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Abstract

Steady state detonations of rate-stick explosives can be modelled via a streamline based

approach. The Straight Streamline Approximation (SSA) is a method for predicting the

shape of the shock front and sonic surface for an explosive rate-stick. The SSA model

is implemented with different explosives models to verify its ability to accurately match

high resolution Direct Numerical Simulations (DNS) beyond the simple polytropic EOS

(equation of state) and power law reaction rate models. For explosive models using a

reaction rate with an induction zone it shown that the SSA is unable to capture diameter

effect curves when compared with DNS.

The CREST model is implemented into the ZND and Wood-Kirkwood steady-

state detonation models. Implementing the CREST model into the steady-state models

required the development of a thermodynamic relation not published before. Rate-

stick calculations are performed for the SSA model and compared with DNS for various

explosive models. With a realistic equation of state there is a limit on the boundary that

the SSA model can integrate to, beyond this the streamlines begin to converge and the

model equations break down. This places a limit on the SSA’s modelling capabilities

not previously reported.

Equations for the post-shock streamline curvature with a reaction term are devel-

oped. The streamline curvature is calculated for a polytropic EOS with and without

reaction at the shock. It is shown that when reaction is a maximum at the shock the

magnitude of the streamline curvature is reduced and, in some cases, changes the sign

of the curvature. With no reaction at the shock the streamline curvature is signifi-

cantly larger. Moreover DNS shows that the streamlines are more curved for reaction

rates with induction zones when compared to simple power law reaction rates. The

implications for the SSA’s validity are discussed.
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Chapter 1

Introduction

1.1 Detonation of Condensed Phase Explosives

A detonation wave is a combustion wave that propagates through explosive material

at supersonic velocity. At the head of a detonation wave is a shock which causes a

jump in the pressure, density and temperature of the explosive which initiate chemical

reactions. The heat released by the chemical reaction supports the propagation of

the shock wave. Behind the shock the reacting explosive produces expanding gases

which can affect surroundings [1]. This thesis focuses on the detonation of a rate-stick

which is a cylindrical charge of explosive material typically used in mining and military

applications. A schematic of a rate-stick is shown in figure 1.1. The explosive is ignited

at one end and a detonation wave is formed which propagates along the explosive.

Explosives can be categorised as either low or high depending upon the propaga-

tion velocity of the combustion wave [2]. Low explosives produce a deflagration wave

that propagates at a subsonic velocity. An example of a low explosive is gunpowder.

The energy transfer in deflagration waves is dominated by thermal diffusion processes.
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High explosives produce a detonation wave that propagates at a supersonic velocity

(up to 10kms−1). The energy transfer is dominated by compressive shock heating from

the leading shock which, across a length scale of the order of a few nanometres, con-

verts quiescent explosive to a supersonic, chemically reacting flow at temperatures of

thousands of degrees kelvin [1]. An example of a high explosive is HMX with molecular

formulae C4H8N4(NO2)4. Due to the complex structure of the explosive the chemical

decomposition follows a large number of reaction pathways, with intermediate species,

to produce stable reaction products such as CO,H2O,CO2 and solid carbon (soot) [3].

z

r

Explosive Reaction Products

D

Figure 1.1: Schematic of rate-stick detonation. The shock wave (red

line) is propagating from right to left at velocity D into a cylindrical

stick of explosive. The flow behind the shock wave is expanding.

Typically, ignition of detonation waves in explosives is driven by imparting a shock

wave upon the explosive with a detonator. The mechanism(s) by which the initial shock

wave produces a detonation is determined by whether the explosive is homogeneous or

heterogeneous. Homogeneous explosives (e.g. liquid and single crystal) have a uni-

form micro-structure (i.e. no voids or impurities) and a detonation wave is produced

by thermal shock heating [4]. That is, the initial shock wave propagates through the

explosive material and, after an induction stage, a thermal runaway occurs in the mate-

rial that has been shocked the longest, producing a second shock wave that catches up
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with the initial shock [5]. Heterogeneous explosives (e.g. cast, pressed, plastic bonded)

have a non-uniform micro-structure due to the presence of defects (e.g. voids, pores

and cracks) and exhibit different initiation behaviour to homogeneous explosives. The

presence of defects is believed to produce localised hot spots, for example due to the

collapse of a void. When the initial shock wave compresses the explosive, these hot

spots induce chemical reactions which release further heat and drive the propagation

of the initial shock[5]. Thus the shock initiation picture for heterogeneous explosives is

that of an initial shock wave producing rapid heat release, with no significant induction

stage, that initiates local chemical reactions that support the propagation of the shock

wave. The rate of heat release is thus dependent upon both chemical (conversion of

explosive to reaction products) and mechanical (hot spot) effects - this makes modelling

the heat release of heterogeneous explosive difficult as there is presently no fundamental

understanding of how the reaction and hot spot kinetics interact with each other or how

they couple with the hydrodynamics [6].

It is possible for an explosive to undergo a Deflagration to Detonation Transition

i.e. transitioning from a subsonic deflagration wave to a supersonic detonation wave

[7]. This phenomena is observed experimentally and there is ongoing research into the

underlying processes of the transition [8][9]. This thesis is not concerned with the DDT

process.

A common method of characterising high explosives is by their detonation velocity

(i.e. the velocity at which the shock wave propagates through the explosive). The

detonation velocity for a rate-stick of explosive varies as a function of its radius (or size).

A schematic of a typical size effect curves is shown in figure 1.2. For large radii there is

an upper limit on the detonation velocity. As the charge radius is reduced the detonation

velocity reduces until the explosive fails to detonate, this is indicated by the point F .

This is the failure radius and shows that there is a minimum charge size required for
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detonation to occur. Diameter effect curves can be used to calibrate numerical models

of explosives. Other factors affecting the detonation velocity include the porosity of

the unreacted explosive, the ambient temperature and explosive confinement. At small

charge diameters, the detonation velocity has been shown to decrease as a function of

ambient temperature [10].

High explosives can also be characterised as either ideal or non-ideal depending

upon their reaction zone thickness. For ideal explosives the reaction zone thickness is

small compared to the engineering scale (e.g. diameter of explosive) which means that

geometrical effects do not have a strong effect on the propagation of the detonation

wave. However, for non-ideal explosives the reaction zone thickness is much longer and

the flow is more readily influenced by geometry and confinement effects. This difference

manifests itself in the diameter effect curve as shown in figure 1.2, for small charge sizes

there is a greater deficit in the detonation velocity for the non-ideal explosive compared

to an ideal explosive. Release waves at the edge of the explosive are able to influence

more of the shock front due to the thicker reaction zone, generating a more curved front

and a reduced detonation velocity.

Confinement of an explosive enables detonation to occur at diameters below the

critical diameter for an unconfined rate-stick. This is due to the confiner reducing the

lateral expansion of the gaseous products, thus maintaining a higher pressure in the

detonation reaction zone compared to the unconfined case [11].
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Figure 1.2: Schematic of size effect curves for ideal and non-ideal rate-stick explo-

sives. The point F indicates the failure radius - below this the rate-stick fails to

detonate.

1.2 Modelling

One of the primary motivations for detonation modelling arises from the high costs of

performing real experiments. With a reliable explosive model, numerical simulations

can be performed to provide an understanding and predictive capability of detonations

in geometries more complex than that of a simple rate-stick, thus providing a valid

alternative to high-cost experiments. It is important, however, that any numerical

model should be validated against experimental data to give the modeller confidence

in the predictive capabilities of the model.

Since detonation of heterogeneous explosives is complex, present day models are

phenomenological and attempt to describe the burning of the explosive at the contin-

uum level. At this length scale the Euler equations are assumed to provide an accurate

description of the physics governing the flow. To model an individual explosive two

additional equations are required: (i) An equation of state relating the specific inter-
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nal energy to two other thermodynamic variables (e.g. pressure and density); (ii) An

equation describing the chemical reaction progress (heat release) as the explosive reacts

to form detonation products [12]. Equations of state are typically multiphase where

each phase has its own separate equation of state. The phases are assumed to be in

pressure (mechanical) equilibrium and propagate at the same velocity. Popular choices

of equations of state include Jones-Wilkins-Lee (JWL), Williamsburg, polytropic and

finite-strain. Apart from the polytropic EOS, these equations of state are empirical

and must be calibrated to available experimental data. The equation(s) governing the

chemical reaction rate are also empirical and are typically calibrated to ignition timing

and size-effect data [13][14]. Reaction rate equations are typically related to the shock

strength via a dependency upon one of the thermodynamic variables; pressure [15],

temperature [1] and entropy [16] based models have been considered.

A method of solving the rate-stick problem is to solve the full time dependent

Euler equations in a Direct Numerical Simulation (DNS) [17]. This method produces

the most accurate numerical solutions as grid independent solutions of the full governing

equations can be obtained, providing a complete picture of the detonation solution.

However, this method is computationally expensive and can require the use of high-

performance-computing facilities in order to complete calculations in a reasonable time

frame. As a method of solving the rate-stick problem DNS calculations have only been

feasible since the turn of the century.

As an alternative to performing full numerical calculations, simplified/reduced

detonation models have been developed that dramatically reduce computational ex-

pense.

Solutions to the steady state detonation problem were first obtained by Chapman

[18] and Jouguet [19], who considered the explosive to jump immediately to its fully

reacted state immediately behind the shock, where the solution was obtained via the
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use of the one-dimensional conservation equations. Zeldovich [20], Von-Neumann [21],

and Doering [22] independently extended the Chapman-Jouguet model to incorporate

a finite reaction zone behind the leading shock, this solution assumes that the flow is

planar. Theoretical attempts to extend the theory beyond one-dimension have been

attempted by Eyring [23], Jones [24] and Wood-Kirkwood [25]. Eyring’s model was

based upon the assumption that locally the detonation wave was spherical and the local

detonation velocity could be related to the shock front curvature. The model of Jones

was based upon a streamtube assumption where the detonation velocity was related to

the expansion of the detonation products. The Wood-Kirkwood model was the first to

consider the axisymmetric Euler equations, however the solution requires specifying an

unknown radial divergence term and relating this to the shock front curvature [14] -

this requires calibration to experimental data.

Further advancements in detonation modelling was borne from the work of Bdzil

[26], from which Detonation Shock Dynamics (DSD) was developed [27]. It is based

upon the assumption that the detonation velocity is asymptotically close to the CJ

velocity and that the shock is weakly curved. Although valid for ideal explosives where

the detonation velocity does not depart significantly from the CJ speed, DSD has been

shown to significantly underpredict the detonation velocity for non-ideal explosives,

where the detonation velocity can be as low as 50% of the CJ speed [28]. DSD models

can be used to model the propagation of a detonation front in complex geometries [29].

A novel approach to solving the two-dimensional detonation problem was the

Straight Streamline Approximation (SSA) model developed by Watt et al [30]. Here,

no assumptions are made regarding the shock front curvature. The assumption in

the model arises from the shape of the streamlines. The SSA was shown to be able

to accurately match diameter effects curves when compared to high resolution DNS

calculations for non-ideal explosives. However, they only considered the simple case of
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a polytropic equation of state and simple power law reaction rate. It is yet to be seen

whether the SSA model produces accurate results for different equations of state and

reaction rate models.

1.3 Thesis Overview

The purpose of this thesis is to consider the SSA model with different equations of state

and reaction rate forms to establish whether the SSA model can be used, in place of

high resolution DNS calculations, to calculate unconfined diameter effect curves to be

used as part of explosive model calibration.

First, an overview of relevant detonation theory and some basic models are pre-

sented. Next the CREST reactive burn model is implemented into the basic models

and verified against DNS calculations. The Streamline detonation model is derived and

implemented with different equations of state and reaction rate equations.
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Chapter 2

Detonation Models

2.1 Introduction

This chapter introduces the governing equations used in detonation modelling and

presents an overview of the ZND and WK reduced detonation models with solutions

for a polytropic EOS with power law reaction rate.

2.2 Governing Equations

2.2.1 Reactive Euler Equations

The compressible Euler equations governing fluid flows are used to model detonations.

As the flow is supersonic, hyperbolic terms dominate. To this end viscosity, thermal

and mass diffusion terms can be neglected. The equations are

Dρ

Dt
+ ρ∇ · u = 0, (2.1)

ρ
Du

Dt
+ ∇p = 0, (2.2)
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De

Dt
− p

ρ2

Dρ

Dt
= 0, (2.3)

Dλ

Dt
= W, (2.4)

where
D

Dt
=

∂

∂t
+ u · ∇, (2.5)

is the material derivative. These are equations for continuity, momentum, energy and

the chemical reaction progress. Here ρ is density, u is the flow velocity, p is pressure, e

is specific internal energy (i.e. per unit mass) and λ is the chemical reaction progress

variable (ranging from 0 for no reaction to 1 for complete reaction). W is a function

that describes the rate at which chemical reaction proceeds in the explosive and must

be determined for a particular explosive; the function is typically dependent upon λ

and local thermodynamic variables.

The reactive Euler equations can also be expressed in conservation form, in two-

dimensions 2.1-2.4 become

Ut + F(U)x + G(U)y = S, (2.6)

with

U =
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ρv

E

ρλ
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0

0

0

0

ρW





























. (2.7)

These equations are for mass, x-momentum, y-momentum, energy and reaction progress

variable respectively. The total energy E is given by a combination of the total internal
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energy and kinetic energy

E = ρ

(

e +
1

2

(

u2 + v2
)

)

. (2.8)

An equation of state, relating the specific internal energy, e, of the explosive (reactants

and products) to the thermodynamic variables, must be specified to close the reactive

Euler equations. It is typically related to the local thermodynamic variables and the

extent of reaction such that

e = e(p, ρ, λ). (2.9)

2.3 ZND Model

Zeldovich [20], Von-Neumann [21], and Doering [22] independently developed the ZND

model of detonation. The model assumes that the flow is laminar (one-dimensional)

and, in a frame moving with the shock, steady state (i.e. time derivatives equal zero).

The shock, propagating at a speed D, initiates an exothermic chemical reaction that

supports the propagation of the front. Local thermodynamic equilibrium is assumed

throughout the flow.

The flow equations are given by the one-dimensional conservation laws of conti-

nuity (mass), momentum and energy. It is convenient to transform from the laboratory

frame to the shock-attached, steady state frame. We consider the velocity transform

given by u = U − D where u is the velocity in the shock-attached frame. The Euler

equations are invariant under this velocity transformation. In this reference frame the

unreacted explosive propagates into the stationary shock at velocity D.

The governing equations can be immediately obtained using the conservation form

of the Euler equations. In one spatial dimension and using the steady state condition
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equation 2.6 reduces to

F(U)x = S, (2.10)

which, when combined with 2.7-2.8 can be integrated with respect to the shock-attached

coordinate to give

ρu = ρ0D, (2.11)

p + ρu2 = p0 + ρ0D
2, (2.12)

e +
p

ρ
+

1

2
u2 = e0 +

p0

ρ0

+
1

2
D2. (2.13)

These are equations in mass, momentum and energy. The terms with subscript 0 on

the right-hand-side of these equations refer to the initial conditions of the explosive.

The variation of the primitive variables can be obtained by integration of the reaction

rate equation
dλ

dx
=

W

u
, (2.14)

which is coupled to the conservation equations via the equation of state. A useful insight

into the ZND solution can be obtained by considering the solution in the p − V plane.

First eliminating u from equations 2.12 and 2.13 gives the equation for the Rayleigh

line

R = ρ2
0D

2 − (p − p0)

(V0 − V )
= 0, (2.15)

where V = 1/ρ is the specific volume. The Rayleigh line is a straight line in the (p, V )

plane with slope −ρ2
0D

2 and represents conservation of momentum.

Eliminating u and D from equation 2.13 using 2.11 and 2.12 gives

H = e − e0 −
1

2
(p + p0)(V0 − V ) = 0. (2.16)

This is the equation of the Hugoniot curve and represents conservation of energy. Figure

2.1 shows Hugoniot curves for the unburnt material (Hλ=0) and fully reacted material
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(Hλ=1) in the p − V plane. Between these curves are partially reacted Hugoniots

(Hpartial). The solution proceeds from the post-shock state I, down a Rayleigh line,

until the Hλ=1 curve is reached.

As the Rayleigh line is dependent upon D varying the magnitude of D will alter the

final state solution. For D = DCJ (Rayleigh line RCJ) there is a unique solution where

the Rayleigh line and Hugoniot curve are tangent (labelled C). This is the minimum

detonation velocity that satisfies the conservation equations and is called the Chapman-

Jouguet (CJ) velocity. For a CJ detonation the fully reacted flow is exactly sonic, with

respect to the shock. For D > DCJ (Rayleigh line RD+
) there are two solutions, a strong

(S) and weak (W ) solution. The strong solution is subsonic in the shock- attached frame

and the flow velocity remains subsonic when the reaction is complete. This solution

is only possible if the detonation is supported at the rear boundary by, for example,

a piston. It should be noted that for pathological detonations, in which endothermic

chemical reactions are considered, there is a solution path from I to the weak point W

[17]. However for strictly exothermic reactions (considered in this thesis) there is no

solution path to the weak point [31]. For D < DCJ there is no intersection between the

Rayleigh line and the fully reacted Hugoniot and thus no solution.
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O
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C

p0

V0

Hλ=1

Hpartial

Hλ=0

RD+

RCJ

I

Figure 2.1: Hugoniot curves and Rayleigh lines for one-dimensional detonation in

the p−V plane. The Rayleigh lines are blue and are shown for the cases of D > DCJ

(RD+
) and D = DCJ (RCJ). The Hugoniot curves are in red and are shown for the

unreacted (Hλ=0), partial (Hpartial) and the fully reacted state (Hλ=1). The post-

shock states are indicated by I for a given Rayleigh line. The final solution point

lies on the intersection between Hλ=1 and the Rayleigh line. Possible solutions are

weak (W ) and strong (S) for D > DCJ ; the Chapman-Jouguet solution (C) for

D = DCJ ; there is no solution for D < DCJ .
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2.4 Wood-Kirkwood Model of Detonation

z

r

Explosive Reaction Products

D

Figure 2.2: Schematic of rate-stick detonation in the shock attached

frame. In this frame the quiescent explosive propagates from left to

right (positive z direction) at velocity D into the stationary shock.

Wood and Kirkwood [25] considered the detonation of a rate-stick of condensed

phase explosive as shown in 2.2. They developed a quasi-one dimensional theory, as-

suming that the flow was on axis (r = 0), that introduced divergence of the flow field

behind the shock wave; the divergence of the flow is related to the curvature of the shock

wave. It is intuitive to assume that there will be some expansion of the high pressure

gases behind the shock front perpendicular to the flow direction. The divergence of the

flow is analogous to a heat loss term and thus there will be less heat energy to support

the detonation front. The detonation speed for a divergent flow will therefore be lower

than DCJ .

2.4.1 Flow Equations

The starting point for deriving the Wood-Kirkwood model is to consider the Euler equa-

tions for two-dimensional flow in axisymmetric geometry (r, z). The shock is assumed

to be propagating at a steady velocity in the axial z direction only. The equations are
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formulated in the rest frame of the shock. With these assumptions the reactive Euler

equations 2.1-2.4 become

ω
∂ρ

∂r
+ u

∂ρ

∂z
+ ρ

∂ω

∂r
+ ρ

∂u

∂z
+ ρ

ω

r
= 0, (2.17)

ρω
du

dr
+ ρu

∂u

∂z
+

∂p

∂z
= 0, (2.18)

ρω
∂ω

∂r
+ ρu

∂ω

∂z
+

∂p

∂r
= 0, (2.19)

ω
∂e

∂r
+ u

∂e

∂z
− ω

p

ρ2

∂ρ

∂r
− u

p

ρ2

∂ρ

∂z
= 0, (2.20)

ω
∂λ

∂r
+ u

∂λ

∂z
= W. (2.21)

Here z now represents the axial coordinate in the shock-attached frame, u is the axial

flow velocity (in the shock attached frame) and ω is the radial flow velocity.

We specialize the equations to the axis, where ω = r = 0 by symmetry. Within

equation 2.17 the term ρω
r

is singular at r = 0, we therefore consider the limit of this

function as r → 0 using L’Hôpital’s rule such that

lim
r→0

ω

r
=

(∂ω
∂r

)

(∂r
∂r

)
=

∂ω

∂r
.

With this result and using the assumptions stated above 2.17-2.21 become

u
∂ρ

∂z
+ ρ

∂u

∂z
= −2ρ

∂ω

∂r
, (2.22)

ρu
∂u

∂z
+

∂p

∂z
= 0, (2.23)

∂p

∂r
= 0, (2.24)

∂e

∂z
− p

ρ2

∂ρ

∂z
= 0, (2.25)

u
∂λ

∂z
= W. (2.26)
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If ωr = 0 then the equations are identical to those for planar flow. Equation 2.24

tells us that the pressure is constant in the radial direction. All of the remaining flow

equations are in z only and thus can be written as total derivatives rather than partial

derivatives. Due to the presence of the term on the RHS of the continuity equation

2.22 it is not possible to integrate it to get an algebraic equation for the mass flux.

Equations 2.22-2.26 can be solved using numerical integration.

2.4.2 Master Equation in u

It is convenient to reduce the flow equations in ρ, u, p, e into a single differential equa-

tion in the flow velocity coupled to the rate law. This is done through successive

substitutions of dρ
dz

and dp
dz

in favour of du
dz

(here total derivative notation is now used).

