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Abstract

Most dynamo models agree that large-scale, weak poloidal magnetic field is wound

up into strong toroidal field through differential rotation. Therefore, the strong radial

gradients of angular velocity present in the solar tachocline are extremely likely to play a

crucial role in the solar dynamo. Motivated by this, we focus on the instability mechanism

thought to be responsible for the break up of a horizontal field in a stably stratified

layer, namely magnetic buoyancy instability, and the effect a velocity shear has upon

said instability.

To study this interaction, we derive a new set of equations incorporating velocity shear and

magnetic buoyancy into the Boussinesq approximation. These equations not only provide

us with the ability to study the effects of a velocity shear on magnetic buoyancy instability,

but also allow us to study magnetic buoyancy instability in the presence of a magnetic

field varying on a short O(d) length scale, compared to the equations of Spiegel & Weiss

(1982), which are restricted to field variations on a longer O(Hp) scale. Stability criteria

for this new system is obtained through a linear analysis on the ideal (diffusionless)

system.

Motivated by the work of Mizerski et al. (2013) we use the newly derived equations

to study the short-wavelength linear magnetic buoyancy instability. We first study this

problem in the absence of a velocity shear and dissipation, deriving asymptotic results

analogous to Mizerski et al.. The governing set of equations are then solved numerically

to verify the asymptotic results. A velocity shear is then added into the analysis; we derive

new asymptotic results and use them to comment on the influence the velocity shear has

on the instability. Upholding the short-wavelength limit, we individually introduce each

diffusive parameter into the analysis, observing the role each has on the instability.

Finally, we solve the newly derived system of linearised equations numerically, whilst

including all diffusive parameters. We comment on the role of the diffusive parameters

and investigate how they influence the instability.
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Chapter 1

Introduction

1.1 Solar observations

With around 1 billion trillion stars in the observable universe, astrophysically speaking

our Sun may be regarded as just another star in the sky. However, being our closest star

the Sun is naturally an object of great interest. It is this ‘close’ proximity that has given

astronomers the opportunity to make detailed observations of the Sun for centuries, to the

point where now our knowledge of the Sun far outweighs that of any other star in the

universe.

The Sun was formed close to 4.6 billion years ago and is classified as a middle aged G-

type main-sequence star, with a mass of around 2 × 1030kg and surface temperature of

5, 778K. The internal structure of the Sun is split into three regions as shown in Figure 1.1:

the core, the radiative zone, and the convection zone. Like all G-type stars energy is

produced in the core by converting hydrogen to helium through nuclear fusion; at the

centre the temperature exceeds 107K and the density is approximately 150 gcm−3. The

core extends to around 0.25R�, where R� denotes the solar radius (R� ≈ 7× 108m).

The radiative zone extends between 0.25R� and 0.7R�. Across this region the

temperature drops from 7 × 106K to 2 × 106K. This decrease in temperature is less

than the adiabatic temperature gradient, resulting in an atmosphere that is stable to

convection. The primary means of energy transfer is by thermal radiation — energy
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Figure 1.1: The solar interior. Image source: solarscience.msfc.nasa.gov.

travels radially outwards in the form of photons emitted by ions of hydrogen and helium;

these photons only travel a brief distance before being reabsorbed by other ions. At 0.7R�

the density has dropped to 0.2 gcm−3, nearly three orders of magnitude lower than it is

at the core. The region from 0.7R� to the surface is known as the convection zone;

here the temperature gradient is sufficiently large that convection can drive the motion.

The convection process can be explained through a parcel argument. A parcel of plasma

heated at the base of the convection zone is less dense than its surroundings and begins

to ‘rise’ towards the surface. As the parcel moves up through the convection zone to the

colder surface it naturally begins to cool. However, due to the steep temperature gradient

the parcel remains warmer, and therefore less dense than its surrounds, thus it continues

to rise to the surface. Although this is a simple concept of how plasma moves through the

convection zone, it is worth noting that the plasma is not at all viscous and as such fluid

motion is likely very turbulent. The surface of the Sun is called the photosphere and is

visible with the naked eye. Once the parcel reaches the surface it spreads out, cools and

sinks back down into the convection zone. As a result of this overturning motion at the

surface, granules can be observed across the entire Sun. Each individual granule has a

diameter on the order of 1000km, with a short lifespan of up to 20 minutes before being

replaced with a new granule. Also visible on the photosphere are sunspots; regions on
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(a)

(b)

Figure 1.2: Visualisation of solar magnetic field on a variety of scales; The large-

scale global dipolar magnetic field (left), and coronal loops (right). Image sources:

www.nasa.gov (left) and sdo.gsfc.nasa.gov (right).

the surface where the plasma is colder than the surrounding area. These sunspots appear

as dark spots on the surface of the sun and can be up to 150, 000km in diameter. Above

the photosphere is the solar atmosphere, which can be split into two distinct layers; the

chromosphere and the corona. These outer regions are observed using telescopes that

filter light outside the visible wavelength range. The temperature of the chromosphere

increases throughout the layer with increasing height, from around 6000K to 35000K.

The chromosphere is the location of many solar features, such as filaments and spicules.

Above the chromosphere is the corona, which extends millions of kilometres into space

and is visible to the naked eye during a total solar eclipse. Coronal features include solar

flares, polar plumes and coronal loops.

Measurable by the means of the Zeeman effect, it is thought that most stars are associated

with a magnetic field, and our Sun is no different. The solar magnetic field is very complex

and acts on a variety of scales, as shown in Figure 1.2. Emerging from each pole is a

large-scale global field of opposite polarities. This dipolar field has a typical strength

of 1-2 Gauss, and can be carried by the solar wind to form the interplanetary magnetic

field, extending through the whole solar system. Smaller-scale coherent structures of the
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Figure 1.3: Butterfly diagram showing sunspot migration over time (top) and the average

area of sunspot coverage versus time (bottom). Image source: solarscience.msfc.nasa.gov.

magnetic field are observable in the atmosphere in the form of coronal loops. These arch-

like structures are created by magnetic field emerging from the solar interior as a loop,

and have been observed to extend high into the corona. The magnetic field at the base of

these coronal loops is significantly stronger than the global field, measuring up to 4, 000

Gauss. This strong field inhibits convection near the surface, acting as a barrier to hot gas

rising; as a result the area is colder than its surroundings. The relative difference between

this area and its surroundings leads to a visibly darker patch on the surface known as a

sunspot. These sunspots often appear in pairs, with each pair having an opposite magnetic

polarity. Disruption to these surface features can cause energetic explosions on the Sun

such as solar flares and Coronal Mass Ejections, where plasma is thrown out of the Sun

into the atmosphere.

Although it has only been known since Hale (1908) that sunspots are associated with

magnetic field, sunspot activity, and therefore indirectly the magnetic field, has been

recorded since the beginning of the 17th century. In 1612 Galileo famously sketched
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Figure 1.4: Magnetogram displaying the surface distribution and polarity of the Sun’s

magnetic fields. Image source: solar-center.stanford.edu.

the Sun at the same time every day over a period of several weeks, and observed large-

scale dark spots moving across the surface. Since then, detailed records of the temporal

evolution of sunspot activity have revealed that despite the complex nature of the solar

magnetic field, sunspot behaviour is in fact somewhat organised. Plotting of the area of

sunspot coverage at a given latitude over time reveals a distinct cyclic pattern (Figure 1.3).

At the start of the cycle, sunspots appear around 30◦ to 40◦ north and south of the

equator. As the cycle progresses more sunspots appear at latitudes closer to the solar

equator (Spörer’s law) and the overall sunspot pattern migrates toward the equator, where

individual sunspots maintain their position until they decay.

Individual sunspots can have a life span of anywhere between a few days to a few months,

and the overall migration cycle lasts approximately eleven years. Also shown in Figure 1.3

is the area of sunspot coverage versus time. Coinciding with the start of each cycle is a

minimum of sunspot coverage. Sunspot areas peak during the middle of the cycle before

returning back to the minimum at the end. The fact that sunspots are directly linked

to strong magnetic field tells us a lot about the magnetic intensity of the Sun during a

sunspot cycle. Specifically that a maximum in sunspots activity results in a maximum in

solar magnetic activity, and vice versa. During times of maximum solar activity, features

such as flares and coronal mass ejections are more frequent.

During the sunspot cycle all the leading (easternmost) spots of a pair in the northern

hemisphere have the same polarity, while its corresponding following (westernmost) spot
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Figure 1.5: The average number of observable sunspots over time. Image source:

science.nasa.gov.

has the opposite polarity. The effect is exactly reversed in the southern hemisphere as seen

in Figure 1.4, and is known as Hale’s polarity law. Hale found this behaviour to be true for

the whole eleven year cycle; however he observed that in the following cycle the polarities

in both hemispheres reverse. Aligned with the start of each eleven year cycle the polarity

of the Sun’s global dipolar magnetic field switches. Therefore, although the visual cycle

of sunspots has a period of approximately eleven years, the full magnetic cycle is twice

as long. Also evident in Figure 1.4 is Joy’s law; sunspots appear to be ‘angled’ relative to

the equator, with the leading spot closer to the equator than the following spots.

Figure 1.5 shows the average number of sunspots observed per year plotted over time, in

which we see clear evidence of the elven year sunspot cycle. Of interest is the extended

period of low sunspot numbers from around 1645 to 1715, known as the Maunder

Minimum. It is not known what triggered this disruption to the sunspot cycle or indeed

how the cycle rebooted again in the early 18th century. During this time period there was

no ‘visible’ evidence of a magnetic cycle in the Sun. However proxy measurements of

beryllium-10 and carbon-14 cosmogenic isotope abundance can be used to study long-

term solar activity. The results indicate that the twenty-two year magnetic cycle was still

present during this time and suggests that sunspots are actually a symptom of the magnetic

cycle, and not a cause. Proxy measurements also reveal that periods of low magnetic

activity have their own cycle of approximately 200 years. Since the time of Galileo it

has been known that the Sun rotates, and through observations of magnetic features it
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Figure 1.6: The internal rotation profile of the Sun inferred from helioseismology. A

rotation rate of 450 nHz corresponds to a rotation period of 26 days and 325 nHz

corresponds to 36 days. Image source: www2.hao.ucar.edu.

is clear that the Sun’s surface rotates differentially. Specifically, the fluid at the equator

rotates faster (25 day period) than that at the poles (34 day period). Until the emergence

of helioseismology, one could only speculate as to how this surface differential rotation

profile is distributed through the Sun. Helioseismology works by measuring the changes

in oscillating pressure waves through the Sun and is used to build up a detailed profile of

the solar interior. Thus allowing scientists to in a sense ‘observe’ the internal structure,

and rotation rate of the Sun. Figure 1.6 shows a contour plot of angular rotation speeds

for the solar interior, with red corresponding to faster rotation speeds and blue slower.

Here we see that through the convection zone, angular velocity is roughly constant along

radial lines. Therefore the differential rotation profile observable on the surface continues

throughout the convective envelope. An interesting result from helioseismology is that

this rotation profile does not persist throughout the solar interior; instead the radiative

zone rotates more like a solid body, with constant angular velocity. This led to the

discovery of a relatively thin (0.02− 0.05R� ) transition region between the two distinct

rotation profiles. Termed the tachocline by Spiegel & Zahn (1992), this interface region is

located at roughly 0.69− 0.71R� and naturally consists of a very strong angular velocity

gradient. The tachocline is thought to play a very impactful role in how the Sun maintains

and transports its magnetic field, a process discussed in §1.2 in more detail. Table 1.1
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Definition Symbol Quantity

Density ρ 0.21 g cm−3

Pressure p 6.7× 1013 g cm−2 s−2

Temperature T 2.3× 106 K

Sound speed c 2.3× 107 cm s−1

Gravitational acc. g 5.4× 104 cm s−2

Buoyancy Frequency N 8× 10−4 s−1

Magnetic diffusivity η 4.1× 102 cm2 s−1

Kinematic diffusivity ν 2.7× 101 cm2 s−1

Thermal diffusivity κ 1.4× 107 cm2 s−1

Table 1.1: Estimates of parameter values of the tachocline at r = 0.7R� , taken

from Gough (2007).

shows estimated parameter values for the tachocline, taken from Gough (2007). These

will be used to estimate the magnitude of certain non-dimensional parameters used in

numerical work throughout the thesis.

Helioseismology allows the detection of temporal variations in the solar rotation profile

over a solar cycle. As of yet there is no indication of variations to the rotation profile deep

in the solar interior; however, temporal variations on the time-scale of the solar cycle

have been detected in the convection zone. Near the surface there exists alternating bands

that rotate faster and slower than the average rotation rate, termed torsional oscillations

(Howard & Labonte, 1980). At mid to low latitudes, these bands propagate toward the

equator and have been measured down to 0.92R� (Howe et al., 2000). These mid latitude

bands coincide with the migrating bands of magnetic activity, suggesting a strong link

between torsional oscillations and the solar magnetic field. At higher latitudes the bands

propagate towards the poles and are thought to penetrate deeper into the convection zone,

possibly down to the base (Vorontsov et al., 2002).
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1.2 The solar dynamo

The time-scale for Ohmic diffusion in the Sun is around 1010 years, comparable with

the age of the Sun. Therefore, it is possible that the magnetic field we observe on the

surface has been around since the Sun’s formation, held within the solar interior and is

slowly diffusing away. However, as discussed in §1.1, the solar magnetic field displays

cyclic behaviour; observations of surface magnetic activity suggests a twenty-two year

magnetic cycle. Since this cyclic pattern appears on a considerably shorter time-scale

than the Sun’s life span, it is much more feasible that the magnetic field we observe

through surface activity is somehow continually self-generated in the interior of the Sun.

Exactly how the solar dynamo works is not currently known, and therefore is a much

debated and very active area of research. As we have seen, the solar magnetic field acts

on a wide range of length scales and is linked with a variety of solar features such as,

the eleven year sunspot cycle, sunspot migration and polar field polarity switching, to

name a few. Therefore, a successful dynamo model would not only have to explain how

magnetic field is self-generated, but also account for these observable features. Although

many contradicting dynamo models exists (see §1.2.2), most models agree that large-scale

weak poloidal magnetic field is wound up into strong toroidal field through differential

rotation. This toroidal field is stored within the solar interior before it rises to the surface,

resulting in the observed magnetic activity. To close the loop, the magnetic field that does

not escape must somehow be converted back into poloidal field, for the process to start

over. As a region with a strong angular velocity gradient, many believe that the newly

discovered tachocline would be an ideal location for the magnetic field to be wound up

and stored. In this section we give a mathematical overview of dynamo loop, that is at

the heart of the dynamo process. We then go on to discuss some current popular solar

dynamo models.

1.2.1 The dynamo loop

Alfvén’s theorem states that for a fluid with infinite magnetic conductivity, magnetic field

is in a sense frozen-in to the fluid and moves with it. Although not at infinite conductivity,
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the fluid in the solar interior is highly conductive and it is not unrealistic to assume a

similar process takes place. As such, the differential rotation profile of the solar interior

is expected to have a very influential effect on the solar magnetic field. Derived from

Maxwell’s equations and Ohm’s Law, the induction equation models the time evolution

of the magnetic fieldB for a gas or fluid with velocity u,

∂B

∂t
=∇× (u×B)−∇× (η∇×B). (1.1)

Throughout this thesis the magnetic diffusivity η = (µ0σ)−1 , where µ0 is the vacuum

permeability and σ is the conductivity, is taken as constant. With this, the induction

equation reduces to
∂B

∂t
=∇× (u×B) + η∇2B. (1.2)

Physically this equation tells us that the evolution of the magnetic field in time is

dependent on two things: the advection of the field with the flow, and its diffusion through

the flow. As we can see from (1.2), in the absence of a flow u = 0 , the magnetic field

would just diffuse away. Therefore dynamo theory requires a process to generate u and

in order for the magnetic field to be maintained. Since the magnetic field is solenoidal

by nature, in the axisymmetric case a large-scale field can be expressed as the sum

its poloidal and toroidal parts; B = BP +BT , where in cylindrical polar coordinates

(r, φ, z), BP =∇× Aeφ and BT = Bφeφ . Writing the magnetic field in this form, the

evolution of the toroidal field from (1.2) is

∂

∂t

(
Bφ

r

)
= BP ·∇Ω−∇ ·

(
Bφ

r
um

)
+
(η
r

)(
∇2 − 1

r2

)
Bφ, (1.3)

where the velocity is expressed in terms of the axisymmetric meridional flow um and

angular velocity is the Ω(r, z), such that u = um + rΩeφ . Expressing the equation like

this shows how toroidal field is generated from poloidal field by differential rotation, and

transported by meridional flow through the advection term. This is what is thought to

happen in the solar interior by a process is known as the ω-effect; weak poloidal field

in the solar interior is stretched and wound up by differential rotation, to form a strong

toroidal field shown in Figure 1.7a. The ω-effect is an important mechanism that is present

in many current dynamo models.
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(a) (b)

Figure 1.7: Visualisations of (a) the ω-effect and (b) the α-effect.

We know that for the magnetic field to be self-generating there must be a mechanism that

in a sense ‘closes the loop’, by turning toroidal field back to poloidal field. By the same

process the evolution of poloidal field can be expressed from (1.2) by

∂

∂t
(rA) = −um ·∇ (rA) + rη

(
∇2 − 1

r2

)
A. (1.4)

Here we notice there is no source term to generate the poloidal field and the field will just

decay. As a result an axisymmetric magnetic field cannot be created by a self-generating

dynamo (Cowling’s Theorem). To maintain a field and close the loop a source term needs

to be introduced in to equation (1.4). This can be achieved through the study of mean-field

electrodynamics, and involves small scale non-axisymmetric motions (usually brought on

by turbulence), coming together to generate large-scale poloidal field. This process is

known as the α-effect, Figure 1.7b. A more detailed discussion on how the source term is

derived can be found in Tobias & Weiss (2007).

1.2.2 Possible dynamo scenarios

It is generally accepted in most dynamo models that the ω-effect is a result of differential

rotation. Therefore, the strong radial gradients of angular velocity present in the

tachocline are extremely likely to play a crucial role in generating toroidal magnetic

field. However, different models have a very different way of invoking the α-effect and
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essentially closing the loop. This section outlines three main dynamo models used today,

with comments on the positives and negative of each model. A more in depth discussion

of these models can be found in Tobias & Weiss (2007).

The distributed dynamo, often known as the classic αω-dynamo, relies on cyclonic eddies

created by the Coriolis force to produce the turbulence required to generate an α-effect

and thus poloidal field. Toroidal field is created either by local latitudinal differential

rotation in the convection zone or by radial shear, either near the surface or possibly at

the tachocline. The advantage of such a model is that it can be applied to any rotating

star with a convection zone, even those that are fully convective without a tachocline.

However, with this model it will be hard to generate large-scale magnetic field, as small-

scale field will rise to the surface too fast before it has a chance to be amplified, especially

if the dynamo is situated near the surface.

Another possibility is the flux transport dynamo. In this model poloidal field is wound

up by differential rotation at the tachocline to form ‘ropes’ of toroidal field. This toroidal

field rises to the surface, twisting due to the Coriolis force and emerges as active regions.

Due to the twisting nature the active regions are of the form of sunspots and obey Joy’s

law. The field spreads in latitude and the two spots migrate. The proceeding spot migrates

toward the equator, where it merges with the field from the other hemisphere and the

fields cancel each other out. The following spot moves to higher latitudes and eventually

reverses the polar field. The field at the poles is then transported down to the tachocline

where it is sheared back into toroidal field and the process starts over. This dynamo was

first envisioned by Babcock (1961) who tried to link Hale’s law with the observed reversal

of the polar fields. As such this model relies heavily on surface activity for a dynamo to

exist. This leads to problems during periods when there is no surface activity such as

the Maunder Minimum. As we have seen the magnetic cycle still exists during these low

active periods, and there is no evidence to suggest that the dynamo shuts off during these

times.

By estimating the rise times of strong magnetic flux tubes through the convection zone,

Parker (1975) argued that the location of the solar dynamo is likely to be in the ‘lowest

levels of the convection zone’. In the same paper, Parker showed that strong magnetic
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field could in fact be retained for a long time in the sub-adiabatic stratified radiative zone.

This led to the possibility of an interface, or deep seated dynamo (Parker, 1993). From

helioseismology results it seems logical that poloidal field is sheared out by the strong

differential rotation to form toroidal field that is stored in the lower parts of the tachocline,

where the atmosphere is convectively stable. The field can remain here until it becomes

destabilised, possibly by magnetic buoyancy (see §2) and rises towards the surface. Field

that does not reach the surface is thought to experience an α-effect, possibly through

turbulence, in the convection zone. The weak poloidal field is then convectively pumped

back down to the tachocline, where it is sheared back to toroidal field. This dynamo has

the advantage of storing field down in the tachocline where it can be sufficiently amplified

by shear without experiencing the any turbulent α-effects. However the exact nature of

the α-effect and the process that transports poloidal field back down to the tachocline is

still up for debate.

The work in this thesis relies heavily on the interaction between magnetic field and a

velocity shear in a convectively stable environment, conditions similar what we expect

at the tachocline. As such the exact location of the ω-effect and the resulting α-effect

is not crucial to this work. Most models can agree that the tachocline is likely to play

an important role in storing toroidal field, so that is can be sufficiently amplified by

the inherently strong velocity shear. For the magnetic field to be displaced and rise

into the convection zone and ultimately to the surface, it must undergo some sort of

instability mechanism, which we believe to be magnetic buoyancy instability. The next

chapter contains an overview of the magnetic buoyancy instability, describing the physical

mechanism and past work.
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Chapter 2

Magnetic buoyancy instability

2.1 Magnetic buoyancy

Somewhat confusingly in astrophysics the term magnetic buoyancy can be used to

describe three related, but different mechanisms. The overarching idea of magnetic

buoyancy was introduced by Parker (1955), and coincidentally, by Jensen (1955). Parker

considered an isolated horizontal magnetic flux tube in pressure equilibrium with non-

magnetic surroundings. Like him we denote pi and pe as the internal and external gas

pressures, and define the magnetic pressure is terms of a field of strength B. Balancing

total internal and external pressures, gives

pi +
B2

2µo
= pe. (2.1)

The presence of magnetic pressure inside the tube therefore leads to a difference in

internal and external gas pressure, with pi < pe . If we suppose the tube is in thermal

equilibrium with its surroundings then it follows from the perfect gas law that ρi < ρe .

Thus the tube is lighter than its surroundings and will rise under the influence of gravity.

More a lack of equilibrium in the system than a true instability, Parker’s example outlines

the basic physics of the magnetic buoyancy.

Another example of the term magnetic buoyancy is used to describe an instability

mechanism that advances on Parker’s argument. It can be shown that in general magnetic
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flux tubes are not in equilibrium with a non-magnetic surrounding fluid. Therefore, in

order for an equilibrium state to be met, there must be a specific temperature difference

between the tube and the atmosphere; the flux tube must be cooler than the surrounding

fluid so that the internal and external densities are equal. From here the stability of such

a tube can be addressed (Spruit & van Ballegooijen, 1982), and any instability found is a

result of magnetic buoyancy.

The final use of the term is of particular interest for this thesis and is used to describe a

convective type of instability resulting from a stratified magnetic field in a convectively

stable, magnetised atmosphere. This instability allows a convectively stable atmosphere,

such as that found at the tachocline, to become destabilised to a certain magnetic field

configuration. In this chapter we focus on this definition of the term of magnetic

buoyancy instability, presenting an overview of previous work, building up complexity

as we proceed. An in-depth review on magnetic buoyancy instabilities, covering topics

not discussed in this chapter, can be found in Hughes (2007).

2.1.1 The instability mechanism

The magnetic buoyancy instability mechanism can be understood through a simple

parcel argument (Acheson, 1979). Consider an atmosphere in equilibrium in the

presence of a horizontal magnetic field (in the x-direction) varying with height z. The

relationship between pressure, density and the magnetic field can be expressed through

the magnetohydrostatic equilibrium condition,

d

dz

(
p+

B2

2µ0

)
= −ρg. (2.2)

Throughout this thesis we will define gravity as g = −gẑ . Suppose we take a ‘parcel’

of gas at height z in the layer and raise it, without bending magnetic field lines, to a new

height z + dz . This corresponds to what is known as an interchange instability, where the

horizontal wave number is zero, kx = 0 . We denote the variables outside the gas parcel

at height z + dz as B + dB for the field, p+ dp for the gas pressure and ρ+ dρ for the

density. Variables inside the parcel at this changed height we denote with a δ, such that
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the field at this changed height is B + δB , etc. Since the mass and magnetic flux of the

tube are conserved during the move, so is B/ρ and hence

B

ρ
=
B + δB

ρ+ δρ
⇒ δB

B
=
δρ

ρ
. (2.3)

If we assume that the parcel moves adiabatically, then its specific entropy (pρ−γ) is

conserved and to first order

p

ργ
=

p+ δp

(ρ+ δρ)γ
⇒ δp

p
= γ

δρ

ρ
. (2.4)

Finally we suppose the parcel moves slowly enough to maintain total pressure equilibrium

with its surroundings, so that

p+ dp+
(B + dB)2

2µ0

= p+ δp+
(B + δB)2

2µ0

, (2.5)

which to first order simplifies to

dp+
BdB

µ0

= δp+
BδB

µ0

. (2.6)

Combining (2.3) and (2.4) with equation (2.6) leads to

δρ
(
c2 + a2

)
= dp+

BdB

µ0

, (2.7)

where c is the adiabatic sound speed and a is the Alfvén speed, defined as

c2 =
γp

ρ
, a2 =

B2

ρµ0

. (2.8)

Instability is guaranteed if the parcel is lighter than its surroundings, i.e. δρ < dρ . Thus

with some algebraic manipulation, equation (2.7) can be transformed into a criterion for

instability, that states instability is guaranteed provided

−ga2

c2
d

dz
ln

(
B

ρ

)
> N2, (2.9)

where N is the Brunt-Väisälä (or buoyancy) frequency, defined as

N2 =
g

γ

d

dz
ln
(
pρ−γ

)
. (2.10)

The inequality (2.9) tells us that a horizontal magnetic field that decreases ‘sufficiently’

with height can destabilise a convectively stable atmosphere (N2 > 0 ). As discussed
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in §1.1, the tachocline has a sub-adiabatically stratified atmosphere; therefore magnetic

buoyancy is a perfectly feasible instability for breaking up the strong toroidal field stored

there.

Equation (2.9) was also derived more formally by Newcomb (1961), using the energy

principle of Bernstein et al. (1958). Studying an ideal gas in the presence of a stratified

horizontal field, Newcomb showed that for modes that do not bend field lines (interchange

modes), instability occurs when (2.9) is satisfied somewhere in the fluid. He expressed

the instability criteria as
dρ

dz
> − ρg

c2 + a2
. (2.11)

This resembles a magnetic extension to Schwarzschild criterion for convection, although

when written in this form the influence of the magnetic field gradient is not obvious. It

can be shown using the magnetohydrostatic balance condition (2.2), that (2.9) and (2.11)

are in fact equivalent.

Although doing a good job of outlining the basic mechanism involved in magnetic

buoyancy instability, the above calculations are gross simplifications to the full problem.

The obvious extension to this work would be to consider fully three-dimensional

perturbations, capable of bending the magnetic field lines (undular modes). Instinctively

one might assume that doing work against magnetic tension, by bending field line would

inhibit the instability. However, Newcomb (1961) went on to show the somewhat

surprising result that three-dimensional perturbations with kx → 0 , are in fact more

readily destabilised than interchange modes. These types of modes are unstable if

somewhere in the fluid,
dρ

dz
> −ρg

c2
. (2.12)

Again at first sight this may be viewed as the non-magnetic Schwarzschild criterion.

However, as addressed by Thomas & Nye (1975), the role played by the magnetic field can

again be made explicit by using the magnetohydrostatic balance (2.2), and writing (2.12)

as
−ga2

c2
d

dz
lnB > N2. (2.13)

By analysing (2.9) and (2.13), we see that the interchange modes require a sufficient

decrease of B/ρ in height for instability, whereas the undular modes require only a
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decrease in B, much less of a constraint on the magnetic field. For two-dimensional

perturbations, (2.13) is a necessary but not sufficient condition for instability. As such

there exist magnetostatic equilibria such that interchange modes are stable and undular

modes are unstable.

As addressed by Hughes & Cattaneo (1987) the physical mechanism related to the

interchange instability when kx = 0 , is very different to the mechanism for the undular

mode instability when kx → 0 . We can summarise their findings by again considering a

parcel of fluid raised through the atmosphere. Interchange modes do not bend field lines,

so moving the parcel will either bring field lines further apart or closer together. As a result

the perturbed gas pressure is in a sense ‘coupled’ with the magnetic pressure perturbation,

and one cannot be altered without having to alter the other. For undular modes this

restriction no longer applies; by allowing the bending of field lines, compressive motions

move along the magnetic field lines and thus do no work against magnetic pressure.

Therefore when considering undular modes, gas and magnetic pressure perturbations is

no longer coupled. Naturally three-dimensional perturbations do bring a stabilising factor

through magnetic tension, however this is minimised when kx → 0 .

2.1.2 The influence of diffusion

Up to this point, all discussion in this chapter has considered only ideal (diffusionless)

instabilities. To advance and bring things into a more physical context, it is beneficial to

extent the analysis to include the effects of diffusion. Acheson (1979) gives the instability

criteria for non zero thermal and magnetic diffusion, in the absence of viscosity as

−ga2

c2
d

dz
ln

(
B

ρ

)
>
η

κ
N2, (2.14)

for kx = 0 (interchange) modes, and

−ga2

c2
d

dz
lnB > a2k2x

(
1 +

kz
ky

)
+
η

κ
N2, (2.15)

for kx 6= 0 (undular) modes. Here the magnetic diffusivity η and thermal diffusivity κ are

taken as constant, with ky and kz denoting the y and z wave numbers respectively. These
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criteria are valid provided that η � κ for finite η and κ, a physically realistic parameter

region for the solar interior. In this astrophysical limit the dependence on the buoyancy

frequency N2 in the equations is reduced. Hence, it is possible to have instabilities in

the presence of diffusivities, where for the same field and atmospheric configuration,

instability criteria (2.9) and (2.13) are not satisfied and the ideal system is stable.

Gilman (1970) considered modes with a short transverse wavenumber (ky → 0 ), that

consequently would be able to rapidly exchange heat with their surrounds (κ→ 0 )

and maintain their magnetic buoyancy. Gilman’s criteria can be recovered from

equations (2.14) and (2.15) by applying η/κ→ 0 and taking the ky � kz limit.

It can be shown that in the presence of thermal and magnetic diffusion, convection

incorporating magnetic buoyancy is indeed a double diffusive system; Spiegel & Weiss

(1982) transformed the equations for interchange instabilities to a form identical to

that describing two-dimensional thermosolutal convection, a highly studied system (see

Turner, 1973). This transformation is not in what may be thought of as the ‘obvious

fashion’ (thermal gradient mapped to entropy gradient, and salinity gradient mapped

to magnetic field), but instead maps thermal gradient to a linear combination of both

entropy and magnetic field gradient and salinity gradient mapped directly to magnetic

field. Therefore direct comparisons are hard to make.

In the absence of diffusion it is only possible to have direct modes of instability - a purely

real growth rate. With the analogue to thermosolutal convection, it is of no surprise that

the fully diffusive system also supports oscillatory instability (overstability), where the

growth rate has a non-zero frequency. Hughes (1985a) derived an instability criteria for

oscillatory interchange modes, given by

−ga2

c2
(η + ν − κ(γ − 1))

d

dz
ln

(
B

ρ

)
> (κ+ ν)(κ+ η)(ν + η)

(kx + kz)
6

k2x
+ (κ+ ν)N2, (2.16)

for constant kinematic viscosity ν. Hughes identified the important role of the

coefficient η + ν − κ(γ − 1) multiplying the gradient terms. Specifically that when

η + ν < κ(γ − 1) , overstability of a convectively stable atmosphere (N2 > 0 ) could

occur in the presence of a bottom heavy field gradients (B/ρ increasing with height).
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This is a somewhat counter-intuitive result, especially when making comparisons to

thermosolutal convection, where instability is not possible when both the thermal and

salinity gradients are stabilising.

When considering the influence of diffusion on three-dimensional undular modes, Hughes

(1985a) noted that it is possible to stabilise certain unstable top heavy field gradients (B

decreasing with height), by making them more top heavy. This is another somewhat

unexpected result, especially when we consider what we observed in the diffusionless

criteria, equation (2.13). For all modes of instability the viscosity plays a purely

stabilising role, with the interesting behaviour resulting from a competition between

magnetic and thermal diffusivities. For further reading on the physical mechanism of

the diffusive instabilities we refer the reader to Hughes (1985a) and Hughes & Proctor

(1988).

2.1.3 The influence of a velocity shear flow

As discussed in §1.2.2 many dynamo models suggest the tachocline is an ideal location for

the storage of the bulk toroidal field, before it undergoes magnetic buoyancy instability.

Due to the strong radial shear that exists at the tachocline, it is only natural to study the

interaction between shear flows and magnetic buoyancy instability. Tobias & Hughes

(2004) extended the work of Adam (1978), and considered the linear stability of a

stratified magnetic field B = B(z)x̂ and an aligned shear flow U = U(z)x̂ , under the

assumptions of ideal (diffusionless), fully compressible MHD. Starting from the energy

principle of Bernstein et al. (1958) they derived they derived two stability criteria. The

first is that stability is guaranteed if there exists a constant U0, such that everywhere both

(U − U0)
2 = Ũ2 < c2T , (2.17)

and

Ũ2 ≤ a2(c2ρ′ + ρg)

(a2 + c2)ρ′ + ρg
, (2.18)

are satisfied. In above equations the prime notation denotes a derivative with respect to

height z, and cT is the tube speed, defined by

c2T =
a2c2

a2 + c2
. (2.19)
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The second stability criteria involves the derivative of Ũ and is a little more complicated:

stability is assured if, everywhere, (2.17) is satisfied and

d

dz

(
ρgk2xŨ

2(a2 − Ũ2)

(k2x + k2y)(a
2 + c2)(c2T − Ũ2) + k2xŨ

4

)

≤ −g dρ
dz

+ ρk2x(a
2 − Ũ2)−

ρg2(k2x + k2y)(a
2 − Ũ2)

(k2x + k2y)(a
2 + c2)(c2T − Ũ2) + k2xŨ

4
. (2.20)

In the absence of shear, this criteria becomes equation (2.11) when kx = 0 and

equation (2.12) when kx → 0 . The interesting result to come out of equation (2.20), is

that for the same kx and ky, an atmosphere that is stable to magnetic buoyancy instabilities

remains stable when an aligned shear is introduced.

The above criteria are all conditions to guarantee stability and unfortunately tell us nothing

about the influence of shear on unstable modes. To proceed we are required to adopt

numerical techniques to solve the linear eigenvalue problem. As one might physically

expect, it can be shown that a shear flow aligned with the magnetic field has no influence

on the interchange (k = 0) instability. Therefore of more interest is the influence of

a shear flow on the full three-dimensional undular mode. Tobias & Hughes (2004)

investigated this by adding a shear flow to an undular mode that was already unstable

in the absence of shear. They found that although for some undular modes a weak shear

was slightly destabilising, ultimately the shear had a stabilising effect. Along with this

they found that increasing the magnitude of the shear had an axisymmetric effect - the

preferred mode of instability moved to a lower kx value as shear strength increased. The

stabilisation effect was maximized by introducing a shear flow that is localised at the

some height zc, where zc is defined as the peak in the eigenfunction solution for the same

atmosphere in the absence of shear. The localisation of the shear also has a dramatic

effect of the resulting eigenfunctions. The eigenfunctions in the absence of shear are

either completely real or imaginary, with a fairly simple z dependency. When velocity

shear is added the eigenfunctions become complex, with real and imaginary parts, and

have a much more complicated structure to the z dependency of the eigenfunction.
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2.1.4 The influence of rotation

Although not revisited in the thesis, for completeness we touch upon the influence of

rotation. From Newcomb (1961) one can express the order of magnitude for the growth

rate (s) of an interchange mode under the influence of magnetic buoyancy as

s2 ∼ gB2

γµ0p

d

dz
ln

(
B

ρ

)
. (2.21)

Approximating dzB by 1/d , Hughes (2007) gave a simple estimate of the order of

magnitude for the growth time (T ) of a direct magnetic buoyancy instability

T ∼ c

a

(
d

g

)1/2

. (2.22)

At the tachocline a typical value for the plasma beta (the ratio between gas pressure

and magnetic pressure, β = 2c2/(γa2) in our notation) is around β = 108 . Adopting

this value for β along with d = 0.03R� and g from Table 1.1 gives a growth time of

approximately of T ≈ 28 days. As this magnitude is comparable to the solar rotation

period, we expect rotation to have an influential role on magnetic buoyancy instability.

A comprehensive study of the influence of differential rotation on magnetic buoyancy

instability can be found in Acheson (1978). This is a very complex problem where

analytic progress is not possible without certain approximations to simplify the problem.

