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ABSTRACT 

The investigation of the collapse of “7 World Trade” as part of the events of 11 

September 2001 in New York City (Gann, 2008) indicated that connections were 

among the most vulnerable elements of steel-framed or composite buildings, and their 

characteristics can determine whether such buildings survive in extreme scenarios 

such as fire. In this case total collapse of the building was triggered by the fracture of 

beam-to-column connections caused largely by thermal expansion of long-span 

beams. This emphasized the importance of investigating the complex mechanisms 

through which forces are transferred from the adjacent parts of a structure to the 

connections under fire conditions.  

The Cardington fire tests in 1995-96 (Newman, 2000) provided ample evidence that 

both shear buckling of beam webs and beam bottom-flange buckling, near to the ends 

of steel beams, are very prevalent under fire conditions. Both of these phenomena 

could affect the force distribution at the adjacent column-face connection bolt rows, 

and therefore the sequence of fracture of components. However, there is a distinct 

lack of practical research investigating the post-buckling behaviour of beams of Classes 

1 and 2 sections adjacent to connections at elevated temperatures.  

In this PhD thesis, the development of analytical models of pure beam-web shear 

buckling and a combination of both beam-web shear buckling and bottom-flange 

buckling of beams of Classes 1 and 2 sections are reported. The analytical models are 

able to predict the post-buckling behaviour of the beam-end buckling panels in the 

vicinity of beam-column connections at elevated temperatures. A transition criterion, 

to distinguish between cases in which pure beam-web shear buckling occurs and those 

in which the instability is a combination of shear buckling and bottom-flange buckling, 
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has been proposed, including a calculation procedure to detect the transition length 

between these two buckling modes. A component-based buckling element has been 

created and implemented in the three-dimensional structural fire analysis software 

Vulcan. The influence of the buckling elements on the bolt row force redistribution of 

the adjacent connections has been investigated in isolated beams and a simple two-

span two-floor frame. It is expected that the buckling element will be involved in more 

complex performance-based frame analysis for design, and that it will be used with an 

explicit dynamic procedure to simulate local and progressive collapse of whole 

buildings. 
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1.1 BACKGROUND 

Steel is one of the most popular construction materials for buildings world-wide. Its 

high strength-to-weight character enables steel structures to be built using longer 

spans with smaller foundations, which allow high flexibility in layout for architects. The 

fast erection sequences make steel construction more time-efficient than competing 

systems. However, due to the high thermal expansion coefficient of steel, high axial 

forces will be produced in members of steel structures when they are heated, due to 

restraint to thermal expansion. Moreover, the strength and stiffness of steel both 

decrease at a faster rate than those of other structural materials at high temperatures. 

This emphasizes the necessity to provide additional protection to steel structures 

against fire.  

The main objectives of fire protection are usually fulfilled by applying active and 

passive measures, either alone or in combination. Active measures include detection, 

alarms and sprinklers, which come into operation only in the event of fire; whereas 

passive measures include escape provisions, compartmentation and structural 

protection, as part of the built system. Structural fire engineers are involved in the 

specification of passive fire protection to ensure that the structure is designed and 

constructed such that its stability will be maintained for an appropriate period (CEN, 

2005b). For steel-framed structures, the most commonly used form of passive fire 

protection is to apply a layer of insulating material to provide adequate thermal 

insulation to steel members. Although this approach has proved adequate, it can be 

extremely conservative. Also, application of protective materials can be relatively 

expensive compared with the frame cost, and can affect the appearance of a building. 

It is preferable that intensive fire protection should only be applied to critical elements. 
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Therefore, it is very important for fire engineers to further develop their 

understanding of the behaviour of steel structures when affected by fire, in order to 

distinguish critical elements, and to promote the efficient use of steel protection in 

construction.  

The establishment of the British Fire Protection Committee (BFPC) at the end of the 

20th century initiated a scientific approach to research into structural fire resistance. 

In the UK, the primary corresponding national standard is BS 5950-8:1990: Structural 

use of steelwork in building (BS, 1990). The more recent CEN 1993-1-2 (CEN, 2005b) 

and CEN 1994-1-2 (CEN, 2005d), which supersede BS 5950-8, present structural fire 

design in terms of general concepts, material properties and calculation procedures. 

However, the current fire design codes (Standard, 1990, CEN, 2005b, CEN, 2005d) 

were developed from standard fire tests on isolated elements, and these tests ignore 

the interactions between elements. However, the importance of considering the 

interactions between elements in structural fire design was revealed in the late 19th 

century.  

Several full-scale fire tests were carried out within a fire research programme 

conducted on modern multi-storey composite structures built within the BRE large 

scale test facility at Cardington during 1995-96. The tested structures included an 

eight-storey steel-framed composite building (Newman et al., 2000) and a seven-

storey reinforced concrete building (Bailey and Moore, 2000a, Bailey and Moore, 

2000b). The Cardington tests revealed that the performance of a whole building in real 

fires is much better than that of isolated members in standard fire conditions. This 

generated an awareness that the interactions between the structural members should 

be fully taken into consideration in fire-resistant design, since structural performance 

in fire is controlled by high geometrical and material nonlinearity. The large deflections 
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caused by the loss of material strength and stiffness can have significant influences on 

force redistribution, either within isolated members or between adjacent members. 

Therefore, it is an inevitable trend to adopt the performance-based design approach, 

by which structures are treated as a whole, to enable the analytical results to be more 

realistic. In the performance-based analysis, connections were found to be one of the 

most critical elements affecting the robustness of an entire structure exposed to fire 

(Burgess, 2007).  

Fire research over the last two decades has assumed that connections have sufficient 

fire resistance compared with the connected members, because they heat more slowly. 

However, observations from the full-scale fire tests at Cardington (Newman et al., 

2000), and the collapse of buildings of the World Trade Centre in 2001, raised concerns 

that joints are potentially the weakest parts of a structure (Burgess, 2007). The 

investigation of the “7 World Trade” collapse (Gann, 2008) in the aftermath of the 

collapse of the Twin Towers indicated that the building was unaffected by the 

aeroplane impacts, but collapsed totally due to the effect of prolonged internal fires. 

This was triggered by the failure of beam-to-column connections as a result of large 

thermal expansions of beams. Connection failure may initiate fire spread, or may lead 

to progressive collapse of a whole building. A number of previous research studies 

(Burgess, 2010, Burgess et al., 2012, Huang et al., 2013, Al-Jabri et al., 2008, Sun et al., 

2015) have shed light on the role of beam-to-column connections in fire, including:  

 force-deflection behaviour,  

 the influence of connections on the building’s survival time,  

 connection ductility demand,  

 component-based connection models. 
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The characteristics of connections, especially their ductilities, can influence the 

robustness of a whole building, and therefore, need to be paid special attention to. 

There is a great variation of the definitions of robustness used for technical 

applications; a robust solution in an optimization problem is the one that has the best 

performance under its worst case (Kouvelis and Yu, 2013); the robustness in control 

theory is the degree to which a system is insensitive to effects that are not considered 

in the design (Slotine and Li, 1991); a procedure can also be said to be robust if the 

results are stable, convergent and accurate relative to the input (Sun et al., 2012b). In 

structural engineering, a structure is said to be robust if initial local damage does not 

extend to a progressive collapse or other damages, which violates the key structure 

performance (Starossek and Haberland, 2010). 

Design methods to ensure a robust structure have been categorized into two types, 

namely the direct and indirect approaches. Direct robustness design aims at resisting 

collapse by verifying that the key structure elements meet specified performance 

objectives subjected to specified hazard scenarios. This can be achieved using an 

alternative load path, in which the key structural components are able to resist local 

initial damage. In other words, direct design strongly relies on local structural 

resistance. On the other side, the indirect design approach focuses on enhancing 

structural robustness through continuity, redundancy and ductility. 

Robustness of structures under extreme loading has been recognized as a desirable 

property of structures and structural systems since the collapse of the Ronan Point 

apartment building in 1968. In this incident, a gas explosion on the 18th floor led the 

entire southeast part of the apartment block to collapse (Pearson and Delatte, 2005). 

Renewed interest in this topic was generated as a result of the attack on the World 

Trade Center in New York in 2001 (Gann, 2005), in which simultaneous post-flashover 
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fires on several adjacent storeys eventually triggered complete collapse. Fire disasters 

of this kind can induce massive loss of life, severe damages to properties, large 

economic losses and the disruption of education and public services. 

The software Vulcan (Vulcan Solution Ltd, 2015), developed by the Structural Fire 

Engineering Research Group at the University of Sheffield is a three-dimensional 

program which allows engineers to conduct three-dimensional structural robustness 

assessments (Huang et al., 1999a). A variety of elements (beam-column (Huang et al., 

2000), shear connector (Huang et al., 1999b) and slab (Huang et al., 2003a)) are 

implemented in this software. The basic static solver is based on the Newton-Raphson 

method (Süli and Mayers, 2003). Since the collapse of “7 World Trade” aroused 

concerns about the fire resistance of connections and progressive collapse of buildings 

in fire, semi-rigid component-based connection elements and a combination of static 

and explicit dynamic solvers have been implemented into Vulcan. The software has 

recently been used to model the progressive collapse in fire of structural frames 

connected by semi-rigid connections which are modelled using component-based 

elements. 

Component-based models of connection behaviour were first introduced by 

Tschemmernegg et al. (1987) to model the small-rotation behaviour of joints at 

ambient temperature, and after much development the method is now included in 

EUROCODE 3-1.8 (CEN, 2005c) as a standard tool to calculate semi-rigid joint stiffness 

and plastic capacity at ambient temperature. The component-based method considers 

each connection as an assembly of individual nonlinear springs with predefined force-

deformation characteristics. The component-based semi-rigid connection element can 

represent the real behaviour of semi-rigid connections in terms of force and deflection 

relationships as well as ductility demand and fracture (Block, 2006, Dong et al., 2015) 
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with very acceptable accuracy. The component-based method offers considerable time 

savings compared to detailed FE modelling and is considerably more economical than 

prohibitively expensive fire tests. It is one of the most practical approaches in 

considering the robustness of connections in frame analysis under fire conditions. 

Sun et al. (2015) developed a static-dynamic solution procedure for Vulcan. This 

procedure is able to capture re-stabilization after initial instability has occurred as a 

result of local failure. For instance, the procedure can be used to track the sequential 

failure of different connection components during progressive collapse of a whole 

structure. Sufficient validations (Huang et al., 2000, Najjar and Burgess, 1996) have 

been carried out to demonstrate that Vulcan is an accurate and computationally-

efficient software to be used in performance-based fire engineering design. This has 

provided later researchers with a convenient platform which can be used as a 

foundation on which to further develop new elements and to implement these to 

investigate the collapse in fire of either isolated members or whole structures.  

1.2 RESEARCH MOTIVATIONS 

The ductility and robustness of connections can influence the survival time of a 

building; a connection fracture may either be kept within a certain range or be 

extended to a connection failure, which may trigger complete detachment of the 

connected members, leading to progressive collapse of the whole building. Since it has 

been stated that performance-based fire design has been widely accepted as the most 

realistic design method compared with isolated element design, interactions between 

adjacent members can have significant effects on the overall structural performance.  
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The Cardington Fire Tests indicated that combinations of beam-web shear buckling 

and flange buckling near to connections are very prevalent under fire conditions 

(Figure 1-1).  

 

 

 

Figure 1-1 Flange buckling and beam-web shear buckling in combination 

(Newman et al., 2000) 

 

This phenomenon can significantly influence the internal forces in the connections. It 

has been revealed by the author that beam-end buckling reduces the rotational 

stiffness at the beam-end, which will inevitably decrease the beam-end bending 

moment. In addition, a steel beam of which a considerable part has buckled can 

transfer less axial compression force to its end connections before the catenary stage 

is reached at high temperatures. Local buckling at the beam ends will also have an 

effect on the deflection of the beam, and therefore will again influence the net tying 

force within the connection. The increased beam deflection during the heating phase 

of the fire can significantly increase the tension force on the connection during the 

cooling period. However, the contribution of the combination of beam-web shear 

buckling and flange buckling in the vicinity of beam ends has not been taken into 

consideration by almost any of the existing research. On the one hand, there has been 
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a lack of theoretical models which can represent the plastic post-buckling behaviour of 

stocky (Class 1 or 2) sections at elevated temperatures. On the other hand, although 

detailed modelling using commercial FEA packages, such as ABAQUS or ANSYS, can 

account for the beam-end buckling phenomenon, this is computationally very 

demanding, and is not feasible when a global frame analysis is required to enable 

performance-based structural fire engineering design. Therefore, it has become 

essential to develop a simplified model which can simulate the beam-end buckling 

phenomenon sufficiently accurately within an acceptable computing run-time and 

integrate it into global frame analysis. In this study this has been achieved by 

developing a new buckling element and integrating it into Vulcan. Based on the 

existing element types (beam-column, slab, semi-rigid connection, etc) and the 

development of the static and static-dynamic approaches, Vulcan is capable of 

considering the influence of the buckling panel adjacent to the beam-column face 

connections with a full progressive collapse capability if the buckling elements are to 

be implemented as component-based models. 

1.3 SCOPE OF THIS RESEARCH  

The objective of this research is to investigate the influence of beam-web shear 

buckling and bottom-flange buckling at the ends of steel beams on the robustness of 

the adjacent connections, and to use this to study the inherent robustness of steel-

framed buildings in fire. In order to achieve these targets there are five main research 

activities: 

I. To investigate the post-buckling behaviour of beams with Class 1 and 2 sections 

at elevated temperatures in the aftermath of beam-web shear buckling, based 
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on the existing “tension field theory” for plate girders. To create an analytical 

model for the pure shear buckling behaviour.  

II. To investigate the post-buckling behaviour after combined beam-web shear 

buckling and bottom-flange buckling of Class 1 and 2 sections at elevated 

temperatures, based on Dharma’s (2007) yield-line mechanism. To create an 

analytical model for the combination of these two buckling phenomena. 

III. To provide a transition criterion to distinguish between cases in which pure 

beam-web shear buckling occurs and those in which the instability is a 

combination of shear buckling and bottom-flange buckling. 

IV. To create a component-based beam-end buckling element, which considers 

beam-web shear buckling and bottom-flange buckling at the beam end within 

the beam-end buckling zone.  To implement the new element in Vulcan, 

adjacent to the existing component-based connection element. The 

component-based model should be able to consider the post-buckling 

descending force-deflection relationship of the bottom spring, which simulates 

the bottom-flange buckling behaviour. 

V. To perform case studies for both single beams and frames, to investigate the 

influence of the buckling element on the robustness of adjacent connections 

and on the survival of steel structures in fire. 
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In this chapter, existing knowledge on material properties of steel materials and 

structures in fire, isolated member models, composite slab models, joint models, full-

scale frame fire testing and numerical modelling for robustness analysis in fire, shear 

buckling theory of plate girders, bottom-flange buckling yield line models have been 

reviewed in sequence. The sequence of descriptions of the 3D structure is from section 

level to system level, as shown in Figure 2-1. 

 
Figure 2-1 Sequence of descriptions of 3D structure in fire  

 

Relevant research, which is closely related to this study, has been reviewed 

sequentially. This research includes an introduction to the Vulcan finite element 

analysis software, shear buckling of plate girders and bottom-flange buckling yield-line 

models. 

2.1 MATERIAL PROPERTIES 

The important temperature-dependent material properties of steel involved in 

structural fire analysis include strain, strength and stiffness. Stiffness and strength 

reduction occurs in structures subjected to fires. Extremely large internal forces can be 

produced if thermal expansion of a member is restrained.  

 

 
(a)Section level 

 

(b) component level 

 

  

(c)Sub-structure level 

 

 

(d) system level 
(a) Section Level (b) Component Level (c) Sub-structure Level (d) Frame Level 
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The stress-strain relationship for carbon steel at high temperatures defined in 

EUROCODE 3 (CEN, 2005b) is shown in Figure 2-2.  It is defined in EC3 that steel 

remains linear-elastic before the limit of proportionality σp,θ which reduces 

progressively from 100ᵒC; the elastic modulus also reduces from 100ᵒC as the 

temperature rises. The yield stress σy,θ, which is defined always to occur at a strain of 

2%, initiates a yield stress plateau which may then be enhanced by a strain hardening 

part for temperatures below 400ᵒC, as shown in Figure 2-2 (a). For temperatures 

above 400ᵒC, there is a more gradual increase in strength with increasing strain 

between the proportional limit stress and yield stress, and the yield stress itself 

progressively reduces with temperature. The yield stress again initiates a stress 

plateau, as shown in Figure 2-2 (b), but no strain hardening occurs is reached. The 

limiting strain for the yield plateau 15%, and the strength then falls linearly, vanishing 

completely at an ultimate strain of 20%. This ultimate strain significantly influence the 

ductility of steel members; the greater the ultimate strain is, the greater ductility the 

steel member obtains.  

  
Figure 2-2 Stress-strain relationship for carbon steel at elevated  

temperatures: (a) below 400ᵒC; (b) above 400ᵒC 

 

The strength reduction factor is defined as the ratio between the steel yield strength 

at any particular temperature and that at room temperature. The reduction factors for 
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strength, stiffness and limit of proportionality for low-carbon structural steel at 

elevated temperatures are shown in Figure 2-3. From this figure it can be seen that 

yield stress starts to degrade at 400ᵒC. Young’s modulus and the proportional limit 

stress are reduced when the temperature is above 100ᵒC. 

 
Figure 2-3 Reduction factors for the stiffness and strength of carbon steel at 

elevated temperatures 

 

The thermal elongation of steel increases with temperature up to about 750ºC, when 

steel starts to undergo a phase-change in crystal structure. The relative thermal 

elongation of steel determined in EC3 Part 1.2 can be calculated using the following 

equations: 

for  , 

 (2-1) 

for  , 

 (2-2) 

for  , 

20 750aC C   

5 8 2 4

m m/ 1.2 10 0.4 10 2.416 10a aL L          

750 860aC C   

2

m m/ 1.1 10L L   

860 1200aC C   
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 (2-3) 

The thermal elongation can play a negative role on the tensile resistance of steel 

members. Taking a connection bolt-row that fractures in tension as an example: the 

ultimate (fracture) strain is fixed for a bolt and the total strain in the bolt is the 

summation of the strain due to thermal elongation and that due to tensile stress. Once 

the bolt elongates due to thermal expansion, there will be a reduced deformability left 

to cope with the elongation due to tensile stress, and so the total strain can reach the 

ultimate strain, resulting in fracture, at a lower tensile stress level. 

At high temperatures, a member can experience different temperatures distributions 

at different locations, depending on their distances from fire source and the relative 

massivity of different parts of the cross-section. In order to allow for the different 

thermal strains and material properties which accompany different temperature 

distributions across member cross-sections, the cross-section of a member can be 

divided into a matrix of segments (Najjar and Burgess, 1996). Each segment can have 

its own temperature, thermal and mechanical strains, and temperature-dependent 

material properties at each analytical stage. In this way rather complex nonlinear 

structural behaviour, such as thermal expansion and material degradation at elevated 

temperatures can be taken into account in the segmented cross-section, as shown in 

Figure 2-1 (a). 

2.2 FIRE RESISTANCE DESIGN METHODS 

The concept of structural fire engineering design has experienced two main stages: 

isolated member design based on furnace testing using the standard fire curve, and 

performance-based structural fire design. 

5 3

m m/ 2 10 -6.2 10aL L     
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The Standard Fire curve was first standardized in 1932 (Malhotra, 1980), in the form 

expressed using the following equation: 

  (2-4) 

 
The structural member fire resistance defined in the current design guides BS 476 

(1987), BS 5950 (1990), EC3 (2005c) and EC4 (2005e) are based on the standard fire 

testing of isolated members, in which a loaded single member is heated in a furnace 

according to ISO834 Standard Fire (1975) exposure. Standard fire testing has been 

used to assess the behaviour of walls, floors, columns and beams. There are three 

possible failure criteria for structures in fire; Resistance failure (which applies to all 

member types), Insulation and Integrity failure (which apply only to separating 

elements such as walls and floors).  For resistance failure of a beam the criterion is that 

the maximum deflection reaches a prescribed limit, such as (span/30) or (span/20); the 

fire resistance rating of the member is the time of standard fire exposure at which the 

failure criterion is reached.  

In the UK, the Yellow Book (ASFP, 2010) provides a guide to passive structural fire 

protection on the basis of fire test data, in accordance with BS 476. In the first and 

second editions of this publication, the thickness of fire protection was specified such 

that the maximum temperatures of 550°C for columns, and 620°C for beams 

(supporting concrete floors), were not exceeded for a given period of fire resistance. 

The time at which the appropriate one of these member temperatures occurs under 

the Standard Fire Curve is the member fire resistance. Since the third edition, the 

limiting temperatures of 550°C and 620°C have been recommended for general use, 

although more detailed critical temperatures, taking account of different load ratios, 

building types and exposure conditions, have been considered. For each fire protection 

0= +345log(0.133 1)T T t 
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system, the effect of a specified thickness of fire protection on the heating rate is 

simply measured by a parameter called the “section factor”. The section factor is the 

ratio of the exposed surface area per unit length to the volume of the member within 

this length. For various member types and fire protection materials, fire resistance 

periods and section factors can be calculated, and therefore appropriate fire 

protection material thicknesses can be found in the Yellow Book. 

The standard fire resistance test is often criticized as not representing a real fire 

scenario. This suspicion came from the fact that buildings can be affected by severe 

fire scenarios, in which member temperatures are far above the critical temperatures 

defined in the design codes. In the late 20th century, a series of full-scale fire tests 

were carried out at Cardington, UK. In these tests it was found that a composite 

building survived in severe natural fire scenarios, even when many beams were 

unprotected. These fire tests revealed that the standard fire test can be very 

conservative, because it ignores any interaction between members, although this 

interaction may not always be advantageous. Therefore, performance-based design, 

which fully considers the likely fire behaviour, heat transfer to the structure and the 

structural response including member interactions, has become more popular in 

structural fire design. 

2.3 RESEARCH INSPIRED BY CARDINGTON FIRE TESTS 

2.3.1 The Cardington Fire Tests 

A fire research programme on a modern multi-storey composite steel framed structure 

built within the BRE large scale test facility at Cardington (O'Connor and Martin, 1998) 

was carried out by British Steel’s Swinden Technology Centre, co-sponsored by the 

European Coal and Steel Community (ECSC) with TNO (The Netherlands) and CTICM 
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(France) as partners, between 1995 and 1997. This research programme aimed to 

understand the results of the large-scale fire tests at Cardington in order to develop 

rational design guidance for composite steel frameworks at the fire limit state. Six 

major fire tests were carried out during 1995-96 on different parts of the frame. They 

were: a restrained beam test, a plane frame test, two corner compartment tests, a 

large compartment test and an office fire (demonstration) test. In the first and second 

of these tests, particular elements of interest were heated by gas fires. In all the other 

tests, wooden cribs were ignited in the compartments in order to model natural fires. 

In one case a ventilation shutter was used to control the compartment temperature. 

For the final test of this series, a fire in a simulated office environment was created in 

order to subject the structure to a fire which could be related to a real scenario 

(Usmani et al., 2000).  

Another large-scale fire test at Cardington was carried out on the same steel–concrete 

composite framed building in 2003 (Wald et al., 2006). The test took place as a result 

of a collaborative research project between Czech Technical University (Czech 

Republic), University of Coimbra (Portugal), Slovak Technical University (Slovak 

Republic) and Building Research Establishment (United Kingdom). The test was carried 

out as part of a European collaborative research project: Tensile membrane action and 

robustness of structural steel joints under natural fire. The project concentrated on the 

investigation of the structural integrity of a compartment subjected to natural fire 

conditions. The test results are reported by Lennon and Moore (2004). 

Two of the main observations from the Cardington fire tests were that the steel beams 

did not “run away” as predicted by furnace fire tests, and the composite slabs did not 

collapse. In order to reveal the reasons for these phenomena, experimental and 

numerical studies were conducted on steel beams and composite slabs, considering 
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their beam-end restraint and slab-edge support. Theories of catenary action for steel 

beams and tensile membrane action for composite slabs became the main 

explanations of what actually occurs in beams and slabs subjected to large deflection 

at high temperatures.   

2.3.2 Steel beam and concrete slab research inspired by the Cardington Fire Tests 

Liu et al. (2002) conducted restrained steel beam fire tests in the Fire Laboratory at 

Manchester. In these experiments, small-section I-beams were supported between 

two columns in a “rugby-post” arrangement. In some tests additional horizontal 

restraint stiffnesses were applied to the ends of the beams to simulate the restraining 

effect from surrounding structure. The behaviour was studied under different beam 

load ratios. 

Yin and Wang (2004, 2005) developed methods to describe the catenary action of steel 

beams at elevated temperatures both theoretically and numerically. In traditional 

isolated beam analysis, only the flexural capacities were checked, without considering 

any axial restraint at the beams ends. The beams were predicted to “run away” when 

the applied load exceeded the beam’s bending moment capacity. However, it has been 

proved that beams can experience catenary action when the temperature is above 

their limiting temperatures, which are governed by their bending resistance provided 

that enough axial restraint has been provided. Therefore, a beam’s loading-carrying 

system progressively becomes catenary action, experiencing increasing tension force. 

Eventually the vertical components of this tension force, along the highly-deflected 

beam, are responsible for balancing the vertical external load. Consideration of 

catenary action in design can reduce construction cost by saving fire protection to 
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steel beams, as they will not collapse unless the beam-end axial restraints are not 

strong enough. 

