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Abstract  

Theoretical studies of the resilience of ecological systems to environmental change 

predict that the size distributions of species in ecosystems should have discontinuities that 

reflect similar discontinuities in ecosystem processes. Body size distributions should have 

many peaks and troughs (modes) for natural, undisturbed ecosystems, but that as 

disturbances increases, so the number of modes declines. If so, this prediction has 

implications for assessing the quality of real ecological systems and has potential for 

environmental monitoring.  

 

This research was carried out to explore the relationship between water quality and body 

size patterns in benthic communities in order to establish the potential of size based 

indicators for assessing environmental condition, as well as testing Holling‟s (1992) 

proposition that lumpiness occurs in body size distributions across a broad range of 

spatial and temporal scales. The invertebrate samples were collected from both lentic and 

lotic habitats including rivers, ponds and canals in Yorkshire, UK, known to experience 

different degree of pollution. Five stations on the River Ure system and nine sites on the 

River Aire were sampled for moving water while eight stations were sampled for static 

(canals and ponds) habitats in the area South East of York. Community Abundance, 

BMWP score, water conductivity and ASPT analysis confirmed varying water quality 

among these sites.    

 

Visual observation of body mass pattern showed skewed distributions towards smaller 

size classes and most had two very obvious modes at medium and large size classes 

except for the most polluted habitats. Similarly, statistically rigorous estimates using 

Kernel Density Analysis (KDE) revealed highly significant relationships between the 

number of modes and water quality for running water. However, this study was unable to 

firmly relate discontinuities in body mass distributions to water quality in static water 

bodies and in fact the relationship appear to be the opposite of those found for moving 

water. Analysis of the number of gaps, using Holling‟s (1992) Body Mass Difference 

Index (BMDI), revealed wide variation in clean and intermediate water quality sites, 

though the most polluted site had the fewest gaps. However, other disturbed sites had 
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more gaps and some clean sites had fewer gaps. It is clear that size distributions in 

benthic communities are lumpy, in the sense that most sites showed more than one mode 

or many gaps, but the number of gaps (discontinuities) is not always correlated with 

disturbance, at least for the water quality of freshwater systems. 
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Chapter 1 

Introduction 

1.1 General Introduction 

Every living organism depends on water. Two thirds of the Earth is covered with 

seawater but freshwater habitats are much more restricted and their exploitable volume is 

only 0.003% of the total, a relatively scarce resource in relation to population growth 

(Mason, 2002b). Humans continue to pollute water at an alarming rate, which affects 

humans as well the aquatic biota. As a consequence, more than 20% of the world‟s 

population do not have access to safe drinking water and 2.4 billion lack even adequate 

sanitation. Due to the unhygienic use of water, 25,000 children die every day worldwide 

and a recent study estimates 2.5 million deaths occur per year from diarrhoea (Kosek, 

2003). It is estimated that 88 per cent of diseases are due to the use of unhealthy water, 

resulting in substantial health and economic losses (WHO, 2004). 

Pollutants may be discharged from point sources, for example from factories or sewage 

treatments works. Alternatively diffuse sources include fertilizer and pesticide applied to 

crops, and acid precipitation entering water bodies by surface runoff and land drainage. 

Most pollution is chronic; the effect on the aquatic ecosystem is harmful but not 

catastrophic and can be reduced. A greater problem now is episodic acute pollution which 

is unpredictable in space and time and can destroy years of patient and struggling work in 

reducing the effect of chronic pollution. 

Water pollution is problematic due to industrialization and the increasing growth rate of 

the human population. Wastes from industries and expanding towns have been poured 

untreated into rivers, causing bad odour as well as epidemic diseases like cholera.  Due to 

these problems, in 1876 the United Kingdom brought in legislation to control water 

pollution and this was extended to river and coastal water by 1951 (Hammerton, 1995). 

Currently in the United Kingdom contamination is controlled by specific procedures such 

as Pollution Prevention and Control (PPC) and environmental regulation like, Best 

Available Technique (BAT) (Sorrell, 2001). Although water pollution is hazardous to 
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humans and aquatic life, and nutrient pollution such as Phosphorus and Nitrogen comes 

from agricultural activities, causing harmful algal blooms. Zooplanktons eat toxic algae 

and these toxins pass up food chains causing illness and sometimes death to higher 

trophic levels. Algal blooms also cause mortality of fish by encouraging the marine 

pathogen Pfiesteria: in 1991, one million menhaden fish died in North Carolina
‟
s Neuse 

River due to a Pfiesteria outbreak (Burkholder et al., 1992). Chemical pollution is also 

introduced to water bodies from point sources as well as non-point sources like industrial 

wastes, leaching from contaminated soil and surface runoff, etc. These hazardous 

chemicals have adverse effects on aquatic life and can alter the ecosystem balance. Thus, 

the animals and plants which survive in water bodies are a good indicator of water 

quality. 

1.2 The assessment of water quality  

Several ways are available to measure water quality. One approach is to take water 

samples and measure the concentration of different chemicals, either above or equal to a 

standard, known as a chemical indicator of water quality. Another approach is to examine 

aquatic organisms, like fish and invertebrates. The presence or absence of healthy 

populations of organisms within a specific habitat is a sign of particular environmental 

conditions. These are biological indicators of water quality. Invertebrates have a high 

capability for accumulating metals in their tissues from their environment, meaning that 

these contaminants have a large biological half-life, because metals form complexes with 

organic substances and have tendency to be fixed in the tissue, preventing them from 

being excreted (Vernberg and  Vernberg, 1974). In this way organisms can reflect 

environmental pollution levels. Whilst chemical analyses give a value at the time the 

sample is taken, bio-indicators provide information over a longer term basis, because 

these animals are in that environment for a long time.  

Organisms are usually monitored to assess public exposure to materials such as food and 

potable water. Fish are very important in freshwater monitoring programmes as they are a 

direct part of human food, but several conditions should be kept in mind before 

considering organisms as satisfactory sentinels of pollution. Indicator animals should be 

sedentary so they reflect the pollution level, they must be abundant and easily 
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identifiable, and they should also be large enough to provide concentration levels of 

pollutants.  

The changes induced in the flora and fauna of rivers and streams can be used for 

biological effects of monitoring of water bodies. Major changes by pollutants occur in 

macro-invertebrate populations such as mayflies, stoneflies, crustaceans and molluscs etc. 

These changes in the relative abundance of different groups of macro-invertebrates occur 

due to the different sensitivity of these organisms to pollutants where pollution sensitive 

species are replaced by tolerant species and community diversity declines.  

Biological surveys are generally undertaken in summer and autumn because of the flows 

which makes sampling easier and during this period the worst conditions are expected 

because of the lack of dilution of waste. Samples are taken from rivers, streams or canals 

and water quality of the site is determined on the basis of relative proportion of various 

organisms in the sample. These data can also be compared with data taken from clean 

sites. Using biological approaches, water condition can be categorized into six classes, 

which includes very good, good, fairly good, fair, poor and bad quality (Logan, 2001). 

Physico-chemical evaluation of water quality, in contrast, can be done throughout the 

year, but the assessment needs constant records of concentration and flow to make a 

standard basis for quality monitoring. In practice, such chemical testing is impossible for 

economic, technical and logistic reasons, being highly costly for general water quality 

assessment when a large number of rivers and streams are to be monitored. A greater 

number of chemical samples is usually required to provide the same degree of 

information as just two biological samples per year. For effective chemical analysis, 

information about the nature of likely pollutants is necessary, making monitoring very 

difficult. The irregular discharge of pollutants also makes chemical assessment ineffective 

because sampling may miss important pollution events.  

1.3 Biological Monitoring Approaches 

To describe the impact of water quality on the biology and ecology of systems a range of 

techniques can be used such as community diversity indices and biotic indices. A number 

of biotic indices have been introduced for water quality assessment on the basis of the 
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sensitivity or tolerance of species or taxa to pollution. Indicator species are given a value 

based on their perceived susceptibility, the sum of which provides an index of pollution 

for the site. These indices may be qualitative based on the presence or absence of species. 

Some of these indices are described below.  

1.3.1 Saprobic index  

This method is qualitative (Pantle and  Buck, 1955) and the basis is the presence or 

absence of indicator species mainly microorganisms such as bacteria, viruses and fungi. 

The approach describes four stages, oligosaprobic, β mesosaprobic, α mesosaprobic and 

polysaprobic. The method uses a formula:        

 Saprobic index (SI) = ∑ (sh)/ ∑h 

Where (h) express the abundance of different species and s value for Saprobien groups in 

Table 1.1 below. 

Table 1.1 Saprobian Idex of Pantle and Buck (1955). 

State s value   h value  

Oligosaprobic 1 Occurring incidentally  1 

β – mesosaprobic 2 Occurring frequently  3 

α- mesosaprobic  3 Occurring abundantly  5 

Polysaprobic  4    

   

This technique was one of the first developed to detect organic pollutants (Pantle and  

Buck, 1955) and the ranges of the Saprobic index are given below. 

Index range          Stage                                Quality 

 

1.0-1.5  Oligosaprobic              no pollution 

1.5-2.5  β – mesosaprobic  weak organic pollution  

2.5- 3.5  α- mesosaprobic  strong organic pollution 

3.5-4.0  polysaprobic     very strong organic pollution   
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The technique is not commonly used because of its selective pollutant response and the 

use microorganisms as indicators. 

1.3.2 Index of Biotic Integrity (IBI) 

This method combines several metrics of biological indictors in relation to environmental 

stress into a summary index number and is defined, as “the ability of an aquatic ecosystem 

to sustain the balanced community organisms, having a species composition, diversity and 

functional organization comparable to the natural habitat of region” (Barbour and  Yoder, 

2000). The metrics used for invertebrates in disturbed environmental conditions to 

determine the IBI are given in Table 1.2. 

1.3.3 Diversity Indices 

Diversity indices are often used to assess environmental stress. Clean ecosystems are 

characterized by a large number of indicator species with a balanced community 

distribution, and with no dominance by a single species. When large numbers of species are 

present in a community in similar abundance maximum diversity will be obtained. In a 

disturbed environment species sensitive to a particular stress will be eliminated and as a 

result tolerant species become dominant in the community. To assess environmental 

condition using diversity indices, the number of species in a sample and their relative 

abundance are determined. 
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Table 1.2. Macro-invertebrates metrics used in calculating the Invertebrate Community 

Index (ICI). 

 

The Shannon-Wiener index is a commonly used diversity index, which assumes that 

individuals are randomly sampled from a large population of species. In this technique, 

the number of individuals in a given taxon is divided by the total number of organisms in 

the sample the ratio is then multiplied by the logarithm of that ratio. The formula for the 

Shannon-Wiener index is given as: 

H = - ∑ Ni/ N In Ni / N 

(Ni/N) x ln(Ni/N) 

 

Category Metric Response 

Species composition and 

richness  

                                                              

Composition measures 

 

 

 

Tolerance/   Intolerance measure  

 Number of species 

 

 Number of EPT (Ephemeroptera, 

Plecoptera and Trichoptera) 

 

 % EPT 

 

  Number of intolerant taxa  

 

 % tolerant taxa 

 

 % dominant taxon  

Decrease 

 

Decrease 

 

 

Decrease  

 

Decrease 

 

Increase  

 

Increase  

Ecological factors 

Feeding measures  

 

Habitat measure  

 Anomalies  

 

 % filters  

 

 % grazer + scrapers  

 

 Number of clingers in taxa  

 

 Proportion with diseases  

 

Variable 

 

Decrease 

 

Decrease 

 

Increase  
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Where N is the total number of species in collected samples and Ni is the number of 

individuals belonging to ith species. Smaller values of H are associated with polluted 

water whilst higher values are related to cleaner ecosystems.  

Seasonally abundant species can result in mis-interpretation of water quality using 

diversity indices. Sampling method, sampling season, the area sampled and identification 

level all influence diversity indices (Hughes, 1978). Seasonal variation should be taken 

into account when comparing  data from sites because the seasonal variation recorded 

may be greater than the differences between sites (Pinder and  Farr, 1987). Extreme care 

is needed in the interpretation of diversity indices and the number of species may give 

more reliable results (Winner et al., 1975) 
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Table 1.3. Biological Monitoring Working Party (BMWP) family scores. 

              

Groups  

Families  Score 

Mayflies 

 

Stoneflies  

 

River bug 

  

Caddis flies 

Siphlonuridae, Heptageniidae, Leptophlebiidae, 

Ephemerellidae, Potamanthidae, Ephemeridae 

Taeniopterygidae, Leuctridae, Capniidae, Perlodidae, 

Perlidae, Chloroperlidae 

Aphelocheiridae 

 

Phygane Phryganeidae, Molannidae, Beraeidae, Odontoceridae,                                    

Leptoceridae, Goeridae, Lepidostomatidae, Brachycentridae, 

Sericostomatidae 

 

 

 

 

10 

Crayfish 

Dragonflies 

 

Caddis flies 

Astacidae 

Lestidae, Agriidae, Gomphidae, Cordulegasteridae, 

Aeshnidae, Corduliidae, Libellulidae 

Psychomyidae, Philopotamiidae 

 

8 

Mayflies 

Stoneflies 

Caddis flies 

Caenidae 

Nemouridae 

Rhyacophilidae, Polycentropidae, Limnephilidae 

 

7 

Snailsg 

Caddis flies 

Mussels 

Shrimps 

Dragonflies 

Neritidae, Viviparidae, Ancylidae 

Hydroptilidae 

Unionidae 

Coriphiidae, Gammaridae 

Platycnemidae, Coenagriidae 

 

 

6 

Water bugs 

 

Water beetles 

 

 

Caddis flies 

Craneflies 

Blackflies 

Flatworms 

Mesoveliidae, Hydrometridae, Gerridae, Nepidae, 

Naucoridae, Notonectidae, Pleidae, Corixidae 

Haliplidae, Hygrobiidae, Dytiscidae, Gyrinidae, 

Hydrophilidae, Clambidae, Helodidae, Dryopidae 

Elminthidae, Crysomelidae, Curculionidae 

Hydropsychidae 

Tipulidae 

Simulidae 

Planariidae, Dendrocoelidae 

 

 

 

 

 

5 

Mayflies 

Alderflies 

Leeches 

Baetidae 

Sialidae 

Piscisolidae 

 

4 

Snails 

 

Cockles 

Leeches 

Hoglouse 

Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, 

Planorbidae 

Sphaeriidae 

Glossiphoniidae, Hirudidae, Erpobdellidae 

Asellidae 

 

3 

Midges Chironomidae 2 

Worms Oligocheata (whole class) 1 
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1.3.4 Biological Monitoring Working Party (BMWP) Index 

This technique was described by Hawkes (1998) for general quality assessment of water. In 

this method scores are given to indicator species on the basis of their perceived 

susceptibility. A sum of BMWP scores greater than 100 is considered clean while values 

less than 10 indicated polluted conditions. This technique has weaknesses such as the effect 

of sampling effort because the larger the sample, the more individuals and species and the 

method is also influenced by season. To overcome these drawbacks it has became a 

common procedure to divide the BMWP score by the number of taxa to produce the 

Average Score Per Taxon. The main difference between these two techniques is that ASPT 

does not depend on family richness(Armitage et al., 1983). Different families and their 

BMWP scores are given below in Table 1.3. 

1.3.5 Average Score Per Taxon 

This technique is independent of seasonal effects and sample size and permits effective 

comparison between different sites. The approach is quantitative and known as ASPT 

(Average Score Per Taxon) analysis. The method is considered the most rigorous for the 

analysis of changes in water quality. In ASPT, identification to family level is enough. 

Each family present in a sample is given a score between 1 and 10 on the basis of their 

expected susceptibility to pollution. Species most susceptible to pollution are given the 

highest score, while tolerant species are given the least score. The total score is then 

divided by the number of taxa that have been taken into consideration to make the index 

independent of sample size.  

The most useful feature of ASPT is that this technique is not sensitive to seasonal 

variation and sample size, so any size of samples and at any season can be taken for 

analysis. ASPT produces consistent results and is an easy technique to assess 

environmental condition, so that it is routinely used by environmental agencies across the 

UK. The method explains 65 per cent of the variation, while methods used in other 

techniques justify results only 22 percent(Armitage et al., 1983).
 
This method has been 

found to be the best indicator over a range of pollutants such as sewage, insecticides, 

heavy metals and surface runoff (Sriyaraj and  Shutes, 2001) 
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1.4 Body Size and its Relevance to Disturbance 

Body size was first used to explore the dynamics of aquatic ecosystems by Sheldon et al 

(1967a) and the  size spectrum may reflect well environmental conditions. Body size is a 

determinant of a wide range of ecological and evolutionary parameters and the 

relationship between body size and abundance is a useful way for describing a wide 

variety of taxa and habitats (Blackburn and  Gaston, 1999). The negative relationship 

between size and abundance at large spatial scales has been widely studied in ecology. 

Survival of individuals has also been correlated with body size in some studies, species 

with smaller body sizes experience high survivorship compare to species with larger body 

sizes and there is negative correlation between population size and probability of 

extinction (Stanley, 1986) whilst body size and abundance are characteristics that make 

species sensitive to extinction (McKinney, 1997; Gaston and  McArdle, 1994). Shifts in 

body sizes of animals have been shown to reflect environmental changes like habitat 

architecture as small animals depend on resources and ecosystem patterns at small scales 

and large species over large scales (Holling, 1992). Animals develop specific physical 

and behavioural characteristics to exploit varying environmental texture across scales and 

show discontinuities in their body size distributions.  Body size is an important parameter 

which determines many aspects of life history like metabolic efficiency, generation time 

and metabolism (Morse et al., 1988) and there is a positive correlation between 

metabolism and body size of individuals (Peters, 1983b), whilst body size is also related 

to reproduction and dispersal (West et al., 1997). Size is also important to consider in 

avoiding specific sampling biases in ecological and paleontological studies, including 

sieve size effects (Kidwell, 2002). Differences in body mass patterns have been observed 

in lake and marine sites, due to two dominant groups (Chironomid midge and Oligochaete 

worms) which were found most of the lakes (Strayer, 1986). Similarly, the size spectra of 

benthic communities vary among lakes as a function of water chemistry and the larger 

fauna (e.g. Cray fish and large Mollusks) are only found in shallow and hard water than 

deep and soft water (Singer, 1982; Haines, 1981). Methods which use body size 

distributions to assess particular environmental conditions require fewer data, may be less 

time consuming relatively inexpensive and repeatable. Due to these suitable 
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characteristics one could prefer to establish size based indicator of environmental 

assessment.  

In the next section I describe various hypotheses to explain variations in body size 

distributions, the most relevant for this study being Holling‟s Textural Discontinuity 

Hypothesis (Holling, 1992). 

1.5 Warwick’s ABC Index  

Other researchers have explored the potential of size-based metrics for pollution 

monitoring, recognising that long-lived, pollution intolerant species tend to have a large 

body size, whilst opportunistic species that are either pollution tolerant or which are good 

at exploiting disturbed systems tend to be of small body size. For instance, Warwick and 

Clark (1994) developed the ABC (Abundance/Biomass Comparison) index and noted that 

in marine benthic systems there was often a shift from large bodied species to small 

bodied species along gradients of organic pollution and that this could be captured 

graphically by plotting cumulative abundance and cumulative biomass against pollution. 

In undisturbed communities, the biomass line lies above the abundance curve, due to 

presence of large bodied organisms, while in moderately disturbed communities, these 

curves cross over at one or more place. Very disturbed communities are dominated by 

small bodied individuals and the abundance curve lies entirely above the biomass curve.  

Whilst this scheme has a clear logical underpinning, the ABC method sometimes gives a 

false impression of disturbance due to presence of large number of small individuals in 

undisturbed sites (Ibanez and  Dauvin, 1988), so that it not a reliable method for detecting 

pollution. Also, Warwick and  Clarke (1993) noted that this method is no more sensitive 

than diversity indices or multivariate analysis at detecting disturbance. Furthermore, in 

their 1993 paper, Warwick and Clark found that the size effects noted were largely due to 

replacement of whole phyla along a gradient of increasing pollution, echinoderms 

disappearing first, then crustaceans and bivalves. In other words, the so-called size effect 

was more of a phylogenetic one. Given these issues, the ABC approach was not explored 

here 
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1.6 Review of Holling’s Textural Discontinuity Hypothesis 

C.S Holling (1992)
 
wrote an important paper which presented a life time‟s observations 

and analysis of complex ecosystems. Central to his thesis is the observation that body size 

distributions reflect important discontinuities in ecosystem processes and that the number 

of such discontinuities may be a measure of ecological stability (resilience). My research, 

in part, explores the evidence for this hypothesis in freshwater systems (moving and still) 

with different water qualities. Holling‟s paper is not easy to understand on first reading 

and this review attempts to set the background for my own work for the reader new to the 

topic. 

Ecosystems are shaped by a few biotic and abiotic processes which exert function at 

specific spatial and time scales. These small numbers of processes dominate in 

ecosystems and suppress other processes. They are distributed discontinuously and they 

create discontinuity across a system by entraining other processes setting the cycle of 

ecosystem dynamics. Animals living in ecosystems demonstrate this uneven distribution 

of processes by showing gaps in their own processes which are reflected in their body 

size distributions. This unevenness (presence of gaps) provides evidence of “a lumpy 

architecture” of specific landscapes where these animals live, the body mass clumps 

being restricted and controlled by the structure and texture of the landscape. This 

hypothesis is therefore known as the Textural Discontinuity Hypothesis (Holling, 1992). 

There are three processes (micro-scale, macro-scale and meso-scale) that generally 

control habitat architecture, creating different ranges of scale in time and space. 

Vegetative processes or micro-scale processes act at the micro level, centimeter to meters 

in space and at days to decades in time, determining plant growth and soil structure. 

Geomorphologic processes are macro-scale and work at kilometers scale in space and 

centuries to millennia in time. Disturbance processes like fire, insect outbreaks and plant 

diseases dominate over meters to kilometers with time scales of years to decades and are 

meso-scale. Human activities also act as meso-scale processes.  

Studies on mammals in short grass prairie and birds of boreal region forests by Holling 

(1992) show a clumpy structure in their body masses distributions. Also, the number of 
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clumps and gaps are the same and occur at the same body masses in the two different 

habitats indicating that processes which create habitat structure are common for both 

grassland and forest. (Birds and mammals utilize resources from habitats as a function of 

their size). 

To check that these features of size distributions are as a result of ecosystem organization, 

rather than artifacts, critical studies of the model were carried out. In Holling‟s model 

variables behave differently, with a  number of cycles such as a fast variable 3-5 year 

cycle caused by interactions among leaves, parasites and insect defoliators (McNamee, 

1979); an intermediate periodicity of 10-15 represented by interactions between 

defoliation and time of recovery of foliage quantity and quality with slow growth and less 

mortality of plants; a cycle with a periodicity 35-40 years is the interaction between fast 

and slow variables and agents like birds; the ≥ 80 year cycle is set by long-lived trees 

caused by wind, diseases and insects. Some authors suggest that these cycles occurring in 

different periods are present within an ecosystem (Royama, 1984) having both spatial and 

temporal aspects, which strongly indicates that an ecosystem is shaped by a small number 

of such processes which dominate and entrain one another, creating discontinuities which 

define specific periodic, spatial patterns and frequencies. Study on keystone species 

(Paine, 1966), also showed size patches and structural distributions of species within a 

community. There are several explanations for these features, which Holling (1992) lists 

as the following basic propositions. 

1.6.1 The Extended Keystone Hypothesis 

According to this hypothesis, all systems are controlled by a small number of key plants, 

animals and abiotic functions operating over spatial scales of centimeters to kilometers 

and from months to centuries of temporal scale. If so, each ecosystem should have these 

dominant processes with discontinuous frequencies, and these processes can occur as a 

result of evolutionary adaptation or because of cycling of variables in the structuring of 

the ecosystem.   
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1.6.2 The Entrainment Hypothesis 

In this hypothesis biotic processes occur at regular intervals within ecosystems by 

forming clusters, reflecting generation times of the species involved. In this regard forest 

insects present a small set within a hierarchy associated with needles and parasites as 

faster variables, crown and insectivorous birds are slower variables and tree species are 

considered as the slowest variables and coarser patches. 

In some studies (MacArthur and  MacArthur, 1961),
 
the biotic structure of an ecosystem 

is shaped by processes such as species distributions associated with vegetation or habitat 

structure. Other observations indicate that plant species determine community 

composition rather than the physical architecture of ecosystem (Wiens and  Rotenberry, 

1981). 

All the above can generate the lumpiness seen in body mass distributions but there are 

four major competing hypotheses that Holling (1992) considers.
 

1.6.3 Textural Discontinuity Hypothesis 

TDH assumes that body mass distributions of species are bioassays of landscape structure 

because they show correlation with texture and the hierarchic nature of the 

landscape/seascape. According to this hypothesis animals should express the 

discontinuous structure of the landscape where they live by showing discontinuity in their 

body mass distributions, reflecting their scale of foraging and searching and other 

behavioral choices.  