To proceed we must specify the form of the equation of state, we will assume that

there is a single phase and that the specific internal energy is a function of pressure,

density and reaction variable, that is e = e(p, ρ, λ). Substituting this into the energy

equation 2.25 gives

de

dz
=

(

∂e

∂p

)

ρ,λ

dp

dz
+

(

∂e

∂ρ

)

p,λ

dρ

dz
+

(

∂e

∂λ

)

p,ρ

dλ

dz
=

p

ρ2

dρ

dz
.

Bringing terms in dρ
dz

to the LHS and dividing by
(

∂e
∂p

)

ρ,λ
gives

(

p

ρ2
−

(

∂e

∂ρ

)

p,λ

)

(

∂e

∂p

)

−1

ρ,λ

dρ

dz
=

dp

dz
+

(

∂e

∂λ

)

p,ρ

(

∂e

∂p

)

−1

ρ,λ

dλ

dz
.

The term pre-multiplying dρ
dz

is the square of the frozen sound speed (see appendix A)

which gives

c2dρ

dz
=

dp

dz
+ Q

dλ

dz
, (2.27)
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where Q is the thermicity parameter and, for an equation of state of the form e =

e(p, ρ, λ), is given by

Q =

(

∂e

∂λ

)

p,ρ

(

∂e

∂p

)

−1

ρ,λ

. (2.28)

Next we substitute for the pressure derivative using 2.23 and the density derivative

using 2.22 into 2.27, which gives

−c2

(

ρ

u

du

dz
+

2ρ

u

dω

dr

)

= −ρu
du

dz
+ Q

dλ

dz
.

Rearranging for the velocity derivative gives

du

dz
=

φ

η
=

2c2 dω
dr

+ Qu
ρ

dλ
dz

(u2 − c2)
. (2.29)

This equation is coupled to the reaction rate equation

dλ

dz
=

W

u
. (2.30)

The derivatives in ρ, p, e can be written in terms of the velocity derivative to give

dρ

dz
= −ρ

u

du

dz
, (2.31)

dp

dz
= −ρu

du

dz
, (2.32)

de

dz
=

p

ρu

du

dz
. (2.33)

Equations 2.29-2.33 can be integrated to give the solution to the flow for a given di-

vergence dω
dr

. The initial conditions are given by the shock relations - solving the con-

servation equations of mass, momentum and energy across the shock 2.11-2.13 where

the pre-shocked state of the explosive is known. The rear boundary condition is that

the velocity u must be exactly sonic; the argument for this follows from the Chapman-

Jouguet condition that requires the flow velocity go transonic in order for downstream
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rarefactions to not affect (i.e. weaken) the shock wave. Equation 2.29 shows that when

the flow speed is exactly sonic (u = c) η = 0 and the equation becomes singular. As we

cannot have a singularity in the flow we require that φ becomes identically zero and so

the rear boundary condition is the generalised CJ condition (φ = η = 0). Due to the

nonlinear coupling between the reaction rate and the divergence term dω
dr

the solution

at each point in the flow cannot be determined via conservation equations. Thus a

numerical scheme is required to integrate the flow equations. For a given form of dω
dr

there will be a unique, or eigenvalue, detonation speed that satisfies the general CJ

conditions.

2.4.3 Expression for ωr

An expression for ωr can be derived by consideration of the continuity equation in

spherical geometry. With rL the radial coordinate in the laboratory frame and assuming

spherical symmetry we have

∂ρ

∂t
+

∂ (ρuL)

∂rL

= −2ρuL

rL

. (2.34)

Here uL is the radial velocity in the laboratory frame. We now transform to a reference

frame moving at a constant velocity D such that at t = 0 rL = Rs. If z is the distance

in this frame, then it is related to rL and t via

z = Rs + Dt − rL.

Here z = 0 corresponds to t = 0, rL = Rs. Next we transform the derivatives to the

moving frame, using the velocity transform

uL = D − u,
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where u is the flow velocity in the shock-attached frame. The partial derivatives become

(

∂

∂t

)

rL

=

(

∂

∂t

)

z

+

(

∂z

∂t

)

rL

(

∂

∂z

)

t

, =

(

∂

∂t

)

z

+ D

(

∂

∂z

)

t

,

and
(

∂

∂rL

)

t

= −
(

∂

∂z

)

t

.

Application of these transformation equations to 2.34 gives

∂ρ

∂t
+

∂ (ρu)

∂z
= − 2ρ(D − u)

Rs + Dt − z
.

For steady state flow the time derivative can be dropped and assuming that Rs >> z

and small t we have
∂ (ρu)

∂z
= −2ρ(D − u)

Rs

. (2.35)

Comparing 2.35 with 2.22 gives
dω

dr
=

D − u

Rs

, (2.36)

where Rs is the radius of curvature of the shock front.

2.4.4 Equation of state and reaction rate

With the flow equations specified, the equation of state and chemical reaction model

must be specified. The polytropic EOS was used, it is given by

e =
p

(γ − 1) ρ
− λq. (2.37)

Here q is the detonation specific energy and represents the net chemical energy available

for the explosive. The reaction rate equation is

W = α (1 − λ)m pn. (2.38)
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Here α is a rate-constant, m and n are dimensionless constants. For fixed values of m

and n, the magnitude of α is chosen such that λ = 1
2

when z = 1
2

in the ZND detonation

model.

The problem is non-dimensionalised by setting the initial density ρ0 = 1 and the

detonation speed DCJ = 1. Then all flow variables are scaled to these. With the

equation of state specified the shock relations can be used to give the initial conditions

for the numerical integration. Applying the strong shock assumption (p0 = 0) to

the equations for conservation of mass, momentum and energy to give the post-shock

conditions

u = −γ − 1

γ + 1
D , ρ =

γ + 1

γ − 1
, p =

2

γ + 1
D2. (2.39)

In addition - for the polytropic equation of state - the detonation specific energy is

given by

q =
1

2(γ2 − 1)
. (2.40)

γ = 3 is typically used for modelling condensed phase explosives [1].

2.4.5 Shooting Method

With the equation of state and reaction rate model specified there are two free param-

eters - the shock curvature Rs and the detonation speed D. If the detonation velocity

is specified the flow equations 2.29-2.33 form an eigenvalue problem in the shock cur-

vature. There will be a unique value of the shock curvature RS for which the rear

boundary conditions, as described above, are satisfied. The numerical shooting method

is used to obtain the shock curvature for a given detonation velocity. The procedure is

to make a guess for Rs and integrate the flow equations (with the shock relations giving

the initial conditions) until one of the generalised CJ conditions are satisfied (φ = 0 or

η = 0). The detonation velocity is varied, and the flow equations integrated from the

22



shock, until both φ = η = 0 are obtained simultaneously or Rs has converged up to an

arbitrary precision. A bisection method was used to iterate on the detonation velocity.

2.4.6 Calculations

The relationship between the detonation velocity and the shock curvature was inves-

tigated. The relationship was determined for different values of the rate parameter

n.

 0.5
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Figure 2.3: Normal detonation velocity as a function of shock front curvature

with different values of the rate parameter n, m = 1
2

was used for all cases.

Figure 2.3 shows that increasing the shock curvature reduces the normal prop-
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agation velocity for n <= 1.5. The presence of the curvature term in the continuity

equation is analogous to that of a heat loss term along the normal flow direction. One

therefore expects the expansion of the flow to reduce the propagation velocity of the

detonation front. For n > 1.5 there is always a turning point in the curve and the

solution can be multivalued, as was first shown by Cowperthwaite [32]. This is evident

in figure 2.3 for n = 2 where there is a turning point in the curve at D ∼ 0.65, this

is called the extinction/failure point of the solution. For detonation speeds lower than

this the solution is unstable [33] and thus one would always consider the larger velocity

solution for a given value of α
Rs

. The extinction point represents a lower limit on the

steady state propagation velocity based upon the shock curvature. If one could relate

the shock front curvature to the diameter of the charge, then one could obtain a lower

limit on the diameter of a charge in which a detonation could propagate.

Downstream of the sonic locus the flow continues to react and expand. To inte-

grate the solution beyond the sonic locus one can linearise the flow equations at the

point u = c, calculate the eigenvalues and eigenvectors, and determine the solution

trajectory beyond the singular point. It can be shown that the sonic locus is a saddle

point in the (u, λ) plane.

There are no analytical models for relating the rate-stick diameter to the shock

front curvature for the Wood-Kirkwood model. Empirical models, based upon ex-

perimental data, are used to attempt to calibrate mathematical relationships between

curvature and charge size [34]. With this one can relate the detonation velocity to

size of the explosive [14] to obtain diameter effect curves. This method of obtaining

diameter effect curves will not be considered in this thesis.

One-dimensional calculations (with ωr = 0) were performed to investigate the

sensitivity of the flow structure to the detonation velocity. Figure 2.4 shows Mach

number (M = u/c) as a function of the reaction progress variable for different deto-
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Figure 2.4: Mach number as a function of reaction progress variable for a one-

dimensional detonation with reaction rate parameters m = 1
2

and n = 0. Solutions

for different D are indicated by the key.

nations speeds. For D = 0.99 it is the clear that the flow goes supersonic before the

reaction is complete. For D = 1.01 the flow remains subsonic when the reaction com-

pletes. For D = 1.00 the flow goes exactly sonic when the reaction completes. It is

clear that the solution is very sensitive to the value of D. This is evidence of the saddle

point behaviour in the (u, λ) plane and shows that to obtain a correct solution to the

eigenvalue problems requires a precise value of D.
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Chapter 3

CREST Reactive Burn Model

3.1 Introduction

CREST is a reactive burn model for condensed phase explosives comprising of a two-

phase equation of state and an entropy dependent reaction rate. The use of an entropy

based reaction rate is unique to this model when compared with other commonly used

reactive burn models which have reaction rates depending on the pressure or temper-

ature [14][15][26][35]. When modelling detonation of a rate-stick with CREST, the

reaction rate is dependent upon the entropy of the shocked, unreacted, explosive. The

entropy remains constant throughout the reaction zone.

CREST has been shown to accurately reproduce the run-time to detonation and

diameter effect curves [36]. Previously published work [16][36][37][38] has seen CREST

implemented into DNS calculations. However, the model has not been implemented

into any steady state detonation models such as the Wood-Kirkwood model or DSD.

In the following sections an overview of the CREST reactive burn model is given; the

model is implemented into the steady one-dimensional and Wood-Kirkwood detonation
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models.

3.2 Details of CREST

The equation of state is a two-phase model consisting of an unreacted (solid) phase

and fully reacted (gaseous) phase and mechanical (pressure) equilibrium between the

two phases is assumed. Simple mixture laws are used to determine the overall ther-

modynamic variables at any given time. The reaction rate model comprises of a ‘fast’

reaction term and a ‘slow’ reaction term that contribute to a global reaction rate for the

explosive. The global reaction is one-way and the specific detonation energy is released

implicitly via the transition from the solid phase to the gaseous phase.

3.2.1 Equation of State

The solid and gas phase equations of state can be written in the form ek = ek(pk, ρk)

where the k subscript denotes the phase of explosive, s will be used for the solid and g

for the gas phase.

The equation of state for the solid phase [36] is

es = ei(ρs) +
ps − pi(ρs)

ρsΓ(ρs)
, (3.1)
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where

pi(ρs) = 3K0sf(2f + 1)5/2

(

F +
f

2

dF

df

)

,

ei(ρs) =
9

2

K0s

ρ0s

f 2F + Ed,

f =
1

2

[

(

ρs

ρ0s

)2/3

− 1

]

,

F = exp [g(f)],

g(f) = gA + gB + gC ,

gA = A1f + A2f
2 + A3f

3

+
[

B1 (f − fc) + B2 (f − fc)
2 + B3 (f − fc)

3] 1

2

[

1 − 2

π
tan−1

(

(f − fc)

δ

)]

,

gB =
δ

2π

(

B1 − δ2B3

)

ln
[

δ2 + (f − fc)
2] − B2δ

2

π
tan−1

(

(f − fc)

δ

)

+
δ

2π
(f − fc) [2B2 + B3 (f − fc)] ,

gC =
[

B1fc − B2f
2
c + B3f

3
c

] 1

2

[

1 − 2

π
tan−1

(

−fc

δ

)]

− δ

2π

(

B1 − δ2B3

)

ln
[

δ2 + f 2
c

]

+
B2δ

2

π
tan−1

(

−fc

δ

)

+
δ

2π
fc(2B2 − B3fc),

Γ(ρs) = γ00 + Γ1

(

ρ0s

ρs

)m

exp

[

−Γ2

(

ρ0s

ρs

)]

(3.2)

Here pi(ρs) and ei(ρs) are the equations for the pressure and internal energy on the

principal isentrope that have been fitted to experimental data, Γ(ρs) is the Grüneisen

gamma, f is the finite strain variable that describes compression of the solid, Ed is

the specific detonation energy of the explosive, K0s and ρ0s are the bulk modulus and

solid density of the unreacted explosive at theoretical maximum density in standard

conditions, and A1, A2, A3, B1, B2, B3, fc, δ, m, γ00, Γ1, and Γ2 are constants.
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The gas phase is modelled by a Jones-Wilkins-Lee (JWL) equation of state [2]

given by

eg =
pg

ρgw
+ A

(

1

R1ρ0s

− 1

)

exp

(

−R1
ρ0s

ρg

)

+ B

(

1

R2ρ0s

− 1

)

exp

(

−R2
ρ0s

ρg

)

, (3.3)

where A, B, R1, R2, and w are constants.

3.2.2 Reaction Rate

The reaction rate equation [16] comprises of a slow reaction rate coupled to a fast

reaction. The fast reaction attempts to model the initial high reaction rate produced

by ’hot-spots’ immediately behind the shock. The slow reaction, which is coupled to

the first, models the overall bulk burn of the explosive. The reaction rate equations are

given by
dλ

dt
= m1

dλ1

dt
+ m2

dλ2

dt
, (3.4)

dλ1

dt
= (1 − λ1) [−2b1 ln(1 − λ1)]

1

2 , (3.5)

dλ2

dt
= (1 − λ2)λ1

[

2b2

(

b2λ1

b1

− ln(1 − λ2)

)] 1

2

, (3.6)

where

b1 = c0(Zs)
c1 , b2 = c2(Zs)

c3 , (3.7)

and

m1 = (1 − λ)
c6(Zs)

c12

√
b1

, m2 = (1 − λ)

[

c8(Zs)
−c9 + c10(Zs − c13)

c11

√
b1

]

. (3.8)

Here c0 through c13 are constants. ZS is a function of the solid phase entropy and is

given by

Zs =
es(vs) − ei(vs)

τ(vs)
, (3.9)
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where τ(vs) is related to the Grüneisen Γ by

τ(vs) = exp

(

−
∫ vs

v0s

Γ

vs

dvs

)

. (3.10)

This expression is derived by integrating the first law of thermodynamics with the solid

equation of state; see appendix B for details of the derivation.

3.2.3 Mixing Model

The Isentropic Solid Equation (ISE) model is used to determine the equation of state of

the reacting mixture [39]. The model assumes that pressure equilibrium is maintained

throughout the reaction zone between the solid explosive and gaseous detonation prod-

ucts. Simple mixture laws relating to the total density and specific internal energy to

the solid and gas phase are used. To close the equations the solid phase is assumed to

be on an isentrope such that the first law of thermodynamics for an adiabatic process

can be invoked.

The equations are

des =
p

ρ2
s

dρs, (3.11)

1

ρ
=

(1 − λ)

ρs

+
λ

ρg

, (3.12)

e = (1 − λ)es + λeg, (3.13)

ps − pg = 0, (3.14)

where λ describes the total progress of the chemical reaction between the solid and gas

phase (0 for no reaction and 1 for complete).
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3.2.4 Frozen Sound Speed in a two-phase system

To determine the frozen sound speed of a multi-phase system we consider the mixture

equation for density 3.12, as the pressure is the same for the solid and gas phase we

can take the partial derivative with respect to pressure giving

1

ρ2

(

∂ρ

∂p

)

λ

=
1 − λ

ρ2
s

(

∂ρs

∂p

)

λ

+
λ

ρ2
g

(

∂ρg

∂p

)

λ

.

Noting that c2 = ∂p
∂ρ

is the square of the sound speed we can write

1

ρ2c2
=

1 − λ

ρ2
sc

2
s

+
λ

ρ2
gc

2
g

, (3.15)

where cs and cg are the sound speeds of the solid and gas phases respectively. The

general form for the sound speed is derived in appendix A and is

c2
k =

(

p

ρ2
k

−
(

∂ek

∂ρk

)

p

)

/

(

∂ek

∂p

)

ρk

, (3.16)

where k indicates the phase of the explosive.

3.2.5 Explosive models

In this thesis the CREST model is applied to two explosives - EDC37 and PBX9502.

The parameters are taken directly from previously published work [36] and are repro-

duced here for completeness. The equation of state and reaction rate parameters for

each explosive are summarised in table 3.1.
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Parameter EDC37 PBX9502 Units

ρ0 1.8445 1.890 g/cm3

ρ0s 1.8445 1.942 g/cm3

A 6.642021 4.603 Mbar

B 0.2282927 0.09544 Mbar

R1 4.25 3.903

R2 1.825 1.659

ω 0.25 0.48

Ed 0.0719557 0.0373 Mbar cm3/g

K0s 0.1424525 0.090314021 Mbar

A1 2.417494 0.246257

A2 2.208027 11.44221

A3 0.0 0.0

B1 0.0 16.8477

B2 0.0 6.534913

B3 0.0 0.0

fs 0.0 0.05

δ 0.0 0.021322

Γ1 32.33557 126.4052

Γ2 3.596933 6.554447

γ00 0.4 0.4

m 2.0 2.0

c0 2.0 × 108 2.0 × 107 µs−2(Mbar cm3/g)−c1

c1 2.0 2.5

c2 2.2 × 108 8.0 × 106 µs−2(Mbar cm3/g)−c3

c3 2.5 2.5

c6 0.0 1.8 × 1012 µs−1

c8 1.6 × 10−4 0.0 µs−1(Mbar cm3/g)c9

c9 1.0 1.0

c10 4.0 × 105 3.0 × 1013 µs−1(Mbar cm3/g)−c11

c11 1.8 1.25

c12 0.0 5.0

c13 0.0 0.0012 Mbar cm3/g

Table 3.1: Equation of state and reaction rate parameters for CREST reactive burn

models EDC37 and PBX9502.
32



3.3 CREST in Wood-Kirkwood Model

In section 2.4 the differential equations for the Wood-Kirkwood model were derived

for a single phase equation of state. As CREST uses a multiphase equation of state

additional steps are required to determine an expression relating the thermodynamic

variables to the chemical reaction rate. The procedure is very similar and the resulting

equations are of a similar form.

3.3.1 Differential Energy Equation

We begin by considering the specific internal energy of the individual phases. The solid

phase is assumed to be on a isentrope and thus, from 3.11

des =
p

ρ2
s

dρs =
p

ρ2
sc

2
s

dp, (3.17)

where we have used the relation c2
s = ∂p

∂ρs
. For the gas phase we make no assumptions

about the thermodynamics and expand the specific internal energy in terms of p and

ρg. With eg(p, ρg) we have

deg =

(

∂eg

∂p

)

dp +

(

∂eg

∂ρg

)

dρg. (3.18)

To derive an expression relating the global thermodynamic variables we take the dif-

ferential form of the internal energy mixture equation 3.13,

de = (1 − λ) des + λdeg + (eg − es) dλ.

Substituting for des with 3.17 and deg with 3.18

de =
(1 − λ)

ρ2
sc

2
s

p dp + λ

[(

∂eg

∂p

)

dp +

(

∂eg

∂ρg

)

dρg

]

+ (eg − es) dλ. (3.19)

33



To find an expression for dρg we consider the differential form of 3.12

− 1

ρ2
dρ = −(1 − λ)

ρ2
s

dρs −
λ

ρ2
g

dρg +

(

1

ρg

− 1

ρs

)

dλ.

Substituting for dρs using 3.17 and rearranging for dρg

dρg =
ρ2

g

λ

[

dρ

ρ2
− (1 − λ)

ρ2
sc

2
s

dp +

(

1

ρg

− 1

ρs

)

dλ

]

.

Substituting this expression into 3.19 and using the first law of thermodynamics, equa-

tion 2.3, to substitute for de

p

ρ2
dρ =

(1 − λ)

ρ2
sc

2
s

p dp + λ

(

∂eg

∂p

)

dp + (eg − es) dλ

+ ρ2
g

(

∂eg

∂ρg

)[

dρ

ρ2
− (1 − λ)

ρ2
sc

2
s

dp +

(

1

ρg

− 1

ρs

)

dλ

]

.

Grouping terms multiplying derivatives in ρ, p, λ
(

p − ρ2
g

(

∂eg

∂ρg

))

dρ

ρ2
=

[(

p − ρ2
g

(

∂eg

∂ρg

))

(1 − λ)

ρ2
sc

2
s

+ λ

(

∂eg

∂p

)]

dp

+

[

ρ2
g

(

∂eg

∂ρg

)(

1

ρg

− 1

ρs

)

+ (eg − es)

]

dλ. (3.20)

The sound speed squared of the gas can be written

c2
g =

(

p

ρ2
g

−
(

∂eg

∂ρg

))

/

(

∂eg

∂p

)

.

Rearranging this expression gives

p − ρ2
g

(

∂eg

∂ρg

)

= ρ2
gc

2
g

(

∂eg

∂p

)

.

