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Abstract 
 

Biochars have traditionally been associated with soil amendment but are also useful 

in a number of sectors as they show potential to be cost-effective, multi-functional 

products particularly if they are produced from waste biomass. Current research is 

geared towards enhancing char agronomic value via physical, chemical and/or 

biological means although further studies are still required to gain a better 

understanding of the parameters which can be optimized to produce chars with 

specific functionality. 

This research set out to evaluate the potential for hydrochars and biochars derived 

from herbaceous and treated municipal waste to be used for nitrogen and 

phosphorus recovery from simulated wastewater, in addition to ammonia gas 

emission reduction during co-composting. This study also focused on providing 

more insight on some of the factors influencing hydrochar and biochar performance 

in nutrient-rich environments and investigating the potential for modifying char 

characteristics for enhanced nutrient recovery. Consequently, analysis of the 

physicochemical properties of hydrochars and biochars produced from paprika 

waste from a greenhouse, the treated organic fraction of municipal waste, 

greenwaste and pig manure has been performed. Comparisons are also made with 

relatively low-contaminant hydrochars and biochars derived from bark-free holm oak 

wood. Processing parameters include hydrothermal carbonization at 250°C for 60 

min, slow pyrolysis at 400–700°C and gasification at 600–750°C over 30–60 min 

residence times.  

As oak and paprika waste chars possess carbon contents >50%, these have been 

categorised as Class 1 biochars in accordance with the international biochar 

initiative product specifications, while hydrochars and slow pyrolysis biochars 

derived from municipal waste, presscake, and greenwaste are ranked as Class 2–3 

chars. in spite of differences in biomass inorganic content, the various feedstocks 

decompose into chars in a similar manner. Char morphological properties are 

observed to be more dependent on processing temperature and reactor system 

than to feedstock property, based on the substantial differences in surface area of 

holm oak biochars produced using three different reactor types. However, from 

batch sorption tests with synthetic wastewater, char surface area and porosity are of 

less importance than char oxygen and inorganic mineral contents in terms of 

ammonium and phosphate sorption, respectively. Overall however, all chars 
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demonstrate similarly low capacities for ammonium and phosphate sorption (up to 

14.6% and 7%, respectively). Conversely, in terms of ammonia removal, two of the 

hydrochars selected for further study are shown to possess higher ammonia 

emission reduction capacities relative to their biochar counterparts in 17-day 

laboratory co-composting trials. These differences are likely attributable to the acidic 

functional groups present in the hydrochars. While both oak and greenhouse waste 

hydrochars demonstrated higher levels of inorganic nitrogen (ammonium and nitrate) 

mineralization relative to their biochar counterparts, mineralization and carbon 

dioxide evolution was more prominent in the latter hydrochar. These findings are in 

agreement with previous studies in the literature, which have shown that hydrochars 

possess more mineralizable carbon and nitrogen species than biochars. 

Following from an understanding of the respective effects of char acid oxygen 

groups and inorganic content on char ammonium and phosphate sorption capacities, 

attempts have been made to enhance these properties via mild chemical activation 

of biomass or char samples. results show that modest increases in both ammonium 

and ammonia sorption capacity of the chars can be achieved following acid 

treatment, while phosphate sorption can be enhanced from low levels (2.1–3.6%) to 

relatively high levels (66.4–70.3%) by impregnation with magnesium. various 

treatments will understandably produce different effects on the different hydrochars. 

this is evident in the case of greenhouse waste, which experiences a considerable 

increase in ammonia sorption capacity following potassium hydroxide treatment of 

greenhouse waste 250°C hydrochar and 400°C biochar, from 3.3% to 44.1% in the 

latter char while the effect is less pronounced following sulphuric acid treatment. 

overall, findings from this study suggest that it is possible to enhance waste-derived 

char capacity for ammonia / ammonium and phosphate recovery by treatment of 

chars or char precursors (raw feedstock) via mild chemical activation processes. 
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CHAPTER 1 

 

1.0 Nomenclature 

Chars obtained from the thermochemical treatment of organic matter (biomass) can 

generally be categorised as black carbon as this term is used to describe all charred 

matter with high carbon contents (Lehmann and Joseph 2009). Black carbon 

intended for use in soil or carbon capture and storage is often referred to as ‘biochar’ 

or ‘agrichar’ to differentiate from charcoal designed for energy generation and other 

purposes (EBC 2012; Kambo and Dutta 2015). Biochars or agrichars are further 

differentiated based on thermochemical processing route into ‘pyrochars’ or 

‘hydrochars’ when produced via slow pyrolysis or hydrothermal treatment in sub-

critical water respectively. However, as the International Biochar Initiative (IBI) 

refers to the solid product obtained from pyrolysis as biochar, this nomenclature is 

also adopted in this study while ‘hydrochar’ is reserved for the solid product 

obtained from Hydrothermal Carbonization. For brevity, ‘char’ will be used to refer to 

both biochar and hydrochar in some cases.  

1.1 Hydrochar and biochar production 

Hydrochars and biochars are heterogeneous structures comprised of carbonized 

organic matter, inorganic matter, sorbed volatiles and functional groups of nitrogen, 

sulphur and oxygen (Atkinson et al. 2010; Knicker 2007; Novak et al. 2009; Spokas 

et al. 2012), and are becoming increasingly attractive in a number of sectors as they 

show potential as relatively cost-effective, multi-functional products (Table 1.1). 

Char properties are largely dependent on processing conditions and feedstocks 

(Downie et al. 2009; Zhao et al. 2013a), and an essential step preceding their large-

scale deployment involves understanding the effects of such parameters on char 

properties and functionality. Thermochemical processes used for char production 

include Hydrothermal Carbonization (HTC), various sub-classes of pyrolysis (slow, 

intermediate, fast, flash or microwave pyrolysis) and gasification. In each of these 

processes, variations in processing parameters such as temperature, pressure, 

heating rate, and residence time result in solid (char), aqueous, and gaseous 

products in different proportions as summarised in Figure 1.1.  

 



2 
 

Table 1.1 Some potential hydrochar and biochar applications 

Sector  Applications Potential limitations References 

 

Agronomy 

 

Chars reduce soil acidity, adsorb toxic 
compounds, enhance soil structure, water and ion 
retention due to char physico-chemical properties. 

 

Some of the properties chars are 
recommended for result in negative soil 
responses, as highlighted in Section 1.2.2. 

 

 

Granatstein et al. (2009); 
Lehmann et al. (2006); Liang et 
al. (2006); Sarkhot et al. (2011); 
Spokas et al. (2012); Xu et al. 
(2013) 

    

Wastewater treatment 

 

 Adsorption of pathogenic viruses (RV and HAdV) 
and E.coli using hydrochar derived from sewage 
sludge and maize residue respectively due to 
surface functional groups. 

Loss of hydrophobic sites or 
heterogeneous surface charge on 
hydrochar could result in reduction in virus 
removal capacity.  

 

Chung et al. (2015) 

  Sorption of various organic species: Polycyclic 
Aromatic Hydrocarbons (PAHs) removal 
efficiencies of chars comparable to bitumen-
derived activated carbon in some cases; sorption 
of phenols such as dyes, pharmaceutical active 
compounds (e.g., ibuprofen) and Endocrine 
Disrupting Chemicals (EDCs). 

The lower surface areas of chars relative to 
activated carbon make uptake of freely 
dissolved PAH lower in the former. Char 
performance also varies with feedstock 
material and processing temperature.  

Oleszczuk et al. (2012); Libra et 
al. (2011);  Mohan et al. (2014); 
Mondal et al. (2016); Sun et al. 
(2011); Tan et al. (2015) 

  Reduction in bioavailability of heavy metals from 
contaminated soils, aquatic sediments and other 
contaminated sites possibly due to biochar 
microporosity, pH and complexation with N 
species.  

 

Lack of policies supporting biochar use for 
reducing contaminant bioavailability due to 
biochars’ inability to remove all traces of 
contaminants (no cure-all promise). Long-
term effectiveness also a concern, as 
heavy metal immobilization by biochar may 
be reversed by soil acidification. 

 

Ghosh et al. (2011); Houben et 
al. (2013); Mohan et al. (2014); 
Tan et al. (2015); Titirici and 
Antonietti (2010); Yang and 
Jiang (2014) 

  Nutrient recovery using various biochars owing to 
their surface functional groups and surface areas: 
NH4

+, NH3  and PO4
3- removal due  char O, S and 

Mg contents resp.; ZnCl2-activated biochar 
compared favourably with commercial activated 
carbon for humic acid uptake due to surface area. 

Chars often require some form of 
modification to enhance their nutrient 
uptake capacity. 

Gokce et al. (2009); Ismadji et 
al. (2016); Petit et al. (2010); 
Tian et al. (2016); Yao et al. 
(2011) 
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Table 1.1 Some potential hydrochar and biochar applications 

Sector  Applications Potential limitations References 

    

Climate control    
(carbon sequestration) 

 Stabilization of soil organic carbon after 
application of high temperature (recalcitrant 
carbon) biochar in some soils may be possible 2.3 
years after application.  

 N-doped hydrochars may also possess greater 
oxidation stability, and potential for (pyrrolic) N 
enriched activated biochar to improve CO2 uptake. 

C sequestration potential of biochars may 
vary with soil type and vegetation. For 
instance, stabilization of organic carbon 
from both biochar and soil occurred 
possibly via organo-mineral complex 
formation within mineral soil.   

Chen et al. (2015); Ghosh et al. 
(2011); Singh and Cowie (2014); 
Titirici and Antonietti (2010) 

    

Energy generation   Direct Carbon Fuel Cells (DCFCs) & Microbial 
Fuel Cells (MFCs) using wood-based biochar and 
glucose-based hydrochar. Char oxygen surface  
groups influence electrochemical reactivity. 

Contamination may arise from char volatile 
matter and ash. 

Ahn et al. (2013); Ganesh and 
Jambeck (2013); Titirici and 
Antonietti (2010) 

  Low-cost, reusable catalysts for esterification of 
free fatty acids during biodiesel production using 
activated wood-based biochar. 

Char performance lower than that of 
activated carbon (70% versus 97% resp.) 
and requires more regeneration cycles 
between uses than activated carbon. 

 

Kastner et al. (2012) 

  Catalyst or catalyst support for tar 
cracking/reduction during pilot-scale biomass 
gasification, comparable to traditional coal-based 
catalyst owing to biochar’s disordered carbon 
structure. Mineral content, pore size, surface area 
may also play important roles in tar reduction. 

In some cases, biochars require higher 
temperatures for catalytic reforming or 
removal of tar (toluene) than commercial 
catalysts. 

El-Rub et al. (2008); Mani et al. 
(2013); Zhang et al. (2013) 

   
Capacity may be lower than that of silicon. 

 
Titirici and Antonietti (2010) Other industrial 

functions  
 Calcined hydrochar as anode in Li ion batteries. 

 
  Electrodes for capacitive deionization (CDI) using 

activated wood-based biochar likely due to 
mesoporous structure. 

Removal efficiency for some metals (e.g. 
Zn2+) may decline after a limited number of 
uses regardless of regeneration. 

Dehkhoda et al. (2016) 

  Catalyst for hydrogenation reactions, e.g., phenol 
to cyclohexanone due to hydrochar hydrophilicity. 

 Reza et al. (2013); Titirici and 
Antonietti (2010) 



 
 

 

Product characteristics also vary; for instance, solid products obtained from 

torrefaction possess enhanced fuel characteristics relative to the original biomass 

such as energy density and grindability due to low temperature (250–300°C) 

treatment (Tan et al. 2015) but such low temperature treatment is insufficient to fully 

convert biomass to char for soil amendment or carbon sequestration. As such, 

torrefaction is often considered as a useful pre-treatment process for biofuel 

industries and thus not classified as biochar (Mohan et al. 2014). Reactors 

frequently optimized for biochar production include auger, vertical tubular, fixed and 

fluidized beds and extensive studies on thermochemical processes and their 

associated technologies have been outlined elsewhere (Bridgwater and Bridge 1991; 

Mohan et al. 2014; Shen et al. 2013; White et al. 2011). In this study, more 

emphasis is placed on the proposed mechanisms governing HTC and slow 

(conventional) pyrolysis and the respective effects of such processes on hydrochar 

and biochar physico-chemical properties. 

1.1.1 Slow pyrolysis 

Pyrolysis refers to the thermal decomposition of biomass into useful end products in 

the absence of air, often at temperatures below 1000°C (Bahng et al. 2009). As the 

pyrolysis process yields several products such as chars, oils, gases and chemicals 

such as methanol and acetic acid, it is sometimes described as the dry distillation of 

wood (Libra et al. 2011). Such products are formed during biomass thermal 

treatment due to dehydration, decarboxylation and other degradation reactions like 

chain scission, depolymerisation, or splitting of weakly bonded side groups within 

the biomass structure (Silverio et al. 2008). Consequently, water, condensable 

volatiles (tars or oils) and non-condensable volatiles (C1–C2 hydrocarbon fractions, 

CO, CO2, H2) are released during char formation (Diebold 1994; Duku et al. 2011; 

McGinnes 1976; Schimmelpfennig and Glaser 2012; White et al. 2011). Compared 

to fast pyrolysis and gasification, slow pyrolysis favours the formation of chars 

(Figure 1.1) and potential reaction pathways for char formation from lignocellulosic 

biomass have been the subject of extensive research for decades, with 

amendments to established pyrolysis kinetics detailed in studies like Burnham et al. 

(2015).  
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Figure 1.1 General distribution of products obtained from various 

thermochemical processes. Adapted from IEA Bioenergy (2007), 

Jahirul et al. (2012) and Libra et al. (2011). 

 

 

 

Reaction pathways are often modelled for cellulose as this is the major component 

of lignocellulosic biomass (Diebold 1994; Duku et al. 2011; Lin et al. 2009; White et 

al. 2011; Wooten et al. 2004). Cellulose is comprised of D-glucopyranose units 

linked by β-(1,4)-glycosidic bonds (White et al. 2011). Many pathways suggest the 

degradation of cellulose into an intermediate reactive polymer often considered to 

be ‘active cellulose’ or anhydro-cellulose, which degrades into anhydrosugars such 

as levoglucosan (C6H10O5) from 300°C and subsequently into volatile compounds, 

or to char following dehydration, isomerization, retro-aldol condensation, and re-

polymerization reactions (Burnham et al. 2015; Diebold 1994; Lin et al. 2009; 

Rutherford et al. 2008; Saiz-Jimenez 1994; Shafizadeh 1982; Shen et al. 2013). 

Wooten et al. (2004) proposed a slightly different reaction route for char formation 

from pure cellulose at low temperatures (<350°C). The proposed mechanism 

involves the formation of a carbohydrate termed ‘final carbohydrate’ which differs 

from ‘intermediate carbohydrate’ (active cellulose) in that the former is produced 

from the volatiles released during cellulose depolymerization. Slow pyrolysis 

appears to favour active cellulose formation (Wooten et al. 2004) and its 

degradation is considered to be an endothermic reaction with activation energy of 

about 200 KJ mol-1 (Burnham et al. 2015; Lin et al. 2009; Wooten et al. 2004), the 

rate of which may not be first order as initially thought (Burnham et al. 2015).  
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Figure 1.2 General illustration of the conversion of lignocellulosic biomass components into solid, 

liquid and gas phases during pyrolysis, with typical decomposition temperatures of the main 

components in parentheses. Adapted from Brownsort (2009), Crombie and Mašek (2014), Reza et 

al. (2013) and White et al. (2011). 

 

The thermal degradation of hemicellulose, a hetero-polysaccharide characterised by 

pentose or hexose units linked by β-(1,4)-glycosidic bonds (Scheller and Ulvskov 

2010; Yang et al. 2007), also contributes to char formation via its degradation into 

organic acids such as acetic acid, which catalyse the depolymerization of other 

polysaccharides (Nuopponen et al. 2005). Lignin is a complex biopolymer which 

depolymerizes into phenolic compounds, aromatic hydrocarbons, para-coumaryl, 

coniferyl, syringyl alcohols (Harvey et al. 2012a; Saiz-Jimenez 1994), char and non-

condensable gases (Yang et al. 2007) depending on biomass nature. 

Ultimately, biomass pyrolysis process is more complex as other components of 

lignocellulosic biomass may indirectly contribute to char formation (Figure 1.2) 

(Brownsort 2009; Shen et al. 2013; White et al. 2011). For instance, biomass 

extractives and certain inorganic elements favour the formation of low molecular 

weight species (formic acid, acetic acid) over levoglucosan in some cases (Guo et 

al. 2010; Patwardhan et al. 2010). Certain cations also alter lignin product 

distribution patterns; Kleen and Gellerstedt (1994) found that the presence of 

sodium altered the relative abundance of phenols and catechols. 

 

Condensable volatiles  

Char 

Non-condensable  

volatiles  

(CO, CO2, H2, CH4,…) 

 

Hemicellulose 

19–33% 

(200–375°C) 

Lignin 
14–26% 

(180–550°C) 

Extractives 
    Tannins, terpenes, fatty acids… 

 6–15%  

  

Water 

Inorganics 

Cellulose 
30–50% 

(250–380°C) 
Ash 
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1.1.2 Hydrothermal Carbonisation (HTC) 

Hydrothermal Carbonisation (HTC), also referred to as wet torrefaction or 

hydrous/wet pyrolysis (Libra et al. 2011; Lynam et al. 2011; Reza et al. 2014) 

involves the dehydration of complex polymeric biomass structures into simpler units 

in subcritical water. HTC is often conducted at temperatures between 180–260°C 

with or without catalysts (Lynam et al. 2011; Ramke et al. 2009). Reactor pressure 

is autogenous and rise to about 4.2 MPa, although much higher pressures of >25 

MPa have been reported (Benavente et al. 2015; Wiedner et al. 2013a) possibly 

due to the high biomass loading ratios employed. 

Similar to slow pyrolysis, HTC involves degradation reactions but at lower reaction 

temperatures, beginning with hydrolysis of cellulose, hemicellulose, and lignin into 

oligosaccharides and phenols, soon followed by dehydration, decarboxylation, 

aromatization, and re-condensation reactions (Cao et al. 2013; Heilmann et al. 

2011; Hoekman et al. 2011; Reza et al. 2014; Stemman et al. 2013; Sun et al. 2011) 

as shown in Figure 1.3. Dehydration of carbohydrates such as pentose and hexose 

sugars into furfural and hydroxymethyl furfural (HMF), respectively, followed by 

polymerization of HMF to polyfurans and dehydration results in char formation and 

other low molecular weight species (Nuopponen et al. 2004; Stemman et al. 2013; 

Titirici and Antonietti 2010). The high reaction pressures observed during HTC at 

relatively low processing temperatures likely result from the exponential relationship 

between temperature and the vapour pressure of water as expressed by the 

Clausius-Clapeyron equation (Equation 1.1): 

 

P = A e
(

-∆Hv
RT

⁄ )
      

 (1.1) 

where P is vapour pressure (atm), T is absolute temperature (K),  

∆Hv is the enthalpy of vaporization, R is a gas constant (8.314 J K-1 

mol-1), and A is an experimental constant (MIT 2008).  

 

Distilled water is a frequently used solvent in HTC as its purity enables a clearer 

evaluation of biomass transformations occurring although recent studies also 

incorporate salts or acids to enhance the rate of dehydration reactions (Ramke et al. 

2009). At temperatures of 227–327°C, water serve as an acid or base catalyst since 

its ionic product is highest at this temperature range. Studies also show that at this 

temperature range, the dielectric constant of water is lowest thus causing it to act 
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non-polar (Lynam et al. 2011), although faster cellulose degradation occurs at 

super-critical conditions (>374°C, 25 MPa) as demonstrated by Sasaki et al. (2000). 

Typical HTC residence times range from minutes to several hours (Lynam et al. 

2011; Yan et al. 2014) although it has been suggested that most products are 

formed during the first few minutes of the HTC process (Lynam et al. 2011) while 

most decarboxylation reactions occur during hold time (Hoekman et al. 2011).  

As with other thermochemical processes, the product streams from HTC exist in 

solid, aqueous and gaseous phases (Figure 1.1). The solid products, hydrochars, 

are often recovered from the aqueous phase by filtration (Heilmann et al. 2011) or 

mechanical dewatering. Hydrochars generally possess higher O/C and H/C ratios 

compared to biochars (Libra et al. 2011; Smith et al. 2016) possibly because oxygen 

loss during HTC occurs through decarboxylation reactions (Knežević et al. 2010). 

Hydrochars are in contact with process water during HTC, thus the amount of 

extractives present in hydrochars are sometimes relatively higher than the original 

biomass on a weight/weight basis, since sugars and acids are deposited within char 

pores (Reza et al. 2013). As cellulose and hemicellulose are increasingly degraded, 

the aqueous or condensable volatile phase is often comprised of acids (acetic, 

formic and lactic acids) and sugars (glucose, 5-HMF) (Reza et al. 2013), amounts of 

which are dependent on the carbonization temperature and feedstock 

characteristics. Hoekman et al. (2011) observed that most sugars are present in the 

aqueous phase at low carbonization temperatures (<225°C). This also holds true for 

organic acids, which increase until about 255°C when total acid content decreases, 

leaving mainly acetic and lactic acids (Hoekman et al. 2011), and as the aqueous 

phase is rich in organics, it possesses a high Total Organic Carbon (TOC) content 

(Ramke et al. 2009). The gaseous or non-condensable volatile phase is 

predominantly comprised of carbon dioxide (70–90%), carbon monoxide, hydrogen, 

and 1–10% low molecular weight hydrocarbons (methane, ethane, propene) 

(Benavente et al. 2015; Ramke et al. 2009).  

As HTC is capable of processing high moisture content biomass, conservation of 

the thermal energy that would otherwise be required to dry the bio-feedstock is 

considered to be one of the key advantages of the process, although energy 

requirements for drying the recovered chars must be factored in as has been 

researched by Benavente et al. (2015). However, in terms of commercial HTC 

operations, some form of recycled process water is necessary from a sustainability 

perspective. 
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Figure 1.3 A proposed mechanism for the conversion of cellulose to 

hydrochar (Sevilla and Fuertes 2009). 
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1.2 Hydrochar and biochar agronomic effects  

1.2.1 Positive responses 

Plants are thought to require 17 nutrients in the right balance to function adequately, 

and while carbon (C), hydrogen (H) and oxygen (O) are obtained during 

photosynthesis, macronutrients (N, P, K, Ca, Mg, S) and micronutrients (Cu, Zn, Mn, 

B, Mo, Fe, Cl and Ni) are obtained from soil (Miller and Oldham 2014). In 

combination with soil microorganisms and nutrients, it has been suggested that the 

application of biochar to soil may result in soils that are comparable to the fertile 

Amazonian Terra Preta soils, based on the fact that Terra Preta soils are comprised 

of black (pyrogenic) carbon, microorganisms (fungi and bacteria), soil organic 

matter, and nutrients from plant matter and excrement (Glaser and Birk 2012). Black 

carbon is also thought to contribute to nutrient availability in these soils owing to its 

nutrient retention capacity and supply of inorganic elements (Glaser et al. 2002; 

Spokas et al. 2012a). However, the positive effects in soils with biochar application 

as outlined in Table 1.1 have mostly been observed in mostly tropical regions or 

highly weathered oxisols because such soils experience high rainfall and nutrient 

leaching and therefore derive only temporary nutrient benefits from the application 

of organic matter or vegetative burning (Atkinson et al. 2010; Galinato et al. 2010; 

Glaser et al. 2002). In addition to a supply of nutrients and increasing soil nutrient 

retention capacity (Jindo et al. 2012a; Glaser et al. 2002; Lehmann et al. 2006), 

chars improve soil structure by serving as bulking agents (Dias et al. 2010; Jindo et 

al. 2012b) and supplying decomposable carbon for microbes depending on char 

production temperature (Hunt et al. 2010). A number of studies have also shown 

that chars are capable of minimising nitrogen losses through the uptake of total 

ammoniacal nitrogen (Hunt et al. 2010; Steiner et al. 2010).  