1.6.4 Limited Morph Hypothesis 

This hypothesis proposes that species are constrained to a limited range of size and 

functions because they have limited life manner, such as locomotry modes. The limited 

ability of species to disperse due to geographical boundaries may result because limited 

groups of species are present in a community. These function over a limited range of size, 

but there are a few species that form body size clumps constrained by life forms. Some 

studies suggest that gaps in body mass distributions are due to the different capacity of 
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species to locomote across a landscape and this can be seen where more species are larger 

than smaller (Wiens and  Rotenberry, 1981). 

1.6.5 Historical Hypothesis  

Species body sizes are constrained by evolution and adaptation to form a complex system. 

Processes such as different evolutionary histories constrain the distribution of body mass 

within taxa which may result in multimodality (Smith et al., 2004). The area‟s ancestral 

characteristics limit the body mass evolution of offspring within taxa. In most of the 

world‟s mammals body size distributions are right skewed, and this is phylogenetically 

independent (Gardezi and  Silva, 1999). In other studies it has been found that there is no 

relation between body masses and taxonomy (Sendzimir et al., 2003). 

1.6.6 The Trophic Trough Hypothesis 

 The body size of species controlled by trophic interfaces creates clumpy structures in 

their distribution patterns. Resource limitation causes changes in body mass distributions 

and secondary modes produce a distribution towards large body size contrary to the right 

skewed distribution described above. Predators select prey based upon size and the 

species with smaller body sizes are selectively removed from the community which 

leaves gaps in body mass distributions and multimodality appears. The lack of 

multimodality among species that do not feed on the same resource suggests that 

competition between species for similar resources may cause discontinuities in these size 

distributions (Stubblefield et al., 1993). 

1.7 Textural discontinuity and ecological stability  

The Textural Discontinuouity Hypothesis provides a good connection between 

community structure and ecosystem dynamics by suggesting that processes which cause 

discontinuous changes over time and space reflect the hierarchical physical structure of 

system. There are three scales at which dominant processes operate: 

The microscale, determined by vegetation, the mesoscale, determined by environmental 

processes, and the macroscale, controlled by evolutionary processes. At the microscale, 
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the dominant processes make structures similar in all ecosystems because these processes 

have the same geometrical structure therefore small body mass clumps are similar from 

one landscape to another. In contrast, mesoscale and macroscale processes are landscape-

specific and body mass clump structures differ accordingly. Mesoscale processes are a 

spreading feature and assist rapid changes in the ecosystem. Within landscapes these 

scales group together to form cycles such as birth, growth, energy storage and 

regeneration at that scale, like the yearly needle cycle, crown of foliage over a decade and 

tree gaps over centuries. 

If such discontinuities are a feature of natural systems, then we would expect body size 

distributions to be similarly clumped with gaps. Gaps may therefore be a sign of a 

“healthy” ecosystem. One of the aims of this research work is to see how the number of 

gaps varies in habitats which can be ranked according to their “healthiness” 

Holling claimed that the degree of heterogeneity created by patchiness in space and time 

creates a dynamic mosaic across a range of scales which is related to the degree of 

stability of an ecosystem based on the following arguments. Because this patchiness is 

such a common feature of natural systems, it seems likely that it is related to the long-

term persistence of ecosystems: if patchiness was a destabilising feature, then how could 

it have persisted? Related to this argument are the long-term observations of Holling on 

the dynamics of spruce communities within the great Boreal Forest of North America. 

These observations lead to the development of Resilience Theory and related concepts, 

such as adaptive cycles of ecosystem processes operating at specific scales of space and 

time (Figure 1.6.1) and which consist of 4 phases: exploitation, conservation, release and 

re-organisation. Raffaelli and Frid (2010) and (Walker and  Salt, 2006) discuss the 

importance of these cycles for long term stability of entire ecosystems, but in the present 

context of this thesis, it should be noted that adaptive cycles operate at all spatial and 

temporal scales in a forest, from individual leaves growing and dying on trees, to the life 

and death of entire stands of trees and forests (Figure 1.2). It is important for forest 

management that cycles at different scales do not become synchronised over large areas, 

because this would cause the collapse of the forest, as all cycles would enter the collapse 

or release phase (Figure 1.2) at the same time. In other words, the number of separate 

cycles operating at different time and space scales becomes fewer, perhaps merging into 
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one big cycle so the whole system collapses. Thus, Holling argued that a healthy 

ecosystem which persists for long time periods should be characterised by many different 

cycles operating at different scales and which are out of phase. Unhealthy systems have 

fewer cycles and are less likely to be resilient to external change. In other words, those 

ecosystems which are disturbed or less stable and resilient should have a lower degree of 

heterogeneity in their processes across a range of scales. (Interestingly, it is frequently 

observed for mathematical models of interacting systems (networks) that they self-

organise over time with some network nodes becoming linked to many other nodes, 

whilst other nodes remain weakly connected, generating a heterogeneous or “lumpy” 

network).  

Direct tests of these ideas are difficult but can be tested indirectly using surrogates of 

ecosystem processes, the body sizes of the organisms in the ecosystem; because body 

sizes are a reflection of processes operating at different scales (see discussion above).  

Thus, in Holling‟s  plots of the adult body sizes of birds and mammal species from North 

American grasslands and forests, many modes are apparent which he claimed were 

associated with ecosystem processes operating at specific scales (although the identities 

of these processes were not known, only suspected). The regions between modes, the so-

called “gaps”, were claimed to represent the discontinuities between ecosystem processes. 

Holling further argues that these gap regions would be the most susceptible to disturbance 

and where species losses would be most likely. Other members of his research group, 

notably Craig Allen, took these ideas further by examining how the body sizes of invasive 

species in the Florida Everglades (Allen et al., 1999) and elsewhere fitted in to the 

existing body size distributions of the community being invaded, reviewed in (Allen et 

al., 2006) and references therein. They found that invasive species tended to have body 

sizes that were immediately adjacent to the gap regions, and that species which were lost 

due to disturbance were close to these gaps, consistent with Holling‟s predictions. 

(Raffaelli et al., 2000) also tested this idea for a marine intertidal community and found 

that the body size distributions were multimodal (as previously suggested by 

(Schwinghamer, 1981b) for marine sediments and that at least one kind of disturbance, 

which they applied experimentally, organic enrichment, had the greatest impact on body 

sizes in and adjacent to one the troughs between modes. 
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Figure 1.1: Patchiness occurs at a range of spatial and temporal scales in nature, as shown 

in this example of a spruce forest ecosystem. In such systems, dominant structures (from 

needles to forests) operate over different spatio-temporal scales. The cycles of life and 

death for each of these structures may follow adaptive cycle dynamics (see Fig 1.2), and 

these may entrain other ecological processes. From Raffaelli and Frid (2010) 
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Figure1.2: The adaptive cycle view of ecosystem development and change. In this 

perspective, collapse of the system is inevitable, whereupon the system components may 

re-assort and begin development again as a broadly similar system or one which is very 

different. From Raffaelli and Frid (2010). 

 From the above, it can be seen that one of the effects of disturbance on body size 

distributions may be first to deepen the troughs between modes (make them more 

pronounced), if that disturbance only leads to species loss, as in the case of eutrophication 

(Figure 1.3). However, the response of ecological systems to eutrophication or 

enrichment is not usually a “simple, or monotonic”. At moderate enrichment, there may 

be an increase in the abundance of all species (and body sizes), but at higher levels of 

enrichment, the positive effects may be overtaken by the negative effects as some species 

intolerant of low oxygen concentrations brought about by a high BOD may be excluded 

and smaller taxa which are more tolerant of pollution dominate. In such cases, the body 

size distributions may at first maintain their structure and modality, but as pollution 

increases, the larger taxa will become excluded and the size structure becomes more 

skewed towards smaller animals altering modality. Such changes in body size 

distributions are well-documented in aquatic communities as empirical observations 

(Warwick, 1984) ), but their consequences for, and relationships with, changes in 

ecosystem processes at different scales have not been explored in the context of Holling‟s 

theories. 
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Figure 1.3: The effect of pollution on body mass distributions on benthic communities  

Raffaelli et al (2000). 

As far as I am aware, there have been no previous experimental or empirical  published 

studies looking at the degree of modality in body size distributions (as a reflection of the 

heterogeneity in ecosystem processes) and disturbance (in this case pollution). Raffaelli, 

Smart and White (in preparation) compared the body size distributions of the mammal 

fauna of the UK from the Mesolithic (undisturbed) with the present day (very disturbed) 

and found a reduction in modality from 3 to 1, due to a combination of the loss of large 

predatory herbivores and predators (megafauna) and the infilling of the Mesolithic toughs 

by invasive and introduced species), but that study was restricted to mammals (a single 

taxon).  A similar loss of larger body size modes (reduction in modality) can be seen in 

comparisons of the Pleistocene fauna of North America with the present day, due to over-

exploitation of the megafauna by early man (Smith et al., 2004), but that research was not 

placed in the context of Holling‟s hypothesis. This thesis therefore represents the first 

empirical test of this aspect of Holling‟s theory. 
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1.7.1 Techniques used to find out gaps and clumps 

To test these hypotheses, precise data are required which should not give any false 

appearance of pattern. Species were chosen in Holling‟s original research with adult body 

sizes from a range of taxonomic groups which are considered ideal to test the hypothesis 

controlling for confounding effects of morphology and evolutionary history. The first 

thing to keep in mind here is the clumpy representation of data. Inspection by eye of data 

body size distribution of adult birds of boreal forests and of mammals of short grass 

prairie shows cumulative distributions of body masses that are identical in terms of 

locations of clumps and gaps. However, interpreting by eye is very subjective. To present 

the data more objectively a technique termed the “Body Mass Difference Index” (BMDI) 

was applied to focus more on gaps than on clumps. The Body Mass Difference Index is 

the difference between body masses of neighboring species that are arranged in ascending 

order of body size. To remove the effect of increasing likelihood of gaps with increasing 

body mass, a value for γ a coefficient (1.1 for mammals and 1.3 for birds) is applied to 

the formula which becomes, 

                                      BMDI = (Mn+1- Mn-1)/Mn)
γ 

The results of applying this model to the Holling‟s birds and mammals data, reveals 

discontinuities, that is, a number of clumps and gaps. These were taken as “statistically 

significant” if there are several consecutive differences in less than 1 SE of the mean 

differences, then this defines a clump. Similarly, if several consecutive differences are 

higher than 2SE, this is a gap, according to Holling (1992). 

To test if body sizes are statistically more lumpy than expected by chance, a bootstrap 

statistical technique can be used by representing continuous samples with the same size, 

mean and standard error of the observed distribution. When applied to the distribution of 

birds and mammals, the result for birds in forests shows no lumpy structure, but species 

of prairie grass show strong evidence of discontinuities. To test this further, bird data 

were converted to a lognormal distribution and one thousand mimic distributions were 

made and analyzed for gaps and clumps using the BMDI criteria above (Hollings, 1992). 

The results reveal clumps as in the original real data with a probability of 0.005 compared 
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to those distributions derived by this bootstrapping technique (random distribution). So it 

appears from these tests that the gaps are real and that the body mass distributions are 

discontinuous or lumpy. 

1.7.2 Kernel Density Estimates (KDE) 

Silverman‟s bump hunting technique was used in the present study to describe the body 

mass patterns explicitly because gap analysis by BMDI was criticised by Manly (1996), 

who found multiple peaks in Holling‟s datasets using Silverman‟s bump hunting 

technique. Thus, both methods, BMDI and KDE, were used to explore lumpiness in body 

mass distributions, but it should be noted that they have different strengths and 

weaknesses. KDE is a robust statistical procedure which finds modes, the location of 

which can be derived and hence also the location of the troughs between adjacent modes. 

BMDI is less rigorous and the significance of gaps (and clumps) is determined by 

Holling‟s rule-of-thumb (-1SE or +2SE). Gaps are not the same as troughs necessarily 

and KDE is known to be more conservative than BMDI. By using both techniques, I was 

able to explore the potential of each for detecting lumpiness and for examining the 

relationship between environmental disturbance and ecological resilience (reflected by 

the number of gaps or troughs).   

The Kernel Density Estimate (KDE) approach for detecting modes in distributions was 

put forward by Rosenlatt (1956), Whittle (1958) and Prazen (1962), but the approach did 

not find widespread application until adequate computing power became available. 

Silverman described a test where the null hypothesis is that a distribution has n modes, 

versus the alternative that it has n+1 or more modes (Silverman, 1981). He combined 

kernel density estimation and smoothed bootstrap resampling to produce a critical 

bandwidth for modality. This smoothed bootstrap test for modality is considered 

conservative even in large samples (Peter and  Matthew, 2001; Seaman and  Powell, 

1996) and produces an objective statistical test for the presence of clumps in body mass 

distributions. In this bump hunting technique clumps are considered to occur wherever a 

peak or mode is present in a density function associated with that body mass distribution. 

The density function is the probability density function for body mass, which is produced 

by kernel density estimation from the distribution of body masses within the sample data 
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and produces a smoothed version of the frequency histogram. The density estimation 

analysis is a generalization of a visual histogram and gives a valuable indication of 

skewness and modality in the data.  

KDE was carried out using advanced programming language „R‟ (R Core Development 

Team, 2004) developed by Dr Jim Smart of this department used here to describe an 

implementation of bump hunting technique. The analysis determines the clumps for 

similar body mass across different taxa. However, the frequency histogram produced 

from given data depends on the bandwidth used. The higher bandwidths produce more 

smoothing into the kernel density estimates and using a narrower bandwidth reduces the 

intervening gaps of more than a certain size between datapoints and can no longer be 

smoothed completely when individual kernels are summed together. Thus, the established 

critical bandwidth for successive modalities is the minimum bandwidth which can be 

used to produce a number of peaks from a dataset. The technique is based on 

bootstrapping since a non parametric density function developed from the data 

themselves and is regarded as the best available estimate of the underlying distribution 

and the modality developed from the data is considered to provide the best (probably the 

only) estimate. The underlying modality of the body mass density function is analysed to 

determine if an „excessive‟ amount of smoothing is required to produce a K-modal 

density function from the data as opposed to a density function with (K+1) or more.   

The statistical assessment for „excessive‟ k-modal smoothing is produced by examining 

the properties of smoothed bootstrap replicates drawn from the k modal critically 

smoothed kernel density estimates produced from the original data. Smoothed bootstrap 

re-sampling is designed to draw replicates from particular kernel density estimates as well 

as appropriate selection of smoothing bandwidth (Efron and  Tibshirani, 1993). A 5% 

significance level was applied to the estimate of the density function underlying a body 

mass distribution. 
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1.8 Aims 

The overall aim of this thesis is to investigate benthic communities in freshwater (both 

moving and static) in term of their body mass distributions and water quality. The specific 

aims of the project were to: 

1. Construct reliable body size spectra for invertebrate communities from different water 

bodies in Yorkshire, varying in quality, in both static and flowing systems. 

2. Analyse those spectra for the occurrence of modality and gaps, using KDE and 

BMDI. 

3. Examinine the relationship between discontinuities in body mass distributions 

(number of modes and gaps) and water quality (disturbance). 

4. Assess the influence of season, sampling techniques and habitat type (moving and 

static) on body mass distributions. 

5. Explore the various hypotheses above for the explanation of multimodality in these 

systems. 
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Chapter: 2 

General Methodology 

2.1 Introduction 

This chapter reviews the methods used in thesis, providing detail about the techniques and 

procedures applied in field and in the lab for collecting, sorting and analysis of benthic 

macro-invertebrates. 

In section 2.2, I discuss the way samples were collected, the equipment used, the 

procedure exercised in field and the number of areas chosen for sampling. Different 

approaches used for sample collections such as Surber and kick sampling, and the net 

sampling used for lentic habitats, are also reviewed in this section.  Section 2.3, explains 

the method and apparatus used for the separation and treatment of benthic fauna. In 

section 2.4, I review taxonomic groups recorded. Section 2.5 discusses the method used 

for body mass determination of the benthic fauna in this research and the equations from 

literature and other allometric relationship used to find the dry mass of benthic 

communities. 

2.2 Sample Collection 

 There are a number of methods that can be used to sample invertebrates in fresh water, 

but in this research programme the two most appropriate methods, Surber and kick 

sampling, were used. The Surber sampler is a quantitative way of collecting invertebrates 

from stream beds and is suitable for shallow water (Figure 2.1a). Samples from River Ure 

and River Aire were collected using the Surber sampler, with an attached quadrat of fixed 

area of 0.1 m
2
, equipped with a 200 µm mesh net.  The frame was placed in the water in 

such a way that the mouth of the net was perpendicular to, and facing into the flow of 

water 
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Figure 2.1 Surber sampler (a) and kick sampling net (b) 

Source:http://www.google.co.uk/images?hl=en&q=Surber%20sampler&um=1&ie=UTF-

8&source=og&sa=N&tab=wi 

Within the metal frame (sampled area) stones were carefully pick up and gently rubbed in 

front of the net to remove any attached animals. Then hands were dug into the substrate to 

a depth of about 4cm so that the current carried all loosened material into the net. The 

side wings of the net decrease the chances of animals being lost. When the water ran clear 

(3-5 minutes), sampling was stopped. 

The typical way of collecting samples from streams is by kick sampling, using a standard 

pond net. It is the simplest way of sampling invertebrates from the bottom of rivers and 

streams. In this method of sampling a standard pond net with a pore size 500 µm a frame 

height of 200 mm and frame width of 300 mm, attached with 1.5m handle was used (Fig 

2.1b). The net is held vertically in front of the person who faces downstream, with the 

bottom of the net placed against the substratum. The substratum immediately upstream of 

the net is then forcefully disturbed with the feet for 3-5 min and any dislodged 

invertebrates are carried into the net. The method is semi-quantitative but sites can be 

compared by kicking for a fixed period of time. The method is comparatively rapid and 

an easy way for relative abundance estimates. For deep locations, like the River Foss, 

where the Surber technique cannot be used, it is the only way to collect invertebrates in a 

standardised and unbiased way. Five replicates were collected by Surber and kick 

sampler, following a zigzag path across the stream bed from each site to make sure that 

all habitats were sampled. Each replicate was separately transferred to a plastic bag and 

labelled. The material was brought to the laboratory and transferred to a jar and labelled 

for each site and preserved in 70 % alcohol.    

http://www.google.co.uk/images?hl=en&q=Surber%20sampler&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=Surber%20sampler&um=1&ie=UTF-8&source=og&sa=N&tab=wi
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Kick sampling and Surber sampling work well for flowing streams, but are not 

appropriate for the static water bodies sampled in chapter 5 (ponds and canals). A 

standardised approach was devised for the static water bodies. The pond net described 

above was fitted with a 200µm mesh and placed on the substratum in the shallows (0.5m 

depth) and dragged for 5 metres to sample an area of 1.5m
2
.  The volume of material 

collected in this way was so great that only one sample (replicate) was collected at each 

of the static sites. 

2.3 Separation of Animals 

Individuals were separated from debris and sediments by using a 500µm mesh sieve, 

placed in a white tray following elutriation of the original sample with tap water until any 

coarse sediment remained. To make animals visible in the tray, the material retained on 

the sieve was suspended within water in the tray. Large animals were separated first and 

the material was then very carefully screened for smaller animals which were transferred 

into vials, labelled and preserved with 70% ethanol. Any remaining sediment was again 

preserved in case inspection revealed tiny individuals that remained in the substrate. 

2.4 The Invertebrates Recorded 

Invertebrates were identified to the lowest  possible taxonomic level with the help of a 

range of identification keys (Croft, 1986; Elliott, 1988; Bass, 1998),  at least to family 

level, and counted for each sample. A total of 51 taxonomic groups were recorded across 

all data sets. The composition of taxa was different between flowing and static 

communities.  For instance, in ponds and canals Corophiida, Argulidae and Vellidae were 

recorded, but these were not present in stream communities, and several stream taxa were 

not found in ponds. Some individuals were unidentifiable, mainly because of physical 

damage, and therefore these animals were excluded from the analysis. The characteristics 

and images of invertebrates found are summarised below. 

2.4.1 Mayflies 

These are aquatic insects belong to order Ephemeroptera. The immature stages of these 

insects are called nymphs. The larvae can be collected from shallow water with a Surber 
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sampler or with the pond net. Mayflies require clean, oxygenated and unpolluted habitats 

and therefore can be used to assess water quality. They are unique among the insects in 

having two winged adult stages. As adults they generally live from 1 to 2 hours to a few 

days and spend most of their life either as eggs or nymphs. Mayfly eggs have a variety of 

attachment structures that enable them to adhere to submerged objects or to the substrate. 

Most nymphs hatch at temperatures in range of 3-21˚C and show considerable diversity in 

habitat and appearance. The different mayfly nymphs recorded are as below. 

Baetidae. The larvae are mostly found in sandy bottoms and slow flowing sections of 

streams (Elliott, 1988). These insects have seven pairs of plate like-gills with one plate 

larger than the other, two antennae either close together or wide apart, head and thorax 

laterally compressed or wide bodied in appearance with no compressed head and thorax. 

Like all mayflies, Baetidae have 3 tails, and the middle tail is slightly shorter than the 

outer tails. The recorded body mass range for this family is 1-3mg.  

Heptagenidae. These larvae are found in stony habitats, the gills are usually flat with or 

without dots, and have a round or rectangular shape. The shape of the head capsule is 

round or rectangular. The body mass range is recorded as 0.06-0.8mg. 

Caenidae. These larvae are normally found in silty bottoms. The head of these larvae has 

three prominent ocellar tubercles, the claws are robust and bent at an obtuse angle, and 

fine hairs cover most of the body. The body mass range is 0.05-2mg. 

Ephemerellidae. These larvae are found in fast flowing streams, pigments on gills make 

it easier to identify this group, and the pigmentation is oval shaped. The body mass range 

reported is  0.02-2mg for these mayflies.. 

Potamanthidae. These larvae are found in stoney and sandy bottoms. They are small and 

have a sub-cylindrical body with oriented gills. The highest densities of Potamanthidae 

are found during late summer and fall (Munn and  King, 1987). The body mass range 

recorded is 0.06-2mg. 



45 

 

Ephemeridae. These larvae  have abdominal marks and are found in muddy substrata 

(Elliott, 1988). The body mass range recorded is 0.07-3mg. The images of all these 

families are show below (Fig 2.2). 

               

Baetidae (5mm)        Ephemerellidae (4mm)   Caenidae (4mm)  

     

Ephemeridae (5mm)          Potamanthidae (4mm)       Heptageniidae (3mm) 

Figure 2.2 The mayfly families recorded in this study, the scale line given in mm.  

(Source:http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Mayflies+families&aq=f

&aqi=&aql=&oq=&gs_rfai) 

2.4.2 Stoneflies 

These belong to the order Plecoptera, the nymphs of this group live in the benthic zone of 

clean streams and lakes. The nymphs have long antennae with a flat body and widely 

separated legs. Adult stonefly have long antennae and veined front wings, often dark grey 

in colour. The nymph does not lose its long tail parts when it becomes an adult. All 

species of Plecoptera are intolerant of water pollution (William, 2005) and are considered 

universal indicators of good quality water (Mason, 2002b). Two families, Perlodidae and 

Leutridae, were identified in the samples. Perlodidae nymphs are distinctive often having 

contrasting patterns of light and dark coloration as well having un-branched gills, while 

the Leuctridae are evenly brown or yellow-brown with pigmentation on the head (Fig 

2.3). The body mass for Perlodidae recorded is 0.1-1mg while the range for Leuctridae 

was 0.1-1.5mg.  

http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Mayflies+families&aq=f&aqi=&aql=&oq=&gs_rfai
http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Mayflies+families&aq=f&aqi=&aql=&oq=&gs_rfai
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Perlodidae  (5mm)                          Leuctridae(5mm) 

Figure 2.3 Stonefly families found in this study 

(Source:  http://en.wikipedia.org/wiki/Plecoptera) 

2.4.3 Coleoptera (Beetles)  

Beetles are insects belonging to order Coleoptera, which has the largest number of known 

insect species (James and  Joseph, 2003). Beetles feed on plants, fungi and invertebrates 

and are generally characterized by a hard exoskeleton and a hard forewing. Beetle larvae 

are always very different from adults in both forms and habits. They usually have only 

chewing and piercing mouth parts while adults develop biting mouth parts.  Wings 

develop internally and do not appear until the pupal stage. The beetle larvae and adults do 

not compete with each other because they live in different habitats and eat different food.  