Substituting this into the left-hand-side of 3.20

ρ2
gc

2
g

(

∂eg

∂p

)

dρ

ρ2
=

[

ρ2
gc

2
g

(

∂eg

∂p

)

(1 − λ)

ρ2
sc

2
s

+ λ

(

∂eg

∂p

)]

dp

+

[

ρ2
g

(

∂eg

∂ρg

)(

1

ρg

− 1

ρs

)

+ (eg − es)

]

dλ,
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multiplying this expression by ρ2/ρ2
gc

2
g

(

∂eg

∂p

)

dρ = ρ2

[

(1 − λ)

ρ2
sc

2
s

+
λ

ρ2
gc

2
g

]

dp +
ρ2

ρ2
gc

2
g

(

∂eg

∂p

)

[

ρ2
g

(

∂eg

∂ρg

)(

1

ρg

− 1

ρs

)

+ (eg − es)

]

dλ.

By 3.15, the term in the first set of square braces is 1
ρ2c2

, using this result and multiplying

by c2

c2dρ = dp + Qdλ, (3.21)

where

Q =
ρ2c2

ρ2
gc

2
g

(

∂eg

∂p

)

[

ρ2
g

(

∂eg

∂ρg

)(

1

ρg

− 1

ρs

)

+ (eg − es)

]

. (3.22)

Here Q is the thermicity parameter for CREST. Equation 3.21 is simply a consequence

of the first law of thermodynamics and is independent of the remaining flow equations

and geometry of the problem.

3.3.2 Master Equation

We are now in a position to reduce the system of equations into a master equation in

the flow velocity u. A similar procedure to that of section 2.4.2, for the single phase

equation of state, is followed.

Substituting for the density derivative using 2.22 and the pressure derivative using

2.23 into the differential energy equation 3.21 we have

−c2 ρ

u

du

dz
− 2c2 ρ

u

dω

dr
= −ρu

du

dz
+ Q

dλ

dz
.

Solving for the velocity derivative gives

du

dz
=

2c2 dω
dr

+ Qu
ρ

dλ
dz

u2 − c2
. (3.23)
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This is the master equation in the flow velocity, u, which is coupled directly to the

reaction rate equation 3.4. Differential equations for the other flow variables are coupled

to the velocity equation via

dρ

dz
=

ρ

u

du

dz
,

dp

dz
= −ρu

du

dz
,

dρs

dz
= −ρu

c2
s

du

dz
,

de

dz
=

pu

ρ

du

dz
. (3.24)

For the remaining flow variables, es can be calculated from the equation of state 3.1.

Then eg and ρg can be calculated using the mixture equations 3.12 and 3.13.

The flow equations for the CREST Wood-Kirkwood model must be solved between

the post-shock state and the generalised CJ condition. The generalised CJ conditions

require that the numerator and denominator of the RHS of 3.23 be identically zero i.e.

2c2dω

dr
+

Qu

ρ

dλ

dz
= 0, u2 = c2. (3.25)

For a given detonation velocity D there will be a unique value of dω
dr

that will satisfy

3.25 identically, which must be found as part of the solution process.

3.3.3 Shock Relations

In the shock-attached frame the pre-shocked explosive has density ρ0, detonation spe-

cific energy Ed and velocity D. It is assumed that the explosive is non-reacting as it is

shocked (λ = 0). Although in practice some reaction may be expected to occur through

the shock this assumption is necessary to ensure a unique post-shock state. As the solid

phase equation of state is non-linear in ρs analytical solutions to the shock relations

are not readily possible: it must thus be determined numerically. The procedure for

solving the shock relations is now outlined.
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We first consider the equations for conservation of mass, momentum and energy.

ρsus =ρ0D, (3.26)

ps + ρsu
2
s =p0 + ρ0D

2, (3.27)

es(ρs, ps) +
ps

ρs

+
1

2
u2

s =es(ρ0, p0) +
p0

ρ0

+
1

2
D2, (3.28)

Equations 3.26 and 3.27 can be used to eliminate us and ρs in turn to give

ρs =
ρ2

0D
2

ρ0D2 + ps − p0

, (3.29)

and

us =
ρ0D

2 + ps − p0

ρ0D
. (3.30)

Substituting equations 3.29 and 3.30 into the energy equation 3.28 leaves only ps to be

determined. A secant routine was used to iterate on ps, terminating when the error

post-shock pressure was less than 10−6Mbar.

3.3.4 Modelling Details

An explicit fourth-order Runge-Kutta scheme was used to integrate the flow equations

between the shock and CJ condition.

Immediately behind the shock the explosive is unreacted and the thermodynamic

term in the master equation 3.23 Q = 0. The mixture of solid and gas is initialised

when λ first becomes greater than a small parameter ǫ. For λ > ǫ the mixture equations

are used and the flow variables are updated using the differential equations 3.24. For

these simulations ǫ = 10−2 was used. The small parameter ǫ was chosen to match the

value used in the DNS calculations.

At the point of initial mixing we evaluate the mass, momentum and energy which

gives

ρu = ρnun = M1, (3.31)
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p + ρu2 = pn + ρnu
2
n = Π1, (3.32)

e +
p

ρ
+

1

2
u2 = E0. (3.33)

Here M1 and Π1 will not be the same as the initial mass and momentum flux due to

the presence of the divergent flow term, un and ρn are the current flow velocity and

density. The total energy E0 is conserved along the flow and is given by the RHS of

equation 3.28 from the shock relations. Introducing the reaction term releases some

detonation energy into the system, it is therefore necessary to adjust the flow variables

to introduce this energy. To determine the mixed state the solid phase density is varied

until the conservation equations 3.31-3.33 and the CREST mixture equations 3.12-3.14

are satisfied.

The procedure is outlined below. An initial guess is made for the new solid density,

ρn+1
s , using the isentropic expansion of the solid 3.11 we obtain the solid specific internal

energy

en+1
s = en

s − pn

(

1

ρn+1
s

− 1

ρn
s

)

, (3.34)

where pn and ρn
s are the solid pressure and density before the mixing. The new pressure

can be immediately obtained from the solid phase equation of state

pn+1 = ps

(

ρn+1
s , en+1

s

)

. (3.35)

Eliminating ρ from the mass 3.31 and momentum 3.32 equations gives

un+1 =
Π0 − pn+1

M1

, (3.36)

which immediately can be used with 3.31 to obtain the density

ρn+1 =
M1

un+1
. (3.37)
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With the total density and solid density computed the gas density is obtained using

3.12

ρn+1
g =

λn

1
ρn+1 − 1−λn

ρn+1
s

. (3.38)

By 3.14 the solid and gas pressures are equal and with ρg known, we can compute the

specific internal energy of the gas

en+1
g = eg(ρ

n+1
g , pn+1). (3.39)

The total specific internal energy is given by 3.13,

en+1 = (1 − λn)en+1
s + λnen+1

g . (3.40)

Finally using the conservation of energy equation 3.33 we have

en+1 +
pn+1

ρn+1
+

1

2

(

un+1
)2 − E0 = 0. (3.41)

This condition is used to form the basis an iterative scheme to adjust the flow variables

when the gaseous phase is introduced. A secant method is used to iterate on ρs which

is terminated when equation 3.41 is satisfied to a prescribed numerical accuracy, in this

case when

en+1 +
pn+1

ρn+1
+

1

2

(

un+1
)2 − E0 < 5 × 10−6,

the secant routine was terminated.

The expression for dω
dr

- derived in section 2.4.3 - used in these calculations was

dω

dr
=

D − u

Rs

, (3.42)

where Rs is the shock curvature. For a given detonation velocity D the model reduces

to an eigenvalue problem in the shock curvature Rs. The numerical shooting method

was used to determine Rs, integrating the flow equations from the shock until one of
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the generalised CJ conditions 3.25 was satisfied, Rs was then varied using a bisection

method and the flow equations integrated again. The bisection method was terminated

when the fractional change in Rs was less than 1 in 10−5.

3.3.5 Wood-Kirkwood Calculations

Figure 3.1 shows that for PBX9502 the detonation velocity at which extinction occurs

is at a much higher fraction of DCJ than that of EDC37. This suggests that EDC37

would support detonation velocities at a smaller fraction of its CJ speed compared to

PBX9502 in 2D calculations. The curvature at which extinction occurs in PBX9502

is approximately half of that of EDC37. This can be understood by inspection of

figure 3.2, which shows that the Detonation Driving Zone (DDZ) length (i.e. the

distance between the shock and the sonic locus) increases more rapidly for PBX9502 as

a function of curvature compared with EDC37. For small shock curvature the reaction

zone thickness for PBX9502 is thinner than EDC37 which suggests that PBX9502

could sustain detonation at larger magnitudes of curvature than EDC37. However, the

reaction zone thickness for PBX9502 is more sensitive to the entropy than EDC37,

which is a function of the detonation velocity. As the shock front curvature increases

(and detonation velocity decreases) the reaction zone thickness increases more rapidly

for PBX9502 resulting in the failure curvature being smaller than that of EDC37.
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Figure 3.1: Normal shock velocity versus shock front curvature for CREST explosives

models.
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Figure 3.2: Distance between shock front and sonic locus for CREST explosive models.

Only data up to the extinction point is shown.
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Chapter 4

Numerical Methods for DNS

4.1 Introduction

Implementing the explosive model (i.e. equation of state and reaction rate) into the DNS

requires the addition of a sub-routine to compute the equation of state and additional

parameters related to the extent of reaction. An overview of the numerical scheme used

to solve the rate-stick detonation problem is given.

4.2 Conservative Schemes

Solving the Euler equations using a conservative based scheme is a natural choice as

only conservative schemes, if convergent, will converge to the weak solution of the

conservation law [40]. As the detonation problem involves a propagating shock and the

chemical reaction rate depends on the shock strength it is important that the shock is

captured accurately.

Equations 2.1-2.4 without the source terms can be expressed in differential con-
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servation form as
∂u

∂t
+

∂f

∂x
= 0, (4.1)

where u is a vector of primitive variables and scalars, f = f(u) is the corresponding

flux vector and is a function of u. For shock-capturing it is necessary to use the weak,

or integral, formulation of the equations. Using one spatial dimension we consider an

arbitrary fixed interval [x1, x2] in which the corresponding integral form of 4.1 is

d

dt

∫ x2

x1

u dx + f(x2, t) − f(x1, t) = 0. (4.2)

We now consider a numerical domain split into J cells, of equal width, where the jth

cell is given by

xj−1/2 = xL + (j − 1)∆x ≤ x ≤ xj−1/2 = xL + j∆x

[

∆x =
xR − xL

J

]

.

Here xL and xR are the left and right boundaries of the x−domain and xj are nodes

located at the centre of each cell as shown in figure 4.1. Between each node at x = xj

are cell interfaces located at x = xj−1/2 and x = xj+1/2. We define the average of u in

the jth cell at time t = tk by

uk
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x, tk)dx. (4.3)

Putting x1 = xj−1/2, x2 = xj+1/2 and integrating from tk to tk+1 then 4.2 becomes

∫ tk+1

tk

d

dt

∫ xj+1/2

xj−1/2

u(x, tk) dx +

∫ tk+1

tk

[

f(xj+1/2, t) − f(xj−1/2, t)
]

dt = 0.

Using the definition of the cell average in 4.3 we can write

uk+1
j = uk

j +
1

∆x

∫ tk+1

tk

[

f(xj−1/2, t) − f(xj+1/2, t)
]

dt. (4.4)

This expression is the starting point for all conservative schemes. It tells us that for a

cell located at x = xj and time t = tk we are required to compute the time integral of
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the flux at the interface with the adjacent cell at x = xj+1/2 and x = xj−1/2. Equation

4.4 is exact provided that the fluxes f are known exactly. However, since the flux is

not known exactly an approximation must be made to the time integral of the flux.

Applying equation 4.3 for the cell average to the time integral of the flux function in

4.4 we can write

uk+1
j = uk

j +
∆t

∆x

[

f̄j−1/2 − f̄j+1/2

]

. (4.5)

Here f̄j−1/2 is the time average of the numerical flux at the jth cell interface. The method

chosen to approximate the numerical flux is the feature that distinguishes different

conservative schemes. One obvious choice is the central difference approximation to

the flux given by

f̄j+1/2 =
1

2

[

fk
j+1 + fk

j

]

,

where the flux fk
j = f(uk

j ) is a function of the solution state. This scheme can be shown

to be unconditionally unstable even for a simple linear advection problem. Therefore an

alternative approach must be considered. One solution to this problem is the method

of calculating the flux due to Godunov.
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j j + 1j − 1

uk
j

j − 1/2 j + 1/2
x

Figure 4.1: Piece-wise constant distribution of variables in a conser-

vative scheme at time tk. Each cell, centred at node x = xj, has

cell interfaces located at x = xj−1/2 and x = xj+1/2. In a conservative

scheme it is assumed that the cell average is constant over a time step.

4.3 Godunov Schemes

The approach of Godunov [41] was to utilize the assumption that the solution at a

given time was described by a series of piece-wise constant states. At the edges of a

cell there is a discontinuity as the solution jumps to that of the neighbouring cell as

shown in figure 4.1. In isolation this discontinuity forms a local Riemann problem at

the interface between adjacent cells - the solution of which can be found iteratively.

The solution to the Riemann problem, for the one-dimensional Euler equations,

can contain three types of wave: rarefactions, a contact discontinuity and shocks. Figure

4.2 shows a schematic of one of the possible wave patterns in which the shock and

contact waves have positive wave velocity and the rarefaction wave has negative wave

velocity. The three waves separate constant states in the flow; the solution is smooth

and continuous through the rarefaction wave and discontinuities in the flow separate

the solutions for the contact and shock waves. Other solution patterns are possible [42].
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As the solution state, u, at the interface is constant in time and can be determined

exactly for the Riemann problem the corresponding flux f can then be used in equation

4.5 to update the solution in a cell.

Figure 4.3 illustrates the Godunov method in one spatial dimension. At cell j

there are two solutions to the Riemann problem at nodes j − 1/2 and j + 1/2. The

solutions to these Riemann problems are taken at time tk+1 and are used to compute

the numerical flux in equation 4.4 to update the solution in the cell. An important

feature in 4.3 is that at time tk+1 the solutions of the two Riemann problems either side

of cell j do not overlap - a small enough time step ∆t must be used to ensure that no

information is lost in the solution.

tRarefaction Contact Shock

1

2 3

4

x

Figure 4.2: Schematic of the solution regime in x − t space of the

one-dimensional Riemann problem. There are four regions where the

solution is constant. These regions are separated by a rarefaction

wave, contact discontinuity and a shock wave.

Each Riemann problem at cell interfaces can be solved exactly using an iterative
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j j + 1j − 1
tk

tk+1

C SR

j − 1/2

C SR

j + 1/2

x

Figure 4.3: Illustration of Godunov’s method - the solution at node

[j, tk+1] is updated using the fluxes at the interfaces j−1/2 and j+1/2.

The fluxes at the interfaces are obtained from the solution to the

Riemann problem. The waves separating the solution state for each

Riemann problem are shown labelled as R,C, S corresponding to the

rarefaction, contact and shock solution.

method. However, this process can be become computationally expensive when a large

number of numerical cells are being used with an arbitrary equation of state. To this

end a number of approximate Riemann solvers have been developed.

4.4 HLLC Scheme

The HLLC approximate Riemann solver was used for the DNS calculations. It was

chosen as it maintains contact and shear waves [43]. This is important for 2D rate-

stick calculations where the explosive is confined by an inert with a steep profile at the

interface. If a solver were too diffuse this boundary would become smoothed changing

the initial conditions of the pre-shocked explosive - this may have an effect upon the

post-shock state of the flow and affect the wave speed. Another advantage of the HLLC
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scheme over other schemes, such as those due to Roe and Osher, is that the Jacobian of

the flux vector is not required. As the CREST equation of state 3.1 requires extensive

computation for each call, use of the HLLC scheme avoids the computational expense

of calculating the Jacobian.

The HLLC approximate Riemann solver assumes that there are four constant

solution states, separated by three waves with speeds SL, SR, S∗ corresponding to the

smallest, largest and intermediate wave speeds (the wave speeds can be negative). The

smallest and largest wave speeds are determined from the initial state of the Riemann

problem, the intermediate wave speed S∗ is approximated using a combination of the

smallest and largest wave speeds. The solution state is given by

ū =







































uL if 0 ≤ SL ,

u∗L if SL ≤ 0 ≤ S∗ ,

u∗R if S∗ ≤ 0 ≤ SR ,

uR if 0 ≥ SR .

(4.6)

Here uL and uR correspond to the solution states 1 and 4 in figure 4.2 and correspond

to the initial left and right states in the Riemann problem. Here we are using the

convention that SL is the slowest wave and SR is the fastest. The intermediate wave

S∗ separates states u∗L and u∗R. These states are given by

u∗K = ρK

(

SK − uK

SK − S∗

)











1

S∗

EK

ρK
+ (S∗ − uK)

[

S∗ + pK

ρK(SK−uK)

]











, (4.7)

where K = L for the left state and K = R for the right state. Here the vector u∗K

corresponds to the conserved variables in mass, momentum and energy. To implement
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the HLLC scheme the numerical flux is required, this is given by

fhllc =







































fL if 0 ≤ SL ,

f∗L = fL + SL (u∗L − uL) if SL ≤ 0 ≤ S∗ ,

f∗R = fR + SR (u∗R − uR) if S∗ ≤ 0 ≤ SR ,

fR if 0 ≥ SR ,

(4.8)

where u∗L and u∗R are given by 4.7. This approximation to the numerical flux is used

in equation 4.5 to integrate the solution in time. For an advected scalar q (e.g. the

reaction parameter) the HLLC state is given by

(ρq)
∗K = ρK

(

SK − uK

SK − S∗

)

qK , (4.9)

which can then be used in equation 4.8 to compute the corresponding flux.

The middle wave speed S∗ was calculated based upon the expression developed

by Batten [44]

S∗ =
pR − pL + ρLuL (SL − uL) − ρRuR (SR − uR)

ρL (SL − uL) − ρR (SR − uR)
. (4.10)

This choice of wave speed estimate has the advantage that it is unchanged if a different

equation of state is implemented.

4.5 MG Software

The DNS calculations were performed using Falle’s MG software [45][46]. In the fol-

lowing section some important features of the software are discussed and an overview

of the adaptations made to the software to incorporate the multi-phase CREST model.
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4.5.1 Adaptive Mesh Refinement

MG utilises Adaptive Mesh Refinement (AMR) such that high resolution (i.e. smaller

numerical cells) is employed only where necessary. To achieve this it employs a hierar-

chical structure of grids G0, G1, ..., GN where N + 1 is the total number of levels. The

grid spacing, hn, for Gn is given by h0

2n , where h0 is that on G0. The solution on grids G0

and G1 are present across the whole domain. Refinement beyond grid G1 is determined

by comparing the differences in the solution between Gn−1 and Gn in each cell on Gn.

If this exceeds a set tolerance then the cell is refined to Gn+1. The refinement algorithm

continues to be applied until the difference between the solutions on two levels is smaller

than the tolerance or the solution has been refined to the maximum level N (specified

by the user).

For the simulations performed in this thesis an additional refinement algorithm,

based upon the chemical reaction rate, was included to ensure that the solution was

always resolved to the finest level in the reaction zone.

4.5.2 Second Order Integration

Second order accuracy is achieved by integrating the first order scheme (equation 4.5)

to get the solution u
k+1/2
j at the half time step. Average gradients of the primitive

variables p = (ρ, u, v, p), in each cell, are computed and then used to update the fluxes

in the Riemann problem to achieve second order integration.

The gradient in the axial coordinate direction is

(

∂p

∂z

)k+1/2

ij

=
1

h
av

(

p
k+1/2
ij − p

k+1/2
ij−1 ,p

k+1/2
ij+1 − p

k+1/2
ij

)

, (4.11)

where i, j correspond to the indices for the radial and axial cells and h is the cell

width. Here av(a, b) is a non-linear averaging function. It has the effect of reducing

51



the numerical scheme to first order in the region of discontinuities. This is necessary

as Godunov showed that a second order scheme is not monotonic near discontinuities

[41]. The averaging function is given by [45]

av(a, b) =
a2b + ab2

a2 + b2
. (4.12)

With the gradients determined the left and right states in the Riemann problem at the

half time-step are

pL = p
k+1/2
ij +

h

2

(

∂p

∂z

)k+1/2

ij

,

pR = p
k+1/2
ij+1 − h

2

(

∂p

∂z

)k+1/2

ij+1

, (4.13)

with the corresponding flux given by

f
k+1/2
ij+1/2 = f (pL,pr) . (4.14)

The solution is advanced to the complete time-step tk+1 using these fluxes in equation

4.5. The resulting numerical scheme is upwind, explicit and second order in smooth

regions. A more complete discussion of the second order scheme, applied to the ax-

isymmetric Euler equations, is given by Falle [46].

4.5.3 Additional Solution Parameters

Implementing the CREST model into MG required the addition of an equation of state

sub-routine and some additional advected scalars. The additional advected scalars

required were ρs, es, λ1, λ2, λt, δe. To prevent the confiner reacting an additional scalar

was used to determine whether a given cell was explosive or the confiner. Here δe

indicates whether a given cell was explosive material or confiner. It took on the values
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of

δe =











1 if explosive,

0 if confiner.

(4.15)

The confiner was modelled with the CREST equation of state at a lower initial density

than that of the explosive. The initial pressure was matched to that of the explosive.

4.5.4 Reaction Source Term

To ensure that the reaction occurred in the shocked explosive only, criteria were placed

on the initiation of the chemical reaction source terms. In this thesis the reaction

source term refers to the term appearing on the RHS of the reactive Euler equations

(see equation 2.6), which is given by the density times the reaction rate equation W .