Tan and Huang (2005) applied FE modelling to investigate the structural response of 

steel beams with axial restraint in fire. The behaviour of both pin-ended and semi-rigid 

restrained beams was investigated. The dominant factors considered included thermal 

gradient, load utilization factor, beam slenderness ratio and axial restraint ratio. Their 

analysis demonstrated that axial restraints provide beams with axial tying capacity, 

which enables these beams to experience catenary action instead of collapse at high 

temperatures.  

Li and Guo (2008) conducted experiments on two restrained steel beams exposed to 

fire during both the heating and cooling phases. Obvious catenary action was observed 

during these experiments.  

In all the elevated-temperature steel beam tests mentioned above, sufficient axial 

restraint was provided so that catenary action of steel beams could occur. However, in 

real structures, such a level of axial restraint can only exist if the beam-to-column 

connections are of sufficient strength and ductility. The buckling at the beam ends, 

frequently seen from the Cardington Fire Tests, on the one hand, can change the force 

distribution between the connection bolt rows. Therefore, the design bolt-row forces 

can reach their strengths and ultimate strain at a different temperature level. The 

buckling elements can influence the fracture temperature the bolt rows of their 

adjacent connection. On the other hand, the buckling element can also change the 

surviving temperature of the beam when no sufficient axial restraint from the 

connection can be provided. This inspires the research reported in this thesis. 

Another main breakthrough from the Cardington Fire Tests was the Tensile Membrane 

Action of concrete slabs.  
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Huang et al. (2000) presented a three-dimensional, nonlinear finite-element procedure 

for modelling composite and steel-framed building behaviour in fire. He also reported 

theoretical and numerical research to predict the response of reinforced concrete 

slabs subjected to fire (2003a, 2003b). This procedure was based on thick plate theory. 

The influences of different thermal expansion characteristics, differential temperature 

distributions through the slab thickness and tensile membrane action were 

investigated. It was shown that the proposed model could properly simulate 

membrane action of concrete slabs in fire. 

Bailey et al. (2000a, 2004) proposed a tensile membrane action method for designing 

composite slabs at elevated temperatures. Burgess et al. (2014, 2016) presented an 

initial re-examination of the mechanisms of tensile membrane action of thin concrete 

floor slabs, attempting to remove the arbitrary assumptions from Bailey’s TMA 

method, and to analyse the slab’s developing deflections kinematically.   

2.4 FRAME NUMERICAL MODELLING 

Numerical Modelling and theoretical investigation 

Saab and Nethercot (1991) presented a formulation for the bilinear analysis of two-

dimensional steel frames under fire conditions. This was one of the initial attempts to 

carry out numerical frame analysis in fire. Their work was capable of considering the 

effects of geometric nonlinearity, temperature-dependent nonlinear material 

behaviour and temperature distributions through each member. 

Najjar and Burgess (1996) described the principles of a three-dimensional frame 

analysis for fire conditions using a program which was at that time named 3DFIRE, 

which aimed at modelling the behaviour of skeletal frames under fire conditions. The 

program was based on an existing two-dimensional program INSTAF which had been 
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written for nonlinear ‘spread of yield’ analysis of two-dimensional rigid steel 

frameworks at ambient temperature. High material nonlinearities could be taken into 

account by this program. Temperature distributions, which could induce differential 

thermal expansion, could be adopted. Various test cases correlated well with previous 

independent analytical studies. However, the program did not include composite 

action, plate elements or semi-rigid connections. 

Rotter et al. (1999) discussed the response of a structural element under fire 

conditions within a large, highly redundant, building. Aspects such as thermal 

expansion, the relative stiffnesses of adjacent parts of the structure, material strength 

degradation, development of large deflections, buckling and temperature gradients 

were illustrated with simple examples. The significance of these findings for the design 

of large buildings was briefly investigated and explained. 

Usmani et al. (2001) attempted to illustrate some of the most important and 

fundamental principles that dominate the behaviour of composite-framed structures 

in fire. The descriptions were developed in the context of numerical modelling of the 

full-scale Cardington fire tests. Fundamental principles, concerning the evolution of 

internal forces and displacements in real structures with acceptable simplifications, 

were presented in this work.  

Liew et al. (2004) developed a numerical approach for inelastic transient analysis of 

steel-framed structures subjected to explosive loading followed by fire. This approach 

enabled realistic overall frame modelling by adopting the use of beam-column 

elements utilizing fibre cross-section representations. Verification examples indicated 

that the proposed analysis could be effectively used to solve structural explosion and 

thermal response problems. However, their work was limited to two-dimensional 

frames, and could not avoid singularity at the onset of local buckling. 
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Lien et al. (2010) used the Vector Formed Intrinsic Finite Element (VFIFE) method to 

carry out structural analysis in fire. This method is based on Newton's Laws of Motion, 

and discretizes the structural system into particles. Large deformation and catenary 

action of structures can be well simulated without forming a structural stiffness matrix.  

This is an alternative way of avoiding the singularity problem when local structural 

failure occurs.  

Franssen et al. developed a computer program known as SAFIR (2011).  This software 

has been used by many researchers.  For instance, Junior and Creus (2007) extended 

the “plastic hinge concept” into fire analysis. They developed an alternative simplified 

procedure to analyse the behaviour of three-dimensional frames under elevated 

temperatures. The model was compared with results from SAFIR and experimental 

results, and was shown to be accurate, with low computational cost. 

Sun et al. (2012b) developed a static-dynamic procedure and extended it within the 

Vulcan software to model the behaviour of steel-framed buildings during both local 

and global progressive collapse under fire conditions. An explicit integration method 

was adopted in the dynamic part of this procedure, in order to make the analysis 

continue beyond local, temporary instabilities. This procedure enables the modelling 

to automatically switch between static and dynamic analysis, which allows Vulcan to 

investigate initial stable behaviour, local failure, restabilization and progressive 

collapse of buildings.  The work has subsequently been extended (Sun et al., 2012a, 

Sun et al., 2015). 

It has been found that the research on frame behaviour in fire has been extended from 

two-dimensional to three-dimensional, intending to consider more and more realistic 

interactions between the structural elements of a frame. Carrying out performance-

based fire design through FEA frame analysis is an obvious solution. However, its 
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extremely high computational cost makes it impractical, given that each connection 

consists of many different components and a frame contains many connections. 

Therefore, a practical and accurate enough alternative method, which is to use 

component-based method to model the connections, is adopted.     

2.5 PROGRESSIVE COLLAPSE OF WTC7 BUILDING 

On September 11th 2001, the twin towers of the World Trade Centre in New York 

were attacked (McAllister and Corley, 2002) by terrorists with hijacked jet airliners. 

One of the aircraft was flown into the face of the North Tower (WTC1), and the other 

crashed into the South Tower (WTC2). Later, at 5:21 p.m. on the same day, WTC 

building 7 collapsed because of fires which had started as a result of the collapse of 

WTC 1. The progressive collapse of WTC 7 is of significant interest, as the collapse was 

triggered by the failure of beam-to-column connections under fire conditions rather 

than by impact damage from the collapsing towers. 

The floor plan of Floors 12-14 of WTC 7 is shown in Figure 2-4. Particular attention was 

paid (NIST, 2008) to the connection of a non-composite primary beam to Column 79. 

The primary beam (44/79) supported several protected composite secondary beams 

with long spans, on only one side. During the fire these fully protected secondary 

beams were heated to between 500ᵒC and 600ᵒC, which would have produced 

approximately 100mm of free thermal expansion. In order to restrain the secondary 

beams, large horizontal shear resistance needs to be provided by the column-face 

connection of the primary beam. However, the connection was only designed to resist 

gravity load. The locating bolts at this connection were easily fractured, as they had 

little horizontal shear resistance. The primary beam was separated from Column 79 

soon after the shear resistance of the connection was reached.  This separation 
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sequentially happened on adjacent lower floors as their loads were progressively 

increased by debris from upper floors. Collapse then progressed from east-to-west 

across the core, ultimately overloading the perimeter columns and causing the entire 

superstructure to fall downward as a single unit. The progressive collapse of WTC7 

indicated that connection failure can initiate the collapse of the connected beams, and 

can cause accumulation of gravity loads, together with sequential impacts from the 

fallen beams and slabs, onto the lower-storey columns. The buckling of the columns 

under increased load and with longer effective lengths may cause progressive collapse 

of the whole building. Therefore, it is reasonable to investigate the robustness, 

fracture sequences and survival times of semi-rigid connections in fire. 

 

Figure 2-4 Typical floor plan (NIST, 2008)  

 

2.6 JOINT MODELS 

As has been stated, the collapse of the WTC buildings emphasized that connections are 

among the weakest components of structural frames in fire conditions. The 

connections are subjected to complex combinations of moment, axial and shear forces 



2. Literature Review 

26 
 

transferred from adjacent beams and slabs under fire conditions. If the joint is with 

sufficient strength and ductility, the joint is able to provide sufficient axial restraint to 

the beam. In this case, the steel beam can experience catenary tension at high 

temperatures and dramatically increases the survival temperature of the beam. On the 

other side, a joint with insufficient strength and ductility may suffer from a fracture, 

which leads to an additional load onto the lower floor when the steel beam falls. This 

may trigger a ‘pancake’ effect and finally lead to the progressive collapse of the whole 

building. That is why when investigateng steel beams with brittle connections, the 

beam survival temperature is always assumed to be the temperature, at which the net 

tying force in the connection turns from compression to tension (when catenary action 

initiates).  

In traditional analysis, joints are assumed to be either ‘pinned’ or ‘rigid’, ‘pinned’ joints 

have almost no rotational stiffness while ‘rigid’ joints are of infinite rotational stiffness, 

without any relative rotation between beams and columns. Nevertheless, the majority 

of practical joints are semi-rigid. This is mainly because components, each with a finite 

flexibility, tend to be connected in series, forming even more flexible assemblies. 

Al-Jabri (2011) presented an overview of numerical modelling and simulation methods 

to summarise the behaviour of beam-column joints at elevated temperatures. He 

classified these models as finite element models, curve-fit models, component-based 

models, and artificial neural network models. However, in assessment of the 

robustness of composite structures in fire, a stable, simple and reasonably accurate 

model is sufficient to model the overall behaviour. A mature way is to develop 

component-based models, which are capable of predicting the behaviour of semi-rigid 

beam-column connections, and to incorporate them into global structural analysis 

programs.  
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Anderson and Najafi (1994) reported the results of five ambient-temperature tests on 

composite beam-to-column connections, and six bare-steel connections of the same 

type. Parameters such as the quantity of reinforcement and the depth of the steel 

section, which are both related to the moment capacity and stiffness of composite 

connections, were investigated. A simple spring model was proposed to predict a 

bilinear approximation of the moment-rotation relationship of these connections. 

Da Silva et al. (2001) described a type of component-based model for the behaviour of 

semi-rigid steel joints. These mechanical models consist of extensional springs and 

rigid links. The springs exhibit a bi-linear force-deformation characteristic.  This model 

was used to model a cruciform steel flush end-plate beam-to-column joint experiment. 

The analytical procedure produced by da Silva is able to predict the moment-rotation 

relationships of semi-rigid steel connections under fire conditions. 

A large number of tests were conducted by Spyrou et al. (2004a, 2004b) to investigate 

the behaviour of the tension and compression zones of semi-rigid connection 

components at high temperatures. He further developed component-based force-

displacement models for the tension and compression zones of connection elements. 

These models were combined to represent the behaviour of a whole component-

based connection element at elevated temperatures. 

Al-Jabri et al. (2005) conducted five series of tests to investigate the rotational 

behaviour of semi-rigid joints at elevated temperatures. Moment-rotation curves were 

derived at different high temperatures. His tests offered more fundamental 

experimental data for later researchers to compare with. 

Block et al. (2007) further developed the component model for endplate connections, 

based on the earlier work by Spyrou. In his work, the joint model was assembled from 

components representing bolts in tension, the column web in compression, the 
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endplate in bending and the column flanges in bending. A shear spring was included to 

transfer the vertical shear force between the two nodes of the connection element. 

However, this shear spring was assumed to be rigid.  

Yu et al. (2009a) divided semi-rigid endplate connection components into T-stub 

models. An optimum yield-line model was developed, based on the plastic work-

balance principle, to capture the behaviour of endplate connections at large 

deformations up to failure. The model was validated against experiments at both 

ambient and elevated temperatures. A number of validation studies were carried out 

comparing finite element analysis with the analytical model, which indicated that the 

analytical model was able to represent the behaviour of endplate connections well at 

both ambient and high temperatures.  She then developed a component-based model 

(Yu et al., 2009b, 2009c) to model the behaviour of web cleat joints at elevated 

temperatures subjected to tying forces. In this model, the effect of opening of the 

angles was considered as forming a four-plastic-hinge mechanism. The model was 

again validated against FEM and both ambient- and high-temperature tests. 

In order to investigate the relative robustness of different types of steel joints in steel-

framed structures in fire, Wang et al. (2011) carried out ten fire tests on medium-scale 

partially-restrained steel “rugby goalpost” frames with five different types of joint, 

including web cleat, fin plate, flexible endplate, flush endplate and extended endplate 

connections. Their structural fire response, including joint failure modes, the 

development of beam mid-span deflections and axial forces in the joints at high 

temperatures were investigated. 

Hantouche et al. (2016) conducted studies to investigate the main parameters that 

affect the behaviour of web cleat connections in fire. The characteristics and behaviour 

of these connection types were compared at high temperatures. This study helped to 
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extend the understanding of the factors controlling the deformation capacity and 

strength of web cleat connections in fire. 

The robustness of beam connections in the direct vicinity of the column face is vitally 

significant to the fire resistance of steel-framed/composite buildings. In recent years, a 

large number of experiments have been conducted to investigate the behaviour of 

steel connections at elevated temperatures, in order to validate the proposed 

component-based models. Numerical simulation is also a good way to conduct 

parametric studies. Since realistic tests may be costly in both time and money, robust 

numerical simulations have been the preferred tool of many researchers. Beam-web 

shear buckling and bottom-flange buckling near to the ends of beams have been 

consistently observed in the full-scale fire tests at Cardington and in the aftermath of 

accidental fires. These phenomena may have effects on the stress distribution of the 

adjacent column-face connection bolt rows, as well as the survival temperature of the 

connected beam when beam-end connections of insufficient ductilities have been 

used. Therefore, it is important to include these buckling phenomena in structural fire 

analysis. 

2.7 SHEAR BUCKLING OF PLATE GIRDERS 

As early as 1886, the possibility of utilizing the post-buckling strength of plate in 

bridges was considered by Wilson (1886). Later Wagner (1931) presented a diagonal 

tension theory concerning buckling and post-buckling behaviour for aircraft structures 

in 1931. However, the post-buckling behaviour of beam web panels was not 

considered as a design concept until the 1960s; until this time the elastic buckling load 

was used as the only design limit criterion. In the 1960s, Basler et al. (1960, 1961a, 

1961b) presented a method of calculating the ambient-temperature post-buckling 
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capacity of the webs of plate girders subject to shear; this work was later used as the 

basis of a design method (ASIC, 1963) introduced by the American Institute of Steel 

Construction (AISC). However, in this theory, the flanges of plate girders were assumed 

to be too flexible to carry significant bending moments, which led to conservative 

results. Subsequently, Fujii (1968) presented a modification of Basler’s theory, 

considering the contribution of flanges to the total post-buckling load capacity. In the 

1970s, Rockey et al. (1968, 1972, 1978, 1987) presented a systematic study of, and a 

design method for, plate girders subject both to pure shear and to combined shear 

and bending. Their theory further improved Basler’s theory by considering the 

strength of flanges. The theories above are all classified as ‘tension field theory’ or its 

derivatives, because the fundamental assumption is that, after elastic buckling, any 

additional load is carried by a tensile membrane field. Tension field theory only deals 

with web panels with aspect ratios less than 3 (Galambos, 1998). Hereafter, the term 

‘aspect ratio’ refers to the ratio of the distance between adjacent transverse stiffeners 

to the depth of the web panel.  The theory was later shown, by Lee and Yoo (2008), to 

be able to predict well the post-buckling strength under pure shear of panels of aspect 

ratios smaller than 1.5, but to lose accuracy for higher aspect ratios. This indicates that 

tension field theory should only be used to represent plate girders with transverse 

stiffeners. Lee and Yoo (1998, 2006, 2008) carried out a series of finite element studies 

to investigate the post-buckling behaviour. They modified the existing formulations to 

decrease the discrepancy between tension field theory and their finite element 

modelling.  They also proposed empirical amendments to classical tension field theory 

for web panels with aspect ratios higher than 3. Vimonsatit et al. (2007a, 2007b) 

extended the classical ambient-temperature tension field model for plate girders, to 

account for elevated-temperature behaviour, by changing material properties and 
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incorporating the effect of compressive forces due to axial restraint. However, the 

“tension field theory” developed for plate girders can not be directly used for the 

analysis of the beam-web shear buckling of Class 1 and 2 sections. This is because that 

the beam-web shear buckling length of a plate girder is predefined by the distance 

between two adjacent stiffeners, which do not exist for most Class 1 and 2 sections. 

Therefore, the shear buckling lengths of Class 1 and 2 sections have to be calculated. 

Moreover, as the webs of plate girders are very thin (usually classified as Class 4 

sections), buckling would usually occur in the linear-elastic phase, whereas, for the 

Class 1 and 2 sections, nonlinear buckling will often occur. Therefore, the tension field 

theory needs to be revised to model the beam-web shear buckling of Class 1 and 2 

sections, as described in Chapter 3. 

2.8 BOTTOM-FLANGE BUCKLING YIELD LINE MODELS 

A body of research has been carried out to investigate the local in-plane flange 

buckling phenomenon, including both the pre- and post-buckling stages. Recent 

research has a common solution for the pre-buckling stage, while different collapse 

models of the post-buckling stage have been proposed since 1965. The evolution 

mainly focused on the attempts to transform the yield line mechanism from 

experimental observation to analytical and numerical models. In all the assuming yield-

line mechanisms, the buckling zone consisted of plastic zone and yield lines. The 

calculations were all based on the energy principles. There were two basic types of 

yield line models, which were symmetric collapse plastic mechanism and asymmetrical 

collapse mechanism.  

Climenhaga and Johnson (1972) presented an approximate method to predict the 

moment-rotation relationship of an I-shape beam when local flange buckling was 
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developed. In their theory, the collapse model was perfectly symmetric, and the length 

of the flange plastic zone equals to the flange width. Comparisons between the 

theoretical predictions and several test curves showed consistently conservative, but 

reasonable agreement.  

Kuhlmann’s model (1986) was on the basis that there were only yield lines at the 

buckled flange. There assumed to be a plastic zone, which can be squashed, and 

several yield lines at the beam web. However, Kuhlmann’s model is performing 

unreasonable in terms of deformation compatibility since if there was any squash 

within the beam-web plastic zone, the buckled flange couldn’t be squashed as there 

was no relevant plastic zone on the flange.  

The mechanisms mentioned above are symmetric collapse plastic mechanisms. 

The most recent developed yield line mechanisms consist in a more suitable buckling 

shape for the beam flange and web. 

A more careful examination of experimental results observed that the width of the 

web plastic zone is different from the flange width. Gioncu and Petcu (1997) improved 

the length of the yield-line mechanism by carrying out experimental observation and 

numerical modelling. A most recent yield line mechanism was reported by Gioncu and 

Mazzolani (2003). The parameters defining the shape of the mechanism, apart from its 

length, were determined based on the principle of the minimum of the total potential 

energy.  

All the yield line mechanisms mentioned above are suitable for ambient-temperature 

analysis. A summary of the yield line mechanisms is shown in Table 2-1. 
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Table 2-1 Collapse yield line mechanisms in the post -buckling stage 

Author(s) Flange Web 

Climenhaga 
and Johnson 
(1972) 

  

Kuhlmann 
(1986) 

  

Gioneu and 
Petcu (1997) 

  

Gioncu and 
Mazzolani 

(2003) 

 
 

 

Dharma extended the most up-to-date ambient temperature model, proposed by 

Gioncu and Petcu, to elevated-temperature applications for both steel beams (Dharma 

and Tan, 2007b) and composite beams (Dharma and Tan, 2008) by introducing 

reduction factors to the flange buckling wavelengths to account for temperature-

dependent material properties. In Dharma’s research, the buckling wavelength is 

based on elastic plate buckling theory (Timoshenko and Gere, 2009), in which the 

beam web acts as a rotational spring providing rotational restraint to the flange. 
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However, this assumption tends to over-estimate the flange wavelength when the 

beam web is relatively thin (but may still be classified as Class 1 or 2 according to EC3 

Part 1.1 (CEN, 2005a). The results derived from Dharma’s research have been shown 

to be extremely conservative for thin-web beams at elevated temperatures (Dharma, 

2007). Moreover, Dharma’s model considers the beam-web buckling as a passive 

movement, which is caused by the rotation of the web-flange intersection when flange 

buckling occurs; and so the beam-web buckling wave is vertical rather than diagonal 

(what the shear buckling wave should be, as observed in the majority of images from 

the Cardington Tests). The beam-web shear buckling is likely to be independent of 

flange buckling, and is triggered at least in part by shear force. The occurrence of shear 

buckling depends on various factors, such as the relative slenderness of the beam web 

and flanges and the ratio between the shear force and bending moment at the beam 

ends. Therefore, Dharma’s model is not suitable to be further utilised, such as to be 

converted to a component-based model, before relative corrections have been made. 

2.9 CONCLUSION 

As the connection is one of the most critical components in a structure under fire 

conditions, and the existence of the beam-end buckling phenomenon can influence 

the survival time of the connection, it is important to involve the beam-end buckling 

behaviour in structural fire analysis. It has been presented that the most updated 

Dharma’s model tends to over-estimate the resistance of the buckling element when 

the beam web is relatively thin. Therefore, it is necessary that a new analytical model 

is created based on Dharma’s model to fully consider the interaction and 

independency between the beam-web shear buckling and bottom-flange buckling, and 
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to provide good accuracy of results in all the beam-web slenderness ranges for the 

Class 1 and 2 beams. 

  



 

36 
 

 

  3.

AN ANALYTICAL APPROACH TO MODELLING 

SHEAR PANELS IN THE POST-BUCKLING STAGE 

AT ELEVATED TEMPERATURES 
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3.1 INTRODUCTION 

Since no practical research has been done on the post-local-buckling behaviour of 

beams of Class 1 and 2 sections at either ambient or elevated temperatures so far, the 

analytical model is based on the classic “tension field theory” of plate girders. This has 

been adapted to the structural response of Class 1 and 2 sections, which can form a 

plastic hinge with the rotation capacity required by plastic analysis, without reduction 

of its resistance according to Eurocode 3 Part 1-1 (CEN, 2005a). A brief review of the 

development of tension field theory has been presented in Chapter 2. 

3.2 DEVELOPMENT OF ANALYTICAL MODEL  

Classical tension field theory can represent the post-buckling behaviour of plate 

girders very well (Basler et al., 1960, Basler, 1961a, Basler, 1961b, Rockey and Skaloud, 

1968, Rockey and Skaloud, 1972, Rockey et al., 1978, Porter et al., 1987). In these 

models, shear resistance involves three stages: pre-buckling, post-buckling and 

collapse. In the pre-buckling stage, no buckling appears in the panel, and the principal 

tensile and compressive stresses are identical until elastic buckling happens. The 

elastic buckling strengths of plates under various conditions are given by Timoshenko 

(1961). In the post-buckling stage, stress redistribution occurs, with increase occurring 

especially in the directions of the tensile principal stresses. Any additional compressive 

stress produced after the elastic stage, can effectively be neglected after web shear 

buckling. In the collapse stage, four plastic hinges appear on the flanges, and finally the 

plate girder fails in a “sway” mechanism. In the proposed analytical model, for Class 1 

sections, the shear response once again consists of three stages, which differ from 

those of tension field theory.  These are the elastic, plastic and plastic post-buckling 
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stages. The behaviour of the web panel of a Class 1 section subject to shear and 

bending moment is compared with that of a plate girder in Figure 3-1. 

 

 

Figure 3-1 Comparisons of web panel behaviour for plate girders and Beams of 

Class 1 and 2 sections under shear and bending 

 

The aim of the proposed model is to produce a tri-linear force-displacement 

relationship for any shear panel, from initial loading to failure. An example 

characteristic is shown schematically in Figure 3-2.  
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Figure 3-2 Schematic tri-linear force-deflection curve of a shear panel  

 

In this figure, Point 1 illustrates the end of the pre-buckling elastic stage. In the elastic 

stage, it is assumed that no buckling appears in the panel, and the principal tensile and 

compressive stresses are identical. The beam-end reaction force is calculated on the 

basis of the design elastic shear resistance according to Eurocode 3 Part 1-1 (CEN, 

2005a). Up to Point 1, the mid-span vertical deflection of a beam is assumed to be 

induced by both bending and shear. Therefore, Eurocode 3 can be used to calculate 

the shear resistance and deflection at this point. Point 2 refers to the initiation of 

buckling, and Point 3 represents failure. The failure here is only a defined point to put 

an end to the force-deflection curve of the analytical model with a strain too large to 

be reached by beams in a real fire scenario; it does not necessarily represent a real 

failure. In the analytical model, the strain 0.15, which is the end of plateau in the 

material stress-strain characteristic according to Eurocode 3 (CEN, 2005b), has been 

used in the calculation of Point 3. As the object of the study is beam-web shear 

buckling, for all the beams analysed, resistance to shear is more critical than to 

bending moment. Therefore, the resistances below all refer to shear resistance. 