Four families of beetles were identified, but for two families (Haliplidae and Gyrinidae), 

both larval and adult stage have been distinguished. The larvae of Gyrinidae resemble 

small centipedes having three pair of legs and one pair of gills at each abdominal segment 

except the last segment which has four hooks. The adult whirligig beetles (Gyrinidae) 

have the second and third pair of legs, modified into paddle blades. The body mass range 

of Gyrinidae was 1-3mg. The tails of Haliplidae larvae are never segmented and the 

length of the tail is less than one third of total head and body length. The head is round or 

pointed and the bases of the hind limbs are obscured by large plates. The family 

Haliplidae have a dorsally convex body. The colour is reddish or brownish. The body 

mass recorded for the Haliplidae was 1-4mg. The diving beetles (Dytiscidae) have sharp 

http://en.wikipedia.org/wiki/Plecoptera
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mandibles and are dark brown in colour. The underside of the body is not covered with 

short hairs. The body mass for the family Dytiscidae was 1-3mg  

The Elminthidae are more or less cosmopolitan in distribution, occurring in appropriate 

fresh water habitat (Lawrence et al., 2000). The body is slightly flattened, bristly with 

neither scale nor scale like setae. Hind wings are well developed, tarsi without segment 

and eyes are not strongly protuberant. The body mass range is  2-3mg for Elminthidae in 

this study. 

 

                                

Gyrinidae (4mm)            Haliplidae (Adult and larvae 3 mm)        Dytiscida (3mm)    

 

Elminthida(4mm) 

Figure 2.4 Beetle families. 

(Source:http://www.google.co.uk/images?hl=en&q=Family%20dytiscidae%2C%20Haliplidae%20and%20

gyrinidae%20%5D&um=1&ie=UTF-8&source=og&sa=N&tab=wi) 

2.4.4 Hemiptera 

The order of insects mostly known as true bugs. The animal‟s mouth parts are distinctive, 

forming a beak for piercing and sucking out the liquid. The antennae in the Hemiptera 

http://www.google.co.uk/images?hl=en&q=Family%20dytiscidae%2C%20Haliplidae%20and%20gyrinidae%20%5D&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=Family%20dytiscidae%2C%20Haliplidae%20and%20gyrinidae%20%5D&um=1&ie=UTF-8&source=og&sa=N&tab=wi
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are long and segmented and the tarsi of the legs are also segmented.  Hemipterans do not 

undergo complete metamorphosis between the larval and adult phase, their nymphs 

resemble the adults to a large degree, and the difference between young and adult is the 

development of functional wings.                                                 

Hydrometridae. These animals have an elongated body with the head four times thinner 

than wide, and the swollen eyes are located behind the middle of the head. The antennae 

of these animals are positioned at the end of the head (Gooderham and  Tsyrlin, 2002). 

The body mass range is 1-1.5mg 

Corixidae. This animal is commonly known as the water boatman. The animal has a long 

flattened body and dark markings on the wings. They are strong fliers and are abundant in 

the later part of summer (Mau et al., 2000). Body mass was around 1mg 

Notonectidae. Also called back swimmers, they can be differentiated from Corixidae by 

their coloration and body shape. Hind legs are twice as long as the other legs. The mass 

ranged from 0.5 to 4mg in this study  

Veliidae. These are commonly known as water crickets. The segments behind the head 

are wider than the rest of the abdomen, having a dark colour. They are found in streams, 

lake margins and sometimes away from water (Epler, 2006). The body mass range 

recorded was 0.02mg           

Mesoveliidae. These are found on the surface of water and feed on  small organisms 

found on the surface (Richard et al., 1998). The insect is small, slender and yellowish in 

colour. The anterior wing is thickened and the antennae are long and slender. The body 

mass range was 1-2mg. 

                      

True bug (3mm)                      Hydrometridae (5mm)              Cordixidae (4mm) 
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Notonectidae (5mm)            Vellidae (3mm)                        Mesoveliida (4mm) 

Figure 2.5 Six families of Hemiptera found in the samples  

(Source:http://www.google.co.uk/images?hl=en&q=Hemiptera&um=1&ie=UTF-

8&source=og&sa=N&tab=wi) 

3.4.5 Neuroptera 

Hemerobiidae. These are commonly known as the brown lacewing which has a dark spot 

on the wings. Hemerobiidae eggs are extremely cold tolerant (Garland, 1981) hatch in 

about 11 days, depending on the temperature (Klimaszewski and  Kevan, 1985). The 

larvae form a pupa after third instar, which last about 9-14 days in the summer. The body 

size is small to medium in the range 1-4 mg and the mouth parts are modified to form 

long slender tubes. 

 

Family Hemerobiidae (5mm) 

Figure 2.6. Only one family of the order Neuropteran was found 

(Source: http://www.google.co.uk/search?hl=en&q=Hemerobiidae&um=1&resnum=1&ie=UTF-

8&sa=N&tab=iw) 

http://www.google.co.uk/images?hl=en&q=Hemiptera&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=Hemiptera&um=1&ie=UTF-8&source=og&sa=N&tab=wi
source:%20http://www.google.co.uk/search?hl=en&q=Hemerobiidae&um=1&resnum=1&ie=UTF-8&sa=N&tab=iw
source:%20http://www.google.co.uk/search?hl=en&q=Hemerobiidae&um=1&resnum=1&ie=UTF-8&sa=N&tab=iw
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3.4.6 Trichoptera (Caddisflies) 

 This aquatic larva is found in streams, lakes and ponds. The larvae make an open ended 

cylindrical case to hold the body but the head and legs remain outside the case. The legs 

are used for swimming and walking. The head capsule is well developed with chewing 

mouthparts. Thread-like abdominal gills are usually present in case-makers. In adults, the 

mouthparts are reduced or vestigial with two pair of wings clothed with long hairs. The 

wings are held over the abdomen and there are filiform antennae. The body mass range of 

the larvae was 0.5-3mg. 

Rhyacophilidae. These have a greenish brown colour, and lateral abdominal gills. The 

animal is free swimming, is not case or net forming with the terminal abdominal prolegs 

(Watson and  Dallwitz, 2003). The body mass range was 0.2-1mg. 

Hydropsychidae. This animal is present in a wide range of river and streams habitats and 

has been chosen as an indicator species (Vuori, 1996). The larvae have tufted gills present 

underneath the abdomen. The body mass determined in this study was 1-5mg. 

Polycentropidae. The animals lack abdominal gills, having hook shaped anal claws. 

Head usually conspicuously spotted and body often pink in colour. They live in a variety 

of aquatic habitat and found in Lake bottom in this study. Large number of 

Polycentropidae found in acidic stream during the study of post mining stream in lower 

Lusatia, Germany (Hünken and  Mutz, 2007). The body mass range for this family was 

0.1-3mg. 

 

                                                            

           Caddisfly (5mm)            Rhyacophilidae (6mm)       Hydropsychidae (8mm) 
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Polycentropidae (7mm) 

               Figure 2.7 Order Trichoptera families recorded in this study 

(Source: http://www.google.co.uk/images?hl=en&q=Trichoptera&um=1&ie=UTF-

8&source=og&sa=N&tab=wi) 

2.4.7 Diptera 

 The order diptera comprises the  true flies, which have a simple four stage of life cycle. 

The larvae hatch from eggs and feed on available food until ready to enter the pupal 

stage. They metamorphose within their pupae into adult flies.  The larvae of this group 

have no true legs but on some segments there are small prolegs. The larvae have 

distinctive mouth parts which appear hook like with gills at the hind end. The body mass 

range recoded was 0.5-4mg. 

Tipulidae. Crane fly larvae which are worm like, thick skinned and brownish green to 

transparent in colour. There are  six lobed plates at the rear end or two to six short tails 

and a lack of spines on the abdominal segments (McDonald et al., 1990). The adults have 

a thin body shape, with narrow wings and long legs. The body mass for Tipulidae 

recorded here was 4-6mg.  

Chironomidae (nonbiting midge larvae). The larvae can found in a very diverse range 

of freshwater habitats, have a prolonged front end, head horizontally held and are bright 

red in colour. Adult chironomidae resemble mosquitoes but do not bite.  The body mass 

determined here was 0.01-0.4 mg for larvae. 

Simuliidae. The larvae are usually attached to the substrate and found in running water. 

The posterior end of the abdomen is noticeably swollen. Adult simulidae occur in  various 

shades of grey or yellow, have a thorax shiny, are strongly convex, giving a humpbacked, 

http://www.google.co.uk/images?hl=en&q=Trichoptera&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=Trichoptera&um=1&ie=UTF-8&source=og&sa=N&tab=wi
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gnat-like appearance. They have a small head with large round eyes and short 11-

segmented antennae. The body mass recorded here was 0.02-2mg.  

Ceratopogonidae. These are closely related to the Chironomidae, look like worms and 

are found in any aquatic habitat. The head capsule is usually complete and exposed, there 

is a lack of the prolegs on body segments, and the body segments and head are twice as 

long as broad. Adult females suck blood from other insects and mammals and all males 

feed only on nectar The body mass range was  0.05-2mg in this study. 

Dixidae. The animal is of small size and is bent into a definite Ushape position in rest at 

the water meniscus. The body is yellowish to brown in colour and the wings are without 

scales. The head possesses mouth brushes and simple antennae. The larvae are found in 

running water. Adult are mosquito-like. Mouthparts are not developed into a sucking 

proboscis. Dixidae body mass range was 0.6-1mg in this study. 
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Ceratopogonidae(5mm)                  Tipulidae (8mm)                 Chironomidae(7mm) 

                    

Simulidae(5mm)                     Diptera larvae (5mm)                Dixidae(3mm) 

Figure 2.8 The larvae and nymph stages of true flies recorded here.  

The Dixidae image coped from article (Redfern, 1975) 

(Source:http://www.google.co.uk/images?q=Diptera&um=1&hl=en&ndsp=18&ie=UTF8&source=univ&ei

=HX80TN7wIcvbsAbG1qTOBA&sa=X&oi=image_result_group&ct=title&resnum=5&ved=0CD0QsAQw

BA) 

2.4.8 Molluscs 

Two groups of molluscs have been found in this research. The Gastropoda, include snails 

and the Bivalvia, or clams and mussels. The gastropoda have either a spiraled or coiled or 

low conelike shell. They are benthic organisms that slowly move about on the substrate of 

almost all shallow freshwater habitats. Calcium carbonate is used in the production of the 

shell, and it is for this reason that many freshwater snails are more common in hard water 

habitats.  Mussels occur on or in the substrate. They generally feed by filtering planktonic 

microorganisms out of the water, although burrowing forms feed on organic detritus 

strained from the substrate. 

Gastropoda. Eight families of Gastropoda were recorded in this research. The shell of 

family Valvatidae may be spiral and thick and of a dark green colour. The Valvatidae 

http://www.google.co.uk/images?q=Diptera&um=1&hl=en&ndsp=18&ie=UTF8&source=univ&ei=HX80TN7wIcvbsAbG1qTOBA&sa=X&oi=image_result_group&ct=title&resnum=5&ved=0CD0QsAQwBA
http://www.google.co.uk/images?q=Diptera&um=1&hl=en&ndsp=18&ie=UTF8&source=univ&ei=HX80TN7wIcvbsAbG1qTOBA&sa=X&oi=image_result_group&ct=title&resnum=5&ved=0CD0QsAQwBA
http://www.google.co.uk/images?q=Diptera&um=1&hl=en&ndsp=18&ie=UTF8&source=univ&ei=HX80TN7wIcvbsAbG1qTOBA&sa=X&oi=image_result_group&ct=title&resnum=5&ved=0CD0QsAQwBA
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body mass recorded 0.9mg. The duck mussel (Unionidae) often with wings and with no 

clear depression between the umbo and blunt. The body mass determined here was  0.9-

1mg for this family. The family Planorbiidae are coil shaped while family Viviparidae 

have a banded shell. The body mass range was 0.7-3mg for this family. The Ancylidae 

have a limpet shape, the spire arches backward and is inclined to the right. The body mass 

range was determined as 0.006-0.01mg for the family Ancylidae.  Hydrobiidae are never 

banded and have an open umbilicus. The thickness of Hydrobiidae varies from thin to 

fairly thick. The body mass determined for this family was 0.3-0.4 mg.  

The common name of the family Physidae is bladder snail. The shell is fragile and shows 

left handed coiling. The Physical body mass range was 0.004-0.006mg in this study. The 

family Lymnaeidae prefer still water and found in lakes and ponds. The shell is thin and 

medium to large size usually with pointed spire. The family Lymnaeidae are considered 

most tolerant to the water pollutants (Bogatov and  Bogatova, 2009). The body mass 

range obtained here was 0.007-0.0085mg for the family Lymnaeidae.  

Bivalvia. These animals have a shell consisting of two asymmetrically rounded valves 

which are a mirror image of each other and joined by a ligamentous hinge at one edge. 

The shell is held shut by strong muscles. The family Sphaeriidae were found in the lake 

and canal samples. The pea mussel (Sphaeriidae) is rounded and slightly oval shaped. 

The umbo is located at the centre and is slightly elevated above the hinged line, and the 

posterior end of the shell is longer than broad. The body range was 0.01-0.05mg. 

                          
Valvitidaedae(1mm)           Unionidae (1mm)     Planorbiidae(1mm)   Ancylidae(1mm)     
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        Hydrobiidae (3mm)    Viviparidae(2mm)   Physidae(5mm)        Sphaeriidae(3mm) 

 

Lymnaeidae(4mm) 

Figure 2.9 The groups of molluscs (snails and bivalves) recorded here.   

The family Sphaeriidae is found only in lakes and canals. 

(Source:http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Molluscs&aq=f&aqi=g

2g-m2&aql=&oq=&gs_rfai) 

 

2.4.9   Arachinida 

Arachinida are jointed legged invertebrates which are easily distinguished from insects. 

Most Arachinids are terrestrial but some inhabit freshwater environments. The order 

Acarina includes mites and ticks. Acarina lack a visible body division and the abdomen 

has fused with the presoma. There are four pairs of legs, except for larval mites which 

possess three pairs of legs. The body mass ranged from 4.8 to 9.4 x 10
-4

 mg for Acarinida. 

 

 

http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Molluscs&aq=f&aqi=g2g-m2&aql=&oq=&gs_rfai
http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Molluscs&aq=f&aqi=g2g-m2&aql=&oq=&gs_rfai


56 

 

 

 

 

Acarina(1mm) 

Figure 2.10 The Acarina recorded in the study. 

(Source:http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Acariina&aq=f&aqi=g1

0&aql=&oq=&gs_rfai) 

2.4.10 Crustaceans  

Crustaceans are group of arthropods which includes woodlice, shrimps, crabs and 

lobsters. Body segmentation is usually well developed. Body regions include a head and 

trunk or a head, thorax and abdomen. The head almost always bears two pairs of 

antennae. Most crustaceans are aquatic and found in marine or freshwater environments. 

Four groups of crustaceans were recorded here. 

Amphipoda.  Amphipods are found both in fresh and saline water (Wade, 2004). 

Juvenile amphipods look like the adults after hatching from eggs. Amphipods have a wide 

range of diets, depending on the species. Most live only for one year, reproducing once 

during their life time. Two families, Gammaridae and Corophiidae, have been identified 

here. Gammaridae are common invertebrates of streams and pools, having curved 

antennae, not more than half the length of the body. The body mass range was 0.3-3mg 

for the family Gammaridae. Corophiidae are found in pools and lowlands and identified 

by unique characteristics of their antennae, more than half as long as the body, often used 

in walking (Croft, 1986). The body mass range was 0.07-2mg for Corophiidae in this 

study. 

Cladocera. These small crustaceans have the body enclosed by a kind of shell open at the 

bottom, which does not cover the head. The head and antennae are Y shaped, and are 

enlarged to form swimming organs. The animal is sensitive change in water quality 

(Sakamoto et al., 2010). The Cladocera body mass recorded here was in the range 0.005-

0.007mg  

http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Acariina&aq=f&aqi=g10&aql=&oq=&gs_rfai
http://www.google.co.uk/images?um=1&hl=en&tbs=isch%3A1&sa=1&q=Acariina&aq=f&aqi=g10&aql=&oq=&gs_rfai
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Asellidae. The body is segmented and flattened with six pairs of legs and two pairs of 

antennae. These are omnivores; generally feeding on decomposing plants. Juveniles tend 

to feed on faecal detritus and are predated by flatworms, fish and waterfowl. The first pair 

of antennae is long. The colour is brown and the legs are free of segments above, 

projecting well away from the body. The body mass range was 0.3-3mg for the family 

Asellidae. 

Argulidae (Fish louse). The shape of this animal is oval and there are two suckers under 

the thorax which are clearly seen. Fish lice are free swimming and can survive several 

weeks without a suitable host. When the eggs hatch, the juvenile passes through several 

metamorphic changes as it develop into an adult. The animal has more than four pairs of 

legs. The body mass was estimated at 0.0015 mg. 

               

Gammaridae (5mm)              Corophidae (4mm)                 Asellidae(8mm) 

                     

                Cladocera (5mm)                                            Argulidae(3mm) 

Figure 2. 11  Crustaceans classes found in moving and static water habitat 

(Source:http://www.google.co.uk/images?um=1&hl=en&tbs=isch:1&&sa=X&ei=xJ80TJ3zIuSVOKre8KYE&ved=0CC

MQBSgA&q=shrimp,+cladocera+argulus&spell=1) 

http://www.google.co.uk/images?um=1&hl=en&tbs=isch:1&&sa=X&ei=xJ80TJ3zIuSVOKre8KYE&ved=0CCMQBSgA&q=shrimp,+cladocera+argulus&spell=1
http://www.google.co.uk/images?um=1&hl=en&tbs=isch:1&&sa=X&ei=xJ80TJ3zIuSVOKre8KYE&ved=0CCMQBSgA&q=shrimp,+cladocera+argulus&spell=1
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2.4.11 Worms 

This mixed group includes the annelids (leeches and earthworms) and flatworms 

(turbellaria). Worms are hermaphrodites, the juveniles hatching from cocoons,  each 

cocoon holding one to five worms. It does not take long for the worm to grow into a full 

adult. 

Nematomorpha. The Nematomopha are known as horse hair or Gordian worms and are 

long, thin and black in colour with body mass in the range 0.002-0.009mg. They are often 

wound around other objects or each other. The larvae hatch from the eggs and swim to an 

aquatic arthropod. They penetrate the body wall of the host by proboscis. When they 

mature, the worm leaves the host. 

Turbellaria. These are members of the platyhelminthes. The body is elongated, relatively 

soft and lance-shaped with an earlike structure on each side of the head. After several 

days of nourishment inside the cocoon, turbellarians hatch from their eggs and released  

from their parents. Body mass was 1.3mg in this study. Freshwater turbellarians are 

normally freeliving and are found in streams, ponds, lakes and ditches.   

Leeches Leeches belongs to the Phylum Annelida. Silty habitats are unsuitable for 

leeches because they cannot tolerate high turbidity, but some species tolerate mild 

pollution (Mackie, 2001). Three families of leeches (Glossiphonidae, Erpobdellidae 

and Piscicolidae) have been identified here. Predacious leeches are found attached to 

submerged objects such as stones, trees or aquatic vegetation. Leeches deposit their eggs 

inside cocoons. The juvenile emerges from the cocoons and achieve adulthood when they 

reach their critical body weight or once they reach sexual maturity. Body mass found in 

range of 0.4 -131mg for these families. 

Oligochaeta. These are mainly terrestrial and freshwater animals with markedly 

segmented body. The body segments have small number of bristles but have no other 

appendages and the body mass range in this study was 0.1-3mg. The earthworms cocoons 

deposited in the soil. On hatching, the young worms resemble small adults and grow 

continually until they reach maturity.   
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Glossiphonidae. These are the member of Rhynchobdellida with flattened body with 

fused eyespots. In freshwater systems, species that feed from vertebrates are out-

numbered both in number of species and absolute abundance by predatory leeches 

(Klemm, 1972; Sawyer, 1986). Glossiphonidae serve as environmental stress indicators 

due to their relative abundances in freshwater habitats (Grantham and  Hann, 1994). 

Glossiphonidae body mass ranged from 16 to 52 mg which is at the larger end of the size 

range of benthic mass distributions in the present study. 

Piscicolidae. These have cylindrical bodies with two bellshaped suckers on both side of 

the body. Some Piscicolidae have less specificity and detach from their host during their 

life cycle. Most Piscicolidae leeches feed on several hosts and do not remain attached 

after each feeding session but reattach after following digestion of the blood meal 

(Sawyer and  Hammond, 1973). The body mass range was 1-4mg for this family. 

Erpobdellidae. These are one of the  most common freshwater leeches (Soos, 1968). 

They have four pairs of eyes arranged horizontally, but never have true jaws. 

Erpobdellidae  leeches feed on small invertebrates (Smith, 2001) and are found with high 

densities often related to organically polluted running aquatic habitats (Matyziak, 1979). 

The largest body mass range of 6- 140 mg was obtained for this family.   
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    Oligochaeta(8mm)               Nematomorpha(8mm)         Glossiphonidae (5mm) 

      

Erpobdellidae  (9mm)                      Piscicolidae (6mm)           Turbellaria(5mm) 

Figure 2.12 Groups of worms recorded in freshwater streams and lakes 

(Source:http://www.google.co.uk/images?q=Worms+leeches+and+turbellaria&um=1&hl=en&tbs=isch:1&ei

=drE0TNG5MsLgOOuipIYM&sa=N&start=54&ndsp=18) 

2.5  Body Size Determination 

Body size was mainly determined by measuring a body dimension (length or head width) 

under a calibrated low power microscope fitted with a graticule eyepiece. The body 

lengths of animals were determined as the distance from the anterior of the head to the 

end of the last abdominal segment (cerci and other appendages were excluded). Head 

capsule width was always measured across the widest section of the head. Previously 

established relationships (allometric equations) from the literature (Stead et al., 2003; 

Feller and  Warwick, 1988; Leaper et al., 2001; Smock, 1980; Towers et al., 1994), 

approximate 2-D or 3-D geometric shape and water displacement techniques were all 

applied as appropriate to derive the dry body mass of all the taxonomic groups. The water 

displacement method was used for larger individuals, by placing within a standard 

millilitre syringe. The water level in the syringe was read, the animals completely 

submerged and the level read again after 30s. The difference between the two readings 

http://www.google.co.uk/images?q=Worms+leeches+and+turbellaria&um=1&hl=en&tbs=isch:1&ei=drE0TNG5MsLgOOuipIYM&sa=N&start=54&ndsp=18
http://www.google.co.uk/images?q=Worms+leeches+and+turbellaria&um=1&hl=en&tbs=isch:1&ei=drE0TNG5MsLgOOuipIYM&sa=N&start=54&ndsp=18
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was recorded as volume in microlitres (µL), converted to mass (µg) multiplying by 1.05 

then to mg. The regression equations (allometric relationships) used for different groups 

of invertebrates are shown in Table 2.1 below. 

Table 2.1: Regression equations to determine body mass of invertebrates communities 

where DM is a dry mass of the organisms (mg), DW is the dry weight (mg) of the 

organisms, L is the length (mm) of the organisms, HW is the head width (mm) of the 

organisms, volume (V) of the organisms expressed in (nL) and Wt is weight of the 

organisms (mg).  