The criteria for reaction were based upon the pressure in the cell and whether the cell

was explosive/confiner material i.e.

p > pc ; δe > δc add reaction terms,

otherwise ignore reaction terms.

These criteria ensured that the chemical reaction source terms were added in shocked

explosive material only. The values pc = 0.05 Mbar and δc = 0.99 were used throughout.

The choice of pc was based upon 10% of the CJ pressure for the EDC37 explosive.

In CREST the reaction rate is strongly dependent upon the entropy of the shocked

solid. It is therefore important that the numerical scheme calculates the correct entropy

for the solid. If there was a mixture of solid and gas in the shock it is not clear how

that would change the entropy of the solid phase. If the entropy of the shocked solid

were incorrectly calculated this would have an impact upon the time for the reaction

to complete and effectively change the length scales in the problem.
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To prevent the gas phase being present in the shock the mixture model can be

switched on after a delay by requiring λ > ǫ (here λ = ×10−2). For λ < ǫ the density

and specific internal energy are given by the solid equation of state only. This will ensure

that the shock for the solid phase is captured correctly. As MG uses shock-capturing it

is important that only the solid phase is present in the shock - this is necessary to ensure

the shock relations are satisfied within the numerical scheme. If significant amounts

of gas phase were introduced then there internal structure of the shock could have a

large impact on the reaction dynamics behind it. In addition the steady state models

assume the shock occurs in the solid only (λ = 0) and we want to get as close to that

as possible. Previous calculations with CREST [36] prevented reaction occurring in the

shock structure using an alternative method termed ‘q-switching’. The magnitude of

the artificial viscosity would increase at the shock and reduce immediately behind it.

It was only after the reduction in the artificial viscosity that the reaction was initiated,

thus preventing reaction inside the shock structure.

4.5.5 Equation of State - Pressure

When implementing an equation of state into a hydrodynamic code the equation of

state is necessary to compute the pressure from the conserved variables. At each new

time step the conserved variables give (e, ρ, λ). For a simple equation of state, such as

the polytropic equation given by 2.37 the pressure can be computed explicitly from the

conserved variables.

In the case where only the solid phase is present the code computes the pressure

by using the analytic expression p = ps(ρ, e) which can be obtained from 3.1. When the

solid/gas mixture is switched on computing the pressure involves solving the mixture

equations 3.11-3.14 iteratively. The procedure is as follows, we begin by making an
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initial guess for the new solid phase density ρ1
s (a superscript 1 indicates the next time

step, a superscript 0 indicates the previous step) and apply the isentropic expansion of

the solid to obtain

e1
s = e0

s + p0

(

1

ρ1
s

− 1

ρ0
s

)

.

The gas phase density and specific internal energy are obtained from the mixture equa-

tions

ρ1
g =

λ1

1
ρ1 − (1−λ1)

ρ1
s

,

and

e1
g =

e1 − (1 − λ1)e1
s

λ1

With the solid and gas phase parameters determined the mechanical equilibrium con-

dition is

ps(ρ
1
s, e

1
s) − pg(e

1
g, ρ

1
g) = 0.

A secant routine was used to iterate on the solid density, terminating when the pressure

difference was smaller than 10−3 MBar. The advected scalars corresponding to the solid

phase density and specific internal energy were updated with the new values. These

values are then used as the initial state of the solid phase in subsequent calls of the

equation of state routine.

4.5.6 Solid Phase Equation of State

Previous calculations [36] using CREST employed the snowplough model for the unre-

acted equation of state. The snowplough model assumes that the unreacted explosive

is shocked at zero pressure up to the theoretical maximum density ρ0s (maximum here

implies zero porosity), above which a finite pressure is present in the explosive. Prac-

tically, this means that for ρ < ρ0s an equation of state call will return p = 0. For
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the unreacted equation of state, as described by equation 3.1, for densities ρ < ρ0s and

a small specific internal energy the equation of state returns p < 0. This behaviour

is problematic as complex sound speeds can be obtained and causes problems in the

numerical code. One option to prevent negative pressures being returned is to use a

numerical cut-off, such that for ρ < ρ0s the EOS returns p = 0. However, it would be

preferable to have p → 0 as ρ → 0. To achieve this behaviour in the EOS a blending

function was applied to the reference pressure curve centred at the reference density

ρ0s. The form of the new pressure reference curve is

pi(ρ) = α pi−old + (1 − α) pi−new, (4.16)

where pi−old is the first equation in 3.2. Here α is determined by a tanh function

α =
1

2

(

1 + tanh

[

ρ − ρref

k

])

, (4.17)

which for small k has similar properties to a heaviside function centered at ρ = ρref .

The modified pressure reference curve was given by simple polynomial in ρ.

pi−new =
1

5

(

2

(

ρ

ρ0

)10

+ 3

(

ρ

ρ0

)12
)

pi−old(ρref ). (4.18)

This ensures that pi(ρ) is always positive and that p → 0 as ρ → 0. For all CREST

calculations ρref = 1.03ρ0s and k = 0.2 gcm−3 were used. The exponents in 4.18 were

chosen to give a smooth pressure profile between ρ = 0 and ρ = ρ0. Figure 4.4 shows how

the use of the blending function modifies the unreacted EOS compared to the original

EOS. Within the detonation driving zone (i.e. where the flow is subsonic relative to the

shock) ρs > ρ0s and thus the change to the equation of state is not expected to have

an affect on the results compared to using the original pressure reference curve. Indeed

the minimum solid phase density in the one-dimensional solution is ρs = 2.75 gcm−3.

Inspection of figure 4.4 indicates that at this density the blended EOS matches the
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original EOS well. The regions where the low densities are observed in 2D calculations

are downstream of the shock near the explosive-confiner interface where unreacted solid

undergoes a transonic Prandtl-Meyer expansion. As the flow is supersonic here this

region will have no influence on the shock and thus not affect the detonation solution.

 0
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 0  0.5  1  1.5  2  2.5  3

p

ρ

e=q
ref: e=q

e=eCJ
ref: e=eCJ

Figure 4.4: Pressure as a function of density (at fixed specific internal energy) showing

how the blended EOS modifies the original EOS (labelled ref curves for the unreacted

explosive. The legend indicates different values of specific internal energy: eCJ is the

post-shock internal energy from the shock relations for D = DCJ ; e = q is effectively

zero specific internal energy where the internal energy is comprised of the detonation

specific energy only. The vertical dashed line indicates where the blending function is

centred.
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4.5.7 Artificial Dissipation

In Godunov-type numerical schemes the shock is spread over a finite number of com-

putational cells. As the shock propagates across the domain the internal structure of

the shock will vary depending upon the alignment of the shock with the grid. These

variations in structure generate numerical noise that can be transported downstream

and can affect the accuracy of results. For a fast moving shock short-wavelength noise

is produced that is rapidly dissipated by the numerical scheme and thus does not affect

the solution. However, for stationary or slowly moving shocks, long wavelength pertur-

bations are generated that are not sufficiently dissipated by the numerical scheme and,

in some cases, can produce unphysical results [47]. Notable examples of these include

expansion shocks resulting from corners and the carbuncle phenomena, which occurs

when a static bow shock is closely aligned with the grid [48].

One method of avoiding these phenomena is to introduce some artificial dissipation

into the numerical scheme [49]. In this case the artificial dissipation is added directly to

the approximate Riemann solver and this method has been used in previous calculations

using the MG software for Magnetohydrodynamic calculations and explosive rate-stick

calculations [30][35][45]. Two forms of artificial dissipation were used; one based upon

a dynamic viscous stress and a heat conduction term. The artificial viscosity terms

spread the shock over a greater number of cells. The artificial heat conduction was

included to prevent the specific internal energy becoming negative, this was observed

in 2D calculations with the PBX9502 CREST model. This problem has been previously

observed in the literature in regions where the kinetic energy is much larger than the

thermal energy [48].

The artificial viscosity terms were added to the momentum and energy flux and

the artificial heat conduction was added to the energy flux in the approximate Riemann
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solver. Each of the terms was computed based upon the left and right states in the

Riemann solver, represented by L and R subscripts in the following equations. The

viscous momentum flux vector was given by

fv = αvcvis (vL − vR) , (4.19)

which is only applied to the velocity component normal to the interface. For each

component in 4.19 there is a viscous energy flux term of the form

Fv =
αvcvis

2
(vL − vR) (vL + vR) , (4.20)

where there is a contribution from the radial and axial components of the viscous flux

vector. The artificial heat conduction term was

Fe = αecvis (βL − βR) , (4.21)

where β was chosen based upon the expression for the solid phase entropy 3.9

β = es − ei. (4.22)

Here αv and αe are dimensionless constants, cvis is a weighted average of the sound

speed and densities in the left and right states of the Riemann problem

cvis =
2

1
ρLcL

+ 1
ρRcR

, (4.23)

where ρL, cL and ρR, cR are the density and sound speeds of the left-state and right

states respectively. Away from the shock the artificial dissipation terms are O(∆x2)

and thus do not affect the order of the scheme in smooth regions [45].
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Chapter 5

DNS Calculations

5.1 Introduction

In the following chapter one and two-dimensional DNS calculations with CREST are

described and results presented. The one-dimensional simulations are verified via a

direct comparison with results from the steady state ZND model.

5.2 One-dimensional Simulations

5.2.1 Introduction

One-dimensional calculations are used as an important test bed when developing any

detonation model for a number of reasons. Firstly, they are computationally cheaper

to run - when compared with two-dimensional calculations - which reduces lead times

on studies for determining explosive model parameters. Secondly simple numerical

convergence studies can be performed which can inform on the minimum resolutions

required for two-dimensional calculations. Finally, one can make a direct comparison
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between the DNS solution and the steady-state ZND model of detonation. In the limit

of steady state detonation these solutions should be identical. Verification between DNS

and the ZND model is important to ensure that the implementation of the equation of

state and reaction rate is correct.

A number of one-dimensional studies were performed for the CREST EDC37

and PBX9502 models: a numerical convergence study; a comparison between the DNS

solution obtained in different frames of reference; and the solution from the DNS is

compared to the steady state ZND model.

5.2.2 Numerical details for 1D calculations

Details of the numerical domain used for the laboratory frame calculations are given

in table 5.1. A high pressure region, at the left-hand-side of the explosive domain

initiates a detonation wave that propagates from left-to-right. The wave was allowed to

propagate until z > 0 (approximately O(100) reaction zone lengths) to ensure a steady

state solution was obtained. The solution was then transformed to the shock-attached

frame by applying a velocity shift across the entire domain. The detonation wave

would then propagate either left or right dependent upon the magnitude of the shift.

The magnitude of the velocity shift was varied until the detonation wave became static

on the grid. The magnitude of the velocity shift corresponds exactly to the detonation

wave speed. For the stationary calculations the shock front was maintained at z = 0.

This procedure was repeated for resolutions of [20, 40, 80, 160, 320, 640] cells/mm for the

EDC37 and PBX9502 explosive models. In these calculations no AMR was utilised.

When comparing the DNS solution and the result from the steady state ZND

solution the stationary shock solution was used.

The artificial dissipation parameters (see equations 4.19 and 4.21) used in the
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Coordinate / cm Boundary Condition Initial State

z = −2.0 Free CJ

−2.0 < z < −1.9 N/A CJ

−1.9 < z < 0.2 N/A Unreacted

z = 0.2 Fixed Unreacted

Table 5.1: Details of the initial setup of the laboratory frame 1D calculations. The

term ’CJ’ refers to post-shock state of the explosive determined by the shock relations.

’Unreacted’ is the quiescent state of the explosive.

laboratory frame calculations were:

αv = 0.2, αe = 0.2.

For the stationary shocks the parameters were:

αv = 0.6, αe = 0.2.

It was necessary to increase the magnitude of the artificial viscosity for the stationary

shock calculations to produce a stable shock structure. When working in the shock

attacked frame the shock is spread over fewer grid cells compared to a moving shock

and can produce unwanted numerical noise. Increasing the magnitude of the artificial

viscosity spreads the shock over a greater number of grid cells and allows for a stable

shock structure to be formed.

To enable the number of a cells in the reaction zone a simple routine was developed

that would compute the reaction source term in each cell. A cell was defined to be in

the reaction zone if the source term ρW > 0.1 (where W is the reaction rate).
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5.2.3 DNS Convergence

EDC37

Cells/mm. Cells in reaction zone Reaction in shock?

20 6 Yes

40 14 Yes

80 27 No

160 52 No

320 104 No

640 204 No

Table 5.2: Number of grid cells in the reaction zone for various resolutions for EDC37.

The data was obtained from stationary shock solutions. Also indicated is whether

reaction (i.e. mixture EOS) occurred inside the shock structure.
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(b) Reaction source term.

Figure 5.1: One-dimensional simulations of EDC37 - legend indicates resolution in

cells/mm. The solution is in the shock-attached frame.
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(b) Solid phase entropy with the y-axis zoomed in.

Figure 5.2: One-dimensional simulations of EDC37 - legend indicates resolution in

cells/mm. The solution is in the shock-attached frame.
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PBX9502

Cells/mm Cells in reaction zone Reaction in shock?

20 4 Yes

40 8 Yes

80 9 Yes

160 27 Yes

320 63 No

640 122 No

Table 5.3: Number of cells in the reaction zone as a function of resolution for PBX9502.

The data was obtained from stationary shock solutions.

Table 5.2 shows that for EDC37 at least 80 cells/mm are required to ensure there is

no reaction in the shock, which corresponds to 27 cells in the reaction zone. Moreover,

for PBX9502, table 5.3 shows that at least 320 cells/mm are required to obtain no

reaction in the shock, which corresponds to 63 cells in the reaction zone. The difference

in resolution requirements can be understood by comparing figures 5.1(b) and 5.3(b).

There is a significant induction zone behind the shock for EDC whereas for PBX9502

the reaction rate increases more rapidly behind the shock. It should be noted that

the reaction source curve for PBX9502 is not a smooth bell shaped curve, this is due

to the reaction rate limiters [50], which results in the reaction rate being clipped and

producing a kink. For EDC37 this is not evident and the reaction rate follows a smooth

bell shaped curve.

Resolution studies of 2D calculations have shown that at least 50 numerical cells,

in the reaction zone, are required to obtain converged results [28]. However, this study

was performed using a polytropic EOS and power law reaction rate where the reaction
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rate is maximal at the shock. The CREST reaction rate has an induction zone, as shown

in figure 5.1(b), which may affect the number of cells required inside the reaction zone

to obtain converged results. The resolution study here indicates that for > 50 cells in

the reaction zone requires 160 cells/mm for EDC37 and 320 cells/mm for PBX.

Figure 5.2(a) shows that the solid phase entropy does not monotonically increase

through the shock, at higher resolutions. The entropy reaches a maximal value through

the shock and then reduces in magnitude by a small amount. This feature occurs

before the mixture equations are initiated (i.e. λ < ǫ) and hence only the unreacted

equation of state is used here. This feature is an artefact of the numerical scheme and

is not physical. It arises from the averaging function used to achieve second order time-

integration discussed in section 4.5.2. For a second order scheme one cannot guarantee

monotonicity through the shock [41]. As the over-calculation of entropy appears to

occur in one numerical cell it will have a negligible impact on the calculations.
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(b) Reaction Source Term.

Figure 5.3: One-dimensional simulations of PBX9502 - legend indicates resolution in

cells/mm. The solution is in the shock-attached frame.
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(b) Solid phase entropy with y-axis zoomed in.

Figure 5.4: One-dimensional simulations of PBX9502 - legend indicates resolution in

cells/mm. The solution is in the shock-attached frame.
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5.2.4 Stationary and Laboratory Frame Calculations

Using the EDC37 model a comparison between the stationary and laboratory frame

DNS solutions were made. The finest resolutions of [320, 640] cells/mm were considered

for these calculations.

It is clear from figure 5.5 that for the laboratory frame calculations the shock

structure is spread over a greater number of cells compared to the stationary frame

calculations. This is due to the numerical scheme being more diffuse when the shock

propagates across the grid. Figure 5.6 shows that the moving calculations obtain a

fractionally higher post-shock solid phase entropy, but the difference is negligible. The

oscillations observed in the moving solutions are due to the numerical scheme and were

discussed in section 4.5.7. As the shock moves across the grid the shock structure

changes and generates numerical noise, resulting in the oscillations. Their impact on

the solution is negligible.
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Figure 5.5: Pressure for stationary and lab frame shocks for different resolutions for

EDC37. The legend indicates the reference frame of the solution (s: static, m: moving)

and the resolution in cells/mm.
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5.2.5 DNS compared with Steady State ZND Model

A direct comparison between the solutions from the high resolution DNS and the steady

ZND model were made. Moreover a comparison between the DNS solutions with and

without AMR was made for EDC37.

The detonation speeds obtained via the DNS and steady state model are sum-

marised in table 5.4 which shows that the detonation velocities obtained from the steady

state ZND code are in excellent agreement. It was found that the same detonation ve-

Explosive ZND / cm µs−1 DNS /cm µs−1

EDC37 0.87693 0.87695

PBX9502 0.75974 0.75970

Table 5.4: Comparison between the detonation velocity obtained from the steady state

ZND model and DNS for two CREST explosive models.

locity was obtained in the DNS calculations, independent of the choice of resolution.

This is because the scheme is strictly conservative in this case, which means that the

final state is independent of the solution between the shock and the end of the reaction

zone.

Figures 5.7 and 5.8 show that the structure through the reaction zone from the

DNS calculations are in excellent agreement with those from the steady state code for

EDC37. Figures 5.9(a) and 5.9(b) show that when using AMR the solution structure

is unaffected and near identical solutions are obtained.

EDC37
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(b) Solid Phase Entropy.

Figure 5.7: One-dimensional simulations of EDC37 comparing DNS with steady state

ZND model. Legend indicates resolution in cells/mm and steady state solution.
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(b) Reaction Source Term.

Figure 5.8: One-dimensional simulations of EDC37 comparing DNS with steady state

ZND model. Legend indicates resolution in cells/mm and steady state solution.
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Figure 5.9: One-dimensional simulations of EDC37 comparing DNS with uniform grid

(s320) and adaptive mesh refinement (AMR) at a resolution of 320 cells/mm. The

solution from the ZND model (steady) is included for reference.
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Figure 5.10: One-dimensional simulations of PBX9502 comparing DNS with steady

state ZND model. Legend indicates resolution in cells/mm and steady state solution.
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Figure 5.11: One-dimensional simulations of PBX9502 comparing DNS with steady

state ZND model. Legend indicates resolution in cells/mm and steady state solution.
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5.3 Two-Dimension Rate-Stick Calculations

5.3.1 Introduction

As discussed in chapter 1 size effect curves (the relationship between detonation velocity

and the radius of the rate-stick) are used to calibrate the empirical constants in the

reaction rate equations. DNS calculations are performed and compared to experimental

data and the reaction rate coefficients are then adjusted until the calculations match

the data to a desired accuracy.

High resolution calculations are computationally expensive (order of hours for

a single rate-stick simulations) and obtaining accurate fits to experimental data can

require thousands of simulations. It is therefore desirable to find a more computationally

efficient way of computing accurate diameter effect curves.

Approximate 2D detonation models, such as DSD and SSA, offer dramatic reduc-

tions in computational expense (diameter effect curves can be obtained in minutes).

However, DSD has been shown to systematically underpredict the detonation velocity

[30]. The SSA has been shown to be able to accurately match DNS calculations for a

power law reaction rate with a polytropic equation of state. However, it has yet to be

tested with a real explosive equation of state and a reaction rate that is not maximal

at the shock, as in the case of CREST.

Unconfined rate-stick calculations were performed for both EDC37 and PBX9502

explosives using the axisymmetric Euler equations. The numerical domain was rect-

angular in (r, z) coordinates with the explosive in 0 < r < 1 and a non-reacting, low

density, confiner in 1 < r < 2. The reaction in the confiner was switched off using an ad-

vected scalar that was set to unity in the reacting explosive and zero in the confiner. It

has been shown that with low density inert confiner the explosive propagates effectively
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unconfined [51]. The confiner density for the EDC37 calculations was ρc = 0.9 g/cm3

and for PBX9502 ρc = 1.5 g/cm3. The boundary conditions were symmetric on r = 0,

free at the base of the explosive and at the edge of the confiner, and a fixed inflow

boundary at the top of the explosive was implemented such that solutions could be

transformed from the laboratory frame if desired.

The radius of the explosive was varied via a rate-constant multiplying the reaction

source terms. Varying the magnitude of the rate-constant would vary the physical radius

of the rate-stick but retain R = 1 in the simulation.

The detonation was initiated using a high pressure region at the base of the

explosive at 0 < z < 2. The detonation was allowed to propagate for a long time (at

least z >= 10) until a steady state was obtained.

The z coordinate of the shock front, on axis, was tracked as a function of time.

A linear fit of the z − t data was used to compute the detonation velocity.

5.3.2 Resolution Study

As in the resolution study for the one-dimensional simulations, a similar resolution study

was performed for a rate-stick of EDC37 with r = 0.67cm. The results of the study

are summarised in table 5.5 and show that a resolution of 320 cells/mm is required to

obtain well converged results for solid phase entropy and the detonation velocity. This

corresponds to 69 cells in the reaction zone which agrees with previous studies where it

was found that 50 cells were required in the reaction zone to obtain converged results

[28].

There is a transition, between 80 cells/mm and 160 cells/mm at which there is

no reaction (i.e. solid and gas mixture) inside the shock structure. Recall the explosive

is treated as solid phase only for λ < 0.02 and hence the shock is well captured, in
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terms of post-shock entropy, for resolutions at which the shock is solid phase only. This

highlights the importance of ensuring there is no reaction through the shock so that

the entropy of the shocked solid is captured accurately.