The simplest of such would be the interchange mode in the absence of diffusion, for which

modes are unstable providing

−ga2

c2
d

dz
ln

(
B

ρ

)
> 4Ω2 +N2, (2.23)

where Ω denotes a uniform angular velocity. Here the angular velocity has a purely

stabilising role and is of little interest. By adding more complexity to the system

the role of rotation becomes more interesting. When considering undular modes in a

double diffusive (magnetic and thermal) rapidly rotating system Acheson (1978) showed

a somewhat surprising result, that increasing the stable stratification N2, could have a

destabilising affect. It is worth noting that for large enough N2 the overall effect is still

stabilising. Hughes (1985b) and Schmitt & Rosner (1983) both studied the dispersion

relation of the system and solved it numerically. When focusing on parameter values that
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resemble that of the tachocline, Schmitt & Rosner (1983) found both the high and low

frequency undular modes are unstable. Interestingly for both the high and low frequency

instability the growth rates are comparable, however the meridional wave numbers are

very different. Hughes (1985b) derived stability boundaries for the different types of

present modes. Hughes found that unlike the non-rotating system, where viscosity played

a purely stabilising role, the inclusion of rotation allows viscosity to destabilise certain

modes. As shown through these few examples, even the simple case of including a

uniform rotation, introduces considerable complexity to the system.

2.1.5 Non-linear evolution

Of course, up to this point, all studies of magnetic buoyancy discussed in this chapter have

been strictly linear. Since perturbations cannot grow exponentially forever, the linear

study can only describe the initial evolution of the instability, after which non-linear

effects must play a role. If the magnetic field we observe as surface features is indeed

linked to the toroidal field destabilised by magnetic buoyancy at the tachocline, then it

must have undergone non-linear interactions. Therefore, the question is whether or not

the non-linear evolution can give rise to isolated regions of strong field (flux tubes), similar

to what we observe at the surface. Cattaneo & Hughes (1988) considered the non-linear

evolution of the interchange instability of a uniform magnetic field, surrounded by a non-

magnetic atmosphere. The presence of the magnetic field allows the convectively stable

atmosphere to hold more mass, creating an interface layer in the fluid susceptible to a

Rayleigh–Taylor type of instability. Once the Rayleigh–Taylor instability has taken a hold

it gives rise to a local shear, thereby exciting secondary Kelvin–Helmholtz instabilities.

This instability wraps up the fluid into regions of strong vorticity, at which point the

evolution is then dominated by the interaction of neighbouring vortices. This interaction

can lead to downward motion of the fluid despite the inherent buoyancy properties.

Therefore, even though the field is wound up into concentrated regions, the resulting

‘flux tubes’ are not transported to the surface.

Cattaneo et al. (1990) considered a similar model (interchange modes in a non-magnetic

atmosphere), in the the presence of a weakly sheared magnetic field B = (Bx, By, 0) ,
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with Bx > By . The problem is set up such that there exists a ‘resonant layer’, defined as

a point in the layer at which the By vanishes. As with the previous model, a Rayleigh–

Taylor type of instability is present at the interface of the field. If the resonant layer is close

to this interface the non-linear instability produces small-scale flux, this resulting flux only

affects a small proportion of the overall field and the fluid remains stable. However, if the

resonant layer is situated deep in the magnetic region, the instability affects the whole

field, resulting in coherent structures that are maintained as they rise.

The models discussed above describe the evolution of interchange (axisymmetric) modes,

however it is without doubt that the field we observe at the surface must have experienced

some sort of undulatory (non-axisymmetric) instability. Matthews et al. (1995) studied

the fully three-dimensional, non-linear evolution of the magnetic buoyancy instability

for a uniform field in a non-magnetic atmosphere. The initial evolution is very similar

to that described in Cattaneo & Hughes (1988); the fluid initially experiences a two-

dimensional, Rayleigh–Taylor type of instability and is then wrapped in coherent vortices

by a secondary Kelvin–Helmholtz instability. The vortices are now susceptible to a three-

dimensional instability, which causes the associated magnetic field to become arched. The

resulting field resembles a ‘kinked’ flux tube, which one can envision bursting through the

photosphere, creating a bipolar sunspot pair.
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Chapter 3

Incorporating velocity shear into the
magneto-Boussinesq approximation

Instabilities driven by magnetic buoyancy are by nature compressible, with magnetic

pressure playing a crucial role in reducing the local density of the gas. Therefore,

as a result, studies of magnetic buoyancy instabilities often opt to investigate a fully

compressible system. However, just as the Boussinesq approximation for thermal

convection can simplify the equations of a non-magnetic compressible system to that of

an incompressible system (Spiegel & Veronis, 1960), a similar process can be applied

to simplify the equations of magnetic buoyancy instability (the magneto-Boussinesq

approximation Spiegel & Weiss, 1982). These simplifications to the governing equations

aid us both analytically and numerically.

Section 3.1 provides a more detailed review of the aforementioned approximations,

providing the appropriate foundation for the work in §3.2, which contains the main results

of the chapter. The main results of this chapter can also be found in Bowker et al. (2014).

Before we advance, it is convenient to introduce the governing equations used throughout

this chapter. In standard notation the magnetohydrodynamic (MHD) equations for a
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perfect gas are:

∂tρ+∇ · (ρu) = 0, (3.1a)

ρ (∂t + u ·∇)u = −∇Π− gρẑ + µ−10 B · ∇B + F +∇ · τ , (3.1b)

(∂t + u ·∇)B = B ·∇u−B(∇ · u) + η∇2B, (3.1c)

∇ ·B = 0, (3.1d)

ρCp (∂t + u ·∇)T − (∂t + u ·∇) p = K∇2T + ηµ−10 (∇×B)2 + Φ, (3.1e)

p = RρT, (3.1f)

where ẑ is the unit vector in the vertical direction, Π is the total pressure, consisting of

the sum of the gas pressure p and the magnetic pressure pm = B2/2µ0 , F is a body force

and the viscous heating terms Φ are defined in terms of the stress tensor τij as

Φ = τij∂iuj, where τij = µ
(
∂iuj + ∂jui − 2

3
δij∂kuk

)
. (3.2)

The specific heat at constant pressure Cp, the permeability µ0, the magnetic diffusivity η,

the thermal conductivity K, the gas constant R and the dynamic viscosity µ are all taken

as constant. Although we shall assume a perfect gas throughout, the main ideas of this

chapter still hold for a more general equation of state.

3.1 Boussinesq approximations

Spiegel & Veronis (1960) derived the hydrodynamic equations of the Boussinesq

approximation for a compressible fluid, when considering the problem of thermal

convection in a layer 0 < z < d . Under two important assumptions discussed below

Spiegel & Veronis were able drastically simplify the governing equations ((3.1) with

B = 0). As a result the fluid can be treated as incompressible, with density perturbations

ignored everywhere except where they are coupled to the gravitational acceleration in

the buoyancy force. Furthermore, fluctuations in gas pressure are deemed small, and

thus density variations are directly proportional to variations in temperature. Since sound

waves move via pressure variations this approximation has the physical effect of filtering

out sound waves from the governing equations. The simplified equations are used to
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model a variety of flows that appear both in nature and industry, and prove to be a very

accurate approximation.

To examine the assumptions used by Spiegel & Veronis (1960) mathematically we express

variables of density ρ, temperature T , and pressure p as

f(x, t) = f∗ + f0(z) + f ′(x, t), (3.3)

where f∗ is the (constant) averaged value of f ; f0 is the basic state variations in the

absence of motion; and f ′ is the fluctuation as a result of motion. Using this notation, the

magnitude of scale heights of Hρ, HT and Hp are defined by

Hf =

∣∣∣∣ 1

f∗

df0
dz

∣∣∣∣−1 . (3.4)

The first assumption made in the classic Boussinesq approximation is that layer depth d,

is much smaller than the smallest scale height (Hf )min. For consistency with Spiegel

& Veronis (1960), we say that this condition holds for all the thermodynamic quantities,

thus in particular the first assumption leads to

d

Hρ

� 1. (3.5)

Upon integrating this condition over the layer and defining ∆f = f0(d)− f0(0) to be the

variation of f0 across the layer, Spiegel & Veronis (1960) introduce a small quantity ε

denoted by

ε =
∆ρ0
ρ∗
� 1. (3.6)

This is merely a statement regarding the basic state, derived from the assumption that

density varies on a very long scale relative to the size of the layer under study.

The second assumption comes from a restriction on the induced fluctuations. Specifically,

it says that the motion-induced perturbations do not exceed the magnitude of their static

variations, i.e. ∣∣∣∣ ρ′ρ∗
∣∣∣∣ ≤ O (ε) . (3.7)

This condition guarantees that non-linear terms do not dominate linear terms in the

equations, and must be verified a posteriori from solutions of the problem. By substituting
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the thermal quantities of the form (3.3) into the governing equations (3.1) and making the

use of the two assumptions (3.5) and (3.7), Spiegel & Veronis (1960) were able to derive

a set of leading order equations known as the Boussinesq equations. Upon dropping the ′

notation of (3.3), the approximated equations are:

∇ · u = 0, (3.8a)

(∂t + u ·∇)u = − 1

ρ∗
∇p− g

ρ∗
ρẑ + ν∇2u, (3.8b)

(∂t + u ·∇)T +

(
∂T0
∂z

+
g

Cp

)
w = κ∇2T, (3.8c)

ρ

ρ∗
= − T

T∗
, (3.8d)

where the kinematic viscosity and the thermal diffusivity are defined as ν = µ/ρ∗ and

κ = K/ρ∗Cp respectively. As a result of the assumptions (3.5) and (3.7) all density

variations terms in the mass conservation equation (3.8a) are formally O(ε) smaller than

that of ∇ · u and hence neglected from the equation. Since the focus is on a buoyancy

driven flow we cannot neglect the variation in density everywhere; it is important that

the buoyancy term in the momentum equation is of equal magnitude to the characteristic

acceleration. This is enforced through the scaling

∂w

∂t
∼ g

ρ

ρ∗
, (3.9)

where w is the vertical fluid motion. Here ∼ is the notation used to indicate similar

magnitudes and is used throughout the thesis. With this ordering it can be shown

that the flow remains highly subsonic throughout, i.e. u2 � p∗/ρ∗ . To ensure

pressure perturbations also remain relevant in the momentum equation it is required

that p′ is O (d/Hp) smaller than the perturbation of density. Consequently pressure

perturbations are neglected in the equation of state (3.8d). To conclude, provided that

both conditions (3.5) and (3.7) are met, a compressible hydrodynamic fluid can in a

sense be treated as incompressible, with density perturbations only appearing through

the buoyancy term in the momentum equation.

With their focus on magneto-convection, Proctor & Weiss (1982) added a constant

magnetic field into the Boussinesq equations in a fairly straight forward manner. As



Chapter 3. Velocity shear in the magneto-Boussinesq approximation 31

one would expect the field enters the equations via the induction equation (3.1c) and

through the Lorentz force B · ∇B in the momentum equation (3.1b). Magnetic pressure

is assumed to be small, in that it has no influence on the density fluctuations. However,

to include the effects of magnetic buoyancy, a stratified magnetic field is required, and

a more subtle approach is needed. Spiegel & Weiss (1982) considered this problem and

implemented a horizontal, stratified magnetic field, with scale height HB. They assumed

that HB was comparable to the pressure scale height Hp (which itself was comparable to

the scale heights of the other thermodynamic quantities), and hence much larger than the

height of the layer d. They also assumed that this magnetic field was sufficiently weak,

such that the Alfvén speed was small compared with the sound speed, B2/µ0ρ∗ � p∗/ρ∗ .

The crucial ordering they adopted is that the fluctuations in total pressure (p + p′m)

are small. As a result, variations in magnetic pressure, density and temperature are

comparable, and magnetic pressure now enters into both the momentum and energy

equation. This is formally shown in more detail in §3.2.4, specifically equations (3.34),

(3.35) and (3.36).

A final feature of the approximation introduced by Spiegel & Weiss (1982), is that

magnetic buoyancy instability is only relevant for certain modes, namely where the

horizontal length scale, L, in the direction of the imposed field is large and of the same

order as the pressure scale height, L ∼ Hp . The effects of this assumption can be seen

when considering the solenoidal condition. Suppose we split the nabla operator into two

components, one aligned with the basic state field∇‖ and the other perpendicular to the

field,∇⊥, such that ∇ =∇‖ +∇⊥ . The magnitude of ∇ · u can then be split into two

parts,

∇‖ · u ∼
u

Hp

and ∇⊥ · u ∼
u

d
. (3.10)

In the orderings (3.10), we have made the subtle assumption that the magnitude of all the

components of the velocity perturbation are equal. Consequently to leading order the flow

is not fully solenoidal; instead the mass equation (3.1a) becomes

∇⊥ · u = 0, (3.11)

and the full solenoidal condition is satisfied only to O (d/Hp). Similar logic can

be applied to the solenoidal condition for the magnetic field; thus at leading order,
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equation (3.1d) becomes

∇⊥ · b = 0, (3.12)

where b represents the perturbation of the magnetic field. Defining the basic state

horizontal field as B = B0(z)x̂ and sticking with previously introduced notation, the

leading order magneto-Boussinesq equations are:

∇⊥ · u = 0, (3.13a)

ρ∗ (∂t + u · ∇⊥)u = −∇⊥Π− gρẑ +
1

µ0

(
B0 · ∇‖ + b · ∇⊥

)
b

+
1

µ0

B′0bz + ρ∗ν∇2
⊥u, (3.13b)

(∂t + u · ∇⊥)b+B′0w =
(
B0 · ∇‖ + b · ∇⊥

)
u

− w

Hρ

B0 + η∇2
⊥b, (3.13c)

∇⊥ · b = 0, (3.13d)

(∂t + u · ∇⊥)

(
T +

1

ρ∗Cp
pm

)
+

(
T ′0 +

g

Cp

)
w = κ∇2

⊥T, (3.13e)

ρ

ρ∗
= −pm

p∗
− T

T∗
, (3.13f)

where ′ denotes the derivative of basic state variables with respect to z. As note by Corfield

(1984), for asymptotic consistency this approximation requires the resulting magnetic

perturbations b to be O (d/Hp) smaller than basic state field. Together with the fact

that ∇ · u = 0 is not fully satisfied, this feature of the approximation has an interesting

knock-on effect. Specifically, that the next order correction to ∇ · u is required when

dealing with B(∇ · u) in the induction equation. Including higher order terms in the

mass conservation equation, we can express the next order correction as

∇ · u ≈ w

Hρ

. (3.14)

It is then this approximation for ∇ · u that appears in leading order induction

equation (3.13c). This result is formally shown in §3.3.2. The magneto-Boussinesq

equations (3.13) of Spiegel & Weiss (1982) were later re-derived by Corfield (1984)

through an asymptotic scaling analysis.
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3.2 Incorporating velocity shear into the magneto-

Boussinesq approximation

This section builds upon the work of Spiegel & Weiss (1982) to introduce the effects

of velocity shear into the magneto-Boussinesq approximation, in such a way that the

influence of velocity shear is comparable to that of the magnetic buoyancy instability.

As we shall see in §3.2.1, this is not as straightforward as one might imagine and

consequently it becomes necessary to take a more in-depth look at the orderings involved

in the magneto-Boussinesq equations. This is tackled in §3.2.2 where, in a similar fashion

to Corfield (1984), we derive the scalings inherent to the magneto-Boussinesq equations in

the absence of shear. However unlike previous derivations that assumed the magnetic field

scale height HB to be the same size as Hp from the onset, we make no prior assumption

on the size of HB. This, in turn, allows us to derive a set of equations that are consistent

with the Boussinesq approximation but with a smaller magnetic field scale height. As

addressed by Hughes (1985a), this ordering is not possible straight from the equations of

Spiegel and Weiss.

Section 3.2.3 introduces a horizontal velocity shear flow, that depends on height z, with

scale height Hu. By striking the appropriate balances between terms introduced with the

shear and those present from §3.2.2, we derive the necessary scalings for the field and flow,

such that both the effects of magnetic buoyancy and the velocity shear are accounted for

in the final equations. The resulting scalings allow us to derive asymptotically consistent

magneto-Boussinesq equations that incorporate the effects of an influential velocity shear

(§3.2.4).

The crucial differences between the magneto-Boussinesq equations of Spiegel & Weiss

(1982) and these new equations are then discussed in §3.3. Finally, by making no prior

assumption on the size of HB and HU we are able to produce a set of mixed-order

equations that allow us to make a transition between six possible systems, depending

on the choice of certain parameters (§3.3.2).
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3.2.1 Naı̈vely adding shear

If one were to naı̈vely introduce an arbitrary velocity shear into the magneto-Boussinesq

equations of Spiegel & Weiss (1982) (equations (3.13)), one would do so in a manner such

that the velocity shear is of the same size as the resulting velocity perturbations. Here we

show that when applying a shear in this ‘obvious’ manner, it has no effect on the linear

stability of the diffusionless system.

Suppose that we consider a basic state magnetic field of the form

B0 = B∗

(
1− ζz

d

)
x̂, (3.15)

where ζ = O(d/Hp) . In addition, we consider an aligned basic state velocity shear

U0 = U0(z)x̂ , i.e. an arbitrary function of z with scale height HU . We shall consider

separately the two cases of HU = O(d) and HU = O(Hp) .

(i) HU ∼ d

As a consequence of the ordering of ∂x ∼ 1/HB ∼ 1/Hp , the advective term, U · ∇u ,

is O(d/Hp) smaller than the shear term u · ∇U , and hence is neglected. On following

Spiegel & Weiss (1982) by linearising the governing equations, ignoring all diffusivities,

and adopting d as the unit of length and the Alfvén period d/cA as the unit of time, we

obtain the dimensionless equations,

∂tu+U ′0w = −∇⊥Π + ε1bxẑ + ∂xb− ζbzx̂, (3.16)

∂tb− ζwx̂ = ∂xu+U ′0bz − ε1wx̂, (3.17)

where ε1 = d/Hp and ′ denotes the derivative with respect to z. For simplicity

we have taken an adiabatic atmosphere (T ′0 = −g/Cp ) and made the substitution

T = −pm/(Cpρ∗) from equation (3.13e). Since ∇⊥ · u = 0 and ∇⊥ · b = 0 , we may

introduce stream and flux functions, ψ and χ, such that

u =

(
u,−∂ψ

∂z
,
∂ψ

∂y

)
, b =

(
bx,−

∂χ

∂z
,
∂χ

∂y

)
, (3.18)

where

u(x, y, z, t) = û(z) exp(ikx+ ily + pt), etc. (3.19)
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Substituting expressions (3.19) into the x-component of the momentum equation (3.16)

and its curl gives, after dropping the hats,

pu+ ilU ′0ψ = ikbx − ilζχ, (3.20)

p
(
−l2ψ + ψ′′

)
= ilε1bx + ik

(
−l2χ+ χ′′

)
. (3.21)

In a similar manner, the induction equation (3.17) gives

pbx − ilζψ = iku+ ilU ′0χ− ilε1ψ, (3.22)

ipχ = −kψ. (3.23)

On eliminating u between equations (3.20) and (3.22), we obtain(
p2 + k2

)
bx = klU ′0ψ + il(λ− ε1)pψ + klλχ+ ilpU ′0χ, (3.24)

which, after substituting for χ from (3.23), becomes

p
(
p2 + k2

)
bx = il(λ− ε1)p2ψ + ik2lλψ. (3.25)

Equation (3.21), after substituting for χ from (3.23), and equation (3.25) form an

eigenvalue problem for p involving only the functions ψ and bx. The crucial point to

note is that U ′0 does not appear in these expressions; hence the shear has no influence on

the growth rate p.

(ii) HU ∼ Hp

If the scale height HU is comparable with Hp and HB then the major change to

equations (3.16) and (3.17) is that the shear term is now also to be neglected, as both

the advection and shear term are O(d/Hp) smaller than the leading order time derivative

term,

∂tu = −∇⊥Π + ε1bxẑ + ∂xb− ζbzx̂, (3.26)

∂tb− ζwx̂ = ∂xu− ε1wx̂, (3.27)

Thus, with the ordering HU ∼ Hp ∼ HB , the imposed shear once again has no bearing

on the linear stability problem.
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Another maybe less ‘obvious’ attempt to incorporate a velocity shear is to consider

a basic state velocity shear that is of a different magnitude to the resulting velocity

perturbations. In Corfield (1984) the basic state magnetic field was incorporated in

this manner, specifically the basic state field was O(ε−11 ) larger than the magnetic

perturbations. Suppose we implement a similar ordering for the shear, such that

U0 ∼ ε−11 u. (3.28)

We shall see in §3.2.2 that to ensure the flow is driven by buoyancy, it is important that the

largest term in the non-linear momentum equation is of the order (u · ∇⊥)u . With the

above ordering, (U0 · ∇)u and (u · ∇⊥)u have the same magnitude; as such U0∂xu

will enter the equations at leading order. When considering the size of HU , it is crucial

that the shear term in the momentum equation does not become too large and dominate.

Thus for a buoyancy driven flow we require

(u · ∇⊥)u ≥ (u · ∇⊥)U0,

⇒ HU ≥Hp, (3.29)

Therefore for asymptotic consistency we can not consider the case of HU < Hp .

Unfortunately for any choice of HU ≥ Hp , to first approximation the advective term

(U0 · ∇) just represents advection by a uniform flow. As such, a Galilean transformation

can be made and we revert to equations (3.16) and (3.17) when HU ∼ Hp , or equations

(3.26) and (3.27) when HU > Hp . As already shown, in either of these cases the velocity

shear has no effect on the linear diffusionless system. Thereofe, just enforcing (3.28) is

not enough to introduce a velocity shear that influences the linear instability.

3.2.2 The magneto-Boussinesq approximation

Since adding velocity shear in what might be thought of as an ‘obvious’ manner has no

effect on the linear stability of the diffusionless system, it is beneficial to take a closer look

at the magnitudes of both the imposed magnetic field and velocity shear, together with

their gradients, as well as the size of the resulting perturbations and their horizontal length

scale. With this information we shall be able to produce a set of simplified equations
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containing the features of magnetic buoyancy instability in which the velocity shear enters

in an influential manner.

An important point to make is that our analysis proceeds via three distinct stages. First

we consider a purely hydrostatic, z-dependent reference state (denoted by )̂. This is

then perturbed by the inclusion of a horizontal magnetic field and aligned shear flow,

both z-dependent, leading to a z-dependent MHD basic state (subscript zero). Finally we

consider three-dimensional, time-dependent perturbations of this basic state (denoted by

δ). Therefore in our notation a variable f will be expressed as

f(x, t) = f̂(z) + f0(z) + δf(x, t). (3.30)

Throughout this analysis it is necessary to distinguish the difference between the vector

variables aligned with, and those perpendicular to, the basic state magnetic field.

Therefore it is convenient to introduce the notation f‖ and f⊥ , corresponding to the

magnitudes of the components of the fluctuations parallel and perpendicular to the basic

state field. Following Spiegel & Veronis (1960) we define ∆f = f0(d)− f0(0) as the

change in f0 across the layer, and make the assumption that the size of the time-dependent

perturbations do not exceed that of the jump across the layer, i.e.δf ≤ O(∆f) .

In the absence of any basic state (i.e. no magnetic field and no flow), the reference

state consists of a vertically stratified layer of gas in hydrostatic balance in the region

0 < z < d , governed by the equation

dp̂

dz
= −gρ̂. (3.31)

For any field variable f we define the inverse scale height of a reference state f̂(z) by

H−1f = d(ln f̂)/dz
∣∣
z=0

and take f∗ = f̂(0) to be a characteristic value of the variable. As

addressed in §3.1, the physical idea of the Boussinesq approximation is that the depth of

the layer d is considered small in comparison with the pressure scale height, Hp = c2s/g ,

where the isothermal sound speed cs is defined by c2s = p∗/ρ∗ ; note, from the equation of

state (3.1f), that the density and temperature scale heights have the same magnitude as Hp

and so it follows that d� Hρ, HT . The reference state is modified by the introduction of

a steady, horizontal magnetic field and an aligned steady shear flow. The field takes the

form B0 = B0(z)x̂ , where, for non-zero magnetic diffusivity, B0(z) is a linear function
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of height z; the flow U0 = U0(z)x̂ results from the (arbitrary) body force F . These, in

turn, introduce a perturbation of the reference state to form a basic state. Analogous to

the hats denoting reference state quantities, we shall use a subscript zero to denote the

perturbations away from the reference state that result from the imposed magnetic field

and shear flow. We define the scale heightsHB andHU in terms ofB0 and U0; at this stage

we stipulate only that d . HB . Hp and d . HU . Hp . As the representative value for

the magnetic field, we may take B∗ to be the rms value of B0(z) over the layer. For the

velocity field, the physics is of course unchanged by the addition of a constant flow to

U0(z); thus we define U∗ as the rms value of a shear flow in a frame of reference chosen

such that the flow has zero mean. We make the assumption, as in Spiegel & Weiss (1982),

that the Alfvén speed cA = B∗/
√
µ0ρ∗ is small in comparison with the sound speed cs;

this guarantees that the difference between the reference and basic states is small. On

subtracting off the reference state, the ‘0’ variables satisfy the equations

dΠ0

dz
= −gρ0, (3.32a)

d2B0

dz2
= 0, (3.32b)

K
d2T0
dz2

= − η

µ0

(
dB0

dz

)2

− µ
(

dU0

dz

)2

. (3.32c)

Here we remind the reader that Π0 represents the total pressure, such that Π0 = p0 + pm0 .

Turning our attention to the resulting perturbations that arise from the introduction of this

basic state, we proceed in a similar fashion to Corfield (1984) by finding appropriate

magnitudes for the perturbations in terms of the basic state quantities. The aim of this

work is to focus on buoyancy-driven instabilities; therefore an appropriate ordering is that

the kinetic energy of the transverse flow results from buoyancy perturbations, i.e.

ρ∗ δu
2
⊥ ∼ δρ gd. (3.33)

In the hydrodynamic Boussinesq approximation (Spiegel & Veronis, 1960), fluctuations

in gas pressure are small, and therefore the predominant balance in the equation of state

is between temperature and density fluctuations. The idea underlying magnetic buoyancy

is that it is fluctuations in total pressure that are considered small, with fluctuations in gas

pressure therefore being comparable with those of magnetic pressure; thus gas pressure
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variations are retained in the perturbed equation of state. With this in mind, we adopt the

same scaling for total pressure fluctuations as Spiegel & Weiss (1982), namely

δΠ ∼ δρ gd ∼ δρ

ρ∗

d

Hp

p∗, (3.34)

from which it follows that

δp

p∗
= −δpm

p∗
+ O

(
δρ

ρ∗

d

Hp

)
. (3.35)

Thus, using the equation of state, the density perturbation may be expressed in terms of

temperature and magnetic pressure perturbations as

δρ

ρ∗
= −

(
δT

T∗
+
δpm
p∗

)(
1 + O

(
d

Hp

))
. (3.36)

On the assumption that the magnitude of the magnetic field fluctuations does not exceed

that of the imposed field, δB‖ ≤ B∗ , the largest resulting term in the magnetic pressure

perturbation may be written as

δpm ≈
B∗ δB‖
µ0

∼ δρ

ρ∗
p∗. (3.37)

Balancing the two terms of the parallel component of u ·∇B provides the following

crucial ordering:

δu⊥ δB‖
d

∼ δu⊥B∗
HB

, implying δB‖ ∼
d

HB

B∗. (3.38)

Hence, using (3.37) and (3.38), we obtain a relation between the magnitude of the density

perturbations and that of the basic state magnetic field,

δρ

ρ∗

HB

d
p∗ ∼

B2
∗

µ0

. (3.39)

Combining the orderings (3.33) and (3.39) then provides the consistent scaling of the

magnitude of the perpendicular velocity in terms of the basic state magnetic field,

δu2⊥
c2A
∼ d

HB

d

Hp

. (3.40)

As shown by Spiegel & Weiss (1982) and Corfield (1984), a significant difference

between the standard Boussinesq equations and the magneto-Boussinesq equations is
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that the latter necessarily impose a restriction on the perturbation length scale L in the

direction of the imposed magnetic field. With no prior assumption on the size of L, we

arrive at an appropriate magnitude for L by balancing relevant terms in the equations.

We expect advection and stretching of the magnetic field to be of comparable importance;

from the perpendicular and parallel components of the induction equation this gives the

scalings
δu⊥ δB⊥

d
∼ B∗ δu⊥

L
and

δu⊥ δB‖
d

∼
B∗ δu‖
L

, (3.41)

leading, after the use of (3.38), to

δB⊥ ∼
HB

L
δB‖ and δu⊥ ∼

HB

L
δu‖. (3.42)

Finally, we use the fact that it is physically important to include the effects of magnetic

tension. Balancing inertia against magnetic tension in the momentum equation leads to

the ordering

ρ∗
δu2⊥
d
∼ B∗
µ0

δB⊥
L

, (3.43)

and hence, using (3.42), to
δu2⊥
c2A
∼ d2

L2
. (3.44)

In deriving (3.43) we have used the perpendicular component of the momentum equation

directly; balancing the terms in the parallel component and using the expressions (3.38)

and (3.42) for δB‖ and δu‖ respectively leads to the same result. Finally, combining the

scalings (3.40) and (3.44) provides an important constraint on the horizontal length scale,

namely

L2 ∼ HpHB. (3.45)

The above scalings have been derived solely by consideration of the basic ideas of

magnetic buoyancy, without any reference as yet to the shear flow U0(z). Their derivation

follows a rather different line of argument to that of Corfield (1984), and allows for a

range of magnetic scale heights d . HB . Hp . In the case of HB ∼ Hp , they are entirely

consistent with those of Corfield. As we shall see, for our future exposition involving the

introduction of velocity shear, it is important that we make no a priori assumption about

the magnitude of HB.
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3.2.3 Incorporating velocity shear

As seen in §3.2.1, when considering the linear stability analysis of the basic state formed

by the imposition of a shear flow into the magneto-Boussinesq equations of Corfield

(1984), i.e. with L ∼ HB ∼ Hp , the flow is assumed to have scale height HU ∼ d and a

characteristic velocity comparable in magnitude with that of the velocity fluctuations. As

such, (U0 · ∇) is neglected in favour of (u⊥ · ∇) in the advective terms, although the

shear (through U ′0) does appear in both the momentum and induction equations ((3.16)

and (3.17)). However, somewhat surprisingly, it plays no role in the resulting eigenvalue

problem. Similarly, on taking a longer scale length Hu ∼ L ∼ HB ∼ Hp , the shear never

enters the system.

On demanding that the velocity shear enters the momentum equation in a significant

manner, a balance between inertia and magnetic tension gives

ρ∗
δu⊥ U∗
HU

∼ 1

µ0

B∗ δB‖
L

. (3.46)

Similarly, from the induction equation, a balance between advection and stretching of

magnetic field leads to
δu⊥B∗
HB

∼ δB⊥ U∗
HU

. (3.47)

Equating these two expressions for δu⊥, and making use of the orderings (3.38) and (3.42)

for the relative sizes of the magnetic field perturbations, yields the important result,

U2
∗
c2A
∼ H2

U

H2
B

. (3.48)

In order to involve the velocity shear in a meaningful manner we require two crucial

orderings are met. The first is that the imposed flow is ‘significant‘ in the advective terms;

this requires that (U0 · ∇) and (u⊥ · ∇) be of comparable magnitude, thus forcing a

balance between the basic state velocity and the perpendicular velocity perturbation,

U∗
L
∼ δu⊥

d
. (3.49)

Secondly we require a condition on the velocity scale height. Suppose that we take a

long scale height HU ∼ Hp ; then to first approximation the advective term (U0 · ∇) just
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represents advection by a uniform flow. As such, a Galilean transformation can be made

and we revert back to equations (3.16) and (3.17), in which the velocity shear has no effect

on the linear diffusionless system. To avoid this problem we require

HU ∼ d. (3.50)

Henceforth, we shall refer to a shear flow that satisfies both (3.49) and (3.50) as being

influential. Combining the two expressions for δu⊥, (3.44) and (3.49), provides the

following important ordering for the magnitude of the shear flow in terms of the Alfvén

velocity of the imposed magnetic field,

U2
∗ ∼ c2A. (3.51)

Unlike Corfield (1984), we made no prior assumption for the magnitude of the magnetic

scale height. As such, all the orderings in §3.2.2 are valid for a range of magnetic scale

heights d . HB . Hp . By introducing a velocity shear that influences the magnetic

buoyancy instability, it in turn restricts the size of HB. Scalings (3.48), (3.50) and (3.51)

lead to the crucial result that

HB ∼ HU ∼ d. (3.52)

3.2.4 Derivation of the magneto-Boussinesq velocity shear equations

Sections 3.2.2 and 3.2.3 provide the framework required to introduce velocity shear into

the magneto-Boussinesq approximation. We shall now incorporate these ideas into the

derivation of an asymptotically consistent set of governing equations. We focus on an

influential shear flow, with HU ∼ HB ∼ d , and define two small parameters,

ε1 =
d

Hp

and ε2 =
c2A
c2s
, (3.53)

where ε1, ε2 � 1 . Physically, ε1 is a measure of the inverse pressure scale height of

the hydrostatic reference state, whereas ε2, through (3.39), provides a measure of the

amplitude of the fluctuations driven by magnetic buoyancy. (We note that our ε2 is of the

same order of magnitude as the ε2 of Corfield (1984), defined as δρ/ρ.) It follows from

(3.51) that

U2
∗ ∼ ε2c

2
s. (3.54)
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Using expression (3.45), we may rewrite the horizontal length scale in terms of ε1,

d

L
∼ ε1

1/2. (3.55)

We non-dimensionalise T by T∗, p by p∗, ρ by ρ∗, pm by p∗, lengths with d and times with

the sound crossing time across the layer. The condition that motion-induced fluctuations

do not exceed, in order of magnitude, static variations across the layer translates to the

requirement that ε2 . ε1. Following Corfield (1984), we express all variables in terms

of the two small parameters, with non-dimensional variables of order unity denoted by a

tilde. Based on the scalings derived in §3.2.2, the thermodynamic quantities are expressed

as

T (x, t) = T∗

(
1 + ε1

Hp

HT

z

d
+ ε2

∼
T 0 + ε2δ

∼
T (x, t) + . . .

)
, (3.56a)

p (x, t) = p∗

(
1 + ε1

z

d
+ ε2

∼
p0 + ε2δ

∼
p (x, t) + . . .

)
, (3.56b)

ρ (x, t) = ρ∗

(
1 + ε1

Hp

Hρ

z

d
+ ε2

∼
ρ0 + ε2δ

∼
ρ (x, t) + . . .

)
, (3.56c)

where we have linearised the reference state. The magnetic and total pressure are

expanded as

pm(x, t) = ε2p∗(
∼
pm0 + δ

∼
pm(x, t) + . . . ), (3.57a)

Π(x, t) = ε1ε2p∗(
∼
Π0 + δ

∼
Π(x, t) + . . . ), (3.57b)

where equation (3.32a) and expression (3.34) respectively have been used for the ordering

of Π0 and δ
∼
Π . It is worth noting a small typographical error in equation (31b) in Bowker

et al. (2014) (31b), corresponding to a missing ε1 coefficient in front of Π0

It is convenient to split the velocity and magnetic field into their parallel and perpendicular

components; from expressions (3.42), (3.54) and (3.55) these become

u = ε
1/2
2 cs

( ∼
U 0 + δ

∼
u‖ + ε

1/2
1 δ

∼
u⊥

)
, (3.58a)

B = (ε2µ0p∗)
1/2
( ∼
B0 + δ

∼
B‖ + ε

1/2
1 δ

∼
B⊥

)
. (3.58b)

Based on (3.55), we write

∇‖ =
ε
1/2
1

d

∼
∇‖, ∇⊥ =

1

d

∼
∇⊥. (3.59)
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The time scale is determined by the conventional Boussinesq approach of balancing the

vertical acceleration against the buoyancy. Using the scalings for δρ and δu⊥, this gives

∂t = (ε1ε2)
1/2 cs

d
∂∼
t
. (3.60)

The various expansions (3.56)–(3.60) are then substituted into the MHD equations (3.1).

To simplify the notation, we drop the tildes, write δB = b and drop the δ from the other

terms. After substituting for δp and δρ from equations (3.35) and (3.36), and removing

terms that arise from the basic state, the governing equations at leading order become:(
∂t + (U0 + u) · ∇

)
u+U ′0w = −∇⊥Π + (T + pm) ẑ

+ (B0 + b) · ∇b+B′0bz +Re−1∇2
⊥u, (3.61a)

∇ · u = 0, (3.61b)(
∂t + (U0 + u) · ∇

)
b+B′0w = (B0 + b) · ∇u

+U ′0bz +Rm−1∇2
⊥b, (3.61c)

∇ · b = 0, (3.61d)(
∂t + (U0 + u) · ∇

)(
(T0 + T ) +D(pm0 + pm)

)
+ wβ̂

= Pe−1∇2
⊥T

+DRm−1
(

(∂yb‖)
2 + (∂zb‖)

2 + 2B′0∂zb‖

)
+DRe−1

(
(∂yu‖)

2 + (∂zu‖)
2 + 2U ′0∂zu‖

)
, (3.61e)

where the vertical components of the velocity and magnetic field perturbations are

denoted by w and bz respectively and ′ denotes the derivative of a basic state variable

with respect to z. It is worth noting that from the scaling (3.59), pm in equations (3.61) is

given by pm = B0b‖ + b2‖/2 . Using similar reasoning to that which led to (3.35) we are

able to say at leading order pm0 = −p0 , which we have used in (3.61e). The operator∇
is defined as

∇ =
∼
∇‖ +

∼
∇⊥. (3.62)

To be consistent with the rest of the thesis we have used the following non-dimensional

numbers, defined as:

Re =
ε
1/2
1 U∗d

ν
, Rm =

ε
1/2
1 U∗d

η
, Pe =

ε
1/2
1 U∗d

κ
, D =

γ − 1

γ
, (3.63)
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where γ is the conventional ratio of specific heats; Re is a modified Reynolds number,

Rm is a modified magnetic Reynolds number and Pe a modified Péclet number. Here U∗
can be written in terms of ε2 from equation (3.54). These parameters are equivalent to the

parameters given in Bowker et al. (2014) equation (37a-d) through the transformations

Re =

(
Ra

σ

)1/2

, Rm = σm

(
Ra

σ

)1/2

, P e = (Raσ)1/2 , (3.64)

whereRa, σ and σm are the Rayleigh, Prandtl and mangetic Prandtl numbers respectively.