Bending moment is assumed to be solely resisted by the top and bottom flanges. The 

shear resistance and the mid-span vertical deflections at Points 2 and 3 are to be 

evaluated by the proposed analytical model.  

In the calculation procedure, several assumptions have been made for the post-

buckling phase.  

(1) The four edges of the shear panel are assumed to be rigid. 

(2) The panel is composed of tensile strips aligned at 45o to the horizontal (α+θ2) 

and compressive strips perpendicular to these tensile strips (see Figure 3-1 (f)). 
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α is the angle between the tensile strip and the upper edge of the shear panel 

while θ2 is the angle between the upper edge of the shear panel to horizontal.  

The stresses within all the tensile strips are identical, as are the stresses within 

all the compressive strips.  

(3) The bending moment of the buckling panel is only resisted by compressing or 

stretching the top and bottom flanges. There is no bending deformation on the 

beam web.  

The stress-strain relationship for structural steel at high temperatures is based on 

Eurocode 3 Part 1-2 (CEN, 2005b) , for which the model is shown in Figure 3-3 (b); 

however the curvilinear inelastic development phase of the Eurocode curve is replaced 

by a sharp transition from elasticity to plasticity, as only the two end points of the 

sharp transition (corresponding to proportional limit state and the initiation of yield 

state) have been used in the analytical model; the path in between these two points 

does not affect the result of the key points in the analytical model. The reduction 

factors for yield strength and Young’s modulus at high temperatures from this code 

have been used in the analytical model. At ambient temperature, the stress-strain 

relationship is based on the same general constitutive model.  To be consistent with 

the stress-strain relationships at high temperatures, the same limiting strain at yield 

,l   and the same ultimate strain
,u  are applied to the stress-strain curve at ambient 

temperature. The stress-strain relationship for structural steel at ambient temperature 

is shown in Figure 3-3 (a). 
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Figure 3-3 Stress-strain relationship of structural steel; (a) at ambient 

temperature; (b) at elevated temperatures  

 

3.2.1 The deflection at mid-span 

It has been mentioned above that, at Point 1, the mid-span vertical deflection of a 

beam is assumed to be induced elastically by bending and shear. The mid-span 

deflections at Points 2 and 3 both consist of a summation of the transverse drift of the 

shear panel due to shear force and the deflection caused by curvatures due to bending 

moment.  

As the beam is short, for calculation simplification, the analytical model assumes that 

the mid-span deflection cause by bending moment from Point 1 to Point 3 can be 

calculated as 

4

,/ 384vb EqL k EI   (3-1) 

While the overall deflection is assumed to be caused by bending and shear force, as 

shown in (3-2): 

vb vs    
 
 (3-2) 

For the transverse drift caused by shear buckling, it is assumed that the tensile strains 

of the tensile strips within the whole panel are identical. Thus, only the tensile strain of 

one representative tensile strip AB is calculated, as shown in Figure 3-4. The tensile 
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strain can be represented by the vertical deflection of the shear panel (Equation (3-5)). 

Therefore, by defining the tensile strain at Point 2 and 3 in Figure 3-2, the vertical 

deflection of the shear panel at Point 2 and 3 can be calculated. 

 

Figure 3-4 Representative strip and arbitrary point  

 

For tensile strips, 

/t e e   (3-3) 

2 2

2- / cos( )vse a     ,  2sin / cose vs     (3-4) 

Substituting Equation (3-3) into Equation (3-4) gives 

2 2

2 2sin cos( ) / ( cos )t vs vsa           (3-5) 

For Point 2, it is assumed that the principal tensile strain at an arbitrary point within 

the shear panel is 0.02, which is the yield strain in the material stress-strain 

relationship according to Eurocode 3 (CEN, 2005b). For Point 3, the strain at the 

arbitrary point is 0.15. Therefore, for any given distance a between plastic hinges on 

the flanges, the mid-span vertical deflection for Points 2 and 3 can be calculated. The 

key is to evaluate a.  
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3.2.2 Shear resistance of the beam 

The calculation principle below is based on the equality of the internal plastic work and 

the external loss of potential energy of the load. Following this calculation, the 

distance between the plastic hinges can be calculated in order to fulfil the work 

equilibrium and to correspond to the smallest uniformly distributed load q. The 

method of calculating the internal work of the beam and the external loss of potential 

of the applied force is shown below. 

Internal work of the beam web 

It is assumed that the shear panel is composed of tensile and compressive strips, as 

shown in Figure 3-1 (a). Although the directions of both the tensile and compressive 

strips are initially defined in the second assumption above, the locations of the plastic 

hinges on the flanges are unknown. There are three possible cases, as shown in Figure 

3-5, which may affect the internal work done by the tensile and compressive strips.  

 

Figure 3-5 Possibilities for the position of plastic hinges; (a) Case 1; (b) Case 2; (c) 

Case 3 

 

 Case 1 

In Case 1, as shown in Figure 3-6 (a), the angle  is smaller than diagonal angle γ.  

In Region B, for an arbitrary strip EF, the relationship between the elongation tB  of 

the strip and the resultant movement rB  of Point F (as shown in Figure 3-6 (b)), is  
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sintB rB    (3-6) 

A magnified figure of the stripe EF is shown in Figure 3-6 (b). The relationship between 

the vertical movement vB  of Point F, which is equal to ∆vs as shown in Figure 3-6 (a), 

and rB  is  

2cosvB rB     (3-7) 

Substituting  Equation (3-6) into Equation (3-7), the relationship between the tensile 

elongation tB  of a strip and the vertical movement of the right-hand edge of the 

shear panel can be derived as 

2sin / costB vs     (3-8) 

The internal work done due to the tensile stresses in Region B is  

2cos( )- sin

2
0

2 2

sin / cos )  

[ cos( ) - sin ] sin / cos

d a

Bt vs t w

vs t w

W t dx

t d a

  

  

     



  

   

 （
 (3-9) 

 

Figure 3-6 Case 1: (a) Geometric relationship; (b) Movement relationship in 

Region B 
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In Region A in Figure 3-6 (a), the orientation of the strips in Region A is identical to that 

of the strips in Region B, and so the relationship between the tensile elongation in 

Region A and that in Region B is  

/tA tBm a   (3-10) 

To obtain the relationship between the tensile elongation tA  and the vertical edge 

movement vs , substituting Equation (3-10) into Equation (3-8), gives 

2( / ) (sin / cos )tA vsm a      (3-11) 

The internal work done by the tensile stresses in Region A is given as 

sin

2
0

2 ( / ) (sin / cos )
a

At t vsW t m a dx


      (3-12) 

In Region A, / sinm x   ,  and substituting this into Equation (3-12) gives  

sin

2
0

2

2

(2 / cos )

sin / cos

a

At vs t

t vs

W t a xdx

a t



 

  

  

 

  (3-13) 

The overall internal work done by stretching the entire shear panel is given by 

summation of AtW  and BtW  

2 2cos( )sin / cos

T At Bt

t w vs

W W W

d t    

 

  
 (3-14) 

 Case 2 

In Case 2, the angle   of the tensile stresses to the upper edge of the panel is equal to 

γ, as shown in Figure 3-5 (b).  

The internal work done by plastic stretching of the tensile strips can be determined 

similarly to that of Region A in Case 1. Case 2 has no Region B, and the internal work 

AtW  done within Region A is still given by Eq (3-13). On the basis of the geometry of 

this case,  
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2sin cos( )a d     (3-15) 

The overall internal work done by stretching of the shear panel is in this case given as 

Equation (3-14), which turns out to be identical to that of Case 1. 

 Case 3 

In Case 3, the angle   is larger than  , as shown in Figure 3-5 (c). Again, the panel is 

divided into two regions A and B, as shown in Figure 3-7.  

 

 

Figure 3-7 Case 3: (a) Geometric relationship; (b) Movement relationship in 

Region B 

 

In Region B, for a sample tensile strip EF, the elongation of the strip can be related to 

the resultant movement of the right-hand edge of the shear panel: 

( / ) sintB rsn a     (3-16) 

Based on the relationship, 2cosvs rs     

2(sin / cos ) ( / )tB vs n a       (3-17) 

On the basis of geometry,   2cos( ) / sinn d      
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The relationship between the tensile elongation of a strip in Region B and the resultant 

movement of the right-hand edge of the panel ∆vs  is 

2 2(sin / cos ) cos( ) / (sin / )tB vs d a           (3-18) 

The internal work done by the tensile stresses in Region B is therefore 

2sin - cos( )

2 2
0

2 2

2 2 2 2

(sin / cos ) cos( ) / (sin / )

[ cos( )sin / cos cos ( ) / ( cos )]

a d

Bt vs t w

vs t w t w

W t d a dx

t d t d a

  

     

        



    

     

  (3-19) 

The internal work of Region A is given as, 

2cos( )

2
0

2 ( / ) (sin / cos )
d

At t w vsW t m a dx
 

  


    (3-20) 

In Region A,  / sinm x   ,  and substituting this into Equation (3-20) gives  

2cos( )

2
0

2 2

2 2

(2 / cos )

cos ( ) / ( cos )

d

At vs t w

t w vs

W t a xdx

t d a

 

 

   



  

  

  (3-21) 

Then adding AtW   and BtW  gives the total internal work done by plastic stretching of 

the shear panel in this case.  

2 2cos( )sin / cosT t w vsW d t        (3-22) 

It can be seen that the formulation of the internal work done by tension turns out to 

be the same for all the three cases.  This shows that the tensile resistance of a shear 

panel is not sensitive to the locations of plastic hinges.  

For compressive strips, there are also three cases depending on the locations of plastic 

hinges. Similarly to the tensile resistance, it can also be proved that the compressive 

capacity of a shear panel is not sensitive to the locations of the plastic hinges. For all 

three cases, the formulation of the internal work of the compressive strips is identical, 

and is given as 

2 2sin( )cos / cosC c w vsW d t        (3-23) 
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Therefore, the internal work of the web in the post-buckling stage is 

2 2 2 2cos( )sin / cos sin( )cos / cos

W T C

t w vs c w vs

W W W

d t d t         

 

     
 (3-24) 

It is not surprising to see that the three cases have an identical relationship for internal 

work since, when the entire panel is in uniform tension in one direction and in 

compression in the perpendicular direction, the internal work is derived similarly. 

 

Internal work of the top and bottom flanges 

The internal work of the flanges is the work done in deforming the four plastic hinges 

on the top and bottom flanges of the beam. The plastic moment resistance of each of 

the four hinges is 

2

0 , / 4y fM bt  (3-25) 

In this equation 0M does not account for the effect of the axial stresses in the flanges 

caused by bending of the overall beam cross-section, which reduces the flange 

moment capacity. The reduced moment capacity due to overall bending is given as 

2

1 0 ( ) ,

2 2

, ,

[1 ( / ) ]

[1 ( 0.5 ( 0.5 ) / ( )) ] / 4

t c y

y f r f y

M M

bt M d t I



 

 

 

 

      
      ( ) 

                                                                                              ( ) 

(3-26) 

Where Mr is the applied bending moment of the section 

The internal work done by the plastic hinges in the flanges is therefore 

2 2

1 2 , , 24 [1 (0.5 ( 0.5 ) / ) ]f y f r f yW M bt M d t I           (3-27) 

Total internal work of the beam 

The analytical model can calculate the distance between the plastic hinges on the 

flanges. The calculated value indicates whether plastic hinges have been formed; 

1 0M 

1 0M  1 0M 
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positive values indicate the occurrence of plastic hinges, whereas negative or 

imaginary values mean the opposite.  If plastic hinges have been formed, the internal 

work done by the beam is given by summation of the work done in the beam web and 

flanges. Otherwise, the internal work is solely that of the beam web. It is assumed that 

the beam-end buckling zone is short, and the bending is resisted by compression or 

stretching the top and bottom flanges only; the deformation of the shear panel caused 

by bending can be neglected. Therefore, the internal work caused by bending is 

ignored in this calculation.  

As discussed above, there are three key points to decide the theoretical force-

deflection relationship. Point 1 is the end of elastic range, Point 2 refers to the 

initiation of buckling, and Point 3 represents failure. It is assumed that, at the initial 

buckling point (Point 2), the compressive stresses in the beam web have not been 

decreased due to the effect of buckling. Therefore, the tensile and compressive 

stresses are equal: 

t c   (3-28) 

Using the Huber-von Mises plasticity criterion (von Mises, 1913), the relationship 

between the tensile and compressive stresses for a two-dimensional panel is 

2 2 2 2

,( ) 2c t t c y          (3-29) 

Substituting Eqs. (3-28) and (3-29) into Equation (3-24), the internal work of the web 

panel is 

, 2

2

sin(2 )

3cos

y w

W vs

dt
W

  




   (3-30) 

If plastic hinges occur, the internal work of the flanges can be calculated according to 

Equation (3-27). 
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Beyond the buckling point, the shear panel enters the post-buckling stage. For Point 3 

in Figure 3-2, the post-buckling strength reduction is accounted for by reduction of the 

compressive stresses in the compressive strips. In the post-buckling stage, the 

compressive strips are considered as struts with three plastic hinges, as shown in 

Figure 3-8. 

  

 

Figure 3-8 Struts representing compressive strips  

 

It has been assumed that the central plastic hinge always forms at the mid-length of 

each strut, although this assumption may lead to an out-of-plane deflection shape, 

which is slightly different from reality. For each strut shown in Figure 3-8, the 

rectangular cross section can be divided into two parts, as shown in Figure 3-9. The 

axial compressive strength of the strut is resisted by Region A and its bending moment 

resistance is provided by Region B.  Therefore,  

c c cP h f   (3-31) 

2 2( ) / 4p w c cM f t h    (3-32) 

 

P
c
 

M
p
 

 

M
p
 

M
p
 

P
c
 

∆ 



3. An analytical approach to modelling shear panels at elevated temperatures
 

51 
 

 

Figure 3-9 Cross section of one strut  

 

Based on force equilibrium, the relationship between the compression force cP  of the 

strut and the plastic moment 
pM  at the plastic hinge is 

2c pP M   (3-33) 

Substituting Eqs. (3-31) and (3-32) into Equation (3-33), the height ch  of the 

compression zone can be calculated. The reduced compressive stress c  is 

proportional to ch , which gives 

, /c c y wh t   (3-34) 

Following Equation (3-29), for any reduced c , the tensile stress t  can be calculated.  

Both c  and t  are proportional to the yield strength. A and B in Equation (3-35) are 

the ratios of c and t  to 
,y  , respectively.  A and B can be calculated by substituting 

Eqs. (3-32)-(3-34) into Equation (3-29) . Therefore, the high-temperature yield 

strengths can be defined as 

 

tw 



3. An analytical approach to modelling shear panels at elevated temperatures
 

52 
 

,c yA    and  
,t yB    (3-35) 

Substituting Equation (3-35) into Equation (3-24) gives 

2 2 2

, 2 , 2 2

, 2 2 2

sin cos( ) sin( )cos / cos

sin cos( ) sin( )cos / cos

[0.5 ( )sin(2 ) 0.5 ( )sin ] / cos

W T C t w c w vs

y w y w vs

y w vs

W W W t d t d

A t d B t d

t d A B B A

 



        

        

    

      

    

        

 (3-36) 

As has been presented above, for each a  the transverse drift vs of the shear panel 

can be calculated. This can influence the reduction of compressive stress, which in 

return changes the calculated value of the distance between the plastic hinges. 

Therefore, an iterative process is used here to balance the value of a . 

External work 

If a beam is subjected to uniformly distributed load, the external work is given as 

/ 2 ( ) ( / 2)e vs vs vsW aq q l a q l a         (3-37) 

It has been explained above that internal work is only related to the distance a 

between plastic hinges, rather than the length of the shear buckling wave. This is also 

the case for the external work, as indicated by Equation (3-37). 

As the calculation principle is based on equality of the internal plastic work and the 

external loss of potential energy of the load, the summation of the internal work of the 

shear panel web and flange is equal to the external work, as shown in Equation (3-38). 

W f eW W W   (3-38) 

The distance a between plastic hinges on one flange can be calculated from Equation 

(3-38). As the uniformly distributed load q progressively increases, there will 

eventually be an a and the corresponding smallest q that fulfil Equation (3-38). It can 

be proved mathematically by solving the nonlinear Equation (3-38) that a is not related 

to either the yield stress or to Young’s modulus. In other words, a is not related to 

temperature. It is worth noting that the distance a is related to the loading conditions. 
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The shear buckling model cannot be modelled as a separate component, as its 

behaviour is related to the loading conditions. However, it can be used to represent 

the beam-web shear buckling phenomenon for any given loading condition. 

3.3 VALIDATION AGAINST FINITE ELEMENT MODELLING 

In this study, the S4R element of ABAQUS (Hibbit et al., 2005) was adopted. This is a 

four-noded shell element which is capable of simulating buckling behaviour with 

reasonable accuracy. A mesh sensitivity analysis was carried out, and a 15mm x 15mm 

element size was selected to achieve optimum accuracy and efficiency. Riks analysis 

was used to track the descending load path of the shear panel in the post-buckling 

stage. An initial imperfection of amplitude ( ) /100fd t  was adopted. The shape of 

the initial imperfection was based on a first-buckling-mode analysis. Figure 3-10 (a) 

shows the finite element model of an isolated beam of Class 1 section. Six cases were 

analysed using different beam lengths with identical cross sections, at temperatures of 

20oC, 500oC, 600oC and 700oC. The dimensions of the cross section are shown in Figure 

3-10 (c). The same material properties used for the analytical model (illustrated in 

Figure 3-3) were applied. The detailed material properties used in both the FE and 

analytical models at ambient temperature are shown in Table 3-1. The material 

properties at high temperatures were reduced by applying the reduction factors for 

proportional limit stress, yield stress and Young’s modulus to those at ambient 

temperature, as given in BS EN 1993-1-2. To save computing time, only half of a beam 

was modelled. The beam is fixed at one end. The other end of the FE model, which is 

the mid span of the beam, is allowed to move vertically without any rotation due to 

symmetry. As the effects of axial force caused by thermal expansion has not been 
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considered in the analytical model, the mid span is allowed to move horizontally in the 

FE model.  Boundary conditions are shown in Figure 3-10 (b). 

 

Figure 3-10 Finite element model; (a) Image of finite element model;  (b) 

Boundary conditions; (c) Cross section dimensions (in mm)  

 

Table 3-1 Material Properties of the FE model  at ambient temperature 

y (N/mm2) E (N/mm2) ,y   (%) 
,t   (%) 

,u   (%) 

275 2.1e5 2 15 20 

 

Since no practical experimental results exist for the shear buckling of Class 1 and 2 

sections, the ABAQUS models cannot be validated against experiments directly. In 

order to verify the accuracy of the ABAQUS models, similar models in Chapter 4 were 

validated against experimental results at elevated temperatures. The ABAQUS models 

in this chapter were created on the basis of those in Chapter 4, by changing the 

loading and boundary conditions. The force-displacement relationships given by the 

analytical model and the ABAQUS analysis are compared in Figure 3-11, at 
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temperatures varying from 20oC to 700oC. The solid lines represent ABAQUS results, 

whereas the three round markers in each part of this figure show Points 1 to 3 given 

by the analytical model. As can be seen from Figure 3-11, the beam-end reaction 

forces given by the analytical model generally compare well with those from the 

ABAQUS model at all three stages. The theoretical results are always on the safe side 

for the cases analysed. More validations of the analytical models against ABAQUS 

model with different cross-section dimensions will be presented in Chapter 5. 
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Figure 3-11 Comparison of force-displacement curves of beam mid-span between 

ABAQUS and theoretical analysis  

 

The distances a  between plastic hinges for different beam lengths, given by the 

analytical model, are shown in Figure 3-12. The distance a  does not change with 

temperature. Therefore, for a particular beam length only one distance between 

 

  

Beam length=3000mm Beam length=3500mm 

  

Beam length=4000mm Beam length=4500mm 

  

Beam length=5000mm Beam length=5500mm 

0

200

400

600

800

1000

1200

0 20 40 60 80 100

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

Theoretical Model
ABAQUS  Model

20 C

500 C

600 C

700 C

0

200

400

600

800

1000

1200

0 20 40 60 80 100

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

20 C

500 C

600 C

700 C

Theoretical Model
ABAQUS  Model

0

200

400

600

800

1000

1200

0 20 40 60 80 100

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

20 C

500 C

600 C

700 C

Theoretical Model
ABAQUS  Model

0

200

400

600

800

1000

1200

0 20 40 60 80 100

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

20 C

500 C

600 C

700 C

Theoretical Model
ABAQUS  Model

0

200

400

600

800

1000

0 20 40 60 80 100 120

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

20 C

500 C

600 C

700 C

Theoretical Model
ABAQUS  Model

0

200

400

600

800

1000

0 20 40 60 80 100 120

R
e

ac
ti

o
n

 f
o

rc
e

 (
kN

)

Mid-span deflection (mm)

20 C

500 C

600 C

700 C

Theoretical Model
ABAQUS  Model



3. An analytical approach to modelling shear panels at elevated temperatures
 

57 
 

plastic hinges has been derived for any temperature. The solid line represents the 

variation of a  with beam length at Point 2, and the dashed line is that for Point 3. The 

values of a  for both Points 2 and 3 are positive definite for beams shorter than 5m. 

This means that the plastic hinges have been formed before beam web buckling occurs. 

For beams of lengths between 5-6m, the value of a  at Point 2 doesn't exist, whereas 

that for Point 3 remains positive. This means that plastic hinges are formed on the 

flanges after the beam web buckles. These results can not be validated by FE 

modelling; even if plastic hinges occur on the flanges, the rotations across the hinges 

will be too small to be observed. For all beams shorter than 6m, failure is controlled by 

the shear buckling of the beam web. As the beam length increases, the distances 

between plastic hinges for both Points 2 and 3 do not exist. This means that plastic 

hinges do not form and shear buckling does not occur. This shift of failure mode is also 

observed from the ABAQUS model, as shown in Figure 3-13 and Figure 3-14.  

 

 

Figure 3-12 Distance between plastic hinges calculated from the analytical model  
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Figure 3-13 is a contour plot of the out-of-plane deflection of a representative 3m 

beam. The formation of plastic hinges and beam-web shear buckling are obvious from 

this figure. The same phenomenon occurs to beams of lengths between 3.5m and 

5.5m. Figure 3-14 is a contour plot of out-of-plane deflection for a 6m beam, which 

fails by bottom-flange buckling rather than by shear buckling of the beam web. This 

may be caused by an increasing level of compressive stress, due to bending, in the 

bottom flanges as the beam length increases, which causes the bottom-flange buckling 

to occur prior to beam-web shear buckling. However, the bottom-flange buckling has 

not been included in the current analytical model, and will be considered in the next 

chapter. 

 

 
 

Figure 3-13 Shear buckling of 3m beam Figure 3-14 Bottom flange buckling of 

6m beam 

3.4 CONCLUSION 

An analytical model has been created to predict the shear capacity and vertical 

deflection of shear panels at both ambient and elevated temperatures. The analytical 

model is capable of predicting the formation of plastic hinges on flanges, the initiation 

of beam-web shear buckling and the failure point for Class 1 and 2 sections. A tri-linear 

curve can be created by linking these three points, in order to track the load-deflection 

route of the shear panel. In the following chapter a new component-based shear panel 

 

 

 

 lastic hinges 

 

 

Bottom flange buckling 



3. An analytical approach to modelling shear panels at elevated temperatures
 

59 
 

element, which considers the shear panel as a separate component, will be created 

based on the analytical model. 

The theoretical results have been validated against finite element modelling using 

ABAQUS over a range of geometries. For beams for which beam-web shear bucking is 

the main ‘failure’ mode, the comparisons between the theoretical and FE models have 

shown that the proposed method provides satisfactory accuracy in terms of both shear 

capacity and mid-span vertical deflection. However, as beam length increases, the 

‘failure’ mode switches to bottom-flange buckling. This phenomenon can be observed 

from the ABAQUS models. However, bottom-flange buckling has not been involved in 

the analytical model so far.  
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  4.

COMBINING THE EFFECTS OF SHEAR 

BUCKLING AND BOTTOM-FLANGE BUCKLING 

IN THE POST-BUCKLING STAGE
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4.1. INTRODUCTION 

The Cardington Fire Tests (Newman et al., 2000) indicated that combinations of beam-

web shear buckling and flange buckling are very prevalent under fire conditions (Figure 

4-1). This combination of phenomena can significantly influence the internal forces in 

the connections.  However, the contribution of the combination of beam-web shear 

buckling and flange buckling in the vicinity of beam ends has not been taken into 

consideration by almost any of the existing research. The analytical model which 

simulates pure beam-web shear buckling behaviour has been described in Chapter 3. It 

has been stated in the Introduction chapter that, as the beam length increases, 

bottom-flange buckling can occur simultaneously with beam-web shear buckling, and 

the occurrence of bottom-flange buckling can have a significant influence on the bolt-

row force distribution, as well as beam mid-span deflection at both ambient and 

elevated temperatures. As the bottom-flange buckling phenomenon was not 

considered in the analytical model of Chapter 3 it will be presented, in combination 

with web shear buckling, in this chapter.  