It is interesting to note that λmax varies with resolution for the lower resolution

calculations. This is because the extent of the reaction is dependent upon the magnitude

of the solid phase entropy and there is no guarantee that there will be a complete

reaction (i.e. λ = 1). This is not a feature observed in power law type reaction rates

where the reaction will always go to completion.

Resolution Entropy /10−2Mbar g/cm3 λmax D/cmµs−1 CIRZ λshk

20 0.85 0.856 0.768 6 0.65

40 1.23 0.907 0.810 9 0.40

80 1.33 0.928 0.809 17 0.05

160 1.27 0.912 0.801 34 0.005

320 1.25 0.911 0.798 69 0.002

640 1.24 0.910 0.797 140 0.001

Table 5.5: Properties of axial solution as a function of numerical resolution (cells/mm)

for EDC37 with r = 0.67cm. Entropy refers to the unreacted equation of state, λmax

is the maximal value of the reaction progress variable, D is the detonation velocity,

CIRZ is the Cells in Reaction Zone and is the number of cells on the finest level where

reaction rate is significant (as defined by AMR criteria), λshk is the value of λ at the

downstream end of the shock structure.
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5.3.3 Galilean Invariance

The reactive Euler equations 2.1-2.4, on page 10, are Galilean invariant and thus it may

be expected that the detonation velocity would be invariant, also. Using the EDC37

model and rate-stick of radius r = 0.67cm the inflow velocity at the top of the domain,

Vin, was varied from 0.0 − 0.7 cm µs−1. The detonation velocity was computed by

calculating the propagation speed, on axis, and adding the inflow velocity.

The results are summarized in table 5.6, which shows that for moderately low in-

flow velocities (Vin < D/2) the results obtained are Galilean invariant when considering

the detonation velocity alone. However, for Vin > D/2 the computed detonation veloc-

ity increases. This may be due to λmax increasing as the inflow velocity increases. The

quantitative difference in the solutions for low inflow velocity and high inflow velocity

is shown in figure 5.12. For the laboratory frame calculation (Vin = 0 in the figure)

the profile of the solid phase entropy is monotonically increasing at the shock and is

essentially constant behind it. There are some low amplitude oscillations in the reaction

zone, which are an artefact of the shock-capturing scheme. For the calculation with a

significant Galilean shift (Vin = 0.5) there is a significant spike in the entropy inside the

shock structure, which then decreases to the same approximate magnitude as that of

the laboratory calculation. There is a also a kink in the entropy, slightly downstream

of the shock, which occurs at the point where the mixture of solid and gas phase is

first initialised. This higher magnitude entropy then remains constant throughout the

reaction zone. The higher magnitude entropy results in λmax increasing and more en-

ergy to support the detonation wave being released. This is also evident in figure 5.13

where the reaction source term is significantly higher where maximal reaction occurs

when an inflow velocity is used. The second kink in the entropy profile may be due to

the numerical interpolation scheme in the second order calculations.
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Figure 5.14 shows that the pressure profiles are very similar in both reference

frames, although the pressure at the shock is marginally higher for Vin = 0.5.

The results of this investigation suggest that applying a small Galilean shift to the

axial velocity does not affect the calculated detonation wave speed. This could reduce

the computational time of DNS calculations as one would require a smaller domain.

However, care must be taken as increasing the magnitude of the Galilean shift can

introduce errors.

Inflow Velocity / cmµs−1 λmax D / cmµs−1

0 0.913 0.8012

0.1 0.913 0.8005

0.2 0.913 0.8003

0.3 0.914 0.8011

0.4 0.920 0.8037

0.5 0.925 0.8059

0.6 0.927 0.8067

0.7 0.929 0.8077

Table 5.6: Table indicating how the computed detonation velocity varies as a function

of inflow velocity for EDC37 at a resolution of 160 cells/mm. The extent of reaction is

also indicated.
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Figure 5.12: Solid Phase Entropy on axis for EDC37 with different inflow velocities.

The resolution was 160 cells/mm and r = 0.67cm.
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Figure 5.13: Reaction Source term on axis for EDC37 with different inflow velocities.

The resolution was 160 cells/mm and r = 0.67cm.
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Figure 5.14: Pressure on axis for EDC37 with different inflow velocities. The resolution

was 160 cells/mm and r = 0.67cm.
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5.3.4 Comparison to previous data

Figure 5.15 shows the diameter effect curve calculated for PBX9502 at a resolution

of 20 cells/mm. The results are compared with the previously published data at the

same resolution [36]. The detonation velocities computed using the HLLC numerical

scheme are less than those from previously published data. It should be noted that

from the one-dimensional study in section 5.2.3 that for a resolution of 20 cells/mm

there is significant reaction in the shock. For these calculations λ >= 0.5 immediately

behind the shock and thus the shock and reaction zone length scales will be similar.

This will affect the accuracy of the diameter effect curve. It was shown in table 5.5 that

at least 160 cells/mm were required for converged results for a 2D calculation hence the

reliability of comparing calculations at 20 cells/mm is questionable.

Diameter effect curves at higher resolutions are considered later in the thesis and

are compared with the SSA and DSD models.
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Figure 5.15: Diameter effect curve for PBX9502 with resolution of 20 cells/mm. The

CJ velocity is DCJ = 0.760 cm µs−1 for the HLLC data.
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Chapter 6

Streamline Detonation Model -

Straight Streamline Approximation

6.1 Introduction

A recent development in the modelling of steady state rate-stick detonations is the

streamline model proposed by Watt et al [30]. The model uses a streamline based

approach in which the solution along individual streamlines are combined to produce a

complete solution to the detonation problem. This requires an assumption for the shape

of the streamlines. As a first approximation the streamlines were assumed to be straight

(Straight Streamline Approximation, SSA) and diverging. For the case of a polytropic

EOS and a power law reaction rate the SSA model accurately calculated the diameter

effect curves for both confined and unconfined rate-stick detonations (when compared

to high resolution DNS calculations). Moreover, the failure diameter predicted by

the SSA for ideal and non-ideal explosives closely matched those predicted by the

DNS calculations, which is something the commonly used DSD model fails to capture
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accurately [30].

Although the SSA worked well for the polytropic EOS and power law reaction rate

it is unknown whether the SSA is an accurate model for a different EOS and reaction

rates. In this chapter we investigate this for different forms of the EOS and reaction

rate.

6.2 Governing Equations in Streamline Coordinates

6.2.1 Streamline Function

The starting point for deriving the flow equations is to define the compressible stream-

line function. In axisymmetric (r, z) coordinates the compressible streamline function

ψ satisfies
(

∂ψ

∂z

)

r

= rρu, (6.1)

(

∂ψ

∂r

)

z

= −rρv, (6.2)

where u and v are the material velocities in the r and z directions respectively. Curves

of constant ψ are streamlines. Dividing equation 6.1 by equation 6.2 we obtain

(

∂r

∂z

)

ψ

=
u

v
, (6.3)

which implies that the flow direction is everywhere tangent to the flow velocity, as

expected for a stream function. Using the definition of the streamline function, the

reactive Euler equations will be transformed from the axisymmetric coordinates (r, z)

to a streamline based coordinates system (ψ, z) where the radial coordinate is now a

function of the streamline function such that r = r(ψ, z).
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6.2.2 Material Derivative

We first consider the material derivative, defined in section 2.2, of a test function

f = f(r, z). In the shock-attached frame the partial time derivative vanishes and the

advective term can be expanded in (r, z) coordinates to give

Df

Dt
= u · ∇ = u

(

∂f

∂r

)

z

+ v

(

∂f

∂z

)

r

.

Expanding the partial derivatives in terms of ψ and z, gives

Df

Dt
=u

[

(

∂f

∂ψ

)

z

(

∂ψ

∂r

)

z

+

(

∂f

∂z

)

ψ

(

∂z

∂r

)

z

]

+ v

[

(

∂f

∂ψ

)

z

(

∂ψ

∂z

)

r

+

(

∂f

∂z

)

ψ

(

∂z

∂z

)

r

]

.

Here
(

∂z
∂r

)

z
= 0 as z is held constant, substituting for

(

∂ψ
∂z

)

r
using 6.1 and for

(

∂ψ
∂r

)

z

using 6.2 yields

Df

Dt
= −ρvur

(

∂f

∂ψ

)

z

+ ρvur

(

∂f

∂ψ

)

z

+ v

(

∂f

∂z

)

ψ

.

Cancelling terms and dropping the test function f gives

D

Dt
= v

(

∂

∂z

)

ψ

. (6.4)

Following the same approach used to transform the material derivative to streamline

based coordinates, the Euler equations can be transformed into (ψ, z) coordinate.

6.2.3 Continuity Equation

In axisymmetric coordinates the continuity equation 2.1 is

Dρ

Dt
+ ρ

[

u

r
+

(

∂u

∂r

)

z

+

(

∂v

∂z

)

r

]

= 0.
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Substituting for the material derivative using 6.4 and expanding the partial derivatives

in (ψ, z)

v

(

∂ρ

∂z

)

ψ

+
ρu

r
+ ρ

[

(

∂u

∂z

)

ψ

(

∂z

∂r

)

z

+

(

∂u

∂ψ

)

z

(

∂ψ

∂r

)

z

]

+ ρ

[

(

∂v

∂ψ

)

z

(

∂ψ

∂z

)

r

+

(

∂v

∂z

)

ψ

(

∂z

∂z

)

r

]

= 0.

Substituting for
(

∂ψ
∂z

)

r
and

(

∂ψ
∂r

)

z
using 6.1 and 6.2

v

(

∂ρ

∂z

)

ψ

+
ρu

r
− ρ2rv

(

∂u

∂ψ

)

z

+ ρ2ru

(

∂v

∂ψ

)

z

+ ρ

(

∂v

∂z

)

ψ

= 0.

Dividing by −ρ2v2

− 1

ρ2v

(

∂ρ

∂z

)

ψ

− u

ρv2r
+

r

v

(

∂u

∂ψ

)

z

− ru

v2

(

∂v

∂ψ

)

z

− 1

ρv2

(

∂v

∂z

)

ψ

= 0.

Combining the first and last, and the third and fourth terms gives,

∂

∂z

(

1

ρv

)

ψ

+ r
∂

∂ψ

(u

v

)

z
=

u

ρv2r
. (6.5)

This gives the continuity equation in the streamline coordinate system.

6.2.4 r-Momentum

The radial component of the momentum equation 2.2 is

ρ
Du

Dt
+

(

∂p

∂r

)

z

= 0.

Applying the material derivative and expanding the partial derivative in r

ρv

(

∂u

∂z

)

ψ

+

[

(

∂p

∂ψ

)

z

(

∂ψ

∂r

)

z

+

(

∂p

∂z

)

ψ

(

∂z

∂r

)

z

]

= 0.
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Substituting for
(

∂ψ
∂r

)

z
using 6.2 and noting that

(

∂z
∂r

)

z
= 0 gives

ρv

(

∂u

∂z

)

ψ

− rρv

(

∂p

∂ψ

)

z

= 0,

which can be simplified to

(

∂u

∂z

)

ψ

− r

(

∂p

∂ψ

)

z

= 0. (6.6)

6.2.5 z-Momentum

We now consider the z−component of the momentum equation 2.2

ρ
Du

Dt
+

(

∂p

∂z

)

r

= 0.

Substituting for the material derivative and expanding the partial differential in z gives

ρv

(

∂v

∂z

)

ψ

+

[

(

∂p

∂ψ

)

z

(

∂ψ

∂z

)

r

+

(

∂p

∂z

)

ψ

(

∂z

∂z

)

r

]

= 0,

and substituting for
(

∂ψ
∂z

)

r
using 6.1 which can be rearranged to give

ρv

(

∂v

∂z

)

ψ

+ rρu

(

∂p

∂ψ

)

z

+

(

∂p

∂z

)

ψ

= 0. (6.7)

6.2.6 Energy and Reaction Rate Equation

The energy equation 2.3 and reaction rate equation 2.4 are transformed via a trivial

application of the material derivative. The resulting equations are

(

∂e

∂z

)

ψ

=
p

ρ2

(

∂ρ

∂z

)

ψ

(6.8)

(

∂λ

∂z

)

ψ

=
W

v
. (6.9)
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6.2.7 Governing Equations

Combining the transformed equations for mass, r-momentum, z-momentum, energy and

reaction rate yields set of governing equations in streamline coordinates

∂

∂z

(

1

ρv

)

ψ

+ r
∂

∂ψ

(u

v

)

z
=

u

ρv2r
. (6.10)

(

∂u

∂z

)

ψ

= r

(

∂p

∂ψ

)

z

. (6.11)

(

∂p

∂z

)

ψ

+ ρv

(

∂v

∂z

)

ψ

+ rρu

(

∂p

∂ψ

)

z

= 0. (6.12)

(

∂e

∂z

)

ψ

− p

ρ2

(

∂ρ

∂z

)

ψ

= 0, (6.13)

(

∂λ

∂z

)

ψ

=
W

v
. (6.14)

In present form equations 6.10-6.14 are not straightforward to integrate and must be

manipulated into a suitable form to solve. Using an approach similar to that of section

2.4.2 the equations will be reduced down to a single master equation in the axial flow

velocity v - coupled to the reaction rate equation.

6.2.8 Master equation in v

Reducing the governing equations into a master in the flow velocity involves succes-

sive substitutions of the energy and momenta equations into the continuity equation.

Initially we begin with the energy equation 6.13. In section 3.3.1 it was shown that

the energy equation can be coupled to the reaction rate equation 6.14 to obtain an

expression relating the differentials in ρ, p and λ of the form

c2dρ = dp + Qdλ , (6.15)
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where Q depends upon the equation of state. Next we consider the continuity equation

6.10, expanding the partial differential in z

r
∂

∂ψ

(u

v

)

z
− 1

ρ2v

(

∂ρ

∂z

)

ψ

− 1

ρv2

(

∂v

∂z

)

ψ

=
u

ρv2r
.

Substituting for u/v using 6.3

r
∂

∂ψ

(

(

∂r

∂z

)

ψ

)

y

− 1

ρ2v

(

∂ρ

∂z

)

ψ

− 1

ρv2

(

∂v

∂z

)

ψ

=
1

ρvr

(

∂r

∂z

)

ψ

.

This expression can be rearranged for
(

∂ρ
∂z

)

ψ

(

∂ρ

∂z

)

ψ

= ρ2vr

(

∂2r

∂ψ∂z

)

− ρ

v

(

∂v

∂z

)

ψ

− ρ

r

(

∂r

∂z

)

ψ

, (6.16)

which gives us an equation in ρ. Next the the momenta equations are considered, direct

substitution of 6.11 into 6.12 gives

ρv

(

∂v

∂z

)

ψ

+

(

∂p

∂z

)

ψ

+ ρu

(

∂u

∂z

)

ψ

= 0,

substituting for u using 6.3

ρv

(

∂v

∂z

)

ψ

+

(

∂p

∂z

)

ψ

+ ρv

(

∂r

∂z

)

ψ

∂

∂z

(

v

(

∂r

∂z

)

ψ

)

ψ

= 0,

expanding the final term by use of the product rule

ρv

(

∂v

∂z

)

ψ

+

(

∂p

∂z

)

ψ

+ ρv

(

∂r

∂z

)

ψ

[

v

(

∂2r

∂z2

)

ψ

+

(

∂r

∂z

)

ψ

(

∂v

∂z

)

ψ

]

= 0,

rearranging for
(

∂p
∂z

)

ψ

(

∂p

∂z

)

ψ

= −ρv

[

1 +

(

∂r

∂z

)2

ψ

]

(

∂v

∂z

)

ψ

− ρv2

(

∂r

∂z

)

ψ

(

∂2r

∂z2

)

ψ

, (6.17)
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which gives an equation in p. We can now proceed to substitute for the differentials in

ρ and p using 6.16 and 6.17 into the energy equation 6.15

c2

(

ρ2vr

(

∂2r

∂ψ∂z

)

− ρ

v

(

∂v

∂z

)

ψ

− ρ

r

(

∂r

∂z

)

ψ

)

= − ρv

[

1 +

(

∂r

∂z

)2

ψ

]

(

∂v

∂z

)

ψ

− ρv2

(

∂r

∂z

)

ψ

(

∂2r

∂z2

)

ψ

+ Q

(

∂λ

∂z

)

ψ

.

Moving terms in
(

∂v
∂z

)

ψ
to the LHS

[

−c2ρ

v
+ ρv

(

1 +

(

∂r

∂z

)2

ψ

)]

(

∂v

∂z

)

ψ

= ρc2

[

1

r

(

∂r

∂z

)

ψ

− ρvr

(

∂2r

∂ψ∂z

)

]

− ρv2

(

∂r

∂z

)

ψ

(

∂2r

∂z2

)

ψ

+ Q

(

∂λ

∂z

)

ψ

then multiplying by v
ρ

[

v2

(

1 +

(

∂r

∂z

)2

ψ

)

− c2

]

(

∂v

∂z

)

ψ

= c2v

[

1

r

(

∂r

∂z

)

ψ

− ρvr

(

∂2r

∂ψ∂z

)

]

− v3

(

∂r

∂z

)

ψ

(

∂2r

∂z2

)

ψ

+
Qv

ρ

(

∂λ

∂z

)

ψ

. (6.18)

We can substitute for ρvr using 6.2 to get an alternative reduced equation

[

v2

(

1 +

(

∂r

∂z

)2

ψ

)

− c2

]

(

∂v

∂z

)

ψ

= c2v

[

1

r

(

∂r

∂z

)

ψ

+

(

∂r

∂ψ

)

−1

z

(

∂2r

∂ψ∂z

)

]

−v3

(

∂r

∂z

)

ψ

(

∂2r

∂z2

)

ψ

−
(

∂r

∂ψ

)

−1

z

Qv2

(

∂λ

∂z

)

ψ

.

(6.19)

Equation 6.18 is a partial differential equation for v which is coupled to the differential

equation in λ. It can be used with 6.16 and 6.17 to obtain differential equations for ρ
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and p. If the streamline shapes r(ψ, z) were known a priori then the master equation

could be solved, subject to boundary appropriate boundary conditions. However, as

the streamlines shapes are not known an ansatz must be made on their shape.

6.3 Straight Streamline Approximation

6.3.1 Streamline Ansatz

r

z

Explosive

Shock front (rf , zf )

Driving Zone

Sonic locus

End of
reaction zone

Streamlines

Figure 6.1: Schematic of a steady-state detonation. In the shock attached

frame the unreacted explosive flows into the shock wave in the z-direction.

The SSA assumes that the flow behind the shock has straight but diverging

streamlines. The streamlines intersect the shock at the point (rf , zf ). The flow

speed in the shock frame increases as the chemical reaction proceeds and goes

sonic at the sonic locus.

The simplest assumption one can make of the streamlines shapes is that they are
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straight as shown in figure 6.1. In the shock-attached frame the streamlines propagate

toward the shock front with the detonation velocity, D0. At the streamline-shock inter-

section point (rf , zf ) the streamline is deflected by the curved shock. The streamline is

then assumed to remain straight through the detonation driving zone and beyond the

sonic locus.

To determine the streamline function equation 6.2 is integrated to give

ψ =
1

2
r2
fρ0D0, (6.20)

A streamline at radius rf intersects the shock front at z = zf as shown in figure 6.1.

From the streamline function 6.20 we have

(

∂rf

∂ψ

)

zf

=
1

ρ0D0rf

. (6.21)

With this we can write the streamline shape, behind the shock, as

r = rf + F (ψ) (z − zf ) , (6.22)

where F (ψ) is the slope of the streamline and is defined

F (ψ) =

(

∂r

∂z

)

ψ

=
uf

vf

, (6.23)

where uf and vf are the radial and axial flow velocities immediately behind the shock.

From equation 6.22 we also have

(

∂2r

∂z2

)

ψ

= 0, (6.24)

which is a direct result of the assumption that the streamlines are straight. With

the streamline function determined we can compute the partial derivatives
(

∂r
∂ψ

)

z
and

(

∂2r
∂ψ∂z

)

required to solve the governing equations along each streamline. They are
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related to the streamline function by use of the chain rule. Taking the derivative of the

streamline shape 6.22 with respect to ψ

(

∂r

∂ψ

)

z

=

(

∂rf

∂ψ

)

z

+

(

∂F

∂ψ

)

z

(z − zf ) − F (ψ)

(

∂zf

∂ψ

)

z

. (6.25)

Parameterising the shock such that zf = zf (rf ), the derivative
(

∂zf

∂ψ

)

z
can be related

to shock parameterisation using the chain rule such that

(

∂r

∂ψ

)

z

=
drf

dψ
+

dF

dψ
(z − zf ) − F (ψ)z′f

drf

dψ
, (6.26)

where the partial derivatives are replaced by total derivatives as rf , zf and F (ψ) depend

only upon ψ. Here z′f is the slope of the shock where it intersects with the streamline.

Taking the derivative of 6.26 we have

(

∂2r

∂ψ∂z

)

=
dF

dψ
. (6.27)

As the streamline slope F is a function of the shock slope z′f we can apply the chain

rule to obtain
dF

dψ
=

(

∂F

∂z′f

)

z′′f
drf

dψ
.

Using this expression and substituting for
drf

dψ
using equation 6.21 gives

(

∂r

∂ψ

)

z

=
1

ρ0D0rf

[

1 +
dF

dz′f
z′′f (z − zf ) − Fz′f

]

. (6.28)

It immediately follows from equation 6.26 that

(

∂2r

∂ψ∂z

)

=
dF

dψ
=

dF
dz′f

z′′f

ρ0D0rf

. (6.29)

Here
(

∂F
∂z′f

)

must be determined from the shock relations for each streamline. Equations

6.26 and 6.29 show that the governing equations along the streamline will depend upon
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the shock via the point intersection with streamline (rf , zf ), the shock slope z′f and the

second derivative of the shock position z′′f , which is related to the shock front curvature.