In addition to soil enhancement, biochars show potential for longer-term carbon 

sequestration compared to untreated bio-feedstocks (Figure 1.4) owing to their 

more recalcitrant aromatic carbon structures (Atkinson et al. 2010; Glaser et al. 

2002; Sparkes and Stoutjesdijk 2011; Yao et al. 2011; Zhao et al. 2013b) although 

the timeframe for which chars remain stable in soils is uncertain given the different 

climatic conditions (Atkinson et al. 2010), biochar properties (Chan et al. 2007) and 

soil types. There are some reports of biochars increasing CO2 emissions in soils 

however (Sarkhot et al. 2011), and based on analyses of molar O/C ratios, Spokas 

et al. (2012) suggested that carbon sequestration potential in black carbon 

decreases as surface oxygen group concentration increases.  
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1.2.2 Negative responses 

While several studies highlight positive soil and biomass responses following 

biochar and hydrochar application, negative effects have also been observed (Chan 

and Xu 2009; Galinato et al. 2011; Glaser et al. 2002; Lehmann et al. 2006; Schmidt 

2011) For instance, because biochars possess high cation exchange and 

adsorption capacities, they initially render nutrients and water unavailable to plants 

in some cases (Schmidt 2011). Other studies have observed micronutrient 

deficiencies arising from the soil pH increase following biochar application (Chan 

and Xu 2009; Glaser et al. 2002), and phenolic compounds in black carbon 

stimulate microbial activity resulting in N immobilization (Deenik et al. 2010). 

Adverse effects are also observed due to the presence of volatile matter in chars, 

described as the labile fraction of black carbon (Deenik et al. 2011), sometimes 

present as resins and tars on the surfaces of freshly produced chars (Hunt et al. 

2010). Deenik et al. (2011) and McClellan et al. (2007) suggested that high char 

volatile matter was partly responsible for short term negative effects on plant yield, 

based on pot trials with tropical soils amended with low and high volatile matter 

corncob charcoal showing higher biomass yields in the former case. Consequently, 

Figure 1.4 A sustainable-biochar model (Woolf et al. 2010). 
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production processes resulting in biochars with minimal volatile matter may be 

preferable (Hunt et al. 2010). Similarly, hydrochars could also benefit from longer 

processing times and to some extent temperatures to reduce their toxic (furane) 

content (Lu et al. 2013).  

 

1.3 Char modification 

As some studies have shown that chars with hydrophilic surfaces improve soil 

nutrient retention and aggregation (Borchard et al. 2012), there is growing interest in 

modifying char properties to enhance their effectiveness in soils and to improve 

specific physical and chemical properties such that smaller quantities of designer or 

bespoke chars are required for soil amendment (Novak et al. 2009; Silber et al. 

2010). Furthermore, Nguyen et al. (2012) observed that most agricultural by-

products considered as adsorbents require some form of modification to perform 

efficiently. Char modification is broadly categorised under physical, chemical or 

biological activation, where physical modification involves high temperature gas-

phase treatment of biochars with steam, air or carbon dioxide; chemical modification, 

which involves the incorporation of chemical species onto chars via thermal or 

electro-modification (Jung et al. 2015; Krishnan and Haridas 2008); biological 

modification, which includes co-composting, lactic acid fermentation and urine-

treatment. Chemical activation is often considered to be more cost-effective and 

less time-consuming, but various processing temperatures, activating agents and 

loading ratios understandably result in chars with different properties even when 

similar chemical activation agents are used. Figure 1.5 outlines some proposed 

mechanisms through which species uptake occurs on the surfaces of chemically 

modified biochars, adapted from Rajapaksha et al. (2016). 
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1.4 Research aim and objectives 

Further studies are required to gain a better understanding of the parameters that 

can be optimized to produce chars with specific functionality. This study is therefore 

focused on examining the influence of key feedstock and processing parameters on 

char nutrient sorption capacity with a view towards enhancing char nutrient sorption 

potential via mild chemical activation processes. Such findings are important from 

environmental and economic perspectives due to current challenges associated 

with wastewater quality and char commercial competitiveness, respectively. 

Consequently, the main objectives of this study are as follows: 

 

Figure 1.5 Some proposed surface interactions between species after char 

chemical treatment, adapted from Rajapaksha et al. (2016). 
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Objective 1: To evaluate the physicochemical properties and nutrient sorption 

capacities of hydrochars and biochars derived from various organic waste feed-

stocks (pepper waste from a greenhouse, the treated organic fractions of municipal 

waste, greenwaste, and pig manure) in comparison to relatively low-contaminant 

commercial and non-commercial oak biochars. Consequently, an evaluation of the 

ammonium/ammonia and phosphate sorption capacities of unmodified chars from 

pure solutions in batch sorption tests and proposing possible sorption mechanisms. 

Furthermore, the effect of coexisting ions on char ammonium/ammonia and 

phosphate sorption capacities using batch sorption tests were assessed. 

 

Objective 2: To produce chars with enhanced ammonia/ammonium and phosphate 

sorption capacities via: 

i) Development of modified chars using mild activation methods based 

on well-known carbon activation methods, via char post-treatment 

and biomass pre-treatment. 

ii) Comparison of key physicochemical properties between treated and 

untreated chars. 

iii) Analysis of the reaction mechanisms involved with 

ammonia/ammonium and phosphate sorption capacities of modified 

chars in single and multiple ion systems. 

 

Objective 3: To evaluate char degradation rates via short-term laboratory 

incubation tests which quantify carbon dioxide and nitrogen dynamics (NH3, NH4-N 

and NO3-N) between chars within a high pH soil, in addition to small-scale co-

composting trials with a selection of hydrochars and biochars to investigate their 

potential for reducing NH3 emissions. 

 

1.5 Organisation of Chapters 

Chapter 1 established the purpose and importance of this study and provided an 

outline of the thesis’ structure.  

Chapter 2 provides a summary of previous research on hydrochar and biochar 

properties, functions, as well as the measured and potential effects these have on 

nutrient recovery in soils, compost and aqueous solutions. As previous literature 
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places emphasis on char surface functional groups and elemental content, these 

are explored in this study, with particular focus on their impact on char nutrient 

uptake and retention.  

Chapter 3 outlines the main methods used throughout this study for investigating 

hydrochar and biochar physicochemical properties including elemental and organic 

matter contents, surface morphology and cation exchange capacity. Methods for 

evaluating char interactions in soil and nutrient-rich environments are also outlined, 

specifically inorganic nitrogen and phosphate dynamics via batch sorption tests in 

addition to small-scale co-composting and soil incubation tests. Methods involved in 

hydrochar and biochar chemical treatment are also highlighted.  

Chapter 4 evaluates the influence of biomass feedstock properties and processing 

conditions on char functionality using a number of char characterization techniques, 

to determine the factors that serve as predictors of chars’ ability to minimize nutrient 

losses from wastewater and composting systems.  

Chapter 5 evaluates the ammonium/ammonia and phosphate removal efficiencies 

of various chars and adsorption models are used to determine possible sorption 

mechanisms. Furthermore, char interactions with compost and with a high pH soil 

are evaluated in terms of inorganic nitrogen mineralisation and carbon dioxide 

evolution using small-scale incubation tests.   

Chapter 6 assesses the effect of some frequently recommended biochar 

modification methods on hydrochar and biochar ammonium/ammonia and 

phosphate sorption capacities. 

Chapter 7 summarises the results from previous chapters, and these results are 

used to highlight potential benefits and challenges involving hydrochar and biochar 

use for sustainable agriculture. Recommendations for future work are also proposed, 

and references are provided at the end of the thesis. 
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CHAPTER 2 

Literature Review 

2.0 Introduction 

Hydrochars and biochars show potential for application across a number of sectors 

and are produced from increasingly diverse feedstocks. This chapter therefore takes 

advantage of the wide variety of chars that have been generated by previous 

researchers to establish connections between some key char properties and 

biomass feedstock type, and the influence of processing conditions and pre- and/or 

post-treatment on such properties. This is useful for developing a clearer 

understanding of often inter-related factors and may guide decisions on the most 

effective thermal processing conditions required for producing biochars and 

hydrochars with specific functions. 

2.1 Hydrochar and biochar properties 

The International Biochar Initiative (IBI) and European Biochar Certificate (EBC) 

require that chars produced from various bio-feedstocks must meet certain quality 

criteria as outlined in Tables 2.1–2.2. Central to these criteria are organic carbon 

content requirements which must be >50% of dry mass or otherwise be termed as 

“pyrolysis ash”; stable, aromatic black carbon contents must represent 10–40% of 

overall biochar carbon content. Furthermore, nutrients must be bioavailable, while 

maximum thresholds for heavy metals and Polycyclic Aromatic Hydrocarbons (PAH) 

in basic and premium quality biochars must not be exceeded (IBI 2015). Both EBC 

and IBI make little reference to hydrochar quality criteria however. 

2.2.1 Carbon structure 

Aromaticity or extent of carbonization generally increases with heat treatment, and 

the extent of carbonization has frequently been predicted using elemental ratios 

(Spokas 2010). H/Corg atomic ratios are used as indicators of biochar aromaticity, 

with characteristic black carbon H/Corg atomic ratios being ≤0.2 and even lower for 

graphite (Schimmelpfennig and Glaser 2012; Xiao et al. 2016). Hydrochars and 

biochars however tend to have higher ratios depending on the biomass and 

production temperature used; typically ≤ 0.6 in the latter category at elevated 

temperatures (Schimmelpfennig and Glaser 2012; Xiao et al. 2016).  
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Furthermore, quantitative predictions on char aromatic clusters, char sorption 

capacities for aromatic pollutants, and production temperature have been made 

based on dry, ash-free H/Corg atomic ratios by Xiao et al. (2016). While some 

studies have stated that H/Corg atomic ratios ≥ 0.7 result from uncondensed 

aromatics (Schimmelpfennig and Glaser 2012; Wiedner et al. 2013a), Cao et al. 

(2013) suggested that elemental analysis (H/C atomic ratio) solely does not provide 

sufficient information on char ring condensation. O/C atomic ratios are also 

indicative of biochar aromaticity, being between 0.2–0.4 for charcoal, <0.2 for soot 

(Schimmelpfennig and Glaser 2012), and should preferably be ≤0.4 for char (EBC 

2012; Wiedner et al. 2013a). 

 

Table 2.1 IBI and EBC requirements for biochar 

Parameter IBI EBC 

C content Class 1: ≥ 60% (db) 

Class 2: 30–60% (db) 

Class 3: 10–30% (db) 

Biochar: ≥ 50% (db) 

Bio Carbon Mineral (BCM): < 50%  

Surface Area Must be declared. >150 m2 g-1 

Molar O/C ratio n.a Maximum of 0.4 

Molar H/Corg
 
ratio Maximum of 0.7 Maximum of 0.7 

Electrical Conductivity Declared, as dS m-1 Declared, as µS cm-1 

pH Must be declared Handling data for pH >10 

Bulk Density Not required Must be declared 

Macronutrients (NPK) IBI and EBC: Should be expressed as % total mass (db) 

Total Ash IBI and EBC: Must be declared, as % total mass (db) 

Volatile Matter IBI and EBC: Must be declared, as % total mass (db) 

Water Content IBI and EBC: Must be declared, as % total mass (db) 

db: dry basis; n.a: unavailable data. 
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2.2.2 Surface area and porosity 

Temperature understandably influences char porosity and surface area 

development since pore development occurs due to loss of water molecules during 

dehydroxylation and volatilization of condensed volatiles such as tars thus freeing 

pores ((Bagreev et al. 2001; Chan and Xu 2009; Downie et al. 2009). Consequently, 

both hydrochar and biochar surface areas increase with temperature but only up to 

a certain point. This is due to the deformation that occurs as ash melting points are 

reached at elevated pyrolysis temperatures in biochars (Downie et al. 2009). In 

hydrochars, this decrease in surface area is observed at much lower temperatures 

possibly because of the exponential increase in vapour pressure with carbonization 

temperature. The presence of sorbed volatile matter on hydrochars does not appear 

to affect hydrochar surface areas a great deal (Annex Table A1). For instance, 

hydrochars washed with water or acetone to reduce their volatile matter contents 

possessed comparable surface areas to unwashed hydrochars’ in Fang et al. (2015) 

and Kalderis et al. (2014). 

Pressure and heating rate also play important roles in pore development as these 

influence the mass transfer of volatiles (Downie et al. 2009). For instance, when 

pine sawdust was pyrolysed at low heating rates and atmospheric pressures, Cetin 

et al. (2004) observed micro-pore formation in the resulting biochars while high 

heating rates and pressure (up to 2 MPa) led to the formation of biochars with 

smooth surfaces and spherical macro-pores due total melting of the char particle. 

This was also observed in hardwood feedstocks like eucalyptus and to an extent, 

high volatile matter feedstocks like sugarcane bagasse (Cetin et al. 2004). It 

therefore follows that chars with specific pore-sizes are obtained by varying the 

process parameters outlined above. Feedstock properties also influence char 

surface area however; plant-based biochars tend to be higher than animal-based 

Table 2.2   Standard limits for contaminants present in biochar 

 
g t-1  mg kg-1 

 

ng kg-1 

Class 
Pb 

 
Cd  Cu  Ni  Hg  Zn  Cr  

 
PAH 

 
PCB  

Dioxins/
Furans  

 

Basic <150 <1.5 <100 <50 <1 <400 <90  <12 <0.2  <20 

Premium <120 <1.0 <100 <30 <1 <400 <80  <4 <0.2  <20 
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biochars, and lignin-containing feed-stocks could likely result in hydrochars with 

greater porosity development compared to cellulosic feed-stocks (Cao et al. 2013). 

Cao and Harris (2010) further suggested that feedstock properties may influence 

char specific surface areas to a greater extent than production process as 

feedstocks with higher Corg contents provide more opportunities for porosity 

development.  

The influence of char surface area and porosity in soil management has been 

widely researched. Soil microbial activity, water cycling and sorption of organic 

species are affected by surface area (Cao and Harris 2010; Downie et al. 2009; 

Moreno-Castilla 2004) and it is suggested that chars with high surface areas 

improve soil nutrient retention since more sites for cation adsorption are available 

(Liang et al. 2006). A combination of micro-, meso- and macro-pores have been 

observed in biochars, described as pores with internal diameters <2 nm, 2–50 nm, 

and >50 nm respectively (Downie et al. 2009; Klobes et al. 2006; Lowell et al. 2004). 

Each of these pores perform certain functions in soil: micro-pores enhance gas-solid 

adsorption, and are therefore useful for adsorbing gases and solvents; meso-pores 

facilitate liquid-solid adsorption and hence useful for soil water retention (Downie et 

al. 2009). Glaser et al. (2002) suggested that nutrients like NO3-N and base cations 

like K which are easily leached from soils at high and low soil pH conditions, 

respectively  retained if soil water is trapped in meso-pores; macro-pores provide a 

habitat for many soil organisms and also enhance soil aeration and hydrology 

(Downie et al. 2009; Duku et al. 2011).  

According to McLaughlin (2010), it is reasonable to assume that since biochar 

adsorption sites become obstructed or coated with foreign matter with time, biochar 

adsorption capacity is at its peak when freshly produced. Similarly, oxidation over 

time result in blockage of pores by O and H groups (Pradhan and Sandle 1999). On 

the other hand, considerable amounts of condensed volatiles may also block pores 

of some freshly produced chars at lower temperatures (< 450°C) (Downie et al. 

2009). Chun et al (2004) demonstrated that wheat residue biochars with high 

surface areas and low oxygen contents may be better suited for sorption of low 

concentration non-polar neutral organic compounds like benzene. This is likely 

because oxygen groups attract water molecules and the latter impede access of 

organic species to carbon pores. In some cases however, char surface area and 

porosity may be of lesser importance for nutrient cycling compared to the surface 

functional groups present on both hydrochars and biochars (Spokas et al. 2011; 

Bargmann et al. 2014): Sun et al. (2011) observed that 250°C poultry litter 
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hydrochar (O/C = 0.4) had superior capacity for non-polar species (17α-ethinyl 

estradiol, bisphenol A) sorption compared to 400°C poultry litter biochar (O/C = 0.2), 

while sorption of phenanthrene was comparable in both chars. Conversely, some 

studies have suggested that since higher temperature chars tend to have higher 

NO3
- removal efficiencies this may result from higher specific surface areas (Hale et 

al. 2013). More studies are required to confirm this however, since production 

temperature influences not only surface area but surface functionality and as such, 

a reduction in the number of acidic or negatively charged functional groups with 

temperature might result in similar improvements to NO3
- removal efficiency. 

2.2.3 Surface functional groups 

As black carbon surfaces possess diverse heteroatoms or acidic, basic, hydrophilic 

and hydrophobic functional groups (Amonette and Joseph 2009; Brennan et al. 

2001; Knicker 2007), they exhibit heterogeneous surface chemical characteristics 

owing to differences in the electronegativities of oxygen, nitrogen, phosphorus and 

sulphur with respect to that of carbon (Brennan et al. 2001). Oxygen-based surface 

functional groups are considered to be the most important surface functional groups 

on black carbon (Boehm 1994; Moreno-Castilla 2004; Puri and Bansal 1964); 

heterocyclic oxygen surface sites are thought to be responsible for anion exchange 

capacity (Lawrinenko and Laird 2015), CEC, and other char properties. Previous 

studies have attributed surface acidic properties in black carbon to high oxygen 

contents although Rutherford et al. (2008) however cautioned against using char 

oxygen content as a measure of acid functional groups due to observed differences 

in behaviour of both parameters with processing time.  

The high oxygen content of biomass-derived black carbon results from the high 

oxygen content of biomass (30–40%, db) which is second only to carbon content 

(30–60%, db) (Jenkins et al. 1998), owing to the nature of its lignocellulose 

components (Figure 2.1). Following thermochemical treatment, oxygen functional 

groups as shown in Figure 2.2 exist on black carbon surfaces as acidic and/or basic 

oxides bound to carbon layer edges. Phenolic, lactone and other acidic oxygen 

groups are responsible for the acidic properties of black carbon and cation 

exchange properties (Boehm 1994; Puri and Bansal 1964) whereas black carbon 

with low oxygen contents possess basic surface properties and therefore exhibit 

anion exchange properties (Boehm 1994). K, Mg, Na, P and Ca present in 

feedstocks are the main components of ash (Wu et al. 2012), and these cations also 
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serve as catalysts for the formation of oxygen-containing functional groups like 

pyranones at low temperatures (Mészáros et al. 2007; Song and Guo 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The structure of lignocellulosic biomass as illustrated by 

Perez et al. (2002), with minor adjustments. 

Figure 2.2 Nature of oxygen groups present in black carbon: (a) carboxyl groups; (b) carboxylic 

anhydrides; (c) lactone groups; (d) lactols; (e) hydroxyl groups with phenolic characteristics; (f) 

carbonyl groups; (g) quinone; (h) ether- or xathene-type oxygen groups (Boehm 1994). 
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2.2.4 Nutrient content and availability 

The mechanisms through which chars adsorb nutrients and thus enhance soil 

productivity are not fully understood due to variations in climate and soil. 

Furthermore, as char properties are a function of the nature of feedstocks used and 

biomass processing conditions (Collison et al. 2009; Wang et al. 2015a; Zhao et al. 

2013), these variations further contribute to the challenges involved with quantifying 

their effect on nutrient cycling. Moreover, biochars influence nutrient cycling via 

biological, physical, and chemical processes in the short- and long-term (Laird et al. 

2010a; Biederman and Harpole 2013). In the short-term, labile fractions of biochar 

and hydrochar may introduce bioavailable phosphorus and potassium to soils 

(Biederman and Harpole 2013; Laird et al. 2010b; Uzoma et al. 2011) as well as 

retain nutrient-rich soil water within their pores, while long-term biochar effects 

involve creating favourable habitats for soil fungi such as mycorrhizae which 

influence nutrient cycling (Yamato et al. 2006). Biochar alkalinity results from the 

presence of various organic and inorganic compounds with varying degrees of 

solubility (Fidel et al. 2017), potentially contributing to soil alkalinity. High soil pH 

levels increase phosphorus availability, since in acidic conditions (pH <4), 

phosphorus is otherwise bound as insoluble iron and aluminium phosphates 

(Biederman and Harpole 2013; Uzoma et al. 2011; Xu et al. 2014).  

In an attempt to identify char contributions to nutrient cycling in soils, this two-part 

section highlights the key factors influencing char nutrient bioavailability, after which 

a summary of char effects on soil nutrient cycling are outlined. 

 

2.2.4.1 Intrinsic hydrochar and biochar nutrient contents 

Biochars are comprised of labile and recalcitrant portions, both of which contain 

organic and inorganic components (McLaughlin 2010) such that they are comprised 

of complex aromatic-aliphatic organic compounds. Biochars also possess mineral 

compounds present as ash (Downie et al. 2009) and heavy metals depending on 

feedstock and thermal processing, as summarised in Figure 2.3. For instance, K is 

present in the organic matrix of biomass in the form of alkali-carboxylic groups, 

complex ions or as dissolved salts (Miles et al. 1995). When heated, K decomposes 

into various forms of low-melting point oxides, hydroxides, chlorides, and sulphates, 

some of which are reactive owing to their solubility in water or ion exchange ability 

(Miles et al. 1995). Hydrochars are equally heterogeneous (Cao et al. 2013) but 

compared to biochars, lower concentrations of inorganic elements (oxides of K, Ca, 
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Mg, P, Fe) are observed as a result of acid solvation reactions during hydrothermal 

carbonization (Kambo and Dutta 2015).  

Quantification of char nutrient content is a necessary step towards gaining a better 

understanding of their effect on nutrient recovery (DeLuca et al. 2009). Following 

biochar application in soil, an increase in P, K, Ca, Mg, Mo, N and Cu solubility has 

been observed (Atkinson et al. 2010; DeLuca et al. 2009) yet large quantities of 

biochar would however need to be added to soils to provide the desired amounts 

required for plants (Ippolito et al. 2015). Furthermore, although nutrients are present 

in chars, their bioavailability or soil-extractable fractions, as measured at pH 7 with 

water or salt-based extractants (Ippolito et al. 2015) may be low (Atkinson et al. 

