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Abstract

In this thesis | discuss a series of anelastic approximatéom detail the assumptions
used in the derivation. | derive an entropy and temperaturadlation of the anelastic
approximation along with a simplification to the entropynfiation introduced by
Lantz (1992) and independently by Braginsky & Roberts (399bassess range of
applicability of the anelastic approximation, which isesftused in describing the

dynamics of geophysical and astrophysical flows.

| consider two linear problems: magnetoconvection and retigrbuoyancy and
compare the fully compressible solutions with those deiteethby solving the anelastic
problem. | further compare the Lantz-Braginsky simplificatwith the full anelastic

formulation which | find to work well if and only if the atmosphe is nearly

adiabatic. | find that for the magnetoconvection problemahelastic approximation
works well if the departure from adiabaticity is small (agpegted) and determine
where the approximation breaks down. When the magnetic feldrge then the
anelastic approximation produces results which are mérlditferent from the fully

compressible results. | also investigate the effects efialy the boundary conditions
from isothermal to isentropic and the effect of stratifioation how some of the
parameters scale with the Chandrasekhar number. Thesdsulnagnetic buoyancy
are less straight-forward, with the accuracy of the appnation being determined by

the growth rate of the instability.

| argue that these results make it difficult to assasgriori whether the anelastic
approximation will provide an accurate approximation te thily compressible system
for stably stratified problems. Thus, unlike the magnetweotion problem, for
magnetic buoyancy it is difficult to provide general rulestaswhen the anelastic

approximation can be used. When the instability grows duiok the magnetic field



is large the results do not compare well with the fully conggikle equations. | outline
a method for a two-dimensional non-linear time-steppinggoter program and explain

some problems with current non-linear programs.

Vi
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Chapter 1

Introduction

1.1 The Sun

The Sun has been studied for millennia with Babylonian astmoers taking some of the
first early recordings of the Sun via the naked eye. Along witist other ancient peoples
Babylonians studied the Sun to gain knowledge about theoesasd also due to their
religious ceremonies. They applied mathematics to thecitins of data recorded from
water-clocks to deduce orbital periods. They deduced HeaEarth was in orbit around
the Sun and calculated the time for a sidereal year, the miné& Eath to rotate around
the Sun, within 6 minutes of the current value (Levering903). Trying to understand
our nearest star is still a challenge today due to the saalet/ed in the problem. It is of
practical importance that we can predict solar phenomena$tance space weather as
this can damage satellites and other equipment, but it issaftgr importance to science
in investigating the natural world around us. To this endll start by explaining some

of the observations that motivate this work.



1. INTRODUCTION

1.1.1 Observations

One of the earliest and easiest solar observations to makatisf sunspots. Sunspots
are phenomena visible as dark spots compared with surnoginglgions. Galileo Galilei
published the first modern description of sunspots in 16a3esponse to Christoph
Scheiner who argued that sunspots were little planetslebadsponded by tracking the
motion of sunspots across the face of the Sun and provinghtewntrotate with the Sun’s
surface (Galilei et al., 1613). His 28-day observationsgjenaith the new instrument of
the time, the telescope, are shown in figure 1.1. Galilei ¢pastulated that the spots,

irregular in nature, were clouds of cool gas.

The number of sunspots at this time was decreasing as therffere@ a period called
the Maunder minimum during 1645 - 1715 (Eddy, 1976). The Minminimum was

a period when sunspot numbers decreased dramatically. Urtspats that did appear
during the minimum, 1680-1710, were confined to the southemisphere (Ribes &
Nesme-Ribes, 1993). This shows that the mechanism whicergtu the spots was
altered and although it was still capable of developingsjtalid so in far fewer numbers

and in only one hemisphere.

The sunspot cycle was discovered later. In his search fer-mercurial planets Schwabe
(1843) discovered that every ten years the number of susigspathed a maximum.
This observation has later been corrected to the elevensygespot cycle. Evidence
for these cycles can be inferred from the effect the soladwiad on the Earth in the
past. During normal solar activity the Sun produces a stremagnetic particles,
the solar wind, which deflects many galactic cosmic rays freaching the Earth’s
heliosphere. Galactic cosmic rays are high energy pastafel when these enter the
terrestrial atmosphere they produce unstable radioaisitepes, namel{’Be and!4C
which can be measured in polar ice core records and tred fessirds respectively
(Beer, 2000). An increase in radioactive isotopes indgatdecrease in the solar wind.
This suggests events similar to the Maunder minimum, caBeand minima, occur

aperiodically throughout the records. The radioactivergdor '°Be shows evidence of
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e Lk ) BB ol .
i e |

Figure 1.1: Galileo’s drawings of sunspots from ‘Letters on Sunspots’ (1613)
where Galileo, along with his student Benedetto Castelli, used a telescope to

show that sunspots moved on the surface of the Sun.
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the eleven-year cycle going back over 9 000 years (Vonmoals, &006).

The magnetic nature of sunspots was discovered by meaguengun’s spectral lines
using the phenomena of Zeeman splitting. The splitting ihiféerent polarisation
states of spectral lines, or widening, in the presences ajnetic fields is known
as Zeeman splitting and was discovered in 1896. Hale (1968¢ wlata from Mt.
Wilson observatory, along with an understanding of Zeenpitting, and concluded
that sunspots possessed a magnetic field. He also notideslitiepots typically appear
in pairs of opposite polarity with the leading sunspot, itke most Eastward, having
a different polarity in the northern and southern hemisebes in figure 1.3. This

indicates that the Sun has a magnetic field which is cohereatgiobal scale.

A sunspot marks a region on the solar surface where a nearfigalemagnetic flux
tube emerges from the solar interior. The radial field in thletee can be measured on
magnetograms with a typical strength of the spot arosik®. Large sunspots occur
in pairs of opposite polarity, see figure 1.2 for an emergiag. pThe polarity of the
leading spot is the same for all pairs in the same hemisphére.total solar radiance
increases when sunspot activity is highest as active regiom on average brighter due
to the additional faculae, even though they contain darkesgots. The variation of
solar irradiance between solar minimum and maximum is ataft which would lead
to an expected effect on the Earth’s temperature 6f1 °C. For a review on sunspots
see Thomas & Weiss (2008).

Along with the temporal variation, sunspots also displaypatigal evolution. At the
beginning of the sunspot cycle a small number of sunspots &irmid-latitudes~ 30°
then, slowly increasing in number, the regions of sunspoegdion migrate to the
equator. The number of sunspots then decreases and thestaxtkeagain. When the
cycle starts again it does so with a reversed magnetic fieldrst was the north pole
becomes the south pole. This magnetic field reversal meanslithough the sunspot
cycle is over eleven-years the magnetic solar-cycle is approximately twenty-two

years. The polarity of the leading sunspot in each hemigpiseeversed after the each
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Figure 1.2: The emerging sunspot divided and became two spots over a two-day
period. Each of the spots is about the size of Earth. Courtesy of NASA/SDO and
the AIA, EVE, and HMI science teams.
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Figure 1.3: A magnetic butterfly diagram showing the polarity of the sunspots for

each rotation of the Sun since 1975. Courtesy of David Hathaway at NASA.
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Figure 1.4: A butterfly diagram showing the positions of the sunspots for each
rotation of the Sun since May 1874 shows that bands develop first from mid-
latitudes, widen, and then move toward the equator as each cycle progresses.
Courtesy of David Hathaway at NASA.
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sunspot cycle, indicating the field reversal. If this pracesmapped out on a time-
latitude plot of sunspots this produces the well known ‘&ly diagram’, first exhibited
by Maunder (1904) and shown in figure 1.4. The cycles are shovthis ‘butterfly
diagram’ where modulations can be seen in cycle strengthtlaadatitude at which
sunspots appear, but there is near symmetry between theemspheres. The solar
coronal field can be used as a measure of the radial compoinmaipmetic field and the
coronal field reverses in the middle of the eleven-year sninsgle when numbers of

sunspots is at a maximum.

It is often helpful to decompose magnetic fields into two comgnts: poloidal and
toroidal. In axisymmetric fields the toroidal componentristihhe same plane as the
long dimension of a torus, or the component of magnetic figdaltel to latitudinal
lines. The poloidal field is outwards from the poles, and & plart of the magnetic
field that contains a radial component. The coronal, or palpifield is out of phase
with the magnetic field that creates sunspots, the toroidhl. firhis means that at solar
maximum, when the number of sunspots is greatest, the ddiielthis weakest, as in

figure 1.3.

Today observations can be carried out using advanceditegailich as, Solar Terrestrial
Relations Observatory (STEREOht t p: // st er eo. gsf c. nasa. gov/ ), Solar and
Heliospheric Observatory (SOHOt t p: / / sohoww. nascom nasa. gov/ ), and
Hinode fitt p: / / sol ar b. nsf c. nasa. gov/ ) capturing many different wavelengths,
high resolution measurements of the magnetic field, and gnagucing so-called ‘three-
dimensional images’. Although satellites remove the srmotroduced from the Earth’s
atmosphere there are many ground based telescopes equiphediaptive optics that
are trained on the Sun, such as the Swedish 1-m Solar Teksebph produces high
resolution images, or the BISON and GONG networks that giean almost continual

monitor of oscillations in the Sun from locations acrossElagth.

Modern telescopes have allowed a much clearer imaging @uheand this has nurtured

the study of coronal loops, fine structure in sunspots aneratblar surface phenomena.



1. INTRODUCTION

The telescopes have also allowed a more advanced predadtispace weather from
monitoring events such as coronal mass ejections and gaayraursts. Observations
of the Sun show the magnetic field is not diffuse but is insteatentrated into regions

of intense field, ranging from sunspots (diametet®) Mm and field strengths of 3 kG)

to magnetic knots200 km, 1 kG) (see e.g. Thomas & Weiss, 2008). Images reveal a

complicated pattern of fine structures in both the penumbdamthe umbra, as shown
in figure 1.5. The umbra is the dark centre of a sunspot andstiiounded by the
penumbra, consisting of linear bright and dark radial el@meThere are bright points
that can be seen in the penumbra amongst downflows and treeskear indicators of
magnetoconvection, convection in a magnetic medium. Sdrtieese phenomena, such
as umbral dots, can be explained by current theory and casdikta test that computer
models are capable of producing results seen in the Sun. &ubis have diameters of
100-200 km and bright dots can last for days. Thomas & WeiB8§2has a review of
the features in sunspots and umbral dots can be seen in figur&@me sunspots are

symmetrical but many are highly irregular.

As well as sunspots, which are a manifestation of the lartgg stagnetic field, the Sun
also exhibits a small scale magnetic field on the surfaces ihoften referred to as
the “magnetic carpet” and can be seen in the granulatioenatiwvhich occurs at two
discrete scales: granules and supergranules. Granulémtptumes of gas and have
a size of~ 1,500 km and time-scales of 15 minutes and supergranules are 28 fi

large with time-scales of 24 hours (Thomas & Weiss, 2008).

The final piece of observational data is from measuremeritseo$olar rotation profile.
The Sun is not a solid body. At the equator the Sun rotatesantéb.6 days and slower
at the poles. The rotation rate observed at the surface is@tmoic smooth transition
from the poles to the equator. It rotates counter-clockwiséewed from a position
above the Earth’s northern pole. The internal rotation [gaii the Sun is discussed in

more depth later in this chapter.

The observational data fits together to build up a picturenef$un but a theoretical



1.1 The Sun

Figure 1.5: Image in visible light from the Swedish 1-m Solar Telescope showing
dark filaments around a sunspot. The dark regions are the umbra and they
are surrounded by the penumbra with a background of granulation. Penumbra
filaments with dark cores can be seen protruding into the umbra. Credit: Royal

Swedish Academy of Sciences.
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model is also required, this is where solar magnetohydrachycs is required. The aim
of solar magnetohydrodynamics is to explain these obsensand develop a coherent

picture of the physical processes which take place.

1.1.2 Solar interior

In the solar core, where temperatures ard 3.6 x 10° K, nuclear fusion combines
hydrogen ions together in proton-proton reactions to foeliuim ions. There is a small
amount of mass loss involved in nuclear fusion and that isechaway by high energy
photons, neutrinos and gamma rays. Heat is radiated outtfrermore into the radiative
interior of the Sun. At about 0.7 R, where R is the radius of the Sun, the opacity
increases so that radiative processes are no longer capfaiéansferring the heat and
the interior becomes unstable to convection. The conveaime is unstably stratified
with highly time-dependent flows driven by vigorous thermmahvection. The radiation
and convection zones can be seen in figure 1.6 along with éimsitron between the
two, which is discussed in more depth later. The convectareas surrounded by the
concentric zones of the photosphere, chromosphere andtbearespectively. A more

detailed study of the internal solar structure is found iie$r(1984).

Convection Radial Entropy ds Radiative
Zone Gradient dar Heat Flux F

Nearly Adiabatic
Penetration depth Convective
Region \L Enthalpy Flux

Figure 1.6: A schematic of the radial entropy gradient, ds/dr, convective

enthalpy flux, and radiative heat flux F;. Courtesy of Miesch (2005).
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1.1 The Sun

The convection zone is highly turbulent. This turbulence ba seen on the surface
in the form of solar granulation. The small scale magneticasyo, which is the self-
generation of magnetic field on a small-scale, is thoughestult from the interplay
between magnetic fields and turbulent convection (see eftaiizo et al., 2003; Vogler

& Schissler, 2007) which gives rise to the “magnetic cdraet previously discussed.

Figure 1.7: Computer generated image of a p-mode solar oscillation (I = 20,

m = 16 and n = 14). Courtesy of Kosovichev et al. (1997).

Until the advent of helioseismology little was known abdu internal rotation profile
of the Sun. As discussed earlier, it was known that the serfatation was non-
uniform with faster rotation at the equator than at the pol8sme results could be
deduced from the oblateness of the Sun but, beyond this)tenal rotation profile was
guesswork, with suggestions that it obeyed the Taylor-&ran theorem of constant
rotation on cylinder (Pedlosky, 1987). There was also soeimtt as to how the Sun
shed its angular momentum during the initial phase of gatieimal collapse before it
reached the main-sequence phase. This issue is solvedt,ibyp#he solar wind torque
which provides a mechanism to explain the loss of solar amgnbmentum. How deep
this profile extends into the Sun was unknown until the mghtes when the field of

helioseismology started producing results.

11



1. INTRODUCTION

Helioseismology is the study of ‘sun-quakes’, i.e. of glbpeesonant oscillations inside
the Sun. In the Sun there are many globally resonant modethasd can be analysed,
using Fourier transforms, and decomposed into spherigahdvaics. The turbulent

convection creates a range of oscillations at the surfadbeofSun. The acoustic or
p-modes then travel towards the centre of the Sun but argcteft when the horizontal
phase speed is equal to the sound speed. In the Sun the saetl inpreases as a
function of depth so high frequency oscillations are trappea thin acoustic cavity

near the surface whereas low frequency oscillations caatpe much deeper into the

solar interior, see figure 1.7.

The frequencies of the different modes depends$,on andn, which are the angular
order, azimuthal order, and absolute number of nodes irettialrdirection respectively.
The azimuthal wave number would exhibit degeneracy in anotating case but the Sun
is rotating so this degeneracy is removed. Thousands of timesles are measured by
ground-based telescopes with varying frequencies and snodee frequency depends
on all three wave numbers and the frequency splits betweeesnwith different radial
ordern. From the frequency splitting data information can be ofg@diabout the internal
rotation profile as a function of depth by solving the invepseblem. The current
rotation profile is shown in figure 1.8; there is a lack of dataha poles as acoustic
modes can give no information at high latitudes. An overvidwthis technique applied
to the Sun is given in Christensen-Dalsgaard (1988) and Rird&008).

It is clear from the rotation profile shown in figure 1.8 tha¢ tariation seen at the
surface between the equator and the poles extends into ldreirs@rior with a sharp
transition at the base of the convection zone. The rotatrofil@ is not constant on
cylinders, as previously suggested, but is more constardadial lines. The dashed line,
which extends from the ‘Tachocline’ label in figure 1.8, neatlke base of the convection
zone. There is a sharp transition from the stably stratiteliiative zone, which rotates
as a solid body, to the unstably stratified turbulent congactone, which is rotating

differentially. The transitional zone, or shear-layerc#éled the tachocline which has

12



1.2 Theoretical background

Figure 1.8: The internal rotation rate of the Sun with red for fast and blue for slow

rotation rate. Image from M. J. Thompson.

a rotation profile which matches onto solid body rotationhe tadiative zone. The
tachocline is thin, helioseismology can only give an uppstineate of the thickness of
this region but it is thought to be aroufd4 R, (Charbonneau et al., 1999). The change
from radiation to convection as the dominant heat trans&stranism occurs at a similar
place as the change from solid body rotation to differemt&dtion, see figure 1.6. The
tachocline is the penetrative region and the thermal adjeist layer. In the thermal
adjustment layer (the slow tachocline) the atmospheretia@arly adiabatic, unlike the

regions above it.

1.2 Theoretical background

Sunspots can be used as an indicator for large-scale magjp&tiand the sunspot cycle
exhibits a large-scale pattern which suggests a dynamac swgnetic field of a global
scale. Small scale magnetic field generation is generatélaeoyteraction between the
turbulent convection with the magnetic field and is reasbnakll understood (see e.g.
Cattaneo & Hughes, 2001; Cattaneo et al., 2003; Vogler &iSsler, 2007). The large-
scale field can be inferred from the solar cycle. The decayafthe solar magnetic field

due to diffusion alone is- 10'° years which is on a similar time-scale to the lifetime of
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1. INTRODUCTION

the Sun. The time-scales do not rule out the possibility thatlarge-scale magnetic
field is a fossil field: the decaying remnants of an initialdieAlthough not ruled out
by time-scales it is unlikely that the solar magnetic fieldhis result of a fossil field
as it is dynamic, as shown by the ‘Butterfly diagram’ in figuré along with surface
magnetic field and Grand Minima. Along with time-variatianghe solar differential
rotation there are also oscillations called torsionall@ns, which are bands of faster
or slower rotation which migrate in latitude on the solarface (Proctor, 2006). All

these features suggest that the solar magnetic field is motdesoscillator.

Discarding the possibility of a fossil field the solar magoéield must be sustained
by converting kinetic energy into magnetic energy. Undarding the processes which
drive the magnetic field generation is the goal of solar dym#imeory. Cowling (1933)
proved that no steady axisymmetric magnetic field could bentaaed by dynamo
action. This means it is impossible to capture dynamo adti@imple systems, unless

additional assumptions are made e.g. in mean field theogud& & Radler, 1980).

The simplistic theoretical picture for the solar dynamahiattan initial poloidal field is
wound up, due to differential rotation, into a toroidal fieRhrker (1975) showed that the
large-scale magnetic field cannot be generated within theamion zone because it will
rise to the surface too quickly, thus not allowing sufficiemte for amplification. Before
the discovery of the tachocline Parker predicted a dynamepeeated in the Sun, where
the solar interior is stable so that magnetic fields couldaiarstored for a time longer
than convective time-scale. This would allow amplificatipndynamo action before the
fields rise, due to the magnetic buoyancy instability, tigtothe turbulent convection
zone and arrive at the surface as a pair of sunspots. Forew®firising flux in the
convection zone see Fan (2009). To complete this theolglic@are the toroidal field
needs then to be turned into poloidal field via another masharsuch as proposed by
Parker (1955a) and later by Steenbeck & Krause (1966), lmiidibeyond the scope
of this thesis. For reviews on dynamo theory see (Osserdyip003; Tobias & Weiss,

2007; Charbonneau, 2010). Part of this theoretical pigtuttee winding-up of magnetic
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1.2 Theoretical background

field lines, this requires a strong shear flow. From the irglerotation profile the region
with the largest shear is the tachocline. As the tachoctreelikely site for generation
of the large-scale toroidal magnetic field modelling thigioa correctly is important for

the understanding of the dynamo.

The reason the tachocline is so thin has been the subjectedneh for some time with
early suggestions from Spiegel & Zahn (1992) who pose thieleno by setting an initial
condition then, as time advances, allow the system to spivad They maintain that a
meridional flow, driven by baroclinic instabilities, woutgrry the differential rotation
into the radiative zone over the lifetime of the Sun. In orttecounteract this flow
they suggest that stratified turbulence will mix the angatementum in such a way
as to make movements on a sphere more efficient than radial driee nature of the
turbulence then plays a large role in keeping the tachoslirthin as a strong preference
for horizontal motions can keep radiative effects fromukfhg the tachocline. Spiegel
& Zahn claim that the stratification in the tachocline willgamder a two-dimensional

turbulence over a three-dimensional turbulence.

Spiegel & Zahn (1992) did not consider the effects of magrfeids in the horizontal

turbulence but Gough & Mclintyre (1998) suggest it is indviéggthat the radiative interior
has a large-scale magnetic field. A field as low18s%G is all that is required for the
radiative zone to rotate as a solid body. In the limit wheszous effects are ignored
Ferraro’s law of isorotation states that fluid angular vgjots constant on a surface
mapped by rotating a magnetic field line. Although this gaemeway to explaining the
thin tachocline it leaves the question of how the magnetld fiethe interior does not

transport the differential rotation from the convectiomednwards through magnetic
coupling. For a review of the tachocline see Tobias (200%igh (2007); Mcintyre

(2007).

There are two processes which are fundamental to a solar maynmodel:
magnetoconvection and magnetic buoyancy. | will give aflimteoduction to both these

processes.
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1. INTRODUCTION

1.2.1 Background to Magnetoconvection

Convection is the process of transferring fluid heat by mmotMarm fluid is less dense
and, in a gravitationally stratified atmosphere, becomes/dmt. A parcel of warm
rising fluid will occupy an increasing volume as it rises whiwill smooth outany
perturbations present in the parcel. Conversely, a pafaaild fluid is denser and so it
will descend and occupy a decreasing volume, whichimtiénsifyany variations present
in the parcel. Magnetoconvection is the study of how a camgtiydrodynamic system
responds in the presence of magnetic fields, and how the tigoact. The reviews
of magnetoconvection by Hughes & Proctor (1988); Proctor &84 (1982); Proctor
(2005) give a wide and detailed introduction to the field.

To understand magnetoconvection requires an understamdinow magnetic fields
evolve in a conducting fluid. Magnetic fields obey Maxwellguations and, assuming
that the displacement current can be neglected, the evnlati magnetic fields is
governed by the induction equation

%—?:Vx(uxB)—Vx(anB), (1.1)
wheren is the magnetic diffusivity, an@, u are the magnetic field and velocity field
respectively. The magnetohydrodynamic equations willusther developed i2.1.2.
A non-dimensional number for measuring the importance efrttagnetic advection
to magnetic diffusion is the magnetic Reynolds numBgr = u,d/n whereu,, d are
relevant velocity and length scales. In the astrophysicatextR,, > 1 so advection
is dominant therefore the magnetic field lines move with thelfand are wound up
until they are on a length scale where diffusion is again irgrd. For the tightly
wound-up field the effective length-scale decreases sodba& Imagnetic Reynolds
number becomes smaller allowing reconnection to occutliod&econnection is where
magnetic field lines from different domains are spliced tbgechanging the magnetic

topology of the system (see e.g. Priest & Forbes, 2000). Magfields also have a

force on the fluid flow, called the Lorentz force.
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1.2 Theoretical background

Early numerical studies of magnetoconvection were camigidusing the Boussinesq
approximation, where density stratification is ignored.r Bdonger discussion of the
Boussinesq approximation sg2.2.1. The numerical results by Weiss (1966) show that
in rising convective cells flux is expelled to the edge of tk#.dnside a cell the scale
of flux variations decreases and resistive effects domjtisitephenomena is called flux
expulsion. The total pressure, that is the thermal and ntegmeessure combined, must
be nearly equal or a flow would develop to equalise the pressuralance. In flux tubes
near the surface of the Sun the magnetic pressure is almaat &qthe un-magnetised
surroundings so the flux tube must be almost evacuated. Tkedlen at the surface
exceeds equipartition and around the tube is a strong dolkngvef fluid as the tube
emerges on the surface (Galloway et al., 1977). The stromgnet& fields impede
convection via the Lorentz force, so the temperature in e tfhbe will be less than
the surrounding temperature. Simulations and obsensasibaw broad diffuse up-flows
surrounded by cool dense flux tubes, with the minimum sizeetiownwellings limited
by dynamical effects of the magnetic field. In a system withveative flows steadily
overturning then magnetic fields will be advected into cogve regions. This leads
to flux stretching, which transfers energy from the velot¢gymagnetic field. This is

important for dynamos.

Nonlinear Boussinesq magnetoconvection has been studiegrgat detail, with
an overview in Proctor & Weiss (1982). There are limitatiométh using
the Boussinesq approximation for magnetoconvection sgcimadelling evacuated
regions or a changing plasma Magnetic pressure is not correctly modelled in
Boussinesq magnetoconvection as evacuated regions caevelbp. The Boussinesq
approximation has an up-down-symmetry which tends to fahexagonal convective

cells.

Using a fully compressible linear stability analysis Ca#a (1984) studied two-
dimensional modes. He found that when the plasma Betahich is a ratio of the

thermal pressure to the magnetic pressure,vasl then fast and slow modes conspire
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to make atmospheres, which are stable when un-magnetisedme convectively
unstable. As this thesis is focused on the anelastic appaiion the differences in
fully compressible and Boussinesq convection are of istdeesee where the anelastic

approximation fairs better at modelling these phenomena.

1.2.2 Background to Magnetic Buoyancy

The Lorentz force can be split into a magnetic pressure anthaiure force. For an
element of flux to be in dynamical equilibrium with its surrmlings the sum of the
thermal pressure and the magnetic pressure must be eqbainsate and outside the
element. If the element is magnetised and the surroundirggaa then the external
thermal pressure will exceed the internal thermal presstitbe element is sufficiently
thin, or for other reasons, the temperature in the elemeegi=l to the surrounding
temperature then the element will be less dense than isusutings. In a gravitationally

stratified atmosphere lighter elements will rise.

The term magnetic buoyancy was coined by Parker (1955b)dlaiexthe formation of
sunspots. In the review by Hughes (2007) he noted there aze tlifferent mechanisms

referred to as magnetic buoyancy.

