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Abstract

Electron transfer (ET) is a fundamental process that underpins a vast array of science and tech-
nology. Recent experiments (Delor et al., Science, 2014, 346, 1492 and Delor et al., Nature

Chem., 2015, 7, 689.) have demonstrated that excited state ET may be manipulated using se-
lective vibrational excitation on an ultrafast (∼fs) timescale. This work seeks to identify the un-
derlying mechanisms behind the “vibrational control” phenomenon observed. This is achieved
by means of quantum chemical calculations of the ground and excited state properties of these
systems: a series of Pt(II) bis-acetylide complexes. Two mechanisms are identified that may
contribute towards “vibrational control:” the presence of crossovers between the targeted elec-
tronically excited state within the energy range of vibrational excitation, resulting in selective
inter-state coupling, and transient polarisation of the excited state along the vibrational coordin-
ates which increases inter-state coupling. These proposed mechanisms could provide guidance
in the design of future functional materials. Selected results from this thesis have been pub-
lished in two articles (Delor et al., Nature Chem., 2015, 7, 689; Archer et al., Inorg. Chem.,
2016, 55, 8251) and a further two manuscripts are forthcoming (Yang et al., Nature Comm.,
2016, accepted; Delor et al., submitted).
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Chapter 1

Background

The potential of a civilization is defined by its capacity to do work. In an article speculating on

the energetic requirements of inter-stellar information broadcasting, the Soviet astrophysicist

Nikolai S. Kardashev developed a classification scheme to describe technological progress for

hypothetical civilizations.1 The scheme, later dubbed the Kardashev scale, was based on the

quantity of energy at the disposal of a hypothetical civilization and was as follows:

Class I Approximately equal to total human output in the mid 1960s.

∼4 × 1019 erg s−1.

Class II A civilization able to utilise the entire output of a star like the Sun.

∼4 × 1033 erg s−1.

Class III A civilization able to utilise the entire output of a galaxy like the Milky Way.

∼4 × 1044 erg s−1.

The Kardashev scale has had a broad influence both within the scientific community and

without.2 Whilst somewhat simplistic, the philosophy behind the Kardashev scale suggests

that technological progress depends on greater access to energy. Indeed, the importance of

the development of energy-related technologies is reflected in the degree to which it currently

receives funding from the Engineering and Physical Sciences Research Council (EPSRC) of

the UK: the “energy” research sector receives the greatest amount of grant funding from the

EPSRC of any specific research sector, at 23.7% of total funding, and research within the

2



“energy” theme also receives the greatest amount of funding of any theme, at 15.1% of total

funding.3 This is amplified by the fact that the development of novel energy technologies

is considered to be a critical component in reducing the impact of anthropogenic climate

change.4,5

As alluded to by the Kardashev scale, one abundant energy source is solar radiation.6 In-

cident solar energy may be captured using three major strategies: by using it to heat an object

or a medium, conversion into electrical energy either directly by photo-absorption or indirectly,

for example by means of turbines, and finally incident energy may be used to drive chemical

reactions.7 The later of these avenues is known as photosynthesis, although in general the term

photosynthesis specifically refers to the energy conversion processes common in plants and

bacteria. To distinguish “natural” photosynthesis from anthropogenic photosynthesis, the latter

is known as artificial photosynthesis.8–11 Broadly speaking, the target compounds in artificial

photosynthetic processes are either chemical products12–14 or fuels.14–17 One of the major issues

in artificial photosynthetic systems energy transport from the site of photon absorption to the

reaction site.8,13,18 Unless these two sites are the same, this energy transfer usually takes the

form of Electron Transfer (ET).

Electron Transfer is the simplest chemical reaction and constitutes a fundamental process

in physics, chemistry and biology, and underpins almost all modern technology.19 Exerting

influence over ET processes through the use of external perturbations, such as light, is a long

standing aim in chemistry20,21 and is one of the key challenges that must be overcome in the

effort to achieve artificial photosynthesis.9

The induction of ET by photons requires the absorption of a photon by a molecule that

matches the energy of an electronic transition in that molecule. Following photo-induced ET,

a number of Excited State (ES) processes begin as the molecular wavepacket proceeds on the

ES portion of the Potential Energy Surface (PES).22 These processes; Internal Conversion (IC),

Inter-System Crossing (ISC) and Vibrational Cooling (VC), are shown in the Jablonski dia-

gram in Figure 1.1. A further process that occurs is Intramolecular Vibrational Redistribution

(IVR), in which energy from an excited vibrational mode is redistributed amongst lower energy

3
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Figure 1.1: The Jablonski diagram, showing the processes that govern photochemistry. ISC =

Inter-system crossing, IC = internal conversion, VC = vibrational cooling.i

vibrational modes which the excited mode is coupled to.22–24

The idea of exerting control over ET is part of the broader aim of achieving, in the words of

the late Ahmed H. Zewail, “laser-selective chemistry”.20 Laser selectivity can take two forms:

“coherent control”, where the influence over a chemical reaction is achieved by means of pre-

paring the wavepacket in a specific phase, or “non-coherent control”, where it is the population

of certain microstates of the target molecule selectively in time, space and energy such that

the outcome of a reaction is altered. An overall control effect may be a combination of both

of these types. There are a number of challenges that must be overcome when attempting

to achieve laser selectivity. Maintaining a well-defined alignment or orientation of over the

target molecules is of particular concern in coherent control experiments. This is especially

problematic in the solution phase, where collision dynamics will rapidly remove any transient

non-stochastic alignment. There are, however, experimental techniques that may be employed

that may side-step these issues, though these introduce other problems.25 Nevertheless, the first

examples of coherent control were reported by Zewail and co-workers in the early 1990s.26,27

iFigure adapted from http://www.texample.net/tikz/examples/the-perrin-jablonski-diagram/
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These involved manipulation of the wavepacket in I2 in the gas phase. Later, coherent control

over photoisomerisation in biological chromophores in solution was reported by R. J. Dwayne

Miller and co-workers,28,29 and by others;30 however, recent work has called into question the

veracity of these experiments.31

Opportunities for “non-coherent” control have also been thoroughly pursued and were first

achieved in the context of ET, as will be described shortly; however, it is important to note that

it was by this avenue that control over chemical reactivity was first achieved in the gas phase. In

2013, Roberts and co-workers showed through a set of elegant experiments that the branching

dynamics of thioanisole could be altered by the careful preparation of selectively vibrationally

excited excited state wavepackets.32 Vibrational excitation altered passage through two conical

intersections, thus changing the photodissociation dynamics in the system.

In the last decade, the question of controlling ET by external means has been investigated

theoretically in multiple frameworks. The work of Skourtis and Beratan showed first how non-

adiabatic coupling between an electron and a vibrational mode, known as vibronic coupling,

in a Donor-Bridge-Acceptor (D-B-A) assembly could alter ET behaviour.33 Their subsequent

work suggested that it would be possible to entirely enable or disable ET pathways by excita-

tion of specific bridge-centred vibrational modes using IR radiation.34,35 In collaboration with

experimentalists, they provided the first empirical evidence of such an effect through a “non-

coherent” control scheme: a D-B-H· · ·B-A assembly in which the two segments are connected

by hydrogen bonds that, under excitation of the H-bonds, showed reduced ET efficiency.36 The

expansion of the framework to explicitly include a vibrational mode driving field and compu-

tation of the resultant dynamics showed unequivocally that this was possible.37 More recently,

they have moved to establish more explicit requirements for scenarios in which ET control

should be possible,38 investigated symmetrical A-B-D-B-A systems,38 and multi-electron trans-

fer pathways.39

Other researchers have used non-adiabatic dynamic simulations combined with excited state

normal mode analysis to demonstrate how specific vibrational modes of excited states could be

directly responsible for ET events, which suggests that driving such modes with an external

perturbation could influence ET.40 Furthermore, it was shown that one of the signatures of
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participation of a vibrational coordinate in ET would be signified by large shifts in the energy

of such a mode, the magnitude of shifting being correlated with magnitude in participation.41

Numerical simulations of the effect of vibrational excitation on the rate of charge transfer have

been performed, which demonstrate that vibrational excitation can not only increase the rate

of charge transfer, but also decrease it.42,43 It has also been shown that ET can be perturbed by

means of targeted excitation of core electrons using X-ray pulses to achieve similar effects to

the “vibrational” control scenario.44

Following the pioneering work of Skourtis, Beratan and their experimental colleagues,

demonstrating control of ET on the molecular scale, Bakulin et al. showed that similar oppor-

tunities were available in solid semiconductors.45 Vibrational excitation was used to drive the

localised excited states formed after regular photoexcitation toward more delocalised excited

states, improving the efficacy of the semiconductor. This work was recently extended to another

system, in which the effect was also seen.46 Computational investigations identified phonon

modes of high similarity to the electronic coupling vectors associated with the charge trans-

fer transition promoted.46,47 Theoretical methods to identify the molecular vibrational modes

of maximal similarity with electronic coupling vectors have recently been developed Yang and

Bittner.48,49

The preceding efforts led to the recent demonstration of the selective disabling of ET path-

ways in the excited state using bond-specific vibrational excitation, as predicted by Skourtis

and Beratan,34 in a Pt(II) trans-acetylide D-B-A system.50,51 The molecule used in these ex-

periments, PTZ-CH2-Pt-NAP, is shown in Figure 4.1. Photoexcitation of PTZ-CH2-Pt-NAP

results in the rapid formation of a Charge-Transfer (CT) excited state. In the CT state, the mo-

lecule concurrently undergoes IVR, VC and ISC processes, and has a lifetime of approximately

14 ps. The CT state is able to decay via three channels, the first of which is to simply relax back

down to the ground state (GS) through IC, which happens in 33% of cases. Alternatively, ET

in the CT state may occur, leading to the formation of a Charge-Separated State (CSS) in 10%

of cases, or, through charge recombination, a π-π∗ intra-ligand triplet state, centred on the NAP

moiety (3NAP) in the remaining 57% of cases. The two lower-energy excited states may them-

selves decay down to the GS through either ISC or phosphorescence. The CSS has a lifetime of
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approximately 1 ns and the 3NAP state approximately 190 µs.

It is the second ET event, which occurs in the excited CT state, that can be controlled

using vibrational excitation. If the asymmetric acetylide combination mode in the CT state

is excited from v0 → v1, the ultimate yield of states goes from 33%GS:10%CSS:57%3NAP to

33%GS:0%CSS:67%3NAP, i.e. the ET pathway from the CT to the CSS is completely disabled.

It was hypothesised that the mechanism by which this occurs is that along the asymmetric acet-

ylide vibrational coordinate, previously identified as the reaction coordinate for ET in related

Pt(II) acetylides,52 the PESs of the CSS and CT states cross-over and that a wavepacket in the

v1 vibrational state may proceed past the cross-over, and decay to the 3NAP state. This was

evidenced by Density-Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) compu-

tations using a model system.

There are, however, some observations that are not explained by this hypothesis. Control

experiments performed, in which the vibrational excitation came before electronic excitation,

showed no change in excited state yield but did show an acceleration in excited state ET (See

Supporting Information of Ref. [51]). As will be shown in Chapter 4, it is unclear from cal-

culations why “pre-excitation” of the vibrational modes has no effect, nor the reason for the

resultant accelerated excited state dynamics. Furthermore, the nature of the crossing between

the CSS and 3NAP PESs has not been established.

This work seeks to extend the previous investigations to a new set of compounds recently

synthesised, similar in nature to PTZ-CH2-Pt-NAP, that are predicted to show similar

excited state characteristics and which have been investigated using ultrafast spectroscopic

techniques.53 These investigations will use improved theoretical methods to those with which

these systems have already been treated to seek to deepen understanding of the ultrafast

behaviour of these compounds, as well as to pave the way for future rigorous theoretical

treatment of these systems.

Building on the preceding investigations, the possibility of increasing the number of con-

trollable outcomes of ET by increasing the number of Donor and Bridge components in the as-

sembly will also be explored. In Chapter 5, the vibrational and electronic structure of a D-B-A-

B-D assembly will be investigated. The possibility of directional electron transfer along either
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D-B component, made spectroscopically distinct by means of selective isotopic labelling,54 and

comparisons with experimental data will be drawn.54,55 This chapter highlights the importance

of including anharmonic corrections to harmonic vibrational frequency calculations, as well as

the influence of relativistic effects on the excited state electronic structure of complexes of this

kind.

In Chapter 6, computational investigations will be used to characterize the vibrational spec-

tra of two recently synthesised, low-valent main group tri-azide complexes.56 This chapter high-

lights the importance of careful consideration of conformational flexibility in molecules as well

as the judicious selection of an appropriate basis set.

Before these results are presented, however, it is necessary to first consider the requisite

theoretical apparatus to conduct computational investigations into quantum chemical systems.

These are presented in Chapter 2.
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Chapter 2

Theory

Modern computational chemistry has its origins in 1926, when Erwin Schrödinger published

a series of six articles detailing a “non-relativistic and unperturbed” wave equation form of

quantum mechanics, partitioned in a manner analogous to classical Hamiltonian mechanics.57–62

These articles, originally in German and subsequently reviewed by Schrödinger in English in

Ref. [63], describe the time-independent form of the wave equation (e.g. Eqn. 26, Ref. [63]),

which is a special case of the more general time-dependent equation (e.g. Eqn. 31, Ref. [63]).

Using these equations, one may can link the wavefunction, Ψ, of a system of particles with the

energy, E, of that system. In the time-independent case, the equation takes the form:

ĤΨ = EΨ. (2.1)

The wavefunction, Ψ, fully describes the state of a system of particles. However, the wave-

function has no direct physical interpretation. One cannot measure directly the wavefunction

of a system, instead one must infer from measurements of the system what the wavefunction of

the system is. The most common interpretation of the wavefunction, the Born or Copenhagen

interpretation, is that |Ψ|2 is the probability density of finding a given particle at a given place,

ri, upon measurement, where ri = {xi, yi, zi}. Indeed, this was identified by Schrödinger in an

addendum to the first paper on quantum wave mechanics.57

In the time-independent Schrödinger equation, Ψ and E are linked by the Hamiltonian op-

erator, Ĥ. For a well-behaved wavefunction, the Hamiltonian operator (also known as just the
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Hamiltonian) has eigenvectors, ψi, that are the well-defined states of Ψ, and their associated

eigenvalues, Ei, that are the energies of these well-defined states and form the ‘spectrum,’ {Ei},

for that Hamiltonian.64

The Hamiltonian can be separated into two component operators:

Ĥ = T̂ + V̂ , (2.2)

where T̂ is the kinetic operator and V̂ is the potential operator. The kinetic operator, T̂ , can

be further separated to describe potential energy derived from translational motion in three

dimensions:

T̂ =
p̂2

2m
= −
~2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
= −
~2

2m
∇̂2, (2.3)

where p̂ is the momentum operator, m is the mass of the particle in question, ~ is the reduced

Planck’s constant, also known as the Dirac constant, h
2π , and ∇̂ is the Laplacian or gradient

operator, which is used to abbreviate an n-dimensional partial differentiation. Note that p̂ = i~∇̂.

The potential operator, V̂ , describes the potential resulting from the interactions between

the charged subatomic particles of the system, as quantified by Coulomb’s law. For a system

consisting of a number of electrons (a, b, c, . . . ) and nuclei (A, B,C, . . . ), and by separating their

contributions to V̂ , the Hamiltonian can thus be rewritten:

Ĥ =

kinetic energy︷                               ︸︸                               ︷
−
~2

2

∑
A

1
MA
∇̂2

R︸             ︷︷             ︸
nuclear

−
~2

2me

∑
a

∇̂2
r︸       ︷︷       ︸

electronic

+
e2

4πε0

potential energy︷                                   ︸︸                                   ︷(∑
A>B

ZAZB

RAB︸     ︷︷     ︸
nuc.-nuc.

−
∑
A,a

ZA

rAa︸  ︷︷  ︸
nuc.-elec.

+
∑
a>b

1
rab︸ ︷︷ ︸

elec.-elec.

)
, (2.4)

where me is the mass of an electron, MA is the mass of nucleus A, ∇̂R and ∇̂r are the gradient

operators along nuclear and electronic coordinates, respectively, e is the elementary charge, ε0

is the electrical permittivity of free space, ZA is the charge of nucleus A, RAB is the separation

between nuclei A and B, rAa is the separation between nucleus A and electron a, and rab is the

separation between electrons a and b.

Both electronic and nuclear kinetic terms are negative and thus favourable. The nuclear-
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nuclear and electron-electron potential terms are both positive, as interactions between like

charges are repulsive and the nuclear-electron potential term is negative, since interactions

between opposite charges are attractive. The Hamiltonian can be simplified by employing

Hartree atomic units, where e ≡ 1, me ≡ 1, ~ ≡ 1 and 4πε0 = 1, in which case the Hamiltonian

becomes:

Ĥ = −
1
2

∑
A

1
MA
∇̂2

R −
1
2

∑
a

∇̂2
r +

∑
A>B

ZAZB

RAB
−

∑
A,a

ZA

rAa
−

∑
a>b

1
rab

 . (2.5)

In this form, the Hamiltonian can be used to analytically solve the Schrödinger equation of a

hydrogenic atom; that is, an atom which has only 1 electron. However, for any non-hydrogenic

system, the Schrödinger equation becomes an N-body problem. Whilst N-body problems are,

contrary to popular belief, analytically soluble by a power series,65–68 the convergence of such

series has been shown to be so poor as to be practically useless.67,69 An alternative, practical

route towards developing solutions to the Schrödinger equation is to separate the variables r

and R. This approach is known as the adiabatic, or Born-Oppenheimer, approximation.

2.1 The Born-Oppenheimer approximation

The separation of the variables r and R pre-dates Schrödinger’s “new” quantum mechanics.70

Indeed, several articles from the mid-1920s contain illustrative graphs in which the energy of a

molecule is plotted against nuclear configuration (See M. Born and J. Franck 1925,71 J. Franck,

192672). The second of these examples, due to Franck in 1926, is of particular note in the context

of the present work, since it examines how changes in nuclear geometry might effect a change in

the photochemistry of simple diatomic molecules. Later that year, Condon extended the ideas of

Franck in an attempt to explain the effect now known as a vibrational progression in absorption

and luminescence spectra.22,73 Following the development of quantum wave mechanics, Condon

further postulated that electronic and nuclear motion may be decoupled on the basis of the

difference in mass between nuclei and electrons.74 This allows the wavefunction to be factorised.

However, this assertion was not proven by Condon. In their seminal 1927 paper, M. Born and

R. Oppenheimer employ perturbation theory up to fourth order to rigorously separate the total
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wavefunction into nuclear and electronic components (original paper: [75], translation: [76]).

We can therefore rewrite the wavefunction as

Ψ(r,R) = Φ(r; R)X(R), (2.6)

where Φ is the electronic wavefunction, X is the nuclear wavefunction, r are the coordinates of

the electrons and R are the coordinates of the nuclei.

It is commonly stated that a natural result of the Born-Oppenheimer approximation of Ref.

[75] is that one could solve the Schrödinger equation iteratively by 1) solving the “clamped nuc-

leus” electronic eigenvalue problem for a given set of nuclear coordinates, R, with eigenvectors

describing the adiabatic electronic states (eigenstates) of well-defined energy and their associ-

ated energy eigenvalues. 2) Repeating the process for many values of R, allowing an energy

profile to be constructed for each eigenstate, showing how the energy of the system varies as

the nuclear geometry changes. These profiles are called Potential Energy Surfaces (PESs). The

suggestion that this is a result of Ref. [75] is in fact false, since Born and Oppenheimer pre-

suppose that the total electronic eigenvalue problem is in fact solved (See translation, Ref. [76],

§2). That contribution merely shows that Condon’s postulate is analytical within some bound-

aries. The idea of a PES clearly pre-dates 1927, as evidenced by the illustrations discussed

above.71,72

The common justification for the separation of variables is also due to Condon.77 This is

that the mass of an electron, me is ∼1836 times smaller than the mass of a proton, mp, meaning

that for even the lightest possible nucleus, a lone proton, the timescales upon which electrons

and nuclei move are completely different. The adiabatic theorem can thus be applied,78 and for

the majority of the PES, one may employ an adiabatic approximation and separate nuclear and

electronic wavefunctions.79 To cast light on situations in which the adiabatic approximation

breaks down, i.e. the conditions in which non-adiabatic effects are prominent, it is useful to

reconsider Condon’s justification. Since the mass of the nuclei is relatively large and the kinetic

energy is inversely proportional to mass, the change in kinetic energy associated with exciting

nuclear motion is far smaller than the change in potential energy between electronic eigenstates.

If, however, in some region of the PES two electronic eigenstates become close in energy, this
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may no longer be the case. This situation which will be explored in Section 2.6.

Let us now examine the impact of the separation of r and R on the Schrödinger equation and

so derive the “Born-Oppenheimer” approximation. Recalling Eqn. 2.6, we may rewrite Eqn.

2.1 as

Ĥ
[
Φ(r; R)X(R)

]
= E

[
Φ(r; R)X(R)

]
. (2.7)

Now, using the expansion of the Hamiltonian from Eqn. 2.5 and noting that the potential oper-

ator is unaffected by the separation, we obtain

Ĥ
[
Φ(r; R)X(R)

]
= −
~2

2

∑
A,a

1
MA
∇̂2

R
[
Φ (r; R) X (R)

]
−
~2

2me

∑
a

∇̂2
r
[
Φ (r; R)

]
+ V̂

[
Φ (r; R) X (R)

]
= E

[
Φ(r; R)X(R)

]
(2.8)

Note that since the nuclear wavefunction has no dependence on r, ∇̂rX (R) = 0 and so com-

ponents of the second term including the nuclear wavefunction are omitted. However, since the

electronic wavefunction is dependent on R, Φ (r; R) remains in the first term. Using the product

rule, we may expand the first term:80

Ĥ
[
Φ(r; R)X(R)

]
= −
~2

2

∑
a

Φa (r; R)
∑

A

1
MA
∇̂2

RX (R)

−
~2

2

∑
A,a

1
MA

2
(
∇̂RΦ (r; R) ∇̂RX (R)

)
−
~2

2

∑
A

1
MA

XA (R)
∑

a

∇̂2
RΦA (r; R)

−
~2

2me

∑
a

∇̂2
r
[
Φ (r; R)

]
+ V̂

[
Φ (r; R) X (R)

]
= E

[
Φ(r; R)X(R)

]
.

(2.9)

The first term of Eqn. 2.9 equals the purely nuclear component of the kinetic energy multiplied
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by the adiabatic electronic wavefunction(s). This term is exact with respect to the non-separated

wavefunction representation. The fourth term is the adiabatic, purely electronic kinetic energy.

This is not the same as the one obtained in the non-separated wavefunction, or “non-adiabatic,”

representation. The difference between the non-adiabatic and adiabatic electronic kinetic ener-

gies comes from the second and third terms, highlighted in red, which are represent the correc-

tions to the adiabatic electronic kinetic energy due to nuclear motion. The second term is the

so-called “first-derivative” momentum non-adiabatic correction term, since it is first-order in ∇̂,

and the third term is the so-called “second-derivative” kinetic energy non-adiabatic correction

term, since it is second-order in ∇̂.81,82

As previously mentioned, MA � ma. Therefore, the terms that are inversely proportional to

MA should be small. Thus, it should be reasonable to neglect the non-adiabatic contributions to

the electronic kinetic energy in Eqn. 2.9. This adiabatic approximation is what is commonly

called the Born-Oppenheimer approximation,

Ĥ
[
Φ(r; R)X(R)

]
= −
~2

2

∑
a

Φa (r; R)
∑

A

1
MA
∇̂2

RX (R)

−
~2

2me

∑
a

∇̂2
r
[
Φ (r; R)

]
+ V̂

[
Φ (r; R) X (R)

]
=EBO[

Φ(r; R)X(R)
]
,

(2.10)

where EBO is the total energy within the adiabatic (Born-Oppenheimer) approximation, which

differs from the exact, non-relativistic total energy, E, by

E = EBO + T nBO, (2.11)

where T nBO is the non-adiabatic correction to the kinetic energy. For the sake of simplicity, the

remainder of this chapter will omit the superscript in EBO, unless otherwise noted.

Returning to the concept of a PES, computational chemists use reaction coordinates, q =

{qi}, to represent changes in nuclear geometry along a PES. These coordinates consist of inter-

atomic separations, the angles made between three atoms and the dihedral or torsion angles
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made by two atoms down the plane of a bond. The shape of the PESs of different eigenstates

along these coordinates shows how a system may respond to an external perturbation. The two

basic features of the PES are minima and the transition states that connect them. These are

stationary points on the PES, which occur when

∂E
∂qi

= 0 ∀ qi. (2.12)

A minimum is a stationary point where an infinitesimal change in nuclear coordinates results

in a less energetically favourable geometry. Minima define the resting states of the system.

A PES may have many local minima, but only one global minimum, correspond to the most

favourable nuclear geometry. These structures are connected by transition states. Transition

states are saddle points on the potential energy surface. They are minima along all coordinates

except one, for which they are a maximum.

Conical
Intersection

Figure 2.1: A conical intersection between two potential energy surfaces. This is an example
of a Jahn-Teller conical intersection.

When the PESs of two eigenstates cross, there is a nuclear configuration for which these two

states are isoenergetic. The crossover point may be at a geometry that is a stationary point for

both of the eigenstates. Such points are known as Renner-Teller intersections.83 Renner-Teller

intersections are common in small polyatomic systems, such as NH2.84–87 Indeed, any triatomic

molecule with at least one atom with l ≥ 1 must display a Renner-Teller intersection. However,

intersections may also occur at arbitrary, non-stationary points on the surfaces, in which case

the crossover point is known as a (Jahn-Teller) Conical Intersection (CI), due to the double cone

topology of the surface in the vicinity of the CI (See Figure 2.1).88,89 Jahn-Teller CIs may occur

at points where two states become symmetrically degenerate. Conical intersections are of great
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importance to photochemistry, as they can be responsible for many interesting photochemical

phenomena, including electron transfer and in particular processes that occur on ultrafast (∼fs)

timescales.24,90 For example, the excited state photo-dissociation dynamics of NH3 are strongly

influenced by the presence of a Jahn-Teller conical intersection.91,92

To properly describe the behaviour of a wavepacket in the presence of a CI, some key fea-

tures of the CI must be noted. In simplest terms, a CI is a q−2 dimensional feature in a q dimen-

sional PES and is constructed by two coordinates: the “tuning” mode, a symmetry conserving

mode along which the two eigenstates become close in energy; and the “coupling” coordinate,

a symmetry breaking coordinate along which a wavepacket may pass from one eigenstate to

another.93 Conical intersections have a number of further properties; however, investigation of

these goes beyond the scope of this report.90

As previously mentioned, the Born-Oppenheimer approximation does not hold in all scen-

arios. The behaviour of a wavepacket in the vicinity of a CI is one such scenario. Far from the

CI, changes in electronic state correspond to much greater changes in energy than changes in

the vibrational state of the nuclei, as illustrated in Figure 1.1. However, as the two eigenstates

become close in energy in the vicinity of a CI, the gap in energy between eigenstates becomes

similar to the gap in energy between vibrational states, leading to the possibility of strong coup-

ling between nuclear and electronic degrees of freedom. This invalidates the Born-Oppenheimer

approximation.

The adiabatic approximation allows the Schrödinger equation to be simplified by separat-

ing nuclear and electronic components. Within the clamped nucleus approximation, it is then

possible to solve the nuclear part. However, for non-hydrogenic systems the electronic wave-

function remains an N-body problem and thus practically insoluble.69,94 To render the electronic

structure problem soluble, we must reduce the complexity of the electronic wavefunction by in-

voking some approximations. In wavefunction theory, this is achieved by using a mean-field

approximation.64 The resultant model for electronic structure is known as Hartree Fock (HF)

theory.
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2.2 Hartree Fock theory

The first step in reducing the complexity of the electronic structure problem is to examine how

we might simplify the representation of the electronic wavefunction.95,96 Consider the compon-

ents of the Hamiltonian within the adiabatic approximation

Ĥ = T̂n + T̂e + V̂nn − V̂ne + V̂ee, (2.13)

where T̂n is the purely nuclear kinetic operator, T̂e is the purely electronic kinetic operator, V̂nn

is the nuclear-nuclear potential operator, V̂ne is the nuclear-electronic potential operator and V̂ee

is the electronic-electronic potential operator. If we neglect V̂ee, that is to say if the electrons

are treated as independent particles, we may rewrite our N-particle electronic wavefunction as

the product of N independent, orthogonal single electron functions

Φ(r1, r2, . . . , rN) = φ1(r1)φ2(r2) · · · φN(rN) =

N∏
i

φi(ri), (2.14)

where φi is the single electron wavefunction of electron i with spatial coordinates ri = {xi, yi, zi}.

This form of the electronic wavefunction is known as the Hartree Product (HP) form, ΦHP. Neg-

lecting V̂ee is known as the independent particle, or orbital, approximation. Note that thus far,

we have only employed spatial coordinates in the description of electronic degrees of freedom.

However, electrons also have a spin coordinate σi which must be considered. Extending the co-

ordinate system to τi = {ri, σi} = {xi, yi, zi, σi}, we rewrite Eqn. 2.14 in terms of the N-particle

space-spin wavefunction Θ(τ) = Φ(r)Ξ(σ) that is constructed from N single particle space-spin

wavefunctions θi(τi) = φi(ri)ξi(σi),

ΘHP(τ1, τ2, . . . , τN) = θ1(τ1)θ2(τ2) · · · θN(τN) =

N∏
i

θi(τi). (2.15)

It is at this point that the deficiencies in the HP form of the electronic wavefunction become

apparent. Since electrons are indistinguishable fermions, they must obey the Pauli antisym-

metry principle, which is to say that the electronic wavefunction must change sign when the

coordinates of any two electrons are exchanged.64,95 In the case of two electrons, it is easy to
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demonstrate this property:

Θ(τ1, τ2) = − Θ(τ2, τ1)

θ1(τ1)θ2(τ2) = − θ1(τ2)θ2(τ1).
(2.16)

In the HP electronic wavefunction this is not the case:

ΘHP(τ1, τ2) = ΘHP(τ2, τ1)

θ1(τ1)θ2(τ2) = θ1(τ2)θ2(τ1).
(2.17)

To overcome this issue whilst retaining the advantages the independent particle approximation,

we must find an alternative manner of representing the wavefunction. A convenient manner of

doing this is to rewrite our wavefunction as a normalised determinant. In the two particle case

Θ(τ1, τ2) =
1
√

2!

∣∣∣∣∣∣∣∣∣
θ1(τ1) θ2(τ1)

θ1(τ2) θ2(τ2)

∣∣∣∣∣∣∣∣∣
=

1
√

2!

[
θ1(τ1)θ2(τ2) − θ1(τ2)θ2(τ1)

]
.

(2.18)

A wavefunction constructed as a normalised determinant, known as a Slater determinant, in this

manner would be antisymmetric, since

Θ(τ2, τ1) =
1
√

2!

∣∣∣∣∣∣∣∣∣
θ1(τ2) θ2(τ2)

θ1(τ1) θ2(τ1)

∣∣∣∣∣∣∣∣∣
=

1
√

2!

[
θ1(τ2)θ2(τ1) − θ1(τ1)θ2(τ2)

]
1
√

2!

[
θ1(τ2)θ2(τ1) − θ1(τ1)θ2(τ2)

]
= −

(
1
√

2!

[
θ1(τ1)θ2(τ2) − θ1(τ2)θ2(τ1)

])
.

(2.19)
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Extending to the more general case of an N-electron wavefunction, the Slater determinant takes

the form

Θ(τ1, τ2, . . . , τN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1(τ1) θ2(τ1) · · · θN(τ1)

θ1(τ2) θ2(τ2) · · · θN(τ2)
...

...
. . .

...

θ1(τN) θ2(τN) · · · θN(τN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.20)

This provides us with a convenient way of representing the electronic wavefunction that ensures

it is physically sound. An alternative and exactly equivalent way of enforcing antisymmetry is

by employing the antisymmetrizing operator or antisymmetrizer, Â, to enforce antisymmetry

on a wavefunction64,96

Â =
1

N!

∑
π̂ ∈ S n

εππ̂, (2.21)

where π̂ is the permutation operator, which acts to exchange the coordinates of particles and

is a member of the symmetry group, S n, where N is the number of particles and επ is the sign

change that accompanies the permutation π. It should be noted that Â is both Hermitian and

idempotent. Using the antisymmetrizer we may write an expression for a wavefunction

Θ(τ1, τ2, . . . , τN) =
√

N! Â θ1(τ1)θ2(τ2) · · · θN(τN), (2.22)

which is equivalent to the Slater determinant wavefunction.

The antisymmetric wavefunction turns out to have many advantageous properties from a

computational stand-point. These are revealed when we examine the effect of applying the

Hamiltonian within the Born-Oppenheimer approximation. It is advantageous to first collect

the terms of the Hamiltonian (Eqn. 2.13) by the number of electrons they take action upon:

Ĥ =

one electron terms︷                   ︸︸                   ︷
−

1
2

∑
a

∇̂2
a −

∑
A,a

ZA

rAa

two electron term︷    ︸︸    ︷
+

∑
a>b

1
rab

+

nuclear terms︷   ︸︸   ︷
T̂n + V̂nn

=
∑

a

ĥa +
∑
a>b

ν̂ab + T̂n + V̂nn,

(2.23)
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where ĥa is the one electron operator, acting on electron a, and ν̂ab is the two electron operator,

acting on electrons a and b, where a , b. Concentrating on the electronic contributions and util-

ising Dirac bra-ket notation,97 we may express the electronic energy, Ee, of the antisymmetrized

wavefunction, Θ, with the equation

Ee =
〈
Θ
∣∣∣Ĥe

∣∣∣Θ〉
=

〈
Θ
∣∣∣∑

a

ĥa +
∑
a>b

ν̂ab

∣∣∣Θ〉
.

(2.24)

First, we examine the one electron terms:

〈
Θ
∣∣∣∑

a

ĥa

∣∣∣Θ〉
=

〈
Θ
∣∣∣ĥ1

∣∣∣Θ〉
+ . . . (2.25)

and expanding Θ by means of the antisymmetrizer, Â,

= N!
( 〈
Âθ1θ2 · · ·

∣∣∣ĥ1

∣∣∣Âθ1θ2 · · ·
〉

+ . . .
)

(2.26)

and recalling that Â is both Hermitian and idempotent, we may rearrange to

= N!
( 〈
Âθ1θ2 · · ·

∣∣∣ĥ1

∣∣∣θ1θ2 · · ·
〉

+ . . .
)
. (2.27)

Expanding the antisymmetrizer according to Eqn. 2.21 and applying the permutation opera-

tions, we obtain

=
1

N!

( 〈
θ1θ2 · · ·

∣∣∣ĥ1

∣∣∣θ1θ2 · · ·
〉

+
〈
θ2θ1 · · ·

∣∣∣ĥ1

∣∣∣θ1θ2 · · ·
〉

+ . . .
)
. (2.28)

This simplifies to

=
1

N!

( 〈
θ1

∣∣∣ĥ∣∣∣θ1

〉
+

〈
θ2

∣∣∣ĥ∣∣∣θ2

〉
+ . . .

)
(2.29)

〈
Θ
∣∣∣∑

a

ĥa

∣∣∣Θ〉
=

ha︷         ︸︸         ︷∑
a

〈
θa

∣∣∣ĥ∣∣∣θa

〉
. (2.30)

We may treat the two electron terms in a similar manner. By expanding Θ again by means of
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the antisymmetrizer, we arrive at the expression

〈
Θ
∣∣∣∑

a>b

ν̂ab

∣∣∣Θ〉
=

1
2

∑
ab

( Jab︷            ︸︸            ︷〈
θaθb

∣∣∣ν̂ab

∣∣∣θaθb

〉
−

Kab︷            ︸︸            ︷〈
θaθb

∣∣∣ν̂ab

∣∣∣θbθa

〉 )
, (2.31)

where the first term, J, is the Coulomb integral and the second term, K, is the exchange integral.