To ensure that the diffusion terms do not dominate we impose the restriction that Re−1,

Rm−1 and Pe−1 are all at most O(1). For asymptotic consistency, the non-dimensional

subadiabatic temperature gradient β̂ in equation (3.61e) must be O(ε2), and so we have

defined
1

γ

d

dz
ln

(
p̂

ρ̂γ

)
= ε2β̂. (3.65)

Equations (3.61) are derived only under the assumption that ε2 . ε1 . If ε1 and ε2 are

comparable, then the subadiabatic gradient is O(ε1), comparable in magnitude with its

component gradients of pressure and density. However, if ε2 � ε1 then the subadiabatic

gradient, being O(ε2), is formally smaller than the pressure and density gradients, and

therefore, in this case, equations (3.61) hold only for atmospheres that are close to

adiabatic.

3.3 Comparison with the equations of Spiegel & Weiss

(1982) and Corfield (1984)

There are significant differences between the new system of equations (3.61) and the

equations derived by Spiegel & Weiss (1982) and Corfield (1984). In order to introduce

a shear flow that can interact with the magnetic buoyancy instability, the magnetic field

scale heightHB has to be O(d), considerably smaller than that adopted in Corfield (1984),

namely HB ∼ Hp. As the scalings derived in §3.2.2 and §3.2.3 are clearly dependent on

HB, this change has a knock-on effect on the magnitudes of both perturbation and basic

state quantities.
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It can be seen from (3.45) that adopting the Corfield (1984) ordering of HB ∼ Hp forces

L ∼ Hp ; in turn, from (3.42), this implies that the perpendicular and parallel components

of both the flow and field perturbations have the same magnitude. This is in marked

contrast to our system, in which, although the perpendicular components of the flow and

field scale as in Corfield (1984), namely

δu2⊥ ∼ ε1ε2c
2
s and

δB2
⊥

µ0

∼ ε1ε2p∗, (3.66)

the parallel components are O
(
ε
−1/2
1

)
greater. Furthermore, from (3.41), the

characteristic strength of the basic state magnetic field B∗ is given by

B2
∗

µ0

∼ L2

d2
δB2
⊥

µ0

∼ L2

d2
ε1ε2p∗, (3.67)

thus highlighting a further important difference between the two systems: for our

equations, governed by the scaling L2 ∼ dHp , expression (3.67) becomes

B2
∗

µ0

∼ ε2p∗, (3.68)

whereas for Corfield (1984) the characteristic field strength B∗ is O
(
ε
−1/2
1

)
greater.

Hence the condition that an imposed shear flow be influential requires an O
(
ε
1/2
1

)
reduction in the strength of the basic state magnetic field.

Unlike the equations of Spiegel & Weiss (1982), equations (3.61) now satisfy, at leading

order, both the full solenoidal condition on the velocity (3.61b) and the magnetic

field (3.61d). Consequently, since the new system is fully incompressible, there is no

longer a next-order correction of ∇·u introduced into the induction equation, thus the

induction equation now conserves ∇· b . Note also that, in contrast to the standard

Boussinesq approximation, both ohmic and viscous heating terms are included in the

energy equation (3.61e), these terms arising as a consequence of having increased the

magnitude of both the parallel velocity and parallel magnetic field perturbations.

3.3.1 Temperature gradient

To be consistent with the equations of Spiegel & Weiss (1982), it is important to address

their definition of the subadiabatic temperature gradient and how it relates to ours. In our
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detailed derivations we define a purely hydrodynamic reference state that is separate from

the basic state variables that are introduced with the magnetic field. As a result, we can

separate the temperature gradient into two parts, the reference state β̂ defined in (3.65)

and a basic state

β0 =
d

dz
T0 +D

d

dz
pm0. (3.69)

In their derivation, Spiegel & Weiss (1982) (and Corfield (1984)) defined their reference

state and basic state as just one global ‘background state’. Thus their temperature gradient

consisted of both what we would call reference state and basic state terms. In our notation

this would be defined as

β =
1

ε2γ

d

dz
ln

(
p̂+ ε2p0

(ρ̂+ ε2ρ0)γ

)
. (3.70)

Separating the above expression into reference state and basic state terms, it can be shown

that at leading order the temperature gradient used in Spiegel & Weiss (1982) is the same

as the combination of β̂ and β0 used our derivations. Proceeding in this manner leads to

β =
1

ε2γ

d

dz
ln

(
p̂

ρ̂γ

)
+

1

γ

d

dz
p0 −

d

dz
ρ0. (3.71)

From the equation of state (3.1f)

1

T0

d

dz
T0 =

1

p0

d

dz
p0 −

1

ρ0

d

dz
ρ0. (3.72)

Substituting (3.72) into (3.71) and making use of p0 = −pm at leading order, gives

β =
1

ε2γ

d

dz
ln

(
p̂

ρ̂γ

)
+

d

dz
T0 +D

d

dz
pm0. (3.73)

Finally, with the use of (3.65) and (3.69), we can express the definition of the temperature

gradient in Spiegel & Weiss (1982) in terms of our reference state and basic state

definitions as

β = β̂ + β0. (3.74)
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3.3.2 Linking the magneto-Boussinesq systems

The previous section presented a new set of equations describing the combined effects

of magnetic buoyancy instability and an influential shear flow, consistent within the

magneto-Boussinesq approximation. As discussed, there are a number of significant

differences between these equations and those of Spiegel & Weiss (1982). It is therefore

of interest to examine how a connection may be made between the two systems. To

achieve this we can introduce two control parameters q and r, defined by

HB

Hp

= εq1,
HU

Hp

= εr1, (3.75)

where both q and r satisfy 0 ≤ q , r ≤ 1 . These parameters measure the size of the scale

height of magnetic field (for q) and the velocity shear (for r), relative to the pressure scale

height. Doing this from the onset allows us to derive a set of mixed order equations,

dependent on q and r, that can be used to switch easily between the new set of equations

in §3.2.4 (q = 1, r = 1) and the equations of Spiegel & Weiss (1982), Corfield (1984)

(q = 0). As shown in §3.2.1, when q = 0 it is irrelevant what choice of r we pick as the

shear will not enter the equations in an influential manner.

It can be seen from §3.2.2 that the size of all perturbations and the basic state variables

depend on HB and therefore on q. In order to keep the magnitudes of the density

fluctuations constant as the parameter q varies, using (3.39) we express the magnitude

of the basic state magnetic fields as

B2
∗

µ0p∗
=
HB

d
ε2 ⇒ B2

∗
µ0ρ∗

= εq−11 ε2c
2
s. (3.76)

The assumption that the Alfvén speed is much smaller than the sound speed leads to the

inequality ε2 � ε1−q1 . To ensure we scale the magnitude of the basic state velocity shear

consistently, we fix U∗ to be of the same size as the velocity perturbation parallel to the

field δu‖. Therefore, following the ideas of §3.2.2, we can express the required strength

of the velocity shear and horizontal length scale in terms of the parameter q as

U2
∗ ∼ ε1−q1 ε2c

2
s,

d

L
∼ ε

1−q/2
1 . (3.77)

Although more complicated than the q = 1 expressions of §3.2.4, we can nonetheless

proceed in a similar manner and express the variables in terms of non-dimensional
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expansions. The scalar variables are independent of q and are therefore scaled as in

(3.56a) – (3.57b). The vector quantities may be expanded as

u = (ε1ε2)
1/2cs

(
ε
−q/2
1

∼
U 0 + ε

−q/2
1 δ

∼
u‖ + δ

∼
u⊥

)
, (3.78a)

B = (ε1ε2µ0p∗)
1/2
(
ε
q/2−1
1

∼
B0 + ε

−q/2
1 δ

∼
b‖ + δ

∼
b⊥

)
. (3.78b)

Writing the expansions like this confirms what we know from equation (3.66), namely

that the perpendicular fluctuations are independent of q and hence are the same size for

both the new equations and those of Spiegel & Weiss (1982). The operators∇‖ and∇⊥
are scaled as

∇‖ =
ε
1−q/2
1

d

∼
∇‖, ∇⊥ =

1

d

∼
∇⊥, (3.79)

and we adopt the same q-independent time scale as in (3.60),

∂t = (ε1ε2)
1/2 cs

d
∂∼
t
. (3.80)

Performing the same sequence of operations that leads to equations (3.61), leads to the

following q and r-dependent mixed-order system of equations:(
∂t+ε

1−q
1 (U0 + u) · ∇‖ + u · ∇⊥

)
u+ ε1−r1 U ′0w

=−∇⊥Π + (T + pm) ẑ +
(
B0 · ∇‖ + ε1−q1 b · ∇‖ + b · ∇⊥

)
b

+B′0bz +Re−1∇2
⊥u, (3.81a)

− ε1
w

Hρ

+ ε1−q1 ∇‖ · u+∇⊥ · u = 0, (3.81b)(
∂t+ε

1−q
1 (U0 + u) · ∇‖ + u · ∇⊥

)
b+B′0w

=
(
B0 · ∇‖ + ε1−q1 b · ∇‖ + b · ∇⊥

)
u+ ε1−r1 U ′0bz

−B0

(
∇‖ · u+ εq−11 ∇⊥ · u

)
+Rm−1∇2

⊥b, (3.81c)

ε1−q1 ∇‖ · b+∇⊥ · b = 0, (3.81d)(
∂t+ε

1−q
1 (U0 + u) · ∇‖ + u · ∇⊥

)(
(T0 + T ) +D(pm0 + pm)

)
+ wβ̂ = Pe−1∇2

⊥T

+ ε1−q1 DRm−1
(

(∂yb‖)
2 + (∂zb‖)

2 + 2B′0∂zb‖

)
+ ε1−q1 DRe−1

(
(∂yu‖)

2 + (∂zu‖)
2 + 2ε1−r1 U ′0∂zu‖

)
, (3.81e)
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In the above equations the non-dimensional numbers are defined as

Re =
ε
q/2
1 U∗d

ν
, Rm =

ε
q/2
1 U∗d

η
, Pe =

ε
q/2
1 U∗d

κ
, (3.82)

and ′ denotes the derivative of a basic state variable with respect to z. Although not

obvious, with the use of equation (3.77) it can be shown that these non-dimensional

parameters do not actually depend on q and therefore, as required, their numerical values

remain the same as we switch between systems. Note that the leading order term arising

fromB(∇ · u) in the induction equation,

B0

(
∇‖ · u+ εq−11 ∇⊥ · u

)
, (3.83)

can be written with the use of (3.81b) into the same form used by Corfield (1984)

εq1B0
w

Hρ

. (3.84)

Writing (3.83) in this form it becomes clear that this term enters into the leading order

equations only when q = 0 , and is formally smaller than all other terms for every other

value of q. Equations (3.81) allow us to identify six different systems, depending on the

choice of q and r. For q = 0 the system reverts to the magneto-Boussinesq equations

of Spiegel & Weiss (1982), for which, regardless of the choice of r, the inclusion of a

shear flow has no influence on the onset of instability. Either r = 1 and we revert to

equations (3.16) – (3.17), in that the shear terms drop out, or 0 ≤ r < 1 and we have a

equations (3.26) – (3.27) where velocity shear never enters. For 0 < q < 1 the resulting

two systems are very similar to those produced when q = 0 , thus the velocity shear has

no ‘influential’ effect. The final two systems come from taking q = 1 . When r = 1 , we

recover the system of equations (3.61), in which velocity shear can influence magnetic

buoyancy. For 0 ≤ r < 1 , the advection terms associated with U0 just represent uniform

flow, and, as before, with a Galilean transformation we can move into the frame of the

flow and lose all basic state shear terms. This system does have some merit however. It

represents a system of equations that can be used to model magnetic buoyancy instability

in the absence of shear for an O (1) magnetic field gradient, something that, as addressed

by Hughes (1985a), is not possible working straight from the equations of Spiegel &

Weiss (1982).
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3.4 Discussion

In §3.2.1 we showed how naı̈vely incorporating velocity shear in the equations of Spiegel

& Weiss (1982) and Corfield (1984), has no influence on the linear stability problem. To

combat this and to introduce a shear flow that assumes a non-trivial role on the magnetic

buoyancy instability, we had to take a closer look at the asymptotic orderings used to

derive the magneto-Boussinesq equations (3.13). This is done in §3.2.2, where we were

able to reproduce these orderings, without specific reference to incorporating a shear flow.

Unlike Corfield (1984) however, we make no assumption about the magnetic field scale

height; as a result, all the orderings are valid for d . HB . Hp.

As shown in §3.2.3, to incorporate shear in an influential manner, two conditions must be

met; that HU is O(d) and that U2
∗ ∼ c2A . For consistency with the scalings determined

in §3.2.2, it follows that HB must also be O(d). The various required orderings are

applied to the full MHD governing equations (3.1) in §3.2.4 to yield the leading order

equations (3.61) that involve both the effects of velocity shear and magnetic buoyancy.

As discussed above, equations (3.61) also allow us to examine the effects of magnetic

buoyancy for a magnetic field with an O(d) scale height in the absence of velocity shear,

a scenario that is excluded from the equations of Corfield (1984), as identified by Hughes

(1985a).

In the absence of shear, the transformation between equations (3.61) and those of Spiegel

& Weiss (1982) and Corfield (1984) (equations (3.13)) can be effected by increasing the

magnetic field scale height from O(d) to O(Hp). This is verified in §3.3.2, where we

introduce two new parameters, q and r, that control the relative magnitudes of the scale

heights of the magnetic field and velocity shear to the pressure scale height. Varying these

parameters allows us to switch between six different regimes, each with their own set of

equations.

The new equations in this chapter are derived with the intent of being used to study

the solar tachocline. Therefore it is logical to investigate how well the assumptions and

scalings used relate to conditions at the tachocline. Let us first consider the magnitudes

of the two small quantities in our asymptotic expansions, ε1 and ε2. From table 1.1



Chapter 3. Velocity shear in the magneto-Boussinesq approximation 52

the pressure scale height in the tachocline is approximately 0.08R� (Gough, 2007).

Estimates of the vertical extent of the tachocline vary a little, according to how it is defined

(see, for example, Miesch, 2005), but lie in the range between 0.02R� and 0.05R� . Thus

ε1 = d/Hp is certainly less than unity, but is not particularly small. Ossendrijver (2003)

estimates the small parameter ε2, as O (103/B2
∗), where B∗ is measured in Gauss. The

mean toroidal field strength in the tachocline is currently unknown; however theoretical

assumptions put it between 103G and 105G. This certainly makes ε2 small, in the range

10−7 . ε2 . 10−3 .

Since the magnitudes of ε1 and ε2 for the tachocline fall within our assumptions,

it suggests that a magneto-Boussinesq approach is appropriate. Finally, we need

to validate our assumptions for an influential shear, equations (3.50) and (3.51).

Equation (3.50) specifies that HU ∼ d ; this is true of the tachocline, almost by definition.

Expression (3.51) requires that U∗ be comparable with the Alfvén speed cA. Since we

have a good estimate of U∗ from helioseismic inversions, but no direct knowledge of the

magnetic field strength B∗, it makes more sense to look at this from the other perspective

and to ask what values ofB∗ will allow (3.51) to be satisfied. From the helioseismological

results of Schou et al. (1998), the jump in the angular velocity across the tachocline (at

the equator) is of the order of 20 nHz, which translates into U∗ ≈ 30ms−1 . Requiring

cA ∼ U∗ determines the characteristic magnetic field strength as B∗ ≈ 103G . Thus

everything ties together very nicely, suggesting that equations (3.61) form an appropriate

system for the study of magnetic buoyancy instabilities in the tachocline.
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Chapter 4

Linear diffusionless theory

In Chapter 3 we derived a new set of equations (3.61) that incorporated a velocity

shear into the magneto-Boussinesq equations. In this chapter we focus on the linear

evolution of these equations in the diffusionless limit. Thus we assume from the onset

that ν = η = κ = 0 . Making these assumptions aids us mathematically in deriving

generalised results for this new system.

This chapter is split into three main sections. In §4.1 we set up an eigenvalue problem,

manipulating the governing equations to a single, second order ODE. This equation can be

solved as a boundary value problem and is used throughout this thesis. As mentioned in

Chapter 3, equations (3.61) not only offer the chance to examine the effects of a velocity

shear on the magnetic buoyancy instability, but also allow us to study magnetic buoyancy

in the presence of a magnetic field that varies on a length scale of O(1). In §4.2 we derive

stability criteria for said case, comparing the results to the previous work on magnetic

buoyancy laid out in Chapter 2. Finally, in §4.3 we reintroduce shear back into the

equations and obtain semicircle bounds that are then used to derive stability criteria for

the full system.
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4.1 Eigenvalue problem

For a basic state magnetic field of the form B = B(z)x̂, in the absence of diffusion, the

linearised version of equations (3.61) are;

∇ · u = 0, (4.1a)

∇ · b = 0, (4.1b)(
∂

∂t
+ U

∂

∂x

)
u+U ′w = −∇⊥Π + (T +Bbx) ẑ +B

∂b

∂x
+B′bz, (4.1c)(

∂

∂t
+ U

∂

∂x

)
b+B′w = B

∂u

∂x
+U ′bz, (4.1d)(

∂

∂t
+ U

∂

∂x

)
(T +DBbx) = −βw, (4.1e)

where ′ denotes differentiation with respect to z and D = 1− 1/γ . For neatness the

subadiabatic temperature gradient β is a combination of the reference state and basic

state terms defined in (3.74), and the subscript ‘0’ has been dropped from the basic state

terms. Since the coefficients of the system of linear PDEs given above are functions only

of z, we may assume perturbation variables are of the form

f(x, y, z, t) = f̂(z) expi(kx+ly+ωt) . (4.2)

We consider a complex ω, defined as ω = ωr + iωi ; thus a modal solution of this form

grows when ωi < 0 . After dropping the hatted notation, equations (4.1) reduce to an

eigenvalue problem given by the following system of equations,

iku+ ilv + w′ = 0 (4.3a)

ikbx + ilby + b′z = 0 (4.3b)

i (ω + kU)u+ U ′w = ikBbx +B′bz, (4.3c)

i (ω + kU) v = −ilΠ + ikBby, (4.3d)

i (ω + kU)w = −Π′ + (T +Bbx) + ikBbz, (4.3e)

i (ω + kU) bx +B′w = ikBu+ U ′bz, (4.3f)

i (ω + kU) by = ikBv, (4.3g)

i (ω + kU) bz = ikBw, (4.3h)
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i (ω + kU) (T +DBbx) = −βw. (4.3i)

Provided l 6= 0 , the equations (4.3) can be reduced to a single governing second order

ODE for w

α1(z)w′′ + α2(z)w′ + α3(z)w = 0, (4.4)

where

α1(z) = (ω + kU)2 − k2B2, (4.5)

α2(z) =
2k3B2U ′

ω + kU
− 2k2BB′, (4.6)

α3(z) = k2l2B2 − l2(ω + kU)2 + l2β +
l2BB′

γ

+
2k3BB′U ′

ω + kU
− 2k4B2U ′2

(ω + kU)2
− k(ω + kU)U ′′ +

k3B2U ′′

ω + kU
. (4.7)

A detailed breakdown on how to recover equation (4.4) is given in appendix A.

Equation (4.4) can be solved as a boundary value problem, subject to impermeable

boundary conditions on the vertical velocity w. Performing a transformation similar to

that used by Howard (1961), equation (4.4) can be represented in a more compact form.

Writing w = (ω + kU)1−n/2ψ , the eigenvalue equation (4.4) becomes(
PQ−nψ′

)′ − l2(P − β − BB′

γ

)
Q−nψ

+
n

2

[
P

(
(n/2 + 1)Q′2

Q
−Q′′

)
−Q′P ′

]
Q−1−nψ = 0, (4.8)

where

P = (ω + kU)2 − k2B2 and Q = ω + kU. (4.9)

Since ψ is proportional to w, equation (4.8) can also be solved as a boundary value

problem, subject to impermeable boundary conditions on ψ. In the absence of magnetic

field (B = 0) the above n-dependent ODE can be used to produce three important results

for hydrodynamic flows: n = 0 produces Howard’s semicircle theorem, n = 1 leads

to the Richardson number criteria for stratified flows and n = 2 to a generalization of

Rayleigh’s inflection-point criteria for stratified flows, derived by Synge (1933). We shall

focus on the case where n = 0 ; thus equation (4.8) becomes

(Pψ′)′ − l2
(
P − β − BB′

γ

)
ψ = 0. (4.10)
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Note that equation (4.10) remains unchanged under the transformations l→ −l , so

without loss of generality we will assume l > 0 , we also make a similar assumption for k

(k ≥ 0). We will solve this in a domain bounded by rigid walls at z = 0 and z = 1 , thus

ψ = 0 at each boundary. Therefore, for given real wavenumbers k, l, equation (4.10) is

an eigenvalue problem for the unknown ω = ωr + iωi .

4.2 Magnetic buoyancy stability criteria for an O(1/d)

field gradient, in the absence of velocity shear

In the absence of a velocity shear, equations (3.61) allow us to study magnetic buoyancy

instability in the presence of a magnetic field varying on a short O (d) length scale,

compared to equations of Spiegel & Weiss (1982), which are restricted to field variations

on an O (Hp) scale. It is therefore of interest to derive stability criteria for this new

system.

Neglecting velocity shear U , the governing ODE (4.10) simplifies to

((ω2 − k2B2)ψ′)′ − l2
(
ω2 − k2B2 − β − BB′

γ

)
ψ = 0. (4.11)

Multiplying (4.11) by ψ∗ (the complex conjugate of ψ), integrating over z and making

use of the boundary conditions gives∫ 1

0

ω2Λ dz = l2
∫ 1

0

(
k2B2 + β +

BB′

γ

)
|ψ|2dz +

∫ 1

0

k2B2|ψ′|dz, (4.12)

where Λ = |ψ′|2 + l2|ψ|2 . Expressing the ODE in this form allows us to derive sufficient

conditions for stability for both the interchange and undular modes. That is, interchange

modes are guaranteed to be stable (ωi > 0 ) if everywhere in the layer

β +
BB′

γ
> 0. (4.13)

Similarly undular modes with longitudinal wavenumber k, are guaranteed to be stable if

everywhere

k2B2 + β +
BB′

γ
> 0. (4.14)
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Reverting back to dimensional form, the stability criteria for the interchange and undular

respectively become

− γga2

c2
d

dz
lnB < N̂2 +

g

T∗

d

dz
T (4.15a)

and − γga2

c2
d

dz
lnB < a2k2 + N̂2 +

g

T∗

d

dz
T, (4.15b)

where c is the adiabatic sound speed and a is the Alfvén speed, defined using the

characteristic values as

c2 =
γp∗
ρ∗

, and a2 =
B2
∗

µ0ρ∗
. (4.16)

To separate the hydrodynamic and magnetic states, the Brunt-Väisälä frequency used

in (4.15) is defined only in terms of reference state variables,

N̂2 =
g

γ

d

dz
ln

(
p̂

ρ̂γ

)
. (4.17)

As addressed in §3.3.1 it is possible to define the temperature gradient in a similar form

to that used in Spiegel & Weiss (1982) by combining reference and basic state terms, as

in (3.70). Expressing the buoyancy frequency in this form

N2 =
g

γ

d

dz
ln

(
p̂+ ε2p0

(ρ̂+ ε2ρ0)γ

)
, (4.18)

we are able to express the stability criteria (4.15) in a more familiar fashion. Thus

interchange modes are guaranteed to be stable if everywhere in the layer

−ga
2

c2
d

dz
lnB < N2. (4.19)

Likewise undular modes are guaranteed to be stable if everywhere in the layer

−ga
2

c2
d

dz
lnB < a2k2 +N2. (4.20)

By analysing stability criteria (4.19) and (4.20) we can conclude that if an interchange

mode is stable, then for the same atmospheric configuration all undular modes must also

be stable. In other words, an undular mode cannot be unstable if the interchange mode

is stable. This is unlike the results in §2.1.1 where for an O(d/Hp) field gradient, such

a situation was possible. When comparing the interchange criteria (4.19) and (2.9), we

see that for an O(1/d) field gradient, stability is no longer dependent on the decrease of

B/ρ , but instead just of B. This can be seen through our orderings laid out in Chapter 3,

as dρ̂/dz is O(d/Hp) smaller than dB/dz and therefore does not enter the equations.
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4.3 Semicircle theorems

In this section we reintroduce the effects of a velocity shear into our analysis. For

incompressible, hydrodynamic shear flows, Howard (1961) showed that the complex

wave speed c = −ω/k of an unstable mode must lie within a semicircle in the complex

plane, the size of which is determined by properties of the basic state flow. A

magnetic extension to this was provided by Hughes & Tobias (2001), who studied the

incompressible, ideal MHD equations in the presence of a basic state shear flow aligned

with the basic state magnetic field. Their aim was to examine the influence of the magnetic

field on the shear flow; as such they neglected buoyancy effects. Stability criteria can then

be derived from the semicircle bounds. A similar process can be carried out using our

new equations to include magnetic buoyancy effects.

As part of their derivation, Hughes & Tobias (2001) made use of a magnetic extension

to Squire’s theorem (Squire, 1933), where it can be shown that for any unstable three-

dimensional (undular) mode, there corresponds a two-dimensional undular mode ( l = 0)

with a larger growth rate. A striking difference between our system and that used by

Hughes & Tobias (2001) is the lack of a total pressure term in the x-component of the

momentum equation (4.3c). As such we require a non-zero l to eliminate the total pressure

terms in our equations and thus there is no analogue of Squire’s theorem.

Multiplying (4.10) by ψ∗, integrating over the layer and applying the impermeable

boundary conditions gives∫ 1

0

PΛ dz − l2
∫ 1

0

(
β +

BB′

γ

)
|ψ|2dz = 0. (4.21)

Since the eigenvalue ω is complex this can be split into real and imaginary parts, the

imaginary part becoming

ωi

∫ 1

0

(ωr + kU)Λdz = 0. (4.22)

This is Rayleigh’s result that states for any unstable mode (ωi < 0 ), ωr lies within a range

of negative kU (i.e. −kUmax ≤ ωr ≤ −kUmin ). Note that this bound is independent of the

basic state magnetic field and temperature gradient.
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With the use of (4.22), the real part of (4.21) becomes∫ 1

0

(
ω2
r + ω2

i

)
Λ dz = k2

∫ 1

0

(
U2 −B2

)
Λ dz − l2

∫ 1

0

(
β +

BB′

γ

)
|ψ|2dz. (4.23)

As we do not know the magnitude of |ψ|2, to proceed further we have to restrict our

analysis to two cases; β +BB′/γ > 0 everywhere and β +BB′/γ < 0 everywhere.

Unfortunately we are not able to conclude anything regarding the case where β +BB′/γ

changes sign over the layer.

If β +BB′/γ > 0 everywhere, equation (4.23) implies

0 ≤
(
ω2
r + ω2

i

) ∫ 1

0

Λ dz ≤ k2
(
U2 −B2

)
max

∫ 1

0

Λ dz. (4.24)

This is the same result found by Hughes & Tobias (2001), who went on to derive

two semicircle bounds for the eigenvalue. Their results tell us that if β +BB′/γ > 0

everywhere, the eigenvalue ω of an unstable mode must lie within the intersection of the

two semicircles defined by

ω2
r + ω2

i ≤ k2
(
U2 −B2

)
max , (4.25)(

ωr +
k

2
(Umin + Umax)

)2

+ ω2
i ≤

k2

4
(Umin − Umax)

2 − k2
(
B2
)

min . (4.26)

Now suppose β +BB′/γ < 0 everywhere; we can rewrite (4.23) as∫ 1

0

(
ω2
r + ω2

i

)
Λ dz =

∫ 1

0

[
k2
(
U2 −B2

)
−
(
β +

BB′

γ

)]
Λ dz

+

∫ 1

0

(
β +

BB′

γ

)
|ψ′|2dz. (4.27)

Thus for an unstable mode, ω2
r + ω2

i lies within a semicircle defined by

ω2
r + ω2

i ≤ k2
(
U2 −B2

)
max −

(
β +

BB′

γ

)
min
. (4.28)

Another semicircle bound may be obtained using the inequality

0 ≥ k2
∫ 1

0

(U − Umin) (U − Umax) Λ dz. (4.29)
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Making use of (4.22) and (4.27), we can write the above inequality (4.29) as

0 ≥
∫ 1

0

[ (
ω2
r + ω2

i

)
+ k (Umin + Umax)ωr + k2UminUmax

+ k2B2 +

(
β +

BB′

γ

)]
Λ dz −

∫ 1

0

(
β +

BB′

γ

)
|ψ′|2dz. (4.30)

Since β +BB′/γ is negative everywhere, it follows that

0 ≥
(
ω2
r + ω2

i

)
+ k (Umin + Umax)ωr + k2UminUmax

+ k2
(
B2
)

min +

(
β +

BB′

γ

)
min
, (4.31)

or equivalently in semicircle form(
ωr +

k

2
(Umin + Umax)

)2

+ ω2
i ≤

k2

4
(Umin − Umax)

2

− k2
(
B2
)

min −
(
β +

BB′

γ

)
min
. (4.32)

Together these results tell us that when β +BB′/γ < 0 everywhere, the eigenvalue ω

of an unstable mode must lie within the intersection of the two semicircles defined by

equations (4.28) and (4.32).

4.3.1 Stability criteria

As noted by Hughes & Tobias (2001), as well as yielding eigenvalue bounds for unstable

modes, the semicircle results allow us to derive sufficient conditions for stability. Since

instability requires an overlap of both the semicircles, we can conclude that the flow is

stable if either of the semicircle’s radius shrinks to zero and hence the semicircle ceases

to exists (Figure 4.1c). When β +BB′/γ is positive throughout the layer we arrive at the

same result as Hughes & Tobias (2001); from (4.25) and (4.26), stability is guaranteed

when β +BB′/γ > 0 everywhere, if either of these conditions are satisfied:

|B| > |U | , (4.33a)

everywhere in the fluid, or

|B|min >
|Umin − Umax|

2
. (4.33b)
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In the absence of a basic state shear flow (U = 0), these conditions are always satisfied.

This confirms what we found §4.2; namely that stability is assured in the absence of shear,

when β +BB′/γ > 0 everywhere.

Stability is also guaranteed when both semicircles are well defined but are disjoint

(Figure 4.1d). Again using (4.25) and (4.26), if β +BB′/γ > 0 everywhere, the flow

is stable when

Umin + Umax

2
−

√
(Umin − Umax)

2

4
− (B2)min >

√
(U2 −B2)max. (4.34)

Similar stability criteria can be derived when β +BB′/γ is negative throughout the layer,

from semicircles (4.28) and (4.32). Thus stability is guaranteed when β +BB′/γ < 0

everywhere, if any of the three following criteria are satisfied:

k2
(
U2 −B2

)
max >

(
β +

BB′

γ

)
min
, (4.35)

k2

4
(Umin − Umax)

2 − k2
(
B2
)

min >

(
β +

BB′

γ

)
min
, (4.36)

k

2
(Umin + Umax) +

√
k2 (Umin − Umax)

2

4
− k2 (B2)min −

(
β +

BB′

γ

)
min

>

√
k2 (U2 −B2)max −

(
β +

BB′

γ

)
min
. (4.37)
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(a)

(b)

(c)

(d)

Figure 4.1: Four possible configurations for the semicircles bounds. The bounds could:

(a) fully overlap; (b) partially overlap; (c) have one undefined semicircle; (d) be disjoint.

In configurations (a) and (b) the semicircles overlap and instability is possible, whereas

in (c) and (d) linear stability is guaranteed.
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Chapter 5

Short-wavelength magnetic buoyancy
instability

5.1 Introduction

The study of magnetic buoyancy instability in the short-wavelength limit was introduced

by Gilman (1970), who considered the linear instability of a horizontal stratified magnetic

field in a compressible layer. With the extreme parameter values of the solar interior in

mind, Gilman considered the case where the thermal diffusivity is large compared to

viscosity and the diffusivity of the magnetic field. With these parameter values in place

one can represent the set of governing equations as an eigenvalue problem, which can be

solved by employing appropriate boundary conditions. Gilman suggested that the fastest

growing mode in such a system would be infinitesimally narrow in the horizontal direction

perpendicular to the imposed magnetic field. By adopting this short-wavelength limit

( l→∞) and assuming derivatives in height z remain sufficiently small, the governing

equations can be drastically simplified. Specifically, all z derivatives in our system

vanish, leaving a ‘depth-dependent’ dispersion relation for the eigenvalue. Thus the

eigenvalue, and therefore the growth rate, can be written in terms of basic state variables

that vary in height. This suggests the growth rate can theoretically take different values

throughout the layer. As noted by Mizerski et al. (2013), mathematically this raises
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an interesting question as to how the boundary conditions play a role in such a system

where z derivatives are seemingly irrelevant. Through an asymptotic boundary layer

analysis Mizerski et al. (2013) bridged the gap and incorporated the boundary value

problem with Gilman’s l→∞ depth-dependent dispersion relation. Their results showed

that in the short-wavelength limit, eigenfunctions of the system are localised around a

point in the layer and this point corresponds to the height at which the growth rate, given

by the depth-dependent dispersion relation, is maximised.

Similar localised results have also been found in a very different contexts. Using similar

boundary layer techniques, Griffiths (2008) studied inertial instabilities of a rotating,

stratified flow influenced by a horizontal cross-stream shear and found similar results.

Griffiths took a small vertical scale that corresponded to a ‘near-inertial’ limit and found

solutions localised in the direction of the horizontal cross-stream direction.

Guided by the work of Mizerski et al. (2013) and Griffiths (2008) we aim to study the

short-wavelength magnetic buoyancy instability for our new system of equations (3.61).

In §5.2 we look at the instability in the absence of shear. Although this work follows

that of Mizerski et al. (2013), it is necessary in order to gain a good understanding of the

simplified problem before adding further complexity. In §5.3 we tackle the problem with

velocity shear. It would appear at first glance that the shear plays no role on the instability,

as the l→∞ limit suggests that the shear contributes only to the frequency of the mode.

Through an asymptotic analysis we shall see that this is not necessarily the case, and that

in fact the shear can play a very big role in determining the growth rate and structure of

the mode. These influences of the shear on the instability are discussed in detail in §5.4.

As well as revealing new results, the work in this chapter lays the foundations for the

work in Chapter 6, where the effects of diffusion on the short-wavelength instability are

considered.
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5.2 Short-wavelength instability with an O (1/d)

magnetic field gradient, in the absence of velocity

shear

This first section on short-wavelength magnetic buoyancy instability will all be studied

in the absence of shear and follows closely the work of Mizerski et al. (2013). Mizerski

et al. results were obtained using the fully compressible MHD equations. Whereas, as

with the rest of this thesis, we use equations (3.61), which are derived under the magneto-

Boussinesq approximation, with an O (1/d) magnetic field gradient.

As shown in Chapter 4, it is possible to reduce the linear, diffusionless governing

equations (4.1) to a second order differential equation (4.10),(
(ω2 − k2B2)ψ′

)′ − l2 (ω2 − F
)
ψ = 0, (5.1)

where ψ = (ω + kU)−1w . For neatness we have introduced the variable F made up of

basic state quantities, defined as

F (z) = k2B2 + β +
BB′

γ
. (5.2)

Equation (5.1) can be solved as a boundary value problem subject to impermeable

boundary conditions on ψ. It is important at this stage to comment upon our assumptions

leading to equation (5.1) and how they differ to the assumptions of Gilman (1970), and

consequently Mizerski et al. (2013). With the magnitudes of the solar parameters in

mind Gilman considered (as did we) the case of an inviscid, perfectly conducting gas.

However, unlike us, he made the assumption that the thermal relaxation was sufficiently

fast that the temperature perturbation could be specified at all times, therefore treating the

gas as isothermal and ignoring the energy equation in his calculations. To keep the effects

of the reference state stratification we have not made this assumption and instead have

just neglected thermal diffusion. It is straightforward however to derive an analogue to

equation (5.1) for the isothermal case(
(ω2 − k2B2)ψ′

)′ − l2 (ω2 − k2B2 −BB′
)
ψ = 0. (5.3)
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We can seamlessly transition between our governing ODE (5.1) and the isothermal

analogue (5.3) by implementing both β̂ = 0 and T ′0 = 0 .