() Inan isolated magnetic flux tube there is internal maigressure so the internal
thermal pressure will be less than the external pressureatite density is lower
inside the tube than out. Gravity will thus cause the tubeettoime buoyant and

rise. This is more a lack of equilibrium than an instability.

(i) A similar case where there is an isolated flux tube cothan its surroundings so

the pressure is in equilibrium but not overall mechanicaiildsrium.

(i) The buoyancy effect of a magnetic field can act as anaipisity mechanism in a

magnetized atmosphere in equilibrium. The simplest bemgtenosphere with
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1.2 Theoretical background

the horizontal field component only dependent on heightwdiesdi by Newcomb
(1961).

I will only investigate the last mechanism and from now ondgathis is the mechanism

| will be referring to by the term ‘magnetic buoyancy’.

In magnetic buoyancy two-dimensional instabilities, vehéne magnetic field lines
are not bent, are called interchange modes because one tiodgiéd line exchanges
position with another. Early theoretical work by NewcomBg1) looked at the stability
of interchange and three-dimensional modes in ideal plasrsiag the energy principle

of Bernstein et al. (1958).

An interesting feature of magnetic buoyancy is that threeedsional modes can be
more destabilising than interchange modes. The extra wank thy three-dimensional
modes against magnetic tension is often less than the eatkaimterchange modes must
do to overcome thermal pressure and magnetic pressuredie @elensity perturbation
(Hughes & Cattaneo, 1987).

The effect of shear flows on magnetic buoyancy was investighy Tobias & Hughes
(2004) who looked at the stability of a flow wiB = B(z)%x,U = U(z)kx. Their
analysis found that shear ultimately had a stabilisingogffeut for certain modes the
effect could be initially destabilising. Vasil & Brummel2Q08) extended the work to
the non-linear regime and found a very strong shear was netjto cause a layer to
become unstable to magnetic buoyancy although it is not shibthis is still true for

sufficiently long time-scales, a recent update of this werkiSilvers et al. (2011).

It is still not clear if the concentrated flux that appearshat $urface can be a result of
the magnetic buoyancy instability alone, as non-lineaa@# of the Kelvin—Helmholtz
instability occur on strongly buoyant fields wrapping them a0 no large-scale flux
escapes. Cattaneo & Hughes (1988) consider the nonlinehartien of an interchange
mode of a uniform magnetic field in an otherwise non-magnatinosphere. The

instability develops as a usually Rayleigh-Taylor ‘musimdinstability but then there is
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a second stage where the motion is dominated by interaaformstices of opposite sign
from neighbouring mushrooms. This leads to a fairly rapieiarup of the rising layer
and so little flux escapes. Wissink et al. (2000) extendeditbedimensional model and
investigated three-dimensional modes and noted the irmpoetof twisting the flux tube

to retain coherence as the tube rises.
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Chapter 2

Mathematical Modelling

In this section | discuss the sets of equations that are usedadel the physical
system in this thesis. | also introduce the dimensionlessnpeters that are used. The
physical systems of interest are compressible electyicalhducting plasmas that can be

modelled using a single fluid version of the magnetohydradyic equations.

2.1 Mathematical formulation of the problem

One set of equations that | will use to model the magnetic dnoy and the
magnetoconvection instabilities in the Sun are the madyeitmdynamic equations. The
magnetohydrodynamic equations are a combination of Mdisregjuations and Ohm’s
law along with the equations used in hydrodynamics. Thesatens are commonly
used for solar modelling. A complete derivation is lengthg annecessary here but can

be found in most text books on the subject, such as David<ui |2

2.1.1 Maxwell's Equations

It is useful to begin with Maxwell’s equations and explaie thet of assumptions that

are required to derive the magnetohydrodynamic equati®hs. Maxwell's equations
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2. MATHEMATICAL MODELLING

describing the evolution of electro-magnetic fields are

Gauss'law: V- E = opoc?, (2.1a)
Gauss’ law of magnetic fields:V - B = 0, (2.1b)
Faraday's law: V x E = —%—?, (2.1c)

1 OE

Ampere'slaw: V x B = ugdJ + (2.1d)

ot
wherekE is the electric fieldo the charge density;, is the permittivity of free space,

andc is the speed of light in a vacuurB is the magnetic field; is time, andJ is the

electric current density.

Along with Maxwell's equations another relation is reqdireto derive the

magnetohydrodynamic equation: Ohm’s law,

EtuxB=2 (2.2)

e

where u is the velocity relative to the magnetic fielB and o, is the electrical

conductivity of the medium. This is only valid in the refecerframe of the plasma.

When the particles are moving at non-relativistic speedsy i< ¢ whereu is a typical
velocity in the system, then th# /0t in Ampeére’s law (2.1d) is negligible with respect
to the other terms. This can be seen from a simple dimens@raysis. This allows

equations to be combined and simplified given that

(i) the phenomena under consideration are slow comparde fgldsma frequency so
that the plasma is quasi-neutral, i.e. the number of elestamd ions in a volume

is equal,

(i) the plasma is collision dominated so it obeys a Maxvaltzmann distribution

of energy;
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2.1 Mathematical formulation of the problem

(i) the length-scales must be large compared with the Beeygth, which is the
length over which a charge particle is screened, and the dvaradius, which is

the radius of the helical motions an electron makes aboutdhlffiee.

With these assumptions in place the Navier-Stokes equsatian be combined with the
Maxwell equations to give the magnetohydrodynamic equatitn the Sun the scales of
interest are large and the fluid is relatively slow and denstese assumptions (i)-(iii)
are met. This allows (2.1) to be combined to produce an egualescribing the time

evolution of the magnetic field and (2.2) give the Laplacerentz force.

2.1.2 The Magnetohydrodynamic Equations

| consider a plasma governed by the evolution equationd®ntass density, velocity
field u = (u,v,w), magnetic fieldB, thermal pressure and either temperatur€
or entropys. The fully compressible equations of magnetohydrodynanisee e.g.

Hurlburt et al., 1996) are given by

dp
E +V. (pll) = 0, (238-)
| 1
p{g—?Jr(u-V)u :—Vp+pg+M—(VxB)xB+uV~T, (2.3b)
1 0
0B 5 :
E:Vx(uxB)anVB with V-B =0, (2.3c)
T 1 .
Cop {0_ +u-VT| =—pV-u+kVT + ,uaul Tij + M (V x B)2 , (2.3d)
ot | Oz, Lo
[ Ou;  Ou;  20u
where Tij = ((%sj + or, 301, 6m) , (2.3e)
p=(c,— c)oT, (2.30)

wherec, andc, are the specific heats at constant pressure and volume tigspeqz
is gravity; u is the dynamic viscosityy = 1/ (etago,) is the magnetic resistivityk is
the coefficient of thermometric conductivity (or thermahdactivity) and is related to

thermal diffusivity byx = k/(pc,); po is the magnetic permeability of free space. |
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2. MATHEMATICAL MODELLING

will assume that all of these parameters are constant. Bisisnaption is valid only if
the height of the domain of interest is much smaller than tlawity length scale and
diffusion length scales, the variations in the non-radialit a Cartesian representation,
horizontal) direction in the Sun are suitably small, andSh@ behaves as an ideal gas.
The assumption of constagtmeans that self-gravity is ignored so that any motion of
fluid should not be so large as to alter the local gravity. Tésuenption that the Sun
behaves as an ideal gas is valid even at high pressuresaxpaxdliin the solar interior;
the high temperatures ensure that the gas is a charged ptddtinand He ions, which
are orders of magnitude smaller in volume than H and He atantsso the gas can still

be modelled as ideal point-like ideal gas.

2.1.3 The Lorentz Force

The momentum equation (2.3b) shows how the magnetic fietsffthe fluid. The
magnetic field interacts with the velocity field via the Latzforce, which can be written

as

(2.4)

(VxB)xB :B-VB —V(@)
o o 240 )’
where i is the magnetic permeability of free space. From this it eaclthe Lorentz
force has two distinct parts: a curvature forBe, VB and a magnetic pressuﬁ;\BP.
The curvature force acts to straighten curves in magnetatlfiees by exerting a force
with a component normal to the direction of the curvatureneffteld. This is what gives
the magnetic field lines a restoring force so that the fielddinan act like a string. It
is this restoring force that allows the propagation of Alfivwaves. These waves are
dispersionless wave that propagates in a similar manneoundswaves in that they
cause no flow perpendicular to the direction they travel ime fagnetic pressure acts in
a similar way to the thermal pressure but has a magnetier#ihn thermal, origin. For
two neighbouring elements to be in total pressure equilibrihe magnetic and thermal

pressure must sum to the same value in both elements.
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2.1 Mathematical formulation of the problem

2.1.4 A Discussion on Modelling Approaches

In the later chapters | shall predominantly be using equatio dimensionless form in
which the dimensionless numbers show the relative domamanhwarious terms, e.g.
the Reynolds numbdRe = UL/ is the ratio of inertial forces to the viscous forces,
whereU is a typical speed and is a typical length. At low values of the Reynolds
number the flow is laminar and small scale motions are heaatgped by viscosity so
that disturbances to the mean flow will dissipate over timiisTs the case if the flow
is in a small domain, slowly moving or highly viscous. At higalues of the Reynolds
number the flow is turbulent and this is a much harder flow to eho@ihe small scale
motions are not heavily damped, so, to accurately model tedmall scales must be
included. These small scale motions may effect the largie $icav through non-linear

interactions, an inverse cascade, or through creatingeadi/pnisotropy in the flow.

The Reynolds number is a standard dimensionless number einditmensionless
momentum equation and in magnetohydrodynamics there iggaetia equivalent: the
magnetic Reynolds numbéte,, = UL/n, which is in the dimensionless induction
equation. This dimensionless number measures the effeathafction compared to
magnetic diffusivity. In the case of a large magnetic Regia@lumber the magnetic field
is advected along with the fluid motions with minimal diffasi At infinite magnetic
Reynolds number the field is ‘frozen in’ which means that tieédfiines move with
the fluid and do not diffuse (Alfvén, 1943). In the Sun’s aspbere the magnetic
Reynolds number is large and so without a dynamo the maghetit would take
~ 10' years to decay away. The range of parameters required tolmtiw&un is
given in table 2.1. From the Reynolds number it is possiblestmate the range
of physically relevant length scales from Kolmogorov'ssiimtion length to global
oscillations on the scale of the Sun. This estimate givesgeraf length-scales 10'°
and three-dimensional computer modelling would requiré03° grid points, which
is far greater thanv 10! points that is around the current upper bound available in

state-of-the-art super-computers. Making progress onpatational modelling of the
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Sun requires a tactic other than developing more efficiagardhms for the currently

available computers.

Attempts have been made to parametrise the effects of th# soades or use mean
field theory so they do not need to be explicitly resolved. rivégs (1895) developed
an important theory for modelling turbulence by averaghnglavier-Stokes equations.
The problem with this approach is that averaging and pamésimeg motions introduces
more unknowns than there are equations. The additional awrks will require
additional assumptions in an attempt to close the systetmgr&liscale closure is a way
of parametrising effects that are thought to exist on a sgaesolved in the simulation.
The earliest paper using a subgrid-scale closure is Snregkyri(1963) which relates
the stresses to strains using an eddy viscosity. All thesspetrisations rely on various
additional assumptions which will be correct in certairtamses but the range of validity

is not known.

For this reason | have used relatively simple models so | dé&r @arameters

computationally cheaply. Here simple means not includirgwhole range of physical
processes in order to focus on relevant or essential mesthaniThe aim was to allow
insight into how each parameter affects the system. This tha risk of ignoring a

physical process that may be fundamental to understandimgystem e.g. a depth
dependent diffusivity, but has the benefit that the equati@m solving are the correct
equations to use e.g. there are no terms from a turbulenserelomodel. The benefits of
having a simple system is that many simulations can be ruapthéo survey parameter
space so that robust features are clearly identified. If iffiesiVities were set to values
expected from observations of the Sun then small structaelsi develop, which would

be under-resolved in most models, so for the most part theesadf the dimensionless
numbers used in this thesis are not values expected in thet$siis to make the problem
computationally tractable. This leads to a possible comge where is it possible to
use the correct equations with the wrong parameters or thagvequations but at the

observed parameter values. In this thesis | am using theaogguations but with the
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2.1 Mathematical formulation of the problem

wrong parameter values with the hope of finding trends thabesextrapolated into the

correct parameter value regimes.

2.1.5 Non-dimensional form

The equations (2.3a-d) can be written in non-dimensiomahfdt is convenient to work
with the equations in non-dimensional form as it reducestimaber of parameters to
a minimum. | will assume that the region of plasma that is torfeelelled has a depth,
d, which will be the unit of length and the dynamical tim\e/p%, is the unit of time;
the units of magnetic field, temperature and mass der&jtyl, andp, respectively, are
their values at the top boundary of the domain. The unit o$guee from dimensional
analysis is them, ~ gpod. The dynamics of the problem is set not by the value of the
individual diffusivities and flows but by their relative imgance in the equations. From
the relative importance of some parameters one can see @imes in the equations are

dominant or not which may give an insight into what is drivoegtain instabilities.

Using similar dimensionless numbers as in Tobias et al.&§1LP8efine the following set
of non-dimensional numbers
B

gdpotto’
(2.5)

where C}, is the non-dimensional thermal conduction of the system -s dlso the

ratio of the thermal relaxation timel{pc,/k) to the sound crossing timé{+/po/ po);

3 .2
. k d Pr — ,UC:D7 ¢ = 776:0907 R— gcpd po’ and F —

- d?pocy \l g k k kpu

the Prandtl number, is the ratio of momentum diffusivity to thermal conductyi

the inverse of the Roberts number, is the ratio of magnetic diffusivity to thermal
conductivity; R is a non-dimensional measure of the strength of grayity diffusion,
and F is the non-dimensional strength of the magnetic field — it ispprtional

to the inverse of the plasma. (The magnetic Prandtl number can be obtained by
Pr,, = Pr/{.) The range of these parameters in a solar context is givéabie 2.1

where the Mach numbet/ = u/u, appears, with: representing a typical velocity
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Base of convection zone Photosphere
R = 92t | 102 1016
¢ 104 101
Pr 107 1077
F 107°...1077 10°
Cy 1071 1075
M 1074 10°

Table 2.1: Values of relevant non-dimensional numbers from Ossendrijver
(2003).

and u, the sound speed. Relations between these dimensionledsersiand other

commonly utilised ones is given in Appendix C .

Using these non-dimensional numbers the governing equsaltiecome

9]
4V (pu) =0, (2.62)
0
p [a—l:Jr(u-V)u] =-VI)+pg+F(VxB)xB
1/2
+ (%) VT, (2.6b)
OB ) .
Esz(uxB)vLCk(VB with V-B =0, (2.6¢)
p or +u-V)T| =—(y—=1)pTV-u+ (y—1)C} (Pr3R)l/2 auinj
ot 0xj
v 2
oY L
+ (y = 1D)C2 (PrR)* ¢ F(V x B), (2.6d)
1
P=Ge PerT, (2.6€)
k

wherey = ¢,/c, is the ratio of the specific heats.
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2.2 Convective Approximations

2.2 Convective Approximations

In many astrophysical and geophysical situations, althowspme effects of
compressibility are essential for modelling the dynamipgprapriately, not all are
relevant. In particular, it is often the case that the dymanaf sound waves (and fast
magneto-acoustic waves in magnetised domains) are sagadidne evolution of the
system. It is also the case that focusing on the small fluctositonly and ignoring a
static background state can make interpreting results &oafytical and computational
simulations easier. In the Sun estimates of sound speeds @teMm.s™! in the solar
interior (Christensen-Dalsgaard, 1985) and so sound waneethe fastest waves in the
system. The convective approximations were developed tkerttee analysis of the
system easier. In fully compressible codes most of the coatipnal power is going
into correctly modelling the fast magneto-acoustic anchsowvaves, both of which are
not thought to play a role in many instabilities in the Sumterior. This is inefficient

and it would be preferable to filter such fast waves.

A way to remove the fast waves and therefore simplify theesyss to use a convective
approximation. Both the Boussinesq and anelastic appmtidms are convective
approximations and are not applicable to all systems. Tl#y tequire velocities to be
far smaller than the speed of sound. The system modelledatsgsbe steadily driven,
i.e. not fast (on convective time-scale) changes in the Baynconditions or from any
heat sources. Convective approximations treat the presswu buoyancy forces in a
linear manner, whilst advection is still non-linear. Thésoaremove a large stationary

state and focus on the fluctuations which can make the asaif/iie system easier.

2.2.1 Background to the Boussinesq equations

The Boussinesq approximation is the oldest convective cqapiation to the
magnetohydrodynamic equations (see Spiegel & Veronis Q@8 Chandrasekhar

(1961)). The Boussinesq approximation assumes that theatypepth of the layer

29



2. MATHEMATICAL MODELLING

modelledd is small compared with the pressure scale height of the filyidshere

-1

1
dp , 2.7)

wherez is depth. The other assumption is that density fluctuatiomdae to temperature

changes, with the pressure remaining relatively unchanedeneral, relative density
and temperature fluctuations will be of the same order. Insglgadensity fluctuation is
the driver of a convective instability and therefore thisies retained when it is coupled
with the acceleration due to gravity. This term must remaithe approximation will

remove the driver of the system. These assumptions havaisedrby Rayleigh to study

Bénard convection and in many systems since (Rayleigh§)191

It is helpful to lay some mathematical ground-work for whg firessure fluctuations can

be ignored. | will express each varialflas

f(w,t) :E(Z)—}—f* ($7t)> (28)

where¢ is the horizontally averaged quantity, agidis a small fluctuation to that state.
Here | am using a Cartesian geometry. The horizontal avarsge is time independent
and so the decomposition fabove will not be able to model time dependent vertical
boundary conditions. Starting with hydrostatic balance

. 2.9)
where gravity is pointing in the positidirection so that increases with depth. The

pressure fluctuations are driven by the flow),
ul?p~ ', (2.10)

whereas for the density fluctuation the kinetic energy offtb can be balanced with
the gravitational energy

lul’p = gdp*,

where the layer depth i& This leads to
P <i) r
P \d/) P
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2.2 Convective Approximations

which from (2.7) shows that the relative pressure fluctuegtiare far smaller than the

relative density fluctuations.

If only linear calculations are being done then the only ag#tion required is for the
layer depth to be much smaller than the stratification sdalé,for non-linear work
a further assumption is required namely that the densityuaions do not become
larger than the variations in the horizontally averageddgiiSpiegel & Veronis, 1960).
The assumptions made about density and temperature arthélyavary only slightly
in the fluid but the flow is essentially buoyancy driven. Thighe case in an almost
incompressible fluid but, unlike in an incompressible flulte density fluctuations are
retained, as previously mentioned. Spiegel & Veronis ()860wed that the Boussinesq
approximation is formally equivalent to the incompressi&jstem when the temperature
gradient is replaced with the departure from the adiabatigperature gradient. Since
density perturbations are only kept in the buoyancy term the conservation of mass

(2.3a) is reduced to

V-u=0, (2.11)

and, as pointed out by Lilly (1996), this means that the syst®nserves volume
rather than mass. The energetics of the Boussinesq apmtemis discussed in
Chandrasekhar (1961).

When it is possible to separate the fast processes (e.gstam)duom the slow processes
(e.g. convection), the Boussinesq approximation filtetstlo& fast processes. The aim
of the approximation is to retain only the minimum requiresinplexity in the system

but to still capture the essential physics.

Magneto-Boussinesq equations

Spiegel & Weiss (1982) extended the Boussinesq approxmdt include varying
magnetic fields which allows magnetic buoyancy to be ingastid. They found

that the magnetic buoyancy instability is captured withiis tmagneto-Boussinesq
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2. MATHEMATICAL MODELLING

approximation. In the standard Boussinesq approximatien fluctuation pressure
is neglected in the equation of state and so if a magnetic feelddded then it
must not create a large magnetic pressure or this would tileethermal pressure.
In the standard Boussinesq equations the pressure fluatuegiignored which, if
magnetic fields are introduced, would mean that the field lprafiust be slowly
altering at most or the field to be sufficiently weak. In the metg-Boussinesq
equations magnetic fields are allowed to exert a significagmatic pressure. The total
pressure fluctuations, made from the magnetic pressureditiehs and thermal pressure
fluctuations, are still considered small in the magnetosBmesq approximation. The
thermal pressure fluctuations can no longer be ignored, aong in the standard
Boussinesq approximation, and must be modelled. Also theth&induction equation
is altered in the Boussinesq approximation means that thgnetiz field is not kept
exactly solenoidal. This can be seen by substituting = 0 into the induction equation.
When the divergence of the induction equation is taken itlearcthat the condition
V - B = 0 is not satisfied exactly. This should not be a problem for rimgdemagnetic
buoyancy as Spiegel & Weiss (1982) show that the departuiteeahagnetic field from
being solenoidal is proportional to the scale variationshef vertical velocity parallel
to magnetic field. For magnetic buoyancy the scale variatmfrthe vertical velocity
remain small so the magnetic field will remain mostly soleiabhi When the length
scale of the variations is of the order of the layer depth tthenmagneto-Boussinesq

approximation is no longer valid.

2.2.2 Background to the Anelastic Approximation

In early computational simulations of convection the Baussg approximation was
used for simplicity (see e.g. Durney, 1970; Deardorff, )964n many situations
of geophysical and astrophysical interest it is importaniriclude some effects of
stratification and compressibility, which are outside tlewpe of the Boussinesq

approximation, which neglects both of these features. dls#siations include the
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2.2 Convective Approximations

interior of stars and giant planets, characterised by aelamgmber of density scale
heights (Glatzmaier, 2005). The strong variation in denstbelieved to play an
important role in determining the dynamics of these systant there is interest in
modelling situations where in some regions the fluid is stdblconvection while in
other regions the fluid is not. For example, modelling of tleem solar interior often
focuses on the behaviour of both the unstably stratified @cinve zone and the stably
stratified tachocline with the radiative zone below (and stimes the transition between
the two) (see e.g. Gough & Mcintyre, 1998; Tobias et al., 2B¥ummell et al., 2002;
Brun & Toomre, 2002; Garaud, 2002; Rogers & Glatzmaier, 2808sch, 2005; Rogers
et al., 2006). Not including effects of stratification mayraduce symmetries such as
an up-down symmetry i.e. the fluid in the lower half of the damia equivalent to
the fluid in the upper half on average, provided that the fldenhtities are reversed
and that the boundary conditions at the top and bottom arevaguot. Clearly the
Boussinesq approximation is not ideal in modelling the githon between stably and

unstably stratified regions as the background atmosphéred

An intermediate approximation between the fully comptassiequations and the
Boussinesq approximation is then appropriate. The amelagproximation is exactly
such an approximation; it retains some effects of compoéggiwhilst filtering out the

sound waves and in the magnetic case fast-magnetoacousteswin the Boussinesq
equations there was an assumption that the typical scaj@gtheas small compared to
the pressure scale height; this constraint is relaxed imtiedastic approximation. The
anelastic approximation has been heavily used to modeapstsical and geophysical
fluids (see e.g. Glatzmaier & Roberts, 1996; Miesch et aD02Gan, 2001; Anufriev
et al., 2005; Rogers & Glatzmaier, 2005; Clune et al., 1999arious forms of

the anelastic approximation have been derived, usingrdifftesmall parameters for
the asymptotic expansion leading to the constitutive egaatand different physical
assumptions to filter out the sound waves. The features tildtthese various forms
of the anelastic approximations in common is that they gitetim retain stratification

whilst removing sound waves. | will look at the validity ofree of these anelastic
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2. MATHEMATICAL MODELLING

approximations in later chapters.

The anelastic equations were originally derived by Batwh@953) in a meteorological
context where the pressure and density are assumed to ledcleir adiabatic values.
This was motivated by an investigation of flows with a low Riotlson number, which is
the ratio of potential to kinetic energy, and resulted fréwva ¢onsideration of dynamical
similarities in such flows. Low Richardson number means thie i weakly stratified

and buoyancy is unimportant in the flow. A more formal scalalygsis was performed

by Ogura & Phillips (1962). They constructed an asymptotigagsion using a small
parameter defined as the departure from adiabaticity artasee-scale built upon the
Brunt-Vaisala frequency in order to separate the dycami gravity and acoustic waves.
The Brunt-Vaisala frequency is the characteristiaugsiime of a convective element or
the frequency of a gravity wave. It is the frequency whichasafes high frequency
acoustic waves from low frequency waves. Ogura & Phillipmassumed adiabatic
motion and state the advantage of filtering sound waves irenigali computations. This

filtering is a consequence of choosing a time-scale basdteddrtint-Vaisala frequency;
from this choice in time-scale the fluid velocity must be dnsampared to the sound

speed.

A complementary approach was used by Gough (1969), who etktive anelastic
eguations using a small parameter based on temperatungstiiocts from the convective
heat flux. This results in equations that are the same as tleosed by Ogura & Phillips

only when the atmosphere is perfectly adiabatic. Goughallswed for the possibility

of external forcing and a time-dependent reference stateug®s small parameter
arises from assuming that the temperature flux through@ustifatified atmosphere is
the convective flux minus the lateral temperature flux. Goagjues that this allows
the assumption that the atmosphere remains close to adiabdte relaxed; however
the assumption about the dynamical time-scale, and so $n@ah number, remains.
Although not mentioned in Gough’s paper the assumption tatheuatmosphere being

allowed to depart from adiabatic stratification is only btig relaxed or this would
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2.2 Convective Approximations

introduce inconsistencies. Magnetic fields can be includdbde anelastic equations if
the local Alfvén speed scales as the convective speedzi@Giadr, 1984). The equations
in Gilman & Glatzmaier (1981) extend those in Ogura & Phdli{1962) to a spherical
geometry and with dissipative effects included. The sgla¢rnagnetohydrodynamics
code ASH (Clune et al., 1999; Miesch et al., 2000) is basead tpe set of anelastic
equations in Gilman & Glatzmaier (1981) but evolves theneziee state. The ASH code
is in wide use e.g. convection in B-type stars (Augustson.e2@10), wreath-building

dynamos (Brown, 2009), and rapidly rotating stars (Browale2007).