 

 

Figure 4-1 Flange buckling and beam-web shear buckling in combination 

(Newman et al., 2000) 
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Elghazouli et al. (1999) implemented a local-buckling model within a frame analysis 

program to investigate the influence of local buckling at the beam ends on the fire 

response of frame members and sub-assemblies. This study indicated that, although 

local buckling at the beam ends may not directly trigger overall structural collapse, it 

can have detrimental effects on the deflections of, and load re-distributions between, 

structural elements. This could influence the fire resistance of the structure. However, 

the local buckling model presented in Elghazouli’s work is based on elastic plate 

buckling theory, which is not appropriate for representing the buckling behaviour of 

Class 1 and 2 sections. No sufficient validation of the local-buckling model presented in 

his paper has been provided. A body of research (Kato, 1965, Climenhaga and Johnson, 

1972, Gioncu and Petcu, 1995, Gioncu and Petcu, 1997, Gioncu and Mazzolani, 2003) 

has been carried out to investigate the local in-plane flange buckling phenomenon, 

including both the pre- and post-buckling stages. Recent research has a common 

solution for the pre-buckling stage, while different collapse models of the post-

buckling stage have been proposed since 1965 (Kato, 1965). The local buckling collapse 

mechanisms in all these models are composed of yield lines and plastic zones. The 

choices of possible yield line patterns are based on experimental observations. All 

models assume that the yield lines, formed within the elastic buckling wavelength, will 

not change their positions in the post-buckling stage. However, these studies nearly all 

focus on the effects of local buckling on the rotational capacity and ductility of beam-

ends, rather than on its influence on the global structural behaviour. Dharma extended 

the most up-to-date ambient temperature model, proposed by Gioncu and Petcu 

(2003), to elevated-temperature applications for both steel beams (Dharma and Tan, 

2007b) and composite beams (Dharma and Tan, 2008).  However, Dharma’s research 

has been shown to be extremely conservative for thin-web beams at elevated 
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temperatures (Dharma, 2007). The detailed gap between the existing Dharma’s model 

and the analytical model needed has been introduced in Chapter 2.  

In this chapter, the new analytical model (1) considers the combination and interaction 

of flange buckling and web shear buckling; and (2) adopts a revised calculation 

approach for flange buckling wavelength to represent slender beams. Two comparison 

cased were considered to compare the analytical model with Dharma’s model and 

finite element (FE) models using ABAQUS. In the first comparison case, the FEA 

analyses a short cantilever with a fixed length of 2 d at the end of the beam. It is able 

to consider any loading condition, without uniformly distributed load on top of the 

buckling panel, by varying the combination of shear force and bending moment 

transferred to the end of the buckling panel. In the second comparison case, the FEA 

analyses a short cantilever with the length from the beam end to its adjacent point of 

contraflexure. It is able to consider any loading condition, with uniformly distributed 

load on top of the buckling panel, by varying the shear force at the end of the 

cantilever and the uniformly distributed load on top of the beam. After validation, the 

analytical model has been implemented in calculating the deflection of a full-length 

beam, and this has been compared with an equivalent ABAQUS model. The analytical 

model will eventually be integrated into the software Vulcan, to be placed in structural 

models between the existing connection element, which is assumed to exist at the 

column-face, and the beam element, using a component-based approach. 

Performance-based analysis will then be carried out to investigate the overall 

structural behaviour under fire conditions. 
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4.2. DEVELOPMENT OF ANALYTICAL MODEL 

The proposed analytical model uses a short cantilever to represent the beam-end 

buckling zone; the length of this cantilever is considered as equal to the beam depth d . 

By applying different combinations of moment and shear force at its free end, this 

model can represent the bucking panel at the end of a beam of any length, and with 

arbitrary loading and boundary conditions. The corresponding shear force F and 

bending moment M at the end of the buckling element can be transferred from the 

adjacent part of the beam. No horizontal restraint is applied to the buckling panel ends. 

In order words, the analytical model does not consider the axial force caused by 

restraint to thermal expansion. This model aims to deal with the post-buckling phase 

when the full yield line mechanism has developed under certain loading conditions 

and temperatures. If these loading conditions cannot be fulfilled (for example when, 

for a simple beam, the bending moment is not large enough to trigger bottom-flange 

buckling), the proposed buckling element will remain a part of a normal beam. The 

complete force-deflection relationship of the buckling element includes three stages: 

non-linear pre-buckling, plateau and post-buckling. If the material properties (Figure 

4-2) for steel at temperatures higher than 400°C are used, the vertical force-deflection 

relationship of the buckling element without considering the axial force can be 

illustrated schematically as in Figure 4-3. 
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Figure 4-2 Stress-strain relationship of 

structural steel  

 

Figure 4-3 Schematic force-deflection curve 

of a beam-end buckling model  

 

4.2.1 Pre-buckling stage and plateau 

The characteristics of the buckling element in the pre-buckling stage are identical to 

normal beams, with linear elastic and nonlinear phase, as shown in Figure 4-3. In the 

plateau stage, a plateau line at force level 
p,TF , which is the force that causes the fully 

plastic moment resistance to be reached, is drawn to connect Points A & B in Figure 

4-3 with the pre- and post-buckling curves; this has been defined as the plateau stage.  

4.2.2 Post-buckling stage 

Development of plastic buckling mechanism 

The plastic buckling mechanism (Figure 4-4) forms at Point B in Figure 4-3. The 

buckling mechanism is composed of yield lines and plastic yield zones. The yield line 

pattern adopted in this study is based on Dharma’s model (2007). 
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Figure 4-4 Plastic Buckling Mechanism 

 

The deflection of the buckling zone is composed of the total deflection due to both 

bottom-flange buckling and beam-web shear buckling. In this study, the individual 

effects of these two buckling phenomena are considered. As the buckling zone is 

considerably shorter than the entire beam, it is assumed that the influence of bottom-

flange buckling is to cause a rotation of the whole beam-end about the intersection of 

the web yield lines, which is approximated as the top flange of the beam (due to 

stretching of the top flange and buckling of the bottom flange), as shown in Figure 4-5 

(a). Beam-web shear buckling can cause transverse drift of the shear panel, as shown 

in Figure 4-5 (b). Therefore, the combined effects of flange buckling and beam-web 

shear buckling on the overall beam vertical deflection is as expressed in Figure 4-5 (c).  

 



4. Combining the effects of shear buckling and bottom-flange buckling 
 

67 
 

 

Figure 4-5 The effects of flange buckling and beam -web shear buckling on beam 

vertical deflection (a) bottom-flange buckling; (b) shear buckling; (c) total 

deflection 

 

 Bottom-flange buckling 

When bottom-flange buckling occurs, the buckled shape is composed of a squashed 

quadrilateral plastic zone (4-5-7-6) and several yield lines, as shown in Figure 4-6 (a). 

The centre of the plastic zone is at the centre of the buckled panel in both directions. It 

is assumed that the plate facets surrounded by the yield lines rotate rigidly about the 

yield lines. The plastic zone (shaded area in Figure 4-6 (a)) will be squashed along 5-6 

due to compression; it can also rotate about Line 5-6. It is assumed that there is no 

relative rotation between the beam web and the bottom flange at their intersection 

(web and flange will always be perpendicular to each other). Therefore, the rotation of 

the plastic zone in the bottom flange will lead to the rotation of the beam web, as 

shown in Figure 4-7. This results in an isosceles-right-triangle plastic zone being 

formed in the beam web (5-6-11 in Figure 4-8). This zone will be compressed along line 
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5-6 as well as rotate about this line. Several yield lines form in the beam web as a 

result of this rotation; the centre of rotation is located where the neutral axis of 

bending meets the beam end (Point 12 in Figure 4-8). The angle of rotation due to 

bottom-flange buckling is 1 , as shown in Figure 4-5 (c). The top flange remains in-

plane, experiencing only plastic tensile deformation at the beam end, as shown in 

Figure 4-6 (b). 

 

 

Figure 4-6 Flange yield line mechanism (a) bottom flange; (b) top flange  

 

Figure 4-7 Deformation compatibility between bottom flange and beam web (a) 

real-beam deformation; (b) deformation in the model  
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Figure 4-8 Beam-web yield line pattern  

 

 Beam-web shear buckling 

When beam-web shear buckling occurs, the two opposite edges (Lines 1-16 and 3-20 

in Figure 4-5 (b)) of the buckling panel move in parallel due to shear force, producing 

two plastic hinges on each of the top and bottom flanges. The angle of rotation due to 

this transverse drift is 2 , as shown in Figure 4-5 (b). The four edges of the buckling 

zone are considered to be rigid. The beam web is assumed to be composed of tensile 

and compressive strips, which are aligned at 45ᵒ to the horizontal and perpendicular to 

each other, as shown in Figure 4-9 (a). When the buckling panel deforms due to shear 

force, the tensile strips are elongated due to the tensile force component of the 

vertical shear force, while the compressive stresses are shortened due to its 

orthogonal compressive force component. The out-of-plane deformation is assumed 

to occur only within the yield lines 12-6-19 (Figure 4-8).  

The out-of-plane deflection of the beam web due to bottom-flange buckling and that 

due to shear buckling need to be identical to ensure geometric compatibility. This 

implies a relationship between the beam end rotations θ1 and θ2, due to bottom-

flange buckling and shear buckling. 
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Figure 4-9 Beam-web behaviour under shear force (a) Overall behaviour; (b) 

Tensile strips; (c) Compressive strips  

 

 Length of the buckling panel  

The flange-buckling wavelength given by Dharma (2007) tends to considerably over-

estimate the capacity of a slender beam. In most fire tests, only one shear-buckling 

wave has been observed, and the shear-buckling wave is usually aligned at around 45ᵒ 

to the horizontal. Therefore, the shear-buckling panel is usually no longer than the 

beam depth d  , and the flange buckling wave lies in between the two plastic hinges in 

the bottom flange. Hence, the flange-buckling wavelength 
pL  can be calculated 

according to Equation(4-1) considering the effects of steel grade and temperatures. 

     
3/41/4

,

275
2 2 0.713 / / / (0.7 )p f w E y

y

L c d b t t k k c





   

 
(4-1) 

 

 

The calculation of Lp is based on elastic plate theory by Timoshenko (1961), and by 

introducing reduction factor / (0.7 )E yk k  to consider high temperatures. In most fire 

tests, only one shear-buckling wave has been observed, and the shear-buckling wave is 

usually aligned at around 45ᵒ to the horizontal. Therefore, the shear-buckling panel is 

usually no longer than the beam depth d , and the flange buckling wave lies in 

between the two plastic hinges in the bottom flange. Hence, it has been assumed that 

the flange-buckling wavelength 
pL , calculated by Equation (4-1), is limited to the beam 

 
(a) (c) (b) 

d 

 βc 

θ
2
 θ

2
 

 βc 

d d 

 βc 

= + 

6 

11 

14 

3 

12 α 

Tensile Strips 

Compressive Strips 



4. Combining the effects of shear buckling and bottom-flange buckling 
 

71 
 

depth d . The out-of-plane deflection of the beam web due to bottom-flange buckling 

and that due to shear buckling need to be identical to ensure geometric compatibility. 

This implies a relationship between the beam end rotations 1  and 2 , due to bottom-

flange buckling and shear buckling. 

Calculation principle 

The calculation principle is based on equality of the internal plastic work and the loss 

of potential energy due to the external load:  

int extW W  (4-2) 

 Internal Work 

The internal plastic work intW  includes the work done in the flanges ( ( )l i

i

W due to 

the rotation about the yield lines and ( )z j

j

W  due to axial deformation of the plastic 

zones) and the work WW  done in the beam web due to its transverse drift during shear 

buckling. The deformations of the plastic zones are uniform across each of them, and 

the rotations about yield lines are uniform along every yield line.  Summaries of the 

lengths and rotations of the yield lines, as well as the volumes and strains of the plastic 

zones, are given in Table 4-1 and Figure 4-5. 

The total internal plastic work is then given by Equation (4-3). The factor , which 

determines the dimension of the bottom-flange plastic zone, and the distance d  

between the neutral axis of bending and the bottom flange, are to be determined 

through optimization on the basis of minimizing the total internal plastic work. 

2

int , ,( ) / 4 ( )p y i p y j W

i j

W l t A t W         (4-3) 
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Table 4-1 Components of internal plastic work for plastic squash zones  

Plastic Zones 

Zone(j) Volume (
pA t ) Strain ( ) Stress (

,y  ) 

4-5-7-6 
2 22 fc t  1 / (2 )d c    ,yf   

5-6-11 
2 2

wc t  1 / (2 )d c    ,yw   

12-13-14 
2 2(1- ) / 2wd t  1  ,yw   

15-16-18-17 2(1 ) fct d  
1  ,yf   

 

Table 4-2 Components  of internal plastic work for yield lines  

Yeild Lines 

Line (i) Length (lp) Rotation (θ) 
Stress 

(σy,θ) 

2-4; 7-9 (1 )c  
1/2 1/2

12( / )    eq  

1-10; 3-8 2c  2  eq  

1-4; 3-4; 

7-8; 7-10; 

2 2 1/2[ (1- )] c   

2
1/2 1/2

12 2 1/2

1 3 1
[ / (1 ) ]( / )

[ (1 )] (1 )

  
    

    

  
 

   
 eq  

1-5; 3-6; 

5-8; 6-10; 

2 1/2[1 ( - ) ] c   

2 1/2
1/2 1/2

1

[1 ( ) ]
( / )

(1 )

 
  

  

 

 
 eq  

4-5; 4-6; 

5-7; 6-7; 

1/22 c  
1/2 1/2 1/2

1

1
2 ( / )

(1 )
  

   
 eq  

3-11 2 2 1/2(( ) ( / 2) )c d    
,yw   

6-11 1/22 c   
,yw   

5-12 2 2 1/2[1 (1 ) ] d      
,yw   

6-12 2 2 1/2[1 (1- ) ] d     
,yw   

11-12 2 2 1/2[(1 ) ( / ) ]y d      ,yw   

15-13-17 2c   eq  

16-18;19-20 2c  2  eq  
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In Table 4-2, the relationship in Equation (4-4) exists. Equation 

 (4-4) 

The normal stresses r , which are perpendicular to the yield lines, and the shear 

stresses r  which are parallel to the yield lines (Figure 4-10) can both influence the 

reduced yield stresses 
eq  across the yield lines, and therefore cause a reduction of 

the flexural capacity eqM . The stresses σr and τr are components of the axial stresses 

tf  and 
cf , parallel to the beam length, which are caused by overall beam bending. 

According to the Mohr’s Circle in Figure 4-10, r  and r  can respectively be calculated 

using Eqs. (4-5) and (4-6). 

1 ( )0.5(1 cos(2 ))r t c f      (4-5) 

1 ( )0.5sin(2 )r t c f    (4-6) 

 

Figure 4-10 Mohr’s circle for one yield line (7 -8) 
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in which 1  is the acute angle between the yield line and the vertical axis. The yield 

stress 
1eq   of the yield lines, considering only the effect of r , is given as Equation 

(4-7). 

2

1 , ( ) ,

2

, 1 ( ) ,

[1 ( / ) ]

[1 ((0.5(1 cos(2 )) / ) ]

eq yf t c f yf

yf t c f yf

 

 

   

   

 

  
 

(4-7) 

The relationship between the shear stress r and the reduced equivalent yield stress 

eq  can be expressed as Equation (4-8). 

2 2

1 1( / ) ( / ) 1eq eq r eq      
(4-8) 

where 1 1 / 3eq eq  .  

Substituting Equation (4-7) into Equation(4-8) gives 

2 2 1/2

, 1 ( ) , 1[1 (0.5(1 cos(2 )) / ) ][1 (0.5sin(2 ) / 3) ]eq yf t c f yf           (4-9) 

It has previously been ascertained in Chapter 3 that the internal work of the deformed 

beam web due to shear buckling is given by: 

2 2 2( sin cos( ) sin( )cos ) / cosW T C t c vsW W W td td                (4-10) 

where   is the angle between the tensile strips and the upper edge of the shear-

buckling panel, as shown in Figure 4-10 (b). vs  is the vertical displacement of the 

shear-panel edge, which is equal to 22 c  . According to the Huber-von Mises 

plasticity criterion (von Mises, 1913), the relationship between the tensile and 

compressive stresses for a two-dimensional panel is given by 
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 (4-11) 

The compressive strips in the beam web can be regarded as struts, each of which has 

three plastic hinges, as shown in Figure 4-11. The method to calculate the reduced 

compressive force of each strut after beam-web buckling as well as to calculate the 

tensile force for each strut is identical to that presented in Chapter 3.  

 

Figure 4-11 Strut representing an arbitrary compressive strip  

 External work  

The total external work can be expressed by Equation (16), where ∆i includes the 

deflections caused by both bottom-flange buckling and beam-web shear buckling. 

Elastic deflection can be neglected due to the relatively short length of the buckling 

element.  

 
(4-12) 

 Deflection compatibility  

The deflection compatibility is based on the assumption that the out-of-plane 

deflection of Point 11 (Figure 4-12) caused by bottom-flange buckling is identical to 

that caused by shear buckling. For the out-plane deflection caused by bottom-flange 

2 2 2 2
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buckling, the side lengths of the Triangle 1-4-5, shown in Figure 4-13, are illustrated in 

Eqs. (4-13) - (4-15). 

 
(4-13) 

  
(4-14) 

 
(4-15) 

  

 

Figure 4-12 Deformed shape caused by shear buckling of the beam web  

 

 

Figure 4-13 Deformed shape caused by bottom -flange buckling 
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The out-of-plane deflection of Point 11 (Figure 4-12 (a)) on the beam web, caused by 

bottom-flange buckling, is equal to 1h .  

For the out-of-plane deflection caused by shear buckling, the initial length (as shown in 

Figure 4-13 (a)) of the compressive strut, which contains Point 11, is 

4 (( ) / 2 ) 2l d       (4-18) 

The deformed length of the same compressive strut is 

5 22 (( ) / 2 ) sin( / 4 / 2)l d           (4-18) 

The side lengths of the triangle, as shown in Figure 4-13 (b), are 

  (4-20) 

3 4 5 2/ 2x l l x  
 
 (4-21) 

4 5 5 / 2x x l 
 
 (4-22) 

According to the geometry, 2h can be calculated as  

2 2 2 2 2

2 3 3 2 5 5( ) (( ( / 2) ) / )h x x x l l      (4-23) 

In summary, the calculation procedure for the analytical model of the combination of 

buckling modes is based on equality of the internal work in the buckling zone and the 

loss of potential of the externally applied load. The length of the buckling zone can be 

calculated according to Equation (4-1). It is assumed that yield lines and yield zones 

exist only within the buckling zone. The internal work done by the rotation about the 

yield lines and the squashing of the yield zones can be calculated according to Tables 

4-1 and 4-2. The bending resistance reduction at each yield line due to its normal net 

compression has been considered.  The relationship between the deflection angle θ1 

due to bottom-flange buckling and the angle θ2 due to beam-web shear buckling can 

be derived by assuming displacement compatibility at Point 11 in Figure 4-12. For each 

2 2x c
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given θ1, the corresponding θ2 can be calculated. Therefore, the overall deflection can 

be calculated. The applied external load can be calculated according to the given θ1. 

Therefore, a force-deflection relationship in the post-buckling stage can be determined.  

4.3 VALIDATION AGAINST FINITE ELEMENT MODELLING 

4.3.1 Validation of FE model against experimental results 

The finite element software ABAQUS has been used to develop the finite element 

modelling. In this section, the FE models are validated against the experimental results 

published by Dharma (2007a). 

Experimental programme 

Dharma tested nine steel I-beams up to failure. In this research, four out of the nine I-

beams have been chosen to validate the numerical models. All the nine I-beams in the 

tests failed in the combination buckling mode. Four specimens which demonstrated 

clear descending force-displacement relationships after the occurrence of local 

buckling have been selected to validate the FE model at the post-buckling stage. The 

test numbers for the four beam sections are S3-2, S3-3, S4-1 and S4-2. The test setup is 

shown in Figure 4-14. There is one stiffener at each end of the beam, as well as one at 

mid-span. No axial restraint was applied during the testing, so that no axial force was 

caused by thermal expansion. The specimens were heated to constant temperature 

before the hydraulic jack applied a static point load at the mid-span.  
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Figure 4-14 Test set-up (Dharma and Tan, 2008) 

 

The results of the tensile coupon tests on these specimens at ambient temperature are 

given in Table 4-3. 

Table 4-3 Results of tensile coupon tests at ambient temperature  (MPa) 

Beam No. Yield Stress Elastic Modulus Ultimate Strength 

S3-2 
flange 224.1 201697 392.1 

web 277.1 206063 452.0 

S3-3 
flange 224.1 201697 392.1 

web 277.1 206063 452.0 

S4-1 
flange 393.5 205283 545.1 

web 449.4 205700 590.3 

S4-2 
flange 393.5 205283 545.1 

web 449.4 205700 590.3 

 

These tests were used to validate the ABAQUS models, although the test setup was 

not identical to the exact conditions (restraint to thermal expansion, boundary 

conditions and the ratio of shear to moment in the buckling panel), which a real beam 
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would experience in a real fire. The validated FE models, subject to more realistic 

conditions, were then used to verify the analytical model. 

Numerical modelling 

In this study, the four-noded shell element (S4R) of ABAQUS, which is capable of 

simulating buckling behaviour with reasonable accuracy, was adopted. A mesh 

sensitivity analysis was conducted. Different mesh sizes were analysed. The mesh 

sensitivity results are shown in Figure 4-15. It has been shown that for mesh sizes 

smaller than 15mm x 15mm, the load-deflection results were nearly identical in the 

post-buckling stage. This indicated that elements of size 15mm x 15mm provided an 

optimum between accuracy and computing efficiency. Arc-length analysis (Hibbit et al., 

2005) was carried out to track the descending load path of the buckling zone at the 

post-buckling stage. The shape of the initial imperfection was based on the first 

buckling mode. A small amplitude ( ) /100fd t  was adopted in order to trigger the 

asymmetric bottom-flange buckling mode without unduly influencing the load capacity 

of the buckling zone. Regarding the material properties used in the numerical 

modelling, the ambient-temperature coupon test results, as shown in Table 4-1, were 

reduced by applying the reduction factors for proportional limit stress, yield stress and 

Young’s modulus, as given in BS EN 1  3-1-2.  
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Figure 4-15 Mesh sensitivity analysis  

 

The finite element model is illustrated in Figure 4-16. As the end supports were 

directly below the stiffeners, only the length of the beam between the two end 

stiffeners was modelled. The length of the model was 3450mm. Multi-Point 

Constraints (MPC) (Hibbit et al., 2005) which allow constraint of the motion of slave 

nodes of a region to the motion of a point, were applied in ABAQUS between Points 1 

and the left-end stiffener, as well as between Point 2 and the right-end stiffener. 

Boundary conditions were then applied to Points 1 and 2. For Point 1, all six degrees of 

freedom (DoF) were restrained except for rotation about the x-axis, whereas Point 2 

was free to rotate about x and to move in translation parallel to z with the other DoFs 

constrained. In other words, the two beam ends could both rotate about x, and there 
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was no restraint to thermal expansion of the beam. MPC make it convenient to model 

pin-ended beams. A point load was applied to the mid-span of the beam. Table 4-4 

presents the details of cross-section dimensions and test temperatures. All dimensions 

are the average values of measurements by Dharma (2008) from different locations.  

 

Figure 4-16 Finite element model. (a) Image of finite element model; (b) cross 

section dimensions (in mm) 

 

Table 4-4 Measured cross-section dimensions (in mm) and test temperature (in °C)  

Test No. btop  bbottom ttop tbottom d tw T  

S3-2 162.89 163.51 10.00 9.95 275.5 8.14 415 

S3-3 162.72 164.00 10.30 10.19 275.93 7.95 615 

S4-1 176.70 178.26 10.08 10.46 380.76 7.83 415 

S4-2 177.83 176.71 10.29 10.52 380.78 7.76 615 

 

A comparison between the FE modelling and experimental results is shown in Figure 4-

17. The lines represent the FE results while the data points represent test results. 

Good agreement between the test and the FE modelling results was obtained, except 

for S4-1, in which the FE model predicts lower capacity than that measured during 

testing. Since all the other three groups indicate good reliability of the FE models, the 

failure load given by Test S4-2 (same specimen as in Test S4-1, but tested at 615°C) 
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was used to predict the failure load of Test S4-1 (at 415 °C), using the strength 

reduction factors given in EUROCODE 3 (CEN, 2005b). This calculated failure load 

agrees with the modelling result. It is possible that the loading rate applied in Test S4-1 

may have been too fast, resulting in an increase of the failure load, as has been 

experienced in other studies (Torić et al., 2014). The discrepancy between Test S3-2 

and FEA S3-2 in the deflection range of 10 mm to 80 mm is possibly caused by the 

discrepancy between the real high-temperature mechanical properties of the tested 

steel and the properties used in the modelling (ambient-temperature coupon test 

results with the EUROCODE 3 reduction factors applied). The FE models can also 

predict well the buckling shape compared with the test results; one example is shown 

in Figure 4-18. Therefore, the numerical model is considered reliable and is used in the 

following study.  

 

  

Figure 4-17 Load-deflection comparison between FEA and test results  
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Figure 4-18 Comparison of failure modes of Test 3 -2 (Dharma and Tan, 2008) and 

FEA 

 

4.3.2 Comparison between the proposed analytical model, Dharma’s model and FEA 

Comparison 1 

After validation, 48 FE models of various beam configurations and loading conditions 

were analysed at different temperatures. An illustration of an FE model, and its loading 

and boundary conditions, is shown in Figure 4-19. A short cantilever with the 

length/depth ratio equals to 2 was modelled. This length/depth ratio is chosen to 

ensure that (1) the model will include at least one full buckling wavelength, and (2) the 

effects of the boundary conditions can be minimised. The flexural curvature of this 

short beam-end buckling zone can be neglected. Different combinations of shear force 

and bending moment were applied, as shown in Table 4-5. The bending moment and 

the shear force were applied independently to the end of the short cantilever.  By 

changing the combination of the shear force and the bending moment at the end of 
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the short cantilever, the model can represent any loading condition without uniformly 

distributed load on top of the buckling panel.  

