism was 
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skewed to aid investors in small PV installations rather than large. Whilst this shift could lead 

toward a more precisely targeted subsidy mechanism for small-scale PV microgeneration, it 

is also important to note the contribution of large properties in the present study roughly 

doubled the electricity generated in all cities. Whilst a key reason for the promotion of 

microgeneration is to affect a shift in behaviour and attitudes to energy, which may be best 

implemented by increasing the number of small arrays, the actual impact of PV in reducing 

carbon emissions and increasing energy security would be better served by a mechanism 

that could promote all scales of PV installations.  

Cities with greater proportions of houses and bungalows to flats were found to perform 

better as ownership of the roofspace is essential to installation. Also, when a greater number 

of people live under one roof, it reduces the roof area per person for a city whilst the demand 

per person remains constant. 

The study showed that the UK government was fully justified in shortening the time-frame 

of FiT payments for PV installations because the full cost of installation was repaid at all viable 

sites within 20 years and the further five years of payments were not necessary. 

The study not only examined the potential for PV based on the physical resource but also 

provided some interesting findings regarding the socio-economic context of different areas 

of the UK. After all, before people decide whether they can afford solar PV, they must want 

to install it. Whilst the desire factors that could be quantified in this analysis were limited, 

they did show that there are potentially large differences in a city’s likelihood to install solar 

PV. For example, if desire factors are studied in isolation, Edinburgh is significantly more 

likely to install PV than Glasgow. This suggests that the government may benefit from 

developing schemes to encourage potential investors that are tailored to specific regions’ 

levels of understanding and motivations.  

3.1.4 Limitations and Scope for Further Work 

The socio-economic context to microgeneration investment is not explored further in this 

thesis, instead it is the flaws in the physical resource estimations that form the focus of 

further work.  

A large source of error was the lack of accuracy in the estimation of solar resource for 

properties of less than 200 m2 plan area. For such properties, a methodology in the style of 

Izquierdo et al. (2008) was applied in which trends observed in a city’s large buildings were 

applied to smaller properties. This came about due to an inability to establish roof slope or 

orientation from the small number of DSM data points that each small property could 
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provide. This is a key problem as the vast majority of properties in a city are less than 200 m2 

and are unsuitable for the large properties method. Furthermore, it is at these properties 

where the greatest numbers of potential PV microgeneration investors live and demand an 

accurate appraisal for. Therefore, an improved methodology must be devised to reduce the 

minimum size of building that can be accurately appraised for solar PV potential that is less 

than the plan area of a typical domestic property. 

3.2 Neighbouring Buildings Approach 

The resolution of DSM is critically important when attempting to model the slope, 

orientation and available area of roofs as it controls the amount of height data available for 

each building. As has been discussed, the current availability of DSMs in the UK with 

horizontal resolutions finer than 2 m is limited to small areas of cities at prohibitively high 

costs. It has been found that more widely available low-resolution 2 m data is too coarse to 

provide an accurate reflection of the number of roof planes and their angles when the plan 

area of a building is less than approximately 200 m2 (Gooding et al., 2013). This is particularly 

problematic for city-scale roof shape modelling given that building footprint data for 

Sheffield, a typical UK city, shows that over 70% of properties fall below this threshold 

([Shape Geospatial Data], 2011). This is a fundamental problem because it is at these 

properties where the greatest interest in microgeneration investment lies.  

DSM data collection processes detect overhanging trees, chimneys and dormer windows 

which lead to inaccuracy in the assessment of building height and is exacerbated by the 

incumbent vertical error of the measurements that can be as great as 0.15 m (The 

GeoInformation Group, 2008). This is not insignificant as small property roofs are typically 

less than 3.25 m in height from eave to ridge. In addition, the datasets are also prone to noise 

and poor geospatial referencing. These issues mean that small property roof shapes and the 

angles of their facets are inaccurately estimated when using low-resolution DSM data and 

basic interpolation. Therefore, the most suitable approaches to roof reconstruction from 

low-resolution DSM data are those defined as model-driven methodologies as opposed to 

data-driven methodologies. The two types of methodology have been discussed in section 

2.2.3 and to briefly recap, data-driven methodologies establish planes directly from the DSM 

or following a small degree of alteration. By contrast, model-driven approaches compare 

DSM data to a series of common roof shapes, or ‘templates’, with the quality of fit quantified, 

and the best performing template accepted as the modelled roof shape. This means that a 

model-driven methodology will always return a logical roof shape although it may poorly 

match the actual roof shape observed. However, this is an improvement on data-driven 
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methods that have been found to misinterpret low-resolution data and suggest a large 

number of nonsensical roof facets on each property (Jacques et al., 2014).  

The methodology behind the Jacques et al. (2014) model-driven approach focuses on the city 

of Leeds, UK and uses the same 2 m horizontal resolution DSM as the method described in 

section 3.1. The smallest roof size for which geometry can be modelled is reduced 

considerably from the 200 m2 threshold of section 3.1 as Jacques et al. (2014) outputs a 

modelled shape for all properties with 10 DSM data points or more. A roof with a plan area 

of 200 m2 typically contains 40 to 50 DSM data points so this represents approximately a 

four-fold increase in the smallest roof shape that it is possible to model from DSM data.  

Despite this increase in the number of buildings to which an estimate of roof shape can be 

derived from DSM data, there are limitations to the Jacques et al. (2014) method. Principally, 

the number of roof templates is restricted to either gable or hipped with roofs that fail the 

method being consigned to a “complex” category. This means that roof shapes that occur 

commonly across buildings smaller than 200 m2 such as pyramidal and hipped roofs with a 

long ridge are incorrectly assigned to either the gabled or hipped categories which have 

significantly different areas available for PV. Alternatively, the method fails to recognise any 

roof shape and returns the complex result. 

Secondly the building footprint data used to identify the location of roofs in the DSM 

undergoes no segmentation to remove peripheral building components. The DSM data of 

such areas can then lead to confusion in the goodness-of-fit regression test used to 

categorise the roof and a greater propensity to model as complex. The following work was 

undertaken to address these issues and further gaps identified in the wider literature 

described in section 2.2.3. An approach was devised that identifies similar segmented 

building footprint outlines that are within the same 250 m x 250 m grid square. The DSM 

data falling within the similar segmented building footprints are cleaned of outlier data 

points before being combined to create a dataset of far greater resolution than the original 

DSM. This higher resolution data is then compared to a series of template roof shapes in a 

similar fashion to existing model-driven roof recognition methodologies. 

3.2.1 Method 

Segmentation processes are applied to building footprint data in order to remove peripheral 

building components, thus disregarding small building protrusions (<20 m2) that are 

unsuitable for solar technologies. The resulting segmented building footprints are assumed 

to define locations within the DSM containing roof-space potentially suitable for solar 
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technologies. They are also used to estimate orientation and to provide a basis for identifying 

similarities in the roof shapes of neighbouring properties. Buildings within the same 250 m x 

250 m areas are grouped together if their segmented building footprint dimensions are 

similar.  There is then a process to combine the DSM data from properties of the same group, 

thus creating a pool of DSM data of a finer resolution than from the original individual 

properties. The combined data is then compared to a series of common roof shapes in a 

model-driven approach, with the best fit selected as the modelled roof shape in a similar 

method to that of Huang et al. (2013), Lafarge et al. (2010) and Henn et al. (2013). Where 

there are no similar buildings to a particular property, outliers from the segmented individual 

building’s data are removed before the ridge repositioning and template comparison 

proceed as normal. 

The outputs of the methodology are the shape, slope, orientation and plan and sloped area 

of roofs in a study area. The methodology can, therefore, also better inform three-

dimensional city models which have a wide variety of applications including solar resource 

estimation. The modelled data are validated against measured data from buildings across 

the study area (containing the city of Leeds, UK). The method has been designed for 

application on a city-wide scale meaning it can be implemented for a large number of 

buildings using only moderate computing power. Furthermore, its use of commonly available 

low-resolution DSM and building footprint data mean its application may be viable in more 

locations than those requiring finer resolution data. 

3.2.1.1 Footprint Segmentation 

This process aims to establish the largest rectangle that can be inscribed in the original 

building footprint. Since the DSM only provides height above sea-level information, the 

boundaries of each property are established using building footprint data sourced from 

Digimap (MasterMap, 2008). The footprint data is of sufficient detail to include 

conservatories, porches and other protrusions on small properties which are unlikely to be 

suitable for solar installations. In addition, such building features can confuse template 

matching processes as they lead to a wide variety of height measurements across a building 

which are not representative of the main roof shape.  

Segmenting polygons into simple shapes is a non-trivial problem in computational geometry 

with a body of literature describing potential solutions for specific conditions. A first level of 

complexity was explored by Fischer and Höffgen (1994) who examined inscribing axis-

parallel polygons to convex polygons. Daniels et al. (1997) and Boland and Urrutia (2001) 
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presented methodologies of greater complexity that consider polygons containing both 

concave and convex angles but still only accept axis-parallel inscribed rectangles which may 

not define the largest possible rectangle. Conversely, Knauer et al. (2012) and Molano et al. 

(2012) have recently explored the problem of computing the largest rectangle of any 

orientation but only with regard to convex polygons. Hence despite the range of approaches, 

no single methodology provides a definitive solution to the particular problem faced in this 

work. However, the building footprint data consists of polygons with characteristics that can 

be exploited to create a relatively simple and computationally efficient solution. For instance, 

the small property polygons never feature internal holes, a large (>16) number of vertices or 

more curved than straight lines which all have the potential to increase computational 

demand (Molano et al., 2012). There also tends to be a right-angled vertex of the original 

building footprint that forms part of the largest rectangle that could be inscribed. Utilising 

these traits, the processes described in the following sections were developed for polygon 

types of differing complexity. 

3.2.1.1.1 Polygon Type 1 

Polygons with internal angles that are all approximately 90° or 270° are segmented by 

proposing locations for a fourth vertex of a protrusion in the original building footprint 

outline. Concave angles in the footprint outline are identified (Figure 3-7A) as starting points 

for two intersection lines (Figure 3-7B), the first of which runs from the vertex preceding the 

concave angle, through the concave angle itself and on to its intersection with the polygon 

outline (Figure 3-7B grey line). The second line proceeds from the vertex following the 

concave angle through the concave angle and on to its intersection with the polygon outline 

(Figure 3-7B black line). The intersection point of the shorter line defines the fourth vertex 

of a smaller shape within the building footprint (marked with a cross in Figure 3-7B).  

 
Figure 3-7 Segmentation process from concave angles. A: Two concave angles circled. B: Creation of 

intersection lines from a concave angle and identification of an intersection point (denoted by cross) on the 
shortest. C: Final segmented shape after intersection process repeated for the second concave angle 

The process is repeated for each concave angle. Figure 3-7C shows a polygon with two 

segmented protrusions and a large rectangle that is assumed to define the location of the 

building’s main roof part in the DSM.  
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3.2.1.1.2 Polygon Type 2 

The process described above fails on polygons with internal angles that are not 90° or 270° 

(Figure 3-8A). For such polygons a second process is presented in which a rectangle is 

expanded from an internal right-angle of the footprint outline. First, the longest pair of lines 

to form a right angle in the original building footprint (Figure 3-8B bold line) are identified 

and used to project a fourth vertex of a new rectangle (Figure 3-8C dotted lines) that will be 

referred to as the ‘large rectangle’. 

 
Figure 3-8 A: Original footprint. B: Longest pair of lines to form a right angle (bold line). C: Large rectangle 
(dotted lines) formed from the longest right-angled lines. Also shows iterative expansion of a new, inner 

rectangle along width of large rectangle. D: Second expansion along length of large rectangle. E & F: 
Repetition of expansion process (length first). G: Larger shape created by the two expansions (in grey) 

accepted as main roof part of original footprint. 

A 0.5 m by 0.5 m rectangle is constructed at the intersection of the two longest lines to 

intersect at a right-angle (Figure 3-8B, grey square) that will be referred to hereafter as the 

‘new rectangle’. The new rectangle is expanded in increments of 0.1 m along the width of 

the large rectangle until it no longer fits inside the original building footprint (Figure 3-8C). 

The enlarged new rectangle is then expanded in increments of 0.1 m along the length of the 

large rectangle again until it no longer fits inside the original building footprint (Figure 3-8D) 

which defines a first inscribed rectangle. The double expansion process is then repeated but 

with extension by length preceding the enlargement in width (Figure 3-8E & F) to create a 

second inscribed rectangle. The larger of the two inscribed rectangles is selected as the best 

approximation for the location of the property’s main roof structure from within the original 

building footprint (Figure 3-8G, grey rectangle). 
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3.2.1.1.3 Polygon Type 3 

A small proportion of polygons fail the criteria of the processes described above, an example 

of which has been provided in Figure 3-9.  

 
Figure 3-9 Polygon (black outline) containing interior angles not approximately 90° or 270° and without right-

angled vertices in common with the final desired segmented polygon (grey rectangle) 

Here the interior angles are not all approximately 90° or 270° and do not share right angles 

in common with the final segmented polygon. A brute force method is implemented for 

these polygons whereby a small rectangle is expanded and rotated incrementally from the 

centre of the original building footprint until it occupies the largest space of the original 

building footprint. There is no prior information to deduce if a building footprint shares any 

vertices in common with its final segmented building footprint so if the polygon is not type 

1, the processes for polygon types 2 and 3 must both be executed. The larger inscribed 

polygon resulting from the two processes is accepted as the segmented building footprint. 

The solutions for polygon types 2 and 3 are iterative procedures that reflect the lack of an 

elegant mathematical solution for this problem. The resulting modified building footprints 

are more suitable for identifying the location of roof shapes suitable for solar technologies 

within the DSM for extraction. Figure 3-10 shows an example of the outcome of the 

segmentation process when applied across a neighbourhood. 

 
Figure 3-10 Segmentation of building footprint data (left) across a neighbourhood to extract major roof parts 

(right) in neighbourhood 690 
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The segmented polygons also provide a way to assess the size and orientation of roof 

structures, saving significant computational time compared to Huang et al. (2013) who use 

only DSM data and find building locations by ‘blob detection’ and size and orientation by 

localised iteration.  

3.2.1.2 Data Combination Procedures 

It is important here to restate that the combination of data is limited to neighbourhoods 

where there are similar buildings. The DSM data from buildings that do not share a similar 

neighbour still undergo the processing steps outlined below and are then compared to a 

series of roof templates without any combination of data and thus remain at  low resolution.   

3.2.1.2.1 Similarity Identification 

The dimensions of the segmented building footprints are used to identify similar shapes 

within 62,500 m2 neighbourhoods. The buildings are categorised using bins of 1.1 m for 

length and 1.2 m for width which were empirically found to be robust thresholds to group 

similar buildings together. Buildings within the same bins for both dimensions are assigned 

to the same similarity group to have their DSM data combined following further processing.  

The following paragraphs describe how the tightly constrained plan dimensional thresholds 

enable the grouping of buildings with identical roof shape. For example buildings 1, 2 and 3 

in Figure 5 are within the same 62,500 m2 neighbourhood and have plan dimensions that are 

alike, but building 3 has a different roof type (hipped) to 1 and 2 (both gabled). 

 
Figure 3-11 Similarity thresholds. The small, solid white rectangles have the shortest length and width of the 

bin to which the building footprint (dotted white line) is a member. The larger, solid white-lined rectangle 
has the longest length and width of this bin. 

The bin sizes used to assign similarity grouping are based on increments of 1.1 m for width 

and 1.2 m for length. For example, building 1 has a length of 13.05 m and width of 8.28 m 
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and falls in to a bin of 12.58 m to 13.78 m for length and a 7.98 m to 9.08 m bin for width. 

Figure 3-11A shows two rectangles constructed around the segmented footprint of building 

1 (dotted outline). The smaller white outline has the dimensions of a rectangle with the 

smallest width and length of their respective bins creating a rectangle 12.58 m in length and 

7.98 m in width. The larger white rectangle has dimensions equal to the longest edges of 

each bin, meaning a length of 13.78 m and a width of 9.08 m. For buildings 2 or 3 to be 

considered similar to building 1 they must have a segmented footprint that fits between the 

solid white lines. 

Figure 3-11B shows that the footprint of building 2 fits between the solid white lines meaning 

it would be considered a similar building. The footprint for building 3 extends out of the two 

solid lines and so would not be grouped as similar to buildings 1 and 2. The method detects 

small differences in plan dimensions that reflect differences in building construction and roof 

shape. 

3.2.1.2.2 Outlier Identification and Height Normalisation  

Building footprint and DSM data are often misaligned which can result in ground height data 

appearing inside a building footprint or conversely, roof data falling outside and being 

mistakenly disregarded. DSM data also tends to contain many outliers that must be identified 

and removed. Therefore, data points with an absolute height difference greater than 1.5 m 

compared to the average of their neighbours were removed.  

DSMs provide height above sea-level measurements which means that data from two 

buildings cannot be directly combined without first normalising the heights such that they 

are made relative to ground or eave level. Therefore, the lowest height measurement of each 

property following the removal of outliers is used to define the roof’s minimum height. The 

relative heights of the building’s data points are then established by subtracting this 

minimum height from each DSM data point contained by the relevant segmented building 

footprint. 

3.2.1.2.3 Rotation, Ridge Repositioning and Combination 

To enable the combination of similar buildings’ data, each segmented building footprint and 

the DSM data it contains are rotated until the lengths of the footprint are made axis-parallel. 

The processed DSM data of similar buildings from a neighbourhood are then combined and 

in doing so a dataset of far higher resolution than the original individual buildings is obtained. 

The following paragraphs explain how this and the outlier identification algorithm are 
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executed using a gable roof shape template as an example because it is the clearest to 

visualise. The same approach is applied to the hipped, long hipped and pyramidal templates. 

The angle between the horizontal and the most southerly line in the building footprint 

outline is calculated as are the angle and distance of each DSM data point from the most 

southerly vertex of the building footprint (Figure 3-12A). This information is used to re-

project the DSM data points into position when the building footprint is rotated to make its 

length axis-parallel (Figure 3-12B).  

 
Figure 3-12 Data rotation and combination procedure 

The rotated data is used to assess the true position of roof ridges in the data extracted from 

the DSM using each building footprint. Due to misalignment between the building footprint 

data and the DSM, the geometric centre of a segmented building footprint is often not the 

location of the tallest DSM data as would be expected for a symmetrical roof with accurate 

positioning. This problem is addressed to ensure that data from similar buildings are overlaid 

correctly. The data is split into 0.7 m bins along the y-axis of rotated data from individual 

buildings with ridge location identified by the bin containing the highest average DSM data. 
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Figure 3-13 A-C: Rotated DSM data for three similar gable buildings prior to combination viewed from the y, z 
perspective. D: Combined data following height normalisation, outlier identification and ridge repositioning 

processes 

Figure 3-13A-C show datasets with issues that must be addressed prior to data combination. 

Figure 3-13A has two outlier data points whilst B and C show the outcome of particularly 

poor alignments between building footprint and DSM data as two aligned datasets would 

lead to a peak near 5m on the y-axis.  Consequently B contains little data for the left hand 

side of its roof whilst the data in C has no information regarding its lower right hand side. All 

three datasets must also have their heights normalised prior to combination. The result of 

the combination procedures is demonstrated in Figure 3-13D where there is a complete roof 

profile free of outliers at a far higher resolution than data for individual roofs could provide.  

3.2.1.3 Template Construction and Selection  

The combined data is then compared to the set of common roof shapes shown in Figure 3-14 

with the best fitting selected as the most appropriate model of the similar buildings’ roofs.  
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Figure 3-14 The roof template library 

3.2.1.3.1 Construction 

For a fair comparison the templates are constructed to achieve the best possible fit whilst 

maintaining the integrity of their shape. Therefore, templates are constructed using the 

combined data itself to establish eave and ridge heights from which the rest of the model 

shape is formed.  

The data is first divided between the facets of the particular template depending on its x, y 

position. Facet dimensions are defined by empirical evidence from aerial photography such 

that, for example, the ridge length is 35% of the footprint length for the hipped template and 

68% for the long hipped template. Figure 3-15 shows a hipped template with four numbered 

facets.  

 
Figure 3-15 The four regions of a hipped template. 1 and 3: hip sections. 2 and 4: gable sections 

Owing to the directions of the template's slopes, the y-axis information is disregarded for 

sections 1 and 3 of Figure 3-15 and regression is applied to the x, z data. By contrast, only the 

y, z data of sections 2 and 4 is analysed. The MATLAB® robustfit function (MATLAB, 2012) is 

used to execute an iteratively reweighted least squares fit that reduces the effect of any 
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remaining outliers that were not identified by the outlier identification criterion described in 

section 3.2.1.2.3. However, regression lines alone do not constitute a satisfactorily modelled 

roof shape because they fail to meet at the same ridge height and do not share a common 

eave height, which are two essential properties of a logical roof shape. Hence the regression 

lines are used to establish average eave and ridge heights. Returning to the hipped template 

example, the lowest and highest points of the four regression lines within the facets are 

averaged by weight of the number of data points in their respective facets, thus calculating 

the average minimum (eave) and maximum (ridge) heights of the prospective template. The 

eave and ridge heights are then used to define the template’s final shape by constructing 

facets between them appropriate to the template type. At this stage, if the difference in 

height from eave to ridge is less than 2 m, all templates except flat and shed are rejected. 

3.2.1.3.2 Selection 

The constructed templates are then compared to the combined data using a z-error (∆z) 

metric similar to Huang et al. (2013) such that, 

Δ𝑧 =
∑|𝑍𝑚 − 𝑍𝑑|

𝐾
 (3-3) 

where 𝑍𝑚 is  height above eave level suggested by the model, 𝑍𝑑 is the height above eave 

level of the combined data and 𝐾 the total number of data points in the combined data. The 

template with the smallest Δ𝑧 value defines the best fit and provides the modelled angles of 

facet slopes. The data is compared to each template unless its length is less than 15.9 m, in 

which case the long hipped template is not tested as in early investigations it was found to 

bare close similarity to the gable template when scaled for building lengths shorter than this 

threshold.  

3.2.2 Validation and Applications 

3.2.2.1 Data Sources and Test Area 

Building footprint data was sourced from EDINA ([Shape Geospatial Data], 2011), a centre 

that provides spatial data for UK research institutions (EDINA, 2013). It provides the location 

and two-dimensional plan view shape of buildings which were used in this study to establish 

areas of the DSM containing roof height information. The 2 m resolution DSM and aerial 

photography used in the validation were sourced from Landmap (Small-scale wind energy 

technical report, 2008), a service that provided UK academia with spatial data until December 

2013 (Landmap, 2014a). The methodology was applied to seven randomly selected 62,500 
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m2 suburban neighbourhood zones in North West Leeds, UK containing a total of 536 

buildings. Figure 3-16 shows four of the neighbourhoods selected. 