An additional common assumption made in anelastic modetginating from

Glatzmaier (1984) and Glatzmaier (1985), is that the diffaf heat is proportional
to the entropy gradient. This assumption comes from sub-gpale turbulent-eddy
arguments. The molecular temperature diffusion acts ongthescale derived from the
mean free particle path but, as the systems of interest dreléunt, it is argued that the
mixing of eddies is more important. Simulations do not edtdown to molecular level
so molecular thermal diffusion is already modelled inccilsewith inflated diffusion

parameters; entropy diffusion is an attempt to paramethisediffusion in a turbulent

domain more realistically. This is explained more&?2.

The fully compressible and anelastic equations have nastities, such as the magnetic
non-linearities as well as the more familiar hydrodynanoa-tinearity of advection,
which require extra computational resources to be solvegctly. For computational
simplicity the anelastic approximation aims to make theesysas simple as possible
whilst retaining the complexity required to capture the alyiics of interest. The
hydrodynamic and magnetic advection terms are the causeuct f the interesting
dynamics and should not be removed. There are, howevemdugnamic non-
linearities which are removed in the anelastic approxiomativith the consequence
that the thermodynamics will be less accurately modelledome cases, such as
when the fluctuation is too large or the atmosphere is far flmimg adiabatically

stratified. Removal of the non-linearities is done in the savay as in the Boussinesq
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approximation, namely that an average (reference) sttakes and that thermodynamic
fluctuations are taken about that reference state. As thientddynamic terms are all
related by an equation of state then a term such as a tempeenatitiplying a pressure
is a non-linear term. The thermodynamic non-linearity imoged by replacing most
instances of density with this slowly, if at all, varying eeénce state density. For
example when (2.3d) is divided by then there are pressure and temperature terms
that are divided by the density, from the equation of statsehare linked and this
is the type of non-linearity that the anelastic approximatremoves. This allows
the thermodynamic relations to be linearised but other liregarities in the system to

remain.

Finally, Lantz (1992) and, independently, Braginsky & Rab€1995) made a further
simplification by writing the thermodynamic variables inrtes of entropy and pressure,
with the pressure term becoming negligible when the atmargpls nearly adiabatic.
This allows for the thermodynamics to be written in terms ofrepy alone, leading
to further computational savings. Even though the anelagiproximation relies on
the atmosphere being nearly adiabatic the Lantz-Bragisskyplification will only be
equivalent to the anelastic approximation derived in GiireaGlatzmaier (1981) in the

limit of a perfectly adiabatic atmosphere (Berkoff et aD10).

Assumptions used in the Anelastic Approximation

The anelastic approximation is formulated using a numbeasgumptions. The
dynamics are treated as the superposition of a refererteeastaosphere and fluctuations
about that reference state. In order for the approximatiobe valid the reference
state may only evolve at a slower rate than the convective-toale. Moreover the
fluctuations of the thermodynamic variables of temperatpressure and density must
be small compared with the reference state. The relativeityeriemperature, and
pressure fluctuations are of the same order of magnitudékeum the Boussinesq

approximation. Lantz & Fan (1999) suggest similaritiesametn mixing length theory
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and the anelastic approximation, in so much that both aigetefrom a reference state
background and in both the reference state is adiabatiGhndssumes only a weakly
super-adiabatic atmosphere in the Sun. To produce the asityrobserved at the surface

of the Sun only a weakly super-adiabatic solar atmosphesgjisred.

In the anelastic approximation the dynamical time-scalmofion is the inverse of the
Brunt-Vaisala frequency. For this time-scale to cagttire dynamics of the problem
the Mach number of the flow must be small and the fastest wat®mielevant to the
problem to be slow compared to the Brunt-Vaisala freqgyeany dynamics which occur
due to high frequency motions will not be included. For thetegn to be accurately
modelled then the high frequency modes that are filtered augt mot be physically
important to the dynamics. If the reference atmosphere isadabatic then it is also
difficult to ensure that the flows remain strongly subsongaggued in Lantz & Fan
(1999). In a strongly convective atmosphere, even if buoyainhibited by diffusion,
the wave motion has a high frequency; conversely in a velylest@mosphere gravity
waves again have high frequencies. In either the highlyaglibatic or super-adiabatic
stratification the anelastic approximation would be inappiate. The problem will be

illustrated with the temperature equation in the anelagifgroximation irg3.7.2.

When magnetic fields are included the Alfvén waves mustvevoh the slow dynamical
time-scale, and the magnetic field must be weak enough sotde npset hydrostatic
balance. Although it may be possible to formulate magnegidgiinto leading order the
Alfvénic frequency associated with large magnetic fieldsild not then be captured in

the approximation.

In the remaining chapters | shall derive the anelastic appration and | shall examine
the range of applicability of the anelastic approximatiarboth stably stratified and
convectively unstable atmospheres. The arguments in tineufation of the anelastic
approximation were developed with convection in mind sordlevance to magnetic
buoyancy in stably stratified atmospheres is less clear.olpeRs & Glatzmaier (2005)

the anelastic approximation was used in a stable atmosphetkey experienced some
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problems with an inward turbulent heat flux in stable regidre limit of how far from
stably stratified an atmosphere can be and be accuratelyllemaethin the anelastic

approximation is still a matter of debate.
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Chapter 3

The Mathematics of the Anelastic

Approximation: Formal Scale Analysis

3.1 Physical Balances

In the derivation of the anelastic approximation | chieflifda the procedure described
in Gough (1969) and in Lantz & Fan (1999). To make the an&agiproximation |
decompose all variables into a reference state and fluohsasibout the reference state,
ie.

The choice of what qualifies as a reference state is an issyu&ra@ Phillips (1962)
used an isentropic state, Gough (1969) used a non-adiadigdiification and Clune
et al. (1999) used a reference state that is a slowly varyphgrically averaged mean.
Nordlund (1982) appears not to have used a reference sttelaam using a Cartesian
geometry and take gravity to point in the positié@lirection so that increases with
depth, as in the Boussinesq discussion. Using Cartesiadicates, when the Sun itself
is an oblate sphere, is valid only if the curvature force caméglected, which imposes

some limits on layer width and aspect ratio of the domain.
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3. THE MATHEMATICS OF THE ANELASTIC APPROXIMATION: FORMAL
SCALE ANALYSIS

From the first law of thermodynamics
517
Tds= c,dT — > dp, (3.1)

where the thermal expansion coefficientjs= —(01n p/01nT'), which is unity for an
ideal gas. One can see that the adiabatic temperature grélie

dT

ar|  _ 9 dp
dz

adp  PCpdz

For now | will also use the entropy formulation of the energuation

pT %+(U-V)S ZV~kVT+M%Tij+Q(VxB)2, (3.2)
ot Ox; o
with s = ¢, In (pp_y) (3.3)

in this derivation, instead of the temperature formulation

Assuming the gravity length scale is much larger than therlagpth, then hydrostatic

balance gives
p

It is now time to introduce a small parameter The standard method is for the small

parameter to measures the departure from adiabaticityeakflerence state, i.e.

_d|aT

T |dz

dinT dInT

_d N d
‘T H|dnp dmp

Cp

§
dz

9

Cp

(3.4)

adb ref ref

where subscripts means evaluated at a reference point in the layer, in this teden
to be the top { = 0); d is the layer depth; subscrigi, means evaluated for adiabatic

values; and{ is the pressure scale height defined as

H= . (3.5)

As previously mentioned, | assume that the relative denwtypperature and pressure

fluctuations are of similar order

L zg%‘pT% e, (3.6)
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which maintains the assumption that fluctuation terms amawéh smaller amplitude
than in the reference state. Unlike in the Boussinesq appaiion where the pressure
is ignored, in the anelastic approximation it is retainech al similar ansatz to the
Boussinesq approximation, pressure fluctuations are tadbwith the vertical flow
(2.10), it is the vertical motion in the fluid that causes and®in pressure. Gough
(1969) introduced an additional parameter to his anelagpansion

d .

5 I ifd < H, (3.7)

1 ifd>H,
which will be used to relate the anelastic approximation k@ tBoussinesq
approximation. To leading order (i.e. neglecting viscausés) the characteristic parcel
speed can be estimated by balancing the gravitational gseyged due to the buoyancy

forces acting over the pressure scale height with the kiretergy

plul® ~ —gdHp*. (3.8)

The buoyancy force approximation is done ovéf and not simply the layer depth as
when the layer depth is much greater than the pressure szglet then pressure forces
overwhelm the buoyancy forces. If, on the other hand, thequme scale height is larger
than the layer depth then (3.8) will be true except that noiw the layer depth which
is a typical length scale. Typical velocities in a layer arne@eh by the buoyancy forces
over a length-scale of: the layerdf < H or the pressure scale heightdf> H. The
cumulative effect of the pressure fluctuations is to redwertical motion. Therefore it
is assumed that the relative pressure fluctuations are cdahme order as the relative
density and temperature fluctuations, see (3.6). In the Boesq case the layer depth
is much smaller that the pressure scale heightf the layer is much larger thaHA then

pressure fluctuations will be very efficient at inhibiting thertical flow.

It is useful to relate (3.8) to the Mach spekfl= u/c, where the sound speed is
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so the Mach number can be expressed as

*

M? ~

Q

=]

(3.9)

3||b

The difference between the actual temperature gradientlanddiabatic temperature
gradient is the super-adiabatic (or sub-adiabatic if theogphere is stable) temperature
gradients defined to be

—ds

e = _T&' (3.10)

When a parcel rises due to convection it will transfer hedstenvironment. The amount
of heat it transports will be proportional to the super-adiic temperature gradient

across the layer depth

. d 5, dp  dT Td
9:/|ﬁ|dmd—”_—p——: &
0 cppdz  dz cp dz
The convective heat flux will then be
o~ ﬁcpéw. (3.11)

There are other ways the small parametesin be defined. Gough (1969) argues that the
heat flux will be the convective heat flux minus temperaturetdiations. He uses this,
combined with the equation (3.8), to build a small paraméteill explore this more in
§3.7.1.

3.2 Energy Diffusion

| will make a quick digression into entropy diffusion modeigh the aid of Jones et al.
(2009). In many astrophysical bodies, such as in stars, |lswale turbulence will
lead to a diffusion of entropy which will normally be muchdar than the molecular
conductivity. The diffusion parameters are artificiallghiin most astrophysical fluid

simulations to stop the flow developing a structure too finbédaesolved, given the
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3.2 Energy Diffusion

limited ability to model many spatial scales in one simwati Prandtl’s mixing-length
theory states that turbulent elements travel over a milength before releasing their
entropy and joining the ambient background state. This asiggthat the turbulent
entropy flux is proportional to the entropy gradient, not temperature gradient. In
Boussinesq convection the turbulent thermal diffusionfieromodelled as similar to
the molecular thermal diffusion, but with a much larger wkfity, in a compressible
flow this is not the case. The sub-grid model proposed by Gil&&latzmaier (1981)
assumes the diffusive flux is due to small-scale eddies istiperadiabatic convection
zone and so proportional W1 — V1,4, i.€. proportional to potential temperature rather
than actual temperature. The essential assumption ishihia is a turbulent velocity
which gives rise to a turbulent entropy fluctuation, where these have averaggs)

of zero on a short length-scale, but whépesr) has a non-zero result. The turbulent
entropy diffusion is then assumed proportionaMs. This turbulent entropy diffusion

creates a source term in the entropy formulation of the gnegyation so that (3.3)

becomes
0s kp ou; Ui 2
Pl =+ u-V)s| =V -kVT+V -T—Vs+pu—r,;+—(VxB)", (3.12)
ot Cp Oz, Lo

where the new term contairts,, the turbulent thermal conductivity. Equation (3.12) is

taken from Braginsky & Roberts (1995).

The source of entropy is chosen so that it is not a source efjgnghich can be seen as
it appears as a divergence. Definikg = kr/k and taking\r > 1 then the turbulent

entropy diffusion alone has been used in numerous paperse(ge Glatzmaier, 1984;
Braginsky & Roberts, 1995; Clune et al., 1999; Lantz & Far§9)9as both assumptions

have been used in previous works for now | will keep both temtkis work.

The turbulent diffusive flux is from unresolved eddies. @Ghahier (1984) pointed out

that having turbulent diffusive energy flux is preferablecases where the anelastic
approximation is modelling the base of the convection zddere the superadiabatic
temperature gradientV7 — VT,q) jumps from a small positive value in the convection

zone to a large negative value below. As turbulent diffussgi are used then when
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turbulent convection penetrates into the subadiabatiomdgelow the convection zone
then the turbulent eddies will cause a smoother transitiocean be argued that having
a diffusion based on the atmosphere being turbulent, wheztoimputer models the
atmosphere is often initially quiescent, is somewhat dusioThe atmosphere cannot
diffuse entropy via turbulent eddies when it is quiescehindy be safer to start with
molecular temperature diffusion at high resolution, shbat an instability exists and
then repeat the calculation with turbulent entropy diffurspredicted from the molecular
diffusion results but this would be outside the scope of Wosk. The models used in
this work only account for isotropic diffusion and so anrspic diffusion is outside the
scope of this thesis also. In this work the coefficients dudibnk andk, are constant
but this is an oversimplification, Glatzmaier (1984) citet/gte communication with
Gilman for suggesting that; should decrease with depth. The argument is thds a
model for sub-scale diffusion by unresolved eddies. Neatdp of convection zone the
pressure scale height is very small suggesting that eddliedso be small. Lower down
the pressure scale height increases so more of the turtaddrgs will be resolved, so

the sub-grid is modelling less unresolved motion and theisidin should decrease.

There is another reason that the diffusion of entropy has pesferred in the literature.
In the appendix of Lantz & Fan (1999) is a discussion as to wityopy diffusion is
preferred as when temperature diffusion is used then tleeamte state temperature is

overdetermined. This can be seen from the energy equatleadihg order,
V- kVT =0, (3.13)

and, from the first law of thermodynamics (3.1) applied to dmlaatic process in

hydrostatic equilibrium, the other condition @his
dT g, d
i . 3.14
dz cpr 1y ( )

Parts of this thesis are looking at when the reference athesepdeparts from being

perfectly adiabatic so although the equation (3.13) wilagts hold, the same cannot be
said about equation (3.14). The overdetermined systemr@snportant solution, that

of a polytrope.
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It is possible to look at how the two different diffusivityrtas are related using (3.12)

T 1
V*s* — VT x 5 (V*p* — p*z), (3.15)

which is interaction between the pressure and density fitictos and is an important

driving term for large scale convective motions.

3.3 Preliminary Scalings

| decompose the variables into a steady, stationary, nametesed reference state plus
fluctuations, denoted by a supersctipivhich may or may not have a mean component.
Guided by this we can write the preliminary scalings wheltesstpt, denotes a scaling

factor, which may depend an
p=ps(P+ep’), T=T,(T+el*), p=p,[P+ep?)
u=u,u*, B=B,B"
g=49s, Cp==©Cps, Cy=Cys, Ho= Ho,s,

k= ks; kT = kT,37 n="mns, H=MHs.

The aim of this is to develop the anelastic scaliggsvhich are independent efand
d, where¢ represents any variable, these scaling terms are ther@fdre The kr term
is a turbulent diffusion term which is explained§B.2. The turbulent diffusivity term
appears as

V- k?TTVS
in the energy equation, see equation (3.12).

The reference state is nearly adiabatic so the referenciuamdating entropy will enter
in at the same order

S = S5Cps + SsCps (S+57),
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where the, ; is included to be dimensionally consistent. The small patana is based
on the departure of adiabaticity of the atmosphere and naustiall. The first term on
the right-hand-sides,c, s, does not enter into any equations so will be neglected. The

time and velocity scale are given by (3.8)

0 €gr O
Us = / EéHrgra & = Hs 815*’

which shows the velocity is scaled using the Brunt-Va@sieed.

If the reference state is allowed to evolve it must do so onre tscale much larger
than the convective time-scale. Gough (1969) derived amtemufor a time-varying
reference state although it is more common to take a timepeddent reference state.
In the following derivation the reference state is taken ¢otime-independent so the
time derivatives of the reference state are zero. Therevardength scales, the layer
depthd and the pressure scale heigiit The Boussinesq approximation assumes that

d = d/H < 1 butin the anelastic case this restriction is not required.

The Boussinesq approximation can be obtained by taking< 1. To show how the
two approximations are relatédwill be retained. The anelastic approximation can be
derived by using the layer depth as the only length scaleorigg the difference between
layer depth and the pressure scale will include unnecessangs wheny < 1 but will

not neglect important terms. In this derivation= H,.¢, the layer depth or the pressure
scale height depending on whether the layer depth is snmllarger than the pressure

scale height.

Some terms must enter at leading order which makes thernaotigrscalingsy, = p.
andT; = T,. Any change in gravity, including self-gravity, is ignorgolwith hydrostatic
equilibrium at leading order this suggests = g¢,.. The pressure scaling must be
consistent with (3.5) which suggests the pressure scatghhej = H,.g,.p, but this
scale is only relevant to the reference state pressureh@flactuating pressure the
scale is over the layer depth andse= H.g.p. (p + €dp*). The gas constant does not
fluctuate s@, ; = ¢, andc, ; = ¢, . The permittivity of free spacg, is also treated as

a constant that should not scale©or § S0y s = 1o,
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The vertical derivatives will have different dependenamesé for the reference and
fluctuating states. It is natural to use the pressure scadith.5) when considering
derivatives of the reference state pressure, density qudeature. The vertical entropy
derivative(ds/dz), scales with @ dependence from thermodynamic relationships or the
definition of the small parameter (3.4). This leads to théisgéactors on the derivatives

to be

1/H.V* operatingorp, 5, 1,3
v pu—

V* otherwise.
0H,

The V could be replaced by the vertical derivative of the refeeestate as in this work

the reference state is a function06nly.

The compressible equations are expanded using these mpElymexpansions to
determine how the diffusive terms scale.
Mass conservation becomes

dp*
“or

— [PV w40 VI — eV (),

where the Boussinesq limit &f -u can be recovered by takirgd — 0. The momentum

equation (2.6b) with the preliminary scaling becomes

*

— * u * * * * [— *
€prgr (p+ep7) | + (W V)W = —prg: V" (P + ep”)

Hs (697"5]']7")1/2
02H?

L B2 (V' xBY)x B’
Hr(s Ho,r

+prgr (P +€p") 2

] AVARRE S

When the layer is shallow th&* factor in front of the Lorentz force would unbalance
the equation. The Lorentz force must also not upset hydiodialance but should be

included at the next order suggesting the scaling
B, = VeiB,.

A similar argument for the viscous forces not to upset hyihtics balance gives
Hs = (653)1/2 o+
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Expanding the induction equation (2.6c), using the prelary scalings, results in

oB*
ot

1/2
€

— VX (W xB) 4 [ —— | VB 3.16

eV* x (u* x B*) +1 <gT63H§) \% , (3.16)

and, if magnetic diffusion is to be included in this equatithrenr, = (663)1/2 n, which

is similar to the viscosity scale dependence:@amds.

Finally the energy equation when expanded using the scatlegeloped is

pr (p+ep*) T, (T + €T) ( I ) Cp.rSs {i + (u" - V") (65 + S*)}

0H, ot*
kSTT e al k STT T T — ¥
= 2V (T4 517 ) + 220y (T4 <17) Ve <s + %)
3/2) §1/2 B2 32§12
e T (v* X B*)2 + M_E g 7*2.
Mo,rﬂf 2 Hr

For theed ~2V*2T* andeV* - TV* (5 + 0~ 1s*) terms to effect the evolution of entropy

in a shallow layer themk, = (¢6%)"* k, andky, = (¢6%)"* kr,, which is the same
dependence as the other diffusivities. The dependendentay seem arbitrary but this
means that entropy diffuses in the l@wlimit and that bothk and k- have the same
dependence onandd. For the left-hand-side to be in balange= ¢; there is no need

for a s, scaling factor as that can be incorporated intp. The s, dependence oais
expected from the definition @fin equation (3.4) due to the reference state atmosphere

being nearly adiabatic.

3.4 The Anelastic Scalings

From these preliminary scalings | now develop the anelastic equations which are

independent of, where¢ represents any variable. | now use

pP=PpPr (ﬁ_'_ep*)a T =T, <T+€T*) ’ p:Hrgrpr (ﬁ—FE(Sp*)

0 . 0
s=¢€cp, (5+5"), u=+/edH,gu", prie If]iéat*’
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B =¢2B,B*, g¢=yg,,
b= (") ke ke = (0%) ke = (0%)

1/H,.V* operating orp,p, T, Ors
= <€§3)1/2 Py V=

* otherwise
0H, v

where againé denotes a stationary, non-magnetised reference state *addnotes
a fluctuating term which may or may not have a mean. The s&lipgre now

independent ot andd. Where relevant the scalings are defined at the top of the
domainz = 0.

| will start from the equations (2.3a-c), together with thwelation equation (3.12) for

the entropys = ¢, In(pp~7).
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The equations (2.3a-c) expanded using the anelastic gsafiald

*

€ Op
ot*

+pV*-u' +ou" - Vp+ eV (p'u*) =0, (3.17a)

— * au * * * — *\ A
prgr (P +ep7) | g + (W V)W = +prg, (p+€p7) 2
B2 (V* x B*) x B*
6_
Hr Ho,r

1/2
— eV (D4 €p") + pire ( Ir ) LA o (3.17b)

+

B

1/2
p H3> V*B*, (3.17¢)

S* * * — * 52 *2 [ € *
5 + (u"- V") (05 + s )} R {kzrv <T+ ﬁT >

+ by, V" - (T + gT*> Ve (5 + i) ]

)
5 [n,.B?
4 €0 | 1r Dy
prH?

* B* 2 /’LT‘gT' *2 ] 17
(V*x B")" 4+ 2H,«T ] (3.17d)

Cp,r

SISATVNY 31VOS

IVINHO4L ‘NOILVINIXOHddY JILSVYI1ANY 3HL 40 SOILVINIHLVYIN 3HL '€




3.4 The Anelastic Scalings

With the introduction of the scaling factors the dimensessl numbers defined in (2.5),

along with some related dimensionless numbers, are

rCp,r rCp,rPr = Br2
Pr:&’ <:m’ f:€—1f27
kr kr grHpprpy
0 k D, r THB 2
Cy = 5_1/2Ck = a , and |R|= M’ (3.18)
HTCPJ"pT‘ (Cp,r‘ - Cv,r)Tr ]CF/LT
where

kTﬂa if k, < kT,r
kp =

k. itk >kp,

From (3.17a) the low limit recovers the Boussinesq approximation at leadingortd

is now possible to define equations for the reference staqréviously mentioned the
reference state considered here is time independent safdahenfluctuations generate
a mean then the reference state will not be updated. Thidé&hotipresent a problem
as the assumptions about scaling factors and the atmosgiheunéd prevent this. The

equations to be satisfied by an anelastic reference state are

a5
0=7V* u* +ou* - L, (3.193)
dz
.
&L _ 5 (3.19b)
dz
d’T d /= ds
0= kh@ + kT,r& <T€&) . (319C)

The energy equation reference state (3.19c¢) has two termsté of a different order
in e. This is not inconsistent as entropy diffusion will not beedsn conjunction with
temperature diffusion in this thesis for modelling purpdeor clarity the superscript
will be dropped on the fluctuating terms. Now that the refeeestate is clear the

equations (3.17) can be non-dimensionalised so that fliohsaabout the reference
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state are given as

pV-u+du-Vp=0, (3.20a)
. {38_‘; . VU)} — Vp+pa+ F[(V xB) x B] (3.20b)
1/2
N (P_f) (V7). (3.20¢)
R

0B = 2
B = V x (uxB)+ (VB (3.204d)
with V-B =0, (3.20e)

ol %—F(U'V) (65 + s) (V’T+V-TVs)

1
| = G
Y= 1m (poB) 2 2 2
+ 1502 (PrR) FC(V x B)

Y
Y= lsm (pap)? 0%
HI0 k(Pr R) 5 i (3.20)
with 2-2,1 (3.209)
p p T
1 T
and s=—12 2 (3.20h)
v P T

The equations (3.19) and (3.20) are the non-linear anelagtiations that describe a

reference state and the fluctuations about that state.

3.4.1 A note on Non-dimensional Numbers

The dynamical time and the resultant non-dimensional nusdoe chosen so they have
any factor ofe explicitly shown in them. The explicit nature efcan act as a warning
as to when the values of the parameters will invalidate tipeag@mation. For example,
the leading order balance in the momentum equation is htatrogquilibrium, which
is still true if ¢ is small andF large but where and F are both large, i.eF is large,
then the leading order balance may not be valid. This may rdagnosing when the

parameters are liable to invalidate the anelastic assongpasier to notica priori.
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That said, whether is implicit or otherwise it is not known, and it may not be pibss

to know, when the values of the parameters will invalidageapproximation.

3.4.2 Reference State

The reference state must satisfy (3.19). In this thesisdfegence state is not considered
to be time dependent and is a function of depth only. As marticClune et al. (1999)
considered a reference state that is updated. This candga@hlems unless the state
is not allowed to depart from being almost adiabatic as alghaupdating the reference
state makes the fluctuating terms small it can meandhiaé. the departure from an
adiabatic atmosphere, is large so invalidating negledtigher ordere terms, such as
dp/ot.

Dimensional Reference State

The reference state that will be used in this thesis is a pupgt It is useful to go
back to dimensionful equations so that the value of grayitgn be followed explicitly.

Assuming the atmosphere to be in hydrostatic equilibriura¢ign and an ideal gas then

dp
L =90 and p=(q—c)pl.

A simple solution to this is to use the polytrope ansatz= Kp'*'/™, wherem is
the polytropic index andy is an arbitrary constant. Putting this into the hydrostatic

equilibrium results in

1
K (ﬂ) o/ dp = gdz

From the polytrope ansatz the pressure must therefore be

g m—+1
—K(—7 .
P <K(m+1)z+c)
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| am assuming the plasma is an ideal gas so from the equatgiatefthe temperature is

m+1 m
g g
K|{—"F = —¢) | ——— T
(K(m+1)z+c) (cp c)(K(m+1)z+c)
1
( J z—i—Kc):T.
Cp—Cy \m+1

It is useful to define the thermal gradient at the bottom ofldlyer asc‘lT/dz\Z:1 =0

where/ is consistent with the definition given in equation (3.10).