Thus, if the shock slope z′f and location (zf , rf ) are known then the unknown parameter

is the shock front curvature z′′f . There will be a unique value of z′′f that solves the

eigenvalue problem given by the master equation 6.19. With z′′f known this enables

integration out along the shock surface to determine the complete detonation solution.

6.3.2 Equations on r = 0

Special care needs to be taken when integrating the master equation 6.19 on the axis

(r = 0). The first term on the RHS is

1

r

(

∂r

∂z

)

ψ

.

This is ill-defined and must be treated with care. There is no mention of how this is

dealt with in the published literature [30]. However, we can consider the the behaviour

of this term in the limit of r → 0. Using L’Hopital’s rule we have

lim
r→0

1

r

(

∂r

∂z

)

ψ

=
∂

∂r

(

∂r

∂z

)

ψ

,

=
∂

∂r
(F (ψ))z ,

=

(

∂F

∂ψ

)

z

(

∂ψ

∂r

)

z

+

(

∂F

∂z

)

ψ

(

∂z

∂r

)

z

,

=
dF

dψ

(

∂r

∂ψ

)

−1

z

=

(

∂2r

∂ψ∂z

)(

∂r

∂ψ

)

−1

z

. (6.30)

This term is identical to the second term appearing on the RHS of the master equation

6.19. This is the result we would expect due to having the extra dimensional curvature

resulting from the axisymmetric equations.
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6.4 Boundary Conditions

6.4.1 Charge centre and charge edge boundaries

We define the centre of the rate-stick to be at r = 0 as shown in figure 6.2. The slope of

the shock front along the centre is then z′f = 0 by symmetry and the streamline along

the centre must be straight also (F = 0).

The boundary condition at the edge of the explosive is defined in terms of the

shock slope. For an unconfined charge the post-shock flow velocity must be exactly sonic

in shock-attached frame. This is because there is a transonic Prandtl-Meyer expansion

attached to the shock at the charge edge [26]. As the post-shock flow conditions depend

only upon z′f there is a unique shock slope at which the post-shock streamline velocity

will be exactly sonic. This gives a boundary condition for the edge of the charge based

upon the shock slope.

For confined detonations the boundary condition is that the post-shock pressure

and streamline deflection angle must match between the explosive and the confining

material. The shock slope at which this occurs can be determined via a shock polar

analysis [11]. For a given detonation velocity the post-shock pressure versus deflection

angle is plotted for the explosive/confiner pair. Points of intersection indicate the shock

slope at the boundary for the explosive.
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D0

r

z

Explosive Confiner

Symmetry axis

r=0
z′f=0

r=R
z′f = δ

Figure 6.2: Schematic of shock front boundary conditions. The boundary

conditions are based upon the shock slope z′f . Along the centre-line (r = 0)

the shock slope is zero (z′f = 0) by symmetry. The shock slope δ at the

explosive-confiner interface (r = R) is determined by a shock polar analysis.

6.4.2 Oblique Shock Relations

To determine the post-shock state for each streamline the oblique shock relations

are utilised. The oblique shock relations are derived by considering the normal one-

dimensional shock relations with an additional velocity component which is transverse

to the shock front. This is shown in figure 6.3 where vt is the transverse velocity and is

perpendicular to the normal component of the initial velocity vn0
. The oblique shock

relations are [52]

ρ1vn1
= ρ0vn0

, (6.31)

p1 + ρ1v
2
n1

= p0 + ρ0v
2
n0

, (6.32)

e1(ρ1, p1) +
p1

ρ1

+
1

2
v2

n1
= e0(ρ0, p0) +

p0

ρ0

+
1

2
v2

n0
, (6.33)
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Here vn1 is the post-shock flow velocity normal to the shock front. Subscript 0 refers to

the quiescent state and subscript 1 refers to the shock state. With the pre-shocked state

of the explosive known equations 6.31-6.33 can be solved to determine the post-shock

density, pressure and normal velocity.

z

r

θ

θ

Shock front

D0

vt

vt

vn0

vn1

w1

π
2
− θ

π
2
− θ

vf

uf

θdzf

drf

dl

Figure 6.3: Schematic of an oblique shock. The flow has initial velocity D0 in the

axial direction with a component normal to the shock of speed vn0. The shock is

inclined at an angle θ relative to the incoming streamline. The post-shock flow

velocity w1 can be split into radial and axial components which determine the

post-shock conditions for the flow in the governing equations.
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The post-shock normal velocity can be combined with the transverse velocity

to determine the velocity components in the r and z directions. First we relate the

pre-shock velocities to the shock velocity D0. From figure 6.3 it is clear that

vn0
= D0 cos

(π

2
− θ

)

= D0 sin θ, (6.34)

and

vn1
= f(vn0

) = f(D0 sin θ), (6.35)

where f(vn0
) is the post-shock velocity normal to the shock.

The transverse velocity is given by

vt = D0 sin
(π

2
− θ

)

= D0 cos θ. (6.36)

To determine the post-shock flow velocities in the r and z directions, uf and vf .

We have

vf = vn1
sin θ + vt cos θ, (6.37)

uf = −vn1
cos θ + vt sin θ. (6.38)

Next expressions for sin θ and cos θ are required in terms of the shock slope. This

angle, which determines the obliqueness of the shock can be related to local shock slope

at the streamline intersection. Consider the triangle on the left hand side of figure 6.3.

The length dl is a differential increment along the shock surface whose slope is given

by
dzf

drf
. From this right-angled triangle we have

sin θ =
drf

dl
,

substituting for dl in terms of drf and dzf using Pythagoras’ formula

sin θ =
drf

(

dr2
f + dz2

f

) 1

2

,
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removing a factor of drf

sin θ =
1

(

1 +
(

dzf

drf

)2
) 1

2

. (6.39)

Following a similar procedure we can determine an expression for cos θ which is

cos θ =

dzf

drf

(

1 +
(

dzf

drf

)2
) 1

2

. (6.40)

Denoting the derivative
dzf

drf
as z′f equations 6.39 and 6.40 become

sin θ =
1

(

1 +
(

z′f
)2

) 1

2

, (6.41)

and

cos θ =
z′f

(

1 +
(

z′f
)2

) 1

2

. (6.42)

We can substitute the results from equations 6.41 and 6.42 into the flow velocities

behind the shock given by 6.37 and 6.38. For the axial velocity equation 6.37 becomes

vf =
vn1

(

1 +
(

z′f
)2

) 1

2

+
vtz

′

f
(

1 +
(

z′f
)2

) 1

2

,

Substituting for vt using equation 6.36 and writing with a common denominator

gives

vf =
vn1

(

1 +
(

z′f
)2

) 1

2

+ D0

(

z′f
)2

(

1 +
(

z′f
)2

) . (6.43)

An similar expression can be deduced for the radial velocity given by

uf =
−vn1

z′f

(

1 +
(

z′f
)2

) 1

2

+ D0z
′

f
(

1 +
(

z′f
)2

) . (6.44)
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It is clear from equations 6.43 and 6.44 that the post-shock flow variables only depend

upon the shock slope z′f for a given upstream state. The pressure and density post-

shock are determined as part of the solution to the normal shock relations, the transverse

velocity has no affect on their magnitude.

6.5 Numerical Implementation

6.5.1 Solution Procedure

With an equation of state and reaction rate model specified, there is a relation between

the detonation velocity D0 and the charge radius R. If the charge radius is specified

then an initial guess for D0 can be made. The SSA equations are then solved for each

streamline as we integrate from the charge edge (at r = R) along the shock surface

until r = 0. If the detonation velocity is correct, then at r = 0 we will satisfy the

boundary condition on the axis that z′f = 0. If the boundary condition is not satisfied,

the procedure can be repeated for a different value of D0 until a value is found for

which the boundary condition is satisfied. It should be noted that this method requires

multiple integrations along the shock.

Alternatively, by specifying D0, we can integrate from the charge axis (r = 0)

along the shock surface until the post-shock flow becomes sonic. The charge radius is

then given by the radius of the shock front R = rf . This method requires integration

along the shock surface once.

The second method, specifying D0 and integrating out along the shock is preferred

as the method of specifying R and calculating D requires multiple integrations along

the shock surface. This will make the model more computationally expensive with no

gain in accuracy. All computations were performed in this way.
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For a given detonation velocity D0 we have (rf = 0, zf = 0, r = 0, z′f = 0) on

the central streamline. We can then determine the shock curvature z′′f for the central

streamline by solving the master equation 6.18, coupled with equations 6.14, 6.16 and

6.17. With the shock curvature for that streamline determined we can integrate out

along the shock using a Taylor expansion about the point (rf , zf ) to determine the

shock slope and location of the next streamline via

zn+1
f = zn

f +
dzf

drf

n

∆rf +
1

2

d2zf

dr2
f

n

∆r2
f , (6.45)

dzf

drf

n+1

=
dzf

drf

n

+
d2zf

dr2
f

n

∆rf , (6.46)

and

rn+1
f = rn

f + ∆rf . (6.47)

The eigenvalue problem for z′′f is then solved again with the initial conditions given by

the new coordinates and slope at the shock. The integration along the shock continues

until the boundary shock slope is reached.

Computing the shock curvature z′′f requires solving the flow, along the streamline,

between the shock and the sonic locus of the flow. At this point the generalised CJ

conditions must be satisfied identically. An initial guess for z′′f is made (based on

the previous streamline solution) and the numerical shooting method (as described in

section 2.4.5 is used to vary z′′f until the generalised CJ conditions are satisfied.

Solving the detonation problem for different values of D0, and thus different charge

radii, gives a size-effect curve for a given explosive.
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6.6 Polytropic EOS

To verify the implementation of the SSA diameter effect curves for unconfined rate-

sticks were calculated for the polytropic equation of state and compared to previously

published work. In this section the shock relations are presented and the boundary

condition defining the charge edge is also derived.

6.6.1 Shock Relations, Boundary Conditions and Streamline

Derivatives

The oblique shock relations can be solved analytically for the polytropic EOS. For a

detonation velocity D0, initial density ρ0 = 1 and initial pressure p0 = 0, the post-shock

variables are

pf =
2D2

0

(γ + 1)
(

1 +
(

z′f
)2

) , (6.48)

ρf =
γ + 1

γ − 1
, (6.49)

uf = −
2D0z

′

f

(γ + 1)
(

1 +
(

z′f
)2

) , (6.50)

vf = −
D0

(

γ − 1 + (γ + 1)
(

z′f
)2

)

(γ + 1)
(

1 +
(

z′f
)2

) . (6.51)

The streamline function is given by uf/vf

F =
2z′f

γ − 1 + (γ + 1)(z′f )
2
. (6.52)

We require the derivative of F with respect to z′f to integrate the flow equations.

Differentiating 6.52 with respect to z′f gives
(

∂F

∂z′f

)

=
2
(

γ − 1 − (γ + 1)(z′f )
2
)

(

γ − 1 + (γ + 1)(z′f )
2
)2 . (6.53)
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With this result we are in a position to be able to integrate the model equations to

obtain the shock curvature term z′′f . The Bernoulli equation can be used to determine

expressions for the pressure, density and sound speed as a function of v and λ. The

energy and momentum equations 6.11 - 6.13 can be combined to derive the Bernoulli

equation for the polytropic EOS

γp

(γ − 1)ρ
− λq +

1

2
(u2 + v2) =

1

2
D2

0. (6.54)

Substituting for u from equation 6.3 gives,

γp

(γ − 1)ρ
− λq +

1

2

(

v2

(

∂r

∂z

)2

ψ

+ v2

)

=
1

2
D2

0,

which can be rearranged for the pressure such that

p =
(γ − 1)ρ

2γ

[

D2
0 − v2

(

1 +

(

∂r

∂z

)2

ψ

)

+ 2λq

]

.

Finally substituting for ρ using 6.2 gives,

p = −(γ − 1)

2γvr

(

∂r

∂ψ

)

−1

z

[

D2
0 − v2

(

1 +

(

∂r

∂z

)2

ψ

)

+ 2λq

]

. (6.55)

This is an expression for p which is related to the streamline ansatz via
(

∂r
∂ψ

)

−1

z
,
(

∂r
∂z

)

ψ

and to the two integrated variables v, λ. The pressure typically appears in power-

law type reaction rates and thus is useful to compute along the streamline. For the

polytropic EOS the adiabatic sound speed is

c2 =
γp

ρ
. (6.56)

Substituting for p using 6.55 and ρ using 6.2 into this equation yields

c2 =
(γ − 1)

2

[

D2
0 − v2

(

1 +

(

∂r

∂z

)2

ψ

)

+ 2λq

]

. (6.57)
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With this the sound speed can be computed on a streamline for a given v and λ.

The boundary condition defining the charge edge is related to the shock slope z′f .

For an unconfined explosive the post-shock flow must be exactly sonic. We can write

this condition as

u2 + v2 = c2.

Substituting for the sound speed using 6.54 and 6.57 gives

u2 + v2 =
(γ − 1)

2

[

D2
0 − u2 − v2

]

,

where λ = 0 is used as no reaction occurs through the shock. Moving the terms in u

and v to the LHS gives

u2 + v2 =
(γ − 1)

(γ + 1)
D2

0.

Substituting for u and v at the shock using 6.50 and 6.51 gives

D2
0

[

(γ − 1)2 + (γ + 1)2 (z′f )
4 + 2 (γ − 1) (γ + 1) (z′f )

2 + 4(z′f )
2
]

(γ + 1)2 (

1 + (z′f )
2
)2 =

(γ − 1)

(γ + 1)
D2

0,

which is a quadratic equation in (z′f )
2. This equation can be solved to give

(z′f )
2 =

−1

(γ + 1)
± γ

(γ − 1)
.

The negative solution is rejected as this would yield complex values of z′f . Using the

positive solution and taking the square root of both sides yields the shock slope at the

charge boundary

z′f = −

√

(γ + 1)

(γ − 1)
, (6.58)

where the positive solution is rejected as the shock surface coordinate zf is assumed to

be decreasing.
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If we consider the derivative of the streamline function dF
dψ

, given by equation 6.53,

and set it equal to zero we have

2
(

γ − 1 − (γ + 1)(z′f )
2
)

(

γ − 1 + (γ + 1)(z′f )
2
)2 = 0.

Solving this equation for z′f gives

z′f = −

√

(γ + 1)

(γ − 1)
, (6.59)

which is identical to the shock slope at which the flow is exactly sonic given by equation

6.58. This tells us that the shock slope boundary condition that determines the edge

of the explosive coincides with the shock slope at which the streamline deflection is

maximum. Integrating out further and decreasing shock slope beyond this point the

streamlines would begin to converge and the assumptions of the SSA (i.e. diverging

streamlines) would break down. It is therefore important to use a shock-polar analysis

to determine where the maximal streamline deflection occurs. If the streamline deflec-

tion angle reaches a maximum, then the streamlines must curve to prevent them from

converging.

6.6.2 Power Law Reaction Rate - Confirm Previous Results

Verification of the SSA numerical code was confirmed by replicating the results from

previous calculations in [30] using a power law reaction rate of the form

dλ

dt
= α pn (1 − λ)m , (6.60)

where the rate constant m was set to 0.5 for all calculations; simulations were performed

for n = [0.5, 1.0, 1.7, 2.0] to match those from the previous calculations. Figure 6.4

shows that for n = 0.0, 1.0 the data previously published were reproduced accurately.
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But for n = 1.7, 2.0 the detonation velocity was slighter larger than in Watt et al.

However, the curves have the same trend, which suggests that the differences may be

due to differences arising from the numerical methods used. Figures 6.5 and 6.6 show

diameter effect curves obtained for different values of ∆z′f . Using a larger step in z′f

between streamlines both diameter effect curves shift to left and the results previously

published can be recovered.

As the previously published data have been reproduced, the SSA code was verified

and different EOS and reaction rates can be incorporated.
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Figure 6.4: Diameter effect curves comparing SSA calculations [∆z′f = 0.01] with

those previously published. The legend with n = x indicates the parameters of the rate

equation used for the calculation, ‘Watt’ indicates previously published data [30].
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6.7 Calculations with CREST Explosive Models

6.7.1 Boundary Conditions

Prior to solving the SSA equations for CREST a shock polar analysis was performed.

This was required to determine the boundary condition for the edge of the explosive.

For each shock slope z′f there is a corresponding post-shock Mach number and stream-

line deflection angle. This results in a streamline-deflection shock polar as shown in

figure 6.7. In the literature the pressure is often plotted instead of the Mach number

[11][52]. However, for the discussion on boundary conditions, the Mach number is more

relevant here. In figure 6.7 we begin by considering the Mach number for zero stream-

line deflection (M ∼ 0.6) which corresponds to the post-shock flow state on the central

streamline. For increasing z′f , corresponding to integration along the surface towards

the charge edge, the Mach number and streamline deflection both increase monoton-

ically until the streamline deflection reaches a maximum. Thereafter, the streamlines

will begin to converge behind the shock. The maximum streamline deflection angle

is referred to as the Crocco point [53]. This poses a problem for the SSA model for

which converging streamlines are not permissible since it requires a positive shock cur-

vature to solve the eigenvalue problem. This is unphysical and thus places a limit on

the maximum shock slope for which the SSA model can be applied. Crucially, for an

unconfined calculation, we require that the flow is sonic at the charge edge. However,

the inability to integrate beyond the Crocco point means that the SSA model cannot

reach the shock slope where M = 1. This places a fundamental limitation on the SSA

model in its application to any equation of state for which this feature exists.

For unconfined calculations with SSA and DSD, the Crocco point was used as the

boundary condition for the charge edge.
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Figure 6.7: Post-shock Mach number versus streamline deflection angle for EDC37

EOS. The detonation velocity is 0.813 cm µs−1.

6.7.2 DSD Model Comparison

Diameter effect curves were computed using the DSD model to provide an additional

comparison between a different approximate detonation model and DNS.

At a given point along the shock front the normal shock velocity is related the

shock slope, s, via

Dn =
D

(1 + s2)1/2
.

It is now assumed that the solution to the quasi-one-dimensional detonation equations,

117



2.29-2.33, is valid such that for each Dn the shock curvature κ can obtained by solving

those equations. For DSD the flow divergence term is given by

dω

dr
=

κ (D − u)

1 + zκ
, (6.61)

where z is the distance behind the shock front. This is the form used in a previous

DSD analysis [35]. The corresponding shock front curvature can then be related to the

second derivative of the shock front via

κ =
s′

(1 + s2)
3

2

+
s

r (1 + s2)
1

2

. (6.62)

for axisymmetric geometry [54]. Here s = z′f is the shock slope and s′ = z′′f is the

shock slope derivative. With z′′f known we can integrate along the shock surface using

a Taylor expansion.

zn+1
s = zn

s + ∆r z′f +
1

2
(∆r)2z′′f .

For a given detonation velocity the charge radius is determined by integrating along

the shock front from the charge centre out to the edge. The charge edge condition is

determined via a shock polar analysis. For an unconfined explosive the edge of the

charge corresponds to the point at which the post-shock flow is exactly sonic.

6.7.3 Unconfined Calculations

Figure 6.8 shows the diameter effect curve for EDC37. The results from the DNS lie

between those from the approximate DSD and SSA models. This is consistent with

results previously published for a polytropic EOS with power law reaction rate [30].

The SSA model overpredicts the detonation velocity for a given charge radius. At

small radii the disparity between the DNS results and the SSA is significant. The

failure radius predicted by the SSA (∼ 0.83 mm) is smaller than that predicted by the
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DNS calculations (∼ 1.25 mm). This difference is significant and is much greater than

the differences between the DNS and SSA for previous calculations with a polytropic

EOS where there was less than 5% difference between the failure radii. Figure 6.11

shows that qualitatively similar results are obtained for the PBX9502 model but SSA

is much better than DSD in this case.

Figure 6.9 shows how the shock shape and sonic locus in the SSA model compares

with the DNS for D = 0.861 cm µs−1, which is very close to the CJ velocity DCJ =

0.877 cm µs−1 and the SSA closely matches the DNS data point on the diameter effect

curve. The SSA model predicts that the shock curvature is smaller than the DNS

calculation for r < R/2, (R is the radius of the rate-stick) however, close to where the

SSA reaches the Crocco point the shock front curvature is larger than in the DNS. This

would suggest that at this point in the flow streamline curvature effects are important.

Moreover, the location of the sonic surface is in reasonable agreement with the DNS

calculations.

Figure 6.10 shows how the SSA model compares with the DNS calculations for

D = 0.760 cm µs−1, this detonation velocity corresponds to a rate-stick which is close

to the failure diameter for the explosive. The SSA model accurately captures the shock

surface for r < R/2. However, as the radius increases the SSA over-estimates the

shock front curvature which results in a smaller total radius than the DNS calculation.

Moreover it is clear that the distance between the shock surface and sonic surface is

increasing rapidly towards the edge of the explosive for the SSA and fails to capture

the behaviour at the edge where the two surfaces meet. This is a clear indication that

the SSA model is failing to capture the complete physics at the edge of the explosive.