When considering the short-wavelength limit, Gilman assumes that perturbations are very

narrow in the y direction compared with the scales in x and z, which is enforced through

the scaling l→∞ with ∂z � l . Applying this assumption to equation (5.1) we obtain,

(
ω2 − F

)
ψ = 0. (5.4)

Besides the trivial solution, in which ψ = 0 throughout the layer, the only other solution

is a discontinuous one; ψ = 0 everywhere expect at a point zc where

ω2 = F (zc). (5.5)

It is interesting to note that eigenvalues defined in (5.5) vary continuously with height.

This could lead to the possibility of a continuum of peaked solutions, all at different

heights, each of which corresponding to a different eigenvalue ω and hence a different

growth rate. Therefore is it logical to ask which solution is preferred and thus what is the

height zc, at which the eigenfunction is peaked? Mizerski et al. (2013) identified that the

physical solution would naturally be the most unstable mode, thus zc would be the point

in the layer at which the ‘depth–dependent’ eigenvalue given by

ω(z) = −
√
F (z) = −

(
k2B2 + β +

BB′

γ

)1/2

, (5.6)

takes its most negative imaginary value; i.e. the point in the layer where the growth rate

is maximised. The idea behind the l→∞ limit solution can be visualised in Figure 5.1.

Here the depth–dependent imaginary part of the eigenvalue given by equation (5.6)

is minimised at zc = 0.4 , when = (ω) = −1 . Thus the corresponding eigenfunction

solution is zero everywhere expect at the point z = 0.4 .

Equation (5.6) also provides us with a criterion for instability. That is, in the short-

wavelength limit, instability (= (ω) < 0 ) occurs if somewhere in the layer

F (z) = k2B2 + β +
BB′

γ
< 0. (5.7)
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Figure 5.1: An example of the discontinuous problem in the l→∞ limit, with the depth-

dependent = (ω) given by (5.6) (left), and the corresponding discontinuous eigenfunction

solution ψ (right).

As done in §4.2, this inequality can be converted back to dimensional form. Thus short-

wavelength instability is guaranteed if somewhere in the layer

−ga
2

c2
d

dz
lnB > a2k2 +N2, (5.8)

where the a, c and N are defined as in (4.16) and (4.18). Written in this form it is clear

that instability is more readily achieved for interchange modes (i.e k = 0). Thus for a

given configuration in the short-wavelength limit, the most unstable mode will always be

an interchange mode. The same result was found by Mizerski et al. (2013), who found

that, provided Hb . 2Hp , the dominant mode will always be an interchange mode. This

is very different to the results of Chapter 2, where for a smaller field gradient (HB ∼ Hp )

the preferred mode of instability was the undular mode with finite k → 0 . If we were only

interested in the case without velocity shear it would be logical at this stage to restrict

our analysis to just interchange modes. However, we see from our governing equation

with velocity shear (4.10) that upon taking k = 0 , we lose all terms associated with U .

Therefore, to examine the effects of velocity shear on the short-wavelength magnetic

buoyancy instability it is crucial that k 6= 0 . With this in mind, we do not neglect k terms

in our calculations and hence study the full three-dimensional problem throughout.

In a similar vein, we see that the instability is hindered by increasing the convective
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stability of the atmosphere (i.e. increasing N2). Thus the isothermal limit adopted

by Gilman, corresponding to N2 = 0 , leads to modes of higher growth rate. This idea is

discussed further in Chapter 6 as we introduce diffusivities into the system.

5.2.1 Asymptotic analysis

Upon adopting the l→∞ limit, our governing equation is transformed from a second

order ODE (5.1) with appropriate boundary conditions, to equation (5.4), in which all

z derivatives have vanished. Therefore, in this limit, the system seemingly has no

dependency on the boundary conditions. Following in the footsteps of Mizerski et al.

(2013) we perform a boundary layer analysis on the governing ODE (5.1), in an attempt

to link the discontinuous problem outlined above to the full solution of the eigenvalue

problem for large finite l. Formally this is achieved by introducing a boundary layer

variable

ξi =
z − zc
δi

, (5.9)

where δi(l) is a measure of the thickness of the boundary/internal layer. From what

we observed in §5.2, we expect δi to become small as l becomes large. Therefore, we

expand the eigenvalue in powers of δi such that ω = ω0 + δ1ω1 + δ22ω2 + . . . , and assume

ω0 ∼ O(1) . By introducing appropriate boundary layers we aim to match the main flow

solution ψ = 0 to the point zc, where equation (5.5) is satisfied. By Taylor expanding

all functions of z around the point zc, it is possible to derive asymptotically consistent

analytic solutions for the eigenvalue ω and eigenfunction ψ. Like Mizerski et al. (2013),

we impose impermeable boundary conditions on ψ, such that ψ = 0 at both the top and

bottom boundaries.

Considering i = 0 with ω = ω0 + o(1) , equation (5.1) becomes

(
ω2
0 − k2B2

) d2ψ

dξ20
− δ20l2

(
ω2
0 − F

)
ψ = 0, (5.10)

where all basic state functions of z are evaluated at zc. It is worth noting that in

equation (5.10) we have dropped all terms smaller than O(1); hence for asymptotic
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consistency we require δ0 = l−1 . The only continuous, non-trivial solution to this

equation that obeys the boundary conditions is a constant ψ, with

ω0 = −
√
F (zc) = −

(
k2B2 + β +

BB′

γ

)1/2 ∣∣∣∣
z=zc

. (5.11)

Therefore, in order to match this constant ψ solution to the main flow (ψ = 0), we must

consider higher-order terms and introduce more internal boundary layers. With our overall

focus on the linear instabilities, we take ω0 to be the negative root of ω2
0 = F . As

addressed in §5.2, zc is defined as the place in the layer at which F (z) takes its most

negative value. Thus, like Mizerski et al. (2013), we have to split our analysis into two

cases. In §5.2.2 we consider the case when F (z) has a quadratic minimum in the layer

at z = zmax , thus zc = zmax similar to what we saw in Figure 5.1. In §5.2.3 we examine

what happens when F (z) has no minimum, or is minimised outside the layer. In this case,

zc is defined on the upper or lower boundary, depending on whether F (z) is a decreasing

or increasing function. The final special case in which F (z) is minimised exactly on the

boundary is addressed at the end of §5.2.3.

5.2.2 zc in the layer

In this section we are interested in the case where the growth rate, defined by −= (ω(z)) ,

is maximised in the layer at z = zc . Suppose we introduce another boundary layer

coordinate

ξ1 =
z − zc
δ1

, (5.12)

and look for next order corrections to the eigenvalue ω = ω0 + δ1ω1 + o(δ1) . Substituting

these expressions into (5.1) and making use of equation (5.11) we obtain, through Taylor

expansion,

(
ω2
0 − k2B2

) d2ψ

dξ21
− δ31l2

[
2ω0ω1 − ξ1

dF

dz

]
ψ = 0, (5.13)

where again all basic state functions of z are evaluated at z = zc . Terms in this equation

balance when δ1 = l−2/3 and all terms smaller than O (1) are neglected. By definition, zc
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is the height at which F (z) is minimised and hence

dF

dz

∣∣∣∣
z=zc

=
d

dz

(
k2B2 + β +

BB′

γ

) ∣∣∣∣
z=zc

= 0. (5.14)

Therefore, equation (5.13) reduces to

(
ω2
0 − k2B2

) d2ψ

dξ21
− 2ω0ω1ψ = 0. (5.15)

The only continuous solution for ψ with a turning point in the layer has ω1 = 0 , and

hence provides no new information on the eigenvalue. Thus we are required to introduce

a further boundary layer to our expansion. Let

ξ2 =
z − zc
δ2

, (5.16)

and expand the eigenvalue with ω1 = 0 as ω = ω0 + δ22ω2 + o(δ22) . When substituted

into (5.1) the leading order terms becomes

(
ω2
0 − k2B2

) d2ψ

dξ22
− δ42l2

[
2ω0ω2 −

ξ22
2

d2F

dz2

]
ψ = 0. (5.17)

There is a balance of terms when δ2 = l−1/2 , with this equation (5.17) can be rewritten in

a more compact form as

d2ψ

dξ22
−
[

2ω0ω2

ω2
0 − k2B2

− ξ22
2

Υ

]
ψ = 0, (5.18)

where

Υ =
1

ω2
0 − k2B2

d2F

dz2

∣∣∣∣
z=zc

. (5.19)

By construction, we know that zc is the minimum of F (z), hence F ′′(zc) > 0 . For

instability we require ω2
0 − k2B2 < 0 ; therefore in this case Υ is strictly real and negative.

Following Mizerski et al. (2013), we introduce two parameter transformations,

X = (−2Υ)1/4ξ2 and a =
ω0ω2

ω2
0 − k2B2

√
− 2

Υ
, (5.20)

to reduce (5.18) into the standard form of a parabolic cylinder equation

d2ψ

dX2
−
[

1

4
X2 + a

]
ψ = 0. (5.21)
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Under this transformation the impermeable boundary conditions become ψ = 0 as

X → ±∞ . The problem is now analogous to that of the quantum harmonic oscillator,

with the most general solution written in terms of two linearly independent parabolic

cylinder functions Dν as

ψ = C1Dν(X) + C2D−ν−1(−iX), (5.22)

where ν = −1/2− a . Since this solution has to obey the above mentioned boundary

conditions, it is useful to consider the behaviour of the parabolic cylinder function as

X → ±∞ . Taken from Bender & Orszag (1978), for | arg(X)| < 3π/4 , Dν can be

expressed asymptotically when X →∞ as

Dν(X) ∼ Xνe−X
2/4

(
1− ν(ν − 1)

2X2
+
ν(ν − 1)(ν − 2)(ν − 3)

8X4
+ O

(
1

X6

))
. (5.23)

With this expression we are able to deduce that as X →∞ , Dν(X)→ 0 and

D−ν−1(−iX) grow exponentially for all ν. Therefore, to satisfy the boundary condition

ψ = 0 as X →∞ , we require C2 = 0 in our general solution (5.22). To satisfy the

other boundary condition we have to consider the behaviour of Dν as X → −∞ ; For

3π/4 < arg(X) < 5π/4 , the parabolic cylinder equation for X →∞ can be expressed

asymptotically as

Dν(X) ∼− (2π)1/2

Γ(−ν)
eX

2/4eiπνX−ν−1
(

1 +
(ν + 1)(ν + 2)

2x2
(5.24)

+
(ν + 1)(ν + 2)(ν + 3)(ν + 4)

8X4
+ O

(
1

X6

))
. (5.25)

Thus as X → −∞ , Dν(X) grows exponentially except for values of ν for which Γ(−ν)

is infinite. By definition, the Gamma function Γ(x̄) takes infinite values at x̄ = 0 and

all negative integer x̄ values. Thus, to ensure the boundary conditions are satisfied and

that Dν(X) does not grow exponentially as X → −∞ , we are restricted to non-negative

values of ν, i.e. for ν = 0, 1, 2, · · · . This corresponds to the allowable values of a, as

a = −1/2,−3/2,−5/2, · · · . Thus, with the use of (5.20) we are able to obtain an analytic

solution for ω2 and therefore the eigenvalue of the system as

ω = ω0

(
1 + l−1

a(ω2
0 − k2B2)

ω2
0

√
−Υ

2

)
+ o(l−1). (5.26)
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Figure 5.2: Eigenfunction (5.28) with zc = 0.4 and Υ = −1 , for wavenumbers l = 50

(black), l = 500 (blue) and l = 5000 (red).

For non-negative integer ν = n values, the parabolic cylinder function can be expressed

in terms of a modified nth degree Hermite polynomial Hen(X), as

Dn(X) = e−X
2/4Hen(X). (5.27)

In general the Hermite polynomial Hen(X) can be written as a polynomial of degree n.

Hence a solution for a given n will have n+ 1 turning points. The first few Hen(X)

are given by He0(X) = 1 , He1(X) = X , He2(X) = X2 + 1 and He3(X) = X3 − 3X .

Since ω2
0 < 0 , we can conclude from the analytic solution for the eigenvalue (5.26) that

the most unstable mode will be the mode with the largest possible value of a. In our case

this is when a = −1/2 , which corresponds to ν = n = 0 .

We have shown that when F (z) has a quadratic minimum in the layer at the point z = zc ,

the most unstable mode in the short-wavelength limit can be written in the form of a

parabolic cylinder function. The eigenvalue for such a mode is given by (5.26) (for
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a = −1/2 ), with corresponding eigenfunction

ψ = C1e
−l(−Υ

8 )
1/2

(z−zc)2 , (5.28)

where Υ is defined as in equation (5.19). To examine the behaviour of the eigenfunction

for increasing l, we introduce a fictional basic state such that zc = 0.4 and Υ = −1 .

Figure 5.2 shows a plot of the eigenfunction (5.28) for this basic state plotted for l = 50 ,

l = 500 , l = 5000 . As one might expect, by increasing the wavenumber l the mode

becomes more localised around the point z = zc . Modes of this type, which are peaked

in the layer, will often be referred to as body modes throughout the rest of the thesis.

5.2.3 zc on the boundary

Suppose now that the minimum of the function F (z) lies either outside the layer or that

the function has no minimum value. In this case zc would be defined on either the bottom

or top boundary, depending on whether F (z) is an increasing or decreasing function.

Following §5.2.2 we are required to introduce an additional boundary layer to match the

constant w solution to the w = 0 main flow. Defining ξ1 as in (5.12) and expanding the

eigenvalue as ω = ω0 + δ1ω1 + o(δ1) , at leading order the governing ODE (5.1) becomes

equation (5.13). To balance terms we require δ1 = l−2/3 , which therefore gives(
ω2
0 − k2B2

) d2ψ

dξ21
−
[
2ω0ω1 − ξ1

dF

dz

]
ψ = 0, (5.29)

where again all functions of z are evaluated at z = zc . As mentioned, this is just

equation (5.13), however unlike the results in §5.2.2; zc is no longer defined as the point at

which F (z) is minimised. Thus equation (5.14) does not hold, and we are able to progress

without requiring addition boundary layers. Sticking closely to the notation of Mizerski

et al. (2013) it is possible to rewrite (5.29) as

d2ψ

dξ21
−
[

2ω0ω1

ω2
0 − k2B2

− ξ1Σ
]
ψ = 0, (5.30)

where,

Σ =
1

ω2
0 − k2B2

dF

dz

∣∣∣∣
z=zc

. (5.31)



Chapter 5. Short-wavelength magnetic buoyancy instability 74

If we introduce the new variable

s =

(
2ω0ω1

ω2
0 − k2B2

− ξ1Σ
)

Σ−2/3, (5.32)

equation (5.30) can be transformed into Airy’s equation

d2ψ

ds2
− sψ = 0. (5.33)

Abramowitz & Stegun (1972) show that solutions to this equation can be expressed in

terms of the sum of two linearly independent Airy functions Ai(s) and Bi(s), i.e. as

ψ = C1Ai(s) + C2Bi(s), (5.34)

where C1 and C2 are complex constants.

To match this solution to the main flow we must apply the appropriate boundary

conditions. Suppose that we assume F (z) is an increasing function that takes its most

negative value on the bottom boundary; thus for an unstable mode zc = 0 and Σ < 0 .

The solution must then converge to zero as we approach the top boundary; therefore

to satisfy the top boundary condition we require ψ → 0 as ξ1 →∞ . Since Σ < 0

and the definition of ‘s’ explicitly contains a Σ2/3 term, it raises the question as to

which root of Σ2/3 is required. Olver (1974) states that there are three sectors in which

ψ(s) exists, split up by | arg(s)| < π/3 , π/3 < arg(s) < π and −π < arg(s) < π/3 .

Examining the behaviour as s→∞ , it can be shown that the Ai(s) function decays

exponentially in the first sector, and grows exponentially in the other two sectors, whereas

Bi(s) grows exponentially in all three sectors. Thus, in order to satisfy the boundary

condition, we require two conditions to be met; The root of Σ−2/3 is chosen such that

| arg(s)| < π/3 as ξ1 →∞ , and C2 = 0 . The same conditions are required when

considering a decreasing function F (z) that has its most negative value on the top

boundary. Therefore, independent of the choice of zc, the general solution reduces to

ψ = C1Ai(s) = C1Ai
[(

2ω0ω1

ω2
0 − k2B2

− ξ1Σ
)

Σ−2/3
]
. (5.35)

We now have to implement the second boundary condition, ψ = 0 when z = zc . With

this condition, (5.35) gives

Ai
[(

2ω0ω1

ω2
0 − k2B2

)
Σ−2/3

]
= 0. (5.36)
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Figure 5.3: Eigenfunction (5.39) with zc = 0 and Σ = −1 , for wavenumbers l = 50

(black), l = 500 (blue) and l = 5000 (red).

Defining χ such that Ai(χ) = 0 allows us to express ω1 in terms of basic state variables

as

ω1 =
χ(ω2

0 − k2B2)Σ2/3

2ω0

. (5.37)

It can be shown that when | arg(s)| < π/3 , all zeros of the Airy function Ai(s) are real

and negative, and therefore χ < 0 . With this we can express the full eigenvalue of the

system as

ω = ω0

(
1 + l−2/3

χ(ω2
0 − k2B2)Σ2/3

2ω2
0

)
+ o

(
l−2/3

)
. (5.38)

Since ω2
0 < 0 , the mode with the highest growth rate occurs when χ takes its largest

possible value, which corresponds to χ ≈ −2.338 .

We have shown that in the case when F (z) either has no minimum or that the minimum

is outside the layer, the most unstable mode in the short-wavelength limit has zc located
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at the boundary on which F (z) takes its most negative value. The eigenfunction for such

a mode in the large wavelength limit can be expressed by an Airy function as

ψ(z) = C1Ai
[
χ− l2/3(z − zc)Σ1/3

]
, (5.39)

where Σ is defined as in equation (5.31), with corresponding eigenvalue (5.38). To

examine the behaviour of the eigenfunction for this case we suppose that F (z) is

minimised below the bottom boundary; thus zc = 0 and we take Σ = −1 . Figure 5.3

shows a plot of the eigenfunction (5.39) for increasing wavenumbers l = 50 , l = 500 ,

l = 5000 . As before, increasing the wavenumber forces the mode to become more

localised. Ideally the system would like to be peaked exactly on the boundary at z = 0 ;

however there is a conflict between this desire and the need to satisfy the bottom boundary

condition. As such, the localisation approaches z = 0 as l is increased.

For completeness we also examine the unique case when F (z) is minimised exactly on the

boundary. Specifically we will assume that F (z) is minimised on the bottom boundary,

and thus zc = 0 (the same result holds when zc = 1). Analogous to §5.2.2 we introduce

a boundary layer through (5.12) and expand the eigenvalue as ω = ω0 + δ1ω1 + o(δ1) .

Since zc is the location at which F (z) is minimised, upon substituting the expansion

into the governing ODE, we arrive at equation (5.15). Thus we proceed by taking ω1 =

0, and seeking another boundary layer, defined by (5.16). Expanding the eigenvalue as

ω = ω0 + δ22ω
2
2 + o(δ22) and fixing δ2 = l−1/2 we arrive at equation (5.18) ,

d2ψ

dξ22
−
[

2ω0ω2

ω2
0 − k2B2

− ξ22
2

Υ

]
ψ = 0, (5.40)

where

Υ =
1

ω2
0 − k2B2

d2F

dz2

∣∣∣∣
z=zc

. (5.41)

Through the transformations (5.20), we are able to write equation (5.40) in the form of a

parabolic cylinder equation (5.21), which has the general solution

ψ = C1Dν(X). (5.42)

Here we have already neglected the second parabolic cylinder function found in (5.22)

since it grows exponentially when applying the first boundary condition ξ →∞ . The
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second boundary condition is impermeability on the bottom boundary, ψ = 0 at X = 0 ,

which gives the relation

Dν(0) =

√
π

2(2a+1)/4Γ
(
1
2
− ν

2

) = 0. (5.43)

This is satisfied when the Gamma function takes infinite values and occurs when

(1− ν)/2 equals zero or any negative integer value. Since ν = −1/2− a , the largest

possible value of a (which corresponds to the largest growth rate) corresponds to ν = 1 ,

giving a = −3/2 . With the use of (5.20) we can express the next order correction to the

eigenvalue at this value of a as

ω2 = −3(ω2
0 − k2B2)

2ω2
0

√
−Υ

2
. (5.44)

Thus the most unstable mode solution to the eigenvalue problem in the case when F (z)

is minimised exactly on the boundary, has eigenvalue

ω = ω0

(
1− l−13(ω2

0 − k2B2)

2ω2
0

√
−Υ

2

)
+ o(l−1), (5.45)

and corresponding eigenfunction

ψ(z) = C1l (−2Υ)1/4 (z − zc)e−l(
−Υ
8 )

1/2
(z−zc)2 . (5.46)

This eigenfunction solution behaves in the same way as (5.39), shown in Figure 5.3.

Throughout the rest of the thesis, modes peaked near a boundary will often be referred to

as wall modes.

5.2.4 Boundary value problem

This subsection aims to validate the asymptotic results, by comparing the asymptotic

solutions to the numerical solutions of the full boundary value problem. For the boundary

value problem, we will solve the governing equation (5.1),

(
(ω2 − k2B2)ψ′

)′ − l2(ω2 − k2B2 − β − BB′

γ

)
ψ = 0, (5.47)



Chapter 5. Short-wavelength magnetic buoyancy instability 78

Figure 5.4: Plots of F (z), defined by (5.2), for parameter values P1 and P2 given in (5.51).

subject to impermeable boundary conditions ψ(0) = ψ(1) = 0 using MATLAB’s inbuilt

boundary value problem solver BVP4c. Results have been confirmed by solving the same

problem using an inverse iteration method described in appendix B.

With our overall intent of studying the full system with the effects of diffusion, we

consider a linear basic state magnetic field that satisfies equation (3.32b),

B = 1 + ζ(1− z). (5.48)

We also adopt a linear basic state temperature profile T = 1 + αz ; the subadiabatic

temperature gradient β in our equation thus becomes

β = β̂ + α− ζ(γ − 1)

γ
(1 + ζ(1− z)) . (5.49)

Using (5.48) and (5.49), we can write our equation for F (5.2) as,

F = k2B2 + β̂ + α +BB′. (5.50)
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Since our focus is on magnetic buoyancy instability in a stably stratified atmosphere we

enforce β̂ > 0 and α > 0 . Figure 5.4 shows a plot of F (z) (5.50) for two different

parameter cases P1 and P2,

P1 : α = 0.1, β̂ = 0.1, ζ = 1.5, k = 0.6; (5.51a)

P2 : α = 0.5, β̂ = 0.1, ζ = 1.5, k = 0.5. (5.51b)

For parameter values P1 the growth rate is maximised in the layer with leading order

growth rate −= (ω0) ≈ 1.1673 (from (5.11)), corresponding to zc ≈ 0.2776 . We

therefore expect that as the wavenumber l is increased, the solution to the boundary value

problem will become peaked at this location, with the growth rate tending towards 1.1673.

Figure 5.5a shows the solution (ψ) to the boundary value problem (5.47) for parameter

values P1 plotted at three different wavenumber values l = 50 , l = 500 , l = 5000 . The

black dots on the same figure are the asymptotic solution (5.28) for l = 5000 . At this

value of l the growth rate obtained from the asymptotic analysis (5.26) (with a = −1/2 )

is −= (ω) = 1.1671 , which agrees well with the result from the full boundary value

problem; clearly the asymptotic analysis provides a good approximation to the full

problem. This is confirmed in Figure 5.5b, which plots the growth rate obtained from

the boundary value problem for a range of wavenumbers values (red) together with the

growth rate obtained from the asymptotic analysis (black). As expected by increasing l,

the growth rate of the full solution tends towards the leading order growth rate. Even

for relatively low values of l, the asymptotics provides an excellent approximation to the

growth rate.

As shown in Figure 5.6, similar results apply when zc is located at the boundary, as

with parameter values P2. In this case the leading order growth rate from (5.11) is

−= (ω0) ≈ 1.26 and zc = 0 . Again we see that the asymptotic analysis provides an

excellent approximation to the full problem.
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(a)

(b)

Figure 5.5: Plots for parameter values P1 (5.51a), where zc is located in the layer at

zc ≈ 0.28 . (a): Eigenfunction ψ for the boundary value problem (5.47), plotted at three

different wavenumber values l = 50 , l = 500 , l = 5000 . The black dots represent the

asymptotic solution (5.28) taken at l = 5000 . (b): Growth rate (−= (ω)) for a range

of wavenumbers l. The solid red line represents the full solution to the boundary value

problem and the black dots are the asymptotic solution (5.26).
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(a)

(b)

Figure 5.6: Plots for parameter values P2 (5.51b), where zc is located on the bottom

boundary. (a): Eigenfunction ψ for the boundary value problem (5.47), plotted at

two different wavenumber values l = 500 and l = 5000 . The black dots represent the

asymptotic solution (5.39) taken at l = 5000 . (b): Growth rate (−= (ω)) for a range

of wavenumbers l. The solid red line represents the full solution to the boundary value

problem and the black dots are the asymptotic solution (5.38).
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5.3 Introducing velocity shear

Armed with our previous findings we are now in a position to introduce the effects

of a basic state velocity shear into our analysis. As derived in Chapter 4, the linear,

diffusionless equations can be manipulated into a single second order differential equation

for ψ as (
((ω + kU)2 − k2B2)ψ′

)′ − l2 ((ω + kU)2 − F
)
ψ = 0, (5.52)

where F (z) = k2B2 + β + BB′/γ is unchanged from its definition in §5.2 and thus

independent of U . As with the governing equation in §5.2.4, equation (5.52) can

be solved as a boundary value problem subject to impermeable boundary conditions,

ψ(0) = ψ(1) = 0 . Following the work of §5.2 it is possible to derive a depth-dependent

eigenvalue in the l→∞ limit,

ω(z) = −
√
F (z)− kU(z). (5.53)

We know that in the absence of shear the most unstable mode localises around a point in

the layer where the growth rate given by −= (ω(z)) is maximised, or in other words the

point in the layer where F (z) is minimised. At first glance it seems the only contributing

factor to the growth rate in equation (5.53) is the function F (z), with the requirement for

instability that F (z) < 0 somewhere in the layer. This raises the question as to how the

shear plays a role in the instability. We might again expect the mode to be localised at the

point where F (z) takes its lowest value, and the shear to only contribute to the frequency

of the mode.

To examine this further we consider a simple linear shear

U(z) = λz, (5.54)

and solve (5.52) as a boundary value problem. Figure 5.7 plots the eigenfunction ψ

for the most unstable mode with λ = 5 , l = 500 and parameter values P1 (5.51a). The

eigenfunction is now made up of real and imaginary parts and exhibits strong oscillations

contained within a peaked envelope. This envelope can be visualised by plotting |ψ|,
shown by the black dashed lines in Figure 5.7. Interestingly, the localisation has moved
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Figure 5.7: Eigenfunction ψ for the boundary value problem (5.52) in the presence of a

linear shear (5.54), with parameter values P1 and l = 500 .

from z ≈ 0.28 in the layer, as in Figure 5.5a when no shear was present, to a new position

z ≈ 0.02 near the boundary. From Figure 5.5b we note that the growth rate in the absence

of shear for this value of l is approximately −= (ω) = 1.166 . The eigenvalue for the

mode with the linear shear at λ = 5 , is ω = −0.08− 1.09i , and thus the growth rate has

not drastically changed. This slight stabilisation may be a result of higher order terms

affecting the growth rate due to the low value of l chosen. Although for this particular

shear profile the growth rate remains relatively unchanged, it is clear that the shear has

had a huge influence on the structure of the mode. In particular, the idea of the mode

being localised at the point in the layer where F (z) is minimised is no longer valid.

5.3.1 Asymptotic analysis – velocity shear

To get to grips with what is happening when shear is introduced we again perform a

boundary layer analysis on the governing equation. To do this we define a boundary layer
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variable similar to (5.9), namely

ξi =
z − zu
δi

. (5.55)

Here, in order to stress the difference between the two main sections in this chapter we

have switched notation from zc to zu. In the absence of shear the most unstable mode

is located at the point zc where F (z) takes its most negative value. As we have seen in

Figure 5.7, when shear is introduced the point of localisation is no longer zc and instead is

some new location, which we shall denote by zu, which seems to have some dependency

on the shear.

Let us first consider the boundary layer variable associated with i = 0 . By expanding

all functions of z about zu and the eigenvalue as ω = ω0 + o(1) , to leading order the

governing ODE (5.52) with δ0 = l−1 becomes analogous to equation (5.10),

(
(ω0 + kU)2 − k2B2

) d2ψ

dξ20
−
(
(ω0 + kU)2 − F

)
ψ = 0. (5.56)

In equation (5.56) all functions of z are evaluated at z = zu and the only continuous,

non-trivial solution is for a constant ψ with

ω0 = −
√
F (zu)− kU(zu). (5.57)

Without formally defining zu at this stage we proceed by following §5.2.1 and split the

analysis into two cases, depending whether zu is located on the boundary or zu located in

the layer.

5.3.2 zu on the boundary

We start with the simpler case of the two and define zu to be situated on the boundary,

such that zu = 0 or zu = 1 . With §5.2.3 as our guide we introduce a further boundary

layer

ξ1 =
z − zu
δ1

, (5.58)
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and include the next order correction in the eigenvalue, ω = ω0 + δ1ω1 + o (δ1) . With

δ1 = l−2/3 the leading order equation is the shear analogue to (5.29),(
(ω0 + kU)2 − k2B2

) d2ψ

dξ21
−
[
2ω1(ω0 + kU)− ξ1 (F ′ − 2kU ′(ω0 + kU))

]
ψ = 0.

(5.59)

As always ′ denotes the derivative with respect to z and all functions of z and the

derivatives are evaluated at z = zu . Equation (5.59) can be written in a more compact

form as

d2ψ

dξ21
−
[

2ω1(ω0 + kU)

(ω0 + kU)2 − k2B2
− ξ1Σ

]
ψ = 0, (5.60)

where

Σ =
F ′ − 2kU ′(ω0 + kU)

(ω0 + kU)2 − k2B2
. (5.61)

For instability we require ω0 to be a complex number; by considering shear we have

introduced an ω0 term into the expression for Σ; consequently Σ is now also complex.

Introducing the new variable s denoted by

s =

(
2ω1(ω0 + kU)

(ω0 + kU)2 − k2B2
− ξ1Σ

)
Σ−2/3, (5.62)

transforms (5.60) into Airy’s equation

d2ψ

ds2
− sψ = 0. (5.63)

As discussed in §5.2.3, the crux of this problem comes down to how we define the root of

Σ2/3 in the s variable. We showed that to satisfy one of the boundary conditions we are

required to pick the root such that | arg(s)| < π/3 as ξ1 →∞ . This still holds true for

the current case in which Σ is complex. With this we can express the solution to equation

(5.63) as

ψ = C1Ai(s) = C1Ai
[(

2ω1(ω0 + kU)

(ω0 + kU)2 − k2B2
− ξ1Σ

)
Σ−2/3

]
. (5.64)

Similarly, we satisfy the second boundary condition, ψ = 0 at z = zc , by defining ω1 in

terms of a zero of the Airy function Ai , such that

ω1 =
χ ((ω0 + kU)2 − k2B2) Σ2/3

2(ω0 + kU)
. (5.65)



Chapter 5. Short-wavelength magnetic buoyancy instability 86

Figure 5.8: Eigenfunction solutions to (5.67) with zu = 0 and Σ = −1 + 5i and l = 100

(left), l = 500 (right). Since all variations in the eigenfunctions occur close to the bottom

of the layer, we show only the region 0 < z < 0.3 .

With this, the eigenvalue of the system becomes

ω = ω0

(
1 + l−2/3

χ ((ω0 + kU)2 − k2B2) Σ2/3

2ω0(ω0 + kU)

)
+ o

(
l−2/3

)
, (5.66)

with corresponding eigenfunction

ψ(z) = C1Ai
[
χ− l2/3(z − zu)Σ1/3

]
. (5.67)

This is in exactly the same form as the case without shear (5.39), the major difference

being that Σ1/3 is now complex, whereas before it was just a positive real number. To

examine how this alteration impacts the eigenfunction, Figure 5.8 shows ψ obtained (5.67)

for zu = 0 and Σ = −1 + 5i . Here we have considered two different wavenumber values

l = 100 and l = 500 . We see that both the eigenfunctions are made up of oscillations

contained within a peaked envelope. As l is increased the envelope compresses and the

localisation of the peak moves towards z = zu = 0 .

5.3.3 zu in the layer

We now turn our attention to the case in which zu is defined at some point in the

layer, 0 < zu < 1 . Although approached in a slightly different manner, this section has

similarities to Griffiths (2008). To match our constant solution to the main flow we again
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introduce the boundary layer variable ξ1 defined in (5.58). Performing the same analysis

as in §5.3.2 we arrive at equation (5.59),

(
(ω0 + kU)2 − k2B2

) d2ψ

dξ21
−
[
2ω1(ω0 + kU)2 − ξ1 (F ′ − 2k(ω0 + kU))U ′

]
ψ = 0,

(5.68)

which we have shown can be manipulated into Airy’s equation. However, since zu is

now located in the layer, the two boundary conditions become ψ → 0 as ξ1 → ±∞ .

This causes an issue as both Airy functions Ai(ξ1) and Bi(ξ1) oscillate as ξ1 → −∞ ;

therefore we are only able to satisfy one of the boundary conditions. From our previous

findings it would be more desirable to cast the governing equation in the form of a

parabolic cylinder equation. In §5.2.2 this result came out in the wash, as the coefficient

multiplying ξ1 in equation (5.13) equalled zero, thus forcing us to take ω1 = 0 and

introduce a second boundary layer into the analysis. Now suppose we try and construct

the same conditions here by taking

F ′(zu)− 2k
(
ω0 + kU(zu)

)
U ′(zu) = 0. (5.69)

With this, equation (5.68) reduces to a form similar to (5.15), where a continuous solution

requires ω1 = 0 . We therefore now have to introduce a further boundary layer variable

ξ2 =
z − zu
δ2

. (5.70)

By expanding the eigenvalue as ω = ω0 + δ22ω2 + o(δ22) , with δ2 = l−1/2 and

equation (5.69) satisfied, the leading order equation can be written in a similar form to

equation (5.18), as

d2ψ

dξ22
−
[

2ω2(ω0 + kU)

(ω0 + kU)2 − k2B2
− ξ22

2
Υ

]
ψ = 0, (5.71)

where

Υ =
F ′′ − 2k(ω0 + kU)U ′′ − 2k2U ′2

(ω0 + kU)2 − k2B2

∣∣∣∣
z=zu

. (5.72)

Introducing similar variables to (5.20), namely

X = (−2Υ)1/4ξ2 and a =
ω2(ω0 + kU)

(ω0 + kU)2 − k2B2

√
− 2

Υ
, (5.73)
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equation (5.71) reduces to the standard form of a parabolic cylinder equation

d2ψ

dX2
−
[

1

4
X2 + a

]
ψ = 0. (5.74)

Therefore, by enforcing (5.69) and ω1 = 0 , we are able to reduce the governing equation

into a form that has solutions capable of satisfying both boundary conditions. Together

with (5.57), equation (5.69) provides two simultaneous equations for two unknowns,

ω0 and zu. Thus by solving (5.57) and (5.69) simultaneously we not only reduce the

governing equation to the form of a parabolic cylinder equation, but also obtain the

leading order growth rate ω0 and the height in the layer zu at which the enveloped solution

to ψ is peaked. When solving the simultaneous equations, the resulting value of zu is in

fact a complex number, thus formally we define the point in the layer at which |ψ| is

peaked to be z = <(zu) .

A similar problem to what we have witnessed is addressed by Yano (1992) and Jones et al.

(2000) when finding the critical Rayleigh number for the onset of thermal convection in

a rapidly rotating system. Yano (1992) stated that since the zeros of the Airy function

are distributed only along the real negative axis, an equation of the form (5.68) can not

be bounded as ξ1 → −∞ . When solving a similar problem to Yano (1992), Jones et al.

(2000) transformed their Airy equation to an equation with solutions that decayed as

ξ1 → ±∞ , by first finding a complex point (zu in our case) where

dω0

dz
= 0. (5.75)

Upon satisfying (5.75), and one other condition not relevant here, Jones et al. (2000)

included higher order corrections into their analysis and arrived at an equation analogous

to (5.71). Although derived in different fashion, this is essentially what we have done

above; by taking the z derivative of (5.57) and equating it to zero, we receive

dω0

dz
= −1

2
F−1/2F ′ + kU ′ = 0. (5.76)

If we multiply this equation by
√
F and use (5.57) to write −

√
F = ω0 + kU , we arrive

at equation (5.69). With equation (5.69) satisfied for some zu, we look for next order

corrections to our governing equation and arrive at an equation with decaying solutions

as ψ approaches the boundaries (5.71).
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It is possible that there are several roots found when solving the simultaneous

equations (5.57) and (5.69), and hence several different eigenmode solutions, all with

different growth rates localised at different heights in the layer. Alternatively, there could

be cases in which there are no valid solutions to the equations and therefore no solutions

peaked in the layer. These traits are discussed further in §5.3.5. Since we now know that

solutions peaked in the layer require complex zu, it becomes clear from (5.57) how the

shear can affect the leading order growth rate and not just the frequency as originally we

might have thought when taking the l→∞ limit.