Dimensionless Reference State

It now makes sense to use dimensionless numbers so
d (T + €T)
dz

whered = [H,./T, is the dimensionless thermal gradient. The introductiomei

=0 atz=0, (3.21)

dimensionless numbers, andd, leads to the relation
H, o

= T e — e ¥ ) 822
Expressing the reference state in dimensionless formtsaisul
T =(1+062) (3.23a)
p=010+0)" (3.23b)
p=(1+02)"" (3.23c)
5= "In(1+0z), whered %0 (3.23d)

0
where in (3.23d) the definition af from (3.4) is used, along with the thermodynamic

relation

s=-—In(pp 7). (3.24)

Some of the dimensionless numbers defined in (3.18) can bressqal in terms of the

new dimensionless numbers including, in particular, thg&gh number, which can be

written as

- 0%(m + 1)? my
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3.5 Layer Width

using equation (3.4) together with the relation
C?PrR = (m + 1)0, (3.26)

which again shows that the non-dimensional parameters efnbdel are not all
independent. Note that, for= 5/3, R is positive ifm < 3/2 (for example in convective

instabilities) and negative i, > 3/2 (as it is in the magnetic buoyancy instability).

3.5 Layer Width

dT/dZ = 9[)

61
P T

z p T

(@) (b)

Figure 3.1: The effect of varying 6, or the depth of the layer within the Sun, with

a) constant depth and b) constant mass.

To be consistent in defining the basic state at differenttdeptthin the Sun an additional
assumption is required about the layer widthWhen modelling layers of plasma at
different depths inside the Sun nothing has been said almutlne layer width should
be chosen. To model layers at different depths inside thef#Saraltered which also
alters the total mass within the layer. In figure 8glis a value corresponding to a
temperature flux near the surface ahdorresponds to a temperature flux deeper in the
Sun sof; > #,. There are many ways of imposing an additional condition/and

I will discuss two with strong physical motivations. One #dohal condition is to set
p(0) = 1, which corresponds to a layer of constant width as in figute(8&). In this
case to model a layer close to the surface of the Sun a sma# @b is chosen, and

this also sets the layer width. It is also equally valid toéngve additional condition of
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fol p.dz = 1 which corresponds to fixing the total mass, as in figure 3.1whgre the
layer width changes whehchanges. | choose to keep the width of the layer constant to
compare with results from other works. The algorithm depetbin Chapter 4 is capable

of both constant width and constant mass.

3.5.1 Energetics

It can be shown that the anelastic equations are enerdgticaisistent. This means that
the total energy balance (the kinetic, internal plus paantan be written in a closed
form so that it does not depend on terms of higher order tharsystem of equations
in (3.20). Gilman & Glatzmaier (1981) produced an equationilar to that derived

by Gough (1969). Wilhelmson & Ogura (1972) points out thatu@us energetics

calculations cannot be written in closed form without aeotfurther approximations
as Gough's reference state was not necessarily isentrapieteas Gilman’s was. |
will not derive the total energy balance but it is worth ngtithat there are possible

inconsistencies if the reference state is allowed to ddpart being adiabatic.

3.6 Different Formalisms

In the literature there have been many ways to derive theastielequations. This can
involve different small parameters about which the asyitipéxpansion is made. There
is also a difference depending on whether the temperatweataspy formulation of the
energy equation is used. First | will describe the diffeena the small parameters
used. As mentioned in the previous section most asymptegiaresions take the small
parameter to be the departure from adiabaticity. Lantz & @&99) argue that if the
reference state atmosphere departs strongly from beiradpaiili then it is not cleaa
priori that the velocities will remain small enough for the appnoaiion to be valid.

This seems reasonable in a convective atmosphere and alsmimetic buoyancy in
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a strongly sub-adiabatic atmosphere. If the atmospheteasgly sub-adiabatic then a
slow convective instability can be expected but the grawiave speed would be very

high which may negate the slow convective instability gtowt

Gough (1969) uses a different small parameter. He assuradstti heat fluxt; is the
the convective heat flux minus fluctuations. These fluctuatwill seek to minimise
any temperature gradients laterally. The actual heat fllixlvgn be the convective flux

minus diffusion

pe,wT =~ pe,wd — k |[VT|

_ kT
cppw (0 —T) ~ SO (3.27)
Gough (1969) defines the small parametéom (3.27) and (3.8) as
EkrTr . 1/2
S prCpr (g-0H €)' (0 — €T))
kT.\? 1 1 \? )
= (60 — €T,
- ‘ <5Hr) goH, (prcpr) (0= T)
T,
— T?e* — (29Tr + ?9) e+60°=0
o S i 3.28
. 6_4STT(\/4 +1—1) (3.28)
0
-7 (9), (3.29)

where

and the negative root of the quadraticeinvas taken. This is plotted in figure 3.2 for
two values ofS and compared with the case wheris the departure from an adiabatic
atmosphere as in

_dds

€ —=——
cpdz

As the atmosphere departs from being adiabatic figure 3.@shimat Gough’s small

parameter remains smaller than the standard small paramdtthe expansion is only
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0.1 /
0.05

w [ e
-0.05 Dep. from Adb —
/ gougﬁws =1.0
01 oughS§ =0.1 -
-0.5 0 0.5 1
0/T,

Figure 3.2: Comparison of different small parameters

formally valid ase — 0. This does not fundamentally change equations but it mayall
the anelastic approximation to be used in slightly lesstatia atmospheres, which may
be useful in the stably stratified limit. The only way to besstlrate is small enough to

give good agreement with the fully compressible result® itake an almost adiabatic

atmosphere.

3.7 A Significant Simplification

Lantz (1992) and, independently, Braginsky & Roberts (198%tade a further
simplification by writing the thermodynamic variables iretmomentum equation in
terms of entropy and pressure, with the pressure term begpnegligible when the

atmosphere is nearly adiabatic.

The simplification essentially relies on the referenceesttimosphere being nearly
adiabatic whereas the anelastic approximation requiredatmosphere to be nearly

adiabatic, itis still a matter of debate whether these anévatgnt or not. To show clearly
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how this simplification can be done | will start with a thernyadmic relationship

Cdp|  dp
p_E p+% S,
s p
b1 dp) dz) <ap) <aT)
7 p[(dz Nap) P \ar ) \55),°
_p (dpy
"ﬁ2(dz)s s, (3.30)

where some of the partial differentials on the right-haitesre unity for an ideal gas.

| also require the definition of entropy (3.20h)

P_P _ (3.31)
P P

Equating the equation (3.30) with (3.31) gives

P (@) _ P

P \dz/), D

p (dp 1

= [ = = —, 3.32
ﬁ2(d2)s ot (3:32)

_YP Py (3.33)
p

which involve p and p. It would be far easier if terms which contajncould be

eliminated. Re-writing the equation (3.33) using equa{®B81) leads to

v (L) -+ 2(1- 1), (3.34)

where the final term in brackets is zero if the reference apine is adiabatic, from
equation (3.32), and small if the atmosphere is nearly adi@b If the final term in

equation (3.34) is removed then this equation can be cudedrove the fluctuating
pressure term. Another effect is that if entropy diffusisnused then removing the
final term leaves entropy as the only remaining fluctuatiregrtftodynamic variable in

the system. This leads to fewer equations to solve and greatiplifies the problem.
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Braginsky noted that the resemblance of the equations tBthissinesq equations is
very strong but in this case the atmosphere is allowed to keag density contrasts
without violating any assumptions. The buoyancy force duealé¢parture from the
adiabatic reference atmosphere is how captured by entropyéting term so that the

Lantz-Braginsky momentum equation is
{aa—lz+(u~Vu)} =-V (%) —si—l—%[(v x B) x B]
Pr\ "2 1
+ (= —(V-7). (3.35
() 4w o

Formally, the Lantz-Braginsky simplification is equivaiém the equations (3.20) when
the atmosphere is perfectly adiabatic. As the atmosphgrartsefrom being adiabatic
both the anelastic approximation with and without the LeBrtaginsky simplification
will deviate from the fully compressible results; importigrboth will do so in a different
manner, as terms that are being neglected in one and nottieewill become larger,
but the difference will be of ordef. There are many other higher ordeerms that are
being neglected, namely tlag /0t in the continuity equation, so including one and not
including others is not increasing the accuracy of the eqnat Likewise if one set of
equations appears to be including more higher otderms than another it is not more
accurate, unless it includes all the higher ordégrms as these may cancel each other

out rather than increasing the accuracy by a small amourgdoh higher order term

included.

In §3.2 | discussed the entropy diffusion, when this is combimeéth the Lantz-

Braginsky simplification then the non-linear computaticgceames far simpler as it
removes the need for the pressure to be calculated. To atdcille pressure involves
solving an elliptic equation with boundary conditions tlaaé based on the previous
time-step. Solving elliptic equations in a parallel enmmeent is challenging as this
is a global problem so all the processors need to combingi@atuin order to solve

global problems which can create a bottleneck. In masspatgllel calculations the

performance of the code is greatly reduced for global prable
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3.7.1 Gough’'s Energy Equation

Although in the temperature formulation the energy equatiappear the same, there
is a difference in the entropy formulation. As mentioned ohéy differences between
Gough’s equations and the more standard ones is in the eegigation. | will take
Gilman & Glatzmaier (1981) as the comparison. To aid congeari will ignore all the
heating terms so the magnetic field is ignored. First | wilnige Gilman & Glatzmaier

(1981, equation (53))

2

where in Gilman and Glatzmaier’s notatief} is the symmetric rate-of-strain tensor
equal todu,;/0z;; 6 is temperature equal t@; v the velocity equal tou; T' is the
superadiabatic temperature-gradient profile equat td = x3/(ec,Tod?) is the Froude
number; P is the Prandtl numbePr; v is the kinematic viscosity:/p; A is the

divergence of the velocity fiel¥ - u.

If the atmosphere is nearly adiabatic ther- ¢,0T /0~ so that, expressed in the notation

used in the rest of this thesis, Gilman and Glatzmaier’'s egués
— (0s oT
ol | — . 0 — = R.H.S. 37
p <0t+u Vs)—irwp(cpaz—l—g) S (3.37)

where R.H.S. refers to equation (3.36). Equation (3.37inmlar to equation (3.20f). |
will transform equation (3.37) into a form similar to the s@nvation of energy used in
Gough (1969) by substituting (3.20h) into (3.37) and, alwiity the ideal gas law, this

gives

o 0T ¢ —cOp

T Ot p Ot

Tu-VT —Tu-VT
T2

Cp

_(cp—cv)pu'Vp]_;pu'w] +wﬁ(cpg—f+g) = R.H.S.

This can be further simplified using the assumption that #distate atmosphere is in
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hydrostatic balance so that

oor _op [ ( TNAT (| p\1dp
A TI" Pl T) dz p) pdz

+u- (pc,VI — Vp) =R.H.S. (3.38)

This is now in a format where a comparison can be made with B¢L969, equation
(4.17)), except that is defined in the opposite manner in Gough's paper than in this
thesis so | have removed a minus sign from the term involyingorrecting for the

definition ofzZ Gough’s energy equation is

oT; 0 oh 10
L_ ﬂ—c;;ﬂm3+mk( o p1)+gp2m3—

pCp W 8t al’ k ﬁ 8x k N

where in Gough'’s notatiom is the momenturpu andm; is one of the three components
of m so thatms is the vertical momentuny;, is the fluctuation pressung p; is the
fluctuation densityp; h, is the fluctuation enthalpy) = —(9lnp/0InT), which is

unity for an ideal gasy is the superadiabatic temperature gradient defined in 310

ou; N ouy, B gﬁuj 5
H Oz Ox; 30z )

and so equal to, from equation (2.3e) is any internal heat source (e.g. viscous or

is equal to

Ohmic heating);F is the combined heat flux from radiation and conduction with
being a component of the reference state heat flux/gpdeing a component of the
fluctuating heat flux. Converting to the notation used elsr@lnesults in

0T 0p _( OT 10p _

cppa—a—i-wp <cpa — %@) +u-(pc, VI — Vp)+gpw = R.H.S. Gough, (3.40)
where R.H.S. Gough refers to equation (3.39). The diffexdretween (3.38) and (3.40)
is connected to how the two expansions tréatd: in different ways. In Gilman &

Glatzmaier (1981), before any scaling assumptions are niaelghave

— &2 (p+ep) (T + €T) [%+u-V5+w$ = R.H.S. (3.41)
2
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as the atmosphere is nearly adiabatic theftl- is of ordere. If the termds/dz was of

order 1 then the terms

— 8_ o dT . vd_
w(Tp+Tﬁ)a—j:w<Tp+Tﬁ) (@__Cp c _p)

T dz p dz

TPy, TYPYT pdz’
should be included in (3.38). If they are included then theagign (3.38) becomes

0T op _( dT 1dp _ dT
SP o ~ 5 +wp (CPE — 5&) +u- (pc,VT — Vp) —l—wpcp& =R.H.S. (3.42)

but it also is now inconsistent @d'ds/dz would be un-balanced. C. A. Jones (personal
communication) showed that (3.38) and (3.40) are equivafethe atmosphere is

adiabatic. For the two equations to be equivalent then
pdp _pe,TdT _

pdz T dz
This can be shown by starting with the entropy formulatiothefenergy equation
& _c-gdp 1dT
dz op dz T dz’
but taking an adiabatic reference statgdz = 0 so (3.43) can be expressed as

(B_M)@:

gp. (3.43)

(3.44)

P P a7
p T\dp

pdp _

%&—gﬂ

which is simply stating the reference state is in hydrostagilance. It is clear that the
two formalisms of Gough’s and Gilman'’s are equivalent inad&batic limit but it is not
clear if one would perform better when the atmosphere deffranmn being adiabatically

stratified.

3.7.2 The Temperature Formulation

The use of the energy or temperature formulation of the greggation is equivalent in

the fully compressible magnetohydrodynamic equationghéncompressible case this
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can be done by combining the first law of thermodynamics @nt)the time derivative

of the equation of state (2.3f),

or TOos c¢,—c,, Op
— = —— T—. 3.45
ot ¢, 0t * cpp Ot (3.45)
and then using conservation of mass (2.3a) the pressurelémative can be written in
terms of temperature. Also required is a combination of treservation of mass in the
fully compressible case (2.3a) and the gradient of (3.12hab
VT 2

Vs =c,——+ (¢, — ¢p)

- ; (3.46)

| can now use equations (3.45) and (3.46) to rewrite the L.bf.8he energy equation

T i
e |2 pavr| 4oy ou=kvir 2% L L v xBR. (347)
ot 0x; Ho

The energy equation can then be written in terms of entropy

+(u-V) s] = k‘VzT—i—u%Tij + ME (V x B)?
j 0

Js

T | —
P {81&
where the diffusion can be temperature or energy diffusiemé¢hough only temperature

is shown, se§3.2 for a discussion on diffusion terms.

In the anelastic case this is not possible as the consemaitimass (3.17a) has no time
derivative. The anelastic scalings derivedst4 used an entropy formulation of the
energy equation but there is an equivalent temperatureuflation in the compressible
case. To be able to compare and contrast with the entropyufation an anelastic form

of the temperature formulation of the energy equation vélderived.

Starting again with the fully compressible temperaturemigiation of the energy
equation (2.3d) and using an asymptotic expansion sinol#ndt used in the anelastic
scaling previously except now dimensions are kept sothat T + €T, p = p + ¢p,
p =7+ ep, B = €¢/?2B, andu = ¢'/?u. The diffusion coefficients scale a¥2. The

possibility of a thin layer is ignored for simplification. Kping the dimensions in the
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energy equation (3.47), but using this expansion, gives

oT —
cﬁ”aﬂv 0-V (T +eT) =
k
p_'_ep I/QV u+€1/2 v2 (T+ET)
o+ ep o+ ep

po Ou; €l/?

+ &2 4 ; (V x €°B)*. (3.48)

= Tij -
p+epdx; o (p+ep

1 _<1 ep)
ptep \p 7°)

In (3.48) most of the terms are similar to the terms in theagtformalism except there

It is also useful to note that

are two extra terms at leading ordéf?, namely

D k
_p V.ou-— -
p+ep p+ep

cou- VT + VT, (3.49)

From the reference sta¥’T = 0 and, usingV -u = —w dp/dz, it is possible to show
the other two terms from (3.49) should enter the equatiohgyaer order. Dropping the

€'/2 the terms in (3.49) can be rewritten as

D _dI' pwdp (1 ¢p
cou- VT + p+€pV~u:cv/)w$ R (% — ?)
dT 1 dp Tpwdp
= we, (dz Cp_ﬁ&) (cp —cy)€ 7 a4z
Tpw dp

where the final term on the right then combines wiW¥ - u and can be simplified. To
scaleg | look to the definition (3.2) which suggests= 30/d ande = 6/T,. which is an
equivalent definition to (3.4). At leading ord&F7T = 0 and ate>/2

oT —
(E +u- VT) + wepf = (¢ — cv)

Twdp
dz
1 8ul
+ ==—Tij +—(V><B) , (3.50)
pox; " pop

+ k= V2T

which is similar to Gough’s anelastic energy equation. Ia titerature it is less

common to use the temperature formalism with the anelagpooximation but Rogers
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& Glatzmaier (2005) take this approach. In Rogers and Glaieris paper equation (3),

the energy equation, is

or or — - or
— oT )
+ YR {WT + (h, + M@} + 9, (3.51)

where in Rogers and Glatzmaier’s notationn the velocity field equal tan andwv, is
the velocity in the vertical directiom; h, is the density scale higiit, = d/dz1np; h,
is the thermal diffusivity scale hight. = d/dzIn%; andQ is the heating rate which

maintains the reference state profile.

When ignoring variations in thermal diffusivity,, = 0, and removing the reference
state, which is represented in the last two terms, then imthation used in this thesis

equation (3.51) becomes

aT — dp
Cop [E +(u- V)T} + we,pf = wTd—i(cp —c,) +kVPT. (3.52)
The two equations (3.50) and (3.52) are the same as Gougélgyerquation. This
suggests that the temperature formulation of the energgteguis independent of the
small parameter used but this is not fully clear as in RogefSI&zmaier (2005) the

equations are not justified by a full asymptotic expansion.

However, it is clear that the anelastic conservation of gynewritten in terms of
temperature (3.50) is not equivalent to when it is writteriarms of entropy (3.20f).
It is possible that if higher order terms were kept in the as#t conservation of mass
then there would be a way to express the density time deré/aind so a conversion
from an entropy formulation of the energy equation to a terajpee formulation would

be possible. The anelastic conservation of mass with higrdgar-terms included is
3/2 Iopi 1/2 *— | 3/2 x— | 3/2 .
o =€ V.-uip+ €7V -uyp+€’°V - ujpi, (3.53)

where the decomposition = /edH, g, (u; + euy) andp = p, (p+ ep* + €p3) and

uj, p; are the first order fluctuations, the same as dealt wit§3id4 on the anelastic
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scalings, andsi;, p are an order ot smaller. Keeping higher-order-terms would stop
the system from being closed. One important thing to notaiatios derivation is
that when the atmosphere is not close to being adiabatictheeterms withs will not

be small and there is no reason that they should be excluded thie leading order
balance. This would lead to a reference state that depermdé#tedluctuating velocity
and so invalidate the approximation. In a state far fromlzatia then this would clearly
make the anelastic equations not energetically consiskaritin a different way, when
the atmosphere is not close to being adiabatic thér is not small and the term in
the temperature formulation of the energy equation (3.50)ast as a spurious source

of energy, as noted by Durran (1989).
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Chapter 4

Linear Algorithm

Insight into how the anelastic approximation deals bottmwie magnetic buoyancy and
magnetoconvection instabilities can be gained by invastig linear problems. It is
possible to look at small perturbations to a stable baste sththe anelastic equations
(3.20) and then linearise these equations. Linearisingnméading an equilibrium,
perturbing the variables, and then, as the perturbatiansraall, neglecting non-linear
perturbation terms. This requires a reference state, whidbscribed ir33.4.2, and will
also require a basic state about which to perturb the equsatidhe reference state is
the state about which the fluctuating anelastic equatiome derived. The basic state is

equivalent to an initial condition if the system were solascan initial value problem.

| have studied the same problem for anelastic and for corsitlescases with the
aim of comparing and contrasting the results. This was donddth the magnetic
buoyancy and magnetoconvection instabilities. | have #teampted to find the range

of parameters for which the anelastic approximation worigwhere it does not.

In all cases described henceforth, | follow a similar angatitetermine the stability of a

plane parallel layer. In the anelastic case the fluctuatartables are all expanded as

& (z,y, 2,t) = & (2) + £(2) exp(ot + ik,x + ikyy), (4.1)

where¢; (z) is the anelastic basic stat;) is a perturbation to the basic state with a

69



4. LINEAR ALGORITHM

dependence only;, is the (possibly complex) growth rate of the instabilitydan andk,

are the wavenumbers in tlkeandy horizontal directions respectively. The perturbation
is much smaller than the basic state (unless the basic stalenitically zero) sq < &

In the compressible case the full variables are expandedimigar manner except the

variables were not split into reference and fluctuatinggsot

E(w,y, 2,1) = &(2) + £(2) exp(ot + ik, + ikyy), (4.2)
where¢,(z) is the compressible basic state. The basic state was dalduiamerically
for the magnetic buoyancy problem in both the compressilteamelastic cases. The

linear equations for the perturbation variables are gimelgpendix A and B.

4.1 Finite Difference Scheme

The continuous problem was solved by describing the systeondmnary differential
equations usingV evenly spaced grid points. The differential operatorsnactin the
variables were replaced with the fourth-order accuratéefidifference representations

with appropriate representations at each boundary, giyeéhebboundary conditions.

A finite difference scheme is a way of approximating derediin a domain divided

into discrete points and is based on the Taylor expansiomalidbehaved function

0)( |
/ (, ) Ay + Ry (x). 4.3)

Az) =
f(zo + Ax) f($0)+; ;
wheref is the function;z, the point about which the function is being expand&d,is
the distance between discrete points, @dthe remainder if the function is expanded
to then™" derivative. It is then possible to write thé' derivative in terms of the function

at different grid points with the accuracy of this given bg tleminder function.

My domain had uniform grid widthAz and my finite difference stencils were fourth-

order accurate in space. The representation offaderivative of any variable will have
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4 .1 Finite Difference Scheme

identical internal matrix points, e.g. the matrix reprdsenthe first derivative of is

BP .- fi Dfy
BP .- fa Df,
12(1Ar) 3(_AQx) 0 3(2@ 12(_A1x) 0 0 I3 Dfs
0 0 Sag g 0 a9 maw fn-s Dfn-s
B.P fn_2 Dfn_s
B.P fn-1 Dfn_1
(4.4)

where B.P. are the boundary points which will be discusstst, | is the value of the
function at the" grid point, NV — 2 is the total number of internal points, aftf; is the
first derivative of the function at th& grid point. The matrix term on the left-hand-side
of equation (4.4) is an example of a fourth-order accurat&ireepresentation of the
first derivative. The central difference stencils, whicpresent the internal points, for

the function itself and the first four derivatives are

d0/dz? 0 0 0 1 0 0 0
1 -2 2 —1
dt/dazt 0 2087 380 0 3(Az)  12(A7) 0
5,19 | -1 4 -5 4 —1
d*/dz? | = 0 T@er e 200’ 3007 mae® 0 ’
3 3 1 —1 13 —13 1 -1
d*/dz 8(Az)°  (Bx)®  8(Ax) 0 8(Az)° (Do) 8(Ax)
4794 2 19 28 19 2
d*/da 0 (An)®  3(an)t 3(An)t 3(An)t  (Ax)? 0

(4.5)

where the third and fourth derivatives were only used faiiggurposes.

To be able to model the third derivative requires seven gidtp in the central difference
scheme. This means there will be three rows at the top andrbait the matrix that will
depend on the boundary condition. In the boundary regiorieép the fourth-order
accuracy then eight grid points are required. The boundaitg fuifference stencils are
given for a free boundary condition, i.e. one where nothgigriposed on the function,
wherel represents which row of the matrix the boundary stencilrsefie, for example

in equation (4.4) the first row would de= 1 and/ < 0 represents the boundary stencils
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[AA

1 0 0 0 0 0
—1089 7 —441 —35 21 —49 3
420(Az) (Ax) 42(Ax) 3(Az) 4(Ax) 5(Ax) 42(Ax) 21(Ax)
469 —669 7911 —949 369 —603 1019 —21
90(Az)?  30(Az)?  180(Az)?  18(Ax)? 9(Az)? 30(Az)?  180(Axz)?  30(Az)?
—967 5104 —11787 15560 —12725 6432 —1849 232
120(Az)®  120(Az)®  120(Ax)®  120(Az)  120(Ax)®  120(Az)®  120(Az)®  120(Ax)®
28 —166 426 —609 528 —277 82 —10
3(an)t  3(Az)t 34t 3(An)t 3(Ax)t 3(Ax)' 3(An)t 3(Ax)!
0 1 0 0 0 0
—60 —609 1260 —1050 70 —315 84 -1
420(Azx)  420(Az)  420(Az)  420(Az) 42(Ax) 420(Az)  420(Ax) 42(Ax)
126 —170 —486 —670 324 —90 11
180(Az)?  180(Az)?2  180(Az)?  180(Az)?  180(Ax)?  180(Az)?  180(Az)?  180(Ax)?
—232 889 —1392 1205 —680 267 —64 7
120(Az)%  120(Az)®  120(Az)®  120(Az)®  120(Axz)®  120(Az)®  120(Az)°  120(Ax)?
10 —56 127 —162 125 —60 16 -2
3(Az)? 3(Azx)? 3(Ax)? 3(Az)? 3(Azx)? 3(Az)? 3(Azx)? 3(Ax)?
0 0 1 0 0 0 0 0
1 —2 2 —1
12(Ax) 3(Az) 0 3(Azx) 12(Ax) 0 0 0
-1 16 —30 16 -1
12(Az)?  12(Az)?  12(Az)? 12(Az)? 12(Ax)? 0 0 0
—1 —1 35 —48 29 —1 1 O
8(Ax)3 (Az)® 8(Az)3  8(Az)®  8(Az)®  (Az)®  8(Ax)®
2 -3 10 —2 —4 1 0 0
3(Az)* (Az)* 3(Az)*  3(Az)t 3(Az)t (Ax)?