Family/ Class Regression Equation Reference
s 

 

Baetidae 
Heptageniidae 
Caenidae 
Ephemerellidae 
Ephemeridae 
Potamanthidae 
Hymenoptera 

 

 

 

Dw(mg)= aL(mm)b 
Dw(mg)=3.8x10-3L(mm)2.918

 
 

 

(Stead et 

al., 2003) 

Leuctridae 
Perlolidae 

Dw(mg)=aL(mm)b 
DW(mg)=2.5x10-3L(mm)2.744

 

Gyrinida 
Dyticidae 
Haliplidae 
Elminthidae 

Dw(mg)=Ina+bInL(BL(mm)or HW(mm) 
Dw=-2.0076 +3.2271 InL(BL-Dw) 
Dw =3.1102 +2.5412 InL(HW-DW 

(Towers et 

al., 1994) 

Corixidae 
Notonectidae 
Mesovellidae 
Veliidae 
Hydrometridae 
Hemiptera 

In W(mg) = Ina + b In L 
In W(mg) = -4.200+ 2.60In L(mm) 

(Smock, 

1980) 

Hemerobiidae Log DM(µg)=a + b log HW(mm) 
Log DM(µg)=2.68+2.9 log Hw(mm) 

 

(Stead et 

al., 2003) 
Trichoptera 
Rhyacophilidae 
Hydropsychidae 
Polycentropodidae 

In DM(mg)=Ina + b InL(mm) 
In DM (mg) = -6.037 + 2.82 In L (mm) 

Tipulida 
 
 

DW(mg) = aL(mm)2.851 

Dw(mg)= 1.3x10-3 L(mm)2.851 
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Simulidae 
 
 

In DM(mg)=Ina + b Hw(mm) 
In DM(mg)=-4.5009 +2.0742 HW(mm 

Chironomidae 
Ceratopogonidae 

DM (mg) = a L(mm)b 
DM (mg) = 6.0x 10-4 L (mm) 2.770 

Dixidae 
 

DM(mg)=aL (µm)b 
DM(mg)=6.62x10-4 L(µm)2.59 

 

Valvatidae 
Uniondae 
Planorbidae 
 

Water Displacement 
V(nL)=WD(µL)x 1000 
Wt(µg)=v(nLx1.05) 
Mass(mg)=µg/1000 

(Leaper et 

al., 2001) 

 

Hydrobiidae 
Physidae 
Viviparidae  
Lymnaeidae 

V(µL) = L(mm) (0.851)1.91 

Wt(µg) = v(µLx 1.05) 
Mass(mg) = µg/1000 

Ancylidae 
Sphaeriidae 
 

Approximate a geometric 
shape(cone) 
V(µL) = 1/3πr2 (mm) h(mm) 
V(nL)= µLx1000 
Wt(µg)=nLx1.05 (mg) = µg/1000 

  

Arachinida 
Argulidae 

DM(µg) = aL(µm)b 
DM(µg) = 1.1x10-5L(µm)1.89 
 

(Stead et 

al., 2003) 

Gammaridae 
Corophidae 

In DM(mg)=Ina +b InL(mm)  
In DM(mg)=-4.95 +2.83 InL(mm) 

Asellidae DM(mg) = aL(mm)b 
DM(mg) = 7.2x10-3L(mm) 2.785 

Cladocera InDM(µg) = Ina+bInL(mm) 
lnDM(µg) = In1.7512+   2.653L(mm 

Oligochaeta DM(nl) =a L(µm)b 
DM(nl) = 3.5 x10-3 L(µm)2.1 

Nematomorpha 
 
 

DM(µg)=a L(µm)b 
DM(µg) =6.0x10-5 L(µm)0.8205 

Turbullaria 
 
 
 

V(nL)=L(mm)xW2mm) x C 
V(nL)=L(mm)W2(mm)x 550 
V(nL) ×1.05 = dry weight= µg 
µg/1000=mg 

(Feller and  

Warwick, 

1988) 

 
Piscicolidae 
Erpobdellidae 
Glossiphonidae 

V(nL) = L(mm)×π(W/2)2 ×530 
V(nL)×1.13 = dry wight(µg) 
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Chapter 3 

The body size of macro-invertebrates in the Rivers Ure and Foss: 

effects of water quality, season and sampling methodology 

3.1 Introduction 

The purpose of this chapter is to evaluate general water quality, using the resident 

biological organisms (macro-invertebrates) and then to explore the distributions of body 

masses of stream invertebrates in relation to that water quality. Holling (1992) argued that 

ecological processes in undisturbed ecosystems are discontinuously distributed and 

species functioning at different scales respond differently to the opportunities provided at 

each of these scales resulting in discontinuities in processes. Furthermore, these processes 

are closely related to their body mass patterns because body mass is an indicator of a wide 

range of processes (see chapter 1). Such distributions have now been reported in a variety 

of habitats (Havlicek and  Carpenter, 2001; Kamenir et al., 2004; Bakker and  Kelt, 

2000). Body mass distributions are expected to be multimodal in undisturbed natural 

communities and disturbed communities we might expect in the number of modes to 

decline as disturbance increases.  

Detecting multimodality is challenging. Holling (1992), in exploring his Textural 

Discontinuity Hypothesis, developed the Body Mass Difference Index (BMDI) to detect 

discontinuities (gaps) in body mass patterns. Others have used Kernel Density Estimation 

(KDE) to estimate the number of modes, and by default, the number of troughs in 

distributions e.g. (Raffaelli et al., 2000; Havlicek and  Carpenter, 2001).  Silverman‟s 

method for KDE is considered conservative in estimating the actual number of modes, 

even in large samples (Hall and  York, 2001), so that in this chapter, both BMDI and 

KDE were used to identify the degree of lumpiness in body mass distributions.  

The data sets used here to explore discontinuities in body mass distributions were from 

freshwater stream communities in Yorkshire, specifically the River Ure and the River 

Foss. The sites were chosen on the basis of the range of water qualities they potentially 

offer. Seasonal variations in community composition and its effect on the number of 
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modes were also investigated for one site, Wensley on the River Ure. The differences in 

species composition and body mass patterns which could be obtained by using different 

sampling approaches (Kick and Surber sampler), are explored here for another site, Tang 

Beck in York, part of the River Foss system. 

Specifically, this chapter addresses the following questions:  

1. Are the freshwater benthic assemblages at these sites “lumpy” in their body mass 

distributions, that is, multimodal or having gaps in their distributions? 

2. Is there a relationship between water quality (disturbance) and the degree of 

lumpiness, as reflected in the number of modes and /or the number of gaps? 

3. Are 1 and 2, above, influenced by season and /or choice of sampling technique? 

3.2 Sampling Sites 

3.2.1 River Ure and its tributaries 

The River Ure rises in the Pennines within the Yorkshire Dale National Park, with several 

small becks combining around the town of Hawes to form the main river. The river is 

further joined by other tributaries like the River Burn just south of Masham, the River 

Skell to the east of Ripon and the River Tutt at Borough Bridge. The Ure, Swale, and 

Ouse combined catchment area covers about 3200km
2
 (Figure 3.1). After merging with 

the River Swale, the River Ure flows south east. The water quality of the higher altitude 

stream is good, but it becomes increasingly polluted downstream due to urban drainage 

and sewage discharges (Anonymous, 1997). The landscape through which the river flows 

spreads from the Pennines in the north and west, and is mainly rural but has industry in 

some villages and towns in the south. Several major roads cross the area, including the 

A1, A19 and A164. The soil in the area supports agriculture whilst sandstone and 

carboniferous Millstone Grit form areas of grit moorland. Millstone Grit is considered a 

major aquifer and is generally a source of good quality water. These rocks occur in a 

variety of sizes from boulders to gravel, and sand to silt. Some non-aquifer rocks, which 
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are important in preventing contamination to the underlying aquifers, are also present in 

the area. Three locations were sampled on the River Ure, and these are described below.  

 

 

 Figure 3.1. The Swale and Ure system. Main study sites are the River Ure at Wensley, 

Masham and Ripon  indicated as 1, 2 and 3 respectively while River Foss = 4  and Tang 

Beck =5. 

(Source:Anonymous) 

 

 

 

4 
5 

1 

2 

3 



70 

 

3.2.2 River Ure at Wensley 

Wensley is a small rural village located between the hills southwest of the town of 

Leyburn. The soils are fertile with tracts of cultivated ground, wood and pasture, making 

the scenery striking and beautiful. The River Ure at Wensley has a generally healthy 

fishery for angling and is popular for recreation (Anonymous, 1997). The water quality at 

Wensley is considered good. There is no industry nearby, reducing the chances of 

pollution. 

 

Figure 3.2.  River Ure at Wensley. The main sampling site is the shingle riffle at the left 

side of the bridge. 

(Source: http://www.geograph.org.uk/photo/1435803) 

3.2.3 River Ure at Masham 

At Masham, almost 32 km downstream from Wensley, the river increases in size. Poor 

quality effluents enter the river at Masham in the form of domestic wastes  (substantial 

amounts of ammonium and phosphorus) (Lewis et al., 1997). Masham is famous for its 

local beers, which are made by the traditional method of brewing. The method was 

http://www.geograph.org.uk/photo/1435803
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developed 200 years ago and black local ingredients and clear Dale water are still used to 

produce the distinctive Blacks Sheep brew. The brewery effluent with high organic 

contamination enters the river and reduces the quality of water at Masham (Littlewood et 

al., 1998). 

 

Figure 3.3.  River Ure at Masham 

(Source:http://www.google.co.uk/images?q=river+ure+near+masham&um=1&hl=en&tbs=isch:1&ei=tmdI

TKDGOIKUjAe2nK22Dg&sa=N&start=18&ndsp=18) 

 3.2.4 River Ure at Ripon 

Ripon is a small town, 16 km further downstream from Masham. Here, the main river is 

joined by other tributaries below Masham, which increase the width of river so that at 

Ripon the river provides good coarse fishing. Gypsum occurs at relatively shallow depth 

in rocks at this site, which are susceptible to dissolution by circulating groundwater 

leading to subsidence (Cooper and  Waltham, 1999). The tributaries introduce minor 

pollutants to the river which results in lower water quality at the site.   

http://www.google.co.uk/images?q=river+ure+near+masham&um=1&hl=en&tbs=isch:1&ei=tmdITKDGOIKUjAe2nK22Dg&sa=N&start=18&ndsp=18
http://www.google.co.uk/images?q=river+ure+near+masham&um=1&hl=en&tbs=isch:1&ei=tmdITKDGOIKUjAe2nK22Dg&sa=N&start=18&ndsp=18
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Figure 3.4.  River Ure at Ripon 

(Source:http://www.google.co.uk/images?hl=en&q=river%20ure%20at%20ripon&um=1&ie=UTF-

8&source=og&sa=N&tab=wi) 

3.2.5 Tang Beck 

Tang Beck is at Haxby in York. The Tang Hall area is a remnant of old countryside in the 

town and the beck is a tributary of the River Foss. Storm drains overflow during heavy 

rainfall and the site is considered polluted due to domestic waste. Approx 2.5 hectares of 

wet grassland are situated alongside the beck which precludes bank side development 

because of regular winter flooding.  

http://www.google.co.uk/images?hl=en&q=river%20ure%20at%20ripon&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=river%20ure%20at%20ripon&um=1&ie=UTF-8&source=og&sa=N&tab=wi
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Figure 3.5.  Haxby Tang beck 

(Source:http://www.google.co.uk/images?q=Tang%20beck&um=1&hl=en&ndsp=18&ie=UTF-

8&source=og&sa=N&tab=wi) 

3.2.6 River Foss 

This river is a tributary of the River Ouse. It rises at Oulston in Hambleton, 6.5km north 

of Easingwold. The river is 31.3 km in length (Anonymous, 2009) and flows through 

low-lying clay areas of fairly intensive mixed farming and small villages, and then 

through the highly developed urban areas of York. The samples were collected from 

River Foss near York. The river finally discharges into the River Ouse in the centre of 

York. As a result of domestic sewage discharges, the levels of nutrients are very high in 

the Foss and the area is categorized as eutrophic sensitive (Defra, 2010). Algal 

development and weed growth are established due to the slow flow and this depletes 

oxygen and leads to fish kills occasionally (Welker et al., 2001). 

  

http://www.google.co.uk/images?q=Tang%20beck&um=1&hl=en&ndsp=18&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?q=Tang%20beck&um=1&hl=en&ndsp=18&ie=UTF-8&source=og&sa=N&tab=wi
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Figure 3.6.  River Foss at York. 

(Source:  http://www.google.co.uk/images?hl=en&q=river%20foss&um=1&ie=UTF-

8&source=og&sa=N&tab=wi) 

All the above sites were sampled for their benthic invertebrates using a Surber sampler or 

kick sampling net, as appropriate (see chapter 2). Wensley was sampled in both the spring 

and summer in order to explore the effect of season on body size patterns. All other sites 

were only sampled in the spring using the Surber technique. At Tang Beck, both the 

Surber sampler and the kick sampling net were used to see the effect of the sampling 

technique on body mass patterns. Tang Beck also has a consolidated clay bed which 

makes the use of the Surber sampler quite difficult. 

 

 

 

 

http://www.google.co.uk/images?hl=en&q=river%20foss&um=1&ie=UTF-8&source=og&sa=N&tab=wi
http://www.google.co.uk/images?hl=en&q=river%20foss&um=1&ie=UTF-8&source=og&sa=N&tab=wi
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3.3 Analysis of Water Quality at the Sites 

3.3.1 Biotic Indices 

A number of biotic indices are available to evaluate water quality (Metcalfe-Smith, 1996), 

including the Saprobic Index, Biological Monitoring Working Party Score (BMWPS), 

Index of Biotic Integrity (IBI), Macro-invertebrates Community Index (MCI) and 

Average Score Per Taxon (ASPT). For all of these indices, the sensitivity and tolerance of 

a given species or taxon to pollution are considered and a score or value assigned. The 

sum of the values for all the species or taxa in a sample gives a water quality index for 

that site. Saprobien groups, such as algae, protozoa, bacteria and rotifers, are used to 

determine the eutrophic state of the water. This method was designed specifically to 

detect only organic pollution, so that other pollutants, such as metals, diffuse runoff, etc, 

are poorly detected using this index. 

The Index of Biotic Integrity (IBI) is an approach that compares the invertebrates found 

at a monitoring site to what might be expected, using a standard baseline condition that 

reflects little or no human impact (Karr, 1996). The IBI index uses a number of 

measurements to assess the biological condition, or health, of a stream and the ability of a 

system to support and maintain a balanced species composition. Fish species are normally 

used in this approach. 

 The Macro-invertebrates Community Index (MCI) is a qualitative method, where the 

absence or presence of indicator species within the sample is examined. MCI was 

developed by Stark (1993) in New Zealand for bio-monitoring in stony riffle.  Absence of 

organisms is obviously important in assessing the effect of pollution (Azrina et al., 2006) 

but it can make the interpretation of a pollution index very difficult due to seasonal 

changes in the abundance of animals if samples are taken at different times of year. The 

MCI uses a five-point scale of coded abundances (Absent, Rare, Common, Abundant, and 

Very Abundant). The MCI give little information about the status of the stream  

The Biological Monitoring Working party (BMWP), was set up in the United 

Kingdom in 1976 (ISO, 1979). The objective was to develop a system which would be 

suitable for the biological assessment of all rivers in the UK (Metcalfe, 1989). The 
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method used the Chandler Score system at the starting point, to improve a standardized 

biotic system for assessing the quality of rivers (ISO, 1979). For BMWP, all groups are 

identified to the family level in order to ensure taxonomic uniformity. The abundance 

factor used in the Chandler Score was eliminated to create a simplified system introduced 

as the BMWP. In this system the score for each family is given between 1 and 10 (instead 

of 1-100) on the basis of their perceived susceptibility to pollution. The BMWP is the 

sum of the score of each family present in the sample. Values greater than 100 are 

associated with clean water, while less than 10 relate to very polluted rivers. 

The Average Score Per Taxon (ASPT) is an average value of the sum of scores for each 

family of invertebrates present in a sample. The method was described by Hawkes 

(1998), and is widely used in UK rivers as it provides a quantitative method for assessing 

the condition of running water and gives a broad indication of biological condition 

(Hawkes, 1998). The method can be used for both kick net and Surber samples because 

the ASPT score is not dependent on sample size. Families with low tolerance to poor 

water quality are given high indicator values, whereas families with high tolerance are 

given low indicator values. The ASPT is a sum of the indicator values of all families, 

standardised (divided) by the number of taxa (families) present in a sample. A high ASPT 

indicates high ecological status and a low value reflects degraded conditions. ASPT 

declines with increasing pollution and hydromorphological stress, although changes in 

nutrient and temperature conditions might also change ASPT values. Pinder et al (1987),  

in their study on streams, compared the performance of different diversity and biotic 

indices at a single site and found the ASPT to be relatively independent of sample size, 

sample technique and season. Similarly, the ASPT and other techniques have been used 

in different rivers in the UK to evaluate water quality and better results are reported for 

ASPT (explaining 65% of the variance, as opposed to 22% for other results) (Armitage et 

al., 1987). A significant dependence of the ASPT approach on temperature has been 

reported in a two year study of water quality (Zamora-Muñoz et al., 1995). 
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General Stream Habitat  

 Water quality assessment using Biological Monitoring Working Party score (BMWP) 

and Average Score per Taxon (ASPT) need to be interpreted with caution due to possible 

effects of habitat structure. The Environment Agency use the River Invertebrates 

Predictions and Classification System (RIVPACS) to predict the expected score for a 

given habitat structure,  This is then compared to the observed score for that habitat. In 

this way potentially confounding effects of stream habitat on the score are accounted for. 

3.3.2 General Classification of Water Quality 

There are six categories of general quality assessment (GQA) of water: very good, good, 

fairly good, fair, poor and bad. These classes have been determined by the Environment 

Agency in England, by combining two parameters, an ecological quality index based on 

the ASPT measure described above and the taxa present in the water body (Mason, 

2002b). The computer model, RIVPACS (River Invertebrates Prediction and 

Classification System), has been developed to assess environmental stress based on the 

physical, geographical and chemical characteristics of a site, and what the invertebrate 

fauna of that site would look like in the absence of pollution. A comparison of the 

predicted macroinvertebrates communities with those actually observed allows 

calculation of ecological quality indices (EQI). The most relevant EQIs in describing 

biological quality are based on the number of macroinvertebrate taxa and ASPT  as 

follows: 

EQI taxa = Observed number of taxa present on given habitat (predicted from RIVPACS) 

EQI ASPT = Observed ASPT for the present taxa on given habitat (Predicted from 

RIVPACS) 

An EQI value of one indicates that the observed macroinvertebrate fauna is what would 

be expected in an unstressed or clean river, whereas a lower value of EQI indicates that 

communities are stressed to some degree. The descriptions of status of these six classes of 

ecological quality index (EQI Taxa-ASPT) are given in Table 3.1. An appropriate grade 

according to this system is given to the rivers recognised as poor or bad. The biology of 
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the rivers-based EQI-ASPT may differ from site to site for intermediate quality in term of 

actual taxa present, but between the best and worst possible quality the grade reflects the 

relative position of the site on a scale of very good to bad. 

Table 3.1 Lower limits of the biological grades for EQI-ASPT and EQI N-Taxa, system 

used in deriving the Biological General Quality Assessment (BGQA) for aquatic habitats. 

Grade EQI for ASPT EQI for number of taxa Environmental quality 

A 1.00 0.85 Very good 

B 0.90 0.70 Good 

C 0.77 0.55 Fairly good 

D 0.65 0.45 Fair 

E 0.50 0.30 Poor 

F <0.50 <0.3 Bad 

 

Grade a - Very Good 

The biology is similar to or better than that expected for an average, unpolluted river of 

similar size, type and location. There is a high diversity of families, with several species 

in each and generally no dominance of a single family. 

Grade b – Good 

The biology shows minor differences from grade „a‟ and falls a little low of that expected 

of an unpolluted river of this size, type and location. A small reduction in pollution 

sensitive families and a moderate increase in the number of individuals in the families 

that tolerate pollution like chironomids and worms. This may indicate the first signs of 

organic pollution. 

Grade c - Fairly Good  

The biology is worse than that expected for an unpolluted river of this size, type and 

location. Many of the sensitive families are absent or the number of individuals is 
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reduced. In many cases there is a marked rise in the number of individuals in the families 

that tolerate pollution. 

Grade d – Fair 

The biology shows large differences from that expected for unpolluted river of this size, 

type and location. The site contains only a small number of pollution sensitive families 

and a large number of pollution tolerant families, with high numbers of individuals.  

Grade e – Poor 

Pollution tolerant families are dominant in terms of number of individuals. Sensitive 

species will be rare or absent. 

Grade f – Bad 

The biology is limited to a small number of very tolerant families, often only worms, 

midge larvae, leeches and the water hog-louse. These may be present in very high 

numbers but even these may be missing if the pollution is toxic. In the very worst 

condition there may be no life present in the river. 

The procedure of biological assessment is simple enough to be used by a non-biologist 

after a short period of training and it allows the rapid investigation of sources of pollution 

with the minimum of resources (Rutt et al., 1993), but there is average risk of 22% that 

rivers may be classified wrongly.  

The sites sampled here were classified using these various approaches for their general 

quality conditions. The number of taxa, the abundance of sensitive and tolerant species 

and ASPT values for the sites were calculated and matched with this system. An 

Ecological Quality Index (EQI) for number of taxa could not be determined due to lack of 

EQI-N-taxa (predicted from RIVPACS) for the sites. Thus the sites were classified into 

different categories using biological indices. 
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3.3.3 Analysis of Body Size Distributions 

The body sizes of all macroinvertebrates recorded in the samples were determined by 

measuring body dimensions and scaled to mass using allometric equations, as described 

in chapter 2. These data were then used to construct size frequency histograms of body 

size, as well as being analysed for the number of gaps in distributions using the BMDI 

approach and the number of modes by Kernel Density Estimates (KDE), as described in 

chapter 2. 

3.4 Results 

3.4.1 Invertebrate densities 

A total of 34 taxa were identified in this study (Table 3.3). There were significantly fewer 

individuals in the River Foss samples relative to other three locations. The highest 

number of taxa (families) was present in the River Ure at Masham (Table 3.2), while the 

number of individuals is highest at Wensley. Community abundance (Figure 3.7) for the 

sites shows that large numbers of pollution sensitive taxa are present at Wensley and 

Masham. Wensley is dominated by Potamanthida, Chironomidae, Baetidae, Caenidae and 

Ephemeridae. At Ripon, there was a high abundance of stonefly and mayfly families 

(Perlodidae, Ephemerellidae, Leuctridae, and Baetidae). Most beetle larvae (Haliplidae), 

Simulidae, Ephemerellidae and Perlodidae were found at Masham. Chironomidae, 

Hydrobiidae and Gammaridae made up a large proportion of the taxa at Tang Beck, while 

the River Foss is dominated by Asellidae and Erpobdellidae. Tang Beck and the River 

Foss are dominated by pollution tolerant species, and a high abundance of Nematomorpha 

and Oligochaeta. At Tang Beck, 51% of individuals are Chironomidae, while 35% of 

individuals on the Foss are worms. On the Foss, intolerant taxa, such as Leucatridae, 

Perlodidae, Ephemerellidae and Baetidae, were absent and are less abundant in Tang 

Beck.  

The community index (Table 3.2) for the sites shows that taxon richness is higher at 

Masham and Wensley. Indicator species EPT (Epheremeroptera, Plecoptera and 

Trichoptera) make a large proportion of individuals at Wensley, followed by Masham. 

The highest densities of tolerant invertebrates were recorded in the River Foss and the 



81 

 

lowest are at Masham, while sensitive taxa make up a large proportion at Wensley and are 

fewest in Tang Beck and the River Foss, 6% and 7% respectively. 
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Table 3.2 Community Index of benthic communities for different stations on the River Ure, Tang Beck and the River Foss, collected at the same 

time (spring) and also in different seasons of year (at Wensley). The samples at Tang Beck were collected quantitatively and non-quantitatively. 

(S) indicates summer data while (SQ) indicates semi-quantitative. 

Category                                           Wensley             Masham        Wensley(S)        Ripon            Tang               Tang(SQ)              Foss 

Species Richness  
Total number of taxa    20             21       13   14   17   8            13                                        

Number of EPT                                       6,2,2                     6,2,1         2,2,1   2,2,1  1,0,0,   1,0,0      0,0,0 

Number of Ephemeroptera   254   153        26   88    5   1 

Number of Plecoptera taxa  12      57       93   108   0    0 

Number of Trichoptera taxa  11     1         9   1    0    0            1 

Composition Measures      
% EPT    56%   51%        27%   46%         3.2%       3%        7% 

% Ephemeroptera    53%   37%       5.6%   32%        3.2%      1.3%           0% 

 

 

Tolerance /Intolerance Measure 
 Number of intolerance taxa    10           9               5                    5             1                0              

% Intolerant taxa   50%       42%           38%          35%        5.8%         12%        7% 

% tolerant taxa     20%               19%           30%             28%        52%           37%        61% 
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Table 3.3. Taxa recorded at sites on the River Ure, Tang Beck and the River Foss (+ present, - absent). 

S = summer and SQ =   Semi-quantitative samples. 

Taxa Wensley Wensley(S) Ripon Masham Tang Tang(SQ)     Foss 

  

 

   

 

 Chironomidae + + + + + + + 

Nematomorpha + + + + + + + 

Turbellaria - - - - + - + 

Gammaridae - + + + + + - 

Oligochaeta + - + + + - + 

Glossiphonidae + + + - + - + 

Erpobdellidae - - - - - - + 

Valvatidae - - - - + - - 

Planorbidae - - - - + - - 

Hydrobiidae - - - - + - + 

Ancylidae - - - - + - + 

Physidae - - - - - - - 

Corixidae - - - + - - - 

Ephemerellidae + + + + - - - 

Baetidae + + + + + + - 

Potamanthidae + - - + - - - 

Caenidae + - - + - - - 

Heptageniidae + - - + - - - 

Ephemeridae + - - + - - - 

Tipulidae + + - - + - - 

Dixidae + + - - + + - 

Dytiscidae - - - + + - - 

Gyrinidae + - + + - - - 

Trichoptera + + + + - - + 

Leuctridae + + + + - - - 

Perlodidae + + + + - - - 

Hemerobiidae + - - - - - - 

Haliplidae + + + + + + + 

Diptera + + + + + + - 

Simulidae - - + + - - - 

Mesoveliidae - - - + - - - 

Hydrosychidae + - - - - - + 

Asellidae - - - + + + + 

Notonectidae - - - - - - + 

Total Taxa 20 13 14 21 17 8 13 
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Figure 3.7.  Community abundance of macroinvertebrates for different sites in the River Ure, Tang Beck and the River Foss.  (S) represents 

summer data while (SQ) shows semi-quantitative samples
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At Wensley, the number of taxa was lower in the summer. Some families of mayflies 

were absent which were present at Wensley in the spring. The number of taxa (total 

families) and the number of clean indicator species (individuals) recorded are higher 

in Wensley in the spring compared to the summer. Tolerant taxa make up 30% of the 

total population at Wensley in the summer but only 20% in the spring.  The total 

number of individuals was less in summer (Figure 3.8). Differences were seen in the 

kind of fauna in quantitative and semi-quantitatively samples from Tang Beck. Many 

families were absent in semi-quantitative samples and there were fewer (<50%) 

individuals compared to samples collected quantitatively. The quantitative sampling 

approach yielded a high species (taxon) richness, higher numbers of indicator species 

and a higher community composition compared with samples collected using the 

semi-quantitative method (Table 3.2). 
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Figure 3.8.  Left: Effect of season (spring and summer) on community composition at Wensley, Right: Effect of quantitative and semi-

quantitative methods at Tang Beck.
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The Biological Monitoring Working Party (BMWP) score (Table 3.4, Figure 3.9) 

indicates that the River Ure at Masham has the highest value followed by Wensley. 