Combining Eqns. 2.30 and 2.31, we obtain the full expression for the electronic energy,

E = 〈Θ|Ĥe|Θ〉 =

ha︷         ︸︸         ︷∑
a

〈
θa

∣∣∣ĥ∣∣∣θa

〉
+

1
2

∑
ab

( Jab︷            ︸︸            ︷〈
θaθb

∣∣∣ν̂ab

∣∣∣θaθb

〉
−

Kab︷            ︸︸            ︷〈
θaθb

∣∣∣ν̂ab

∣∣∣θbθa

〉 )
(2.32)

The ways in which we have been able to separate one- and two-electron terms are called the

Slater-Condon rules.98–100 To obtain physically meaningful solutions to these equations, we

must seek the set of one electron functions, Θ = {θ1, θ2, . . . , θn} that minimise the energy in a

variational manner. This can be achieved by means of Lagrange multipliers and results in the

equation95,96

F̂ = ĥ +
∑

a

(
Ĵa − K̂a

)
, (2.33)

where F̂ is the Fock operator, ĥ is the one electron operator (See Eqn. 2.23), Ĵa is the Coulomb

operator and K̂a is the exchange operator. Up to this point our derivation remains in principle

exact within the Born-Oppenheimer approximation. The electronic structure problem in this

formulation remains computationally infeasible. To render it soluble, we must introduce ap-

proximations to the Coulomb and exchange integrals. In Hartree-Fock theory, the Coulomb and

exchange operators are defined by their actions on the one electron space-spin function θb(τ1):

Ĵaθb(τ1) =

∫
θ∗a(τ2)ν̂12θa(τ2) dτ2 · θb(τ1) (2.34)

and

K̂aθb(τ1) =

∫
θ∗a(τ2)ν̂12θb(τ2) dτ2 · θa(τ1). (2.35)
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Inspecting Eqns. 2.34 and 2.35 reveal the “mean-field” characteristic of Hartree-Fock

theory.101–104 The Coulomb operator, Ĵ, describes the average repulsion experienced by the one

electron wavefunction θb by all of the other one electron functions. The exchange operator,

K̂ is similar to the Coulomb operator but differs by permutation. This is due to the Slater

determinant wavefunction having to obey the Pauli antisymmetry principle (see Eqn. 2.21) and

has no classical analogue.

If we apply the Fock operator to one of the one electron wavefunctions we obtain the energy

eigenvalue associated with that one electron function,

F̂
∣∣∣θi

〉
= εi

∣∣∣θi

〉
. (2.36)

The physical interpretation of this, due to Koopman’s theorem,96 is that the one electron wave-

functions,
∣∣∣θi

〉
, are in fact the electronic orbitals with eigenvalues, εi, that correspond to the

instantaneous ionization energy in the case of an electron being removed from that orbital.

In principle, the Hartree-Fock equations may be solved exactly using numerical methods.

However, not the most common approach for dealing with systems containing multiple elec-

trons. Instead, the one electron orbitals, θi, are expanded in terms of basis functions

θi =
∑
µ

cµiϑµ (2.37)

where ϑµ is the basis function, µ, and cµi is the coefficient describing the weight of that basis

function in orbital i. Applying this expansion to the Fock equation, 2.36, we obtain

F̂
∑
µ

cµi

∣∣∣ϑµ〉 = εi

∑
µ

cµi

∣∣∣ϑµ〉 . (2.38)

We may seek solutions to these equations by applying
〈
ϑκ

∣∣∣, yielding

∑
µ

cµi

〈
ϑκ

∣∣∣F̂∣∣∣ϑµ〉 = εi

∑
µ

cµi

〈
ϑκ

∣∣∣ϑµ〉 , (2.39)
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which is a matrix equation, where the matrix elements

S κµ =
〈
ϑκ

∣∣∣ϑµ〉 (2.40)

and

Fκµ =
〈
ϑκ

∣∣∣F̂∣∣∣ϑµ〉 (2.41)

are the overlap matrix element, S κµ, and Fock matrix element, Fκµ, respectively. Reforming

Eqn. 2.39 in terms of these matrices, we obtain the Hartree-Fock-Roothaan matrix equation:

Fc = εSc, (2.42)

where F is the Fock matrix, c is the matrix of coefficients, ε is the diagonal matrix of orbital

energy eigenvalues and S is the overlap matrix. We can seek the lowest energy solution within

a given basis by varying the coefficients matrix, c, iteratively until we reach a stable set of

coefficients. This process is called the Self-Consistent Field (SCF) procedure and forms the

basis for quantum chemical calculations.

Hartree-Fock theory provides a first approximation towards calculating the electronic energy

of a wavefunction. It is, however, not exact for any system with more than one electron. This

is a result of the fact that in the definition of the two electron operators (Eqns. 2.34 and 2.35),

specific interactions between particles are neglected. Instead the particles are subject to the

average interaction with all of the remaining particles. Furthermore, since only a single Slater

determinant is used in Hartree-Fock theory, only one electronic configuration is considered.

Some systems can only be described well by including more than one electron configuration, i.e.

by employed a linear combination of Slater determinants. This absence of specific interactions

is known as electron correlation. We may define the correlation energy, ECorr. as105

ECorr. = EExact − EHF , (2.43)

where EExact is electronic energy calculated using some multi-determinant method that is ex-
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act within the Born-Oppenheimer approximation. Following Ramos-Cordoba et al.,106–109 we

may separate ECorr. into two components, the dynamic correlation energy, Edyn., and the non-

dynamic, or static, correlation energy, Endyn., as illustrated in Figure 2.2.

EHF[ρHF] EExact[ρHF]

EHF[ρExact] EExact[ρExact]

Edyn.

E stat.E stat.

Edyn.

ECorr.

Figure 2.2: Decomposition of the correlation energy, ECorr. into the dynamic and static correla-
tion energy, Edyn. and E stat., respectively. Note that EHF[ρExact] denotes the Hartree-Fock energy
calculated using a Slater determinant with density

∣∣∣ΦHF
∣∣∣2 = ρHF that is constrained to be equal

to the exact density, ρExact. Adapted from Ref. [109].

Within this Ansatz, static correlation can be thought of as the error induced by the use of

only a single Slater determinant to describe the system. The origin of the dynamic correlation

is due to the mean-field nature of Hartree-Fock theory and is illustrated in Fig. 2.3. Fig. 2.3(i)

1
r

(i) Exact method.

2
r

(ii) Mean-field method.

Figure 2.3: Representation of the difference in potential experienced by the third particle in a
three body system in 2.3(i) an exact method and 2.3(ii) a mean-field method. The blue lines
indicate the position of two of the particles and the shaded areas indicate regions of very high
repulsion.

depicts an exact model with electrons located at the blue points. The red shaded areas represent

areas that other electrons would be unlikely to occupy due to the high inter-electronic repulsion

that would be experienced. In this case there are two clear domains in the vicinity of each
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electron that would be unfavourable to occupy. In contrast, in a mean-field model, depicted

in Fig. 2.3(ii), electrons are influenced by the average position of all other electrons. This is

represented by the shaded purple area. As a result, electrons are likely to locate themselves

in unphysically close proximity to each other, leading to additional inter-electronic repulsion

when compared to the exact case. This additional repulsion in mean-field models is called the

dynamic correlation energy. A common way of introducing correlation in electronic structure

methods is to use the Slater determinantal wavefunction as a “reference” from which the specific

interactions may be reintroduced. As a result of this, multi-determinantal approaches that seek

to include static correlation are sometimes known as multi-reference methods.109

The aim of post-Hartree Fock wavefunction-based methods is to reintroduce correlation to

the electronic wavefunction to as high degree of accuracy possible, using methods that are as

computationally efficient as possible. There are a number of approaches that can be made to do

this, the details of which are beyond the scope of this work. Instead, we will explore alternative

representations of the electronic structure that avoid the electronic wavefunction.

2.3 Density functional theory

The wavefunctions hitherto described are of significant complexity. Whilst many electronic

structure methods exist that seek to formulate accurate approximations of the electronic

wavefunction,95,110–112 an alternative approach is examined herein: Density Functional Theory

(DFT). The approach of DFT is based on the intuitive statement that an electronic wave-

function must be related to an electron density, ρe. The electron density, unlike the electronic

wavefunction, is a simple function of the spatial coordinates only and is itself in principle an

observable.

The relationship between electron density and energy was formalised by Pierre Hohenberg

and Walter Kohn in 1964, resulting in the two Hohenburg-Kohn (HK) theorems.113 The first HK

theorem is that any property of the ground state of a system is a functional of the ground state

electron density, ρ0(r). For example, the ground state energy, E0 of a molecule is:

E0 = F[ρ0] = E[ρ0], (2.44)
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where F is the exact functional linking E0 and ρ0. It can then be suggested that for some approx-

imate functional, Fa, a corresponding approximate ground state energy, Ea
0 can be calculated.

The second HK theorem is that for a trial electron density, ρ̃, the resultant energy from the

application of the functional, Ẽ, is bounded from below by the energy for the true electronic

density, ρ0:

Fa[ρ̃] = Ẽa ≥ Ea
0. (2.45)

Thus, the trial electron density is variational and the variation principle can be applied to optim-

ise it. It must be noted however, that this does not mean that Ẽa must be higher in energy than

the true ground state energy, E0. This is only true if the functional used is the true functional

that maps ρ with E. For some approximate functional, Fa, the lower bound for the energy may

be higher or lower than the true ground state energy.

Though the two HK theorems show that some functional exists that provides the exact elec-

tronic energy from the exact electron density, they neither suggest the form of this functional

nor suggest how the electron density should be constructed. The HK theorems also make no

reference to the properties of molecules with which chemists are most familiar, such as orbit-

als. Moreover, the HK theorems are slightly incomplete, in that they are not guaranteed to be

unique for a degenerate ground state nor do they guarantee that the wavefunction the density

corresponds to is antisymmetric. These requirements are known as ν-representability and were

satisfied by later work from Levy and Lieb,114,115 who showed that the ν-representability prob-

lem could be relaxed to the n-representability problem, which had previously been shown to be

satisfied by any arbitrary density.116,117

Whilst it is possible to derive the electron density from the results of high-level wavefunction

theory calculations,118 this slightly defeats the point of DFT. There are also some efforts that

utilise so-called orbital free DFT, which abandons molecular orbitals and calculates the electron

density directly; however, these methods are uncommon due to their complexity.119 The most

common approach to DFT, the Kohn-Sham (KS) approach,120 which harnesses the mean-field

techniques explored in Section 2.2 and the associated Self-Consistent Field method95,111 and

reintroduces orbitals.
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Within the Born-Oppenheimer approximation, the HK theorems result in the following ex-

pression for the electronic energy

E[ρ0] =Vne[ρ0] + FHK[ρ0]

=
〈
ρ0

∣∣∣V̂ne

∣∣∣ρ0

〉
+

〈
ρ0

∣∣∣T̂e

∣∣∣ρ0

〉
+

〈
ρ0

∣∣∣V̂ee

∣∣∣ρ0

〉
=Vne[ρ0] + Te[ρ0] + Vee[ρ0],

(2.46)

where FHK[ρ0] is the result of evaluating the HK functional, F̂HK , on the ground state density,

ρ0. The HK functional has a kinetic and a potential component; however, the forms of these

operators are not clear. The potential operator, V̂ee, must at least contain the Coulomb interaction

and so we may write it as

V̂ee =
1
2
ν̂12 + V̂nC, (2.47)

where the first term is the familiar Coulomb operator (See Eqn. 2.34) and the second term is

the non-Coulomb potential operator, V̂nC. The key problem in DFT is to identify the forms of

the kinetic operator, T̂e, and the non-Coulomb potential operator, V̂nC. Comparing Eqn. 2.47

with the results of Hartree-Fock theory (especially Eqn. 2.31), it is possible to suggest that

V̂nC should at least contain a term correcting for exchange. Indeed, it is the consideration of

Hartree-Fock theory that yielded the most common approach to DFT.

The Kohn-Sham method of Walter Kohn and Lu Jeu Sham utilises a similar method to

Hartree-Fock theory to obtain workable equations.120 As with the derivation of the Hartree

product wavefunction, the KS Ansatz begins by substituting the electron density, ρ, for a system

of non-interacting particles with density, %, such that

% ≡ ρ. (2.48)

Similar to the Hartree product wavefunction, this allows for the fictitious density to be written
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as the sum of single particle densities

%(τ) =
∑

i

|ϕi(τi)|2, (2.49)

where ϕi is the single particle function of particle i. The electronic energy of such a system,

E[%], is

E[ρ] ≡ E[%] =
〈
%
∣∣∣T̂e

∣∣∣%〉 − 〈
%
∣∣∣V̂ne

∣∣∣%〉 +
〈
%
∣∣∣1
2
ν̂12

∣∣∣%〉 +
〈
%
∣∣∣ f̂xc

∣∣∣%〉
= −

1
2

∑
i

〈
ϕi

∣∣∣∇̂2
r

∣∣∣ϕi

〉
−

∑
A,i

〈
ϕi

∣∣∣ZA

rAi

∣∣∣ϕi

〉
+

1
2

∑
i> j

〈
ϕi

∣∣∣ν̂i j

∣∣∣ϕ j

〉
+

〈
%
∣∣∣ f̂xc

∣∣∣%〉
= Te[%] + Vne[%] + J[%] + Exc[%],

(2.50)

where T [%] is the kinetic energy of the non-interacting electrons, Vne[%] is the Coulombic in-

teraction between the nuclei and the non-interacting electron density, J[%] is the Coulombic

interaction between the particles in % and Exc[%] is the exchange-correlation energy, which is

defined as

Exc[%] ≡
(
T [ρ] − T [%]

)
+

(
Eee[ρ] − J[%]

)
. (2.51)

The KS exchange-correlation functional operator, f̂xc is the major variable in KS-DFT calcu-

lations and, similar to the HK functional, has no clear form. As with Hartree-Fock theory, we

wish to develop equations in terms of the single particle functions, ϕi. Since the form of f̂xc is

undefined, for the purposes of further derivation it is convenient to consider the effect of f̂xc on

ϕi,

〈
ϕi

∣∣∣ f̂xc

∣∣∣ϕi

〉
= f xc

i , (2.52)

where f xc
i is the exchange correlation energy of ϕi. Using this assumption, we may write an
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expression for the eigenvalue of the single particle function, εi, as

F̂KS︷                                          ︸︸                                          ︷−1
2
∇̂2

r −
∑

A

ZA

rAi
+

∑
j,i

〈
ϕ j

∣∣∣ ν̂i j + f̂xc

 ∣∣∣ϕi

〉
= εi

∣∣∣ϕi

〉
, (2.53)

noting that the operator F̂KS is directly analogous to the Fock operator (Eqn. 2.33), but including

correlation and so is known as the Kohn-Sham-Fock operator. The eigenvalue, εi, is the energy

of the single particle function, ϕi. This allows us to write the total energy of the fictitious density,

E[%] as

E[%] =

occ.∑
i

εi, (2.54)

where
occ.∑

i

denotes summation over the occupied functions. This leads to the conclusion that

the single particle functions, {ϕi}, are in fact the orbitals of the electrons. However, it should

be noted that the KS orbitals and orbital energies have a different interpretation to those of HF

theory. If the exact KS functional is employed, the occupied KS orbitals energies correspond

to the ionization energy for that electron, similar to the HF orbitals (since HF theory neglects

correlation, the HF eigenvalues are unlikely to be exact).118 The difference is more pronounced

when comparing the HF and KS virtual orbitals. The KS virtual orbitals are eigenfunctions

of an electron under the influence of the nuclei of the system and the remaining N − 1 other

electrons of the system, whilst the first HF virtual orbital is instead subject to the mean field of

N occupied orbitals.118 In KS theory, the gap between the highest occupied orbital and lowest

virtual orbital is thus similar to the energy required to excite an electron from HOMO to LUMO;

however, in HF theory the same gap is an approximation of the so called fundamental gap - the

difference between the first ionization energy and first electron affinity.118,121 Returning to the

result of Eqn. 2.53, we can attempt to expand the single particle functions, ϕi, in terms of basis

functions, in direct analogy to the Hartree-Fock-Roothaan equations of Section 2.2:122

ϕi =
∑
µ

cµiϑµ, (2.55)
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where ϑµ is the basis function, µ, and cµi is the coefficient of that basis function in function i.

Combining Eqns. 2.53 and 2.55 we can develop an expression for the Kohn-Sham-Fock matrix

element, similar to Eqn. 2.41

FKS
κµ =

〈
ϑκ

∣∣∣F̂KS
∣∣∣ϑµ〉

= −
1
2

〈
ϑκ

∣∣∣∇̂r
2∣∣∣ϑµ〉 − 〈

ϑκ
∣∣∣∑

A

ZA

rAi

∣∣∣ϑµ〉 +
∑
j>i

〈
ϑκ

∣∣∣ ∣∣∣ϕ j

∣∣∣2
ri j

∣∣∣ϑµ〉 +
〈
ϑκ

∣∣∣ f̂xc

∣∣∣ϑµ〉 (2.56)

and noting that since

% j =
∣∣∣ϕ j

∣∣∣2 =
∑
λ,η

cλ jcη jϑλϑη, (2.57)

the third term of Eqn. 2.56 involves summation over a total for four basis functions. As with

Hartree-Fock theory, we can utilise Eqn. 2.56 to form a matrix equation equivalent to the

Hartree-Fock-Roothaan matrix equation, 2.42,122

FKSc = εSc, (2.58)

which we can solve using the same Self-Consistent Field methods developed originally for use

within Hartree-Fock theory

The success of KS theory is in part due to its similarity with wavefunction methods. Tan-

talizingly, KS theory provides the exact electronic energy provided that %0 ≡ ρ0 and the exact

form of f̂xc is known. This second requirement, however, is yet to be met, though many approx-

imations to the exchange-correlation functional are available. Due to this approximate nature,

contemporary electronic structure methods that utilise approximate exchange-correlation func-

tionals are sometimes known collectively as Density Functional Approximations, DFAs, in con-

trast to the exact DFT.123 The choice of f̂xc when performing quantum chemical calculations is

one of the main concerns to those that utilise DFT. Broadly speaking, functionals may be split

into two categories: pure functionals, which only contain terms dependent on the density, and
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hybrid functionals in which the exchange correlation energy functional, Exc[%] is defined as

Exc[%] = cHF

〈
%
∣∣∣K̂∣∣∣%〉 + (1 − cHF)

〈
%
∣∣∣ f̂xc

∣∣∣%〉 , (2.59)

where K̂ is the exchange operator from HF theory (See Eqn. 2.35) which provides “exact

exchange,” and cHF is the fraction of HF exchange included in the functional. The coefficient

cHF may be constant for all values of r12, in which case the DFA is called a “global” hybrid

functional, or may be a function of r12, in which case the DFA may be called a “range-separated”

or “range-corrected” hybrid.

In this work, the only exchange-correlation functional used was the popular, perhaps out-

rageously so, B3LYP global hybrid functional, composed of the Becke three-parameter ex-

change functional, B3,124 and the Lee-Yang-Parr correlation functional, LYP,125 the combination

of which was first employed in Frisch and co-workers in 1994.126 Whilst this functional is much

maligned,127–129 it performs well in the calculation of vibrational frequencies in complexes of

the type investigated herein,130 and adequately in the calculation of electronic energies.131–133 In

the calculation of electronic transitions, the means by which will be shortly discussed, B3LYP

also performs adequately, though few benchmarks currently exist that include significant num-

bers of transition metal compounds.134–136

When investigating the photochemistry of molecules, it is not only the properties of the

ground state that are of concern: it is the excited states that are of main interest. To probe such

states, the time-dependent behaviour of molecules must be understood.

2.4 Time-dependent density functional theory

The Hohenberg-Kohn (HK) theorems show that an analogue to the time-independent

Schrödinger equation within the Born-Oppenheimer approximation may be constructed which

is based on the electron density, ρ(τ), rather than the electronic wavefunction, Θ(τ).113 The

stationary states of a time-independent Schrödinger equation are the states that can be accessed

under equilibrium conditions. However, much of chemistry occurs away from equilibrium. If

for example, we wish to simulate the response of a system over time to external perturbation,
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i.e. from an electro-magnetic field in a spectroscopic experiment, we cannot employ a

time-independent Schrödinger equation to do so (unless the perturbation does not vary over

time). The extension of the HK theorems to the time-dependent regime was derived by Erich

Runge and Eberhard K. U. Gross in 1984.137 Whilst this had previously been achieved for an

oscillating external potential138–140 and in the perturbative, linear-response regime,141,142 the RG

theorems extended these to any arbitrary external potential. It should be noted that the veracity

of original RG derivation of TD-DFT was fiercely debated within the literature.143–152 The key

issue is whether the time-dependent density is ν-representable, an issue that remains unsolved

outside of specific boundary conditions.153,154 Fortunately within the formalism employed in

the calculations presented herein, this has been resolved155,156 and so a brief overview of the

RG theorems will be given.

Consider a system of N-electrons in some time-dependent external field, defined by the

time-dependent Schrödinger equation,

Ĥ(τ, t)Θ(τ, t) = i
∂

∂t
Θ(τ, t), (2.60)

where Ĥ(τ, t) is the time-dependent Hamiltonian,

Ĥ(τ, t) = T̂ (τ) + V̂(τ) + Û(τ, t), (2.61)

where the kinetic and potential operators defined previously (Eqn. 2.5) and the time-dependent

external potential operator, Û(τ, t) is

Û(τ, t) =

N∑
i

û(τi, t). (2.62)

If we consider a system in which the external potential is switched on at t0, then a time-

dependent parallel to the first HK theorem can be derived. The first RG theorem shows that

the time dependent electron density, ρ(τ, t) determines the wavefunction plus a phase factor:

Θ(τ, t) = e−iφ(t)Θ[ρ,Θ0](τ, t), (2.63)
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where Θ0 is the initial wavefunction, Θ(τ0, t0). If the initial wavefunction is the ground state,

then the first RG theorem may be combined with the first HK theorem, meaning that the time-

dependent wavefunction is only dependent on the initial electron density, up to some phase

factor. There are two conditions to the first RG theorem as originally derived, which are that

the external field in question must not induce a current (i.e. it must be an electric field) and that

the time-dependence of the field must be continuous around t0.137,157,158 Whilst these may not

be true in many cases, for the cases of interest herein these approximations are valid.

The second HK theorem, which is that the energy functional is variational, may also be

extended to the time domain. In the time-dependent case, this involves the time dependent

action

A =

∫ t1

t0

〈
Θ(τ, t)

∣∣∣i ∂
∂t
− Ĥ(τ, t)

∣∣∣Θ(τ, t)
〉

dt . (2.64)

Since the time-dependent wavefunction, Θ(τ, t), is uniquely defined by the time-dependent elec-

tron density, ρ(τ, t), via the first RG theorem, there is must be a density functional form of Eqn.

2.64:

A[ρ(τ, t)] =

∫ t1

t0

〈
Θ[ρ(τ, t)]

∣∣∣i ∂
∂t
− Ĥ(τ, t)

∣∣∣Θ[ρ(τ, t)]
〉

dt , (2.65)

which must have a stationary point at the correct time-dependent density, due to the Dirac-

Frenkel variational principle.157,159 We can seek this density by taking the functional derivative

0 =
δA[ρ(τ, t)]
δρ(τ, t)

=

∫ t1

t0

〈
δΘ[ρ(τ, t′)]
δρ(τ, t)

∣∣∣∣∣i ∂∂t′
− Ĥ(τ, t′)

∣∣∣∣∣Θ[ρ(τ, t′)]
〉

dt′ + c.c. . (2.66)

Since the time-dependent densities at t1 , t0 differ only by some phase factor due to the first

RG theorem, the action functional that satisfies this equation will have the form

A[ρ(τ, t)] =

∫ t1

t0

〈
Θ[ρ(τ, t)]

∣∣∣i ∂
∂t
− Ĥ(τ, t)

∣∣∣Θ[ρ(τ, t)]
〉

dt + φ(t1) − φ(t0), (2.67)

and so will satisfy the variational condition up to some phase factor.137,157,158 It is convenient
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to rewrite the time-dependent action functional in terms of the time-dependent analogue of the

HK functional:

A[ρ(τ, t)] = FHK[ρ(τ, t)] −
∫ t1

t0

∫
û(τ, t)ρ(τ, t) dτ dt , (2.68)

where FHK[ρ(τ, t)] is the expectation value of the time-dependent HK functional and the second

term contains the time-dependent external potential operator, û(τ, t). To maintain continuity

with the treatment of ground state DFT, it is convenient to invoke the Kohn-Sham Ansatz

(see Section 2.3) and develop the time-dependent KS equations. It should be noted that, sim-

ilar to the ground state case, there is a question of whether the time-dependent density is ν-

representable.158 As previously stated, this remains to be proven for the general case of an ar-

bitrary time-dependent electron density; however, within the adiabatic linear-response regime,

that will be employed throughout this work, ν-representability has been proven.154–156 Given

this, we may seek to express the universal time-dependent HK functional, FHK[ρ(τ, t)], within

the KS Ansatz:

FHK[ρ(τ, t)] ≡ FKS [%(τ, t)], (2.69)

where %(τ, t) is the time-dependent non-interacting particle density and

FKS [%(τ, t)] =
∑

j

∫ t1

t0
ζ j(t)

〈
ϕ j(τ j, t)

∣∣∣i ∂
∂t′
−

1
2
∇̂2

r

∣∣∣ϕ j(τ j, t)
〉

dt

−
1
2

∑
j>k

∫ t1

t0
ζ j(t)ζ j(t)

〈
ϕ j(τ j, t)

∣∣∣ν̂ jk

∣∣∣ϕk(τk, t)
〉

dt

− Axc[%(τ, t)],

(2.70)

where ζ j(t) is the time-dependent occupation number of KS orbital ϕ j and Axc[%(τ, t)] is the

time-dependent exchange-correlation action density functional, which is analogous to the time-

independent exchange correlation density functional. We may use this to develop the time-
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dependent analogue to the KS single-particle function eigenvalue equation, Eqn. 2.53,

Â(t)︷                                                                    ︸︸                                                                    ︷−1
2
∇̂2

r −
∑

A

ZA

rAi
+

∑
k, j

〈
ϕk(τk, t)

∣∣∣ ν̂ jk + û(τ, t) + α̂xc(τ, t)

 ∣∣∣ϕ j(τ j, t)
〉

= i
∂

∂t

∣∣∣ϕ j(τ j, t)
〉
, (2.71)

where Â(t) is the time-dependent action functional operator and α̂xc(τ, t) is the time-dependent

action exchange-correlation functional operator,

α̂xc(τ, t) =
δAxc[%]
δ%(τ, t)

. (2.72)

Much like its time-independent analogue, the form of the time-dependent action exchange-

correlation functional operator is unknown. Indeed, remarkably few attempts to develop time-

dependent action exchange-correlation functionals are documented in the literature.152,160 This

is, perhaps, not too surprising considering that the time-independent exchange-correlation is

itself quite vexing. Instead, the approach taken almost exclusively in TD-DFT calculations is

to use the time-independent exchange-correlation functional instead. This is known as the adia-

batic approximation within TD-DFT and suggests that the exchange-correlation potential reacts

instantaneously to the time evolution of %. One of the consequences invoking the adiabatic ap-

proximation within TD-DFT is that double excitations cannot be described with conventional

adiabatic TD-DFT.152,161,162 Furthermore, adiabatic TD-DFT cannot correctly describe a con-

ical intersection between the ground and first electronically excited state and the PES near this

region is fraught with topological defects.162 Despite these deficiencies, adiabatic TD-DFT has

been found to be fairly successful in the description of many systems of chemical interest,

though it is not without its issues.127,134,154,162–173

The adiabatic TD-DFT formalism can also be used to propagate equations of motion for a

given system. Time-dependent simulations performed in this manner are known in the literature

as Real Time TD-DFT (RT-TD-DFT) simulations and can be used to directly simulate laser

excitation.174–178 It can even be used to produce some quite pleasing visualisations of electronic

excitation.179 This is, however, not the most commonly found incarnation of adiabatic TD-DFT.

The most simple approximation to TD-DFT is Linear-Response adiabatic TD-DFT (LR-TD-
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DFT). This were derived by considering the time-dependent extension of Hartree-Fock theory,

Time-Dependent HF (TD-HF), also known as the Random Phase Approximation (RPA).180 The

approach was based on using at the polarizability of the ground state to give information on the

singly excited electronic states. The “response” of the ground state wavefunction to external

perturbation is simulated. When there is a peak in the response, a transition to an excited state

has been located. Interestingly, in the original paper, the authors note that this is essentially a

property of the ground state electron density.180

As previously mentioned, LR-TD-DFT predates the RG theorems141,142 and features prom-

inently in the founding papers of TD-DFT.137,157 However, the most common implementation

of LR-TD-DFT is due to Mark E. Casida and the associated equations are known as the Casida

equations.158,181 The derivation of these equations is tedious and goes beyond the scope of this

work. The most salient features are elegantly described in the context of their difference with HF

theory in the excellent review of Dreuw and Head-Gordon,167 but for a thorough understanding

one must refer to the original works, Refs. [158] and [181]. An alternative and complimentary

derivation, from the perspective of variational excited state DFT, due to the late Tom Ziegler,

is also instructive but perhaps more advanced.182 The Casida equation poses the non-Hermitian

eigenvalue problem

A B

B∗ A∗


XY

 = ~ω

1 0

0 −1


XY

 , (2.73)

where A and B are the orbital rotation Hessian matrices, X and Y are the coefficient matrices,

containing the eigenfunctions of A and B, and the vector ~ω contains the excitation energies. The

matrices A and B are defined by their matrix elements

Aia, jb = δi jδab(εa − εi)

+ 2
〈
ϕiϕa

∣∣∣ν̂12

∣∣∣ϕ jϕb

〉
− cHF

〈
ϕiϕ j

∣∣∣ν̂12

∣∣∣ϕaϕb

〉
+ (1 − cHF)

〈
ϕiϕa

∣∣∣ f̂xc

∣∣∣ϕ jϕb

〉 (2.74)

and

Bia, jb = 2
〈
ϕiϕa

∣∣∣ν̂12

∣∣∣ϕbϕ j

〉
− cHF

〈
ϕiϕa

∣∣∣ν̂12

∣∣∣ϕaϕ j

〉
+ (1 − cHF)

〈
ϕiϕa

∣∣∣ f̂xc

∣∣∣ϕbϕ j

〉
, (2.75)
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where the indices i, j, . . . denote occupied KS orbitals and a, b, . . . denote virtual KS orbitals,

δi j is the Kronecker delta function, εi is the energy eigenvalue of KS orbital ϕi, cHF is the coef-

ficient of Hartree-Fock exact exchange employed and f̂xc is the exchange-correlation functional

operator. Note that the KS orbitals are taken from time-independent KS-DFT calculations. In

conventional KS-DFT, the orbitals are real-valued and so A∗ = A and the Casida equations

reduce to a Hermitian problem. This allows Eqn. 2.73 to be rewritten as

(A − B)
1
2 (A + B)(A − B)

1
2 Z = ~ω2Z, (2.76)

where

Z = (A − B)−
1
2 (X + Y). (2.77)

Solving these equations involves diagonalising the matrices (A−B). Since ~ω has dimensionality

Nocc.Ṅvirt., it is not always desirable or computationally feasible to attempt to solve the full

Casida problem. Instead it is common to use an iterative eigenvalue solver,183 such as the

Davidson-Liu184,185 algorithm or one of the modified Davidson-type algorithms.186–191

It is instructive to consider the form of the matrix elements Aia, jb and Bia, jb in more detail,

since this provides insight into when LR-TD-DFT is and is not applicable. In the case of an

intermolecular excitation, i.e. charge transfer from molecule A to molecule B, LR-TD-DFT is

deficient. Let us suppose that the overlap of the occupied KS orbital of A, ϕA
i , with the virtual

KS orbital of B, ϕB
a , is zero. This means that any term in Eqns. 2.74 and 2.75 that involves

a product of these occupied and virtual KS orbitals is zero. In this case the matrix elements

simplify to

ACT
ia, jb = δA

i jδ
B
ab(εB

a − ε
A
i ) − cHF

〈
ϕA

i ϕ
A
j

∣∣∣ν̂12

∣∣∣ϕB
aϕ

B
b

〉
, (2.78)

and

BCT
ia, jb = 0, (2.79)
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where superscript CT reminds us that this only in the case of intermolecular charge transfer

case, and the superscript A or B indicates on which molecule the KS orbital is centred. Recall-

ing the meaning of the KS virtual orbital eigenvalues, which is the energy of a particle under

the influence of N − 1 other particles (see Section 2.3 for further details), we can see that this

is clearly not a physically accurate description of intermolecular charge transfer. This is er-

ror is most critical in pure functionals, where cHF is zero. In the case of hybrid functionals

this error is somewhat mitigated and some, so-called asymptotically correct, range-separated

hybrids have been constructed to accurately deal with intermolecular charge transfer. In the

case of intramolecular charge transfer, this error is somewhat less extreme, since orbital over-

lap will be non-zero by definition. Nevertheless, LR-TD-DFT tends to underestimate charge

transfer excitations of any kind, though may still perform well through favourable cancellation

of errors.167–170,173

The full Casida equations are the density-functional equivalent of the RPA problem within

HF theory.167 This form of TD-DFT, sometimes called Linear-Response RPA-TD-DFT (LR-

RPA-TD-DFT), is the form most often referenced when the name TD-DFT is invoked. Outside

of this chapter this work will refer to LR-RPA-TD-DFT as simply TD-DFT, in accordance to

the regrettably erroneous convention of the majority of existing literature.

There are a number of approximations to Eqn. 2.76 that can be made. The matrix B may

be neglected, reducing the problem from the equivalent to the RPA problem to the equivalent

to Configuration Interaction with Single excitations (CIS), alternatively known as the Tamm-

Dancoff Approximation (TDA),190

AXT DA = ~ωT DAXT DA, (2.80)

where XT DA is the LR-TDA-TD-DFT coefficients matrix and ~ωT DA is the vector containing the

excitations energies within the TDA approximation to LR-TD-DFT.

Approximations to the Casida equations of both LR-TDA-TD-DFT and LR-RPA-TD-DFT

have been developed by Stefan Grimme, named the simplified Tamm-Dancoff Approximation

(sTDA) and simplified Time-Dependent DFT (sTD-DFT).192–194 These simplified methods in-

troduce a number drastic approximations, neglecting a number of terms and ruthlessly approx-
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imating integrals. The first step in both LR-sTDA- and LR-sTD-DFT is to neglect the final term

in the matrix element Aia, jb, i.e. the term involving the exchange-correlation functional oper-

ator. This is a very extreme approximation, but reduces the computational cost of performing

the calculation drastically since evaluation of this term requires numerical integration. The next

simplification is to replace the four-index, two-electron integrals (the second and third terms of

Eqn. 2.74) with a parametrised, damped Coulombic repulsion called the Mataga-Nishimoto-

Ohno-Klopman operators,195–197, γAB, which have the forms

γJ
AB =

(
1

(RAB)β + (cHFη)−β

) 1
β

(2.81)

for the Coulomb-type interaction, where qA
ia is the change in charge densities from resulting from

the KS orbital transition from ϕA
i to ϕA

a on atom A, derived from Löwdin population analysis of

the basis functions,198 β is a parameter and η is the mean chemical hardness of the atoms A and

B, taken from Ref. [199], and

γK
AB =

(
1

(RAB)α + (η)−α

) 1
α

, (2.82)

for the exchange-type interaction, where α is another parameter. This results in new forms for

the simplified matrix elements, denoted by the superscript s,

As
ia, jb = δi jδab(εa − εi) +

∑
AB

(2qA
iaγ

K
ABqB

jb − qA
i jγ

J
ABqB

ab) (2.83)

and

Bs
ia, jb =

∑
AB

(2qA
iaγ

K
ABqB

b j − cHFqA
ibγ

K
ABqB

a j), (2.84)

where
∑
AB

denotes summation over the atoms {A, B, . . . }. The parameters α and β are fitted based

on a small training set of calculations and are dependent on the exchange-correlation functional

employed in the calculation. The authors of the papers describing the simplified methods argue

that since the parameters are dependent on the functional, they somehow act to compensate for
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the neglected
〈
ϕiϕa

∣∣∣ f̂xc

∣∣∣ϕ jϕb

〉
term of the full matrix element Aia, jb (Eqn. 2.74).192,193 The final

simplification involved in these methods is the truncation of the excitation space on the basis

of the difference in the KS orbital energy eigenvalues, meaning that elements of the coefficient

matrices Xs and Ys are neglected if εa − εi is greater than a certain threshold.