(4.6a)

(4.6b)

(4.60)

"MOJ WoNoq ayl buiag 1T — A/ =HIM ‘XLyew ay) Jo Wonog ay) Je SMoJ ay) 1oy}
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0 0 0 0 0 1 0 0
1 -2 2 -1
0 0 0 12(Az) 3(Ax) 0 3(Az) 12(Az)
—1 4 —5 4 —1
0 0 0 12(Az)%  3(Az)?  2(Ax)?  3(Az)? 12(Ax)? (4.6d)
0 -1 1 —29 6 —-35 1 1
8(Az)®  (Az)®  8(Az)® (Az)®  8(Az)®  (Ax)®  8(Ax)®
0 0 1 —4 —2 10 -9 2
(Ax)t  3(Ax)t 3(Az)t 3(Ax)?  3(Ax)? 3(Ax)?
[=N-2
0 0 0 0 0 0 1 0
1 —21 63 —-35 105 -3 609 1
42(Ax) 60(Ax) 84(Ax) 21(Ax) 42(Ax) (Ax) 420(Ax) T(Az)
11 —1 27 —67 171 =27 =7 21 (4 66)
180(Az)2  2(Az)2  15(Ax)?  18(Az)?  36(Az)?  10(Az)?  18(Az)?  30(Az)? )
-7 8 —267 17 —241 174 —889 29
120(Az)®  15(Az)®  120(Az)®  3(Az)®  24(Az)®  15(Ax)®  120(Az)  15(Az)d
—2 16 —20 125 —54 127 —56 10
3(Azx)? 3(Az)? (Az)? 3(Ax)? (Az)? 3(Ax)? 3(Az)? 3(Ax)?
[=N-1
0 0 0 0 0 0 0 1
-1 4 —1764 3675 —40 44 —29 89
420(Az)  420(Az)  420(Az)  420(Az)  420(Az)  420(Az)  420(Az)  420(Ax)
126 19 —3618 73 —94 7911 —14 938 (4.6f)
180(Az)?  180(Az)?  180(Axz)?  180(Az)?  180(Az)?2  180(Az)?  180(Az)?  180(Ax)? )
—232 1849 —6432 12725 —155 11787 —54 967
120(Az)®  120(Az)®  120(Az)®  120(Az)®  120(Az)®  120(Az)®  120(Az)  120(Ax)?
-1 82 —277.5 528 —9.5 426 —166.5 28

6(Az)* 3(Az)? 3(Az)? 3(Az)? 3(Az)? 3(Az)? 3(Az)? 3(Az)?

aWaYIS adualaylq aluId T'v
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The other boundary condition such as Dirichlet and Neumanmd&ary conditions have
different boundary stencils which are not shown here. ThebBlet boundary condition
stencil is similar to the free boundary condition stendilewen previously but where the

value of the function at the point just outside the domairei®z

Using the notation B*(m) wheren is the derivative;l is the samd as described
previously; bc is the type of boundary i.e. f(ree), D(iret)] or N(eumann); and:
is the column in the matrix. An example would be!B) = 127/3, from the stencil in

equation (4.6hb).
The Dirichlet condition can be derived from the free commitivherel < 4 by
Dnf’ (m) = Dn;:rl(m +1), 4.7)

and when > N — 4 by
DnP(m) = Dn/_(m —1). (4.8)

For example withl = 1, the first row in the derivative matrix, the fourth derivagiof a

function with a Dirichlet boundary is

D _ —56 127 —162 125 —60 16 -2
D4y" = (3(A:c)4 3(Az)t  3(Ax)?  3(Ax)?  3(Az)? 3(Az)t 3(Ax)? 0)' (4.9)

Neumann boundary conditions are more involved but make tifeedirst row/ = 1

from the first order derivative of the function

f_ —1089 7 —441 35 —35 21 —49 3
Dll - (420(Az) (Az) 42(Az) 3(Az) 4(Az) 5(Az) 42(Ax) 21(Az)> ) (410)

A Neumann condition means that when the stencil in equadadl0] is applied to the
function at the boundary grid point, which is just outside ttomain, the result will be
zero by definition. The Neumann boundary condition steriioil$ < 4 are created by

_Dn];—i-l(l)

P = =51

D1f(m + 1) +Dnj_ ,(m + 1),

with a similar expression for the> N — 4 stencils.
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4.2 Numerical Procedure

As can be seen from the previous section the result of the filifiterence representation
of the system is a banded matt¥ and the algorithm takes advantage of this. The
eigenvaluesry and corresponding eigenvectaes of matrix A were found using the
inverse iteration method described by Fearr;[ (1985). Arairguess for the eigenvector

y was made, which can be expressed;as Z o;x;, wherea; are the coefficients of

i=1
the eigenvectors. An initial guessfor the eigenvalue was also made. It is then possible

to formulate an expression that converges tathe closest eigenvalue to,
N
(A—WI)_WLy = ZO{Z (0'7; —W)_ani, (411)
=1

where the right hand side will tend towards tfifeeigenvalue as: increases. This can

be expressed in an iterative scheme

(A— wj)_l Ym

Ymax

Ymi1 = (4.12)
At each iteration the guess for the eigenvector was norettis have the element with
the largest modulugy.x Set equal to one. The convergenceyobn the closest actual
eigenvector depends on the distance betwee&mndo; relative to the distance between
w and the other eigenvalues. The operation to find the inverssmputationally
expensive so although it is possible to recalculate- /) with an improved guess
for the eigenvalueo; this is not efficient. The process was restarted withas an
improved guess for the eigenvalue only|df; — w,| > 0.75 and then the algorithm
recalculated the matrix inverse from the updated eigeevgliesso,. The inverse was
calculated using LU decomposition which takes advantaghebanded form of the
matrix. The iteration performed in equation (4.12) was abered complete whep,,

andy,,.; were parallel to within a tolerance @~ or smaller. The eigenvalue was
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then found from

yml _ ajloj—@) " |z
Y1l aj(o; — @) " ||
o=+ [Ym|
‘ym+1|

In the compressible case then temperature rather thanpgnitvas used. In the

compressible case there is an evolution equation for th&spre so the variables were

set-up using
Ug o 0 0 Ug
U 0 ¢ O 0 Vo
wo 0 o O 0 wo
b0 0 o 0 0 b0
byo : 0 o O 0 byo
Alby | = 0 o 0 0 bzo
00 0 o O 0 0o
T : 0 o 0 0 Th
Uy o 0 Uy
TN oo o o o o o o0 0 0 o TN

so thatA is in banded form.

In the anelastic case instead oframultiplying the pressure perturbation there is a
zero as the pressure responds instantaneously to chanipesfinid. This can be seen
when the divergence of the anelastic momentum equatiofl§Bi& taken to get another

relationship which is based on pressure
~ Pr\ /2 1
+FV - [(V*xB*) x B*] + (E) V- {% (V* -‘r*)] , (4.13)

which shows that pressure responds instantly to changas andB*. The anelastic

continuity equation (3.20a) can now be seen as an diagrexgtiation for the pressure,
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as in Kersalé et al. (2004). This is equivalent to sound waravelling instantaneously
over all space so the pressure effects are also instantsaasoequation (4.13) shows.

This leads to a generalised eigenvalue problem of

Ug o 0 0 Ug
Vo 0 0o 0 0 U
Wy 0 o O 0 Wy
me : 0 o 0 0 me
by(] : 0 g 0 0 byO
Alb,yl= o 0 0 b.o
Po 0 0 0 Po
So 0 o O 0 So
U1 g 0 U1
SN oo o0 o0 o o0 O 0O 0 0 o SN
so the problem can be formulated as
Ax = oBx. (4.14)

The generalised eigenvalue problem can be solved in muchatine way except with

the equation (4.11) being replaced with
N
(A—@B) " By = Z a; (o, — @) "y, (4.15)
i=1

so that the iteration scheme (4.12) is now

(A—@wB)™' Byn

Ymax

Ym+1 = (416)

4.2.1 Validation of Anelastic Algorithm

The anelastic code was validated by first comparing with theyaical results given

in Chandrasekhar (1961). The validation also gives a jaatifin for the number of
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grid points by comparison to the Boussinesq case where & z8ube analytically
derived, as shown in Chapter 2. It is possible to recover thesBinesq limit in the
anelastic equations by takidg= 0 which sets all the thermodynamic reference states to
be constant. In the Boussinesq case Chandrasekhar hadyicahequation for vertical
magnetoconvection (for a more detailed introduction to inesq magnetoconvection
sees5.1)

Re = [(7* + k*)* + 7*Q) (4.17)
wherek? = k2 + k7, Q the Chandrasekhar numb@r= Bgd*/(popun), see appendix C
for details on how( relates to the other dimensionless numbers; Bpis the critical
Rayleigh number. The critical Rayleigh numbg is the lowest Rayleigh number

required for the system to be unstable, i.eRat R, theno = 0. The critical Rayleigh

number can be minimised ovérto find the minimum critical Rayleigh numbétz

Q=n (2 (%)6+3<§)4—1>. (4.18)

This can then be compared to the value that the computer grodinds in the

which happens when

anelastic case to give a fractional difference. This foawl difference in the Rayleigh
number for the analytical Boussinesqg and numerical anelaguations is defined as
| Riouss. — Ran.|/| RBouss.|; @ similar definition is used for the fractional differendas
other parameters. Figure 4.1 shows the fractional differers a function of resolution
for the anelastic code. Figure 4.1 shows there is a steepatexin the difference up to
600 points, where the difference is undef01%. Then at numbers of grid points higher
than 1500 the difference begins to increase. This increase is dueuxhalerivative
terms which, when represented in the fourth-order accunaite difference scheme,
involve division by the grid-spacing to the fourth power. 8the number of grid points
increases aboves00 then the numbers involved are small enough for machinegceti
to become a limitation. This suggests that the number gridtpshould be between

800 — 1200 which is the range used in this thesis. TRe values are independent of
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4.2 Numerical Procedure

the diffusion parameterBr and{ as well as being independent of the magnetic field
F. | will still give the parameters used in the following figeréor completeness,
Pr =1.0,¢ = 1.0,y = 5/3,6 = 0, andm is not used so could remain undefined.
Figure 4.2 shows the difference of the numerical resultheBoussinesq case for a
range oft values and shows that the difference remains relativithanged and are less

than0.005%. This shows the fractional difference is independent ofteeenumber, as

expected.
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©
= -0.0005
c
8
g  -0.001
[S—
-0.0015

500 1000 1500 2000 2500
grid points

Figure 4.1: The fractional difference between the computational and the
analytical Boussinesq results showing the fractional difference as function of the

number of grid points for a fixed R = 1761.8 and k = 3.27.

4.2.2 Validation of Compressible Algorithm

The compressible code was adapted from a code written by Ergaie and tested
against that code. This validation was only done for cas#sawonstant magnetic field
as in magnetoconvection. The validation that the anelastie was correctly modelling

magnetic buoyancy was made through comparisons with th@ssible code.
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Figure 4.2: The fractional difference between the computational anelastic and
the analytical Boussinesq results for a range of wavenumbers. The fractional
difference is the difference between the computed and analytical R, both where

800 grid points were used in the computational case.
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Chapter 5

Linear Magnetoconvection Results

5.1 An Introduction to Boussinesq Magnetoconvection

Some magnetoconvection linear theory is useful to help rataied the computational

results presented later in this chapter.

From Proctor & Weiss (1982) and Chandrasekhar (1961), lamitisider a Boussinesq
plasma between two horizontal layers at a distath@part. Energy lost to magnetic
dissipation leads to a source term in the energy equati@ud)2n the form of Ohmic
heating, but this is small and will be ignored for rest of thecdssion on convection. The
constituent equations of magnetohydrodynamics in the §lnasq approximation are
then non-dimensionalised using the length sdalthermal relaxation timé?/(poc,k),
velocity u with pgc,k/d, and pressurgwith pc,k/d*. Then the magnetic field is written
B = B, (z+ B*) and temperatur@ asT = T, (14 6(1 — z) + T*) where By, § are
the dimensionless magnetic and thermal gradients resplcandTy is the background

temperature. Dropping the superscrighe magnetohydrodynamic equations, in non-
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5. LINEAR MAGNETOCONVECTION RESULTS

dimensional form, are then

L (a_u +u- Vu) =-Vp+ RTz+ Q¢ (%—E +B- VB) + Vu, (5.1a)

Pr \ 0¢
%—f+u-VT:9u-z+v2T, (5.1b)
0B ou
EJru-VB:EJrB-Vu—CVx(VxB), (5.1¢)
V-u=V -B=0, (5.1d)

wherePr = pc,/k is the Prandtl numbet; = nc,po/k is a diffusivity ratio (or inverse
Roberts numbenR = gc,afd?p/(ku) is the Rayleigh number which is a ratio of the
buoyancy forces to the viscous forces, wheris the thermal coefficient of expansion,
andQ = B2d*/(uopn) is the Chandrasekhar number, see Appendix C for how these
related to the dimensionless numbers in (2.5). Unlike eteeer in this thesis, here
z = 0 is the bottom of the domain and= 1 is the top. The boundary conditions at
z = 0,1 are isothermal, stress-free with a vertical magnetic fielBsx = B -y = 0.

It is often helpful to decompose fields into two componentspialal and toroidal. In
axisymmetric fields the toroidal component of field is paalaib latitudinal lines. The
poloidal field is outwards from the poles. | now separate takldiinto poloidal and
toroidal components; =V x (V x ¢z) + V x YzandB =V x (V x £z) + V X xZ.
The components decouple with the toroidal component daegrsolutions that decay
and so will be neglected. Substituting the poloidal terms {5.1a-c), linearising, and

taking thez component of the curl leaves

19 2, ﬁ 2 4

Pratv b= RT+QC02V§+V b, (5.2a)
%—f = V%0 + VT, (5.2b)
o5 09 2
=2, T (V2, (5.2¢)

whereVy is the horizontal derivative. On assuming a normal modetgwltfor the
perturbations of the forny(z)exp(ik - x + ot) and its complex conjugate, where

k = (k,, k,), the system reduces to one containing only ordinary difféaéequations.
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5.1 An Introduction to Boussinesq Magnetoconvection

This leads to the dispersion relation, cubic in the growté #a of

w? (0 + w2) (0 + Pr w2) (U + sz)

+ ¢ PrQw’n? (o + wQ) — RPrk*(oc + (w?) =0, (5.3)

wherew? = k* + 72 andk = |k|. There is a steady-state bifurcation (exchange of
stabilities) atr = 0 where the critical Rayleigh number, the minimum Rayleigimber

required for convection to onset, is
Re=k? (w6 + Q7r2w2) . (5.4)

The critical Rayleigh number can be minimised okerTaking a step back to see how
this relates to magnetoconvection is useful at this poihe minimum critical Rayleigh
numberRgz is an increasing function af). As magnetic fields become stronger then
more energy is required to displace field lines and so coirecnsets proportionally

later for higherR. For sufficiently large) then Rz ~ 72Q).

A Hopf bifurcation is also possible in this system when (&3 purely imaginary roots,

o = 44w, and occurs when

Roc = k7 (Aw® + BQm*@?) (5.5)
1. S _ ((Pr+¢)
whereA = 1+Pr(1+Pr+§), B = T
The frequencyw must satisfy
Pr¢(l—¢)
2 24 TITLULTE) o
we=—Cw" + TP Q). (5.6)

No Hopf bifurcation is possible if > 1 as thenv? < 0. The limiting case is» = 0 and
substituting (5.6) into (5.5) and comparing with (5.4) sisdhat if a Hopf bifurcation is
possible then it will occur at a lower Rayleigh number thamsteady-state bifurcation.
If the system is in the regime where a Hopf bifurcation wiltocthen, as the Rayleigh
number is increased steadily, the system will transitiooatmy from a stable state to

oscillatory convection. The Takens-Bogdanov (TB) poinwigere the Hopf bifurcation
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5. LINEAR MAGNETOCONVECTION RESULTS

coincides with the steady state (or pitchfork) bifurcataom the frequency tends to zero.
Near the TB point the frequency at the Hopf bifurcation is knha liquid-metals¢ > 1
but in astro- and geophysical situatians: 1 so it initially appears likely that oscillatory
convection sets in first. This is somewhat of an over-singaltfon as in the Sug is
proportional to density and passes through unity from thiéasa to the bottom of the

convection zone.

5.2 Linear Code modelling Magnetoconvection

| will now explain the set-up of the linear problem. This wasnd for the anelastic
case and then compared with the compressible case where lasaumed that in the
compressible case the problem was solved exactly. It is plossible to compare and
contrast the anelastic equation with and without the L&reginsky simplification to
the compressible equations. The fully compressible egonatare in equation (2.3) and
the anelastic equations without the Lantz-Braginsky avergin (3.20) with the Lantz-

Braginsky approximation given i§8.7.

Owing to the inherent symmetry of the linear problem the ltesdb not depend on the
separate horizontal wavenumbers and so | proceed by ctitgutae critical Rayleigh
number as a function of wherek® = k2 + k7. The critical Rayleigh numbeR; is
defined as that Rayleigh number for whittic} = 0 and Rz is then the lowest value
of R, when optimised ovek. For simplicity, | denote the wavenumber at which this
minimum occurs a# in the figures following. This procedure is formally equial to
solving an eigenvalue problem fdt., optimised ove¥:, with all other parameters fixed
apart fromC,,, which is related ta? by equation (3.25); this in turn can be thought as an

eigenvalue problem faf’.

The systems of full anelastic, Lantz-Braginsky approxioratand fully compressible
linear equations, together with the appropriate boundangitions, were solved in the

form of generalised eigenvalue problems.
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5.2 Linear Code modelling Magnetoconvection

5.2.1 Boundary Conditions

The boundary conditions are consistent with boundary d¢mmdi on full variables, but
were imposed on the perturbation terms, and are that thentbp@ttom boundaries were

impermeable, stress free and isothermal so

0 0 -
V=—u=—0=T=0 atz=0,1
W= ol= o0 2z =0,

where the velocity components are= (u,v,w) and the terms such as terms are
from the expansion in (4.1) in the anelastic case and (4.2hencompressible case.
This was true even in the anelastic case where | used thepgreguation rather than
the temperature equation and this will be further inveséidan § 5.3.6. Stress free
boundary conditions were chosen as these are easier tonmapten the non-linear case
so comparisons would be simpler. The temperature boundegition is non-physical
as there is no area in the Sun where the fluctuations to a tidependent profile are
always zero and was chosen for mathematical convenientgaough it is non-physical
it is relevant to the Sun and other temperature boundaryitions, such as fixed flux,

have similar issues.

| also imposed the illustrative boundary condition sugegdty Chandrasekhar (1961)

on top and bottom of the magnetic field, i.e.

A

. 9B,
B, =B, =20 _

0z

0, (5.7)

where magnetic field components 8e= (B,, B,, B.). This guaranteed a vertical field

whilst satisfying the solenoidal condition (2.1b).

5.2.2 Basic State

The basic state in the anelastic equations is not equivadettie basic state in the
compressible equations. In the anelastic case, the referstate is a non-magnetic

polytrope and the magnetic field enters only in the basiestatthe compressible case
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5. LINEAR MAGNETOCONVECTION RESULTS

there is no reference state so the basic state is that of &qudy but in the presence of

a weak magnetic field with a strength consistent with theastiel approximation.

The basic state of the compressible equations (2.3) is ddfgtwheref can represent
any variable. | consider a steady, stationary basic staengdy a polytropic solution
together with a uniform vertical magnetic fieRsl, = (0,0, 1). Thus, T, = (1 + 6z) and

o = (14 0z)™ wherem is the polytropic index as explained §8.4.2. For a polytropic

atmosphere the density contrast is defined as

_ Py(1) _ m
X = (0) ~ 0+1)". (5.8)

Although there is a magnetic field in the basic state it has naglignt and does not
alter the polytrope. Figure 5.1 shows the compressiblectsdate for typical parameter

values used in the computations later and it shows that timpssible basic state is a

polytrope.
1 : ‘ 1 : :
P — T, —
08 dpy/dz 0.75 | ATy /dz
0.6
N 8 0.5
0.4
02 0.25
0 0
0.5 1 15 2 0 0.5 1 15

Pb Pb
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Figure 5.1: The compressible basic state density (a) and the temperature (b) for
a typical case with v = 5/3, m = 1.495, 0 = 0.5, Pr = 1.0, ¢ = 5 x 1072, and
F=5x10"%

In the anelastic approximation the basic stgtés also simple. For magnetoconvection
the field in the basic state is uniform and verti&jj = (0,0, 1). Imposing a constant
vertical field causes no Ohmic heating and no Lorentz forcecorisider a basic

state which is a stationary and steady solution of the eguost(3.20a-d), given by
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5.3 Linear Magnetoconvection Results

sy =Ty = p; = p; = u; = 0. This simplicity is in contrast to the magnetic buoyancy

instability which is discussed later §%.2.3.

5.3 Linear Magnetoconvection Results

The numerical algorithm determines the growth rates (egiers) of the perturbation
terms as a function of the input parameters and the wavemsmber historical reasons
the critical diagnostic in convection problems has beemtlaeginal Rayleigh number
(Chandrasekhar, 1961) and | choose to retain this diagn@&trting from a stable state
| slowly increase the Rayleigh number from a starting poimtiluhe system becomes
unstable. This bifurcation defines the critical Rayleighmiver R, where the growth

rate is zero, as in the Boussinesq case.

In setting the polytropic indexn so that the atmosphere is super-adiabatic then
convection may occur. Foy = 5/3 super-adiabaticity requiress < 1.5. | fix the

following parameters as
y=5/3, m=1495 Pr=10, (=5x10"2 and F=5x10""

unless otherwise stated in the figure captions. The value: afas chosen so the
atmosphere was unstable to convection but the departuredroadiabatic atmosphere
was small. This is required so thgtdefined in (3.4), is kept small. In computations
wherem is not altered, if there are differences between the fullpnpressible and
anelastic equations then it is not due to a largd&he fractional difference is defined
with regard to the compressible equations for example thetibnal difference in

the wavenumber is defined &&omp. — Kanl/|kcomp/; @ similar definition is used for
the fractional differences in other parameters. When | cexb the full anelastic
with the Lantz-Braginsky simplification the fractional f@éifence was defined as
|kan. — KLantz-Braginskyl /| kan| @s this produced clearer plots. This has the disadvantage

that when the full anelastic approximation produces a wifie result from the fully
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5. LINEAR MAGNETOCONVECTION RESULTS

compressible equations then it does not show if the LanégyiBsky simplification
is increasing or decreasing the difference. It was alwagsctise that the fractional
difference between the Lantz-Braginsky simplification aimel compressible case was

larger than between the full anelastic and compressibke cas

4

3
3 ;
x 2

A »

\“MWM
0
0 2 4 6

@)

Figure 5.2: For y = 1.5, (¢ = 0.311) variations in the marginal or critical Rayleigh

vs. the wavenumber.

Figure 5.2 shows a typicdt. dependence oh, the lowest eigenvalue optimised over

has already been defined as the minimum critical Rayleighbeuni .

5.3.1 The effect of alteringd

The temperature gradiemtis related to other dimensional numbers from equations
(3.22) and (3.26). The anelastic equations are formallyvatgnt to the Boussinesq

equations in the limi# — 0; so the Boussinesq results frdyd.1 should be recoverable.

Figure 5.3(a) shows the critical Rayleigh number depenelemd (with m fixed so

that y varies) for the fully compressible problem. As the tempaeatgradient is
normalised inR., increasing stabilises the layer, leading to a larger in agreement
with earlier studies (see e.g. Gough et al., 1976; van Badlggn, 1982). Increasing

the stratification of the atmosphere causes a steep incneabe minimum critical
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Figure 5.3: For m fixed, variations vs. @ of (a) the minimum value of the
critical Rayleigh number, Rz, and the corresponding wavenumber, &, for the
compressible model; (b) the fractional differences in Eg between compressible
and anelastic models, and between anelastic models with the Lantz-Braginsky
simplification and the anelastic equations, denoted An. Rz. The An. Rz points
denote the fractional difference between the full anelastic equations and the

Lantz-Braginsky simplification. Here ¢ lies in the range 10~* — 3 x 1072,

89



5. LINEAR MAGNETOCONVECTION RESULTS

Rayleigh number but this increase then levels off at higtratication. Figure 5.3(b)
shows the fractional difference in the critical Rayleighmher and wavenumber for the
anelastic approximation and the fully compressible eguatilt is clear that the anelastic
approximation gives an accurate representation of thg ¢olinpressible solutions, with
errors of less thag%, even for the most stratified cases whére- 15 andy = 60.
This is not unexpected since, with = 1.495, the atmosphere is chosen to be very
close to adiabatic and so one might expect the anelastioxippaition to perform well.
Figure 5.3(b) also shows the fractional difference?in between the anelastic equations
solutions and the solutions calculated using the LantzyiBsky approximation. The
fractional difference of the difference between the armagpproximation with and
without the Lantz-Braginsky simplification is also shown figure 5.3(b). As the
atmosphere is exceptionally close to being adiabatic, #md-Braginsky approximation
performs well. The Lantz-Braginsky approximation is eXact» = 1.5 and should be
very good for smalin. Figure 5.4 has both the full anelastic and compressibldtes

which shows that th& in the full anelastic equations is larger than in the congibés

equations.
2.6 16
A
N i O
2.5 Sl o 14
f&; 2 Ei
~ 2.4 AA; 5 k comp. 2 12 ?@
& kan. =
o.X ~ 1
23 Py Rg comp. x 10
B = Rpan. C©
2.2 : 8
0 5 10 15

Figure 5.4. The same as figure 5.3(a) except now showing the compressible

along with the anelastic results on the same plot.