2010; Cao and Harris 2010; Gaskin et al. 2008). For instance, Cao and Harris (2010) 

and Zhao et al. (2013b) found that while concentrations of P, Ca and Mg increased 

with pyrolysis temperature, water-extractable concentrations decreased 

substantially following pyrolysis owing to the formation of stable compounds. Gaskin 

et al. (2008) similarly found that weak acid (Mehlich I) extractable nutrients 

decreased with increasing pyrolysis temperature. Cao and Harris (2010) observed 

that P bioavailability decreased at about 500°C due to the formation of stable 

calcium phosphate. The decrease in water soluble P was also consistent with the 

formation of whitlockite at elevated temperatures (Cao and Harris 2010). Biochar K 

has however been found to be highly bioavailable, attributable to the formation of 

soluble sylvite (Fidel et al. 2017; Zhao et al. 2013b). Similarly, N bioavailability (in 

form of NO2-N, NO3-N and NH4-N) often decreases as pyrolysis temperature 

increases, likely due to both conversion to more stable heterocyclic N forms and to 

gaseous N losses which begin from 200°C (Cao and Harris 2010; Gaskin et al. 2008; 

Tian et al. 2016; Quayyum et al. 2012). 

In terms of nutrient retention capacity, processing temperature is also influential 

(Chan and Xu 2009; Bargmann et al. 2014; Ippolito et al. 2015) since surface area 

and functionality, both of which are suggested to influence biochar ion exchange 

capacities (Xu et al. 2013), are temperature-dependent (Chan and Xu 2009; 

Sparkes and Stoutjesdijk 2011). Liang et al. (2006) for instance noted that high O/C 

ratios could be responsible for nutrient adsorption since K/C ratios were at least 

0.18 higher at black carbon surfaces than at char interiors. 
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Surface area & porosity 

Hydrochar Biochar 

About 4.0-8.8 m2 
g-1; increases with 

T° up to about 
230 °C. 

 
Higher than 

hydrochars’ but 
exceptions exist; 
increases with T° 

to an extent. 

 

Surface functional groups & pH 

Hydrochar Biochar 

 

Mostly acidic due to 

abundance of acidic 

oxygen groups. 

 

 

Alkaline due to 

increase in basic 

groups with T°. 

. 

Carbon structure 
Hydrochar Biochar 

 
Amorphous, 

mostly aliphatic 
carbon; lignin-type 

molecules. 
 

 
Condensed, 

predominantly 
aromatic carbon. 

  

 

Hydrochar & biochar yields tend to 

decrease with T°, time and are 

feedstock-dependent. E.g., higher 

lignin = higher yield. 

 

Hydrochar & biochar volatile matter (VM) & 

contaminant levels are T° & feedstock 

dependent: with T°, VM decreases while 

contaminants may increase. 

 

N 

 
Hydrochar & biochar ash contents tend to 

increase with T° & time. Hydrochar ash content 
largely feedstock-dependent however, and may 

decrease relative to the original feedstock. 

Mineral content 
Hydrochar Biochar 

 
Variable: some 

elements more easily 
leached into aqueous 

phase. 

 
Generally increase 
with temperature. 

 

Figure 2.3 Generalized summary of the influence of processing conditions and feedstock properties on char physico-chemical characteristics (T° = temperature). 

Collated from: Benavente et al. (2015); Cao and Harris (2010); Chun et al. (2004); Danso-Boateng et al. (2015); Eibisch et al. (2015); Fang et al. (2015); Gronwald 

et al. (2015); Hoekman et al. (2011); Kalderis et al. (2014); Parshetti et al. (2014); Reza et al. (2013);  Smith et al. (2016); Sun et al. (2011); Wiedner et al. (2013a); 

Zhao et al. (2013b). Further details are provided in Annex Table A1. 
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The length of time with which chars maintain effective nutrient retention capacities in 

soil is currently uncertain however, although Gronwald et al. (2015) reported that 

within a relatively short period (7 months), biochar and hydrochar nutrient retention 

capacities diminished and suggested that this was possibly due to blockage of 

nutrient binding sites by soil matter (microbes, organic matter and/or minerals).  

 

2.2.4.2 Biochar and hydrochar effects on soil nutrient cycling 

Chars may have favourable effects on biomass not necessarily because of their 

nutrient content but because they increase fertilizer-use efficiency by minimising 

nutrient leaching or by enhancing soil physical structure (Chan and Xu (2009). 

Biochars may influence soil nutrient content indirectly by improving soil water 

holding capacity since nutrients are present in soil water, and by creating favourable 

conditions for certain soil microbes. Variations in soil pH have cascading effects on 

soil organisms like bacteria, fungi, and earthworms. As such, multiple soil processes 

such as soil mixing, channel formation, C and N mineralisation are altered by slight 

changes in soil pH (Fidel et al. 2017; McCormack et al. 2013). Furthermore, several 

studies have also linked improvements in soil nutrient availability to pH effects. For 

instance, from a series of experiments designed to identify mechanisms through 

which biochars enhanced nutrient availability in soil, Xu et al. (2013) suggested that 

an increase in pH was responsible for the increase in P solubility. Tryon (1948) 

proposed that ash content in charcoal is mostly responsible for soil buffer capacity 

based on observations of an increase in soil buffer capacity when high ash content 

charcoals were applied to sandy soil, but an opposite effect when low ash content 

charcoal was incorporated. As such, it is unclear whether hydrochars will therefore 

reduce the solubility of some nutrients given their acidic nature, or if the more 

readily-soluble nutrients in hydrochars compensate for any adverse effects resulting 

from low soil pH.  Similar to biochars however, hydrochars produced under different 

processing conditions and feedstocks understandably have varying effects on 

important soil microbes, plants and earthworms (Bargmann et al. 2014; Reza et al. 

2014; Rillig et al. 2010). For instance, while yeast-based hydrochars were shown to 

have no major effect on microbial biomass, glucose-based hydrochars had a 

negative effect (Reza et al. 2014). Rillig et al. (2010) noted, however, that even the 

hydrochar source material had a negative effect on plants.  

In terms of soil nitrogen dynamics, char effects in soil vary: no marked effect on 

nitrification has been observed following biochar addition in spite of increased 
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organic matter mineralisation (Dempster et al. 2012; Schulz and Glaser 2012); other 

studies have reported increases in soil nitrification and mechanisms have been 

proposed for this increase, as outlined by Prommer et al. (2014), including 

increases in nitrifying bacteria activity as such pH-sensitive organisms thrive at 

higher pH conditions (Dempster et al. 2012); conversely, that hydrochar and biochar 

addition have decreased nitrous oxide emissions (Kammann et al. 2012), NO3-N 

concentrations (Bargmann et al. 2014) and organic nitrogen transformation 

(Prommer et al. 2014). With regard to why nitrification decreases with biochar 

addition, Kammann et al. (2012) and Schulz and Glaser (2012) suggested that N-

immobilization occurred. This is possible since biochar C/N ratios can be about 67 

on average (Chan and Xu 2009), and C/N ratios >25–30 result in inorganic nitrogen 

immobilization, yet Chan and Xu (2009) suggested that as biochar carbon is 

recalcitrant, nitrogen immobilisation could be minimal. In cases where biochars have 

improved NH3-N and NH4-N retention, a number of biotic and abiotic mechanisms 

have been suggested, such as electrostatic interactions with oxygenated or organic 

ligand functional groups (Ippolito et al. 2015; Wang et al. 2015b), interactions with 

S-functional groups, conversion of NH3-N to NH4-N at low pH, as well as 

physisorption reactions (Ippolito et al. 2015). Chars also influence denitrification by 

participating in reversible electron donor or acceptor interactions and increasing 

certain bacterial populations (Tian et al. 2016).  

2.2.5 Cation Exchange Capacity (CEC) 

CEC is a measure of the capacity to which a material’s negatively charged sites are 

neutralised by exchangeable cations (Mukherjee et al. 2011) and is expressed in 

milliequivalents (mEq) per 100 g of soil (Rhoades 1982) or more recently as 

centimoles of charge per kilogram (cmolc kg-1), both of which are equivalent units 

(Sumner and Miller 1996). While neutralization occurs at negatively-charged sites 

by interactions with cations, a small portion of negatively-charged sites are also 

responsible for repelling anions. To reflect the small contribution of anionic species, 

CEC is considered to represent an abundance of cationic charge over anionic 

charge (Sumner and Miller 1996).  

Statistical analysis of some biochar properties by Morales et al. (2015) suggested 

that CEC is independent of biochar elemental contents, which is in agreement with 

earlier findings of Kirchmann and Witter (1992) which suggested that inorganic 

content possessed a marginal effect on the CEC of relatively high organic content 

feedstocks such as manure. Other studies have however implied that higher ash 
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contents could result in higher char CEC values (Gaskin et al. 2008; Zhao et al. 

2013b). The consensus however is that chars created at low temperatures would be 

better suited for soil since several studies including Lehmann (2007) and Sparkes 

and Stoutjesdijk (2011) have observed a decrease in CEC with increasing pyrolysis 

temperature, corresponding to a loss of functional groups like carboxylic acids. 

Carboxylic acids are formed from the thermal degradation of lignocellulose via 

thermal oxidation of phenols and alcohols from lignin, or cycloreversion, 

transglycosylation, or Ei-elimination of cellulose (Harvey et al. 2012a). Black carbon 

CEC is also thought to increase due to the gradual production of carboxylic groups 

at the ends of charcoal’s aromatic backbone (Glaser et al. 2002). Other studies 

have also inferred that oxidised organic matter on black carbon surfaces lead to the 

formation of net negatively charged oxygenated functional groups like carboxyl and 

hydroxyl groups, fulvic acids, humic acids and other humic substances thus 

increasing soil CEC (Boehm 1994; Kirchmann and Witter 1992; Lehmann, 2007; 

Petrov et al. 1992; Song and Guo 2012).  

Studies have shown that black carbon increases soil CEC per unit surface area; 

Liang et al. (2006) observed that: Amazonian anthrosols which contained black 

carbon possessed a higher CEC and suggested that CEC per unit soil carbon 

increased due to an increase in surface area thus creating more adsorption sites for 

cations, or because soil organic matter was oxidized to a greater extent due to its 

higher charge density. This was based on observations that while O/C ratios were 

generally low, microprobe elemental analysis of one of the soil samples showed that 

O/C ratios were higher at the surface of black carbon than at the centre of the black 

carbon structure, indicative of surface oxidation, adsorption of organic matter from 

plants/microbial metabolites or both. As biochar properties change in the 

environment, aged biochar CEC may become higher than freshly made biochar 

CEC Lehmann (2007). 

CEC analysis is dependent on parameters like pH, concentration and ionic strength 

of saturating solution (index cation), nature of washing solution and temperature; 

variations in these parameters understandably yields different CEC results 

(Papanicolaou and Overstreet 1969; Rhoades 1982; Sumner and Miller 1996). 

Skinner et al. (2001) also demonstrated this based on CEC determination of 

humified organic matter, kaolinite and vermiculite. Each method yielded different 

values while the general trend remained the same as shown in Figure 2.4. As a 

result, selection of CEC method tends to be dependent on the purpose for which the 

analysis is required (Ross and Ketterings 1995; Sumner and Miller 1996). Generally, 



28 
 

0

10

20

30

40

50

60

70

80

90

100

110

120

Kaolinite Vermiculite Organic matter

C
E

C
 (

c
m

o
l 
 k

g
-1

)

 1 M Ammonium acetate, buffered

 1 M Ammonium chloride, unbuffered

 0.5 M Ammoniium chloride, unbuffered

 0.1 M Ammonium chloride, unbuffered

  Barium chloride, modified

Figure 2.4 Approximate CEC values obtained from column CEC experiments by 

Skinner et al. (2001), adapted to highlight variations in CEC with method and 

sample type. Dashed lines represent effective/established CEC values (ECEC) 

determined from summation of K, Na, Mg, Ca and Al ions. 

four main methods for determining soil CEC were outlined by Rhoades (1982): the 

summation method, where CEC is determined as the amount of exchangeable 

cations present in the leachate obtained after a saturating salt solution displaces 

exchangeable soil cations; direct displacement, with three steps involving: (i) 

displacement of exchangeable cations with an index cation, (ii) desorption of index 

cation by another cation, and (iii) subsequent determination of the displaced index 

cation, as done by Harada and Inoko (1975) and Keeney and Bremner (1969); 

displacement after washing, which differs from the direct displacement method 

because an intermediate step is included, involving washing excess index cation 

from sample with a solvent prior to desorption with other cations; radioactive tracer 

method, which involves labelling saturated salt solutions with radioactive isotopes of 

the saturating cation (Rhoades 1982). Ammonium salts are frequently used 

saturating solutions, either as index or displacement cation (Gaskin et al. 2007; 

Méndez et al. 2013; Song and Guo 2012; Wu et al. 2012; Yuan et al. 2011) 

although concentrations vary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Errors can arise during any of the CEC analysis steps:  

1. At the saturation stage, cations from the saturating solution might not be as 

strong as cations already present, such as aluminium and its hydroxyl 

ECEC 

34.8 cmol kg-1 

ECEC 

49.3 cmol kg-1 

ECEC 

2.2 cmol kg-1 
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cations. Furthermore, dissociation of compounds like calcium carbonate and 

silicate during saturation cause these cations to compete for exchange sites 

(Rhoades 1982; Sumner and Miller 1996).  

2. The washing stage typically involves rinsing off the excess index cation with 

water, alcohol, or acetone; errors may arise due sample losses during 

decantation, in addition to loss of some index cation via hydrolysis (Rhoades 

1982), although Harada and Inoko (1975) did not find this to be the case; 

removal of some organic matter when washing with alcohol. In some 

samples, errors arise due to dissociation of calcium carbonate, resulting in 

adsorption of calcium ions onto the sample.  

3. At the displacement stage, errors arise when nonexchangeable cations are 

displaced; this occurs in arid soils when displacing solutions containing 

calcium or magnesium or ammonium acetate are used. Calcareous soils and 

soils containing minerals like zeolites, magnesium and iron (mafic), feldspars 

are also susceptible to this problem (Rhoades 1982). By implication, this 

may suggest that chars rich in soluble Ca may pose similar challenges. 

 

2.3 Potential for nutrient recovery with hydrochars and biochars 

While traditional activated carbon is the standard adsorbent used in wastewater 

treatment and gas adsorption, it is considered expensive for agricultural purposes 

so  alternative waste-derived feed-stocks have been evaluated (Kastner et al. 2009) 

ranging from agricultural by-products to industrial waste materials (Pollard et al. 

1992). As chars are produced from a wide range of waste biomass feedstocks, they 

show potential as cost–effective, environmentally sustainable products for 

integrated waste management. As this study focused on the potential for minimizing 

nutrient losses arising from agricultural and industrial activities, this section 

highlights hydrochar and biochar interactions in nutrient-rich environments like 

composts and wastewater and outlines some of the proposed mechanisms 

governing such interactions.  

2.3.1 Co-composting with hydrochars and biochars 

Composting has been used for stabilising organic waste with the aid of microbes at 

aerobic conditions (Dias et al. 2010). The resulting product has a low moisture 

content, odour and pathogen population compared to raw bio-waste, making it 

suitable for land application (Kelleher et al. 2002; Kithome et al. 1999). During 
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composting however, nitrogen losses occur due to ammonia volatilisation (Kelleher 

et al. 2002), ranging from 17–63% in high nitrogen-content wastes (Kithome et al. 

1999). This is because nitrogen in such wastes is present as uric acid and urea 

(Kelleher et al. 2002; Kithome et al. 1999; Nahm 2003; Schmidt 2012) and when pH, 

temperature and moisture conditions are suitable for microbes, these compounds 

are enzymatically hydrolysed into ammonia and carbon dioxide rapidly (Kithome et 

al. 1999; Nahm 2003; Steiner et al. 2010). Ammonia exist in gaseous or ionic state, 

both of which cause environmental problems when present in excess. High 

concentrations of free ammonia inhibit anaerobic microbes while NH4
+ raise soil 

acidity (Kelleher et al. 2002; Schmidt 2012). Additionally, microbes nitrify ammonium 

ions into nitrates which are easily leached to groundwater (Kelleher et al. 2002; 

Nahm, 2003).  

A number of attempts have therefore been made to minimise the hydrolysis of uric 

acid to ammonia with the aid of organic chemicals like formaldehyde (Kithome et al. 

1999), stabilising urea by lactic acid fermentation (Schmidt 2012), or reducing 

ammonia volatilisation using inert adsorbents like clinoptilolite zeolites and 

montmorillonite clay, carbon-rich organic wastes or inorganic chemicals (Kastner et 

al. 2009; Long et al. 2008; Park and Jin 2006; Steiner et al. 2010). Some of these 

amendments affect compost properties adversely however. For instance, the 

addition of organic chemicals affects nitrification and results in poultry litter unfit for 

composting (Kithome et al. 1999). Similarly, while matter with high C/N ratios 

minimise ammonia volatilization, this is achieved at the expense of decomposition 

speed (Steiner et al. 2010). Furthermore, materials rich in soluble organic carbon 

lead to anaerobic conditions due to the release of CO2.  

Kithome et al. (1999) found that zeolites applied on manure surfaces adsorbed 

ammonia more effectively meanwhile clays increased ammonia volatilization. Other 

adsorbents considered for ammonia adsorption include activated carbon (Kastner et 

al. 2009; Long et al. 2008; Park and Jin 2006; Steiner et al. 2010) and black carbon 

possessing good pore surface area, pore structure and surface functional groups 

(Kastner et al. 2009; Steiner et al. 2010). While earlier studies suggested that 

activated carbon surfaces were not sufficiently polar (Park and Jin 2006; Rodríguez-

Reinoso 1998), more recent studies have shown that their above-mentioned 

properties make activated carbons effective ammonia adsorbents (Kastner et al. 

2009; Steiner et al. 2010). As aforementioned, activated carbon may be expensive 

for agricultural purposes (Kastner et al. 2009) since substantial modifications are 

typically required for carbon activation. Consequently, low-cost black carbon 
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adsorbents such as biochar and hydrochar produced from organic waste have been 

considered for minimizing ammonia emissions.  

The synergistic nature of co-composting with chars has been widely reported. Chars 

benefit from the sorption of dissolved organic matter during composting (Borchard et 

al. 2012) and may show potential for the sorption of humic-like acids, particularly 

chars rich in Ca2+ and Mg2+ based on adsorption studies by Daifullah et al. (2004). 

Concurrently, organic matter blended with chars benefit from reduced odour, and 

improvements in bulk structure and supply of nutrients for microbes have been 

(Bargmann et al. 2014; Dias et al. 2010; Hunt et al. 2010; Reza et al. 2014). The 

lattermost may be especially true for hydrochars as they possess less recalcitrant 

carbon than biochars (Busch and Glaser 2015). Steiner et al. (2010) found that 

chars minimised ammonia volatilisation and hydrogen sulphide emissions 

substantially. Dias et al. (2010) also reported reductions in ammonia volatilization in 

biochar-amended composts. The final products obtained from char co-composting 

possessed balanced nutrient contents (Dias et al. 2010), and Vandecasteele et al. 

(2016) showed that NH4-N sorption was higher in biochar-amended compost 

material compared to un-amended compost material after 14 days of composting.  

To obtain maximum soil NH4-N retention benefits from biochar-compost mixtures, 

some studies have recommended incorporating biochars at the start of composting, 

as biochar surface oxidation by microbes improves biochar CEC and oxygen 

content (Borchard et al. 2012; Dias et al. 2010; Schulz and Glaser 2012). In terms of 

mixing proportions, some studies recommend mixing equal parts of biochar and 

compost to produce the best co-composting results (Busch and Glaser 2015; Schulz 

and Glaser 2012), although lower biochar and char ratios have been used (Busch 

and Glaser 2015).  

2.3.1.1 Composting stages 

Four composting stages were outlined by Bernal et al. (1998): an initial stage where 

no biological degradation has occurred; thermophilic stage where degradation 

occurs and temperatures rise to >40°C; a stage marking the end of biological 

activity and a consequent decrease in temperature; a maturation phase resulting in 

a stabilized, humic-like product (compost). During composting, CO2 evolution and/or 

O2 sorption is measured, as these serve as indicators of steady soil and microbial 

respiration, the latter described as soil basal respiration resulting from organic 

matter mineralization (Creamer et al. 2014). 
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Although the composting process does not produce humus, adequate composting 

practices begin the process of humification (Epstein 1997), thus higher amounts of 

humic-like substances are indicative of higher compost quality (Dias et al. 2010). 

Biochars have been found to increase the humic acid content of organic matter 

during composting, and Dias et al. (2010) suggested that this might have been due 

to the addition of water soluble carbon (carbohydrates) from the biochars, but from 

earlier studies by Sánchez-Monedero et al. (1999) no correlation was observed 

between water-soluble carbohydrates and % humic acid or humification index in 

most cases. In other words, this increase in humic acid content during biochar co-

composting may not have been due to the synthesis of humic-like substances from 

water-soluble carbohydrates. However, as a relatively low temperature biochar 

(450°C) was used in Dias et al. (2010), it may be possible that the additional supply 

of water soluble carbon served as a food source for microbes thus indirectly 

facilitating carbon further lignin degradation. This may have resulted in the 

production of phenols, which Sánchez-Monedero et al. (1999) found to be 

correlated to the humification process. 

2.3.1.2 Ammonia and black carbon interaction 

Previous studies have suggested that ammonia adsorption by black carbon is 

influenced by acidic functional groups such as carboxyl, lactone, phenol and acid 

anhydride groups (Corre et al. 2013; Kastner et al. 2009; Park and Jin 2006; 

Taghizadeh-Toosi et al. 2012a) more substantially than surface area and micro-pore 

volume (Corre et al. 2013). Oxygen functional groups also influence the stability of 

nitrogen groups (Pietrzak et al. 2007). Mechanisms for NH3 sorptioninvolve 

interactions at Brønsted and/or Lewis acid sites. In the former case, protonation of 

NH3 occur as NH3 dissociates in water, or via acid-base neutralization reactions with 

carbonyl and phenolic OH- groups present on adsorbents to form NH4
+ complexes 

(Corre et al. 2013; Le Leuch and Bandosz 2007; Long et al. 2008; Petit and 

Bandosz 2009; Steiner et al. 2010; Taghizadeh-Toosi et al. 2012a). These findings 

suggest that hydrochars are likely to possess greater ability for NH3-N / NH4-N 

sorption compared to biochars given their higher proportion of acidic functional 

groups. On the other hand, since some studies have reported that high adsorbent 

surface areas and pore volumes improve NH3-N / NH4-N removal efficiencies 

(Ismadji et al. 2016; Petit and Bandosz 2009), the higher surface areas of biochars 

might compensate for their lower acidic functionalities. Chen et al. (2010) noted that 

the addition of bamboo pyrolysis products (char and vinegar) significantly reduced 

Total Kjeldahl Nitrogen (TKN) losses from pig manure compost. It is also known that  
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pH plays an important role in ammonia volatilisation, leading to ammonia losses at 

pH values > 7 (Steiner et al. 2010). For instance, Kithome et al. (1999) found that 

when poultry manure was amended with two types of zeolites, ammonia 

volatilisation was lower from the compost amended with lower pH zeolite (pH 7.9) 

compared to the zeolite (pH 9.1). Kastner et al. (2009) explored the possibility of 

producing chars from agricultural residues that were comparable to activated carbon 

but cheaper, and found that chars produced at low pyrolysis temperatures (400–

500 °C) could adsorb ammonia provided they possessed acid functional groups. 