The lowest value (43) was recorded in the River Foss for the spring samples. At 

Tang Beck scores were higher for quantitative compared to semi-quantitative 

samples. The BMWP score decreased at Wensley between spring and summer, from 

124 to 77. 

The Average Score per Taxon (ASPT) values for the sites (Figure 3.10) shows that 

Wensley has the highest value with a score 6.2. This site is not dominated by a single 

taxon, and the presence of higher numbers of very sensitive species and fewer 

numbers of pollution tolerant species is an indication of good quality habitat 

(Rosenberg et al., 2004). ASPT is lower in Masham, Ripon and at Tang Beck, with 

the lowest score was recorded for the River Foss, indicating that the general water 

quality at the site is poor (Mason, 2002b). 

The total ASPT value recorded at Wensley in the summer is lower than in the spring. 

However the lower score for summer is still higher than for Ripon and Tang Beck, 

which indicates that the quality of the River Ure in Wensley is comparatively good, 

even with seasonal changes taken into account. In contrast to BMWP, the ASPT 

score for the semi-quantitative method is higher than that for the quantitative method 

at Tang Beck (Fig. 3.10). 
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Table 3.4. BMWP scores for macro-invertebrates collected from the River Ure, Tang 

Beck and the River Foss. The tolerant species are given the least score while 

sensitive species are given a high score. (S) indicates summer, (Q) quantitative and 

(SQ) semi-quantitative data. 

 

     Taxa                    Wensley       Wensley(S)      Ripon     Masham     Tang(Q)    Tang(SQ)    Foss 

Chironomidae 2 2 2 2 2    2       2 

Nematomorpha 1 1 1 1 1 1 1 

Turbellaria 0 0 0 0 1 0 1 

Gammaridae 0 6 6 6 6 6 0 

Oligochaeta 1 0 1 1 1 0 1 

Glossiphonidae 3 3 3 0 3 0 3 

Erpobdellidae 0 0 0 0 0 0 3 

Valvatidae 0 0 0 0 3 0 0 

Planorbidae 0 0 0 0 3 0 0 

Hydrobiidae 0 0 0 0 3 0 3 

Ancylidae 0 0 0 0 6 0 6 

Physidae 0 0 0 0 0 0 0 

Corixidae 0 0 0 5 0 0 0 

Ephemerellidae 10 10 10 10 0 0 0 

Baetidae 10 10 10 10 10 10 0 

Potamanthidae 10 0 0 10 0 0 0 

Caenidae 7 0 0 7 0 0 0 

Heptageniidae 10 0 0 10 0 0 0 

Ephemeridae 10 0 0 10 0 0 0 

Tipulidae 5 5 0 0 5 0 0 

Dixidae 5 5 0 0 5 5 0 

Dytiscidae 0 0 0 5 5 0 0 

Gyrinidae 5 0 5 5 0 0 0 

Trichoptera 5 5 5 5 0 0 5 

Leuctridae 10 10 10 10 0 0 0 

Perlodidae 10 10 10 10 0 0 0 

Hemerobiidae 5 0 0 0 0 0 0 

Haliplidae 5 5 5 5 5 5 5 

Diptera 5 5 5 5 5 5 0 

Simulidae 0 0 5 5 0 0 0 

Mesoveliidae 0 0 0 5 0 0 0 

Hydrosychidae 5 0 0 0 0 0 5 

Asellidae 0 0 0 3 3 3 3 

Notonectidae 0 0 0 0 0 0 5 

Total Score 124 77 78 130 67 37 43 
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Figure 3.9. Biological Monitoring Working Party (BMWP) score for different sites 

on the River Ure Tang Beck and the River Foss. (S) is for summer and (SQ) is for 

semiquantitative data. 

 

 

Figure 3.10. Average Score Per Taxon (ASPT) at different locations on the River 

Ure, Tang Beck and the River Foss, where (S) is for summer and (SQ) is for semi-

quantitative samples. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

Wensley 
(spring)

Masham 
(spring)

Wensley(S) Ripon 
(spring)

Tang(spring, 
SQ)

Tang Beck 
(spring,Q)

River Foss

A
SP

T 
Sc

o
re

Sites



90 

 

 

3.5 Body Mass Patterns 

Visual inspection of the body size histograms shows that all sites are skewed towards 

smaller body masses, except the Foss which shows clear multiple modes (Figure 

3.11). The body size spectra for all sites are mainly dominated by individuals in the 

size categories less than 0.25- 1mg dry weight, but there is no obvious evidence for 

uni-modality in body mass distributions within any site. There are indications of 

other modes in the range 0.5-3mg and, at least in some sites, it seems likely that 

there is another mode at the largest size classes. 

The data collected in spring often show a clear mode for large size groups and this 

was not seen for the summer data at Wensley (Figure 3.13), where a second mode 

appears at sizes of 1-2mg dry weight. The body sizes of animals collected at Tang 

Beck by semi-quantitative techniques appear uni-modal, or at least to have fewer 

modes when compared to those collected using quantitative methods. There is one 

distinct peak at a small body mass and one minor peak in the size class 1.25mg dry 

weight. Interestingly, the most polluted site, as determined from the ASPT, appeared 

to have multiple modes, but this could be due to there being fewer individuals at the 

site.  

However visual inspection of histograms for detecting modality is unreliable because 

of possible bin size effects. Kernel density analysis of the spring samples revealed 

more than one significant mode for the cleaner sites and only a single mode for the 

Foss at Tang Beck (Figure 3.12, Table 3.5). However, in the summer sample for 

Wensley there was also only one mode. Comparison of size spectra derived from 

quantitative and semi-quantitative sampling showed differences in number of modes 

detected (quantitative = 1, semi-quantitative = 2). 
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In summary, for samples from sites sampled with a Surber sampler at the same time 

of year (spring), there is an indication that sites with better water quality have more 

modes in their body size spectra. However, there were also seasonal effects at 

Wensley, with fewer modes in summer, when the ASPT was also lower (Figure 

3.13).  The number of modes recorded was also sensitive to the sampling technique 

used, as shown for Tang Beck. 

The relationship between water quality and modality for the spring samples is 

statistically significant for ASPT (R
2 

= 0.8552, p<0.05 and for BMWP (R
2
 = 0.9216, 

p<0.05) (Figure 3.14B), but not when summer and semi quantitative data are 

included (R
2
 =0.5635, p>0.05) for BMWP and (R

2
 =0.4643, p>0.05) for ASPT.  
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Figure 3.11. Frequency histograms of body mass distributions of streams 

communities for the River Ure, Tang Beck and the River Foss. Body mass of an 

animals were determined in mg. 
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Figure 3.12. The fitted distributions for density-body size estimated by kernel 

density estimation and bootstrapped re-sampling for the River Ure, Tang Beck and 

the River Foss. Both axes are scaled as log10 of the original data. Density function = 

number of individuals each site. 
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Table 3.5. The results of the test of significance for kernel density estimation where 

h is a smoothing constant used in kernel density estimation, m is the smallest number 

of modes for which the bootstrap test was not significant at the 5% level, α is the 

level of significance for each distribution (number of modes). 

Sites                                             h                             m                                   α 
Wensley (spring)   0.219      3   0.682 

Wensley (summer)    0.325   1    0.089 

Ripon (spring)     0.307                          2     0.464 

Masham (spring)     0.146                      3   0.527 

Foss (spring)     0.578                    1   0.304 

Tang (spring)     0.552   1    0.075 

Tang (semi-quantitative)    0.238    2   0.452 
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Table 3.6. The locations of troughs in the kernel density analysis and the location of 

gaps using the BMDI techique. 

 Sites                                               Troughs (mg)                                                 Gaps (mg) 

 Wensley                                         0.00151                                  0.0013, 0.00359 

                                                        0.24                                         0.247, 4.02          

                                                                                              

                                    

Masham                                           0.00181     0.019 

  

                                   0.63 

                                                          

Ripon                                                   -                                    0.002 

                                                                                                    0.7 

Tang Beck                                            -                                        0.0026 

                                                                                                                   0.04 

Foss                                                     -                                              0.006 

Wensley (summer)                               -                                                0.005 

                                                                                                               0.013 

                                                                                                                0.018 

                                                                                                            0.021 

                                                                                        0.094 

                                                                                                       0.57 

                                                                                                                  0.73 

                                                                                                                     1.03 

                                                                                                              2.6 

Tang Beck (semi- quantitative)  0.00102                                       0.000939 
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Figure 3.13. Frequency histograms and kernel density estimates for Wensley and 

Tang Beck, to evaluate body mass distributions in spring and summer and when 

using quantitative and semi quantitative methods. The number of modes found 

varied seasonally at Wensley and with sampling method at Tang Beck. 
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Figure 3.14. The relationships between water quality and biotic indices (BMWP, 

ASPT).  A = including summer and semi-quantitative, B = spring and quantitative 

data only.  
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3.5.1 Body Mass Difference Index (BMDI) 

Gap analysis for body mass distributions was carried out using Holling‟s approach, 

the BMDI (Holling, 1992) The highest number of gaps was  detected for the cleanest 

site at Wensley and the lowest for the most polluted site on the River Foss (Figure 

3.15). For intermediate quality habitats the analysis shows significant variation, such 

as at Masham which has the best water quality (ASPT and BMWP) after Wensley, 

but only one gap was detected in gap analysis. Two gaps were recorded for Ripon 

and Tang Beck, which have fairly good and fair quality water respectively. As a 

result, there, are no significant relationships between the number of gaps and water 

quality (Figure 3.17) neither for BMWP (R
2
 = 0.1667, P>0.05) nor for ASPT (R

2
 = 

0.2225, p>0.05). Gap analysis seems to be disproportionately influenced by large 

values of BMDI, which increase the mean value used to determine the criterion line, 

so that gaps present within lower ranges could not be detected. 

Contrary to the results for the number of modes, the number of gaps detected for 

Wensley in the summer was higher than in the spring. At Tang Beck, there was only 

one gap recorded in data collected using the semi- quantitative method but two gaps 

revealed in the data using a quantitative approach (Figure 3.16). The locations of 

gaps showed little relationship to the location of troughs determined by kernel 

density analysis (Table 3.6). The number of gaps at Wensley are 4, while only two 

troughs were detected by KDE. The locations of troughs at Wensley and Tang Beck 

(semi-quantitative) are similar with the locations of same gaps revealed by BMDI 

(Table 3.6). 
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Figure 3.15. Distributions of body mass gaps for River Ure, Tang Beck and River 

Foss stream communities in spring. The horizontal line is the mean +2SE and 

asterisks (*) show significant body mass gaps, identified as at least two values of 

BMDI above and followed by four values below the line (Holling 1992). 
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Figure 3.16 Upper: Body mass gaps in distributions at Wensley in spring and 

summer. Lower: Gaps for quantitative and semi-quantitative samples from Tang 

Beck. (*) shows significant body mass gaps, identified as at least two values of 

BMDI above, followed  by four values below the criterion line (mean+ 2SE) 

(Holling 1992). 
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Figure 3.17 Relationships between the number of gaps and water quality as 

determined by biotic indices (BMWP, ASPT). A = summer and semi-quantitative, B 

for spring data only.  
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3.6 Discussion 

3.6.1 Water quality and biotic indices 

The use of invertebrates to determine the health of streams including their 

composition and community structure has been carried out for more than a century 

(Kolkwitz and  Marsson, 1902), and in many parts of the world this method is well 

established (Hawkins, 2006; Buss and  Salles, 2007). Three pollution index measures 

the Macroinvertebrates Community Index (MCI), Biological Monitoring Working 

Party Score (BMWPS) and Average Score per Taxon (ASPT) were calculated in the 

present study because biotic indices are a first approach which can be used to 

characterize the health of an ecosystem (Feio et al., 2009).  

3.6.2 Water quality across the sites 

My analysis shows a clear gradient of water quality across the sites, with Wensley 

cleanest and Foss the most polluted, as determined by the abundance and 

composition of macroinvertebrates at the different sites. Thus, the highest numbers of 

individuals (474) was found at Wensley whilst fewer animals occurred on the Foss, 

with only 63 individuals present. The occurrence of benthic species in aquatic system 

is related to the kind of substratum and any adverse abiotic condition such as 

pollution may limit species richness (Singh and  Gaur, 1989). Numerous studies have 

revealed that species richness and composition changes with environmental 

disturbance, mainly from pollution (Reash, 1990).  

The composition of families varies among sites. The total number of taxa at Wensley 

was 20, and the fewest were recorded for the River Foss with only 13 families 

present (Table 3.2). Numbers of the indicator taxa EPT (Ephemeroptera, Plecoptera 

and Trichoptera) are high in Wensley while these taxa are fewer or absent in the 

River Foss. The species composition shows a higher proportion (56%) of EPT at 

Wensley with only 7% present on the River Foss. On the basis of species richness 

and composition, the condition of the River Ure at Wensley is appears to be of better  

or „good‟ quality while the River Foss was categorized as „poor‟. The validations of 

these categories are subjective and qualitative and may vary between geographical 
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areas. However, BMWP analysis for the sites provides similar information with 

Wensley having a high score (124) and the least score being recorded for the River 

Foss, with a score 43 (Table 3.4, Figure 3.9). The BMWP scores were divided by the 

number of taxa to produce ASPT score, (Figure 3.10) revealing that Wensley has the 

highest value with a score of 6.2 while the River Foss has the lowest value of 3.3.  

Masham, Ripon and Tang Beck have intermediate water quality and Masham and 

Ripon always ranked the same in term of their biotic indices. The number of 

individuals at Masham, Ripon and Tang Beck was 413, 275 and 156, respectively. 

Similarly, the number of families of macro-invertebrates at Masham was 21, 

followed by Ripon and Tang Beck with 14 and 17 taxa, respectively. However, the 

BMWP score for Masham was very high with 130, the highest score for the spring 

samples, while scores of 78 and 67 were recorded for Ripon and Tang Beck. The 

ASPT scores for sites with intermediate water quality were similarly ordered with a 

score of 6.1 for Masham, 5.93 for Ripon and 3.9 for Tang Beck. 

On the basis of taxon composition, number of individuals and biotic index scores 

(Community Index, BMWP and ASPT), it can be concluded that Wensley has very 

good ecological status, Masham has good quality while Ripon is of fairly good 

quality. Tang Beck quality is fair and the River Foss site has poor quality water.  

3.6.3 Effect of General Habitat Conditions 

Vegetation structure and abiotic variables (water temperature, salinity, depth and 

dissolved oxygen) are important in regulating invertebrate presence, absence and 

species richness (Wirwa. and  Nicholas, 2008). In the present study, the majority of 

stream habiats were stony riffles but differed in water depth. The River Ure at 

Wensley was shallow but at  Masham and Ripon the water was slightly deeper 

(although still easily sampled by Surber). The biggest difference in substarte was at 

Tang beck where the stream bottom was quite muddy  while river Foss passes 

through clay beds and is very turbid. Thus, the effect of substrate on the distribution 

and abundance of macro-invertebrates cannot be ruled out. Small scale variation in 

microhabitat complexity can result in  different  patterns of invertebrate distributions 
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between fresh water habitats (Michael and  Leland, 2005) and has been reported as 

affecting  body size distributions in benthic communities (Robson et al., 2005).  

Ideally, I could have explored theis further for these sites using RIVPACS data, as 

done in the next Chapter 4, but these data were not available for these sites. Thus, the 

following discussion needs to be interpeted with caution, especially when comparing 

the two muddier sites (Tang Beck and the Foss) with the three stony sites (Wensley, 

Masham and Ripon). However, habitat structure is not a factor when comparing the 

effects of season and sampling teachnique at the same site. 

3.6.4 Body size distributions 

Frequency histogram body mass distributions were right-skewed in all sites. None of 

the sites clearly showed unimodality and there was always a clear mode for larger 

size classes in all sites. The River Foss histograms indicate multimodality, but this 

may reflect the fewer individual recorded at this site. Changes in modality with water 

quality were not obvious from the frequency histogram and more rigorous analysis 

using BMDI and KDE were therefore carried out. 

3.6.5 BMDI approach 

The number of gaps detected using the BMDI approach in high and poor quality sites 

was similar for both BMWP and ASPT measures of water quality (Figure 3.15). At 

Wensley, the numbers of gaps was 4, while only 1 gap was detected for the River 

Foss, which has poor quality water. For intermediate quality sites, the number of 

gaps is more variable, with only one gap for Masham, which has good quality and in 

Ripon and Tang Beck the two gaps were recorded which have fairly good and fair 

ecological status. For intermediate water quality sites it seems unlikely that 

differences in sediment architecture at this scale is responsible for this variation. In 

the BMDI analysis large consecutive differences in body mass produces high values 

of the index, ultimately increasing the mean index value used to produce the criterion 

line so that it become impossible to detect gaps which may occur among lower 

BMDI values.  
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3.6.6 KDE approach 

Silverman‟s bump hunting technique (Silverman, 1981) to determine modality is 

considered a conservative test. This method estimates the number of modes required 

to determine each distribution (Holling and  Allen, 2002). The very clean and 

intermediate quality sites indicated at least bimodality (Figure 3.12, Table 3.5). In 

contrast to the right skewed size distributions in other mass spectra (Blackburn and  

Gaston, 1994) our findings, for clean and intermediate sites (Wensley and Masham) 

revealed three modes in their body size distributions. Tang Beck and the River Foss 

had only a single mode. The KDE approach revealed the evidence for changes in 

modality with water quality, but the locations of troughs in this analysis were 

different that the locations of gaps recorded by BMDI analysis (Table 3.6). At 

Wensley the locations of troughs are at 0.00151 and 0.24 mg and gaps at 0.0013 and 

0.24mg are similar, but BMDI defined two extra gaps at this site. Similarly, for 

Masham two troughs were indicated by KDE at 0.00181 and 0.63 mg, but only one 

gap was detected at 0.019 mg by BMDI. Ripon and Tang Beck which are unimodal 

and have no trough, while River Foss has a trough at 0.00841 and gap at 0.006 mg. 

KDE indicates no troughs for Wensley in the summer but the same data set had 9 

gaps when analysed by BMDI. Tang Beck (semi- quantitative) had a trough and gap 

locations at 0.001 and 0.000939 mg respectively. Thus, overall my results may 

provide no consistent support for a relationship between these two techniques. 

Usually the troughs defined by KDE had an equivalent gap, but not all the gaps 

detected by BMDI were revealed as troughs by KDE.   
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3.7 Relationships between number of gaps, number of modes and 

water quality 

There was no clear relationship between the number of gaps and water quality 

(Figure 3.17B) for both BMWP and ASPT analysis, but there was a relationship 

between water quality and number of modes and this was highly significant, 

implying that body mass  distributions may reflect environmental disturbance. 

However, the effects of habitat structure cannot be ruled out for this data set and this 

finding should be interpreted with caution. Chapter 4 explores further the effects of 

potentially confounding habitat variables within the same river system (Aire) where 

samples were taken at the same time of year. The distribution of body mass in an 

ecosystem could have potential as a bioassay of different environmental and 

ecological processes. However, the effects of habitat structure cannot be ruled out for 

this data set since there is a confounding variable of substratum type: the most 

disturbed site in terms of pollution also has more of clay and less of a stony 

substratum. This is often an issue with freshwater systems, where sedimentation can 

be much higher in more polluted sites. In the present study it is not possible to 

exclude this site from the analyses with also compromising statistical power. 

However, the kind of organisms present at the Tang Beck site are similar to those 

which might be expected from disturbed streams with stony substrata (they are not 

soft sediment biota). This finding should therefore be interpreted with caution at this 

stage and viewed against the results from the next chapter, chapter 4, where as many 

of such confounding variables as possible are removed from the analyses by 

selecting a single river system and sampling at the same time of year and at sites 

which were all stony. 

 There are many alternative explanations of modality in body mass distributions, 

such as community interactions (Hutchinson, 1959); energetic hypothesis, based on 

energy availability (Lovegrove and  Haines, 2004); evolutionary histories (Smith et 

al., 2004); biogeographical histories (Silva et al., 2001). An alternative hypothesis to 

all of these is the Textural Discontinuity Hypothesis (TDH) based on the observation 

that discontinuous distributions of body mass are due to ecological processes that 

occur in systems discontinuously. The occurrence of these discontinuous processes is 
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regarded as a sign of a resilient ecosystem (Holling, 1992) and several studies have 

found such patterns of body mass in a variety of habitats (Allen et al., 1999; Fu et al., 

2004).   

In this chapter, multiple modes and gaps in the cleanest site and fewer modes and 

gaps in the polluted site, indicate different ecological processes acting at each site 

with respect to the above hypotheses. There is no geographical boundaries that 

restrain animal movement in the river and the invertebrate communities, present are 

broadly similar across the sites so that a phylogenetic explanation is unlikely, as is 

the community interaction hypothesis. The remaining hypothesis, the Textural 

Discontinuity Hypothesis is the only one left which could explain better the presence 

of multiple gaps and modes at the cleaner site and one mode or gap in the most 

polluted habitat (River Foss). However, these clean and dirty sites were from 

different river systems, so that biogeographical explanation cannot be ruled at 

altogether. For this reason a more detailed analysis was carried out within a single 

river system, the River Aire, all samples being taken with the same technique 

(Surber) in the same season (early autumn) as described in chapter 4.  

3.8 Seasonal and methodological variations 

Significant changes in taxon richness, diversity and abundance with respect to season 

have been found at Wensley for the spring and summer, with lower diversity and 

richness in the summer compared to the spring (Table 3.2). These differences are 

reflected in the BMWP and ASPT scores which were lower in summer (Table 3.4). 

The right-skewed frequency mass distributions among small and intermediate size 

classes (<0.02-2mg) for summer data indicates the dominance of small size 

individuals. This is consistent with the negative relationship between ASPT values 

and the temperature as revealed by Zamora et al (1995) or it may be that in late 

summer the water flows are generally low and polluted effluent become more 

concentrated reducing populations of susceptible species and hence also the ASPT 

score. Significant differences occurred in species richness, diversity and modality of 

body mass distributions at Tang Beck for semi-quantitative data (Table 3.2 and Table 

3.3). BMDI revealed only one gap for the site using the semi-quantitative method, 
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which indicates weakness of this approach in distinguishing stream qualities, as has 

been found in previous studies (Lenat, 1988).  

In conclusion, size distributions of organisms have potential as metrics of community 

and ecosystem structure (Hanson et al., 1989a). Statistically rigorous analysis of the 

number of modes (by KDE) indicates unimodality for the summer data (Figure 3.13, 

Table 3.5) while the data appear trimodal in the spring, in agreement with Schmid et 

al (2002) who claimed that the shape of species shift from bimodal to unimodality. 
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Chapter 4 

Body size patterns in the River Aire: a test of Holling’s Textural 

Discontinuity Hypothesis 

4.1 Abstract 

This paper explores the relationship between water quality and body size patterns in 

stream communities in order to establish the potential of size based indicators for 

assessing environmental conditions. In addition, Holling‟s (1992) proposition that 

lumpiness occurs in body size distributions across a broad range of spatial and 

temporal scales is explored. Samples of stream benthos were collected at different 

stations in the River Aire, Yorkshire, UK, which vary in water quality. All sites 

showed skewed distributions towards smaller size classes and visual inspection 

indicated that most had two very obvious modes at medium and large size classes, 

except for most polluted habitats. Analysis of the number of gaps, using Holling‟s 

(1992) BMDI, revealed wide variation in clean and intermediate water quality sites, 

though the most polluted site had the fewest gaps. However, other disturbed sites had 

more gaps and some clean sites had fewer gaps. It is clear that size distributions in 

stream communities are lumpy, in the sense that most sites showed more than one 

mode or many gaps, but the number of gaps (discontinuities) is not correlated with 

disturbance, at least for freshwater quality. The Kernel Density Estimation (KDE) 

results revealed more than one significant mode for the cleaner sites and a single 

mode for the most polluted site, but overall the relationship between water quality 

and number of modes remained non-significant. 
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4.2 Introduction 

 Body size is an important parameter in ecological studies (Blackburn and  Gaston, 

1994), being a key determinant of a wide range of ecological and evolutionary 

parameters. Body size determines many aspects of life history such as metabolic 

efficiency, generation time and metabolism (Morse et al., 1988). The relationship 

between body size and abundance has been shown to be a useful tool for describing 

patterns across a wide range of taxa and habitats (Blackburn and  Gaston, 1999) with 

a diversity of biotic and abiotic factors influencing these patterns (Maurer and  

Brown, 1988; Cyr et al., 1997). Departures from expected body mass distributions 

may provide an indication of  disturbance in communities and insights into resilience 

(Damuth, 1992). 