The combination of these drastic approximations results in dramatic reductions in calcu-

lation time when LR-sTD(A)-DFT is employed, in comparison with calculations using full

LR-TD-DFT. Since the simplified methods are so approximate and reliant on parametrisation,

it is of paramount importance that, if used, they are compared against full LR-RPA-TD-DFT

calculations to ensure that the approximations do not break down.

It should be noted that since excited states calculated using LR-TD-DFT are derived from

ground state DFT calculations performed within the Born-Oppenheimer approximation, these

states are adiabatic in nature. Methods to calculate non-adiabatic couplings between the ground

and excited states,200,201 and between excited states,202 within the framework of TD-DFT, have

recently been made available.

The methods hitherto discussed provide the means to solve electronic structure problems in

both time-independent and time-dependent regimes, and provides the toolset required to begin

simulating non-adiabatic dynamics involving both nuclei and electrons.

2.5 Relativistic quantum mechanics

The theories of relativity were initially proposed by Albert Einstein in 1905 and were enhanced

by Einstein and others over the first few decades of the 20th Century.203 Indeed, by the time of

the development of Schrödinger’s quantum wave mechanics, the potential significance of re-

lativistic effects on molecular quantum mechanics had already been recognised.57,63 The effects

of relativistic corrections to molecular systems are widely documented204 and can even have an

effect on aromaticity.205 An interested reader is referred to the work of Pekka Pyykkö, who has

highlighted some prominent examples, such as the fact that silver is essentially non-relativistic

gold.206,207 There are two key components to the theories of relativity that have major impacts

on attempts to reformulate quantum wave mechanics in relativistic terms. The first of these is
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the relativistic mass,M, which is related to the non-relativistic mass, m0, by the equation

M = γm0, (2.85)

where γ is the Lorentz factor, which is defined by the equation

γ =
1√

1 −
(

v
c

)2
, (2.86)

where v is the velocity of a particle and c is the speed of light. In essence, Lorentz factor

describes the deviation from non-relativity based on how close the speed of an object is to the

speed limit of the universe, the speed of light. When the speed of an object is zero, i.e. it is at

rest, γ = 1 and thereforeM = m0 and so m0 is often called the rest mass of an object. Evaluating

the Lorentz factor for a particle is a convenient way of estimating the magnitude of relativistic

effects for that particle. In Fig. 2.4, the Lorentz factor for the 1s electron of elements Z = 1-118

are given to illustrate how the Lorentz factor changes with Z.

The second component is the effect of relativity on the energy of a free particle. The non-

relativistic energy of a free particle, ENR is simply its kinetic energy:

ENR =
p2

2m
, (2.87)

where p is the momentum and m the non-relativistic mass. In the non-relativistic case, the

momentum is defined as p = mv, where v is the velocity. This is altered in the relativistic case,

since the relativistic mass is related to the non-relativistic mass by γ:

p = γm0v =Mv. (2.88)

The relativistic energy of a free particle, ER has a more complicated expression. The complete

form of Einstein’s famous expression is

E2
R = (pc)2 + (m0c2)2. (2.89)
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111 280

1.706114

Roentgenium

30 65.39

1.024874

Zinc

48 112.41

1.067677

Cadmium

80 200.59

1.231837

Mercury

112 285

1.736404

Copernecium

31 69.723

1.026628

Gallium

13 26.982

1.004533

Aluminium

5 10.811

1.000667

Boron

49 114.82

1.070835

Indium

81 204.38

1.239933

Thallium

113 284

1.768662

Nihonium

6 12.011

1.000960

Carbon

14 28.086

1.005263

Silicon

32 72.64

1.028449

Germanium

50 118.71

1.074089

Tin

82 207.2

1.248295

Lead

114 289

1.803100

Flerovium

7 14.007

1.001308

Nitrogen

15 30.974

1.006048

Phosphorus

33 74.922

1.030337

Arsenic

51 121.76

1.077438

Antimony

83 208.98

1.256934

Bismuth

115 288

1.839962

Moscovium

8 15.999

1.001709

Oxygen

16 32.065

1.006890

Sulphur

34 78.96

1.032295

Selenium

52 127.6

1.080887

Tellurium

84 209

1.275095

Polonium

116 293

1.879536

Livermorium

9 18.998

1.002165

Flourine

17 35.453

1.007789

Chlorine

35 79.904

1.034323

Bromine

53 126.9

1.084436

Iodine

85 210

1.275095

Astatine

117 292

1.922156

Tennessine

10 20.180

1.002675

Neon

2 4.0025

1.000107

Helium

18 39.948

1.008745

Argon

36 83.8

1.036422

Krypton

54 131.29

1.088090

Xenon

86 222

1.284645

Radon

118 294

1.968220

Oganesson

57 138.91

1.099701

Lanthanum

58 140.12

1.103798

Cerium

59 140.91

1.108014

Praseodymium

60 144.24

1.112352

Neodymium

61 145

1.116815

Promethium

62 150.36

1.121407

Samarium

63 151.96

1.126133

Europium

64 157.25

1.130966

Gadolinium

65 158.93

1.136001

Terbium

66 162.50

1.141152

Dysprosium

67 164.93

1.146454

Holmium

68 167.26

1.151911

Erbium

69 168.93

1.157531

Thulium

70 173.04

1.163317

Ytterbium

71 174.97

1.169276

Lutetium

89 227

1.315363

Actinium

90 232.04

1.326352

Thorium

91 231.04

1.337748

Protactinium

92 238.03

1.349574

Uranium

93 237

1.361853

Neptunium

94 244

1.374613

Plutonium

95 243

1.387880

Americium

96 247

1.401686

Curium

97 247

1.416063

Berkelium

98 251

1.431048

Californium

99 252

1.446681

Einsteinium

100 257

1.463004

Fermium

101 258

1.480065

Mendelevium

102 259

1.497916

Nobelium

103 262

1.516615

Lawrencium

Figure 2.4: Lorentz factor, γ for the 1s electron for elements, Z = 1-118. The Lorentz factor is defined by the equation γ =


√

1 −
(ve

c

)2
−1

, where

ve is the velocity of the electron and c is the speed of light. For the 1s electron, we may calculate ve approximately as ve =
Z

137
. Figure adapted

from http://www.texample.net/tikz/examples/periodic-table-of-chemical-elements/
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To obtain ER, we must take the square root of Eqn. 2.89; however, to do so we must also

chose a sign for the solution. We can also see spectrum of solutions to this relation would not

be continuous through 0, rather, they would be separated by 2m0c2.

The relativistic analogue to the Schrödinger wave equation (Eqn. 2.1) is the Dirac equation,

which was developed by Paul A. M. Dirac in the late 1920s.208–211 Somewhat entertainingly,

Dirac noted in the introduction to Ref. [210] that relativistic effects are “of no importance in the

consideration of atomic and molecular structure and ordinary chemical reactions”. Neverthe-

less, the remainder of this section will be concerned with the Dirac equation in the context of

molecular systems. For one electron in an external field, the Dirac equation for the relativistic

energy, εR, in atomic units appears deceptively simple and is written as204,212

ĥD~ψ(r) =
(
c~α · ~p + βmec2 + V(r)

)
~ψ(r) = εR~ψ(r), (2.90)

where ĥD is the one-electron Dirac Hamiltonian, ~ψ(r) is the Four-Component (4C) spinor, the

relativistic equivalent to the wavefunction, ~α is a vector the containing Dirac αi matrices, i =

{x, y, z}, ~p is a vector containing the momentum operators, p̂i, β is another Dirac matrix, V(r) is

the external field potential and noting that for an electron, m0 = me. These components will be

dealt with in turn, beginning with the 4C spinor, ~ψ(r), which is the vector

~ψ(r) =



ψ+(r)

ψ̄
+(r)

ψ−(r)

ψ̄
−(r)


=

~ψ
+
(r)

~ψ
−

(r)

 , (2.91)

which has four elements which correspond to the “up” and “down” spinors, denoted respectively

by the absence and presence of an over-bar, for the positive and negative energy solutions to the

equation, denoted respectively by a superscript + or −. The 4C spinor may be separated into the

two, Two-Component (2C) spinors containing the pairs of positive and negative energy spinors,

~ψ
+
(r) and ~ψ

−

(r). It should be noted that the positive and negative 2C spinors are also commonly

known as the “large” and “small” components, respectively.
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The next component of Eqn. 2.90, ~α is also a vector,

~α =
(
αx,αy,αz

)
, (2.92)

with elements αi are 4 × 4 matrices

αi =

02 σi

σi 02

 , (2.93)

where 02 is the 2 × 2 null matrix and σi are the Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 , (2.94)

and thus the Dirac α matrices are

αx =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, αy =



0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0


, αz =



0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


. (2.95)

The momentum vector, ~p, is

~p =


p̂x

p̂y

p̂z

 , (2.96)

with elements

p̂i = −i · ∇̂i, (2.97)

noting for the sake of clarity that the first term in Eqn. 2.97 is the imaginary number. Finally
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the Dirac β is the 4 × 4 matrix,

β =

I2 02

02 −I2

 , (2.98)

where I2 is the 2 × 2 identity matrix.

The representation of the Dirac equation in Eqn. 2.90 is quite cumbersome. It is therefore

convenient to re-write the Dirac one-electron Hamiltonian operator in the form of a 4×4 matrix:

ĥD =



mec2 + V(r) 0 −cp̂z −c
(
p̂x − ip̂y

)
0 mec2 + V(r) −c

(
p̂x + ip̂y

)
cp̂z

−cp̂z −c
(
p̂x − ip̂y

)
−mec2 + V(r) 0

−c
(
p̂x + ip̂y

)
cp̂z 0 −mec2 + V(r)


, (2.99)

which may again be re-written in a slightly more compact fashion

ĥD =

mec2 + V(r) c~σ · ~p

c~σ · ~p −mec2 + V(r)

 , (2.100)

where ~σ is a vector with elements

~σ =
(
σx,σy,σz

)
. (2.101)

By combining Eqn. 2.100 with Eqn. 2.91, we may re-write the Dirac equation for a single

electron in an external field (Eqn. 2.90) in matrix form as

ĥD~ψ(r) =

mec2 + V(r) c~σ · ~p

c~σ · ~p −mec2 + V(r)


~ψ

+
(r)

~ψ
−

(r)

 = εR~ψ(r). (2.102)

Thus far, the nature of the external field has remained unspecified. For the purposes of further

simplifying the Dirac Hamiltonian such that it can be separated into “scalar” and “spin-orbit”

components, it is convenient to take the external potential to be spherically symmetrical. We
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may recast therefore recast the equations into a radial form. First it is instructive to examine the

non-relativistic, Schrödinger equation for such a scenario:

ĥS Θ =

(
−

1
2
∇̂2 + V(r)

)
Θ = εNRΘ, (2.103)

recalling that Θ is the electronic wavefunction and ĥS is the Schrödinger Hamiltonian. For a

spherically symmetrical potential we re-write this expression in terms of polar coordinates,204

such that

Θn,l,ml(r) = Rn,l(r)Yl,ml(θ, ϕ), (2.104)

where n, l,ml are the principle, angular momentum and projected angular momentum quantum

numbers, Rn,l is the radial wavefunction and Yl,ml is the angular wavefunction, which takes the

form of spherical harmonics. The Schrödinger equation in SI units therefore simplifies to

(
−
~2

2me

1
r2

d
dr

(
r2 d

dr

)
+
~2

2me

l(l + 1)
r2 + V(r)

)
R(r) = εNRR(r). (2.105)

Returning to the Dirac equation within a spherically symmetrical potential, to perform a similar

manipulation we must first reform the 2C spinor, ~ψ(r), in a similar manner as Eqn. 2.104:

~ψnκm j
(r) =

~ψ
+

nκm j
(r)

~ψ
−

nκm j
(r)

 =

 Fn,κ(r)χκ,m j(θ, ϕ)

iGn,κ(r)χ−κ,m j(θ, ϕ)

 , (2.106)

where Fn,κ(r) and Gn,κ(r) are the radial components of the spinors, with principal quantum num-

ber, n, and the relativistic angular momentum quantum number κ, which is related to the total

angular momentum, angular momentum and spin-projection quantum numbers, j, l and ms by

κ = −2ms

(
j +

1
2

)
= −2ms

(
l + ms +

1
2

)
, (2.107)

and χκ,n j(θ, ϕ) and χ−κ,n j(θ, ϕ) are the spherical Pauli spinors with quantum numbers ±κ and

n j, the latter of which is the secondary total angular momentum quantum number. To form
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expressions for the radial components, it is convenient to define the adjusted energy, ε′R, such

that

ε′R = εR ± mec2, (2.108)

where the sign is appropriate so as to remove the mec2 gap to 0, and to define the radially varying

mass,Me(r)

Me(r) = me +
ε′R − V(r)

2c2 . (2.109)

We may utilise these to develop an expression for a relativistic electron in a spherically symmet-

rical potential. Focusing on the case of Fn,κ(r), for simplicity, we may derive the expression204

ε′RFn,κ(r) =

Mass-velocity corrections︷                                                            ︸︸                                                            ︷(
−
~2

2Me(r)
1
r2

d
dr

(
r2 d

dr

)
+

~2

2Me(r)
l(l + 1)

r2 + V(r)
)

Fn,κ(r) −

Darwin term︷                            ︸︸                            ︷
~2

(2Me(r)c)2

dV(r)
dr

dFn,κ(r)
dr

−
~2

(2Me(r)c)2

dV(r)
dr

(1 + κ)
r︸                          ︷︷                          ︸

Spin-orbit coupling term

Fn,κ(r).

(2.110)

Comparing the relativistic and non-relativistic (Eqn. 2.105) radial equations, we can see that the

first term of the relativistic equation is almost identical to the non-relativistic counterpart, apart

from the inclusion of the mass-velocity correction, viaMe(r). The second term is the Darwin

term, which has no non-relativistic analogue and can be interpreted as an increase in kinetic

energy as a result of transient interactions between the ψ+ and ψ− spinors.204,213 The third term

is called the spin-orbit coupling term, due to the presence of the relativistic angular momentum

quantum number, κ. The mass-velocity and Darwin corrections are known as scalar relativistic

effects.

All of the Hamiltonians discussed so far have been for a single electron in an external poten-

tial and are of significant complexity. The construction of relativistic many-body Hamiltonians

is lengthy and beyond the scope of this work. Instead, an interested reader is referred to Ref.s
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[204], [212], [213], [214] and [215]. Instead we will note that there exist a number of approx-

imate ways of dealing with relativistic effects within quantum chemistry. This can be achieved

by using an approximate Hamiltonian, or by changing the representation of the wavefunction

(spinor).

Focusing first on the representation of the wavefunction: a fully relativistic treatment

requires the use of a Four-Component (4C) spinor, a highly complicated object (see Eqn.

2.91). One way of reducing complexity is the Foldy-Wouthuysen transformation, in which

the negative-energy solutions are projected out.214,216,217 This leaves only a Two-Component

(2C) spinor. This transformation can be performed exactly, in which case it is called the Exact

Two-Component (X2C) method.204,213,217,218 An even greater approximation is to abandon

spinors all-together and use a non-relativistic wavefunction instead.213 This is an appealing

approach, since much mathematical machinery has been developed to deal with non-relativistic

wavefunctions.

The Hamiltonian may also be approximated to improve computational feasibility.

The Hamiltonians are based on various approximations to the Dirac-Coulomb and Dirac-

Coulomb-Briet Hamiltonians204,213 and include perturbative approaches, such as the

CPD Hamiltonian.219,220 Others include the Zero Order Regular Approximation (ZORA)

Hamiltonian94,221–228 and its higher extensions,229 and the Douglas-Kroll-Hess (DKH)

Hamiltonian.230,231 It should be noted that many approximate Hamiltonians may be used in the

context of 4C and 2C spinors or even using a normal wavefunction. It should also be noted that

many approximate Hamiltonians, such as the DKH Hamiltonian, exclude spin-orbit coupling

terms. This is because for atoms with low total angular momentum, spin-orbit coupling terms

are small. Spin-orbit coupling can be reintroduced perturbatively.94,227

One need not remain within the realms of wavefunction theory. Relativistic extensions to

DFT have also been developed,232 including for Kohn-Sham DFT.233,234 Relativistic KS-DFT

employs spinors and may be of the 4C or 2C variety. Relativistic approaches to TD-KS-DFT

are of particular relevance to the present work.94,227

Finally, it should be noted that the preceding discussion focuses purely on relativistic effects

on electronic structure alone. Relativity does have an influence on the nuclear wavefunction
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also;204 however, these are routinely neglected in quantum chemical calculations.

2.6 Beyond the adiabatic approximation

The preceding sections demonstrated methods to solve electronic structure problems. As men-

tioned in section 2.1, the coupling between electronic and nuclear wavefunctions must be taken

into account to properly describe the dynamic (i.e. time-dependent) behaviour of photoexcited

systems.24 Achieving this without approximation fundamentally requires that the overall wave-

function must be exactly factorizable by the electronic and nuclear wavefunctions in some form.

Recall that the work of Born and Oppenheimer showed that factorization of the wavefunction

is exact up to fourth order perturbation and for only small vibrational motions.75,76 That this

factorization is unconditionally exact was first shown by Hunter in 1975 and the consequences

subsequently explored.235–237

The extension of the Born-Oppenheimer approximation to a time-dependent form

followed,238–240 and recently these have been combined and an exact factorization of the

time-dependent wavefunction241–243 and electron density244 has been achieved. These methods

provide the framework in which the dynamics of the total nuclear and electronic system can be

modelled.172

There are two main approaches to modelling the progression of a nuclear system under the

influence of electrons. The first approach is to treat the nuclei in a classical manner, that is, to

put define the position of the nuclei on the electronic PESs, define their momentum, and then

to propagate the nuclear wavefunction classically and follow its trajectory as it moves like a

marble along the surfaces. The movement of the nuclear wavefunction between the surfaces

corresponding to different electronic eigenstates must be considered. An early implementation

of this approach, by Preston and Tully, is the basis for most modern, so called surface-hopping,

methods.245–247 Since each trajectory is essentially classical in nature, a large number of traject-

ories must be investigated and their properties averaged to recover the statistical nature of the

real, quantum mechanical system.

Alternatively, the nuclear wavefunction can be treated quantum mechanically. Just as the

position of the electrons are described with basis functions rather than points, so are the nuc-
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lei. For molecular systems of reasonable size, the most popular method by which this can be

computed is the Multi Configurational Time Dependent Hartree (MCTDH) method.248–250 In

the MCTDH approach, the nuclei are described using Gaussian basis functions and propagated

along the potential energy surface, which is represented on a grid. Since the resultant nuclear

wavepackets are intrinsically quantum objects, unlike the classical trajectories described above,

they may behave in a more physical manner, for example, by splitting into more than one wave-

packet on more than one PES when passing through a conical intersection. Other approaches

toward quantum wavepacket simulations do exist; however, these tend to be limited to smaller

systems due to unfavourable scaling.251,252 An interested reader is referred to Ref.s [253] and

[254] for further details.

The use of electronic structure methods in combination with the methods described above to

simulate nuclei allows quantum chemists to simulate the experiments that laboratorial chemists

perform every day. This work utilises only some of the methods discussed above; however, it is

hoped that in future work more of the techniques can be utilised to deepen the understanding of

the physical and chemical phenomena described herein.
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Chapter 3

Computational methods

The majority of calculations were performed using the Gaussian 09 suite of programs.255

DFT113,120 and TD-DFT137 calculations were performed using the B3LYP exchange-correlation

functional.124,125 In all calculations, unless otherwise specified, the Integral Equation Formalism

of the Polarizable Continuum Model (IEFPCM) was used to simulate the solvent.256,257 In

Chapter 4, the following basis sets were used in the calculations: the SDD basis set, as

implemented in Gaussian, for all atoms,258,259 which is denoted SDD in the text; the SDD

basis set258 for Pt and the 6-31G(d) basis set for all other atoms,260,261 which is denoted

SDD+6-31G(d) in the text; and the cc-pVTZ-PP and cc-pVTZ basis sets for Pt and all other

atoms respectively,262–264 denoted cc-pVTZ in the text. In Chapter 5, some calculations

employed the SDD basis set for Pt and the 6-311G(d,p) basis set for all other atoms.265,266 In

time-dependent calculations performed within Gaussian 09, the eigenvalue problem is solved

iteratively using a modified form of the Davidson-Liu algorithm.184,186,187,189

In Chapter 4, the ground state geometries of PTZ-CH2-Pt-NAP, PTZ-Pt-NAP and

OMePTZ-Pt-NAP were optimised at the B3LYP/cc-pVTZ level, and PTZ-Pt-NAP and

PTZ-PtH-NAP were further optimised at the B3LYP/SDD and B3LYP/SDD+6-31G(d) levels

of theory and confirmed as minima by the absence of imaginary frequencies in their vibrational

spectra within the harmonic approximation.i The geometries of some of the electronically

excited states of PTZ-PtH-NAP were optimised at the B3LYP/SDD+6-31G(d) level of theory

and confirmed as minima by the absence of imaginary frequencies in their vibrational spectra,

51



which were calculated numerically.

The vibrational frequencies reported are scaled empirically to account for anharmonicity

and inadequacies in the method to obtain good agreement with experimental results, in

accordance with widely known methods.267–270 It also well known that different regions of

the vibrational spectrum may require different scaling factors, in part due to their differing

anharmonicities.268,271 This methodology has been successfully applied to similar compounds

containing acetylides in the past.271,272 Accordingly, the following scaling factors have been

applied to the reported vibrational frequencies: at the B3LYP/SDD+6-31G(d) level, 0.955 for

the acetylide modes, 0.964 for all other modes; at the B3LYP/cc-pVTZ level, 0.969 for the

acetylide modes, 0.986 for all other modes.

A number of slices of the potential energy surfaces (PESs) of PTZ-CH2-Pt-NAP,

PTZ-Pt-NAP, PTZ-PtH-NAP and OMePTZ-Pt-NAP were calculated and are referred to

as Franck-Condon (FC) surfaces if the optimised ground state geometry is used as a starting

point, or non-Franck-Condon (non-FC) surfaces if the excited state geometries are also used as

starting points. The surfaces were calculated as follows:

• “Unrelaxed” surfaces, in which the length of NAP side C≡C is lengthened and shortened

without re-optimising the geometry.

• “Relaxed” surfaces, in which the length of NAP side C≡C is lengthened and shortened

and the geometry is re-optimised with the constraint that the C≡C bond length remains

fixed.

• “Frozen framework” surfaces, in which all other atoms apart from the NAP side C≡C

remain frozen and that bond is lengthened and shortened.

• “Unrelaxed antisymmetrical” surfaces, in which the PTZ side C≡C and NAP side C≡C

are set to opposite lengths along the scale investigated, i.e. on a scale ranging from −1 to

1, the pairs of distances would be −1 and 1, 0 and 0, and 1 and −1, without re-optimising

the geometry.

• “Relaxed antisymmetrical” surfaces, in which the PTZ side C≡C and NAP side C≡C are

iSee Figure 4.1 for structure diagrams.

52



set to opposite lengths along the scale investigated and the geometry is re-optimised with

the constraint that the two C≡C bond lengths remain fixed.

• “Vibrational” surfaces, in which the asymmetrical C≡C combination mode (νa(C≡C)) is

followed.

For all surfaces apart from the “vibrational” surfaces, points were taken in intervals of 0.02

Å from 1.06 Å to 1.40 Å, plus one point for the equilibrium geometry, resulting in a total of

19 points. For the vibrational surfaces, points were taken by following the mass-weighted

Cartesian displacement coordinates for the vibrations in question,273,274 with the change in

length of C≡C on the order of 0.014 Å from ∼1.04 Å to ∼1.40 Å, resulting in a total of 27

points.

A number of slices of the PESs of various isotopomers of [Pt(bipyCOOEt)(C≡C-Ph-CH2-

PTZ)2] were obtained in a similar manner to that described above. In these cases the “vibra-

tional” protocol described above was employed.

Calculations using Slater Type Orbitals (STOs) were performed using Amsterdam Dens-

ity Functional, 2016 (ADF 2016).275–278 In some of these calculations, the Zero-Order Regular

Approximation (ZORA) Hamiltonian was used, incorporating scalar relativistic effects.221–225

If the ZORA Hamiltonian was used, the appropriately fitted basis set of a given ζ quality was

used. It should be noted that no ZORA fitted basis set of DZP quality exists for Pt and so

in calculations using the DZP basis set for the remaining atoms, the TZP basis set was used

for Pt. Time-Dependent (TD) and Simplified Time-Dependent (sTD) DFT calculations were

performed in which Spin-Orbit Coupling (SOC) was included perturbatively.279,280 In some cal-

culations, core orbitals were frozen according to the scheme described in Ref. [278], a total of

212 electrons in the case of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] (Chapter 5). Solvent was

included implicitly by means of the Conductor-like Screening Model (COSMO)281 as imple-

mented in ADF.282 Density fitting was employed in the calculations in the assessment of the

Coulbomb potential.283 A “good” Becke fuzzy cell integration scheme was used in all calcula-

tions, as defined by ADF.284,285 In time-dependent calculations, the eigenvalue problem is solved

iteratively using the Davidson-Liu algorithm.184,187,191

The calculations reported in Chapter 6 were performed using Gaussian 09, revision D.01.255
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The B3LYP exchange-correlation functional was used in all calculations.124,125 Tetrahydrofuran

(THF) solvent was included implicitly using the PCM.256,257 The Dunning-type correlation con-

sistent basis sets of triple-ζ quality were used in all calculations.262 In the case of Ge, the ma-

jority of calculations used a small-core relativistic pseudopotential and the appropriate valence

basis set, denoted cc-pVTZ-PP.286 However, in some cases the all-electron basis set suitable for

use with a Douglas-Kroll-Hess Hamiltonian was instead used, denoted cc-pVTZ-DK.287 All cal-

culations featuring Sn utilised the cc-pVTZ-PP pseudopotential and valence basis set.288 Nuc-

lear Magnetic Resonance (NMR) chemical shifts were computed using the Gauge Independent

Atomic Orbital method,289–291 as implemented in Gaussian.292,293 Basis Set Superposition Error

(BSSE) was estimated in some cases using gas phase, counterpoise corrected calculations.294,295
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Part II

Controlling electron transfer
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Chapter 4

Electron transfer in Pt trans-acetylides

Recent advances have demonstrated that it is possible to influence electron transfer (ET) in the

excited state.36,51 Of particular interest are the investigations described in References [50] and

[51]. In these works, a Donor-Bridge-Acceptor (D-B-A) assembly, PTZ-CH2-Pt-NAP of Fig.

4.1, is described that exhibits controllable ET dynamics. By exciting the asymmetric acetylide

combination vibrational mode, νa(C≡C), of the Charge Transfer (CT) state of this molecule, a

change in yield of two other excited states can be induced. This work seeks to extend these

investigations by manipulating the elements of PTZ-CH2-Pt-NAP, with the intention of deep-

ening the understanding of the effect observed in the family of compounds shown in Figure 4.1.
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S
PnBu3

PnBu3
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Figure 4.1: Compounds investigated (left), and their labels in the text (right). PTZ-PtH-NAP
(69 atoms, 390 electrons) is a simplified model version of PTZ-Pt-NAP (162 atoms, 638 elec-
trons) and is used in some excited state calculations.

Three of the compounds; PTZ-CH2-Pt-NAP, PTZ-Pt-NAP and OMePTZ-Pt-NAP,
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have been studied experimentally using ultrafast techniques, whilst the fourth compound,

PTZ-PtH-NAP, is used in some calculations as a representative model of reduced complexity.53

The ground and excited state properties of these compounds have been computed, as specified

in Chapter 3, using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT).

Scans along specific coordinates of the Potential Energy Surfaces (PESs) of the compounds

were performed as described in Chapter 3 to further elucidate the excited state behaviour of the

compounds.

4.1 Ground and excited state properties

The optimised ground state singlet geometries of PTZ-CH2-Pt-NAP, PTZ-Pt-NAP and

OMePTZ-Pt-NAP are shown in Figures 4.2, 4.3 and 4.4 respectively. For all three com-

pounds, the NAP (acceptor) and Ph (bridge) moieties are co-planar, with the donor moiety

orthogonal to the Ph due to steric repulsion. This configuration provides a great degree of

conjugation between the bridge and NAP regions of the molecule, as demonstrated by the

significant delocalization shown in many of the ground state singlet frontier molecular orbitals

of PTZ-Pt-NAP illustrated in Figure 4.5. The bulky PnBu3 ligands are completely orthogonal

to the NAP and Ph moieties, due to strong steric repulsion.

Due to the strong steric repulsion between the alkyl chains of the phosphine ligands and

the aromatic systems of the other ligands, it would be expected that the framework of the mo-

lecules would be quite rigid and resistant to major conformational changes. This is in line with

experimental observations of rapid Inter-System Crossing (ISC) in these compounds as well as

rapid Intramolecular Vibrational Redistribution (IVR) in the excited state, since both of these

processes are partially dependent on geometry.23 This suggests that there should be minimal

geometrical change between the ground state and the initial excited state, the CT state.

Examining the frontier molecular orbitals of PTZ-Pt-NAP, shown in Figure 4.5, which

are representative of the orbitals of PTZ-CH2-Pt-NAP and OMePTZ-Pt-NAP, it can be seen

that the HOMO of these compounds lies on the donor and the LUMO on the acceptor, as may

be expected. H−1, H−2 and H−3 are dπ anti-bonding orbitals, involving the dxy, dxz and dyz

orbitals of the Pt respectively and one of the degenerate acetylide π orbitals. Since the π orbitals
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involved in H−1 and H−3 are parallel with those of the Ph and NAP moieties, H−1 and H−3

are delocalised across the bridge and acceptor. The π orbitals involved in H−2, however, are

orthogonal to those of the Ph and NAP and thus H−2 is localised on the Pt acetylide portion of

the bridge, with a small contribution from adjacent σ(C–C) bonds. Importantly, in the occupied

orbitals there is very limited delocalization between the donor and the bridge: the donor is

essentially electronically isolated from the rest of the system.

The LUMO in these compounds is localised on the acceptor, though there is some con-

tribution from a parallel non-/anti-bonding acetylide π orbital. It is therefore expected that

transitions from HOMO→LUMO, which would form a CSS, should be completely disallowed

due to lack of overlap. The CT transitions from H−1→LUMO or H−3→LUMO should be al-

lowed due to good overlap; however, the H−2→LUMO transition, also of CT character, should

not be allowed due to poor overlap. The LUMO of PTZ-Pt-NAP is well separated from the

rest of the unoccupied orbitals, with ∆εL→L+1 = 1.48 eV. For OMePTZ-Pt-NAP, this value is

∆εL→L+1 = 1.50 eV and for PTZ-CH2-Pt-NAP, ∆εL→L+1 = 1.55 eV.

Comparing the singlet orbitals with the unrestricted triplet orbitals, shown in Figure 4.6,

there are relatively few differences. The two singly occupied molecular orbitals, denoted H−1α

and HOMOα resemble the singlet HOMO and LUMO respectively, thus there is an additional

xz-projection xy-projection

profile yz-projection

Figure 4.2: B3LYP/cc-pVTZ optimised singlet geometry of PTZ-CH2-Pt-NAP
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xz-projection xy-projection

profile yz-projection

Figure 4.3: B3LYP/cc-pVTZ optimised singlet geometry of PTZ-Pt-NAP

α electron on the NAP and so the lowest triplet state is denoted 3NAP. The energetically low-

est unoccupied orbital, LUMOβ, is very close in energy to HOMOβ and may be expected to

resemble the singlet HOMO but instead LUMOβ is a bridge/NAP delocalised dπ orbital similar

in character to the singlet H−1. Correspondingly, HOMOβ resembles the singlet HOMO, from

which an electron should have been removed. This is likely the result of reorganization of the

xz-projection xy-projection

profile yz-projection

Figure 4.4: B3LYP/cc-pVTZ optimised singlet geometry of OMePTZ-Pt-NAP
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HOMO ε = −5.29 eV LUMO ε = −2.60 eV

H−1 ε = −5.70 eV L+1 ε = −1.12 eV

H−2 ε = −5.93 eV L+2 ε = −0.99 eV

H−3 ε = −6.03 eV L+3 ε = −0.86 eV

H−4 ε = −6.40 eV L+4 ε = −0.74 eV

H−5 ε = −6.57 eV L+5 ε = −0.62 eV

Figure 4.5: Singlet frontier molecular orbitals of PTZ-Pt-NAP at the B3LYP/cc-pVTZ level
(Some atoms hidden for clarity).

β manifold. The low energy transition from HOMOβ →LUMOβ would result in relocation of

electron density from the donor to the acceptor, corresponding to a CSS, whilst the transitions

from the dπ bridge orbitals H−1β and H−2β into LUMOβ would correspond to the formation of

CT states, similar to the case of the singlet.

To establish that the ground and excited state properties of these molecules have been well

described by the methods employed in this investigation, it is instructive to compare the calcu-

lated vibrational and electronic spectra with those measured experimetally. These comparisons

are made in Figure 4.7 using PTZ-Pt-NAP as a representative case; the remaining results are

tabulated and assigned in Appendix A.1. Panels (c) and (d) of Figure 4.7 compare computations

at the B3LYP/cc-pVTZ level using the full PTZ-Pt-NAP structure. The vibrational spectrum,

shown in panel (c) is in very good agreement with experiment; the important acetylide vibra-
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LUMOα ε = −1.25 eV L+2β ε = −1.16 eV

HOMOα ε = −3.72 eV L+1β ε = −2.03 eV

H−1α ε = −5.31 eV LUMOβ ε = −4.64 eV

H−2α ε = −6.01 eV HOMOβ ε = −5.31 eV

H−3α ε = −6.22 eV H−1β ε = −6.01 eV

H−4α ε = −6.42 eV H−2β ε = −6.19 eV

Figure 4.6: Franck-Condon triplet frontier molecular orbitals of PTZ-Pt-NAP at the
B3LYP/cc-pVTZ level (Some atoms hidden for clarity).

tional modes in the 2100 cm−1 region are well positioned, and the donor and acceptor localised

modes from 1500 to 1750 cm−1 are in excellent agreement in both position and intensity.