 

 

Figure 4-19 The finite element model  

 

These cases have been divided into two groups, FEA1 and FEA2. The models in FEA1 

are of the same dimensions as the specimen of Test S3-2 (Table 4-2), with web 

thicknesses varying between different models. Similarly, FEA2 uses the Test S4-2 

specimen dimensions, again with different web thicknesses. Since this research 

focuses on Class 1 and 2 sections, the variation of web thicknesses is limited within this 

range. Temperatures of 415°C and 615°C have been applied. The material properties 

of the flanges of the test specimens S3-2 and S4-2 have been used for  

FEA1 and FEA2 models, respectively. 
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Table 4-5 Detailed group information  

 

 

 Web thickness 
Moment-shear force 

ratio M/F (in mm) 
Temperatures (°C) 

FEA1 

5mm 

500 

415 615 1000 

1500 

6mm 

500 

415 615 1000 

1500 

7mm 

500 

415 615 1000 

1500 

8mm 

500 

415 615 1000 

1500 

FEA2 

5mm 

500 

415 615 1000 

1500 

6mm 

500 

415 615 1000 

1500 

7mm 

500 

415 615 1000 

1500 

8mm 

500 

415 615 1000 

1500 



4. Combining the effects of shear buckling and bottom-flange buckling 
 

87 
 

  

  

 

Figure 4-20 Comparison between the analytical model, Dharma’s model and FE 

analysis 

 

The force-displacement relationships given by the proposed analytical model, 

Dharma’s model and the ABAQUS analyses have been compared. Figure 4-20 shows 

the comparisons for the two models with the largest and smallest web thicknesses 

(5mm and 8mm) subject to bending and shear force at M/F = 1000mm. Each part of 
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Figure 4-20 includes eight curves, representing the comparison between the analytical 

model, Dharma’s model, FE analysis and the elastic-plastic curve (with peak loads 

assessed by assuming plastic moment resistance is reached at the middle of the flange 

buckling zone) at two different temperatures. The proposed analytical model gives 

upper-bound results compared to the FE models for all cases; it also gives more 

accurate results than that of the Dharma’s model in all cases. The results from Figure 

4-20 show that the maximum flexural capacity maxF  of an I-beam is generally less than 

10% above the vertical force
,p TF . The analytical model captures results for beams at 

615ᵒC better than at 415ᵒC. This may be because the accuracy of the assumption of 

flange buckling length from Eq (4-1) may differ at different temperatures; this would 

have a significant effect on the beam post-buckling behaviour. Figure 4-21 shows a 

comparison of the force-web-thickness relationships between the new model and 

Dharma’s model. The variable FEAF  represents the peak load given by the FE modelling. 

NF and DF respectively represent the load level of the new analytical model and that 

of Dharma’s model, at the deflection at which the FEA model reaches its peak load. 

The vertical axis of Figure 4-21 represents NF  and DF  normalized with respect to the 

corresponding FEAF . As shown in this figure, Dharma’s model tends to overestimate 

the beam loading capacity when the web is thinner (of 5mm or 6mm thickness), 

whereas it gives a good prediction at larger web thicknesses (7mm and 8mm). The new 

analytical model is able to give a better upper bound of the beam load capacity for 

both slender and stocky beams within the analysed range. The proposed analytical 

model has been designed for Class 1 and 2 sections, whereas the two models of web 

thicknesses 5mm and 6mm in FEA2 fall into the Class 3 range. This explains the reason 

for the larger discrepancy between the proposed model and the FEA for these two 
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cases. It is, therefore, indicated that the new model gives a reasonable prediction of 

the load capacity of the beam end buckling zones of Class 1 and 2 sections at the post-

buckling stage.  

 

  

 

Figure 4-21 Comparison of predictions of the new model and Dharma’s model: (a) 

FEA1; (b) FEA2 

 

Comparison 2 

Further parametric study and validation of the proposed analytical model have been 

carried out in this section for a group of beams with different cross-section dimensions 

from Section 4.3.2. The development of the analytical model is explained using a short 

cantilever I-beam section (Figure 4-22) as an example. By changing the cantilever 
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length and by applying different combinations of uniformly distributed load and shear 

force at the beam-end, the cantilever is able to represent part of a fixed-ended beam 

from its end to the point of contraflexure under a uniformly distributed load. It can be 

calculated that the distance from one end of the beam to its adjacent contraflexure 

point is equal to 0.2113 of the whole beam length. 

 

 

Figure 4-22 The analytical model 

 

The results of the analytical model were compared with Dharma’s model and FEA. The 

same methodology of the analytical was applied as introduced in Section 4.2. The 

commercial finite element software ABAQUS was used to simulate the buckling 

phenomena in the vicinity of beam-column connections at 615°C. The four-noded shell 

element S4R was adopted. A 15mm x 15mm element size was used, after a mesh 

sensitivity analysis. The Riks approach was used in order to identify the descending 

curve at the post-buckling stage. Cantilever models with one beam end fully fixed 

while free on the other end were set up. An image of the ABAQUS model is shown in 

Figure 4-23 (a). The cross-section dimensions are shown in Figure 4-23 (b). All the 

cantilevers shared the same configuration except for the beam web and flange 

thicknesses. The beam cross-section dimensions were based on the universal beam 

UB356x171x51, whose beam web and flange thicknesses are 7.4mm and 11.5mm 

respectively. As the analytical model applies generally to Class 1 and 2 sections, the 

thicknesses of the beam webs and flanges vary within this range. Therefore, the 
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thicknesses of the beam webs were varied from 5.5mm to 8mm, while those of the 

beam flanges were varied between 10mm and 13mm. In the cases validated, the 

potential beam length was 6m, on the basis that a beam depth-to-length ratio of 1/20 

is commonly used in design practice. The cantilever length was 1267.8mm, which is 

identical to the distance from the beam-end to its adjacent contraflexure point. The 

shear force applied to the beam-end was 1732.2q, which enabled the cantilevers to be 

in the same loading condition as the corresponding end zones of the 6m fixed-ended 

beams. 

 

 

Figure 4-23 Finite element model: (a) image of finite element model; (b) cross -

section dimension 

 

The details of the material properties used in the ABAQUS models are shown in Table 

4-6. 

Table 4-6 Material Properties 

,yf  (N/mm2) 
,y   (%) 

,t   (%) 
,u   (%) 

,E  （N/mm2） 

224.1 2 15 20 201697 

 

The force-displacement relationships given by the proposed analytical model, 

Dharma’s model and the ABAQUS analyses have been compared. The first group of 
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beams compared have the same flange thickness of 11.5mm, while their web thickness 

varies. The detailed curves are shown in Figure 4-24. The lines with diamond markers, 

denoted “Elastic-plastic”, represent the force-deflection relationships when the full 

plastic moment resistance is reached at the middle of the flange buckling zone. The 

smooth lines without markers represent the results of finite element modelling. The 

descending solid and dashed lines are the results from the new proposed buckling 

model and Dharma’s model respectively. It can be seen that both the proposed 

analytical model and Dharma’s model give very good comparisons to the FE modelling 

for beams with thicker webs. The proposed model is able to provide acceptable results 

for beams with webs within the Class 3 range. However, Dharma’s model tends to 

over-estimate the beam capacity considerably for those with more slender webs. 

 

Figure 4-24 Comparison between the analytical model, Dharma’s model and FE 

analysis (web thickness varies)  
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Figure 4-25 shows the second group of comparisons, for which the beam web 

thickness remains at 7.4mm, and the flange thickness varies between 10.0mm and 

13.0mm to guarantee that the beam classification lies in the Class 1 to 2 range. It can 

be seen that the proposed analytical model compares well with beams within all the 

selected flange thicknesses, while Dharma’s model over-estimates the capacity for 

beams with stocky flanges. This is possibly because the length of the buckling zone is 

related to the ratio between 
ft and wt  according to Equation(4-1). Decreasing the web 

thickness or increasing the flange thickness can both increase this ratio. Dharma’s 

model seems more sensitive to the flange-to-web thickness ratio, and therefore 

considerably over-estimates the capacity when this ratio increases.  

 

 

Figure 4-25 Comparison between the proposed analytical model and Dharma’s 

model (flange thickness varies)  
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4.3.3 Integration into a full beam model 

In this section, the validated beam-end model, as described in Section 4.3.2, has been 

integrated into a whole beam. The results of the integrated analytical model are 

compared with the results from ABAQUS modelling. A “whole curve” can be found to 

represent the force / mid-span deflection relationship of the beam including the beam-

end buckling panel. A calculation example is given below. 

In this example, the beam-end model of 8mm web thickness in Group FEA1 in Section 

4.3.2 is selected and integrated into the full beam model. The length of the beam 

model is 5m, given that a beam depth to length ratio of 1/20 is commonly used in 

design practice. A vertical point load is applied at the mid-span of the beam. The beam 

is fully fixed against rotation at both ends, with one end being free to move axially to 

allow thermal expansion. The beam is heated to 615°C, the same as for the 

corresponding beam-end model. One half of the beam is modelled in ABAQUS, using 

symmetry boundary conditions. The contours of out-of-plane deflection are shown in 

Figure 4-26 (a). In the hand-calculating analytical model, the deformed shape is shown 

in Figure 4-26 (b). For this loading condition, the hogging moment at the beam end is 

identical to the sagging moment at the mid-span. Therefore, top-flange buckling at the 

mid-span occurs simultaneously with bottom-flange buckling at the beam end. Beam-

web buckling occurs at both the beam end and mid-span. The mid-span deflection 

( d ) consists of twice the sum of (1) the deflection 1d due to the beam-end rotation 

caused by bottom-flange buckling, (2) the transverse drift 2d due to shear buckling 

and (3) the deflection 3d due to normal bending curvature of one quarter of the 

beam.  
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Figure 4-26 Deformed shape: (a) ABAQUS contour; (b) Simplified theoretical deformed 
shape 

 

The force-deflection relationships given by the FEA and the analytical models are 

shown in Figure 4-27. The curve with triangular markers plots the results given by the 

analytical model which was developed to simulate the post-buckling behaviour, and 

the dashed line represents the FE results. The comparison shows that the proposed 

analytical model provides reasonably accurate and upper-bound results for a whole 

beam in the post-buckling stage. In the analytical model, a flat line has been drawn as 

the relationship between the vertical beam-end reaction force and mid-span 

deflection in the plateau stage. The force value corresponding to the plateau is the 

beam-end reaction force at which the beam-end plastic moment is reached. In the 

post-buckling stage the result from the analytical model is used. In the pre-buckling 
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stage, the result from FE analysis is used, as the pre-buckling stage is not the object of 

this analysis. Therefore, the thick line indicates the whole force-deflection relationship 

of the example beam with buckling zones, covering all three stages. 

 

 

Figure 4-27 Force-deflection relationship of the example beam  

 

4.4 CONCLUSION 

The buckling behaviour of the beam-end bucking zone of a steel beam exposed to 

elevated temperatures involves three stages: non-linear pre-buckling, plateau and 

post-buckling. The behaviour of the non-linear pre-buckling stage is identical to normal 

beams. In the plateau stage, the ultimate load capacity of the beam-end buckling zone 

is assumed to be identical to its plastic bending moment resistance. This chapter 

presents a new analytical model to predict the post-buckling behaviour so that a 

complete force-deflection relationship of the beam-end bucking zone can be achieved.  
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The proposed analytical model considers both the beam-web shear buckling and 

bottom-flange buckling. The interaction between these two buckling modes is 

accounted for by ensuring compatibility between the out-of-plane deflections of the 

beam web caused by these two modes. A range of finite element models has been 

created using ABAQUS. These models were firstly validated against test data, and 

subsequently used to validate the analytical model. The analytical model has also been 

compared with Dharma’s analytical model and FEA. Two comparison cases, 

considering both with and without uniformly distributed load on top of the buckling 

panel were discussed. The comparisons have shown that the proposed model provides 

a reasonably accurate and conservative prediction of the force-deflection relationship 

for Class 1 and 2 sections, whereas Dharma’s model tends to overestimate the post-

buckling capacity for beams with slender webs.  

A calculation example of the validated beam-end buckling panel integrated into a 

whole beam was given. This example indicated that the analytical model is of sufficient 

accurate to be implemented into whole-beam analysation.  
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5.1 INTRODUCTION 

Analytical models have been proposed to track the force-deflection behaviour when 

pure shear buckling behaviour of the beam web occurs (Chapter 3), or beam-web 

shear buckling and flange buckling occur simultaneously (Chapter 4) at elevated 

temperatures. It has been pointed out in Chapter 3 that as beam length increases, the 

‘failure’ mode switches from beam-web shear buckling to bottom-flange buckling. 

Therefore, a transition criterion is needed in order to justify whether beam-web shear 

buckling or a combination of beam-web shear buckling and bottom-flange buckling will 

actually occur according to the structural information of a particular case. The purpose 

of this criterion is to find the transition beam length, below which shear buckling will 

occur; a combined buckling mode will occur if the actual beam length is longer than 

the transition length defined by the transition criterion. The transition criterion is that, 

as beam length increases, the lesser resistance of the two buckling modes will be 

reached first. For the beam-web buckling mode the resistance is the plastic shear 

resistance, while for the combined buckling mode the resistance is the plastic bending 

resistance. The buckling mode corresponding to the lower of these is the real buckling 

mode.  

In this section, the transition criterion of the occurrence between shear buckling and 

the combination of beam-web shear buckling and bottom-flange buckling has been 

proposed for beams without axial restraint. The cross-section dimension from Section 

4 Group FEA1 will be verified against the criterion. 
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5.2 CALCULATION PROCEDURE TO DETECT THE TRANSITION LENGTH 

It has been proved based on a number of investigations (in Chapter 3) that the real 

structural resistance is very close to plastic shear capacity when shear buckling occurs 

plastically for Class 1 to Class 2 sections. The bottom-flange buckling theory can be 

constant to the real structural resistance when bottom-flange buckling occurs. 

Therefore, either shear buckling or bottom-flange buckling occurs when the real load 

reaches plastic shear resistance or plastic bending moment resistance first. The 

calculation procedure to detect the transition from beam-web shear buckling to 

bottom-flange buckling is shown in Figure 5-1. 

 

 

Figure 5-1 Flowchart of calculation procedure of the buckling transition criterion  

 

It is worth noticing that in the flowchart, the plastic bending moment resistance 
'

pM

considers the effect of shear force on the moment resistance if the shear force is more 

than half of the plastic shear resistance, according to Eurocode 3 (CEN, 2006). 
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According to the calculation procedure, the plastic shear resistance is given as 

Equation (5-1), 

, 0( / 3) /p v y MV A    (5-1) 

Where vA is the shear area. 

The plastic bending moment resistance considering the effect of then shear force is, 

' (1 )p pM M   (5-2) 

Where 
pM  is the normal plastic bending moment capacity of the cross section.   can 

be expressed as Equation (5-3) according to Eurocode 3 (CEN, 2005a). 

2

2 / 1Ed pV V      (5-3) 

Where EdV  is the elastic shear resistance of the cross section. 

5.3 VALIDATION AGAINST ABAQUS MODELS 

Two groups of ABAQUS models were developed in order to verify the beam-web shear 

buckling model, bottom flange buckling model as well as the transition length between 

these two buckling phenomena at 415ᵒC. A summary of cross-section dimensions and 

material properties of both groups are shown in Table 5-1. 

 

Table 5-1 Cross-section dimensions of the beams analysed  

Group No. d b tw tf 

A&B 275.5 163 7 10 

Group No. 
(N/mm2) 

 (%)  (%)  (%) 

A&B 267.96 2 15 20 

 

,y 
,y  ,t  ,u 
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For Group A, cantilever beams with the lengths from 750mm to 2000mm were 

analysed. For Group B, fully restrained beam with lengths from 2000mm to 6000mm 

were analysed. Only the part from one end to the point of inflection for both Group B 

were modelled in order to avoid the influence of the bending moment curvature. 

Uniformly distributed load was applied to both the two Groups. For Group B, an 

additional shear force, which was transferred from the other connected part of the 

beam, was applied to the end of the ABAQUS model. The ABAQUS image, the loading 

conditions and boundary conditions for Group A and B are shown in Figure 5-2. The 

ABAQUS models were firstly heated to 415oC uniformly, and then load was applied to 

the beams until buckling phenomena occurs. Static-riks approach was carried out in 

the post-buckling stage to track the post-buckling descending force-deflection 

relationship.  

 

 

Figure 5-2 ABAQUS image, loading conditions and boundary conditions of Group 

A&B 
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5.3 COMPARISON WITH THE ANALYTICAL MODEL AND TRANSFER CRITERION 

The calculation was carried out on the beam-web shear buckling analytical model and 

bottom-flange buckling model for Group A and Group B. The results for Group A are 

shown in Figure 5-3.  

 

 

Figure 5-3 Comparison between the analytical and FE models for Group A 

 

Four lengths from 750mm to 2000mm with the same cross-section dimension were 

analysed on cantilevers. The square-marked line, which is called Elastic-plastic, 

represents the force-deflection relationship when plastic bending moment resistance 

is reached at the middle line of the buckling zone. The length of the buckling zone is 

always considered to be identical to beam depth as this assumption largely simplifies 
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the calculation without influencing much of the accuracy. The smooth line without any 

marker represents the result of finite element modelling. The lines with round markers 

and triangle markers are the results from pure shear buckling theory and bottom-

flange buckling theory respectively. The finite element result can be regarded as the 

real situation. It can be found that for 750mm beam, the shear buckling curve 

compares well with the FEA result. They are both below the elastic-plastic curve. The 

bottom-flange buckling result is far above the FEA modelling. As the shear buckling 

curve is below the bottom-flange buckling result, it is indicated that beam-web shear 

buckling is the actual buckling mode, as the plastic shear resistance will be reached 

before the actual bending moment reaches the plastic moment resistance. The good 

comparison between the force / deflection curves for the analytical beam-web shear 

buckling mode and FEA modelling indicates that the analytical model is accurate 

enough to represent the shear buckling behaviour. This is an extra validation of the 

approach presented in Chapter 3. As the cantilever length goes to 1000mm, both the 

shear buckling result and FEA result start to approach the Elastic-plastic curve meeting 

with the bottom-flange buckling analysis. This is the transition phase when the 

buckling mode transfers from beam-web shear buckling to bottom-flange buckling. For 

cantilevers with the length of 1500mm and 2000mm, both the FE results and bottom-

flange buckling theoretical results remains around the Elastic-plastic curve. The two 

results compare to each other well, while the shear buckling analytical result starts to 

go above the FEA and bottom-flange buckling curve. This indicates that bottom-flange 

buckling is the buckling mode for the 1500mm and 2000mm cantilevers. For this 

cantilever cross-section dimension, the transition length should be around 1000mm 
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according to the results comparison. This conclusion can also be proved by the 

ABAQUS result visualizations shown in Figure 5-4. 

  

(a) L=750mm (b) L=2000mm 

 

Figure 5-4 ABAQUS result visualization of Group B (a). L =750mm; (b). L=2000mm 

 

According to the transition criterion, the calculating transition length from this 

procedure is 1036mm. This is consistent to that achieved from the FE analysis 

visualization and the comparison between the analytical models and the FE analysis.  

The other group (Group B) of full-restrained beam examples were analysed. The 

results are shown in Figure 5-5. Similar observation to Group A was carried out on 

Group B results. It can be seen that the transition length of this group is around 

3000mm. The ABAQUS result visualizations shown in Figure 5-6. The ABAQUS 

visualization of shear buckling mode of 2000mm beam in Group B is shown in Figure 5-

6 (a); the visualization of combination buckling mode of 6000mm beams if shown in 

Figure 5-6 (b). 
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Figure 5-5 Comparison between the analytical and FE models for Group B 

 

  

(a) L=2000mm (b) L=6000mm 

Figure 5-6 ABAQUS result visualization for Group B (a). L=2000mm; (b). 

L=6000mm 

The transition length calculated from the calculating procedure is 3485mm, which 

compares well with the FE analysis and the analytical models again. According to the 

three group of examples analysed, it can be suggested that the proposed transition 
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criteria is an easy and effective way to detect the transition length of the beams given 

the structural information. 

5.4 CONCLUSION 

The primary goal of this chapter is to create a transition criteria and the corresponding 

calculation procedure to detect the transition length between pure beam-web shear 

buckling and the combination of beam-web shear buckling and bottom-flange buckling 

effectively.  

Two groups of beams with analysed using the finite element software ABAQUS and the 

existing analytical model for beam-web shear buckling and bottom-flange buckling 

respectively. It was observed in the result comparison that when beam length is 

shorter than the transition length, shear buckling is the dominant buckling mode. The 

bottom-flange buckling analytical results are above the shear buckling curve and the 

FE results, indicating that bottom-flange buckling cannot occur. When the beam length 

is longer than the transition length, bottom-flange buckling is the dominant buckling 

mode.  The bottom-flange buckling analytical results compare well with the FE analysis. 

The shear buckling analytical result is above the other two curves. For the beams with 

length around the transition criteria, the FEA, shear buckling and bottom-flange 

buckling results tend to be identical. The transition lengths observed from the FE 

modelling and the comparison between the analytical models to the FE models show 

consistency to the transition length according to the calculation criteria for the two 

groups of beams analysed. Therefore, the calculation criteria can be a simplified and 

effective way to detect the transition length between beam-web shear buckling and 

bottom-flange buckling of the beams given structural information. 
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After the buckling mode and the transition length have been determined, it is possible 

to decide analytically the overall behaviour of the buckling panel. If the buckling mode 

is shear buckling, the force-deflection path follows the trilinear curve representing the 

beam-web shear buckling behaviour from the pre-buckling stage to the post-buckling 

stage.  If the buckling mode is the combined mode, the force-deflection path is linearly 

elastic until the vertical reaction force at which the plastic bending moment resistance 

occurs is reached. The elastic range is followed by a plateau stage, and finally by the 

post-buckling stage, for which the force-deflection path is determined by the analytical 

model introduced in Chapter 4.  
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6.1 INTRODUCTION 

Previous work conducted has led to the development of an analytical model which can 

consider the combination and interaction of flange buckling and beam-web shear 

buckling. Further parametric studies have indicated that this model is sufficiently 

accurate to reflect the most important aspects of the buckling zones in the vicinity of 

beam-to-column-face connections at elevated temperatures. In this chapter, a 

component-based model of the buckling zone has been created on the basis of this 

analytical model. Each nonlinear spring in the buckling element is able to deal with the 

reversal of spring deformation, to simulate strain reversal, which very often happens 

within a heated structure and must therefore be considered during modelling. The 

component-based buckling element has been implemented into Vulcan. It has been 

verified against ABAQUS modelling on isolated beams. The influence of the buckling 

element on the bolt-row force redistribution within the connection has then been 

investigated in isolated beam case and a two-storey two-span plane frame.  

6.2 CREATION OF THE COMPONENT-BASED MODEL 

According to the analytical model, the force-deflection characteristics of the buckling 

element can be divided into three stages, described as pre-buckling, plateau and post-

buckling. In the pre-buckling and plateau stages, the buckling element performs as an 

ordinary beam element. In the post-buckling stage, the deflection of the buckling zone 

is the sum of the deflection due to beam-web shear buckling and that caused by 

bottom-flange buckling. The bottom-flange buckling causes an additional rotation of 

the whole beam-end about its support (due mainly to local shortening of the bottom 

flange in buckling), as shown in Figure 6-1 (a). It is assumed that the centre of rotation 

is at the top corner of the beam-end (Point A in Figure 6-1 (a)), since the resistance of 
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the bottom flange decreases after buckling. Beam-web shear buckling can cause 

transverse drift of the shear panel, as shown in Figure 6-1 (b). Therefore, the combined 

effect of flange buckling and beam-web shear buckling on the overall vertical 

deflection of the beam is as illustrated in Figure 6-1 (c).  

  
(a) (b) 

 

(c) 

Figure 6-1 The effects of (a) bottom-flange buckling, (b) shear buckling and (c) 

total deflection on beam vertical deflection.  

 

The component-based buckling element is illustrated in Figure 6-2. The flange-buckling 

element is composed of four nonlinear horizontal springs at the flange positions. Two 

springs, one to act in tension and one to act in compression, are located at each flange, 

representing its resistance. For the set of springs at either location, only one spring will 

be activated at any instant, depending on the sense of the spring force. The beam-web 

shear buckling is represented by the shear-buckling component (the vertical spring of 

 (c) 
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the buckling element in Figure 6-2). The length of the component-based buckling 

element is calculated according to Equation (6-1) on the basis of elastic buckling theory 

(Timoshenko and Gere, 2009), which has been modified to consider the effects of 

temperature and steel grade. In most fire tests only one shear-buckling wave has been 

observed, and this is usually aligned at around 45ᵒ to the horizontal. Therefore, the 

shear-buckling panel is not usually longer than the beam depth d, and the flange 

buckling wave lies between the two plastic hinges (Points B and C in Figure 6-1 (b)) on 

the bottom flange. Hence, it has been assumed that the flange-buckling wavelength 

, calculated by Equation (6-1), is limited not to be longer than the beam depth d. 

The connection element shown in Figure 6-2 is a typical component-based flush end-

plate connection. The compression springs in the connection element represent 

column flange and end-plate in compression due to bending. The tension springs in the 

connection element represent bolt rows in tension.  