One approach to exploring body size and resilience has been developed by (Holling, 

1992). His Textural Discontinuity Hypothesis (TDH) proposes that organisms 

develop specific physical and behavioural characteristics in response to 

environmental texture which varies across scales and which is reflected in 

discontinuities in organism body size distributions. In a wide range of marine 

ecosystems, the body size distribution of benthic organisms appear tri-modal 

(Schwinghamer, 1988) and in planktonic systems biomass size spectra models 

indicate that size distributions are also multi-modal (Sheldon et al., 1972; Thiebaux 

and  Dickie, 1992). Such discontinuities in the distributions of body size indicates 

self-organizing processes within ecosystems and may provide a tool to assess 

ecosystem resilience (Allen et al., 2005).   

In addition to Holling‟s TDH, there are multiple competing hypotheses regarding the 

determinants of body mass distributions of species. These include community 

interactions (Hutchinson, 1959) and related ecological processes (Brown et al., 

1993); the energetic hypothesis based on the allocation of energy for species growth 

and reproduction processes which are limited by the energy availability from the 

environment and by the subsequent transformation of energy into offspring (Allen et 

al., 2006; Marquet et al., 1995; Lovegrove and  Haines, 2004); the phylogenetic 

hypothesis, reflecting different evolutionary histories of species (Smith et al., 2004; 
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Cassey and  Blackburn, 2004); and the biogeographical hypothesis, which suggests 

that multiple modes in body size distributions are due to the restricted set of species 

present in a given community (Silva et al., 2001). Many studies have found a 

relationship between body mass distributions and geographical range (Gaston and  

Blackburn, 1996; Pyron, 1999).  

The Textural Discontinuity Hypothesis (TDH) argues that species respond to biotic 

and abiotic processes across different scales (micro, meso, and macro–scales) in time 

and space and that this produces discontinuous distributions in their body sizes 

(Holling, 1992). Many authors have argued that different landscapes and biomes 

with different ecological structures produce different patterns of body size 

distributions (Allen et al., 1999; Havlicek and  Carpenter, 2001) and studies on 

freshwater fish found a relationship between gaps in body size distributions and 

habitat structure (Fu et al., 2004). If the body mass pattern is controlled by landscape 

architecture, differences in phylogenetics, biogeography, energetics, and community 

interactions should not significantly change patterns in body mass configuration 

(Allen et al., 2006). 

Here, I explore these hypotheses in relation to disturbance in freshwater stream 

communities. Specifically I will: 

1. Establish the modality of benthic body size distributions across a gradient of 

environmental stress (sites with differing water quality) within a single river system, 

using a standardised methodology and at the same time of year. Chapter 3 showed 

that relationships may be obscured by including samples from different seasons and 

the cleanest and dirtiest sites were from two different river systems, so that 

biogeography issues cannot be discounted. In addition, the most disturbed sites had, 

as is often the case, a more muddy substratum, whilst the least disturbed sites had 

stony riffle beds, further complicating between site comparisons. The sites chosen 

here were of a similar habitat type and RIVPACS data were available for all of them. 

2. Explore the relationship between the number of gaps in body size 

distributions and water quality using a gap finding approach proposed by Holling 
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(1992) as well as Silverman‟s Kernel Density Estimation technique for finding 

modes. 

3. Assess whether the modality and number of gaps has potential for assessing 

the ecological health (resilience) of streams. 

4.3 Study sites 

Nine locations in the River Aire catchment were chosen on the basis of their water 

quality, previously classified by the Environmental Agency. The range covers sites 

from very good to bad quality. These GQA grades (General Quality Assessment) had 

been previously established by the Environmental Agency for each site. The sites 

with their grading are given in Table No 1, while short descriptions of each site are 

provided below.  

 

Figure 4.1. The dark blue line indicates the River Aire, flowing  from North to South 

and the numbers 1-9 are sampling sites from Winterburn  (very clean) to Thwaites 

mill (very poor). 
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Table 4.1.Sites sampled on the River Aire and their general grade as assessed by the 

Environment Agency. 

No Sites General water quality 

1 Winterburn Very good 

2 Airton Very good 

3 Otterburn Good 

4 Hetton Good 

5 Gargrave Fair 

6 Carlton Bridge Fair 

7 Esholt Village Fairly good 

8 Calverley Bridge Poor 

9 Thwaites Mill Bad 
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1. Winterburn  

Winterburn is a joint township with Flasby in the parish of Gargrave in North 

Yorkshire and is located 6 km south of Grassington. It is famous for its water 

reservoir which is one of several built in the Victorian era. Low lying pretty pasture 

lands characterize the bank up to Airton. The area is dominated by the influence of 

limestone and the combination of wildlife habitats and cultural features make the 

area particularly special. The River Aire has its origins above Malham cove and flow 

southerly direction for 6-7km and passes through the township Flasby Hall which 

has very good quality water.  

2. Airton  

Airton is a small village in the Craven district of North Yorkshire, situated 16 km 

North West of Skipton. Stone walls on the hillside show that farming has gone on 

here for hundreds of years. The River Aire passes through Airton before it reaches 

the town of Skipton. The water quality of the River Aire at this spot is very good. 

3. Otterburn 

Otterburn is a small village in the Craven district of North Yorkshire located 3km 

away from Airton. The area is predominantly upland moorland which supports a 

wide range of habitat types and wildlife. Clean water and a good supply of fish 

provide good habitat for otters. 

4. Hetton 

Hetton is a small village situated in North Yorkshire. Samples were collected from 

Flasby beck, which is also known as Hetton beck. The area is mostly grassland. The 

site is a clean and well maintained landscape of improved pasture which is divided 

by hedges. The water quality of this beck is considered very clean. 
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5. Gargrave 

The area is located on the side of the Yorkshire Dales. The River Aire flows through 

the centre of village where it is surrounded by trees, presents beautiful scenery. 

Other water ways, the Leeds Liverpool canal, also pass through the village. The area 

is popular for hiking. Water quality is assessed as good. 

6. Carlton Bridge 

Carlton is a village in Richmondshire located in the Yorkshire Dale National Park 

near the River Cover. The place is quiet and provides excellent spots for walking and 

is accessible from the A444.  The River Aire here is of fair quality. 

7. Esholt Village 

Esholt is a small village in west Yorkshire. The river passes through the industrial 

towns of Binglay and Shipley and meets Bradford Beck and heads past Esholt 

village. Due to domestic and industrial outflows, the GQA of the water is considered 

fair. 

8. Calverley Bridge 

Calverley is a rural village located near the junction of the River Aire and the 

Liverpool canal. It is a Holy Mill Company situated at the edge of the village.  

Industrial outflows make the water unsafe for use and the water is categorized as 

poor quality. 

9. Thwaites Mill 

This is a water-powered mill located on the southern edge of Leeds, used to crush 

stones for items such as paints and putty from 1872. As a result of crushing stones, 

heavy metals flow into the water, and crushed sediment increased the turbidity of 

water. Only tolerant species survive in this water. The Environmental Agency 

classify Thwaites Mill water as bad quality.  
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4.4 Methods 

Samples of benthic invertebrates were taken from the sites in September and October 

of 2008 and 2009. The sites were pre-selected according to their water quality 

previously determined by the Environment Agency (Table 4.1 and Table 4.3). At 

each site, 5 replicate Surber samples (0.25m
2
 base area, 200µm net) were taken in 

order to allow sample collection to be dispersed over a wide spatial area. The 

replicates were not used in any statistical way and the pooled samples were used for 

the body size analysis. The fauna collected was preserved in ethanol, identified to the 

lowest taxonomic level and the body size (mass) of all individuals estimated from 

morphometric-based formulae (Table 4.2) or, for larger individuals, by water 

displacement. Water quality was also assessed using invertebrate samples as the 

biotic index Average Score Per Taxon (Mason, 2002a) and the Biological 

Monitoring Working Party (BMWP) score. 

BMDI 

 Body size distributions were plotted for each site in order to evaluate the degree of 

modality. In addition, individuals (and taxa) were ranked in increasing body size and 

the body mass difference index (BMDI) calculated between consecutive rankings 

using Holling‟s (1992) formula: 

BMDI= (Mn+1-Mn-1)/(Mn)
γ 

The mean BMDI was calculated as well as the mean+2SE criterion line in order to 

estimate the number of significant gaps in the distributions. Two consecutive 

differences values above the mean +2SE followed by four value below the line is 

considered a conservative and robust method to detect gaps (Holling, 1992). See also 

chapter 2. 

KDE 

The Kernel Density Estimation (KDE) analysis was done using the programming 

language „R‟, in order to find the most likely number of modes (Chapter 2). The 

density function is the probability density function for body mass, which is produced 
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by kernel density estimation from the distribution of body masses within the sample 

data and produces a smoothed version of a frequency histogram. The underlying 

modality of the body mass density function is determined by calculating the 

„excessive‟ amount of smoothing required to produce a K-modal density function 

from the data as opposed to a density function with (K+1) or more. A 5% of 

significance level was applied to estimate the density function underlying the body 

mass of the benthic communities. 

4.5 Results 

The water quality at the sites, as determined from the ASPT and BMWP scores 

(Figures 4.3 and 4.4) was broadly similar to the classification provided by 

Environment Agency. Winterburn was the cleanest on the ASPT range and Thwaites 

Mill and Calverly Bridge had the poorest water quality (Figures 4.3 and 4.4). The 

fauna at each of these sites is shown in Table 4.2 and Figure 4.2. Winterburn was 

dominated by stoneflies (Leuctridae and Perlodidae), Haliplidae, Chironomidae and 

Simulidae. In Airton, large numbers of Haliplidae, Chironomidae, Gyrinidae, Diptera 

and Oligochaeta were recorded. Otterburn had many Haliplidae, Gyrinidae, 

Chironomidae, Diptera and Oligochaeta. The dominant taxa in Hetton were 

Haliplidae, Baetidae, Chiromidae, Oligochaeta and Diptera, while in Gargrave high 

abundances of Chironomidae, Dixidae, Haliplidae, Oligochaeta and Diptera was 

recorded. In Carlton Bridge, the dominant taxa were Nematomorpha, Chironomidae, 

Oligochaeta, Haliplidae and Baetidae. The most abundant taxa in Esholt village were 

Oligochaeta, Chironomidae, Hydrosychidae, Asellidae,and Nematomorpha while 

Calverly bridge was dominated by Oligochaeta, Chironomidae, Hydropsychidae, 

Nematomorpha and Asellidae. The site with the poorest water quality, Thwaites 

Mill, had abundant Oligochaeta, Chironomidae, Asellidae, Hydrodiidae and 

Viviparidae. Thus, my analyses confirm a gradient of water quality in the River Aire 

at these sites. 

The Biological Monitoring Working Party (BMWP) score revealed the highest score 

of 140 and 131 for clean sites, while the lowest score (54 and 27) occurred at poor 

quality sites, Calverley Bridge and Thwaites Mill. The results for intermediate 

quality sites do not exactly match the quality gradients provided by the Environment 
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Agency (Figure 4.3). However, the ASPT analysis corroborated the general water 

quality, providing similar ranks for the sites (Figure 4.4). 

Habitats at the sites  

RIVPACs habitat data for  the different sites on the  River Aire were kindly supplied 

by the Environment Agency  and the most revelvent variables are shown in Table 

4.3. These data show that all the sites are stony shallow riffles which do not differ 

greatly in their substrate composition. Any between-site differences in BMWP and 

body size distributions are thus unlikely to be due to differences in stream bed 

characteristics or to bank vegetation as indicated by the shading score. 

The RIVPACS data sheets also provide information on conductivity, related to  

dissolved solids and suspended material and general  chemical characteristics of 

natural water  (Hem, 1985).  Significant changes in water conductivity could indicate 

pollution, pure (low conductivity) water being a good conductor of electric current. 

Thus, a positive relation has been found between pollution levels and conductivity 

(Ali et al., 2009 ).  In the present study, conductivity values were available for  most 

sites on the Aire  (Table 4.3)  and there is a clear relationship between conductivity 

and water quality (ASPT) (Figure  4.5) 

The body size distributions of benthic fauna at the sites are shown in Figure 4.6. The 

data here are shown on a linear body mass scale (0.25-5 mg), but the shape is similar 

across a range of bin sizes and transformations. All sites show a skewed distribution 

towards smaller size classes and none of the sites can be adequately described by a 

single uni-modal distribution. In addition to the left-skewed mode, there is often a 

clear mode around 1-2mg and possibly another mode in the largest size classes, 

although neither is apparent for Thwaites Mill. These modes comprise a range of 

taxa which differ at each site (Table 4.5). 

In contrast to left-skewed distributions, analysis by Kernel Density Estimate (KDE) 

revealed multiple modes for the most clean site, Winterburn (Figure 4.7 Table 4.6), 

and a single mode for the most polluted site (Thwaites Mill). However there was no 

consistency in the number of modes in body size spectra for intermediate quality 
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water sites. The sites which are considered cleaner often had fewer modes while less 

clean sites had more modes. Thus, the number of modes for intermediate quality 

water are more variable, but all sites present at least bimodality, except for the most 

polluted habitat.  

Analysis of the number of gaps following Holling‟s methods shows wide variation in 

the number of body size gaps detected (Figure 4.9). The highest numbers of gaps 

occurred at Esholt, which has moderate water quality, and the lowest number of gaps 

was recorded in Carlton Bridge, having a fair water quality according to the 

Environment Agency and ASPT analysis.  

There was no overall correlation between the number of modes and water quality 

and the number of individuals and number of modes (Figure 4.8) nor is a clear 

relationship between the number of gaps and water quality habitats (Figure 4.10, R² 

= 0.0014, p>0.05). 
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Figure 4.2.  Community Index of macro invertebrates for different sites at River Aire. 
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Table 4.2. Community abundance of sites in the River Aire, showing the 

number of each taxon present at each site, where “L” is for larval stage and 

“A” is Adult. 

 



127 

 

 

Figure 4.3.  Biological Monitoring Working Party (BMWP) scores for the 

sites on the River Aire varying in water quality. 

 

Figure 4.4.  Average Score per Taxon for different sites on the River Aire, 

varying in water quality.  
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Table 4.3. RIVPACS data for different sites on River Aire provided Environmental Agency Leeds 

Site Shade Turbidity Odour Width 

(m) 

Channel 

depth (cm) 

Conductivity 

(uSm) 

Sewage Bed 

stability 

% 

boulders 

% 

cobbles 

% 

pebbles 

% 

gravel 

% 

sand 

% 

silt 

Riffle

? 

Winterburn Light Slight None 8 20 208 None Unstable 5 65 15 5 5 0 Yes 

Hetton Moderate Slight None 6.2 20 275 None Stable 10 60 15 10 5 0 Yes 

Gargrave None Clear None 25 25 355 None Stable 5 60 20 10 5 0 Yes 

Carlton 

Bridge 

None Clear None 14 20 283 None Unstable 0 40 40 10 10 0 Yes 

Esholt 

Village  

Light Slight None 15 40 381 None Unstable 0 70 30 0 0 0 Yes 

Calverley 

Bridge 

None Clear None 35 30 664 None Unstable 5 45 40 5 5 0 Yes 

Thwaites 

Mill 

None Clear None 20 60 348 None Stable 5 55 30 0 10 0 Yes 
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Figure 4.5. The relationship between water quality ( ASPT) and water 

conductivity.   
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Table 4.4. Regression equations to determine body mass of invertebrates 

communities where DM is a dry mass of the organisms (mg), DW is the dry 

weight (mg) of the organisms, L is the length (mm) of the organisms, HW is 

the head width (mm) of the organisms, volume (V) of the organisms 

expressed in (nL) and Wt is weight of the organisms (mg). 

Family/ Class 
 

Regression Equation To  
Determine Body Mass Of Fresh 
Water Invertebrates 

Reference
s 

 

Baetidae 
Heptageniidae 
Caenidae 
Ephemerellidae 
Ephemeridae 
Potamanthidae 
Hymenoptera 
Ecdyonuridae 

Dw(mg)= aL(mm)
b
 

Dw(mg)=3.8x10
-3

L(mm)
2.918 

Stead et 
al.,2003 

Diptera 
DM(mg) = aL(mm)

b 

DM(mg) = 1.3x10
-3

 L(mm)
2.851

 

Leuctriodae 
Perlolidae 

Dw(mg)=aL(mm)
b
 

DW(mg)=2.5x10
-3

L(mm)
2.744

 

Gammaridae 
In DM(mg)=Ina +b InL(mm)  
In DM(mg)=-4.95 +2.83 InL(mm) 

Tipulidae 
DW(mg) = aL(mm)

2.851 

Dw(mg)= 1.3x10
-3 

L(mm)
2.851

 

Chironomidae 
Caratopogonidae 

DM (mg) = a L(mm)
b
 

DM (mg) = 6.0x 10
-4

 L (mm) 
2.770

 
 

Hemerobiidae 
Log DM(µg)=a + b log HW(mm) 
Log DM(µg)=2.68+2.9 log Hw(mm) 

Trichoptera 
Rhyacophilidae 
Hydropsychidae 

In DM(mg)=Ina + b InL(mm) 
In DM (mg) = -6.037 + 2.82 In L 
(mm). 

Simulidae 
In DM(mg)=Ina + b Hw(mm) 
In DM(mg)= -4.5009 +2.0742 
HW(mm) 

Arachinida 
Argulidae 

DM(µg) = aL(µm)
b
 

DM(µg) = 1.1x10
-5

L(µm)
1.89

 

Oligochaeta 
DM(nl) =a L(µm)

b
 

DM(nl) = 3.5 x10
-3

 L(µm)
2.1 

Dixidae 
DM(mg)=aL (µm)

b 

DM(mg)=6.62x10
-4

 L(µm)
2.59

 

Cladocera 

InDM(µg) = Ina+bInL(mm) 
lnDM(µg) = In1.7512+   
2.653L(mm) 

  

Asellidae 
DM(mg) = aL(mm)

b
 

DM(mg) = 7.2x10
-3

L(mm) 
2.785

 
 

Nematomorpha 
 

DM(µg)=a L(µm)
b
 

DM(µg) =6.0x10
-5

 L(µm)
0.8205
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Turbullaria V(nL)=L(mm)xW
2
mm) x C 

V(nL)=L(mm)W
2
(mm)x 550 

V(nL) ×1.05 = dry weight= µg 
µg/1000=mg 

(Feller and 
Warwick, 
1988) 

Piscicolidae 
Erpobdellidae 
Glossiphonidae 

V(nL) = L(mm)×π(W/2)
2
 ×530 

V(nL)×1.13 = dry wight(µg) 
 

Valvatidae 
Uniondae 
Planorbidae 

Water Displacement 

(Leaper et 
al., 2001) 

V(nL)=WD(µL)x 1000 
Wt(µg)=v(nLx1.05) 
Mass(mg)=µg/1000 

Hydrobiidae 
Physidae 
Viviparidae 

V(µL) = L(mm) (0.851)
1.91

 
Wt(µg) = v(µLx 1.05) 
Mass(mg) = µg/1000 

Ancylidae 
Sphaeriidae 

Approximate a geometric shape 
(cone) 

 
V(µL) = 1/3πr

2 
(mm)

 
h(mm) 

V(nL)= µLx1000 
Wt(µg) = nLx1.05 Mass (mg) = 
µg/1000 

Corixidae 
Notonectidae 
Mesovellidae 
Veliidae 
Hydrometridae 
Hemiptera 

In W(mg) = Ina + b In L 
In W(mg) = -4.200+ 2.60  In L(mm) 

(Smock, 
1980) 

Gyrinida 
Dyticidae 
Haliplidae 

Dw (mg)= Ina + b In L(BL(mm) or 
HW(mm) 
Dw = -2.0076 +3.2271 InL(BL-Dw) 
Dw =3.1102 +2.5412 InL(HW-DW)     
converted  BL to HW by using 
HW:BL 

(Tower et 
al., 1994) 
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Taxa Hetton Gargrave Carlton Bridge Esholt Village Calverley  Thwaites Mill  Airton Otterbun Winterbun 

Baetidae 0.00445-0.734 0.00973-1.07 0.065-2.5 0.012-0.9 0.02-0.91 0.04 0.03-2.6 0.0011-7.1 0.05-0.2 

Ephemerellidae  0.073-0.62 
 

0.01-0.14 0.02-1.3 0.04-0.73 
 

0.1-1.92 0.07 0.003-0.9 

Heptageniidae 0.04-0.074 0.13-0.6 0.012 0.03-0.91 0.04-0.87 
    Potaminthidae  0.1702 0.0432-0.6707 

       Leuctridae 0.011-0.109 
 

0.6-0.8 
   

0.0054-0.8 0.13-1.2 0.009-0.92 

Perlodidae 0.0832-0.1309 0.578 
 

0.05 
    

0.006-1.031 

Haliplidae(L) 0.196-4.505 2.27-4.27 0.42-3.506 0.7-4.2 
  

0.2-5.6 0.2-5.3 0.2-4.45 

Diptera 0.03-0.89 0.213-2.78 0.04-2.4 0.03-1.8 
  

0.04-2.4 0.0092-1.9 0.003-2.2 

Oligochaeta 0.04-1.72 0.00689-2.33 0.0043-3.72 0.003-3.1 0.013-2.98 0.007-1.99 0.03-10.96 0.02-5.9 0.2-7.7 

Nematomorpha 
  

0.00003-0.00015 0.00003-0.0002 
0.00003-
0.0002 

    Tipulidae 0.74 
 

0.33 0.13-3.1 0.0085-0.05 
 

0.3-2.7 0.0092-6.5 0.5 

Chironomidae 0.0037-0.146 0.00062-0.45 0.0005-0.2095 0.0005-0.132 0.0007-0.054 0.003-0.09 0.0007-0.3 0.0007-0.231 0.0013-0.7 

Haliplidae(A) 0.012 
        Gyrinidae 0.012 0.12-2.197 0.12-0.4112 0.12-0.3 

  
0.2-2.5 0.2-2.94 0.2-2.5 

Dytiscidae 
 

  0.12 
 

0.3-0.54 
 

0.6-1.98 0.2-1.9 0.2-1.13 

Trichoptera 0.069-0.81 0.18   0.02-0.92 
  

0.005-2.6 0.07-6.5 
 Hydropsychidae 0.032-0.45 0.00843-2.6 0.0134-1.84 0.012-7 0.004-7.6 0.2 

 
0.12-5.13 0.07-3.5 

Rhyacophilidae 
  

0.001-0.2 
     

0.4-1.54 

Caratopogonidae 0.08504 
 

0.072-0.22 0.07 
   

0.042-0.082 
 Simuliidae 0.02 

 
0.02-0.03 0.02 0.02 

 
0.01-0.04 

 
0.02-0.044 

Dixidae 
 

0.00143-0.0246 0.57-1.63 0.3-1.622 0.0054-0.011 
 

0.004-0.007 0.004-0.022 0.06-0.132 

Gammaridae 
 

0.017-0.193 
 

0.06-0.13 
  

0.11-3.1 
 

2.5 

Glossiphonidae 
 

41.3 0.3-45.8 0.81-30.9 1.72-29.4 
 

22.94 3.93-9.74 17.32 

Erpobdellidae 
    

0.53-1.5 
  

15.6-73.6 
 Hymenoptera 

 
0.014-0.2 

       Sphaeriidae 
   

0.02-0.09 
     Viviparidae 

     
0.003-0.004 0.003-0.0041 

  Valvatidae 
     

0.2 
   Hydrobiidae 

     
2 0.0022-0.0041 0.002-0.0041 

 Asellidae 
   

0.03-1.9 0.091-2.002 0.12-2.22 
   

Arachnida 
   

0.0000002 
   

0.000000005-
0.0000002 

 Hemiptera 
   

1.1-2.03 
  

0.24 
  Hydrometridae 

    
2 

 
0.02 

  Chalcididae 
  

0.2-0.3 0.03-0.039 6 
 

0.0045-0.07 
 

0.09 

Cladocera 
      

0.005-0.006 0.005-0.007 
 Veliidae 

      
0.02 

 
0.015 

Polycentropidae 
      

0.34-1.54 
 

0.05-3.5 

Planorbiidae 
        

1.1 

Ecdyonuridae 
      

2.02 0.03 
 Ancylidae 

      
0.006-0.007 

 
0.02 

Table 4.5. Size ranges of all taxa recorded in the present study, where a range is not shown the data is referring to single individual 
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Figure 4.6. Body size distributions for invertebrates in the River Aire flowing from Winterburn to Thwaites Mill. Body masses were 

measured in mg, ranging from <0.02 to >5. 
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istribution of body masses presents multimodality several site

   

   

   

Log10 (Body Mass) 

Figure 4.7. The fitted distributions for density-body size estimated by Kernel Density Estimation 

and bootstrapped re-sampling in the River Aire. Both axes are scaled as log10 of the original data. 