In the previously published results for the polytropic EOS with power law reaction rate

the shock front and sonic surface did meet at the edge for the SSA calculations[30].
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Figure 6.8: Diameter effect curve for EDC37. The CJ detonation speed is DCJ =
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6.7.4 EDC37 EOS with Power law reaction rate

To separate the effects of the reaction rate from the EOS rate-stick calculations were

performed for the CREST EDC37 EOS with a simple power law reaction rate of the

form

dλ

dt
= α (1 − λ)1/2 . (6.63)

Here α = 2.84µs−1 was used. The magnitude of α was chosen for convenience with

numerical calculations as we are only concerned with comparisons between numerical

calculations and not experimental data. The dimensionality is retained to maintain

consistency with the remaining equations in the model. The form of reaction rate

was chosen as it is state insensitive and therefore the reaction rate at the charge edge

would not be dependent upon shock strength. The main difference between this form of

reaction rate and that of the CREST model is that the reaction rate is maximal at the

shock and monotonically decreases, whereas for CREST the reaction has an induction

zone immediately behind the shock before reaching its maximal value a significant

distance behind the shock.

The DNS results were compared with the SSA model. The edge boundary condi-

tion for the SSA calculations was given by the Crocco point, which meant that the flow

at the edge would not be sonic for the SSA calculations. This was discussed in section

6.7.1. Figure 6.12 shows that the SSA and DNS results are in excellent agreement for

large charge radii. As the radius of the rate-stick decreases the SSA and DNS results

diverge, with the SSA overpredicting the detonation velocity for a given charge size.

Comparing this diameter effect curve with that of the EDC37 reaction model

(figure 6.8) it is clear that when the reaction rate is maximal at the shock the SSA and

DNS results are in closer agreement than when there is an induction zone. This would

suggest that streamline curvature effects inside the reaction zone are significant and the
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SSA assumption is not valid for the CREST model.

Figure 6.13 shows how the shock shape and sonic locus in the SSA model compares

with the DNS calculations for D = 0.836 cm µs−1. This detonation velocity corresponds

to a rate-stick which is close to the CJ velocity (DCJ = 0.877 cm µs−1). The SSA model

underestimates the curvature of the shock surface until very close to the edge. The shape

and location of the sonic surface is in reasonable agreement with the DNS calculation

and the sonic locus does intersect the shock at the charge edge.

Figure 6.14 shows how the SSA model compares with the DNS calculations for

D = 0.694 cm µs−1. This detonation velocity corresponds to a rate-stick which is signifi-

cantly below the CJ velocity. Here the SSA model captures the shock surface accurately

for r < R/2: it is only close to the edge of the explosive where the SSA and DNS results

diverge. The sonic surface is captured accurately close to the centre. However, the SSA

overpredicts the distance between the shock front and sonic surface close to the charge

edge. This would suggest that, even for state insensitive reaction rates, the streamline

curvature effects are important at the charge edge.
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Figure 6.12: Diameter effect curve for EDC37 EOS with power law reaction rate. The
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6.7.5 EDC37 Confined Calculation

Rate-stick calculations were performed for the CREST EDC37 (multiphase EOS and

reaction rate) model with confinement. Confinement of the explosive provides lateral

support to the high pressures generated inside the reaction zone, reducing shock cur-

vature effects at the edge of the explosive. This enables detonation waves to propagate

in charges with a much smaller radius than in the unconfined case [11]. With lateral

confinement reducing the curvature effects at the charge edge the streamlines in the

DDZ should be straighter and thus the SSA should be more accurate in this regime

when compared to unconfined detonations.

The polytropic equation of state was used for the confiner with a stiffened poly-

tropic gamma (γ = 5) and initial density of ρ0 = 7 g/cm3, these parameters were chosen

to ensure the correct shock-polar match. The explosive and confiner were initialised

with the same pressure. The DNS results were compared with the DSD and SSA

steady state models. The boundary angle used in the steady models was determined

via a shock-polar match between the explosive and inert. Figure 6.15 shows the pres-

sure streamline-deflection shock polar for the explosive and confiner. The match point

occurs on the upper, subsonic branch of the explosive and the lower, supersonic, branch

of the confiner. This type of match was observed for all detonation velocities. Moreover,

the match point occurs before the Crocco point which ensures that the rate-stick edge

boundary condition can be obtained with the SSA.

Figure 6.16 shows that the SSA underpredicts the detonation velocity for a given

charge radius when compared with the DNS calculations. However, the difference is

much smaller than for the unconfined case (figure 6.8). As the confiner provides support

to the detonation driving zone the shock curvature effects at the edge of the explosive are

likely to be reduced for the confined calculations and will result in the streamlines being
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straighter, which is why the SSA agrees more closely with the DNS for the confined

calculations. The DSD calculations significantly underpredict the detonation velocity

when compared with the DNS.
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Figure 6.15: Pressure streamline-deflection shock polar for EDC37 and polytropic EOS

(γ = 5, ρ0 = 7g cm−3) for D = 0.879 cm µs−1.
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Figure 6.16: Diameter effect curve for EDC with polytropic confiner (γ = 5, ρ0 =

7g/cm−3). The CJ detonation speed is DCJ = 0.877 cm µs−1.

6.8 Reaction Rate with Induction Zone

The simulations using the SSA model performed by Watt et al focused exclusively on

a single step power law reaction rate for which the reaction rate is a maximum at the

shock. Although this model is used widely in detonation modelling due to its conve-

nience and simplicity [11][26][51], experimental evidence has suggested that there is an

induction zone immediately behind the shock [13][55][56]. Other detonation models,

such as Ignition and Growth and CREST have reaction rates where the maximum re-
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action rate has an induction zone with maximal reaction rate occurring a finite time

after being shocked.

6.8.1 Model Equations

The polytropic EOS was used with a reaction rate model with an induction zone. The

induction zone was achieved using a two-step reaction model of the form

dλ1

dt
= α (1 − λ1)

1

2 ,

dλ2

dt
= βλ1 (1 − λ2)

1

2 , (6.64)

where α and β are constants. This form of reaction rate was chosen as it is independent

of the shock strength and thus reduces the coupling with the EOS. For simplicity β = 1

and α is chosen such that λ2 = 1
2

when the distance in the shock-attached frame

x = 1
2

in the one-dimensional ZND solution. The λ1 reaction is analogous to a fast-

burn reaction immediately behind the shock and λ2 represents the bulk burn of the

explosive. Multiplying the bulk burn reaction rate by λ1 ensures that the reaction rate

is zero immediately behind the shock and grows to a maximum a finite time behind the

shock. These equations were coupled to the EOS and detonation model via λ2 i.e. the

polytropic EOS with

e =
p

(γ − 1) ρ
− λ2q. (6.65)

The behaviour of the reaction rates is shown in figure 6.17. The step-one reaction λ1 has

the typical power law form, maximal reaction rate at the shock and is monotonically

decreasing behind the shock. The second-step reaction term λ2 has a clear induction

zone where the reaction rate is zero immediately behind the shock and increases to a

maximal value a finite distance behind the shock.
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Figure 6.17: Reaction rate as a function of distance behind shock for ZND detonation

with induction reaction rate. The legend indicates the fast reaction λ1 and the bulk

burn reaction λ2.

6.8.2 Simulations

Implementation of the induction based reaction rate into the SSA, DSD and DNS

calculations required the addition of an additional reaction scalar parameter to track

the second step of the reaction. This was straightforward to implement in the relevant

software. The same non-dimensional scalings were applied to this model as used by

Watt et al. [30] and are described for the single term power law reaction rate in section

2.4.4. The boundary conditions for the SSA model were the same as those described in

section 6.4 for the polytropic gas EOS.
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The DNS calculations were performed using AMR. To reduce the computation

time the detonation velocity was determined by varying the magnitude of the Galilean

transformation applied to the domain until the shock remained static on the grid. This

method was verified by performing laboratory frame calculations of a rate-stick with

a length-to-diameter ratio of 15. The detonation velocity agreed to three significant

figures for two different diameters.

6.8.3 Results and Discussion

A diameter effect curve for the induction based model was obtained for the SSA and

DSD models. These results were compared with DNS calculations where each data

point was converged to three significant figures in the detonation velocity.

Figure 6.18 shows that for large diameters the SSA overpredicts the detonation

velocity when compared to DNS calculations. Here it should be noted that the reaction

rate equations are state-insensitive and thus are only weakly coupled to the state of

the explosive. With a single-step reaction rate the SSA and DNS calculations were in

excellent agreement. However, when using a reaction rate where the reaction is not

maximal at the shock, the SSA overpredicts the detonation velocity, suggesting that

the cause of this is due to the induction zone in the reaction rate. Hence for any

detonation model where the reaction rate is not maximal at the shock a streamline

ansatz beyond straight lines would need to be considered to more accurately match the

DNS calculations. Moreover, consistent with previous calculations performed with the

polytropic equation of state, the DSD model underpredicts the detonation velocity.

Figure 6.19 compares the shock and surfaces obtained from the DNS and SSA

calculations for D = 0.889 (R = 20). The SSA accurately matches the DNS calculations

at the centre of the rate-stick. However, the surfaces begin to diverge as the radius
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increases. For the SSA calculation the shock and sonic surfaces do not meet at the

charge edge. For the polytropic EOS the flow is sonic at the charge boundary for the

SSA but the shock and sonic surfaces do not meet. This feature was observed for the

EDC37 model that also had an induction zone. This would suggest that unless the

reaction rate is maximal at the shock the SSA is unable to capture the convergence of

the shock and sonic surfaces at the charge edge. This again suggests that it is necessary

to consider streamline curvature effects.
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Figure 6.18: Diameter effect curve for polytropic EOS with induction type reaction

rate. The SSA results are compared with DNS calculations and the DSD model. The

CJ detonation speed is DCJ = 1.
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Figure 6.19: Shock front and sonic surface for polytropic EOS with induction type

reaction rate for D = 0.889.

6.9 Non-Ideal Explosive EOS - ANFO

6.9.1 Model Equations

As a further test of the SSA model’s predictive capability, a quadratic-gamma polytropic

equation of state with a one-step power law reaction rate was considered. The equation

of state and reaction rate were calibrated [35] to data for a non-ideal Ammonium-

Nitrate Fuel Oil (ANFO) explosive typically used in the mining industry. The reaction
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rate was
dλ

dt
=

1

τ

(

p

pref

) 3

2

(1 − λ) , (6.66)

where τ and pref are constants. For this equation the reaction rate is maximal at the

shock. The equation of state is the polytropic EOS with a gamma that is quadratic in

the density

e =
p

(γ∗ − 1) ρ
− λq, γ∗ = γ0 + γ1

ρ

ρ0

+ γ2

(

ρ

ρ0

)2

. (6.67)

The initial density of the explosive is ρ0 and the initial pressure was p0 = 1 × 105 Pa.

The parameters for the model are given in table 6.1 and were taken from Sharpe &

Braithwaite [35].

DNS calculations of unconfined rate-stick calculations were performed and com-

pared with the SSA and DSD models. The boundary condition at the charge edge was

given by the Crocco point, which occurs at a smaller shock slope than required for the

post-shock flow to be sonic. The post-shock Mach number as a function of streamline

deflection angle, for D = 3.598 km s−1, is shown in figure 6.20. The qualitative be-

haviour of the curve is the same as that of the EDC37 equation of state discussed in

section 6.7.1.
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Parameter Value Units

τ 28 µs

pref 1 GPa

ρ0 0.8 g/cm3

γ0 1.3333

γ1 0.36264

γ2 0.076288

q 3.822 × 106 J/Kg

Table 6.1: Parameters for ANFO explosive model[35].
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Figure 6.20: Streamline deflection shock polar for polytropic EOS with quadratic

gamma for detonation velocity D = 3598 km s−1. Note that the exact form of this

curve is independent of the detonation velocity.
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6.9.2 Results and Discussion

The calculations were performed for an unconfined explosive. SSA and DSD calculations

were also performed as comparison.

Figure 6.21 shows that the diameter effect curve calculated by the DNS lies be-

tween those predicted by the SSA and DSD models at large radii. However, both the

SSA and DSD models fail to predict the behaviour of the diameter effect curve at small

radii, where they both underpredict the detonation velocity.
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Figure 6.21: Diameter effect curve for an ANFO equation of state. The CJ detonation

speed is DCJ = 4.794 km s−1.
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Chapter 7

Limitations of SSA Model

7.1 Introduction

In chapter 6 it was shown that there are many cases in which the SSA model is not able

to capture diameter effect curves accurately when compared with DNS calculations.

The greatest disparity between the SSA and DNS results was observed for reaction rate

equations with a significant induction zone. Moreover, for some of the equations of

state considered, the SSA model was unable to integrate to the charge boundary, due

to the streamlines converging.

In the following chapter the unconfined SSA and DNS results are analysed to

investigate these features. Moreover, the streamline curvature at the shock is calculated

for the polytropic and CREST equations of state.
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7.2 Failure to Reach Charge Edge

7.2.1 Shock Polar Analysis

In sections 6.7.1 and 6.9.1 it was shown that for the EDC37 (unreacted phase) and

ANFO equations of state the SSA was unable to integrate to the boundary shock

slope required for an unconfined rate-stick calculation. The Crocco point, where the

streamline deflection is maximum, occurs before the post-shock flow is sonic for these

equations of state. Figure 7.1 shows how the post-shock Mach number varies with

streamline deflection for the EDC37, ANFO and polytropic equations of state. It is

clear that the sonic point occurs after the Crocco point for EDC37 and ANFO. A

similar result was also obtained for the PBX9502 equation of state, as well as the JWL

equation corresponding to the fully reacted EOS. However, for the polytropic EOS the

Crocco point coincides with the sonic point (see section 6.6.1). How significant is it that

the SSA model fails to integrate beyond the Crocco point? The next section attempts

to address this question.
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Figure 7.1: Mach number streamline-deflection shock polar for EDC37, polytropic (la-

belled Poly) and polytropic with quadratic gamma (labelled ANFO). D = 0.813 cm µs−1

was used for EDC37 and the remaining curves are independent of the detonation ve-

locity. Note for the polytropic EOS the sonic and Crocco points coincide.

7.2.2 Shock Slope from SSA and DNS Calculations

The shock slope, as a function of radius, was calculated for the DNS calculations and

compared to the results from the SSA model. The rate-stick calculations considered

were those of the unconfined CREST EDC37 model and the EDC37 EOS with a power

law reaction rate.

For the SSA model the shock slope is known as a function of r. To calculate the
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shock slope from the DNS the shock surface coordinates were first obtained. Then the

shock slope was calculated using a central difference approximation from the r, z data.

Here no attempt was made to smooth the shock slopes computed from the DNS.

Figures 7.2 and 7.3 show how the shock slope varies as a function of radius for

detonation velocities of D = 0.861 cm µs−1 and D = 0.760 cm µs−1. These detonation

velocities correspond to near CJ and near failure. Both curves show the same general

trend: the SSA model closely matches the DNS for r < R/2 and for increasing radius

the shock slope increases more rapidly for the SSA than the DNS. Considering the DNS

curves it is clear that the Crocco point, which corresponds to the minimum shock slope

for the SSA, occurs extremely close to the charge edge for both the near CJ and near

failure rate-stick calculations. This would suggest that, if the SSA could integrate to

the Crocco point exactly, the effect on the diameter curve would be much smaller than

that observed. This suggests that the streamline curvature is important.

Figures 7.4 and 7.5 show how the shock slope varies as a function of radius for

D = 0.836 cmµs−1 and D = 0.694 cmµs−1 for the EDC37 EOS with a power law

reaction rate. Figure 7.4 shows that the SSA and DNS are in reasonable agreement.

However, for a detonation velocity much lower than DCJ , the SSA shock slope decreases

more rapidly than the DNS. This suggests that for a power law reaction rate curvature

effects only become significant at lower detonation velocities. This would explain why

the SSA and DNS results diverged in section 6.7.4.
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Figure 7.2: Shock slope as a function of charge radius for unconfined EDC37. The

detonation velocity is D = 0.861 cm µs−1 and DCJ = 0.877 cm µs−1.
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Figure 7.3: Shock slope as a function of charge radius for unconfined EDC37. The

detonation velocity is D = 0.760 cm µs−1 and DCJ = 0.877 cm µs−1.
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Figure 7.4: Shock slope as a function of charge radius for unconfined EDC37 EOS with

power law reaction rate. The detonation velocity is D = 0.836 cm µs−1 and DCJ =

0.877 cm µs−1
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Figure 7.5: Shock slope as a function of charge radius for unconfined EDC37 EOS with

power law reaction rate. The detonation velocity is D = 0.694 cm µs−1 and DCJ =

0.877 cm µs−1.
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7.2.3 Sonic Point in DNS Calculations

The shock polar analysis in section 7.2.1 showed that the sonic point, corresponding

to the edge of the explosive, occurs after the maximal streamline deflection angle had

been obtained. This would suggest that to get to the sonic point the streamlines, in the

absence of curvature, would begin to converge at the edge of the explosive. Streamlines

for the unconfined DNS calculation with CREST EDC37 were computed and overlaid

onto the subsonic region as shown in figure 7.6. The rate-stick radius was 1.25 mm and

the detonation velocity was D = 0.760 cm µs−1. This was close to the failure radius of

the explosive. The deflection angle of the streamlines was calculated at different radii

close to the charge edge. In the region where the streamline deflection angles were

calculated there was little, or no, reaction and hence the explosive is described by the

solid EOS only in this region.

Table 7.1 shows that the streamline deflection angle reaches a maximum a small,

but finite, distance from the edge of the rate-stick. This shows that in the DNS calcula-

tion the streamlines do converge near the charge edge and that the shock polar, figure

7.1 is followed smoothly from the Crocco point to the sonic point at the charge edge.

At this point a transonic Prandtl-Meyer expansion fan matches the explosive to the

inert confiner. A shock polar analysis in [11] implied that the streamlines converged at

the edge of the rate-stick for the equation of state considered. However, there was no

confirmation in any calculations that this was the case.
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Figure 7.6: Subsonic region (blue) from DNS calculation with EDC37: r = 1.25 mm

with streamlines superimposed for 0.7 < r/R < 1.1. The detonation velocity is D =

0.760 cm µs−1 and DCJ = 0.877 cm µs−1.
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Streamline Deflection Angle / Degrees Radius

1 9.9 0.98

2 10.6 0.94

3 9.7 0.90

4 9.5 0.86

Table 7.1: Streamline deflection angle for different radii from DNS calculation of

CREST EDC37 for D = 0.760 cm µs−1. The radius is given as a fraction of the total

radius of the rate-stick. DCJ = 0.877 cm µs−1.
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7.3 Streamline Shapes From DNS

The SSA is based upon the assumption that the streamlines are straight throughout

the reaction zone. But how straight are they? Streamlines were generated from the

DNS calculations by applying a Galilean transformation to the axial velocity with the

detonation velocity. The streamline shapes for different explosive models are compared.

7.3.1 CREST EDC37

Streamline data was obtained for the CREST EDC37 explosive for r = 1.25 mm. Figure

7.7 shows that the streamlines in the subsonic region are weakly curved throughout the

reaction zone across the rate-stick (a blow-up of the charge edge is shown in figure

7.6). The majority of the streamlines curve inwards towards the axis. However, close

to the edge of the rate-stick, the streamlines curve away from the axis. Figure 7.8

shows the reaction source term for the same calculation. The maximum streamline

curvature coincides with where the reaction source term is also a maximum. At the

charge edge, where the streamlines curve away from the axis, the reaction source term

is very small. This is to be expected since it has been shown that the chemical reaction

has the effect of curving the streamlines towards the axis and that the shock curvature

causes streamlines to curve away from the axis [26]. At the charge edge the Prandtl-

Meyer rarefaction curves the streamlines outwards away from the axis. Moreover, figure

7.9 shows that where the pressure gradient is largest occurs at the charge edge, which

coincides with the region of greater streamline curvature.
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Figure 7.7: Subsonic region (blue) from DNS calculation with EDC37: r = 1.25mm

with streamlines superimposed. The detonation velocity is D = 0.760 cm µs−1 and

DCJ = 0.877 cm µs−1.

Figure 7.8: Reaction source term from DNS calculation with EDC37: r = 8mm with

streamlines superimposed. The detonation velocity is D = 0.760 cm µs−1 and DCJ =

0.877 cm µs−1.
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Figure 7.9: Pressure from DNS calculation with EDC37: r = 1.25mm with streamlines

superimposed. The shock in the confiner can be clearly seen. The detonation velocity

is D = 0.760 cm µs−1 and DCJ = 0.877 cm µs−1.
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7.3.2 CREST EDC37 EOS with Power Law Reaction

Streamline data was obtained for the CREST EDC37 EOS with the power law reaction

rate for r = 0.5 cm with D = 0.836 cm µs−1 (DCJ = 0.877 cm µs−1). Details of the

reaction rate can be found in section 6.7.4. Figure 7.10 shows that the streamlines in

the subsonic region appear to be very straight. This is in stark contrast with figure

7.7 for the CREST reaction rate where the streamlines were more significantly curved.

The straightness of the streamlines would explain why the diameter effect curves for the

SSA and DNS calculations agreed more closely than those for the CREST reaction rate.

Figure 7.11 shows that the reaction rate is maximum immediately behind the shock and,

as the reaction is state-insensitive, has the same magnitude across the rate-stick.

Figure 7.10: Subsonic region (blue) from DNS calculation with EDC37 EOS and single-

term power law reaction rate: r = 0.5 cm with streamlines superimposed. The detona-

tion velocity is D = 0.836 cm µs−1 and DCJ = 0.877 cm µs−1.
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Figure 7.11: Reaction source term from DNS calculation with EDC37 EOS and single-

term power law reaction rate: r = 0.5 cm with streamlines superimposed. The detona-

tion velocity is D = 0.836 cm µs−1 and DCJ = 0.877 cm µs−1.