The electronic spectrum, shown in Figure 4.7(c) has slightly poorer agreement. The broad

band from 360 to 500 nm in the experimental spectrum has three humps, the most important

of which are the features at approximately 400 and 425 nm, which likely correspond to two

CT states involving transitions from the bridge centred H−1 and H−2 to the acceptor centred

LUMO. These CT states are well separated from the remainder of the excited state manifold,

lending confidence that the calculated excited states are representative of those of the real com-

pounds. Since the CSS state cannot be directly accessed, there is no peak in the experimental

spectrum with which to verify the calculated energy. This is problematic, since TD-DFT has

well documented problems with under-estimating the energies of transitions featuring a large
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Figure 4.7: Comparison of calculated (coloured lines) and experimental (grey lines) (a),
(c) vibrational, and (b), (d) electronic spectra of ground state PTZ-Pt-NAP; (a), (b) at the
B3LYP/SDD+6-31G(d) level with singlet PTZ-PtH-NAP as a model, and (c), (d) at the
B3LYP/cc-pVTZ level with singlet PTZ-Pt-NAP as a model.

degree of charge transfer character, as is the case for both the two CT transitions and the trans-

ition into the CSS.134 Comparing the peaks at 400 and 425 nm with the corresponding calculated

CT transitions suggests that their energies are underestimated by approximately 0.1 eV, a small

margin. It is therefore reasonable to conclude that the CSS and CT states are qualitatively well

described by TD-DFT. The large size of these systems makes it difficult to substantiate this,

for example by means of high level wavefunction theory calculations, though this could be an

avenue for further investigation.

As shown in the figures above, PTZ-CH2-Pt-NAP and its derivatives are of significant

size and complexity; the smallest, PTZ-Pt-NAP, consists of 162 atoms and 638 electrons. In

their current implementation, the second derivative of energy with respect to nuclear position

for excited states in TD-DFT must be calculated by numerical methods. To retain computa-

tional tractability, it is therefore necessary to use “pruned” model complexes when exploring

the chemistry of the excited state molecules of this size. The “pruned” model used in this case
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xz-projection xy-projection

profile yz-projection

Figure 4.8: B3LYP/SDD+6-31G(d) optimised singlet geometry of PTZ-PtH-NAP

is PTZ-PtH-NAP, the optimised ground state geometry of which is shown in Figure 4.8. There

are a number of key differences between this geometry and that of the equivalent “unpruned”

complex, PTZ-Pt-NAP, the geometry of which is discussed above.

In PTZ-PtH-NAP, the large n-butyl groups of the phosphines found in PTZ-Pt-NAP have

been replaced with hydrogens. The implications of this are that there is much reduced steric con-

gestion in the bridge region: unlike PTZ-Pt-NAP, the Ph and NAP moieties of PTZ-PtH-NAP

are not coplanar, though the donor and Ph moieties are orthogonal in PTZ-PtH-NAP, as ex-

pected. Furthermore the phosphines themselves are no longer orthogonal, but instead offset

from plane perpendicular to NAP by approximately 25°. The non-planar relationships between

the various sections of the donor, bridge and acceptor have consequences for both the MOs

and for excited state geometries. Before considering the B3LYP/SDD+6-31G(d) orbitals of

PTZ-PtH-NAP presented in Figure 4.9, it should first be established that the small basis set

employed in those calculations have not had a deleterious effect. As such, the B3LYP/cc-pVTZ

frontier orbitals of PTZ-PtH-NAP are shown in Figure A.1. Comparing these figures reveals

that there is some reorganization of orbitals but no substantial changes. The occupied manifold

is similar at both levels of theory, with only H−5 changing character from a dz2 orbital at the

B3LYP/cc-pVTZ level to a bridge/donor delocalised π orbital at the B3LYP/SDD+6-31G(d)
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HOMO ε = −5.13 eV LUMO ε = −2.47 eV

H−1 ε = −5.80 eV L+1 ε = −1.13 eV

H−2 ε = −5.93 eV L+2 ε = −1.08 eV

H−3 ε = −6.19 eV L+3 ε = −0.93 eV

H−4 ε = −6.30 eV L+4 ε = −0.72 eV

H−5 ε = −6.96 eV L+5 ε = −0.63 eV

Figure 4.9: Singlet frontier molecular orbitals of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d)
level.

level. The HOMO→LUMO gap is marginally smaller (0.05 eV) at the lower level of theory;

however, the LUMO remains well separated from the rest of the occupied manifold at both

high and low levels of theory. The unoccupied L+1 to L+5 orbitals are re-ordered between the

B3LYP/SDD+6-31G(d) and B3LYP/cc-pVTZ level but remain essentially the same in charac-

ter. Thus it can be concluded that the effect of reducing the quality of the basis set is minimal

for PTZ-PtH-NAP.

The effect of “pruning” can then be established by comparing the B3LYP/SDD+6-31G(d)

orbitals of PTZ-Pt-NAP, shown in Figure 4.5, with those of PTZ-PtH-NAP at the B3LYP/cc-

pVTZ level, shown in Figure 4.9. Broadly, the orbitals retain the same character but un-

dergo some slight reordering between the two levels of theory, with the less planar geometry
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of PTZ-PtH-NAP resulting in marginally less extensively conjugated orbitals that are not as

strictly orthogonal as in PTZ-Pt-NAP. Importantly, the identities of the HOMO, H−1 and

H−2 orbitals are the same in both models and have quite similar energies. H−3 and H−4

are reordered between the two cases and H−5 changes character, similar to the effect of only

changing the basis set. This suggests that the description of the Pt orbitals provided by the

SDD basis set is slightly lacking when compared to the higher quality cc-pVTZ-PP basis set

used for Pt in the higher level calculations, though this should have minimal influence for the

most important transitions. The LUMO shown in Figure 4.9 is NAP centred, in accordance

with the higher level calculations and is well separated from the remainder of the unoccu-

pied manifold (∆εL→L+1 = 1.34 eV.) L+1 through to L+5 reorganise between the two levels

of theory, with the exception of L+2 of PTZ-PtH-NAP, which does not appear in the frontier

orbitals of PTZ-Pt-NAP. Fortunately L+2 is not involved in any of the low lying transitions

of PTZ-PtH-NAP, shown in Table A.7, so this should have marginal effects on the electronic

spectrum.

The computed vibrational and electronic spectra of PTZ-PtH-NAPat the B3LYP/SDD+6-

31G(d) level are shown in Figure 4.7(a) and (b) respectively, and compared with the exper-

imentally measured spectra of PTZ-Pt-NAP. The computed vibrational spectrum is in very

good agreement with the experimental one; both the acetylide mode positions and relative

intensities are in very good agreement, and the carbonyl modes at 1650 and 1700 cm−1 are

well described, though the remainder of the fingerprint region is in less good agreement. The

computed electronic spectrum, shown in Figure 4.7(b), shows very good agreement with experi-

ment; however, since the higher level calculations shown in panel (d) are in less good agreement,

the remarkably good agreement at the B3LYP/SDD+6-31G(d) level is likely due to fortuitous

cancellation of errors. The good agreement of both vibrational and electronic spectra suggests

that PTZ-PtH-NAP is indeed a good model of PTZ-Pt-NAP for quantum chemical purposes.

The good agreement of the B3LYP/SDD+6-31G(d) calculations using PTZ-PtH-NAP in the

ground state with experimental data lends confidence that it may also be a suitable model for

the excited state chemistry of PTZ-Pt-NAP. As such, excited state geometry optimization and

frequency calculations were performed for the lowest three excited states of PTZ-PtH-NAP in
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xz-projection yz-projection

(a)

(b)

(c)

Figure 4.10: Optimised excited state geometries of PTZ-PtH-NAP of the (a) 3NAPstate, (b)
singlet CSS and (c) triplet CT state, all at the B3LYP/SDD+6-31G(d) level.

both the singlet and triplet manifolds. Selected optimised excited state geometries are shown in

Figure 4.10. The lowest excited state on the triplet manifold, 3NAP, is shown in Figure 4.10(a)

and displays some geometrical reorganization when compared to the ground state geometry of

PTZ-PtH-NAP. The Ph and NAP moieties have become almost coplanar, though most inter-

esting is the fact that the phosphines have also become almost coplanar. It is very unlikely that

the far more bulky PnBu3 ligands found in the “unpruned” complexes would undergo such a

rearrangement due to the massive steric repulsion that would be involved. This exposes one of

the major limitations of model chemistry in which large amounts of complexity are removed;

however, the previously mentioned limitations imposed by the nature of excited state frequency

calculations leave few alternatives.

The geometry of the singlet CSS is shown in Figure 4.10(b). The CSS displays significant

geometrical changes when compared to the ground state. The donor, which formally has lost

an electron, has become completely planar as is clearly shown in the yz projection and is now
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coplanar with the acceptor moiety, leaving the Ph orthogonal. This poses questions about what

would happen were the model PH3 ligands replaced with the correct PnBu3 ligands. For the

donor and acceptor to be coplanar, the Ph must be orthogonal to the NAP. The bulky phosphines

would then have to be either orthogonal to the NAP or to the Ph, but not both, or in some

intermediate geometry. Since the Ph is less bulky than the NAP, it is likely that in the “unpruned”

complexes, the PnBu3 ligands would remain orthogonal to the NAP and the Ph would rotate to

become coplanar with the phosphine ligands. This unfavourable rearrangement, likely with a

not insignificant associated barrier to rotation, may go some way to explaining the low yield of

the CSS in experiments, even in the absence of the IR pump that closes this pathway (See page

7.) Attempts were made to optimise the triplet equivalent, which would be more representative

of the likely experimentally observed species; however, these were unsuccessful.

The geometry of the triplet CT state is shown in Figure 4.10(c) and resembles that of the

CSS in part. Unlike the CSS, the donor in the CT is not planar, though the Ph moiety has become

orthogonal to the acceptor in the CT state as in the CSS. In the CT state, the phosphine ligands

are now coplanar with the Ph moiety. It is unlikely that the rearrangement observed in the model

PTZ-PtH-NAP is reflected in the behaviour of the real PTZ-Pt-NAP, since this represents a

large geometric rearrangement between the ground and CT states, which is inconsistent with

the rapid relaxation of the CT state in experiments. Other than this potentially artefactual donor

side rearrangement, the CT state resembles the ground state quite strongly. This is reflected by

the strong absorption shown in both the experimental and computed electronic spectra shown

in Figure 4.7.

The calculated ground and excited state vibrational frequencies of PTZ-PtH-NAP are tabu-

lated in Table 4.1 compared to experimental Time-Resolved Infra-Red (TRIR) experiments per-

State Type νa(C≡C) / cm−1 νs(C≡C) / cm−1

S0 GS 2089 2104
S1 CSS 2055 2095
S2 CT 1951 2038
T1

3NAP 1936 2091
T2 CSS - -
T3 CT 1921 2040

Table 4.1: Calculated ground and excited state acetylide centred vibrational frequencies of
PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d) level. T2 could not be optimised. Frequencies
scaled by 0.955
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Figure 4.11: Comparison of calculated excited state frequencies and select TRIR traces of
PTZ-Pt-NAP. The purple trace corresponds to 0.4 ps after electronic excitation and is repres-
entative of the CT state, the blue trace corresponds to 10 ps after electronic excitation and is
representative of the CSS and 3NAP states, and the orange trace corresponds to 2750 ps after
electronic excitation and is representative of the 3NAP state only. The black sticks correspond to
the triplet CT state, the blue sticks correspond to the singlet CSS, and the red sticks correspond
to the 3NAP state, all at the B3LYP/SDD+6-31G(d) level.

formed on PTZ-Pt-NAP in Figure 4.11. The experimental data at three different time delays

following electronic excitation are shown, which are representative of differing majority ex-

cited state population regimes, as well as the ground state IR spectrum, which is plotted for

convenience. Concentrating on the acetylide region of the spectrum, the shortest time delay, at

t =0.4 ps, is representative of the CT dominant regime and shows a very broad band from 1750

to 2000 cm−1, peaking at 1940 cm−1 and another at 2050 cm−1. There is also a broad baseline

offset that extends beyond 2100 cm−1. The broadness of these exceedingly short timescale peaks

is potentially suggestive of transitions with significant vibronic character.41,296–298 Excited state

frequency calculations shown in Table 4.1 suggest that the low energy band corresponds to

the asymmetric acetylide vibrational mode and the high energy band the symmetric vibrational

mode.

The intermediate delay shown, at t =10 ps, is representative of a 3NAP dominant regime,

but with some CSS population. There is a peak at approximately 1950 cm−1, perhaps a slight

shoulder in the region of 2050 cm−1 and a peak at 2095 cm−1. Since the CT state has a lifetime

of only 2 ps, it is unlikely that it makes any significant contribution to these states. Comparing
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the frequencies shown in Table 4.1 with these peaks, it is likely that the band at 1950 cm−1

corresponds to the 3NAP state and the shoulder at 2050 cm−1 and peak at 2095 cm−1 correspond

to the CSS.

The long timescale delay shown, which is at the limit of the experimental set-up, t =2750 ps,

has only one band in the acetylide region, around 1950 cm−1. The lack of a high energy band in

the region may be explained by the closeness in energy of the calculated ground state νa(C≡C)

and 3NAP νs(C≡C) modes, shown in Table 4.1. Overall, the agreement between the excited state

vibrational modes calculated and those recording in ultrafast TRIR experiments is good. This is

despite the fact that the model used, PTZ-PtH-NAP, is of significantly reduced complexity than

the true compound, PTZ-Pt-NAP, and that a moderately small basis set was employed in these

calculations. This lends confidence that computed ground and excited states are of a sufficient

standard to build a qualitative model of the dynamics of the excited state.

4.2 Potential energy surfaces

Due to the good agreement of calculated ground and excited state properties with experiment,

investigations were performed with the intention of elucidating the mechanism by which excit-

ation of specific vibrational coordinates in the excited states of the compounds shown in Figure

4.1 effects the dynamics of the systems. It is prohibitively expensive to explore the entirety of

the PESs for these systems. It is therefore necessary to choose specific regions of the PESs

to investigate. Since the vibrational mode that causes the effect is the asymmetric acetylide

vibrational mode, aspects of the ground and excited PESs were investigated.

There are two key questions that must be answered when constructing the coordinates along

which the PESs are to be investigated:

1. Which geometry will be used to represent each state?

2. How will the asymmetric acetylide vibration be described in each state?

Firstly, due to the nature of the experiments performed, it is difficult to determine to what

extent geometrical relaxation has occurred at a given point in time, not only of the excited

molecules but also of the surrounding solvent. It is therefore very difficult to be confident of
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the exactly correct geometry to use to represent each state and so some approximations must

be made. As previously discussed, it is reasonable to assume that the CT state, which is the

state targeted by the IR pump, is reasonably similar in geometry to the ground state. Thus it is

reasonable to approximate the geometry of the CT state with the geometry of the ground state.

For PTZ-PtH-NAP, the geometry of the CT state was successfully optimised. It is therefore

be possible to follow the νa(C≡C) coordinate in the CT state of PTZ-PtH-NAP, a method that

should be quite representative of the actual dynamics of PTZ-Pt-NAP; however, as will be

shown below, there are some questions as to whether the PTZ-PtH-NAP is sufficient to properly

describe the excited states.

The second question is more difficult to answer and is slightly dependent on the meth-

odology adopted to answer the first. Since it was not possible to optimise all of states of

PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d) level, it is not possible to simply take the cal-

culated equilibrium geometries of all of the states and scan along their associated vibrational

coordinates. In any case, there is some question to the value in this approach, since the nature

of nuclear changes induced by this vibrational mode in each state is partly dependent on the

equilibrium nuclear geometry (selected displacements are tabulated in Appendix A.3.) As dis-

cussed above, there is some question as to the validity of the equilibrium geometries of the

excited states of PTZ-PtH-NAP that have been calculated, due to the simplifications made to

the phosphine ligands. As a result of this, a number of different coordinates were investigated

and will be discussed below. The specifications for these coordinates are given in Chapter 3.

It should be noted at this point that the prior work performed on PTZ-CH2-Pt-NAP in Ref.

[51] used a “pruned” equivalent of PTZ-CH2-Pt-NAP, the most important component of which

was the substitution of the PnBu3 ligands with PMe3 ligands, and utilised a basis set consisting

of SDD for Pt and 6-311G(d,p) for all other atoms, and investigated the “unrelaxed” coordinate.

The successful application of this methodology should be kept in mind when discussing the

results of the B3LYP/SDD+6-31G(d) calculations on PTZ-PtH-NAP, which will be discussed

below.

Initial investigations utilising PTZ-PtH-NAP are presented in Figures 4.12, 4.13, 4.14, 4.15,

and 4.16. All of these surfaces used the optimised ground state geometry as a starting point. The
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“unrelaxed”, “relaxed” and “frozen framework” surfaces, shown in Figures 4.12, 4.13 and 4.14

respectively, take the most simple approach to describing the vibrational mode, representing

fully decoupled acetylide vibrations. The “unrelaxed” and “relaxed” surfaces are constructed

by lengthening or shortening the acceptor side C≡C bond (NAP-CC) and moving the acceptor

and donor moieties further apart or closer together; the “unrelaxed” coordinate has no further

reorganization whilst for the “relaxed” coordinate, the NAP-CC is fixed and the remaining de-

grees of freedom are optimised for the ground state. The “frozen framework” surface on the

other hand keeps the distance between donor and acceptor fixed, and changes the length of the

NAP-CC. These three approaches represent marginally different interpretations of molecular

vibration. Comparing the two most similar of these surfaces, “unrelaxed” of Figure 4.12 and

the “relaxed” of Figure 4.13, there are very slight differences. Both show slight asymmetry, due

to increased nuclear repulsion as the NAP-CC becomes short, but importantly show no cros-

sover between CSS and CT states at any point investigated. The “frozen framework” surface of

Figure 4.14 is broadly the same, though does show crossover between the triplet CSS and triplet

CT states at the very extreme of Figure 4.14(ii). For a crossover point to be accessible by vibra-

tional excitation, it should be close to the minimum point of the CT curve, both energetically

and geometrically. The “unrelaxed”, “relaxed” and “frozen framework” surfaces are therefore

inconsistent with the hypothesis that it is presence of a crossover between CT and CSS surfaces

that leads to the observed effect in these complexes.

As previously discussed, there is some question as to the way in which the vibrational co-

ordinate is to be represented. With this in mind, the “unrelaxed antisymmetrical” and “relaxed

antisymmetrical” surfaces were constructed, and are shown in Figures 4.15 and 4.16 respect-
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Figure 4.12: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�) along the
“unrelaxed” FC coordinate of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d) level.
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Figure 4.13: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�) along the
“relaxed” FC coordinate of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d) level.

ively. The “unrelaxed antisymmetrical” and “relaxed antisymmetrical” surfaces were construc-

ted in a similar fashion to the “unrelaxed” and “relaxed” surfaces but the donor side C≡C (PTZ-

CC) bond length was also manipulated in the opposite manner to the NAP-CC, i.e. the NAP-CC

length was increased and the PTZ-CC reduced and vice versa. This description is closest to fully

coupled acetylide vibrational modes.

As with the simpler coordinates, there is remarkably little difference between the “unre-

laxed antisymmetrical” and “relaxed antisymmetrical” curves. The “antisymmetrical” curves

are slightly more parabolic in nature and extend up to higher energies due to the more extreme

nuclear distortion involved in these coordinates. It might be expected that the “antisymmet-

rical” curves would display crossover points at lower energies than the simpler coordinates due

to the greater disruption of equilibrium geometry; however, this is not the case and neither of

the two “antisymmetrical” coordinates show any crossover in energetically accessible regions

of the potential energy surfaces.

The lack of a crossover in a vibrationally accessible region between the CSS and CT states

along any of the coordinates representative of the νa(C≡C) suggests that there may be some
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Figure 4.14: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�) along the
“frozen framework” FC coordinate of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d) level.
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Figure 4.15: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�) along the
“unrelaxed antisymmetrical” FC coordinate of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d)
level.

insufficiencies in the model employed in the PTZ-PtH-NAP calculations. There are a number

of potential explanations for this. Despite the good agreement of the ground state vibrational,

TRIR and ground state electronic spectra with the B3LYP/SDD+6-31G(d) computed properties

of PTZ-PtH-NAP, this level of theory may simply be inadequate for describing the excited

states. In particular, any deficiency of this method in describing the CSS would be hard to

detect from electronic spectra, since the transition from the ground state to the CSS is forbidden

due to exceedingly poor overlap. It may also be the case that the “pruning” utilised in the choice

of the model PTZ-PtH-NAP complex was too severe, particularly in the use of the PH3 ligands

to represent the phosphines. It may also be the case that the representations of the vibrational

coordinates chosen were not adequate. This, however, seems less likely given the success of the

original investigations on PTZ-CH2-Pt-NAP when using the simple “unrelaxed” coordinate.51

To overcome the deficiencies displayed by the PTZ-PtH-NAP model, it was deemed

that more robust theoretical methods were needed. As such, each of the full size complexes

PTZ-CH2-Pt-NAP, PTZ-Pt-NAP and OMePTZ-Pt-NAP were modelled using a higher qual-

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−−PtH−NAP

NAP−    C≡C      / Å

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1.10 1.20 1.30 1.40 1.20 1.30 1.40
2.50

2.75

3.00

3.25

3.50

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−PtH−NAP

NAP−    C≡C      / Å

Pt

PH3

PH3

C C NAPS CCPhN

(i) Singlet manifold

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−−PtH−NAP

NAP−    C≡C      / Å

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1.10 1.20 1.30 1.40 1.20 1.30 1.40
2.50

2.75

3.00

3.25

3.50

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−PtH−NAP

NAP−    C≡C      / Å

Pt

PH3

PH3

C C NAPS CCPhN

(ii) Triplet manifold

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−PtH−NAP

NAP−    C≡C      / Å

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1.10 1.20 1.30 1.40 1.20 1.30 1.40
2.50

2.75

3.00

3.25

3.50

E
n

er
g

y 
/ e

V

NAP−C≡C / Å

Unrelaxed
PTZ−PtH−NAP

NAP−    C≡C      / Å

Pt

PH3

PH3

C C NAPS CCPhN
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Figure 4.16: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�) along
the “relaxed antisymmetrical” FC coordinate of PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d)
level.
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Figure 4.17: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�)
along the “unrelaxed” FC coordinate of a) PTZ-CH2-Pt-NAP b) PTZ-Pt-NAP and c)
OMePTZ-Pt-NAP at the B3LYP/cc-pVTZ level. The experimentally determined first and
second vibrational energy levels of νa(C≡C) are shown for the ground and CT states, and the
energy gap from ν0 to the intersection between the CT and CSS are shown, where appropriate,
in (ii).

ity basis set. For these calculations, presented in Figures 4.17 and 4.18, utilised the “unrelaxed”

coordinate, previously described, as well as a “vibrational” coordinate, that was constructed

by following the ground state νa(C≡C) vibrational mode. This provided an intermediate

between the completely decoupled “unrelaxed” representation and the completely coupled

”antisymmetric” representation previously utilised. The “unrelaxed” surfaces, shown in Figure

4.17 are in good agreement with the hypothesis that a low lying crossover between the CSS

and CT is critical to the behaviour observed in these compounds. As is clearly shown in Figure

4.17(ii), PTZ-CH2-Pt-NAP and PTZ-Pt-NAP both have a crossover between the triplet CSS

and triplet CT states quite close to the minimum energy point on the triplet CT surface, whilst

OMePTZ-Pt-NAP shows no such crossing in the region investigated. The vibrational levels

of the νa(C≡C) for the ground and CT states are plotted using the experimentally determined
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(ii) Triplet manifold
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(iii) Both manifolds

Figure 4.18: Calculated energies for the ground (H), CT (N), CSS (•) and 3NAP (�)
along the “vibrational” FC coordinate of a) PTZ-CH2-Pt-NAP b) PTZ-Pt-NAP and c)
OMePTZ-Pt-NAP at the B3LYP/cc-pVTZ level. The experimentally determined first and
second vibrational energy levels of νa(C≡C) are shown for the ground and CT states, and the
energy gap from ν0 to the intersection between the CT and CSS are shown, where appropriate,
in (ii).

vibrational frequencies to provide a comparator to the height of the barrier to the crossover

point relative to the zero-point energy in these coordinates and the vibrational excitation energy.

This provides exceedingly good agreement with experiment: PTZ-CH2-Pt-NAP has the lower

calculated barrier, significantly below the ν1 level and experimentally shows that each photon

absorbed by the CT state results in the formation of a CSS;51 PTZ-Pt-NAP has a slightly higher

calculated barrier height, marginally above the ν1 level and experimentally shows a much

reduced effect; and OMePTZ-Pt-NAP has no crossover point and experimentally shows no

effect. The remarkable agreement between the calculated barrier heights relative to vibrational

energies and observed effect is likely at least in part fortuitous, as there are some deficiencies

with the methods employed in these calculations to represent the vibrational coordinate.

The surfaces shown in Figure 4.18 used the “vibrational” coordinate, constructed by follow-
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ing the ground state νa(C≡C) vibrational mode. As with the “unrelaxed” surfaces, there are cros-

sovers between the triplet CT and triplet CSS surfaces of PTZ-CH2-Pt-NAP and PTZ-Pt-NAP,

shown in Figure 4.18(ii), but not OMePTZ-Pt-NAP, consistent with the hypothesis proposed

above. The “vibrational” surface crossovers are lower in energy than those of the “unrelaxed”

surfaces, indeed, far lower than the experimentally determined vibrational energy levels, which

are displayed. Drawing conclusions in a similar manner to the “unrelaxed” surfaces would lead

to the erroneous prediction that both PTZ-CH2-Pt-NAP and PTZ-Pt-NAP would show the

same degree of effect, were the “vibrational” surfaces used. A possible explanation for this is

that the νa(C≡C) vibrational mode of the ground state is a poor representation of equivalent

modes in the excited states, as suggested by the excited state frequency calculations presented

in Section 4.1.

In conclusion, the “unrelaxed” and “vibrational” potential energy curves shown in Figures

4.17 and 4.18 are in reasonable agreement with the experimentally observed ultrafast dynamics

of PTZ-CH2-Pt-NAP, PTZ-Pt-NAP and OMePTZ-Pt-NAP. These calculations suggest that

the presence of a crossover between the CSS and CT states in the vicinity of the minimum en-

ergy point for the CT state is required for the effect to be observed. Calculations of this type

could therefore serve as a predictive diagnostic to guide future experimental investigations to-

ward potentially interesting target compounds. However, these calculations shed no further light

on the mechanism behind the rapid population change from CT to 3NAP when vibrational excit-

ation occurs in the excited state. This rate acceleration effect is especially puzzling for the case

of OMePTZ-Pt-NAP, for which these calculations predict there should be no effect whatso-

ever. To answer the remaining questions, future investigations should include a more expansive

exploration of the excited state PESs of these complexes. Furthermore, non-adiabatic effects in

these complexes are neglected in the methods employed to conduct the above investigations. It

would therefore be potentially fruitful to include non-adiabatic effects in future investigations,

particularly with regards to the rate acceleration effect discussed above. Lastly, the combination

of high quality PESs with non-adiabatic couplings would provide fertile ground for quantum

dynamics investigations, which could be used to establish a more quantitative description of the

ultrafast dynamics of this family of compounds.
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Chapter 5

Electron transfer in Pt cis-acetylides

The existing examples of controllable electron transfer on the molecular scale have all

been based on quasi-linear systems. The early theoretical work of Skourtis, Beratan and

co-workers,33,34,37 which established that manipulating electron transfer through vibrational

excitation was indeed possible, focused on linear Donor-Acceptor (D-A) arrangements in

which two parallel pathways could be taken from donor to acceptor. The realisation of these

ideas came in the form of Donor-Bridge-Acceptor (D-B-A) systems that, whilst not necessarily

maintaining a spatially linear arrangement, had only one of each component.36,51,53,299 A logical

extension of this work is to increase the number of components in the system, increasing

either the number of acceptors or donors. This would provide the possibility of introducing

directionality into the manipulation of electron transfer. Both of these scenarios have been

suggested and explored theoretically by Skourtis, Beratan and co-workers.38,39 The approach

taken in this chapter, in which a D-B-A-B-D architecture is constructed based on the building

blocks of a D-B-A system, is illustrated in Figure 5.1.

5.1 Designing directionality

Within the scope of platinum chemistry, the implementation of the proposed D-B-A-B-D ar-

chitecture could take a number of forms. One way to achieve this would be to retain the trans-

acetylide geometry employed in Chapter 4, using two donor ‘arms’ on either side a the platinum

centre, with a cyclic acceptor ligand attached to the platinum, yielding a linear, rotaxane-like
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Figure 5.1: Creating directionally controllable electron transfer using linear systems as a tem-
plate.

geometry. This would be challenging, however, since it would necessitate the use of Pt(IV) in

place of Pt(II) and likely result in a large change in the photochemistry of the system,300 and it

is desirable to change as little as possible whilst increasing complexity.
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Figure 5.2: Chemical structures of the three isotopologues of [Pt(bipyCOOEt)(C≡C-Ph-
CH2-PTZ)2]: 12-12, 13-12 and 13-13. 13C is represented by •. The B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) optimised geometry is shown on the right-hand side.

Alternatively, a non-linear D-B-A-B-D architecture could be realised with a Pt(II) cis-

acetylide complex. This would allow the D-B fragments previously investigated to be util-

ised to construct a new D-B-A-B-D pentad. Given that experimentally the vibrational control

experiments are monitored by infra-red absorption spectroscopy, a candidate complex must

also contain ‘IR reporter’ groups, such as carbonyls or nitriles. Fortunately, the synthesis of

just such a complex, [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] (12-12), was reported by McGar-

rah and Eisenberg in 2003.301 The chemical structure is illustrated in Figure 5.2. The electron

transfer properties of this complex are well documented: a number of Metal to Ligand Charge

Transfer (MLCT) and Charge Separated States (CSSs) may be observed following the absorp-
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tion of a photon of visible light.301,302 The presence of two, spatially separated phenothiazine

donors means that any CSSs come in degenerate pairs, formally localized either on the ‘left-’ or

‘right-’ side of the molecule. The electronic structure of the complex will be discussed in detail

in Section 5.3.

For the purposes of directional control over electron transfer, however, there is one major

issue with 12-12: the presence of two planes of symmetry. This means that the two acetylide

vibrations cannot be distinguished spectroscopically in a conventional, solution-phase experi-

ment. Gas phase molecular beam experiments could potentially provide access to directionally

aligned molecules;303,304 however, it is likely population transfer would still occur between the

two degenerate acetylide vibrational modes.305 It is also of note that 12-12 is not stable in

the gas phase. There is therefore no way of specifically exciting one of the two acetylides

in 12-12. However, the spectroscopic equivalence between the two vibrational modes could

be lifted by selective isotopic labelling of one acetylide, as illustrated in Figure 5.2. Within

the Born-Oppenheimer approximation, the electronic structure of the system will be unaffected

by isotopic substitution; however, the addition of two atomic mass units to one of the acetyl-

ides should result in two spectroscopically distinct acetylide vibrational modes, separated by

∼80 cm−1 due to the change in reduced mass. This would lead to a scenario analogous to that

described in Ref. [37], which explores the effect of coupling of only one of two pathways from

donor to acceptor with vibrational excitation on the rate of electron transfer. It was shown in

that reference that vibrational excitation could have either a strong, positive or weak, negative

effect on the rate of electron transfer.

It should be noted that asymmetric isotopic labelling of Pt(II) diimine cis-acetylides presents

a significant synthetic challenge, since there is no known synthetic procedure that results in

the mono-ligation of Pt(II) diimine dichloride, the most commonly used starting material for

this family of compounds, by an acetylide.306,307 A statistical mixture of the unlabelled form

of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], 12-12, the partially isotopically labelled isotopomer,

13-12 and the doubly labelled isotopomer, 13-13, could be achieved by mixing labelled and

unlabelled forms of the acetylide ligand and performing the transmetallation reaction. The

isotopomers are illustrated in Figure 5.2 It would, however, be quite time consuming to separate
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the isotopomers on the basis of mass, since 12-12 has a molecular weight of ∼1120 atomic mass

units and thus the incremental difference in mass between isotopomers is on the order of 0.2%.

Chemical separation is impossible since 12-12 and 13-12 have identical reactivity.

An alternate route to 13-12 is via a bis-acetylide intermediate, in which one C≡C-Ph-CH2-

PTZ ‘arm’ is installed alongside an isotopically labelled 13C≡13C-TMS. The remaining Ph-

CH2-PTZ can then be attached to the isotopically labelled acetylide by Sonogashira coupling.

This technique was used by S. Archer in the synthesis of 13-12 and is described in detail in Ref.

[54]. One advantage of this method is that it reduces the possibility of cross-contamination of

12-12, 13-12 and 13-13, since all of the products formed in the reaction can be separated before

the final Ph-CH2-PTZ is attached.

5.2 Vibrational structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-

PTZ)2]

Since the purpose of 13-12 is to be used in vibrational control experiments, it is vital that the

vibrational structure is well understood. As the only difference between 12-12 and 13-12 is the

addition of two neutrons, one would expect little difference in their IR absorption spectra. This,

however, is not the case. Figure 5.3 depicts the 1450 cm−1 to 2200 cm−1 portion of the ground

state FTIR spectra of the three isotopomers, 12-12, 13-12 and 13-13, in CH2Cl2. As expec-

ted, outside of the acetylide region (∼2000 cm−1 to ∼2200 cm−1) there is very little difference

between the isotopomers. 13-12 and 13-13 both display a small shoulder on the carbonyl peak

at ∼1710 cm−1 that is slightly more intense for 13-13. In the region of 1600 cm−1, 13-13 displays

slightly increased absorption when compared to the other two isotopologues investigated.

The most marked differences are observed in the acetylide region. The most significant

features from this region are enumerated in Table 5.1. As expected, the unlabelled 12-12 has

two peaks in the acetylide region, at 2127 cm−1 and 2117 cm−1, corresponding to the symmet-

ric and asymmetric acetylide combination modes, respectively. One would therefore expect

the partially labelled isotopomer, 13-12, to have one peak with energy approximately midway

between these two peaks at 2122 cm−1, corresponding to the ν(12C≡12C) stretch and another ap-
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Figure 5.3: Experimental ground state FTIR spectra of the three isotopologues of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]. The unlabelled isotopomer, 12-12, is depicted in black.
The partially labelled isotopomer, 13-12, is depicted in red. The doubly labelled isotopomer,
13-13, is depicted in blue. The 1450 cm−1 to 1800 cm−1 region is almost identical for all three
isotopologues. The 2000 cm−1 to 2150 cm−1 region is magnified in the inset.54

proximately 80 cm−1 below this at approximately 2142 cm−1, corresponding to the ν(13C≡13C)

stretch. Finally, the doubly isotopically labelled species, 13-13, would be expected to have

two peaks at approximately 2047 cm−1 and 2037 cm−1. Indeed, vibrational frequencies of these

isotopomers within the harmonic approximation in the conformation shown in Figure 5.2, cal-

culated using B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) and scaled with an

appropriate scaling factor54,271,272,308,309 yield frequencies in very good agreement with these

predictions.

Unfortunately, the experimentally observed vibrational frequencies do not agree well with

these predictions. Instead of the expected two band structure, 13-12 displays three peaks, at

2122 cm−1, 2051 cm−1 and 2033 cm−1. 13-13 displays two peaks, as expected, at 2052 cm−1 and

2031 cm−1. These peaks are, however, unexpectedly broad and not in the expected position.