Density function = number of individuals at each site. 
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Table 4.6. Results of the test of significance for the body size spectra from the kernel 

density estimation and smoothed bootstrap re-sampling, where h is a smoothing constant 

(critical bandwidth) used in kernel estimation, m is the smallest number of modes for 

which the bootstrap test was not significant at the 5% level, and α is the level of 

significance for each distribution (mode number). 

Sites                             h                           m                              α 

Winterburn    0.126          3          0.496 

Airton     0.178         2          0.292                                

Otterburn    0.178         5          0.182 

Hetton     0.173           2          0.338 

Gargrave    0.137           4          0.095 

Carlton Bridge    0.353         2          0.103 

Esholt Village    0.128         3          0.467 

Calverly Bridge            0.194                               3          0.055         

Thwaites mill    0.153         1          0.802 
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Figure 4.8. The relationships 

between water quality assessed by 

biotic indices (ASPT, BMWP 

scores and number of individuals) 

and number of modes by KDE in 

body mass distributions at different 

sites of River Aire. Both 

relationships are not statistically 

significant. 
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Figure 4.9. Distributions of body mass gaps for river Aire stream communities. The horizontal line is the mean +2SE and 

asterisks (*) show significant body mass gaps, identified as at least two values of BMDI.  
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Figure 4.10. The relationship 

between water quality determined 

by biotic indices (BMWP, ASPT 
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The data were explored further for phylogenetic effects, a potential explanation of 

modes occurring at particular body sizes.(Figure 4.11). Thus, the peak and troughs in 

the body mass distributions do not appear to characterised by particular taxa, being a 

mixture of different invertebrate groups. This can be seen in the figures below by 

comparing where the different groups (individually coloured) are in the size plots: 

clearly, groups do not always appear in the same place on the x-axis.This suggests 

that abundance was highest at the clean sites and that taxa are not aggregated at 

specific locations (peaks and troughs), being more evenly distributed in their body 

sizes. Thus, the peak and troughs in the body mass distributions do not appear to 

characterised by particular taxa, being a mixture of different invertebrate groups. 

Phylogenetic explanations for the number and locations of peaks and troughs 

therefore seem unlikely. 
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Figure 4.11 The occurenece of taxa in peaks and troughs are presented with  

different colours in  clean, intermediate and polluted sites in River Aire. Number of 

colours showed in labels indicating number of taxa present in peaks or trough.  
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4.6 Discussion 

This study was carried out to assess the effects of water quality on body mass 

distributions in stream communities. Benthic fauna were sampled across different 

sites on the River Aire varying in water quality, to establish the potential of size-

based indicators for assessing environmental conditions. Water quality had been 

classified by the Environment Agency and also assessed in this study using 

invertebrate samples as the BMWP score and the Average Score per Taxon (Mason, 

2002). The ASPT estimates for the sites were similar to the classification provided 

by Environment Agency. The highest score of 5.5 was for the cleanest site and 

scores decreased with decreased water quality, with the lowest score of 3.37 for the 

most polluted sites. The RIVPACs data for the sites provided by the Environmental 

Agency (Table 4.3) show that habitat difference between the sites is minimal: all the 

sites are riffles with no silt. Thus the main difference between the sites is in their 

water quality.  

Looking at the histograms, most sites were clearly not unimodal with respect to their 

body size distributions. Many authors have claimed that body mass distributions in 

communities are multimodal (Schwinghamer, 1981a; Poff et al., 1993), although 

some do show uni-modal size spectra (Solimini et al., 2001). In the River Aire, 

visual inspection of body size distributions showed at least bimodality for 

invertebrates, mainly in the cleaner sites which supports a wide range of body sizes. 

The most polluted site (Calverly Bridge and Thwaites Mill) were better described as 

unimodal. There was a large number of small size individuals within these sites. 

The modality in frequency histograms is considered sensitive to bin width. If the bin 

is too wide, important information may be missed, while a too narrow bin width 

gives un-meaningful information. Choosing inappropriate bin-widths therefore may 

create errors in interpretation of histogram (Denby and  Mallows, 2009). The body 

mass patterns analysed using Kernel Density Estimates show multimodality for most 

clean sites, e.g. Otterburn had 5 modes and Winterburn had 3 modes, while a single 

mode was recorded for most polluted site (Table 4.6). The intermediate water quality 

sites show variable numbers of modes in their body size distributions, the fair quality 
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habitat Gargrave having 4 modes followed by fairly good and poor quality sites 

(Esholt village and Calverley Bridge) with 3 modes. Thus, there was no overall 

correlation between the number of modes and water quality (Figure 4.8).  The effect 

of sample size on body mass distributions examined. This showed that increase in 

sample size is unlikely change the estimate of scaling exponent for body mass 

distribution  (White and  Seymour, 2005). In present study there was no relationship 

between number of individuals and number of modes in body mass distributions. 

(Figure 4.8) 

Whilst the above presents some evidence for changes in modality with water quality, 

this was not reflected in the BMDI analysis. For gap analysis, more discontinuities 

(body size gaps) imply less disturbed communities (Holling, 1992), but in my study 

there was no relationship between the number of gaps and water quality as measured 

by ASPT and BMWP estimates. Many gaps were observed at Esholt village which 

had a fairly good quality compared to the cleaner site (Winterburn). 61 gaps were 

recorded in Esholt village followed by Calverly Bridge with 46 gaps. Otterburn, 

Airton and Hetton are good quality habitats but in gap analysis these sites revealed 

34, 30 and 27 gaps, respectively. At the cleanest site (Winterburn), the number of 

gaps was 26 while in Gargrave 21 gaps were recorded. One of the lowest numbers of 

gaps was recorded in the polluted site (Thwaites Mill) with 6 gaps, but, in contrast, a 

fair quality habitat (Carlton Bridge) had only 3 gaps. Thus, overall there was no clear 

relationship between water quality (ASPT and conductivity) and the number of gaps 

(Figure 4.11).  Finding gaps using the BMDI approach seems to be sensitive to the 

presence of exceptionally large values of BMDI that increase the mean value hugely 

making it almost impossible to detect the gaps which occur amongst the lower 

BMDI values. 

In the introduction the leading competing hypotheses explaining body size 

distributions in ecosystems were listed. The appropriate scale varies for each 

hypothesis and there is no evidence that one scale is superior to other scales for 

analysis (Vermaat et al., 2005) because different processes are important at different 

scales, and so no single theory might explain the patterns across different scales 

(Gaston et al., 2001). To link body mass patterns to the processes affecting those 
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patterns, multiscale analysis is critical (Krawchuk and  Taylor, 2003), but there is 

evidence of multimodality (Havlicek and  Carpenter, 2001) and discontinuity in body 

mass distribution in a range of ecosystems (Allen et al., 1999). The present study 

compares adjacent systems with different environmental conditions, so that the 

taxonomic identities of species and their evolutionary histories will be similar, and 

thus phylogenetics are held constant. The system is spatially connected and allows 

species to disperse across the habitats which varies from clean to polluted and the 

different body mass patterns observed cannot be due to biogeographical separation. 

The community interaction hypothesis predicts that changes in the patterns of body 

size are because of different taxa present in the system, but such taxonomic 

differences are restricted to the species level, not the higher-level taxa dealt with 

here. The textural discontinuity hypothesis predicts changes in body size patterns 

because the habitat available to the animals differs. The presence of multiple modes 

and gaps in cleaner sites reflects the hierarchical physical structure of the system and 

shows that multiple processes are responsible for structuring the system. At the most 

polluted site (Thwaites Mill), fewer modes might be a sign of a disturbed and less 

resilient system, although the number of gaps for other polluted sites is higher and 

for some clean sites is lower. 

In other studies (not freshwater streams), multiple modes in body mass distributions 

have been considered as a result of faunas with different macro-evolutionary 

histories (Cassey and  Blackburn, 2004). Studies on South American mammals have 

revealed that body mass distributions are made of different faunal stocks with 

different macro-evolutionary histories (Marquet and  Cofre, 1999). In the present 

study this phylogenetic explanation is unlikely to explain the multiple modes in body 

mass distributions. Figure 4.11 revealed that the number modes decreased with water 

quality but the peaks and troughs in body mass distributions for clean, intermediate 

and poor quality water contains the body masses of all animals which comprise a 

mixture of different groups and specific groups are spread across peaks and troughs. 

It is noted that the same species (family) are not accumulated in specific peaks or 

troughs while the body mass distributions within modes are mixture of all.   
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In conclusion, it is clear that body size distributions in stream communities are 

“lumpy”, in the sense that most sites show more than one mode or many gaps. The 

most polluted site in our study had the fewest modes and gaps and the cleanest site 

had many gaps and was clearly multimodal. In terms of Holling‟s (1992) Textural 

Discontinuity Hypothesis, these patterns could reflect the dynamic processes 

operating at particular scales, no other competing hypotheses seeming plausible. 

However, it is also clear that the number of gaps (discontinuities) is not well 

correlated with disturbance, at least with water quality, and it is difficult to 

demonstrate such associations at smaller scales (Leaper et al., 2001). Further 

empirical exploration of such relationships is needed given their compelling 

theoretical basis (Holling, 1992).  
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Chapter 5 

Body mass distributions of benthic communities in static water 

habitats (canals and ponds) 

5.1 Introduction 

The macro-invertebrate community in the littoral zone of static bodies like ponds, 

canals and lakes are important in transferring energy from primary producers and 

detritus to fish (Boisclair and  Leggett, 1985). Several factors influence their 

distributions including macrophytes (James et al., 1998), and, in canals, 

geomorphological processes influence the groundwater circulation at the hyporheic 

layer of the canal system (Chatelliers and  Reygrobellet, 1990). Cosser (1989) found 

that the distributions of macro-invertebrates communities were highly connected 

with water quality and dissolved oxygen in the canal systems of the Gold Coast, 

Queensland, Australia. Body size distributions changed in benthic communities in 

response to nutrients in freshwater ponds (Hall et al., 1970) and in lakes there are 

associations with aquatic plants, which provide shelter from fish predation (Hanson, 

1990). Generally, the biomass-body size scaling relationship of lentic macro-

invertebrates seems to be controlled by the fractal dimension of a habitat and the 

allometric scaling of resources (McAbendroth et al., 2005).  

However, relatively little information is available on the size structure of freshwater 

benthic communities (Strayer, 1986; Hanson, 1990). Differences occur among lakes 

in macrobenthic size structure, influenced by factors such as water chemistry, lake 

productivity, sediment compositions and vertebrate predation (Rath, 1986; Strayer, 

1991). Quantitative descriptions of size structure revealed unimodal distributions for 

the benthic animal community in Mirror Lake, New Hampshire (Strayer, 1986), 

while Rasmussen (1993) claimed bimodal distributions of body mass in 11 lakes of 

the Quebec Eastern Township. The size spectra seem to be quite variable in many 

studies of lentic macro-invertebrate communities (Hanson et al., 1989b; Morin and  

Nadon, 1991). However, most of the above studies were not carried out in the 

context of resilience, or using rigorous approaches for determining multimodality or 
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gaps in size distributions, such as the KDE and BMDI methods used chapters 3 and 

4, where the size distributions in streams communities (Chapter 3) were found to be 

„lumpy‟ and associations have been found between modality and water quality. The 

question therefore arises as to whether such patterns also occur in static water bodies. 

In this chapter, the same relationships are explored for static water bodies, 

specifically I analyse the body mass distributions of macro-invertebrates in a range 

of static water bodies which vary in their water quality for modality and number of 

gaps. 
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Figure 5.1. Static sites sampled,  which includes canals and ponds. Right:  Six sites were sampled along the Pocklington Canal, from 

Canal head to Haggs Bridge. Left:  Barmby, Haggs and Millington Ponds . 
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5.2 Sampling Sites 

Eight static habitats (ponds and canals) were sampled in the autumn (early October 

2009): Millington Pond, Coates Bridge (canal), Canal Head, Thornton Church 

Bridge (canal), Haggs Bridge (canal), Bielby Pond, Haggs Pond and Barmby Pond.  

5.2.1 Millington Pond 

Millington is a small and attractive village in the East Yorkshire Wolds. Millington 

wood is protected for nature conservation and public access. To left side of 

Millington wood is Millington pasture, a popular walking area on one of the highest 

parts of the Wolds. The management for this site is to re-establish natural woodland 

to allow increases in the ground flora and wildlife of the area. Benthic samples were 

collected from a small pond located at the base of this area at Millington, which 

provides drinking water for grazing cattle but is otherwise un-impacted. The water 

depth here was about 1m. 

 

Figure 5.2. MillingtonPond 

Photo: Dave Raffaelli 
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5.2.2 Canal Head   

This site is the terminus of the Pocklington canal which runs from Canal head to the 

River Derwent, is heavily silted and intruded by weeds and reeds. The area attracts 

anglers mainly for tench and roach which reach a good size (Anonymous, 2010). The 

water depth here is about 1m. 

 

Figure 5.3. Pocklington at Canal Head 

Photo: Dave Raffaelli 

 

5.2.3 Coates Bridge  

Coates Bridge supports a minor road over the Pocklington canal. The samples were 

collected from the canal passing under this bridge where the bed is a mixture of clay 

and gravel and water depth is about 2m. 
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Figure 5.4. Coates Bridge 

Photo: Dave Raffaelli 

 

5.2.4 Thornton Church Bridge 

Thornton village is located about 16 km southeast of York. The area is surrounded 

by green fields and farmland. Samples were collected from the canal which passes 

under Church Bridge, and the bed is mostly clay and stony. Water depth here is 2m. 
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.  

Figure 5.5. Thornton Church Bridge 

Photo: Dave Raffaellli 

 

5.2.5 Haggs Bridge 

Haggs Bridge is a main road bridge and crosses the Pocklington canal about a mile 

outside Sutton-on-Derwent. The canal here also provides a good fishery and 

recreation for anglers as well as a public footpath. The water here is about 2m deep 

with a muddy bed.   
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Figure 5.6. Haggs Bridge 

Photo: Dave Raffaelli 

 

5.2.6 Haggs Pond 

The pond is located adjacent to Haggs Bridge but is isolated from the canal and is 

surrounded by reeds. It is in the middle of cattle pasture and is used by cattle for 

drinking. The pond bed is muddy and < 1m deep at the time of sampling.  
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Figure 5.7. Haggs Pond 

Photo: Dave Raffaelli 

 

5.2.7 Bielby Pond 

 Bielby is a small village in East Yorkshire situated about 6.4km south of 

Pocklington. Most houses are residential, and the area is rural farmland. Bielby pond 

is on private farmland and is a man-made pond used for storing drinking water for 

cattle and also a refuge for ducks for occasional shooting. It has a muddy/clay bed 

with little vegetation. The water depth at the time of sampling was 0.5m.  
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Figure 5.8. Bielby Pond 

Photo: Dave Raffaelli 

5.2.8 Barmby Pond 

 Barmby is a small village in North Yorkshire located 2.5 km west of Pocklington. 

The area is bordered with open space and countryside with farmland. Barmby pond 

is quite large with woodlands and reeds surrounding the edge. Water depth at the 

time of sampling was 0.5m.  
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Figure. 5.9. Barmby Pond 

Photo: Dave Raffaelli 

5.3 Methods 

Surber and kick sampler are not appropriate for sample collection in static water 

bodies, so a pond net fitted with a 200µm mesh (described in chapter 2) was used.  In 

this method the net was pushed for 5 metres through the top few cm of substrate 

(mud) and the large area covered and volume of material collected in this way was 

such that only one large sample (representative) was collected at each of the sites. 

Samples were brought to the laboratory and preserved in 70% ethanol. The animals 

were separated from debris using 250µm mesh sieve and identified to the lowest 

taxonomic level (detailed in Chapter 2). 

Biological indices, such as Community Abundance, Biological Monitoring Working 

Party Score (BMWPS) and Average Score per Taxon (ASPT), were determined to 

evaluate water quality. It should be noted that these biological indices were never 

designed to determine the ecological conditions in static water habitats and their 

interpretation must be made with caution. Water samples for each site were also 
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collected in 50ml plastic bottles, labelled, brought back to the laboratory and 

refrigerated for future analysis, specifically conductivity, known to be an important 

measure of water quality for ponds. However, unlike biological indices, conductivity 

only reflects one aspect of water quality at the specific time of sampling. 

5.3.1 Conductivity measurement  

Conductivity is a measurement of the ability of an aqueous solution to carry an 

electric current. Pure water is not a good conductor of electricity, and conductivity 

increases as the concentration of ions increases in the solution. A linear relationship 

has been found between electrical conductivity and level of pollution in lake water 

(Das et al., 2006). Conductivity was determined using a conductivity meter (H1 

9033, Multi-range conductivity meter, HANNA Instrument) which measures 

turbidity and dissolved salts in µS/cm. Typical conductivities of different water 

conditions are given below.     

Solution                                                                  µS/cm 

Totally pure water                                                   0.055 

Typical DI (deionised) water                                  0.1 

Distilled water                                                        0.5 

Domestic “tap” water                                           500-800 

Potable water (max)                                              1055 

Brackish water                                                      100,000 

The conductivity meter was first calibrated by immersing into two type of standard 

buffer solution (tetraborate pH= 10, phosphate, pH= 7) which most closely matched 

the expected conductivity of the water samples to be measured. The minimum depth 

of the solution was 8 cm. The readout was then adjusted to match the value given at 

25˚C using the trimmer screw on top of the meter. The conductivity standards were 

1413µs/cm at 25˚C and all subsequent readings were compensated to this 

temperature. The bottom of the electrode was tapped on the beaker when any reading 

was taking to remove any air bubbles and ensure the sample covered the holes on the 

PVC cover of the probe. Five minutes were allowed for equilibrium of the sample. 

The lowest range in the meter was selected and the probe was inserted into the 

samples to above the hole, stirred and tapped until a stable reading was obtained. If a 
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value of „1‟ was displayed on the left hand side of the display, the next range was 

tried upon the meter. The procedure was continued until a satisfactory result was 

obtained. The probe was rinsed with deionised water between readings to reduce 

chances of contamination.  

5.3.2 Body Mass Determination 

Body sizes of invertebrates were determined under a low power microscope fitted 

with a graticule eyepiece. Body dimensions (body length, head width, body width) 

were measured and dry mass was calculated using allometric equations (Chapter 2), 

approximate 2-D or 3-D geometric shapes and by water displacement. Size 

distributions were analysed by Kernel Density Estimation (KDE) and the Body Mass 

Difference Index (BMDI), as detailed in chapter 2. 

 

5.4 Results 

5.4.1 Taxon Richness 

A total of 31 families of invertebrates were identified at these sites (Figure 5.10, 

Table 5.1). The highest number of taxa (families) was found at Millington Pond and 

Church Bridge and the least at Haggs Pond. Similar numbers of taxa were found in 

Coates and Haggs Bridge, numbers decreasing from Canal head to Barmby Pond and 

then Bielby. The highest number of individuals was present at Canal head and the 

fewest at Bielby. No single site shows dominance of the indicator taxa EPT 

(Ephemeroptera, Plecoptera and Trichoptera), but these are more typical of stream 

(flowing) environments. Millington Pond is dominated by Chironomidae, 

Gammaridae, Asellidae Hydrobiidae and Beetle Larvae (Haliplidae). At Coates 

Bridge, there was an abundance of Asellidae and Notonectidae while at Canal head 

large numbers of Asellidae (1359) were found which made 84 percent of the total. At 

Thornton Church Bridge there was an abundance of Asellidae, Sphaeriidae, 

Chironomidae and Notonectidae. Corophidae, Hydrobiidae, Asellidae and 

Sphaeriidae made a large proportion of the fauna at Haggs Bridge. Although the 
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numbers of individuals was very low at Bielby, the families Asellidae and 

Polycentropidae were abundant here. At Haggs Pond, 78 percent of individuals were 

Physidae, while Chironomida made up a large proportion of individuals at Barmby 

Pond.
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Figure 5.10. Abundance of macroinvertebrates for different sites in the Pocklington canal, Millington Pond, Bielby Pond, Barmby Pond and Haggs 

Pond.
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Table 5.1. The number of individuals recorded at static water sites. 

Taxa Millington Coates Canal Head Church Bridge Haggs Bridge Bielby  Haggs Pond Barmby 

Ancylidae 1 0 0    0 0 0     0      0 0 

Arachinida 1 0 28 0 0 0 0 0 

Argulidae 0 0 0 0 1 0 0 0 

Asellidae 30 106 1359 90 22 7 0 13 

Baetidae 0 0 5 2 1 1 0 4 

Haliplidae 8 1 4 0 0 0 0 0 

Caenidae 0 0 0 0 0 0 0 12 

Caddies Larvae 0 0 0 3 0 0 0 0 

Ceratopogonidae 2 0 0 0 0 1 0 0 

Chironomidae 97 7 5 17 0 1 8 217 

Corophiidae 0 0 49 0 107 0 1 0 

Diptera 8 1 0 2 0 0 2 0 

Dixidae 0 0 1 0 0 0 0 0 

Elminthidae 3 0 0 5 0 0 0 0 

Ephemeridae 1 0 0 0 0 0 0 0 

Erpobdellidae 0 0 0 0 0 0 2 0 

Gammaridae 33 7 42 6 0 0 0 0 

Glossiphonidae 3 1 65 2 0 0 0 13 

Hydrobiidae 11 0 0 4 66 0 0 6 

Lymnaeidae 0 0 0 0 2 0 0 12 

Notonectidae 0 58 16 17 0 2 0 0 

Oligocheata 4 0 54 4 4 0 0 21 

Physidae 0 2 0 5 13 9 55 32 

Piscicolidae 0 0 1 0 3 0 0 0 

Planorbiidae 1 1 0 2 4 0 1 0 

Polycentropidae 0 5 0 0 3 7 0 8 

Sphaeriidae 4 3 0 38 21 0 0 0 

Tipulidae 1 0 0 0 0 0 0 0 

Trichoptera 0 5 0 0 0 0 0 0 

Valvatidae 0 4 0 10 11 0 1 24 

Viviparidae 0 0 0 0 6 0 0 0 

Total 

individuals 207 201 1629 207 264 28 70 362 

Total Taxa 15 13 12 15 14 8 7 11 
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Figure 5.11. Biological Monitoring Working Party (BMWP) scores for ponds and canal sites. 
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Figure 5.12 Average Score per Taxon (ASPT) for ponds and canal sites. 

 

y = 0.0176x + 3.1126
R² = 0.5757

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

20 30 40 50 60 70

A
SP

T 
Sc

o
re

BMWP Score



 

168 

 

Figure 5.13. The relationship between two biological indices ASPT and BMWP for static 

sites. 

 

 

Figure 5.14.  The relationship between conductivity and ASPT  (water quallity). 

5.4.2 Biotic Indices 

The Biological Monitoring Working Party (BMWP) score (Figure 5.11) was highest score for 

Millington Pond (62) with lower values (25) and (26) at Haggs Bridge and Bielby. None of 

the sites have a value greater than 100, normally associated with clean flowing water 

systems. 

The highest ASPT value was recorded for Millington Pond and the lowest is for Barmby 

Pond. ASPT values decreases from Coates Bridge to Canal head and from Haggs Bridge to 

Thornton Church Bridge and the value at Bielby are 3.72 while Haggs pond has almost same 

value as Barmby Pond. Whilst there are differences in the ranking of sites using ASPT and 

BMWP, overall the correlation is good between the two techniques (Figure 5.13) R
2
 = 

0.5757, p <0.05. 
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5.4.3 Conductivity 

Conductivity was lowest for Millington Pond while the highest conductivity was recorded for 

Barmby Pond. These results are similar to the ASPT and BMWP scores for clean and 

polluted sites but the values for intermediate quality water revealed marked variability with 

regard ranking of ASPT or BMWP values (Table 5.2).  Conductivity values 500- 800 µS/cm 

are the range for tap water. According to both of the biotic indices and the conductivity data, 

Millington Pond is of good quality water, while Barmby Pond is of poor quality, but rankings 

of intermediate quality sites are variable. 

Table 5.2. Conductivity measures at 25˚C for water samples from different sites (ponds and 

canals).  