The accuracy of roof shape and orientation modelling was validated by comparison to aerial 

photography. Slope estimation accuracy was appraised from site surveys for which a tripod-

mounted laser distance measuring device with an accuracy of ±20 mm over 150 m was used.  

Across the seven tested neighbourhoods, the number of buildings within each grouping 

ranged from 2 to 68 and averaged 3.9. Typically 35% of buildings had to be regarded as 

individual for the tested neighbourhoods. It should be noted that this is highly specific to the 

test locations and that regional variations are to be expected. However, when the 

segmentation and similarity identification processes were applied to all neighbourhoods 

across the city of Leeds, a similar figure of 29.2% of buildings were defined as individual. 

The similarity grouping criteria proved to be robust as comparison to geo-referenced aerial 

photography showed only three buildings (0.6%) erroneously grouped with others that did 

not share the same roof shape despite having similar plan dimensions. 
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Figure 3-16 Four of the neighbourhoods tested using the methodology where the white lines represent the 

building footprint data prior to segmentation 

3.2.2.2 Model Outputs 

An example of the model’s outputs is shown for neighbourhood 364 in Figure 3-17 where 

the buildings are labelled by their similarity grouping before the modelled shape, angle and 

areas of each group are described in Table 3-8. Facet 1 refers to the modelled slope of the 

gable section of each roof. Where appropriate, facet 2 refers to the angle modelled for a hip 

roof section.  

For neighbourhood 364, the method successfully modelled roof shape in 39 out of 41 (95.1%) 

cases. In the two erroneous results, the buildings concerned were regarded as individual 

buildings and so could only be modelled using the resolution of the input DSM. 
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Figure 3-17 Neighbourhood 364 labelled by similarity grouping identification numbers 

The average error in the modelling of plan area for neighbourhood 364 was -6.75% and Table 

3-8 shows that there was a slight underestimation in the majority of cases. This is due to both 

the inherent inaccuracy of building footprint sizes and the adjustments made to polygons 

that were not completely rectangular during the segmentation process. Slope was modelled 

with an average error of 2.36% for facet 1 slopes in neighbourhood 364 whilst facet 2 slopes 

were modelled with an average error of 6.26%. The greater error in the modelling of facet 2 

slopes arises from the reduced amount of data available because of the smaller size of facet 

2 compared to facet 1 for the long hipped template. 

 

  



78 
 

 

 
Table 3-8 Model output for similarity groups of neighbourhood 364 



79 
 

Figure 3-18 shows modelled and observed orientation for neighbourhood 364. There was an 

average absolute error of 0.82° (0.39%) in orientation modelling which may result from slight 

inaccuracies in the positioning of the input building footprint data or slight changes that 

result from the segmentation process. 

 
Figure 3-18 Modelled and observed orientation for neighbourhood 364. Line denotes a 1:1 relationship 

3.2.2.3 Shape Accuracy 

Across all seven tested neighbourhoods, the methodology found the correct shape for 87% 

of roofs, as shown in Table 3-9. 

Neighbourhood Total Buildings Success (No.) Success (%) 

406 83 76 92 

759 64 47 73 

209 128 110 86 

690 84 82 98 

867 49 40 80 

364 40 38 95 

447 88 75 85 

Total 536 468  

Average   87 

Table 3-9 Shape matching success in seven tested neighbourhoods 

This compares favourably with the one other existing methodology to use low-resolution 

DSM data by Jacques et al. (2014) who achieved a shape matching success rate of 81% based 

on a study of 242 buildings using a more limited roof template library. 

Δ𝑧  was found to decrease when the correct template was compared to data from an 

increasing number of buildings. Figure 3-19 provides Δ𝑧  values for five templates as data 
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from an increasing number of hipped roof buildings of a similarity group with eight buildings 

were combined and compared.  

 
Figure 3-19 Changes in 𝚫𝒛 when data from an increasing number of buildings is combined. The correct 

template is hipped. 

The initial trend for pyramidal, hipped and gabled templates is for Δ𝑧to decrease as data 

from more buildings are considered in the comparison which signifies an improving fit. It is 

interesting to note that the correct template (hipped) only scored the lowest Δ𝑧  (and 

therefore best fit) after the DSM data of more than four buildings were combined. With 

fewer than five buildings’ data, a pyramidal roof shape would have been incorrectly 

modelled, demonstrating the key advantage of using multiple similar buildings.  

3.2.2.4 Slope Accuracy 

The facet 1 slopes of the modelled buildings were compared to the angles observed when 

169 building roofs were surveyed. The mean absolute error (MAE) of each similarity group 

between the modelled and surveyed roofs has been calculated using the equation: 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (3-4) 

where 𝑛  represents the number of slope estimations in each neighbourhood, 𝑓𝑖  the 

modelled slope and 𝑦𝑖  the observed slope. Table 3-10 shows that the MAE when averaged 

across all of the similarity groups in all of the neighbourhoods was 3.76°. 
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Neighbourhood Surveyed Angle (°) Total Buildings MAE (°) 

406 42.0 19 11.07 

209 29.5 49 9.50 

690 27.6 68 2.29 

867 27.5 5 2.22 

364 28.9 18 2.66 

364 27.5 5 3.94 

364 29.62 8 1.69 

364 30.10 2 3.83 

447 27.04 5 0.09 

447 21.65 3 0.26 

Total  182  

Average   3.76 

Table 3-10 MAE in slope prediction of 169 buildings from a range of test neighbourhoods 

The worst performing group of buildings (neighbourhood 406) had steep roofs of 42°. This 

could result in an increased probability of outlier identification failure due to the greater 

difference in height from one data point to the next on a steeper roof. For this reason the 

outlier identification process may have incorrectly removed data relating to the ridge of the 

steep roofs leading to a shallower modelled angle than that surveyed. 

3.2.2.5 Comparison to a Data-driven Model 

The simplest method to estimate roof slope would be to fit a regression line to the data 

points provided by each facet of a single building using, for example, the MATLAB® (MATLAB, 

2012) robustfit tool. The expected geometry of the roof would be defined purely from the 

building footprint such that, for example, the ridge of a gable roof would occur exactly 

halfway along the width of the building. In this section we compare the slopes predicted for 

similar individual gabled facets under this more basic method (�̂�g−RB, where g refers to gable 

facets and RB signifies the use of robustfit) and the angle modelled when the multiple 

buildings methodology described in the present paper was applied ( �̂�g−MB , where MB 

denotes the use of multiple buildings). A further comparison is made by applying �̂�g−RB to 

the combined data of the buildings to assess the importance of the features in �̂�g−MB other 

than the combination of DSM data from similar buildings, such as the ridge repositioning 

process. The buildings below were from a randomly selected similarity group of gable-roofed 

buildings and had a slope (𝛽g) of 37° when surveyed, 3.06° greater than �̂�g−MB.  
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Building ID �̂�𝐠−𝐑𝐁 (°) |�̂�𝐠−𝐑𝐁 −𝜷𝐠| (°) 

2 25.51 11.49 

34 8.44 28.56 

41 29.07 7.93 

44 33.44 3.56 

48 35.40 1.60 

49 31.03 5.97 

Average 27.15 9.85 

�̂�𝐠−𝐑𝐁 Combined 28.50 8.50 
 

 �̂�𝐠−𝐌𝐁 (°) |�̂�𝐠−𝐌𝐁 −𝜷𝐠| (°) 

�̂�𝐠−𝐌𝐁 Combined 33.94 3.06 

Table 3-11 Comparison of modelling gabled roof slopes using building footprint defined MATLAB® robustfit 

regression on individual and combined data (top) against �̂�𝐠−𝐌𝐁 (bottom) 

In Table 3-11, the average |�̂�g−RB − 𝛽g| value for individual buildings was 9.85° which is 

greater than the value for using combined data (8.5°) and substantially larger than the 3.06° 

value for |�̂�g−MB − 𝛽g|. This shows that the application of the robustfit MATLAB® tool in 

evaluating geometry derived from building footprints is a less accurate than the 

methodology presented here, even when the buildings are combined. Whilst a possible 

cause of the disparity between the two methods is the approach to identifying outliers, the 

main reason for the improved performance of �̂�g−MB is the correction to the misalignment 

of the two datasets. �̂�g−MB compensates for this misalignment by repositioning individual 

building DSM data prior to combination, enabling a fairer calculation of template suitability. 

3.2.2.5.1 Benefits of Considering Multiple Buildings When Modelling Slope 

Table 3-12 shows the modelled angles for the gabled (�̂�g−IND) and hipped (�̂�h−IND) facets 

from a randomly selected group of similar buildings with long hipped roof shapes when 

processed through the methodology individually (IND denotes the use of individual 

buildings). This means the segmented buildings’ DSM data were each passed through the 

ridge centreing, height normalisation and outlier removal processes, but not the rotation and 

combination procedures. When surveyed, the buildings were found to have gable (𝛽g) and 

hip (𝛽h) section facets of 27.5°. The final row shows the angles modelled when the data for 

the five similar buildings was combined and the complete methodology presented here 

(�̂�g−MB) was applied.  
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Building ID 𝜷𝐠 (°) |�̂�𝐠−𝐈𝐍𝐃 − 𝜷𝐠| (°) 𝜷𝐡 (°) |�̂�𝐡−𝐈𝐍𝐃 − 𝜷𝐡| (°) 

6 22.63 4.87 * * 

13 29.5 2.00 21.99 5.51 

18 32.24 4.74 42.07 14.57 

19 34.85 7.35 41.27 13.77 

28 15.46 12.04 * * 

Average  6.20  11.28 

 

 �̂�𝐠 (°) |�̂�𝐠−𝐌𝐁 −𝜷𝐠| (°) �̂�𝐡 (°) |�̂�𝐡−𝐌𝐁 − 𝜷𝐡| (°) 

�̂�𝐠−𝐌𝐁 29.72 2.22 33.53 6.03 

Table 3-12 Comparison of slope modelling when buildings were considered individually and when combined. 
* denotes instances where building shape was incorrectly modelled and did not return an angle for the 

hipped section of the long-hipped roof template 

The average |�̂�g − 𝛽g| error in slope estimation is 6.2° which is significantly greater than the 

2.22° achieved using �̂�g−MB. Buildings 6 and 28 of Table 3-12 are instances in which roof 

shape was incorrectly modelled as gabled when treated as individual buildings, meaning that 

no �̂�h−IND value was returned, re-illustrating the benefit of using multiple buildings to model 

shape. Due to their size, the hip sections contain less data than gabled so it is unsurprising 

that the error in slope estimation is greatest for these parts. 

As with roof shape modelling, considering an increasing number of buildings’ data for the 

appraisal of roof slope led to more accurate results. In the following example, the roof slope 

angle predicted by the model was compared to the angles surveyed on 35 buildings from a 

range of neighbourhoods with a variety of roof shapes. The key result illustrated by Figure 

3-20 is the general pattern of decreasing errors in modelled slope as data from an increasing 

number of buildings are combined.  

The largest error shown in Figure 3-20 relates to data from neighbourhood 406 which was 

characterised by steeper angled roofs. Although requiring further investigation on a larger 

sample of steep roofs, the results suggest that the method is less accurate on roofs with a 

slope greater than 40°. Data from such properties have a greater difference in height 

between neighbouring points and the effect of alterations to the outlier identification 

criterion should be investigated in future work. 
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Figure 3-20 Slope accuracy improvement when using combined DSM data from increasing numbers of 

buildings.  Legend items refer to neighbourhood IDs.   

3.2.2.6 Suitability to City-Scale Application and Implications for Installation 

Performance Projections 

Using only moderate computing resources, an Intel® Xeon® 3.1GHz processor and 4 GB of 

RAM, the method executed in under three and a half minutes on each neighbourhood 

including one particularly dense area containing 128 buildings. This suggests it would be 

suitable for the estimation of potential PV capacity on a city scale. It would however be 

important to take account of errors in modelled shape and slope in such estimations and this 

section discusses the potential impact of such errors on the projection of PV installation 

performance. It is acknowledged that there will be many other factors that influence the 

performance of solar technologies including accuracy in radiation estimation and shading 

from surrounding objects that are beyond the scope of this section which is focused on 

increasing the accuracy with which area, orientation and slope of roof-spaces are determined 

from low resolution DSM data. However, these issues are returned to in Chapter 4 of the 

thesis.  

3.2.2.6.1 Slope Errors and Performance Projections 

On average over the test areas, the methodology modelled buildings to within 5° of the 

surveyed slope. Figure 3-21 shows annual electricity predicted by the EU-JRC PVGIS webtool 

(EU-JRC, 2012) for a 2.2 kWp system with optimised azimuth for increasing slope, 

demonstrating a non-linear relationship between the two.  
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Figure 3-21 EU JRC PVGIS estimated annual PV power output for a 2.2kWp installation with optimised 

azimuth under a range of slope conditions 

Table 3-13 shows the range of power output predictions at a range of slope angles for a 
slope error of ±5° and ±10°. 

Roof 
Slope (°) 

% change in 
predicted 

annual power 
output for slope 
error of ±5° (%) 

% change in 
predicted annual 
power output for 

slope error of 
±10° (%) 

25 3.14 4.71 
30 2.06 3.61 
35 0.51 2.05 
40 0.51 1.03 
45 1.03 3.09 

Table 3-13 Difference in EU JRC annual PV power output estimations with changing slope 

This shows how sensitive annual power predictions are to errors in slope and in particular, 

how the sensitivity is greater for the extremes of slope compared to slopes close to the 

optimum value (approximately 39° for Leeds, UK). As discussed above, the MAE for the 

tested neighbourhoods using the current method is less than 5° and hence is sufficiently 

accurate to provide predictions of annual power output even for shallow roof slopes.   

3.2.2.6.2 Shape Errors and Performance Projections 

Available roof area is a function of modelled roof shape and orientation as PV panels are 

deployed on the most southerly facing roof facets of buildings. This emphasises the 

importance of modelling the correct shape of roofs to estimate the performance of PV 

installations. Figure 3-22 takes a hypothetical building with a plan area typical of suburban 

properties (78 m2) and roof slope of 37.5° and investigates the impact on available area if it 

were modelled as gabled, hipped or pyramidal.  The figure is a scaled drawing in which the 

solar panels are 1 m by 1.6 m and rated at 0.25 kWp to reflect a common PV panel on the 
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market. The darker grey regions on the periphery of the south facing slope represent the 

area that would be lost if the building were modelled as hipped instead of gabled. The lighter 

grey regions are the additional south facing area that would be lost if the building was 

modelled as pyramidal instead of hipped. The inset text states the south facing roof area 

under each of the templates.  

 
Figure 3-22 Effect of modelled roof shape on area available for solar technologies 

From the available area calculations of Figure 3-22, the impact of roof shape on annual power 

output predictions could be investigated. The predicted power outputs shown in Table 3-14 

were again taken from the EU JRC PVGIS tool (EU-JRC, 2012) for a south-facing, 37.5° sloped 

crystalline silicon panel type without any shading objects in the vicinity. 

Modelled 

shape 

Available 

area (m2) 

System size 

(kWp) 

Predicted Output 

(kWh a-1) 

Gable 49.16 5.25 4,560 

Hipped 36.30 3.25 2,820 

Pyramidal 24.58 2.25 1,950 

Table 3-14 Effect of roof shape modelling on annual power output predictions 

Table 3-14 shows the importance of finding the correct roof shape as it defines the south-

facing area available for a PV installation and therefore system size. Power output is clearly 

far more sensitive to system size than to slope. In the example provided, the reduction in 

predicted annual power output from a gabled to a hipped property is 37.35%. The reduction 

if a hipped property were to be modelled as pyramidal is 50.23%, whilst if a property was 

gabled but incorrectly modelled as pyramidal, there would be a 68.82% loss in predicted 

output. Hence, achieving 87% success in shape recognition and 3.76° error in slope 

estimation has been shown to be especially important when seeking to model the potential 

for PV at every property in a city or for estimating a maximum yield from PV technologies 

across an entire region. 
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3.2.3 Conclusions 

A methodology is presented to model roof shapes using building footprint and low-resolution 

DSM data. With moderate computing resources the method executes rapidly and so 

demonstrates high suitability for application across a whole city region which ties to the 

research objectives of the thesis.  

In 87% of cases tested, the method identified the correct shape of the main roof part of 

buildings. This was validated using a total of 536 small buildings from different areas of the 

city of Leeds, UK. The MAE in roof slope was found to be ±3.76° when validated against 182 

buildings. Both roof shape and slope were more accurately appraised as greater numbers of 

similar buildings were incorporated into the combined data set. 

Roof slope was defined with greater accuracy than by the application of regression 

techniques to areas of roofs defined by building footprint data alone. In the example 

provided, the error of roof slope calculation from the current method was 3.06° whereas 

using regression on areas of the DSM identified by building footprints led to an average error 

of 9.85°.  

3.3 Summary 

The importance of increased accuracy in modelling roof slope and shape has been discussed 

in terms of predicted annual PV installation power output with the caveat that there are 

additional local factors, such as shading, that may affect the performance of solar 

installations beyond the factors modelled in this methodology. The discussion shows that 

outputs from the method could be used to calculate payback periods for PV installations on 

typical residential properties with greater accuracy than previous methodologies. However, 

improvements to solar PV viability estimation result not only from greater accuracy in roof 

geometry modelling but also from improvements to solar insolation models and financial 

viability tests which form the foci of  Chapter 4 and Chapter 6 respectively. 
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Chapter 4 Improving Solar Insolation Modelling 

This chapter presents literature that challenges the accuracy of the insolation model built in 

to the market-leading GIS software (esri ArcGIS) and then puts forward a methodology to 

improve the accuracy of insolation modelling. This is achieved through the integration of a 

shading model into a recently published method for estimating global radiation on exposed 

surfaces. The model is then tested against real-world observations of solar PV installation 

performance from several cities across the UK. To place these results into a suitable context, 

the accuracy of the esri ArcGIS solar radiation toolset and EU JRC PVGIS web-tool (built from 

ESRA data) at these locations are also presented.  The final section of the chapter explains 

how the methodology could be adapted for city-scale applications which links to Chapter 6. 

4.1 Criticisms of Existing Models 

Gueymard (2012) provides a detailed comparison of clear-sky irradiance predictions from 18 

solar radiation estimation methodologies including Fu and Rich (1999) and Hofierka (2002). 

Gueymard ranks Hofierka (2002) as the 8th most accurate clear-sky irradiance estimation 

method and Fu and Rich (1999) in last place, concluding that solar radiation routines included 

in existing GIS software are based on models that are of low or limited performance 

(Gueymard, 2012). It is important to note that whilst the validation sites used in Gueymard 

(2012) are renowned for the quality of insolation data captured, they are inconsistent with 

the urban locations at which solar microgeneration technologies are most commonly 

installed. For example, they are not subject to the same degree of shading from surrounding 

objects and topographical features as typical urban and suburban roofs and so it is important 

to investigate the accuracy of the proposed solar insolation estimation method against other 

methodologies in the context of urban areas. Of the solar resource estimation 

methodologies to utilise either the EU JRC PVGIS database or ArcGIS mentioned above, only 

Šúri et al. (2007) attempts to validate the findings of the solar insolation prediction. However, 

their validation utilises a meteorological model accurate to a resolution of 1 km2 and is not 

compared to physical measurements inside the study area.  

This work describes a methodology combining an integrated radiance model with a DSM-

derived shading model to create a solar resource appraisal method suitable for urban areas. 

The outputs of the model are validated against measurements of PV power output converted 

to insolation estimations using performance ratios. The accuracy of two widely-used solar 

resource prediction methods are also investigated in this manner, namely the Fu and Rich 

(1999) method incorporated into esri ArcGIS software and Hofierka (2002) that has been 
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used in the EU JRC PVGIS webtool and solar radiation databases. The Fu and Rich 

methodologies will be referred to hereafter as FuRich whilst the methodology behind the EU 

JRC PVGIS webtool will be referred to as PVGIS and the method presented in this work will 

be referred to as RTS (Radiative Transfer with Shading). 

The use of a DSM to define shading in RTS is a significant development from PVGIS which 

does not include shading from objects surrounding a site explicitly by default. Furthermore, 

PVGIS uses cloud reflection derived from satellite data to adjust clear-sky irradiance 

estimation. By contrast, RTS takes satellite derived cloud properties such as optical depth 

and cloud fraction and incorporates them directly into the radiative transfer equation. For 

these reasons, RTS is also far more detailed in its consideration of factors that affect annual 

global solar radiation than FuRich and PVGIS as will now be explained.  

4.2 Method 

The integrated radiance method (Smith et al., 2016) with a modification for shading was used 

to calculate the angled insolation at each site. The model uses the DISORT radiative transfer 

code (Stamnes et al., 2000) with a pseudo-spherical correction to improve accuracy at low 

Sun angles. The base direct irradiance is altered by atmospheric ozone and water vapour 

which is provided on an 8-day averaged basis from the MODIS Terra and Aqua satellite data 

on a 1°×1° global grid. Morning conditions are provided by the Terra satellite data that is 

applicable to approximately 10:30 am each day and the Aqua satellite data that provides the 

afternoon observations (around 1:30 pm). The use of two satellite datasets allows diurnal 

effects to be incorporated in to the simulations. Aerosol extinction, single scattering albedo 

and phase function is introduced through the GLOMAP model, developed by Scott et al. 

(2014) that includes optical properties in 6 shortwave spectral bands for 4 aerosol species in 

4 particle size modes. Cloud fraction, effective droplet radius, and cloud water content for 

liquid and ice are also provided from the MODIS Terra and Aqua datasets. Finally, surface 

albedo for 7 shortwave spectral bands is supplied on a 0.05°×0.05° grid using combined Terra 

and Aqua data every 8 days as a 16-day moving average. 

From the atmospheric and land inputs the radiative transfer simulation is run for the 

midpoint of each hour for each 8-day period of 2013 to produce the ground-level radiance 

field 𝐿  along with the direct horizontal irradiance 𝐼𝐵 , diffuse horizontal irradiance 𝐼𝐷  and 

ground-reflected irradiance 𝐼𝑅. 