Figure 5.5 also shows a similar plot as figure 5.3 but with argfer magnetic field of

F = 0.2. At low values off) the instability is oscillatory and at larger values it beesm
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Figure 5.5: As for figure 5.3 but here F = 0.2 and ¢ = 2 x 1072, Also the

imaginary part of the eigenvalue is plotted, denoted So.

steady. At the TB point the wavenumber is discontinuoushasoscillatory instability
and the steady instability occur at different wavenumbbtg, Rz is continuous. A
sketch of how the critical Rayleigh number is altered arothe TB point is given in
figure 5.6. The fractional difference in figure 5.5 is slightthrger than in figure 5.3
even thougk is the same because of the larger magnetic field the Alfviémie-scale

decreases, upsetting the anelastic ordering.

5.3.2 The effect of alteringm

The polytropic indexn measures the stratification of the atmosphere with an atitaba
atmosphere having = 1.5. The anelastic equations are only valid when the atmosphere
is nearly adiabatic and the Lantz-Braginsky simplificatisnequivalent to the full

anelastic equations only if the atmosphere is adiabat;3& and later discussions.

The effect of varying the polytropic index on the critical yRg&gh number and
wavenumber is shown in figure 5.7(a). Hereis varied along withd to keep the
density contrast constant. The equation (3.22) shows tteatray the polytropic index

also alters the gravity of the system. Asis decreased the atmosphere becomes more
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steady solution

oscillatory solution
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Figure 5.6: A sketch of the steady and oscillatory critical Rayleigh number for

(a) parameter values below the TB point and (b) parameter values above the TB

point.
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Figure 5.7: As for figure 5.3 but variations vs. m for y = 8 fixed; m is decreasing

to the right.

In addition (b) shows the fractional difference in k£ between

compressible and anelastic models. Here ¢ lies in the range 6 x 1073 — 10.
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unstable but, as is also in the gravity term, the minimum critical Rayleighnmioer
increases, although the wavenumber at which the systemmsecaritical remains
largely unaffected. Again, figure 5.7(b) shows how well timelastic approximation
reproduces the fully compressible results by presentaxgifsnal differences. Somewhat
surprisingly the anelastic approximation performs weltlomlinear problem even when
m differs significantly from1.5, the adiabatic value. As: is decreased the anelastic
approximation becomes less accurate, but it is still wethini2% at m = 0.7 where

e ~ 10. Berkoff et al. (2010) believed this accuracy was an attifaicthe linear
problem. The Lantz-Braginsky simplification is equivaléntthe anelastic equations
in an adiabatic atmosphere and the two differ in terms ofroetidn figure 5.7(b) when
m becomes small therbecomes large causing differences of up%owith the anelastic
equations. The Lantz-Braginsky approximation is not capgLthis instability as well as
the anelastic equations, but this may be another artifatteolinear problem. When the
density contrast is reduced frogn= 8 to x = 3 (not shown) there is a slight decrease in
the fractional differences. It therefore seems probaldétie anelastic approximation

performs better when the density contrast is lower.
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Figure 5.8: As for figure 5.7, for y = 3 and F = 0.5. In addition, (a) shows the
imaginary component of o vs. m and (b) shows its fractional difference between

compressible and anelastic models.
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Figure 5.8 shows a similar comparison between the anelasticompressible models
when the imposed field is stronger, as the polytropic ingexs once again moved
away from1.5. Interestingly, both the anelastic equations and the LBraginsky
approximation perform worse than in figure 5.7, althoughdhelastic equations are
still accurate to 7%. The Lantz-Braginsky simplificatiommqumared with the anelastic
equations has &>% difference atn = 0.8 in contrast to when the magnetic field is
weaker, where the difference is under 2% (not shown). Thasgnaguggests that when
m is far from its adiabatic value the Lantz-Braginsky anetagpproximation performs
less well. The mode is oscillatory and the anelastic appmakon is able to capture this
accurately. The oscillations have a higher frequency whemtmosphere is further from
adiabatic. The anelastic model also captures the osoitldtequency less accurately

when the atmosphere is far from adiabatic.

5.3.3 The effect of altering#

Altering the dimensionless paramet@r changes the strength of the magnetic field.
The anelastic approximation is only valid for a weak field wiere the Alfvén waves
can be captured by the slow dynamical time-scale. Strongnetagfields violate the
assumptions used in Chapter 3 on the time-scale of the emolott the fluctuation terms
and so itis expected that instabilities with strong magrfetlds will be not be accurately

captured by the anelastic approximation.

The effect of a strong magnetic field in reducing the accuratythe anelastic
approximation can be seen clearly in figure 5.9. Magnetidgiehhibit convection
but this process only becomes noticeable folarger than~ 0.01. This threshold

is sensitive to whether the fully compressible or anelaggiproximation is used. As
m is fixed near to its adiabatic value, the anelastic approtanaloes perform well,
but performs less well ag is increased; the magnetic field may become sufficiently
large so that the Alfvénic time-scale approaches the dyméime-scale, breaking one

of the assumptions of the anelastic approximation. As expeior a nearly adiabatic
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Figure 5.9: As for figure 5.7 but variations vs. F with e = 2 x 1072, F on the z

axis is scaled logarithmically.

atmosphere, the Lantz-Braginsky approximation is a gopdegmation of the anelastic

equations.
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Figure 5.10: The same as figure 5.9(a) except now showing the compressible

along with the anelastic results on the same plot.

It can be seen more clearly how the anelastic approximatifiersl from the fully

compressible model in figure 5.10 which shows the anelasialts alongside the
compressible results. In the compressible results thenmoimi critical Rayleigh number
and the corresponding wavenumber increase when 0.08 whereas in the anelastic

results the minimum critical Rayleigh number and the cqoesling wavenumber do
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not show the same increase.

The figures in 5.11 show the absolute value of the eigenfonstivhich correspond to
the pointF = 0.001 in figure 5.9. AtF = 0.001 in figure 5.9 the fractional difference
between the anelastic approximation and the compressiflatiens is small. In the
compressible case the eigenfunction shown in figure 5.1fb{#e horizontal magnetic
field peaks just below the middle of the domain and is showmjn The vertical
magnetic field is not symmetric about the middle of the donveith a peak closer to
the top. This is similar to the anelastic case without thett-draginsky simplification
shown in figure 5.11 (b). The horizontal velocity, shown inufig 5.11 (c), passes
through the origin in the lower half of the domain whereas tbgtical velocity has
its peak in the middle of the domain. The anelastic case, shoigure 5.11 (d), is
almost identical to the compressible case shown in 5.11T{@@. eigenfunctions for the
thermodynamic variables are shown in figure 5.11 {&)s almost a sine curve but the
other variables have more complex shapes. The anelasgdrcéigure 5.11 (f) shows
that even when the eigenvalues agree well, as whes 0.001, then there are still
differences in the eigenfunctions as maximum values of lleentodynamic variables
are all different between the two cases by aro2#d The shapes of the thermodynamic

eigenfunctions appears similar in the anelastic and cossjiske cases.

Slightly unexpectedly figure 5.12 gives almost the sameltess figure 5.11 even
though it hasF = 0.05 rather tharsF = 0.001 . The compressible eigenfunctions shown
on the left in figure 5.12 are very similar to those in figurel5 dxcept that in figure 5.12
the thermodynamic variables have slightly larger maximaies. Wher# = 0.05 then
the fractional difference between the compressible anthatie approximation i$%,

as shown in figure 5.9. Although the magnetic fieldldimes stronger it is still a weak
field and so not creating much difference in the eigenfunetaf the instability, as shown
in the compressible case in the left panels of figures 5.115at#l The eigenfunctions
in the anelastic approximation still compare very well te tompressible case with a

fractional difference 08%.
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Figure 5.11: The absolute values of the eigenfunctions corresponding to
minimum critical Rayleigh number shown in figure 5.9 with 7 = 0.001. The
left and right panels correspond to the compressible and anelastic (without
the Lantz-Braginsky simplification) models respectively. The values in the
compressible case are k = 2.27, R = Rr = 772 and in the anelastic case
k = 228 R = Rp = 773. (a)-(b) Magnetic field ; (c)-(d) components of the

fluid velocity u,, u, and w.; (e)-(f) thermodynamic variables p, p, T' and s.
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Figure 5.12: As for figure 5.11 except with & = 0.05. The values in the
compressible case are k = 2.29, R = Ry = 783 and in the anelastic case

k=227, R= Ry = 775.
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5.3.4 The effect of altering{
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Figure 5.13: As for figure 5.3 with variations vs. ¢ with 7 = 0.1, y = 1.1, and
f# = 0.0658. The line marked TB is the Takens-Bogdanov point; for { values

above this then &{o} = 0.

The magnetic diffusivity proportional to the dimensiodesumber(. From the
assumptions made in Chapter 3 alteringhould not effect the accuracy of the anelastic

approximation.

When( is varied in figure 5.13 (a) a TB point occurs. For low valueg @iie solution
which becomes unstable at the lower Rayleigh number has ganwlue with an
imaginary component and so is an oscillatory instabilithefle may also be a steady
instability with no imaginary component, but it must occtiadigher Rayleigh number.
The oscillatory solution undergoes a Hopf bifurcation whemRayleigh number passes
through critical. This is expected from the Boussinesq thabown in equation (5.3).
As ( is increased the oscillatory solution becomes unstablarget Rayleigh numbers
whereas the dependence of the steady solution on Rayleighenappears constant for
all ¢ values in the results. Whehis large enough then the steady solution will become
unstable before the oscillatory solution. The steady mafiedates as the Rayleigh

number passes through critical via a pitchfork bifurcation
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Capturing the TB point was numerically awkward as the sotutiad the tendency to
jump onto the wrong branch, i.e. near the TB point there iseadst solution that is
only slightly sub-critical (e.g. using an illustrative eathen atR = R. — 10 then
o = —0.01 + 0i and atR = R. + 10 thenog = —0.01 + 0i) and this has the
largest real eigenvalue for most Rayleigh numbers belaticati There is also a second
solution, which is oscillatory, with a real component whigiows rapidly when the
Rayleigh number increases (e.g. using an illustrative egsén then af? = R, — 10
theno,. = —0.2 + 3i and atk = R + 10 theno = +0.1 + 37) making this oscillatory
solution the first to become unstable. The algorithm oftdohked onto the steady
solution even after the oscillatory solution became urstalyhen the algorithm found
an eigenvalue that decreased when the Rayleigh numbergetdhen the algorithm
restarted the inverse iteration but starting with an ihgizess of the eigenvalue with a
much larger real component, first with and then without angimary component. The
algorithm then proceeded with the initial guess of the erglre which was closest to
the actual eigenvalue with the largest real component. ABen the algorithm had
selected what might be the lowest minimum critical Raylaigimber the wavenumber
was increased by large steps to check that there was no loitrealcRayleigh number
at higher wavenumber, figure 5.6 shows how large changeg wakienumber may find

a lower critical Rayleigh number.

The value ofF in figure 5.13 is higher than in other figures so that the caoitly solution
is visible for a large enough value ¢f For low values of the diffusion reduces the scale
of the instabilities and introduces boundary layers thanhch be accurately modelled

without running into issues of round-off error.

In the anelastic case | have tracked the TB point over a rafwgwes for the polytropic
index, as done in figure 5.14, and showed thahascreases, and sbincreases, the TB

point occurs at lowe¢ values and higher Rayleigh numbers.

Figure 5.15 shows the effect of increasiqi@t larger stratification than in figure 5.13.

This figure shows a similar trend as figure 5.13 except thab#udlatory instability
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Figure 5.14: Tracking the TB bifurcation whilst altering 6.
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Figure 5.15: As for figure 5.13 with x = 8.0, and ¢ = 3.02.
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is more unstable than the steady instability for a smallegeaof ( values. The
fractional differences between the anelastic and comimlessodels are slightly larger
in figure 5.15 than in figure 5.13 which is expected from thelltesnvestigating when

0 was altered as in figure 5.7.

5.3.5 The effect of alteringPr
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Figure 5.16: The parameter Pr is altered in (a) the compressible case and (b)

the difference between the compressible and anelastic Lantz-Braginsky.

The viscosity is proportional to the parameter and, as with magnetic diffusion,
altering the thermal diffusion should not effect the accyraof the anelastic

approximation.

The effect of altering the Prandtl number is shown in figu65.At very low Prandtl
numbers the instability is hard to drive, but as the Prangtiiber increases the minimum
critical Rayleigh number decreases. The solution alsogsassough the TB point. The
dimensionless numbers used in this section are not the saused in the linear analysis
of Chandrasekhar (1961) but equation (5.6) shows that theddmumber effects when
an oscillatory mode can occur. The fractional differencewshin figure 5.16 (b) is

below0.5% and, as the atmosphere is nearly adiabatic, it is expecttdhh anelastic
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approximation will preform well. The large fractional difience on the first point is
most likely due to the difficulties in calculating the craidRayleigh number near the TB

mentioned previously.

5.3.6 Isothermal to Isentropic Boundary Condition

The equations have so far been solved with an isothermaldawyrcondition. It is
also equally valid to use an isentropic one as neither iscogaitly relevant physically
however they are illustrative. Changing the boundary domican be done using a

continuation method and setting the thermodynamic boynctamdition to be
0=As+ (1 =XNT,

where A € [0,1] is a new parameter to allow continuity when changing from one
boundary condition to another. In the anelastic case thegnequation was used and

so the isothermal boundary condition is obtained using tequé3.20h), that is

1 T
s=—1P0, 2 (5.9)
v p T

This means the isothermal boundaries condition, in termshef entropy, can be
expressed as
stz P (5.10)
v T
on the boundary, with pressure being extrapolated so thataiue can be calculated

outside the domain.

Figure 5.17 shows how magnetoconvection is affected.bfs the boundary condition
changes from isothermah (= 0) to isentropic § = 1) then the growth-rate decreases
and so the layer is becoming more stable. This means thdtarder to excite modes of
the magnetoconvection instability in a layer with an isepit boundary condition than
a layer with an isothermal boundary condition. The effeetibundary conditions have

on the Rayleigh number, corresponding wavenumber, andrthginary component of
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Figure 5.17: Showing the continuous change for £ = 3.02 from the s = 0 to
T = 0 boundary condition with ( = 0.01, § = 3.01, and R = 1650. These are the

parameters at the most unstable mode in the isentropic case.

the eigenvalue are shown in figures 5.18 to 5.20, fiere= 1.0, @ = 20 and other

dimensionless numbers are in the captions.

Figure 5.18 shows there is a fairly rapid change in the miminatitical Rayleigh number

at low ) values fromRz = 1000 at A = 0 to Rz = 1300 atA = 0.2. The rapid change at
low )\ values is more pronounced at largevalues; figure 5.18 (a), with = 0.5, has a
range600 of the minimum critical Rayleigh numbers whereas in 5.18\{ah ¢ = 0.01,

the range is only00. The wavenumber corresponding to the most unstable mode als
has a rapid change at lo\walues. Increasing, whilst holding the other dimensionless
numbers constant, is equivalent to increasing the magaiffiisivity. At the higher( the
solution is oscillatory and for the lowervalue the solution is steady with the imaginary
component of the eigenvald® s} = 0 for all A values in figures 5.18 (a), 5.19 (a), and
5.20 (a).

In figure 5.19 the atmosphere is less stratified than in figLir@ &nd the effect of altering

the boundary condition from isentropic to isothermal isusetl. For the two values
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5.3 Linear Magnetoconvection Results

of ¢, the difference in the minimum critical Rayleigh numberne¢n the isothermal

and isentropic boundary condition is shown in figure 5.19a@ (b). Figure 5.20

shows a nearly Boussinesq case wjth~ 1 andfd < 1 and the different boundary
conditions have no effect on the imaginary component of iherwalue and almost no
effect on the critical Rayleigh number and correspondingemamber. This is expected
as in the Boussinesq case there are no pressure fluctuattemperature and entropy
are proportional so a change from isentropic to isotherroahdaries would make no

difference to the equations.
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Figure 5.18: The change from the isentropic to isothermal boundary condition
with y = 8, # = 3.01, and { = (a) 0.5 and (b) 0.01. The minimum critical Rayleigh
number Rz and corresponding wavenumber are shown along with the imaginary

component of the eigenvalue S{o}.

5.3.7 Chandrasekhar Exponent Dependences

| also investigated some of the parameters dependence dbhdmadrasekhar number
Q = B2d?/(uopm) and how the exponents altered as the atmosphere became more
stratified [see appendix C for the relation between commardgd dimensionless

numbers in this thesis]. The power law scaling obtained iarcinasekhar (1961) are
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Figure 5.19: As figure 5.18 but with y = 3, # = 1.08, and ¢ = (a) 0.5 and (b) 0.01.

3 1155.4 2.5 675.1
b 4 4 y: ﬁér,/;
2 675
T2 i » | 11552 © Eoo
E:; fo E:; fo
° S{o} = 1S T 15 S{o} m | 6749 &
© 5 © 7
< 1 Re < 1155 < / Rg ©
j 1 R e 674.8
0 1154.8 0.5 : : 674.7
0 02 04 06 08 1 0 02040608 1
A A
(@) (b)

Figure 5.20: As figure 5.18 but with y = 1.1 and # = 0.065 and ¢ = (a) 0.5 and
(b) 0.01.
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for the Boussinesq limit. The analytical Boussinesq rasialt sufficiently largel) are
thatk oc QV/6, Re x Q%970 and3{o} o« Q°°. Figure 5.21 shows that with a low value
of 6 then the exponents are similar to the analytical resultshandrasekhar (1961). To
confirm the exponents an oscillatory and steady instabiléye studied, in practice this
meant using a small value and large valu€ sb the TB point was in between the two

¢ values. In figure 5.23 was larger than in figure 5.22 and the difference between the
analytical and computed exponents became larger, whiclew@ected as the analytical
exponents are fatr = 0. Whend increased the exponent of the wavenumber dependence
on () increased and the exponent of the minimum critical Rayleigimber dependence
onQ decreased. Asincreased then the exponents of both instability paramé&terand

k dependence ofy increased, e.qg. in figure 5.22 (a) whére- 0.05 the dependence was

k oc Q™17 but when¢ = 0.5 as in figure 5.22 (b) then the exponent for the wavenumber
dependence o@ increased td oc Q*!7". The line of best fit was only calculated when
the data lay close to a straight line, for example in figur3a&) the best fit line was

calculated from point§) > 10%.
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Figure 5.21: The dependencies on (), the Chandrasekhar number. This is on a
log-log plot with 8 = 0.0658, (x = 1.1). The lines of best-fit and the exponents
are also plotted. In (a) ¢ = 0.1 so the solution oscillated, and in (b) ¢ = 0.5 so

the solution did not oscillate.
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Figure 5.22: Same as figure 5.21 except with § = 1.08 (xy = 3.0). In (&) { = 0.05

so the solution oscillated, and on (b) ¢ = 0.5 so the solution did not oscillate.
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Figure 5.23: Same as figure 5.21 except with § = 3.01, (x = 8.0). In (&) ¢ = 0.01

so the solution oscillates, and in (b) ¢ = 0.5 so the solution does not oscillate.
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5.3.8 Tilted Field

So far | have only considered the case of a vertical magnetithereB; = (0,0, 1).

It is also possible to have a tilted field whdBg = (sin ¢, 0, cos ¢) and¢ is the angle of
the magnetic field from the vertical, with = 0 corresponding to case being previously
discussed in this chapter. The basic state is the same iftdtefield case as i§5.2.2
and the boundary conditions are the same as thde 211 except for the magnetic field
boundary condition. The magnetic boundary condition bexsB) sin ¢+ B, cos ¢ = 0
atz = 0,1. This was only investigated in the anelastic case and tkealiaquations are

given in Appendix B.

The interest in inclined fields is due to sunspots as it isghtthat inclined fields may
be responsible for some of the features seen. With an irttliedd the symmetry of
clockwise and anti-clockwise oscillations is broken. Thetprbation terms, which
result from a decomposition of the forif(z) exp(ik - x + ot), are calculated to find
the eigenvalue. As time increase&if > 0 andSo # 0 then the solution will increase
and, if plotted on an Argand diagram, the instability wiltate around the origin with
a clockwise or anti-clockwise as the solution spirals outlsa Figure 5.24 shows that
instabilities which oscillate clockwise, wheBsr < 0, occur at lower Rayleigh number
and are more unstable than those which rotate anti-cloekwibereSo > 0, when
¢ = 45°. Figure 5.24 shows a plot of the critical Rayleigh numbertfa two rotation
directions atp = 45° and as the wavenumber is altered there is a minimum critical

Rayleigh number at which the system becomes unstable.

Figure 5.24 shows how the critical Rayleigh number changes the
wavenumber is increased. This compares well with the cossike
results in Matthews et al. (1992). The parameter values used:
Pr=1, m=1.495 (=0.05, y=5/3, 0 =1.09 (to 3s.f.) x =3, Q@ = 20.

An Argand diagram of eigenvalues as the Rayleigh numbereasas is shown in

figure 5.25. In both the figures 5.25 (a) and (b) at a low Rapléigre are two branches,
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Figure 5.24: The critical Rayleigh number as a function of = wavenumber with

¢ = 45°, green dashed for ; > 0 and red for i < 0

one with positive and the other with a negative imaginary.p&s the Rayleigh number
is increased then both branches in figure 5.25 (a) becomahlastn that the real part
of both branches becomes positive. The positive branchttives back and becomes
stable again at higher Rayleigh numbers whereas the nedatiwch remains unstable.
The branch which remains stable changes @&sincreased as shown in figure 5.25 (b)
where now it is the positive branch which remains unstableis Thange of stability
in the branches is called ‘stability reversal’ and is disaasin Hurlburt et al. (1996)
where they find that the stability reversal is very sensitiveoundary conditions. The
results in Roxburgh (2007) are not the same as shown in figeeldut this discrepancy
has been put down to the sensitivity of the stability rederBoxburgh found that the

stability reversal occurred &t= 4.2 whereas | found the reversal to occukkat 4.8.

5.4 Summary

The anelastic approximation accurately captures the magmevection instability when

the atmosphere is nearly adiabatic, the magnetic field ikwsal the temperature flux
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Figure 5.25: An Argand diagram of the eigenvalue (a) £ = 3.0 and (b) £ = 4.9

with ¢ = 60°. The arrows point in the direction of increasing Rayleigh number.

gradientd is small. This is true for the Lantz-Braginsky approximatis well as the

full anelastic approximation.

When the atmosphere departs from being adiabatic then feklastic approximation
is able to reproduce the instability more accurately thae tlantz-Braginsky
approximation. The term that is neglected in the Lantz-Bisly is small if and
only if the atmosphere is nearly adiabatic. When the temperaflux gradient is
large the anelastic approximation produces results withrgel fractional difference
compared to the fully compressible results and the termeieggd in the Lantz-Braginsky
simplification is small so the difference between the twolaste approximations also
remains small. A strong magnetic field also causes largéidraad differences between

the anelastic and fully compressible cases.

Changing between isothermal and isentropic boundary ¢tondi makes the
magnetoconvection instability onset at higher Rayleigmbers and wavenumbers. This

effect is more pronounced when the temperature flux gradieatger.

Various parameters dependencies(grobtained analytically in Chandrasekhar (1961)
for the Boussinesq limit, were investigated in the anataapproximation. As the
temperature flux gradient increases, departing from thes§ioasq limit, then there are

deviations from the analytical dependencies but thesemaadl.s
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Chapter 6

Linear Magnetic Buoyancy Results

6.1 Linear Theory of Magnetic Buoyancy

It is possible to set out, in a general way, an argument basedeasity of how the
magnetic buoyancy instability operates. If an element ad flvas lifted a small distance
vertically in a stably stratified atmosphere then it wouldhkavier than its surroundings
and would sink, overshooting and, subsequently, osciljatibout its initial point at
the Brunt-Vaisala frequency. In investigating the metgm buoyancy instability it is
helpful to use a simple parcel argument to understand theeat the instability which
was considered, in the absence of dissipation, by Achesordjland later by Hughes
(2007). I will consider a gravitationally stably stratifiathosphere in equilibrium with a
horizontal magnetic field. | will simplify matters by consithg a simple case where no
field lines are twisted or bent, this is called an interchangede which will be discussed
in more depth later. A parcel is vertically displaced frerto z + dz, so that the parcel

properties change fromy; to ¢int + d @iy and the external properties change frogg to

Gext + dPext-

For a fully compressible fluid without magnetic diffusioncén be shown thaB/p is
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advected with the fluid

(% +u-V) @) _ (%) Vu, (6.1)

but this is not true in the anelastic equations or with thetamdof diffusion. In the
parcel argument the atmosphere is diffusionless and casipte so the mass per unit

length and the flux are conserved, the quantify is thus conserved

B+6B _B . 0B _dp
p+tép p B p
Assuming that the parcel is adiabatically displaced thersgecific entropy is conserved

(6.2)

op )
& _.° (6.3)
p p
If the parcel is displaced slowly it will remain in pressurqudibrium with the
surroundings

B? B? BB BdB
5<p+—):d<p+—)=>(5p+ —dpt+ (6.4)
2110 210 Ho Ho

For the magnetic buoyancy instability to occur the parcalsitg must be less than that
of the new surroundingsp < dp. This condition is combined with (6.2 - 6.4) to become

an instability inequality

B? BdB
Hop P Ho

ypdop 1dp B dB  B? op

e Lt 6.6
p? 0z pdz  popdz  pp? oz (6.9
or
2 _
B iln (E) > —giln (pp_y) = N?, (6.7)
poyp dz p v dz

whereN is the Brunt-Vaisala frequency, and= ¢, /c, is the ratio of the specific heats.

An important feature of (6.7) is that a magnetic field thatrdases sufficiently rapidly

with height can destabilise a convectively stable atmosphe
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The initial assumptions stipulated that the field lines wesebent so (6.7) is valid for
two-dimensional modes called interchange modes occuwingn one magnetic flux
tube exchanges position with another. Another mode whicly owur is a three-
dimensional mode where the flux tubes bend. Early theotetiogk by Newcomb
(1961) looked at the stability of interchange and threeetisional modes in ideal
plasmas using the energy principle of Bernstein et al. (1938 showed that a necessary
and sufficient condition for the atmosphere to be stabletey¢change modes was, after

some manipulation,

24 2 q 24B d B?
D L5 2 herea?= 2o 2= (68)
pdz ~pdz B dz dz Hop P

or
dp Py

(6.9)
which is an equivalent result to that obtained by the pancpiment.