Taghizadeh-Toosi et al. (2012a) also found that biochars with lower pH values and 

higher surface acidity retained more nitrogen. This is possibly because CO-NH4
+ 

complexes are formed when ammonia reacts with the acid part of carbonyl and 

phenolic hydroxyl groups on carbon surfaces (Long et al. 2008). At ambient 

temperatures, ammonium salt and amide formation occurs when ammonia reacts 

with surface carbonyl groups (Spokas et al. 2011).  

With regard to the relationship between ammonia adsorption on carbonaceous 

materials, Corre et al. (2013) suggested that since ammonia is a basic compound, 

adsorbents benefit from having acidic surface functional groups like carboxylic acids, 

as well as small pores and electrical conductivity. Park and Jin (2005) similarly 

found that even though ozone treatment reduced char specific surface area, micro-

pore volume and total pore volume over time, ammonia removal efficiency improved 

due to the incorporation of strong and weak oxygenated acid functional groups like 

ether and carbonyl onto the carbon material. Subedi et al. (2015) similarly found that 

surface area and porosity did not influence ammonia sorption. It is therefore 

important to ensure that biochar production processes improve biochar acidity 

(Taghizadeh-Toosi et al. 2012a). Subedi et al. (2015) however observed that in 

hydrochar-amended soils, more ammonia was volatilized relative to biochar-

amended soils and un-amended soils possibly due to hydrochar hydrophobicity’s 

effect on slurry infiltration into soil as well as soil NH4-N sorption. 
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2.3.2 Wastewater sorption processes 

Various wastewaters can contain high concentrations of ammonium and 

phosphates as shown in Table 2.3, excessive quantities of which contribute to 

eutrophication. Some existing chemical and biological technologies for ammonium 

and phosphate removal and recovery have been outlined in Kney and Zhao (2004), 

Molinuevo et al. (2009), and Morse et al. (2008).  

 

Table 2.3 Ammonium and phosphate concentrations in some effluents 
S/N Effluent source Phosphate 

(mg L-1) 
Ammonium 

(mg L-1) 
Reference(s) 

 
AS-RECEIVED WASTEWATER 
 
Agricultural wastewater 

1 Beef liquid manure slurry  1700† 3560† ‡ Barker et al. (2001) 
2 Swine wastewater 34–654§ 90–3030 Barker et al. (2001); 

Capdevielle et al. 
(2013); Fernando et 
al. (2005); Suzuki et 
al. (2006); Ye et al. 
(2010) 

3 Anaerobic Digestion (AD) swine 
wastewater supernatant 

22.2–161 380–706 Huang et al. (2011); 
Song et al. (2011); 
Szogi and Vanotti 
(2009) 

4 Hydrothermally treated pig manure 560–8510¶ 10600–
62000¶ 

Ekpo et al. (2016) 

5 Vegetable (potato) processing  14–115 61–426 Carballa et al. (2009) 
6 Poultry (layer) liquid manure slurry 2800† 5730† ‡ Barker et al. (2001) 
 
Industrial wastewater 

7 Wet process phosphoric acid  46–15,700 1150 Battistoni et al. 
(2006); Grzmil and 
Wronkowski (2006) 

8 TFT-LCD manufacturing  188 n.a Lu and Liu (2010) 
9 Semi-conductor manufacturing 265 213 Warmadewanthi and 

Liu (2009) 
10 Phosphorus plant 2000 85‡ Bott et al. (2003) 
11 Various: Paper mill, textile, tannery, 

winery and olive mill  
0.6–182¶ 1.1–532¶ Cai et al. (2013) 

 
Municipal wastewater 

12 Characteristic residential  6–12¶ 26–75¶ USEPA (2002) 
     
POST-TREATED WASTEWATER 
 

1 Pig manure effluent from post-digested, 
partially oxidised Upflow Anaerobic 
Sludge Blanket (UASB) reactor 

 
n.a 

 
670  

(82% 
removal) 

 
Molinuevo et al. 
(2009) 

2 Treated municipal effluent wastewater 9 n.a Kney and Zhao 
(2004) 

 †Calculated from mean of values presented; ‡as mg L-1 TKN and NO3
--N; §data presented as 

654(±232); ¶As mg L-1 total phosphorus or total nitrogen; n.a: unavailable data. 
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As the central theme of this study involved investigating possible interactions 

between nutrients and chars, the subsequent section expatiates on the main 

sorption principles used in this study.  

2.3.2.1 Factors influencing char sorption capacity 

Adsorption involves the transfer of “adsorptive” or “adsorbate” to a solid phase 

“adsorbent” (Giles et al. 1974; Limousin et al. 2007; Sparkes 2003), wherein 

adsorptive refers to the species that has potential to be adsorbed from solution and 

adsorbate refers to the substance accumulated at the interface or solid surface of 

an adsorbent. Adsorption differs from absorption because the former process tends 

to be a surface phenomenon in which phase changes or chemical reactions do not 

necessarily occur between adsorbent and adsorbate (Mantell 1987). However, 

because chemical reactions like surface precipitation or polymerization occur along 

with adsorption, the term “sorption” is thought to be preferable (Mantell 1987; 

Sparks 2003). It has been assumed that sorption can occur in 3 steps: movement of 

solute from bulk fluid to adsorbent surface via a thin liquid film layer surrounding the 

adsorbent; movement of solute from adsorbent pores to adsorption sites (intra-

particle diffusion); adsorption of solute at adsorption sites (Sun et al. 2015). 

Factors influencing adsorption include adsorbent porosity which has a direct 

relationship with effective diffusivity, which in turn influences the rate of solute (e.g. 

nutrient) sorption to and from adsorbents. Adsorbents are considered suitable if 

minimal quantities are required and if sorption occurs over brief residence times (Do 

1998). Adsorbents are therefore often required to have high surface areas or 

micropore volumes and good pore networks; for instance, mesopores may serve as 

conduits to micropores (Do 1998; Marsh and Rodríguez-Reinoso 2006). Adsorbent 

molecular size, solubility and quantity also influence adsorption effectiveness (Kizito 

et al. 2015; Dias et al. 2007). Other factors include initial adsorptive/solution 

concentration, competition for adsorbent sites by solutes, time (kinetically controlled 

reactions) and affinity for the adsorbate, and to an extent temperature influence 

adsorption/desorption isotherm characteristics (Foo and Hameed 2010; Ng et al. 

2002; Kizito et al. 2015; Limousin et al. 2007; Wang et al. 2011). With regard to the 

effect of initial solution/adsorptive concentration (Co), studies have observed that as 

Co increases, the quantity of adsorbate deposited on the adsorbent material (qe) 

increases. Conversely, adsorbent removal efficiency decreases due to a reduction 

in available sorption sites (Wang et al. 2011). 
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Sorption tests are performed in open-flow systems (e.g. column tests) or closed 

systems (e.g. batch tests) and Limousin et al. (2007) expanded on the merits and 

demerits of both systems and proffered possible measures for reducing some of the 

associated systems’ shortcomings. Tian et al. (2016) and Yao (2013) however 

observed that both systems appeared to be comparable. In laboratories, batch 

sorption tests are the frequently used methods due to their low time and cost 

requirements (EPA 1999). While the nature of the sorption system may not affect 

the quantity of solute adsorbed to the same extent as does adsorbent to adsorbate 

ratio (Limousin et al. 2007), the use of adsorption systems and ratios that are 

representative of real-case scenarios are preferable (Fernando et al. 2005; 

Limousin et al. 2007). An additional factor to consider involves the use of simple 

(pure) versus complex component systems. Do (1998) and EPA (1999) suggested 

that more information about adsorption equilibria are obtained from pure component 

systems as fewer species are involved and the system is well defined. However, 

small but significant factors such as the presence of organics and some metal 

oxides affect quantities of solute adsorbed. 

 

2.3.2.2 Adsorption isotherms 

Following batch or column sorption tests, quantitative information on adsorbent 

sorption capacity must be obtained. This is made possible by correct interpretation 

of sorption isotherms and equations, the former which are curves that provide useful 

measureable information on the distribution of adsorbate between the liquid and 

solid phases at equilibrium and constant temperature (Ayoob and Gupta 2008; Foo 

and Hameed 2010; Limousin et al. 2007; Ng et al. 2002). The sorption isotherm 

model classification system proposed by Giles et al. (1974) is comprised of 4 main 

isotherm classes as shown in Figure 2.5, of which Limousin et al. (2007) and 

Sparkes (2003) expatiated:  

1. The sigmoidal S isotherm occurs because at low adsorptive concentrations, 

the slope increases but only until available adsorption sites become 

occupied. This suggests that at low adsorptive concentrations, the adsorbent 

has low affinity for the adsorptive while the reverse is observed at higher 

concentrations. Such behaviour is observed in surfactants and non-polar 

organic compound-clay systems. 
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2. In the concave L isotherm, the slope continues to increase from low 

adsorptive concentrations until available adsorption sites on the adsorbent 

become filled. Since the slope decreases as adsorptive concentration 

increases, adsorbent affinity for adsorptive may be greater at low adsorptive 

concentrations. 

3. The H isotherm is a different version of the L isotherm, with high affinity 

between the adsorbent and adsorptive suggestive of strong interactions 

such as inner-sphere complexes, in which the adsorptive is bound to 

adsorbent surface functional group(s) without a water molecule present 

between them. 

4. In the linear C isotherm, solute concentration in adsorbent remains the same 

regardless of adsorptive concentration provided adsorbent saturation is yet 

to be attained. This isotherm class suggests partitioned distribution of 

adsorptive between the interfacial and bulk solution phases. Partitioning 

mechanisms are also suggested for situations where there is no competition 

between adsorptives, or when temperature has a minor effect on sorption, or 

when reversible sorption occurs. 
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Figure 2.5 The sorption isotherm classification system adapted from Giles et al. (1974). 
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As outlined in Inyang and Dickenson (2015), adsorption of polar and non-polar 

organic compounds is dependent on the nature of the char and on the species, and 

occurs by: pore diffusion or filling, which may occur in biochars with low volatile 

matter or at low organic pollutant initial concentrations (Co); sorption onto organic 

matter, as suggested for biochars with high volatile matter contents or at high 

organic pollutant Co; adsorption of hydrophobic organic compounds by partitioning 

on biochar sites; adsorption of ionic organic compounds by electrostatic interaction; 

adsorption of planar aromatic compounds on low-temperature biochars via π-

electron donor-acceptor interactions; hydrogen bonding between biochars and polar 

electronegative organic compounds. Similar mechanisms have been proposed for 

inorganic species sorption in Schlegel et al. (1999) and Limousin et al. (2007). 

To gain a better understanding of the mechanisms involving hydrochar and biochar 

nutrient sorption and release, equilibrium and kinetic adsorption models are required. 

Choosing appropriate models is a decisive step towards obtaining accurate 

predictions of adsorption behaviour (Foo and Hameed 2010; Limousin et al. 2007; 

Mane et al. 2007). As no one model is currently capable of being applied to all 

adsorption systems, various models are compared to obtain the best fit using linear 

and/or nonlinear regression analyses (Ayoob and Gupta 2008; Prasad and 

Srivastava 2009), compared by their number of degrees of freedom (Maurya and 

Mittal 2006). Key equilibrium and kinetic models are outlined subsequently.  

2.3.2.3 Equilibrium adsorption isotherm models 

Isotherm model development involves potential theory, a thermodynamic approach 

and a kinetic approach, and adsorption equilibrium is attained when the rates of 

adsorption and desorption are equal (Foo and Hameed 2010; Limousin et al. 2007; 

Malek and Farooq 1996). Annex Table A2 summarises some of the frequently 

kinetic models used in the literature. Equation 2.1 provides a general description of 

the relationship between adsorbate-adsorbent systems in equilibrium and whose 

physico-chemical properties are constant (Limousin et al. 2007): 

 

where Q = amount of solute on adsorbent (mol kg-1 or kg kg-1);                        

C = concentration of solute remaining in adsorbate solution (mol L-1 

or kg L-1). 

 

Q = f[C]       (2.1) 
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Equation 2.1 describes Henry’s Law and is applicable at only low concentrations 

(Maurya and Mittal 2006). Q is determined as the difference between the initial 

solute concentration in solution and the final equilibrium concentration (Limousin et 

al. 2007). The relationship between Q and the initial and final solution 

concentrations was proposed in the late 19th Century (Limousin et al. 2007) and is 

given in Equation (2.2): 

 

 

where CO and Ce = initial and equilibrium solution concentrations 

respectively (mol L-1 or kg L-1); V = volume of solution (L); m = 

adsorbent mass (g). 

 

However, sorption occurs by surface reactions, precipitation and co-precipitation 

reactions as aforementioned, none of which Equation (2.2) describe (Limousin et al. 

2007. Consequently, several liquid-solid equilibrium and kinetic adsorption models 

exist, some of which are presented in Annex Table A2. Generally, the most popular 

equilibrium isotherm models used are the Langmuir, Freundlich and Redlich-

Peterson models (Foo and Hameed 2010; Ho 2004). The Langmuir and Freundlich 

adsorption models are used to evaluate possible adsorption mechanisms and 

adsorption affinities (Angin et al. 2013; Sakadevan and Bavor 1998). The Langmuir 

model suggests mono and multilayer adsorption (Saleh et al. 2012), while 

adsorbents with heterogeneous surfaces are better described by the Freundlich 

model (Angin et al. 2013; Sakadevan and Bavor 1998).  

There are challenges associated with obtaining accurate models however, such as 

mathematical complexity. Malek and Farooq (1996) noted that the number of 

independent parameters in an isotherm model is directly related to model accuracy 

in nonlinear systems but at the expense of its mathematical simplicity and 

consequently, versatility. Nonlinear isotherm models are required to have at least 3 

independent parameters. Limousin et al. (2007) however advised on starting from 

the simplest model and then moving onto more complex models when required. 

Another challenge lies in the linearisation process: in linear regression, coefficients 

of determination (R2) values closer to 1 are preferable (Ayoob and Gupta 2008). 

Unfortunately, a linearised model deemed best fit by linear analysis sometimes be 

Q = (Co- Ce) 
V

m
       (2.2) 
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inaccurate from a nonlinear analysis point of view, as observed by Ayoob and Gupta 

(2008) in their comparison of R2 and sum of normalised error (SNE) X2 functions. 

This is because the transformation of a nonlinear equation result in differing 

outcomes due to a distortion of experimental error distributions (Ayoob and Gupta 

2008; Ho 2004; Kumar and Sivanesan 2006a) since a Gaussian distribution of 

scatter points with equal errors are assumed (Kumar and Sivanesan 2006a). 

Consequently, rather than relying solely on the coefficient of determination (R2) 

values obtained from linear plots, comparisons of both linear and nonlinear 

regression parameters are considered preferable (Ayoob and Gupta 2008). The 

absolute error function (Χ2) values are compared by Chi-square analysis (Equation 

2.3), which compares all isotherms on the same ordinate and abscissa (Ho, 2004);  

smaller X2 values imply that experimental and model data are similar (Ayoob and 

Gupta 2008).  

 

 

 

where qexp = amount of adsorbed solute in adsorbent obtained from 

experimental data ; qcal = amount of adsorbed solute in adsorbent 

obtained from model (Ayoob and Gupta 2008; Ho 2004). 

 

Other error functions are used for nonlinear regression analysis (Mane et al. 2007), 

and some spectroscopic and microscopic methods can also be used to verify model 

assumptions (Limousin et al. 2007). 

 

2.3.2.3.1 Langmuir adsorption model 

A number of assumptions govern this model: identical adsorption sites, each of 

which adsorb one molecule from the adsorbate (i.e., monolayer adsorption) and 

these adsorbed molecules are capable of remaining sterically independent each 

other (i.e., intermolecular forces are negligible) and possess equal affinity for the 

adsorbate (Foo and Hameed 2010; Limousin et al. 2007; Malek and Farooq 1996). 

In this model, an ideal surface is assumed, being one that has periodic energy 

fluctuations (Do 1998). Furthermore, the thermal energy of an adsorbate molecule is 

smaller than the magnitude of these energy fluctuations, such that the troughs of 

X2 = ∑
(qexp-qcal)

2

qcal

      (2.3)  
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equal depth serve as adsorbent sites (Do 1998), as illustrated in Figure 2.6.  

Identical trough depths imply that upon adsorption, the same heat is released, 

keeping adsorption energy constant thereby making the surface homogeneous (Do 

1998). When adsorbate molecules possess far smaller diameters compared to the 

distance between the troughs, molecules are adsorbed at localised sites, each 

adsorbate molecule occupying a single site (Do 1998).  

 

 

 

In this empirical model, 3 independent parameters are used: amount of solute 

adsorbed onto adsorbent, adsorption equilibrium constant, and heat of adsorption 

(Malek and Farooq 1996). Equation 2.4 is derived from the fact that solute 

concentration is proportional to the ratio of the number of active sites occupied to 

the number of sites available. Limousin et al. (2007) put it as: 

 

 

where Q refers to the concentration of adsorbed solute on adsorbent and 

(Qmax – Q) represents the concentration of the unoccupied adsorbent site. 

In terms of initial adsorbate concentration and equilibrium conditions, 

 

 

where qe = amount of adsorbed solute in adsorbent at equilibrium (mg g-1); 

Qo = maximum monolayer coverage capacity (mg g-1); b = Langmuir 

L = 
[surface complex]

[solute][free site]
 = 

Q

C(Qmax - Q)
     (2.4) 

qe = 
QobCe

1+bCe
      (2.5) 

Figure 2.6 Energy fluctuations on an ideal surface (Do 1998; Moradi 2011). 
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isotherm constant (L mg-1); Ce = equilibrium concentration (mg L-1) (Foo and 

Hameed 2010). 

 

Sun et al. (2015) noted that useful predictions can be made from the equilibrium 

constants qe and b; as b is the ratio of the adsorption rate coefficient to desorption 

rate coefficient, it describes the rate of sorption of solutes like nutrients while qe 

understandably determines how much solute can be adsorbed. Equation (2.5) can 

be linearised in up to 4 ways (Prasad and Srivastava 2009), with Equation (2.6) 

being one of the most popular (Kumar and Sivanesan 2006a; Prasad and 

Srivastava 2009): The Langmuir isotherm model may not be applicable in systems 

with high adsorbate concentrations due to increasing intermolecular forces however 

(Malek and Farook 1996). Another equation was therefore proposed to account for 

species competition which is not ion exchange-based (Limousin et al. 2007), 

Equation A2.6 in the Annex Table A2.  

 

 

A useful measure of sorption known as the distribution or partition coefficient (Kd) is 

determined at equilibrium as the ratio of mass adsorbed on a unit mass of 

adsorbent to the adsorbate remaining in solution (EPA 1999) based on Equation 

(2.6). Kd values can be determined after laboratory, field or modelling sorption tests 

conducted in batch or column (flow-through) methods for various forms of 

adsorption processes such as chemisorption, physisorption, precipitation or 

complex formation (EPA 1999).  

 

where Kd = distribution coefficient (L g-1); qe = quantity adsorbed at 

equilibrium (mg g-1), Ce = equilibrium concentration (mg L-1). 

 

2.3.2.3.2 Freundlich adsorption model 

This model may be comparable to the Langmuir model at moderate adsorbate 

concentrations but not at low or very high concentrations (Ayoob and Gupta 2008). 

Ce

qe

= 
1

bQo
+ 

Ce

Qo
     or        

Ce

qe

=  
1

kaqm

+ 
Ce

qm

  (2.6)  

Kd =  
qe

Ce
      (2.7) 
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As seen in Annex Table A2, various forms of the empirical Freundlich model exist, 

which can account for competing species and are therefore useful for modelling 

cation and anion adsorption in soils and organic compounds on activated organic 

carbon (Limousin et al.  2007). The non-linearised model equation is given as: 

    

 

where KF = Freundlich constant (mg1−(1/n) L1/n g−1), n = adsorption 

intensity. 

The Freundlich model constant n provides information about the nature of adsorbent 

as well as the favourability of adsorption process: it can be an indicator of adsorbent 

heterogeneity, wherein the greater the value of n, the more heterogeneous the 

adsorbent (Ismadji et al. 2016). Favourable adsorption occurs within 1 < n < 10, 

where n < 1 is considered unfavourable (Parshetti et al. 2014). Furthermore, greater 

nonlinearity is observed as n increases; as n = 10, the isotherm becomes 

‘rectangular’ or irreversible (Do 1998).  The Freundlich isotherm model has been 

adapted for adsorbents with heterogeneous surfaces, non-uniform adsorption 

energies and affinities for the adsorbate (Ayoob and Gupta 2008; Foo and Hameed 

2010; Mane et al. 2007; Yao 2013). Consequently, sorption of organics onto 

activated carbon is often described by the Freundlich isotherm (Do 1998) as is gas 

sorption onto heterogeneous surfaces even though Henry’s Law not quite obeyed at 

low pressure (Do 1998). Variations of this model have been presented in Annex 

Table A2. 

2.3.2.3.3 Other adsorption models 

While the Langmuir and Freundlich isotherms are the most frequently used 

adsorption equilibrium isotherms (Ayoob and Gupta 2008; Maurya and Mittal 2006), 

they may not be suitable for predicting ion adsorption, and they also have fairly 

restrictive model parameters (Ayoob and Gupta 2008). Other adsorption isotherm 

models incorporate both Langmuir and Freundlich isotherm models, such as the 

Langmuir-Freundlich, Sips and Redlich-Peterson isotherm models (Foo and 

Hameed 2010; Prasad and Srivastava 2009) which are applicable in heterogeneous 

systems (Foo and Hameed 2010; Ye et al. 2015).  

qe = KF
Ce

1
n⁄
     (2.8) 
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As observed from the collation of adsorption models used by previous researchers, 

Foo and Hameed (2010) noted that forms of the Langmuir, Freundlich and Redlich-

Peterson isotherm models have been relied on for investigating the adsorption 

characteristics of activated carbon, zeolite, agricultural waste (rice husk, wood 

sawdust, sugarcane dust) and clay materials. This is likely due to the models’ 

mathematical simplicity and versatility (Malek and Farooq 1996). As this research 

was focused on agricultural waste, the former two isotherm models were also used.  

2.4 Improving char functionality 

As hydrochars and biochars can be produced from a range of organic waste 

feedstocks, they show potential as low-cost adsorbents for various species including 

NH4-N and PO4-P (Laird et al. 2010; Wang et al. 2015a; Yao 2013; Zeng et al. 2013; 

Zheng et al. 2010) thereby complementing fertilizer use (Zheng et al. 2010). There 

is also interest in modifying char properties such that bespoke or even smaller 

quantities of biochars are required for soil amendment (Eberhardt et al. 2006; Novak 

et al. 2009; Silber et al. 2010; Wang et al. 2015a). Char modification can be broadly 

categorised under physical, chemical or biological activation which will be discussed 

in this section, but as this study was focused on chemical activation methods, more 

emphasis is placed on chemical modification. 

Compared to physical activation, it has been suggested that chemical activation can 

be cheaper, less time-consuming and may provide more opportunities for char 

porosity development (Krishnan and Haridas 2008; Lillo-Ródenas et al. 2003; Marsh 

and Rodríguez-Reinoso 2006; Sricharoenchaikul et al. 2008). Moreover, in physical 

activation, porosity development is achieved at the expense of carbon yield in some 

cases (Viswanathan et al. 2009). Chemical agents within the carbon feedstock 

might improve microporosity by interfering with the reduction in volume which is 

known to occur as processing temperature increases, and by leaving behind new 

pores when such agents are washed off (Marsh and Rodríguez-Reinoso 2006). 