Radiances are calculated on a discrete grid of 3° in the polar direction (𝜃) and 10° in the 

azimuthal (𝜙) direction giving a total of 61×36 angular bins where the polar angle runs from 
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0° to 180° to capture both downwelling and upwelling radiances. To calculate tilted 

irradiance, 𝐼𝑇, the angular contribution of diffuse radiances 𝐿 emanating from each 3°×10° 

sky bin is summed and added to the direct irradiance contribution, which approximates the 

integration of radiances as the limit Δ𝜃Δ𝜙 approaches zero: 

𝐼𝑇 =∑∑𝐿(𝜃𝑖, 𝜙𝑗)𝑊𝑖𝑗Δ𝜃𝑖Δ𝜙𝑗

35

𝑗=0

60

𝑖=0

+ 𝐼𝐵 (
cos𝜃𝑖
cos 𝜃𝑧

), (4-1) 

where: 

𝑊𝑖𝑗 = max{0, cos𝛽 cos 𝜃𝑖 sin𝜃𝑖 + sin𝛽 sin
2 𝜃𝑖 cos(𝜙𝑗 − 𝛼𝑝)} (4-2) 

is a spherical geometry weighting ensuring that only radiances in the hemisphere of panel 

view are counted and Δ𝜃Δ𝜙 is the solid angle of summation (3°×10°) in steradians. 𝛽 is the 

panel tilt angle, 𝛼𝑝  is the panel azimuth angle, 𝜃𝑧  is solar zenith angle and 𝜃𝑖  is solar 

incidence angle. The sum approximates the integration of radiances as the limit Δ𝜃Δ𝜙 

approaches zero. 

For roof spaces of less than 200 m2 a single viewshed model is generated for the location of 

the PV panels. As section 2.2.2 states, viewsheds describe the height of the horizon in all 

directions from a specified point. Variation in shading across large installations on roofs of 

more than 200 m2 is accounted for through the calculation of hemispherical viewshed 

models for every 25 m2 that are then combined as follows. The heights of the horizon for 

each of the 32 search directions from each hemispherical viewshed model across the roof 

space are averaged to generate a mean hemispherical viewshed model, which is produced 

on a flat x-y grid of 201×201 pixels. This is then converted into a polar representation and 

binned into the same 3°×10° resolution as the radiance field. Each pixel in the 201×201 x-y 

grid is defined as unobstructed, obstructed, or outside of the hemisphere. For each bin the 

fraction of unobstructed pixels to the total pixels in that bin is used to calculate a skyview 

fraction 𝑓𝑖𝑗 for each of the 61×36 angular bins. 

The radiance field is produced assuming a homogeneous flat surface and needs to be 

adjusted to take into account the obstructed horizon. The direct irradiance is a simple scaling 

of the skyview fraction for the bin the Sun resides in for the hour in question, becoming 

𝐼𝑏 = 𝑓𝑖𝑗𝐼𝐵. The diffuse sky irradiance is more complex as it emanates from all bins of the sky 

yet is not generally isotropic. Radiances from fully or partially obscured directions are 

reduced by that sky bin’s skyview fraction and then summed over a horizontal plane such 

that the diffuse horizontal irradiance becomes 
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𝐼𝑑 =∑∑𝑓𝑖𝑗𝐿(𝜃𝑖, 𝜙𝑗)𝑊𝑖𝑗Δ𝜃𝑖Δ𝜙𝑗

35

𝑗=0

30

𝑖=0

, (4-3) 

with 𝛽 = 0° in the definition of Wij and the sum over i running to 30 (polar angle 90°) as no 

upwelling radiances are required for horizontal downwelling calculations. The adjusted total 

downwelling horizontal irradiance due to horizon shading is modelled as 

𝐹 =
𝐼𝑏 + 𝐼𝑑
𝐼𝐵 + 𝐼𝐷

. (4-4) 

The next stage is then to replace the radiances from fully or partially obstructed bins with a 

weighting between the ground-albedo radiance value 𝐼𝑅/𝜋  and the original diffuse sky 

radiance value and to multiply all the radiances by the hemispherical shading factor such that 

𝑙(𝜃𝑖, 𝜙𝑗) = 𝐹 (𝑓𝑖,𝑗𝐿(𝜃𝑖, 𝜙𝑗) +
(1 − 𝑓𝑖,𝑗)𝐼𝑅

𝜋
), (4-5) 

assuming that the surface albedo of the ground and the obstruction are the same. Finally the 

shading-adjusted tilted irradiance is derived by substituting the 𝑙(𝜃𝑖, 𝜙𝑗) from equation (4-5) 

back into equation (4-1) and replacing 𝐼𝐵 with 𝐼𝑏 in the same equation, to give 

𝐼𝑇 =∑∑𝑙(𝜃𝑖, 𝜙𝑗)𝑊𝑖𝑗Δ𝜃𝑖Δ𝜙𝑗

35

𝑗=0

60

𝑖=0

+ 𝐼𝑏 (
cos 𝜃𝑖
cos 𝜃𝑧

). (4-6) 

4.2.1 Validation Data 

The model has been validated using performance data from 20 PV installation sites across 

Bristol, Cambridge, Leeds, Middlesbrough and Sheffield in the UK. Figure 4-1 describes the 

distributions of azimuth (A) and slope (B) which were measured using DSM data of the 

validation sites and geo-referenced aerial photography. Array size (C) and power generation 

for 2013 (D) provided by the installation owners are also shown. 

The performance of the installations at each validation site has been provided in terms of 

annual power output for 2013 whilst the models return estimations of annual global 

insolation. Therefore, a performance ratio (PR) is applied to estimate the annual power 

delivered by solar modules as a function of their rated power and global insolation. The PR 

is a measure of the actual power output of a module compared to its performance at 

standard testing conditions, and takes into account all system losses such as from the 

inverter and the effects of elevated cell temperature. The literature contains a range of PR 

values with Pearsall and Gottschalg (2012) suggesting 0.8 to 0.85, PVGIS using 0.75 (EU-JRC, 

2012) and Ayompe et al. (2011) using experimental data to show that PR is approximately 
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0.8 for most of the year but slightly higher in November to January. Owing to the popularity 

of the EU JRC PVGIS tool, 0.75 has been selected as a lower bound PR value whilst 0.8 is also 

used as it better reflects the opinion of the scientific community. 

 
Figure 4-1 Orientation (A), slope (B), system size (C) and power output for 2013 (D) attributes of validation 

sites 

4.2.2 Implementation of Existing Methodologies 

4.2.2.1 FuRich 

The solar radiation tool within the esri ArcGIS software was run for the validation sites in 

each city using a DSM of 2 m horizontal resolution. The latitude input was set to match the 

location of the relevant validation site. The time configuration was set to “whole year with 

monthly interval” and the year was set to 2013 to match the available validation data. All 

other options were left as default. The tool outputs an estimation of annual global solar 

radiation (Wh m-2 a-1) for each validation site.  

4.2.2.2 EU JRC PVGIS  

The EU JRC PVGIS webtool was used to estimate annual global solar insolation (Wh m-2 a-1). 

The locations of the relevant validation sites were found using the webtool map and a marker 

placed at the location of each installation. The appropriate slope, azimuth and system rating 

(kWp) were entered and the building mounted option selected. All other options were left 

as default. The webtool returned a webpage of annual global radiation predictions in kWh 

m-2 with a monthly breakdown. 
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4.3 Results and Discussion 

The percentage error in annual global radiation was calculated for each site using:  

% 𝐸𝑟𝑟𝑜𝑟 =
(𝐼�̂� − 𝐼𝑇)

𝐼𝑇
× 100 (4-7) 

where 𝐼𝑇 is modelled annual global irradiance and 𝐼𝑇 is the estimated irradiance at the site 

following the PR conversion (subscript T denotes tilted irradiance). 

Figure 4-2 shows the performance of the RTS, PVGIS and FuRich methodologies under both 

0.8 and 0.75 PRs. In the boxplots, the bottom and top whiskers denote the 5th and 95th 

percentiles, the bottom and top edges of the rectangles represent the 25th and 75th 

percentiles and the central line is the median. This convention is applied to all boxplots 

presented throughout the thesis. The RTS model showed good agreement to the validation 

data with a mean percentage error of +2.16% and -4.22% under the 0.8 and 0.75 PRs 

respectively.  

 
Figure 4-2 Percentage error of annual global radiation estimation for all three methodologies under both PRs. 

The performance of PVGIS and FuRich are significantly poorer than RTS under the 0.8 PR. 

FuRich has a -15.48% mean error under the 0.8 PR whilst PVGIS has a +10.18% mean error. 

Although PVGIS performs better under the 0.75 PR, with +3.3% mean error, FuRich performs 

worse and incurs -20.76% mean error. 



94 
 

At three sites, FuRich (0.75 PR) generated an error in annual global radiation that was over 

25% greater than the measured value. The largest error produced by RTS was -16.62% under 

the 0.75 PR but the second largest RTS error was more typical of the worst RTS 

overestimations at 11.8% which is considerably smaller than the three FuRich errors referred 

to. FuRich produced the largest inter-quartile ranges with the strongest bias toward 

underestimation of annual global radiation.  

The results show that PVGIS under a 0.75 PR better approximates annual global insolation 

than when it is used with a PR of 0.8. This may be due to the lack of a shading model in PVGIS 

that leads to higher estimations of power output before the PR is applied. Despite the good 

performance of PVGIS under the 0.75 PR, a smaller mean percentage error is achievable 

when the RTS method is applied with a 0.8 PR and this value of PR is also better supported 

by the literature (Reich, 2012; Leloux et al., 2012; Taylor, 2015). 

4.3.1 Insolation Estimation Sensitivity to Shading 

Owing to the gridded 0.05° by 0.05° resolution of the albedo dataset, the baseline radiation 

calculations are appropriate to approximately 5.6 km latitude by 3.2 km longitude grid 

squares across a city. This means that the majority of validation sites for each city fell within 

the same cell. Therefore, the alteration to the baseline radiation estimate in RTS to 

incorporate slope, azimuth and shading is highly important in solar insolation estimation. 

Due to the small number of validation sites and constrained combinations of azimuth and 

slope arrangements, it is not possible to comprehensively examine the role of the two 

geometrical parameters in the accuracy of solar insolation estimation under RTS. However, 

the effect of applying the DSM-derived shading model on the accuracy of annual global 

insolation prediction can be been investigated and the mean absolute % error (defined in 

equation (4-8)) has been calculated for all validation sites under the 0.8 PR both with and 

without the shading model. The 0.8 PR has been selected for this analysis because it 

outperformed the 0.75 PR for RTS in section 4.3. 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 % 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑(|

𝐼𝑇�̂� − 𝐼𝑇𝑖
𝐼𝑇𝑖

| × 100)

𝑛

𝑖=1

 (4-8) 

𝑛 in equation (4-8) is the number of sites (20). Figure 4-3 shows the distribution across all 

validations sites of mean absolute percentage error. When the shading model is integrated 

with the radiance model there is a smaller interquartile range, lower median error and 

smaller outlier errors.  
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Figure 4-3 Mean Absolute % Error in annual global radiation estimation with and without shading under both 

performance ratios 

Under the 0.8 PR, a mean absolute percentage error of 8.16% occurred when shading was 

not incorporated which is greater than the 5.27% absolute mean percentage error when the 

shading model was applied. It is important to note that RTS without shading still 

outperformed the mean absolute percentage error incurred for both FuRich and PVGIS when 

the 0.8 PR, which is better supported by the literature, was applied. 

4.3.2 Suitability to City-Scale Applications 

The large resolution of the baseline radiation output (5.6 km latitude by 3.2 km longitude) 

means that one of the most computationally intensive parts of the method need only be 

executed once to cover a considerable area. Whilst the generation of viewshed models for 

properties within a study area of this size also has considerable processing demands, the 

estimation of solar resource on a city scale using the RTS model is entirely achievable. This 

means RTS could be used to achieve greater accuracy in city-scale PV viability analysis than 

existing methodologies such as that described in section 3.1. 

Furthermore, the method would remain efficient if using the multiple hemispherical 

viewshed models generated for every 2 m2 across a site for independent solar insolation 

calculations, rather than the viewsheds being averaged and one solar radiation calculation 

taking place as presented so far. In doing so the technique could advise potential investors 

on the siting and optimal sizing of a prospective installation at their property because it could 

highlight areas of the property that are prone to greater shade that would diminish payback 

and power generation forecasts.  

 



96 
 

4.4 Summary of Validation 

A radiative transfer with shading (RTS) model has been presented that estimates annual 

global solar radiation with +2.62% and -3.68% mean percentage error under assumed 

performance ratios of 0.8 and 0.75 respectively. When validated using annual power output 

data for the year 2013 from 17 sites across four cities, the RTS model outperformed the 

FuRich methodologies incorporated into the esri ArcMap solar radiation toolset. FuRich 

incurred -15.97 and -20.78% mean percentage errors under the 0.8 and 0.75 PRs whilst the 

results for PVGIS were +10.23% and +3.34% mean percentage error for each PR. The 0.8 PR 

figure for the RTS model were, therefore, the most accurate predictions. 

4.5 Adaptation for City-Scale Applications 

Unlike PVGIS, the method could be applied on a city scale after a small degree of adaptation 

and therefore could be used to inform large numbers of investment decisions with greater 

accuracy than previously possible using the FuRich methodology.  However, the processing 

time for each site using the RTS method was approximately ten minutes when using a 

computer with an Intel® Xeon® 3.1 GHz processor and 4 GB of RAM. The study area used 

throughout this thesis that incorporates the city of Leeds has 178,181 sites and so the RTS 

model would require approximately 1,237 days to execute. Therefore, despite the increase 

in accuracy over existing methodologies, the RTS model required changes to make it 

deployable at the city scale and so meet the central aim of this thesis to develop models for 

city-scale microgeneration viability appraisal that can be run without the need for high power 

computing resources. The adapted model is hereafter referred to as the RTS-CS (Radiative 

Transfer with Shading – City-Scale) model.  

The main reason for the lengthy RTS processing times was found to be the integration of the 

shading model at every time step across the year. In order to address this, a new 

methodology was devised that first sums the direct and diffuse insolation calculations for 

each sky sector without the shading model. The hemispherical shading model is then applied 

to remove all contribution of direct insolation to annual global insolation estimation from 

shaded sky sectors. Shaded sky sector diffuse insolation values are replaced with the albedo-

dependent reflected insolation value. This meant that the use of the shading model occurred 

only once for each site instead of for each time step at each site which greatly reduced the 

processing time to approximately 6.5 seconds per site. The completion of a city-scale study 

required 14 days bringing it to the same approximate running time as the FuRich 

methodology but with improved accuracy as the accuracy of RTS-CS estimation closely 
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followed that of RTS. The estimations of annual electricity generation (kWh m-2) under the 

RTS and RTS-CS models with the 0.8 PR adjustment are shown in Figure 4-4 for all validation 

sites. 

 

Figure 4-4 Relationship between RTS and RTS-CS models for all validation sites under the 0.8 PR 

The linear regression in Figure 4-4 has an r2 value of 0.99 and a gradient of 0.93 showing that 

there is a strong correlation between RTS and RTS-CS but that RTS-CS tends to predict a 

slightly smaller annual electricity generation. Therefore, it is clear that the adjustments to 

adapt RTS for city-scale execution have not led to any systematic failures in the prediction of 

power output. Moving beyond the relationship of RTS-CS to RTS, Table 4-1 shows how 

observed electricity generation at all of the validation sites compares to that predicted by 

each of the models. 

 0.8 PR 0.75 PR 
 PVGIS FuRich RTS RTS-CS PVGIS FuRich RTS RTS-CS 

Mean % Error 10.18 -15.48 2.16 -4.39 3.30 -20.76 -4.22 -10.36 

Std Dev 4.87 8.13 6.17 5.59 4.57 7.62 5.78 5.24 
Table 4-1 Average performance of all three models and RTS-CS under both the 0.8 and 0.75 PR. 

Table 4-1 shows that RTS-CS estimates annual global insolation with -4.39% average error 

under the 0.8 PR and -10.36% average error under the 0.75 PR. It is clear from the 

distributions of each model’s outputs (Figure 4-5) that RTS-CS has the two smallest inter-

quartile ranges of the models tested. RTS-CS produces results that fall within a similar range 

to RTS although it demonstrates a tendency to underestimate solar resource. However, the 

comparison of greatest importance to RTS-CS is its performance against FuRich because 

PVGIS and RTS are not methods that can be applied systematically on a city scale. Table 4-1 
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and Figure 4-5 show that RTS-CS is significantly more accurate and consistent in its 

estimations.  

 
Figure 4-5 Comparison of RTS model with city-scale deployment adaptations to all other models 

To demonstrate the outputs of the RTS-CS model when applied for a city, Figure 4-6 and 

Figure 4-7 show the predicted insolation across a roof for large and small properties 

respectively. For large properties, an annual global insolation estimate was made for every 

10 m2 across a roof so that roofs with varying geometries would not be inaccurately modelled 

because only one coordinate had been used.  
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Figure 4-6 Annual solar insolation at a large building using RTS-CS 

Figure 4-6 shows annual global solar insolation estimates that follow the shape of the roof 

with sections that are shaded by taller surrounding features or are North-facing receiving 

less insolation. The small properties in Figure 4-7 that have the highest insolation estimates 

are those with the more southerly orientations which is to be expected as the slope of the 

roofs was very consistent.  

 
Figure 4-7 Annual solar insolation at small buildings using RTS-CS 



100 
 

 
Figure 4-8 Slope and orientation of small properties across a study area containing Leeds (UK), coloured by 

insolation (kWh m-2 a-1)  

A broad breadth of roof geometries were observed across the small properties of the Leeds 

city region as Figure 4-8 shows. The peak insolation estimations are for roofs with a slope of 

35° to 42° and an orientation of approximately 180°. Both optimum slope and orientation 

are consistent with those in the EU-JRC PVGIS interactive map (JRC European Commission, 

2014). As slope increases from zero, modelled insolation starts to diverge which is due to the 

effect of roof orientation. The optimum South-facing (180°) roof spaces in the study area 

increase in annual insolation with slope more quickly than those that are South-east (135°) 

or South-West (225°) whilst annual insolation for East (90°) and West (270°) facing roofs 

decreasing as the area faces away from the Sun. For all orientations of roofs the insolation 

estimation eventually falls when slope has increased beyond a certain point. For the South-

east and South-west facing roofs, this occurs sooner than for South-facing roof spaces which 

only start to decline when slope is past the optimum angle. 

It is particularly interesting to note that the difference in colour, and therefore predicted 

annual insolation, is fairly small at slope angles of 20° to 55° and orientation angles of 140° 

to 220° which is the area with the highest annual insolation estimates. Therefore, insolation 

modelling in this area is less sensitive to changes in orientation and slope than other parts of 

Figure 4-8 such as at slopes of 30° to 50° between orientation angles of 110° and 130°. Here, 

there is a change from 1070 kWh m-2 a-1 at 30° slope and 130° orientation to 960 kWh m-2 a-

1 at 45° slope and 110° orientation, which is a decrease of 9.73%. This shows that it is 

important to model roof geometry accurately as small changes in geometry can lead to 
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greater differences in annual radiation estimates that are then summed across all years being 

considered in the viability calculation. Larger errors in solar PV viability at the city-scale, 

which is the focus of Chapter 6, would occur if such a study were to ignore the increased 

accuracy of roof geometry modelling techniques described in section 3.2 are neglected in 

favour of esri’s market-leading ArcGIS software and its nearest neighbour approach.  

4.6 Conclusion 

The adaptations to the RTS model to create RTS-CS have not caused a significant loss of 

accuracy and the resulting model far outperforms a widely used city-scale insolation 

estimation programme incorporated into the market-leading GIS package whilst remaining 

executable on standard desktop computers. The outputs of the RTS-CS model are suitable 

for application to city-scale viability analysis and can be combined with the outputs of the 

roof geometry modelling method described in section 3.2 to estimate annual insolation with 

greater accuracy and at the city scale. These themes are returned to in Chapter 6.  
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Chapter 5 Wind Speed Prediction Methods for Urban Areas 

This chapter presents research into the prediction of wind speeds for localised 

neighbourhoods across a city at all heights above ground. Specifically, a relatively simple and 

rapidly executable model is presented which addresses issues in the application of the most 

accurate existing method. Chapter 2 described the importance of surface roughness length 

(𝑧0) and displacement height (𝑑) in the field of annual wind speed prediction with equation 

(2-10) showing how the two parameters are used. The application of those wind speed 

predictions to the assessment of wind turbine viability has grown in significance as the UK 

government’s approach to reducing greenhouse gas emissions through financial incentives 

has led to expansion of the UK wind industry. As of October 2015, wind turbines that qualify 

for the MCS and ROOFIT subsidies contribute 469.3 MW of installed capacity (DECC, 2016b) 

and this size of turbine is often installed towards the periphery of urban centres, where there 

is an influence from the near-by urban and semi-urban areas. Chapter 2 introduced how the 

Millward-Hopkins et al. (2013c) methodology had achieved highly accurate estimations of 

long term average wind speeds using DEM data. However, it is not a methodology without 

problems. 

5.1 Implementation Issues Related to the Method of Millward-

Hopkins et al. 

The Millward-Hopkins et al. (2013c) methodology uses 2 m DEM data in full at a number of 

points through the process. The height data of vegetated areas is reduced by 20% to 

incorporate the porosity of these areas to the flow. There is then a filtering stage to remove 

the occasional erroneous height measurements that DEM data is susceptible to. This is fairly 

computationally intensive as it is executed on a cell-by-cell basis across the large domains. 

The filtered DEM data is used when calculating building density and adaptive grid sizing 

before calculating the geometrical parameters such as ℎ𝑚, 𝜆𝑝 and the standard deviation of 

building heights normalised by mean building height (𝜎ℎ/ℎ𝑚). 

A second cause of the lengthy processing times is the number of iterations that are incurred 

by the calculation of 𝑑ℎ𝑖 as described in Figure 2-4 for what can be numerous height regimes 

across a considerable sum of neighbourhoods. The problem is greater for ℎ𝑚−𝑒𝑓𝑓  which 

must be calculated across all height regimes and in eight wind directions for every 

neighbourhood across a city. While 𝑧0  is not calculated by division into height regimes, it 

must be calculated iteratively and for each wind direction in every neighbourhood. The 

combination of manipulation of the high resolution DEM data and this second stage of 
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calculations leads to execution times for the whole method of the order of days for large 

cities. These computational requirements, coupled with the complexity of understanding the 

method may restrict its application for a large number of cities. Therefore, this chapter 

proposes a methodology that produces a level of accuracy that is comparable to Millward-

Hopkins et al. (2013c) but with significant improvements to computational efficiency and 

simplicity of application so as to remove barriers to its deployment. 