In §5.2.2 we derived a general solution to the parabolic cylinder function (5.74) that

satisfies the appropriate boundary conditions. Thus, provided | arg(X)| < π/4 , the most

unstable mode when <(zu) is located in the layer has a = −1/2 and thus eigenvalue

ω = ω0

(
1− l−1 (ω0 + kU)2 − k2B2

2ω0(ω0 + kU)

√
−Υ

2

)
+ o

(
l−1
)
. (5.77)

The eigenfunction takes the same form as in the case without shear, namely

ψ = C1e
−l(−Υ

8 )
1/2

(z−zu)2 . (5.78)

However we stress that Υ and zu are now both complex numbers. Figure 5.9 demonstrates

these differences in the eigenfunction solution for two different wavenumber l = 100

and l = 500 . As with the case when zu is defined on the boundary, as l increases the

oscillatory envelope compresses, with the peak localised at z = < (zu) = 0.5 .
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(a) (b)

Figure 5.9: Eigenfunction solutions to (5.78) with zu = 0.5 + 0.05i , Υ = −1− 0.5i and

l = 100 (left), l = 500 (right).

5.3.4 U ′(zu) = 0 and F ′(zu) = 0 on the boundary

This section covers the unique case when the solution to the simultaneous equations (5.57)

and (5.69) results in either zu = 0 or zu = 1 . Such a case would only occur when F (z)

has a quadratic minimum on the boundary and U ′(z) = 0 on the same boundary. This is

directly analogous to the case when just F (z) is minimised on the boundary in the absence

of shear, as considered at the end of §5.2.3. When both the simultaneous equations are

satisfied we can follow the work in §5.3.3 and introduce a second boundary layer (5.70)

with ω1 = 0 . By expanding the eigenvalue as ω = ω0 + δ22ω2 + o(δ22) , with δ2 = l−1/2 ,

we recover equation (5.71),

d2ψ

dξ22
−
[

2ω2(ω0 + kU)

(ω0 + kU)2 − k2B2
− ξ22

2
Υ

]
ψ = 0, (5.79)

where

Υ =
F ′′ − 2k(ω0 + kU)U ′′ − 2k2U ′2

(ω0 + kU)2 − k2B2

∣∣∣∣
z=zc

. (5.80)

We have seen that applying the transformations (5.73) an equation of this form can be

reduced to the standard form of a parabolic cylinder equation, with general solution

ψ = C1Dν(X) + C2D−ν−1(−iX). (5.81)
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In §5.2.3 we saw that after satisfying the boundary conditions the most unstable mode

solution has C2 = 0 and ν = 1 . Thus the most unstable eigenvalue for this case becomes

ω = ω0

(
1− l−13(ω0 + kU)2 − k2B2

2ω0(ω0 + kU)

√
−Υ

2

)
+ o

(
l−1
)
, (5.82)

with corresponding eigenfunction

ψ = C1l(−2Υ)1/4(z − zu)e−l(
−Υ
8 )

1/2
(z−zu)2 . (5.83)

When plotted, the eigenfunction looks similar to that of an Airy function solution when

zu is on the boundary, as seen in Figure 5.8. However, equation (5.83) shows the solution

is slightly different from an Airy function.

5.3.5 The localisation of the eigenfunction

In the absence of shear (see §5.2) it was fairly straightforward to predict where the

eigenfunction would be peaked and hence which branch of the asymptotics would be

required in order to approximate the full solution. When the function F (z) is minimised

in the layer at z = zmax , one would take zc = zmax and proceed with the approximations

given in §5.2.2. Similarly, if F (z) had no minimum or it was minimised outside the layer,

zc would be defined on either boundary, depending on whether F (z) was an increasing

or decreasing function; one would then use the work in §5.2.3. The introduction of shear

has complicated this simple idea. With the exception of the special case described in

§5.3.4, it is no longer obvious just from inspection of the structure of F (z), or indeed any

combination of basic state values, as to whether <(zu) is located in the layer or on the

boundary. Instead we have to consider both cases individually and come to a conclusion

based on which branch of the asymptotics leads to the most unstable mode, or, in other

words, the case which corresponds to the highest growth rate −=(ω).

We do this first by solving (5.57) and (5.69) simultaneously to obtain the possible values

of ω0 and zu, with the restriction that <(zu) is located in the layer. As mentioned in

§5.3.3, for certain configurations it is possible to have several acceptable ω0 and zu that

satisfy the simultaneous equations. Since we are only interested in the most unstable
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mode, we only consider the zu = z∗ solution that corresponds to the eigenvalue ω with

the highest growth rate. Thus the most unstable mode with <(zu) located in the layer has

a leading order eigenvalue given by ω0(z∗). We then calculate the growth rates for the two

cases when zu is located on the boundary. Only after this procedure will we know which

of the zu values corresponds to the eigenvalue with the highest growth rate. When we

have this value of zu we can then say where the eigenfunction will be localised for large

wavenumbers l.

5.3.6 Boundary value problem: shear

The aim of this section is again to confirm the validity of the asymptotic results by

comparing them to solutions of the boundary value problem (5.52). We keep the same set

up as in §5.2.4, that is a basic state magnetic field (5.48) with temperature gradient (5.49),

and consider two different shear profiles,

U1 = λ
(
z2 − z + 1

)
, (5.84a)

U2 = λ(1− z). (5.84b)

To ensure the asymptotics of both cases (<(zu) in the layer and zu on the boundary)

are tested, we assign parameter values P1 (5.51a) to shear profile U1, and P2 (5.51b) to

shear profile U2. For both profiles we take the shear gradient coefficient to be λ = 10 .

Following §5.3.5, we expect the eigenfunction associated with shear profile U1 to be

peaked in the layer with zu ≈ 0.4992 + 0.013i and corresponding ω0 ≈ −4.50− 1.15i .

Similarly, for the parameter values associated with shear profile U2, we expect the

eigenfunction to be peaked at the bottom boundary with zu = 0 and ω0 ≈ −4.90− 1.20i .

Figure 5.10 shows results from solving both the boundary value problem (5.52) and the

corresponding asymptotics (equations (5.77) and (5.78)) for shear profile U1. As seen in

Figure 5.10a, the eigenmode ψ solved at l = 500 using the full boundary value problem

exhibits an oscillatory structure, enclosed within a peaked envelope. To demonstrate the

accuracy of the asymptotics, Figure 5.10b shows a plot of the envelope |ψ| with the black

dots corresponding to the asymptotic solution (5.78). Even at this relatively low value

of l, the asymptotic results are a very good approximation to the full solution. We have
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also included a plot of the growth rate for a range of wavenumber values, with the black

dots given by the solution to the asymptotic eigenvalue (5.77). Figure 5.11 shows that

similar results hold for shear profile U2. Again, even for relatively low values of l, the

asymptotics are an excellent approximation to the full solution.
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(a)

(b)

(c)

Figure 5.10: Solutions to the boundary value problem (5.52) (coloured lines) and

corresponding asymptotics (equations (5.77) and (5.78)) (black dots) for shear profile

U1, with λ = 10 , l = 500 and parameter values P1. (a) plots the eigenfunction ψ, (b) the

envelope given by |ψ| and (c) the growth rate versus wavenumber l.
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(a)

(b)

(c)

Figure 5.11: Solutions to the boundary value problem (5.52) (coloured lines) and

corresponding asymptotics (equations (5.67) and (5.66)) (black dots) for shear profile

U2, with λ = 10 , l = 500 and parameter values P2. (a) plots the eigenfunction ψ, (b) the

envelope given by |ψ| and (c) the growth rate versus wavenumber l.
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5.4 The influence of velocity shear

In §5.3 we extended the work of Mizerski et al. (2013) by introducing a basic state velocity

shear into the analysis of short-wavelength magnetic buoyancy instability. At first glance

it seemed as if the shear would have no effect on the instability and instead just alter the

frequency of the mode. However, we showed that the shear can play a vital role, not only

on the growth rate of the mode, but also its structure. In this section we take a more in-

depth look at how altering the profile and magnitude of the shear influences the resulting

instability.

As discussed in §5.3.5, with the inclusion of a velocity shear it is no longer obvious as to

where in layer the eigenfunction solution will be localised. Instead we have to consider

all the cases where <(zu) is peaked inside the layer and on the boundary, in order to

determine which corresponds to the eigenvalue ω with the highest growth rate. Only then

can we say where the mode will be localised. This leads to a very interesting result,

namely that the most unstable mode in the absence of shear can be transformed from a

wall (or body) mode into a body (wall) mode by introducing a certain shear configuration.

This is demonstrated in Figure 5.12, by plotting the growth rates corresponding to the

most unstable wall and body mode for increasing λ. The growth rate values are taken

from equation (5.66) for the wall mode, and equation (5.77) for the body mode, both with

l = 500 . In Figure 5.12a we use parameter values P2, where in the absence of shear the

most unstable mode is a wall mode, peaked at the boundary. When considering shear

profile U1 we see that around λ ≈ 38 the most unstable mode transitions from a wall

mode into a body mode. The alternative result can be seen in Figure 5.12b with parameter

values P1 and shear profile U2. Here the most unstable mode switches from a body mode

to a wall mode at a much smaller value of λ, namely when λ ≈ 0.31 .

Due to the complexity involved in determining the value of zu it is not possible to produce

an analytic expression as to when this mode switching occurs. Fortunately, we can use

the numerical solutions to gain a better understanding of this process and hence predict,

for a large enough λ, where the most unstable mode will be localised. Figure 5.13 shows

the height in the layer <(zu) corresponding to the most unstable mode for a range of λ
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(a) (b)

Figure 5.12: Growth rate of the wall and body modes for increasing λ, with l = 500 .

These plots have been derived using parameter values P2 with shear profile U1 for (a),

and parameter values P1 with shear profile U2 for (b).

values. Each coloured branch represents a different quadratic shear profile, all maximised

at different places both in and out the layer. We have taken l = 500 and used parameter

values P2 such that in the absence of shear the most unstable mode is localised in the layer

at <(zu) ≈ 0.27 . Interestingly, for λ > 7 the most unstable mode of all the branches

localises around the point in the layer (or on the boundary) where <(U ′) = 0 . Thus for

‘large enough’ λ the basic state shear U(z) plays a similar role to the function F (z) when

U = 0 , in determining where the mode is localised. As we have addressed, since zu is

very dependent on both the type of magnetic field and velocity shear profiles, we cannot

predict analytically just how big λ needs to be in order to have the mode localised around

the point where <(U ′) = 0 . It is very likely that there exists a trade off between the

apparent magnitude of F (z) and U(z) to determine where the mode will be localised.

Figure 5.13 also highlights the unpredictability of where the mode will be localised as λ

is increased. We notice that when the shear is peaked in the layer at z = 0.8 , the most

unstable mode with parameter values P2 transitions from a body mode to a wall mode at

λ ≈ 0.5 , and then back to a body mode at around λ ≈ 7 .

All the numerical examples in this chapter have shown that the addition of a velocity shear

only has a stabilising effect on the system for a given k. In §5.2 we showed that short-



Chapter 5. Short-wavelength magnetic buoyancy instability 98

Figure 5.13: The height <(zu) at which the most unstable mode is localised when

increasing λ for different quadratic shears of the form U(z) = λ(az2 + bz + c) . Each

coloured branch represents a different shear, maximised at the values given in the legend.

wavelength instability in the absence of shear is more readily achieved for interchange

modes when k = 0 . This is confirmed in the asymptotics through the leading order

eigenvalue (5.11), which takes its highest possible growth rate value when F (z) is most

negative (k = 0). For a linear magnetic field profile, F can never be minimised in the

layer when k = 0 . Therefore the interchange mode will always be a wall mode. As a

velocity shear is introduced it became obvious from our governing equation (5.52) that

to study its effect on the instability the wavenumber k had to be non-zero. In this case,

the leading order eigenvalue (5.57) is defined as a combination of the basic state variables

evaluated at a possibly complex zu. When considering only the wall modes, zu is a real

number and we revert to the same situation as when U = 0 . That is, the leading order

growth rate is only a function of F (z) and is thus maximised when k = 0 . Therefore,

physically, the most unstable wall mode is an interchange mode, with F (z) taking its most

negative value on the boundary and the velocity shear having no influence. However, as

we have seen, there is no guarantee that simply because the most unstable mode in the

absence of shear is a wall mode, that it will remain the most unstable mode when shear is
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added. It is possible that for an arbitrary shear there exists a k such that a body mode is

more unstable than the k = 0 wall mode. This is due to the fact that when considering a

body mode, zu is complex, and thus the leading order growth rate of the system depends

on both the magnetic field and the shear. Since for an arbitrary shear we do not know

a priori the value of zu, we cannot say analytically whether or not an interchange will

always be the most unstable mode. This unfortunately is an unavoidable trait and has to

be addressed case by case. Having said that we have not found a shear profile in which

the body mode is more unstable than the k = 0 wall mode.
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Chapter 6

Short-wavelength magnetic buoyancy
instability : the role of diffusion

6.1 Introduction

In the previous chapter we built upon the work of Mizerski et al. (2013) by including the

effects of a velocity shear on the short-wavelength magnetic buoyancy instability. In the

absence of shear we saw how a given mode in the large l limit could take the form of a

wall mode or a body mode, depending on the location at which the function F , defined

by basic state variables, was minimised. For a linear magnetic field, F would always

take its most negative value when k = 0 , which results in the most unstable mode of the

system being an interchange wall mode. The introduction of a velocity shear into the

analysis complicates this simple idea; since the height of the localisation is dependent

on both the function F and the velocity shear, it is no longer obvious a priori where a

given mode will be localised. This leads to the interesting result that a wall (body) mode

in the absence of shear could be transformed into a body (wall) mode for a sufficiently

large shear strength. How the shear affects the growth rate of the mode is dependent on

the mode considered; the leading order growth rate for the wall mode is unaffected by

the shear, whereas for a body mode the shear influences the growth rate. Despite the

possibility of modes switching, in all cases examined the addition of shear seems only to



Chapter 6. Short-wavelength magnetic buoyancy instability : the role of diffusion 102

have a stabilising effect on the system. Therefore, the most unstable mode of the system

is still the interchange wall mode; velocity shear only alters the frequency of the mode at

leading order.

The aim of this thesis is to study the influence of velocity shear on the magnetic buoyancy

instability using the newly derived equations (3.61), which contain the effects of diffusion.

In Chapter 7 we solve these governing equations numerically, providing results for a

variety of basic state shear profiles, strengths and parameter values. This chapter is

in place to bridge the gap between Chapter 5 and Chapter 7, and aims to provide

us with insight into the forthcoming numerical results found in the final chapter that

would otherwise be hard to understand. We do this by introducing each of the diffusive

quantities, ν, κ and η individually and following the work in the previous chapter in order

to derive asymptotically consistent results for the eigenvalue and eigenmodes. Within

each section we split our analysis up further, depending on the relative magnitude of the

diffusive term to the large wavenumber l. By doing this we can analyse the growth rate

and structure of the modes for different regions of l, and therefore predict where the most

unstable mode will be located. As we will see in §6.3, when considering just the effects of

thermal diffusion, the system reverts back to something similar to that found in Chapter 5.

In this case the most unstable mode is the interchange mode, with a large finite l and is

unaffected by the shear. However, by including the effects of either just viscosity §6.2,

or just magnetic diffusion §6.4, we arrive at a different result. In these cases the leading

order growth rate is dependent on the shear gradient, and for certain configurations, the

velocity shear can have a destabilising effect on the instability. Therefore, by including

either viscosity or magnetic diffusion, the possibility arises that an undular mode becomes

the preferred mode of instability.

6.2 Viscous diffusion

When considering only the effects of viscosity, the linear set of governing equations

from (3.61) are;

∇ · u = 0, (6.1a)
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∇ · b = 0, (6.1b)(
∂

∂t
+ U

∂

∂x

)
u+U ′w = −∇⊥Π + (T +Bbx) ẑ

+B
∂b

∂x
+B′bz +

1

Re
∇2
⊥u, (6.1c)(

∂

∂t
+ U

∂

∂x

)
b+B′w = B

∂u

∂x
+U ′bz, (6.1d)(

∂

∂t
+ U

∂

∂x

)
(T +DBbx) = −βw, (6.1e)

where ∇2
⊥ = ∂zz + ∂yy . These equations can be solved subject to either no-slip

u = v = w = 0 , or stress-free u′ = v′ = w = 0 boundary conditions. As shown in

appendix C, it is possible to manipulate equations (6.1) down to a single sixth order

ordinary differential equation for the vertical component of velocity w,

αν1w
(6) + αν2w

(4) + αν3w
′′′ + αν4w

′′ + αν5w = 0, (6.2)

where the coefficients ανi are given by

αν1 = −γ(ω + kU)

kB2Re2
, (6.3a)

αν2 =
γ

kB2Re
((ω + kU)a1 + ia2)−

γ

kRe2

(
ω + kU

B2

)′′
, (6.3b)

αν3 = − 1

Re

(
2k3B2U ′

ω + kU
− 2k2BB′

)
, (6.3c)

αν4 =
iγ

kB2

[
1

Re

(( a2
B2

)′′
+ a4

)
− a3l

2

Re
− a1a2

]
, (6.3d)

αν5 =

(
2a1k

3B2U ′

ω + kU
− 2k2BB′

)
− 1

Re

(
2k3B2U ′

ω + kU
− 2k2BB′

)′′
+
iγ

k

(
l2a1a3
B2

− l2

Re

( a3
B2

)′′
− a1a4

B2
+

1

Re

( a4
B2

)′′
+
il2k

γ

(
k2B2U ′

ω + kU
− U ′

))
,

(6.3e)

with

a1 = i(ω + kU)− ik2B2

(ω + kU)
+

l2

Re
, (6.4a)

a2 = (ω + kU)2 − k2B2 − 2il2(ω + kU)

Re
, (6.4b)
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a3 = (ω + kU)2 − F +
kB2U ′

γ(ω + kU)
− il2(ω + kU)

Re
, (6.4c)

a4 = −kU ′′(ω + kU) +
2k3BB′U ′

ω + kU
+
k3B2U ′′

ω + kU
− 2k4B2U ′2

(ω + kU)2
. (6.4d)

Guided by our work in the previous chapter, we expect that in the short-wavelength limit

the eigenfunction will be localised around a point in the layer dictated by basic state

quantities. As such, we will again tackle this problem by a boundary layer analysis and

introduce a boundary layer variable similar to that seen in the previous chapter,

ξi =
z − zν
δi

. (6.5)

At this stage, we would normally expand the eigenvalue ω in powers of δi, expand

variables of z in a Taylor series around the point zν and then balance leading order

coefficients in the governing equations in order to arrive at an expression for the leading

order eigenvalue ω0. However before we can take this approach, we have to comment on

the magnitude of Re and, more importantly, its magnitude in relation to the wavenumber

l. As we can see from the ανi coefficients, the size of Re will play a crucial role in

determining which terms will appear in the leading order equations of the boundary layer

analysis.

To approach this problem, we split our analysis into three main subsections, l2/Re ∼ 1 ,

l2/Re ∼ δi and l2/Re ∼ δ2i . For smaller values of ν such that l2/Re < δ2i we revert to

the problem set out in the Chapter 5, in which viscosity plays no role. Alternatively for

large ν, such that l2/Re� 1 , the instability is killed by viscosity.

In this section we shall follow the work laid out in the previous chapter in order to arrive at

an asymptotic approximation for the eigenvalue and corresponding eigenvector. We shall

then compare the asymptotic results to the solutions of the full boundary layer problem.

6.2.1 l2/Re ∼ 1

In this subsection we shall assume that the kinematic viscosity coefficient ν is sufficiently

small that l2/Re ∼ 1 . When introducing the boundary layer variable ξi, defined by (6.5),
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expanding basic states variables of z about zν and expanding the eigenvalue as ω = ω0 +

δiω1 + δ2i ω2 + o(δ2i ), the governing ODE (6.2) becomes

b1
d6w

dξ6i
+Re δ2i b2

d4w

dξ4i
+Re2 δ4i b3

d2w

dξ2i
−Re2 l2 δ6i b4w + o (1) = 0, (6.6)

where all bi coefficients are O(1) and given in appendix F to avoid unnecessary clutter.

Considering a boundary layer associated with i = 0 , we see that all terms in equation (6.6)

balance when δ0 = l−1 . The only continuous non-trivial solution to this equation that

obeys the boundary conditions is for a constant w, with b4 = 0 . This leads to an equation

for the leading order growth rate ω0 that is dependent on the basic state variables evaluated

at zν . With the introduction of viscosity, the leading order growth rate equation is now a

fourth order polynomial in ω0, given as

ω̄4
0 −

2il2

Re
ω̄3
0 −

(
F + k2B2 +

l4

Re2

)
ω̄2
0

+
il2

Re
(F + k2B2)ω̄0 + k2B2F − ikB2U ′l2

γRe
= 0, (6.7)

where ω̄0 = ω0 + kU . Having found the leading order growth rate, we are now in a

position to introduce further boundary layers into the expansion. As in the previous

chapter we shall split our analysis into two sections: the wall mode, in which zν is defined

on either boundary, and the body mode, in which zν takes a possibly complex value with

0 < <(zν) < 1 .

The wall mode

In the absence of any diffusion, an analytic expression for the wall mode was achieved

by introducing a second boundary layer ξ1 and then balancing the largest order derivative

term with the next order correction to the w coefficient. Now the problem is a little

more complex as there are more derivatives contributing to the leading order ODE and

hence several different possible orderings for δ1. As usual we expand our eigenvalue as

ω = ω0 + δ1ω1 + o(δ1) . To ensure we take a δ1 that has the greatest influence on the

growth rate, we require a balance between terms that results in the largest possible value

of δ1. Upon introducing a second boundary layer the largest contributing terms from the
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governing ODE yield the equation

b1
d6w

dξ61
+Re δ21 b2

d4w

dξ41
+Re2 δ41 b3

d2w

dξ21
−Re2 l2 δ71 (ω1b5 + ξ1b6)w = 0. (6.8)

As mentioned, there exist several possible balances between terms proportional to w and

its derivatives, each resulting in a different value of δ1. Balancing the sixth derivative

and w terms results in δ1 = l−6/7 ; similarly balancing the fourth derivative and w terms

results in δ1 = l−4/5 . The largest δ1 comes from balancing the terms in w and in its

second derivative, leading to δ1 = l−2/3 . With this ordering for δ1, the sixth order ordinary

differential equation (6.8) reduces to the following second order equation,

b3
d2w

dξ21
− (ω1b5 + ξ1b6)w = 0. (6.9)

Interestingly, we have lost four derivatives from our governing equation and hence only

require two boundary conditions, w = 0 at both boundaries, in order to solve the problem

to this order. This is addressed further in §6.2.4 when we compare the asymptotic results

to the full solution of the boundary value problem. We now have a problem that is directly

analogous to that in §5.3.2 and writing equation (6.9) in the familiar form

d2w

dξ21
− (ω1b7 − ξ1Σ)w = 0, (6.10)

where b7 = b5/b3 and Σ = −b6/b3 , allows us to use results already obtained in Chapter 5.

Hence the eigenfunction solution can be expressed as an Airy function of the form

w(z) = C1Ai
[
χ− l2/3(z − zν)Σ1/3

]
, (6.11)

with corresponding eigenvalue

ω = ω0

(
1 + l−2/3

χΣ2/3

b7ω0

)
+ o

(
l−2/3

)
, (6.12)

where χ ≈ −2.338 . We have seen in Figure 5.8 how the Airy function of this form with

a complex Σ behaves for large l.

The body mode

In the absence of diffusivity we saw how it was possible to manipulate the governing

equation into the form of a parabolic cylinder equation required to produce an asymptotic
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solution for the body mode. The process involved solving two simultaneous equations

for the two unknowns ω0 and zu. Only after solving these equations could we say which

of the acceptable zu values corresponds to the eigenvalue with the largest growth rate,

and therefore deduce the location in the layer at which the most unstable mode will be

localised. Upon solving the two simultaneous equations we introduced a second boundary

layer ξ2 and looked for eigenvalue solutions of the form ω = ω0 + δ22ω2 + o(δ22) , with

δ2 = l−1/2 . We shall adopt the same process in order to solve the problem with viscosity.

The first of the two simultaneous equations in this case is (6.7), the second, as we shall

see, comes from the fact that an Airy mode can not satisfy both boundary conditions

when the solution is localised in the layer. We know from the previous subsection that

equation (6.9) leads to an Airy mode solution, which can not satisfy the impermeability

boundary conditions for a mode peaked in the layer. Thus, following §5.3.3, we take

b6 = 0 , ω1 = 0 and introduce a second boundary layer ξ2 in order to reduce our equation

to that of a parabolic cylinder. On fixing b6 = 0 , the second simultaneous equation to

solve (along with (6.7)) is

4kU ′ω̄3
0 − ω̄2

0(F ′ + 2kBB′)− 2kU ′ω̄0(F + k2B2) + k2B2F ′

+ 2FBB′k2 − il2

Re

[
6kU ′ω̄2

0 −
(
F ′ + 2kBB′ +

2ikU ′l2

Re

)
ω̄0

− kU ′(F + k2B2) +
k

γ
(2BB′U ′ + U ′′B2)

]
= 0. (6.13)

Keeping only the largest possible terms, with (6.7), (6.13) and ω1 = 0 satisfied, the

governing equation (6.2) becomes

b1
d6w

dξ62
+Re δ22 b2

d4w

dξ42
+Re2 δ42 b3

d2w

dξ22
−Re2 l2 δ82

(
ω2b7 + ξ22b8

)
w = 0. (6.14)

As was the case with the wall mode the governing equation is sixth order; therefore there

exist several balances between terms, which all relate to a different ordering of δ2. Again

we seek a balance between the terms in w and its derivatives that leads to the largest value

of δ2. This is achieved by balancing the second order derivative term to that inw, resulting

in the same ordering as in the previous chapter, namely δ2 = l−1/2 . With this scaling the

governing equation at leading order becomes

b3
d2w

dξ22
−
(
ω2b7 + ξ22b8

)
w = 0. (6.15)
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On introducing the new variable Υ = −2b8/b3 , equation (6.15) can be rewritten in the

more familiar form

d2w

dξ22
−
(
ω2b7
b3
− ξ22

2
Υ

)
w = 0. (6.16)

Transforming this into a parabolic cylinder equation as in §5.3.3, we can derive asymptotic

results for the body mode when l2 ∼ Re . The eigenvalue for this system becomes

ω = ω0

(
1− l−1 b3

ω0b7

√
−Υ

2

)
+ o

(
l−1
)
, (6.17)

with w eigenmode

w = C1e
−l(−Υ

8 )
1/2

(z−zν)2 , (6.18)

An example of how an eigenmode of this form behaves for large l was shown in

Figure 5.9.

6.2.2 l2/Re ∼ δi

Now suppose we consider different regime in l such that l2/Re ∼ δi . In this limit, the

analogue equation to (6.6) becomes[
ω̄2
0 − k2B2

]2d2w

dξ2i
− δ2i l2

[(
ω̄2
0 − F

)(
ω̄2
0 − k2B2

)]
w + o(1) = 0. (6.19)

This simplifies the problem greatly as we are now working with a second order equation

and no longer have to worry about balancing higher order derivatives in order to obtain

the desired δi. At leading order ( i = 0) the two terms in (6.19) balance when δ0 = l−1 ;

the above equation can then be reduced to equation (5.56)

[
ω̄2
0 − k2B2

] d2w

dξ20
−
[
ω̄2
0 − F

]
w = 0. (6.20)

Thus the only continuous non-trivial solution exists when,

ω0 = −
√
F (zν)− kU(zν). (6.21)
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Notice here that the viscous terms do not enter this expression for the leading order

eigenvalue. Therefore, for purely real zν , as is the case for the wall modes, viscosity

plays no role in the leading order solution when l2/Re ∼ δi . We cannot come to the

same conclusion just yet for the body mode. Since it is possible that zν is dependent on

the Reynolds number and therefore could influence ω0.

The wall mode

Since the leading order terms of the full sixth order system reduce to a second order

ODE when l2/Re ∼ δi , it is fairly straightforward to proceed in a similar fashion to that

previously laid out to arrive at the asymptotic results. When equation (6.21) is satisfied,

we can introduce a second boundary layer ξ1; thus, to leading order the governing equation

becomes

c1
d2w

dξ21
− δ31l2

[
c2ω1 − c3

il2

δ1Re
+ ξ1c4

]
w = 0, (6.22)

where the ci coefficients are order unity and are given in appendix F. The terms in

equation (6.22) balance provided that δ1 = l−2/3 ; therefore we expect the asymptotics

to be valid when l2/Re ∼ l−2/3 or, equivalently, l ∼ Re3/8 . With the previous work as

our guide, we can proceed in a familiar fashion and introduce a new variable Σ = −c4/c1 .

With this, the asymptotic eigenvalue solution for the wall mode when l ∼ Re3/8 becomes

ω = ω0

(
1 +

l−2/3

ω0

(
χc1Σ

2/3

c2
+
ic3l

8/3

c2Re

))
+ o(l−2/3), (6.23)

with corresponding w eigenvector

w = C1Ai
[
χ− l2/3(z − zν)Σ1/3

]
. (6.24)

The body mode

As with all the previous work on the body mode analysis, the aim is to try to reduce the

governing equation down to the form of a parabolic cylinder equation. This is done by

assuming that the O(δi) coefficients of w are zero and the balancing the O(δ2i ) coefficients
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of w with the leading order coefficients of the second derivative w′′. In the current case,

when l2/Re ∼ δi , the O(δi) coefficients from (6.22) are

c2ω1 − c3
il2

δiRe
− ξic4. (6.25)

For expression (6.25) to equal zero for all z we require that both ω1 = ic3l
2/c2δiRe

and c4 = 0 . The first of these conditions is unusual in comparison to all our previous

work, in which ω1 = 0 . The second condition just leads to an equation that when solved

simultaneously with (6.21) gives the values of ω0 and zν . By using (6.21) and (F.2d), this

second simultaneous equation becomes

F ′(zν)− 2kU ′(zν)(ω0 + kU(zν)) = 0. (6.26)

Equation (6.26) together with (6.21), are the same two equations seen in §5.3.3 where we

were just considering a body mode under the influence of a velocity shear. Therefore in

the region of l, such that l2/Re ∼ δi , the leading order growth rate is independent of the

viscosity.

Since ω1 no longer equals zero we require an extra step in order to reduce the governing

equation to the parabolic cylinder equation we require. Introducing a further boundary

layer ξ2 and expanding the eigenvalue as ω = ω0 + δ2ω1 + δ22ω2 + o(δ22) , the leading

order equation can we written in the form

c1
d2w

dξ22
− δ42l2

[
c5ω2 + c6 + c7ξ2 + c8ξ

2
2

]
w = 0, (6.27)

where the ci coefficients are again provided in appendix F. When written in this form we

can complete the square and introduce the new variable ξ̄2 = ξ2 + c7/2c8 . On balancing

terms by taking δ2 = l−1/2 , the leading order equation becomes

d2w

dξ̄22
−
[
c5ω2 + c9

c1
− ξ̄22

2
Υ

]
w = 0, (6.28)

where Υ = −2c8/c1 and c9 = c6 − c27/4c8 . To this order we expect the asymptotics to be

accurate when l2/Re ∼ l−1/2 or equivalently when l ∼ Re2/5 . Now in a familiar form we

can transform equation (6.28) into a parabolic cylinder equation and proceed as usual. On
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doing so, the asymptotic expression for the eigenvalue for a body mode when Re ∼ l5/2

becomes

ω = ω0

(
1 +

ic3l
2

ω0c2Re
− l−1

ω0

(
c1
c5

√
−Υ

2
+
c9
c5

))
+ o(l−1), (6.29)

with corresponding w eigenvector

w = C1e
−l(−Υ

8 )
1/2

(
z−zν+ c7

2c8l
1/2

)2

. (6.30)

Here we notice an extra term c7/2c8l
1/2 in the exponential, that is not normally present

and is introduced here as a result of ω1 6= 0 . Therefore, instead of the mode being peaked

at < (zν), it is instead peaked at <
(
zν − c7/2c8l1/2

)
, which for large l is merely a small

correction. Even with this correction term, the structure of the mode still looks the same

as what we observed in Figure 5.9.

6.2.3 l2/Re ∼ δ2i

For completeness we include the asymptotic analysis for the regime when l2/Re ∼ δ2i .

After introducing a boundary layer ξi given by (6.5), the governing equation (6.2) reduces

exactly to (6.19),

[
(ω0 + kU)2 − k2B2

]2d2w

dξ2i

−δ2i l2
[(

(ω0 + kU)2 − F
)(

(ω0 + kU)2 − k2B2
)]
w + o(1) = 0.

(6.31)

Following §6.2.2, the leading order growth rate is therefore

ω0 = −
√
F (zν)− kU(zν). (6.32)

We proceed in the usual fashion, by first considering the wall modes. When l2/Re ∼ δ2i ,

the analogue to equation (6.22) becomes

c1
d2w

dξ21
− δ31l2 [c2ω1 + ξ1c4]w = 0, (6.33)
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where again all coefficients are given in appendix F. Although not obvious when

written in this form, this equation is exactly the same as (5.59) as that found in §5.3.2.

Consequently, the analysis for the wall mode follows the work in §5.3.2 and to O
(
l−2/3

)
,

viscosity never enters the problem.

The viscosity does however play a role in the next order correction to the growth rate

for the body mode. To manipulate equation (6.33) into the form of a parabolic cylinder

equation, we set both ω1 = 0 and c4 = 0 . This gives a second equation involving ω0 and

zν that can be solved simultaneously with (6.32),

F ′(zν)− 2kU ′(zν)(ω0 + kU(zν)) = 0. (6.34)

Equations (6.32) and (6.34) are precisely equations (6.21) and (6.26), in which viscosity

plays no role in determining the leading order growth rate. This is not a surprising result;

if viscosity does not influence ω0 and zν when l2/Re ∼ δi , we would not expect it to

when l2/Re ∼ δ2i . Introducing a second boundary layer ξ2 and expanding the eigenvalue

as ω = ω0 + δ22ω2 + o(δ22) , the leading order equation can we written as

c1
d2w

dξ22
− δ42l2

[
c5ω2 − c3

il2

δ22Re
+ c8ξ

2
2

]
w = 0. (6.35)

Balancing terms in this equation requires δ2 = l−1/2 . Therefore we expect our analysis

in this subsection to be accurate when l2/Re ∼ l−1 , or l ∼ Re1/3 . With this ordering

in place, we transform equation (6.35) into the form of a parabolic cylinder equation

by introducing the familiar variable Υ = −2c8/c1 . Following the procedure laid out in

§5.3.3 we can express the eigenvalue as

ω = ω0

(
1− l−1

ω0

(
c1
c5

√
−Υ

2
− c3il

3

c5Re

))
+ o(l−1), (6.36)

with corresponding w eigenvector

w = C1e
−l(−Υ

8 )
1/2

(z−zν)2 . (6.37)

For l2/Re < O (δ2i ) , the analysis of both the wall and body mode reverts to that in

Chapter 5, where up to the order of δi considered, viscosity has no influence on the

instability.
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6.2.4 Boundary value problem

This subsection aims to confirm the validity of the asymptotic analysis by comparing

the derived results to numerical solutions of the full boundary value problem. To solve

the full boundary value problem numerically we use both the inverse iteration method

(appendix B) on the full set of governing equations (6.1) and the inbuilt MATLAB

boundary value problem solver BVP4C. To solve the problem with MATLAB’s boundary

value problem solver, we express the 6th order system as

Ā1u
′′ + Ā2w + Ā3u = 0, (6.38a)

Ā4w
′′′′ + Ā5w

′′ + Ā6w
′ + Ā7w + Ā8u = 0, (6.38b)

with boundary conditions at z = 0 and z = 1 corresponding to w = 0, w′′ = 0, u′ = 0

for stress-free, and w = 0, w′ = 0, u = 0 for no-slip. These are the same as

equations (C.19) found in appendix C and are used instead of (6.2), as it is easier to

implement the boundary conditions.

One issue that arises from the asymptotic analysis is that when considering a δi that has

the largest influence on the growth rate, the 6th order ordinary differential equation (6.2)

is reduced to a 2nd order ODE. Consequently, to arrive at our final solution we only

have to impose two boundary conditions, specifically the impermeability condition on

w at both boundaries. Thus our asymptotic solutions do not depend on, or necessarily

satisfy, the other two boundary conditions on u and v. Using our asymptotically derived

expression for the eigenvector w, we can solve (6.38a) as a boundary value problem with

two boundary conditions on u and arrive at an approximated value for u. However,

through our analysis we can not satisfy the two remain boundary conditions, as we do

not have a similar differential equation for v. Instead, once we have found w and u, we

have to use the incompressibility condition to get an approximation for v, such that

v =
−k
l
u+

i

l
w′. (6.39)

As we have not used the two remaining boundary conditions on v, we do not expect this

approximation for v to necessarily satisfy the boundary conditions. This will not be a

problem for the body mode, since the bulk of the eigenvectors is in the layer and both w
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and u decay exponentially to zero as they approach the boundary. However, for a wall

mode, where the bulk is located near the boundary, this is not the case; the boundary

conditions must play a role in determining the structure of the mode. The knock-on

effect of not fully satisfying the boundary conditions is examined further in the following

subsection.