Chemical activation agents include transition metal salts, potassium and sodium 

hydroxides (Chen et al. 2011; Marsh and Rodríguez-Reinoso 2006; Park et al. 

2015). Other studies have focused on increasing acidic surface functional groups 

via oxidation or acid treatment (Kastner et al. 2009; Moreno-Castilla et al. 2000; 

Sricharoenchaikul et al. 2008; Xue et al. 2012), since earlier mentioned studies 

have shown that acidic and basic surface oxides are responsible for black carbon 

cation and anion exchange properties respectively (Boehm 1994).  
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2.4.1 Physical treatment 

Physical activation is capable of increasing surface area, pore development and 

CEC without generating hazardous by-products or potential safety risks as is the 

case during some chemical activation processes (Arriagada et al. 1994; Borchard et 

al. 2012; Nakajima et al. 2009; Zhang et al. 2004). Heating chars in the presence of 

air, steam, carbon dioxide or ozone has been shown to increase char surface area 

(Kastner et al. 2009; Sricharoenchaikul et al. 2008; Zhang et al. 2004). Petrov et al. 

(1992) found that the oxidation of anthracite with air at 416 °C increased acidic 

oxygenated groups with a consequent decrease in anthracite pH. Furthermore, 

Kastner et al. (2009) found that ozone increased the adsorption capacity of chars, 

and that since this was achieved at room temperature, ozone treatment could 

perhaps be better alternative to steam activation. However, this conclusion assumes 

that ozone generation is cheaper than steam generation. Steam activation is 

sometimes performed at the highest treatment temperature that was used to create 

the chars (Bimer et al. 1997). Such activation removes low-volatile tars within 

biochars, based on evidence of decreased H and O contents (Borchard et al. 2012). 

Borchard et al. (2012) also found that available NO3-N and P decreased 

substantially possibly due to the release of N-containing volatiles and conversion of 

labile nitrogen to heterocyclic nitrogen. Slow pyrolysis of various lignocellulosic bio-

feedstocks in the presence of steam also yield acidic biochars due to the activation 

of carboxylic groups (Amonette 2009). Arriagada et al. (1994) however found that 

that steam activation of a lignocellulosic char reduced highly acidic functional 

groups like carboxylic groups in favour of weaker acidic functional groups. The 

application of physically activated biochar to soil resulted reduced NO3-N and P 

leaching compared to non-activated biochars in Borchard et al. (2012). 

2.4.2 Chemical treatment 

As earlier mentioned, chemical activation of chars can be conducted at lower 

temperatures and shorter treatment times than physical activation 

(Sricharoenchaikul et al. 2008), with the possibility of microwave heat treatment to 

minimize treatment time even further (Ahmed 2016). Marsh and Rodríguez-Reinoso 

(2006) recommended controlled chemical activation processes over physical 

activation processes, stating that the former offers more opportunities for porosity 

development in carbon-based materials since adjustments to physical activation 

parameters do not alter carbon microporosity greatly. Two forms of chemical 

activation have been adapted for hydrochar and biochar modification; chemical 

treatments followed by high temperature heat treatment or calcination, and chemical 
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treatments without further high heat treatment (surface activation). Surface 

activation improves char surface chemistry and in some cases surface areas 

(Sricharoenchaikul et al. 2008) but based on previous studies, further heat 

treatment may be required to obtain surface area and porosity development 

comparable to traditional activated carbon. Lim et al. (2010) outlined temperatures 

frequently employed for chemical activation which ranged from 500–700 °C and in 

particular, studies like Hao et al. (2014) and Islam et al. (2015) respectively 

pyrolyzed beer waste and factory-rejected tea hydrochars with H3PO4 and NaOH 

between 600–800 °C to enhance their methylene blue sorption capacities.  

For both chemical treatment types, biomass or chars benefit from being immersed 

in the desired activating agent solution for a sufficient period of time as this ensures 

that as water causes swelling of the material, the reagent gains better access into 

orifices; after appropriate thermal treatment and washing, the resulting char 

possesses greater porosity resulting from freed spaces created from removal of the 

reagent (Daifullah et al. 2004; Marsh and Rodríguez-Reinoso 2006). Other chemical 

oxidation methods include electrochemical activation which improve carbon sorption 

capacity for heavy metals like Cu and Pb (Harry et al. 2006). 

 

2.4.2.1 Acid treatment 

Acid treatment often results in an increase in oxygen functional groups although 

biochar morphologies tend to be unaffected (Budarin et al. 2007). The surface 

functionality of carbonaceous materials are modified by wet oxidation using various 

acids, notably HNO3, H2SO4, H3PO4 and H2O2. A comparison of the effects of both 

steam and chemical activation of chars by Moreno Castilla et al. (2000) showed that 

HNO3 increased the amount of carboxyl, lactone and phenol groups compared to 

(NH4)2S2O8 and H2O2, with (NH4)2S2O8 having the least effect on oxygen groups. 

Compared to untreated hydrochars, Xue et al. (2012) observed that simple 

activation steps like soaking hydrochars in 10% H2O2 for 2 h at room temperature 

increased the chars’ carboxyl surface functional groups and also improved their 

capacity to sorb lead from water.  

Liang et al. (2010) used a one-step copolymerisation HTC process at 180°C to 

produce carbonaceous matter with enhanced surface acidity and oxygen content 

using sulphonic groups from hydroxyethylsulphonic acid. Zhang et al. (2012) 

similarly found that treating bamboo with various chemical agents including 

sulphuric acid and oleum considerably increased biomass surface functionality and 



47 
 

catalytic ability. Such acid-treated carbon materials also showed potential for reuse: 

modified carbon retained its acidity after being boiling in water for over 15 h in Liang 

et al. (2010) and after repeated use as a catalyst during esterification in Nakajima et 

al. (2009) and Toda et al. (2005). Such treated chars therefore show potential for 

regeneration although high temperatures may be required for regeneration in some 

cases as observed in Tseng and Wey (2004). 

Dehydrogenation reactions with H3PO4 can result in the development of cross-links 

which strengthen the carbon matrix (Rajapaksha et al. 2016; Sricharoenchaikul et al. 

2008). Lin et al. (2012) found that activating biochars with H3PO4 encouraged the 

formation of nanopores by roughening biochar surfaces and also found that the 

addition of H3PO4 increased water extractable organic carbon (WEOC), which is 

beneficial since WEOC content is an important substrate for microbes (Jandl and 

Sollins 1997; Taylor 2010). Liang et al. (2012) suggested that H3PO4 treatment 

increased WEOC possibly due to the dissociation of labile carbon and weakly 

bonded compounds.  

Nitrogen enrichment of carbonaceous matter is done via an ammoxidation process 

at low temperatures, which simultaneously oxidises and enriches carbon matter with 

nitrogenous compounds like amides, amines, imides and imines thereby modifying 

its acid-base properties (Jureswicz et al. 2004; Pietrzak 2009). Bimer et al. (1997) 

observed that the carboxyl group content of the carbonaceous materials played a 

role in the quantity of nitrogen incorporated and Jureswicz et al. (2004) further 

observed that the position that nitrogen heteroatoms located on carbon matter 

influenced the electrochemical properties of the carbon matter. With regard to 

activation procedure, studies have shown that the sequence of treatment is 

important (Jureswicz et al. 2004; Pietrzak et al. 2007; Pietrzak 2009). In Jureswicz 

et al. (2004), in-situ ammoxidised demineralised coal which was steam activated at 

800 °C had a higher surface area than its carbonised, ammoxidised and steam 

activated counterpart. Pietrzak (2009) compared the morphological properties and 

nitrogen content of demineralised coal samples that were ammoxidised before and 

after carbonisation (in-situ and post-treatment, respectively) and found that post-

treated samples had higher nitrogen contents and experienced additional chemical 

and morphological changes. Other studies show that in-situ treatment of bio-

feedstocks is suitable for ammoxidation of carbonaceous materials like lignites 

(Burg et al. 2002; Starck et al. 2006).  
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2.4.2.2 Base treatment 

Activation of carbon materials with alkali hydroxides is one of the most frequently 

used processes. Surface areas comparable to that of graphene can be obtained 

following KOH and NaOH treatment in some cases (Azargohar and Dalai 2008; Gu 

and Wang 2012; Sricharoenchaikul et al. 2008). Sricharoenchaikul et al. (2008) 

found that when nut samples pyrolysed at 800 °C were activated with KOH at 80 °C 

for 24 h, char surface areas were at least 300 m2 g-1 higher than untreated chars, 

which they attributed to a separation of char crystalline lamellae by potassium metal 

at a certain temperature, after which washing of the potassium salts left meso-pores 

in the chars. Materials with high inorganic contents may experience less micropore 

development during KOH treatment compared to low inorganic content materials. 

This is the observed differences in pore development experienced by as-received 

and demineralised/acid-washed coal in Ehrburger et al. (1986).  The authors 

suggested that KOH or K2CO3 reacted with inorganic matter, thereby decreasing 

potential gasification sites.  

Sricharoenchaikul et al. (2008) compared chemical activation of chars with chemical 

agents at 60 °C for 24 h and physical activation with CO2, and found that KOH 

produced chars with the highest surface area. While activation at lower 

temperatures produce the best porosity development in chars (<450 °C and 

<500 °C for H3PO4 and ZnCl2 activation respectively), KOH treatment benefits from 

much higher activation temperatures (>700°C) (Marsh and Rodríguez-Reinoso 

2006). Furthermore, size of the activating agent may influence the kinetics of 

reaction; For instance, Sricharoenchaikul et al. (2008) suggested that because KOH 

was smaller in size than H3PO4, it diffused through the carbon pores faster, hence 

the higher surface areas and porosity observed with KOH surface activation. KOH 

treatment may also enhance char agronomic potential, as it has been found to 

increase WEOC possibly because of an increase in the rate of phenolic/humic 

dissolution (Lin et al. 2012). Activation of carbonaceous materials with KOH prior to 

other treatments like ammoxidation has also been shown to increase char nitrogen 

content (Pietrzak et al. 2007) and CEC (Nguyen et al. 2014). 

2.4.2.3 Metal incorporation 

Carbonaceous matter can also be activated using metal carbonates (X2CO3) where 

X represents metals like sodium or potassium, as done by Urabe et al. (2008) who 

found that addition of such chemicals to bread yeast grains prior to pyrolysis 

improved the gas adsorption capacity of the resulting chars. Similarly, the 
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incorporation of transition metals enhance carbon materials’ adsorption capacities 

for various species (Cam et al. 2010; Gaur et al. 2008): iron impregnated porous 

black carbon structures could be a cost-effective means of removing arsenic (Chen 

et al. 2007); the addition of ferric oxide (Fe2O3) or magnetite (Fe3O4 or FeO∙Fe2O3) 

can increase phosphate adsorption capacity in some biochars (Chen et al. 2011; 

Yao et al. 2011). Some transition metals perform better than others, as studies by 

Gaur et al. (2008) showed that activated carbons impregnated with Cu and Ni 

metals adsorbed and removed SO2 more effectively than Co and Cr metal-

impregnated activated carbons. However, reagents such as ZnCl2 may not be 

suitable for chemical activation due to environmental concerns (Azargohar 2009; Gu 

and Wang 2012; Lim et al. 2010); while ZnCl2-activated chars can possess superior 

surface areas compared to chars activated with KOH (Ioannidou and Zabaniotou 

2007) and H3PO4 (Williams and Reed 2004), excessive quantities of Zn can be 

detrimental to plants (Rout and Das 2009) therefore Zn-treated chars are likely to be 

less suitable for soil amendment purposes. Similar arguments can be made against 

Na-treated chars and other metal-loaded chars, since excessive amounts of such 

cations are detrimental to plants (Jeffery et al. 2013; Pardo and Quintero 2002). 

2.4.3 Biological treatment 

Based on short-term soil incubation tests, Sarkhot et al. (2011) found that biochars 

enriched with dairy manure effluent possessed higher nitrogen contents which could 

potentially be used as a slow-release fertilizer and Wiedner et al. (2015) observed 

an increase in char oxygen functionality after co-composting. Schmidt (2011) also 

considered the nutrient enrichment of biochars with manure in combination with 

lactic acid bacteria. On-going research is also aimed at activating biochars with 

compost at char loading ratios starting from 10% biochar with frequent mixing 

(Schmidt 2011) to enhance their surface properties, as discussed in Section 2.3.1

 Co-composting with hydrochars and biochars. 

 

2.5 Sustainability of char production and deployment 

As farmers and companies become increasingly interested in producing biochars at 

small and large scale, it is important to generate good quality chars, or minimise 

risks associated with toxin introduction (Sparkes and Stoutjesdijk 2011). Life cycle 

assessments of biochars and their production systems are useful tools that are used 

to ensure that GHG emissions are not inadvertently increased (Gwenzi et al. 2015; 
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Roberts et al. 2010). When produced from feedstocks that are not in competition 

with livestock or human needs, biochars show potential to minimise carbon dioxide 

emissions (Woolf et al. 2010). Roberts et al. (2010) determined the energy, 

economic and GHG emission balances and found that when biochars were applied 

to soils, GHG emissions were significantly lower than when they were used to 

generate energy in some cases. The variability in soil and crop responses to char 

application has led to some unease about the application of as-received chars, and 

while research is geared towards enhancing char agronomic value via physical, 

chemical and/or biological means, such treatments are likely to increase char costs. 

Yet the increase in char cost may be offset by the benefits gained from its potential 

multi-functionality (Table 1.1). 

In terms of socio-economic potential, biochar production presents opportunities at 

both small and large scale and depends on country contexts; at the small scale level, 

cook-stoves are used to supply energy for cooking after which the by-product 

(biochar) are applied to soil (Whitman and Lehmann 2009; Woolf et al. 2010), top-lit 

upscale updraft gasifiers (Kisiki et al. 2015) and other technologies as outlined in 

Gwenzi et al. (2015). Biochars could also be instrumental in assisting developing 

countries to meet their Clean Development Mechanism (CDM) targets via carbon 

sequestration (Whitman and Lehmann 2009), provided the chars possess 

recalcitrant forms of carbon. Granatstein et al. (2009) noted that biochar production 

may best undertaken close to feedstock sources as this minimises transportation 

costs, and for large-scale biochar production, it may be preferable to produce 

biochars alongside waste heat utilization or some form of bioenergy provided pricing 

is competitive. In-depth analyses and recommendations for enhancing char 

sustainability have been discussed in studies like Jeffery et al. (2013), Mohan et al. 

(2016) and Zhang et al. (2016). 

 

2.6 Summary 

Hydrochars and slow pyrolysis biochars are promising tools for nutrient recovery. 

Future research is geared towards blending low and high nutrient content feedstock 

materials to obtain chars with superior properties (Ippolito et al. 2015; Lin et al. 

2013); blending biochars with hydrochars (Kambo and Dutta 2015) to maximise the 

properties of both char types; and thermal treatment of nutrient-rich biomass at 

lower temperatures to conserve nutrient forms like N (Lin et al. 2013); further 

optimization of cost-effective char post-treatment processes such as  co-composting 
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and exposure to various industrial and agricultural wastewaters. In the foremost 

case, blending biochars from animal- and plant-based feedstock has been 

recommended as the former feedstocks possess higher nutrient contents (Chan and 

Xu 2009; Ippolito et al. 2015).  

Ultimately, as hydrochars and biochars are produced from diverse feed-stocks at 

various processing conditions, it is possible to design chars that meet specific soil 

needs, aided by quantitative assessments on the influence of production 

parameters on char properties and functions, as recommended by Morales et al. 

(2015). In addition, it is generally accepted that longer-term char-soil field and 

incubation trials are essential for providing more accurate, comprehensive 

information on hydrochars and biochars interactions with soil. This has been 

demonstrated in studies like Gronwald et al. (2015, 2016) who compared laboratory 

and field trials to compare hydrochar and biochar mineralization. Based on char 

incorporation in three different soil types within regularly tilled mini-plot fields, the 

authors estimated that biochar decomposition would occur faster than previous 

laboratory incubation studies in the literature suggested, with predicted mean 

residence times far less than 250 years, and between 3–14 years for hydrochars 

derived  from miscanthus. From field trials, Malghani et al. (2015) also estimated a 

half-life of about 19 years for hydrochar derived from agricultural waste (corn silage) 

and reported that hydrochar application to soil could result in positive priming due to 

easily mineralized carbon but only in the short term (≤ 3 months). As is often the 

case with chars, such dynamics are likely to be feedstock and process dependent. 
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CHAPTER 3 
 

Materials, Equipment and Experimental Methods 
 

3.0 Introduction 

Information about the feedstock materials, equipment and analytical procedures 

used for the production and characterization of chars throughout this study are 

outlined in this section as presented in Figure 3.1. Feedstocks were chosen to 

represent waste materials typically found in the agricultural and municipal sectors. 

Bark-free wood feedstocks were also chosen for comparative purposes, and as 

these feedstocks were low in contaminants relative to the waste-based feedstocks, 

the resulting hydrochar and biochars were considered as reference chars. 

All chemicals used for char and biomass treatment were of analytical grade and 

used as-received. Procedures used to assess char-compost and char-soil 

interactions during mesocosm laboratory trials are also outlined. In terms of CEC 

analysis, various studies have adapted different soil CEC procedures for measuring 

char CEC, making comparisons between studies challenging. Consequently, two of 

the four frequently used CEC methods which have been evaluated in this work are 

summarised here.  

Improvements to char functionality in the literature involve physical, chemical, or 

biological modification or activation processes, with chemical activation being the 

preferred choice for a number of reasons, as summarised in Section 2.4. Chemical 

modification often requires the use of large quantities of chemical agents to achieve 

substantial improvements to char functionality. In this study however, mild chemical 

activation processes have been investigated, on the premise that lower quantities of 

reagent translate to lower costs associated with by-product disposal as well as 

lower activated char costs. As this study was specifically focused on enhancing char 

ammonia / ammonium and phosphate sorption capacities, chemical modification 

methods involving the incorporation of acid, alkali, and metal species were 

evaluated. Method development for such mild char chemical modification 

procedures are therefore outlined in this section. 
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As-received char 
 

Untreated hydrochars and 
biochars 

Char interactions with: 

High pH soil 

Compost 

N and P-rich environments 

Characterization of char physico-

chemical properties 

Physical: 

BET surface area (N2) and porosity; 

SEM/EDS. 

 

Chemical: 

Elemental analysis; proximate analysis; 

CEC; pH analysis; ATR-FTIR; NMR; TPO. 

Char modification 

Acid treatment 

Alkali treatment 

Metal incorporation 

 

 

 

 

 

 

 

 

3.1 Feedstock materials 

The char samples analysed in this study originated from a set of five feedstocks 

within the Fertiplus Consortium (Grant Agreement N°: 289853), co-funded by the 

European Commission, Directorate General for Research & Innovation, within the 

7th Framework Programme of RTD, Theme 2 – Biotechnologies, Agriculture & Food. 

Bark-free Quercus ilex (holm oak) wood, with particle sizes ranging from about 5–50 

mm; paprika waste sourced from a greenhouse in Andalucia, Spain by Tecnova 

(Almeria); greenwaste supplied by Organic Waste Systems (OWS), Gent, Belgium; 

pre-treated organic wastes, namely: presscake, obtained after the anaerobic 

digestion (AD) of organic waste by OWS, Gent, Belgium; the unsorted organic 

fraction of municipal waste which was steam autoclaved at temperatures up to 

160°C by Graphite Resources Ltd., Derwenthaugh, UK, resulting in a fibrous 

product commercially referred to as ‘cellmat’, free from large pieces of glass, plastic 

and metal. The range of biomass feedstocks are shown in Figure 3.2. Pig manure 

Figure 3.1 Overview of experimental setup. 
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sourced by the Energy research Centre of the Netherlands (ECN) was also used to 

produce a small set of biochars. 

 

 

 

  

3.2 Hydrochar and biochar production 

Table 3.1 outlines the thermochemical processing conditions used for hydrochar 

and biochar production. Hydrochars were produced at the University of Leeds using 

a non-stirred hydrothermal reactor (Figure 3.3) fitted with a Type ‘J’ (iron 

constantan) thermocouple. Additional reactor specifications are provided in Table 

3.2. An external heating jacket supplied heat for the reaction after programming the 

reactor to a specific temperature and heating rate using a Parr 4836 controller. HTC 

was performed on feedstocks with about 10 wt.% feedstock to distilled water ratio. 

The mixture was briefly stirred manually before heating to 250°C and left to 

carbonize for 1 h at approximately 4 MPa after which the reactor and its contents 

were allowed to cool to about 50°C before recovering the residue (hydrochar) from 

the process water by filtration followed by air-drying.  

Biochars produced via slow pyrolysis and gasification over a temperature range of 

400–750°C were obtained from ECN and by Proininso S.A. (Málaga, Spain). 