Deconvolution suggests up to four peaks contribute to the two bands of 13-13.54 The possibility

that the additional peaks are due to interactions with the solvent can be ruled out, since spec-

tra recorded in toluene and in the solid state using Attenuated Total Reflectance (ATR) retain
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the unexpected peaks.54 Furthermore, Two-Dimensional IR (2DIR) experiments performed on

13-12 show that the lifetime of the high and low energy vibrations are significantly different: the

band at 2122 cm−1 has a lifetime of 5.6 ± 0.4 ps whereas the band at 2051 cm−1 has a lifetime

of 2.5 ± 0.2 ps.55

To investigate the origin of the unexpected bands in the vibrational spectrum of 13-12, it

was determined that anharmonic corrections should be included in the calculations. There are

a number of ways that anharmonicity can be accounted for, in analogy to the hierarchy of

approaches to include electron correlation.310 Unfortunately, as with correlated electronic struc-

ture methods, methods for including anharmonicity scale poorly with system size. For a large

system such as [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], containing 562 electrons and consisting

of 113 atoms and therefore 333 vibrational degrees of freedom, only anharmonic corrections

of modest computational cost are tractable. Fortunately, Generalized Vibrational Perturbation

Theory to second order (GVPT2)311–316 has been shown to perform exceedingly well in the

description of transition metal complexes such as those at hand.130,317,318 In particular, the com-

bination of a hybrid functional, such as B3LYP, with GVPT2 has been shown to perform well

in the description of ligand-centred vibrations in organometallic transition metal complexes.130

Furthermore, unlike conventional VPT2, GVPT2 is capable of correctly describing resonances

by de-perturbation followed by reduced dimensionality variational treatment of the resonant

Isotopes of Experiment Harmonic frequency(a) Anharmonic frequency(b)

Substituent acetylides / cm−1 / cm−1 / cm−1

p-CH2-PTZ 12C both sides 2127, 2117 2130, 2117 2129, 2124
13C and 12C 2122, 2051, 2033 2125, 2041 2123, 2048, 2035
13C both sides 2052, 2031 2048, 2036 2045, 2043

p-CH3
(c) 13C and 12C 2121, 2050, 2030, 2027 2123, 2040 2121, 2044, 2029,

2028, 2009, 2005

Table 5.1: Comparison between experimental FTIR and calculated vibrational frequen-
cies in the acetylide region for various isotopomers of [Pt(bipyCOOEt)(C≡C-Ph-R)2]
(R = p-CH2-PTZ, p-CH3) in CH2Cl2. Calculations performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). (a) Harmonic frequencies are empirically scaled by
×0.966, in accordance with previous work.271,272,308,309 (b) Anharmonic corrections included us-
ing Generalized Vibrational Perturbation Theory to 2nd order (GVPT2) in which normal modes
below 100 cm−1 were excluded from the perturbative treatment, frequencies are empirically
shifted by −46 cm−1 and −40 cm−1 when R = p-CH2-PTZ and p-CH3, respectively. (c) Calcu-
lations with R = p-CH3 employed a truncated geometry, in which the esters are removed from
the bipy-type ligand.
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Figure 5.4: Comparison of experimental ground state FTIR spectra of 13-12 (thick, red line)
to calculated vibrational spectra with anharmonic corrections. Calculations were performed us-
ing B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), with anharmonic corrections
included using Generalized Vibrational Perturbation Theory to 2nd order (GVPT2) and cal-
culated spectra, convoluted with Lorentzian functions with FWHM = 10 cm−1, are shown as
dashed lines. The anharmonic corrections were included in 4 ways: GVPT2 was applied to all
normal modes of the systems with no further corrections (“GVPT2”, turquoise), GVPT2 was
applied to all normal modes and a Fermi resonance was specifically included between 13ν288 and
13ν234 +13 ν130 (“force Fermi”, purple), normal modes below 100 cm−1 were excluded from the
perturbative treatment (“skip PT”, scarlet), and normal modes below 100 cm−1 were excluded
from the perturbative treatment and a Fermi resonance was specifically included between 13ν288

and 13ν234 +13 ν130 (“force Fermi + skip PT”, blue). The 2000 cm−1 to 2150 cm−1 region is mag-
nified in the inset. Within the inset all calculated peaks are empirically shifted by as indicated to
guide the eye. The contributions from fundamental and combination bands are shown as darker
and lighter sticks, respectively, in the inset.

modes.314,319,320 This is of particular concern in the cases of 13-12 and 13-13, since isotopic

substitution has been known to result in accidental first-order “Fermi” resonances321 and higher-

order “Darling-Dennison” resonances.322,323 These can have large effects on fundamental modes

and vibrational dynamics.324,325

Therefore, vibrational frequency calculations of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]

were performed using the B3LYP functional124,125 and a moderately large basis set consisting of

SDD for platinum258 and 6-311G(d,p) for all other atoms265,266 in CH2Cl2 solvent as described

by the Integral Equation Formalism of the Polarizable Continuum Model (IEFPCM),256,257
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and including anharmonic corrections using GVPT2311–316 as implemented in Gaussian 09,

revision D.01.255 The calculation yielded 333 anharmonically corrected fundamental modes,

333 overtone modes and 333×332
2 = 55278 combination modes. It is therefore impractical to

tabulate all calculated modes in this work. Instead, the calculated frequencies of select modes

are provided in Table 5.1. The experimental spectrum of 13-12 is compared to calculated

vibrational spectra that have been anharmonically corrected in a number of ways in Figure

5.4. Initial calculations were performed in which all 333 normal modes of the molecule were

included in the perturbative treatment, shown in turquoise. Comparing the raw calculated

spectrum with experiment, there is reasonable agreement in the 1450 cm−1 to 1800 cm−1 region,

although calculated intensities are slightly over-estimated at ∼1500 cm−1 and significantly un-

derestimated at ∼1730 cm−1, the carbonyl region. One possible explanation for the discrepancy

in calculated intensity in the carbonyl region is that anharmonic corrections were calculated for

only one conformer of the molecule, illustrated in Figure 5.2, due to the computational cost.

Other conformers, related by rotation of the ester groups, could have higher transition dipole

moments associated with their carbonyl stretches and thus more intense peaks in this region. It

should be noted that this conformer was specifically chosen to reduce the pseudo-symmetry of

the molecule and therefore simplify excited state assignment (See Section 5.3).

For the majority of the spectrum it is unnecessary to include any empirical adjustment to the

calculated spectrum for good agreement with experimental measurements to be obtained; how-

ever, in the acetylide region there remains a deviation between calculations and observations,

both in peak position and peak shape. When all 333 normal modes are included in the perturb-

ative treatment there appear to be only two peaks in the acetylide region, blue shifted from the

experimentally observed peaks. Examining the region in detail, it is observed that a combin-

ation band appears in the calculations to be almost iso-energetic with the ν(13C≡13C) stretch,

mode 13ν288. The combination band consists of two fundamental bands, 13ν234 and 13ν130. Dis-

placement vectors for the normal modes are presented in Figures 5.5 and 5.6. Since one of the

conditions of a Fermi resonance is that the one and two quanta modes must be almost ener-

getically degenerate, it would be expected that the fundamental ν288 should be resonant with

the combination ν234 + ν130; however, GVPT2 does not predict that the two modes are reson-
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(i) 12-12 12ν289: the symmetric acetylide
combination.
νAnh. = 2175 cm−1

(ii) 13-12 13ν289: 12C≡12C stretch.
νAnh. = 2169 cm−1

(iii) 12-12 12ν288: the asymmetric acetylide
combination.
νAnh. = 2170 cm−1

(iv) 13-12 13ν288: 13C≡13C stretch.
νAnh. = 2094 cm−1

Figure 5.5: Displacement vectors of acetylide-centred vibrational modes of two isotopomers
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], 12-12 and 13-12. Calculated anharmonically cor-
rected vibrational energies are displayed below each vibrational mode. Calculations were per-
formed using B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), with anharmonic
corrections included using Generalized Vibrational Perturbation Theory to 2nd order (GVPT2)
in which normal modes below 100 cm−1 were excluded from the perturbative treatment.54

ant. Indeed, if the calculation is specifically instructed to treat 13ν288 and 13ν234 +13 ν130 to be

resonant, “force Fermi” in Figure 5.4, further discrepancies arise in the calculated spectrum.

The intensities of the now resonant modes drop to near 0, though peak positions are almost

unaffected. Curiously, there are also marked changes in absorption intensity in the 1450 cm−1

to 1800 cm−1 region, despite the fact that these modes should ostensibly be unaffected by the

additional resonance.

Careful inspection of the GVPT2 and force Fermi calculations reveal one possible source of

the inconsistent behaviour: low energy vibrational modes vary in energy and intensity wildly

following the perturbative treatment. Since the potential energy surface is shallow in the regions

that these modes span, numerical errors in the 3rd and 4th order derivatives, combined with po-

tentially significant rotational character may lead to breakdown of the perturbative treatment.326

Accordingly, it is advisable to exclude the high-order couplings from these modes from the
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(i) 12-12 12ν234: right-hand side wave.
νAnh. = 1304 cm−1

(ii) 13-12 13ν234: 13C side wave.
νAnh. = 1304 cm−1

(iii) 12-12 12ν233: left-hand side wave.
νAnh. = 1309 cm−1

(iv) 13-12 13ν233: 12C side wave.
νAnh. = 1308 cm−1

(v) 12-12 12ν131: the symmetric breathing
combination.

νAnh. = 781 cm−1

(vi) 13-12 13ν131: 12C side breathing
mode.
νAnh. = 781 cm−1

(vii) 12-12 12ν130: the asymmetric breathing
combination.

νAnh. = 779 cm−1

(viii) 13-12 13ν130: 13C side breathing
mode.
νAnh. = 778 cm−1

Figure 5.6: Displacement vectors of the component fundamental modes of significant
combination modes of two isotopomers of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], 12-12
and 13-12. Calculated anharmonically corrected vibrational energies are displayed be-
low each vibrational mode. Calculations were performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), with anharmonic corrections included using Gen-
eralized Vibrational Perturbation Theory to 2nd order (GVPT2) in which normal modes below
100 cm−1 were excluded from the perturbative treatment. Note that modes are numbered with
descending harmonic vibrational energy.54
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perturbation.327 As a result of this, the calculations were repeated such that all normal modes

with harmonic frequencies <100 cm−1 (a total of 27 modes in the case of 13-12) were excluded

from the perturbative treatment. The resultant spectrum is denoted “skip PT” in Figure 5.4.

Exclusion of the low energy modes results in significant changes in the spectrum overall. In

the 1450 cm−1 to 1600 cm−1 region absorption intensity as calculated by “skip PT” decreases

compared to “GVPT2”. The majority of peaks in this region move little, apart from the peak

at ∼1590 cm−1 which undergoes a blue-shift of approximately 10 cm−1 under the “skip PT” ap-

proach. It is in the acetylide region, however, that the largest differences between “skip PT”

and “GVPT2” are observed in Fig. 5.4. The acetylide centred fundamental bands are also

blue-shifted by an average of approximately 10 cm−1 in “skip PT” compared to “GVPT2”. The

previously near-degenerate combination mode, 13ν234 +13 ν130, is red-shifted by approximately

5 cm−1. The combination of these shifts results in a three-band pattern in the acetylide re-

gion, similar to that observed experimentally. However, the calculated vibrational energies are

blue-shifted compared to experiments. If a constant red-shift of −46 cm−1 is applied to the

acetylide region, excellent agreement between the calculated and experimental spectra can be

achieved. When scaling harmonic vibrational frequencies obtained via B3LYP, it is observed

that a different scaling factor is required to correct the acetylide region compared to the finger-

print region.51,271,272 There are a number of possible explanations for this: 1) acetylide-centred

vibrations are more anharmonic than other vibrations, 2) B3LYP does not correctly describe the

2nd derivatives associated with acetylide-centred vibrations correctly, 3) some combination of

these factors. It should also be noted that it has been observed that calculated anharmonicities

are relatively conserved, even between DFT- and WFT-based methods, which has lead to the

adoption of so called “hybrid” approaches, in which anharmonic corrections obtained through

a method with favourable scaling are combined with harmonic frequencies from higher level

methods.130,328–331 It may be inferred from the success of these techniques that for methods that

do not correctly describe the second derivatives associated with a vibration correctly, i.e. the

corresponding peak is incorrectly placed, the shape of the PES as described by the higher-order

derivatives and thus the inter-mode anharmonic coupling is still adequately described by such

a method. It is therefore reasonable to assume that the unexpected third band in the acetylide
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Figure 5.7: Comparison of experimental ground state FTIR spectra of the three isotopologues
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to calculated vibrational spectra with anharmonic
corrections. The experimental spectra (thick lines) of 12-12 (black), 13-12 (red) and 13-13
(blue) are shown alongside calculated spectra (dashed lines), convoluted with Lorentzian func-
tions with FWHM = 10 cm−1. The 2000 cm−1 to 2150 cm−1 region is magnified in the in-
set. Within the inset all calculated peaks are empirically shifted by −46 cm−1 to guide the
eye. The contributions from fundamental and combination bands are shown as darker and
lighter sticks, respectively, in the inset. Calculations were performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), with anharmonic corrections included using Gener-
alized Vibrational Perturbation Theory to 2nd order (GVPT2). Normal modes below 100 cm−1

were excluded from the perturbative treatment.54

region observed in the experimental FTIR spectrum of 13-12 can indeed be assigned to the com-

bination band 13ν234 +13 ν130 on the basis of calculations involving correcting B3LYP/SDD[Pt]6-

311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) harmonic frequencies with anharmonic corrections

obtained by GVPT2 in which low energy modes are removed from the perturbative treatment.

Calculations for all three of the isotopomers of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] stud-

ied are presented in Figure 5.7. In the 1450 cm−1 to 1580 cm−1 region, calculations predict a

more marked difference between the isotopomers than is observed experimentally, particularly

in terms of band intensity. In contrast, the peak at ∼1600 cm−1 is calculated to be of almost equal

intensity for all three isotopomers, unlike experimental observations. For 13-13, the inclusion

of anharmonic corrections suggest a red-shifted shoulder should be present in the carbonyl re-

gion, in good agreement with experimental observations. In the acetylide region, calculations
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of 12-12 predict that the two acetylide fundamentals should be separated by 5 cm−1, approxim-

ately half of the observed splitting. Furthermore the intensity of the lower energy, asymmetric

combination normal mode is underestimated by calculations. Importantly, the calculations do

not predict that the combination bands on either ‘side’ of the molecule that are equivalent to

those found in 13-12 should be of significant intensity, in agreement with experiment. The

displacement vectors of these modes are illustrated in Figures 5.5 and 5.6.

As previously discussed, the calculated spectrum of 13-12 is in good agreement with exper-

iments in acetylide region. For the doubly labelled isotopomer, 13-13, calculations predict that

the two acetylide-centred vibrational modes should be close in energy to each other, similar to

the case of 12-12. This is in disagreement with experimental observations. For 13-13, calcula-

tions also do not suggest that the combination bands equivalent to those found in 13-12 should

have appreciable intensity. One possible explanation for this is that since the two 13C≡13C

acetylides of 13-13 are equivalent, the resulting coupled acetylide normal modes are delocal-

ised across both ‘arms’ of the molecule, disrupting anharmonic coupling with the phenyl- and

PTZ-centred modes that constitute the combination bands seen in 13-12.

In addition to [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], another Pt complex was synthes-

ised by the route discussed above, in which the phenothiazine moieties are replaced with

hydrogens.54 The chemical structure of this compound, ptol-s, and its FTIR absorption

spectrum are presented in Figure 5.8. The spectrum of ptol-s is much less congested in

the 1450 cm−1 to 1650 cm−1 region than in the larger molecules previously discussed, with

a total of six easily distinguishable peaks in this region. A prominent carbonyl band is

observed at ∼1730 cm−1 with a small shoulder on the red side of the peak, followed by a

complex pattern of at least 5 peaks in the acetylide region, despite the presence of only two

acetylide bonds in ptol-s. The vibrational spectrum of ptol-s was therefore calculated using

B3LYP/SDD[Pt]6-311G(d,p)[H,C,N]/IEFPCM(CH2Cl2), including the previously described

GVPT2 to introduce anharmonic corrections in which normal modes with harmonic frequencies

below 100 cm−1 were excluded from the perturbative treatment, a total of 13 modes in the case

of ptol-s. It is important to note that in calculations of ptol-s a truncated geometry was used

in which the esters are removed, reducing the size of the system from 358 electrons and 71
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Figure 5.8: Comparison of experimental ground state FTIR spectra of ptol-s to the cal-
culated vibrational spectra with anharmonic corrections. The experimental spectra (thick
line) are shown alongside calculated spectra (dashed lines), convoluted with Lorentzian func-
tions with FWHM = 10 cm−1. The 2000 cm−1 to 2150 cm−1 region is magnified in the in-
set. Within the inset all calculated peaks are empirically shifted by −40 cm−1 to guide the
eye. The contributions from fundamental and combination bands are shown as darker and
lighter sticks, respectively, in the inset. Calculations were performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N]/IEFPCM(CH2Cl2), with anharmonic corrections included using Generalized
Vibrational Perturbation Theory to 2nd order (GVPT2) and were performed with a truncated
geometry, in which the ester groups are absent. Normal modes below 100 cm−1 were excluded
from the perturbative treatment.54

atoms to 282 electrons and 53 atoms, and therefore 153 vibrational degrees of freedom. The

calculated spectrum of ptol-s, also presented in Figure 5.8, is in very good agreement with

the experimentally observed FTIR spectrum. In the 1450 cm−1 to 1650 cm−1 region all peaks

apart from an absent peak at ∼1560 cm−1 are found in the calculated spectrum to be close in

energy to the experimental observations. The slight disagreement between the calculations and

experiment in this region may be due to the truncated geometry employed in the calculation,

which also explains the absence of peaks in the ester region.

In the acetylide region of ptol-s, a number of peaks are calculated. The two acetylide-

centred fundamentals, illustrated in Figure 5.9, are separated by ∼80 cm−1, in accordance with

the difference in reduced mass between the two acetylides. The acetylide modes are joined

by four prominent combination bands, constructed of low energy fundamentals located mainly
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(i) ptol-s ν131: 12C≡12C stretch.
νAnh. = 2161 cm−1

(ii) ptol-s ν130: 13C≡13C stretch.
νAnh. = 2084 cm−1

Figure 5.9: Displacement vectors of acetylide-centred vibrational modes of ptol-s. Calculated
anharmonically corrected vibrational energies are displayed below each vibrational mode. Cal-
culations were performed using B3LYP/SDD[Pt]6-311G(d,p)[H,C,N]/IEFPCM(CH2Cl2), with
anharmonic corrections included using Generalized Vibrational Perturbation Theory to 2nd or-
der (GVPT2) in which normal modes below 100 cm−1 were excluded from the perturbative
treatment.54

on the p-tolyl fragments and illustrated in Figure 5.6. Of particular note are ν98 and ν97 of

ptol-s, which are equivalent to modes ν234 and ν233 in 13-12, the former of which is one of

the components of the combination band ν234 + ν130 that is responsible for the additional peak

observed in 13-12. These two modes are both involved in combinations with a second pair of

phenyl-centred modes, ν63 and ν62, resulting in the two combination bands ν98 +ν62 and ν97 +ν63

that, when empirically shifted by −40 cm−1, are co-incident with an experimentally observed

peak at ∼2005 cm−1. At slightly higher energy another pair of near degenerate combination

modes consisting of phenyl-centred modes on either side of the molecule, ν123 and ν122, both

combined with the in-plane bend of the 12C≡12C acetylide, mode ν41. The near-degeneracy of

these modes may suggest they could engage in a second-order, “Darling-Dennison”, resonance;

however, this type of four-quanta resonance is not included in GVPT2.313 The resultant splitting

of this peak could lead the calculated spectrum to reproduce the experimental spectrum to good

accuracy.

In summary, the unexpectedly complex vibrational spectra of three isotopomers of

[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]; 12-12, 13-12 and 13-13, as well as one isotopomer

of [Pt(bipyCOOEt)(C≡C-Ph-CH2-Me)2]; ptol-s, were successfully described using the

B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) method including anharmonic

corrections with GVPT2 in which normal modes below 100 cm−1 were excluded from the

perturbative treatment. The additional peaks in the experimental spectra of the partially
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(i) ptol-s ν123: 13C side phenyl in plane twist.
νAnh. = 1551 cm−1

(ii) ptol-s ν122: 12C side phenyl in plane
twist.
νAnh. = 1551 cm−1

(iii) ptol-s ν98: 12C side wave.
νAnh. = 1220 cm−1

(iv) ptol-s ν97: 13C side wave.
νAnh. = 1216 cm−1

(v) ptol-s ν63: 13C side phenyl out of plane
twist.
νAnh. = 836 cm−1

(vi) ptol-s ν62: 12C side phenyl out of
plane twist.
νAnh. = 832 cm−1

(vii) ptol-s ν41: 12C acetylide in plane bend.
νAnh. = 519 cm−1

Figure 5.10: Displacement vectors of the component fundamental modes of significant com-
bination modes of ptol-s. Calculated anharmonically corrected vibrational energies are dis-
played below each vibrational mode. Calculations were performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N]/IEFPCM(CH2Cl2), with anharmonic corrections included using Generalized
Vibrational Perturbation Theory to 2nd order (GVPT2) in which normal modes below 100 cm−1

were excluded from the perturbative treatment. Note that modes are numbered with descending
harmonic vibrational energy.54
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isotopically labelled 13-12 and ptol-s were found to be due to the presence of relatively

strongly allowed combination modes, consisting mainly of phenyl-acetylide-centred vibrations.

A selection of the most important calculated vibrational frequencies are provided in Table

5.2. The normal modes that are strongly coupled to the acetylide vibrations of 13-12 are of

particular interest, since they could be expected to play a significant role in the dynamics of

vibrational excitation in the molecule. The successful description of the vibrational structure of

13-12 enabled the investigation of its potential in “vibrational control” experiments, to which

we will next turn our attention.

Species Mode Frequency / cm−1 Intensity / km mol−1

13-12 13ν289 2168.636 501.06
13ν288 2094.321 555.67
13ν234 +13 ν130 2081.426 491.77

ptol-s ν131 2160.962 54.48
ν130 2084.443 51.43
ν123 + ν41 2068.451 103.72
ν122 + ν41 2069.240 53.39
ν98 + ν62 2048.592 15.27
ν97 + ν63 2045.463 14.48

Table 5.2: Selected calculated vibrational frequencies of 13-12 and ptol-s. Calculations per-
formed using B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) including anharm-
onic corrections included using Generalized Vibrational Perturbation Theory to 2nd order
(GVPT2) in which normal modes below 100 cm−1 were excluded from the perturbative treat-
ment. Displacement vectors of the vibrational modes are given in Figures 5.5, 5.6, 5.9 and 5.10.
Calculations of ptol-s employed a truncated geometry, in which the esters are removed from the
bipy-type ligand.
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5.2.1 Ultrafast spectroscopy of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]

As discussed in Section 5.1, the motivation for the synthesis and characterization of 13-12

was to enable investigations into the use of 13-12 in ultrafast (∼fs) spectroscopic experiments

in which the evolution of the electronically excited state is directly manipulated by means of

targeted vibrational excitation of the selected molecular modes. Before exploring the results

of these investigations, a brief overview of the electronic structure is presented to aid in the

interpretation of the results. A more extensive investigation of the electronic structure is be

presented in Section 5.3, including validation of the methods discussed below.

To retain consistency with the methods used in Section 5.2 to explore the vibrational

structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], calculations were initially performed using

ground state and time-dependent B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2).

As well as providing a good description of the vibrational structure in organometallic com-

plexes, these methods have been shown to perform relatively well in general in the calculation

of excited state properties,170 and specifically well in the calculation of ground-to-excited state

energy gaps for a series of Pt complexes.332

Select frontier molecular orbitals are shown in Figure 5.11. As expected, the LUMO lies

on the bipyCOOEt fragment of the molecule: the acceptor in the D-B-A-B-D structure. The

LUMO also has very minor Pt 5dyz and acetylide π∗ character. The next lowest unoccupied

orbital (not shown) is ∼0.75 eV higher in energy than the LUMO and also localised on the

acceptor. The occupied orbitals are localised on either of the two donors, or on the bridge. The

HOMO and H−1 are almost degenerate in energy and are centred on the two PTZ fragments.

Since the conformation used in the calculations is asymmetrical, the orbital on the right-hand

side is slightly less favoured than the left-hand side, though the effect is small (<0.01 eV). As

a result of this small difference in energy it is expected that in the equilibrium geometry the

right-hand side localised CSS (12-12: RHSCSS, 13-12: 13CSS) should be marginally lower in

energy than the left-hand side localised equivalent (12-12: LHSCSS, 13-12: 12CSS).

Below these orbitals, there are three occupied orbitals constructed from different combina-

tions of Pt d-orbitals and acetylide in- and out-of-plane π-orbitals. The highest of these, H−2,

is a combination of the Pt 5dxz with two out-of-plane π-orbitals of opposite phase that are con-
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(i) LUMO: ε = −3.18 eV

(ii) H−1: ε = −5.31 eV (iii) HOMO: ε = −5.30 eV

(iv) H−2: ε = −5.66 eV

(v) H−3: ε = −5.86 eV

(vi) H−4: ε = −6.38 eV

Figure 5.11: Selected singlet frontier molecular orbitals of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using Restricted B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Isovalue = 0.02

√
e−bohr−3.

jugated to the phenyl π system. The H−3 orbital is close in energy to H−2 and consists of the

same out-of-plane, bridge centred orbitals, this time in phase, combined with the Pt 5dyz orbital.

Unlike H−2, H−3 also has a very small amount of character coming from p-orbitals of the bipy

fragment. The H−4 orbital is slightly different to the previous two orbitals. In H−4 the Pt 5dx2-y2

combines with two acetylide in-plane π-orbitals that are of the same phase. There is also a very

small contribution from σ-orbitals from both of the bridge phenyl groups as well as the bipy

fragment.
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(i) dx2-y2CT.

(ii) dyzCT.

(iii) dxzCT.

(iv) 12-12: LHSCSS, 13-12: 12CSS. (v) 12-12: RHSCSS, 13-12: 13CSS.

Figure 5.12: Electron density difference diagrams for selected electronically excited singlet
states of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using Restricted B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Blue regions define a volume within which electron
density is lost and red regions a volume within which electron density is gained with respect to
the ground state. Isovalue = 0.004 e−bohr−3.

Transitions between the occupied and unoccupied orbitals discussed result in a number of

electronically excited states. For the sake of simplicity, only states of singlet character are

detailed in this section. A more thorough examination of the electronic structure is presented

in Section 5.3. Maps of the difference in electron density between the ground and five lowest

singlet excited states are shown in Figure 5.12. These diagrams are constructed by calculating

the electron density as a function of space for a given excited state and subtracting the electron

density of the singlet ground state, revealing volumes within which the electron density is higher

or lower in that excited state than in the ground state. The calculations reveal two types of

excited state: MLCTs and CSSs. The three MLCT states correspond to transitions from H−2,

H−3 and H−4 to LUMO, yielding dxzCT, dyzCT and dx2-y2CT, respectively. In all three MLCT
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states, electron density is lost from the Pt and bridge regions and gained on the bipyCOOEt

fragment. In particular, the two MLCT states with out-of-plane π-character, dxzCT and dyzCT,

differ only by the density difference around the metal centre. It would therefore be expected

that it should be very difficult to distinguish between the three MLCT states spectroscopically,

particularly in the acetylide region. There are two CSSs, localised on either side of the complex,

corresponding to transitions from HOMO and H−1 to LUMO. These can be categorised based

on isotopomer. The right-hand side localised CSS is denoted RHSCSS for the unlabelled 12-12

and 13CSS for the partially labelled 13-12. The corresponding left-hand side localised CSSs are

LHSCSS and 12CSS, respectively. Unlike the MLCTs, the CSSs exhibit very small increases in

electron density on the Pt and the distal carbons of the acetylides. It should also be noted that

when an electron is lost from PTZ, the fragment becomes planar, as illustrated in the optimised

singlet CSS geometry of PTZ-PtH-NAP shown in Figure 4.10. The combination of these factors

should lead to two spectroscopically identifiable CSSs in the case of 13-12, in contrast with

the unlabelled 12-12, in which the CSSs are not spectroscopically distinguishable.272 It should

be noted that whilst the charge distributions derived from these calculations appear to be in

disagreement to those found in Ref. [302], which are fitted to experimental data, the diagrams

in Figure 5.12 are relative to the ground state which shows strong polarisation of the Pt-C bonds

and is calculated to have a dipole moment µ=16.5 D, in good agreement with the experimentally

measured value of µ=10.3 D for a similar complex, in which the bipy esters are replaced with

tBu groups.

In summary, the low-lying excited states of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] are as

follows: two CSSs, involving transfer from one of two phenothiazine-centred orbitals to a

bipyCOOEt π∗ orbital; and three MLCT states of similar character, involving transfer from

Pt 5d and acetylide π orbitals of various types to the same bipyCOOEt π∗ orbital.

With this in mind, the results of ultrafast UV pump-IR pump-IR probe investigations into

the controllability of electron transfer in 13-12 are presented in Figure 5.13. The experiment

is initiated by a UV-pump pulse at 400 nm. The results of this pump are probed by a broad-

band IR pulse at varying time delays. There is also an optional additional narrowband IR

pump pulse that is used to investigate the possibility of vibrational control of electron trans-
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Figure 5.13: Summary of experimental ultrafast spectroscopic investigations into the dynamics
of the electronically excited states of 13-12 from kinetic analysis. The experiment consists of
a 400 nm UV pump followed broadband IR probe pulse at time delay T, with an optional IR
pump pulse 2 ps after the actinic UV pulse. Electron transfer is initiated by the actinic pulse,
leading to the formation of a singlet Metal to Ligand Charge Transfer (1MLCT, black) state.
The 1MLCT state decays into a manifold of triplet MLCT states (3MLCT, black) with a lifetime
of 0.6 ps. Within this manifold, the signature an unrelaxed 3MLCT (3MLCT*, purple) can be
extracted. The 3MLCT state decays equally to the two Charge Separated States, localized on
either the 12C labelled side (12CSS, blue) or 13C labelled side (13CSS, green) with a lifetime of
14.7 ps. If the population distribution of the CSSs is disturbed they re-equilibrate with a lifetime
of 13.3 ps. The CSSs decay back to the ground state with a lifetime of 3.7 ns. The electron
transfer pathways in 13-12 can be manipulated by IR excitation of the transient 3MLCT* state
with pulses at 2104 cm−1 or 2016 cm−1, corresponding to the 12C≡12C and 13C≡13C stretches
respectively. Kinetic data courtesy M. Delor.55

fer. The actinic (UV) pulse results in the formation of a high energy singlet state, which is as-

signed MLCT character based on Transient UV Absorption (TA) and ultrafast Time-Resolved

IR (TRIR) data.55,272,301,302 This state, denoted 1MLCT in the diagram, has a lifetime of 0.6 ps.

This state undergoes relaxation processes, one of which is Intersystem Crossing (ISC) to the

triplet manifold. The calculations previously discussed describe a number of possible MLCT

states of differing character. However, within the resolution of the experiment, it is not pos-

sible to distinguish between them. Therefore, within the kinetic model it assumed that 1MLCT

represents a manifold of singlet MLCT states of differing character. Decay of 1MLCT via ISC

results in the concomitant formation of two states, also of MLCT character, that are denoted

3MLCT and 3MLCT*. 3MLCT is a triplet MLCT state with a lifetime of 14.7 ps. Like 1MLCT,
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3MLCT represents part of a manifold of triplet MLCT states. One of these states is 3MLCT*.

Within the resolution of the experiments it is not possible to tell whether 3MLCT* corresponds

to a vibrationally “hot” form of 3MLCT or whether it is a separate electronically excited state.

3MLCT* decays with a lifetime of 3.6 ps and is clearly distinguishable from 3MLCT in the TA

and TRIR data, though the differences are small. (See supplementary information of Ref. [55])

The two triplet MLCT states decay to form two further excited states, denoted 12CSS and 13CSS.

Since the two CSSs are electronically equivalent, they cannot be distinguished between in the

TA experiment. However, the asymmetric isotopic labelling of the acetylides in 13-12 leads

to different spectra observed in the TRIR experiment for 12CSS and 13CSS. A key observation

from the results of TA experiments is that the CSSs are populated on two timescales: one with a

lifetime of 3.6 ps that correlates with to population transfer from 3MLCT* to the CSS pair and

another with a lifetime of 14.7 ps that correlates with decay from 3MLCT. The pair of CSSs are

relatively long lived, with a lifetime of 3.7 ns. If the population distribution between the two

CSSs is perturbed they re-equilibrate with a lifetime of 13.3 ps.55

To achieve the stated aim of asserting directional control in 13-12, the system must be ma-

nipulable such that either 13CSS or 12CSS may be preferentially formed. Surveying the states

identified in the kinetic scheme shown in Figure 5.13, 3MLCT* provides an ideal target for

manipulation since 1) it has two distinct acetylide peaks, at 2104 cm−1 and 2016 cm−1, and 2)

it decays rapidly to the pair of CSSs. By including the optional IR pump pulse at the given

frequencies in the ultrafast TRIR experiments and comparing the resultant spectra to those re-

corded in the absence of an IR pump pulse, the possibility of a response as a result of vibrational

perturbation can be investigated. The results of these experiments are shown in Figure 5.14.

Figure 5.14 plots the difference between the absorption due to a CSS recorded when the

additional IR pump pulse is present and when the additional IR pump pulse is absent. If the IR

pump pulse had no effect on the population of the CSSs then the result would be zero. This is not

the case. Pumping either acetylide vibrational mode increases the observed absorption and thus

the population of CSS in the first few ps following IR perturbation; however, the effect is not

permanent as there is no difference in recorded spectra after ∼40 ps have elapsed. This is similar

to the acceleration observed in other systems,36,299 although some of the previously studied Pt
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Figure 5.14: Evidence of differential response after pumping the ν(13C≡13C) and ν(12C≡12C)
stretches of 13-12. See Figure 5.13 for a summary of experiments. Figures 5.14(i) and 5.14(ii)
depict the change in absorption due to the increase in population of the 12CSS (blue) and 13CSS
(green), respectively, as a result of pumping of the ν(13C≡13C) and ν(12C≡12C) stretches, re-
spectively, of the 3MLCT* state. The black dots denote individual data points. The dashed line
simulates the population of the CSSs if IR excitation resulted in symmetrical acceleration of
both pathways. Note that since excited state spectra are recorded as a difference with respect to
the ground state, the y axis is a double difference. Kinetic data courtesy M. Delor.55

complexes displayed permanent changes in population as a result of perturbation (See Chapter

4). Importantly, the response from the CSSs is asymmetrical: perturbation on one side of the

molecule preferentially accelerates formation of CSS on the other side of the molecule, e.g.

exciting ν(13C≡13C) accelerates formation of 12CSS. Moreover, there is a differential magnitude

in the observed acceleration: exciting ν(13C≡13C) causes a greater rate acceleration than exciting

ν(12C≡12C).

Simulated changes in the population dynamics as a result of these perturbations are shown

in Figure 5.15. The unperturbed formation of CSS occurs at a rate of 0.0552 ps−1. The effect of

IR excitation on this rate constant is as follows: exciting ν(13C≡13C) (Figure 5.15(i)) increases

Rate of formation
Vibration pumped k13CSS k12CSS

none 0.0552 ps−1

ν(13C≡13C) 0.0328 ps−1 0.0935 ps−1

(−41 ± 10%) (+69 ± 10%)
ν(12C≡12C) 0.0714 ps−1 0.0546 ps−1

(+29 ± 8%) (−1 ± 8%)

Table 5.3: Change in rate of CSS formation as a result of IR perturbation of the 3MLCT* state
of 13-12
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Figure 5.15: Result of kinetic modelling of ultrafast IR control experiments of 13-12. See
Figure 5.13 for a summary of experiments. Figures 5.15(i) and 5.15(ii) depict the effect of
excitation of the ν(13C≡13C) and ν(12C≡12C) stretches of the 3MLCT* state, respectively, on
the population of 3MLCT* (purple), 3MLCT (black), 12CSS (blue) and 13CSS (green) within
the kinetic model. The dashed line illustrates the average population of both CSSs if no IR
excitation had occurred. Kinetic data courtesy M. Delor.55

the rate of formation of 12CSS to 0.0935 ps−1, a 69 ± 10% acceleration, whilst the formation

of 13CSS is decreased to 0.0328 ps−1, a 41 ± 10% deceleration; exciting ν(12C≡12C) (Figure

5.15(ii)) increases the rate of formation of 13CSS to 0.0714 ps−1, a 29 ± 8% acceleration, whilst

the formation of 12CSS is decreased to 0.0546 ps−1, a statistically negligible 1±8% deceleration.