The wall mode

We will first compare the asymptotic results for the wall mode to those found from solving

the full boundary value problem. Here we fix the Reynolds number at Re = 104 , and

take a linear velocity shear profile U = 10(1− z) . For this value of Re we expect the

asymptotics in §6.2.1 to be valid for l ≈ 100 and the asymptotics in §6.2.2 to be valid for

l ≈ 30 . Defining the magnetic field B and temperature gradient β as in Chapter 5,

B = 1 + ζ(1− z), (6.40a)

β = β̂ + α− ζ(γ − 1)

γ
(1 + ζ(1− z)) , (6.40b)

we introduce two new sets of parameter values

Pν1 : α = 0.5, β̂ = 0.1, ζ = 1.5, k = 0, (6.41a)

Pν2 : α = 0.5, β̂ = 0.1, ζ = 1.5, k = 0.3. (6.41b)

Figure 6.1 shows plots of the growth rate for a range of wavenumber l values. These

figures include the full solution for both the stress-free and no-slip boundary conditions,

as well as the asymptotic results (6.12), obtained when l2/Re ∼ 1 , and (6.23) obtained

when l2/Re ∼ δi . The first thing to note from these results is the similarity between

the stress-free and no-slip solutions, which suggests that the resulting growth rate is

somewhat independent of the choice of boundary conditions used. This ties in well with

our asymptotic results, in that, to the order of δ considered, the boundary conditions on

u and v have no influence on the growth rate. Even for the relatively low values of l,

the asymptotics provide a good approximation to the growth rate. As expected, (6.12)

provides an accurate representation of the growth rate for l ≈ 30 , and becomes less

precise as the ratio l2/Re increases. A somewhat unexpected result is just how well
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equation (6.12) estimates the growth rate for the entire range of l. This can be explained

by considering the equation for the leading order growth rate (6.7) obtained when

l2/Re ∼ 1 . If we take l2/Re = o(1) this equation becomes(
ω̄2
0 − k2B2

) (
ω̄2
0 − F

)
= 0. (6.42)

Since we are looking for unstable modes ( ω̄2
0 < 0 ), we can assume that ω̄2

0 6= k2B2 and

thus equation (6.42) is satisfied when ω̄2
0 = F . This is exactly the same as the equation

for the leading order growth rate (6.21) obtained when l2/Re ∼ δi . Therefore when

l2/Re = o(1) , the leading order growth rate predicted by (6.7) is the same as that in

§6.2.2.

To examine the effect of the boundary conditions on the eigenfunctions we solved the full

boundary value problem (6.38) using the inverse iteration method. Figure 6.2 shows the

eigenfunction solutions of |u|, |v| and |w| for both the stress-free and no-slip boundary

conditions, taken with parameter values Pν1 at l = 33 . This value of l was selected as it

corresponds to the mode of maximum growth rate for parameter values Pν1. The absolute

difference between the two solutions for each eigenfunction is given in Figure 6.3.

Throughout this thesis all eigenfunctions are normalised such that the maximum value

of the real part of w is one. In these figures we notice that for both boundary conditions,

the bulk of the mode is very similar. The eigenfunction profiles are almost identical, apart

from a thin region close to the bottom boundary, where for the u and v eigenfunctions,

the solutions do differ. This thin layer is just a consequence of the system satisfying the

required boundary conditions. This is an important result and suggests that independent

of the boundary conditions chosen, the bulk of the flow remains relatively similar.

As discussed, our asymptotic result for the eigenfunction w is derived using only two of

the necessary six boundary conditions. Using the analytic approximation for w, we can

solve (6.38a) as a boundary value problem to obtain u, and thus incorporate two extra

boundary conditions into the solution. However, we have not found a way to successfully

incorporate the final two boundary conditions required to fully determine v, and instead

have to approximate v using the incompressibility condition (6.39). Figure 6.4 shows the

approximated eigenfunctions derived in this fashion (black dashed lines), together with

the eigenfunctions obtained from solving the full problem for the stress-free boundary
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conditions (red lines). Again we have taken parameter values Pν1 at l = 33 , and have

used (6.11) for our approximation to w. Even for this relatively low value of l, the

asymptotics provide a very good estimate for all the eigenfunctions. Despite not actually

enforcing the boundary conditions on v, the approximated method has done a very good

job of satisfying them. Figure 6.5 shows similar plots, this time obtained using no-slip

boundary conditions. As before, the approximated method provides a good estimate

for the u and w eigenfunctions. However, this time we see the knock-on effect of not

explicitly satisfying the v boundary conditions. Since k = 0 in our set-up, from (6.39),

we have v proportional to w′. As we are approximating w with an Airy function of the

form (6.11), we can never have w′ = 0 at the bottom boundary. Therefore we can not

fully satisfy the v no-slip boundary conditions using this approximated method. In future

work it would be nice to investigate this further, in an attempt to fully incorporate the two

remaining boundary conditions into our asymptotic analysis. Despite that, the impact of

changing the boundary conditions seems to have minimal influence on the eigenvalue and

bulk structure of the mode, and ultimately these asymptotic solutions do provide a good

approximation to the full problem.
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Figure 6.1: Growth rate versus wavenumber l for parameter values Pν1 (top) and Pν2

(bottom) defined in (6.41). In each figure the coloured lines represent the growth rate

obtained from the boundary value problem (6.38), the black dots represent the asymptotic

growth rate from (6.12) derived when l2/Re ∼ 1 , and the green dots the asymptotic

growth rate from (6.23) derived when l2/Re ∼ δi .
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Figure 6.2: Eigenfunctions |u|, |v| and |w| for both the stress-free and no-slip boundary

conditions derived by solving the full boundary value problem (6.38), for parameter

values Pν1, with wavenumber l = 33 .
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Figure 6.3: The absolute difference between the stress-free and no-slip solutions found in

Figure 6.2.
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Figure 6.4: Eigenfunctions |u|, |v| and |w| obtained using stress-free boundary conditions,

taken with parameter values Pν1 at l = 33 . In all cases the red solid line represents the

solutions to the full boundary value problem (6.38), and the black dashed line represents

the approximated solution using the asymptotics.
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Figure 6.5: The same as Figure 6.4, obtained using no-slip boundary conditions.
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The body mode

As in the previous subsection studying the wall mode, we will introduce a set of parameter

values to validate our asymptotic results against the solutions to the full boundary value

problem. In Chapter 5 we provided examples of eigenfunction solutions for a body mode,

for which the bulk of the eigenfunction existed within an envelope peaked in the layer, and

outside the envelope the eigenfunction was effectively zero. As a result both, w and its

derivative are essentially zero at the boundary. Numerically this was not difficult to solve,

as we only had to satisfy the impermeability condition on w. By considering viscosity

we have introduced second order derivatives into the governing equations (6.1). Now the

problem becomes very difficult to solve numerically, as both the inverse iteration method

and the MATLAB solvers struggle to find the body modes. Since the only non-zero part

of the eigenfunction is contained in an envelope peaked away from the boundary, the issue

regarding the boundary conditions does not effect this problem; solving the full solution

for stress-free and no-slip gives the same result. Therefore unlike the wall mode, our

approximation for v using the incompressibility conditions (6.39) will fully satisfy the

required boundary conditions. To validate the asymptotic analysis of the body mode we

pick a quadratic shear profile U = 10(z2 − z + 1) , which is maximised in the layer, and

fix the Reynolds number at Re = 105 . For this value of Re we expect the analysis of

§6.2.1 to be valid for l ≈ 316 , the asymptotics in §6.2.2 to be valid when l ≈ 100 and

finally the asymptotics in §6.2.3 to be valid when l ≈ 46 . To ensure that we find a mode

that is peaked in the layer we use parameter values

Pν3 : α = 0.1, β̂ = 0.1, ζ = 1.5, k = 0.6. (6.43)

Figure 6.6 plots the growth rate of the full boundary value solution versus wavenumber l

for these parameter values. Included on the plot are the asymptotic results for the growth

rates from (6.17) (black), (6.29) (green), (6.36) (blue). Even for these relatively low values

of l, the asymptotic analysis provides a very good approximation to the full growth rate.

As was the case for the wall mode, the asymptotics derived in §6.2.1 for when l2/Re ∼ 1

are found to hold when l2/Re� 1 .

Figure 6.7 plots the moduli of u, v and w obtained from solving the full boundary value

problem at l = 55 (red). Also on these plots (black dashes) are the asymptotically derived
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Figure 6.6: Growth rate versus wavenumber l for parameter values Pν3 (6.43). The growth

rate from the full boundary value problem (6.38) is given in solid red. The dots represent

solutions to the asymptotics results: Equation (6.17) black, equation (6.29) green and

equation (6.36) blue.

eigenfunctions — w is obtained from (6.37), u is derived from (6.38a) and v from (6.39).

Here we note the excellent agreement between the full boundary value problem and the

approximated solution. As mentioned the choice of boundary conditions does not effect

the structure of the body mode and therefore our approximations are valid for both stress-

free and no-slip.
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Figure 6.7: Plots of |u|,|v| and |w| for the body mode at l = 55 with parameter values

Pν3 given by (6.43). The solid red line represents the solution to the full boundary value

problem (6.38), the black dashes the approximated solutions from the asymptotics.
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6.2.5 Preferred mode of instability: viscosity

In the absence of both shear and diffusion it is fairly straight forward to determine which

branch of the asymptotic solutions to follow in order to find an approximate eigenvalue

and corresponding eigenvector. The most unstable mode in this case is the mode localised

about the point zc at which the function F , given by (5.2), is minimised. In §5.3.5 we

discussed why, with the introduction of a velocity shear, this simple concept is no longer

valid. Instead, the localisation of the most unstable mode can only be determined by

considering the asymptotic growth rate for both the wall and body mode, and seeing which

corresponded to the most unstable mode. This means that for a given set of parameter

values it is possible that, by increasing the magnitude of the shear, the most unstable

mode switches from a wall mode to a body mode, or vice versa. This unpredictable

nature carries through to our analysis in this chapter.

In §5.3.1 we derived equation (5.57) for the leading order eigenvalue ω0 in the presence

of velocity shear, given by

ω0 = −
√
F (zu)− kU(zu). (6.44)

For a wall mode, zu is located on the boundary and therefore takes a real value, either

zu = 0 or zu = 1 . As discussed in §5.4, the shear plays no role in influencing the

leading order growth rate, and instead only affects the frequency of the mode. The only

influencing factor on the leading order growth rate is the function F , which is minimised

when k = 0 . Therefore the most unstable wall mode in the absence of any diffusion is

always the interchange mode.

To study the effects of viscosity on the wall mode we split our analysis into two distinct

sections, depending on the relative size of the Reynolds number Re to wavenumber l. In

§6.2.2, we derived asymptotic results for the wall mode valid when l ∼ Re3/8 . Under this

assumption, the leading order eigenvalue ω0 is given by equation (6.21), which is precisely

equation (6.44). Therefore, for values of l such that l ∼ Re3/8 , the most unstable wall

mode will again be an interchange mode. Section 6.2.1 contains results valid for values

of l, such that l ∼ Re1/2 . The leading order eigenvalue for this case in now given by a
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fourth order polynomial in ω0 containing the effects of viscosity,

ω̄4
0 −

2il2

Re
ω̄3
0 −

(
F + k2B2 +

l4

Re2

)
ω̄2
0

+
il2

Re
(F + k2B2)ω̄0 + k2B2F − ikB2U ′l2

γRe
= 0, (6.45)

where ω̄0 = ω0 + kU . As such, the growth rate in this limit is no longer dependent

solely on F , but, instead, is also influenced by both the velocity shear gradient and the

viscosity. Let us first consider the interchange mode present in this limit. Taking k = 0 ,

equation (6.45) becomes

ω0

(
ω2
0 −

il2

Re
ω0 − F0

)(
ω0 −

il2

Re

)
= 0, (6.46)

where F0 = F |k=0 < 0 . Focusing on instability, i.e. = (ω0) < 0 , we can reduce the above

equation to

ω2
0 −

il2

Re
ω0 − F0 = 0, (6.47)

the imaginary part of which gives

= (ω0) =
l2

2Re
±
√

l4

4Re2
− F0. (6.48)

Equation (6.48) takes its most negative value, and therefore corresponds to the mode of

highest growth rate, for the negative root. Let us compare this result to what we obtain

when taking the imaginary part of (6.21) with k = 0 , valid when l ∼ Re3/8 , namely

= (ω0) = −
√
−F0. (6.49)

For all l2/Re, the resulting growth rate from equation (6.49) will be larger than that

from (6.48). Therefore the most unstable interchange mode of the system will always

exist for values of l in the region where l ∼ Re3/8 .

As can be seen from (6.45), when l ∼ Re1/2 the growth rate of the system is no longer

dependent only on F . Thus there may exist an undular mode in this limit that is more

unstable than the interchange mode. To study this further, we fix l2/Re = 1 and take a
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linear shear profile U = λ(1− z) . Figure 6.8 is a plot of the leading order growth rate

from (6.45) versus shear strength λ, for parameter values

Pν4 : α = 0.1, β̂ = 0.1, ζ = 1.5. (6.50)

This figure includes several results for different wavenumber k values, with the

interchange mode represented by the solid black line. Here we observe that for a critical

value of λ, the mode with the largest growth rate and therefore the most unstable mode

for these parameter values, switches from the interchange mode to an undular mode.

Thus, by introducing viscosity, it becomes possible for an undular mode to be the most

unstable mode. Interestingly the exact form of the shear profile is somewhat irrelevant

when it comes to its influence on the growth rate. Under closer inspection, the growth rate

obtained from (6.45) is only influenced by the value of the shear gradient U ′ evaluated at

the boundary. Therefore the exact structure of the shear away from the boundary does not

play a role on the leading order growth rate, and the undular mode is only destabilised

when U ′ 6= 0 at the boundary. Numerically one can show that changing the sign of U ′ at

the boundary will only alter the frequency of the mode. Thus, when considering a shear

profile of the form U = λ(1 + z) , the growth rate will be precisely what we found in

Figure 6.8 for when U = λ(1− z) . Hence, it is the magnitude of the shear gradient U ′

evaluated at the boundary that impacts the instability.

To tie the interchange and undular mode results together, we fix the Reynolds number at

Re = 104 and examine how the shear (combined with the viscosity) plays a role in the

location of the most unstable mode. Again we take a linear shear profile U = λ(1− z)

and parameter values Pν4. To determine the growth rate of the wall mode we use

equation (6.12), which includes the next order correction to the leading order growth rate.

Figure 6.9 contains three separate plots of how the growth rate varies with l, each plot

showing a different value of λ. When λ = 0 the most unstable mode is an interchange

mode at l ≈ 32 . By increasing the shear gradient to λ = 10 , the interchange mode at

l ≈ 32 is still the most unstable wall mode. However, for values of l such that l ∼ Re1/2 ,

an undular mode is more unstable than the interchange mode. Finally, when λ = 25 the

undular wall mode with k = 0.5 , at l = 145 , is the most unstable mode of system. This

result ties in nicely with what we have seen in the asymptotic analysis. When Re = 104 ,
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Figure 6.8: The leading order growth rate ω0 from (6.45) versus shear strength λ obtained

by fixing l2/Re = 1 , with linear shear profile U = λ(1− z) and parameter values

Pν4 (6.50).

we expect the asymptotic analysis for the wall mode in §6.2.2 to be accurate when

l2/Re ∼ δi , or specifically l ≈ 32 . As described above, independent of the profile or

magnitude of the shear flow, the most unstable wall mode in the region where l2/Re ∼ δi ,

will always be an interchange mode. This is precisely what we observe in Figure 6.9; no

matter what the strength of the shear, the most unstable mode when l2/Re ∼ δi is the

interchange mode. By increasing the shear gradient to λ = 25 , the most unstable mode

of the system switches from being the interchange mode at l = 32 to an undular mode

at l = 145 . For l = 145 , l2/Re ≈ 2 . It is therefore reasonable to use the analysis of

§6.2.1, which assumes l2/Re ∼ 1 , to describe what is happening here. As previously

discussed, when considering wall modes in the region where l2/Re ∼ 1 , the Reynolds

number appears in the calculations for the leading order growth rate. Therefore it is

possible that for a sufficiently large shear gradient, the undular mode becomes the most

dominant mode. This is seen in Figure 6.9; the most unstable mode when l2/Re ∼ 1 has
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changed from an interchange mode to an undular mode as the shear strength is increased.

To conclude, we can build a picture of how the wall mode behaves under the influences of

velocity shear and viscosity. For ‘low’ shear gradients the most unstable wall mode will

be an interchange mode with wavenumber l given by l ∼ Re3/8 . By increasing the shear

gradient past a certain critical value, it is possible that the most unstable mode switches

from an interchange mode to an undular mode, with wavenumber l ∼ Re1/2 . Due to the

complex nature of the problem, we can not derive the critical value of λ for a general shear

flow. However, through the introduction of viscosity we now know that it is possible that

an undular mode, and hence a mode affected by velocity shear, can be the most unstable

mode of the system.

Unfortunately due to the added complexity, it is not possible to provide a similar analysis

for the body mode. For a body mode to exist two simultaneous equations must be satisfied,

subject to the constraint that 0 < <(zν) < 1 . These two simultaneous equations are

heavily dependent on the profile and magnitude of the shear flow. It is possible that

for a specific shear profile a body mode exists for certain values of λ but not for others.

Therefore finding the body mode has to be done on a case by case basis, and solving for a

range of λ values is not feasible. It would appear however (as seen in Figure 6.6) that the

most unstable body mode appears around l ≈ Re1/3 . This would suggest that the work in

§6.2.3 holds the most significance and that the viscosity has no influence on the leading

order growth rate.
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(a)

(b)

(c)

Figure 6.9: Growth rate obtained from (6.12) versus wavenumber l for shear strengths:

(a) λ = 0 , (b) λ = 10 and (c) λ = 25 . Each figure uses parameter values Pν4 (6.50),

Re = 104 and shear profile U = λ(1− z) .
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6.3 Thermal diffusion

When considering only the effects of thermal diffusivity on the system, the linear set of

governing equations from (3.61) are;

∇ · u = 0, (6.51a)

∇ · b = 0, (6.51b)(
∂

∂t
+ U

∂

∂x

)
u+U ′w = −∇⊥Π + (T +Bbx) ẑ +B

∂b

∂x
+B′bz, (6.51c)(

∂

∂t
+ U

∂

∂x

)
b+B′w = B

∂u

∂x
+U ′bz, (6.51d)(

∂

∂t
+ U

∂

∂x

)
(T +DBbx) = −βw +

1

Pe
∇2
⊥T, (6.51e)

where ∇2
⊥ = ∂zz + ∂yy . This set of equations can be solved subject to impermeable

boundary conditions on top and bottom boundaries (i.e. w = 0), and two boundary

conditions on the temperature T . Following the work laid out in appendix D,

equations (6.51) can be reduced to a 4th order ordinary differential equation for

ψ = (ω0 + kU)−1w ,

ακ1ψ
′′′′ + ακ2ψ

′′′ + ακ3ψ
′′ + ακ4ψ

′ + ακ5ψ = 0, (6.52)

where the coefficients ακi are given by

ακ1 =
iP

(ω + kU)Pe
, (6.53a)

ακ2 =
3iP ′

(ω + kU)Pe
, (6.53b)

ακ3 = P +
3iP ′′

(ω + kU)Pe
− i(aκ1 + P )

l2
(ω + kU)Pe, (6.53c)

ακ4 = P ′ +
iP ′′′

(ω + kU)Pe
− i(2a′κ1 + P )

l2
(ω + kU)Pe, (6.53d)

ακ5 = −l2aκ2 −
ia′′κ1l

2

(ω + kU)Pe
+

iaκ1l
4

(ω + kU)Pe
, (6.53e)
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with

P = (ω + kU)2 − k2B2, (6.54a)

aκ1 = (ω + kU)2 −G, (6.54b)

aκ2 = (ω + kU)2 − F, (6.54c)

where G = k2B2 +BB′ . Proceeding as in §6.2 we will perform a boundary layer

analysis on equation (6.52), studying different limits depending on the relative size of

the Péclet number Pe to the wavenumber l. With the benefit of hindsight we will focus

on three relative orderings: l2/Pe � 1, l2/Pe ∼ 1 and l2/Pe � 1. We shall again

introduce a boundary layer variable, analogous to that seen in the previous section,

ξi =
z − zκ
δi

. (6.55)

We shall then expand the eigenvalue in orders of δi and expand all basic state variables of

z in a Taylor series about zκ.

6.3.1 l2/Pe� 1

Let us first consider the case where the wavenumber l satisfies the inequality l2/Pe� 1 .

Proceeding in familiar fashion, at leading order, the governing 4th order ODE reduces

down to the second order ODE,

(
(ω0 + kU)2 − k2B2

) d2ψ

dξ2i
− δ2i l2

(
(ω0 + kU)2 − F

)
ψ + o (1) = 0. (6.56)

Considering the boundary layer associated with i = 0 , and balancing terms in the

equation by taking δi = l−1 , equation (6.56) becomes equation (5.56). Therefore we can

follow the work laid out in §5.3 to arrive at the asymptotic approximations, and conclude

that for wavenumbers such that l2/Pe� 1 , the thermal diffusion has no impact on the

instability. For future reference we include the leading order growth rate for the case of

l2/Pe� 1 ; from (5.57) we have

ω0 = −
√
F (zκ)− kU(zκ). (6.57)
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6.3.2 l2/Pe ∼ 1

Let us now consider the regime l2/Pe ∼ 1 . In this case the governing leading order

equation involves the thermal diffusivity, and can be written as

d1
d4ψ

dξ4i
+
(
d2Pe+ d3l

2
)
δ2i

d2ψ

dξ2i
− l2

(
d4Pe+ d5l

2
)
δ4i ψ + o (1) = 0, (6.58)

where all di coefficients are O (1) and given in appendix F. When considering a

boundary layer associated with i = 0 , all terms in the above equation balance when

δ0 = l−1. There is only a continuous, non-trivial solution that satisfies this equation

when d4Pe+ d5l
2 = 0 . This corresponds to an equation for the leading order growth

rate, given by

ω̄3
0 −

il2

Pe
ω̄2
0 − Fω̄0 +

iGl2

Pe
= 0. (6.59)

As in §6.2, we will provide asymptotic results for the wall and body mode individually.

The wall mode

When equation (6.59) is satisfied, the governing equation (6.52) in the presence of a

boundary layer ξ1, keeping only the highest order terms, becomes

d1
d4ψ

dξ41
+
(
d2Pe+ d3l

2
)
δ21

d2ψ

dξ21
− Pe l2 (ω1d6 + d7ξ1) δ

5
1ψ + o (1) = 0. (6.60)

As we saw in §6.2, there exist different values of δ1 that can be used to balance terms in an

equation of this form. We will again pick the value of δ1 that has the largest influence on

the growth rate; therefore, as with all previous cases, δ1 = l−2/3 . On striking this balance,

the fourth order equation (6.60) reduces down to a second order ODE(
d2 + d3

l2

Pe

)
d2ψ

dξ21
− (ω1d6 + d7ξ1)ψ = 0. (6.61)

Following earlier work on the wall mode analysis (see §5.2.3), we introduce the variable

Σ = −d7/(d2 + d3l
2/Pe) and transform the equation (6.61) into an Airy equation. This

allows us to derive an approximation to the eigenvalue

ω = ω0

(
1 + l−2/3

χ (d2 + d3l
2/Pe) Σ2/3

ω0d6

)
+ o

(
l−2/3

)
, (6.62)
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with ψ eigenmode

ψ = C1Ai
[
χ− l2/3(z − zκ)Σ1/3

]
. (6.63)

The body mode

To derive an asymptotic approximation for the body mode we need to transform the

governing equation into the form of a parabolic cylinder equation. To do this we first

take ω1 = 0 and d7 = 0 in equation (6.60). The condition that d7 = 0 gives

ω̄0 (−F ′ + 2kU ′ω̄0) + kU ′
(
ω̄2
0 − F

)
− il2

Pe
(2kU ′ω̄0 −G′) = 0, (6.64)

which along with (6.59), can be solved simultaneously for ω0 and zκ. With these equations

satisfied the leading order governing equation associated with the boundary layer ξ2,

becomes

d1
d4ψ

dξ42
+
(
d2Pe+ d3l

2
)
δ22

d2ψ

dξ22
− Pe l2

(
ω2d8 + d9ξ

2
2

)
δ52ψ + o (1) = 0. (6.65)

Again we choose δ2 = l−1/2 , so that ω2 has the largest influence on the growth rate. With

this choice, equation (6.65) becomes a second order differential equation for ψ, which at

leading order is (
d2 + d3

l2

Pe

)
d2ψ

dξ22
−
(
ω2d8 + d9ξ

2
2

)
ψ = 0. (6.66)

In familiar fashion, we introduce the variable Υ = −2d9/ (d2Pe+ d3l
2) and transform

the second order ODE (6.66) into a parabolic cylinder equation. With this in place we can

derive an approximation to the most unstable body mode eigenvalue,

ω = ω0

(
1− l−1d2 + d3l

2/Pe

d8ω0

√
−Υ

2

)
+ o

(
l−1
)
, (6.67)

and eigenfunction for ψ,

ψ = C1e
−l(−Υ

8 )
1/2

(z−zν)2 . (6.68)
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6.3.3 l2/Pe� 1

In this limit the leading order governing equation again reduces to a second order

differential equation,(
(ω0 + kU)2 − k2B2

) d2ψ

dξ2i
− δ2i l2

(
(ω0 + kU)2 −G

)
ψ + o (1) = 0. (6.69)

Balancing terms in this equation by taking δ0 = l−1 , we arrive at a non-trivial, continuous

solution when

ω0 = −
√
G(zκ)− kU(zκ). (6.70)

This is very similar to what we saw in §6.3.1, in that the thermal diffusivity has no direct

influence on the instability. Equation (6.69) is almost identical to equation (6.56), the

only difference being the function G instead of F . Therefore, the appropriate results for

the wall and body modes are precisely those of §5.3, with F replaced with G.

6.3.4 Preferred mode of instability: thermal diffusion

When considering the limit l2/Pe� 1 , the system reverts to that studied in §5.3. Thus,

for a wall mode, the instability is governed solely by the function F , and the velocity

shear has no influence on the instability. Furthermore, the most unstable wall mode in

this case is the interchange mode. For wavenumbers such that l2/Pe� 1 , we obtain a

very similar result. This time, however, the growth rate for a wall mode is dictated solely

by the function G, with the most unstable wall mode appearing when G is most negative,

which again corresponds to an interchange mode. By comparing the magnitudes of the

functions F and G we can therefore determine which limit the system prefers when in the

presence of just thermal diffusion. From Chapter 5, F is defined as

F = k2B2 + β +
BB′

γ
. (6.71)

In §3.3.1 we rewrite the temperature gradient as

β = β̂ +
∂T

∂z
+

(
1− 1

γ

)
BB′, (6.72)
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where for a convectively stable atmosphere, β̂ > 0 and ∂zT > 0 . Substituting this

expression into (6.71) gives

F = k2B2 + β̂ +
∂T

∂z
+BB′. (6.73)

In §6.3.2 we introduced a new variable G as

G = k2B2 +BB′. (6.74)

Comparing (6.73) and (6.74) we notice that for a convectively stable atmosphere, such as

in the tachocline, G < F everywhere in the layer. Therefore, wall modes in the region

where l2/Pe� 1 are guaranteed to be more unstable than those where l2/Pe� 1 . The

transition period when l2/Pe ∼ 1 offers little information that aids us analytically. It

would appear from all our numerical experiments, that the most unstable wall mode for a

convectively stable atmosphere, with a linear basic state magnetic field, is the interchange

mode appearing in the l2/Pe� 1 limit.

As before, the analysis for the body mode is very limited due to the added complexity

in finding both ω0 and zκ for a general shear. The preferred mode of instability seems

to exist in the limit where l2/Pe� 1 , and in this limit we revert to the similar problem

found in Chapter 5, the only difference being that the function F in Chapter 5 is replaced

by the new function G. Since, in Chapter 5, we did not find an example of a body mode

begin the most unstable mode, there is no reason to assume that the body mode will be

the most unstable mode for this system. However we can not rule this out for a general

shear profile, only the ones we have tested.

In §5.2 we commented on the difference between our diffusionless system, which ignores

diffusive effects, and the system of equations found in Gilman (1970), the main difference

being how we treated the variation of temperature. Gilman assumed the atmosphere

was isothermal and thus neglected the energy equation in his analysis. We did not

make this assumption and instead just ignored the contribution of thermal diffusion in

the energy equation, whilst still including the variations in temperature. Upon taking

Gilman’s isothermal limit, our leading order equation in the absence of shear becomes

equation (5.3), which is an exact analogue to (6.69) with U = 0 . Since (at least for the

wall mode) this limit produces the most unstable mode of the system, it appears the system
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naturally wants to reduce to an isothermal state. This is not entirely surprising, especially

when considering what we know about magnetic buoyancy in the presence of diffusion

from §2.1.2. From equations (2.14) and (2.15) we see that for a given atmosphere,

instability is more readily achieved as κ→∞ , or, in terms of the Péclet number Pe→ 0 .

Therefore the most unstable wall mode in the presence only of thermal diffusion is one

in which the temperature perturbation is constant, resulting in any contribution of thermal

diffusion being neglected.

To arrive at the asymptotic results for both the wall and body modes we only satisfied two

of the required four boundary conditions, these being the impermeability conditions on ψ

(and therefore w). In appendix D we derive equation (D.6), which links the temperature

perturbation T to the vertical velocity ψ,(
1− il2

(ω + kU)Pe
+

i

(ω + kU)Pe

∂2

∂z2

)
T = −i

((
1− 1

γ

)
BB′ − β

)
ψ. (6.75)

Using our derived approximations for ψ, we can solve (6.75) as a boundary value problem

for T , subject to the two unused boundary conditions, i.e. either fixed temperature at both

boundaries, or fixed temperature at one boundary and fixed flux at the other. Since the

system prefers to be isothermal, we expect the temperature of the most unstable mode to

be constant throughout the layer, with the constant temperature value given by the value

of to T prescribed on the boundary.

To validate our asymptotic results we solve the full system of equations subject to

boundary conditions w = 0 and T = 0 at the bottom boundary, and w = 0 and T ′ = 0

at the top boundary. Figure 6.10 plots the growth rate versus l obtained from solving the

full boundary value problem together with the asymptotic results, for both the wall and

body modes. The parameter values used are

Pκ1 : α = 0.1, β̂ = 0.1, ζ = 1.5, k = 0, P e = 1; (6.76a)

Pκ2 : α = 0.1, β̂ = 0.1, ζ = 1.5, k = 0.6, P e = 1, (6.76b)

with the wall mode associated with parameter values Pκ1 and velocity shear

U = 10(1− z) , and the body mode with parameter values Pκ2 and velocity shear

U = 10(z2 − z + 1) . As expected the systems prefers the l2/Pe� 1 limit with l→∞ .
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The asymptotically derived growth rate for both l2/Pe ∼ 1 and l2/Pe� 1 provide a

good approximation to the full solution.
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Figure 6.10: Growth rate versus wavenumber l for the wall mode (top) and body mode

(bottom). In each plot the solid red line represents the solution to the full boundary

value problem (6.52), the black dots represent the asymptotic growth rate obtained when

l2/Pe ∼ 1 , and the green dots represent the asymptotic growth rate obtained when

l2/Pe� 1 .
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6.4 Magnetic diffusion

In the presence of only magnetic diffusion, the linear set of governing equations

from (3.61) are;

∇ · u = 0, (6.77a)

∇ · b = 0, (6.77b)(
∂

∂t
+ U

∂

∂x

)
u+U ′w = −∇⊥Π + (T +Bbx) ẑ

+B
∂b

∂x
+B′bz, (6.77c)(

∂

∂t
+ U

∂

∂x

)
b+B′w = B

∂u

∂x
+U ′bz +

1

Rm
∇2
⊥b, (6.77d)(

∂

∂t
+ U

∂

∂x

)
(T +DBbx) = −βw. (6.77e)

where ∇2
⊥ = ∂zz + ∂yy . As shown in the appendix E, we can reduce our system of

equations (6.77) to four second order ordinary differential equations

αη1w
′′ + αη2w + αη3by + αη4b

′
y + αη5bx + αη6b

′
x + αη7bz + αη8b

′
z = 0, (6.78a)

1

Rm
b′′x + αη9bx + αη10bz + αη11w = 0, (6.78b)

1

Rm
b′′y + αη12by + αη13bx + αη14bz + αη15w + αη16w

′ = 0, (6.78c)

1

Rm
b′′z + αη17bz + αη18w = 0, (6.78d)

where the αηi coefficients are also given in appendix E. These equations can be

solved subject to the impermeable boundary condition on the vertical velocity w at

both boundaries, and six other boundary conditions, two for each component of the

magnetic field b. Unfortunately, equations (6.78) are too complicated to reduce to

a single differential equation. Therefore, unlike in the previous two sections in this

chapter, which focused on viscous and thermal diffusion individually, we are not able

to progress very far analytically. We can however comment on the leading order growth

rate for the wall modes. In all our previous work on short-wavelength instability, an

equation for the leading order eigenvalue is obtained by assuming l is large and ignoring
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all z derivatives on perturbed quantities. Suppose we apply this logic to our system

of governing equations (6.78) for two different magnitudes of l2/Rm : l2/Rm ∼ 1

and l2/Rm� 1 . Writing the eigenvalue as ω = ω0 + o(1) and expanding basic state

quantities about a point zη, the leading order eigenvalue for l2/Rm ∼ 1 becomes

ω̄5
0 −

2il2

Rm
ω̄4
0 −

(
F + k2B2 +

l4

Rm2

)
ω̄3
0 +

il2

Rm

(
2F − BB′

γ

)
ω̄2
0

+

(
k2B2F +

ikB2U ′l2

γRm
+

βl4

Rm2

)
ω̄0 −

ik2βB2l2

Rm
= 0. (6.79)

Similarly, when l2/Rm� 1 we obtain(
ω̄2
0 − F

) (
ω̄2
0 − k2B2

)
= 0. (6.80)

As we are only interested in instability ( ω̄2
0 6= k2B2 ), (6.80) reduces to

ω̄2
0 = F. (6.81)

As previously discussed, these equations can only give the leading order growth rate for a

wall mode; we would require an extra equation for zη in order to determine the growth rate

of the body mode. Equations (6.79) and (6.81) are analogous to (6.7) and (6.21), in the

sense that when l2/Rm ∼ 1 , the magnetic diffusivity influences the leading order growth

rate and when l2/Rm� 1 , magnetic diffusion has no influence. Because of this we can

derive similar results to those seen in §6.2. Suppose we first look at the interchange wall

mode. For an unstable mode, equation (6.79) becomes

ω4 − 2il2

Rm
ω3 −

(
F0 +

l4

Rm2

)
ω2 +

il2

Rm

(
2F0 −

BB′

γ

)
ω +

βl4

Rm2
= 0, (6.82)

where F0 = F |k=0, and (6.81) becomes

ω2 = F0. (6.83)

For all values of l2/Rm the growth rate obtained from (6.82) will be smaller than that

from (6.83). Therefore we know that the interchange wall modes that exist for values of

l such that l2/Rm� 1 will be more unstable than those with wavenumbers such that

l2/Rm ∼ 1 . This is exactly what we found in §6.2.5; the most unstable wall interchange

mode was present for wavenumbers where l2/Re� 1 , or, more specifically, l ∼ Re3/8 .
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Figure 6.11: Leading order growth rate from (6.79) versus shear gradient λ. This plot is

obtained using parameter values Pη1 (6.84), fixing l2/Rm = 1 and using a linear shear

profile U = λ(1− z) .

Equations (6.79) and (6.81) also provide us with some insight into the undular wall mode.

We have seen before how the leading order growth rate from (6.81) is unaffected by the

shear flow for a real value of zη, and that the most unstable mode is the interchange

mode. However, when l2/Rm ∼ 1 , the magnetic diffusion and velocity shear can now

play a role in destabilising the undular mode. Figure 6.11 plots the leading order growth

rate obtained from (6.79) versus the shear gradient λ, for velocity shear U = λ(1− z) ,

l2/Rm = 1 and parameter values

Pη1 : α = 0.1, β̂ = 0.1, ζ = 1.5. (6.84)

Here we find the same result as found in §6.2.5; for a velocity shear of sufficient gradient,

the undular mode becomes more unstable than the interchange for values of l such

that l2/Rm ∼ 1 . To test our analytic prediction we proceed by solving the system of

equations (6.78) numerically.
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6.4.1 Numerical results

To study the effects of magnetic diffusion on the instability we use the inverse iteration

method to solve equations (6.78) subject to perfectly conducting boundary conditions on

the magnetic field perturbations, i.e. b′x = b′y = bz = 0 , and the impermeability condition

on the vertical velocity w = 0 at both boundaries. Fixing the magnetic Reynolds number

at Rm = 104 , we look for wall modes by taking a linear velocity shear U = λ (1− z)

and Pη1 from (6.84). This shear profile, the parameter values and the magnitude of the

magnetic Reynolds number are directly analogous to those used to obtain the numerical

results in §6.2.5. Figure 6.12 shows the growth rate versus l for these parameter

values, at different values of λ. This figure confirms what we previously discussed;

the most unstable wall mode in the absence of shear is the interchange mode and this

mode appears around l ≈ 30 . For this value of l and magnetic Reynolds number we

have l2/Rm ≈ 0.09 , which is definitely less than 1, and furthermore when Rm = 104 ,

Rm3/8 ≈ 0.09 . Therefore, with the knowledge gained from §6.2, this result suggests that

the most unstable interchange wall mode will exist for a value of l around l ∼ Rm3/8 .