An interesting feature of magnetic buoyancy is that threeedsional modes can be
more destabilising than interchange modes. Newcomb (1&&d,)re-written explicitly
showing the role of the magnetic field, Thomas & Nye (1975)vwsb that three-
dimensional modes occurred if and only if the following inafity was satisfied

somewhere in the fluid:

g d k\ N2
—ﬁ—m3>@0+—)+—3 (6.10)
a

2 dz k, 2
where k,, k,, and k, are wavenumbers in th&, y, and z directions respectively.
Simplistically, it would seem that three-dimensional m®deust do extra work against
magnetic tension but for interchange modes, work is donasigdnermal pressure and
magnetic pressure to create a density perturbation. le4tiiraensional instabilities the
long variations in direction of the field allow the work dorgamst magnetic pressure to
be minimised. As the variations in the direction of the fietd ao long the benefits
of minimising the work against the magnetic pressure owtveéhe negligible extra
work done against magnetic tension. The condition is necgdsut not sufficient for

instabilities to form (Hughes & Cattaneo, 1987).
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Introducing diffusion adds complexity to the parcel argmmeAcheson & Gibbons
(1978) included the role of diffusivity which extends (6)16 give
—ga® d

k k
—InB>-2(1+4+-2 N? 6.11
ol >7(+ky)+< , (6.11)

where( = nc,po/k is the diffusivity ratio, the inverse of the Roberts numb&y
considering a parcel argument it appears beneficial to tewbiity to have small
magnetic diffusiony; (which helps maintain the destabilising field), and largertal
conductivity, k& (to reduce the stabilising entropy gradient). The lamiraues in the
Sun satisfyn < k so the stability is greatly reduced, although it can be atghat the

laminar values are inappropriate and the diffusion ratesatiof order 1.

Diffusion can change the equations for interchange inktiglsito be the same as the
thermosolutal convection in the double diffusive case. Il weat the addition of
diffusion in two cases: where the magnetic field decreas#s laight so that > 1,

and the case where the field increases with height sa tkatl.

In a decreasing field a rising parcel moves to a region withkereanagnetic field,
assuming that > 1, then the magnetic field diffuses but the temperature doés no
A decrease in flux means a decrease in magnetic pressureenstbinpensated by an
increase in thermal pressure and density. The parcel is raged than its surroundings
so will sink and repeat a similar process. This can resultsitueation where an increase
of stabilising gradients can cause the instability to bee@tmonger by matching the
natural frequency of this overshooting process of repeasaaly and sinking (see e.g.
Hughes, 2007).

In the case where the field increases with height, @nel 1, then a rising parcel is
compressed by the pressure of the new background. The cesmmmeauses the element
to be hotter than its surroundings. As the thermal diffugiis much larger it loses its
temperature, but not its magnetic field, so when it returmslithave lost heat and will

consequentially be denser and so overshoot.
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6.2 Linear Code Modelling Magnetic Buoyancy

Using the algorithm described in Chapter 4, | investigabtedrmagnetic buoyancy in the
fully compressible and anelastic (with and without the [zaBtaginsky approximation)
cases for a plasma in a layer using a Cartesian geometryn ctirapared the anelastic
cases with the compressible case to see in which paramejenag the anelastic
approximation fails to capture the compressible resultanlassuming that the plasma
is modelled perfectly by the compressible system. The patersmused do not invalidate
the assumptions used to derive the compressible equatiohscethe algorithm should
be able to model this well. The fully compressible equatiaresin (2.3), the anelastic
equations without the Lantz-Braginsky are given in (3.204 with the Lantz-Braginsky

approximation are given ig3.7.

6.2.1 Boundary Condition

The boundary condition in the magnetic buoyancy case islainid that used in
magnetoconvection described $5.2.1 where the top and bottom boundaries were

impermeable, stress free and isothermal so
0 0 .
v=—u=—0v=T=0 atz=0,1
w azu aZU z s

where the hat terms are from the expansion in (4.1). | als@sag@ the top and bottom

magnetic field boundary conditions of

0B, 0B,

Y S 12
5 = 5 - =0, (6.12)

which corresponds to a horizontal field whilst satisfying tholenoidal condition
(2.1b). The basic state is different for the anelastic aflg frompressible equations
as mentioned i45.2.2. The basic state used to study magnetic buoyancypitisés is

more involved then the basic state used in magnetoconwvectio
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6.2.2 Basic State for the fully Compressible Equations

In the compressible case there is no reference state sogtueskate is that of a polytrope,
but under the influence of a weak magnetic field. The basie stathe compressible
equations (2.3) is denoteg, where¢ can represent any variable. | consider a steady,
stationary basic state given by a polytropic solution tbhgetvith an imposed magnetic
field, given byB, = (B.(z),0,0) whereB,, = 1 + H,z and is a linear function of
depth with gradienfd,. So, from equation (2.6d), ohmic heating leads to a depadfir

the temperature distribution from a polytrope, such that

(v—1) dBas

T, = — ng,fPrR( 5

) (2> = 22) + 62 +1, (6.13)

z

whered is the temperature flux gradient at the bottom boundary, 1. Then, from
the vertical momentum balance, see equation (2.6b), | okhai basic state density; the

solution of the equation

dpp dT; Pb By dByy
bl bl T I
dz+(dz )Tb T, @

(6.14)

is computed numerically using a Runge-Kutta solver. It suased that the horizontal
magnetic field is weak enough not to alter significantly thesity stratification which

is still accurately represented by equation (5.8).

In the magnetic buoyancy instability the basic state, forpachl case withF < 0.001,

is still very similar to that of a polytrope, shown in figurel@a). Figure 6.1 (b) shows
that for stronger magnetic fields the basic state is didaosted it also shows that as
the magnetic field increases there can be a situation wherbasic state can be top-
heavy. Top-heavy means that denser fluid is sitting atopgdigifuid. Top-heavy states
were not included in the study of the magnetic buoyancy bty as the Rayleigh-
Taylor instability would also be occurring which, although interesting instability, is
not relevant to the solar interior. The temperature profilanges only slightly from a
polytrope due to ohmic heating as shown in figure 6.2 whenmeg¥en the top-heavy

state in figure 6.2 (b), there are only minor deviations fropokytrope.
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Figure 6.1: The compressible basic state density profile for a typical case where
v=5/3, m=1505,0=0.5, C, =0.01, H, = 10,Pr = 0.5 and (a) F = 0.001 and
(b) F = 0.02 which is top-heavy.
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Figure 6.2: As for 6.1 but now showing the compressible basic state temperature

profile.



6. LINEAR MAGNETIC BUOYANCY RESULTS

6.2.3 Basic State for the Anelastic Equations

As there is no magnetic field in the anelastic reference,stadield only appears in the
basic state. Imposing a field and not altering the entropiclsate would mean there
would be no equilibrium so any results would be affected lgyitfitial adjustment to
the imposed field. For magnetic buoyancy the fiBjd= (B, (=), 0, 0) is horizontal and
varies linearly with depth aB’, = 1+ H,z. The solution of the entropy equation (3.20f)
gives the basic state temperature
Ty = —VT_lfcégPrR (%)2 (%2 — z) , (6.15)

satisfyingZ; = 0 atz = 0 andd7;"/dz = 0 atz = 1. For stationary solutions, which are

functions of depth only, the-component of the momentum equation (3.20b) reduces to

dpy _p

7 pp,,— TT” FB;, e with p; =0atz =0. (6.16)

The basic state pressure is obtained by integrating nuallgribe above equation using
a Runge-Kutta solver. (From equation (3.209) the boundanglition forp; is consistent

with p; = T, = 0 atz = 0.) The basic state entropy;, is found algebraically using
equation (3.20h), with typical profiles shown in figure 6.3emh it can be seen that

sy o< F.

6.3 Linear Magnetic Buoyancy Results

The algorithm described in Chapter 4 was used to investitp@tenagnetic buoyancy
instability. In magnetic buoyancy the algorithm finds theximaum growth rate ovek,
andk, space. For historical reasons the diagnostic for magnatgancy problems is
the growth rate of the instability, rather than a criticalgraeter, and this is the diagnostic

which I will use in the following discussion (Acheson, 1979)

For magnetic buoyancy, the polytropic index is fixed to sudlaatic values, so that the

layer of fluid is weakly stable to thermal convection. Howeuea stratified atmosphere
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Figure 6.3: As for 6.1 but showing the anelastic entropy basic state profile for (a)
F =107% and (b) F = 0.001.

the basic state magnetic field, horizontal and increasinly éepth, can be unstable to
the magnetic buoyancy instability. The growth rate is stalging sound crossing time-
scale,d/+/po/po- | selected this because using a dynamical time means #attiing
applied to time varies whethor m are altered. To convert the growth-rate from sound
crossing to dynamical time-scale multiply the growth-raseCy+/0(m + 1). For all

plots, unless otherwise stated, the following parameteréixed as
y=5/3, m=1505 6=05 Cp=001, Pr=0.5,

¢(=5x10"" H,=10.

6.3.1 The effect of altering#

The presence of a magnetic field in thedirection differentiates between the two
horizontal directions; a distinction between the two-dnsienal interchange modes,
with k£, = 0, and three-dimensional modes can be made (see e.g. Hu@ltgy, For

a given profile of field, and with all the other parameters fiXdtierefore calculate the

maximum value oft{s} when optimised ovek, andk, and compare both the value of
R{c} and the wavenumbers at which this growth rate is achievedh&compressible

and anelastic cases.

121



6. LINEAR MAGNETIC BUOYANCY RESULTS

0.5

An. R{o} o
R{o} *

x

0.4
0.3

2 «,721;(7
0 )ZZ i
o1l

VVVVV sk 0 N S

0 k=
le-06 00001  0.01 1e-06 0.0001 0.01
F F

() (b)

R{o} andk,

ﬁ\
ky
fractional difference

Figure 6.4: Variations with F of (a) the growth rate, ®{c}, and corresponding
wavenumber, k, and k,, of the most unstable mode for the compressible model;
(b) the fractional differences in ®{s}, k, and k, between compressible and
anelastic models, and the fractional difference in ®{c} between anelastic models
with and without the Lantz-Braginsky simplification, noted An. Rz. The value of
e=103.

Figure 6.4 shows the effect of the magnetic field strengthherinistability. Increasing
the magnetic field increases the growth rate of the instghdls it is magnetically
driven. For the largest and weakest field strengths integhanodes are preferred,
whereas in the intermediate regime the preferred mode besdmee-dimensional for
both the anelastic and fully compressible systems. As thgnete field is increased
the fractional difference in all the parameters also ineesa The fractional difference
in k, can only have a non-zero value for the region where threexsmonal modes
are preferred. It is interesting that, even for these cadeevthe system is close to
adiabatic, the anelastic approximation performs badlynhe field is strong and the

instability has a large growth rate.

Next, | examine the difference between the eigenfunctiemscbmpressible and the
full anelastic equations. The eigenfunctions shown in &gub correspond to the most
unstable modes (interchange) found for the same paramafigessas figure 6.4 with

a fixed 7 = 0.001, where the anelastic approximation gives a 20% differencihe
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Figure 6.5: The absolute value of the eigenfunctions corresponding to the
mode of maximum growth rate in figure 6.4 (k, = 0 and k, ~ 4.276) for
F = 0.001; left and right panels correspond to the compressible and anelastic
models respectively. (a)-(b) Magnetic field B, (B, and B, are zero for an
interchange mode); (c)-(d) components of the fluid velocity u,, u, and u.; (e)-

(f) thermodynamic variables p, p, T and s.
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real eigenvalue compared with the compressible equatibosboth the compressible
and anelastic models, | use the same normalisatioix(B,) = 1, to facilitate the

comparison of the eigenfunctions. The significant diffeeem figure 6.5 (c) and (d)
is the amplitude of the flows. The differences in the thernmaaiyic variables are,
however, more significant. The relative amplitude of therimynamic variables has
changed place and the profiles have been altered with thefaiggions passing through
zero at a different depth. In the anelastic model the degigs not have a hyperbolic
evolution equation and | expect the thermodynamic vargatidée the most affected by
the approximation. The Lantz-Braginsky approximation wasused in the plot as the
atmosphere was very close to being adiabatic it showed itdeydifference to the full

anelastic equations.

6.3.2 The effect of alteringm
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Figure 6.6: As for figure 6.4 but for variations vs. m. 6 = 0.5 is held fixed and

F =1073. Here ¢ lies in the range 1072 — 4 x 10~ %

In increasing the polytropic index: the atmosphere is becoming more stable and
the parametee is becoming larger. The small parameter was used in the @syicp
expansion to derive the anelastic approximation in Chaptand so where becomes
large the assumptions are violated. In this subsectiondsas&hen the assumptions

underpinning the anelastic approximation are no longedval
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Figure 6.7: As for figure 6.6 but for y held constant, again with 7 = 1073,

Figure 6.6(a) shows the maximum growth rate and wavenumbeend &, for the
compressible case whenis altered with fixed, so the density stratificationchanges.

x is defined in equation (5.8). As is increased, so that the layer becomes more stably
stratified, the maximum growth rate decreases, as might pecged. Also, there is
a transition from two-dimensional modes to three-dimemslionodes being preferred,
although for all caseg, remains much larger thah,. Figure 6.6(b) shows how the
anelastic system compares with the fully compressibleegysis the system moves
away from being adiabatic. Counter-intuitively, the as@tasystem starts off as a poor
approximation to the fully compressible system but thetfoaal difference decreases as
m is increased and the growth rate decreases. The anelgstaxapation also captures
the transition from two-dimensional to three-dimensianaldes, though this occurs at a

different value ofm.

For figure 6.7m is altered with a fixedy = 1.84 (so thatf decreases as increases).
Figure 6.7 shows a similar trend to figure 6.6, but wherés held constant. The
instability is an interchange mode when the atmospheresedio being adiabatic. The
anelastic approximation has a large error of greater th&a 0 most values on.
As the polytropic index increases the gravity decreaseg (asheld constant) and the
instability is weakened so that the growth rate decreasé® decreasing growth rate

coincides with a reduced error in the anelastic approxmnatiThe Lantz-Braginsky
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approximation diverges from the anelastic equations {3a80: is increased.
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Figure 6.8: As for figure 6.6 for 7 = 10~° where ¢ lies in the range 1072 -2 x 1071

Figures 6.8(a) and (b) show similar behaviour as in figuréa®.and (b) but with
a weaker field. Note that the anelastic approximation is na@airate at these low
magnetic field values. Figure 6.8(b) shows that the LanagBisky simplification,
which requires the layer to be nearly adiabatic, agreestlgxadth the anelastic
approximation atn = 1.5 and has a fractional difference 6% compared to the full

anelastic approximation by, = 2.5.

6.3.3 The effect of alteringC},

The thermal conduction and viscosity are proportional'tand, from the derivation in

Chapter 3, altering’;, should not effect the accuracy of the anelastic approxonati

Figure 6.9 shows how the instability depends up@nAt low values ofC), the instability
grows more rapidly than at highe&r, values as diffusion of heat (which leads to a
loss of buoyancy) takes a long time. For an intermediategasfgvalues ofC), the
mode of maximum growth rate is three-dimensional, but foydaC) an interchange
mode becomes dominant. The anelastic approximation egpthese transitions in

wavenumber; however it does better @s is increased when the growth rate of
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Figure 6.9: As for figure 6.4 but variations vs. O}, with e = 1072 and m = 1.505.

the instability decreases. Because the model is nearhbatitathe Lantz-Braginsky

approximation reproduces the anelastic equations (3e2its very well.

6.3.4 The effect of alteringd
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Figure 6.10: As for figure 6.4 but variations vs. 6, for # = 10~2 and H, = 1. Here

¢ lies in the range 1074 — 1.2 x 1072,

The temperature flux at the bottom of the layer is controllethle dimensionless number
f. So far in this section it has appeared that, when the groatth of the instability
increases, the anelastic approximation performs worsegroducing the compressible

results. This impression is confirmed by figure 6.10 which paras the results for a
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series of calculations where the thermal gradient, andttieistratification, is changed

whilst m is held fixed.

On the one hand, large thermal gradients produce largetggmadients which suppress
the instability; on the other hand, for very low valueséfthe gravity is weak (see
equation (3.22)) and so the destabilising effect of magnfilds is also reduced.
Consequently, as demonstrated in figure 6.10(a), the gnateHirst increases and then
decreases with— and, as shown in figure 6.10(b), so does the accuracy of #lastit
approximation. It therefore appears as though the rel@oiracy is controlled by
the growth rate of the instability. This growth rate can beutiht of as providing a
time-scale for the evolution of the instability and so, ifstls long, then the anelastic
approximation performs well; if, on the contrary, the ifsli#y develops rapidly then

the anelastic approximation is less accurate.

6.3.5 The effect of altering{
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Figure 6.11: As for figure 6.4 but variations vs. ¢, for 7 = 0.01 and ¢ = 1073.

The magnetic diffusivity is proportional to the paramefebut altering{ should not

effect the accuracy of the anelastic approximation.

For low ¢ values figure 6.11(a) shows the instability is three dimamali and changes

to an interchange mode gspasses through unity whereupon the growth rate of the
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instability increases rapidly for largérvalues. Figure 6.11(b) shows that the fractional
differences in this case are very large and it would not b&lval use the anelastic
approximation. This is an extreme case where the magnelitifdarge and so is
the growth rate of the instability. AS increases the growth rate in the compressible
approximation increases, as shown in figure 6.11(a), biterahelastic case the growth
rate decreases. This explains the large and increasingofrat difference ag is
increased. The wavenumbers coincideat- 0.1 but this is not significant as they

diverge again af values around this point.

6.3.6 The effect of alteringH,,
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Figure 6.12: As for figure 6.4 but variations vs. H,, for 7 = 0.1, C;, = 0.025 and
e=1073.

The basic state magnetic fieldfis, = 1 + H,z. Altering H, will effect the strength of
the magnetic field and so from the assumptions used in Chajites likely to effect the

accuracy of the anelastic approximation.

Figure 6.12 shows the effects of varying the magnetic fietdlgntH,. For large field
gradients, interchange modes are preferred and the ilistgbows faster. The anelastic
approximation again fails when the growth rate becomeg|dmgt interestingly, whereas

the growth rate increases in a concave manner, the frattlifiference increases in a
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convex manner. This demonstrates that there is not a sinmglet delationship between

the growth rate of the instability and the accuracy of thdasie approximation.

6.4 Summary

The derivation of the anelastic approximation depends oararpeterk, the departure
from an adiabatic atmosphere, being small. It also depemtissatime-scale being slow.
When the atmosphere is nearly adiabatic then the magneti@bay instability grows
quickly, or there are waves travelling quickly, so the tisele used in the anelastic
approximation is inadequate. When the atmosphere departslieing adiabatic then
the parameter increases, violating one assumption in the anelastic appetgion, but
the growth-rate of the instability slows, satisfying onélad assumptions in the anelastic
approximation. From the results it is clear thatrasncreases from its adiabatic value
of 1.5 the anelastic approximation performs better, suggestiag\iolating the time-
scale assumption has a larger effect than violating thengsson of a nearly adiabatic

atmosphere.
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Chapter 7

Non-linear Anelastic Codes

To investigate fully how the anelastic approximation dgférom the fully compressible
equations requires a non-linear comparison of the two detdgumtions. Studies from
a meteorological perspective list some of the limitatiohthe anelastic approximation
(see e.g. Nance & Durran, 1994). The conclusion Nance andabButrew was that
using a version of the anelastic approximation similar toatipns (3.20), but without
magnetic field, produces results with errors, “significaigks than the errors generated
in real world models”. Meteorological studies do not in@ushagnetic field and are
focused on different types of instability to those that aceuthe Sun. Therefore it
would still be useful to have non-linear models and work outrage of parameters
where the anelastic approximation performs well in the exindf the Sun’s convection
zone, radiative interior, and tachocline. It is also impattto characterise any artefacts

introduced by the anelastic approximation.

7.1 Anelastic Time-Stepping

Even using a simple model, the range of spatial scales in hglehe Sun is
astronomical and added complexity comes from time-steppivith a finite-difference

time-stepping numerical code the domain is discretisetgusidistancé\x and the time
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is discretised using stefdt. A spectral code does not use the spatial discretizakion
but for the purpose of this argument it can be consideredttiiis true. An explicit
finite-difference method will not capture correctly a wavspeed: if, in one time step,
the wave crosses more than the distadee This argument is also true for advection
as well as for waves. This leads to the Courant-FriedriolsyL (CFL) condition for
stability

At
Ax

C= <1, (7.1)

This is a necessary but not sufficient condition for stabilithe ratioC is termed the
Courant number (Courant et al., 1967). Itis very clear fr@rt) that reducing the fastest
wave speed in the system by a factor of ten will lead to a fauftten improvementin the
size of time-step that can be taken. This is important as sostabilities develop over
a long time so there can be a sacrifice in resolution and acgtwastop the simulation
becoming too computationally expensive. It is often theedasit, to counter the small
time-step, the instability will be driven harder with legslistic parameters so that it
develops on a faster time-scale. Driving a system hardermmegn an increase in the
Reynolds number and turbulence which requires a smalleiif the system is to be

accurately modelled.

An explicit time-stepping method is where the variable atetin + 1 can be written
in terms of the variable at time whereas in an implicit method the variablerat+ 1

is written in terms of the variable at time n + 1, and maybe other time-steps. The
CFL condition is a limiting factor when the equations aredistepped explicitly but if
the time-stepping is done in an implicit manner then the Céhdition is less limiting,
in the sense that (7.1) is no longer a strict inequality. lmogdysical fluid dynamics
turbulence is thought to play a crucial role and the advactesm, which generates
much of the turbulence, is not dealt with as satisfactonlyhie implicit case. It is also
hard to evolve the non-linear terms implicitly. This meamattthe turbulence would not
be correctly modelled and so the wrong dynamics and turbatansport coefficients

would be obtained. Taking large time-steps in an impliditesoe could lead to a stable
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but inaccurate solution.

7.2 Non-linear Formulation

A full three-dimensional set of equations (3.20) is expemd run in terms of computer
resources. For reasons of simplicity and for the purposkustiation of methods | will
outline a two-dimensional reduction of the full three-dms®nal set of equations (3.20).
The two-dimensions are:(z) where: is the direction of gravity and is homogeneous

and periodic.

The velocity components of any two-dimensional divergeinee flow can be
represented by a stream-function, which reduces the nuofileguations that need to be
solved. Each variable is decomposed usifig t) = £(2) + £*(z, z,t), where¢ is any
variable,¢ is the variable in a reference state, drids the fluctuation variable. | will
drop the superscript on the fluctuation variables. A well constructed streancfiom
will also ensure that the flow evolves whilst obeying the ast continuity equation

(3.20a). A stream-function satisfying this is

pu =V x (V§)+pv§ = p(u, v, w). (7.2)
SinceV - B = 0 a similar technique can be used for the magnetic field to redue
number of unknowns and also to ensure the field evolution®tieysolenoidal condition
(3.20e). The field potentia is thus
B =V x (A9) + 3. (7.3)
wheref is they component of the magnetic field. It is also useful to definevtiréicity

o [vr a1\ d
wy=u=- [T ()l 74

and the Laplacian of the field potentiél, which is they component of the current

w as

density.J, defined as

H=V?*A=B-%),-(B-2),, (7.5)
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where(B - 2), is thex partial derivative of the component of the magnetic field. With
these defined, | can go on to develop equations for a two-diraeal Cartesian non-

linear anelastic code using the Lantz-Braginsky approtiona

7.2.1 Non-linear Anelastic Equations

Taking the curl of the simplified Lantz-Braginsky momentuguation (3.35), with

entropy diffusion and no temperature diffusion, gives

Oow

~ 1
_:_Vx(u-Vu)—VX(SZ)—i-JEVX {:

D

2 )8

1/2
" (P_) v x (iv . T) - 8)
R p

This is in vector form but for solving the system numericalhly they component is

needed, which is given by

Ow
= — (W, + Up) w — WW, — U, + Sy

ot
p dz \p

Pr\2[d /1 4 Wap + Was
= 9.\ = z a9 Tz T - - |- 7.7
(&) [ () (srgtarm) g=]. ana

This is the evolution equation for the vorticity. The streAmction+ can be obtained
by solving equation (7.4) and the velocity componentndw can be obtained fromp
using equation (7.2). Th component of the velocity field requires another evolution

which is they component of equation (3.35), i.e.

Pr

- 1/2
v v v, F <§) (0se +0..).  (7.7b)

P

o p 2

=

The induction equation

%—E’ =V x (ux B) + Cx(V?B,
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7.2 Non-linear Formulation

is solved in a similar manner to the momentum equation; dmyytcomponent of the
curl of the induction equation is required. Theeomponent of the curl of the induction
is

OH

which is the evolution equation foff. The potentialA can then be found using
equation (7.5). To find}, they component of the induction equation is required,

a_ﬁ o 6¢zﬁ, + ﬁ (¢zﬁx - ﬁzd]z)
ot 7

The energy equation written in terms of entropy is

_—|0s B 1 _

Y= Lee | (peR) P 0 (o) £ 2
+ =G {(Pr R) aijmjL(PrR) FC(Vx B,

which can be written in terms of, v, w, H and( as

%——us —ws —w§+ _1 l Sgz + 8 —l—@2
0t_ T z dZ Préﬁ TT zz dZT

71 AR 2 2 2
+ 13 (PeR) " Fe= [H?+ 52+ 7]
ol
-1 —1 |4
+ VPP R= |5 (v [ — ] + ) + (s wa) + 02 0| (7.7€)
Y Tp|3
Means

In this chapter all terms are assumed to have periodic boyrmanditions in thex
direction. From the definition of the velocity component= 0,1 there are no terms in
w that are a functions of only as terms such ag = = f(z), which corresponds to

being a function ot only and are not periodic i&. This turns out to not be a problem
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7. NON-LINEAR ANELASTIC CODES

as the taking the horizontal average of the anelastic coityiequation (3.20a) shows

that this average will equal zero, in that

L
a—¢dx =0,

0 ax

asv is periodic with period.. The same argument can be givenRr z.