There have been a number of theoretical models proposed to explain changes in rate of ET,

kET, as a result of vibrational excitation.37,38,42 It has been shown that vibrational perturbation

can have both positive or negative effects on kET; though positive effects tend to be of a higher

magnitude than negative ones.37,42 A critical observation drawn in these models is that the in-

fluence of vibrational perturbation is greater if the lifetime of the vibrations are similar to that

of ET. Indeed, in models that include vibrational relaxation lifetime as a parameter, it has been

shown that reducing the vibrational relaxation lifetime (increasing the rate of vibrational re-

Lifetime, τ / ps
State ν(13C≡13C) ν(12C≡12C)

Ground State 2.5 ± 0.4 ps 5.6 ± 0.2 ps
CSSs 1.4 ± 0.3 ps 4.0 ± 0.2 ps
3MLCT* 1.0 ± 0.4 ps 3.6 ± 0.4 ps

Table 5.4: Relaxation lifetimes of the acetylide-centred vibrational modes of 13-12 in the
ground state, CSSs and 3MLCT* state from (T-)2DIR experiments.55
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laxation) reduces the effect of vibrational perturbation.38,42,43 When comparing the vibrational

lifetime of the two acetylide modes of 13-12 in various excited states (Table 5.4), however, it is

clear that in the case of 13-12 such a reduction is not observed. The lower frequency ν(13C≡13C)

mode consistently has a shorter lifetime than ν(12C≡12C), ∼46% shorter in the 3MLCT* state,

yet the maximum observed change in rate of CSS formation is ∼2.4× greater in magnitude for

ν(13C≡13C) than ν(12C≡12C). One possible explanation for this observation is that Intramolecu-

lar Vibrational Redistribution (IVR) results in selective population of low energy vibrational

modes due to strong coupling from ν(13C≡13C) to the components of the nearby combination

mode (see Section 5.2) that may also influence the directionality of ET. Indeed, numerical sim-

ulations have shown that low energy modes can have large effects on ET dynamics.38

In summary, experiments have shown that electron transfer in 13-12 can be manipulated in a

directional manner. However, to explain the observed effects, two questions must be answered:

1. What is the mechanism of directional influence over ET in 13-12?

2. Why does exciting ν(13C≡13C) have a greater effect on ET than exciting ν(12C≡12C)?

To answer these questions, calculations were performed to investigate the electronic structure

of 13-12 and how it changes in response to vibrational perturbation.
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5.3 Electronic structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-

PTZ)2]

As briefly discussed in Section 5.2.1, the low lying excited states of 13-12 are as follows:

two Charge Separated States (CSSs) located either on the 13C labelled arm (13CSS) or on

the 12C labelled arm (12CSS) and three Metal-to-Ligand Charge Transfer (MLCT) states that

differ chiefly by which Pt d-orbital is involved in the transition (dxzCT, dyzCT and dx2-y2CT).

The frontier molecular orbitals involved in these transitions at the TD-B3LYP/SDD[Pt]6-

311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2 level of theory are displayed in Figure 5.11 and

electron density difference diagrams showing the locations of the electron-hole pair for these

states at the same level of theory are shown in Figure 5.12(v). The states shown in these figures

are consistently found to be the lowest five states using the methods discussed below and so in

the interest of brevity similar diagrams for each method tested are omitted.

There are a number of approaches that can be taken when simulating electronically excited

molecules.167,333 As with ground state methods, with great accuracy comes great cost, or rather,

poor scaling. Due to the size of 13-12 (113 atoms, 562 electrons) the scope of tractable methods

is limited to those with low-order scaling. As such, only single reference methods were utilised

in these investigations. It should also be noted that 13-12 contains Pt, which has atomic number

Z = 78. The Lorentz factor for the Pt 1s electron is therefore on the order γ = 1.22. The

core electrons of Pt should thus behave in a distinctly relativistic manner. To take account of

this, scalar relativistic effects and spin-orbit coupling are considered in some of the calculations

discussed.

Due to the scale of 13-12 it is not possible to compute high accuracy wavefunctions to

compare calculations against. Therefore to judge the accuracy of the methods utilised, cal-

culated electronic excitation spectra are compared against those measured in experiments. In

all of the calculations discussed below, the geometry of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]

optimised using B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), shown in Figure

5.2, is used throughout. This method has been shown to deduce accurate geometries for or-

ganometallic complexes and the additional error introduced by using a geometry optimised
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within a different method to that used to calculate the excitation energies has been shown to be

small.130,135,170,334–337

5.3.1 Validation of methods

The first choice that must be made when simulating electronically excited states is the descrip-

tion of the ground state. The two main approaches that can be taken are ab initio based or DFT

based methods. The excitations from the given ground state can then be obtained by seeking

poles in its frequency dependent response to perturbation by an external field. If the Hartree-

Fock wavefunction is taken as the ab initio reference and the ground state density as calculated

using B3LYP is taken as the DFT reference, then the simplest, response-based approximations

to the excitation energies are given by Configuration Interaction with Single substitutions (CIS),

also known as the Tamm-Dancoff Approximation (TDA) to the Random-Phase Approximation

(RPA).95,190,338 In wavefunction based methods, this approach is known simply as CIS, whereas

in DFT based methods it is known as TDA, even though the approaches involve the same way

of perturbing the wavefunction or the density. The next level of approximation is to use the full

RPA. For a HF reference, this is known as TD-HF whereas for a DFT reference this is known as

RPA-TD-DFT or more commonly TD-DFT. In CIS/TDA, the response of the system to a photon

is related to the polarizability tensor. The response can be decomposed into a weighted sum of

single particle transitions from occupied to virtual orbitals. In RPA, this is augmented by al-

lowing the system to relax to accommodate the change in density by including “de-excitations”

from virtual to occupied orbitals.167 For full details, see Section 2.4.

The results of CIS, TD-HF, TDA-TD-B3LYP and RPA-TD-B3LYP calculations of

[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] are shown in Figure 5.16 and are compared against

the experimentally measured UV-vis absorption spectrum. Spectra are displayed along with

transitions that are convoluted by plotting a Gaussian curve with FWHM = 3000 cm−1 centred

at each transition that is scaled appropriately based on the oscillator strength of the transition.339

It is important to note that the calculated spectra are empirically shifted such that the relative

transition energies and intensities can be more easily compared to experimental values. This is

important since as UV/vis spectra are plotted with wavelength on the x axis, a constant blue
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Figure 5.16: Comparison of experimental UV-vis absorption spectra (dashed, light grey) of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated Configuration Interaction with
Single substitutions (CIS, red), Time-Dependent Hartree Fock Theory (TD-HF, green), Tamm-
Dancoff Approximation Time Dependent B3LYP (TDA-B3LYP, blue) and Random Phase Ap-
proximation Time Dependent B3LYP (RPA-B3LYP, black) spectra. Note that RPA Time
Dependent Density Functional Theory is commonly called TD-DFT. Calculations were per-
formed at the optimised B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry
and this basis set was used in all four calculations. All calculations included 100 excitations and
solvent (CH2Cl2) was included using IEF-PCM. The overall calculated spectra are convoluted
using Gaussian functions with FWHM = 3000 cm−1. The calculated transitions are shown as
empty bars. The calculated spectra are empirically shifted to match the experimental peak at
443 nm and the intensity is scaled to guide the eye.

or red shift in calculated transitions would not be easily identified since the transformation

from wavelength to wavenumber is non-linear. With this in mind, it is clear that CIS drastically

overestimates excitation energies and transition probabilities: a −16500 cm−1 shift is required

for agreement in excitation energy and intensities must be reduced by 75%. TD-HF also

overestimates excitation energies: a slightly smaller −15000 cm−1 shift is required for good

agreement to be reached. TD-HF requires the same scaling of transition probabilities as CIS.

On the other hand, TDA/RPA-TD-B3LYP underestimates transition energies by 5000 cm−1.

The red shift of excitation energies calculated with TD-DFT should be expected as a result of

the well known tendency of TD-DFT to underestimate the energy of transitions with significant

Charge Transfer (CT) character.127,170 TDA- and RPA-TD-B3LYP yield similar transition
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energies; however, oscillator strengths calculated through TDA-TD-B3LYP are significantly

higher than those calculated through RPA-TD-B3LYP.

Since the experimental ultrafast dynamics investigated are initiated by 400 nm pulse, it is

critical that the excited states below this threshold are well described by the theoretical methods

used. Comparing the experimental and shifted, convoluted spectra in the 400 nm to 600 nm

region, there is reasonable agreement between theory and experiment, particularly when TD-

DFT is used. The experimental spectrum in this region contains at least three identifiable peaks,

centred at λ = 530 nm, 490 nm and 443 nm. (See Appendix A.4 for details) The two TD-DFT

methods find two peaks in this region, consistent with the higher energy peaks. In the CIS cal-

culation three peaks are found, although these are too tightly spaced to agree well with the fitted

experimental peaks. The TD-HF calculation also has problems with peak spacing to a slightly

lesser degree than the CIS calculation. Due to the poor performance of the wavefunction-based

method, further investigations were not performed.

The effect of the size of basis set on performance of TD-DFT is investigated in Figure

5.17. RPA-TD-B3LYP calculations were performed using two basis sets: the SDD Effective

Core Potential (ECP) and accompanying valence basis set for Pt,258 and 6-311G(d,p) for all

other atoms,265,266 totalling 2621 primitive Gaussian functions; and the ECP60MDF ECP and

cc-pVTZ-PP valence basis set for Pt,264 and cc-pVTZ for all other atoms,262,263 totalling 4587

primitive Gaussian functions. Increasing the quality of the basis set has a significant and non-

uniform effect on excitation energy. The SDD ECP and valence basis are of lower quality than

the cc-pVTZ-PP equivalent and thus excitations involving orbitals with significant Pt character

SDD[Pt]6-311G(d,p)[H,C,N,O,S] cc-pVTZ

Excitation Transition Contribution Energy / eV f Contribution Energy / eV f

1 HOMO→LUMO 99.88% 1.8826 0.0000 99.86% 1.8813 0.0000
2 H-1→LUMO 99.87% 1.8917 0.0000 99.83% 1.8911 0.0001
3 H-2→LUMO 98.60% 1.9560 0.0772 98.49% 1.9333 0.0806
4 H-3→LUMO 97.44% 2.2168 0.2360 97.31% 2.1955 0.2448
5 H-4→LUMO 99.20% 2.5162 0.0010 99.30% 2.4212 0.0015

Table 5.5: Effect of basis set on the five lowest singlet-to-singlet excitations of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] within RPA-TD-DFT. Representative orbitals are dis-
played in Figure 5.11. f denotes oscillator strength. Calculations were performed at the op-
timised B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. In both cases
CH2Cl2 solvent was included implicitly with the IEFPCM.
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Figure 5.17: Comparison of experimental UV-vis absorption spectra (dashed, light grey) of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated Random Phase Approxima-
tion Time Dependent B3LYP (RPA-B3LYP) spectra with the SDD[Pt]6-311G(d,p)[H,C,N,O,S]
(black), for which the lowest 100 excitations were found and cc-pVTZ basis sets (dark grey),
for which the lowest 20 excitations were found. Note that RPA Time Dependent Density
Functional Theory is commonly called TD-DFT. Calculations were performed at the optimised
B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated
spectra are convoluted using Gaussian functions with FWHM = 3000 cm−1. The calculated
spectra are empirically shifted to match the experimental peak at 443 nm and the intensity is
scaled to guide the eye.

display a red shift when the larger basis set is employed. The two lowest energy excitations,

which correspond to the formation of CSSs, are relatively unnaffected by increasing the size of

the basis set, as shown in Table 5.5. The three MLCT states, however, are red-shifted by an

average of 0.046 eV when the larger basis set is used. This could have an effect on the topology

of the excited state Potential Energy Surfaces (PESs) of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2],

particularly in the context of crossovers between states of CSS and MLCT character. There

is, however, significant computational cost associated with increasing the basis set size. It

should be noted that the size of the excitation space sought was significantly smaller in the cc-

pVTZ calculation. This is due to the use of the iterative modified Davidson algorithm to find

the eigenvectors and eigenvalues of the Casida equations.189 There is a small degree of error

introduced as a result of the use of this iterative approach; however, this error is smaller for

107



ε
 /
 1

0
3
 L

 m
o

l−
1
 c

m
−

1

O
s

c
il
la

to
r 

s
tr

e
n

g
th

Wavelength / nm

Energy / cm
−1

TD−B3LYP/SDD[Pt]6−311G(d,p)[H,C,N,O,P,S]
shifted +5000 cm

−1
, intensity × 2.00

TD−B3LYP(ZORA−PT)/TZP
shifted +4000 cm

−1
, intensity × 2.00

TD−B3LYP(ZORA−PT)/DZP
shifted +4000 cm

−1
, intensity × 2.00

Experimental spectrum

 0

 20

 40

 60

 80

 100

 120

 300  400  500  600  700

0.0

0.2

0.4

0.6

0.8

1.0
15000200002500030000

Figure 5.18: Comparison of experimental UV-vis absorption spectra (dashed, light grey)
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated Time Dependent B3LYP
(TD-B3LYP) spectra with the SDD[Pt]6-311G(d,p)[H,C,N,O,S] (red), for which the lowest
100 excitations were found and TD-B3LYP including Spin-Orbit Coupling (SOC) perturb-
atively in the TD procedure using the Zero-Order Regular Approximation (ZORA-PT) with
the DZP (blue) and TZP (black) basis sets, for both of which the lowest 20 spin-pure ex-
citations were found, resulting in a total of 80 spin-free excitations in both cases. Solvent
(CH2Cl2) was included implicitly using IEF-PCM for the non-SOC calculation and using
COSMO for the SOC calculations. The SOC calculations included a ‘large’ set of frozen core
electrons, as defined by ADF. Calculations were performed at the optimised B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated spectra are convo-
luted using Gaussian functions with FWHM = 3000 cm−1. The calculated spectra are empiric-
ally shifted to match the experimental peak at 443 nm and the intensity is scaled to guide the
eye.

eigenstates further from the end of the excitation space sought and thus the two approaches

should be comparable.

As previously noted, [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] would be expected to display

strong relativistic behaviour due to the high atomic number of Pt. Indeed, numerous recent

studies have sought to examine the effects of both scalar and spin-orbit relativistic effects on

the electronic structure of molecules that contain Pt.227,340–344 Relativistic quantum mechanics

is significantly more complex than non-relativistic quantum mechanics (See Section 2.5). One

of the main reasons for this is that whereas the non-relativistic one electron operator is scalar,

the fully relativistic Dirac Hamiltonian is a 4×4 matrix operator. Furthermore, electronic orbit-
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als now have four components since they explicitly consider spin as well as the anti-particle of

the electron, the positron.204,213 Therefore, the first choice that must be made when computing

relativistic wave- or density-functions is the representation of the electrons. There are three

common approaches: the Scalar Relativistic (SR) approach, in which spin-orbit effects are

ignored and electronic states remain of well-defined spin,345–347 the Two-Component (2C) or

quasi-relativistic approach in which the positronic solutions to the Dirac Hamiltonian are “pro-

jected out” and ignored,214,216,217 or the fully relativistic, Four-Component (4C) approach, in

which no approximations are made. If a SR approach is taken, SOC terms can be re-introduced

by coupling the resultant spin-pure states perturbatively.280

There is a significant computational cost associated with the inclusion of relativistic

effects, particularly when 2C or 4C Hamiltonians are used. Once again, the large size of

[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] limits the extent of tractable methods. Fortunately,

since the ground electronic state is well separated from the other electronic states, SOC-induced

mixing between the ground state and the low-lying excited states should be small and so treating

the ground state using the SR approximation should be sufficient. It is clear, however, that

SOC will have a strong effect on the electronically excited states.227,340,341 Therefore, SOC

was included as a perturbative correction by mixing together a basis of SR-corrected spin-pure

singlet and triplet excited states from TD-DFT to yield spin-free states.280 The error introduced

by the use this perturbative description of SOC compared to a 2C approach was estimated in

Ref. [280] for [Pt(CN)4]2 – , [PtCl4]2 – and [PtCl6]2 – , for which the mean unsigned average error

was 0.06 eV across 47 excited states with two functionals.

Relativistic effects on the electronic absorption spectrum of [Pt(bipyCOOEt)(C≡C-Ph-CH2-

PTZ)2] are investigated in Figure 5.18 and are compared against the non-relativistic (NR) cal-

culations previously discussed. The inclusion of SOC has a significant impact on the absorption

spectrum, the most notable of which is the vast increase in the number of states that must be

considered, since the states of majority triplet character are no-longer triply degenerate. Fur-

thermore, SOC induces mixing between the singlet and triplet manifolds and so previously

forbidden transitions are no longer so. The combination of these two phenomena results in

an increase of allowed transitions and an overall broadening of the absorption spectrum. As
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Figure 5.19: Construction of the lowest 20 spin-orbit coupled (spin-free) excited states of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] from a basis of spin-pure, TD-B3LYP states within the
perturbative approach using the Zero Order Regular Approximation (ZORA) Hamiltonian. The
contribution from spin-pure state is colour coded from 0% (white) to 100% (black). The DZP
and TZP basis sets were used in Figures 5.19(i) and 5.19(ii), respectively. A “large” frozen
core, as defined by ADF, was employed in the calculations. Calculations were performed at the
optimised B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry.

noted previously, the quality of the basis set can have an impact on the absorption spectrum.

This is also considered in Figure 5.18, where double- and triple-ζ basis sets are compared,

which contain 1137 and 1453 Core-orthogonalized Symmetrized Fragment Orbitals (CSFOs),

respectively.278 The convoluted spectra are very similar; however, careful inspection of the ex-

citation energies reveals a red-shift, particularly for the metal-centred states, when the size of

the basis set is increased. The effect is less marked than observed in Figure 5.17. This is due

to the fact that no double-ζ quality, ZORA compatible basis set exists for Pt and so a triple-ζ Pt

basis is used in its place.

The effect of SOC is explored in greater depth in Figure 5.19. The eight lowest energy

spin-free states are CSSs localised on either side of the complex and are almost unnaffected

by the inclusion of SOC when both DZP and TZP basis sets are used. Mixing between spin-
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pure singlet and triplet states of these characters is vanishingly weak and the spin-free states

are of ≥ 99.9% singlet or triplet character. Each set of four spin-free CSSs are also energet-

ically degenerate to within 10−3 eV. The MLCT are more greatly effected by the inclusion of

SOC than the CSSs. In particular the gap between the lowest MLCT, dxzCT, and the CSSs is

drastically reduced as strong SOC lowers the energy of the spin-free dxzCT states of majority

triplet character substantially. These majority triplet spin-free dxzCT states are split by 0.006 eV

and 0.007 eV in the DZP and TZP bases, respectively, and contain a ∼10% contribution each

from higher spin-pure MLCT states in both bases. The dxzCT spin-free state of majority sing-

let character contains a significant (∼20%) contribution from the dyzCT spin-pure triplet. The

spin-free dyzCT states of majority triplet character also show strong splitting, 0.01 eV in both

bases. These states contain between 7% and 15% spin-pure singlet or triplet dxzCT, with further

contributions from higher states. The contributions from higher states can be significant, up to

10% in total, highlighting the requirement of a large basis of spin-pure states when construct-

ing spin-free states perturbatively. The strong mixing between dxzCT and dyzCT states could

have an impact on the relaxation dynamics of the system. The spin-free dyzCT state of majority

singlet character is strongly effected by SOC; however, it remains well separated energetically

from the lower energy states and so is not strongly mixed with the dxzCT states. The highest

energy spin-free states in this region, of dx2-y2CT in character, are weakly blue-shifted with re-

spect to their spin-pure counterparts by ∼0.01 eV. The dx2-y2CT states are weakly mixed with

other states, with a maximum 7% contribution from spin-pure states of non-dx2-y2CT character.

These results highlight the importance of including SOC in the treatment of the electronic

excited states of Pt complexes. It should also be noted that in these calculations, the core elec-

trons of the complex have been frozen. This could result in additional errors; however, the

inclusion of core electrons renders the calculation intractable. This is due to a balance between

a large increase in the complexity of the SCF procedure, since 212 core electrons are frozen and

increased difficulty in the convergence of the TD-DFT eigenstates. Since the stated intention of

this work is to investigate the PES of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], efforts were made

to find lower cost approaches to the problem. The computational “bottleneck” is the eigenvalue

problem presented by TD-DFT and constitutes between 97% and 99% of the total wall-clock
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time of the calculations. One approach that could be taken is the use of the Tamm-Dancoff

Approximation (TDA) previously discussed. This could reduce the time taken to solve the

TD-DFT problem by approximately 30%. This, however, would still leave a more thorough in-

vestigation computationally intractable. Recently, the group of Stefan Grimme have developed

approximations to the full TDA- and RPA-TD-DFT problem, dubbed simplified TDA and TD

(sTDA and sTD).192–194 These methods use three major simplifications: 1) the two-electron in-

tegrals that form part of the A matrix in the Casida equations are approximated by short range,

damped Coulomb interactions from monopoles given by a Löwdin population analysis of the

transition charge density 2) the global exchange portion of the two-electron integrals in A are

ignored and 3) parts of the configuration space for the occupied-virtual pairs that contribute to

each transition are ignored on the basis of energy and the CI space is truncated to about 1% of

its original size. Whilst these approximations are, in the words of their developers, drastic, they

reduce computation time of the (s)TD-DFT problem by two to three orders of magnitude.193

Further theoretical details concerning these methods are provided in Section 2.4. These approx-

imate methods have been implemented in ADF recently and thus provide an appealing approach

to reduce computational time.

It is important to establish the accuracy of the sTD method. With this in mind, the calculated

electronic absorption spectra using TD-B3LYP and sTD-B3LYP are compared in Figure 5.20.

It should be noted that even though the sTD-DFT calculation sought an excitation space 5×

larger than the TD-DFT calculation, the sTD-DFT calculation took 2.3% of the time to compute

the excitations. If the same size excitation space was sought, the sTD-DFT calculation took

0.6% as long as the full TD-DFT calculation. There are, however, discrepancies between the

calculated excitations using the two methods. The approximate sTD-B3LYP excitations require

a larger empirical shift for good agreement with experiments to be achieved. Furthermore, the

difference between sTD-B3LYP and TD-B3LYP is not linear as some peaks underestimated

by sTD-B3LYP whereas others are overestimated. This is observed in the 400 nm to 600 nm

region, where the energy of the majority singlet dx2-y2CT state is overestimated by sTD-B3LYP,

whereas the majority singlet dxzCT state is underestimated. Furthermore, the low energy CSSs

are strongly effected by the use of sTD-B3LYP, as highlighted in the inset. The gap between the
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Figure 5.20: Comparison of experimental UV-vis absorption spectra (dashed, light grey) of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated Time Dependent B3LYP (TD-
B3LYP, black) and simplified TD-B3LYP (sTD-B3LYP, dark blue) spectra including Spin-Orbit
Coupling (SOC) perturbatively in the (s)TD procedures using the Zero-Order Regular Approx-
imation (ZORA-PT). The lowest 20 (TD) and 100 (sTD) spin-pure excitations were found,
resulting in a total of 80 (TD) and 400 (sTD) spin-free excitations. The TZP basis set, including
a ‘large’ set of frozen core electrons as defined by ADF, was used for both calculations. Solvent
(CH2Cl2) was included implicitly using COSMO. Calculations were performed at the optimised
B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated
spectra are convoluted using Gaussian functions with FWHM = 3000 cm−1. The calculated
spectra are empirically shifted to match the experimental peak at 443 nm and the intensity is
scaled to guide the eye. The 490 nm to 530 nm region is magnified in the inset, highlighting low
energy, weakly allowed transitions.

majority triplet dxzCT states and the CSSs in TD-B3LYP is ∼0.03 eV, whereas in sTD-B3LYP

this gap is ∼0.13 eV. Whilst the overestimation of the separation between the dxzCTs and the

CSSs will have an effect on the topology of the PES, the CSSs and CT states are not strongly

mixed (See Figure 5.19) and so this effect should be limited to separation between and not the

overall shapes of the surfaces. The spin-free states in sTD-B3LYP are also less strongly mixed

than those from TD-B3LYP, as demonstrated by the fact that one of the TD-B3LYP majority

triplet dyzCT spin-free states can be seen in Figure 5.20 in the 470 nm region but is absent

in the sTD-B3LYP spectrum. It should be noted that the oscillator strengths calculated using

sTD-B3LYP are significantly lower than those derived from full TD-B3LYP.

Since sTD-DFT drastically reduces the time taken to calculate electronic excitations, the
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Figure 5.21: Comparison of experimental UV-vis absorption spectra (dashed, light grey)
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated simplified Time Depend-
ent B3LYP (sTD-B3LYP) spectra including Spin-Orbit Coupling (SOC) perturbatively in
the sTD procedures using the Zero-Order Regular Approximation (ZORA-PT). The lowest
20 spin-pure excitations were found, resulting in a total of 80 spin-free excitations. The
DZP (dark blue), TZP (grey-blue) and TZ2P (peach) were used, including a ‘large’ set
of frozen core electrons as defined by ADF in all cases. Solvent (CH2Cl2) was included
implicitly using COSMO. Calculations were performed at the optimised B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated spectra are convo-
luted using Gaussian functions with FWHM = 3000 cm−1. The calculated spectra are empiric-
ally shifted to match the experimental peak at 443 nm and the intensity is scaled to guide the
eye. The 490 nm to 530 nm region is magnified in the inset, highlighting low energy, weakly
allowed transitions.

quality of basis set can be expanded. Figure 5.21 compares the results of sTD-B3LYP calcula-

tions with the DZP, TZP and TZ2P basis sets. The TZ2P basis set contains addition polarisation

functions, giving a total of 2156 CSFOs, significantly larger than the TZP basis. It should

be noted that an even larger basis set is available (QZ4P) and attempts were made to perform

sTD-B3LYP calculations using this basis set; however, a bug in the ADF program prevented

the calculation from proceeding. (See “r52330” on the ADF bugfix change-log website.348) For

the majority of excitations, increasing the size of the basis set results in a small red-shift in en-

ergy. As expected, the greatest effect is observed when DZP is expanded to TZP. The addition

of further polarisation functions in TZ2P does influence excitation energies, but only slightly.

The change in energy is not uniform, however. The lowest energy, CSSs are inconsistently ef-
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Figure 5.22: Comparison of experimental UV-vis absorption spectra (dashed, light grey)
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated simplified Time Depend-
ent B3LYP (sTD-B3LYP) spectra including Spin-Orbit Coupling (SOC) perturbatively in the
sTD procedures using the Zero-Order Regular Approximation (ZORA-PT). The lowest 20,
40, 60, 80 and 100 spin-pure excitations were found, resulting in a total of 80, 160, 240,
320 and 400 spin-free excitations and are colour coded in order of increasing size of ex-
citation space from dark blue to peach. The TZ2P basis set was used in all cases includ-
ing a ‘large’ set of frozen core electrons as defined by ADF. Solvent (CH2Cl2) was included
implicitly using COSMO. Calculations were performed at the optimised B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated spectra are convo-
luted using Gaussian functions with FWHM = 3000 cm−1. The calculated spectra are empiric-
ally shifted to match the experimental peak at 443 nm and the intensity is scaled to guide the
eye. The 490 nm to 530 nm region is magnified in the inset, highlighting low energy, weakly
allowed transitions.

fected by increasing the size of the basis set. Increasing from DZP to TZP lowers the energies

by approximately 150 cm−1. However, the addition of further polarisation functions in TZ2P

raises the energy back by approximately 100 cm−1, resulting in an overall very small reduction

in energy of the CSSs when comparing DZP and TZ2P. The low energy spin-free dxzCT states

are consistently reduced by the expansion of the basis set and thus the anomalously large gap

in sTD-B3LYP between the lowest dxzCTs and CSSs is slightly reduced in TZ2P compared to

DZP and TZP, although the effect is small. Oscillator strength is relatively unaffected by the

increase in size of basis set.

Like the full TD-DFT method, the electronic excitation problem within sTD-DFT is solved
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iteratively by a modified Davidson algorithm.349 The additional errors introduced from this

should have a very small effect on energies of the resultant spin-pure excitations; however, the

spin-free excitations can have contributions from many spin-pure states, including ones much

higher in energy than the dominant spin-pure states for a given spin-free state. In Figure 5.22

the convergence of the spin-free excitations with respect to the size of the spin-pure basis is

examined. In the 400 nm to 600 nm region, the effect of expanding the excitation space is very

limited. The biggest change, observed when expanding the space from 20 to 40 excitations,

results in a difference below 50 cm−1 for all excitations in this region. Increasing the excitation

space does change the degree of mixing between singlet and triplet spin-pure in the construc-

tion of spin-free states, as highlighted by the changes in oscillator strength of the CSS peaks

at ∼19000 cm−1. The effects of the degree of mixing of the CSSs is very small and the corres-

ponding oscillator strengths vary by ∼5×10-7.

As previously mentioned, the high cost of full TD-DFT calculations meant that performing

fully relaxed SCF calculations, i.e. without a frozen core of electrons, computationally intract-

able. The use of sTD-DFT, however, shifts the computational “bottleneck” to the solution of the

SCF equations. This provides the opportunity to explore the effect of a fully relaxed SCF pro-

cedure on the electronic absorption spectrum of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]. Figure

5.23 compares the results of sTD-B3LYP calculations with and without a frozen core of elec-

trons in the TZ2P basis when a large excitation space of 100 spin-pure states is sought. The

relaxation of the core orbitals has a relatively small effect but non-uniform on the electronic

excitations in the 400 nm to 600 nm region. The high energy dx2-y2CT states are slightly red-

shifted, the medium energy dyzCT states almost unaffected and the low energy dxzCT states

slightly blue-shifted as a result of core orbital relaxation. The lowest energy CSSs are also

blue-shifted as a result of core orbital relaxation. This combination of shifts means that the

gap between dxzCT states and CSSs is slightly smaller in the relaxed core calculation than the

frozen core calculation. The small effect of relaxing the core orbitals when sTD-DFT is used is

expected, since the approximations employed in the sTD-DFT method include neglecting terms

associated with orbital transitions that contribute weakly to transitions, thus the major effect

will be due to subtle alterations in the valence orbitals as a result of changes in core orbital
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Figure 5.23: Comparison of experimental UV-vis absorption spectra (dashed, light grey)
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] to convoluted calculated simplified Time Depend-
ent B3LYP (sTD-B3LYP) spectra including Spin-Orbit Coupling (SOC) perturbatively in
the sTD procedures using the Zero-Order Regular Approximation (ZORA-PT). The lowest
100 spin-pure excitations were found, resulting in a total of 400 spin-free excitations. The
TZ2P basis set was used in both cases including a ‘large’ set of frozen core electrons as
defined by ADF (peach) or no frozen core electrons (blue). Solvent (CH2Cl2) was included
implicitly using COSMO. Calculations were performed at the optimised B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. The overall calculated spectra are convo-
luted using Gaussian functions with FWHM = 3000 cm−1. The calculated spectra are empiric-
ally shifted to match the experimental peak at 443 nm and the intensity is scaled to guide the
eye. The 490 nm to 530 nm region is magnified in the inset, highlighting low energy, weakly
allowed transitions.

shielding.

The construction of the spin-free states from a basis of spin-pure states within TD-B3LYP

and sTD-B3LYP is compared in Figure 5.24. There are a number of differences observed

between the results of full and simplified TD-DFT calculations. The overall gap between the

highest and lowest spin-free state is 0.05 eV smaller in the full TD-DFT calculation. This is

the result of a combination of a relative blue- and red-shift of the dx2-y2CT and CSSs, respect-

ively. (See Figure 5.20) The gap between the low energy CSSs and the spin-free states of dxzCT

character is ∼0.07 eV larger in the sTD-B3LYP calculations than the TD-B3LYP calculations.

This is due to a relative blue-shift of 0.07 eV and 0.10 eV on average of the spin-pure singlet

and triplet CT states, respectively, in the simplified compared to the full TD-B3LYP approach.
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Figure 5.24: Construction of the lowest 20 spin-orbit coupled (spin-free) excited states of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] from a basis of spin-pure, (s)TD-B3LYP states within
the perturbative approach using the Zero Order Regular Approximation (ZORA) Hamilto-
nian. The contribution from spin-pure state is colour coded from 0% (white) to 100% (black).
The lowest 20 spin-pure excitations were found using full TD-B3LYP method along with
the TZP basis which used a “large” frozen core, as defined by ADF, in Figure 5.24(i). The
lowest 1000 spin-pure excitations were found using the sTD-B3LYP method and the TZ2P
basis with no frozen core electrons in Figure 5.24(ii). In both cases solvent was included
implicitly using COSMO. Calculations were performed at the optimised B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) geometry. Note the difference in the y axis scale
between the two figures.

The degree of mixing between spin-pure singlet and triplet basis states in the construction of

spin-free states of CT character is similar in both simplified and full TD-DFT, with an average

largest contribution from a spin-pure state of 87.2% and 88.7%, respectively. The splitting of

the spin-pure states of majority triplet character of the same type is markedly smaller when sim-

plified TD-DFT is used; however, it is difficult to explain why this is the case since the method

by which the spin-pure basis is perturbatively combined to produce spin-free states is identical

in both simplified and full TD-DFT. It should be noted that the energies of the spin-pure MLCT

excitations calculated within sTD-B3LYP(ZORA-PT)/TZ2P/COSMO are remarkably similar to

those calculated using non-relativistic TD-B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM.
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(See Table 5.5) This is as a result of a cancellation of errors. Indeed, within TD-B3LYP(ZORA-

PT)/TZP/COSMO it is the spin-free states that resemble the results derived from the non-

relativistic calculations.

In summary, excellent agreement between calculated electronic absorption and experimental

UV/visible spectra was achieved by use of Time-Dependent and simplified Time-Dependent

Density Functional Theory calculations. Of particular note is the fact that the sTD-B3LYP

approach combined with the scalar relativistic Zero Order Regular Approximation (ZORA)

Hamiltonian with perturbative inclusion of Spin Orbit Coupling provided a cost-effective yet

accurate means of extending calculations of the electronic absorption spectra of large molecules

into the relativistic domain.

In combination with the results of Section 5.2, which showed that the unusually com-

plex vibrational structure of isotopically labelled [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]

could be well described by B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2)

calculations, anharmonically corrected by means of Generalized Vibrational Perturbation

Theory to second order (GVPT2), these results show that both the electronic and vibrational

structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] could be accurately investigated with

these methods. The following section will seek to explore the Potential Energy Surface of

[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] in an attempt to explain the ultrafast electron transfer

dynamics observed experimentally and explained in Section 5.2.1.
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5.4 Exploring the Potential Energy Surface along the vi-

brational coordinates of [Pt(bipyCOOEt)(C≡C-Ph-CH2-

PTZ)2]

The time-dependent behaviour observed in a system are a result of the forces that act upon the

system. In molecular systems, the forces that act upon a molecule depend upon the topology of

the Potential Energy Surface (PES). To understand the dynamics that occur as a result of pho-

toexcitation of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], it is helpful to explore the PES of the

molecule in its electronically excited states. Ideally, all 333 vibrational degrees of freedom of

the system should be examined; however, this is computationally intractable. Instead, only a se-

lect few vibrational modes can be explored. Since the only vibrational modes whose excitation

result in perturbation of the excited state population of 13-12 are the acetylide vibrations, these

modes must be included in the investigations. Furthermore, the components of the combination

band must also be included, since the combination band is strongly coupled to the 13C≡13C acet-

ylide stretch and so these modes are very likely to become populated through Intramolecular

Vibrational Relaxation (IVR) processes. The corresponding vibrational modes of 12-12 are also

explored to act as a “control” experiment, since no directionality was observed in the dynamics

of 12-12. Therefore any features that are common in both 12-12 and 13-12 cannot be respons-

ible for the directional control. Unlike in the case of the systems explored in Chapter 4, the

prominent excited states involve atoms across the entire molecule. It is therefore not possible

to truncate the geometry of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] in a sensible manner. As a

result of this, optimisation of the excited states of the system is not computationally feasible.