Sites   Conductivity  

Millington Pond  420µS/cm 

Bielby pond 434µS/cm 

Haggs Pond  506µS/cm 

Coates Bridge  580µS/cm 

Canal head  590µS/cm 

Haggs Bridge  716µS/cm 

Thornton Church Bridge 792µS/cm 

Barmby Pond 806µS/cm 

 

5.4.4 Body Mass Patterns  

Visual observations of the body mass histograms for most sites show right skewed 

distributions except for Coates Bridge which shows multimodality in its spectrum (Figure 

5.15). The body mass distributions for most sites are dominated by smaller body masses 

(0.25–0.5mg) and another mode is apparent for large size classes at some sites such as 

Millington Pond, Canal head and Barmby Pond. There is no indication of such modes for 

Haggs Bridge, Canal head and Bielby although a minor mode for body mass larger than 5 mg 

may be present at Thornton Church Bridge.  

Kernel density analysis of body mass spectra showed marked differences in modalities 

between sites. Millington Pond, which has good water quality revealed only one mode, while 

the most polluted site Barmby Pond had 4 modes (Table 5.3). The intermediate quality sites 
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are highly variable in modality and there is no consistency between the number of modes and 

ASPT or BMWP score. If anything, the relationship is negative, the reverse of that seen in 

chapter 3 and 4 for streams. Thus an inverse relationship has been revealed between water 

quality (BMWP score and ASPT) and the number of modes (Figure 5.17) and the correlation 

was significant R
2
 =0.5072, p <0.05). 

Gap analysis using BMDI the approach revealed differences in the number of gaps in clean 

and polluted sites. The highest number of gaps was found for intermediate followed by the 

poor quality site. There was no evidence of the effect of water quality on the number of gaps.  

Thus my results provide no support for a relationship between water quality and body size 

distributions for static quality habitats (Figure 5.19). 

As in Chapter 4, it is important to explore possible phylogenetic effects on the creation and 

location of modes in the body mass distributions observed static water bodies. The taxa 

associated with modes are shown for very clean, intermediate and very polluted sites in 

Figure 5.20. Millington Pond, a clean site had only one peak, which is a mixture of six taxa.  

Similarly, in intermediate quality site (Haggs Bridge) peak 1 is entirely dominated by the 

Hydrobiidae but peak 2 and trough 1 contains 5 or 6 taxa in the  two body mass modes. In the 

very polluted site (Haggs Pond),  two peaks (Peak 1 and Peak 3) dominated by Physidae but 

peak 2 and trough 2 contain a  mixture of 3 or  4 taxa.   
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Figure 5.15.  Frequency histograms of body mass distributions for benthic communities of  

static sites (pond and  canals) 
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Figure.5.16. The fitted density distributions for body sizes derived by kernel density 

estimation and bootstrapped re-sampling for the static sites (ponds and different locations on 

the Pocklington canal). Axes are scaled as log10 of original data. Density function = number 

of individuals at the site. 
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Table 5.3. Significance test for body mass spectra from kernel density estimation and 

smoothed bootstrap re-sampling. The locations of peaks and trough, h = smoothing constant 

used in kernel estimation, m the smallest number of modes for which the bootstrap test was 

not significant at 5% level, α level of significance for each distribution (mode number). 

     Sites                                         h                                    m                                         α 

Mllington Pond            0.284             1          0.231 

Coates Bridge        0.316    1             0.236 

Canal Head         0.327     2            0.052 

Thornton Church Bridge      0.386    2                                        0.075 

Haggs Bridge        0.109      2          0.67                                           

Bielby Pond            0.59      1          0.107                                                 

Haggs Pond             0.219      3                                        0.184 

Barmby Pond         0.131     4                                        0.501 
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 Figure 5.17. The relationships between biotic indices (BMWP and ASPT) and conductivity 

as water quality and number of modes (determined by Kernel Density Estimation) 
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Figure 5.18. Distributions of body mass gaps for static water habitats (Ponds and canals) at 

Yorkshire. The horizontal line is mean + 2SE and asterisk (*) significant body mass gaps, 

identified as at least two value above followed four value below the line. 
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Table 5.4. The location of troughs and the number of gaps in body mass distributions 

determined using two different approaches KDE and BMDI. The locations of gaps are not 

included due to increased number. 

Sites                                     Peaks                        Troughs                      No of gaps 

 

Millington Pond       0.061          -                                          9 

Coates Bridge       2.35       -                                          3 

Canal Head       0.493    0.841                                   27 

   0.904 

Thornton Church Bridge     0.00119    0.00973                                5 

          0.601 

Haggs Bridge      0.00391    0.0216                                 11                                                              

   0.265 

Bielby Pond       0.306     -                        - 

Haggs Pond       0.00502              0.0253                                    1 

          0.131              0.391 

        0.42 

Barmby Pond      0.00291              0.00638                                  19 

   0.0216               0.143 

   0.266                         5.05 

        12.1     
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Figure 5.20 The taxonomic groups occurring in body size modes presented with different 

colours for modes and troughs in static water bodies. 
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5.5 Discussion 

Water quality across the sites  

5.5.1 Biotic indices 

This analysis suggests a gradient of water quality with Millington Pond the cleanest and 

Barmby Pond the poorest quality site. The  highest number of taxa was present at 

Millington Pond and Thronton Church Bridge, while the number of individuals are 

highest at Canal head, dominated by Asellidae. There are far fewer taxa (7) recorded at 

Haggs Bridge and the lowest number individuals (28) were present at Bielby Pond 

followed by Haggs Pond which had only 70 individuals. Indicator taxa for clean quality 

were not dominant at any site and stoneflies were, of course, absent in all samples.  

However  pollution tolerant taxa are significantly higher at Barmby Pond, indicating 

poor water quality. 

The general quality assessment of static water bodies (lakes, ponds, canals and ditches) 

is difficult due to an absence of standarized assessment methodology, because there has 

been little monitoring of these water bodies by regulatory agencies like the  

Environment Agency. However, a combination of water quality assessment approaches 

is potentially aplicable for static water bodies (Howard, 2002). Taxon  richness or rarity  

can be used to identify the deterioration of a waterbody because communities have 

strong monometric relationships with degradation (De'ath and  Fabricius, 2010). Biotic 

index (BMWP) for the sites show a higher value 62 for Millington Pond and lower 

value 25 for Haggs Pond. The value decreases from 57 (Thornton Church Bridge) to 26 

for Bielby Pond (Figure 5.11). The widely used biotic index ASPT score for Millington 

Pond is also the highest which agrees with the BMWP score. ASPT values decrease 

from Coates Bridge to Canal head and Haggs Bridge, and the lowest score being 

recorded for Barmby Pond. There is, however, no consistency in BMWP and ASPT 

values for intermediate sites. This might be due to differences in the  number of taxa 

present at the sites reflecting the qualitative nature of the sampling and different sample 

sizes, which is a major drawback with the BMWP approach (Gray, 1999).  
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5.5.2 Water chemistry  

Analysis of water chemistry is useful for determining water quality at the time of 

sampling (Egan, 1976). Conductivity at Millington Pond was 420µS/cm or 0.42mS/cm, 

which corresponds to values commonly found in natural water. A considerable increase 

of suspended solids were observed in the Thornton Church Bridge and Barmby Pond 

samples which had values of 792µS/cm and 806µS/cm, respectively, indicating 

increased levels of dissolved minerals. The values for intermediate sites are variable but 

in the lower range (432µS/cm-716µS/cm), indicating a lower concentration of 

dissolved materals. The Biological index results and the chemical analysis only 

contradict each other when contamination is intermittent (Whitton, 1991) because, for 

example, Dissolved Oxygen (DO) is influenced by several parameters including 

suspended and dissolved solids (Vicente et al., 2009). High correlations have been 

found between chemical and biological analysis in determining the quality of polluted 

rivers (Cain et al., 1979). In this study, such correlation found statistically significant 

(figure 5.14. R
2
 = 0.5595 p<0.05). 

 5.5.3 Body size distributions 

The body size distributions are right skewed for most sites, dominated by smaller body 

masses in the range 0.25-0.75mg, except for Coates Bridge which shows multimodality 

in the histograms. There are minor modes for large size class in some sites but not in 

Haggs Bridge, Bielby and Haggs Pond (Figure 5.15). However visual inspections of 

body size plots are unreliable, due to possible bin size effects as discussed in the 

previous chapter.  

5.5.4 KDE anlysis 

Statistically rigorous estimates of the number of modes revealed marked differences 

between clean and polluted sites, but in contrast to moving water, the body size spectra 

at static sites were unimodal for the cleanest site, Millington Pond, while the polluted 

site, Barmby Pond, had 4 modes (Table 5.3). The number of modes ranges from 1-4 for 

different static water bodies to give a statistically significant inverse relationship 

between water quality (ASPT) and number of modes. The present study offer no 
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explanation for this inverse trend. It seems unlikely that the sites have been mis- 

classified (Millington the dirtiest and Barmby the cleaniest) because both biotic indices 

and the conductivity measurement do not support that. 

5.5.5 BMDI analysis 

The number of gaps is 9 at Millington Pond while Barmby Pond, which is considered 

the most polluted site, has 19 gaps. The highest number of gaps was recorded at Canal 

head while there is only one gap at Haggs Pond and no gap detected at Bielby Pond 

(Figure 5.18). Thus BMDI results in this study shows no clear trends, if anything, the 

opposite of that found in streams in chapter 3 and 4. Most samples were collected from 

adjacent sites in and around Pocklington canals so there was less restriction for 

movement between the sites. Thus, the differences in body mass distributions are 

unlikely to be due to geographical boundaries. The body masses of animals were 

measured at the family level and these organisms have similar evolutionary histories, so 

that both the phylogenetic and community interaction hypothesis are unlikely to be  

responsible for the observed patterns in modality.  

5.5.6 Locations of troughs and gaps 

Differences have been seen for the number and  the locations of gaps and troughs in the 

body mass distributions (Table 5.4). There was no trough found at Millington pond 

using the KDE analysis while 9 gaps were detected in BMDI analysis. Similarly at 

Haggs Pond three troughs and only one gap were recorded. Bielby Pond had presented 

no troughs and no gaps in the distributions. Thus, there was no consistancy between 

these two approaches and the relationships of these techniques with the quality of lentic 

ecosystems is not significant (Figure 5.19). 

The size spectra for static water habitats have been reported as strikingly different from 

those in marine benthic communities (Strayer, 1986), but here they can be seen to be 

highly variable in the number of modes. Figure 5.20 shows that the number of modes 

increased with declining water quality. In the cleanest (Millington Pond) and 

intermediate quality (Haggs Bridge) sites, taxa were  scattered across peaks and 

troughs,  but in the most polluted site the taxa are more confined to individual peaks 
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and troughs. Howeverl, there is little evidence that the occurrence of modes and troughs 

are due to phylogenetic effects but the over all relationship between the number of taxa 

and and number of modes were insignficant (Fig 5.19)  

5.6 Conclusion  

Static water bodies show variation in the number of modes and the number of gaps in 

body size spectra of benthic communities, as found in streams. However, but this does 

not appear to be related to water quality. In fact, any relationships seem to be the 

reverse of those found for stream (flowing) habitats in chapter 3. The significance of 

this is discussed further in chapter 6.  
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Chapter 6 

General Discussion 

6.1 Ecological implications of body size 

 Animal body size is probably the single most important attribute in the ecological literature. 

At the community level of organization, body size is an important factor in determining and 

controlling the course of life, especially for aquatic animals. The size based approach 

provides a tool for community analysis and for taxonomic techniques, presenting an 

alternative prospective (Rasmussen, 1993). Numerous studies have shown strong 

relationships between biological processes (e.g. metabolism, biomass production, home range 

size, abundance, nutrient recycling, etc) and an individual‟s body size (Peters, 1983b; Brown 

et al., 2004), and these are often expressed in the form of a power function 

Y = aM
b
  

Where Y is the predicted biological character of an individual, M is the body mass of the 

animal, and a and b are the normalization constant and scaling exponent, respectively 

(Marquet et al., 2005). Peters (1983) found most biological processes are an allometric 

function of body size. These relationships can also be expressed in logarithmic form as  

log Y = log a +b log M 

Where constant log a, corresponds to the Y-intercept and the value of b is the slope of this 

line. In many studies of body mass and physiological processes the value of b is  ¾ of the 

whole organism rate and -¼  for mass specific rates (Peters, 1983b; Scmidt- Nielsen, 1984; 

Brown et al., 2004). The fact that allometric relationships of body size and processes occur at 

the population, community and ecosystem level emphasizes the importance of body size at all 

levels of organization. However, neither empirical nor theoretical structure has emerged that 

adequately explains this phenomenology at the level of the community and above. The 

primary tool for the investigation of body size structure at the community level is the 

construction of size spectra which can be expressed in a variety of formats.  
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6.2 Construction of size spectra 

Size spectra were first used to characterize certain size ranges of marine plankton (Sheldon 

and  Parsons, 1967b), marine benthic communities (Schwinghamer, 1981b) and in freshwater 

systems (Peters, 1983a). Body sizes in benthic communities are often based on direct 

measurement of a particular body dimension, volume, dry mass or the equivalent spherical 

diameter, which is the diameter of sphere that has same volume as the measured organism.  

There are several methods for constructing a body size spectrum from these data which relate 

to the underlying community structure, such as total biomass, abundance, number of 

individuals and the species size spectrum, and spectra can be presented in a number of ways, 

such as a Regular Body Size Spectrum, a Relative Size Spectrum, a Normalized Size 

Spectrum and a Cumulative Size Spectrum. The absolute values in each body size class refer 

to the regular body size spectrum. Converting these values into percentages allows direct 

comparison of the shapes of two or more spectra, producing a relative size spectrum. 

Construction of normalized size spectra has been considered the best method to produce the 

right width of size classes by dividing the summed total in each size class by its width (Platt 

and  Denman, 1978). The size distributions of all size classes are useful in estimating the 

relative contributions of all size classes and are expressed as a cumulative size spectrum. The 

criteria of measurement of individuals depend on the nature of the study.  Certain groups 

within the marine benthic community have been included for size spectra e.g. (Parry et al., 

1999) while other groups (e.g. juveniles) have been excluded in others (Warwick, 1984). 

Some size spectra only include specific taxa (Vanaverbeke et al., 2003), and size spectra can 

be constructed with a single measurement of body size (usually adult) for each species. 

6.3 Size approaches used in the current study 

In the current study the sizes of individual organisms, rather than the main size of their 

taxonomic units, were used to construct body mass spectra for freshwater benthic 

communities. The size classes were based on body mass (dry weight) and expressed in 

milligrams (mg). Any individual present in a sample contributes to the functioning and 

dynamic of that group and no distinctions were made between juveniles and adults. During 

sampling and processing, some organisms were broken into parts, but only the fractions with 

a head were measured and allocated into their respective size classes. Although including 
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fragmented body parts can generate biased results, the low number of such fragments makes 

it unlikely that they have significant influence on the shape of size spectra. 

Three approaches to detecting modality in body mass distributions were used: visual 

inspection of histograms, Kernel Density Estimates (KDE) and Holling„s (1992) approach, 

the Body Mass Difference Index (BMDI). The body size spectra observed in numerous 

studies have generated several hypotheses about the factors controlling the distributions of 

body mass across ecosystems and their modalities. Thus, Schwinghamer (1981) demonstrated 

a trimodal body mass distribution separated by biomass troughs which reflect the transition 

between different major groups of marine intertidal benthos (micro, meio and macro fauna). 

Further, investigation of size distributions in the coastal sublittoral also produced similar 

trimodal size spectra  (Schwinghamer, 1983; Schwinghamer, 1985) which have also been 

reported in many other benthic studies (Giere, 1993). Changes in sediment characteristics 

(sediment pore, space size) were thought to affect size distributions (Schwinghamer, 1985) 

which provides theoretical support in terms of organism‟s perception of their environmental 

dimensions (Silvert, 1996), as well as confirming discontinuous distributions in  body mass 

patterns (Holling, 1992). Schwinghamer‟s hypothesis is now a part of main stream benthic 

ecology literature, but his claims for trimodality are based entirely on visual inspection of 

histograms where the x-axis (body size) is a series of logarithmic bins. Other benthic studies 

have frequently produced contrasting patterns. Investigations into the effect of habitat 

architecture on biomass and abundance size spectra show no shifting in size distributions 

with changes in granulometry (Duplisea and  Drgas, 1999; Leaper et al., 2001; Strayer, 

1986). The construction of body size spectra which are rigorously analysed for their modality 

can help to elucidate the relationships between size and environmental conditions. In this 

thesis kernel density estimation and smoothed bootstrap resampling were combined to test for 

the presence of clumps in body mass distributions and the Body Mass Difference Index 

(BMDI), as used Holling‟s (1992), was used to detect the lumpiness and for exploring his 

Textural Discontinuity Hypothesis (TDH).  
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6.4 Summary of the main findings of this thesis 

Body mass spectra for the River Ure and Foss systems show much evidence for multimodal 

distributions as well as association of modality and water quality: there were significant 

relationships between body mass patterns and water quality, the number of modes defined by 

KDE decreasing with decreasing water quality (chapter 3). The numbers of gaps detected by 

BMDI between very good and poor quality water show some association with water quality, 

but very variable results were obtained for sites of intermediate water quality.  

It is hard to test Holling‟s TDH hypothesis at this smaller scale, but work in marine benthic 

systems suggests major advantages in this respect (Raffaelli and  Moller, 1999).  

Discontinuities in size spectra seem to related to equal discontinuities in habitat architecture 

(Schwinghamer, 1981b), consistent with Holling‟s Textural Discontinuity Hypothesis (TDH). 

Subsequent investigations of marine biomass and abundance size spectra failed to find any 

changes in body mass distributions when habitat architecture was manipulated experimentally 

(Leaper et al., 2001). Other work has shown seasonal shifting in the number of modes and 

number of gaps, in other words  that body mass patterns changed seasonally (Schmid et al., 

2002; Gaedke, 1992). My own findings that changing patterns in size distributions and the 

number of gaps in samples obtained with different sampling methods is consistent with the 

idea that this problem leads to an incorrect characterization of  aquatic systems (Pechman et 

al., 1991; Kerans et al., 1992).  

The relationship between modality, gaps and water quality was further tested for the River 

Aire. The river has been well documented by the Environment Agency and water quality 

varies at different stations. Nine stations along the river, ranging from very good to poor 

quality were sampled. Different biological indices for the sites provided similar information 

on water quality, confirming a gradient of water quality at these sites. Visual observation of 

histograms of size distributions indicated unimodality for most of them, as reported in other 

studies (Strayer, 1986; Ahrens and  Peters, 1991). However, statistically more rigorous 

analysis, using KDE and BMDI, revealed multimodality for the high quality site and fewer 

numbers of modes and gaps were detected for the most polluted site. The distributions of 

body mass clearly indicated lumpiness in an undisturbed ecosystem, although the patterns for 

intermediate quality sites were less consistent. 
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 Body mass distributions were also evaluated for static water bodies (canals and ponds) in 

chapter 5. Analysis of the number of modes and gaps in these benthic assemblages did not 

support any association between size spectra and water quality. However, body mass 

distributions were still discontinuous for most sites. Thus, these analyses showed that body 

mass distributions of benthic communities are lumpy in ecosystems, but further investigations 

are needed to explore relationships between size distributions and environmental quality. I 

can offer no explanation for this findings for static water bodies which is the opposite to that 

for streams. It is possible (but unlikely) that the water quality of these sites has been 

misclassified because of ASPT or BMWP were not designated for static water. However the 

sites were selected on the basis of knowledge of sites by my supervisor (Raffaelli) and 

Barmby is certainly the poorest and Millington the best water quality. 

6.5 Alternative hypotheses to explain body mass patterns 

There are number of competing hypotheses to explain body mass patterns in ecosystems. The 

main hypotheses are (i) energetic; (ii) phylogenetic; (iii) biogeographical; (iv) textural 

discontinuity; and (v) community interaction hypothesis. These are now discussed in relation 

to the data obtained in the present study. 

6.5.1 Energetic hypothesis 

The energetic hypothesis is based on the allocation of energy for species growth and their 

reproduction processes which is limited by resource availability from the environment. 

Changes in resource availability is expected to confer multiple modes onto body mass 

distributions (Marquet et al., 1995). Energetic constraints on body mass distributions have 

been observed in several studies (Morand and  Poulin, 2002; Kozlowski, 1996), other 

researchers have rejected the model (Perrin, 1998; Symonds, 1999). In the present study, 

body mass patterns have been described within the same river system at sites with different 

ecological states, so that the availability of energy will be different because of the different 

local environmental conditions, not because of differences in the utilization of those 

resources. Thus, there is no strong evidence for the energetic hypothesis to explain the 

differences observed in body mass patterns at the different sites in the present study. 
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6.5.2 Phylogenetic hypothesis  

Evolutionary processes have been considered to constrain body mass patterns in several 

studies (Gardezi and  Silva, 1999; Smith et al., 2004). According to this hypothesis, the fauna 

present at the continental scale have a range of macro-evolutionary histories and this 

generates multiple modes in body mass distributions. Study on mammals have revealed shifts 

in body size from smaller to larger throughout the Tertiary in North American fossils (Alroy, 

2000). Also most of the world‟s mammals exhibit phylogenetically independent distributions 

of body mass (Gardezi and  Silva, 1999) which are right skewed and this has also been 

observed in North American freshwater fish (Jason and  Page, 2003). The data analysed here 

are not for specific taxa, but for benthic communities where the taxonomy is similar and their 

evolutionary histories are expected to be the same at all sites. Thus, in the present study, 

phylogenetics is held constant and is unlikely to be responsible for the discontinuous 

distributions in body mass patterns observed.  

6.5.3 Biogeographical hypothesis  

This model proposes that multimodality in body mass distributions is due to geographical 

boundaries which limit species dispersal between regions and cause restricted sets of species 

to be present within a given community (Hubbell, 1997).  Pyron (1999) found a positive 

relationship between geographical boundaries and body mass patterns in North American 

species of fish (suckers and sunfishes). Similarly, gaps in body mass distributions in mammal 

communities have been suggested to be due to different abilities of species to disperse across 

biomes (Siemann and  Brown, 1999). In contrast, Holling (1992) showed discontinuous 

distributions of body masses in adjacent regions which have no obvious boundaries to 

dispersal. However, in the present study, body mass distributions were compared between 

ecosystems that were spatially connected and allowed species to disperse across those 

systems. The sites only differed in their ecological state so that it is unlikely that geographical 

factors cause the discontinuous patterns of body mass seen at this scale. 

6.5.4 Community interaction hypothesis 

This hypothesis is based on the idea that interactions between species in communities for 

limited resources produces multimodal body mass distributions (Nummi et al., 2000). When 
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resources are unlimited right skewed distributions in body mass have been recorded for North 

American mammals (Brown et al., 1993). The formation of gaps in the body mass 

distributions of wading birds was found to be due to resource competition (Oksanen et al., 

1979). Agosta and Janzen (2005) observed multiple selective mechanisms, rather than 

community interactions, operating on moths, leading to multiple modes in body mass 

distributions. This hypothesis deals with interactions at the species level, but in the present 

study, animals were identified to the family level. Thus, it is unlikely that the community 

interaction hypothesis is responsible for the discontinuous body mass patterns observed.  

6.5.5 Textural discontinuity hypothesis 

This hypothesis proposes that ecosystems are driven by dominant structuring processes which 

often differ from each other by at least an order of magnitude in scale and which are 

discontinuously distributed in space and time. Species that function at distinct scales respond 

differently to the opportunities provided at these scales and this is reflected in the 

multimodality of their body mass patterns (Holling, 1992). This has been  observed in a 

variety of habitats (Restrepo et al., 1997; Bakker and  Kelt, 2000). Gutiérrez and Iribarne 

(2004) found associations between body masses and habitat for fish species and similar 

relationships have been shown in a study of nekton Moreton Bay, Queensland, Australia 

(Pittman et al., 2004). In the present study interpretation of body mass patterns for 

multimodality and discontinuity (gaps) in moving water indicates the presence of multiple 

structuring processes at cleaner sites as revealed by multiple modes and gaps in body mass 

distributions, while fewer gaps and modes were recorded at disturbed sites, providing good 

evidence for a lack of dominant processes at these sites. The discontinuous body mass 

structure of cleaner habitats is thought to provide a discontinuous (more resilient) ecosystem 

structure, and it could be argued that size-based indicators for assessing the ecological state 

of ecosystems will help to provide a mechanistic understanding of the role of body size in 

community assembly, as envisioned by Hutchinson and MacArthur (1959). However, this 

study was unable to formally relate discontinuities in body mass distributions to water quality 

in static water bodies, and where in fact the relationships appear to be the opposite of those 

found for moving water. 
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6.6 Future Work 

The analyses carried at here were based on surveys of sites with differing water qualities, in 

order to explore the idea that “lumpiness”, defined here by the number of gaps or number of 

modes, is related to disturbance. A different approach to this question would be to 

experimentally test this hypothesis, either by allowing freshwater communities to assemble in 

experimental systems maintained with differing water qualities, or by lowering the water 

quality of natural stream communities by adding a stress, such as organic material or excess 

fertilizer. If this was done in a dose-dependent way, then it might reduce the variance in the 

modality seen in the intermediate water quality sites in the present study.  
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