Specifically, oak biochars used as reference biochars were produced at 450°C and 

650°C by a commercial, mono retort pyrolysis reactor operated by Proininso over 

12–18 h, further details of which are proprietary. ECN pyrolysis chars were 

produced using an auger screw thread Pyromaat reactor, full details of which are 

provided in Fryda and Visser (2015). Pyrolysis was performed over 60 min in an N2 

atmosphere unless otherwise stated, while fluidized bed gasifiers also operated by 

ECN were used to produce biochars at 600–750°C in air and N2. As a small set of 

(b) (c) (d) (e) (a) 

Figure 3.2 Biomass samples: (a) holm oak (b) greenhouse waste (c) treated 

municipal waste (cellmat) (d) presscake from AD (e) greenwaste. 
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Figure 3.3 Hydrothermal reactor and controller (Parr 

4836). 

pyrolysis chars were also produced by ECN at shorter residence times, at 

temperatures >600°C or in the presence of 1% O2, Biochars produced by ECN via 

pyrolysis between 400–600°C in N2 over 60 min residence times are referred to as 

chars produced under standard conditions to aid clarity. To minimise exposure to air 

and moisture, as-received biochars and air-dried hydrochars were stored in white 

250–500 mL polyethylene plastic screw top jars fitted with inner seals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Char modification 

Chemical treatments were performed on oak and greenhouse waste-based chars as 

these chars possessed carbon contents >50%, thus classified as Class 1 biochars 

according to the EBC and IBI. As earlier stated, chemical modification involved 

soaking chars or char precursors in chemical reagents with or without further high 

heat treatment; chars from the latter treatment were referred to as surface activated 

chars. Furthermore, to investigate the effect of chemical treatment route on char 

performance in nutrient-rich environments, holm oak and greenhouse waste 

biomass samples were pre-treated with either KOH, MgCl2·6H2O or FeCl3·6H2O 

prior to pyrolysis at the University of Leeds and unless stated otherwise, pyrolysis 

was performed using a single vertical tube furnace (Elite Thermal Systems Ltd., 

Model TSV12/100/750) under the flow of N2 for 60 min. Bio-oils collected in the 

condenser catch pot and gases generated were not analysed. Details of the furnace 

shown in Figure 3.4 are provided in Table 3.2.  
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Table 3. 1 Biochar nomenclature and processing conditions 

Description Temp. 
(°C) 

Residence 
time (min) 

Atmos-
phere 

Designation 

HTC chars (University of Leeds)   

Holm oak 250     60 Air OAK 250 

Greenhouse waste (pepper/paprika waste 
from a greenhouse) 

250     60 Air GH  250 

Municipal waste (cellmat) 250     60 Air MW 250 

Presscake from anaerobic digestion of 
organic fraction of municipal waste  

250     60 Air PK  250 

Greenwaste 250     60 Air GW 250 

Pyrolysis chars (ECN)     

Holm oak from Pyromaat  400     60 N2 OW  400 

Holm oak from Proininso kiln (commercial)a 450     60 N2 OAK 450 

Holm oak from Pyromaat  600     60 N2 OW  600 

Holm oak from Proininso kiln (commercial)a 650     60 N2 OAK 650 

Greenhouse waste  from Pyromaat  400     60 N2 GH  400 

Greenhouse waste  from Pyromaat  600     60 N2 GH  600 

Municipal waste (Cellmat) from Pyromaat  400     60 N2 MW 400 

Municipal waste (Cellmat) from Pyromaat  600     30 N2 MW6-30 

Municipal waste (Cellmat) from Pyromaat  600     60 N2 MW  600 

Municipal waste (Cellmat) from Pyromaat  600     60 O2  MW - 1% 

Presscake from Pyromaat  400     60 N2 PK  400 

Presscake from Pyromaat  600     30 N2 PK6-30 

Presscake from Pyromaat  600     60 N2 PK  600 

Presscake from Pyromaat  600     60 O2 PK - 1% 

Presscake from Pyromaat 700     60 N2 PK  700 

Greenwaste from Pyromaat  400     60 N2 GW 400 

Greenwaste from Pyromaat  600     60 N2 GW 600 

Pig manure from Pyromaat 600    30 N2 PM6-30 

Pig manure from Pyromaat 700    30 N2 PM7-30 

Pig manure from Pyromaat 700    60 N2 PM 700 

Gasification chars (ECN)     

Greenhouse waste  from fluidized bed  600     60 Air GH-FA 600 

Greenhouse waste  from fluidized bed  600     60 N2 GH-FN 600 

Greenhouse waste  from fluidized bed  750     60 N2 GH-FN 750 

a Reference biochar; biochars produced at non-standard conditions include: gasification 
chars, chars produced at shorter residence times (30 min), and chars produced in the 
presence of 1% O2. 
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Table 3.2 Specifications of hydrothermal and pyrolysis reactors  

Specifications of Parr hydrothermal reactor (University of Leeds) 

 

Reactor vessel capacity 

 

0.6 L 

Reactor construction Type 316 stainless steel vessel 

Temperature sensor Type ‘J’ (iron constantan) thermocouple 

Temperature controller Parr 4836 manual controller  

Gasket Flat polytetrafluoroethylene (PTFE) 

Maximum vessel  temperature  350°C 

Maximum vessel pressure 20 MPa 

Closure 6 cap screws (split-ring) 

  

Specifications of vertical tubular furnace (University of Leeds) 

 

Dimensions 

 

Furnace bore: 90 mm O/D x 80 mm I/D x 1100 

mm long; heated length: 750 mm 

Reactor construction Low thermal mass insulation; zinc-coated steel 

and outer mesh cover 

Temperature sensor Type ‘N’ thermocouple 

Temperature controller Eurotherm 2416CG dual display PID 

programmer  

Gasket Flat wire-reinforced graphite 

Heating element Resistance wire elements wound onto ceramic 

work tube 

Maximum furnace temperature  1200°C 

Maximum furnace pressure Unknown 

Closure 8 screw caps 
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3.3.1 Acid treatment 

For phosphoric acid treatment, 4 g char of particle size  2 mm was mixed with 2 g 

of 99% phosphoric acid in 20 mL of water. The mixtures were shaken briefly and left 

to stand for 24 h at room temperature as shown in Figure 3.5, after which the 

mixtures were heated for about 15 h at 80°C in an oven and rinsed with distilled 

water. Hydrochars and biochars were oven dried at 80°C and 100°C respectively. 

For sulphuric acid treatment, 5 g char (2 mm) was mixed with 100 mL of 0.1 M 

H2SO4 and heated for 3 h at 80°C after which treated chars were washed with 

distilled water until a stable pH was attained and oven-dried at 80-100°C.  

H2O2 treatment involved soaking 2 g char of particle size 2 mm  in 20 mL of 10% 

or 30% H2O2 for 48 h at room temperature, using a methodology similar to that of 

Moreno-Castilla et al. (2000) and Xue et al. (2012) without agitation, after which 

biochars were heated at 80°C for 24 h, washed with distilled water until the pH was 

between 6–7 for biochars or close to the hydrochars’ original pH before oven-drying 

at 80–100°C.  

Figure 3.4 Vertical tube furnace (Elite Thermal Systems Ltd.). 
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Figure 3.5 Chars soaked in chemical reagents (acid, alkali or salt) for hours to 

ensure adequate migration of reagents into interior and exterior char surfaces. 

3.3.2 Alkali treatment  

For surface activation with KOH, oak (particle size 2 mm) or greenhouse waste 

char was mixed in a solution of KOH using 1:1, 3:1 and 5:1 KOH to char ratios, 

corresponding to 2, 6, and 10 g KOH to 4 g char in 20 mL of distilled water. The 

mixtures were stirred for 2 h at 75°C with a magnetic stirrer. The treated biochars 

were subsequently rinsed with HCl followed by distilled water until the leachate pH 

values ranged between 6–7 then oven-dried for 2 h at 100°C. Treatments at 1:1 

ratios were also performed for oak and greenhouse waste hydrochars. 

For chemical activation with KOH, commercial oak biochars at the same procedure 

as outlined for surface modification was performed but with an additional pyrolysis 

step, where biochar-KOH mixtures  were allowed to stand overnight before pyrolysis 

of chars for 1 h in a nitrogen atmosphere at 5 mL min-1 , heating rate of 10°C min-1 

at 400°C and 600°C for Oak 450°C and Oak 650°C, respectively. Treated biochars 

were washed and dried as outlined above. To investigate the effect of activating 

agent/char contact time, the same chemical activation procedure was followed but 

chars were immediately pyrolysed at 600°C using the same conditions pyrolysis 

conditions and chars were washed and dried as normal. Finally, to compare the 

effect of KOH activation on raw biomass, 4 g holm oak and greenhouse waste were 

each soaked in 20 mL distilled water containing 2 g KOH followed by pyrolysis in an 

N2 atmosphere at about 5 mL min-1 at 600ºC for 1 h at a heating rate of about 10°C 

min-1 using a bench-scale Eurotherm horizontal pyrolysis reactor. Biochars were 

rinsed with HCl followed by distilled water until the leachate pH values ranged 

between 6–7 and oven-dried for 2 h at 100°C. 
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3.3.3 Metal incorporation 

For surface activation, 8 mL of 2 M iron nitrate nonahydrate (Fe(NO3)3·9H2O) and 

0.1 mL of 10 M sodium hydroxide was added to 4 g char of particle size 2 mm. The 

mixture was stirred, heated in an oven overnight at 105°C and rinsed with distilled 

water until orange iron precipitates shown in Figure 3.6 were removed and oven-

dried at 100°C. The iron contents of the treated biochars were determined using 

AAS following acid digestion with HCl. 

 

 

 

For chemical activation, as high temperatures would be involved, iron chloride 

hexahydrate was used instead of iron nitrate, following a methodology similar to that 

of Zhang et al. (2012) in which 10 g oak biochars were mixed with 40 g FeCl3·6H2O 

in 60 mL distilled water. The mixture was stirred thoroughly and left to stand for 2 h 

at room temperature then heated for 24 h at 100°C on a Stuart hotplate before 

pyrolyzing the biochar for 1 h in an N2 atmosphere at about 10 mL min-1 and heating 

rate of 10°C min-1 at 400°C or 600°C depending on the biochars’ original production 

temperatures. That is, OAK 450 and GHW 400 were pyrolyzed at 400 °C while OAK 

650 was pyrolyzed at 600 °C to correspond with temperatures slightly below initial 

production temperatures. Modified biochars were subsequently rinsed with distilled 

water and oven dried at 100°C for 2 h.  

Various Fe-treated chars after oven-drying (100°C) Before oven-drying 

Figure 3.6 Enrichment of chars with iron nitrate nonahydrate. 
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This procedure was repeated for biochars treated with magnesium chloride 

hexahydrate (MgCl2·6H2O) on oak biochars with particle size  850 µm,  2 mm 

and  4.75 mm using both small and large tubular furnaces. To investigate the 

effect of pyrolysis temperature on magnesium loading onto biochars, OAK 650 was 

pyrolyzed at 400°C and 600°C as outlined above and stored for subsequent 

analysis. Additional magnesium treatments were performed: to compare the effect 

of magnesium treatment route (in situ treatment versus biochar post-treatment), as-

received holm oak chips and greenhouse waste biomass were treated with 

MgCl2·6H2O as outlined above, as shown in Figure 3.7. 

 

 

3.4 Char characterization 

Details on the standard procedures for determining char elemental and functional 

groups are subsequently described. 

3.4.1 Ultimate analysis 

The C, H, N, and S contents of the various chars were determined by flash 

combustion using a Thermo Instruments Flash EA 1112 Series elemental analyser 

(Figure 3.8). 5 standards supplied by CE Instruments UK were used: 2,5-Bis(5-tert-

butyl-benzoxazol-2yl)thiophene, BBOT  (C=72.53 wt.%; H=6.09 wt.%; N=6.51 wt.%; 

S=7.44 wt.%; O=7.43 wt.%); Atropine; Methionine; L-cysteine and Sulphanilamide 

(a) 

(c) (d) 

(b) 

Figure 3.7 As-received (a) Oak and (b) Greenhouse (paprika) waste biomass and their 

respective magnesium-loaded chars: (c) Mg-Oak char; (d) Mg-Greenhouse waste char. A 
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Figure 3.8 Elemental analyser (Thermo Instruments Flash EA 1112 Series). 

while coal or oatmeal (C=47.76 wt.%; H=5.72 wt.%; N=2.09 wt.%; S=0.16 wt.%) 

were used as reference materials to monitor drift, and an empty folded tin foil 

capsule served as blank. In accordance with BS EN ISO 16948:2015 standards, 

approximately 2.5–3 mg of standards and finely ground samples were each placed 

in tin foil capsules along with <5 mg V2O5 for BBOT and samples, the latter added to 

aid combustion. Wrapped contents were combusted at 900°C in the reaction zone 

of the elemental analyser. Oxygen at 0.35 MPa and helium as carrier gas to sweep 

the resulting water vapour, oxides of carbon, nitrogen and sulphur into the 

instrument’s detector while oxygen contents were determined by difference. 

Analyses were performed in duplicate and average values of dry weight 

percentages were reported unless stated otherwise.  

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Proximate analysis  

Proximate analysis involved determination of char moisture, ash, volatile and fixed 

carbon. In accordance with BS EN 14774-3:2009, hydrochars and biochars were 

heated at 60°C and 105°C respectively until constant mass was attained. Ash and 

volatile matter was determined according to BS EN 14775:2009, in which oven-

dried samples were heated up to 550°C for 2 h in a muffle furnace and weighed 

when cooled. Fixed carbon was determined according to Equation (3.1): 

Fixed carbon = 100 – (% Moisture + % Ash + % Volatile Matter)   (3. 1) 
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Temperature Programmed Oxidation (TPO) of the chars was done by 

thermogravimetric analysis (Mettler Toledo TGA/DSC1), where 5 µg of char was 

heated to 900 oC and recalcitrance values (R50) were determined according to 

Equation (3.2) as outlined in Harvey et al. (2012b):  

 

where  and  =  temperature at which 50 wt.% char and 

graphite oxidise, respectively.  

3.4.3 Micro- and macro-mineral analysis  

Hydrochar and biochar micro- and macro-mineral contents were determined 

according to the BS EN ISO 16967:2015 method, in which Inductively-coupled 

Plasma-Mass Spectroscopy (ICP/MS, Perkin Elmer ELAN DRC ICP-MS) was used 

to determine mineral concentrations after acid digestion of about 0.2 g chars in 

about 10 mL 70% HNO3 using an Anton Parr Multiwave 3000 microwave. 

3.4.4 pH analysis 

For pH determination, 1:20 char/distilled water mixtures in 50 mL falcon tubes were 

hand shaken for 2 min and left to stand for 5, 15, 60, 75, and 120 min. A Hach 

Lange portable pH meter calibrated with pH 4, 7 and 10 buffers (Reagecon, UK) 

was used to measure pH values at room temperature ( 22°C). As results indicated 

the pH readings were stable between 75 and 120 min, readings taken after 2 h were 

reported. 

3.4.5 Cation Exchange Capacity 

CEC can be determined using any of four main methods as outlined in Section 

2.2.5 but variations in laboratory procedures make comparative analysis of char 

CEC challenging in some cases, as alluded by McLauglin (2010) and Sumner and 

Miller (1996). Two of such methods were employed in this study for comparative 

purposes: direct displacement after washing (Sections 3.5.5.1. 3.5.5.2 and 3.5.5.4) 

and direct displacement (Section 3.5.5.3) alongside schematic diagrams 

summarising the sequence of saturation and leaching steps involved. Analyses 

were done at room temperature unless stated otherwise and at solution pH of about 

7 for analyses involving ammonium acetate solutions. CEC analyses were 

performed in duplicate unless stated otherwise but when coefficients of variation 

        (3. 2)  
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exceeded 25%, more repeats were performed and the average values reported. 

Most coefficients of variation were below 10% however. 

3.4.5.1 CEC analysis by the Modified BaCl2·2H2O Compulsive Exchange  

A summary of the procedure is presented in Figure 3.9, based on the procedure 

outlined in Gilman and Sumpter (1986), however due to the low density of the chars 

in this study, chars were separated via filtration as opposed to centrifugation. 2 g 

char was measured onto a funnel fitted with a Whatman Grade 1 filter paper to 

which 20 mL of 0.1 M BaCl2·2H2O was added, letting the solution soak through 

completely before adding more reagent. The char was then leached with 10 mL of 2 

mM BaCl2·2H2O six times, discarding 5 of the leachates obtained and retaining the 

last for pH analysis. The filter paper and biochar was transferred to a 100 mL flask 

to which 10 mL of 5 mM MgSO4·7H2O solution was added. This mixture was swirled 

occasionally for 1 h. The conductivity of 1.5 mM MgSO4·7H2O was determined to be 

316 μS, and as the conductivity of the sample solution was to be 1.5 times this 

value (ie. about 450 μS), 0.1 mL of 0.1 M MgSO4·7H2O was added gradually, taking 

note of the amount of 0.1 M MgSO4·7H2O added. The pH of the sample solution 

was maintained within 0.1 units of the pH of the leachate analyzed earlier, otherwise 

0.05 M H2SO4 was added drop-wise until pH was within the appropriate range. 

However, because the pH of the sample solution was more acidic than the pH of the 

leachate, the addition of sulphuric acid was discontinued. 

Distilled water was added to the solution, after which the conductivity and pH of the 

solution was checked again and re-adjusted to the desired 450 μS and pH range 

desired. The flask was dried and weighed and the calculation for CEC was 

determined as outlined in Ross and Ketterings (1995) in Equations (3.3) – (3.6):  

 

A: Total solution (mL) assuming that 1mL weighs 1 g =  

 

B: Since 1.5 mM of MgSO4·7H2O has 0.003 mEq Mg2+ per mL,  

Mg2+ in solution (mEq) = total solution (mL)  0.003   (3. 4) 

 

          final tube weight (g) – tube tare weight (g) – 2 g of char used (3.3) 
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20 mL of 0.1 M BaCl2·2H2O 

 

10 mL of 2 mM BaCl2·2H2O  5 

leachates discarded  

10 mL of 2 mM BaCl2·2H2O 
leachate saved for pH analysis  

STEP 5:  

STEP 2: 

STEP 4: 

STEP 3: 

STEP 1: 

2 g char 

Saturated char 

0.1 mL of 0.1 M MgSO4·7H2O 
0.05 M H2SO4 drop-wise if conductivity of solution ≠ 1.5 times 

that of 1.5 mM MgSO4·7H2O 

10 mL of 5 mM MgSO4·7H2O 
swirled for 1 h 

C: As 5 mM of MgSO4·7H2O has 0.1 mEq of Mg2+ and 0.1M 

MgSO4·7H2O has  0.2 mEq of Mg2+ per mL,  

total magnesium added (mEq) =  

0.1 mEq +  (3. 5) 

 

D: Converting 2 g char sample analysed to 100 g, from (3.3) and (3.4): 

CEC (mEq/100 g) =     (3. 6) 

 

 

 

 

 

Figure 3.9 Schematic diagram of saturation and leaching process for barium chloride 

compulsive exchange CEC method. 
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3.4.5.2 CEC analysis using ammonium acetate (displacement after washing) 

The method involved the adsorption of cations onto biochar surfaces followed by 

rinsing excess cations with alcohol before replacing with a different set of cations in 

accordance with the Chapman (1965) method and illustrated in Figure 3.10. The 

experimental setup used is shown in Figure 3.12. Due to low quantities of char 

available in this study, char and reagent quantities were scaled down by a factor of 

10 whilst keeping reagent concentrations the same as in Chapman (1985). To 

confirm whether CEC values of original and scaled-down values would be similar, 

the CEC of commercial 450°C oak biochar was determined using both original and 

scaled-down ratios, and the former was higher by only 3.5 cmolc kg-1, thus 12.5 mL 

of 1 M of ammonium acetate solution adjusted to a pH of about 7 was added to 2.5 

g char, shaken and allowed to stand overnight, after which the mixture was filtered 

through a Whatman Grade 1 filter paper. The char was carefully washed with four 

more additions of 2.5 mL ammonium acetate solution, followed by eight additions of 

2.5 mL 98% ethanol to remove excess ammonium acetate. Eight 2.5 mL additions 

of 1 M KCl solution were then added to the char sample to extract the adsorbed 

ammonium ions. In each leaching step, solutions were allowed to filter through the 

char completely. The leachate was transferred to a 25 mL volumetric flask and 

made up to volume with distilled water.  

A 20 mL aliquot of this leachate was gently boiled with 5 mL of 60% NaOH, and 

ammonia present in the condensate was collected into a beaker containing 1 mL 

boric acid and trapped as ammonium according to Equation (3.7). Drops of 

bromcresol green screened with methyl red indicator were added and the solution 

was titrated with 0.01 M HCl until the indicator changed from green to pink due to 

the reaction shown in Equation (3.8). The distillation procedure was also performed 

with KCl solution to serve as a blank. Char CEC was determined according to 

Equation (3.9), similar to that used in Haluschak (2006). Here, single analysis was 

performed on biochars. 

NH3
  
    H3BO3 NH

4

+

: H
2
BO

3

-         

    H3BO3
   

(3. 7) 

       
 
 

ammonium borate 
complex 

excess boric 
acid 
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12.5 mL of 1 M C
2
H

3
O

2
NH

4
 

shaken and left overnight, then leachate discarded 

4 additions of 2.5 mL of 1 M C
2
H

3
O

2
NH

4
 

leachate discarded 

  

8 additions of 2.5 mL of 98% C
2
H

5
OH 

leachate discarded 

  

8 additions of 2.5 mL of 1 M KCl 
leachate made up to 25 mL  

STEP 2: 

STEP 4: 

STEP 3: 

2.5 g char 

Distillation and 

titration  

STEP 1: 

 NH
4

+

: H
2
BO

3

-

     HCl     NH4Cl      H3BO3
  

(3. 8) 

 

CEC (mEq/100g) =       (3. 9) 

where  V1 and V2 = sample and blank titre (mL) respectively; N = normality of 

HCl  (Eq L-1); Va and VL = volume of aliquot and leachate respectively; w = 

sample mass.       

 

 

3.4.5.3 CEC analysis using ammonium acetate (direct displacement) 

This method involved CEC determination after index cations adsorbed onto biochar 

exchange sites were displaced by cations from another saturating solution without 

rinsing excess cations from biochars with alcohol, following a methodology similar to 

that outlined in  Sarker and Haldar (2005). 10 g of char into a 500 mL beaker to 

which 200 mL of 1 M ammonium acetate was added. The mixture was shaken and 

allowed to stand for 15 min after which the mixture was filtered through a Buchner 

Figure 3.10 Schematic diagram of saturation and leaching process for CEC analysis via 

ammonium acetate displacement with KCl after washing with ethanol. 
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Tap water inlet  

Condensate 

collection beaker 

Tap water outlet  

funnel fitted with a funnel and Whatman Grade 1 filter paper. Both char and filter 

paper were transferred into a distillation flask containing 2 g magnesium oxide and 

200 mL of tap water. The same distillation setup as shown in Figure 3.12 was used, 

ensuring that the tip of the inverted funnel used to convey the condensate 

generated just dipped into a 500 mL beaker containing 50 mL of 4% boric acid and 

5 drops of bromocresol green indicator. The distillation flask contents were gently 

boiled until 200 mL of condensate was obtained, and the condensate-indicator 

solution containing ammonium generated according to Equations (3.7) and (3.8) 

was titrated with 0.1 M hydrochloric acid until the indicator changed from blue to 

light green. A blank analysis involved the same procedure outlined above barring 

the addition of ammonium acetate. The procedure is outlined in Figure 3.13 and 

CEC was determined according to Equation (3.10) as similar to that of Sarkar and 

Haldar (2005). Analyses were performed in duplicate or triplicate and average 

values ± standard deviation were reported. 

 

CEC (mEq/100 g) =     (3. 10) 

where V1 and V2 = sample and blank titre (mL) respectively;  N = normality of 

HCl  (Eq L-1); N = normality of HCl (Eq L-1); w = sample mass (g). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Distillation setup for CEC analysis. 
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STEP 2: 

STEP 1: 200 mL of 1 M C
2
H

3
O

2
NH

4
 

shaken and left to stand for 15 min  

2 g MgO and 200 mL water 
distillation until 200 mL condensate obtained 

Titration 

10 g char 

 

 

 

3.4.5.4 CEC analysis using the modified ammonium acetate compulsory 

displacement method 

CEC was determined using a method similar to that of Brewer (2012), Gaskin et al. 