Fortunately, the geometry of the MLCT states is very unlikely to be significantly different to that

of the ground state, apart from changes in the Pt-C≡C regions, since these are the regions of

greatest change in electron density (See Figure 5.12). As acetylide-centred vibrational modes

will explore changes in these coordinates, it is convenient to restrict the investigations of the

PES to the ground state normal modes of the types discussed above. It should be noted that

within B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2), two optimised minimum

energy geometries were found in the triplet manifold. These correspond to the two CSSs, con-
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sistent with the experimental evidence.

The regions of the PES defined by the acetylide centred vibrational modes of 12-12 and

13-12 at the non-relativistic B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2) level

of theory are shown in Figure 5.25. It should be noted that the surfaces are constructed by dis-

placing the geometry of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] along the dimensionless vibra-

tional normal modes eigenvectors, Q, as defined by Gaussian.274 To facilitate easier comparison

between vibrational modes, an acetylide bond length is also shown. It is useful to recall that, as

illustrated in Figure 5.2, the 13C≡13C acetylide is on the right-hand side of the molecule whereas

the 12C≡12C acetylide is on the left-hand side of the molecule. Diagrams of the differences in

electron density that occur as a result of the excitations are also provided in Figure 5.12. The ei-

genvectors and numbering of the vibrational modes are shown in Figure 5.5. It should be noted

that due to the presence of Pt in the system and the long lifetime of excited states observed, it is

assumed that the system undergoes rapid Intersystem Crossing (ISC) from the singlet to triplet

manifold. However, due to the unusual shape of some of the PESs, it is necessary to include

both of manifolds in the diagrams.

In general, the 12-12 and 13-12 PESs appear very similar to each other. The major differ-

ence is that the 12-12 surfaces appear to be a linear combination of the 13-12 surfaces. This is

not surprising, as the 12-12 acetylide vibrations are coupled, linear combinations of uncoupled

13-12 modes. (See Appendix A.5) The unusual topological features in the PESs take the form

of perceived discontinuities in the gradient that can be observed for some states when the sing-

let and triplet manifolds come close in energy. A clear example of this can be observed in the

dyzCT states along the 13-12 vibrations. A near-degeneracy between 1dyzCT and 3dyzCT occurs

at R(C≡C)≈1.25 Å. Since 3dyzCT has a minimum at R(C≡C)≈1.22 Å, as R(C≡C) increases it

appears that 3dyzCT should become higher in energy than 1dyzCT. However, no crossover occurs

and it appears that 3dyzCT continues the shape of 1dyzCT and vice versa. The apparent discon-

tinuity is absent along the 12-12 coordinates. The presence of this discontinuity is confusing,

since the calculations in each spin manifold are performed as linear excitations into the space of

excitations of only that multiplicity from the electronic ground state at that multiplicity. With

this in mind, one possible explanation is that in the region of R(C≡C)≈1.25 Å the ground state
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Figure 5.25: Potential energy curves along the acetylide-centred vibrational modes of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using ground state and time-dependent
B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Displacement vectors for the vi-
brations are illustrated in Figure 5.5. Singlet states, calculated within the restricted formalism,
are connected by thick lines, whereas triplet states, calculated within the unrestricted formalism,
are connected by dashed thin lines. The states are colour coded as follows: ground state (grey),
RHSCSS/13CSS (green), LHSCSS/12CSS (blue), dxzCT (yellow), dyzCT (purple) and dx2-y2CT (or-
ange). The changes in electron density associated with these states at the S0 geometry are
illustrated in Figure 5.12.
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of the triplet manifold is of mixed character, since the dxzCT and 13CSS states become very

close in energy and this mixed character leads to a breakdown in the approximations employed

in linear response TD-DFT. This, however, would not explain why the singlet multiplicity cal-

culations also show a derivative discontinuity, as the singlet ground state is well separated from

the first singlet excited state. Another example of the perceived discontinuity can be found in

the shape of the CSSs of triplet multiplicity. In the Franck-Condon region, the singlet CSSs are

approximately 0.1 eV lower in energy than the triplet CSSs. However, as the stretching modes

extend, the singlet and triplet CSSs become almost degenerate in energy. This results in a clear

change in gradient of the triplet CSSs, though no perceptible change is observed in the singlets.

One possible explanation for this is the well known deficiency of TD-DFT in the description of

a Conical Intersection (CoIn) between the ground and first excited state of a spin manifold and

the accompanying defective topology of the PES in this region.162 Since in this region the triplet

ground state, 3dxzCT, and the triplet CSS become close in energy, this could possibly explain

the perceived discontinuity if there was a CoIn in this region. However, it is not possible to

directly optimise a CoIn using regular TD-DFT and so this cannot be confirmed. Furthermore,

defects due to the presence of a CoIn between a ground and excited state would not explain the

observed behaviour of the dyzCT states. It is therefore difficult to explain the presence of the de-

rivative discontinuities. It should also be noted that each single-point calculation performed in

the construction of these PESs was independent: the SCF at each point was performed without

an initial guess supplied from other calculations and the eigenvectors generated in the TD-DFT

procedure from the results of the SCF were generated using the default settings in Gaussian 09.

Both the singlet and triplet CSSs remain almost energetically degenerate along all four

acetylide stretching coordinates. This is to be expected since the acetylide-centred vibrational

modes contain no motion on either of the phenothiazine groups and so an energetic preference

for a CSS localised on either side is unlikely to develop from this perturbation. This effect is,

however, very slightly asymmetrical: extension of the C≡C bond destabilizes the CSS located

on the opposite side more than on that side, i.e. extending the 13C≡13C bond will destabilize

12CSS more than 13CSS. Since the ground state geometry employed in the calculations is asym-

metrical, with a small 0.009 eV bias towards 13CSS/RHSCSS, this is most easily observed in the
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vibrations of 13-12, particularly 13ν288, where the separation between the triplet CSSs increases

from 0.009 eV to 0.059 eV when R(13C≡13C)≈1.40 Å. This energetic preference is far too small

to explain the observed vibrational control phenomena alone, although it does act in a manner

consistent with the observations. If the gap in energy between CSSs becomes greater along

similar vibrational coordinates in other regions of the PES, for example in the optimised geo-

metries of the states of Charge Transfer (CT) character, this could have a significant effect on

the dynamics; however, since optimisation of these states is not computationally feasible it is

not possible to explore this.

The three sets of states of CT character are well separated from each other, approximately

0.25 eV apart in the equilibrium geometry. The lowest energy of these, the states of dxzCT

character, are close in energy to the CSSs. At the equilibrium geometry in the singlet manifold,

the dxzCT state is S3 whereas in the triplet manifold it is T1, the ground state of the triplet

manifold. As the vibrations expand, 1dxzCT intersects with the CSSs and becomes the lowest

energy singlet excited state. Indeed, the lowest vibrational energy level of 1dxzCT would sample

this portion of the surface for each of the acetylide vibrational modes apart from 12ν288. In the

triplet manifold, 3dxzCT remains T1 for along all coordinates apart from the contraction part of

the totally symmetrical 12ν289 mode. For the two 12-12 modes, 1dxzCT and 3dxzCT are close

in energy along the coordinates, whereas they separate slightly along the 13-12 coordinates,

particularly as the bonds extend. The effect of the two 13-12 modes on the topology of the states

of dxzCT character is almost identical and no clear energetic origin for the observed vibrational

control phenomenon can be identified if the 3MLCT* state which is manipulated is of 3dxzCT

character.

The intermediate energy CT states, of dyzCT character, are well separated from the higher

and lower energy states for the majority of the regions of the PES defined by the vibrational

modes, particularly in the triplet manifold. In the singlet manifold, 1dyzCT intersects with the

higher energy 1dx2-y2CT state along all of the vibrational coordinates apart from 12ν289. In the

triplet manifold, 3dyzCT becomes relatively close in energy to the destabilised CSS along the

extension of the two 13-12 coordinates and to both CSSs along 12ν289. This is most easily

identified along 13ν289, where the energy gap between 3dyzCT and 13CSS becomes as low as
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0.15 eV at when R(12C≡12C)≈1.40 Å. Due to the only weakly selective destabilization of the

CSSs along the vibrational coordinates, this energy preference is not pronounced enough to lead

to the directionality of the observed vibrational control.

The highest energy CT states are of dx2-y2CT character and are well separated from the lower

dyzCT states in the Franck-Condon region, especially in the triplet manifold. In the triplet man-

ifold, there are no crossings observed between the 3dx2-y2CT state and other states along any

of the coordinates investigated. Along the 12ν289 coordinate, however, an intersection between

the 1dx2-y2CT and 3dx2-y2CT occurs at R(C≡CRHS)≈1.18 , resulting in a perceived gradient dis-

continuity in both spin manifolds. The 1dx2-y2CT does undergo a number of crossings with the

1dyzCT states in all of the modes apart from 12ν289. These crossovers take 1dx2-y2CT relatively

close in energy to the singlet CSSs, in particular along the 13-12 modes, leading to a gap as

small as 0.15 eV between 1dx2-y2CT and 12CSS along 13ν288, similar to 3dyzCT. However, like

3dyzCT, the energetic preference is only weak and the excited state dynamics are likely to occur

within the triplet manifold in this complex, so it is unlikely that this could be used to explain

the experimental observations.

The sections of the PES defined by the components of the combination bands in 13-12 and

the equivalent modes in 12-12 were also explored. The higher energy, phenyl-acetylide-centred

fundamental “waving” modes are explored in Figure 5.26. It should be noted that these modes

are almost identical in both isotopomers. (See eigenvectors in Figure 5.6). Comparison of

the four modes yields little insight. Displacement along the dimensionless normal coordinate

in either the positive or negative direction to Q = ±0.25 in the ν233 modes of either 12-12 or

13-12 results in an almost uniform increase in energy across the ten states plotted, an average

of 0.272 eV. The two ν234 modes are slightly asymmetrical: an average increase of 0.272 eV at

Q = −0.25, increasing to an average of 0.282 eV at Q = +0.25. The subtle difference between

the ν234 and the ν233 modes could be due to the low numerical accuracy used in Gaussian in the

expression of the normalized Cartesian displacement coordinates.274 These are only expressed

in the output to two decimal places and the normalization requires that the sum of squared

coefficients is unity. This means that for delocalised vibrations with many small components,

rounding errors may occur. Regardless, the almost uniform and symmetrical nature of the PESs
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Figure 5.26: Potential energy curves along the bridge-centred vibrational modes of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using ground state and time-dependent
B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Displacement vectors for the vi-
brations are illustrated in Figure 5.6. Singlet states, calculated within the restricted formalism,
are connected by thick lines, whereas triplet states, calculated within the unrestricted formal-
ism, are connected by dashed thin lines. The states are colour coded as follows: RHSCSS/13CSS
(green), LHSCSS/12CSS (blue), dxzCT (yellow), dyzCT (purple) and dx2-y2CT (orange). The
changes in electron density associated with these states at the S0 geometry are illustrated in
Figure 5.12.
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along these coordinates suggests this mode alone would be very unlikely to a prominent effect

on relaxation dynamics on the basis of purely energetic arguments.

The phenothiazine-centred fundamental bands that contribute to the combination bands are

less symmetrical than the phenyl-acetylide ones and the corresponding PESs are shown in Fig-

ure 5.27. As is shown in Figure 5.6, the phenothiazine-centred modes cause significant dis-

tortions on the donor fragments of the complex. In 13-12, these modes are localised on either

donor whereas in 12-12 the two modes are delocalised across both donors, though the compon-

ents are unevenly distributed. As a result of this, similar to the acetylide-centred vibrations, the

PESs defined by the phenothiazine-centred in 12-12 resemble linear combinations of the 13-12

surfaces.

The CSSs are, as expected, strongly effected by changes in the geometry of the donors. In

particular, the CSSs of singlet multiplicity are very strongly effected. The triplet multiplicity

CSSs are effected but to a lesser extent. This is most easily identifiable along the 13-12 sur-

faces. It should be noted that this need not be a destabilization, since the loss on an electron

on the phenothiazine group is accompanied by geometrical changes upon relaxation in which

the group becomes planar (See Figure 4.10 for an illustration in a similar molecule). As the

phenothiazine-centred mode eigenvectors have components that make the group more planar,

the CSSs can be stabilised along these coordinates. Curiously whereas 13ν131 alternatively stabil-

ises and destabilises the two singlet CSSs, 13ν130 only stabilises 12CSS and destabilises 13CSS.

This may be an artefact of the geometry employed in the calculations, which favours 13CSS

slightly over 12CSS. To verify that this is effect was not due to a computational problem in

Gaussian 09 related to isotopic labelling, single point calculations at Q = ±10 along the equi-

valent vibrational coordinates of 13-13 were performed, yielding results almost identical to

those along the 12-12 coordinates. In some regions of all of the coordinates, the most destabil-

ised CSS becomes degenerate in energy with 1dxzCT. In the two 13-12 modes, this could lead to

directionally selective increased transition probability from 1dxzCT to one of the singlet CSSs.

Indeed, these regions would be accessible if the first vibrationally excited level was populated

along these coordinates (∼0.15 eV above the minimum of 1dxzCT). However, it is important to

recall that the dynamics in these systems are more likely proceed in the triplet manifold. In the

127



E
n

e
rg

y
 /

 e
V

Q(symmetric breathing mode)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

−0.20 −0.10 0.00 0.10 0.20

(i) 12-12: symmetric breathing combination mode.
13ν131

E
n

e
rg

y
 /

 e
V

Q(
12

C side breath)

−0.20 −0.10 0.00 0.10 0.20

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

(ii) 13-12: 12C side breathing mode.
13ν131

E
n

e
rg

y
 /

 e
V

Q(asymmetric breathing mode)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

−0.20 −0.10 0.00 0.10 0.20

(iii) 12-12: asymmetric breathing combination mode.
12ν130

E
n

e
rg

y
 /

 e
V

Q(
13

C side breath)

−0.20 −0.10 0.00 0.10 0.20

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

(iv) 13-12: 13C side breathing mode.
13ν130

Figure 5.27: Potential energy curves along the PTZ-centred vibrational modes of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using ground state and time-dependent
B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Displacement vectors for the vi-
brations are illustrated in Figure 5.6. Singlet states, calculated within the restricted formalism,
are connected by thick lines, whereas triplet states, calculated within the unrestricted formal-
ism, are connected by dashed thin lines. The states are colour coded as follows: RHSCSS/13CSS
(green), LHSCSS/12CSS (blue), dxzCT (yellow), dyzCT (purple) and dx2-y2CT (orange). The
changes in electron density associated with these states at the S0 geometry are illustrated in
Figure 5.12.
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triplet manifold, the effect of the vibrational modes is much less pronounced.

The MLCT states of all three characters are less strongly effected than the CSS states. The

MLCT states of singlet character are destabilised in a symmetrical fashion along the coordin-

ates. In the triplet manifold the distortion does not have a symmetrical effect, though the asym-

metry is not very pronounced, for example in Figure 5.27(iv), 3dyzCT is 0.1 eV more stable

along 13ν130 when Q = −0.25 than when Q = +0.25. There is no clear evidence that direc-

tional vibrational control along the phenothiazine-centred vibrational modes would be expected

if 13ν131 or 13ν130 where selectively excited. Whilst very weak directionality from 3dxzCT might

be expected, this would be unlikely to occur since the energetic bias towards either CSS is weak.

However, it should be noted that in the vibrational control experiments, only 13ν130 should be

excited, as a result of the strong coupling between ν(13C≡13C) and the combination band. There

may thus be a small contribution from this mode in the differential effect observed between

exciting ν(13C≡13C) and ν(12C≡12C).

In summary, calculations at the B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2)

level of theory provide little evidence that would suggest directional controllable electron

transfer would be observed in 13-12 on the basis of changes in energy along the vibrational

coordinates targeted in the experiments. Although slight differential energy changes are

observed between 13CSS and 12CSS along the coordinates investigated, these effects are small.

Perceived derivative discontinuities along some of the acetylide-centred vibrational modes are

observed. The origin of these discontinuities is unclear.

To extend these investigations by including scalar relativistic effects and Spin-Orbit Coup-

ling (SOC), further calculations were formed using the ADF 2016 program.275 Due to the high

cost of these calculations, only two coordinates could be investigated. Since the acetylide-

centred modes were found to induce directional vibrational control in these molecules, 13ν288

was investigated and the equivalent 12-12 mode, 12ν288, was also investigated as a control. The

spin-pure and spin-free PESs along these coordinates are shown in Figure 5.28.

The Scalar Relativistic (SR) spin-pure PESs calculated using sTD-B3LYP(ZORA-

PT)/TZ2P/COSMO(CH2Cl2) bear strong resemblances to the Non-Relativistic (NR) equival-

ents calculated within TD-B3LYP/SDD[Pt]6-311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). (See
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Figure 5.28: Potential energy curves along the acetylide-centred vibrational modes of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] calculated using ground state and simplified Time-
Dependent B3LYP(ZORA-PT)/TZ2P/COSMO(CH2Cl2), including scalar relativistic effects us-
ing the Zero-Order Regular Approximation (5.28(i), 5.28(ii)) and including Spin-Orbit Coup-
ling (SOC) perturbatively in addition (5.28(iii), 5.28(iv)). Displacement vectors for the vibra-
tions are illustrated in Figure 5.5. In the calculations none of the core electrons were frozen.
100 spin-pure excitations were found, resulting in a total of 400 spin-free excitations at each
increment. Spin-pure singlet states are connected by thick lines and spin-pure triplet states are
connected by dashed lines. Spin-free states are connected by lines according to which spin
manifold provides the majority contribution. The states are colour coded as follows: ground
state (grey), RHSCSS/13CSS (green), LHSCSS/12CSS (blue), dxzCT (yellow), dyzCT (purple) and
dx2-y2CT (orange). Note that in Figure 5.28(iv) a series of avoided crossings are observed in
the region of Q = +0.10. The states involved in the crossings are connected with grey lines, to
guide the eye.
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Figure 5.25). However, the perceived derivative discontinuities present in the NR PESs are

absent in the SR surfaces. It is difficult to rationalise why this is the case since the calculations

differ in multiple ways. One of the major differences between the NR and SR calculations is

that in the NR calculations, the singlet and triplet states of a given character go from regions in

which they are energetically separated to regions of near energetic degeneracy, after which the

gradients change. A clear example of this are the dyzCT states along 13ν288, shown in Figure

5.25(iv), which cross in the region of Q = +0.02. This is not the case in the SR calculations,

where singlet and triplet manifolds remain either degenerate (CSSs, dx2-y2CT) or separated

(dxzCT, dyzCT) in all regions of the coordinates. Since the SR calculations were performed

using a simplified TD-DFT procedure, it is not possible to verify that the perceived derivative

discontinuities would not also be present in full TD-DFT calculations performed within ADF.

It should be noted that there is a subtle difference between the definition of the B3LYP function

in Gaussian 09 and ADF: by default in Gaussian 09, the “type III” Vosko-Wilk-Nusair (VWN)

correlation functional350 is used within B3LYP (See Ref. [126]), whereas in ADF the VWN

type V correlation functional is employed. However, forcing the use of VWN-V in Gaussian

09 leads to changes in excitation energy below 10−3 eV at the equilibrium geometry. It is

therefore unlikely that this is the cause of the discrepancy. In the NR calculations, a relativistic

Effective Core Potential (ECP) was used to describe the core electrons of Pt, since these would

be incorrectly described with an NR Hamiltonian. In the SR calculations all electrons are

included in the SCF procedure. It is unlikely that the use of an ECP would have a strong

effect on the low-lying excited states, since these consist of valence orbitals only and so the

influence of core electrons is limited to screening. The SR calculations utilised a slightly higher

quality basis set than the NR calculations. Direct comparison of the basis sets is not possible

since the SR calculations utilised Slater-Type Orbitals (STOs), whereas the NR calculations

utilised Gaussian-Type Orbitals (GTOs). However, previous investigations comparing PESs

calculated with GTO basis sets of increasing quality yielded qualitatively similar results. (See

Chapter 4) It should also be noted that the iterative diagonalization procedure used to solve the

(s)TD-DFT eigenvalue problem is subtly different in ADF to that used in Gaussian: in ADF

the Davidson-Liu algorithm is used,184,187,191 whereas in Gaussian 09 a modified form of this
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algorithm is employed.186,189 It is very unlikely that the use of different algorithms could be

responsible for the difference in topology of the PESs calculated using Gaussian and ADF; to

verify this would require exhaustive investigations that are beyond the scope of this work.

Apart from the absence of the perceived derivative discontinuities in the SR calculations,

the PESs derived from SR calculations are very similar to those derived from NR calculations.

Since in the SR calculations, the CSSs are found to be relatively more stable than in the NR

calculations, the CSSs cross with the states of dxzCT character further along the vibrational

coordinate and thus at higher energy in the SR calculations than the NR calculations. One con-

sequence of this is that for a wavepacket to reach these crossover regions would require greater

vibrational excitation in the SR surfaces than the NR surfaces. This is particularly prominent on

the 12ν288 coordinate, where the crossover regions are accessible in the vibrational ground state,

v0, of dxzCT on the NR surfaces but would require significant vibrational excitation on the SR

surfaces. The crossover between states of dyzCT and dx2-y2CT character is also altered in the SR

calculations. For the singlet manifold, this crossover occurs at almost the same energy in both

SR and NR surfaces along both vibrational modes. In SR calculations, 3dyzCT and 3dx2-y2CT

are stabilised significantly compared to the NR calculations and thus a crossover between these

states is observed in the SR calculations that was not observed in the NR calculations in the

region of the PES explored.

As previously described, the spin-pure excited states obtained from SR calculations can

be used as a basis in the construction of Spin-Free (SF) excited states by including SOC in

a perturbative manner.280 The results of these calculations are shown in Figures 5.28(iii) and

5.28(iv). It should be noted that in regions of the PES where spin-pure states of different char-

acter are well separated, such as the Franck-Condon region, the resultant spin-free states are not

strongly mixed. (Figure 5.24(ii) shows the construction of the spin-free states in the equilib-

rium geometry) This does not hold in regions of the PES where states become close in energy.

Furthermore, when spin-pure states of different manifolds become close in energy, the resultant

spin-free states can be strongly mixed and no longer of near-integer spin. It should therefore be

noted that in Figure 5.28, the SF states are colour coded according to the character that contrib-

utes the greatest amount to that state and likewise connected by thick or dashed lines according
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to which spin-manifold contributes the greatest amount to that state. This is particularly signific-

ant in regions where states intersect. The assignment of character to the SF states was achieved

by considering 1) the percentage contribution from singlet and triplet spin-pure states and 2)

the change in electron density distribution with respect to the ground state via the changes in

KS orbitals as a result of transitions in the spin-pure states that contribute to a given spin-free

state. The extraction of this data from ADF calculations is trivial, but tedious. The raw data are

provided in a supplemental electronic spreadsheet, spin-free_state_analysis.ods.

The SF surfaces, like the SR surfaces, do not exhibit the perceived derivative discontinuities

observed in the NR calculations. The addition of spin-orbit coupling has little effect on the

CSSs and so energetically the SR and SF states of CSS character are very similar. However, the

states of dxzCT character are stabilized by SOC, resulting in crossovers between the SF states of

CSS and dxzCT character at lower energy than the corresponding SR states. At the point closest

to crossover, some SF states are of mixed character, containing both CSS and dxzCT character.

However the adjacent points return to being entirely CSS or dxzCT. The strong mixing between

states combined with the small energy gaps in this region suggests that conversion between SF

states of differing character would be facile in this region. The regions of the SF PESs which

correspond to crossovers between dyzCT and dx2-y2CT states in the SR PESs, Q(13ν288) ≈ 0.9 and

Q(12ν288) ≈ ±0.08, exhibit mixing to an even greater extent. These regions are characterised by

very strong mixing between states of dyzCT and dx2-y2CT character, as well as far from integer

spin for many SF states. It is clear that smooth intersections between states in this region does

not occur, rather, these regions are best described as avoided crossings between the manifolds of

dyzCT and dx2-y2CT states. This suggests that a wavepacket on one of the higher energy SF states

of dx2-y2CT character could relax quite rapidly to the SF states of dyzCT character if it sampled

this portion of the surface. Indeed, these region would be expected to be easily accessible under

the experimental conditions of a 400 nm (3.10 eV) UV-pump pulse.

Like the NR and SR surfaces previously discussed, the SF surfaces show little evidence

for an energy based origin of the directional vibrational control phenomenon observed exper-

imentally. Apart from the low energy intersections with states of dxzCT character, the states

of either 13CSS or 12CSS character remain energetically well separated from the MLCT states.
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Moreover, there is no evidence that significant energetic differences between states of 13CSS or

12CSS character develop along either of the coordinates investigated. It is therefore not possible

to explain the observations on the basis of changes in the topology of the PES of 13-12 along

the coordinates investigated, unlike similar Pt complexes previously investigated. (See Chapter

4) However, one conclusions can be drawn, in particular from the results of calculations at

the sTD-B3LYP(ZORA-PT)/TZ2P/COSMO(CH2Cl2) level of theory: whilst photoexcitation is

most likely to populate states of dx2-y2CT character, population transfer to states of dyzCT char-

acter should be facile due to energetically accessible regions of strong coupling between states

of these characters. It is therefore likely that the 3MLCT* component identified in the kinetic

scheme (See Figure 5.13) is either of dyzCT- or vibrationally excited dxzCT-character. Identify-

ing a mechanism in which these states may couple preferentially to 13CSS or 12CSS along the

acetylide-centred vibrational coordinates of 13-12 is therefore of paramount importance.

5.4.1 Excited state polarisation

As previously mentioned, it is possible to estimate the change in electron density distribution

in the excited states with respect to the ground state in calculations performed in ADF by con-

sidering the KS orbital transitions involved in a given excitation. Since the atomic orbitals that

contribute to each KS orbital are also provided in the output of an ADF calculation, it is trivial

to estimate the change in electron density that occurs as a result of each spin-pure transition.

When spin-orbit coupling is included perturbatively, the spin-free states are constructed from a

basis of spin-pure states. Given the weighting of each spin-pure state to a spin-free state, it is

trivial to estimate the electron density distribution in a spin-free state using a weighted sum of

the electron density distributions of the contributing spin-pure states. By repeating this at each

point and for each spin-free state along the vibrational coordinates, a graph of the change in

electron density distribution of the spin-free excited states can be constructed. This information

can be used to gain insight between the coupling between states at points along the vibrational

coordinate. For example, in a charge-transfer reaction, such as the ones considered herein,

we may employ the two-state Generalized Mulliken-Hush (GMH) model.351–353 In the GMH
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model, the coupling between two diabatic states, A and B, is defined as

VAB =
~µ12∆E12(
~µA − ~µB

) =
~µ12∆E12[(

~µ1 − ~µ2
)2

+ 4
(
~µ12

)2
] 1

2

, (5.1)

where 1 and 2 are two adiabatic states, ~µ12 is the transition dipole moment between 1 and 2,

∆E12 is the energy gap between 1 and 2, ~µA and ~µB are the dipole moments of A and B, and

~µ1 and ~µ2 are the dipole moments of 1 and 2. It is clear from this expression if the electron

density distribution and therefore the dipole moments of two adiabatic states are similar, the

coupling between the diabatic states that construct them would be high. VAB is also proportional

to the energy gap between adiabatic states. Thus, coupling between the two diabatic states is

maximised when the energy gap is large and the states are electronically similar. It should be

noted that since inter-excited state transition dipole moments are not available in ADF, diabatic

coupling within the GMH model cannot be directly computed.

The changes in electron density distribution of the lowest spin-free MLCT states of majority

triplet character in 13-12 as calculated at the sTD-B3LYP(ZORA-PT)/TZ2P/COSMO(CH2Cl2)

level of theory along the 13ν288 and 12ν288 coordinates are plotted in Figures 5.29 and 5.30,

respectively. Numerical values for the 40 lowest spin-free states at each increment are provided

in the supplemental electronic spreadsheet, spin-free_state_analysis.ods. It is clear that

along both coordinates, the excited states tend to “polarise,” with the hole becoming localised

onto one of the two phenyl-acetylides. Furthermore, the MLCT states can be separated into two

categories: states of dxzCT and dx2-y2CT character, which polarise along the phenyl-acetylide

whose acetylide bond has been stretched, i.e. onto the 13C≡13C side when Q(13ν288) > 0, and

states of dyzCT character, which polarise in the opposite manner, along the phenyl-acetylide

whose acetylide bond has been contracted, i.e. onto the 12C≡12C side when Q(12ν288) > 0.

It should be noted that the CSSs are almost completely invariant along these coordinates, apart

from at points of near-degeneracy with other states, where some mixing does occur, for example,

at Q(12ν288) = ±0.6. Mixing also occurs between states of dyzCT and dx2-y2CT character in

the regions of near degeneracy, for example, at Q(12ν288) = ±0.0, and in the region of the

avoided crossing at Q(13ν288) ≈ +0.12. The states of dxzCT and dyzCT character polarise more
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Figure 5.29: Potential energy curves along the 13C≡C stretch mode, 13ν288, of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], alongside representative electron density distributions
for the three MLCT states, calculated using ground state and simplified Time-Dependent
B3LYP(ZORA-PT)/TZ2P/COSMO(CH2Cl2). Scalar relativistic effects were included using the
Zero-Order Regular Approximation (ZORA) Hamiltonian and spin-orbit coupling was included
in the sTD procedure perturbatively. Displacement vectors for the vibrations are illustrated in
Figure 5.5. In the calculations none of the core electrons were frozen. 100 spin-pure excitations
were found, resulting in a total of 400 spin-free excitations at each increment. Spin-free states
of majority singlet character are connected by thick lines, whereas spin-free states of majority
triplet character are connected by thin, dashed lines. The states are colour coded as follows:
ground state (grey), 13CSS (green), 12CSS (blue), dxzCT (yellow), dyzCT (purple) and dx2-y2CT
(orange). The electron density distributions shown are for the lowest energy spin-free states of
majority triplet character. Blue regions denote an area of relative loss of electron density and
red relative gain of electron density, with respect to the ground state at that geometry. Note that
a series of avoided crossings are observed in the region of Q= +0.10. The states involved in
the crossings are connected with grey lines, to guide the eye. The zeroth and first vibrational
energy levels, v0 and v1, of the dyzCT spin-free states of majority triplet character, based on
experimental values, are indicated as thin purple lines.

strongly than the states of dx2-y2CT character. Polarisation of the MLCT excited states along the

vibrational modes will increase coupling with the CSS state in the direction of polarisation in

comparison with the equilibrium structure, since this will cause the dipole moment to align with

the CSS localised on that side. Moreover, the coupling of the polarised MLCT state with the

CSS on the opposite side to the direction of polarisation will decrease. This provides a possible

mechanism for the directionality observed in the vibrational control experiments.

As discussed in Section 5.2.1, it was observed experimentally that exciting the two acetylide

coordinates of an intermediate excited state of 13-12, 3MLCT*, increased the rate of formation

of the CSSs. Specifically, exciting the 13C≡13C stretch increased the rate of formation of 12CSS

more than that of 13CSS and vice versa. Considering the polarisation of the excited states shown

in Figure 5.29, this phenomenon could be explained if 3MLCT* was one of the dyzCT states of
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Figure 5.30: Potential energy curves along the asymmetric acetylide stretch mode, 12ν288,
of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2], alongside representative electron density distribu-
tions for the three MLCT states, calculated using ground state and simplified Time-Dependent
B3LYP(ZORA-PT)/TZ2P/COSMO(CH2Cl2). Scalar relativistic effects were included using the
Zero-Order Regular Approximation (ZORA) Hamiltonian and spin-orbit coupling was included
in the sTD procedure perturbatively. Displacement vectors for the vibrations are illustrated in
Figure 5.5. In the calculations none of the core electrons were frozen. 100 spin-pure excitations
were found, resulting in a total of 400 spin-free excitations at each increment. Spin-free states
of majority singlet character are connected by thick lines, whereas spin-free states of majority
triplet character are connected by thin, dashed lines. The states are colour coded as follows:
13CSS (green), 12CSS (blue), dxzCT (yellow), dyzCT (purple) and dx2-y2CT (orange). The elec-
tron density distributions shown are for the lowest energy spin-free states of majority triplet
character. Blue regions denote an area of relative loss of electron density and red relative gain
of electron density, with respect to the ground state at that geometry.

majority triplet character. The 13-12 acetylide vibrational modes are asymmetrical and so the vi-

brational wavefunction is not symmetrical. By fitting a Morse oscillator to the points calculated

along the 13ν288, we can use numerical methods to estimate the anharmonicity of the vibrational

eigenstates. The wavefunctions of the first two vibrational eigenstates of a representative Morse

oscillator fitted to one of the states of dyzCT character, v0 and v1, have approximately 53% of

their probability density on the extended part of 13ν288. Furthermore, since the vibrations are

asymmetrical, the magnitude of extension of the 13C≡13C bond on the extended part of the sur-

face sampled by the wavefunctions is greater than the magnitude of contraction of the bond on

the contracted part of the surface sampled. Since the degree of polarisation is proportional to

the degree of perturbation from equilibrium, it is more probable that the states of dyzCT charac-

ter will be in a geometry with greater coupling to, for example, the 12CSS state than the 13CSS

state along the 13ν288 coordinate. This is increased at higher vibrational energy levels, since

these sample regions of the surface of greater extension. Recalling that Equation 5.1 suggests

137



coupling is proportional to the difference in energy between two states, it should be noted that

the gap between the dyzCT states of majority triplet character and the CSSs is almost constant in

the vibrationally accessible region, though it is very slightly larger on the contraction part of the

13ν288 coordinate. It should also be noted that the equivalent vibration on the 12C≡12C side of

the molecule, 13ν289, will be of almost identical character. Therefore the fact that a wavepacket

on the zeroth vibrational level of 13ν289 or 13ν288 of dyzCT couples more strongly to the CSS on

the opposite side of the molecule would be balanced by the complementary effect on the other

vibrational mode. Increased coupling to CSSs on one side over another could only be achieved

if one of the vibrational modes was excited and the other was not, i.e. one of the two vibrational

modes was selectively excited. This is consistent with the observed directionality of vibrational

control in the experiments.

The directional increase of coupling with the CSSs caused by polarisation of the excited

states of dyzCT character along the acetylide-centred vibrational coordinates does not fully

explain the experimental observations. For example, since the effect of polarisation-induced

coupling is greater in the vibrationally excited state than the vibrational ground state, it would

be expected that the degree of directionality observed would be proportional to the lifetime of

vibrational excitation and therefore selective excitation of 13ν288 should be less effective than

selective excitation of 13ν289. This is not the case, in fact, the opposite is observed. One possible

explanation for this is that the vibrational modes which are strongly coupled to 13ν288 (See Sec-

tion 5.2) play a prominent role in the excited state dynamics and increase coupling between the

states of dyzCT and CSS character in a directional manner. Unfortunately, investigations into

these coordinates were not possible due to resource constraints. Future investigations will focus

on increasing the number of vibrational coordinates included in the calculations and using the

results to construct a model Hamiltonian for use in quantum wavepacket dynamic calculations

to gain quantitative insight into the excited state dynamics of the molecule.