 (6-1) 
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Figure 6-2 Component-based column-face connection and beam-end buckling 

elements 

6.3 LOADING AND UNLOADING PATHS OF THE BUCKLING ELEMENT 

During the course of a fire, the beam-end buckling zones can experience complex 

combinations of internal forces caused by high material nonlinearity and expansions 

due to temperature variation, interacting with end-restraint conditions. In the model, 

these forces will be resisted by the horizontal springs at the flanges. These springs can 

be subject to either compression or tension at different stages of loading/heating. For 

example, the bottom spring may be in compression during the initial heating phase, 

and in tension in the high-temperature catenary stage. Therefore, it is essential to 

establish a robust loading-unloading-reloading approach to deal with deformation 

reversal at both constant and transient temperatures. The vertical shear spring does 

not need a reversal path, as reversal of shear does not usually occur.  

The Masing Rule (Chiang, 1999) was initially created to model the dynamic force-

deflection relationships of structural members under intensive cyclic seismic loading, 

when the members were loaded into the nonlinear range. It has been widely applied 

to deal with other engineering problems when the material is highly nonlinear and 

when residual strains are highly affected by the load-deformation history. Researchers 

(Block et al., 2007, Gerstle, 1988) have suggested that the Masing Rule could be used 

to model semi-rigid connections in heating and cooling. In this research, the Masing 

Rule is incorporated into the characteristic curve of each flange spring of the buckling 

element, to enable modelling of the buckling panel under any possible loading-

unloading-reloading sequence during either constant or transient heating. The Masing 

Rule has been modified for the post-buckling stage (after bottom-flange buckling 
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occurs) to ensure that the hysteresis cycles are able to return to their initial points of 

unloading. 

6.3.1 At constant temperature 

Based on the Masing Rule, the component characteristics of a spring can be 

represented by the combination of a “skeleton” curve and a “hysteresis” curve. A 

schematic illustration of the Masing Rule is shown in Figure 6-3. The hysteresis curve is 

the skeleton curve scaled by a factor of two and rotated by 180°. 

 

Figure 6-3 A schematic illustration of application of the Masing Rule  

 

If the skeleton curve is described as, 

 (6-2) 

Then the hysteresis curve can be described as, 

 (6-3) 

where  is the force at which unloading starts and is the deformation at .  

The compression and tension springs at the same location (Figure 6-2) can work in turn, 

depending on the sense of the spring force, to follow the complete loading-unloading-

reloading path.  
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Compression Spring 

In the post-buckling stage, vertical force-deflection relationships for the buckling 

element, due to the combined effects of bottom flange buckling and shear buckling,  

has been derived based on the yield-line theory introduced in Chapter 4. Deducting 

the effect of shear buckling from the total vertical deflection, the moment-rotation 

relationship of the buckling element due to flange buckling alone is as illustrated in 

Figure 6-4. This relationship is based on the assumption that the beam is axially 

unrestrained, and therefore has no net axial force. 

 

Figure 6-4 Moment-rotation relationship of the buckling element  

 

The force-deformation relationship of the compression spring at the buckling flange, 

including the three stages (pre-buckling, plateau and post-buckling), is shown in Figure 

6-5 (a). The pre-buckling stage ends when the spring force reaches . The stiffness of 

the compression spring in the pre-buckling stage follows the elastic stiffness.  The 

value of  can be calculated using Equation (6-4).  

 (6-4) 
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The axial force remains constant until the initiation of plastic local buckling (Point B). 

Figure 6-5 (c) shows the yield line pattern in the post-buckling stage.  

 
(a) 

 
 

(b) (c) 
 

Figure 6-5 Schematic characteristics of the compression spring on the buckling 

flange 

 

It is assumed that, in the post-buckling stage, the stiffness of the bottom spring is a 

reduction of that of half the I-section, as shown in Figure 6-5 (b). The stiffness of the 

bottom spring representing the buckled flange is so low compared to that of the 

tension spring that the deformation of the non-buckling flange can be neglected. 

Therefore, the centre of rotation of the buckling element is assumed to be at the top 
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flange, where the buckling element is connected to the connection element (Point A in 

Figure 6-2). The compression spring deformation can be represented as: 

  (6-5) 

For this axially unrestrained case, only the shear force and bending moment from the 

connected beam are transferred to the buckling element. Therefore, the force 

equilibrium within the buckling element gives: 

 (6-6) 

 (6-7) 

where  is the axial deformation of the buckled flange,  is the moment about the 

centre-line of the I-section, and  and  are the forces in the unbuckled (top for 

this case) and buckled (bottom for this case) springs, respectively. 

The analytical model in Chapter 4 can be used to determine the moment-rotation 

relationship (Equation (6-8)) of the buckling element:  

 (6-8) 

Substituting Eqs. (6-5) - (6-7) into Equation (6-8), the axial force-deformation 

relationship of the buckled spring is: 

2( ) /B BF f d    (6-9) 

The curved descending part of the moment-rotation relationship of the buckling 

element has been simplified to a multi-linear relationship. The aim of the iteration 

procedure is to work out the force-displacement curve for each iteration in the post-

buckling stage. The rotation  at any given bending moment can be found through 

linear interpolation within each linear increment (Figure 6-4). For any given , the 

corresponding vertical movement Dx can be calculated. The compressive spring force 

can be derived based on Equation (6-9) as:  
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 (6-10) 

where 

2

1 -1 -1( - ) / ( ( - ))P n B nK M M d      (6-11) 

2

2 -1 -1( - ) / ( ( - ))n n n nK M M d     (6-12) 

Figure 6-6 (a)-(c) illustrate the various possibilities for re-loading curves, when 

unloading initiates at the different stages (pre-buckling, plateau and post-buckling) for 

the compression spring. The initiation point of unloading in a convergent time step is 

defined as the “Intersection  oint” for the following time step. The loading curve prior 

to the plateau stage (at Point A in Figure 6-6) is composed of an initial linear part 

followed by a nonlinear part. It is assumed that the heights of the linear and nonlinear 

parts are identical. When unloading starts from the plateau stage, since the hysteresis 

curve (the thick line) is the skeleton curve (the thin line) scaled by a factor of two and 

rotated by 180° following the Masing Rule, the linear part of the unloading curve 

finishes exactly at the point where it meets the horizontal axis; their intersection is 

defined as the “Reference  oint”. The Intersection  oint and the Reference  oint 

update at every convergent time step. In order to simplify the calculation, it is 

assumed that the linear part of the unloading path always stops at the Reference Point; 

the linear path is followed by a curved part, which is the nonlinear part of the initial 

loading curve scaled by a factor two and rotated 180°. In other words, the unloading 

path will stop its linearity when it hits the X axis, and be followed by a nonlinear curve 

for which the tension spring is activated. The force resistance of the tension spring is FR. 

At the end of the unloading curve, the tensile force in this spring is equal to the 

magnitude of the compressive resistance FR of the compression spring. 

1 -1 2 -1( - ) ( - )x R m B x mF F K D D K D D    
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(a) (b) (c) 

RP = Reference Point;     IP = Intersection Point 
 LC = Loading Curve;     UC = Unloading Curve 

Figure 6-6 New unloading-loading curves at different stages: (a) pre -buckling 

stage; (b) plateau; (c) post-buckling stage 

 

Once reloading occurs, if the compressive deformation of the compression spring is 

larger than the recorded position of the Intersection Point, the load path will follow 

the initial loading curve. 

The coordinate of the Reference Point is determined by Equation (6-13). 

 (6-13) 

where  is the coordinate of the Reference Point, is the initial elastic stiffness 

of the compression spring. The compressive deformation  and force  are 

absolute values (always positive). 

If the total spring deformation at the end of an arbitrary iteration is smaller than that 

of the pre-existing Intersection Point, deformation reversal will occur, following the 

thick line between the Intersection Point and Reference Point (the existing unloading 
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path). The slope of the unloading path is equal to the initial elastic stiffness  at the 

relevant temperature. The compression force on the unloading curve is: 

 (6-14) 

For an arbitrary iteration, the spring force can be calculated based on the spring 

deformation of the previous iteration. In the post-buckling stage, the spring stiffness 

on the loading path is negative. This negative stiffness leads to the situation that one 

force corresponds to two possible deformations (one on the loading path, one on the 

unloading path). In order to avoid this numerical singularity, the following approach 

has been proposed. Point C is assumed to be the start of an arbitrary iteration (Figure 

6-6 (c)). For the loading path, a ‘zero’ stiffness (instead of a negative stiffness) is 

assumed to define the start of the next iteration. The unloading path remains 

unchanged. The loading and unloading paths become the dashed lines starting from 

Point C. When the internal force is larger than the external, the iteration will follow the 

unloading path. Otherwise, the loading path is adopted, in which case Point D1 is 

assumed to be the end of this iteration. The position of D1 depends on the size of the 

iteration step. In the next iteration Point D2, which has the same deformation as that 

of Point D1, will be used as the starting point, but the spring force is calculated based 

on the descending post-buckling curve. At the end of each iteration, the difference 

between the internal and external forces is checked; this iterative process stops when 

a balance between the external and internal forces is found. 

The deformation of the compression spring  can be calculated according to the 

differential displacement of the two nodes of the buckling element.  When the spring 

deformation is on the unloading path above the Reference Point (Point RP in Figure 
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6-6 (a, b, c)), the spring will be under tension. The compression spring is deactivated; 

the tension spring at the same location will be activated instead. 

The model has been developed on the basis of the assumption that there is no 

restraint to thermal expansion. The model is also valid for restrained cases, since the 

buckling criterion (the bottom spring experiences a certain amount of compressive 

squash) is calculated from a yield line mechanism, which is not affected by the 

restraint conditions. The only difference between the restrained and unrestrained 

cases is that the bottom spring force is larger in the former case than in the latter, and 

the model is capable of adjusting the spring force level to achieve equilibrium.  

Tension Spring 

The characteristics of the tension spring for the initial loading stage are similar to those 

of the compression spring, but lack the post-buckling phase (Figure 6-7). The unloading 

procedure follows rules similar to those for the compression spring described above. 

 

Figure 6-7 Schematic characteristics of the tension spring 

Shear Spring 

It has been shown in Chapter 4 that the beam-web shear buckling and flange buckling 

modes can be separated in the post-buckling stage of the combined buckling mode. 
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Their angles of rotation θ1 and θ2 can be calculated using displacement compatibility. 

Therefore, the behaviour of the individual springs (the shear spring and the top and 

bottom flange springs) can be determined. In the pre-buckling and plateau stages, the 

shear buckling spring is assumed to be rigid. In the post-buckling stage the behaviour 

of the shear spring is proportional to the overall behaviour of the flange springs, as 

shown in Figure 6-4. The moment-vertical displacement relationship caused by shear 

buckling can be calculated according to the shear panel’s moment-rotation 

relationship. The loading-unloading-reloading path has not been applied to the shear 

spring, as displacement reversal never occurs to this spring. The effect of the beam-

web shear buckling on deflection in the combined buckling mode is actually an 

increase of the transverse drift of the buckling panel due to bending. 

 

6.3.2 During transient heating 

At elevated temperatures, the material stress-strain characteristic is temperature-

dependent. The essential assumption for deformation reversal at increasing 

temperatures is that the permanent deformation of a spring is unaffected by change of 

temperature, and so the Reference Point of the unloading curve does not change 

between two adjacent temperature steps. The new unloading path will still be linear, 

following the initial slope of the force-deformation relationship at the new 

temperature, and so the Intersection Point (at which unloading initiates) relocates. 

Taking the compression spring at plateau stage as an example, Figure 6-8 shows the 

loading and unloading procedure when the spring’s temperature increases. 
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(a) 

 
 

(b) 
Figure 6-8 Loading and unloading procedure when temperature increases: (a) at 

temperature ;  (b) at temperature  ( > ) 

 

The loading and uploading paths at the initial temperature  are shown in Figure 6-8 

(a). The deformation at the Reference Point can be calculated using, 

    (6-15) 

When the temperature increases to the Reference Point remains identical, while a 

new Intersection Point can be found using the new initial elastic stiffness . The 

spring deformation of the new Intersection Point is, 

    (6-16) 

The deformation of the compression spring remains identical between adjacent 

iterations within the same temperature step. Therefore, when the temperature 

increases to , the Intersection Point falls onto the unloading path of the new force-

deformation relationship where  is greater than , as shown in Figure 6-8 (b). 

This sudden jump disturbs the force equilibrium, and so in the following iterations the 

spring deformation is adjusted until a balance between the internal and external 

forces is found. The spring will follow the loading path if its deformation is larger than 
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that of the Intersection Point ( ), where  and  are absolute 

values (always positive) of the spring deformation. Otherwise, the spring follows the 

unloading path. The spring force is calculated using Equation (6-17): 

 (6-17) 

When the spring follows the unloading path above the Reference Point, it will be 

subject to tension. The characteristics of the tension spring follow the same rules 

described in Section 6.3.1. A flowchart of the procedure for modelling the compression 

spring is shown in Figure 6-9. 

 

Figure 6-9 Flowchart of the developed procedure for modelling the compression 

spring 

 

6.3.3 An example of implementing the analytical model into Vulcan 
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In this section, a step-by-step calculation example of implementing the analytical 

model demonstrated in Chapter 4 will be presented. The example is an isolated beam, 

6m fixed-ended beam with one buckling element on each side. The beam section is 

UB356x171x51. The beam was firstly uniformly loaded at ambient temperature up to 

the load ratio reaches 0.4 (26.8kN/m), and was subsequently be heated to 750ᵒC 

following standard fire curve. 

Step 1: 

At ambient temperature, the stiffness of both the top and bottom springs is 

, ( 0.5 )

210000 (171.5 11.5 0.5 343.5 7.4) 681072000 /

f wKINI E b t d t

N mm

      

      
 (6-18) 

The shear spring is assumed to be rigid. The stiffness of the shear spring is defined to 

be 1.0x1020. 

An iteration procedure is applied to the program to calculate the force-deflection 

curve of the buckling element of each step, given that the stiffness of each flange 

spring is given in Equation (6-18). The ambient-temperature calculation is always 

within the pre-buckling stage. 

Step 2: 

At elevated temperatures, both the material Young’s Modulus and the Yield Stress 

have been reduced. Axial force is created due to the restraint of thermal expansion. 

The axial force, as well as the bending moment at the end of the buckling element, 

creates large compression force on the bottom compressive spring. When the 

compression force reaches the value shown in Equation (6-19), the compression spring 

enters the plateau stage.   
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 

 (6-19) 

where 
,yk  is the reduction factor of the yield stress due to temperature at the 

corresponding iteration step. In this example, the initial temperature of the plateau 

stage of the compressive spring is 90ᵒC. The reduction factor 
,yk  equals to 1. 

In the plateau stage, RF  is always calculated following Equation (6-19) except that 
,yk 

keeps decreasing with the increase of temperature. The stiffness of the compressive 

spring is zero. The end of the plateau stage is the point of intersection between the 

plateau and the post-buckling descending curve described in Chapter 4. For this 

example, the plateau stage ends at 261ᵒC.  

In the post-buckling stage, when the compression spring is on the loading curve, its 

stiffness is 0; its compression force at each iteration step can be calculated following 

Equation (6-10). When the compression spring is on the unloading curve, its stiffness 

can be calculated according to Equation (6-18), and its compression at each iteration 

step can be calculated according to Equation (6-17). The detailed outputs of this 

example are shown in the Appendix.  

6.4 RESULTS 

6.4.1 Verification of the Vulcan models 

In order to verify the newly created component-based element in Vulcan, example 

beams were modelled using both Vulcan and ABAQUS.  A sketch of the Vulcan model 

using buckling elements is shown in Figure 6-10 (a). The beam element in Vulcan is 

actually a line element, and the end zones of the beam are simulated by the new 

component-based buckling elements. 
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Figure 6-10 Comparison of Vulcan models: (a) beam with buckling elements; (b) 

beam with beam elements only  

In order to allow reasonable comparison, the ABAQUS models also consist of three 

parts: two beam ends modelled by shell elements and the rest of the beam simulated 

using wire elements. The images of ABAQUS models are shown in Figure 6-11 (a). 

Example beams without the buckling elements at the beam ends were also built up in 

Vulcan (Figure 6-10 (b)) and in ABAQUS (Figure 6-11 (b)) to investigate the effects of 

the buckling elements by comparing results from the models with and without the 

buckling elements. 

 
(a) 

Buckling Element Buckling ElementBeam Elements

(a)

Beam Elements(b)
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(b) 
 

Figure 6-11 Comparison of ABAQUS models: (a) beam with shell elements; (b) 

beam with line elements only  

 

For the shell elements in the ABAQUS models, the four-noded shell element (S4R), 

which is capable of simulating buckling behaviour with reasonable accuracy, was 

adopted. A mesh sensitivity analysis was conducted, which indicated that elements of 

size 15mm x 15mm provided an optimum between accuracy and computing efficiency. 

For the wire element a mesh size of 250mm was adopted after a mesh sensitivity 

analysis. Material properties, including the thermal expansion coefficient of steel given 

by EC3, were used. The models were subject to full axial restraint at both ends, and 

were restrained from out-of-plane deflection so that no overall buckling across the 

weak axis could occur. Two beams, spanning 6m and 9m, were modelled. The beam 

section was UB356x171x51 for the 6m beams, and UB457x191x98 for the 9m beams.  

In order to achieve different combinations of axial force and bending moment the 6m 

beams were loaded with uniformly distributed load of intensity 26.8N/mm (load ratio 

= 0.4), 33.5N/mm (load ratio = 0.5) and 40.2N/mm (load ratio = 0.6).  The 9m beams 

were loaded with uniformly distributed load of intensity 29.6N/mm (load ratio = 0.4), 

37.0N/mm (load ratio = 0.5) and 44.4N/mm (load ratio = 0.6). The beams were 

uniformly heated beyond 700ᵒC.  

The force-deformation relationships of the springs in the buckling element are shown 

in Figure 6-12. In Figure 6-12 (a) the dashed curve represents the deformation-
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temperature relationship of the bottom spring. The thin solid curve shows the force-

deformation response of this compression spring. It has been shown that, after the 

bottom flange buckles (when the deformation is around 6mm), the compressive force 

decreases with increase of compressive deformation. The thick solid curve is the fully-

yielded force-deformation relationship of this spring, for which the decrease in the 

axial force would only be due to the degradation of the material as temperature rises 

(according to EC3). The difference between these curves illustrates the reduction in 

strength due to buckling. Deformation reversal occurs when the spring deformation is 

around 34mm. During this reversal, the spring force and its compressive deformation 

reduce together. After the spring force has changed to tension the compression spring 

is disabled and the tension spring becomes active. The response of this spring is 

represented by the dotted curve. The deformation (34mm) of the compression spring 

before it enters tension, representing the permanent deformation of the bottom 

flange, will be taken forward by the tension spring.  
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(b) 

Figure 6-12 Force-deformation relationship of the springs in the buckling element: 

(a) bottom spring; (b) top spring 

 

Comparisons of the results from the ABAQUS and Vulcan models, in terms of beam 

mid-span deflection, axial net force and beam-end moment, against temperature, are 

shown in Figure 6-13 - Figure 6-18.  Figure 6-13 and Figure 6-14 show the temperature-

deflection relationships for two beams (those modelled in ABAQUS, as described in 

Section 6.4.1) under the same load ratios (0.4, 0.5 and 0.6). Figure 6-15 - Figure 6-16 

show the temperature-axial force relationships. Figure 6-17 and Figure 6-18 show the 

temperature-moment relationships. The thick solid lines represent the results from the 

Vulcan models with buckling elements, whilst the thick dotted lines are for the 

equivalent ABAQUS models (with shell elements at the beam ends). The thin lines 

show results from the Vulcan and ABAQUS models without buckling/shell elements.   

It can be seen from Figure 6-13 - Figure 6-18 that the results from Vulcan and ABAQUS 

compare well for beams with and without the buckling elements, for all load ratios. 
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Figure 6-13 and Figure 6-14 show that the use of the buckling element in Vulcan can 

improve the accuracy of prediction of mid-span deflection. Models with the buckling 

elements show the greater deflections, due to the additional beam-end rotations 

caused by bottom-flange buckling.  
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(b) 

(c) 

Figure 6-13 The development of mid-span deflection as temperature rises for 6m 

beams: (a) for load ratio = 0.4; (b) for load ratio = 0.5; (c) for load ratio = 0.6  
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(b)

 

(c) 

Figure 6-14 The development of mid-span deflection as temperature rises for 9m 

beams: (a) for load ratio = 0.4; (b) for load ratio = 0.5; (c) for load ratio = 0.6  
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Figure 6-15 and Figure 6-16 show that the net compression force at the beam-end 

decreases when the bottom flange buckles. The beam-end bottom-flange buckling can 

relieve the axial compression force caused by restraint to thermal expansion, and 

therefore transfers less compression force onto the adjacent connection element. 

Beams with the buckling elements initiate their catenary tension phase sooner than 

those without buckling elements.  
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(b) 

 
(c) 

Figure 6-15 Comparisons of axial net force against temperature for 6m beams: (a) 

for load ratio = 0.4; (b) for load ratio = 0.5; (c) for load ratio = 0.6  
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(c) 

Figure 6-16 Comparisons of axial net force against temperature for 9m beams  

 

Figure 6-17 and Figure 6-18 show the development of the beam-end major-axis 

moment as temperature increases. It can be seen that, for beams without the buckling 

element, the beam-end moment increases from 100ᵒC to 400ᵒC. This is because both 

the restraint to thermal expansion and the stiffness reduction of the beam induce an 

increase in the curvature at its ends, while the steel strength remains unchanged up to 

400ᵒC. The end-moment starts to decrease when the temperature reaches 400ᵒC, due 

to the progressive reduction of steel strength above that temperature. For beams with 

the buckling elements the rotational stiffness of the steel beam-ends is reduced due to 

the occurrence of bottom flange buckling, resulting in less moment being transferred 

to the adjacent connections. On the other hand, as the applied load increases the 

beam-end curvatures increase, causing an increase in the beam-end moment. 

Therefore, the variation of beam-end moment depends on which of these two is more 
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dominant. It can be observed from Figure 6-17 and Figure 6-18 that in most cases the 

beam-end moment decreases between 100ᵒC and 400ᵒC after bottom-flange buckling 

has occurred at around 100ᵒC. However, for the 6m beam subject to a high load ratio 

of 0.6, and the 9m beams under load ratios of 0.5 and 0.6, the beam-end moment 

tends to increase slightly between 300ᵒC and 400ᵒC.  
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Figure 6-17 Comparisons of beam-end bending moment against temperature for 

6m beams 
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Figure 6-18 Comparisons of beam-end bending moment against temperature for 

9m beams 
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buckling element is able to account for the major structural effects of the net axial 

compression due to restraint to thermal expansion.  

The differences between the Vulcan models with and without the buckling elements 

and between the ABAQUS models with and without shell elements, as shown in 

Section 6.4.1, have indicated the importance of considering the beam-end buckling 

phenomena. This is true only if such differences are not caused by the adoption of 

different element types, especially for the ABAQUS models. This section examines the 

sensitivity of the ABAQUS modelling results to the element types adopted. Two 

ABAQUS models, one using wire elements to model the entire beam and one using 

shell elements which are restrained against buckling, were used to model the beam 

ends, retaining the wire elements for the rest of the beam, and results were compared 

as shown in Figure 6-11. 

The same mesh size, element type and temperature curve used for the ABAQUS 

models described in Section 6.4.1 were used. The beam was of section UB356x171x51 

and 3m length; this is short enough to avoid bottom-flange buckling. The beam web 

was fully restrained against out-of-plane deformation, and therefore no beam-web 

shear buckling was allowed. The two ABAQUS models resulted in indistinguishable 

deflection and axial force, as shown in Figure 6-19. This confirms that the differences 

in behaviour between models with and without shell elements at beam-ends are 

entirely due to beam-end buckling, and are not caused by the use of different element 

types. 
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Figure 6-19 Comparison of the ABAQUS results  

 

6.4.2 Illustrative examples of beams with buckling and connection elements 

The component-based buckling element has been verified, and the influence of the 

buckling element on the behaviour of a beam has been demonstrated in Section 6.4.1. 

In this section the buckling element is used together with the existing component-

based connection element of Vulcan to model isolated beams. Models with and 

without the buckling elements are compared. The influence of the buckling elements 

on the beam deflection, and on the internal force distribution among the bolt rows of 

the adjacent connections, are investigated. 

The models are of the same dimensions previously used for the 6m and 9m beams 

described in Section 6.4.1. End-plate connections, designed to be moment resistant in 

accordance with BS EN 1993-1-8 and its accompanying National Annex, are used. The 

connection details are shown in Figure 6-20. Grade 8.8 M20 bolts and 15mm thick 

endplates are used. One purpose of this research is to investigate the influence of the 
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buckling element on the force distribution within the bolt rows of the adjacent 

connection. To focus on this, the stress area of all bolts is assumed to be 500mm2 

(instead of the usual nominal value 245mm2 for M20 bolts) to avoid bolt fracture. 