As the gradient of the shear is increased to λ = 10 , the interchange mode is no longer

the most unstable mode of the system. There now exists a more unstable undular mode,

which appears for values of l around l2/Rm ∼ 1 . This is what we expected to find from

the analysis and suggests that both magnetic diffusion and viscosity play similar roles in

the instability.

It appears that the body mode in the presence of only magnetic diffusion behaves similarly

to the case when only viscous diffusion is present. For certain shear profiles there does

exist a body mode, however we have yet to find a case where the body mode is more

unstable than the wall mode.
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Figure 6.12: Growth rate versus wavenumber l obtained from (6.78) for shear strengths

λ = 0 (top) and λ = 10 (bottom). Each figure uses parameter values Pη1 (6.84),

Rm = 104 and shear profile U = λ(1− z) .



Chapter 6. Short-wavelength magnetic buoyancy instability : the role of diffusion 145

6.5 Discussion

The aim of this chapter is to bridge the gap between Chapter 5, which studies the effects

of velocity shear on the short-wavelength magnetic buoyancy instability in the absence

of diffusion, and Chapter 7, which contains results to the full system of equations (3.61)

including all diffusive effects. In Chapter 5 it was shown that the shear has a big influence

on the undular modes. An undular mode in the absence of shear that was localised at the

bottom of the layer, could in fact be changed to a body mode for a shear profile maximised

in the layer. Unfortunately, the addition of shear always had a stabilising effect and we

could not find a shear profile in which these undular modes were more unstable than the

interchange wall mode. Therefore, at least in the absence of diffusion, it appeared that the

velocity shear would have no influence on the preferred mode of instability.

When considering only the effects of viscosity we split our analysis into two distinct

parts depending on the relative size of l to the kinematic viscosity, l2/Re ∼ 1 and

l2/Re = o(1) . The most unstable wall mode in the absence of a velocity shear is indeed

still an interchange mode and always appears in the region where l ∼ Re3/8 . However,

the addition of viscosity allows the velocity shear to have a destabilising effect on the

growth rate in the region where l ∼ Re1/2 . Therefore for a sufficiently large velocity

shear the most unstable wall mode can be an undular mode. Thus shear certainly plays

an influential role on the instability. We were not able to find a velocity shear profile in

which the most unstable mode of the system was the body mode, however that does not

necessarily mean it is not possible.

The role of magnetic diffusion on the system acts in a similar manner to that of viscosity,

in that it allows the velocity shear to have a destabilising effect on the wall mode. Thermal

diffusion on the other hand does not have this effect. As we have mentioned, for a given

atmosphere the instability is more readily achieved as κ→∞ . Therefore the system in

the presence of just thermal diffusion wants to be in a state such that l2/Pe� 1 , in order

to enhance thermal diffusion. In this limit we revert to a similar system of equations found

in Chapter 5, in which viscosity plays no role in the preferred mode of instability.

This chapter has shown a contrast between the preferred mode of instability when just
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viscosity (or magnetic diffusion) is present, to when just thermal diffusion is present.

When considering viscosity the shear can have a destabilising role, whereas the shear is

always stabilizing when we only consider thermal diffusion. In the next chapter we will

solve the full system of equations (3.61) numerically and investigate how the instability

acts when all diffusive effects are considered simultaneously.
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Chapter 7

Linear solutions to the
magneto-Boussinesq equations with
velocity shear

7.1 Introduction

In Chapter 3 we derived a set of equations that consistently incorporate the effects of

a velocity shear into the magneto-Boussinesq equations. These equations were derived

with the intent of being used to study the magnetic buoyancy instability, the mechanism

likely responsible for the break up of a strong toroidal magnetic field stored in the

tachocline. Up to this point we have solved ‘incomplete’ versions of these equations,

in order to gain a better insight into the problem. When neglecting all diffusive terms

in the equations, the preferred mode of instability is always an interchange mode, with a

large wavenumber l perpendicular to the imposed field. For a linear basic state magnetic

field that decreases with height, the bulk structure of this mode will be located near the

boundary and the velocity shear does not contribute to the growth rate. In the previous

chapter we introduced the effects of diffusion individually, whilst still adopting the large

l limit. When considering only the effects of thermal diffusion the system preferred to be

in an isothermal state, with the temperature perturbation taking a constant value across
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the layer. In this case, the thermal diffusion never plays a role in the instability, resulting

in a system very similar to that considered in Chapter 5, with the interchange wall mode

always being the most dominant and with the velocity shear altering only the frequency of

the mode. However, by introducing the effects of either viscosity or magnetic diffusion we

found a regime of l in which the velocity shear gradient can have a destabilising effect on

the buoyancy instability. Specifically, for values of l such that l ∼ Re1/2 or l ∼ Rm1/2 ,

the velocity shear gradient U ′, evaluated at the boundary, could destabilise the mode to

the point where an undular mode becomes the dominant mode of the system. Again,

the bulk structure of this mode is located at the bottom boundary. It is possible that for

certain shear configurations a body mode could be the most unstable mode of the system.

However, for the shear profiles and parameter values tested, we have never found this to

be the case.

Of course, as we saw in §6.4, there is only so far one can go analytically. This chapter

aims to solve the newly derived equations numerically, whilst including all the diffusive

parameters. This gives us the chance to gain an insight into the whole picture, in which

all diffusive terms play a role in the instability. The chapter will be split into two main

sections. In §7.2 we focus on the numerical results to equations (3.61) in the absence

of velocity shear. Guided from our previous results we expect the most unstable mode

of this system always to be the interchange wall mode, with increasing field gradient

destabilising the mode. In §7.3 we will introduce the velocity shear back into our

equations; we will consider different shear profiles, and how the relative magnitude of

the field gradient to the velocity shear affects the instability. Throughout both sections we

will comment on the role of the diffusive parameters and investigate how varying them

influences the instability.

Physically speaking, it would be ideal to solve the governing equations with diffusive

parameter values that mirror those found in the tachocline. However, using (3.63) with

estimated values U∗ = 30ms−1 , d = 2× 107m and parameter values given in Table 1.1,

approximations for the non-dimensional parameters in the tachocline become

Re ≈ 1× 1011, Rm ≈ 7× 109, P e ≈ 2× 105. (7.1)

Due to computational limitations, we can never reach such extremely large parameter
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values in our solutions. Instead, throughout this chapter we enforce an ordering such

that Re & Rm and Re,Rm� Pe . This ensures that for whatever diffusive values

we choice, we still remain somewhat physically relevant, since η/κ� 1 , ν/κ� 1 and

ν . η .

When including the effects of diffusion we are forced to satisfy equations 3.32b and 3.32c

for our basic state magnetic field and temperature. After following the non-dimensional

process described in §3.2.4, these equations become

d2B0

dz2
= 0, (7.2a)

d2T0
dz2

= −DPe

[
1

Rm

(
dB0

dz

)2

+
1

Re

(
dU0

dz

)2
]
. (7.2b)

Equation (7.2a) is satisfied for a linear magnetic field, for which we keep the same field

as used in previous chapters,

B0 = 1 + ζ (1− z) . (7.3)

Throughout this chapter we will introduce several different velocity shear profiles in order

to show their impact on the instability. Therefore the basic state temperature T0 must

be derived on a case by case basis, depending on the shear profile used. Due to the

extreme parameter values of the tachocline, we can assume the right hand side of (7.2b) is

small. Therefore we expect the basic state temperature to be almost linear. Since the basic

state temperature enters into our definition of the subadiabatic temperature gradient β

(equation (3.69)), we also must re-evaluate this for every shear profile used. The impact of

these changes on β are minimal, since the temperature gradient T ′0 is always O (Pe/Rm) ,

which in all cases considered is small.

To solve the system of governing equations we use the inverse iteration method

(appendix B) subject to a set of boundary conditions on the perturbations. Throughout this

chapter we assume the boundaries are perfectly conducting, thus the boundary conditions

for the magnetic field perturbations become b′x = b′y = bz = 0 at z = 0 and z = 1 . We

will also fix the perturbation of temperature at the bottom boundary and fix the flux

at the top, therefore taking T = 0 at z = 0 and T ′ = 0 at z = 1 . Applying these

same boundary conditions to the basic state temperature ensures that the background
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atmosphere is stable to convection. Regarding the velocity perturbations, we will address

both stress-free and no-slip boundary conditions and comment on the influence of each

on the instability.

7.2 Magnetic buoyancy with an O (1/d) field gradient, in

the absence of velocity shear

As discussed throughout this thesis, equations (3.61) can be used to study magnetic

buoyancy instability with an O (1/d) magnetic field gradient, in the absence of velocity

shear; the linearised governing equations used in this section are:

∇ · u = 0, (7.4a)

∇ · b = 0, (7.4b)

∂u

∂t
= −∇⊥Π + (T +B0bx) ẑ

+B0
∂b

∂x
+B′0bz +

1

Re
∇2
⊥u, (7.4c)

∂b

∂t
+B′0w = B0

∂u

∂x
+

1

Rm
∇2
⊥b, (7.4d)

∂

∂t

(
T +DB0bx

)
= −wβ +

1

Pe
∇2
⊥T

+D
1

Rm

(
2B′0

∂bx
∂z

)
, (7.4e)

where β = β̂ + β0 and ∇2
⊥ = ∂zz + ∂yy . We have seen in Chapter 5, that when

neglecting the effects of diffusion the most unstable mode of this system will always be

an interchange wall mode. By including the effects of viscosity and magnetic diffusion

individually, as done in Chapter 6, it appears that the most unstable interchange mode

is located for values of l such that l ∼ Re3/8 and l ∼ Rm3/8 respectively. At this point

it is not clear exactly what form the most unstable mode will take when all diffusive

parameters are competing with each other to act on the instability. To investigate this

question, we split this section into three parts. In §7.2.1 we focus on the role of the

magnetic field gradient ζ on the system, for fixed diffusion parameter values. This will
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give us an idea of the structure of most unstable mode and how the field gradient impacts

the instability. In §7.2.2 we vary the diffusive parameters so as to gain an understanding of

how each affects the instability. Finally in §7.2.3 we expand upon what we found in §7.2.2

and look at the preferred mode of instability for the astrophysically relevant system.

7.2.1 The role of the field gradient

In §5.2 we derived an instability criteria for the diffusionless system in the large l limit,

given by equation (5.8). This criteria states that for a given atmospheric configuration,

instability is achieved when the magnetic field decreases sufficiently with height. We

also note that in this limit, the instability is governed by the function made up of basic

state quantities, F = k2B2
0 + β +B0B

′
0/γ , in which the magnitude of the growth rate

corresponds to the most negative value of F . Specifically, the growth rate increases as

we decrease the minimum value of F . For a linear magnetic field of the form (7.3), the

function F becomes smaller for increasing values of ζ , and is minimised when k = 0 .

Thus by increasing the field gradient term ζ , we know that in the large l limit all modes

become more unstable, and that the most unstable mode is always the interchange mode.

When introducing only the effects of thermal diffusion in §6.3, we saw how the system

wanted to revert to a case similar to that of §5.2, where the growth rate is governed by the

function G, which behaves similar to F . Therefore, increasing ζ would also destabilise

the mode. When considering the effects of introducing only viscosity in §6.2, the most

unstable mode in the absence of shear occurs for values of l such that l ∼ Re3/8 . In this

limit, the leading order growth rate is unaffected by viscosity, and is in fact exactly the

same as derived in §5.2. Therefore, increasing ζ would again only destabilise the mode,

with the most unstable mode remaining the interchange mode. Since the same result holds

in §6.4, there is no reason to expect ζ to play a different role in the instability when all

diffusive parameters are present.

To determine the role of the magnetic field gradient on the instability we introduce the set

of parameter values

P3 : β̂ = 0.2, Re = 104, Rm = 103 Pe = 10−2, (7.5)
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and solve the governing equations (7.4) subject to stress-free boundary conditions on the

velocity perturbations, u′ = v′ = w = 0 at z = 0 and z = 1 . Figure 7.1 plots the growth

rate versus wave number l for different values of k. Here we can confirm that increasing

the field gradient ζ does indeed destabilise the mode, and that the most unstable mode

in all cases is the interchange mode. The field gradient also plays a role in determining

the location in l of the dominant mode; increasing ζ moves the most unstable mode to

a higher value of l. Figure 7.2 shows a plot of the eigenfunctions for the most unstable

mode for ζ = 1.5 , found for wavenumbers l = 13 , k = 0 and eigenvalue ω ≈ −1.55i .

As in previous sections, all eigenvectors have been normalised such that the maximum

value of the real part of w is one. The first thing to notice about this mode is that the

magnitude of the temperature perturbation is essentially zero (10−6). This implies that

thermal diffusion plays no role in the instability. The structure of the other eigenfunctions

suggests that this mode is what we would refer to as a wall mode. However, for such a

small value of l it is very difficult to distinguish between the wall and body modes. In

§7.2.2 we will consider larger Reynolds and magnetic Reynolds numbers, which force the

most unstable mode to higher values of l. Thus we will continue the discussion of the

structure of the most unstable mode when we address larger values of l.

In Chapter 6 we noticed that the choice of boundary conditions had little impact on the

growth rate for both the wall and body modes. Figure 7.3 shows the eigenvectors of the

system solved under no-slip boundary conditions, for the same parameter values used in

Figure 7.2. Comparing these two figures we can see that the bulk of the mode is nearly

identical; however, there exists an extremely sharp boundary layer for v in Figure 7.3.

To ensure the inverse iteration method has satisfied the boundary conditions correctly we

include Figure 7.4, which shows an enlarged version of the visible boundary layer for

v and includes the points used by the solver. The boundary layer seen here is exactly

what we witnessed in Chapter 6 when satisfying the no-slip boundary conditions for the

wall mode. The eigenvalue for this mode is ω ≈ −1.55i , the same value as obtained

when solving for the stress-free boundary conditions. Therefore the choice of boundary

conditions has little impact on the growth rate and overall structure of the mode.
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(a)

(b)

(c)

Figure 7.1: Growth rate obtained from solving (7.4) versus wavenumber l, for magnetic

field gradients (a) ζ = 0.5 , (b) ζ = 1 and (c) ζ = 1.5 . Each figure uses parameter values

P3 defined in (7.5).
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Figure 7.2: Eigenfunctions obtained with stress-free boundary conditions for the

interchange mode taken at l = 13 , with ζ = 1.5 and parameter values P3 (7.5). The

blue line represents the real part of the eigenfunction, and the red the imaginary part.
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Figure 7.3: Eigenfunctions obtained with no-slip boundary conditions for the interchange

mode taken at l = 13, with ζ = 1.5 and parameter values P3 (7.5).
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Figure 7.4: Close up picture of the boundary layer seen in Figure 7.3 for eigenfunction v.

The red crosses represent the points used by the inverse iteration solver (appendix B).

7.2.2 The impact of diffusion

By varying each of the diffusive terms individually we aim to gain some insight into

which of the diffusive parameters has the largest influence on the instability. All numerical

results in this subsection have ζ = 1.5 , β̂ = 0.2 and U = 0 .

Thermal diffusion

Retaining the same values for the Reynolds numbers as in §7.2.1, namely Re = 104 and

Rm = 103 , we look to vary Pe in order to understand its influence on the instability.

Figure 7.5 shows a plot of the growth rate for the interchange mode at different

magnitudes of Pe. Here we see that the Péclet number essentially plays no role in the

instability. In Chapter 6 when looking at only the effects of just thermal diffusion, the
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Figure 7.5: Growth rate of the interchange mode versus l for different magnitudes of

Pélect number Pe. For this figure we fix Re = 104 and Rm = 103 .

system prefers to be in the isothermal limit, with constant T throughout the layer. We also

found that the most unstable mode in §7.2.1 has T ≈ 0 everywhere. Therefore, the fact

that Pe does not influence the instability is not entirely surprising. In §2.1.2 we presented

instability criteria (equations (2.14) and (2.15)) for the magnetic buoyancy instability

in the presence of an O (1/HP ) magnetic field gradient, with thermal and magnetic

diffusion. In these equations a crucial ratio that dictates the instability is η/κ, with a

small η/κ favouring the instability. Since our criteria for stability of the diffusionless

system derived in Chapter 4 is so similar to those found in Chapter 2, it is possible that a

similar ratio of diffusive terms could play a role in our instability. In all cases considered

we have η/κ� 1 ; if we take a larger κ such that η/κ ∼ 1 , we would expect the effects

of thermal diffusion to influence the instability. However, this limit is not astrophysically

relevant and therefore has not been considered.



Chapter 7. Linear solutions to equations (3.61) 158

Figure 7.6: Growth rate of the interchange mode versus l for different magnitudes of

magnetic Reynolds number Rm. For this figure we fix Re = 104 and Pe = 10−2 .

Magnetic diffusion

Let us now fix the Reynolds number at Re = 104 and the Péclet number at Pe = 10−2

and vary the magnetic diffusivity η by considering different magnitudes of the magnetic

Reynolds number. Figure 7.6 is a similar plot to Figure 7.5, this time for different values

of Rm. Unlike the case of varying the thermal diffusion, the magnetic Reynolds number

seems to play a big role in dictating the growth rate and the value of l associated with

the most unstable mode. Increasing Rm past the point where Rm = Re (displayed as

dashed lines on the figure) has little effect on either the growth rate or the value of l. The

reason for this is discussed in the following subsection on viscosity. However, since in

stellar interiors we require Rm . Re , this is not too much of an issue astrophysically.

Increasing the magnetic Reynolds number corresponds to a decrease in the magnetic

diffusivity η. Therefore with our previous argument, that the ratio η/κ may play a

significant role on the instability, it is not surprising that increasing the magnetic Reynolds
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Figure 7.7: Growth rate of the interchange mode versus l for different magnitudes of

Reynolds number Re. For this figure we fix Rm = 103 and Pe = 10−2 .

number leads to the mode becoming more unstable.

Viscosity

Finally we focus on the influence of viscosity, by fixing Rm = 103 and Pe = 10−2 , and

varying the Reynolds number. Figure 7.7 shows a familiar figure of the growth rate of the

interchange mode versus l, this time for different magnitudes of Re. Here we notice that

when Re . Rm , the growth rate and the location of the most unstable mode is indeed

influenced by viscosity, whereas for values of Re such that Re > Rm , changing the

viscosity has little effect on the instability. This is somewhat of a reverse scenario from

what we observed in Figure 7.6, when varying the magnetic diffusion. It would appear

that the smallest of the two quantities, Re or Rm, essentially governs the instability.

Hence when Re > Rm , changing the value of Re has little affect on the instability, and

the instability is mainly influenced by the magnetic Reynolds number Rm. Similarly,
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when Rm > Re , varying the magnetic Reynolds number has no affect on the instability

and everything is governed by the Reynolds number Re. For the tachocline, Re > Rm ,

therefore the growth rate and the value of l at which the most unstable mode appears are

mainly determined by the magnitude of Rm.

7.2.3 The dominant mode

In Chapter 6 we saw how the value of the wavenumber l associated with the most unstable

mode is determined by the diffusion parameters. Specifically, when considering the

effects of either viscosity or magnetic diffusion, the most unstable mode in the absence of

a velocity shear is an interchange wall mode, appearing for values of l such that l ∼ Re3/8

or l ∼ Rm3/8 respectively. In §7.2.2 we observed that provided the orderings Re & Rm

and Re,Rm� Pe are maintained, the instability is essentially governed by the magnetic

Reynolds number Rm. By keeping these orderings intact we will increase the magnetic

Reynolds number and investigate its impact on the instability. For the numerical results in

this subsection we take ζ = 1.5 , β̂ = 0.2 and consider three different relative magnitudes

of the ratio Re/Rm , whilst fixing the Péclet number at Pe = 10−2 . This ratio of Re/Rm

is otherwise known as the inverse magnetic Prandtl number, Pm−1 = η/ν . Figure 7.8

contains three plots for when the ratio is Re/Rm = 100 . This first of these shows the

growth rate of the most unstable mode versusRm. Here we see that the growth rate seems

to be monotonically increasing as we increase Rm. The second figure plots the value of l

corresponding to the most unstable mode versus Rm. As previously discussed, it appears

that increasing the magnetic Reynolds number pushes the most unstable mode to a higher

value of l. The final figure plots ln(l) versus ln(Rm) and provides us information on

how the wavenumber of the most unstable mode scales with the Rm. Included on this

plot is a red line with gradient 3/8. It appears that when Re/Rm = 100 , the preferred

mode behaves in a similar fashion to that seen in Chapter 6: the most unstable mode in

the absence of shear resides for values of l such that l ∼ Rm3/8 . Figures 7.9 and 7.10

show similar pictures for different ratios, Re/Rm = 10 and Re/Rm = 1 respectively.

Decreasing this ratio does not noticeably change the magnitude of the growth rate,

certainly for larger values of Rm. It does however have a slight impact on the value
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of l corresponding to the most unstable mode. However this is not enough to alter our

conclusion that the most unstable mode appears when l ∼ Rm3/8 .

In §7.2.1 we provided plots of the eigenfunctions for the most unstable mode of the

system. However, since those results were derived using a relatively small magnetic

Reynolds number, the resulting value of l was low. As a result we could not confidently

conclude whether or not the most unstable mode of the system was a wall or a body

mode. Figure 7.11 shows plots of the eigenfunctions of the most unstable mode for much

larger diffusion parameter values, Re = 106 , Rm = 105 and Pe = 10−2 , which using

Figure 7.9b, corresponds to the mode with l = 74 . Although still not a particularly large

value of l, it is clear from this figure, that the mode is indeed a wall mode.
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(a)

(b)

(c)

Figure 7.8: Plots of the most unstable mode for a given magnetic Reynolds number, with

Re/Rm = 100 , Pe = 10−2 , ζ = 1.5 and β̂ = 0.2 . (a) plots the growth rate versus Rm,

(b) the value of l for the most unstable mode at a given Rm and (c) ln(l) versus ln(Rm).

The red line in (c) is a line with gradient 3/8.
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(a)

(b)

(c)

Figure 7.9: As Figure 7.8, with Re/Rm = 10 .
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(a)

(b)

(c)

Figure 7.10: As Figure 7.8, with Re/Rm = 1 .
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Figure 7.11: Eigenfunctions for the interchange mode taken at l = 74 , with ζ = 1.5 ,

β̂ = 0.2 and diffusive parameter values Re = 106 , Rm = 105 and Pe = 10−2 .
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7.3 Velocity shear

In Chapter 6 we found that with the addition of either viscosity or magnetic diffusion,

a wall mode for non-zero k can be destabilised by the introduction of velocity shear.

The instability in this case is governed by the magnitude of the velocity shear gradient,

evaluated at the same boundary at which the mode is localised. Furthermore, this undular

mode can be destabilised sufficiently to the point at which it is more unstable than the

interchange mode, and hence becomes the preferred mode of instability. Aided by the

asymptotics we found that this undular mode could only be present for wavenumbers such

that l ∼ Re1/2 and l ∼ Rm1/2 , for viscosity and magnetic diffusion respectively. On top

of this, the instability is only influenced by the value of U ′ at the boundary; therefore the

exact form of the shear away from the boundary is irrelevant in determining the leading

order growth rate. The boundary conditions of the system also have little influence on the

instability. Building on the work in §7.2, we will re-introduce the effects of a velocity

shear back into equations (3.61) in order to see if the above features are still present

when all diffusive terms are competing against each other. Thus the linearised governing

equations used in this section are:

∇ · u = 0, (7.6a)

∇ · b = 0, (7.6b)(
∂

∂t
+ U0

∂

∂x

)
u+U ′0w = −∇⊥Π + (T +B0bx) ẑ

+B0
∂b

∂x
+B′0bz +

1

Re
∇2
⊥u, (7.6c)(

∂

∂t
+ U0

∂

∂x

)
b+B′0w = B0

∂u

∂x
+U ′0bz +

1

Rm
∇2
⊥b, (7.6d)(

∂

∂t
+ U0

∂

∂x

)
(T +DB0bx) = −wβ +

1

Pe
∇2
⊥T

+D
1

Rm

(
2B′0

∂bx
∂z

)
+D

1

Re

(
2U ′0

∂u

∂z

)
, (7.6e)

where β = β̂ + β0 and ∇2
⊥ = ∂zz + ∂yy .
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This section is split into three main parts. In §7.3.1 we fix the diffusive parameters to

examine how changing the magnitude and profile of the shear affects the instability. We

will also comment upon the role of the field gradient, as well as the impact of boundary

conditions. In §7.3.2 we look at how varying the diffusive parameters alters instability.

Finally, in §7.3.3, we look at the preferred mode of instability of the system.

7.3.1 The effects of a velocity shear

To study the effects of the velocity shear on the system we reuse parameter values (7.5)

found in §7.2,

P3 : β̂ = 0.2, Re = 104, Rm = 103 Pe = 10−2. (7.7)

At this stage we also fix the magnetic field gradient to ζ = 1.5 and reintroduce the

quadratic velocity shear

U1 = λ1
(
z2 − z + 1

)
. (7.8)

Unless stated otherwise, all numerical solutions in this subsection are obtained by solving

equations (7.6) with stress-free boundary conditions on the velocity perturbations, using

the inverse iteration method. Figure 7.12 shows a familiar picture of growth rate versus

l, plotted using different values of k. Here we see the same result as found in Chapter 6,

namely that for a large enough value of λ1 the undular mode becomes the dominant

unstable mode. When λ1 = 20 , the most unstable mode has wavenumbers l = 36 and

k = 0.4 , with eigenvalue ω ≈ −6.57− 1.61i ; the eigenfunctions for this mode are shown

in Figure 7.13. As with the most unstable mode in §7.2, the temperature perturbation is

again essentially zero (O (10−6)) and even for this relatively low value of l we would

describe this mode as a wall mode, with the bulk of the eigenfunctions oscillating,

contained within a peaked envelope.

Figure 7.14 is analogous to Figure 7.12c, but obtained using no-slip boundary conditions.

As we concluded in Chapter 6, it appears that the choice of boundary conditions used to

solve the problem has little influence on the growth rate of the mode. Figure 7.15 shows

the eigenfunctions for the mode associated with l = 36 , k = 0.4 and λ1 = 20 , solved
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again using the no-slip boundary conditions. Comparing the eigenfunctions in Figure 7.15

to those in Figure 7.13, we observe that the bulk of the flow is nearly identical. As we

have previously seen, there exists a thin, visible boundary layer on the bottom boundary,

differentiating the two figures. The eigenvalue for this mode is ω = −6.50− 1.59i ; thus

both the bulk of the mode and the eigenvalue are almost unaffected by the choice of

boundary conditions.

In Chapter 6 we derived expressions (6.7) and (6.79) for the leading order eigenvalue

of the wall mode in the presence of either viscosity or magnetic diffusion respectively.

The only term associated with the velocity shear that influences the growth rate in these

expressions is U ′ evaluated at the same boundary at which the mode is peaked. It

can be shown numerically that the sign of U ′ only alters the frequency of the mode.

Hence the growth rate of the undular mode seen in Chapter 6 is dependent only on the

magnitude of U ′ at the boundary. It may also be possible to derive this result straight

from equations (6.7) and (6.79), however this is not attempted in this thesis. So far we

have considered the velocity shear profile U1 given in (7.8), and have found that the most

unstable mode is located at the bottom boundary. Therefore we have |U ′1(0)| = λ1 , and

by increasing λ1 sufficiently the dominant mode switches from an interchange mode to

an undular mode. However, increasing λ1 not only changes the gradient at the bottom

boundary, but also the magnitude of the shear. Thus it is not clear that when all diffusive

terms are in play, whether it is again the gradient at the boundary, or instead the magnitude

of the shear that is bringing out the undular mode. To examine this further we introduce a

velocity shear of the form

U2 = λ2
(
z2 + 1

)
. (7.9)

Here the gradient at the bottom boundary is always zero, and the magnitude of the shear

is determined by λ2. Figure 7.16 shows that increasing the magnitude of the shear has

very little influence on the instability, and the most unstable mode of the system remains

the interchange mode. These results have been obtained solving the full system subject

to stress-free boundary conditions on the velocity perturbations. Comparing Figure 7.16b

to Figure 7.16c, we see that increasing λ2 does have a slight destabilising effect on the

undular mode at l ≈ 40 , and it suggests that increasing λ2 further would destabilise the
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undular mode to the point that it is more unstable than the interchange mode. However,

this is not the case; the slight destabilization of the undular mode is what we would refer

to in Chapter 6 as the contribution from the next order correction (ω1) to the leading order

growth rate. Therefore, for more realistic, larger values of l this next order correction will

never be large enough to dominate, and the undular mode will not become more unstable

than the interchange mode. We have produced similar figures for shear magnitudes up

to λ2 = 200 , and in all cases the interchange mode remains the most unstable mode.

Therefore, as in Chapter 6, the wall mode in the full system is destabilised only by the

shear gradient evaluated at the same boundary at which the mode is localised.

In §7.2.1 we studied the impact of the field gradient on the instability in the absence of a

velocity shear. Increasing the field gradient ζ destabilises all the modes, and moves the

most unstable mode to a slightly higher value of l. In all cases, it is the interchange mode

that remains the most unstable mode without shear. By introducing the velocity shear U1

with λ1 = 20 , as in Figure 7.12c, we now have a case where the most unstable mode of

the system is an undular mode. Therefore it is of interest to see how changing the field

gradient ζ affects the overall instability when this undular mode is present. Figure 7.17

contains three plots of growth rate versus l, for different magnitudes of ζ and λ1, solved

using stress-free boundary conditions. The first is exactly the same as Figure 7.12c, put

here to aid the reader, where the undular mode is the preferred mode. The second is for

an increased field gradient ζ = 3 , keeping λ1 = 20 . As one would expect, increasing the

field strength destabilised all the modes. However, interestingly, the interchange mode is

now the most unstable mode of the system. Finally, if we keep ζ = 3 and increase the

velocity shear gradient to λ1 = 40 , as in Figure 7.17c, the undular mode is once again

the most unstable mode. This suggests there exists a trade off between the magnitude of

the velocity gradient λ1 and the field gradient ζ , which dictates whether an interchange or

undular mode will be the preferred mode of instability.

Throughout our two chapters focusing on the short-wavelength magnetic buoyancy

instability, we derived asymptotic results for the body mode. Unfortunately, due to the

unpredictability involved in finding the point of the localisation and the leading order

growth rate, we could not produce any further detailed analytic work on these modes.

Therefore all results regarding the body modes had to be found numerically. In Chapter 5
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we saw that by increasing the shear gradient λ for a specific undular mode, it was possible

to switch from a wall mode, into a body mode peaked at the point where U ′ = 0 .

However, this specific mode was never more unstable than the interchange wall mode.

With the inclusion of individual diffusivities in Chapter 6, we were able to introduce a

shear such that the undular mode was more unstable than the interchange mode. Yet,

in all cases we considered, the dominant undular mode of the system was always the

wall mode. This still seems to be the case in this chapter, when all diffusion terms

are included together. As we see in Figure 7.18, obtained using shear profile U1 with

λ1 = 20 , body modes do exist in the system. However, the eigenvalue of this mode is

ω ≈ −6.66− 0.69i , and therefore has a lower growth rate than the wall mode for the

same wavenumbers, found in Figure 7.13. Although we can not possibly test every shear

profile, for the ones we have considered the most unstable mode of the system is always

a wall mode peaked at the bottom boundary.
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(a)

(b)

(c)

Figure 7.12: Growth rate versus wavenumber l, solved with parameter values P3 (7.7) and

velocity shear U1 (7.8) for three different values of λ1: (a) λ1 = 0 , (b) λ1 = 10 and (c)

λ1 = 20 .
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Figure 7.13: Eigenfunctions associated with the most unstable mode in Figure 7.12c, with

l = 36 , k = 0.4 . The blue line represents the real part of the eigenfunction, and the red

the imaginary part.
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Figure 7.14: As Figure 7.12c, obtained using no-slip boundary conditions.
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Figure 7.15: As Figure 7.13, for no-slip boundary conditions on the velocity

perturbations.
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(a)

(b)

(c)

Figure 7.16: Growth rate versus wavenumber l, solved with parameter values P3 (7.7) and

velocity shear U2 (7.9) for three different values of λ2: (a) λ2 = 0 , (b) λ2 = 20 and (c)

λ2 = 40 .
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(a)

(b)

(c)

Figure 7.17: Growth rate versus wavenumber l, solved with parameter values P3 (7.7) and

velocity shear U1 (7.8) for different values of ζ and λ1: (a) ζ = 1.5 , λ1 = 20 , (b) ζ = 3 ,

λ1 = 20 and (c) ζ = 3 , λ1 = 40 .
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Figure 7.18: Eigenfunctions of a body mode for wavenumbers l = 36 , k = 0.4 and

parameter values P3 (7.7). Here we have taken shear profile U1 (7.8), with λ1 = 20. ,

and have used stress-free boundary conditions.
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7.3.2 Impact of diffusion: velocity shear

In §7.2.2 we showed that varying the Péclet number has little influence on the instability

in the absence of velocity shear. This is due to the fact that the temperature perturbation

of the most unstable mode of the system is essentially zero everywhere in the layer. The

addition of a velocity shear does not change this fact; as can be seen from Figure 7.13, the

temperature perturbation is O (10−6) . Hence, thermal diffusion will not have an impact

on the instability of the full system. The influence of viscosity and magnetic diffusion

on the instability is however a lot more significant. Decreasing the magnetic diffusion

(i.e. increasing Rm) destabilises the interchange mode and moves the most unstable

mode to a higher l. Interestingly, this behaviour does not continue in the same fashion

for Rm greater than Re. When Rm & Re , increasing Rm further has minimal effect

on the instability. The roles are reversed if Re is smaller than Rm; in this case, it is

Re that has the greatest influence on the growth rate and the wavenumber l. Similarly,

when Re & Rm , increasing Re does not greatly affect the instability. Thus the ratio

of Re/Rm , otherwise known as the inverse magnetic Prandtl number, Pm−1 = η/ν , is

very important in determining the role of instability, certainly for the interchange mode in

the absence of shear.

The introduction of a velocity shear with the full set of diffusive parameters allows

the system to have an undular mode as the most unstable mode. In this subsection

we examine the effects of viscosity and magnetic diffusion on the undular mode, by

considering several different magnitudes of Re/Rm. All numerical results in this

subsection are obtained by solving the governing equations (7.6) subject to stress-free

boundary conditions, with shear profile U1 given by (7.8) and parameter values ζ = 1.5 ,

Pe = 10−2 and β̂ = 0.2 .

Figure 7.19 shows plots of growth rate versus l for three different values of Rm, with

λ1 = 20 . For each plot in this figure we have simultaneously changed the magnitude

of the Reynolds number, such that they all satisfy Re/Rm = 100 . Here we see that

increasingRm has a destabilising effect on all modes, and has pushed the dominant mode

to a higher l. The most unstable mode of the system remains the undular mode, taking

the wavenumber values l = 29 and k = 0.4 in Figure 7.19a, and l = 102 and k = 0.6 in
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Figure 7.19c. Therefore, by increasing Rm whilst keeping the ratio Re/Rm = 100 , the

most unstable mode has not only moved to a higher value of l, but also a slightly higher

k.

Figure 7.20 shows the same plots found in Figure 7.19, but for a smaller inverse magnetic

Prandtl number, Re/Rm = 10 . Here the system displays nearly identical behaviour as

before; increasing Rm moves the most unstable mode to higher values of l and k. Again,

similar plots can be seen in Figure 7.21 for when Re/Rm = 1 . In this case the undular

mode is no longer the most unstable mode. Increasing Rm still has a destabilising effect;

however, the interchange mode remains the dominant mode. Increasing the magnitude

of the shear gradient λ1 in an attempt to recover the undular mode, only has a stabilising

effect on the undular modes. The interchange mode that is dominant in all the plots shown

in Figure 7.21 is still the wall mode, similar to those shown in Figure 7.2. It is not clear

why the undular mode is suppressed when Re/Rm = 1 .