7.3.3 Polytropic EOS with Induction Zone Reaction

Streamline data was obtained for the polytropic EOS with an induction zone for r =

12.5 and D = 0.827 (see section 6.8.1 for details on reaction equations). Figures 7.12

and 7.13 show that when an induction type reaction rate is used the streamlines have

significant curvature in the region where the reaction rate is a maximum and thus the

SSA will not capture the flow accurately in the subsonic region, evidence of this was

discussed in section 6.8.3.
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Figure 7.12: Subsonic region (blue) from DNS calculation with a polytropic EOS and

induction reaction rate: r = 12.5. Streamlines superimposed. The detonation velocity

is D = 0.827 and DCJ = 1.
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Figure 7.13: Reaction source term from DNS calculation with a polytropic EOS and

induction reaction rate: r = 12.5 with streamlines superimposed. The detonation

velocity is D = 0.827 and DCJ = 1.
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7.4 Post-shock Streamline Curvature

A derivation of the streamline curvature behind an oblique shock was first published

by Thomas [57] for planar flow with a uniform upstream state. Rao [53] published

equations for the streamline curvature behind an axisymmetric shock. This was also for

a uniform upstream state. Molder has developed the theory further to consider a non-

uniform flow upstream of the shock [58]. However, these calculations did not consider

the effect of a chemical reaction at the shock. In the following section expressions for

the post-shock streamline curvature are derived and calculations with the polytropic

EOS and CREST EDC37 model are performed.

7.4.1 Derivation of Streamline Curvature

Since this is a local analysis, it is convenient to use Cartesian coordinates (x, y). We

parameterise the streamline such that x = xs(y). We define the slope M and curvature

K

M =
dxs

dy
. (7.1)

K =
dM

dy
. (7.2)

Immediately behind the shock

M =
u (x, y)

v (x, y)
, (7.3)
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where u and v are the post-shock velocities in the x and y directions. Substituting for

M into 7.2

K =
d

dy

(u

v

)

,

=
1

v

du

dy
− u

v2

dv

dy
,

=
1

v

[

∂u

∂y
+

dxs

dy

∂u

∂x

]

− u

v2

[

∂v

∂y
+

dxs

dy

∂v

∂x

]

,

K =
1

v

[

∂u

∂y
+ M

∂u

∂x
− M

∂v

∂y
− M2 ∂v

∂x

]

, (7.4)

where M has been substituted using 7.3. This is an expression for the streamline

curvature, immediately behind the shock, in terms of partial derivatives of the flow

velocity with respect to x and y. To determine the streamline curvature expressions for

these will need to be determined. The procedure for obtaining the partial derivatives

are described in the following sections.

7.4.2 Euler Equations

We first consider the steady reactive Euler equations 2.1- 2.5. These are given by

u · ∇ρ + ρ∇ · u =0,

ρu · u + ∇p =0,

u · ∇e − p

ρ2
u · ∇ρ =0,

u · ∇λ =W.

Writing these equations in Cartesian coordinates

u
∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= 0, (7.5)

ρu
∂u

∂x
+ ρu

∂u

∂y
+

∂p

∂x
= 0, (7.6)
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ρv
∂v

∂x
+ ρv

∂v

∂y
+

∂p

∂y
= 0, (7.7)

u
∂e

∂x
+ v

∂e

∂y
− pu

ρ2

∂ρ

∂x
− pv

ρ2

∂ρ

∂y
= 0, (7.8)

u
∂λ

∂x
+ v

∂λ

∂y
= W. (7.9)

where equations 7.6 and 7.7 are the momentum equations in the x and y directions

respectively. The energy and reaction equations, 7.8 and 7.9, can be combined with the

equation of state e = e(p, ρ, λ) and the expression for the sound speed (see equation

A.2 in appendix A) to give

u
∂p

∂x
+ v

∂p

∂y
− c2u

∂ρ

∂x
− c2v

∂ρ

∂y
=

∂e/∂λ

∂e/∂p
W. (7.10)

Hence we have expressions involving partial derivatives of the flow velocities, pressure

and density.

7.4.3 Derivatives along the shock

Further equations for the derivatives of the flow variables can be obtained by considering

derivatives along the shock front. We first consider the parameterisation of the shock

y = yf (x) and define the slope and curvature

s =
dyf

dx
, (7.11)

κ =
ds

dx
. (7.12)

For an oblique shock, discussed in section 6.4.2, it was shown that the post-shock flow

variables are a function of the shock slope only. Therefore, for some flow variable

g = g(s), we can write

dg =
dg

ds

ds

dx
dx =

dg

ds
κ dx, (7.13)
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where κ has been substituted from 7.12. Along the shock

dg = (dx, dy) · ∇g = dx (1, s) · ∇g. (7.14)

Equating 7.13 and 7.14 gives

κ
dg

ds
= (1, s) · ∇g. (7.15)

Dropping the function g and writing ∇ in Cartesian coordinates gives

κ
d

ds
=

∂

∂x
+ s

∂

∂y
. (7.16)

This expression relates derivatives along the shock to partial derivatives in x and y. For

example, for the pressure 7.16 gives

κ
dp

ds
=

∂p

∂x
+ s

∂p

∂y
. (7.17)

To evaluate the LHS of this expression p(s) must be known, which requires the solu-

tion to the shock relations and will be dependent upon the equation of state chosen.

Equation 7.16 can be applied to each of the flow variables u, v, p, ρ and thus gives four

equations in terms of partial derivatives w.r.t. x and y.

7.4.4 Curved Shock Equations

We are now in a position to determine the streamline curvature as a function of the

shock curvature for a given shock slope s. The Euler equations 7.5-7.10 can be combined

with the derivative along the shock (7.16) applied to the flow variables u, v, p, ρ. This

gives eight equations with eight unknowns allowing for each of the partial derivatives

of u, v, p, ρ to be determined behind the shock. It can be written as a linear system of

the form

Mz = b, (7.18)
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where M is a matrix and z and b are column vectors. In this case we have

M =









































ρ 0 0 ρ u v 0 0

ρu ρv 0 0 0 0 1 0

0 0 ρu ρv 0 0 0 1

0 0 0 0 −c2u −c2u u v
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0 0 1 s 0 0 0 0

0 0 0 0 1 s 0 0

0 0 0 0 0 0 1 s









































. (7.19)
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. (7.20)

For a given equation of state e = e(p, ρ, λ) and reaction rate W this system can be solved

for the vector z. With the partial derivatives of u, v obtained these can be substituted

into equation 7.4 to compute the streamline curvature immediately behind the shock.

If the reaction rate is formally zero behind the shock then the shock-curvature system

is modified by setting W = 0 in b.
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7.4.5 Streamline Curvature for Polytropic EOS

We recall the polytropic EOS

e =
p

(γ − 1)ρ
− λq. (7.21)

To determine the streamline curvature where there is reaction at the shock the reaction

rate must be specified. For the polytropic EOS previously published results [30] used

a reaction rate of the form

W = α (1 − λ)m pn, (7.22)

where α, m and n are constants. With the equation of state and reaction rate specified

an analytical expression for the streamline curvature can be obtained.

The oblique shock relations, for the polytropic EOS, have been derived in section

6.6.1. They gives expressions for the two components of velocity (u, v) in the (x, y)

directions, the pressure and density behind the shock as a function of the shock slope

s. They are given by,

us =
2Ds

(γ + 1) (1 + s2)
, (7.23)

vs =
D (γ − 1 + (γ + 1) s2)

(γ + 1) (1 + s2)
, (7.24)

ρs =
(γ + 1)

(γ − 1)
, (7.25)

ps =
2D2

(γ + 1) (1 + s2)
. (7.26)

The strong shock assumption of p0 = 0 has been used and the pre-shocked density

ρ0 = 1. Equations 7.23 -7.26 can be substituted into 7.16. These expression can then be

used with the Euler equations 7.5 -7.10 to obtain expressions for the partial derivatives

of the velocity components.
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We now proceed to apply 7.16 to the shock relations. From equation 7.23

dus

ds
=

2D

(γ + 1)

d

ds

(

s

(1 + s2)

)

,

=
2D

(γ + 1)

[

1

(1 + s2)
− 2s2

(1 + s2)2

]

,

dus

ds
=

2D

(γ + 1)

[

1 − s2

(1 + s2)2

]

,

which, by 7.16, gives

2Dκ (1 − s2)

(γ + 1) (1 + s2)2 =
∂u

∂x
+ s

∂u

∂y
. (7.27)

Applying the same procedure to 7.24

dvs

ds
=

D

(γ + 1)

[

2 (γ + 1) s

(1 + s2)
− 2s (γ − 1 + (γ + 1) s2)

(1 + s2)2

]

,

=
2Ds

(γ + 1) (1 + s2)2

[

γ + s2 + 1 + γs2 − γ + 1 − γs2 − s2
]

,

dvs

ds
=

4Ds

(γ + 1) (1 + s2)2 .

Substituting into 7.16 gives

4Dκs

(γ + 1) (1 + s2)2 =
∂v

∂x
+ s

∂v

∂y
. (7.28)

From 7.25 we have

0 =
∂ρ

∂x
+ s

∂ρ

∂y
. (7.29)

And finally from 7.26

−2sκD2

(1 + s2)2 =
∂p

∂x
+ s

∂p

∂y
. (7.30)

164



Substitution of these results into the vector b in 7.20 gives

b =



















































0

0

0

ρ(γ − 1)qW

2Dκ(1−s2)
(γ+1)(1+s2)2

4Dκs
(γ+1)(1+s2)2

0

−2sκD2

(1+s2)2



















































. (7.31)

The solution to the linear system given by 7.18 was solved using Gaussian elimination

to obtain expressions in the partial derivatives of the flow variables. These were then

substituted into equation 7.4 to obtain an expression for the streamline curvature behind

the shock. For γ = 3 (as used for previous SSA calculations) the post-shock streamline

curvature is

K =
s
[

16q (1 + s2)
3
W + 5D3κ (1 − 2s2)

]

D3 (1 + s2)3 . (7.32)

The first term inside the square braces is directly proportional to the reaction rate and

is strictly positive. The second term, which is proportional to the shockwave curvature

κ, is of the opposite sign (as s < 1). The effect of a reaction at the shock is therefore

to reduce the magnitude of the streamline curvature.

If there is no reaction at the shock (W = 0) then 7.32 reduces to

K =
5κs (1 − 2s2)

(1 + s2)2 . (7.33)

This expression indicates that in the absence of the reaction term the streamline cur-

vature is linearly proportional to the shock front curvature.
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An interesting feature of equation 7.33 is that the sign of the curvature changes

as the shock slope increases. By inspection of 7.33 this occurs when

s =
1√
2
.

This shock slope coincides with the point where the post-shock flow velocity is exactly

sonic as shown by equation 6.58 in section 6.6.1.

7.4.6 Calculations

The post-shock streamline curvature is calculated for the polytropic equation of state

with and without reaction at the shock. The reaction rate equation was that described

in equation 7.22 and the calculations were performed for n = 0,m = 1/2. Data from

SSA calculations in slab geometry was used as input for the shock curvature at each

shock slope. The calculations of the streamline curvature, without the reaction term,

were verified by comparing results to previous publications [53][57].

Figures 7.14-7.16 show how the streamline curvature varies for different detona-

tion velocities, the curves display similar qualitative features. Without reaction at the

shock the streamline curvature is positive and monotonically increasing as a function

of shock slope. When reaction at the shock is included the streamline curvature is of

opposite sign for a significant proportion along the shock surface and of a much smaller

magnitude.

As the presence of the reaction term reduces the magnitude of the post-shock

streamline curvature, negating the contribution from the curvature of the shock, this

may explain why the SSA proves to be more successful with a power law reaction rate

than when an induction-type reaction rate is used.
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Figure 7.14: Streamline curvature as a function of shock slope for polytropic EOS with

power law reaction rate m = 0.5, n = 0.0 and D = 0.45.
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Figure 7.15: Streamline curvature as a function of shock slope for polytropic EOS with

power law reaction rate m = 0.5, n = 0.0 and D = 0.65.
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Figure 7.16: Streamline curvature as a function of shock slope for polytropic EOS with

power law reaction rate m = 0.5, n = 0.0 and D = 0.97.
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7.4.7 Curvature for CREST

We now consider the post-shock streamline curvature for the unreacted CREST EDC37

EOS. As the shock relations for the CREST equation of state must be solved numer-

ically, the matrix equation to determine the streamline curvature must also be solved

numerically.

For the CREST model there is formally zero reaction rate at the shock and thus in

the curvature calculations there was no reaction. The results for CREST were compared

to similar calculations for the polytropic EOS.

Figure 7.17 shows that for EDC37 the streamline curvature increases as shock

slope increases, reaches a maximum and falls to zero. The sign of the streamline

curvature changes before the post-shock sonic point. This coincides with the point

where the streamlines begin to converge post-shock and the maximum shock slope that

can be integrated to with the SSA. Figure 7.18 shows that the polytropic EOS behaves

similarly to the CREST equation of state. However, the point at which the sign of

curvature changes coincides exactly with the sonic point. In section 6.8.3 it was shown

that when a reaction rate with a significant induction zone was used that the SSA failed

to capture the curvature effects that are important near the edge of the rate-stick. As

the qualitative behaviour, of the shock curvature as a function of shock slope, between

the polytropic and CREST EOS is similar it can be concluded that the failure of the

SSA to accurately reproduce shock shapes and diameter effect curves is due to the

model failing to consider curvature effects.
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Figure 7.17: Streamline curvature as a function of shock slope for CREST EDC37 equa-

tion of state. The legend indicates the different detonation velocities (in cm µs−1). The

solid circles indicate the shock slope at which the post-shock flow becomes transonic.
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Chapter 8

Conclusions

In this thesis the SSA was implemented for a number of different explosives models

including models where the reaction rate contained a significant induction zone before

reaching a maximum. Previous work with the SSA had exclusively focused on a power

law reaction rate where reaction is a maximum at the shock. In deriving the governing

flow equations for the CREST reactive burn model a new relationship between the

thermodynamic variables was developed. This mathematical implementation of the

model was verified using one-dimensional simulations and compared to high resolution

DNS calculations, where the CREST model was used, for the first time, in a Godunov-

type numerical scheme. For a stationary shock it was shown that the entropy of the

unreacted phase does not increase monotonically through the shock and is a result of

the averaging function used to achieve second order accuracy. Moreover, for CREST, it

was shown that the detonation velocity computed from a rate-stick calculation was not

independent of the frame of reference in which the calculation was performed. This is

in contrast with a polytropic EOS with a power law reaction rate where the detonation

velocity is independent of the frame of reference of the calculation.
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The SSA assumes that the streamlines are straight and diverging in the reaction

zone. For a realistic equation of state it has been shown that the Crocco point, where

the streamlines begin to converge behind the shock, is reached before the boundary

condition defining the edge of the rate-stick. This result was verified with analysis

of the DNS and, to the author’s knowledge, has not been published before. Previous

publications focused on the polytropic EOS where the streamlines are diverging up the

boundary and the Crocco point coincides with the edge of the explosive. Failure to

reach the charge edge boundary places a limitation on the modelling capabilities of

the SSA for unconfined rate-sticks when a realistic EOS is used. However, analysis of

high resolution DNS calculations showed that the Crocco point occurs very close to the

edge of the rate-stick. Thus, if the SSA were accurate up to this point, the difference

between the radius from the SSA and the DNS calculations would be small.

Unconfined rate-stick calculations with CREST explosive models showed that

there was a large discrepancy between the size effect curves for the SSA and DNS

calculations, which could not be explained by the inability of the SSA to integrate

beyond the Crocco point. As the CREST reaction rate has an induction zone a state-

insensitive power law reaction rate was implemented with the EDC37 EOS. Here, the

SSA and DNS results were more closely matched, suggesting that the assumption that

the streamlines are straight is a better assumption when a power law reaction rate is

used. Moreover, the SSA and DNS results were in better agreement for confined rate-

stick calculations. Here, curvature effects are reduced due to the lateral confinement

provided by the confiner.

Inspection of the streamline shapes from the DNS calculations show that, with an

induction zone, there is significant streamline curvature that coincides with the region

of maximum reaction. In contrast, for the power law reaction rate the streamlines are

very straight in the reaction zone. This suggests why the SSA is able to capture the
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diameter effect curve accurately when a power law reaction rate is used and is less

accurate when the reaction has an induction zone.

The streamline curvature at the shock was calculated for a polytropic EOS with

and without reaction at the shock. It was shown that with the presence of a reaction

term the sign of the curvature is changed and that the magnitude of the curvature is

significantly reduced. Hence any curvature effects will be smaller when there is reaction

at the shock. However, for a reaction with an induction zone the streamline curvature

effects will be more significant. The post-shock streamline curvature, as a function of

shock slope, was calculated using the CREST EDC37 explosive. It was shown that the

magnitude of the streamline varies in a similar manner to that of the polytropic EOS.

In future work improving the accuracy of streamline based models would require

consideration of the streamline curvature as part of the ansatz for the streamline shape.

For a power law reaction rate there will be some curvature at the shock but the stream-

lines then remain very close to straight throughout the reaction zone. This would

suggest that a streamline shape based upon the shock curvature may be effective. For

an induction reaction rate equation the absence of reaction at the shock means that

streamlines will curve away from the axis initially. However, when the reaction rate is

significant, the DNS analysis shows that the streamlines then curve inwards. Predicting

the magnitude of this curvature downstream of the shock may not be straightforward

and could limit the predictive capability of any curved streamline model.
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Appendix A

Adiabatic Sound Speed

The adiabatic sound speed is given by [59],

c2 =

(

∂p

∂ρ

)

s

. (A.1)

Here s is the entropy. From the first law of thermodynamics we have

de = Tds − pdv = Tds +
p

ρ2
dρ,

where v = 1/ρ has been used. For an adiabatic process ds = 0, expanding de assuming

e(p, ρ, λ)

de =

(

∂e

∂ρ

)

p,λ

dρ +

(

∂e

∂p

)

ρ,λ

dp +

(

∂e

∂λ

)

p,ρ

dλ =
p

ρ2
dρ.

The thermodynamic variables are assumed to be in local equilibrium such that the

chemical reaction is frozen and dλ = 0, therefore
(

∂e

∂ρ

)

p,λ

dρ +

(

∂e

∂p

)

ρ,λ

dp =
p

ρ2
dρ.

Rearranging this expression and using the definition of the adiabatic sound speed A.1

c2 =

(

p

ρ2
− ∂e

∂ρ

)/

∂e

∂p
, (A.2)
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which is an expression for the adiabatic sound speed for a material with equation of

state e = e(p, ρ, λ).
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Appendix B

Derivation of the internal energy off

an isentrope

The Grüneisen parameter is given by,

Γ = v

(

∂p

∂e

)

v

, (B.1)

where v is the specific volume, p is the pressure and e is the specific internal energy.

Γ is assumed to be independent of the internal energy, that is, Γ = Γ(v). Integrating

equation B.1 we obtain,
Γ

v
(e − ei) = p − pi, (B.2)

where the i subscript indicates the variable on a curve of constant entropy, this is the

reference curve for the equation of state. Both forms of ei and pi are known. From the

first law of thermodynamics, assuming constant entropy s, we can write,
(

∂e

∂v

)

s

= −p. (B.3)

Substituting equation B.3 into B.2 we obtain,
(

∂e

∂v

)

s

= −pi −
Γ

v
(e − ei).
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Rearranging this expression gives,
(

∂e

∂v

)

s

+
Γ

v
e = −pi +

Γ

v
ei. (B.4)

This equation is linear in e and is of the form,

de

dv
+ P (v)e = Q(v).

To solve it we multiply each term by the integrating factor exp
(∫

(Γ/v) dv
)

to give,

de

dv
exp

(∫

(Γ/v) dv

)

+
Γ

v
e exp

(∫

(Γ/v) dv

)

= exp

(∫

(Γ/v) dv

)(

−pi +
Γ

v
ei

)

,

d

dv

[

e exp

(∫

(Γ/v) dv

)]

= exp

(∫

(Γ/v) dv

)(

−pi +
Γ

v
ei

)

.

Integrating with respect to v, noting that the entropy was constant for the differential

equation,

e exp

(∫

(Γ/v) dv

)

=

∫ (

−pi +
Γ

v
ei

)

exp

(∫

(Γ/v) dv

)

dv + Z(s), (B.5)

where Z(s) is an integration constant that depends upon the entropy. We can define

the function,

τ = exp

(∫

− (Γ/v) dv

)

. (B.6)

Substituting for τ , from B.6, in equation B.5 gives,

e

τ
=

∫ (

−pi +
Γ

v
ei

)

dv

τ
+ Z(s).

But on an isentrope, according to equation B.3, dei

dv
= −pi, so we can write,

e

τ
=

∫ [

dei

dv
+

Γ

v
ei

]

dv

τ
+ Z(s),

=

∫

dei

dv

dv

τ
+

∫

Γ

v

ei

τ
dv + Z(s) (B.7)
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We can solve the first integral on the right-hand side of B.7 by parts,

∫

dei

dv

dv

τ
=

∫

dei

dv

1

τ
dv,

=
ei

τ
+

∫

ei
1

τ 2

dτ

dv
dv.

But, from equation (B.6), dτ
dv

= Γτ/v, therefore,

∫

dei

dv

dv

τ
=

ei

τ
−

∫

Γ

v

ei

τ
dv.

With this result we can immediately write equation B.7 as,

e = ei + τZ(s). (B.8)

This equation allows for the internal energy to be computed off the principal isen-

trope.
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