 

 
(a) (b) 

Figure 6-20 Details of the analysed endplate connections: (a) for 6m beams; (b) 

for 9m beams 

 

Figure 6-21 and Figure 6-22 show comparisons of the force distribution between 

connection bolt-rows, for beams of different spans (6m and 9m) subject to various 

load ratios (0.4, 0.5 and 0.6) with and without the buckling element. The component-

based connection element is composed of six horizontal springs (two compression 

springs, representing the top and bottom flanges and four tension springs, 

representing the bolt rows). The bolt-row springs can only transfer tension force. The 

general trend is that, in the initial ambient-temperature loading stage, the top three 

tension bolt-row springs and the bottom flange spring are mobilized to resist the 

beam-end rotation caused by the external load.  After heating starts, the beam starts 
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to expand and the connections are subjected to a combination of compression and 

bending. At this stage all the four tension bolt rows are progressively deactivated due 

to the compression caused by the restraint to thermal expansion. Once all the tension 

bolt rows are deactivated, the top compression spring starts to work. The deflection of 

the beam increases dramatically when its temperature increases further, and the four 

tension bolt rows are progressively re-activated; the top compression spring is 

switched off. At around 700°C the beams start to develop catenary tension, and the 

bending action is reduced.  Eventually all the four tension bolt rows are again activated, 

and both compression springs are deactivated. 

In Figure 6-21 and Figure 6-22 results for models with and without the buckling 

element are distinguished by line thickness (thick lines for models with buckling 

element; thin ones for those without). Colours and marker shapes are used to 

distinguish different bolt rows. When the tension springs (representing bolt rows) are 

activated at high temperatures, the thick lines are all below the thin lines. In other 

words, the tension forces at the bolt rows of a connection are lower when buckling is 

allowed, compared to the equivalent case without buckling elements. This is 

reasonable, given the lower rotational stiffness at the beam-end in the presence of 

local buckling. Therefore, the adjacent connection rotates less, resulting in lower 

forces in each bolt row. Without buckling elements (thin lines), the forces in the upper 

bolt rows reach their maximum values at lower temperature. This is because, in this 

case, the peak spring force corresponds to the yielding of a bolt row, and the upper 

bolt rows yield earlier than the lower ones as temperature rises. After the upper bolt 

rows have yielded, more load is distributed to the lower bolt rows, accelerating the 

yielding of those bolt rows. The decrease in the spring forces after their peak values 

are due to the reduction of yield strength as temperature increases.  On the other 
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hand, in the cases with buckling elements, the tension forces in all four bolt-rows 

reach their peaks at the same temperature. The inclusion of the buckling element 

allows the consideration of the reduction of bending moment at beam-ends at the 

post-buckling stage. This causes a reversal of the beam-end rotation, resulting in a 

decrease in the bolt force.  
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Figure 6-21 Bolt row force distribution for 6m beams  
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Figure 6-22 Bolt row force distribution for 9m beams  
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6.4.3 Frame analysis 

In order to demonstrate the potential to carry out performance-based analysis 

considering the buckling element in Vulcan, and to preliminary study the influence of 

the buckling element on its adjacent connection, a two-storey two-span plane frame 

model has been created. The dimension of the frame is shown in Figure 6-23. The 

cross-sections of columns and beams in the frame are UC254×254×73 and UB 

UB356x171x51 respectively. It is assumed that the fire occurs in the right-hand side 

bay of the lower storey, and that the beam and columns around this bay are uniformly 

heated by fire. The temperature of the left and right columns of this bay is 0.8 times 

the temperature of the beam. The uniformly distributed load applied to the beams is 

26.8kN/m, giving them a load ratio of 0.4 for fixed-ended beam. The columns at 

ground floor level are loaded with a load ratio of 0.15. Flush end-plate connections 

with the same dimensions as shown in Figure 6-20 (a) are located at the ends of each 

beam. The stress area of the bolts is set to be 245mm2. Cases with and without the 

buckling element have been analysed. For cases with the buckling element, the 

buckling elements were located in between each connection element and its 

connected beam.  In order to initiate beam-end flange buckling, fully axial restraint has 

been applied to the frame ends.  
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Figure 6-23 Studied frame dimension 

 

Comparison of vertical mid-span deflection (Node 1 in Figure 6-23) has been shown in 

Figure 6-24. It can be for the frame with the buckling element at beam-ends, the beam 

deflection increases due to the beam-end local buckling.  Beam “run-away” caused by 

fracture of beam-end connections occurs later for frames with the buckling element. 

 
Figure 6-24 Deflections of Node 1 for cases with and without the buckling 

element 
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Figure 6-25 plots the the axial forces of different components within the connection at 

the left hand side of the heated beam. Figure 6-26 plots the detailed tension force 

within each bolt row. Comparisons of the axial component forces have been made for 

frames with and without buckling elements. It can been seen from Figure 6-26 that 

each bolt row with the adjacent buckling element fractures later than the bolt row at 

the same location but without the buckling element.  The program ended when all the 

connection bolt rows fracture. 

 

 

Figure 6-25 Axial forces in different components of the analysed connection  
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Figure 6-26 Detailed bolt-row forces at Node 2 
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Figure 6-28.    
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Figure 6-27 Vertical displacement of Node 2 

 

Figure 6-28 Horizontal displacement of Node 2 
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buckling behaviour. Each spring in the buckling element is able to deal with 

deformation reversal, which commonly happens at high temperatures. The buckling 

element has been implemented into the global frame analysis software Vulcan. The 

buckling element has been verified against ABAQUS models on isolated beams. After 

implementing the buckling element the Vulcan models agree better with the ABAQUS 

models, compared to the Vulcan models without the buckling elements. It has been 

observed that, with the buckling element, the temperatures at which the beams’ axial 

forces change from compression to tension have decreased, for some cases by as 

much as 100ᵒC, which is a considerable decrease in the context of steel beam fire 

analysis. These temperatures represent the initiation of the catenary stage, at which 

the beam has no net moment. In Eurocode 3, the beams’ design moment resistances 

are their plastic moment resistances multiplied by reduction factors, considering the 

effects of high temperatures. It could be reasoned that the initiation temperature of 

the catenary stage is equivalent to its failure temperature under pure bending, when it 

forms a plastic mechanism.  This mimics the design limit-state critical temperature for 

isolated beams designed to simple code-of–practice principles.  However, it must be 

remembered that the net zero force condition has been arrived at after considerable 

plastic straining at different locations within the cross-section, and this has generated 

a range of different permanent strain values, and hence a stress distribution of a 

complex shape which simply happens to be in axial equilibrium. The influence of the 

buckling element on the adjacent connection has also been investigated in isolated 

beam and in a two-storey two-span plane frame. The results indicate that, by including 

the buckling element, the net axial compression force and moment transferred from 

beam to connection have been reduced. Hence, the stresses within the connection 

bolt rows are reduced when the beam-end buckling is taken into consideration.  



6. The behaviour and effects of beam-end buckling in fire using a component-based method 

154 
 

Although the bolt forces adjacent to the buckling element are not reduced by a large 

amount, the trend is consistent for all the cases analysed. Therefore, the existence of 

the buckling elements tends to protect the adjacent connections, as they decrease the 

connection bolt-row forces.  
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7.1 SUMMARY 

Structural analysis under fire conditions has become an essential part of the 

performance-based design approach. The progressive collapse of the WTC 7 building 

has emphasized that joints are among the most vulnerable components of structures 

under fire conditions. Fracture of joints may initiate either locally-contained failures or 

even progressive collapse of the whole building. Therefore it is necessary to be able to 

model the behaviour of connections, including their robustness, fracture sequences 

and survival times. In order to do this one of the most practical approaches is to use a 

component-based method. Beam-end buckling (including both beam-web shear 

buckling and bottom-flange buckling) has been widely observed in full-scale fire tests.  

It may influence the beam survival temperature, the forces transferred to the adjacent 

connection, as well as the deflection of the beam. 

An analytical model was initially created to predict the shear capacity and vertical 

deflection of shear panels at both ambient and elevated temperatures. The analytical 

model is capable of predicting the formation of plastic hinges on flanges, the initiation 

of beam-web shear buckling and the limiting conditions for Class 1 and 2 sections. A 

tri-linear curve can be created for a particular beam section by linking these three 

points, in order to track the load-deflection route of the shear panel. For beams for 

which beam-web shear bucking is the main ‘failure’ mode, the proposed method 

provides satisfactory accuracy in terms of both shear capacity and mid-span vertical 

deflection.  However, as beam lengths are increased, the ‘failure’ mode switches to 

bottom-flange buckling. However, bottom-flange buckling has not been involved in the 

beam-web shear buckling analytical model.  
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An analytical model was also proposed considering simultaneous beam-web shear 

buckling and bottom-flange buckling. The interaction between these two buckling 

modes is accounted for by ensuring compatibility between the out-of-plane 

deflections of the beam web caused by these two modes. Two comparison cases, both 

with and without uniformly distributed load on top of the buckling panel, were 

discussed. An example hand-calculation using the validated beam-end buckling panel 

model, integrated into a whole beam, has been given. The theoretical results have 

been validated against finite element modelling using ABAQUS over a range of 

geometries. The second analytical model was also compared with Dharma’s analytical 

model. These comparisons have shown that the proposed model provides sufficiently 

accurate and conservative results for both Class 1 and 2 sections.  

A transition length to distinguish between cases in which pure beam-web shear 

buckling occurs and those in which the instability is a combination of shear buckling 

and bottom-flange buckling has been proposed, including a calculation procedure to 

detect the transition length between these two buckling modes. This criterion was 

validated using two sets of beams analysed using ABAQUS.  It has been observed from 

the results that, when the beam length is less than the transition length, shear 

buckling is the dominant buckling mode.  The shear-buckling model then provides the 

best representation, and the analytical shear buckling curve provides the best fit to the 

FE results. In this range the analytical results for the model which includes bottom-

flange buckling lie above both the shear buckling curve and the FE results, indicating 

that bottom-flange buckling is unlikely to occur. When the beam length is longer than 

the transition length, a combination including bottom-flange buckling dominates.  The 

analytical results for the model which includes bottom-flange buckling then compare 
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well with the FE analysis, and the analytical results for the pure shear buckling model 

lie above the other two curves. For the beams with lengths in the vicinity of the 

transition length the FEA, shear buckling and bottom-flange buckling results tend 

towards being identical. The transition lengths observed from the FE modelling, and 

the comparison between the analytical and FE models, show consistency in transition 

length according to the calculation criteria for the two groups of beams analysed. 

Therefore, it is suggested that this calculation procedure (Figure 5-1) is a simplified and 

effective way to detect the transition length between pure beam-web shear buckling 

and a combination with bottom-flange buckling of a beam. This transition criterion is 

only available when the analysed beam is axially released. When the beam is axially 

restrained, it is assumed that a combination buckling mode will always occur.  

For the first time a component-based beam-end buckling element, which considers 

beam-web shear buckling and bottom-flange buckling within the beam-end buckling 

zone, has been created for Class 1 and 2 sections. The component-based model is 

composed of two nonlinear springs. Each spring is able to deal with the reversal of 

spring deformation, to simulate the strain reversal which very often happens within a 

heated structure, and which is therefore essential to consider during modelling. The 

component-based buckling element has been implemented within Vulcan. It has been 

verified against ABAQUS models in isolated beam cases. A parametric study including 

both isolated-beam cases and sub-frame analyses with connections was then carried 

out. Results were compared for the same cases, but with and without the inclusion of 

buckling elements. The influence of the buckling element on the structural response, 

including the beam deflection and connection force transmission, have been analysed. 
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7.2 DISCUSSION AND CONCLUSIONS 

This research was inspired by the fact that both beam-web shear buckling and bottom-

flange buckling phenomena have been widely observed in full-scale fire tests, such as 

the Cardington Fire Tests, as well as in accidental fires.  Before this research had been 

carried out, views on the effects of beam-end buckling on the connections adjacent to 

the buckling zone varied. One speculation was that, after the beam-end buckling 

occurred, the top bolt row would be seriously stretched due to the possibly large 

rotation of the beam-end, and therefore top bolt row fracture could be a key factor 

which might initiate member failure or even progressive collapse of a whole building.  

The influence of these occurrences of beam-end buckling in the vicinity of the beam-

to-column connections of Class 1 and 2 steel sections under fire conditions include 

beam survival temperature, effects on the adjacent connection bolt-row force 

distribution, connection survival times and beam deflections.  

It has been observed in experiments at a practical scale that bottom-flange buckling is 

invariably accompanied by beam-web shear buckling. The rotation of the bottom 

beam flange induces inevitable out-of-plane deflection of the beam web due to 

deformation compatibility between the beam web and flange. However, it is often 

assumed, particularly for plate-girders with thin webs, that beam-web shear buckling 

can occur without accompanying flange buckling, although there is some minor 

rotation of the bottom-flange. For steel beams at elevated temperatures, it is 

therefore possible that either beam-web shear buckling or a combination of beam-

web shear buckling and bottom-flange buckling can occur. The occurrence of shear 

buckling is influenced by the beam-end shear force, while the combination of both can 

be triggered by compression force in the bottom flange, in combination with shear. 
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This compression force can be generated either by beam-end hogging moment or a 

combination of hogging moment and axial compression force due to restraint of 

thermal expansion. This indicates that the combination of both buckling phenomena 

tends to occur for steel beams with high axial restraint at high temperatures, because 

such cases tend to produce a large net compression force, of which the beam bottom 

flange force is usually a major component. The buckling type at the beam-end depends 

on factors including beam-web aspect ratio, flange aspect ratio, beam length, external 

load level, temperature and boundary conditions.  This research has been limited to 

beams in steel-framed construction, which would normally imply structures with wind 

bracing around their perimeters. This bracing resists horizontal movements of the 

structure, and therefore constrains the beams, producing large axial compressive 

forces in the beams when they attempt to expand. For steel-framed beams without 

bracing (typically in buildings with bracing concentrated into a central core), the edge 

columns can be pushed out without applying much restraint to beam thermal 

expansion. In such cases, bottom-flange buckling may not be initiated. 

When a combination of beam-web shear buckling and bottom-flange buckling occurs, 

the axial resistance of the bottom flange decreases as it deforms. This decrease leads 

to reductions in the net beam-end axial and rotational stiffness.  The column-face 

connection is now located in series with a new rotational element, due to the 

compressive displacement of the lower beam flange, which tends to rotate about a 

centre near to the top bolt row.  This leads to an increase of net beam-end rotation, 

and therefore increased mid-span deflection. The net axial compression force may be 

relieved due to the large compressive deformation of the buckling zone. The bending 

moment in the buckling zone decreases because of the reduction of rotational stiffness 
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at the beam-end. This implies lower forces to be resisted by the connection itself.  

Hence, the stresses within the connection bolt rows tend to decrease when the 

buckling element is taken into consideration. In general, by ignoring the buckling 

element near to the beam-to-column connections in structural fire analysis, the results 

tend to be on the safe side in terms of connection forces.  In practical design based on 

the Eurocode 3, the beam survival temperature is the temperature at which the beams’ 

axial forces change from compression to tension, when beams’ plastic moment 

resistance decrease to zero. It could be reasoned that the initiation temperature of the 

catenary stage is equivalent to its failure temperature under pure bending, when it 

forms a plastic mechanism.  This mimics the design limit-state critical temperature for 

isolated beams designed to simple code-of–practice principles.   

7.3 RECOMMENDATIONS FOR FURTHER WORK 

Within the duration of a PhD project it is inevitable that some desirable further 

developments of the research become apparent. A component-based beam-end 

buckling model has been created in the form of a buckling element, as reported above. 

This model has been applied to steel-framed structures. The following issues relate to 

the PhD research done, and should be considered in future research work.  

7.3.1 Behaviour of connections in fire 

Several types of connections, such as fin plates, web cleats, flush, extended and 

flexible end-plates, are commonly used in steel construction. The deformation types, 

bolt-row force distributions and failure mechanisms vary between these types, 

because of differences in their internal force distribution mechanisms.  The current 

study has only been considered extended end-plate connections with a limited range 

of layouts and dimensions. The purpose of this has been to present examples which 
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combine the component-based buckling element and a practical component-based 

connection element in Vulcan, and to demonstrate the effects of the buckling element 

on their local loading in fire conditions. Analyses need to be carried out on other 

connection types, which have previously been shown to have very different 

characteristics under combined loading. Parametric studies need particularly to 

investigate different combinations of connection and beam-end flexibility. A general-

purpose component-based connection model actually exists (Dong et al., 2015) within 

Vulcan, and this can be used with the component characterizations produced by 

various researchers (Sarraj, 2007, Yu et al., 2009c, Taib and Burgess, 2011) to 

represent connections of many different types.  These can be combined with buckling 

elements derived from different beam section dimensions so that the relationship 

between connection ductility and beam buckling properties can be controlled 

quantitatively.  It should be possible to investigate the robustness of such 

combinations and to attempt to develop principles to optimize this robustness.   

7.3.2 Progressive collapse of buildings 

It has been illustrated in the previous chapters that, by including component-based 

beam-end buckling elements, the survival times of adjacent connections will be 

influenced. In the time available for the work only two-span two-storey case studies 

have been carried out, attempting to analyse quantitatively the influence of the 

buckling elements on their adjacent connections. The analysis terminates when the 

connection bolt rows completely fracture. Surrounding structure has been modelled to 

simulate the constraint conditions of individual beams. It is clear that more complex 

models need to be analysed, with boundary conditions closer to real cases. Moreover, 

the progressive collapse of buildings can be historically-related. For instance, the 
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horizontal force transferred from the beam to its attached column can differ, with and 

without the bucking element, before the beam-to-column connections fracture. 

Therefore, the initial deflections of the columns can vary after an attached beam has 

fallen and frame stability has been regained. In the context of Vulcan analysis the 

component-based buckling element is expected to be used in combination with the 

static-dynamic procedure created by Sun (2012b). By involving the buckling element, it 

will be possible to carry out more accurate performance-based fire analysis using 

Vulcan.  

7.3.3 Three-dimensional composite beam analysis at non-uniformly distributed 

temperatures 

It has been stated in Chapter 6 that the component-based buckling element is able to 

deal with buckling problems considering different axial forces. In Chapter 6, the 

buckling element was applied to steel beams with axial restraint, and the results 

compared well with finite element analysis. This further showed that the buckling 

element is able to deal with axial force automatically, as axial restraint is actually 

providing a larger compressive force to the buckling element. Based on this premise, it 

is reasonable that the component-based buckling element should be expected to be 

applied to the analysis of composite floor systems at non-uniformly distributed 

temperatures. 

For beams at non-uniformly distributed temperatures, one key effect is that non-

uniformly distributed axial force across the beam depth will be produced. As the 

buckling springs are able to deal with different axial forces automatically, it is possible 

that the buckling element could consider non-uniformly distributed temperatures of 

the beam. However, as the horizontal springs are only located at the top and bottom 
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of the beam, it is only able to consider different temperatures at these two locations 

on the cross section of the buckling element.     

In three-dimensional composite floors, the concrete slabs will restrain the steel beams 

from expansion. This is because on the one hand, most of the depth of the concrete 

slab will have much lower temperatures than the unprotected steel beam underneath; 

on the other hand, the thermal expansion of the concrete slab itself can be restrained 

by any surrounding cooler slabs. The restraint from the composite slab restrains the 

top flange of the steel beam from thermal expansion, and thus the net steel cross-

section acquires an induced compressive force which is balanced by tension in the 

attached concrete slab; the lever arm between these two force resultants causes a 

bending moment which forces the beam into thermal bowing towards the fire.  In a 3-

dimensional slab, as against a simple composite beam, the thermal bowing is 

restrained by the continuity away from any one heated beam, as well as by restraint to 

thermal expansion, and therefore the compressive force in the bottom flange is 

increased. This large compressive force, together with weakening of the steel as its 

temperature rises, trigger bottom-flange buckling even though no strong bracing has 

been applied to the frame. Such beam-end bottom-flange buckling can be widely 

observed in photos (Newman et al., 2000) from the Cardington composite-framed Fire 

Tests.  

The analytical models (including both pure beam-web shear buckling and the 

combination of beam-web shear buckling and bottom-flange buckling) are based on 

the principle of plastic work-balance, which is a variant of the principle of stationary 

potential energy for rigid-plastic systems.  Therefore, selection of the appropriate yield 

line mechanism is a key factor. Any change of yield-line mechanism will induce a 
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change of the internal work, influencing the force-deflection relationship of the 

buckling element. In extending the analytical buckling models from steel to composite 

beams, it is necessary to check whether the yield-line mechanism is still applicable. For 

instance, for a composite beam-end subjected to hogging moment, the reinforcement 

within the concrete slab carries tension force instead of the top flange of the steel 

beam. Therefore, a new yield zone in the reinforcing mesh may replace the initial 

plastic zone in the beam top flange when creating the analytical model. It may be 

possible to establish an equivalent-section criterion so that the analytical model can be 

consistently applied to both steel and composite beams. The analytical results can be 

compared with the existing full-scale fire tests (eg. the Cardington Fire Tests) for 

further validation. 

7.3.4 Buckling of cellular beams 

A cellular beam is I-section beam with an array of holes along its web. It is currently 

widely used, due to its ability to achieve large-spans while accommodating building 

services within the structural depth of beam. The buckling behaviour of cellular beams 

under fire conditions has not been sufficiently investigated. Due to the natural 

relationship between cellular beams and I-section beams, it is reasonable to expect 

that any analytical buckling model should be applicable, with appropriate 

modifications, to cellular beams in the post-buckling stage.  

The weakening of the webs of cellular beam makes it easier for beam-web shear 

buckling to occur compared with I-section beams. If a combined buckling mode occurs, 

the yield line mechanism may not change at the bottom flange, but significant 

differences can be expected on the web, since it is very possible that only a part of the 

beam web within the flange buckling zone. Therefore, the yield line mechanism for the 
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beam web has to be reconsidered for cellular beams. Both the criterion for its 

occurrence and the buckling region affected may be influenced by the distance 

between two adjacent holes (the width of a “web-post”), the positions of the holes 

and the height of the cellular beam. 

A component-based buckling element has been created to simulate the plastic post-

buckling behaviour of steel beams in fire. By implementing this element into the three-

dimensional structural fire analysis software Vulcan, it enables to consider the effects 

of the buckling elements on the robustness design of their adjacent connections. 