5.2 Development of a Simplified Wind Speed Estimation 

Methodology 

The chapter will proceed with an explanation of how simplified formulae for the estimation 

of aerodynamic parameters were developed. For 𝑧0 and 𝑑, the general process centres on 

adapting the outputs of the Macdonald et al. (1998) model to closely match those of the 

more accurate but more complex and time-demanding Millward-Hopkins et al. (2013c) 

model. The latter of the two was selected for model fitting over equations for aerodynamic 

parameters derived from wind tunnel experiments. This is due to the limited number of wind 

tunnel studies to investigate surfaces as heterogeneous in obstruction heights as urban 

surfaces are. It is important to note that the Millward-Hopkins et al. (2013c) model was 

validated against all wind tunnel validation studies available for heterogeneous arrays at the 

time it was published. These same wind tunnel studies are used to verify the estimations of 

𝑑 and 𝑧0 here. 

Later in this chapter, the outputs of the Millward-Hopkins et al. (2013c), simplified and 

Macdonald (2000) models are compared and a further simplified model is introduced and 

tested. The four models are used to predict annual average wind speeds across four major 

UK cities which are validated by comparison to physical measurements. 

5.2.1 Displacement Height  

Figure 5-1 shows ℎ𝑚 and 𝑑𝐽𝑀𝐻 across Leeds (UK) which is one of the study areas included in 

the research. Far greater values of 𝑑𝐽𝑀𝐻 are observed in the most developed parts of the city 

where ℎ𝑚 peaks whereas the least developed areas towards the periphery of the study area 

have much smaller values of 𝑑𝐽𝑀𝐻.  

Figure 5-2 shows the relationship between du/hm (as described in equation (2-11) of section 

2.1.3) and dJMH/hm as calculated in the Millward-Hopkins et al. (2013a) method using DEM 

data from three cities where each of the 6,490 data points represents an individual 

neighbourhood. The three cities included in this study were Nottingham, Edinburgh and 

Leeds. It illustrates the differences caused by the detailed consideration of building height 
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variability in the estimation of d under the Millward-Hopkins et al. (2013a) methodology for 

which values of dJMH/hm commonly exceed 1 which is not possible using Macdonald’s 

formulae.  

 

 
Figure 5-1 𝒉𝒎 (top) and 𝒅 (bottom) across the Leeds study area. Larger values are observed in more built-up 

areas for both attributes 
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Figure 5-2 Displacement height calculated by Millward-Hopkins et al. (2013a) (dJMH/hm) and Macdonald et al. 

(1998) (du/hm) methodologies from DEM data for three cities 

To evaluate the importance of building density with respect to the 𝑑𝑢  and 𝑑𝐽𝑀𝐻  relationship 

shown in Figure 5-2, Figure 5-3 shows three regimes of 𝜆𝑝 with regression lines defined using 

the MATLAB (2014) Robustfit function to minimise the influence of outliers. The normalised 

differences between the models (𝑑𝐽𝑀𝐻 − 𝑑𝑢)/ℎ𝑚  are plotted against the standard 

deviation of building heights in a neighbourhood, 𝜎ℎ, normalised by ℎ𝑚 (𝜎ℎ/ℎ𝑚). 

 
Figure 5-3 Relationship between Macdonald et al. (1998) displacement height (du), Millward-Hopkins et al. 
(2013a) displacement height (dJMH) and the normalised standard deviation of heights (σh/hm) as plan-area 
density (λp) increases. Solid lines denote a linear regression of the data in the present study whilst dashed 

lines represent the linear regressions presented in Millward-Hopkins et al. (2013b). 



106 
 

𝝀𝒑 range 

Millward-

Hopkins et al. 

(2013a) 

Present Study 

0.05 to 0.1 0.5038 0.4256 

0.15 to 0.2 0.7859 0.7761 

0.35 to 0.5 0.9122 1.0520 

Table 5-1 Gradients of linear regressions as previously reported by Millward-Hopkins et al. (2013b) and as 
found in the present study 

The influence of σh/hm increases with building density which is consistent with Jiang (2008) 

and Millward-Hopkins et al. (2013b). Therefore an equation to adjust du to match dJMH should 

feature a scaling of λp with σh/hm as previously suggested by Kanda et al. (2013) in their 

development of a model specific to morphometric data for Tokyo. This trend is demonstrated 

more strongly in the present study with DEM derived building heights than in the vectorised 

height data used in Millward-Hopkins et al. (2013b) as the three gradients for the present 

study in Table 5-1 have a greater range.  

To incorporate a scaling of λp and σh/hm, equation (5-2) was developed. The parameters were 

established using a multistart fmincon optimisation routine from the MATLAB (2014) Global 

Optimisation Toolbox across four processor cores in parallel. The function works by adjusting 

parameters of the equation within a constrained range and then testing the outcome against 

a reference dataset which, in this case, was the aerodynamic parameters calculated under 

the full Millward-Hopkins et al. (2013a) method. The variables were adjusted from 50 starting 

conditions in order to avoid local minima leading to poorly optimised equations. The error 

metric used to evaluate the success of each iteration was the root mean squared percentage 

error (RMSPE) defined in equation (5-1) as: 

𝑅𝑀𝑆𝑃𝐸 =  √
1

𝑛
∑(

𝑎𝑖 − 𝑓𝑖
𝑎𝑖

)
2𝑛

𝑖=1

× 100 (5-1) 

where n is the number of observations, ai are the actual values and fi are the estimated 

values. This resulted in equation (5-2): 

𝑑𝑙𝑜𝑐𝑎𝑙−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

ℎ𝑚
= (1.074

𝑑𝑢
ℎ𝑚
) + ((0.264 log 𝜆𝑝 + 1.068)

𝜎ℎ
ℎ𝑚
) + 4.566×10−8 (5-2) 

Equation (5-2) produces an agreement between 
𝑑𝑙𝑜𝑐𝑎𝑙−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

ℎ𝑚
 and 

𝑑𝑙𝑜𝑐𝑎𝑙−𝐽𝑀𝐻

ℎ𝑚
 of 8.84% 

RMSPE and 6.63% mean absolute percentage error (MAPE) that in this study is defined as: 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑎𝑖 − 𝑓𝑖
𝑎𝑖

|

𝑛

𝑖=1

. (5-3) 

Differences between the two models became significantly more scattered when σh/hm was 

greater than approximately 0.76. Therefore, a split equation for neighbourhoods of σh/hm 

either greater or less than 0.76 was developed using the optimisation techniques outlined 

earlier so that the simplified methodology estimates dlocal using:  

𝑑𝑙𝑜𝑐𝑎𝑙−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

ℎ𝑚

=

{
 
 

 
 (1.034

𝑑𝑢
ℎ𝑚
) + ((0.149 log 𝜆𝑝 + 0.839)

𝜎ℎ
ℎ𝑚
) + 3.575×10−6  (𝑓𝑜𝑟 

𝜎ℎ
ℎ𝑚

≥ 0.76)

(0.933
𝑑𝑢
ℎ𝑚
) + ((0.383 log 𝜆𝑝 + 1.542)

𝜎ℎ
ℎ𝑚
) + 0.008 (𝑓𝑜𝑟 

𝜎ℎ
ℎ𝑚

< 0.76)

 

(5-4) 

Equation (5-4) leads to an agreement between the models of 5.543% MAPE and 8.263% 

RMSPE and the outputs of both models are shown in the scatter plot (Figure 5-4). 

 

Figure 5-4 Displacement height under the Millward-Hopkins et al. (2013a) (𝒅𝒍𝒐𝒄𝒂𝒍 − 𝑱𝑴𝑯/𝒉𝒎) and the 
simplified model (𝒅𝒍𝒐𝒄𝒂𝒍 − 𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅/𝒉𝒎). Line denotes a 1:1 relationship 

Figure 5-5 compares 𝑑𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑  and 𝑑𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑/ℎ𝑚  to commonly used reference values 

described in Grimmond and Oke (1999a) for neighbourhoods of specific 𝜆𝑝 and ℎ𝑚  ranges, 

which were introduced in section 2.1.3. The 𝑑𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑/ℎ𝑚 estimates shown in Figure 5-5A 

are significantly greater than the reference table values which do not allow d to be greater 

than ℎ𝑚. This presumption is invalid when compared to the experimental data of Cheng and 

Castro (2002b), Jiang et al. (2008) Hagishima et al. (2009) and Zaki et al. (2011b). In physical 

terms, 𝑑 must be allowed to be greater than ℎ𝑚 to reflect the dominance that atypically tall 

buildings have over the aerodynamic parameters of an urban surface (Xie et al., 2008).  
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𝑑𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑  in Figure 5-5B is more closely matched to the ℎ𝑚-based reference table values 

although there is a trend of decreasing similarity as density increases which is attributable to 

the simplified methodology being an approximation of a process that allows 𝑑 to be greater 

than ℎ𝑚 . There is a more significant difference between ℎ𝑚  and ℎ𝑚−𝑒𝑓𝑓  in more dense 

neighbourhoods that have greater sheltering and in high rise areas that also contain small 

buildings leading to substantial deviation in building heights. 

 
Figure 5-5 Comparison of simplified displacement height calculations to reference values from Grimmond and 

Oke (1999a) 

Figure 5-6 shows 𝑑/ℎ𝑚  as modelled using the simplified methodology for all 

neighbourhoods across all of the cities and the results of three wind tunnel tests of for 

specific arrangements of obstructions to the flow with heterogeneous heights. The spread in 

modelled 𝑑𝑙𝑜𝑐𝑎𝑙−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑/ℎ𝑚 results from the variation in 𝜎ℎ/ℎ𝑚 across the study area. 

The modelled values of 𝑑/ℎ𝑚 show clear agreement with the observations of Hagishima et 

al. (2009) and Cheng and Castro (2002) although two of the observations from the Zaki et al. 

(2011) study are not supported.   
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Figure 5-6 Comparison of modelled 𝒅/𝒉𝒎 to wind tunnel experimental data from Cheng and Castro (2002b) 

(red), Zaki et al. (2011a) (purple) and Hagishima et al. (2009) (amber) 

 
Figure 5-7 Arrangement of obstructions to the flow in Zaki et al. (2011) 

The two outlying data points from the Zaki et al. (2011) study were for complex arrangement 

of obstacles that were not observed in the study areas. Figure 5-7 shows this highly varied 

layout which was not present in any of the study areas when 𝜆𝑝 was as small as 0.077 or as 

large as 0.481. It is also important to note that the wind tunnel studies all feature 𝑑/ℎ𝑚 

values greater than 1 and show that 𝑑 can be significantly greater than ℎ𝑚 which contradicts 

a limit Macdonald et al. (1998) found for arrays of homogeneous heights. 

5.2.2 Surface Roughness  

It is useful to first understand how surface roughness varies across the study area which 

Figure 5-8 shows using 𝑧0−𝐽𝑀𝐻 values for a southerly wind direction across the study area. 

As with 𝑑𝐽𝑀𝐻, the largest 𝑧𝑜−𝐽𝑀𝐻 values are in the most developed parts of the study area 

and the lowest values are in the semi-rural areas towards the periphery.  
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Figure 5-8 𝒛𝒐−𝑱𝑴𝑯 across the study area for a southerly wind direction 

For the simplified methodology, 𝑧0𝑢 is calculated using 𝐴𝑓
∗/AT as defined in equation (2-9) of 

section 2.1.3 in accordance with Macdonald et al. (1998) approach. This is in contrast to 

Millward-Hopkins (2013c) which uses the more complicated Bottema (Bottema, 1996; 

Bottema, 1997) models that consider spacing and aspect ratios of buildings resulting from 

building shapes. The Millward-Hopkins et al. (2013c) model develops a more refined 

parameterisation of unsheltered frontal area density but is a significant cause of the greater 

computational intensity and complexity of that methodology. Therefore, work has focused 

on developing a correction to the calculation of 𝑧0𝑢 to match the Millward-Hopkins et al. 

(2013c) calculation of 𝑧0 (𝑧0−𝐽𝑀𝐻) as closely as possible. As a result, there are significant 

differences between 𝑧0𝑢/ℎ𝑚 and 𝑧0−𝐽𝑀𝐻/ℎ𝑚. 

 
Figure 5-9 Surface roughness as per the Millward-Hopkins et al. (2013a) (𝒛𝟎−𝑱𝑴𝑯/𝒉𝒎) and Macdonald et al. 

(1998) (𝒛𝟎𝒖/𝒉𝒎) models. Line denotes a 1:1 relationship. 
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Figure 5-9 shows that 𝑧0𝑢/ℎ𝑚 values are smaller than 𝑧0−𝐽𝑀𝐻/ℎ𝑚 which is expected given 

that 𝑑𝑢/ℎ𝑚 is integral to its calculation and Figure 5-2 showed that it is consistently smaller 

than the 𝑑𝐽𝑀𝐻/ℎ𝑚 that are part of the formulation of the 𝑧0−𝐽𝑀𝐻/ℎ𝑚 estimates. However, 

there are patterns in the absolute residuals of the two models (|𝑧0−𝐽𝑀𝐻 − 𝑧0𝑢|/ℎ𝑚), 𝜆𝑝 and 

𝜎ℎ/ℎ𝑚 as illustrated in Figure 5-10A. Figure 5-10A shows that, when treated independently, 

neither 𝜎ℎ/ℎ𝑚 nor 𝜆𝑝 are scalable with the differences between 𝑧0−𝐽𝑀𝐻 and 𝑧0𝑢. It is also 

interesting to note that variation in 𝜎ℎ/ℎ𝑚  is smallest at the extremes of 𝜆𝑝  areas which 

suggests that the study area was characterised by the most densely packed neighbourhoods 

having buildings of similar height with few instances of tall isolated buildings. 

 
Figure 5-10 Absolute difference between 𝒛𝟎−𝑱𝑴𝑯/𝒉𝒎 and 𝒛𝟎𝒖/𝒉𝒎 with respect to 𝝀𝒑 coloured by 𝝈𝒉/𝒉𝒎 (A). 

B shows the relationship of 𝒛𝟎−𝑱𝑴𝑯/𝒉𝒎 and 𝒛𝟎𝒖/𝒉𝒎 coloured by 𝝈𝒉/𝒉𝒎 + 𝝀𝒑 where the line denotes a 1:1 

relationship. 

A distinct pattern in differences between 𝑧0−𝐽𝑀𝐻 and 𝑧0𝑢 emerges when 𝜎ℎ/ℎ𝑚and 𝜆𝑝 are 

summed for each neighbourhood (Figure 5-10B). This combination of the two parameters is 

found to portray a relationship between 𝑧0−𝐽𝑀𝐻  and 𝑧0𝑢  more clearly than either one 

individually. The isolation of specific ranges of 𝜆𝑝 + 𝜎ℎ/ℎ𝑚  to bins shows that two-term 

polynomial (TTP) equations accurately describe the non-linear relationships between 𝑧0𝑢 

and 𝑧0−𝐽𝑀𝐻. For example, Figure 5-11 shows a bin of 0.33 < 𝜆𝑝 + 𝜎ℎ/ℎ𝑚 ≤ 0.37. The Polyfit 

function in the programme MATLAB (2014) was used to calculate each fit by a least-squares 

method.  
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When the total range of 𝜆𝑝 + 𝜎ℎ/ℎ𝑚  values is split into bins, a pattern emerges in the 

coefficients of the TTP equations describing the relationship between 𝑧0−𝐽𝑀𝐻 and 𝑧0𝑢. When 

plotted, Figure 5-12B shows that they can themselves be fitted to a secondary TTP line. 

However, neighbourhoods with 𝜆𝑝 + 𝜎ℎ/ℎ𝑚 > 0.97 fail to produce the same distinct 

relationships as those with 𝜆𝑝 + 𝜎ℎ/ℎ𝑚≤ 0.97. When 𝜆𝑝 + 𝜎ℎ/ℎ𝑚> 0.97 the coefficients 

become less predictable which is most likely caused by a scarcity of data in these bins. The 

data responsible for the 12 coefficient values to the right of the dotted line in Figure 5-12A 

make up just 5.63% of the total data.  

 
Figure 5-11 𝒛𝟎−𝑱𝑴𝑯/𝒉𝒎 and 𝒛𝟎𝒖/𝒉𝒎 for 0.33 < 𝝀𝒑 + 𝝈𝒉/𝒉𝒎 < 0.37. Line denotes the fitted polynomial trend. 
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Figure 5-12 Coefficients of the TTP fitted curves of each < 𝝀𝒑 + 𝝈𝒉/𝒉𝒎 bin (A) and with secondary TTP curves 

fitted to the data for 𝝀𝒑 + 𝝈𝒉/𝒉𝒎≤ 0.97 (B) 

Primary TTP 

Coefficient 

Secondary TTP 

Coefficient 1 

Secondary TTP 

Coefficient 2 

Secondary TTP 

Coefficient 3 

p(1) 92.791 -168.12 30.9868 

p(2) -3.101 7.7260 0.1964 

p(3) 0.033 0.0125 0.0088 

Table 5-2 Secondary TTP coefficients to describe trends in the coefficients of TTP polynomial equations for 
each 𝝀𝒑 + 𝝈𝒉/𝒉𝒎 bin ≤ 0.97. 

The coefficients of the secondary TTP lines shown in Figure 5-12B are described in Table 5-2 

and mean the equation for 𝑧0−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑/ℎ𝑚 takes the form: 

𝑧0−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

ℎ𝑚
= (𝐴

𝑧0𝑢
ℎ𝑚
)
2

+ (𝐵 
𝑧0𝑢
ℎ𝑚
) + 𝐶 𝑓𝑜𝑟 𝜆𝑝 +

𝜎ℎ
ℎ𝑚

≤ 0.97, (5-5) 

where: 

𝐴 = (92.7905(𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)
2

) + (−168.1246(𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)) + 30.9868,  (5-6) 

𝐵 = (−3.013(𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)
2

) + (7.726 (𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)) + 0.1964, (5-7) 

𝐶 = (0.0328(𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)
2

) + (0.0125(𝜆𝑝 +
𝜎ℎ
ℎ𝑚
)) + 0.0088.  (5-8) 
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This leads to a RMSPE of 18.54% and a MAPE of 11.00% when comparing the values obtained 

from the simplified method and that of Millward-Hopkins et al. (2011). 

Due to the small amount of data available for neighbourhoods of 𝜆𝑝 + 𝜎ℎ/ℎ𝑚 > 0.97 that led 

to unpredictable trends in coefficients shown in Figure 5-12A, an alternative method had to 

be devised for high 𝜆𝑝 + 𝜎ℎ/ℎ𝑚 neighbourhoods. A linear fit was defined using the MATLAB 

(2014) Robustfit tool which was found to produce a satisfactory result so that: 

𝑧0−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

ℎ𝑚
= (3.4375

𝑧0𝑢
ℎ𝑚
) + 0.0631 (𝑓𝑜𝑟 𝜆𝑝 +

𝜎ℎ
ℎ𝑚

> 0.97). (5-9) 

This led to an agreement of 21.20% MAPE and 27.44% RMSPE when compared to the 

Millward-Hopkins et al. (2011) method. Equations (5-5) and (5-9) create to the 

𝑧0−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑/ℎ𝑚  predictions shown in Figure 5-13 (right). When all wind directions are 

considered, there is a MAPE of 12.22% and a RMSPE of 18.74% when compared to Millward-

Hopkins et al. (2011) values.  

As in the comparison of d, the 𝜆𝑝 -derived Grimmond and Oke (1999a) reference values 

shown in Figure 5-14A are not observed although there is better agreement to the ℎ𝑚 -

derived values (Figure 5-14B). A strong correlation between 𝜎ℎ and ℎ𝑚 has been presented 

by Ratti et al. (2002) and Kanda et al. (2013) based on building height data from six major 

cities around the world. The improved agreement to ℎ𝑚-derived reference values may be a 

result of this relationship and suggests that there is a stronger relationship of 𝑧0 to 𝜎ℎ, ℎ𝑚 

and 𝜆𝑝 than λp alone. 
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Figure 5-13 Normalised predictions of 𝒛𝟎/𝒉𝒎 under the full JMH method (𝒛𝟎−𝑱𝑴𝑯/𝒉𝒎) and the simplified 

methodology (𝒛𝟎−𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅/𝒉𝒎) for one wind direction (left) and all directions (right). Lines denote 1:1 

relationships. 

 
Figure 5-14 Comparison of predicted 𝒛𝟎−𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅 to reference values from Grimmond and Oke (1999a). 
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Figure 5-15 shows that modelled 𝑧0/ℎ𝑚 for a randomly selected (SE) wind direction in the 

city of Leeds is in fairly good agreement to the wind tunnel experimental data of Cheng and 

Castro (2002b), Zaki et al. (2011a) whilst Hagishima et al. (2009) values are slightly greater 

than modelled in general. The large degree of variation in 𝑑  (Figure 5-6) to wind tunnel 

measurements is a cause of the wide spread observed here and it is important to note again 

that 𝜎ℎ/ℎ𝑚  varied significantly across the study areas. Neighbourhoods with 𝜆𝑓  values 

greater than 0.3 were rare in the study areas and further investigation could be carried out 

into whether the model is less accurate for these locations. 

 
Figure 5-15 Comparison of modelled 𝒛𝟎/𝒉𝒎 (green) for one wind direction in the city of Leeds to wind tunnel 

observations by Cheng and Castro (2002b) (red), Zaki et al. (2011a) (purple) and Hagishima et al. (2009) 
(amber). 

5.2.3 Effective Mean Building Height  

Figure 5-16 shows how ℎ𝑚−𝑒𝑓𝑓−𝐽𝑀𝐻 for a southerly wind direction varies across one of the 

study areas. It is greatest in the most developed parts of the city in a pattern that is strongly 

linked to ℎ𝑚, which is also true for 𝑑𝐽𝑀𝐻 and 𝑧0−𝐽𝑀𝐻. The estimation of ℎ𝑚−𝑒𝑓𝑓−𝐽𝑀𝐻 under 

the Millward-Hopkins et al. (2011)  requires the summation of calculations made across a 

number of height regimes for eight wind directions which is being avoided in this study for 

the sake of computational efficiency and comprehensibility. To simplify its estimation, the 

relationship shown in Figure 5-17A between ℎ𝑚, ℎ𝑚−𝑒𝑓𝑓−𝐽𝑀𝐻 and 𝜎ℎ is used to approximate 

ℎ𝑚−𝑒𝑓𝑓−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑. 
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Figure 5-16 𝒉𝒎−𝒆𝒇𝒇−𝑱𝑴𝑯 across the study area for a northerly wind direction. 

 
Figure 5-17 Relationship between σh and 𝒉𝒎−𝒆𝒇𝒇−𝑱𝑴𝑯 – 𝒉𝒎  (A) and the correlation of 𝒉𝒎−𝒆𝒇𝒇−𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅  to 

𝒉𝒎−𝒆𝒇𝒇−𝑱𝑴𝑯 (B) in which the line denotes a 1:1 relationship. 

ℎ𝑚−𝑒𝑓𝑓−𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 = ℎ𝑚 + 0.8339𝜎ℎ
1.157 (5-10) 

Using equation (5-10), the models shown in Figure 5-17B agree with 7.36% MAPE and 14.13% 

RMSPE. 