(2008) and Yuan et al. (2011). To remove soluble salts, 20 mL distilled water was 

added to 1 g of biochar and shaken at 160 rpm for 10 minutes each in a water 

shaker bath (SW23 Julabo GmbH) at room temperature and filtered through a 

Whatman Grade 1 filter paper. This was repeated four more times, discarding the 

leachates each time. Biochars were saturated with 10 mL of 1M sodium acetate 

(Alfa Aesar) with pH adjusted to 7 using a few drops of glacial acetic acid, shaken at 

160 rpm for 16 minutes and filtered. This was repeated twice more, discarding the 

leachates each time, after which biochars were rinsed with ethanol  thrice for 8 

minutes each at 160 rpm. Three additions of 1 M ammonium acetate at pH 7 were 

used to displace sodium cations by shaking at 160 rpm for 16 minutes, storing the 

leachates for subsequent analysis. Analyses were done in duplicate or triplicate, 

and the average values reported, and a summary of the process is shown in Figure 

3.14. To each 10 mL aliquot of the final leachates, 10 mL of 2000 mg K+ as KCl was 

added to serve as an ionization suppressant before making up to 100 mL with 

distilled or deionised water and the concentration of displaced sodium cations were 

determined using a Varian AA240FS flame Atomic Absorption Spectroscopy (AAS) 

instrument as shown in Figure 3.15. Acetylene was used as fuel with air support 

and the lamp current was set at 5 mA. The wavelength chosen for the analysis was 

330.3 nm with slit width of 0.5 nm. After obtaining a linear calibration plot from 

Figure 3.13 Schematic diagram of saturation and leaching process for CEC analysis using 

ammonium acetate (direct displacement without washing). 
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STEP 2: 

STEP 4: 

STEP 3: 

1 g char 

STEP 1: 

3 additions of 10 mL of 1 M C
2
H

3
O

2
Na  

shaken at 160 rpm for 16 min 
 leachates discarded 

 

3 additions of 10 mL of 98% C
2
H

5
OH  

shaken at 160 rpm for 16 min 
leachates discarded 

  

3 additions of 10 mL of 1 M C
2
H

3
O

2
NH4  

shaken at 160 rpm for 16 min 
10 mL leachate stored for analysis 

  

Flame AAS  

5 additions of 20 mL distilled water 
shaken at 160 rpm, 22°C for 10 min  

leachates discarded 

prepared 400 mg L-1 Na standard solution, each of the samples were introduced into 

the nebulizer via a peristaltic pump. The concentration of Na+ in the leachate was 

calculated using Equation (3.10) according to PerkinElmer (1996), and the resulting 

char CEC was determined using Equation (3.11):  

 

Na+ concentration (µg g-1) =     (3. 11) 

       

where C = concentration of Na+ detected by AAS (mg L-1); V =  volume of 

undiluted leachate generated (mL); d.f = dilution factor; W = char mass (g). 

 

CEC (meq/100 g) = Na+ [µg g-1] [mg g-1]  [mEq mg-1]  100 (3. 12) 

      

 Figure 3.14 Schematic diagram of saturation and leaching process (ammonium acetate 

compulsory displacement method). 
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Figure 3.15 Atomic Absorption Spectrometer (Varian AA240FS). 

This method was chosen for CEC analysis of all char samples used in this study as 

it was relatively faster than the other methods considered and minimized the need 

for use of toxic reagents like barium chloride. Analysis was performed in duplicate 

as a minimum, and average values ± standard deviation were reported. 

Analysis of the final leachate containing displaced K+ ions was determined using 

AAS as it provides rapid quantitative information on elemental concentrations. AAS 

is reliant on the principle that as an atom is excited from its stable ground state 

orbital configuration by a specific wavelength of light energy, it emits radiant energy 

equivalent to the absorbed energy when returning from this less stable excited state 

(Beaty and Kerber 1993; PerkinElmer Inc. 1996; Robinson, 1960). The amount of 

element present in a substance can therefore be determined since the amount of 

light energy absorbed increases with the number of atoms present in a substance 

(Beaty and Kerber, 1993). A plot of absorbance versus concentration gives a 

straight line in accordance with Beer’s Law until these variables increase to a point 

where non-ideal behaviour causes a curve (Beaty and Kerber 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Hydrochar humic-like substances and fulvic acids  

Prior to humic acid extraction, hydrochars were ground in an agate mortar and oven 

dried at 60°C for 2 h. Hydrochar humic and fulvic acid contents were determined in 
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accordance with Sánchez-Monedero et al. (1996) and summarized by schematic 

presented in Figure 3.16, in which chars were extracted with 0.1 M NaOH in a 1:20 

(w:v) ratio twice by shaking for 2 h in an end-to-end shaker bath at room 

temperature ( 22–25 °C) followed by phase separation using a Beckman Coulter 

Allegra X-22R swinging bucket centrifuge at about 3100 g for 15 min. The 

resulting supernatant was carefully decanted, and a portion of this was stored at 

4 °C for total extractable carbon (EXC) analysis. Following a procedure similar to 

Jindo et al. (2016), the remaining supernatant was acidified with concentrated 

sulphuric acid to pH 2 and left to stand for 24 h at 4°C, resulting in a separation into 

two phases, a solid phase (humic-like acid) and aqueous phase containing fulvic 

acids and non-humic substances.  

Fulvic acids were separated from non-humic substances by slowly passing the 

aqueous phase through a methanol-washed resin (Supelite DAX-8, Supelco). Fulvic 

acids were desorbed from the resin following the addition of 0.1 M NaOH, while    

0.1 M H2SO4 was added to desorb the acid-soluble fraction (non-humic substances) 

(McCreary and Snoeyink 1980; Rashid and King 1969; Sánchez-Monedero et al. 

1999). The leachates were each made up to 200 mL for soluble carbon and nitrogen 

analysis at Gorizia Research Unit (Italy), after which fulvic acid carbon (FAC) was 

determined from carbon analysis of the fulvic acids obtained while humic acid 

carbon (HAC) was determined as the difference between EXC, FAC and non-humic 

substance carbon. For comparative purposes, these are expressed in terms of 

ratios, as outlined in Sánchez-Monedero et al. (1999): 

 

% Humic acid = (HAC/EXC)  100     (3.13) 

Humification Ratio (HR) = EXC/TOC x 100    (3. 14) 

Degree of Polymerization = (HAC/FAC)     (3.15) 

Humification Index (HI) = HAC/TOC x 100               (3.16)
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Figure 3.16 Outline of process used for recovery of humic acids, fulvic acids and non-humic like substances from hydrochars 



 
 

3.6 Attenuated Total Reflectance-Fourier Transform Infrared 

(ATR-FTIR) analysis 

Infrared analysis provides qualitative information on surface functional groups 

present on a sample. Each diatomic bond in a molecule undergoes unique 

stretching, bending, scissoring or rotational bond vibrational modes when infrared 

radiation is absorbed, the exact compound can be determined when compared with 

an existing or reference spectral database (Coates 2000). The intensity of given 

absorption peaks also provide information about sample molecular spatial 

properties (Coates 2000). In ATR-FTIR, samples are securely placed on a crystal 

possessing a high refractive index. When an infrared beam is passed at an angle 

through one end of the crystal, the intensity of the infrared beam exiting the other 

end of the crystal and into a detector is reduced (attenuated), depending on the 

energy absorption of the sample (Smith 2011).  

In this study, ATR-FTIR analysis was performed using an iS10 Nicolet ATR-FTIR 

spectrophotometer fitted with a diamond crystal (Figure 3.17), taking 36–64 scans 

over a range of 4000–400 cm-1 and resolution of 4 cm-1. Background readings were 

collected every 5 min and automatically subtracted from sample spectra to minimize 

interferences from atmospheric CO2. 

 

Figure 3.17 iS10 Nicolet ATR-FTIR. 
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3.7 Pyrolysis-Gas Chromatography (py-GC) analysis 

A CDS series pyrolyser connected to a Shimadzu 2014 GC/MS was used to 

determine functional groups present in biomass feedstocks, chars and humic-like 

substances. Samples in fire-polished quartz tubes were pyrolysed at 500°C at a 

ramp rate of 20°C (ms)-1 with a hold time of 20 s. An Rtx 1701 60 m capillary column 

with 0.25 i.d., 0.25 μm film thickness operating at a column head pressure of 30 psi 

was used to separate the resulting products, at a split ratio of 20/1 at 40°C 

maintained for 2 min, ramped to 250°C and maintained for about 30 min. 

 

3.8 Surface area and porosity determination 

Gas adsorption can occur by micro-pore filling, capillary condensation, monolayer 

and multilayer adsorption and these processes yield characteristic isotherm types, 

accurate interpretation of which is the first step in analysing the physisorption 

process (Sing et al. 1985). Physisorption isotherms are categorized into 5 or 6 

IUPAC classification types as shown in Figure 3.18 (Brunauer et al. 1940; Donohue 

and Aranovich 1999; Sing et al. 1985), partly based on Brunauer’s findings. Type I 

isotherms occur on micro-porous solids with small external surfaces (Sing et al. 

1985); Type II isotherms are exhibited in non-porous or macro-pore solids which 

undergo monolayer-multilayer adsorption (Schneider 1995; Sing et al. 1995); Type 

III and V isotherms are not very common and indicate weak gas-solid interactions; 

Types IV isotherms possess distinctive hysteresis loops arising from capillary 

condensation in meso-porous solids (Schneider 1995; Sing et al. 1985); Type VI 

isotherms are indicative of step-wise multilayer adsorption on non-porous materials 

(Schneider 1995; Sing et al. 1985). After identifying the adsorption process from the 

physisorption isotherm, statistical and empirical models are used to determine the 

surface area and pore size distribution, and these models include the Langmuir and 

Brunauer-Emmet-Teller (BET) models (Schneider 1995), Barrett, Joyner and 

Halenda (BJH), and Dubinin-Radushkevic (DR) models. Each model is based on 

kinetic theories which govern the number of molecules that would be adsorbed on a 

surface at a given pressure and temperature, hence obtaining the surface area of 

the solid; according to Lowell et al. (2004), surface areas is a product of the 

effective cross sectional area and number of adsorbate molecules in the monolayer. 

Each of these models has limitations however. For instance, the BET model can 
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Figure 3.18 Physisorption isotherm types (Klobes et al. 2006; Sing et al. 1985). 

provide actual surface area of Type II and IV isotherms if the C value is neither too 

high nor low, but is not as effective for Type I and III isotherms (Sing et al. 1985). 

In this study, Brunauer-Emmett-Teller (BET) surface area and pore size distribution 

of treated and untreated oven-dried chars were determined by N2 gas adsorption 

using two instruments, Tristar 3000 Micromeritics and Quantachrome Nova 2200 at 

-196 °C after flow outgassing first at room temperature ( 22°C) for 10 min and at 

120 °C for 2-3 h to free any blocked pores within the chars. This low temperature 

range was chosen to prevent thermal decomposition of the samples, particularly so 

for the hydrochars. BET surface area was determined from linear fit adsorption data 

generated while pore volumes were determined using the t-plot model. Total pore 

volumes were obtained at relative N2 pressures of 0.99.  

 

 

 

 

 

 

 

 

 

 

 

3.9 Scanning Electron Microscopy (SEM) and Energy 

Dispersive X-ray Spectroscopy (EDS) analysis 

SEM analysis of hydrochars and biochars was done using a Carl Zeiss EVO MA15 

microscope while qualitative information about biochar elemental composition 

analysis was done using Oxford Instruments AZtecEnergy EDS as shown in Figure 

3.19. Prior to SEM and EDS imaging, chars were sputter-coated with gold and 

carbon, respectively. 
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Figure 3.19 Scanning Electron Microscope (Carl Zeiss EVO MA15). 

 

 

 

 

 

 

 

 

 

 

 

3.10 Ion Chromatography 

As a substantial portion of the research relied on this analytical technique, its 

principle of operation is outlined. Ion Chromatography involves the quantitative 

determination of ions separated by virtue of differences in their migration or rate of 

movement through ion-exchange resins (Fritz and Gjerde 2000). Resin columns are 

often comprised of polymers (for example, polystyrene and divinyl benzene) 

possessing two ions – fixed or bound ions attached to the polymeric structure and 

unbound, oppositely charged ions (counter-ions) (Fritz and Gjerde 2000; Sigma-

Aldrich n.d.) as shown in Figure 3.20. Ion exchange resins are categorised as 

cation or anion exchange resins based on the charge possessed by exchangeable 

counter-ions and bound ion ionic strength (Sigma-Aldrich n.d.). When the resin is in 

contact with insoluble solutions, the free ions are mobile and exchangeable with 

similarly charged ions in accordance with Donnan Exclusion, where a decrease in 

mobile ion concentrations occurs within an ion exchange membrane because of 

similarly charged bound ions present (IUPAC 2014).  

Cation and anion exchange resins can be further categorised as weak and strong 

cation exchange resins, comprised of carboxylic and sulphonic acid groups or salts 

respectively, and as weak and strong anion exchange resins, comprised of 

ammonium chloride or hydroxide and quaternary ammonium groups respectively 
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(Fritz and Gjerde 2000; Sigma-Aldrich n.d.). Dilute carbonate salts or hydroxides 

and acidic solutions are used during anion and cation exchange chromatography, 

respectively (Fritz and Gjerde 2000).  

 

 

Fritz and Gjerde (2000) outlined the ion exchange process thus: sample ion 

separations are achieved by injecting sample into the chromatography system after 

appropriate eluent has been pumped though the system to achieve equilibration. Ion 

exchange occurs between the eluent and sample ions near the top of the column in 

a narrow zone or band however, continuous eluent flow creates competition for 

resin exchange sites which causes ions to move down the column. Ions however 

migrate at different rates due to their different affinities for exchange sites, thus 

separation into various bands is achieved. As eluent continues to flow through the 

column, sample ions and eluent exit the column to a detector. In suppressed ion 

chromatography however, sample ions and eluent flow into a suppressor before 

proceeding to the detector. The suppressor is a cation exchange system which 

serves a dual purpose of decreasing eluent signal (e.g. background conductivity) 

and increasing sample ion signal by protonating the ions (Fritz and Gjerde 2000; 

SeQuant 2007) as illustrated below, adapted from Fritz and Gjerde (2000): 

 

Eluent:   Catex-H+ +     Catex-  +  

Anion B2: Catex-H+ +    Catex-  +  

Anion B3: Catex-H+ +     Catex-  +  

In this study, ammonium, phosphate and some alkaline earth metals were 

determined using a Metrohm 850 Professional IC–AnCat ion chromatograph as 

shown in Figure 3.21, with operating conditions provided in Table 3.3. A small set 

of samples were also analysed using a Dionex DX100/LC20 Dionex ion 

chromatograph fitted with an IonPac CS12A, 250 × 4 mm cation column and methyl 

 

 Polystyrene SO3
-H+ Polystyrene CH2N

+A- 

(b) (a) 

Figure 3.20 A typical (a) Cation exchange resin (Catex) (b) anion exchange resin (Anex)  

(Fritz and Gjerde 2000) 



79 
 

Figure 3.21 Ion chromatograph (Metrohm 850 Professional IC–AnCat) and data processing setup. 

sulfonic acid solution (1.0 nN) as eluent, and a  Dionex IonPac AS14A, 250 × 4 mm 

anion column with Na2CO3 (8.0 mM) and NaHCO3 (1.0 mM) as eluent.   

 

 

Table 3.3 Operating conditions of Metrohm 850 Professional IC–AnCat ion chromatograph  

 

Cation exchange  

Eluent 1.7 mmol HNO3 and 0.7 mmol  Pyridinedicarboxylic 

acid (PDCA) 

Pump flow rate 0.9 mL min-1 

Pump pressure 5.7 - 5.8 MPa 

Column thermostat temperature 25.9 - 26.5°C 

Conductivity  719.85  – 720.10 µS cm-1 

  

Anion exchange 

Eluent 3.2 mmol Na2CO3 and 1 mmol NaHCO3; 

Regenerant:100 mmol H2SO4 and 100 mmol oxalic 

acid (C2H6O6) 

Pump flow rate 0.7 mL  min-1 

Pump pressure 8.2 – 8.6 MPa 

Column thermostat temperature 26.5°C 

Conductivity  0.9 – 1.05 µS cm-1 
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3.11 Soil incubation tests 

Soil incubation tests were performed in triplicate with chars produced from holm oak, 

greenhouse (paprika) waste and presscake chars produced at 250–650°C. After 

adjusting the soil to 40% of its Water-Holding Capacity (WHC), pre-incubations were 

performed for 7 days in an oven at 25°C, after which a randomized block design 

was set up, consisting of three replicates of control (100% soil) and char-amended 

soil (98% soil + 2% char) in 200 mL plastic tubs as shown in Figure 3.22. The pre-

incubation step was involved to return microbial communities to their unstressed 

state, since soil sampling results in a disruption of such microbial communities 

(Akagi et al. 2007; Creamer et al. 2014). Additionally, as soil moisture levels vary 

according to climatic conditions, pre-incubation could also serve to standardize soil 

water contents thus allowing for inter-site comparisons whilst allowing the 

aforementioned microbial communities to readjust to moisture content variations 

(Akagi et al. 2007). A range of pre-incubation temperatures and periods have been 

used in previous European studies, but Creamer et al. (2014) reported that 

generally, initial soil basal respiration rates were unaffected by these parameters 

although 20–25°C provided the most consistent results. Pre-incubation was 

therefore done at 25°C, after which all samples were incubated for a total of 21 days 

of incubation. As inorganic nitrogen analysis would be performed after specific days 

of incubation, tubs were arranged in parallel accordingly. Moisture contents were 

adjusted gravimetrically every other day and tubs were covered with polyethylene 

cloths to minimise excessive moisture loss.  

Samples were arranged in a randomized block design and CO2 evolution was 

measured with a Photo-Acoustic gas monitor (Figure 3.23), full details of which 

have been provided in Mondini et al. (2010). Jars were sealed with lids fitted with 

septa 1 h prior to CO2 headspace measurements. To correct for atmospheric CO2, 

jars containing distilled water filled to the same depth as the soil/soil-char samples 

were included at the beginning of each block as indicated in Figure 3.22. Two CO2 

measurements were taken within 8 h of the start of incubation followed by three 

evenly-spaced CO2 measurements every 24 h for the next 3 days, then once daily 

for the next 7 days and less frequently until 21 days of incubation. CO2-C fluxes 

were calculated as in Mondini et al. (2010) and related to total weights. 

Inorganic N measurements were taken after 3, 7, 12, and 21 days of incubation as 

follows: NH4-N and NO3-N contents were determined after shaking a 1:10 mixture to 



81 
 

Figure 3.23 CO2 measurements using a Photo-Acoustic gas monitor (Lumasense Innova 1412i) 

2 M KCl and distilled water respectively for 2 h, centrifuging for 15 min at about 

3100 g and filtering supernatants through 0.45 µm syringe filters. NH4-N was 

determined spectrophotometrically according to Berthelot’s reaction (highlighted in 

López-Cano et al. 2016) and NO3-N was determined by Ion Chromatography.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.12 Char interaction in nutrient-rich environments 

Details on the procedures used to investigate char interaction in compost, nitrogen 

and phosphorus-rich synthetic wastewater and NH3 gas are outlined subsequently. 

Figure 3.22 Soil and soil-char incubation jars. 
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3.12.1 Co-composting with hydrochars and biochars 

A 200 g dry basis mixture comprised of 60% a commercially available multipurpose 

compost (particle size 4.75 mm), and 40% shredded savoy cabbages as a source 

of nitrogen ( 9.50 mm) was mixed with 15%  char (35 g dry basis, particle size 

4.75 mm) and tests were performed in duplicate. Chars used were derived from 

holm oak at 250–650°C and from greenhouse (paprika) waste at 250°C and 600°C. 

Composting experiments with greenhouse waste produced at 400°C could not be 

performed due to its low quantity. Well-mixed char and organic matter samples were 

placed in perforated plastic vessels and placed in two ovens heated at 50°C to 

ensure sufficient generation of ammonia from the composting mixture and oven 

temperatures were constantly monitored with a thermometer. Moistened air was 

supplied to all composting mixtures at about 400 mL min-1. The pHH2O was 

measured as described in Section 3.4.4 but using a 1:5 solid to water ratio. C/N 

ratios were determined from C and N values determined from elemental analysis of 

finely ground samples. Carbon dioxide and ammonia generated from the control 

and char-compost mixtures were collected in 1 M KOH and 0.65 M H3BO4 traps 

respectively, and the entire set up is shown in Figure 3.24. A total 17–21 days of 

incubation were performed, within which carbon dioxide and ammonia traps were 

changed daily for the first four days then every other day thereafter. Ammonia 

trapped in boric acid as in Equation (3.7) was titrated with 0.04 M H2SO4. Based on 

stoichiometric Equation (3.17), the concentration of ammonia in form of ammonium 

was calculated using Equation (3.18): 

 

NH3 (mg L-1) =      (3. 18) 

where A and B = volume of sulfuric acid titrated for sample and blank 

respectively (L); V = volume of sample (L); N = normality of sulfuric 

acid, being 0.08 Eq L-1 in the present case. 

 

Carbon dioxide trapped in KOH according to Equations (3.19)-(3.20) was 

precipitated with 0.5 M BaCl2 and titrated with 1 M HCl as in Equation (3.22).  

2NH
4

+

: H
2
BO

3

-

     H2SO4     (NH4)2SO4    2H3BO3     (3. 17)
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KOH + CO2 KHCO3       (3.19) 

KHCO3 + KOH  K2CO3 + H2O      (3.20) 

 

Prior to titration with HCl, 

BaCl2 + K2CO3  BaCO3 + 2KCl     (3.21) 

 

Milligrams of CO2 emitted were calculated using Equation (3.18): 

mg CO2 =   (3. 22) 

where B = volume of hydrochloric acid titrated for blank (mL), Ai and Aj = 

volume of acid titrated for primary and secondary traps,  respectively (mL); Vi 

and Vj = volume of alkali in primary and secondary traps respectively (mL). 

 

Cumulative ammonia and carbon dioxide emissions were calculated based on total 

compost-char dry mixture weights. 
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3.12.2 Ammonium and phosphate adsorption capacity determination 

3.12.2.1 Batch adsorption  

All containers were acid washed with 1 M HCl and rinsed with deionised water 

before use. 0.1 g biochar (850 µm) was transferred to plastic Nalgene containers 

and 100 mL of about 125 mg P L-1 phosphate solution prepared from potassium 

phosphate monobasic was added after its pH was adjusted to 7 with 1 M NaOH. 

The containers were tightly sealed and shaken at 160 rpm for 24 h in a water shaker 

bath (SW23 Julabo GmbH) (Figure 3.25) at room temperature ( 22–25°C). 10 mL 

aliquots of each sample were taken after 24 h and filtered through 0.45 µm 

NH3 trap       

(0.65 M H3BO3) 

A 

B 

Primary and secondary CO
2
 traps (1 M KOH) 

Figure 3.24 (a) Feedstocks (L-R: compost, savoy cabbage, char); (b) setup for 

char-compost incubation tests. 
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Sartorius Minisart syringe filters for Ion Chromatography analysis (Metrohm 850 

Professional IC–AnCat). This procedure was repeated for ammonium solutions, 

using about 1000 mg NH4
+-L-1 prepared from ammonium chloride. Most analyses 

were done in duplicate and the average values reported. A number of tests were 

also performed using a synthetic wastewater solution to determine the effect of 

coexisting ions on ammonium and phosphate uptake. The concentrations of 

adsorbed ions were determined as: 

   
M

V
CCq eoe       (3. 23) 

where Co and Ce = initial and equilibrium liquid-phase phosphate or 

ammonium adsorbate concentrations respectively (mg L-1); V = volume of 

solution (L); M = mass of char (g). 

Removal efficiency was determined as: 

   100
C

CC
Removal%

o

eo 


     (3. 24) 

 

 

 

 

Figure 3.25 Shaker bath (SW23 Julabo GmbH). 
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3.12.2.2 Desorption studies 

Adsorbed phosphate and ammonium in chars were extracted using a similar 

procedure as outlined above but using 0.01 M KCl solution. 10 mL aliquots of each 

sample were taken after 24 h then filtered through 0.45 µm Sartorius Minisart 

syringe filters for Ion Chromatography analysis.  