Examples of isolated beams with the buckling element and the connection element 

have been illustrated in this research. It can be expected that the buckling element be 

involved in more complex performance-based frame analysis and be combined with 

explicit dynamic procedure to simulate local and progressive collapse of a whole 

building.
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APPENDIX 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

%% The Axial Force of the Bottom Compressive Spring 

Temp    Displacement     Force 
(ᵒC)          (mm)                  (N) 
 
20 0.00E+00 0.00E+00 
20 -1.71E-06 -1167.488074 
20 -3.42E-06 -2332.342904 
       … 
47.32 -1.93E-01 -414990.9609 
70.41 -3.38E-01 -572911.2856 
90.42 -7.67E-01 -659107.0365 
  
% The initiation of the Plateau Stage 
 
108.07  -894.6942701  0.00E+00 
123.86  -2.155697864  -659107.0365 
138.14  -2.709968563  -659107.0365 
151.17  -3.223751766  -659107.0365 
      … 
255.03  -5.288862559  -659107.1322 
261.14  -5.347105732  -659107.1322  
 
% The end of the Plateau Stage 
 
272.68  -5.592833806  -637949.3168 
278.12  -5.746748902  -641291.606 
280.75  -6.015719843  -613967.6826 
288.46  -6.148246805  -610770.2471 
293.38  -6.364762833  -612527.9996 
298.13  -6.669393988  -615211.0043 
302.74  -7.033595959  -583766.0762 
307.22  -7.212611382  -584091.7757 
315.78  -7.374532478  -584745.605 
319.88  -7.785005219  -571336.1667 
323.88  -7.928091346  -572270.0517 
327.77  -8.088997523  -570154.7663 
331.57  -8.248150731  -568078.3834 
338.88  -8.570414125  -562935.4489 
342.4  -8.86638842  -535983.5795 
349.21  -8.973590679  -542020.3917 
352.51  -9.267675901  -536777.965 
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355.73  -9.412503184  -533249.5237 
361.97  -9.555128787  -530222.5922 
365  -9.766866767  -534676.0695 
367.97  -9.957780972  -522186.9863 
373.73  -10.13856431  -530546.8868 
379.28  -10.24177926  -529659.1959 
381.98  -10.49865706  -522305.5201 
384.63  -10.61857801  -519903.9014 
389.8  -10.86044593  -513932.9986 
394.79  -10.92410958  -519483.692 
397.23  -11.1372007  -515277.8874 
401.99  -11.28751609  -504075.3282 
404.31  -11.50548656  -499418.2427 
408.85  -11.57176787  -499471.7186 
411.07  -11.77334763  -494013.1814 
415.41  -11.88534219  -488032.3572 
417.54  -12.07496457  -484059.3472 
421.7  -12.1793867  -478393.6699 
423.74  -12.36612613  -474577.1902 
427.74  -12.45682816  -469985.8132 
429.69  -12.65010763  -465669.8302 
431.63  -12.71976402  -465857.7994 
435.42  -12.80860389  -462292.1138 
437.28  -12.97916779  -458139.7809 
439.12  -13.0813893  -453726.1753 
442.73  -13.25886092  -447965.0027 
444.5  -13.35369756  -445104.1194 
451.39  -13.73909954  -429991.9827 
454.72  -13.87234082  -425648.6333 
461.17  -14.03178071  -416404.9989 
464.29  -14.37873332  -410298.4918 
467.35  -14.55102928  -404752.0297 
473.28  -14.73044155  -397161.0525 
476.17  -15.00772656  -393027.0856 
478.99  -15.18268817  -386711.3485 
484.49  -15.54683945  -374651.9636 
487.17  -15.69141698  -369176.9453 
492.38  -15.91648312  -368508.6796 
497.42  -15.92220819  -375766.7651 
499.87  -16.09716945  -375584.1462 
502.29  -16.22989879  -371276.5867 
507.01  -16.54686738  -358875.0982 
509.31  -16.84535563  -340571.678 
513.82  -16.9258777  -351677.3689 
516.02  -17.29290201  -324960.2157 
520.34  -17.55344285  -319358.2388 
522.45  -17.66330013  -318113.6636 
526.58  -17.9103224  -311316.2574 
528.6  -18.06299069  -306958.4386 
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532.57  -18.16354016  -302774.3382 
534.52  -18.40259315  -299188.2762 
538.34  -18.52638009  -294891.9613 
540.21  -18.73343037  -292084.6157 
543.89  -18.93364439  -288109.58 
545.69  -19.07720086  -283276.8683 
549.24  -19.34305128  -271632.6476 
550.98  -19.46860121  -271538.078 
554.41  -19.58825232  -273165.9103 
556.09  -19.68832168  -271274.695 
559.4  -19.90530862  -266517.5339 
562.64  -20.02264766  -261253.7001 
564.23  -20.21663443  -259183.0986 
567.37  -20.43277855  -253895.394 
570.45  -20.53648102  -249005.3726 
571.96  -20.75629492  -245986.2755 
574.94  -20.86236895  -242206.9969 
576.41  -21.05508051  -239638.2775 
579.31  -21.26502883  -235898.774 
582.15  -21.33699038  -232949.9049 
583.55  -21.53513575  -230905.4335 
586.31  -21.63856777  -227624.2479 
587.67  -21.82726248  -225632.1321 
590.36  -22.03847815  -221172.0978 
591.68  -22.14780582  -218710.1398 
594.3  -22.72136021  -194322.7782 
596.87  -22.81657866  -192322.2645 
599.4  -23.06609863  -193867.5549 
601.89  -23.29684195  -189394.0493 
603.12  -23.40005368  -189377.387 
605.54  -23.73896732  -179955.5126 
607.93  -23.75141178  -187643.6763 
610.28  -23.76209497  -194044.9555 
612.6  -23.86418785  -190823.0797 
613.74  -24.04970285  -188087.3408 
616  -24.20963426  -186193.7451 
618.23  -24.37726993  -184149.2161 
619.33  -24.64776207  -175287.4761 
621.51  -24.74468698  -177612.1342 
623.66  -24.9362864  -174788.8133 
624.72  -25.03476689  -173818.2974 
626.82  -25.23683515  -171236.8867 
628.9  -25.36291765  -167531.4722 
629.92  -25.58856943  -166325.222 
631.96  -25.79970907  -163023.4535 
632.96  -25.92953917  -161665.7542 
634.95  -26.28241096  -153264.3438 
636.92  -26.37904141  -155030.7178 
638.86  -26.51350759  -151830.9795 
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639.82  -26.74374681  -150204.0343 
641.72  -26.98168855  -146691.7921 
643.6  -27.08729774  -143091.866 
644.53  -27.30986037  -142772.2535 
646.37  -27.57228092  -138704.9997 
647.29  -27.72180899  -136229.1565 
650.89  -27.90399566  -140531.3428 
652.66  -28.03049132  -140307.8153 
656.13  -28.26350492  -138973.6337 
657.84  -28.73215212  -132431.8939 
659.53  -28.99669744  -129492.8234 
662.85  -29.44646912  -125105.2374 
664.48  -29.62524617  -125502.7462 
667.69  -30.24154061  -117623.8762 
669.27  -30.43719874  -117219.9282 
672.39  -30.77601879  -110456.0437 
673.92  -31.38666974  -106841.785 
675.44  -31.58470872  -106587.3303 
676.19  -31.77096186  -103391.0775 
676.565 -31.84030033  -104299.39 
676.7525 -32.00262448  -100907.4557 
676.94  -32.22103807  -101305.6083 
677.685 -32.29314508  -99678.70964 
678.43  -32.62857849  -99699.29757 
679.9  -33.41501939  -97524.24201 
681.36  -33.96552705  -93667.51271 
682.8  -34.29907822  -92576.41035 
684.23  -34.29706636  -89964.08906 
687.05  -34.29421898  -84874.00528 
688.44  -34.29158189  -81958.33691 
689.82  -34.28602104  -78037.64228 
692.54  -34.29101631  -76246.07471 
693.88  -34.26839924  -66697.95979 
695.21  -34.26013936  -62362.49003 
697.83  -34.24250551  -53805.53343 
699.13  -34.23241306  -49359.74288 
701.68  -34.23033272  -47455.86703 
702.94  -34.21286067  -41833.01184 
704.2  -34.20539044  -39288.5012 
705.44  -34.20189375  -37965.29355 
707.89  -34.20065228  -37060.99004 
709.1  -34.18509492  -32261.47747 
710.3  -34.17717648  -29740.54391 
711.49  -34.17140109  -27870.39873 
712.67  -34.16568507  -26042.72978 
715.01  -34.16562102  -25660.08078 
716.16  -34.15021325  -21174.97272 
717.31  -34.14176343  -18681.63742 
718.45  -34.13578176  -16902.82106 
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720.7  -34.12538614  -13843.77346 
721.81  -34.11744738  -11605.43764 
722.91  -34.11174444  -9996.938221 
725.1  -34.10247051  -7407.719466 
726.18  -34.09651884  -5794.138327 
727.25  -34.08842427  -3643.497197 
728.31  -34.08273413  -2144.776373 
730.42  -34.0839769  -2433.304885 
 
% The bottom spring goes into tension 
 
731.46  -34.06431774  0 
732.5  -34.05777491  0 
734.55  -34.0552123  0 
735.56  -34.04236292  0 
736.57  -34.03116571  0 
738.56  -34.02637352  0 
739.55  -34.01711621  0 
740.53  -34.011734  0 
742.47  -34.00881056  0 
743.43  -34.00183908  0 
744.39  -33.99567735  0 
746.28  -33.99081302  0 
747.22  -33.98221695  0 
748.15  -33.97681155  0 
749.08  -33.97179623  0 
750  -33.96659584  0 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

%% The Axial Force of the Bottom Tension Spring 

Temp               Displacement                  Force 
(ᵒC)                         (mm)                            (N) 
 
20  0.00E+00  0.0000 
47.32  -3.42E-03  0.0000 
… 
% The bottom tension force starts to be activated 
 

730.42 
 

-34.07079902 
 

929.6488432 
731.46 

 
-34.0646232 

 
2471.137639 

732.5 
 

-34.05775442 
 

4145.439403 
733.52 

 
-34.05517914 

 
4751.935725 

734.55 
 

-34.05055009 
 

5837.205119 
735.56 

 
-34.04201453 

 
7808.653645 

736.57 
 

-34.03954034 
 

8348.027493 
736.57 

 
-34.03119859 

 
10236.65254 

738.56 
 

-34.02940311 
 

10561.36037 
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738.56 
 

-34.01739443 
 

13183.94034 
739.55 

 
-34.01710786 

 
13197.1187 

740.53 
 

-34.01171865 
 

14292.75878 
741.5 

 
-34.00999228 

 
14602.79438 

742.47 
 

-34.00550788 
 

15479.42646 
743.43 

 
-34.00203406 

 
16134.1537 

744.39 
 

-33.99907335 
 

16674.2921 
745.34 

 
-33.99568189 

 
17292.32725 

745.34 
 

-33.99081299 
 

18258.15276 
746.28 

 
-33.98617742 

 
19097.71281 

747.22 
 

-33.98162676 
 

19904.60184 
748.15 

 
-33.97700714 

 
20709.64641 

749.08 
 

-33.9723629 
 

21503.47588 
750 

 
-33.97179632 

 
21529.25817 

     

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

%% The Axial Force of the Top Tension Spring 

Temp            Displacement                      Force 
(ᵒC)                      (mm)                                (N) 

 

20 
 

0.00E+00 0 
20 

 
1.71E-06 1167.488075 

20 
 

3.42E-06 2332.589756 
20 

 
6.85E-06 4665.17947 

… 
 
20  3.43E-03 233863.3059 
47.32  3.43E-03 7654.946373 
70.41  1.27E-02 28308.40344 
 
% The top tension spring goes into compression 
 
90.42  -6.02E-02 0 
108.07  -1.19E-01 0 
… 
% The top tension spring goes into tension again 
 
507.01  0.001077085  1820.733029 
509.31  0.002845702  4765.218823 
511.58  0.004025214  6677.202861 
513.82  0.006451142  10601.57211 
516.02  0.005594065  9108.031108 
516.02  0.010493704  17085.42543 
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518.2  0.011500229  18550.94832 
520.34  0.013069555  20889.12789 
522.45  0.013587999  21519.61965 
522.45  0.015002171  23759.27635 
524.53  0.016903518  26527.49863 
526.58  0.017140564  26656.66929 
526.58  0.018863326  29335.87447 
528.6  0.020839281  32117.92466 
530.6  0.021071895  32185.18356 
532.57  0.023893237  36169.20331 
532.57  0.024426987  36977.18443 
534.52  0.026280135  39428.29282 
536.44  0.028171322  41891.85387 
538.34  0.02961273  43646.44646 
538.34  0.030085656  44343.49664 
540.21  0.032158048  46982.41806 
542.06  0.033995723  49232.59326 
543.89  0.034380768  49355.40559 
543.89  0.035426486  50856.58979 
545.69  0.038299483  54504.49624 
547.48  0.040187021  56693.53892 
549.24  0.039995459  55936.82405 
550.98  0.04195013  58166.14146 
550.98  0.043763665  60680.7065 
552.7  0.045554761  62622.65538 
554.41  0.04849548  66092.06536 
556.09  0.04986914  67385.16443 
556.09  0.050441514  68158.57835 
557.75  0.052400869  70204.9877 
559.4  0.054008726  71743.28046 
561.03  0.055325841  72869.65079 
562.64  0.058113963  75895.28075 
564.23  0.058724566  76047.42537 
564.23  0.060745331  78664.28449 
565.81  0.062969229  80856.63037 
567.37  0.064930351  82674.82599 
568.92  0.065799066  83076.11638 
570.45  0.068588288  85872.47715 
570.45  0.069292582  86754.25228 
571.96  0.071297998  88521.00984 
573.46  0.073313685  90263.61617 
574.94  0.074878605  91424.47412 
574.94  0.075358632  92010.5727 
576.41  0.077832836  94240.78599 
577.87  0.079992869  96049.06766 
579.31  0.081208609  96700.6535 
580.73  0.083879961  99058.46935 
582.15  0.085754996  100431.2453 
582.15  0.08648944  101291.3837 
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583.55  0.088687743  103007.8309 
584.93  0.090921651  104735.3211 
586.31  0.092507296  105679.6182 
586.31  0.093226049  106500.7158 
587.67  0.095542403  108248.9217 
589.02  0.097354388  109393.5845 
590.36  0.100202979  111666.5129 
591.68  0.101774721  112489.6397 
591.68  0.102621951  113426.0673 
593  0.104780847  114856.4032 
594.3  0.110370727  119992.1986 
595.59  0.111675462  120415.0855 
596.87  0.112215276  120004.4887 
596.87  0.113481802  121358.9287 
599.4  0.11856353  124720.356 
600.65  0.120595386  125671.6905 
601.89  0.12150805  125307.6982 
603.12  0.122807282  125333.6662 
603.12  0.124597515  127160.7272 
604.34  0.127927706  129206.5756 
605.54  0.129944842  129896.827 
606.74  0.13141079  130004.6702 
607.93  0.133875334  131076.0257 
609.11  0.136430608  132201.3957 
610.28  0.13904535  133348.8875 
611.44  0.142119982  134897.6043 
612.6  0.143845532  135123.3503 
613.74  0.144752157  134583.2727 
613.74  0.147162091  136823.9077 
614.88  0.149525754  137588.7763 
616  0.152858756  139221.6146 
617.12  0.155495673  140169.4165 
618.23  0.156789948  139888.1777 
619.33  0.157969934  139499.1369 
619.33  0.162007307  143009.5684 
620.43  0.163520979  142834.1361 
621.51  0.166585837  143932.873 
622.59  0.169706276  144992.8172 
623.66  0.171320958  144817.5971 
624.72  0.172550969  144285.4829 
624.72  0.17581425  146812.0633 
625.78  0.179059016  147757.9099 
626.82  0.182827199  149025.2814 
627.87  0.184477315  148722.261 
628.9  0.186367232  148499.7835 
628.9  0.18985098  150939.4765 
629.92  0.193259892  151741.4409 
630.94  0.196818957  152568.6605 
631.96  0.198900765  152412.1433 
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632.96  0.202685866  153287.7303 
632.96  0.204663542  154472.4679 
633.96  0.208561134  155306.1137 
634.95  0.21437658  157154.2215 
635.94  0.216960433  157114.8846 
636.92  0.219627426  157101.1611 
637.89  0.223140878  157510.5252 
638.86  0.225617669  157162.6015 
638.86  0.230219542  159665.046 
639.82  0.234841595  160482.1737 
640.77  0.239642988  161323.0864 
641.72  0.244613364  162163.5899 
642.66  0.247667718  162087.937 
643.6  0.251545357  162338.9214 
644.53  0.255114045  162200.1859 
644.53  0.259794656  164400.163 
645.46  0.265456893  165252.5187 
646.37  0.271418921  166170.9696 
647.29  0.273994304  165695.4125 
647.29  0.277792644  167142.409 
649.1  0.289232059  168396.0604 
650.89  0.299152505  168890.7613 
652.66  0.299720627  165594.7512 
652.66  0.314310012  170868.3953 
654.4  0.330914926  172925.5867 
656.13  0.33710379  171742.0835 
656.13  0.343992077  173636.4128 
657.84  0.363620757  175781.6322 
659.53  0.379929608  176737.5675 
659.53  0.382932322  177426.36 
661.2  0.402201004  178692.5859 
662.85  0.421820114  179697.4318 
664.48  0.422901642  176134.7056 
664.48  0.443385249  180739.9403 
666.09  0.47058715  182344.1701 
667.69  0.497282367  183386.0491 
669.27  0.498024624  179598.7198 
670.84  0.558732153  185160.6014 
672.39  0.560029609  181330.5871 
672.39  0.599023198  186236.3599 
673.92  0.646381665  187138.3502 
675.44  0.704275328  187705.858 
676.94  0.706112456  183717.3231 
676.19  0.736840536  187696.8018 
676.94  0.755966356  186223.1479 
676.565 0.785853219  188296.7341 
676.7525 0.785204514  187486.0498 
676.94  0.849214408  187362.8257 
678.43  0.849614731  183450.4382 
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677.685 1.203905596  165290.1646 
678.43  1.703570672  185715.2676 
679.9  2.525439037  183389.9387 
681.36  3.417854191  181080.442 
682.8  4.980968688  178802.5507 
684.23  6.530419813  176540.5113 
685.65  8.44919199  174294.2648 
687.05  9.17552572  172079.663 
687.05  10.16824034  172079.663 
688.44  12.17881107  169880.8934 
689.82  12.80953672  167697.9167 
689.82  13.7854901  167697.9167 
691.19  15.64411213  165530.7723 
692.54  15.65851821  163395.2725 
692.54  17.42162394  163395.2725 
693.88  19.12780115  161275.5853 
695.21  19.36993655  159171.7107 
695.21  20.89403673  159171.7107 
696.53  22.55407265  157083.6683 
697.83  24.17612411  155027.2509 
699.13  24.23441709  151304.5505 
699.13  25.83984427  152970.8336 
700.41  27.08522832  151270.3362 
701.68  27.18166589  150265.866 
701.68  27.8569617  150265.866 
702.94  28.62186878  149269.2922 
704.2  28.62713221  148188.1344 
704.2  29.47961556  148272.7185 
705.44  29.9039228  147291.9671 
705.44  30.14182143  147291.9671 
706.67  30.97252127  146319.1318 
707.89  30.97748781  145354.193 
707.89  31.63094469  145354.193 
709.1  32.33889097  144397.1703 
709.1  32.43331054  144397.1703 
710.3  33.14180912  143448.0538 
711.49  33.14681462  142506.8535 
711.49  33.8484659  142506.8535 
712.67  34.46223519  141573.5594 
712.67  34.54151656  141573.5594 
713.85  35.24029312  140640.2653 
715.01  35.24529328  139722.7838 
715.01  35.92298174  139722.7838 
716.16  36.51860354  138813.2184 
716.16  36.6015795  138813.2184 
717.31  37.27677308  137903.6529 
718.45  37.76115456  137001.9938 
718.45  37.94739872  137001.9938 
719.58  38.61109948  136108.2409 
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720.7  39.0987274  135222.4041 
720.7  39.26959471  135222.4041 
721.81  39.94567082  134344.4736 
722.91  40.43540298  133474.4494 
722.91  40.60191148  133474.4494 
724.01  41.25852908  132604.4252 
725.1  41.77015811  131742.317 
725.1  41.91974432  131742.317 
726.18  42.47105851  130888.1152 
727.25  42.57014248  129997.1292 
727.25  43.22680121  130041.8196 
728.31  43.72685355  129203.4401 
728.31  43.89046659  129203.4401 
729.37  44.4799335  128365.0508 
730.42  44.5090803  127534.5776 
730.42  45.27982363  127534.5776 
731.46  45.9333676  126712.0107 
732.5  46.04895952  125889.4437 
732.5  46.66861274  125889.4437 
733.52  47.07603338  125082.6992 
734.55  47.14717912  124268.0385 
734.55  48.04645551  124268.0385 
735.56  48.42042463  123469.2002 
736.57  48.47301344  122670.3619 
736.57  49.3831413  122670.3619 
737.57  49.74177595  121879.4397 
738.56  49.89516871  121096.4238 
738.56  50.7509032  121096.4238 
739.55  51.14361357  120313.3981 
740.53  51.33830552  119538.2885 
740.53  52.22632133  119538.2885 
741.5  52.71508224  118771.0851 
742.47  52.90584813  118003.8916 
742.47  53.66279892  118003.8916 
743.43  54.31020877  117244.5945 
744.39  54.42435374  116485.3072 
744.39  55.22004426  116485.3072 
745.34  55.92647489  115733.9262 
746.28  56.02395664  114990.4515 
746.28  56.80769469  114990.4515 
747.22  57.53582525  114246.9768 
747.22  57.57618736  114246.9768 
748.15  58.35567559  113511.4182 
749.08  58.5535167  112775.8497 
749.08  59.16735787  112775.8497 
750  59.9594339  112048.1974 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 



 

184 
 

%% The Axial Force of the Top Compressive Spring 

Temp                                 Displacement                                    Force 
(ᵒC)                                           (mm)                                               (N) 

 

20 
 

0.00E+00 0 
20 

 
1.71E-06 0 

20 
 

3.42E-06 0 
20 

 
6.85E-06 0 

… 

% The top compressive spring is activited 

70.41  -0.060164448  -134126.0182 
90.42  -0.118819559  -264887.2356 
99.245  -0.118819559  -264887.236 
99.245  -0.130815683  -291630.4766 
108.07  -0.130718145  -291413.0329 
123.86  -0.114739141  -255790.6629 
138.14  -0.11603108  -258670.8125 
151.17  -0.111104683  -247688.2805 
163.17  -0.105928747  -236149.4454 
163.17  -0.092095255  -205310.1152 
174.27  -0.093941571  -209426.1527 
184.61  -0.095278979  -212407.6663 
194.28  -0.091665778  -204352.6735 
194.28  -0.089189411  -198832.0505 
203.36  -0.086237461  -192251.1982 
211.92  -0.083818634  -186858.8514 
220.03  -0.081968921  -182735.2427 
227.71  -0.079287845  -176758.2572 
235.02  -0.077152413  -171997.6874 
241.99  -0.075166487  -167570.4167 
248.65  -0.073203057  -163193.2955 
255.03  -0.071550254  -159508.6619 
261.14  -0.070971972  -158219.486 
261.14  -0.069124089  -154099.9552 
267.02  -0.067425364  -150312.9495 
272.68  -0.065201872  -145356.0651 
272.68  -0.065357889  -145703.8784 
278.12  -0.064029536  -142742.5498 
278.12  -0.061723744  -137602.1927 
283.38  0.233220655  0 
280.75  -0.060937513  -135849.429 
283.38  -0.064474276  -143734.0186 



 

185 
 

283.38  -0.063250268  -141005.3083 
288.46  -0.059436006  -132502.0853 
288.46  -0.059443407  -132518.5851 
293.38  -0.058747426  -130967.0175 
298.13  -0.058750058  -130972.8844 
298.13  -0.058569558  -130570.4915 
302.74  -0.059901208  -133539.1698 
302.74  -0.057169129  -127448.4818 
307.22  -0.057727658  -128693.6251 
311.56  -0.059100953  -131755.1437 
311.56  -0.056606565  -126194.3452 
315.78  -0.055594981  -123939.1972 
319.88  -0.055579619  -123904.9518 
319.88  -0.055415745  -123539.623 
323.88  -0.055742375  -124267.7864 
323.88  -0.054777578  -122116.9424 
327.77  -0.053907503  -120177.2633 
331.57  -0.054591298  -121701.6625 
331.57  -0.053276067  -118769.5884 
335.27  -0.053348008  -118929.9668 
338.88  -0.052891595  -117912.4748 
338.88  -0.052954369  -118052.4189 
342.4  -0.051882515  -115662.9093 
345.85  -0.051598491  -115029.7282 
345.85  -0.052197127  -116364.281 
349.21  -0.051425978  -114645.1405 
352.51  -0.051747123  -115361.0776 
352.51  -0.051091227  -113898.873 
355.73  -0.050517411  -112619.6523 
358.88  -0.050794326  -113236.9843 
358.88  -0.050186732  -111882.461 
361.97  -0.049887952  -111216.383 
365  -0.049804442  -111030.213 
365  -0.049485761  -110319.7695 
367.97  -0.048822669  -108841.5229 
370.88  -0.048690079  -108545.9375 
373.73  -0.049016953  -109274.6463 
376.53  -0.047862863  -106701.8053 
376.53  -0.047395841  -105660.662 
379.28  -0.047035866  -104858.1625 
381.98  -0.047226758  -105283.7211 
384.63  -0.046674615  -104052.8151 
384.63  -0.046459839  -103574.0099 
387.24  -0.046308773  -103237.2355 
389.8  -0.046300531  -103218.8608 
392.32  -0.046001624  -102552.5022 
392.32  -0.04574957  -101990.5904 
394.79  -0.045021861  -100368.2933 
397.23  -0.045424419  -101265.7249 



 

186 
 

399.63  -0.044859695  -100006.7713 
399.63  -0.044450437  -99094.40362 
401.99  -0.044021932  -97709.4729 
404.31  -0.044644015  -98582.24499 
406.6  -0.043280823  -95085.96704 
406.6  -0.042584352  -93555.85253 
408.85  -0.0414401  -90584.68222 
411.07  -0.042247625  -91889.87269 
413.26  -0.04096151  -88652.5656 
413.26  -0.040140043  -86874.673 
415.41  -0.039327585  -84701.58935 
417.54  -0.038654299  -82847.692 
419.64  -0.039163719  -83536.16312 
419.64  -0.037946953  -80940.8037 
421.7  -0.037275082  -79131.10483 
423.74  -0.036670749  -77481.26783 
425.75  -0.037326267  -78498.34236 
425.75  -0.035984013  -75675.53937 
427.74  -0.035253262  -73794.67556 
429.69  -0.036083092  -75186.64632 
429.69  -0.034668446  -72238.93499 
431.63  -0.03408755  -70704.17876 
433.54  -0.035412313  -73120.26889 
433.54  -0.033887665  -69972.13597 
435.42  -0.032234024  -66260.44013 
437.28  -0.033934002  -69445.36573 
437.28  -0.031855758  -65192.27422 
439.12  -0.031252685  -63676.05969 
440.94  -0.031146333  -63181.35631 
442.73  -0.031336067  -63291.13428 
442.73  -0.029783644  -60155.62282 
444.5  -0.029861575  -60053.79638 
447.99  -0.028720818  -57268.04317 
451.39  -0.028624583  -56598.82923 
451.39  -0.027119888  -53623.62514 
454.72  -0.023938692  -46942.54197 
457.98  -0.02660185  -51739.52801 
457.98  -0.022137345  -43056.24457 
461.17  -0.021381957  -41252.51983 
464.29  -0.02368058  -45324.92384 
464.29  -0.02075384  -39723.10564 
467.35  -0.019539019  -37104.68795 
470.35  -0.02133696  -40205.041 
470.35  -0.01825672  -34400.9736 
473.28  -0.017105174  -31985.3191 
476.17  -0.018713411  -34727.35143 
476.17  -0.015459027  -28688.03837 
478.99  -0.014651832  -26987.4456 
481.77  -0.016433562  -30045.17675 



 

187 
 

484.49  -0.013396345  -24313.57815 
484.49  -0.012887332  -23389.74906 
487.17  -0.011142816  -20077.09301 
489.8  -0.01181797  -21141.14634 
492.38  -0.012159943  -21599.03293 
492.38  -0.009346023  -16600.82346 
494.92  -0.007648054  -13489.53892 
497.42  -0.00307985  -5394.436384 
499.87  -0.005999254  -10435.76043 
502.29  -0.004110312  -7082.258334 
502.29  -0.002160876  -3723.289634 
504.67  -0.000855568  -1460.111282 
507.01  0.001077083  0 
… 
509.31  0.00284568  0 
… 
550.98  0.043763328  0 

 

 

 