5.2.4 Effective Parameters 

Effective parameters are created using local parameters to describe the surface of the wider 

fetch area. Wind direction sectors are equal area triangles extending 5 km from the 

neighbourhood of interest in four compass directions as shown in Figure 5-18. 
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Figure 5-18 Wind sectors extending 5 km in North, East, South and West compass directions from the 

neighbourhood containing the target site (red box) 

𝑑𝑒𝑓𝑓  and ℎ𝑚−𝑒𝑓𝑓 are means of 𝑑𝑙𝑜𝑐𝑎𝑙  and ℎ𝑚−𝑙𝑜𝑐𝑎𝑙  values in each wind direction sector 

surrounding the neighbourhood containing the target site while 𝑧0−𝑒𝑓𝑓 is more complex to 

calculate as it is scaled by distance from the target site using the blending method presented 

by Bou-Zeid et al. (2007). It is these parameters that are used in the first downscaling step 

from the UBL to the ISL, as described in section 2.1.3. Figure 5-19 shows the correlations of 

𝑑𝑒𝑓𝑓−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑, 𝑧0−𝑒𝑓𝑓−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 and ℎ𝑚−𝑒𝑓𝑓−𝑒𝑓𝑓−𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑  to the Millward-Hopkins et al. 

(2011) values which had respective RMSPE of 6.4%, 11.3% and 7.43%. 
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Figure 5-19 Effective parameters compared to Millward-Hopkins et al. (2011) values. Lines denote 1:1 

relationships 

5.2.5 Windspeed Estimation 

The aerodynamic parameters calculated using each model are then applied to the three 

steps of the logarithmic wind profile equation that were described in section 2.1.3. To recap, 

reference wind speed meteorology, which is for 10 m above ground and independent of the 

effects of surface obstructions on wind flows, is first scaled up to a height equivalent to the 

UBL. In this study, NOABL reference wind speed data was used with a correction to match it 

to the NCIC database. This first upscale process is made using the accepted 0.14 m for “open 

ground” 𝑧0  without a value for 𝑑  in the logarithmic equation (equation (2-10) in section 

2.1.3) and is carried out for all wind directions available in the reference climatology (eight 

in this study). From these windspeed estimations at the height of the UBL, the effective 

parameters (𝑧0−𝑒𝑓𝑓 and 𝑑𝑒𝑓𝑓) are used to describe the effects of surface objects in the 5 km 

fetch areas for each wind direction as the logarithmic profile is again applied to estimate 

wind speeds at the blending height. The final downscaling equation is from the blending 

height to the hypothetical turbine hub height and incorporates the local parameters 

(𝑧0−𝑙𝑜𝑐𝑎𝑙  and 𝑑𝑙𝑜𝑐𝑎𝑙 ). ℎ𝑚−𝑒𝑓𝑓  is used to establish is a turbine hub height is exposed or 

sheltered. Where it is sheltered, the power law is required to convert the wind speed at the 

height of ℎ𝑚−𝑒𝑓𝑓 to the turbine hub height. 
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To compare wind speed estimations from the simplified model, the Macdonald model and a 

further simplified model were also tested which required the following actions to be taken. 

5.2.5.1 Macdonald’s Model 

Despite the concerns over the validity of its application to heterogeneous arrays raised by 

Cheng et al. (2007), Macdonald’s model for 𝑧0 and 𝑑 has since been employed across a range 

of research fields and specifically in city scale studies of aerodynamic parameters such as 

Drew et al. (2013) and Heath and Walshe (2007). Due to the continuing popularity of 

Macdonald’s model in the literature, the accuracy of wind speed estimations made using its 

equations for 𝑧0 and 𝑑 were also compared to measured wind speeds in this study. As such, 

the local aerodynamic parameters were calculated using equations (2-11) (for 𝑑𝑢 ) and 

equation (2-9) (for 𝑧0𝑢 ) based on a fixed neighbourhood grid size of 250 m. Effective 

parameters were calculated in the same way as the simplified and full Millward-Hopkins et 

al. (2013a) methodologies. In contrast to the other methodologies, however, ℎ𝑚 was used 

in place of ℎ𝑚−𝑒𝑓𝑓 to define both the blending height (at 2ℎ𝑚) and the height to which the 

logarithmic downscaling equation was extended down to before the exponential profile was 

used. This was because ℎ𝑚−𝑒𝑓𝑓 has not been used in any other study to employ Macdonald’s 

model for aerodynamic parameters.  

5.2.5.2 A further simplified model 

A further simplified model was devised to address additional causes of computational 

demand in the Millward-Hopkins et al. (2011) method. In this final simplification, the source 

DEM data was not filtered and the areas of vegetation were not multiplied by 0.8 to reduce 

the number of times the DEM was processed at its finest resolution. The simplified formulae 

for 𝑧0−𝑙𝑜𝑐𝑎𝑙 , ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙  and 𝑑𝑙𝑜𝑐𝑎𝑙  described in sections 5.2.1 to 5.2.3 were used in 

combination with a fixed grid size of 1 km in length and width. Effective parameters were 

established from these local parameters in the same way as for the other models tested.  

5.3 Results and Analysis 

5.3.1 Comparison of the Simplified and Millward-Hopkins et al. Models 

Figure 5-20 shows the differences between the simplified and Millward-Hopkins et al. 

(2013c) wind speed predictions for Leeds at 20 m above ground (A) and 10 m above ℎ𝑚 (B) 

with accompanying scatter plots (C and D). At 20 m above ground, the models agree with 
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MAPE of 1.89% and RMSPE of 6.4%. When the height is 10 m above ℎ𝑚 MAPE is 1.61% and 

RMSPE is 3.99%. 

 
Figure 5-20 Comparison of simplified and JMH methodology windspeed simulations at 20 m above ground (A 

and C) and 10 m above hm (B and D).  

The two methods bear similarity although the simplified model predicts slower windspeeds 

than Millward-Hopkins et al. in the most dense neighbourhoods of the city. The most likely 

cause for this are the differences in how height variability and density are considered in each 

model. It is reasonable to suggest that the trends in z0u against z0-JMH for neighbourhoods with 

high λp and σh /hm investigated in sections 5.2.1 and 5.2.2 were poorly identified due to the 

small amount of available data. Furthermore, Figure 5-4 and Figure 5-17B show increased 

scatter at higher d and hm-eff which will also contribute to the differences between the two 

models in the most dense neighbourhoods.  

5.3.2 Comparison of Models to Measured Wind Speeds 

The accuracy of wind speed estimation under each model in comparison to measured annual 

average wind speeds is shown in Figure 5-21 for twelve sites from four major UK cities. The 

Millward-Hopkins et al. (2011) and further simplified models have been abbreviated to JMH 

and FS in the following figures. Table 5-3 provides more detail regarding each validation site 
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in which hm-local, hm-eff-local and σh/hm are as calculated with a 250 m grid and z refers to height 

above the surface. 

Site 

No. 
City 

𝒛 

(m) 

𝒉𝒎−𝒍𝒐𝒄𝒂𝒍 

(m) 

𝒉𝒎−𝒆𝒇𝒇−𝒍𝒐𝒄𝒂𝒍 

(m) 

𝝈𝒉/𝒉𝒎 

(m) 

Height above roof 

(m) 

1 Leeds 24 11.097 19.576 0.669 6.5 

2 Leeds 28 11.097 19.576 0.669 10.5 

3 Leeds 17 9.731 13.334 0.364 17.0 

4 Leeds 32 9.731 13.334 0.364 32.0 

5 Edinburgh 30 17.486 26.774 0.459 5.0 

6 Edinburgh 27 17.330 27.071 0.483 5.5 

7 Nottingham 10 8.883 9.107 0.036 10.0 

8 Nottingham 17 15.582 20.419 0.293 3.0 

9 Nottingham 19 9.511 12.725 0.338 3.0 

10 Manchester 21 9.110 21.065 1.097 3.1 

11 Manchester 42 9.204 15.303 0.607 12.0 

12 Manchester 45 17.845 31.053 0.610 2.5 

Table 5-3 Validation site characteristeristics 

The greatest overestimations of wind speed occurred under the further simplified and 

Macdonald methodologies at the two Edinburgh sites (5 and 6) while, under the simplified 

methodology, site 7 produced the most accurate estimation of annual average wind speed. 

All methodologies performed most poorly at site 5. Due to the small amount of validation 

data available it is difficult to identify a specific cause for this however the site has an extent 

of open ground to the south which continues to the edge of the domain. Whilst in reality 

there is a large town approximately 6 km to the south, the study area is too small to 

incorporate this feature. Therefore, in reality a boundary layer has formed long before the 

validation site whereas the models only develop the boundary layer from 2 km to the south 

of the site. 
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Figure 5-21 Performance of all four models at all sites against measured wind speeds 

Site 8 produced significant differences in accuracy between the four models. A possible 

reason for this, as Table 5-3 shows, is that z is smaller than ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙 which is unique 

among the validation sites and means the site is sheltered by surrounding properties under 

the interpretation of the full Millward-Hopkins et al. methodology. However, in the 

Macdonald model ℎ𝑚 is used in place of ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙and so it defines the site as exposed. 

Therefore, the Macdonald model applies the logarithmic profile all the way to 𝑧, whereas 

the other models use the logarithmic profile to ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙and then the exponential profile 

from ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙to 𝑧.  

The poor performance of the further simplified model at site 8 is due to the use of the 1 km 

neighbourhood grid. In contrast to Table 5-3, which displayed 250 m grid geometric 

properties, the 1 km grid returns substantially different ℎ𝑚−𝑙𝑜𝑐𝑎𝑙, ℎ𝑚−𝑒𝑓𝑓−𝑙𝑜𝑐𝑎𝑙 and 𝜎ℎ/ℎ𝑚 

values (37% less, 9% less and 62% greater respectively) which serves to prove that the 1 km 

grid is too large to use for bulk parameterisation. The larger grid fails to portray the surface 

with sufficient detail to predict annual average mean wind speeds at an accuracy that is 

competitive with the JMH and simplified models. The MAPE of all models in comparison to 

measured wind speeds are shown in Table 5-4. 

Model MAPE (%) 

JMH 16.13 

Simplified 17.88 

Further Simplified 29.66 

Macdonald 38.76 

Table 5-4 MAPE of each model in comparison to measured wind speeds 
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JMH was the best performing methodology but there was only a slightly greater error under 

the simplified methodology with a 1.75% difference between the two. Given that wind 

power is proportional to wind speed cubed, the additional 11.78% and 20.88% MAPE in wind 

speed estimation incurred through the use of the further simplified and Macdonald models 

are significant and suggests they should not be applied in wind resource assessment where 

there are heterogeneous surfaces, such as urban and semi-urban areas. The large difference 

in MAPE between the simplified and further simplified models suggests that a 

neighbourhood grid size of 1 km in length and width is too coarse to adequately model the 

aerodynamic properties of a surface. It also suggests that the data pre-processing steps to 

remove outliers and account for vegetation porosity cannot be omitted. This may be 

particularly important for UK cities which tend to have large areas of tree coverage. This pre-

processing requires approximately three hours to execute for the city of Leeds (17 km East 

to West by 12 km North to South) when using an Intel® Xeon® 3.1 GHz processor and 4GB of 

RAM. Therefore, the simplified methodology takes approximately half a day to execute for a 

large UK city and thus could be rapidly applied for a large number of cities where the required 

input datasets can be obtained.  

 
Figure 5-22 Performance of all four models. The Macdonald model plus sign represents an outlier data point. 

Figure 5-22 shows that there is a general trend to over-predict annual average wind speeds 

regardless of the model used but that the JMH model has the median closest to zero and the 

smallest inter-quartile range. Despite a similar median to the JMH and simplified models, the 

further simplified model has the largest inter-quartile range. This may be a result of the larger 
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local neighbourhood size failing to parameterise the most local surface objects to the site as 

accurately as the smaller local grid sizes used in the other models.  

It is important to note that the time required to estimate wind speeds for a large city such as 

Leeds is considerably shorter under the simplified methodology. From the stages after the 

DEM data has been filtered, the Millward-Hopkins et al. (2013c) model requires 

approximately 15 hours to run whilst the simplified approach completes in under one hour 

when executed using an Intel® Xeon® 3.1 GHz processor and 4GB of RAM. When the time to 

execute the pre-processing steps is also included, the simplified model estimates wind 

speeds across a 17 km by 12 km city in approximately four hours. Given the small (1.75%) 

reduction in accuracy described in Table 5-4 and that the usability of the method is much 

improved, the simplified model provides a useful tool for wind speed prediction wherever a 

DEM, building footprint data and reference wind speed data are available. 

5.4 Conclusions 

A rapidly executable and widely deployable city scale wind resource assessment 

methodology has been demonstrated that estimates wind speeds with only a small increase 

(1.75%) in MAPE when compared to a more complex and computationally intensive 

methodology. Height-independent variables (λp and 𝜎ℎ) have been used in conjunction with 

empirically determined coefficients to predict the aerodynamic parameters d, hm-eff and z0 

from DEM and building footprint data. The outputs closely match those of the complex 

methodology with RMSPE between the two of 8.26%, 14.13% and 19.46% for dlocal, hm-eff-local 

and z0-local whilst effective parameters have been modelled with RMSPE of 6.4%, 7.43% and 

11.3% respectively. 

When applied to the logarithmic wind profile equation and validated against 12 sites from 

four major UK cities and their surrounding areas, the simplified local and effective z0 and d 

estimations led to an error in wind speed estimation of 17.88% MAPE which compares to 

16.13% MAPE under the existing methodology. By contrast, aerodynamic parameters 

derived under the Macdonald model led to long term average wind speed estimations with 

38.76% MAPE showing that it should be used with great caution if applied to wind resource 

assessment in cities with heterogeneous height profiles.  

The outputs of the simplified methodology are sufficiently accurate to inform a first appraisal 

across a city region of locations that are potentially suitable for a wind turbine and can aid 

the siting of anemometry for further investigations. Together with the advancements in city-

scale solar insolation assessment presented in sections 3.2 and Chapter 4, the simplified 
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methodology can be incorporated into a city scale wind and solar microgeneration viability 

analysis which is described in Chapter 6.  
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Chapter 6 Microgeneration Investment Planning 

This section describes a city-scale study combining the advancements made in the thesis with 

regard to the appraisal of: roof geometries from DSM data (section 3.2); solar insolation 

(section Chapter 4); and long-term average wind speeds (section 5.2). It builds from the 

literature described in section 2.3 to explore the viability of solar and wind microgeneration 

technologies in a study area containing the city of Leeds (UK) by incorporating the financial 

context that currently shapes the industry. In addition, a range of scenarios are presented to 

demonstrate how the methodology can be adapted to examine the impact of changes to 

policy, technology performance and installation costs.  

6.1 Method 

The method presented here uses modelled solar and wind resource as inputs to a financial 

model that incorporates a range of cost and revenue streams and produces return on 

investment (ROI) and payback time estimates. Whilst the solar resource input data is in the 

form of generated power per m2, the wind resource data must undergo a conversion from 

long term average wind speeds to annual wind turbine power output. The full complement 

of revenues and costs for each technology can then be defined using installation size and 

modelled power output which allows for the financial metrics of viability to be calculated. 

The variables of the model can be adapted as required to investigate a wide range of 

investment conditions, which are explored as scenarios later in the section.  

The study area has been defined as the region described earlier in Figure 5-1, namely, a 17 

km (East to West) by 12.5 km (North to South) zone incorporating the city of Leeds (UK) at 

its centre. The reasons for this are that all of the data required for the methodology were 

available in this area and also that it was also possible to source quotes from local solar PV 

installation companies and confirm that wind turbine installation costs were applicable to 

this area.  

6.1.1 Resource Estimations 

6.1.1.1 Wind 

The map of long-term mean wind speeds for every 250 m by 250 m neighbourhood in the 

study area (Figure 6-1) has been produced using the simplified methodology described in 

section 5.2 for heights above ground of 20 m and 36 m. As the underlying reference 

climatology dataset (NOABL with a correction to match the NCIC database) is built from data 

spanning many years, the wind speeds predicted are long-term averages rather than annual 
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ones. For example, the NCIC database is built from observational data spanning 30 years 

from 1981 to 2010 whilst NOABL covers only ten years (Weekes, 2014). 36 m was selected 

because it is the hub height of the WindEn 45 wind turbine that produced the best return on 

investment (ROI) in a city-scale study of Leeds by Adam et al. (2015). The Kingspan KW15 

turbine, with a hub height of 20 m, did not perform as well but has been included due to its 

lower CAPEX cost and popularity in the market. Both the Kingspan KW15 and WindEn 45 

have achieved MCS approval, meaning they are both eligible for government financial 

incentives. Roof-mounted micro-turbines, that are typically smaller than 6 kW, are not 

investigated here due to their lack of penetration into the market, questions regarding 

robustness in what are turbulent locations and scarcity of turbines with MCS approval which 

means the devices are rarely eligible for government financial incentives.  

 
Figure 6-1 Long-term mean wind speed (ms-1) at 36 m above ground for every neighbourhood across Leeds 

At first glance, Figure 6-1 appears to show neighbourhoods of 1 km in width and height. 

However, the smallest neighbourhood size is actually 250 m in width and height. What has 

happened is that at 36 m above ground the reference climatology, which has a 1 km 

resolution, for two neighbourhoods next to one another has a greater influence on long-term 

mean wind speed than the differences in surface form between those two neighbourhoods. 

Regardless, when the study area is analysed across the entire city, the patterns that emerge 

are as one would expect in that there is a very significant difference in long-term mean wind 

speed for urban areas when compared to more exposed, rural areas. The patterns in long-

term mean wind speed are generally inversions of the trends described in section 5.2 for 𝑑 
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(Figure 5-1), 𝑧0  (Figure 5-8) and ℎ𝑚−𝑒𝑓𝑓  (Figure 5-16), whereby wind speeds are greater 

where those aerodynamic parameters are smaller. Figure 6-2 shows the distribution of wind 

speeds estimated across the city of Leeds for hypothetical hub heights of 36 m (A) and 20 m 

(B) above ground. 

 
Figure 6-2 Histogram of long term average wind speeds (ms-1) at 36 m (A) and 20 m (B) above ground for each 

250 m x 250 m neighbourhood across the study area 

6.1.1.2 Solar  

Roof geometries of buildings with plan areas of less than 200 m2 were defined as “small” and 

estimated using the neighbouring buildings method described in section 3.2. For buildings 

with a plan area of more than 200 m2 (defined here as “large”) roof slope was estimated 

directly from DSM data by nearest neighbour interpolation and orientation was estimated 

from the direction of slope between neighbouring DSM data points. Therefore both 

orientation and slope calculations for large buildings followed the Gooding et al. (2013) 

methodology but with an adaptation. To account for the variety of geometries and shading 

often observed across a single large property, each large property had a grid of points spaced 

10 m apart overlaid onto it. Insolation calculations for each of these points were summed to 

give a total insolation for the building. Whilst a finer grid spacing may have picked up smaller 

changes across the roof, a grid spacing of 10 m held an advantage in facilitating a method 

that would not require high power computing which is a key aim of the wider research 

project. It is also important to note that the aim is to assess where a solar PV installation 

would be sited and to consider the area it requires. The geometrical information for both 

large and small properties was then inputted to the RTS-CS method described in section 4.5 

which returned an estimation of annual electricity generation in kWh m-2. 

6.1.2 Viability  

6.1.2.1 Wind 

There are three parts to defining wind turbine viability (illustrated in Figure 6-3) which the 

following sub-sections (6.1.2.1.1 to 6.1.2.1.3) define in turn.  
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Figure 6-3 Process chart for wind viability assessment 
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6.1.2.1.1 Practical Wind Turbine Considerations 

Despite the logic of defining them, there are no minimum separation distances between 

wind turbines and housing defined by the Government and there are no plans to introduce 

them (Smith, 2015). However, the following criteria were applied in order to estimate a 

potential for city-scale generation that would reflect likely real-world constraints such as 

acoustic intrusion, for example. ETSU-R-97 legislation specifies that noise generated by a 

wind turbine should be no louder than 5 dB above background noise from a residence 

(Department of Trade and Industry, 1996). Without detailed site-specific acoustic surveys, 

however, the precise distance from a residence is impossible to accurately model. It is 

assumed that this distance will be smaller than the distance required to avoid “shadow 

flicker” which Scottish Government planning guidance defines as ten times the rotor 

diameter (Scottish Government, 2014). This is 146 m for the WindEn 45 turbine and 98 m for 

the Kingspan KW15. The distance of ten times rotor diameter is also the largest suggestion 

for distances between turbines outlined in planning policy statement legislation for Northern 

Ireland (Department of Environment, 2008).  

The locations across the study area that meet the distance from residence criterion are 

shown in Figure 6-4 and are mostly rural or semi-rural although there are isolated areas 

within the most urban parts of the study area that remain suitable. The WindEn 45kW is 

suitable for a large percentage of the areas where a Kingspan KW15 is although there are 

many highly urban areas where a WindEn 45kW could not be installed. The figure clearly 

illustrates that a considerable area has been lost and that the investigation of wind turbine 

viability is significantly restricted before even wind speeds are considered, not to mention 

financial barriers. 
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Figure 6-4 Locations that meet the criteria regarding distance from residences. The Kingpsan KW15 is suitable 

for all locations where a WindEn 45kW turbine is. 

6.1.2.1.2 Wind Turbine Power Output Estimation 

This section describes power output calculations for the locations identified in the preceding 

section from the long-term average wind speeds estimated using the simplified method 

(section 5.2). An adjustment has to be made because although the long term average wind 

speed may be used as a comparative indicator between two sites, wind turbine power output 

should not be estimated from it. Far greater accuracy can be achieved using the Weibull 

distribution f(u) which describes the range and relative frequency of wind speeds. It is a 

function of a shape parameter (𝛽) and a scale parameter (η) and can be calculated using: 

𝑓(𝑢) =  
𝛽

𝜂
(
𝑢

𝜂
)
𝛽−1

𝑒
−(
𝑢
𝜂
)
𝛽

 (6-1) 

in which u refers to the particular wind speed and 𝛽 is 1.8. This value comes from Best et al. 

(2008) who found that whilst 𝛽  will vary for any particular site, 1.8 serves as a good 

approximation for a wide variety of locations across the UK. η in equation (6-1) is given by: 

𝜂 =
�̅�

Γ (1 +
1
𝛽
) 

 
(6-2) 
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where �̅� is the long term average wind speed. The Weibull distribution has been found to 

provide a good fit to measured data (Seguro and Lambert, 2000) and has the shape shown 

in Figure 6-5 for different annual mean wind speeds with the assumed shape factor of 1.8. 