One might expect that if we keep decreasing Re/Rm, the system will remain in the same

regime found in Figure 7.21, where the undular mode is always suppressed. Figure 7.22

shows the familiar plots of growth rate versus l, this time for Re/Rm = 0.1 . Here we

see the above assumption is incorrect; although we require a slightly larger λ1 value

(λ1 = 30), the undular mode can be the preferred mode of instability. That suggests that

there is something unique with the ratio Re/Rm = 1 . However, due to time constraints

coupled with the fact that for the tachocline, the ratio Re/Rm is greater than unity, we

have not investigated this further.
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(a)

(b)

(c)

Figure 7.19: Growth rate versus wavenumber l for shear profile U1 (7.8), with λ1 = 20

and Re/Rm = 100 : (a) Rm = 500 , (b) Rm = 1000 and (c) Rm = 5000 .
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(a)

(b)

(c)

Figure 7.20: As Figure 7.19, with Re/Rm = 10 : (a) Rm = 500 , (b) Rm = 1000 and

(c) Rm = 5000 .
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(a)

(b)

(c)

Figure 7.21: As Figure 7.19, with Re/Rm = 1 : (a) Rm = 500 , (b) Rm = 1000 and (c)

Rm = 5000 .
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(a)

(b)

(c)

Figure 7.22: As Figure 7.19, with Re/Rm = 0.1 and λ1 = 30 : (a) Rm = 5000 , (b)

Rm = 10000 and (c) Rm = 50000 .
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7.3.3 The dominant mode: velocity shear

In §7.2.3 we concluded that most unstable mode in the absence of shear was the

interchange mode, and since we focused on the case where Rm < Re , this mode appears

for values of l such that l ∼ Rm3/8. As one would expect, the velocity shear has no

influence on the interchange mode and therefore for the interchange mode this scaling

still applies. This can be observed in Figure 7.19, where for Rm = 500 , Rm = 1000

and Rm = 5000 , the values of Rm3/8 are approximately 10, 13 and 24 respectively.

In all cases the interchange mode is maximised around these values of l and therefore

the ordering l ∼ Rm3/8 does indeed hold. When Rm > Re , as in Figure 7.22, the

interchange instability is now governed by the Reynolds numberRe and the most unstable

interchange mode appears for values of l such that l ∼ Re3/8 .

The velocity shear, or more specifically |U ′| evaluated at the same boundary at which

the eigenfunctions are localised, can however have a destabilising effect on the undular

modes. By sufficiently increasing the shear gradient, it is possible to destabilise the

undular mode to the point that it becomes the most unstable mode of the system. This

seems to be the case provided that Re is not of the same order of magnitude as Rm, or, in

other words the Prandtl number is not O (1) . Unfortunately we have no clear explanation

for why this is, and due to time constraints we have not investigated this further. Based

on the typical parameter values of the tachocline (7.1), Re/Rm ≈ 14, which is certainly

within the regimes in which we expect to find undular modes. Thus, for the rest of this

discussion, we shall focus on the astrophysically relevant limit, and assume Re > Rm .

The value of the wavenumber k at which the most unstable undular mode appears is very

hard to predict, as it depends on a number of factors. To demonstrate this, suppose we

fix all parameter values such that the undular mode for a particular k is the most unstable

mode of the system. Clearly the size of the shear gradient at the boundary (which we will

denote as λc) plays a large role in determining the value of k; if λc is decreased sufficiently,

the most unstable mode switches from an undular mode, with finite k, to the interchange

mode, with k = 0 . A similar effect can be seen in Figure 7.17b, where increasing the

magnetic field gradient ζ results in the most unstable mode switching from an undular

mode to an interchange. Finally, the value of k seems somewhat dependent on Rm; as
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seen in Figures 7.19, 7.20 and 7.22, increasing Rm pushes the most unstable mode to a

slightly higher k . With all these variables in play, it is very difficult to predict an exact

value of k corresponding to the most unstable mode. However, in all cases considered

the undular mode appears for values of k such that k = O (10−1) . On increasing Rm to

more realistic values we might expect the dominant undular mode to have an increased

value of k, but certainly do not expect it to exceed k = O (1) . This gives a rough idea of

the value of k associated with the undular mode instability in the tachocline. In a similar

vein, we can not easily predict the critical value of λc required to bring out the undular

mode, which is very dependent on both the field gradient ζ and Rm. However, provided

Re > Rm , there always seems to exist a value of λc such that when large enough, the

undular mode will dominate.

We have previously discussed that when increasing Rm with the ratio Re/Rm fixed,

the most unstable interchange mode appears for values of l such that l ∼ Re3/8 . In

§6.4 we showed that when the undular wall mode was the most unstable mode of the

system, it would take a value of l such that l ∼ Rm1/2 . By considering all the diffusive

effects together, we can still produce a system in which the undular wall mode dominates.

Therefore, it is of interest to see how the value of l, corresponding to the most unstable

undular wall mode, varies in the full system. Fixing the ratio Re/Rm = 10 , with

Pe = 10−2 we can increaseRm and find the dominant mode for a given k. All numerical

results in this subsection are obtained by solving the governing equations (7.6) subject

to stress-free boundary conditions, with shear profile U1 given by (7.8) and parameter

values ζ = 1.5 and β̂ = 0.2 . Figure 7.23 shows plots corresponding to the most unstable

mode for a given value of Re, at wavenumber k = 0.4 . As we have previously witnessed,

increasingRm has a destabilising effect on the undular mode and moves the most unstable

mode to a higher value of l. Figure 7.23c plots ln(l) versus ln(Rm), alongside a red line

gradient 0.5. Using this graph we can conclude that the value of l at which the most

unstable undular mode appears scales as l ∼ Rm1/2 . One drawback of this technique is

that we can keep track of the most unstable mode only for a specific value of k; as we

have seen, increasingRmmoves the dominant mode to a slightly higher value of k. Thus,

the mode with k = 0.4 may not necessarily correspond to the most unstable mode of the

whole system for all values of Rm. To address this we include Figure 7.24, which is
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analogue to Figure 7.23 with k = 0.7. Again it can be seen that the same scaling for l is

present for this value of k. Therefore, provided the value of λc is sufficiently large, the

most unstable mode of the system will be an undular mode with wavenumbers k ∼ O(1)

and l ∼ Rm1/2 .
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(a)

(b)

(c)

Figure 7.23: Plots of the most unstable mode for a given magnetic Reynolds number,

taken for shear profile U1 (7.8), with λ = 20 , k = 0.4 and Re/Rm = 10 . (a) plots the

growth rate versus Rm, (b) the value of l for the most unstable mode at a given Rm and

(c) ln(l) versus ln(Rm). The red line in (c) is a line with gradient 0.5.
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(a)

(b)

(c)

Figure 7.24: As Figure 7.23, with k = 0.7 .
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Chapter 8

Conclusions and Future Work

8.1 Summary and conclusions

The presence of a magnetic field in the Sun is well documented and can be observed

indirectly through surface features such as sun spots and solar flares. However, the exact

process by which the solar magnetic field is continually self generated is very much up

for debate. Several contradicting dynamo models, discussed in §1.2.2, attempt to explain

how this process works. Despite their differences, a common feature of these models is

that the bulk of the field exists as strong toroidal field, located in the solar interior. It is

likely that the tachocline, a thin region of strong velocity shear separating the radiative

and convection zones, is an ideal location for this stored toroidal field. Conditions of the

tachocline are such that a mechanism known as magnetic buoyancy instability is thought

to be responsible for the break up of the toroidal field, sending it to the surface.

A lot of work has been carried out on magnetic buoyancy instability since Parker (1955),

with an overview contained in Chapter 2, and that of particular relevance to this thesis

is the derivation of the magneto-Boussinesq equations (Spiegel & Weiss, 1982). With

the assumption that the magnetic field scale HB is of the same order of magnitude as

the pressure scale height Hp, Spiegel & Weiss derived a set of non-linear equations that

have been used to model the magnetic buoyancy instability. Motivated by the strong

velocity gradient that naturally exists in the tachocline, we here incorporate the effects of
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a velocity shear in the magneto-Boussinesq equations. In Chapter 3 we initially attempt

to add the velocity shear into the equations of Spiegel & Weiss, in what one might

assume as the obvious fashion, by adding a basic state velocity shear that is of the same

magnitude as the resulting velocity perturbations. Doing so results in a set of equations

that appear to have all the necessary shear terms. However, as shown in §3.2.1, when

performing a linear stability analysis on the ideal equations, the shear terms ‘drop out’,

leaving the growth rate of the system unaffected by the velocity shear. To incorporate an

‘influential’ velocity shear fully, we had to return to the fundamental orderings underlying

the magneto-Boussinesq equations. In a similar style to Corfield (1984), we re-derived

the magneto-Boussinesq equations without fixing the magnitude of the magnetic field

scale height a priori. This, in turn, gives us the appropriate orderings needed to derive

the set of equations ((3.81) with q = 1 and r = 0) containing the effects of magnetic

buoyancy instability with an O (1/d) field gradient. As noted by Hughes (1985a), this

is not possible straight from the equations of Spiegel & Weiss. Without specifying a

particular magnetic scale height we then introduce a basic state velocity shear into the

scaling analysis. In order that the velocity shear has an influential impact on the instability

we require that two orderings are satisfied. The first is that the magnitude of the shear U∗
is of the same order as the Alfvén velocity cA. The second is that the velocity shear scale

height Hu, and consequently the magnetic field scale height HB, is of the same order as

the height of the layer d.

With these orderings in place, §3.2.4 provides the derivation of a new set of equations

that consistently incorporate the effect of an influential velocity shear into the magneto-

Boussinesq equations. As discussed in §3.4, based on estimates of the magnetic

field magnitude, these equations form an appropriate system for the study of magnetic

buoyancy instability in the tachocline. It is these newly derived equations that are used

throughout the remainder of the thesis.

Naturally we first consider the linear stability of the ideal (ν = η = κ = 0) system. We

do this in the usual manner, by looking at the temporal evolution of normal mode solutions

and transforming the problem into an eigenvalue problem for the growth rate. Since our

new equations are derived with an O(1/d) field gradient, steeper than the O(1/Hp) field

gradient used in previous studies, the results in Chapter 4 differ from those in §2.1.1. We
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found that when neglecting the velocity shear, it is not possible to have an unstable undular

mode with a stable interchange mode for the same atmospheric background. Motivated

by Howard (1961) and Hughes & Tobias (2001), we derive a set of semi-circle bounds for

the eigenvalue, and ultimately stability criteria for the system with a velocity shear.

As part of our work in Chapter 4, we manipulate the system of equations to produce a

single second order ODE, which can be solved as a boundary value problem subject to

appropriate boundary conditions. As addressed by Mizerski et al. (2013) in a similar

context, considering the strict large-wavenumber limit of this ODE reduces the equation

to an algebraic ‘depth-dependent’ dispersion relation analogous to that of Gilman (1970),

thus removing all derivatives from the system. This prompts the questions as to how

the boundary conditions play a role on the instability. In Chapter 5 we follow the work

of Mizerski et al. (2013) and perform a boundary layer analysis on our new system of

equations, linking the idea of the large-wavenumber limit to the boundary value problem.

In the absence of velocity shear we confirm the results found in Chapter 4 and also

conclude that the most unstable mode for a linear magnetic field is an interchange wall

mode, localised at the bottom boundary. When considering the influence of a velocity

shear it appears at first glance (equation (5.53)) to play no role in determining the growth

rate, contributing only to the frequency of the mode. However, this is not the case;

the velocity shear can have a strong influence not only on the growth rate, but also the

structure of a given mode. Despite this, in all the cases we considered the shear only

had a stabilising effect on the undular mode. Thus, the overall dominant mode of the

diffusionless system with shear, is an interchange wall mode.

In Chapter 5 we study the ideal system and despite introducing a velocity shear, an

interchange mode is always dominant. In Chapter 7 we study the full system, including

all diffusive effects, and find that under certain conditions an undular mode can dominate.

Chapter 6 aims to bridge the gap between the opposing results found in Chapters 5 and 7.

By individually reintroducing each diffusive parameter into the system, whilst sticking to

the large-wavenumber limit, we find certain regimes where the velocity shear can have

a destabilising effect on the instability. Specifically, when considering either viscosity

or magnetic diffusion, the shear gradient term evaluated at the boundary can destabilise

the undular wall modes for values of l such that l ∼ Re1/2 and l ∼ Rm1/2 respectively.
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We also derive a similar scaling for the value of l corresponding to the most unstable

interchange mode; the interchange wall mode takes values of l such that either l ∼ Re3/8

or l ∼ Rm3/8 . Although we were able to derive analogous orderings for the body mode,

we could never find a case where the body mode was more unstable than the wall mode.

The addition of only thermal diffusion has little impact on the instability; in this case, the

system is similar to that found in Chapter 5, where the shear does not play an influential

role.

Chapter 7 contains numerical results of the linear system including all diffusive terms.

In the absence of the velocity shear, we recover results obtained from our analysis of

the ideal system: the most unstable mode is always the interchange wall mode, and

increasing the field gradient has a destabilising effect on the instability. We also find that

when the astrophysical ordering Re > Rm and Re,Rm� Pe is upheld, the dominant

interchange mode has wavenumber l in the region l ∼ Rm3/8 . Along with this, the choice

of boundary conditions adopted for the velocity perturbations has minimal impact on

the instability. When velocity shear is considered we can mimic the results found in

Chapter 6; by increasing the shear gradient term at the boundary, the undular mode can be

destabilised provided that Re/Rm 6= O(1) . Again, this mode always appears to be a wall

mode and the choice of boundary conditions is somewhat irrelevant. We also find that the

location in l of the most unstable undular mode follows the ordering l ∼ Rm1/2 , with the

wavenumber k being no larger than O(1). We can not be certain if these wavenumbers

provide a good approximation to the true values associated with the magnetic buoyancy

instability at the tachocline. The field we observe at the surface has undergone so many

unknown changes as it travels through the convection zone, that the true values are hard

to predict.

8.2 Future work

We hope this thesis has provided the reader with an insight into the effects of a velocity

shear on the magnetic buoyancy instability. As one might expect, arising from this

thesis are several avenues that would be interesting to explore further, some of which
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are discussed below.

All work in this thesis focuses first on the derivation of a new governing set of equations

and then on the linear evolution of the instability. Due to the extremely small viscosity of

the fluid in the tachocline, non-linear effects will play an important role on the instability

and therefore studying the non-linear evolution is an obvious extension. Another feature

of the tachocline that is likely to play an important role on the instability is rotation.

Although not considered, it is possible to incorporate the effects of rotation into our new

equations found in Chapter 3.

Returning to the linear study found in this thesis; §6.2 contains approximated results for

the system with just viscosity in the large l limit. By focusing on a boundary layer that

has the largest impact on the growth rate, we reduce our governing equation from a 6th

order ODE to a 2nd order ODE. This equation can then be solved analytically to give an

approximation for the vertical velocity w. Thus, we obtain a solution whilst only having

satisfied two of the required six boundary conditions. By using this analytic solution

for w, we numerically solved a separate boundary value problem for u, implementing

two further boundary conditions. However, we could not find a way to fully satisfy

the boundary conditions on v, and as a result our approximated numeral solution for v

did not fully satisfy the bottom boundary condition. Fortunately the choice of boundary

conditions had very little impact on the growth rate and the overall structure of eigenmode.

Despite this, it would be a nice extension to look into a way of successfully implementing

the remain two boundary conditions.

In §2.1.2 we presented an instability criteria for oscillatory interchange modes (2.16)

driven by an O (1/Hp) magnetic field gradient. Hughes (1985a) identified a regime in

which overstability can occur for a bottom heavy field gradient (B/ρ increasing with

height). Throughout our analysis of equations (3.61) we have focused on a magnetic

field that decreases with height. In future work it may be worth considering a field that

increases with height to see if we can find an unstable mode in this regime. Equations

for the leading order eigenvalue (6.7) and (6.79) in Chapter 6.2 may shed some light as to

whether this is possible.

One drawback in our analysis is not having a direct relationship between the field gradient
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ζ and the velocity shear gradient λ. We have shown that for a large enough λ, the most

unstable mode of the system switches from an interchange mode to an undular mode.

Similarly, we can increase ζ and destabilise the interchange mode to the point where it is

again the dominant mode. Thus, there clearly is a balance between the magnitude of ζ

and λ that dictates which mode is preferred. This would be a nice extension and aid with

us putting our work into the context of the tachocline.
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Appendices

A Derivation of equation (4.4)

In this appendix we provide a break down of the derivation of the 2nd order ordinary

differential equation (4.4). The governing equations are;

iku+ ilv + w′ = 0, (A.1a)

ikbx + ilby + b′z = 0, (A.1b)

i (ω + kU)u+ U ′w = ikBbx +B′bz, (A.1c)

i (ω + kU) v = −ilΠ + ikBby, (A.1d)

i (ω + kU)w = Π′ + ikBbz + T +Bbx, (A.1e)

i (ω + kU) bx +B′w = ikBu+ U ′bz, (A.1f)

i (ω + kU) by = ikBv, (A.1g)

i (ω + kU) bz = ikBw, (A.1h)

i (ω + kU) (T +DBbx) = −βw. (A.1i)

Equations (A.1c)–(A.1i) can be manipulated to give three equations for each component

of velocity,

u =
iU ′

(ω + kU)
w, (A.2a)

i (ω + kU) v = −ilΠ +
ik2B2

ω + kU
v, (A.2b)

i (ω + kU)w = Π′ +
kB2

γ (ω + kU)
u− i

ω + kU

(
kB2U ′

γ (ω + kU)
− k2B2 − β − BB′

γ

)
w.

(A.2c)
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Taking the z derivative of (A.2b) and subtracting the y derivative of (A.2c) removes the

total pressure Π from the equations. Doing so gives

i (ω + kU) (v′ − ilw) + ikU ′v =
ik2B2

ω + kU
v′ +

(
ik2B2

ω + kU

)′
v − ilkB2

γ (ω + kU)
u

− l

ω + kU

(
kB2U ′

γ (ω + kU)
− k2B2 − β − BB′

γ

)
w. (A.3)

Provided l 6= 0 , we can substitute (A.2a) into the incompressibility condition to give and

expression for v,

v = − kU ′

(ω + kU)
+
i

l
w′. (A.4)

Finally, upon substituting equations (A.2a), (A.4) and the z derivative of (A.4) into (A.3),

and rearranging terms we arrive at equation (4.4).
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B The inverse iteration method

In this appendix we give a overview of the inverse iteration method used throughout this

thesis to numerically solve eigenvalue problems. A more in-depth review on the inverse

iteration method, including examples can be found in Fearn (1991).

Let A be an N ×N matrix with eigenvalues λn and corresponding eigenvectors xn, thus

Axn = λnxn, (B.5)

for n = 1, . . . , N . Suppose we define estimates of the required eigenvalue and

eigenvector as µ and y respectively. Expressing y in terms of xn,

y =
N∑
n=1

αnxn, (B.6)

we can write

(A− µI)y =
N∑
n=1

αn (λn − µ)xn, (B.7)

and therefore

(A− µI)−m y =
N∑
n=1

αn (λn − µ)−m xn. (B.8)

Let us now defined λi as the eigenvalue closest to the guess µ, that is to say

|λi − µ| < |λj − µ|, (B.9)

for all j = 1, . . . , N when j 6= i . Provided αi 6= 0 , the right hand side of (B.8) converges

to

αi (λi − µ)−m xi, (B.10)

as m→∞ . Therefore, when provided the initial guesses for the eigenvalue µ and the

eigenvector y, the iterative scheme

ym = (A− µI)−1 ym−1, y0 = y, (B.11)
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can be used to find the closest eigenvalue λi, to the guess µ, and corresponding eigenvector

xi.

This method can be extended to solve generalised eigenvalue problems (such as we have

in this thesis), of the form

Axn = λnBxn. (B.12)

The analogue to (B.8) in this case becomes,

(A− µB)−mBy =
N∑
n=1

αn (λn − µ)−m xn. (B.13)

This then alters the iterative scheme (B.11) required to find the eigenvalue to,

ym = (A− µB)−1Bym−1, y0 = y. (B.14)

The inverse iteration method is well suited to a matrices with a banded structure, as it can

be coded in a manner that saves both allocated storage and thus computational time. One

drawback of this method is that it only results in a single eigenvalue of the system, this

eigenvalue being the one closest to the initial guess. This is of particular concern for our

work, as it is possible to converge on an eigenvalue that are not the most unstable mode of

the system, especially if two eigenvalues are close together in complex space. To ensure

we have not included any of these ‘false positive’ results in our work, all numerical work

is double checked using MATLAB’s inbuilt boundary value problem solver BVP4c.
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C Derivation of equation (6.2)

In this appendix we provide a detailed break down of the derivation of the

6th order ordinary differential equation (6.2). Seeking solutions of the form

f(x, y, z, t) = f̂(z) expi(kx+ly+ωt) , the governing set of equations (6.1) become

iku+ ilv + w′ = 0, (C.15a)

ikbx + ilby + b′z = 0, (C.15b)

i (ω + kU)u+ U ′w = ikBbx +B′bz +
1

Re
∇2
⊥u, (C.15c)

i (ω + kU) v = −ilΠ + ikBby +
1

Re
∇2
⊥v, (C.15d)

i (ω + kU)w = Π′ + ikBbz + T +Bbx +
1

Re
∇2
⊥w, (C.15e)

i (ω + kU) bx +B′w = ikBu+ U ′bz, (C.15f)

i (ω + kU) by = ikBv, (C.15g)

i (ω + kU) bz = ikBw, (C.15h)

i (ω + kU) (T +DBbx) = −βw, (C.15i)

where ∇2
⊥ = ∂zz − l2 . Equations (C.15c)–(C.15i) can be manipulated to give three

equations for each component of velocity,

i (ω + kU)u = −U ′w +
ik2B2

ω + kU
u+

k2B2U ′

(ω + kU)2
w +

1

Re
∇2
⊥u, (C.16a)

i (ω + kU) v = −ilΠ +
ik2B2

ω + kU
v +

1

Re
∇2
⊥v, (C.16b)

i (ω + kU)w = Π′ +
kB2

γ (ω + kU)
u

− i

ω + kU

(
kB2U ′

γ (ω + kU)
− F

)
w +

1

Re
∇2
⊥w, (C.16c)

where F is defined in (5.2). Taking the z derivative of (C.16b) and subtracting the y

derivative of (C.16c) removes the total pressure Π from the equations. Doing so gives

i (ω + kU) (v′ − ilw) + ikU ′v =
ik2B2

ω + kU
v′ +

(
ik2B2

ω + kU

)′
v − ilkB2

γ (ω + kU)
u

− l

ω + kU

(
kB2U ′

γ (ω + kU)
− F

)
w +

1

Re
∇2
⊥ (v′ − ilw) . (C.17)
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Making use of the incompressibility condition (C.15a) and its derivative, v and v′ can be

eliminated from the above equation to yield an equation of the form

Aν1w
′′′′ + Aν2w

′′ + Aν3w
′ + Aν4w + Aν5u

′′′ + Aν6u
′ + Aν7u = 0. (C.18)

Taking the derivative of equation (C.16a), it is possible to remove both the u′′′ and u′ terms

from the above equation. Therefore, together with (C.16a), the set of governing equations

have been reduced to two equations for two unknowns, u and w,

Āν1u
′′ + Āν2w + Āν3u = 0, (C.19a)

Āν4w
′′′′ + Āν5w

′′ + Āν6w
′ + Āν7w + Āν8u = 0, (C.19b)

where

Āν1 = − 1

Re
, (C.20a)

Āν2 = U ′ − k2B2U ′

(ω + kU)2
, (C.20b)

Āν3 = i (ω + kU)− ik2B2

ω + kU
+

l2

Re
, (C.20c)

Āν4 =
γ (ω + kU)

kB2Re
, (C.20d)

Āν5 = − iγ

kB2

(
(ω + kU)2 − k2B2 − 2il2 (ω + kU)

Re

)
, (C.20e)

Āν6 = − iγ

kB2

(
2k3B2U ′

ω + kU
− 2k2BB′

)
, (C.20f)

Āν7 =
iγl2

kB2

(
(ω + kU)2 +

kB2U ′

γ (ω + kU)
− F − il2 (ω + kU)

Re

)
− iγ

kB2

(
−kU ′′ (ω + kU) +

2k3BB′U ′

ω + kU
+
k3B2U ′′

ω + kU
− 2k4B2U ′2

(ω + kU)2

)
, (C.20g)

Āν8 = −l2. (C.20h)

On introducing the differential operator

Γν = i (ω + kU)− ik2B2

ω + kU
+

l2

Re
− 1

Re

∂2

∂z2
, (C.21)

equation (C.19a) can be written as Γνu = −Āν2w . Applying this Γ operator to

equation (C.19b) and rearranging terms yields the 6th order ordinary differential

equation (6.2).
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D Derivation of equation (6.52)

This appendix contains a detailed breakdown on the derivation of the 4th

order ordinary differential equation (6.52). Seeking solutions of the form

f(x, y, z, t) = f̂(z) expi(kx+ly+ωt) , the governing set of equations (6.51) become

iku+ ilv + w′ = 0, (D.1a)

ikbx + ilby + b′z = 0, (D.1b)

i (ω + kU)u+ U ′w = ikBbx +B′bz, (D.1c)

i (ω + kU) v = −ilΠ + ikBby, (D.1d)

i (ω + kU)w = Π′ + ikBbz + T +Bbx, (D.1e)

i (ω + kU) bx +B′w = ikBu+ U ′bz, (D.1f)

i (ω + kU) by = ikBv, (D.1g)

i (ω + kU) bz = ikBw, (D.1h)

i (ω + kU) (T +DBbx) = −βw +
1

Pe
∇2
⊥T, (D.1i)

where ∇2
⊥ = ∂zz − l2 . Equations (D.1c)–(D.1i) can be manipulated from six equations

to three,

(ω + kU) v = −lΠ +
k2B2

ω + kU
v, (D.2a)

(ω + kU)w = −iΠ′ − iT +
BB′

ω + kU
w +

k2B2

ω + kU
w, (D.2b)(

i (ω + kU) +
l2

Pe
− 1

Pe

∂2

∂z2

)
T =

((
1− 1

γ

)
BB′ − β

)
w. (D.2c)

Removing the total pressure by taking the z derivative of (D.2a) minus the y derivative

of (D.2b), gives an equation of the form

Aκ1w + Aκ2v + Aκ3v
′ + Aκ4T = 0, (D.3)
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where

Aκ1 = il
(
(ω + kU)2 − k2B2 −BB′

)
, (D.4a)

Aκ2 =

(
2k2BB′ − k3B2U ′

ω + kU
− (ω + kU) kU ′

)
, (D.4b)

Aκ3 =
(
(ω + kU)2 − k2B2

)
, (D.4c)

Aκ4 = − (ω + kU) lT. (D.4d)

Making use of the incompressibility condition (D.1a) and introducing the change of

variable w = (ω + kU)ψ , equation (D.3) becomes

Pψ′′ + P ′ψ′ − l2 (P −BB′)w − il2T = 0, (D.5)

where P = (ω + kU)2 − k2B2 . In terms of ψ equation (D.2c) becomes(
1− il2

(ω + kU)Pe
+

i

(ω + kU)Pe

∂2

∂z2

)
T = −i

((
1− 1

γ

)
BB′ − β

)
ψ. (D.6)

By introducing the differential operator

Γκ = 1− il2

(ω + kU)Pe
+

i

(ω + kU)Pe

∂2

∂z2
, (D.7)

equation (D.6) can be rewritten as

ΓκT = −i
((

1− 1

γ

)
BB′ − β

)
ψ. (D.8)

Applying the Γκ operator to equation (D.5) and making use of (D.8), yields a 4th order

ODE for variable ψ,

(Pψ′)
′ − l2

(
(ω + kU)2 − k2B2 − β − BB′

γ

)
w

+
i

(ω + kU)Pe

(
∂2

∂z2
− l2

)[
(Pψ′)

′ − l2
(
(ω + kU)2 − k2B2 −BB′

) ]
w = 0.

(D.9)

This equation can then be expanded and rearranged to give equation (6.52).
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E Derivation of equations (6.78)

Seeking solutions of the form f(x, y, z, t) = f̂(z) expi(kx+ly+ωt) , the governing set of

equations (6.77) become

iku+ ilv + w′ = 0, (E.1a)

ikbx + ilby + b′z = 0, (E.1b)

i (ω + kU)u+ U ′w = ikBbx +B′bz, (E.1c)

i (ω + kU) v = −ilΠ + ikBby, (E.1d)

i (ω + kU)w = Π′ + ikBbz + T +Bbx, (E.1e)

i (ω + kU) bx +B′w = ikBu+ U ′bz +
1

Rm
∇2
⊥bx, (E.1f)

i (ω + kU) by = ikBv +
1

Rm
∇2
⊥by, (E.1g)

i (ω + kU) bz = ikBw +
1

Rm
∇2
⊥bz, (E.1h)

i (ω + kU) (T +DBbx) = −βw, (E.1i)

where again ∇2
⊥ = ∂zz − l2 . Substituting the energy equation (E.1i) into the z component

of momentum eliminates the temperature T , giving

i (ω + kU)w = Π′ +
B

γ
bx +

iβ

ω + kU
w + ikBbz. (E.2)

Taking the y derivative of (E.2) and subtracting the z derivative of (E.1d), removes the

total pressure, giving

i (ω + kU) (v′ + lw) + ikU ′v = ikBb′y + ikB′by −
ilB

γ
bx

+
lβ

ω + kU
w + klBbz. (E.3)

The y component of velocity, v, can be eliminated from this equation using the

incompressibility condition (E.1a), resulting in

(ω + kU)

(
lw − 1

l
w′′ − ik

l
u′
)
− ik2U ′

l
u− kU ′

l
w′

= ikBb′y + ikB′by −
ilB

γ
bx +

lβ

ω + kU
w + klBbz. (E.4)
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From the x component of moment (E.1c) we can get an expression for u,

u =
kB

ω + kU
bx −

iB′

ω + kU
bz +

iU ′

ω + kU
w, (E.5)

and by differentiating equation (E.5) we get an expression for u′,

u′ =

(
kB

ω + kU

)′
bx +

kB

ω + kU
b′x −

(
iB′

ω + kU

)′
bz −

iB′

ω + kU
b′z

+

(
iU ′

ω + kU

)′
w +

iU ′

ω + kU
w′. (E.6)

Substituting (E.5) and (E.6) into equation (E.4) gives, after some algebraic manipulation,

an equation of the form

αη1w
′′ + αη2w + αη3by + αη4b

′
y + αη5bx + αη6b

′
x + αη7bz + αη8b

′
z = 0, (E.7)

where

αη1 = (ω + kU)2 , (E.8a)

αη2 = l2β − l2 (ω + kU)2 − kU ′′ (ω + kU) , (E.8b)

αη3 = iklB′ (ω + kU) , (E.8c)

αη4 = −iklB (ω + kU) , (E.8d)

αη5 = ik2B′ (ω + kU)− il2B (ω + kU)

γ
, (E.8e)

αη6 = ik2B (ω + kU) , (E.8f)

αη7 = kB′′ (ω + kU) + kBl2 (ω + kU) , (E.8g)

αη8 = kB′ (ω + kU) . (E.8h)

Using the incompressibility conditions and equation (E.5), u and v can be eliminated

from the induction equation to give three second order ordinary differential equations;

equations (E.1f) to (E.1g) can be written in the form

1

Rm
b′′x + αη9bx + αη10bz + αη11w = 0, (E.9a)

1

Rm
b′′y + αη12by + αη13bx + αη14bz + αη15w + αη16w

′ = 0, (E.9b)

1

Rm
b′′z + αη17bz + αη18w = 0, (E.9c)
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where

αη9 =
ik2B2

ω + kU
− i (ω + kU)− l2

Rm
, (E.10a)

αη10 =
kBB′

ω + kU
+ U ′, (E.10b)

αη11 = − kBU ′

ω + kU
−B′, (E.10c)

αη12 = −i (ω + kU)− l2

Rm
, (E.10d)

αη13 = − ik3B2

l (ω + kU)
, (E.10e)

αη14 = − k2BB′

l (ω + kU)
, (E.10f)

αη15 =
k2BU ′

l (ω + kU)
, (E.10g)

αη16 = −kB
l
, (E.10h)

αη17 = −i (ω + kU)− l2

Rm
, (E.10i)

αη18 = ikB. (E.10j)

Equation (E.7) together with equations (E.9) form the set of equations (6.78), used in

§6.4.
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F Coefficients used in Chapter 6

To avoid unnecessary clutter, we have included the full coefficients found in Chapter 6 in

this appendix. The bi coefficients used in §6.2.1:

b1 = − γω̄0

kB2
, (F.1a)

b2 =
γ

kB2
(ω̄0a1 + ia2) , (F.1b)

b3 =
(
ω̄2
0 − k2B2

)2 − il2

Re

(
4ω̄3

0 − ω̄0(3k
2B2 + F ) +

kBU ′

γ
− 3iω̄2

0l
2

Re

)
, (F.1c)

b4 = ω̄4
0 − ω̄2

0(k2B2 + F ) + Fk2B2

− il2

Re

(
2ω̄3

0 − ω̄0(k
2B2 + F ) +

kB2U ′

γ
− iω̄2

0l
2

Re

)
, (F.1d)

b5 = 4ω̄3
0 − 2ω̄0(k

2B2 + F )− il2

Re

(
6ω̄2

0 − k2B2 − F − 2iω̄0l
2

Re

)
, (F.1e)

b6 = 4kU ′ω̄3
0 − ω̄2

0(2k2BB′ + F ′)− 2kU ′ω̄0(k
2B2 + F ) + k2B2F ′

+ 2k2FBB′ − il2

Re

(
kU ′(6ω̄2

0 − k2B2 − F )− ω̄0(2k
2BB′ + F ′)

+
2kBB′U ′ + kB2U ′′

γ
− 2ikU ′ω̄0l

2

Re

)
, (F.1f)

b7 = 4ω̄3
0 − 2ω̄0(F + k2B2)− il2

Re

(
6ω̄2

0 − k2B2 − F − 2iω̄0l
2

Re

)
, (F.1g)

b8 =
(
ω̄0kU

′′ + k2U ′2
)(

2ω̄2
0 − F − k2B2

)
+ 4ω̄2

0k
2U ′2

− 2ω̄0kU
′(F ′ + 2k2BB′)− F ′′

2

(
ω̄0 − k2B2

)
+ k2(BB′′ +B′2)(F − ω̄2

0) + 2k2F ′BB′

− il2

Re

[
2ω̄0(kU

′′ω̄0 + k2U ′2) + 4k2U ′2ω̄0 + kU ′′ω̄2
0

−ω̄0

(F ′′
2

+ k2(BB′′ +B′2)
)
− kU ′(2k2BB′ + F ′)− 1

2
kU ′′(k2B2 + F )

+
kB2U ′′′ + 4kBB′U ′′ + 2k(BB′′ +B′2)U ′

2γ
− il2

Re
(ω̄0kU

′′ + k2U ′2)

]
. (F.1h)
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The ci coefficients used in §6.2.2 and §6.2.3:

c1 =
(
ω̄2
0 − k2B2

)2
, (F.2a)

c2 = 4ω̄3
0 − 2ω̄0(F + k2B2), (F.2b)

c3 = 2ω̄3
0 − ω̄0(F + k2B2) +

kB2U ′

γ
(F.2c)

c4 = 4kU ′ω̄3
0 − ω̄2

0(F ′ + 2k2BB′)

− 2kU ′ω̄0(F + k2B2) + k2B2F ′ + 2k2FBB′, (F.2d)

c5 = 4ω̄3
0 − 2ω̄0(F + k2B2), (F.2e)

c6 = ω2
1

(
6ω̄2

0 − (F + k2B2)
)

− il2

δ2Re

(
ω1(6ω̄

2
0 − F − k2B2)− iω̄2

0l
2

δ2Re

)
, (F.2f)

c7 = ω1

(
12kU ′ω̄2

0 − 2kU ′(F + k2B2)− 2ω̄0(2k
2BB′ + F ′)

)
− il2

δ2Re

(
kU ′(6ω̄2

0 − F − k2B2)− ω̄0(F
′ + 2k2BB′) +

kB2U ′′ + 2kBB′U ′

γ

)
,

(F.2g)

c8 =
(
ω̄0kU

′′ + k2U ′2
)(

2ω̄2
0 − F − k2B2

)
+ 4ω̄2

0k
2U ′2

− 2ω̄0kU
′(F ′ + 2k2BB′)− F ′′

2

(
ω̄0 − k2B2

)
+ k2(BB′′ +B′2)(F − ω̄2

0) + 2k2F ′BB′. (F.2h)

The di coefficients used in §6.3.2:

d1 = i
(
ω̄2
0 − k2B2

)
, (F.3a)

d2 = ω̄0

(
ω̄2
0 − k2B2

)
, (F.3b)

d3 = −i
(
2ω̄2

0 − 2k2B2 −BB′
)
, (F.3c)

d4 = ω̄0

(
ω2 − F

)
, (F.3d)

d5 = −i
(
ω̄2
0 −G

)
, (F.3e)

d6 = 3ω̄2
0 − F −

2iω̄0l
2

Pe
, (F.3f)

d7 = ω̄0 (−F ′ + 2kU ′ω̄0) + kU ′
(
ω̄2
0 − F

)
− il2

Pe
(2kU ′ω̄0 −G′) , (F.3g)

d8 = 3ω̄2
0 − F −

2iω̄0l
2

Pe
, (F.3h)
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d9 = ω̄0

(
−F

′′

2
+ kU ′′ω̄0 + k2U ′2

)
+ kU ′ (2kU ′ω̄0 − F ′) +

kU ′′

2

(
ω̄2
0 − F

)
− il2

Pe

(
kU ′′ω̄0 + k2U ′2 − G′′

2

)
. (F.3i)
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