7.2.2 Hybrid Spectral Methods

In this outline of a possible non-linear code tRedirection is periodic and solved
in Fourier space, allowing the use of spectral methods, andhse error decays
exponentially as the resolution increases (Canuto, 208fgctral methods, or hybrid
spectral methods where only some of the terms are solvedeictrsp space, are used
in many non-linear anelastic codes (see e.g. Clune et é#9;1%nes & Kuzanyan,
2009; Glatzmaier, 1984). In this outline | will leave thalirection in real space where
z € [0,1] and only ther direction will be in Fourier space with € (0, L], whereL
defines the aspect ratio of tleto z dimension. It is a discrete Fourier transform which
is performed in the direction which can be done using e.g. the FFTw library (&g
Johnson, 2005). In a discrete Fourier transform all theatdes are represented in arrays
and if the Fourier transform is taken in tkedirection from the real arraxX of size N
the result is a Hermitian array via

N-1
Y, = ZXj€27rij/N\/__l.

J=0

The periodic boundary condition in tikedirection is implemented naturally in Fourier
space. Thez direction is solved in real space using finite difference hods as
each variable has different boundary conditions and implaing these in Fourier
space would not be spectrally accurate and removes the dhatdesture of a matrix
representation of a derivative, sgg 1 for more detailed explanation of representation

of finite difference differential operators. To make the eatlable the linear terms are
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7.3 Boundary Conditions

solved using an exponential integrating factor and so drkeda@xactly. The equations
in the z direction are solved using Crank-Nicolson method (Cranki&déon, 1947).

The non-linear terms are calculated using an Adams-Bashtiane-stepping method.

To calculate the right-hand-sides of equations (7.7) mreguwalculating convolutions of
some terms in Fourier space. Working out the convolutiomadse computationally
expensive than converting the terms that are in Fourieresipdo real space, multiplying
them, and then converting back into Fourier space. A comnmiwequires two matricies
to be multiplied so will require- N2 operations where as converting into real space and

back requires- N In IV operations.

Aliasing errors in numerical models occur when the highdiestcies become too small
to be resolved allowing them to interact with low frequencgdes. This high to low
frequency transfer of energy causes the model to blow-upsz&gr (1971) showed
that filtering out the highes} of the wavenumbers is sufficient to stop aliasing errors

associated with quadratic non-linearities in Fourier spac

7.3 Boundary Conditions

For the magnetic buoyancy case and magnetoconvection twageplement stress free

boundaries requires

ou  Ov
and using (7.2) this translates to
ns
v=oand— Y= WP o a0 (7.9)
Iz dz

The boundary conditions an are therefore
w=y-Vxu=u, —w, =0 (7.10)

For the magnetic buoyancy (or horizontal field) case

0B, 0B, _
5 o e (7.11)
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7. NON-LINEAR ANELASTIC CODES

where ther is a constant due to the imposed field®f = H,z + 1. Similarly to, the

boundary condition is
A(z=0)=0, A(z=1) =—(2+ Hp) /2, andH =0.

In the magnetoconvection (or a vertical field) case

—aBZ—O SO %—a_H—
0z 0z 0z

B, = B, (7.12)

The flow is isentropic so the boundary conditiois 0 onz = 0, 1.

7.3.1 Pressure Term

Without using the Lantz-Braginsky approximation the asgtaequations (3.20) contain
a pressure term in the momentum equation (3.20b). In the essible equations there
is an evolution equation for the pressure but in the anelasse the pressure responds
instantaneously, as shown in equation (4.13). The divegefhthe momentum equation

is required to advance the pressure fluctuations via thetiequa

= ==
o P —pp 1dY\
(V TR ﬁdz)p_

= [((w), + w.)* + u2 + 2uw, + ((w) + w)((w),, + Was + tg.) + w(Was + Uy

T, dp (1T T,
— 5P — g, W) +w)((w), +w.) +uw,] +7 <? - ?>

dp\3 dpd’s | —2d%p
+(Pr)l/2 7d (1) 8 d2 (1)w 1(8(82) - o s +793)

7 T3dz\5 ) T35 350

D

(7.13)

This is an elliptic equation where the right-hand-side i®kn from the hyperbolic
evolution equations. A typical way to solve the equatiod 8y would be to use an LU-

decomposition of the operator acting pon the left-hand-side e.g. using the LAPACK
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7.4 The Non-linear Algorithm

(Anderson et al., 1999) algorithm GBTRF for the banded matperator. The top and
bottom boundary conditions are applied by replacing theesgmtation of the operator
with the appropriate boundary condition at the first anddastof the matrix, e.g. for a

Dirichlet boundary conditiop = a,b onz = 0, 1 then the matrix would be

1 0 a
Vi EpE 14 p=| RHS |,
0 1 b

where R.H.S. is the right-hand-side of (7.13), and the dpemaould fill the internal
points in the matrix. The LU-decomposition only needs to beedonce at the start of

the simulation since the linear differential operator instant.

The problem in solving equation (7.13) comes from the boundanditions. The
boundary conditions involve the velocity which comes fréva momentum equation and
will be from the previous time-step and it is non-trivial tppy a boundary condition
that is based on the current time-step. In the Anelastic i&@idHdarmonic (ASH) code
Clune et al. (1999) take the horizontal divergence of the eromm equation so that the
pressure is calculated based on the previous time-stegessis Clune et al. (1999)
equation (A.4). As the equation solved to calculate the qunesis elliptic then the
boundaries effect every point in the domain. Although satiardifficulties have been
framed with regards to the anelastic equations (3.20), dasiproblem occurs in the
simplified Lantz-Braginsky equations if the temperatuféudion is used rather than the
entropy diffusion. This gives strong arguments to use thez-8raginsky simplification

and entropy diffusion together where only the entropy isinexgl.

7.4 The Non-linear Algorithm

This is an outline of the operations a two-dimensional Gaate non-linear code

undertakes in one time-step. The initial condition is egl@nt to the basic state used in
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7. NON-LINEAR ANELASTIC CODES

the linear code but now the code is advancing in time. To cthessimulation to grow

from a stable basic state then a small amount of noise maytodeladded.

e A Fourier transform is taken in the direction.

e The derived variables/( A, u, w) are calculated, these are used in equations (7.7a
- d). In a similar method as used to solve the elliptic equediscussed i§ 7.3.1,
1) can be calculated from equation (7.2) athdan be calculated from (7.5). Then

from equation (7.4), andw can be calculated from.

e Thex derivatives of all the variables are calculated, along Witfherz derivatives
where required. The variables are in Fourier space so ediegltheN™ derivative
is equivalent to multiplying the variable lgrik/L)".

¢ In addition thez derivatives are calculated for all the variables. The \@es in
the z direction are in real space and salerivatives are calculated using a finite
difference representation of a derivative, $§e¢.1 for more on finite difference

schemes angl 7.3 for the boundary conditions to be applied.

e An inverse Fourier transform is taken in tkedirection so that all the variables
are in real space. This means that no convolutions are esfjtor calculate the
right-hand-side of equations (7.7) as these are more catipoally expensive

than inverse Fourier transforms.

e The equations (7.7) are in the fordp¢ = L(£) + N, whereL is a function of
the linear terms andV" represents all the inhomogeneous and non-linear terms.
N can be calculated by multiplying the correct terms togeftmm the previous

time-step.

e The non-linear terms and inhomogeneous terms on the reyhd-side of
equations (7.7), denotell’, can be calculated for any given time-step using the
Euler method, i.e. the value of the right-hand-sides of 8qna (7.7) is found and

then multiplied by the time-step size. A more accurate wagdal with /' is
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7.4 The Non-linear Algorithm

through an explicit multi-step method such as the Adamdiath method (see
e.g. Hairer et al., 1993). The Adams-Bashforth method isx@ension of the
Euler method and uses information about previous stepsesoetkt time-step can

be calculated more accurately, e.g the fourth-order AdBasforth method is

gl =¢"+ % (35N — BON™ ! 4 3TN 2 — 9N ) |

where N (z,nAt) = N™. In the non-linear codes mentioned in this section it
much more common for an Adams-Bashforth method to be used.igbsed in
preference to an Euler method as it increases the stahilitysaused in preference
over a Runge-Kutta as calculating the non-linear terms merically expensive

and a Runge-Kutta method requires multiple calculatiomsidtsteps.

Using an Euler or multi-step time-stepping method for thenbgeneous linear
terms on the right-hand-sides of equations (7.7a - d) cannséahble (see e.g.
Burden & Faires, 2005). Terms dependent on dlgerivative can be dealt with
using the Crank-Nicolson time-step algorithm (Crank & Nsom, 1947). For a

partial differential equation such as

o5
T L(§), (7.14)

where( is the variable to be advanced in time then the Crank-Nicotgorithm
IS

n+1 n 1 o€ o2 o 0?
il S [ﬁm (M X3 ag)%n <§Zta_ia—z§)] (7.15)

where Az is the spatial discretization width, arfdz, nAt) = ¢". Given the

equation
o oN S
ot 92N

the Crank-Nicolson algorithm would be

+ N, (7.16)

(21 — AtDy) "' = (2] + AtDy) £" + 2AtN, (7.17)
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7. NON-LINEAR ANELASTIC CODES

where the I is the identity matrix andDy the finite difference matrix
representation a#" /92" . This can be solved using LU-decomposition described
in§7.3.1.

e An exponential integrating factor can solve exactly the bgeneous linear terms
involving x derivatives on the right-hand-side equations (7.7a - d).eikample,
the equation

—a—— + N, (7.18)

can be advanced in time exactly using
I:’L—H _ e—At(2am‘k/L)2 (5]? +N]?)7 (719)
where(k, nAt) = &}

e Combining the methods above for a hybrid-spectral timp-g&ng the example

eguation
0§ _ 0% | 0%
ot~ 08 "o
then the time-step, using Euler's method Ay would be

+ N, (7.20)

(21 — AtDy) €0+ = e~ ACamk/LP (0] L AtDy) €8 4+ 2N} (7.21)

7.5 The Current Non-Linear Codes

There is a an attempt under-way to create a set of anelastahb®rks by Jones et al.
(2011). The aim is to compare the currently available magseherical anelastic codes
by developing a standard benchmark against which the caatede validated. The
codes included so far are the Anelastic Spherical HarmaxsH( code (Clune et al.,
1999), the Leeds code (Jones & Kuzanyan, 2009), Gary Glatrimiaode (Glatzmaier,

1984), and a code in development from Johannes Wicht and as@astine.

Glatzmaier’s code is based on a spherical harmonic expamdithe variables in the

anelastic system equivalent to equations (3.20). The ERBrdaginsky approximation
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7.5 The Current Non-Linear Codes

has not been made and so to update the pressure Glatzmaamnusgditional boundary
conditions oy from the stress free condition. The stress free boundargiton in

equation (7.9) gives two boundary conditionsiogmamely
=0 forz=0,1

which is the boundary condition applied¢g and

z d_ z
Yoz | oy,
p dzp

=0 forz=0,1

which can be substituted into the vorticity equation (7 féajive a boundary condition
for the pressure. This means that the pressure boundargigated based on thestream-
function from the previous time-step. In Glatzmaier’'s colde reference state is time-

independent, which is compatible with the anelastic appmakon.

The Anelastic Spherical Harmonic (ASH) code was developeah {Glatzmaier’'s code
and the equations (3.20). Unlike in Glatzmaier’'s code theHA®de updates the
reference state and this allows the reference state to laage bepartures from an
adiabatic atmosphere. The reasoning is that so long as tlob Mamber of the flow
is small then the results are valid and updating the referestate ensures that the
fluctuation terms will be small in comparison to the refeeerstate. Updating the

reference does indeed make

P <

p
but it also makes the small parameteused in the asymptotic expansion large. The

approximation is only valid when th@p/0t is much smaller than the other terms and
can be neglected. When the reference state is far from adiaiian a source of energy is
introduced into the temperature equation, this can be dearlycfrom the derivation of
the temperature equation§B.7.2. This spurious energy source is due to inconsistencie
with the model when the atmosphere is far from adiabatic. AS&l code also does
not use the Lantz-Braginsky simplification and to updatepttessure the velocity at the

previous time-step is used as a boundary condition.
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7. NON-LINEAR ANELASTIC CODES

Rogers & Glatzmaier (2005) developed a non-linear code chase the anelastic
equations but where the temperature, rather than entrgpgtien was used, s¢8.7.2

for more on the temperature equation. Here the referente istapdated periodically
by adding the horizontal mean. In the paper the referente staot shown separated

out from the fluctuation state, both appear in Rogers & Glaiem(2005) equation (3).

The code in Lantz & Fan (1999) is in a Cartesian geometry ansl daime-
independent reference state. It also uses the Lantz-Bilagapproximation, explained
in §3.7, so the pressure is de-coupled from the system and gntsophe only
remaining thermodynamic variable. All the equations areesbin real space using
a finite-difference representation of the differential i@bers, except for the elliptic

equation (7.4) for) where the horizontal direction is solved in spectral space.

The Leeds code, used in Jones & Kuzanyan (2009) is similangocode developed
by Lantz. It too uses the Lantz-Braginsky approximationsdlves the equations in
a spherical geometry and is pseudo-spectral using Leggrudyaomials and Fourier
modes for the non-radial derivative and a non-uniform fudiféerence mesh in the radial

direction.
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Chapter 8

Conclusions

8.1 Discussion of New Results

There are many sets of equations that are in the anelastidyfasuch as the anelastic
equations (3.20) derived in Gilman & Glatzmaier (1981), ke of anelastic equations
derived in Ogura & Phillips (1962), the Lantz-Braginsky giification as derived in
§3.7, and the anelastic equations derived in Gough (1969avé lused an asymptotic
expansion to develop the anelastic temperature equati@m gn §3.7.2. All of these
sets of equations are equivalent, if the same type of ddfus used and magnetic fields
neglected, when the atmosphere is perfectly adiabatic dfedt et higher orders ot
when the atmosphere is not adiabatic. The definition, afhich is a measure of the
departure from the atmosphere being adiabatic, is giveB.4).( There are situations
where one set of equations will give results that are closahé fully compressible
than some of the other sets, as demonstrated in Chapters@ antthis is also when
the validity of making the anelastic approximation itselfim doubt, such as when the

Alfvénic time-scale becomes small or the growth rate ofitis¢ability is large.

In Chapter 4 | developed the linear code | used to test theastielapproximation

and in Chapters 5 and 6 | have investigated the range of tyalafi the anelastic
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approximation by solving linear stability problems in bdkie fully compressible and
anelastic models. | calculated either the critical Raylegigmber for magnetoconvection
or the largest growth rate of a magnetic buoyancy instgbilitthen determined the
fractional difference between the fully compressible hssand those calculated using

the anelastic approximation.

For the problem of magnetoconvection in Chapter 5, the t®sné not surprising. The
anelastic approximation performed well where expectedratdso well (though still
reasonably well) when pushed beyond its range of formabitgli The only slightly
surprising result is that the inclusion of a stronger fieldavger thermal flux gradient
can lead to a decrease in the accuracy of the anelastic apton. With a strong
magnetic field the Alfvénic time becomes small; this is insistent with the time-
scale assumption made in the anelastic approximation. dstildies presented in this
thesis the magnetic field is imposed but in the Sun the fielikedyl to be the result
of dynamo action and so the magnetic energy would be comigatabthe kinetic
energy. This would mean in low Mach number flows the field woath@y the weak
field assumptions. In Chapter 5 the Takens-Bogdanov poititarmagnetoconvection
instability was captured by the anelastic approximatiothwio substantial difficulties.
When altering the boundary condition from isentropic tahgomal then the growth rate
for the magnetoconvection instabilities reduced, withrédduction more pronounced at
larged values and low values. When studying magnetoconvection in a tilted fiedohth
in agreement with Matthews et al. (1992), | found that théitita reversal, described
in §5.3.8, is very sensitive. The results for stability reveisahis work differ from
the results in Roxburgh (2007), which is presumed due to¢hsisvity. These results

should be contrasted with those of the magnetic buoyanctgbiisy.

For magnetic buoyancy, even when the expansion parametersmall (i.e. the
atmosphere is nearly adiabatic), it is possible to brealattedastic approximation; on
the contrary, slowly growing magnetic buoyancy modes apjodae captured accurately

even for largee. It would seem that in the case when the atmosphere is suizitia
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the accuracy of the approximation is controlled by the ghokate of the magnetically
driven instability. It has previously been assumed thasghgroximation is valid so long
as the Mach number is sufficiently small (see e.g. Gough, 1€E&sch, 2005) and the
Alfvénic time sufficiently large (see e.g. Glatzmaier, 498antz & Fan, 1999). There
are a number of possible reasons why the approximation megkldown. It may be
that the Mach number is too large but this is not applicablgéolinear case. Another
possible reason is that hydrostatic balance is assumea@dingeorder and when the
magnetic fields become large this balance may be upset. &ammssunlikely for the
cases considered here as the magnetic pressure i$%rdfithe terms in the hydrostatic
balance. Here the strong magnetic field, and the correspglydiast Alfvén waves, or
a fast growth rate leads to a violation of the assumption attmuscalings used on the
unit of time. This leads to the situation wherean be increased but, as the growth rate
decreases, the approximation becomes more accurate. indtpeetic buoyancy case,
the full anelastic approximation appears to be more s&egii the time-scales than to
the departure from an adiabatic state. As this instabisitynagnetically driven, when
the magnetic field becomes large it is hard to distinguishefdgrowth of the instability
or the increased magnetic field strength causes the ametggiroximation to become

inaccurate.

| also consider the accuracy of the Lantz-Braginsky singatfon and demonstrate that,
as expected, the Lantz-Braginsky simplification appeararate (i.e. close to the results
of the full anelastic approximations) when the atmosphsraedarly adiabatic. This
remains true even in cases with large magnetic fields. Teregé the Lantz-Braginsky
approximation only differs from the full anelastic appnmétion by order, i.e. the
difference is of the same order as the/0t term which is neglected in the anelastic
continuity equation. This would suggest that both the Ldraginsky simplification
and the anelastic equations (3.20) are equally valid. Theah results show that
the terms that the Lantz-Braginsky approximation is ndgigcmake a significant
contribution when the atmosphere departs from adiabattifstation. There are also

arguments given i37.3.1 in favour of using the Lantz-Braginsky simplificatiasith

147



8. CONCLUSIONS

the entropy diffusion in time-stepping non-linear codesalging the elliptic equation
for the pressure requires boundary conditions which aredas the previous time-
step. Chapter 7 also briefly gives an argument that evohnegéference state is not

compatible with the anelastic approximation.

| conclude by reiterating that care must be taken when paifay calculations based on
the anelastic approximation in stably stratified regimeaeihains to be seen how well
the anelastic approximation performs in fully nonlineangiations of these instabilities

but the validity of updating the reference state is calleéd question.

8.2 Where the Anelastic Approximation is used

It is important to our understanding of dynamo theory to ble &b model the interior
of the Sun. Understanding how magnetic fields are generatdkdse to the surface is a

problem that requires large-scale and high resolution lsitiams.

The initial rise of magnetic field through the convection gads due to the magnetic
buoyancy instability. Understanding how magnetic fieldserin a stably stratified
atmosphere is important as the likely generation site fugelsscale magnetic field is
in the stably stratified Tachocline. Above the Tachoclinéhiss weakly superadiabatic
convection zone and so magnetic buoyancy simulations warigltapable of modelling

both regions accurately are important.

Sunspots can be seen at the surface of the Sun. Sunspotstemeofsiocalised
strong magnetic field. The mechanism which generates sudloagsfield is still
debated. To model the flux tubes rise through the convectior an understanding of
magnetoconvection is important. Studies of magnetocdimrecan help to explain the
structure of sunspots and the interaction between a siyronggnetized rising element

in a convecting plasma.

The anelastic approximation is used in many nonlinear ctiiismodel the Sun and
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other stars. Anelastic codes are also used in atmosphedellimy (see e.g. Barranco
& Marcus, 2006; Delden, 1992; Ashworth et al., 1997). Thdaste approximation is

used as it greatly reduces the required time-step and siespinterpreting the results
compared with solving a fully compressible system. Theastal approximation is also
used in theoretical work as it can simplify the analyticstué problem. The anelastic
approximation has advantages over the Boussinesq apmt&min that the anelastic

equations allow density fluctuations and a stratified bamkgd state.

Which version of the anelastic equations used is important affects the types of
equation that any computer program will have to solve. Itnswn in the case of a
perfectly adiabatic atmosphere all of the versions of thedastic approximation will be
equivalent. The results presented in this thesis may be lpfihainderstanding when
one version is more appropriate than another; i.e. in tle@tlicase when the atmosphere
departs from adiabatic then the Lantz-Braginsky approtiona produces less accurate
results whereas in a nearly perfectly adiabatic simulatioa nonlinear code then the
process for solving for the pressure could create inacasand so the Lantz-Braginsky

approximations maybe more appropriate.

8.3 Extensions

The work presented in this thesis can be extended by buildiegtwo-dimensional
nonlinear code outlined in Chapter 7; then simulations whthfully compressible, the
full anelastic, and the Lantz-Braginsky approximationlddee compared over a range
of parameters. Particular attention should be given to whemagnetic field is strong
or when the atmosphere departures from being adiabatieas #re the cases where the
differences were most marked in the linear results of Cliafi@nd 6. Furthermore the
potential problem with how the pressure term is solved, ealpd on in§7.3.1, could
be further explored by having a code using the Lantz-Brdgirgpproximation which

solves for the pressure and uses this in the next time-s@psigne that does use the
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pressure explicitly in the next time-step. A nonlinear stgation into the different
diffusivities used in the energy or entropy equation coldd d&e interesting as entropy
diffusion has becoming increasingly common since propasésilman & Glatzmaier
(1981).

It would also be useful to include other aspects such asioatatRotation breaks
some of the symmetries in the magnetoconvection problemsandould make the
simulations more realistic. Although the Sun is not a ramthtor this does not
preclude rotation from playing a crucial role. It may have effect on how well

the anelastic approximation performs and it will certaielffect the results for the
magnetoconvection and magnetic buoyancy instabilitiexteritling the code from
two-dimensional to three-dimensional would help in madelithe magnetic buoyancy
instability. Magnetic buoyancy tends to favour three-disienal modes and so

restricting it to two-dimensions means that these modesatdre investigated.

There are other approximations which are of interest inrsoladelling such as
the sound-proof approximations which have been comparainstgthe anelastic
approximation, albeit without a magnetic field, in Nance &rizm (1994). It would
also be possible to develop implicit solvers for the fullyngwressible equations and
compare these against the anelastic approximation. A @rtdimensional parameter
study would allow the most suitable approximation for eggtetof problem to be known

before the precise problem of interest was tackled.
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Appendices

A Compressible Linear Equations

The compressible equation may be linearised. On assumirggraah mode solution
for the perturbations about a basic stdte in which all variables take the form
E(x,y,2,t) = &(2) + £(2) exp(ot + ik + ik,y) where¢ is the full variable and

is the perturbation. The linear equations in the compréssilodel (equations (2.6a-d))

may be expressed as

op = —ikepyii, — ikypytiy — pp'tt, — pyits’, (A1)
Pr 4k2 + 3k2 Pr\% 1 FB.p-
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F T pr\'? 1 Pr)'* 1
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pb( ’ 2 P R/ 3p RJ
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Pr\'"? 1 Pr 3k + 4k}
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B Anelastic Linear Equations

The linear perturbation equations of the anelastic appratibn are similar to the
linear compressible equations, except there is a referstate ¢ about which the
anelastic approximation is derived. | again assume a namode solution of the form
E(z,y, 2,t) = &(2) + £(2) exp(ot + ik,x + ik,y) where( is the fluctuation variable
and¢ is the perturbation about the basic stgtéz). Using this normal mode form the
linear equations fog, u, B andp in the anelastic model (equations (3.20a-f) but where

temperature diffusion is dominant so entropy diffusiorgisdared) may be expressed as
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ob, = Bayu,' — ikyBayuy — Blyu, — Bou,' — (k2 + k) (Cib, + (Cib,”,  (B.13)

ob, = ik, Buyuy + Bayu,' — (k2 + k2) (Ciby, + (Cib,”, (B.14)
ob, = —iB.pkyty — iBupkyuy +1Baksu. — (k2 + k2) CCyb. + CCib.", (B.15)
0 = ik, pu, + ik, pu, + p'u, + pu.’. (B.16)
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C Relations Between Dimensionless Numbers

In the Lantz-Braginsky simplification equation (B.12) is

Pr\'"? 1k, |, Pr\'"? 1k, , (Pr\'*1
Z:' - ——xm i —= - - —= - k2 kz 2z
ou 1( ) ﬁ?)u +1( ) ﬁguy (R) ﬁ<x+ y)u

R R
Pr\ /%14 z £ yil 1
! (Tr) L =L~ Laan il Bab. — s + L
R p3 p p p p p
(B.17)

C Relations Between Dimensionless Numbers

In this thesis the following dimensionless numbers are used

N k N By?
C,=¢€¢120, = F=eclF=_2_
gdpopo

deppor/cp — ¢0)To ’

~ 3.2
Pr— M (—Tand f—er=99TP (g
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The Chandrasekhar number is
B2d?
Q=—"—. (C.19)
M) Lo Ly

Roxburgh (2007) uses a paramegedefined at mid-layer
(cp — ¢y) Bod?

2
Ry

P=cP= (C.20)

The Chandrasekhar number gRdare related to the dimensionless numbers used in this

work via -
FP 1 RPr AN
= PT e (m+1)9( +2) ! (€.21)
where the last equation made use of the relation
_O(m+1)
f= C?Pr
The Froude number is
F = k}/(ec,Tod?), (C.22)
and itis related t@;, via
—1
F=1""¢? (C.23)
Y
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