 
Figure 6-5 Weibull distributions from minimum, maximum and median long term average wind speeds 

modelled for 36 m above ground-level using the method described in section 5.2 and restricted by the criteria 
presented in section 6.1.2.1.1 

Figure 6-5 shows that greater long term average wind speeds lead to Weibull distributions 

with slightly lower kurtosis and an increased skew to the right which means that greater wind 

speeds will occur more frequently. The Weibull distribution of wind speeds for a site can then 

be used to calculate annual energy generation using: 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (kWh) =
∑ 𝑝(𝑢)𝑓(𝑢) × (365×24)𝑛
𝑢=1

∑ 𝑓(𝑢)𝑛
𝑢=1

 (6-3) 

where p(u) is a the expected power output from the turbine at a given wind speed u, and f(u) 

is the frequency with which wind speed u is expected to occur based on the Weibull 

distribution. Expected power output for the WindEn 45 and Kingspan KW15 turbines are 

shown in Figure 6-6 using data from the manufacturer (BetterGeneration, 2015). 

Unfortunately no data is available for wind speeds greater than 20 ms-1 despite the Kingspan 

KW15 having continuous operation in all wind speeds (Kingspan, 2015) and the WindEn 45 

being operational to 52.5 ms-1 (WindEn, 2015). Figure 6-5 shows that for the maximum long 

term average wind speed of the locations suitable for a turbine, the frequency of wind speeds 

faster than 20 ms-1 is greater than zero though relatively small. Therefore, the decision to 

ignore power output for this portion of observed wind speeds will not have a significant 

impact on the accuracy of the viability assessment. 
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Figure 6-6 Power curves for the WindEn 45 and Kingspan KW15 turbines (BetterGeneration, 2015) 

The power curve outputs shown in Figure 6-6 do not account for inverter losses that occur 

after a wind turbine’s generator. For the WindEn 45 turbine, two suitable inverters have 

been found that operate with 93% (NewEnCo, 2004) and 96.1% efficiency (CCL Components, 

2009) so as a conservative estimate, inverter losses of 7% have been incorporated into 

estimated annual electricity generation. The Kingspan KW15 is compatible with variants of 

the two inverters previously mentioned so the 7% loss is applied again. Approximate costs 

of inverters were supplied as part of the quotes for the turbines’ total costs from the turbine 

manufacturers (Bjerknäs, 2016; Kerr, 2016). Applying the power curves in Figure 6-6 to 

equation (6-3) for the suitable sites identified in Figure 6-4 with the 93% inverter efficiency 

produced the distributions of annual electricity generation estimates shown in Figure 6-7 in 

which a-1 is used to denote that the figures are per annum (used throughout the thesis). The 

same x-axis scale has been applied to both top and bottom histograms to highlight the 

difference in annual power output. 
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Figure 6-7 Histograms of annual power output (MWh a-1) for both turbines in first year of operation at 

suitable locations in which frequency refers to the number of each turbine 

The histograms in Figure 6-7 show that although the number of suitable locations are far 

smaller for the larger WindEn 45 turbine given the spacing it requires, the annual power 

output will be considerably larger. The maps in Figure 6-8 show the distribution of the sites 

around the study area. When viewed this way, the geospatial patterns exhibit a strong 

similarity to the map of long term average wind speed at 36 m (Figure 6-1) as should be 

expected but this has the unfortunate result that the large area of suitable and exposed land 

in the South-East of the study area has relatively small long term average wind speeds and 

accordingly low annual power output. 
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Figure 6-8 Power output (MWh a-1) for the Kingspan KW 15 (top) and WindEn 45kW (bottom) turbines in 

suitable locations in first year of operation 

A further problem with the power curves shown in Figure 6-6 is that they are applicable to 

the wind turbine operating in its optimum condition when the performance of the turbine is 

known to decline with time. Detailed data relating to the degradation of the performance of 

the selected WindEn and Kingspan turbines over time is not available but Staffell and Green 

(2014) have reported a trend in the output of wind farms falling by 12% over a twenty-year 
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lifetime. In this model therefore, wind turbine power output is reduced by 0.6% for every 

year of operation (which is rounded from the compound 0.6371% rate).  

The results will present the potential for both wind turbine technologies to contribute cost 

effective renewable electricity generation in the study area. Therefore, if a site is suitable to 

accommodate either turbine, it follows that the turbine capable of generating the most 

electricity must be selected. The area required for each turbine must also be incorporated 

into this calculation as it is possible that numerous Kingspan KW15 turbines could be installed 

in the area required for only one WindEn 45kW. 

6.1.2.1.3 Financial Viability 

The annual power output of a wind turbine is a starting point from which financial viability 

can be calculated. The metric selected to describe both wind and solar installation viability 

is annual return on investment (ROI) which is described in equation (6-4) as the ratio of total 

annual revenue (from electricity bill savings and government incentives minus operating 

expenditure (OPEX)) to capital expenditure (CAPEX). OPEX has been defined by the European 

Wind Energy Association as £0.02 / kWh of electricity generated The European Wind Energy 

Association (2013). 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑂𝐼 = (
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐴𝑛𝑛𝑢𝑎𝑙 𝑂𝑃𝐸𝑋

𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝐶𝐴𝑃𝐸𝑋
) (6-4) 

The FiT, export tariff, electricity bill savings and OPEX undergo a correction for inflation that 

has been incorporated into the model using the average Retail Prices Index (RPI) rate from 

2009 to 2013 (3.38%) as published by the Office for National Statistics (ONS, 2015). 

In addition to ROI, a second measure of viability presented is payback time, which is the 

number of years required for the CAPEX and OPEX costs to be exceeded by the cumulative 

annual revenue. Both metrics of financial viability are used for the wind and solar analyses 

to enable a clear comparison. Table 6-1 summarises the costs and revenues for the wind 

technologies used in this study to complete equation (6-4) along with their sources. 

Description Source Value Applicable Dates 

Average cost of domestic 

electricity for Yorkshire 
DECC (2015a) 

£0.1501 / 

kWh 
From 2015 data 

FiT for < 50 kW wind 

turbine 

Energy Saving Trust 

(2015a) 

£0.1373 / 

kWh 
Prior to 15 January 2016 

Export tariff 
Energy Saving Trust 

(2015a) 

£0.0485 / 

kWh 

No forthcoming changes 

proposed at the time of 

writing 
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Maintenance costs 

The European 

Wind Energy 

Association (2013) 

£0.02 / 

kWh 

2013 - No more current 

source available 

WindEn 45 turbine, 

inverter and installation 

and groundworks costs  

Bjerknäs (2016) £180,000 
As per personal 

communications in 2016 

Kingspan KW15 turbine, 

inverter, installation and 

groundworks costs 

Kerr (2016) £78,400 
As per personal 

communications in 2016 

Table 6-1 Costs and revenue streams for the wind viability analysis 

The first entry is related to the estimation of electricity bill savings using DECC statistics of 

typical electricity costs (£/kWh) by region (DECC, 2015a). The average cost of electricity for 

Yorkshire is marginally below the national average (£0.1538 / kWh) reported by DECC 

(2015a) so this can be regarded as a slightly conservative baseline condition. The cost of 

electricity is multiplied by an assumed proportion of the electricity generated that is used on 

site to give electricity bill savings. Adam et al. (2015) assumed that 50% of electricity 

generated by a wind or solar PV system would be used on site but that is felt to be too large 

and inconsiderate of the differences between the two technologies. For example at night, 

when electricity usage is very low, a wind turbine can generate electricity and Energy Saving 

Trust (2015b) estimate that a lower figure of 30% of domestic supply coincides with the wind 

generation profile so this is the figure selected for the Kingspan KW15 baseline scenario. 

Owing to the considerable size difference between the Kingspan KW15 and the WindEn 45, 

a lower baseline usage of 20% of electricity generated has been used for the latter turbine. 

Electricity bill savings are then calculated by multiplying the cost of electricity by the 

proportional amount of electricity used on site. The electricity bill savings are adjusted for 

inflation based on the 5-year average RPI described earlier in this section. The final column 

in Table 6-1 describes the dates that the costs and revenues are applicable to. This is made 

necessary by the frequently shifting policy context surrounding incentives to install 

microgeneration technologies. For example, the FiT rate for an MCS registered wind turbine 

is set to fall by 38% to 8.53 p/kWh from 08/02/2016. This incoming FiT rate is incorporated 

into the scenario testing section. In line with legislation quoted in Energy Saving Trust 

(2015a), the export tariff is applied to 50% of electricity generated regardless of the 

technology used to generate it so the same rate applies to both wind and solar in this study. 

There are plans to link this tariff to smart meter measurements of the actual electricity 

exported to the grid, though these had not come to fruition at the time of writing.  
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6.1.2.2 Solar 

Figure 6-9 describes the order of processes required to define solar PV installation viability 

which are discussed in the paragraphs that follow. Unlike the estimation of wind resource, 

the RTS-CS method described in section 4.5 provides a power output estimation in kWh  

m-2 a-1 using a PR adjustment and so there is no requirement for conversion from solar 

insolation to generated electricity. The roof geometries of small buildings (smaller than 200 

m2 in plan area) fed into the RTS-CS method were found using the neighbouring buildings 

methodology described in section 3.2. The slope and orientation of larger properties were 

defined by nearest neighbour regression of DSM data as in Gooding et al. (2013) before being 

inputted to the RTS-CS method to calculate annual insolation. 

6.1.2.2.1 Power Estimation 

For wind, two types of installation were used at every site whereas for solar the capacity of 

a solar PV installation varies with available roof area. Using the modelled South-facing area 

and the area required for each panel, the size and cost of installation can be scaled for each 

building. In this study, the total area required for a single PV panel in an array was 1.8 m in 

length and 1 m in width which is based on the dimensions of a popular LG 285 W mono-

crystalline PV panel (1.6 m2) with a small addition for the surrounding space required. The 

typical power output of a solar PV cell declines with time and although no data for the 

degradation of the selected LG 285 W was available, NREL (US) research found a median 

percentage degradation rate of 0.23% per year for mono-crystalline PV panels (Jordan and 

Kurtz, 2013) which is the rate applied here. In addition to the fall in the efficiency of the solar 

cells, there are also losses at the inverter. SMA solar is a market leader (Ali-Oettinger, 2013) 

that offers a range of inverters to cover all sizes of PV installation that typically perform at 

98% maximum efficiency (SMA, 2015a; SMA, 2015c; SMA, 2015d; SMA, 2015e; SMA, 2015b). 

Maximum inverter efficiencies should be treated with caution as inverter efficiency varies 

with the power generated by the PV panel. To capture this effect, the invertor efficiency 

applied in the study was reduced by 1.75% to 96.25%. 
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Figure 6-9 Process chart for solar PV viability assessment using the same key as Figure 6-3 
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For installations across complex roofs where specific panels have to be located in areas prone 

to occasional shade, an array of micro-inverters may be more efficient than a single inverter. 

This is because the shaded parts of an installation with micro-inverters do not negatively 

impact the total power output of the installation to the same degree as they would for an 

installation with a solitary inverter. The unshaded regions feed current to a separate inverter. 

However, devising bespoke inverter arrangements is beyond the scope of this research into 

city-scale microgeneration viability which has the key aim of providing a first estimate of 

viability for stakeholders to then pursue further, site-specific investigation as necessary. 

6.1.2.2.2 Financial Viability 

The CAPEX costs for solar PV comprise of the costs of the panels, roof mountings, inverter, 

wiring and labour. Two solar PV installation companies based in the study area have provided 

the quotes in Table 6-3 that incorporate all of these costs into a £/kWp installed figure. 

Company Size of Array (kWp) Installed Cost (£/kWp) 

GMI Energyb 1 1,600 

Leeds Solara 
2.5 1,400 

Leeds Solara 2.7 1,407 

Leeds Solara 3.78 1,230 

Leeds Solara 4 1,200 

Leeds Solara 4.86 1,049 

Leeds Solara 5 1,040 

GMI Energyb 
50 950 

GMI Energyb 250 800 
Table 6-2 Quotes for total cost of solar PV systems.  a(Platt, 2016b) b(Roberts, 2016). 

 
Figure 6-10 Interpolated PV array costs from Table 6-2 to 55 kWp 

Figure 6-10 shows an interpolation of the PV panel costs where the line continues from the 

£950 / kWp at 50 kWp through the remaining system sizes shown in Table 6-3. It is from this 

line that panel costs are calculated for the wide range of system sizes that occur in a city-
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scale study. In addition to the CAPEX costs, solar PV is also subject to an OPEX cost. An annual 

maintenance  cost of £15 for every kWp of solar panels installed has been selected that is 

consistent with Dufton (2012) and is later adjusted for RPI inflation.  

Annual revenue is calculated by summing income from the FiT and export tariff for the 

electricity generated with savings made on electricity bills. For the baseline scenario, FiT 

rates that were accurate as of 1st January 2016 have been adopted. Table 6-3 shows the 

categorisations of solar PV systems by kWp size and subcategories of higher, medium and 

lower rates. 

System Size 
(kWp) 

Higher 
(p/kWh) 

Middle 
(p/kWh) 

Lower 
(p/kWh) 

<=4 12.03 10.83 5.73 

>4, <=50 10.90 9.81 5.73 

>50,<=150 9.29 8.36 5.73 

>150, <=250 8.89 8.00 5.73 

>250 5.73 5.73 5.73 
Table 6-3 Summary of FiT rates applicable for 1st January 2016 (ofgem, 2015) 

The lower rate is applied to properties that do not have an environmental performance 

certificate (EPC) rating of A to D. The medium rate is applicable to properties with an EPC 

rating of A to D but where the owner has 25 (or greater) FiT-registered installations. The 

higher rate is for buildings with an EPC rating of A to D where the owner has fewer than 25 

FiT-registered installations. Two assumptions have been made with respect to selection of 

the appropriate rate. First, this study will not link installations to owners and so will not 

consider the middle rate. The second is an approximation that all properties will have, or 

could easily attain, an EPC rating of A to D. This is based on the current EPC ratings data for 

the city of Leeds from the Department for Communities and Local Government which shows 

that over 78% of properties already have an EPC rating of A to D (DCLG, 2015). FiT rates for 

solar microgeneration have undergone even greater change than those for wind over the 

past six years and Figure 1-1 showed the impact that the first major alterations had on the 

industry. At the time of writing, the solar FiT rates were to be significantly reduced from 

those quoted in Table 6-3, the full extent of which are discussed in the scenario testing 

section but by way of example, the rate for installations under 4 kW is reduced by 76% to 

4.39 p/kWh. Fortunately, the export tariff is less complex to incorporate as it is fixed at 4.85 

p/kWh for all sizes of solar PV installation and there were no plans to change it at the time 

of writing.  
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Electricity bill savings are modelled using the same approach as described for wind whereby 

the proportion of electricity generated that is used on site is estimated first. The assumed 

50% usage figure found in the original FiT to define the export tariff (and applied in Adam et 

al. (2015)) was estimated at a time when PV system sizes were smaller on average. Falling 

prices have meant that larger systems are more affordable and so whilst in 2011 the average 

system size was 2.75 kWp it is now 4 kWp (Energy Saving Trust, 2016). It is reasonable to 

suggest that consumption of electricity during times of peak production has not grown at the 

same rate and for this reason, a figure of 25% for residential usage of electricity generated 

from solar PV has been adopted. Owing to the increased likelihood of a large (> 200m2) 

property being a place of work and so having a higher electricity consumption during times 

of peak solar PV electricity generation, a higher usage of 40% of electricity generated by solar 

PV has been assumed in the baseline scenario. For a more complete understanding, the 

sensitivity of the model to on-site usage will be investigated by varying the percentage and 

testing the impact on payback time. 

Adjustments for inflation have been made to increase the FiT, cost of electricity and export 

tariff using the same five-year average RPI rate described in section 6.1.2.1.3. All of the 

revenues and costs are then brought together to calculate ROI (using equation (6-4)) and 

payback time. 

6.1.3 Scenario Testing 

The baseline model has been adapted to investigate potential future conditions for 

microgeneration investment as summarised in Table 6-4. Demonstrating the model’s 

adaptability, three scenarios have been developed that are unique configurations of the five 

variables defined in Table 6-5. The paragraphs that then follow discuss the reasoning behind 

the design of the scenarios.  

ID Description 

Variables 

FiT 

Rates 

Installation 

Cost 

Electricity 

Cost 

Generated 

Electricity Usage 

Technology 

Efficiency 

1 New FiT Low Baseline 

2 Optimistic Low Low High High 
Solar only: 

PR to 0.85 

3 Pessimistic Low High Low Low Baseline 

Table 6-4 Three scenario Conditions 
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Variable 
Condition 

High Baseline Low 

FiT Rates NA 

Applicable prior to 
15/01/2016 

Applicable: 15/01/2016 to 
31/03/2016 

Wind: 
£0.137 
/ kWh 

Solar: see 
Table 6-3 

Wind: 
£0.085 
/ kWh 

Solar (< 10 kW): 
£0.044 / kWh (10-
50 kW): £0.046 / 

kWh 
(>50, <=250 kW): 

£0.027/kWh 

Installation 
Cost 

Solar: 
Interpolated 

values of Figure 
6-10 + 20% 

 
Wind: Quoted 
values +16% 

See Figure 6-10 
interpolated values 

Solar: Interpolated values of 
Figure 6-10 - 20% 

 
Wind: Quoted values -16% 

Electricity 
Cost 

£0.162 / kWh £0.150 / kWh £0.147 / kWh 

Generated 
Electricity 

Usage 

Solar: Large 
properties 50%, 
small properties 

30% 
 

Wind: WindEn 
25% 

Kingspan KW15 
35% 

Solar: Large 
properties 40%, 

small properties 25% 
 

Wind: WindEn 20% 
Kingspan KW15 30% 

Solar: Large properties 30%, 
small properties 20% 

 
Wind: WindEn 15% 

Kingspan KW15 25% 

Table 6-5 Variable definitions for scenario testing 

Scenario 1 is designed to investigate how the FiT rates that are applicable from 15/01/2016  

to 31/03/2016 will impact microgeneration viability so all other variables are unchanged 

from the baseline. The rates that immediately follow (applicable from 01/04/2016 to 

30/06/2016) are only £0.001 / kWh lower and so the results of this scenario are highly 

indicative for that time period also. A new feature added to the FiT system in 2016 is the 

deployment cap which will reduce FiT rates for all microgeneration technologies if the 

number of installations deployed in the preceding quarter is deemed too high by Ofgem. Due 

to the high complexity of forecasting the number of installations, it has been assumed that 

deployment rates will remain below the threshold. The first monthly report from Ofgem to 
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assess deployment against the cap found that solar PV (< 10 kW) had reached only 15.7% of 

its 48.4 MW cap limit for the quarter in the first month (Ofgem, 2016). Solar PV of 10-50 kW 

had reached 12.3% and there were no wind turbines of less than 50 kW installed in the month 

(Ofgem, 2016). This scale of deployment serves to vindicate the assumption made. 

As in scenario 1, scenario 2 also incorporates the upcoming FiT rates but is otherwise an 

optimistic perspective on microgeneration financial viability as installation costs are lower, 

electricity bills are higher and technology efficiency increases. Communications with two 

solar PV installation companies in the study area have revealed that solar PV prices have 

fallen significantly in recent years (Platt, 2016b; Roberts, 2016). For example, the price per 

kWp of a 2.5 kWp array now stands at £1,400 having been £1,920 just 18 months ago (Adam 

et al., 2015). The trend is repeated when looking across the country using statistics from 

DECC that show the cost of solar panels also decreased before that, from 2013 to 2015, 

around the time that data was collected for Gooding et al. (2013). In a nationwide average, 

a 4-10 kWp installation cost £1,620 per kWp in April 2013 and went on to cost £1,512 per 

kWp in February 2015 (DECC, 2015f). Whilst the cost reduction stated by the installers in the 

study area amounted to a 27% fall in prices, both sources stated that the fall in price was 

strongly related to currency exchange rates and changes in their business strategy: reducing 

profit margins to counteract the negative effects of the changes in the FiT. For these reasons, 

the optimistic scenario uses a slightly more conservative 20% fall in installation costs. 

Personal communications with the installers of the two wind turbines have revealed no such 

change in installation cost (Bjerknäs, 2016; Kerr, 2016) although a lower-rated version of the 

Kingspan KW15, the 6 kW Kingspan KW6, has fallen in price by 16% over the last two years. 

Therefore, the optimistic scenario applies this scale of price reduction to the cost of the 

Kingspan KW15 and WindEn 45 turbines. 

There are various reasons to test the impact of higher electricity bills. The clearest 

justification is that they have risen above inflation for the past 5 years with the exception of 

2015 which was a slight reduction (Doward, 2013; DECC, 2015e). International influences on 

electricity prices, such as political instability in oil producing countries and volatile 

international relationships with natural gas suppliers such as Russia, are factors to be aware 

of that justify a scenario featuring higher electricity costs. Inflation adjusted electricity prices 

described by DECC (2015e) for the last five years have been used to define the scale of a 

potential increase. A linear interpolation was applied to the data and then expanded to 

extrapolate the increase in electricity price for the next year which was found to be an 8% 

increase. Therefore, the increased electricity cost is defined as £0.1621 per kWh. 
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Scenario 2 also has an assumption of high technology efficiency which is incorporated into 

the model by increasing the PR from 0.8 to 0.85. There are numerous recent studies that 

have looked at the performance of solar PV installations and reported PR in excess of 0.8 

(Reich et al., 2012; Leloux et al., 2012) and it is also important to note that the efficiency of 

solar panels reaching the mass market has gradually increased with time. 

The optimistic scenario also incorporates a higher usage on site of the electricity generated 

from the wind or solar installation. Such an increase could occur if current behaviours change 

and more owners start to coincide their electricity consumption with the peak production 

times of their installations through the use of timers. For example, a solar PV installation 

generates the most electricity during the day when an owner is typically away and electricity 

demand at the property is low. If the owner set a timer for electrical equipment such as 

dishwashers, immersion water heaters and washing machines their demand for electricity 

from the grid would fall and their usage of the electricity their installation has generated 

would increase. There is also the possibility that batteries for domestic storage of 

microgenerated electricity could become more mainstream than at present. For these 

reasons, higher usages have been investigated that are of the same scale, but the opposite 

sign, to the pessimistic scenario usage rates. 