5.5 Conclusion

The vibrational and electronic structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] was success-

fully characterised through a number of theoretical methods. In Section 5.2, the unexpectedly
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complex ground state FTIR in the acetylide region of the three isotopomers 12-12, 13-12 and

13-13 were found to be caused by the presence of strongly-coupled combination bands by means

of Generalized Vibrational Perturbation Theory to second order (GVPT2) with the B3LYP func-

tional and a mixed basis set comprised of SDD for Pt and 6-311G(d,p) for all other atoms. The

results of ultrafast vibrational control experiments were detailed in section 5.2.1. In Section

5.3.1 it was shown that the ground state UV-visible absorption spectra of [Pt(bipyCOOEt)(C≡C-

Ph-CH2-PTZ)2] was well described by Time-Dependent B3LYP (TD-B3LYP) and simplified

TD-B3LYP (sTD-B3LYP) calculations, the latter of which included Scalar Relativistic (SR)

effects as well as perturbative Spin-Orbit Coupling (SOC) through the Zero-Order Regular Ap-

proximation (ZORA) Hamiltonian. In Section 5.4, the Potential Energy Surface (PES) within

these methods along the vibrational coordinates previously identified in Section 5.2 were in-

vestigated. An explanation for the observed directional vibrational control could not be found

from a purely energetic basis and so further investigations into the coupling between electron

states were performed, detailed in Section 5.4.1. A mechanism was proposed to explain some

of the observations, in which polarisation of the dyzCT states along the vibrational coordinates

targeted in the experiments increases coupling with the CSSs located on the opposite side to

vibrational excitation, consistent with observations. The difference in magnitude of effect ob-

served in the experiments could not be explained by this effect alone; however, it was suggested

that the combination band may be responsible for this phenomenon.

Future work will extend these investigations by expanding the number of vibrational co-

ordinates included in the calculations, with the intention of producing a model Hamiltonian

suitable for quantum wavepacket dynamic simulations, for example, using the vibronic coup-

ling Hamiltonian that has been successfully been applied to similar systems in the past.238,354–356

Whilst relativistic effects were included in some of these calculations, this could be improved

by including SOC self-consistently with a more advanced method, such as with the Two- or

Four- Component (2C or 4C) ZORA Hamiltionian. It should be noted that some disagreement

was observed between the overall topology of the excited states PESs obtained in the meth-

ods used in Section 5.4. This could be resolved by further systematic investigations, including

using alternative but computationally feasible methods that take a different approach, such as
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DFT/Multi-Reference Configuration Interaction (MRCI) or Algebraic Diagrammatic Construc-

tion to Second Order (ADC(2)).357–360
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Chapter 6

Main group azides

Main group azides have recently gained attention for their physical properties, in particular for

their use as “high-energy materials,” or explosives in common parlance.361 Group 14 polyazides

are well known, but elusive.56,361 Fortunately, characterisation of these potentially pressure- and

friction-sensitive compounds using conventional techniques is possible. One reason for this

is that the azido group is strongly polarised and thus yields intense vibrational spectroscopic

signals. However, resolving the spectra of these compounds can be challenging. Recently, the

Portius group sought to synthesise low-valent, homoleptic polyazides, [E(N3)3]– , where E is

one of the two group 14 elements Ge or Sn.56 The regions of the experimental FTIR spectra of

the products in tetrahydrofuran (THF) solvent within which azide stretches would be expected

to appear are shown in Figure 6.1.

Two peaks can be identified in the results of the Ge experiment, at 2059 cm−1 and 2091 cm−1,

and two in the Sn experiment, at 2051 cm−1 and 2080 cm−1. Two small peaks can also be iden-

tified in the spectra, which are assigned to the minor products of the reaction, hydrazoic acid,

HN3, and the azide anion, N –
3 , formed as a result of the addition of excess NaN3.361 Crystal-

lisation of the products of the reaction could be induced by introducing a weakly coordinating

counter ion, such as PPh +
4 . This enabled the structure of the crystalline products to be determ-

ined using X-ray diffraction techniques. The structures derived from this are shown in Figure

6.2.

The geometries of the triazide components of the crystal structures, [Ge(N3)3]– and

[Sn(N3)3]– , are shown in Figures 6.2(i) and 6.2(ii), respectively. These exhibit non-
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Figure 6.1: Experimental FTIR spectra of unidentified Ge (black line) and Sn (red line) azide
compounds in THF solution. The intensity has been normalised such that the lower frequency
azide peaks in both spectra are equal in intensity. Peaks corresponding to the azide anion, N –

3 ,
and hydrazoic acid, HN3, are indicated.361

symmetrical geometries due to differing coordination angles of the azides with respect to the

central atom. Two crystalline phases were identified in the products of the Sn reaction. The

second phase was found to contain a [Sn(N3)3]– dimer, the geometry of which is shown in

Figure 6.2(iii). In this structure, one of the azide groups from each C3-symmetric [Sn(N3)3]–

(i) [Ge(N3)3]– within {[Ge(N3)3]– [PPh4]+}
crystal structure.56

(ii) [Sn(N3)3]– within {[Sn(N3)3]– [PPh4]+}
crystal structure.362

(iii) [Sn(N3)3]– dimer within {[Sn(N3)3]–
2 [PPh4] +

2 } crystal structure.56

Figure 6.2: Experimental X-ray crystallographic structures of [E(N3)3]– , E = Ge, Sn.56,362
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appears to interact weakly with the Sn(II) centre of the other [Sn(N3)3]– . It should be noted

that the fact that a crystal structure has been obtained does not mean that these geometries

are present in the solution phase: the forces acting upon the system are different in these two

situations.

To verify the experimental characterisation of these compounds and their precursors in tet-

rahydrofuran (THF) solvent, computational investigations were performed. It should be noted

that despite the fact that THF is usually considered as a coordinative solvent, since the species

studied herein are anions THF is unlikely to coordinate and so explicit solvent was not con-

sidered in the calculations. It should also be noted that in azide chemistry, nitrogen atoms are

commonly identified based on proximity to the coordinated atom.361 The labelling scheme is

illustrated in Figure 6.3.

Nα Nβ Nγ

Figure 6.3: Labelling scheme used to indicate position of azide nitrogens, Nκ. The proximal N,
highlighted in magenta, is denoted Nα. The central N, highlighted in green, is denoted Nβ. The
distal N, highlighted in red, is denoted Nγ.361

6.1 Conformational flexibility

The geometries of [GeCl3]– and [SnCl3]– , optimised at the B3LYP/cc-pVTZ(-PP)/IEFPCM(THF)

level, are depicted in Figures 6.4(i) and 6.5(i), respectively. As expected, the central group 14

atom exhibits tetrahedral geometry. The vacant coordination site is occupied by a lone pair of

electrons. Substitution of one of the Cl– ligands with a N –
3 to form the mono-azide species

reveals the potential for conformational flexibility in the compounds. The energetic differences

between all of the conformers discussed are presented in Table 6.1. The azide may be arranged

such that the distal nitrogen of the azide group, Nγ, lies either “down,” below the plane of the

coordinating atoms (Conformer (a), Figures 6.4(ii) and 6.5(ii)) or “up,” above the plane of

the coordinating atoms. (Conformer (b), Figures 6.4(iii) and 6.5(iii)) A third conformer can

also be proposed, in which the azide is coordinated in a “planar” manner, such that Nγ lies
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(i) [GeCl3]– .

(ii) [Ge(N3)Cl2]– conformer (a). (iii) [Ge(N3)Cl2]– conformer (b).

(iv) [Ge(N3)2Cl]– conformer (a). (v) [Ge(N3)2Cl]– conformer (b).

Figure 6.4: Low energy conformers of [Ge(N3)(3-n)Xn]−, n = 1, 2, 3, optimised at the B3LYP/cc-
pVTZ(-PP)/IEFPCM(THF) level. Relative energies are provided in Table 6.1.

in the plane of the coordinating atoms. However, this conformer could not be optimised for

either [Ge(N3)Cl2]– or [Sn(N3)Cl2]– . The conformational flexibility found in the mono-azides

extends to the di- and tri-azide species and leads to a significant number of inequivalent

hypothetical conformers: by combining “up,” “down,” and “planar” azides, 9 inequivalent

diazide conformations and 10 inequivalent triazide conformations can be constructed. This is

further complicated by the fact that some conformers are of higher symmetry than others and

therefore will have differing degeneracies. Finally, for completeness, it should be noted that

since each azide is equivalent, three absolute spatial configurations for each conformer exist,

(i) [SnCl3]– .

(ii) [Sn(N3)Cl2]– conformer (a). (iii) [Sn(N3)Cl2]– conformer (b).

(iv) [Sn(N3)2Cl]– conformer (a). (v) [Sn(N3)2Cl]– conformer (b).

Figure 6.5: Low energy conformers of [Sn(N3)(3-n)Xn]−, n = 1, 2, 3, optimised at the B3LYP/cc-
pVTZ(-PP)/IEFPCM(THF) level. Relative energies are provided in Table 6.1.
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(i) [Ge(N3)3)]– conformer (a). (ii) [Ge(N3)3)]– conformer (b).

(iii) [Ge(N3)3)]– conformer (c). (iv) [Ge(N3)3)]– conformer (d).

Figure 6.6: Low energy conformers of [Ge(N3)3)]– , optimised at the B3LYP/cc-pVTZ(-
PP)/IEFPCM(THF) level. Relative energies are provided in Table 6.1.

which would have an impact on the spectra in some cases if isotopic labelling was employed.

To ensure that as many geometries as possible were found, optimisations were performed in

all cases from initial geometries corresponding to each of the hypothetical conformers of that

species. Only conformers with a relative electronic energy within 5.7 kJ mol−1 of the lowest

energy conformer were included in the analysis, since at room temperature this energy differ-

ence corresponds to a 10:1 population ratio within a Boltzmann distribution. The low energy

conformations of the diazides [Ge(N3)2Cl]– and [Sn(N3)2Cl]– are shown in Figures 6.4 and 6.5,

respectively. The low energy diazides have both “up” and “down” azides. Interestingly, despite

the fact that the “down” conformer of the mono-azido species is significantly more stable than

the “up” conformer, the combination of two “down” azide ligands is unstable. This is due to in-

creased repulsion between azide ligands in the “down, down” conformation compared to other

conformations since the azides must be in close proximity in the “down, down” conformation.

(i) [Sn(N3)3)]– conformer (a). (ii) [Sn(N3)3)]– conformer (b).

(iii) [Sn(N3)3)]– conformer (c). (iv) [Sn(N3)3)]– conformer (d).

Figure 6.7: Low energy conformers of [Sn(N3)3)]– , optimised at the B3LYP/cc-pVTZ(-
PP)/IEFPCM(THF) level. Relative energies are provided in Table 6.1.
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The low energy conformations of the triazides [Ge(N3)3]– and [Sn(N3)3]– are illustrated

in Figures 6.6 and 6.7, respectively. The lowest energy conformer in both cases is the “up,

up, down” conformer (a). This is very closely followed by the “up, planar, down” conformer

(b), which is very similar to the conformation of [Ge(N3)3]– observed in the crystal structure

of {[Ge(N3)3]– [PPh4]+} shown in Figure 6.2(i). Interestingly the addition of thermodynamic

corrections to the electronic energy to yield the Gibbs energy causes conformer (b) to be more

stable than (a) for [Ge(N3)3]– but in [Sn(N3)3]– , (b) is less stable than (a) in terms of Gibbs

energy. The third conformer in both cases is the “up, up, up” conformer, which is more favour-

able than (a) in terms of Gibbs energy in both cases. The final conformer, (d), has a “down,

down, down” configuration and is of near-C3 symmetry. This conformer is similar to the crystal

structure of {[Sn(N3)3]– [PPh4]+} shown in Figure 6.2(ii). This conformer is the least stable of

the low energy conformers, both in terms of electronic and Gibbs energies.

As discussed above, a crystal structure of {[Sn(N3)3]– [PPh4]+} was obtained in which a

[Sn(N3)3]– dimer is observed. (See Figure 6.2(iii)) Calculations were performed attempting to

optimise the dimer, to investigate the potential of dimerisation in solution for both [Ge(N3)3]–

Species Conformer Erel Grel Relative pop. No. absolute Mole fraction
/ kJ mol−1 / kJ mol−1 at r.t. configurations

[Ge(N3)Cl2)]– (a) 0.00 0.00 1.00 3 0.84
(b) 4.81 4.13 0.19 3 0.16

[Ge(N3)2Cl]– (a) 0.00 0.00 1.00 6 0.83
(b) 0.55 2.28 0.40 3 0.17

[Ge(N3)3]– (a) 0.00 0.00 0.70 3 0.16
(b) 0.35 −0.89 1.00 6 0.47
(c) 1.27 −0.85 0.98 3 0.23
(d) 4.10 2.02 0.31 6 0.14

[Sn(N3)Cl2)]– (a) 0.00 0.00 1.00 3 0.58
(b) 2.57 0.80 0.73 3 0.42

[Sn(N3)2Cl]– (a) 0.00 0.00 0.83 6 0.62
(b) 0.31 −0.46 1.00 3 0.38

[Sn(N3)3]– (a) 0.00 0.00 0.84 3 0.32
(b) 0.59 2.55 0.30 6 0.22
(c) 0.72 −0.44 1.00 3 0.38
(d) 3.06 5.03 0.11 6 0.08
dimer 10.80
dimer+BSSE∗ 21.48

Table 6.1: Summary of energetic differences between conformers of [E(N3)(3-n)(X)n]−, E = Ge,
Sn; n = 0, 1, 2, 3. Calculations were performed using B3LYP/cc-pVTZ(-PP)/IEFPCM(THF).
Geometries are illustrated in Figures 6.4, 6.5, 6.6 and 6.7. * Basis Set Superposition Error
(BSSE) taken a from gas phase, counterpoise corrected calculation.294,295
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Figure 6.8: Comparison of experimental FTIR spectrum of [Ge(N3)3]– with harmonic
B3LYP/cc-pVTZ(-PP)/IEFPCM(THF) calculated spectrum. The contributions from individual
conformers are shown and are weighted according to their relative population at room temperat-
ure. (See Table 6.1) Harmonic frequencies are empirically scaled by 0.957. Calculated spectra
fitted with Lorentzian functions with FWHM = 8 cm−1.

and [Sn(N3)3]– . A [Sn(N3)3]– dimer was successfully optimised; however, no [Ge(N3)3]– di-

mer could be optimised. The optimised geometry of the [Sn(N3)3]– dimer is shown in Figure

6.11(i). The dimer was found to be unstable with respect to the monomer: including coun-

terpose corrections to account for Basis Set Superposition Error (BSSE), the population of the

dimer in solution would be ∼ 10−4% of the population of the most stable [Sn(N3)3]– monomer

conformation. It should be noted if an alternative, all-electron basis set for Ge was used, a

[Ge(N3)3]– dimer could be optimised. This will be discussed in further detail in Section 6.1.1.

The calculated IR spectra of [Ge(N3)3]– and [Sn(N3)3]– are compared with experimental

FTIR spectra in Figures 6.8 and 6.9, respectively. The spectra are normalised such that the

intensity of the lower energy peak of the total calculated spectrum matches the corresponding

peak in the experimental spectrum. Good agreement is achieved between calculated and exper-

imental spectra in both cases. It should be noted that in both cases, the dominant conformer has

a spectrum that does not fully match the experimental spectrum. In both cases, the intensity of

the higher energy peak is underestimated in the calculations. This may be improved by the in-
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Figure 6.9: Comparison of experimental FTIR spectrum of [Sn(N3)3]– with harmonic
B3LYP/cc-pVTZ(-PP)/IEFPCM(THF) calculated spectrum. The contributions from individual
conformers are shown and are weighted according to their relative population at room temperat-
ure. (See Table 6.1) Harmonic frequencies are empirically scaled by 0.957. Calculated spectra
fitted with Lorentzian functions with FWHM = 8 cm−1.

clusion of anharmonic corrections in the calculations. It should be noted that both experimental

spectra exhibit small peaks that can be assigned to either hydrazoic acid, HN3, or the free azide

anion, N –
3 .361

To further verify the identity of the synthesised compounds, the 14N NMR chemical shifts

of the conformers of [Ge(N3)3]– and [Sn(N3)3]– were computed using the Gauge Independent

Atomic Orbitals method (GIAO).289–293 The isotropic magnetic shielding tensor of Ni, σi, is

related to the experimentally measured chemical shift, δi, by the equation

δi =
σi − σref

σref
, (6.1)

where σref is the isotropic magnetic shielding tensor of a reference atom, in this case the N atom

of nitromethane.56 Since the rotation of the azide ligands is much faster than the timescale of the

experimental acquisition of an NMR spectrum, the values of δi at the three nitrogen positions,

Nκ, were averaged. The calculated chemical shifts are in good agreement with experimental val-
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Species Conformer δ(Nα) / ppm δ(Nβ) / ppm δ(Nγ) / ppm

[Ge(N3)3]– (a) −310.0 −152.2 −235.1
(b) −312.5 −152.8 −235.3
(c) −309.1 −150.8 −232.2
(d) −315.5 −155.4 −238.6
weighted avg. −311.1 −152.3 −234.6
exptl. −263 −136 −207

[Sn(N3)3]– (a) −310.4 −151.7 −243.3
(b) −313.4 −152.6 −244.5
(c) −308.4 −150.6 −240.7
(d) −316.1 −154.5 −247.2
weighted avg. −310.2 −151.4 −242.5
exptl. −260 −136 −218

Table 6.2: Calculated 14N NMR chemical shifts of [E(N3)3]– , E = Ge, Sn. Calculations were
performed using B3LYP/cc-pVTZ(-PP)/IEFPCM(THF) and the Gauge Independent Atomic Or-
bitals (GIAO) method.289–293 The chemical shifts for the Nκ positions are averaged among the
three nitrogens at that position. See Figure 6.3 for illustration of the notation used to indicate
position. The chemical shift of nitromethane, calculated using the same method, was used as
the reference. The weighted average was computed according to the relative populations of the
conformers at room temperature. (See Table 6.1)

ues, although the margin of error increases as proximity to the central atom increases. Since the

chemical shift is sensitive to core-electronic structure, this may be due to the fact that relativistic

effects are neglected.204

6.1.1 Selection of basis set

As previously mentioned, some calculations involving [Ge(N3)3]– were performed using the all-

electron basis set, cc-pVTZ-DK, for Ge.287 This basis set was constructed by fitting to Scalar

Relativistic (SR) Dirac-Hartree-Fock calculations, in which SR effects are included with the

Douglas-Kroll-Hess (DKH) Hamiltonian.230,287 However, Ge is a not remarkably heavy nucleus:

the Lorentz factor of the 1s electrons of Ge, γ = 1.0284, very close to unity. This suggests that

it might be reasonable to discard SR effects and include all electrons in the calculation. Indeed,

if this approach is taken, one can compare the calculated IR spectrum to the experimentally

measured FTIR and obtain very good agreement, arguably competitive with the results obtained

using the cc-pVTZ(-PP) basis set. (See Figure 6.10)

One might be tempted to conclude, therefore, that SR effects are weak in Ge. However,

optimisation of the [Ge(N3)3)]– dimer using the all electron basis set cc-pVTZ-DK yields an

unusual geometry, which is compared to the geometry of the [Sn(N3)3)]– dimer in Figure 6.11
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Figure 6.10: Comparison of FTIR spectra of [Ge(N3)3]– calculated using the cc-pVTZ-PP and
cc-pVTZ-DK basis sets for Ge with the B3LYP functional, the cc-pVTZ basis set for N and
THF solvent implictly with the IEFPCM. Harmonic frequencies were scaled empirically by
0.957 when cc-pVTZ-PP was used and 0.937 when cc-pVTZ-DK was used. Calculated spectra
fitted with Lorentzian functions with FWHM = 8 cm−1.

The non-relativistic all-electron calculations predict that one of the azides of each monomer

coordinates to the central Ge in a linear fashion. This is exceedingly unlikely. Indeed, searching

the Cambridge Structural Database reveals that the most common coordination angle for azides

is ∼124°. (See Figure 6.12) It should be noted that no linear non-metal azide coordination

angles were found, suggesting that the geometry optimised with the cc-pVTZ-DK basis set

(i) [Sn(N3)3)]– dimer. (ii) [Ge(N3)3)]– dimer.

Figure 6.11: Comparison of optimised geometries of the [Sn(N3)3]– and [Ge(N3)3]– di-
mers. The [Sn(N3)3]– dimer was optimised using B3LYP/cc-pVTZ(-PP)/IEFPCM(THF) and
the [Ge(N3)3]– dimmer was optimised using B3LYP/cc-pVTZ(-DK)/IEFPCM(THF). It should
be noted that optimisations performed of the [Ge(N3)3]– dimer using B3LYP/cc-pVTZ(-
PP)/IEFPCM(THF) dissociated.
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Figure 6.12: Histogram showing frequency of azide coordination angles A–N–N, where A is
any atom and N–N forms part of an N–N–N chain that has a bond angle between 170-180°,
within the Cambridge Structural Database.363 It should be noted that no linear non-metal azide
bonds were found. Accessed 14/09/2016.

is not physical. Unfortunately, technical limitations in the Gaussian 09 software preclude the

possibility of optimising the [Ge(N3)3)]– dimer with the DKH Hamiltonian, since optimisations

are limited to systems with fewer than 50 degrees of freedom. This resulted in the use of the

cc-pVTZ-PP basis set, which includes an effective core potential to describe the core-electrons,

for Ge in place of the cc-pVTZ-DK basis in the calculations reported in Section 6.1.

6.2 Conclusion

In summary, the synthesis of two low-valent, homoleptic polyazides, [E(N3)3]– ; E = Ge, Sn,

was confirmed by comparison of calculated and experimental IR and 14N NMR spectra. By

thoroughly investigating the possible conformations of [E(N3)3]– , good agreement was obtained

between calculated and experimental spectra. This highlights the importance of considering

conformational flexibility of molecules in computational investigations. In Section 6.1.1, the

use of an inadequate basis set was shown to give qualitative agreement in calculations of the

vibrational spectrum; however, the optimisation of an un-physical geometry highlights the fact

that basis sets must be selected judiciously.
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Chapter 7

Conclusions and future work

This work largely focused on investigating Pt acetylide complexes in which excited state Elec-

tron Transfer (ET) could be manipulated by means of selective vibrational excitation.

In Chapter 4, the ground and excited state properties of the compounds PTZ-CH2-Pt-NAP,

PTZ-Pt-NAP, OMePTZ-Pt-NAP and PTZ-PtH-NAP were investigated by means of Density

Functional Theory (DFT) and Time-Dependent DFT in the form of the B3LYP hybrid func-

tional, using the SDD, 6-31G(d) and cc-pVTZ basis sets in various combinations. Good agree-

ment between the experimentally determined ground state vibrational and electronic spectra,

and computed spectra is achieved, as well as reasonable agreement between experimental and

computed excited state vibrational spectra for some systems.

Excited state Potential Energy Surface (PES) investigations, also performed using TD-DFT,

along a number of different coordinates reveal that the experimentally observed excited state

dynamics may be due to a crossover between the Charge Transfer (CT) and Charge Separated

State (CSS) PESs, with the “unrelaxed” surfaces, shown in Figure 4.17, showing particularly

strong agreement. These investigations show that careful choices must be made when invest-

igating excited state PESs to properly describe vibrational modes. The efficacy of the most

simplistic models is questioned, since though they show reasonable agreement with experiment

when computing vibrational and electronic spectra, they fail to provide a good framework to

describe excited state dynamics.

In Chapter 5, the unexpectedly complex ground state vibrational structure of [Pt(bipyCOOEt)

(C≡C-Ph-CH2-PTZ)2] was resolved by means of calculations including anharmonic correc-
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tions. The appearance of an additional band in the acetylide region, reported experimentally,54

was found to be due to the presence of a near-resonant combination band, though there

was no formal Fermi-resonance found between the combination band and near-by acetylide

fundamental bands.

The electronic structure of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] was also investigated us-

ing non-relativistic and relativistic TD-DFT. It was found that by using the simplified TD-DFT

scheme, including scalar relativistic effects self-consistently and spin-orbit coupling perturbat-

ively, with an extensive basis set (TZ2P), a good description of the UV-vis absorption spectra of

the complex could be achieved. This selection of methods was then employed to calculate sec-

tions of the ground and excited state PES of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2] along the

prominent vibrational coordinates identified. Using this data, it was postulated that the experi-

mentally observed directional vibrational control in this system55 was due to increased coupling

between select excited states as a result of polarisation of the excited state during vibration,

shown in Figure 5.29.

In Chapter 6, the ground state FTIR spectra of two novel main group triazide compounds

were resolved. This was achieved as a result of an extensive investigation of conformational

flexibility was conducted and population averaged vibrational spectra were calculated. The

importance of a careful choice of basis set was also highlighted by the example of qualitatively

incorrect geometries obtained when an inappropriate basis set was used.

Chapters 4 and 5 demonstrate that time-independent quantum chemical calculations can be

used to gain qualitative insight into the time-dependent behaviour of complex systems. In the

context of vibrational control, despite the clear similarities in chemical structure between the

molecules discussed in these chapters, the proposed mechanisms underlying these phenomena

are different. To gain a quantitative understanding of these mechanism, future work should

focus on performing time-dependent simulations on these systems with the aim of developing

a predictive model for controllable electron transfer. This could then be used in the future to

design functional materials that display controllable electron transfer.
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Appendix A

A.1 Selected excitation energies

Number Energy (cm-1) f Major contributions Assignment

1 20266 0.0000 HOMO→LUMO (100%) CSS
2 21476 0.4794 H−1→LUMO (90%) CT
3 21988 0.0791 H−2→LUMO (87%) CT′

4 24172 0.1655 H−3→LUMO (91%) dπ∗

5 27755 0.0000 H−5→LUMO (99%) dπ∗

6 28351 0.0035 HOMO→L+1 (13%), HOMO→L+2 (62%), ππ∗

HOMO→L+4 (21%)

Table A.1: The lowest six calculated electronic excitations of singlet PTZ-CH2-Pt-NAP at
the B3LYP/cc-pVTZ level. f stands for oscillator strength. Major contributions are defined as
having a >10% contribution to the transition.

Number Energy (cm-1) f Major contributions Assignment

1 3823 0.0000 HOMOβ →LUMOβ (100%) CSS
2 5443 0.0039 H−2β →LUMOβ (89%) CT
3 6979 0.1516 H−1β →LUMOβ (94%) CT′

4 10218 0.0484 H+2α →L+2α (21%), H−4β →LUMOβ (74%) ππ∗

10899 0.0001 H−5β →LUMOβ (99%) dπ∗

6 11102 0.0028 H-6β →LUMOβ (85%) dπ∗

Table A.2: The lowest six calculated electronic excitations of the Franck-Condon triplet of
PTZ-CH2-Pt-NAP at the B3LYP/cc-pVTZ level. f stands for oscillator strength. Major con-
tributions are defined as having a >10% contribution to the transition.
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Number Energy (cm-1) f Major contributions Assignment

1 20328 0.0000 HOMO→LUMO (100%) CSS
2 21924 0.5730 H−1→LUMO (90%) CT
3 22203 0.0856 H−2→LUMO (88%) CT′

4 24955 0.0735 H−3→LUMO (95%) dπ∗

5 27815 0.0008 HOMO→L+1 (64%), HOMO→L+2 (23%), ππ∗

HOMO→L+3 (10%)
6 28042 0.0000 H−5→LUMO (99%) dπ∗

Table A.3: The lowest six calculated electronic excitations of singlet PTZ-Pt-NAP at the
B3LYP/cc-pVTZ level. f stands for oscillator strength. Major contributions are defined as
having a >10% contribution to the transition.

Number Energy (cm-1) f Major contributions Assignment

1 3817 0.0000 HOMOβ →LUMOβ (100%) CSS
2 5624 0.0009 H−2β →LUMOβ (89%) CT
3 7860 0.1519 H−1β →LUMOβ (94%) CT′

4 10234 0.0381 H+2α →L+2α (17%), H−4β →LUMOβ (73%) ππ∗

5 11020 0.0028 H-6β →LUMOβ (85%) dπ∗

6 11122 0.0001 H−5β →LUMOβ (99%) dπ∗

Table A.4: The lowest six calculated electronic excitations of the Franck-Condon triplet of
PTZ-Pt-NAP at the B3LYP/cc-pVTZ level. f stands for oscillator strength. Major contribu-
tions are defined as having a >10% contribution to the transition.
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Number Energy (cm-1) f Major contributions Assignment

1 18041 0.0000 HOMO→LUMO (100%) CSS
2 21867 0.5435 H−1→LUMO (88%) CT
3 22174 0.1064 H−2→LUMO (86%) CT′

4 24836 0.0833 H−3→LUMO (94%) dπ∗

5 26281 0.0000 HOMO→L+1 (69%), HOMO→L+2 (28%) ππ∗

6 27719 0.0000 H−4→LUMO (100%) CSS′

Table A.5: The lowest six calculated electronic excitations of singlet OMePTZ-Pt-NAP at
the B3LYP/cc-pVTZ level. f stands for oscillator strength. Major contributions are defined as
having a >10% contribution to the transition.

Number Energy (cm-1) f Major contributions Assignment

1 1538 0.0 HOMOβ →LUMOβ (100%) CSS
2 5589 0.0013 H−2β →LUMOβ (88%) CT
3 7736 0.152 H−1β →LUMOβ (92%) CT′

4 10229 0.0401 H+2α →L+2α (19%), H−5β →LUMOβ (73%) ππ∗

5 11028 0.0028 H-7β →LUMOβ (85%) dπ∗

6 11110 0.0001 H-6β →LUMOβ (99%) dπ∗

Table A.6: The lowest six calculated electronic excitations of the Franck-Condon triplet of
OMePTZ-Pt-NAP at the B3LYP/cc-pVTZ level. f stands for oscillator strength. Major con-
tributions are defined as having a >10% contribution to the transition.
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Number Energy (cm-1) f Major contributions Assignment

1 20070 0.0002 HOMO→LUMO (100%) CSS
2 23948 0.6917 H−2→LUMO (14%), H−1→LUMO (83%) CT
3 24289 0.0104 H−4→LUMO (11%), H−2→LUMO (71%), CT′

H−1→LUMO (15%)
4 27316 0.0533 H−4→LUMO (81%), H−2→LUMO (13%) CT′′

5 27871 0.0004 HOMO→L+1 (46%), HOMO→L+3 (42%) ππ∗

6 28701 0.0000 H−3→LUMO (99%) CSS′

Table A.7: The lowest six calculated electronic excitations of singlet PTZ-PtH-NAP at the
B3LYP/SDD+6-31G(d). f stands for oscillator strength. Major contributions are defined as
having a >10% contribution to the transition.

Number Energy (cm-1) f Major contributions Assignment

1 2672 0.0006 HOMOβ →LUMOβ (100%) CSS
2 6240 0.0024 H−3β →LUMOβ (10%), H−1β →LUMOβ (84%) CT
3 9542 0.0940 H+2α →L+4α (16%), H−4β →LUMOβ (21%), CT′

H−3β →LUMOβ (53%)
4 9801 0.0028 H−5β →LUMOβ (85%) ππ∗

5 10821 0.0116 H+2α →L+4α (13%), H−4β →LUMOβ (46%), dπ∗

H−3β →LUMOβ (23%), H−1β →LUMOβ (10%)
6 11288 0.0003 H−2β →LUMOβ (98%) CT′

Table A.8: The lowest six calculated electronic excitations of the Franck-Condon triplet of
PTZ-PtH-NAP at the B3LYP/SDD+6-31G(d). f stands for oscillator strength. Major contribu-
tions are defined as having a >10% contribution to the transition.
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A.2 B3LYP/cc-pVTZ frontier molecular orbitals of PTZ-PtH-NAP

HOMO ε = −5.30 eV LUMO ε = −2.69 eV

H−1 ε = −5.98 eV L+1 ε = −1.33 eV

H−2 ε = −6.10 eV L+2 ε = −1.18 eV

H−3 ε = −6.41 eV L+3 ε = −0.98 eV

H−4 ε = −6.49 eV L+4 ε = −0.93 eV

H−5 ε = −7.17 eV L+5 ε = −0.90 eV

Figure A.1: Singlet frontier molecular orbitals of PTZ-PtH-NAP at the B3LYP/cc-pVTZ)
level.
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A.3 Calculated Cartesian displacements of the νa(C≡C)

mode in the ground and excited state of PTZ-PtH-NAP.

State Type Displacement Ratio of displacement
Ca Cb Cc Cd

S0 GS 0.73 −0.63 −0.13 0.16 0.96:0.04
S1 CSS −0.74 0.65 0.00 0.00 1.00:0.00
S2 CT 0.57 −0.49 −0.41 0.48 0.59:0.41
T1

3NAP 0.75 −0.63 0.00 0.00 1.00:0.00
T2 CSS - - - - -
T3 CT 0.62 −0.54 −0.35 0.41 0.70:0.30

Table A.9: Normalised274 Cartesian displacements for the atoms NAP–Ca≡Cb–Pt–Cc≡Cd–Ph–
PTZ along the molecular axis in the ground and excited state νa(C≡C) mode of PTZ-PtH-NAP
at the B3LYP/SDD+6-31G(d) level.
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A.4 Deconvolution of UV/vis absorption spectrum of

[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2].
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Figure A.2: Deconvolution of experimental UV-vis absorption spectra of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]. The experimental spectrum is shown as a dashed
grey line and the component Gaussian curves are shown as filled curves. The sum of the
Gaussian curves is shown as a thick black line. The parameters of the Gaussian curves are
provided in Table A.10. The residual sum of squares error, χ2 = 0.0025. It should be noted
that the two peaks λmax=333 and λmax=341 are used to reduce residual error in the 400 nm to
600 nm region and are not intended to be meaningful.

λmax / nm ν̃max / cm−1 FWHM / cm−1 Amplitude / 103 L mol−1 cm−1

530 18852 (42) 1886 (34) 7.313 (0.301)
490 20397 (25) 2000 (64) 11.377 (0.771)
443 22557 (13) 3800 (68) 34.464 (0.402)
341 29309 (616) 1336 (532) 10.221 (9.895)
333 30024 (570) 6526 (620) 44.033 (4.940)

Table A.10: Parameters of the Gaussian curves used to deconvolute the experimental UV-
vis absorption spectra of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]. Standard deviations for the
parameters are provided in brackets. It should be noted that the two peaks λmax= 333 and λmax=

341 are used to reduce residual error in the 400 nm to 600 nm region and are not intended to be
meaningful.
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A.5 Calculated Cartesian displacements of the acetylide

modes of [Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2].

Species Vibration Displacement Ratio of displacement

Ca Cb Cc Cd

12-12 12ν289 0.46 −0.52 0.47 −0.54 0.48:0.52
12ν288 0.47 −0.54 −0.45 0.52 0.52:0.48

13-12 13ν289 −0.05 0.05 −0.66 0.74 0.01:0.99
13ν288 0.65 −0.74 −0.05 0.06 0.99:0.01

Table A.11: Normalised274 Cartesian displacements of the acetylide modes of
[Pt(bipyCOOEt)(C≡C-Ph-CH2-PTZ)2]. Atoms Ca and Cb are on the right-hand or 13C
labelled side of 12-12 and 13-12, respectively, and Ca is connected to the Pt centre. Atoms
Cc and Cd are on the left-hand or 12C labelled side of 12-12 and 13-12, respectively,
and Ca is connected to the Pt centre. Calculations performed using B3LYP/SDD[Pt]6-
311G(d,p)[H,C,N,O,S]/IEFPCM(CH2Cl2). Eigenvectors of the vibrational modes are shown in
Figure 5.5.
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