In contrast to scenario 2, scenario 3 constitutes a set of conditions less favourable for 

microgeneration investment. Here, technology costs increase, electricity bills decrease, 

electricity usage is reduced and there is no improvement to solar PV efficiency. The 

difference in technology costs between those reported in Adam et al. (2015) and those 

reported in Table 6-2 are largely due to substantial changes in currency exchange rates to 

favour imports from China (Roberts, 2016; Platt, 2016b). As these rates could easily change 

to be less favourable and the fact that many global events could negatively impact the cost 

of PV panels (such as Britain leaving the EU, an economic crisis in China), investigating the 

possibility of an increase in the cost of solar PV panels is important. As a counterbalance to 

the 20% fall in technology price used in the optimistic scenario, a 20% rise in the cost of the 

technology is projected in the pessimistic scenario. Electricity bills have become a focus of 

recent UK government policy. Whether the shifts towards electricity production by nuclear 

energy that is more expensive than wind and solar in the long term are truly in line with 

aiming for lower electricity bills is a debatable topic but it is important to include the 

possibility of lower electricity bills in the scenario testing. This is further warranted by recent 

cuts to electricity prices from major energy providers. The electricity cost reduction 
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incorporated is an extension of the 2.24% decrease observed between 2014 and 2015 (DECC, 

2015e) which results in an average domestic electricity cost of £0.147 per kWh. 

 

6.2 Results and Analysis 

This section introduces the outputs of the city-scale microgeneration viability model, first 

under the baseline scenario and then for each of the adaptations described in section 6.1.3.  

The processing time for the solar financial viability calculations was approximately 36 

minutes for the 80,365 rooftops assessed across the study area whilst the wind turbine 

viability codes executed far more rapidly. This performance was achieved using an Intel® 

Xeon® 3.1GHz processor and 8 GB of RAM which is in line with the research objective of 

producing a methodology that can be executed without the need for high power computing. 

6.2.1 Baseline Scenario 

Table 6-1 (page 138) summarised the costs and revenues used in the baseline scenario which 

were representative of conditions prior to January 15th 2016. The performance of the two 

selected wind turbines are described in terms of payback times and annual ROI before the 

results for solar installations across the study area are presented. For both wind and solar 

technologies, the sensitivity of the model to the proportion of generated electricity that is 

used on site is discussed. There is a final sub-section to discuss the cumulative potential of 

both technologies to meet electricity demand in the study area. 

6.2.1.1 Wind 

Figure 6-11 shows histograms for both the WindEn 45kW (A) and Kingspan KW15 (B and C) 

turbines in which the 1,833 locations identified as suitable for a WindEn 45kW turbine all pay 

back within the 20 year lifespan of the FiT. Payback times for the Kingspan KW15 are less 

impressive although 5,659 sites of the 5,701 (99%) sites suitable for the Kingspan KW15 also 

break even within 20 years. 

The results are presented on twenty-year timescales to align with the lifespan of the FiT. 

However, it is important to consider what constitutes a viable installation to investors in 

microgeneration and 20 years is unlikely to be attractive to many. Unfortunately this aspect 

has not received widespread attention in the literature, especially for investment in small to 

medium wind turbines.  Two studies that have explored this area for solar PV have very 

different conclusions as to what is an acceptable payback time. Claudy et al. (2011) state that 

property owners would be willing to pay for an installation that could break even in 9 years 
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whereas Willis et al. (2011) found that figure to be 3-5 years although their study centred on 

more aged demographics. Whilst the payback times for solar and wind rarely reached as 

short as five years, there was a sizeable resource of solar and wind installations that could 

payback within 9 years, as shown by the baseline results for wind (Figure 6-11). 

 
Figure 6-11 Payback times for selected turbines under the baseline scenario. A: WindEn 45kW, B: Kingspan 

KW15. C: Kingspan KW15 for all locations where payback is less than 20 years. The dotted line in B denotes 20 
years, the lifespan of the FiT 

Figure 6-12 (left) shows the annual ROI for the WindEn 45 KW turbine at the best and worst 

sites in the study area and both demonstrate a steady growth pattern. The worst site, which 

still reaches a ROI of approximately 1.5 in year 20, had an long term average wind speed of 

3.94 ms-1 whilst the best site had an long term average wind speed of 7.72 ms-1 and an ROI 

of just less than 4 after 20 years. Figure 6-12 (right) shows that ROI has a greater spread as 

time progresses and that the 5th percentile at year 12 is more than ROI = 1. Owing to the 
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nature of the distributions, there were no outliers and so no turbines had failed to pay back 

by year 12.  

 
Figure 6-12 Annual ROI for most and least optimal sites (left) and distribution of ROI across all sites for year 4, 

8, 12, 16 and 20 (right). 

Figure 6-13 shows the less attractive ROI figures for the Kingspan KW15. Again, the growths 

of ROI are shown to be steady and consistent across the twenty year period (Figure 6-13, 

left) and the best site produces an impressive ROI, this time of almost 3. However, the worst 

site fails to reach ROI = 1 and so does not pay back within twenty years. Across the results as 

a whole, however, Figure 6-13 (right) shows that the 5th to 95th percentile range is almost at 

ROI =1 after 16 years so the vast majority of turbines had paid back by this time. 

Referring back to Figure 6-4 on page 132, the Kingspan KW15 has a smaller rotor diameter 

that meant that it was suitable for a great number of sites that the WindEn 45 kW was too 

large for. This meant that the turbine could be placed in more urbanised areas that have 

lower long-term mean wind speeds. It is unsurprising therefore, that the box and whisker 

plots (Figure 6-13 right) should contain more outliers below the 5th percentile than were 

observed in Figure 6-12.  
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Figure 6-13 Annual ROI for Kingspan KW15 at most and least optimal sites (left) and distribution of ROI across 

all sites for year 4, 8 12, 16 and 20 (right). In the boxplots, the bottom and top whiskers denote the 5th and 
95th percentiles, the bottom and top edges of the rectangles represent the 25th and 75th percentiles and the 

central line is the median. The plus signs are outliers. 

6.2.1.2 Solar  

Across the study area, 69,176 locations were found where a solar PV installation would pay 

back within 20 years under the baseline scenario. The payback times for all such systems are 

shown in Figure 6-14 where the longest payback times are for the smallest systems reflecting 

their lower annual power generation.  

 
Figure 6-14 Payback times and system sizes for all viable installations 
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The shortest payback times occur just before system size reaches 50 kWp and the FiT rate 

changes from 10.9 p/kWh to 9.29 p/kWh. At this point payback times then plateau until the 

FiT rate drops again at 150 kWp resulting in a small rise in payback time. Payback time and 

ROI are strongly influenced by the FiT so Figure 6-15 shows the payback times for all 

installations categorised by size using the baseline scenario FiT bandings. There is a trend of 

decreasing payback time until the largest system size banding which is marginally greater 

than the 50 – 150 kWp banding. 

 
Figure 6-15 Payback time and system size in the baseline scenario FiT bandings. The boxes, whiskers and 

outlier dots represent the data in the same way as used in the rest of the thesis 

The broadest interquartile range (0-4 kWp) is constrained to 1.06 years showing that 

variability amongst this grouping caused by system sizes, shading and roof geometries is low. 

The interquartile ranges are particularly constrained for the two largest FiT bandings which 

was observed in the highly consistent payback times in Figure 6-14. At this point the greater 

CAPEX and OPEX are offsetting the additional revenue from increased annual power 

generation.  

The 20 year ROI values (Figure 6-16) for all installations show similar patterns to the payback 

times described in Figure 6-14 but with slightly more pronounced impacts from FiT band 

changes at 50 kWp and 150 kWp. 
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Figure 6-16 20 year ROI for all sizes of solar PV installation 

The effect of changes to the percentage of electricity generated and used on site has been 

investigated with respect to payback time (Figure 6-17). The legend shows two numbers for 

each grouping in which the first number is the usage for smaller properties and the second 

is a large property usage. 

 
Figure 6-17 Sensitivity of payback time to percentage of generated electricity used on site 

There is a clear trend for payback time to decrease as usage increases across all system sizes 

which is to be expected given the increase in electricity bill savings that are made. From the 

baseline conditions of 25% and 40%, a rise of ten percent in usage of electricity generated 

on site is found to decrease the median payback period by 0.65 of a year for systems sized 

0-4 kWp. Whilst for the same system size category, a decrease of ten percent led to an 

increase in the median payback time of 0.76 of a year. These were the largest changes in 

payback time observed across all system size categories. The trend shows that owners of 

microgeneration systems can reduce the payback time of their installations by altering their 
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behaviours and consuming more electricity at peak solar PV production times (i.e. during the 

day). The median payback times of the larger systems reach approximately 5 years when the 

usage is increased by 20% from the baseline conditions. These levels are by no means 

unobtainable, in fact, the 45% for residential is still 5% below that used in other studies and 

a modern commercial property that has a large daytime workforce could quite conceivably 

use more than 50% of the solar PV electricity generated. Storage of electricity generated on 

site using batteries offers a route with which to significantly increase usage and decrease 

demand from the grid. An historical barrier to this has been the high cost of battery systems 

and their rapid efficiency degradation. However, the automotive and energy storage 

company Tesla has brought products to market (of 3.3 and 7 kWh capacities) specifically for 

this purpose with ten year warranties that could improve the prospects for on-site storage 

from microgeneration sources. Real-world testing and uptake is at a nascent stage and there 

are fundamental physical issues with Lithium-ion and lead acid battery technologies that 

have not been addressed for the considerable time that batteries have existed. In fact, there 

are studies to show that payback times for the batteries themselves could be ten to 17 years 

(Doyle and Barnes, 2016), which is greater than the nine years identified as desirable by 

Claudy et al. (2011). A key positive message remains, however, which is that the technologies 

to store electricity are being developed by companies with significant finances at their 

disposal and that the cost of batteries is continuing to fall (see Figure 6-18).  

 
Figure 6-18 Past and predicted costs of batteries (Mathiesen, 2015) 

The shortened payback times that result from increased usage of electricity generated on 

site are not only encouraging for investors but may also signal that solar PV viability can 
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eventually become independent of the government incentives that have recently been 

greatly reduced in recent years. 

6.2.1.3 Cumulative Potential 

6.2.1.3.1 Wind 

The results presented in section 6.2.1.1 showed the potential for both turbines at every 

possible site but in order to explore the cumulative potential of wind turbines in the study 

area, a decision has to be made where both turbines are viable to select the turbine that is 

most cost effective for the space the turbine requires. It was found that the annual 

production of a Kingspan KW15 for a site with a long term mean wind speed of 5.77 m s-1 

was 36.7 MWh a-1 in comparison to the 131.5 MWh a-1 of electricity produced by the WindEn 

45kW which equates to the Kingspan KW15 producing only 28% of the electricity a WindEn 

45kW turbine would at the same site. For this reason, it was decided that for locations where 

both turbines could be installed, the WindEn 45kW would take precedence. Figure 6-19  

shows the potential sites once this criterion is incorporated along with the annual electricity 

production for the first year of operation. 

 

 
Figure 6-19 Annual electricity production (MWh a-1) of both selected turbines at all spatially suitable sites for 

the first year of operation 
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The wind turbine locations featured in Figure 6-19 have been used to investigate the 

sensitivity of payback times predicted by the baseline model to the percentage of generated 

electricity that is used on site. The usage parameter was altered to range from 10% to 40% 

(in increments of 10%) for each turbine. Increasing the usage of electricity generated on site 

clearly reduces payback times, more so for the worst performing turbines than sites that are 

more favourable. 

 

 
Figure 6-20 Payback Times for Kingpsan KW15 across all time (A) and for less than 20 years only (B) and 

WindEn 45KW (C) turbines with different usage rates 

Figure 6-19 and Figure 6-20 only showed sites and payback times for the turbines that are 

spatially suitable. They did not focus on only financially viable turbines which explains why 

there are Kingspan KW 15 turbines that generate under 4 MWh a-1 and WindEn 45kW with 

less than 70 MWh a-1 which are very poor performances for turbines of these sizes. For the 

purposes of the city-scale assessment of cumulative potential to generate electricity, 

financial viability is defined using the nine year payback time quoted in Claudy et al. (2011). 

For a Kingspan KW15 to pay back inside this time, it was found that the turbine must produce 
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in excess of 31.78 MWh a-1 whilst this figure was 75.94 MWh a-1 for the WindEn 45kW. When 

these criteria are applied, the distribution of viable sites is as shown in Figure 6-21 which 

again features the first year electricity generation although this is with reconfigured colour 

scales. 

 

 
Figure 6-21 Geospatial distribution of turbines that meet the 9 year payback criterion and their annual 

electricity production (MWh a-1) 

There is a decrease in the total number of turbines shown in Figure 6-19 (2,407) to the total 

number in Figure 6-21 (1,761) of 26.9%. Table 6-6 details the aggregated statistics for the 

turbines shown in Figure 6-21 which contains 121 Kingspan KW15 and 1,640 WindEn 45KW 

sites. Even after the degradation factor is accounted for, the eight and 20 year production 

figures are very substantial theoretically viable power output estimations. To place the 

figures into an appropriate context, electricity demand from all source for the city of Leeds 

in 2010 was 3,622.2 GWh (DECC, 2010), so the first year generation equates to 4.97% of total 

electricity demand. The DECC (2010) statistics for 2010 show that domestic demand, at 

1,336.3 GWh, was far lower than that of commercial and industrial customers (2,285.9 GWh) 

meaning that first year outputs from the two turbines could meet 13% of domestic demand. 

As the average domestic consumption in Leeds was 3,938 kWh in 2010 (DECC, 2010), the 

electricity generated is equivalent to powering 45,723 domestic properties. 
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Turbine 
Number of 

Viable Sites 

Cumulative Production 

First year  

(GWh a-1) 

8 Years  

(GWh) 

20 Years  

(GWh) 

Kingspan KW15 121 4.22 33.05 79.73 

WindEn 45KW 1,640 175.84 1,377.56 3,323.45 

Combined 1,761 180.06 1,410.61 3,403.18 

Table 6-6 Production from all financially viable turbines (paying back within 9 years) across the study area  

The potential for wind turbines described in this study is far greater than described in Drew 

et al. (2013) who focused only on much smaller roof mounted turbines (typically less than 6 

kW) in the city of London. They found that only 6% of the 1 km2 neighbourhoods they divided 

the capitol in to would be suitable for a roof-mounted turbine if 4.5 ms-1 was selected as a 

threshold wind speed. Unfortunately, Drew et al. (2013) did not explicitly state the potential 

for the technologies in terms of kWh for a specific year. Whilst it is likely that the spacing 

criteria used in this research would eliminate many locations across London, it would be very 

interesting to evaluate the accuracy of boundary layer and log-profile methods for cities as 

large as London and to then investigate the potential for small to medium wind energy. One 

study that has quantified the maximum potential for wind energy at the city-scale is by 

McIntyre et al. (2011) who found that 10% of the electricity demand of the city of Guelph, 

Ontario could be met by an array of 10 kW wind turbines. The 0.1% of demand that the 

Kingspan KW15 could meet that is presented here is for one key reason. The wind turbines 

in the McIntyre et al. (2011) study were positioned at set intervals across the city regardless 

of topography, building layout or turbine interaction. They were not subject to the minimum 

distance from residence criteria that this study has used. It is also likely that, given that Leeds 

has a population approximately double that of Guelph and large industrial and commercial 

sectors, electricity demand is far higher for the UK city.  

6.2.1.3.2 Solar 

In contrast to wind, there are no discernible geospatial trends at the city scale in relation to 

the viability of solar PV installations. Instead, viability is defined by the localised factors (roof 

geometry, positioning and shading) and given the number of potential sites that pay back in 

under nine years was 51,674 a city-scale map would not be informative. Table 6-7 gives the 

total electricity generated from solar PV installations that pay back within the nine year 

desired time frame defined by Claudy et al. (2011). 
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Building Size 

Band 

Number of 

Viable Sites 

Cumulative Production 

First year  

(GWh a-1) 

8 Years  

(GWh) 

20 Years  

(GWh) 

Small 45,718 169.44 1,344.68 3,315.82 

Large 5,956 833.16 6,611.85 16,304.03 

Total 51,674 1,002.60 7,956.53 19,619.85 

Table 6-7 Total theoretically viable production from Solar PV sites that pay back within 9 years 

As in the cumulative analysis for wind (section 6.2.1.3.1), the figures presented in Table 6-7 

can be given more meaning by comparing the first year production to the electricity demand 

of the city within the study area, which was 3,622.2 GWh in 2010 (DECC, 2010). Production 

for the first year was 27.68% of total electricity demand. When compared only to domestic 

electricity demand, generation from the identified viable sites would meet 75.03% of 

demand or, put another way, would be the equivalent of the demand of 254,595 domestic 

properties. 

6.2.1.3.3 Combined 

The total electricity that could be generated from financially viable installations of the 

selected wind and solar PV technologies under the baseline scenario are shown in Table 6-8. 

Technology 
No. of 

viable sites 

First year  

(GWh a-1) 

8 Years  

(GWh) 

20 Years  

(GWh) 

Solar 51,674 1,002.60 7,956.53 19,619.85 

Wind 1,761 180.06 1,410.61 3,403.18 

Combined 53,435 1,182.66 9,367.14 23,023.03 

Table 6-8 Total electricity generation under the baseline scenario from wind and solar PV installations that 
pay back in under 9 years across the study area 

The first year figure shown in Table 6-8 is 32.65% of total electricity demand in 2010 for the 

city of Leeds (based on DECC (2010)). When compared only to domestic electricity demand, 

generation from the identified viable sites would meet 88.5% of demand or the equivalent 

of powering 300,319 domestic properties if those properties consumed the same as the 

average for the city of Leeds provided by DECC (2010). 

6.2.2 Scenarios 

The influence of various factors in microgeneration investment have been explored using 

three scenarios which are presented here alongside the baseline results for comparison.  

6.2.2.1 Wind 

The payback times for both selected turbines are shown in Figure 6-22 with the WindEn 45 

kW producing more impressive results across all scenarios despite its CAPEX cost being 

approximately 2.3 times greater than the Kingspan KW15. This emphasises the benefits of 
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the WindEn 45 kW turbine’s far more productive power curve and taller mast height that 

expose such turbines to greater long term average wind speeds.  

The pessimistic scenario presented possible investment conditions that have a strongly 

negative effect on payback times. The entire interquartile ranges for both turbines in Figure 

6-22 are significantly in excess of those for all other scenarios. The median payback time 

under the baseline scenario for the Kingspan KW15 (Figure 6-22A) was 9.9 years and 7.3 

years for the WindEn 45 kW (Figure 6-22B). Therefore the majority of Kingspan KW15turbine 

payback times fall outside the 9 years payback time identified by Claudy et al. (2011) but the 

distribution shows that a sizeable proportion of the sites in the study (220 in total) do meet 

this criterion. Unfortunately, the same cannot be said of the Kingspan KW15 under the new 

FiT scenario for which the 5th percentile is approximately equal to ten years which suggests 

that the new FiT rate is likely to have a significant impact on the attractiveness of investing 

in a Kingspan KW15 if those scenario conditions materialise in the real world. 

It is interesting to note that the baseline scenario gives the shortest median payback times 

for both wind turbines despite the alterations to key financial variables in the optimistic 

scenario. There is a caveat that for the Kingspan KW15 turbine the medians of the two 

scenarios are very similar and that the IQRs are smaller in the optimistic scenario which 

follows the pattern shown in Figure 6-20 whereby increased usage on site leads to a 

reduction in IQR. However, the payback time of the 5th and 25th percentile is less in the 

baseline scenario than the optimistic and given that it is these most optimal sites that 

would be invested in first, the statistics further emphasize the negative impacts of the FiT 

change on potential wind energy investments even if all other conditions became more 

favourable. 
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Figure 6-22 Payback times for the Kingspan KW15 (A) and the WindEn 45 kW (B) turbines under all scenarios  

The optimistic scenario has incorporated a variety of factors that are, by design, slightly 

unlikely to occur individually and very unlikely to occur in unison. It is difficult to justify 

suggesting more favourable investment conditions that have at least a sensible probability 

of occurring so this analysis suggests that the changes to the FiT will lead to longer payback 

times that are less attractive to investors no matter what happens to wider influential 

factors.  

6.2.2.2 Solar 

Figure 6-23 shows the payback times for solar installations under the baseline conditions and 

the three scenarios using the system size bins from the baseline FiT. There is a clear trend 

that repeats across all of the bins for the baseline scenario to provide a shorter payback time 

than all other scenarios. The interquartile and 5th to 95th percentile ranges decrease with 

increasing system size which could be for a wide range of reasons such as the higher 

likelihood of shading on smaller installations. 
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Figure 6-23 Payback times under the baseline and scenario conditions 

The shortest payback time outputs under the new FiT scenario bear similarity to estimations 

from an installation company based in the study area. They projected 10 year payback 

periods for 2 kWp arrays and 9 year payback periods for 3 and 4 kWp arrays that have optimal 

azimuth and slope and are unshaded (Platt, 2016a). Their estimations have shorter payback 

times which could be because they assume that 50% of electricity generated by such 

installations will be used on site when 25% has been used in the new FiT scenario. 

The second best performer is the optimistic scenario although there is still a considerable 

increase in payback time across the distributions from the baseline. This is concerning 

because the values used in this scenario are very much a best possible case in terms of solar 

PV viability. Therefore, it is clear that the FiT changes have damaging consequences for 

payback time that will not be counteracted by other factors as was found to be the case for 

the baseline solar, baseline wind and wind scenario analyses.  

6.2.2.3 Cumulative Potential 

Analysing the impact of the scenarios on the annual production of electricity is an effective 

way to investigate broad themes across the entire study area caused by the alteration of key 
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variables in the viability calculations.  Figure 6-24A shows the percentage electricity demand 

in the study area that could be met by the wind turbines that are spatially suitable (shown in 

Figure 6-19). The dotted line in Figure 6-24A shows that the baseline annual production from 

the two turbine types is 4.97% of demand when accepted payback time is set to nine years 

as discussed in section 6.2.1.3.1. There is then a trend for the increase in annual production 

to slow after this point. This suggests that a falling number of less optimal sites are then 

starting to be included in the annual production. The accepted payback time at which the 

percentage of demand rises above zero is largest for the pessimistic scenario at 

approximately 10 years which is double that of the baseline scenario. The pessimistic 

scenario curve has a smaller gradient than optimistic which suggests that the number of sites 

contributing to the annual production of the study area grows less rapidly under the 

pessimistic scenario. 

It is interesting to note that the optimistic scenario curve slightly exceeds the baseline curve 

when accepted payback time is 11 to 14 years in Figure 6-24A. At this point there are few 

optimal sites where long-term mean wind speed is relatively large remaining to add to the 

annual production in the study area. Here then, the optimistic conditions (lower installation 

cost, higher grid electricity prices and higher usage on site) lead to sites with poor long-term 

mean wind speeds being incorporated into the total annual production figure at a faster rate 

than under the baseline scenario. The optimistic scenario plateaus at approximately at 5.5% 

when 13 years is the acceptable payback period which the baseline scenario requires a 

further two years to reach. The new FiT is not at this level until 18 years is the acceptable 

payback period and the pessimistic scenario does not reach this production before the 

maximum acceptable payback time shown (20 years). The plateau effect is caused by there 

being no further sites to add to the total annual production figure for the study area that are 

sub-optimal but could still pay back. 
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Figure 6-24 First year production (as a percentage of electricity demand in the study area) from wind turbines 

(A), solar panels (B) and both technologies (C) in each scenario as “acceptable” payback time increases 

The dotted line in Figure 6-24B shows that under the baseline scenario and an acceptable 

payback period of 9 years, 27.68% of the electricity demand in the study area could be met 

by solar PV which has been discussed in section 6.2.1.3.2. Whilst there is a similar trend in 

the order of the curves, their shapes are more angular from one accepted payback time to 

the next, particularly when first exceeding zero. This is caused by large numbers of sites being 

added with each increment and then a sudden reversal in this trend, suggesting that optimal 



164 
 

sites have payback times that are similar when aggregated to years to payback, rather than 

if payback was sub-divided from years (whether decimally or to calendar month). 

The baseline and new FiT curves are broadly similar in shape across all of the line charts in 

Figure 6-24 but do differ from each other in that the new FiT scenario contributes nothing to 

the study area’s annual production figure unless the accepted payback time is eight years or 

more. These two scenarios were the most similar and therefore, most reflective of conditions 

in the immediate aftermath of the FiT change. The grey dashed line in Figure 6-24C shows 

that there is then a large difference in the percentage of the study area’s electricity demand 

that could be met by wind and solar technologies when the 9 year acceptable payback period 

presented by Claudy et al. (2011) is applied. At this accepted payback time, the new FiT 

scenario models first-year wind and solar microgeneration of electricity that would meet 

8.88% of the study area’s electricity demand whilst the baseline scenario would meet 

32.65%, meaning 23.77% of demand would have to be met by other, more polluting 

technologies. However, if events led to the conditions defined in the pessimistic scenario, 

which is entirely possible, and 9 years was an accepted payback time, all but 0.1% of 

electricity demand met by solar PV and wind microgeneration would be lost.  

6.3 Conclusions 

This chapter has presented work that directly addresses the research objective to apply the 

outputs of improved solar and wind resource appraisal methodologies to inform investment 

decision making. Chapter 4 showed that the use of the RTS-CS method for solar insolation is 

a significant improvement in terms of accuracy in modelling solar insolation at the city scale 

than the more commonly used ArcGIS method. Wind resource, meanwhile, has been 

modelled using a simplified version of an accurate model that is rapidly executable. The 

outputs from these methodologies have been used to investigate payback periods and ROI 

for microgeneration across a study area incorporating the city of Leeds, UK. The research has 

shown that wind and solar PV microgeneration at sites that pay back within nine years could 

theoretically meet 88.5% of annual domestic electricity demand in the city of Leeds, or would 

be the equivalent of providing electricity to 300,319 homes. Therefore, despite the 

substantial changes to the FiT since its inception in 2008, it is important to state that under 

the baseline conditions described in this research, solar PV and wind microgeneration is 

viable at a very large number of locations. 

A key finding is that because payback time falls when more of the electricity generated by 

solar PV or wind is used on site, the solar and wind microgeneration industries could consider 
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moving towards solutions such as battery storage to promote usage over exporting to the 

grid. This could also have the additional benefit of mitigating grid integration issues such as 

those experienced in Germany over recent years where the variable input from the large 

numbers of solar PV arrays installed has caused serious problems. However, it must be noted 

that solar and wind systems were not being widely installed with battery storage at the time 

of writing and that the full costs and revenues of domestic battery storage are perhaps 

interesting avenues to research in the future.  

The method has also explored solar and wind viability at the city scale across a breadth of 

very different but still plausible future scenarios and has the flexibility to be adapted and 

refined to investigate specific conditions. The results have shown that the solar and wind 

microgeneration industries are at a particularly interesting period in time. The growth of 

both industries over the last ten years has been highly impressive which has been driven by 

supportive investment conditions. For most of that time period the FiT has been a strong 

driver of investment. But, the FiT rates applicable from 01/04/2016 to 30/06/2016 for an 

array up to 4kWp in size quoted in Table 6-5 represent a decrease of around 90% compared 

to those that were applicable in 2012. Now that the FiT has been substantially reduced, the 

export tariff and electricity bill savings have become key sources of revenue and the 

importance of technology costs has increased. Even after incorporating optimistic 

investment conditions through manipulation of the costs and revenues, however, the 

changes to the FiT still mostly lead to longer payback times that are likely to damage the 

growth of the UK solar PV and small to medium wind industries. In more stark terms, when 

the costs and revenues are defined from a pessimistic but still realistic perspective and 9 

years is defined as an acceptable payback period, all but 0.1% of the percentage of the study 

area’s electricity demand that could be met by solar and wind microgeneration is lost. This 

suggests that the FiT has not “done its job” and is very much still required to drive investment 

in solar PV and wind microgeneration.  
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Chapter 7 Final Discussion and Conclusions 

7.1 Research Summary 

The research described in this thesis has focused on predicting the viability of wind and solar 

microgeneration at the city scale without the use of high power computing. This has required 

the creation of methodologies to interpret digital representations of urban surfaces and 

examine the implications of that information for wind and solar resources.  

The first study of solar PV viability (section 3.1) applied widely used processes for roof 

geometry and solar insolation modelling to a comparative socio-economic study of 

conditions for microgeneration investment in large UK cities. It became clear that this 

methodology was incapable of modelling roof shapes for typical domestic properties which 

led to the work in section 3.2 that increased the accuracy of roof geometry modelling from 

low resolution DSM data.  The accuracy of the solar insolation model then became the focus 

of section Chapter 4 which was addressed by developing a process to apply a DSM derived 

shading model to a radiative transfer model. Whilst the accuracy of an existing methodology 

to predict long term average wind speed was found to be satisfactory, its complexity and 

computational requirements were areas that section 5.2 improved on, leading to a model 

that could be rapidly deployed as part of a city-scale wind and solar financial viability 

methodology which was introduced in Chapter 6. The model developed in Chapter 6 then 

became a vehicle for the investigation of the wider policy and financial contexts associated 

with microgeneration investment in the UK. 

7.2 Results and Implications  

The results of all the research undertaken have shown great potential for solar PV and wind 

microgeneration of electricity at the city scale in the UK, often with compelling business cases 

for investment despite the increasingly less favourable policy context. Section 3.1 described 

a methodology combining physical properties of study area surfaces derived from LiDAR with 

trends in socio-economic demographics to explore how cities may differ in the uptake of PV. 

Across all seven cities in the analysis, there was significant potential for solar PV 

microgeneration to meet a sizeable percentage of electricity demand. This was despite a 

sizeable reduction to the FiT that had actually accelerated the installation of solar PV systems 

briefly but then greatly slowed investment. Limited to seven cities, but with a large variation 

in their latitudes, the results did not show a north-south divide in physical resource as might 

be expected and the most northerly city, Dundee, actually provided the greatest physical 

resource relative to its population. This was because Dundee’s building stock is characterised 
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by a large proportion of industrial properties with big roofs that face due South because of 

building alignment to the North bank of the Tay Firth. Building stock was again found to 

impact the scale of solar PV viability as cities with greater proportions of houses and 

bungalows to flats were found to perform better. As the study incorporated electricity 

demand per person, a reduction in roof space ownership per person had a negative effect. It 

is partly for this reason that Glasgow, where tenement flats are common, performed poorly. 

Smaller arrays (from buildings of < 200 m2) were found to have shorter payback periods than 

large arrays and suggested a skew in the FiT mechanism (in its 2011 guise) to aid investors in 

small PV installations. 

The accuracy of roof shape modelling for properties smaller than 200 m2 in chapter 3.1 was 

a concern that section 3.2 sought to address. A methodology to model roof shapes using 

building footprint and low-resolution DSM data was presented that was computationally 

efficient and suited to application at the city scale. Against a validation dataset of 536 

buildings, the method identified the correct roof shape in 87% of cases. The MAE in roof 

slope modelling was ±3.76° when validated against survey measurements of 182 buildings. 

Roof slope was defined with greater accuracy than by the application of regression 

techniques to areas of roofs defined by building footprint data alone. In the example 

provided, the mean error of roof slope calculation from the current method was 3.06° 

whereas using more simplistic method consisting of interpolation on areas of the DSM 

identified by building footprints led to a mean error of 9.85°.  

With the geometrical inputs to a solar viability methodology modelled more accurately, 

attention turned to the accuracy of the insolation model used in chapter 3.1 which has been 

strongly criticised in the literature. Chapter 4 developed a way to incorporate DSM-derived 

shading information into a radiative transfer model of global solar insolation to give the RTS 

model. When validated using annual power output data for the year 2013 at 17 sites across 

four cities, the RTS model outperformed the methodology incorporated into the esri ArcMap 

solar radiation toolset. RTS modelled global solar radiation with +2.62% and -3.68% mean 

percentage error under assumed performance ratios of 0.8 and 0.75 respectively. Esri 

ArcMap incurred -15.97% and -20.78% mean percentage errors under the 0.8 and 0.75 PRs 

whilst the results for PVGIS were +10.23% and +3.34% mean percentage error for each PR.  

The adaptations of the RTS method for application on a city scale created the RTS-CS model 

meaning that, unlike PVGIS, the method could be used to inform large numbers of 

investment decisions and provide greater accuracy than previously possible using the esri 

ArcMap methodology whilst remaining executable on standard desktop computers. 
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Chapter 5 introduced a simplified model for long term average wind speed prediction that 

was ideally suited to city scale applications. It produced only a small increase (1.75%) in MAPE 

when compared to a more complex and computationally intensive methodology. The key to 

the improved computational performance was the combination of height-independent 

variables (𝜆𝑝 and 𝜎ℎ) with empirically determined coefficients to predict the aerodynamic 

parameters 𝑑, ℎ𝑚−𝑒𝑓𝑓 and 𝑧0 from DEM and building footprint data.  

When these aerodynamic parameters were applied to the logarithmic wind profile equation 

and validated against 12 sites from four major UK cities, there was an error in wind speed 

estimation of 17.88% MAPE which compares to 16.13% MAPE under the more complex 

existing methodology. These results are set in sharp contrast by the error in long term 

average wind speed when aerodynamic parameters derived under the still widely cited 

Macdonald model were used. This led to long term average wind speed estimations with 

38.76% MAPE showing that the Macdonald model should be used with great caution if 

applied to wind resource assessment in cities because it is not suitable for arrays of buildings 

with heterogeneous height profiles.  

Chapter 6 brought together the advancements made in both city-scale solar and wind 

resource and introduced a financial model to calculate installation viability which directly 

addressed the main research objective of the thesis. A viable cumulative capacity was 

introduced which suggests that 32.65% of the annual electricity demand for the city of Leeds 

(UK) (1.183 TWh) could be met from wind and solar PV microgeneration. The chapter also 

explored solar and wind viability at the city scale across a breadth of different future 

scenarios demonstrating the utility of the method and opening a discussion on the latest 

contexts surrounding the solar and wind microgeneration industries. In similarity to chapter 

3.1, the FiT was undergoing another significant reduction, this time falling to just 10% of the 

value of the rates that were applicable five years earlier. This has greatly increased the 

importance of other factors such as installation cost and the proportion of generated 

electricity that is used on site in solar PV and small wind viability. However, the scenarios 

showed that the changes to the FiT lead to longer payback times even when those other 

conditions are changed to be more favourable for microgeneration investment. Despite this, 

in all but the pessimistic scenario there remained a large number of locations where solar or 

wind microgeneration is viable across a UK city and that microgeneration can play a big role 

in providing low carbon electricity in the future. 
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7.3 Limitations and Further work 

Although the research presented in this thesis has focused on improving the physical 

modelling of solar and wind resources from the work described in Chapter 3, the socio-

economic aspects of that study are important in understanding the drivers behind people’s 

ability and desire to install low carbon technologies. This work could be taken further to try 

to gain insight into how government and local authority policy could be better focused on 

encouraging certain demographics to invest and perhaps how to best support such 

individuals following investment. Also, the performance of solar installations could be looked 

into in greater detail and the accuracy of annual yield forecasting could be improved with 

respect to the behaviours of buildings’ inhabitants. Whilst this thesis has focused on 

modelling geometry and insolation with greater accuracy, further work could investigate 

how the generated electricity is used. There are city-scale datasets of demographics that 

could classify houses as occupied during the day or not which is likely to have a significant 

influence on how much electricity is being used on site. Then behaviours of electricity 

consumption could be attached to certain properties. Alternatively, the city-scale 

methodologies presented here could be inputs to a tool where users define their own 

electricity usage patterns to produce a more tailored estimation of the revenues they are 

likely to reap.  

A limitation in Chapter 3 was access to data that could validate the model of physical 

resource. At the time the research was carried out, there was no access to any insolation 

measurements in any of the study areas and only a very limited number of installations that 

could provide an annual power output to compare the model to, though they were not in 

any of the study areas. During the time that followed the writing of that chapter, criticisms 

of the esri ArcGIS insolation model that underpinned the work surfaced which were 

described in section 4.1. Therefore, it is fortunate that the study was predominantly 

comparative between the cities tested and that the maximum physical capacities were not 

held as absolute values for solar power generation that had any likelihood of ever being 

achieved. 

It should be noted that the development of the neighbouring buildings approach to 

modelling small property roof geometries at the city scale was strongly influenced by the 

building stock that characterises typical UK cities and that it was not influenced by cities from 

any other country. It would be interesting to test the method described in section 3.2 to 

other settings and refine it for the building stocks that characterise cities in different 

countries around the world but it is possible that it just is not appropriate where large 
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suburban estates of very similar houses have not been built in bursts of development. It 

would also be interesting to investigate how the model performs against higher resolution 

DSM datasets if they were to become available for entire cities. Whilst the expansion of open 

access data to incorporate such data is less likely given the decision by referendum for the 

UK to leave the EU (Ambasna-Jones, 2016), there might come a time when the level of 

modelling and processing described in this work is not required and direct interpolation of, 

for example, 0.25 m horizontal resolution data performs adequately. 

The solar insolation model described in Chapter 4 was altered for deployment on a city scale 

and although the execution time was entirely satisfactory when compared to how long the 

esri ArcMap process takes to run there are opportunities to further streamline the process. 

For example, a contour fit or lookup table could be built from the underlying radiance files 

whose outputs are true for large areas (3.2 km by 5.6 km) of land. The sensitivity of the model 

to slope and tilt (Figure 4-8 in section 4.5) showed that there are ranges of slope and 

orientation that give very similar annual insolation outputs. This means there could be scope 

for assigning annual insolation outputs to entire bands of slope and orientation which could 

greatly reduce the computational requirements for city-scale deployment. 

Although developed from findings in the literature which featured sizeable validation 

datasets, the use of a PR to convert insolation estimation into a solar PV power output could 

be further justified by comparison to pyranometer data within the Leeds study area. Some 

of the more recent literature has suggested that PR should not be less than 0.8 (Pearsall and 

Gottschalg, 2012; Ayompe et al., 2011)  which could lead to an interesting study because the 

EU JRC ESRA databases that are widely used in academia and industry performed best under 

that condition. 

In order to avoid the use of wind turbines with misleading power curves, Chapter 5 featured 

only wind turbines with MCS approval. However, the MCS does not independently test the 

turbines and so there is the possibility that the results for the selected turbines were not 

carried out exactly as prescribed. More importantly, the conditions that the turbines are 

subjected to in the testing required by the MCS is far removed from those in the real world. 

The lack of performance testing for the smaller 15 kW turbine in turbulent conditions is a 

particular limitation. It is possible for this turbine to be installed in areas that are surrounded 

by development and, given its lower mast height, it is more likely to be exposed to flows 

made more turbulent by near-by buildings and vegetation. For greater accuracy in city-scale 

wind turbine viability assessment, it would be an improvement if the areas where turbines 

could be installed were given some form of turbulence intensity attribute and if a 
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proportional reduction to power output could perhaps be incorporated. The work of 

Emejeamara and Tomlin (2016) to map turbulence intensity across UK cities may make this 

a practicable improvement in the future. 

Wind turbines are not a completely mature technology and there is scope to improve the 

modelling of the impact that inverter efficiency and control gear improvements could have 

in the future. It would also be interesting to test the extent to which a wind turbine can be 

optimised to a location given its long term mean wind speed or turbulence intensity and 

what role the different parts of the turbine play in that optimisation.  

The incorporation of inverter performance and the degradation in performance of an 

installation could be better justified if studies were available that were relevant to wind and 

solar microgeneration. There has been anecdotal evidence to suggest that inverters degrade 

to such an extent on solar PV installations that it is cost-effective to replace them after 10 

years but no studies could be found to sufficiently support this.  

Chapter 6 presented a range of unique but plausible scenarios in an attempt to set bounds 

on how future events could impact microgeneration investment. There could be a lot of 

further work in examining any one of the conditions included in the scenarios to the finest 

detail, such as how electricity bills may change in future years. The chapter also mentioned 

domestic electricity storage which could play a bigger role in the future though is very much 

at a nascent stage in its development at the time of writing. The scale of the theoretical 

potential for solar PV presented in the chapter immediately inspires a series of questions 

about what might stop it from being anything more than theoretical. How would the grid 

cope with this scale of variable input? What would be the rare Earth material requirements, 

and the true lifecycle costs to produce such a number of PV panels and turbines? What 

capacity could the UK solar and wind industries actually deliver given current logistical 

barriers? How might attitudes and cultures change if even a tenth of this deployment was 

suddenly installed? Whilst many of these are very big questions there are also aspects for 

further work that are smaller in scope such as how could the information on wind and solar 

PV viability presented in Chapter 6 could be presented to both potential investors and those 

that are largely unaware of the technologies. There is an opportunity to develop tools from 

this data to engage and inspire members of the public in the study area and beyond. 

Although not mentioned in this research, there may be another group of actors that could 

play a role in increasing the rate of solar PV and wind microgeneration deployment. At 

present, legal and infrastructure barriers are highly restrictive to community groups wishing 
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to generate their own electricity from a shared resource such as a wind turbine with a private 

line. There is a fundamental advantage to small groups of people coming together to invest 

in renewable electricity generation as the biggest barrier to many individuals’ investment in 

low carbon electricity generation is the CAPEX requirement. There are many interesting 

research avenues that could be investigated such as where in the UK could be best suited to 

this approach and how the finances could be best evaluated. 

Whilst this research has focused purely on where a technology is spatially suitable and where 

the resource is richest, it has not incorporated the broad range of factors that influence the 

decision-making processes of a large private land owner or a local authority. It would be 

interesting to study historical investments in renewable technologies and identify common 

barriers and how they could be overcome. 

7.4 UK Solar PV and Wind Microgeneration in Perspective 

The government’s strategy to reduce greenhouse gas emissions is firmly rooted in meeting 

specific targets such as the commitment that by 2020, 15% of energy generation will come 

from renewable sources. Figure 7-1 uses DECC statistics to show that the contribution to 

meeting annual UK energy demand from wind, hydro and solar sources has grown 

substantially since the Energy Act of 2008. A big part of this contribution has come from FiT 

eligible wind and solar PV which, as of June 2016, contributed 585.8 and 4,308.6 MWp of 

installed capacity respectively (DECC, 2016b).  
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Figure 7-1 Percentage contribution of renewables to annual UK energy generation using data from (DECC, 

2016a). Dotted line represents the 15% of energy generation from renewables target by 2020 

Figure 7-1  illustrates that the contribution of wind, hydro and solar has not been dwarfed 

by bioenergy and waste despite that source benefitting from recent adaptations to huge 

power stations (such as Drax) to process biomass. The figure also shows that it is by no means 

guaranteed that the 15% target will be reached by 2020. The resilience shown by the solar 

PV industry to keep growing at the rapid pace it has despite the increasingly apathetic, or 

even hostile, policy context should not be taken for granted. The massive drop in cumulative 

wind and solar capacity under the pessimistic future scenario presented in section 6.2.2.3 

showed that if circumstances beyond the Government’s control were to conspire against the 

technologies, deployment could fall dramatically. This is of particular concern as the current 

emphasis of UK energy policy appears to be most in favour of cultivating the contribution of 

nuclear and shale gas sources at the expense of wind and solar PV sources. This is confusing 

because nuclear and shale gas are amongst the most expensive sources of energy for 

electricity generation (Harrabin, 2016b) and must lead directly to higher electricity bills 

which directly contradicts a central aim of the current government’s energy policies.  

This research has focused on wind and solar PV deployment viability in UK cities but the 

models presented are highly sensitive to global factors, such as the price of the technologies. 

Around the world, conditions for investment in solar and small to medium wind energy are 
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becoming more favourable at a rapid pace because of falling CAPEX requirements. Figure 7-2 

shows that the levelised cost of electricity (LCOE) (where inflation has been accounted for) 

for both technologies in developed country markets has decreased over the last five years; 

especially so for solar PV. 

 
Figure 7-2 LCOE ($/MWh) of solar PV and onshore wind technologies in developed country markets for  2010 

and 2015 (IEA-PVPS, 2015) 

The LCOE for the most popular solar PV technology types are shown in Figure 7-3. Over the 

course of the than four years shown, the LCOE from crystallised silicon cell solar PV panels 

has fallen by over 50%. 

 

Figure 7-3 LCOE ($/MWh) for solar PV technology types 

The research has shown that in many circumstances, electricity bill savings are a key source 

of revenue to support a decision to invest in solar PV or wind microgeneration. Certain types 

of investor, such as large industrial or commercial properties, are able to use large 

proportions of the electricity generated on site, thus avoiding all government incentives 

because their actual contribution to the grid is likely to be metered. Effectively, an 

investment decision is being made without the need for the central government’s financial 

incentive. Given the current trends in solar PV prices, the circumstances where financial 

incentives are not required could broaden considerably and it is not impossible that one day 

this could extend to domestic properties. 
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It is clear that solar and wind microgeneration have the potential to make a small but not 

insignificant contribution towards meeting long-term greenhouse gas emission reduction 

targets in the UK and around the world. Not only do such installations make a direct 

contribution to the grid, their increased prevalence serves as evidence of a greater 

consciousness of a global issue that is difficult to humanly appreciate because, for example, 

we cannot see greenhouse gas concentration levels or sense global temperature variation.  

The increasingly common sight of a roof-top PV or sub-50 kWp wind turbine installation at 

the periphery of an urban area is a visual cue that suggests society as a whole is becoming 

more aware of the true value of energy and specifically its costs to the planet.   
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