3.12.2.3 Adsorption kinetics 

To investigate possible phosphate and ammonium adsorption mechanisms, 0.1 g 

chars (850µm) were each added to 125 mg P L-1 or 1000 mg NH4
+ L-1 solutions 

respectively, as done in Section 3.12.2.1 but 10 mL aliquots of each sample were 

taken at 2.5, 5, 7.5, 10 and 24 h. Samples were filtered, analysed by Ion 

Chromatography and the concentration of adsorbed ions were determined as in 

Equation (3.25): 

 
M

V
CCq tot          (3. 25) 

where qt = amount of PO4
3- adsorbed (mg g-1); Co and Ct = liquid-phase 

adsorbate concentrations at initial conditions and time t respectively (mg L-1). 

3.12.2.3 Adsorption isotherms at varying initial concentrations 

0.1 g of char with highest carbon contents (oak and greenhouse waste) was added 

to varying concentrations of phosphate solutions, specifically 50–200 mg P L-1, and 

ammonium concentrations ranging from about 360–815 mg NH4
+ L-1. These 

concentrations were chosen to represent some real-case wastewater 

concentrations. The mixtures were shaken at 160 rpm for 24 h at room temperature, 

keeping all other parameters identical to batch adsorption tests. Samples were 

filtered, analysed by Ion Chromatography and the concentration of adsorbed ions 

were determined as in Section 3.12.2.1.  

3.12.3 Char ammonia sorption capacity 

Ammonia sorption was evaluated in a simple batch set-up, slightly modified from the 

methodology outlined in Taghizadeh-Toosi et al. (2012a). Briefly, 60 mL of NaOH 

was poured into a 250 mL Duran bottle after which a top containing about 0.2 g char 

was carefully placed into the bottle so it floated on top, as shown in  Figure 3.26. 

The bottle was fitted with a septa was screwed tightly to obtain a closed atmosphere. 
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Carefully, 25 mL of 0.05 M (NH4)2SO4 was injected into the bottle and gaseous 

ammonia was produced via the following chemical reaction:  

 

2NaOH(aq) + (NH4)2SO4(aq)   Na2SO4(aq) + 2H2O(l) + 2NH3(g) (3. 26) 

 

NaOH was present in excess such that a known amount of gaseous NH3 was 

produced; in the current case this was 43 mg of NH3 gas and average headspace 

volumes were equivalent to about 242.6 mL. After 7 days, the samples were 

removed from the bottles and CHNS contents were analysed via elemental analysis. 

The nitrogen content was adjusted for increased moisture content with respect to 

the char samples prior to NH3 sorption. NH4
+ contents were also determined by ion 

chromatography after shaking a 1:20 w/v mixture of char and 0.01 M CaCl2 for 2 h 

at 160 rpm. For comparative purposes, NH3 sorption capacities of holm oak and 

greenhouse waste feedstocks were evaluated following the same procedure 

outlined above, since unprocessed feedstocks are often used as litter material for 

NH3 abatement in livestock systems. The NH3 sorption capacities of oak hydrochar 

at various concentrations were further investigated following the same procedure as 

outlined above, generating about 450, 1000 and 1500 mg NH3 by adjusting molar 

concentrations of (NH4)2SO4 and NaOH according to Equation (3.26). 

 

  

Figure 3.26 Simple batch setup for ammonia sorption tests. 



88 
 

CHAPTER 4 

Influence of feedstock properties and processing 

conditions on char functionality 
 

 

Abstract 

Feedstock composition and processing conditions determine hydrochar and biochar 

properties, the organic, inorganic and textural properties of hydrochars and biochars 

produced from six biomass feedstocks were evaluated using various analytical 

techniques. Chars were produced from bark-free oak wood, paprika waste from a 

greenhouse, greenwaste, the treated organic fraction of municipal waste, and pig 

manure. Processing conditions included hydrothermal carbonization at 250°C for 60 

min, slow pyrolysis at 400–700°C and gasification at 600–750°C over 30–60 min 

residence times. As oak wood and paprika waste chars possessed the highest 

carbon contents (>50%), these were categorised as Class 1 biochars in accordance 

with the International Biochar Initiative product specifications, while hydrochars and 

pyrolysis chars derived from municipal waste, presscake and greenwaste were 

Class 2–3. Despite substantial differences in carbon and inorganic matter content, 

degradation of lignocellulose structures were mostly similar in all feedstocks. 

However, char morphological properties were observed to be more dependent on 

processing temperature and reactor system than to feedstock property, based on 

the substantial differences in surface area of holm oak biochars produced using 

traditional kiln reactor (Proininso), screw conveyor and fluidized bed reactors. 

Biochar surface areas were generally low and were therefore comparable or even 

lower than hydrochars produced from the same feedstock. Conversely, with regard 

to char functional groups, both temperature and biomass feedstock property 

influenced char inorganic content and acidic oxygen groups. For instance, while oak 

hydrochar possessed more humic-like substances than hydrochars from other 

feedstocks, oak biochar produced at 650°C did not possess any humic-like 

substances. 
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4.0 Introduction 

It is well understood that char properties are a function of feedstock properties and 

processing conditions, and temperature is often cited as one of the most influential 

processing factors governing both hydrochar and biochar properties. For instance, 

from a quantitative assessment of the effect of processing conditions on hydrochar 

yield and extent of carbonization, Suwelack et al. (2015) suggested that processing 

temperature was more influential than reaction time and process water acidity. 

Similarly, biochar recalcitrance, measured as a function of the energy needed to 

thermally oxidise biochar, appears to be influenced by pyrolysis temperature more 

substantially than bio-feedstock choice (Zhao et al. 2013). This is to be expected 

since processing temperature governs the loss of volatiles from feedstocks (Downie 

et al. 2009). Nevertheless, certain properties are likely to be more affected by 

feedstock properties; Zhao et al. (2013a) for instance suggested that more 

emphasis should be placed on feedstock properties if biochars are intended for 

enhancing soil nutrient content as this influences biochar mineral content to a 

greater extent than processing temperature. The relationships between feedstock 

properties and processing conditions on char properties are often non-linear 

however (Morales et al. 2015), thus further research is required to clarify these 

associations. In this chapter, the physicochemical properties of the hydrochars and 

biochars derived from the feedstocks described in Section 3.1 are presented to 

evaluate the influence of HTC, slow pyrolysis and gasification on hydrochar and 

biochar elemental composition, surface functional groups and textural properties. 

This information can ultimately contribute to ongoing research involving the 

development of chars for specific purposes. 

 

4.1 Feedstock composition 

4.1.1 Ultimate and proximate analyses 

The biomass feedstock compositions presented in Table 4.1 show that carbon and 

oxygen contents of oak and greenhouse waste were within the range reported for 

hardwood and herbaceous biomass respectively (Jenkins et al. 1998). Their O/C 

atomic ratios as percent dry basis were also within the typical values observed for 

agricultural biomass, being 0.55–0.75 as outlined by Spokas (2010). Municipal 

waste (cellmat) had a comparable carbon content to oak and greenhouse waste, 

likely due to its cellulose-rich nature resulting from the steam autoclaving process. 
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Presscake and greenwaste possessed the lowest carbon contents, and their oxygen 

contents, determined as the difference between elemental C, H, N and S on a dry 

basis were likely overestimated given their high ash contents, although oxygen may 

have also been associated with these inorganics (Lawrinenko 2014). Compared to 

oak and greenhouse waste feedstocks, the inorganic contents in cellmat, presscake, 

and greenwaste feedstocks were considerably higher. Such inorganic matter, 

defined as diluents by IBI (2015), resulted in high ash contents for the waste-derived 

feedstocks. Although greenwaste possessed an exceedingly higher ash content 

than expected for yard waste feedstocks, the ash contents of oak, greenhouse 

waste and municipal waste were within the range reported for agricultural 

feedstocks. For instance, hardwoods possess ash contents < 3% while herbaceous 

crops and residues (straw, hulls, shells) tend to be much higher (Jenkins et al. 

1998).  

Table 4.1 Composition of biomass feedstocks 

Property 
Holm 
oak 

Greenhouse 
waste 

Municipal 
Waste 

(cellmat) 

Presscake 
from AD 

Greenwaste 

 

Elemental content (db) 

     

C (%) 50.8 45.7 43.3 22.7 25.0 

H (%) 7.4 6.6 6.6 2.5 3.0 

N (%) 1.5 1.1 1.6 1.5 1.4 

S (%) 0.0 0.3 0.5 0.0 0.0 

O (%) 40.3 46.3 48.0 73.3 70.6 

H/C 1.75 1.73 1.83 1.32 1.4 

O/C (db) 0.59 0.76 0.83 2.42 2.1 

 

Proximate analysis (a.r.) 

Moisture (%) 9.6 9.2 5.2 4.1 2.3 

Ash (%) 2.6 10.0 26.8 61.3 75.7 

Volatile matter (%) 65.5 74.6 66.7 31.5 22.0 

Organic matter 87.8 80.9 68.0 34.6 22.0 

Fixed carbon  22.3 6.2 1.3 3.1 0.0 

Oxygen content determined as 100 – (%C + %H + %N + %S); db: dry basis; a.r.: as-received. 

4.1.2 Feedstock nutrient contents 

The macro- and micro-mineral contents of the five feedstocks are presented in 

Figures 4.1 and 4.2, respectively. Relative to other mineral elements, Ca contents 

were high in all feedstocks. This is not unusual since analysis of the ash 
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composition of various feedstocks by Jenkins et al. (1998) showed that CaO was 

one of the most abundant constituents present in hardwoods, nutshells, yardwaste, 

mixed paper and refuse-derived fuel (RDF), second only to SiO2, while K2O, MgO, 

P2O5 and SiO2 were also present in appreciable quantities. Such inorganic elements 

are present in soil and are taken up by plants and trees during growth (Miles et al. 

1995). In the waste-based feedstocks (municipal waste and presscake), Ca 

contents were especially high and such samples also possessed higher quantities 

of other macro- and micro-elements like Fe (Figure 4.2). Such elevated mineral 

concentrations are understandable particularly for municipal waste given its 

heterogeneous nature. Furthermore, the effect of pre-treatments such as 

autoclaving and anaerobic digestion may have resulted in a relative increase in 

inorganic matter content as a consequence of the degradation of some organic 

matter. Indeed, heat treatment of the unsorted municipal waste resulted in a more 

fibrous final product (cellmat), which provided evidence of some degree of organic 

matter decomposition. Yao et al. (2011) also observed an increase in cations 

following anaerobic digestion of sugar beet tailings. 

The K content of oak biomass was 0.14%, lowest in of all feedstocks studied but 

was within the range reported for woody biomass; K contents of herbaceous (straw, 

grass) and ligneous (hulls, shells) feedstocks tend to be much higher than wood-

based feedstocks (Jenkins et al. 1998). K can be bound to the organic matrix of 

biomass in form of alkali-carboxylic groups, complex ions or as dissolved salts 

(Miles et al. 1995). Na content was low for feedstocks with the exception of 

municipal waste and presscake. While steam, pressure and mechanical agitation 

was capable of separating large pieces of metal, plastic and glass from unsorted 

municipal waste, the resulting product (cellmat) still retained small glass and plastic 

fragments, evident from visual inspection and from elemental analysis. Glass and 

plastic are defined as contaminants according to the IBI. Moreover, chlorine was 

also present in municipal waste at higher concentrations than other feedstocks, 

second only to presscake. Specifically, chlorine contents in cellmat and presscake 

biomass were about three and five times higher than in oak biomass, being about 

3600 mg kg-1 and 5300 mg kg-1 (db), respectively. These were still within the range 

observed for biomass however (Björkman and Strömberg 1997). Since chlorine is a 

precursor to dioxin formation at certain thermochemical processing temperatures 

(Björkman and Strömberg 1997; IBI 2015), monitoring chlorine concentrations in 

feedstocks is important. Na in cellmat may have been present in both soluble and 

insoluble form as NaCl and residual pieces of glass, respectively although further 
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analysis is required to confirm this. While plants require macro-minerals for optimal 

growth, high concentrations can have adverse effects. For instance, high Na 

contents initially affect crop growth negatively in some cases (Jeffery et al. 2013). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Micronutrient contents of the various biomass feedstocks. 

(Molybdenum contents ranged from about 0.4–9.0 ppm). 
GH: greenhouse (paprika) waste; MW: municipal waste (cellmat); PK: presscake 

from AD; GW: greenwaste. Inset: ash, volatile, and organic contents. 

 

 

 

Figure 4.1 Macronutrient content of biomass feedstocks 

GH: greenhouse (paprika) waste; MW: municipal waste (cellmat); 
PK: presscake from AD; GW: greenwaste. 
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4.2 Effect of thermochemical processing on char inorganic  

content 

4.2.1 Ultimate and proximate analyses 

In Section 4.1, dissimilarities in carbon and inorganic contents were observed 

between two categories of feedstocks: oak, greenhouse and municipal waste 

feedstocks possessed higher carbon contents than presscake and greenwaste 

while inorganic (ash) contents were higher in the latter feedstock category. With the 

exception of greenwaste, HTC resulted in an increase in carbon content (Table 4.2), 

with the greatest increases observed for greenhouse waste followed by oak and 

municipal waste. The increase in carbon content following thermal treatment is 

expected since cellulose and hemicellulose-rich biomass carbonize during pyrolysis 

(Kizito et al. 2015). As there was only a small increase in carbon content in 

municipal waste hydrochar however, its carbon content of 45.2% would categorize it 

as a Class 2 char according to the IBI classification system or as a bio-carbon 

material according to EBC standards (IBI 2014) while presscake and greenhouse 

waste hydrochars would be termed Class 3 as their carbon contents remained 

below 30%. Following slow pyrolysis, the carbon contents of municipal waste, 

presscake and greenwaste were even lower than their original feedstocks likely due 

to the relative increase in ash content, and thus also termed Class 2–3 biochars. 

Commercial and non-commercial oak biochars had similar carbon contents 

regardless of difference in pyrolysis units, and the carbon contents of biochars 

produced at non-standard conditions (≠ 60 min, 0% O2) are presented in Table 4.3. 

The few greenhouse waste gasification biochars investigated possessed slightly 

higher carbon contents compared to the greenhouse waste biochar produced at 

600°C. Conversely, municipal waste  and presscake pyrolyzed in the presence of 1% 

oxygen (MW-1% and PK-1%, respectively) had slightly lower carbon contents (3.8% 

and 1.4% lower, respectively) than their counterparts produced at 600°C under 

standard conditions, while oxygen contents increased by about the same proportion 

(4% and 1.4% higher respectively). 

Predictions about char material stability are often made based on atomic O/C and 

H/Corg ratios preferably following acid-washing of chars, a recommended practice 

that corrects for the contributions of C and H from inorganics such as carbonates 

and H-bonded to silicates respectively (Kuhlbusch 1995). As hydrochars and 

biochars in this study were not acid-washed prior to elemental analysis, it is 

uncertain whether O/C and H/C ratios can serve as accurate predictors of their 
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stability. Nevertheless, for biochars produced at standard conditions, O/C ratios 

were below 0.4 in all chars with the exception of 400°C municipal waste biochar, 

suggesting that this char possesses the least stability. This is because O/C atomic 

ratios (% dry weight) < 0.2 are often thought to possess greater stability in soil 

(potentially over 1000 years) while O/C ratios >0.6 may possess far shorter stability 

of < 100 years, the latter suggested to be the transition point between biomass and 

char products (Crombie et al. 2013; Spokas 2010). Other frequently-used means of 

predicting char stability include chemical oxidation (Cross and Sohi 2013) and 

thermal (Temperature-Programmed) oxidation (TPO) (Harvey et al. 2012). From 

TPO analysis, the recalcitrance indices (R50) of biochars produced at 400°C were 

similar and ranged from 0.47–0.49, with municipal waste biochar produced at 400°C 

being among the lowest at 0.47, while oak 400°C was 0.48; indices for 600°C 

pyrolysis and gasification chars were up to 0.55 (dataset not included). As 

anticipated, biochar stabilities were more similar to uncharred biomass than to 

graphite, whose R50 values are about 0.4 and 1.0, respectively (Harvey et al. 2012). 

Physical weathering by water action might also affect char stability, as Spokas et al. 

(2014) observed the disintegration of chars following 24 h agitation with water, 

particularly for wood/lignin-rich chars compared to cellulose-rich chars. Further 

discussions on char stability are provided in Section 5.5.1. 

The ash contents of oak and greenhouse waste biochars were nearly twice higher 

than their hydrochar counterparts but only modestly higher for municipal waste, 

presscake and greenwaste. Hydrochars are expected to possess lower ash 

contents than biochars from the same feedstock due to the leaching of inorganics 

into process water during the former process, the degree to which appears to be 

dependent on carbonization temperature (Reza et al. 2013; Smith et al. 2016) and 

possibly the nature of bonds between inorganic matter and feedstock structures as 

implied in this study. In other words, the relatively smaller difference between 

hydrochar and biochar ash content for municipal waste, presscake and greenwaste 

compared to those of oak and greenhouse waste suggests that in the former group, 

inorganics may have been more strongly bound to the biomass structure. 

Alternatively, some inorganic elements may have been re-adsorbed from the 

process water into char pores that were formed, similar to observations by Reza et 

al. (2013). As porosity development was similar for all hydrochars however (ranging 

from 0.011–0.035 cm3 g-1, Section 4.4, the latter hypothesis seemed unlikely but 

future analysis of hydrochars produced at varying carbonization temperatures are 

required to fully overrule this possibility. 
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Table 4. 2 Physicochemical properties of chars produced at standard conditions 

 
Biochar 

 
C  

(%) 
 

 
H  

(%) 
 

 
N  

(%) 
 

 
S 

(%) 
 

 
Oa 
(%) 

 

 
Ash 

content 

 
Volatile 
matter  

 
Organic 
matterb  

 
pH 

 

250°C hydrochars 

OAK 67.9 6.5 1.4 0.1 24.1 6.2 6.2 93.8 4.8 

GH 66.4 6.8 3.1 0.2 23.5 5.2 61.6 91.1 5.8 

MW 45.2 6.0 2.0 0.2 46.6 38.0 42.8 60.1 6.2 

PK 22.8 2.0 0.9 0.1 74.2 69.8 20.7 28.4 7.2 

GW 21.4 1.9 1.2 1.1 74.4 66.1 24.0 30.5 7.0 

          

400–450°C biochars 

OAK 

(Comm.) 

65.7 2.7 0.6 0.0 31.0 11.7 21.1 88.3 9.9 

OW 70.9 3.6 0.4 0.0 25.1 12.1 20.8 87.9 9.7 

GH 59.0 2.9 1.2 0.3 36.6 27.0 25.0 70.5 10.6 

MW 39.9 3.7 1.7 0.3 54.4 50.1 26.2 49.5 9.5 

PK 17.1 0.8 0.9 0.3 80.9 79.5 13.4 20.2 10.3 

GW 16.1 1.1 1.3 0.0 81.5 77.5 15.5 21.7 11.1 

 

600–650°C biochars 

OAK 

(Comm.) 

76.5 1.4 0.8 0.0 21.3 14.3 11.8 85.7 10.3 

OW 79.2 2.0 0.3 0.0 18.5 13.4 9.2 86.6 8.6 

GH 63.0 1.2 0.9 0.4 34.5 17.0 13.0 80.0 11.0 

MW 40.1 1.1 1.4 0.4 57.0 53.8 18.7 45.2 10.2 

PK 18.5 0.5 0.6 0.3 80.1 83.4 7.6 16.2 10.1 

GW 18.2 0.6 1.3 0.0 79.9 78.5 9.8 21.1 10.3 

 

OAK (Comm.): commercial oak produced at 450°C and 650°C; OW: oak wood; GH: greenhouse 

(paprika) waste; MW: municipal waste (cellmat); PK: presscake from AD; GW: greenwaste. a Oxygen 

contents determined as 100 - (%C + %H + %N + %S) on dry basis; ash, volatile and organic matter 

expressed as as-received percentages. 
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As expected, hydrochar pH values were mostly acidic and ranged between 4.8–7.2 

while biochar pH values ranged from 8.6–12.3, highest in gasification chars. Studies 

by Rutherford et al. (2007) on cellulose, lignin, pine wood and bark chars revealed 

that more total acid surface functional groups and aliphatic alcohols were present in 

lower temperature chars (250–350°C, >8 h) at concentrations comparable to humic 

acids, but these groups were transformed to neutral or basic aromatic groups with 

increasing processing temperature (Mukherjee et al. 2011; Rutherford et al. 2007). 

Hydrochar pH was negatively correlated to oxygen content when evaluated on a dry 

ash-free basis (Pearson r) = -0.90) but was positively correlated to ash content 

(Pearson r = 0.93). This might be because both acidic and basic oxygen functional 

groups are present on carbon surfaces (López-Ramon et al. 1999; Yuan et al. 2011). 

Yuan et al. (2011) suggested that at lower temperatures, organic anions such as -

COOH- and -O- groups were predominantly responsible for biochar alkalinity while 

Table 4.3 Physicochemical properties of chars produced at non-standard conditions 

 
Biochar 

 
C  

(%) 
 

 
H  

(%) 
 

 
N  

(%) 
 

 
S 

(%) 
 

 
Oa 
(%) 

 

 
Ash 

content 

 
Volatile 
matter  

 
Organic 
matter  

 
pH 

 

PK 700°C, 60 min, N2 9.2 0.1 0.6 0.2 89.9 86.5 6.7 12.9 10.8 

          

Gasification chars 

GH-FA  600°C (air) 73.8 1.1 0.9 0.0 25.0 22.6 19.0 75.4 10.8 

GH-FN  600°C (N2) 69.9 1.0 1.2 0.0 27.9 25.0 22.6 70.9 11.2 

GH-FN 750°C (N2) 72.2 0.7 1.6 0.0 25.5 22.0 26.3 76.4 12.3 

 

Pyrolysis chars (30 min, N2) 

MW 600°C, 30 min 39.1 1.1 1.4 0.8 57.6 59.9 18.7 39.3 9.7 

PK 600°C, 30 min 24.2 1.1 0.6 0.2 73.9 81.5 7.6 18.4 10.3 

PM 600°C, 30 min 63.0 1.0 2.8 0.0 33.2 32.6 22.5 93.2 11.4 

PM 700°C, 30 min 65.8 0.7 2.2 0.0 31.3 28.7 17.3 68.4 10.2 

          

Pyrolysis chars ( 600 °C, 60 min, 1% O2) 

MW 600°C, 60 min 36.3 1.0 1.0 0.7 61.0 58.4 17.1 33.6 10.2 

PK 600°C, 60 min 17.1 0.4 0.7 0.3 81.5 81.1 6.8 18.6 10.1 

GH-FA and GH-FN refer to greenhouse waste gasification biochars produced in air and N2 resp.  aOxygen 
contents determined as 100 - (%C + %H + %N + %S) on dry basis; ash, volatile and organic matter 
expressed as as-received percentages. 
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carbonates of elements such as calcium and magnesium influence biochar alkalinity 

at higher temperatures. In hydrochars, oxygen functional groups may also be 

associated with inorganics like magnesium oxide or iron oxides, which might also 

explain why a very strong positive correlation between hydrochar pH and Mg and Fe 

was observed although further studies are required to confirm this. The relationship 

between biochar pH and char compositional properties such as oxygen, ash and 

elemental content are presented in Table 4.4. From the poor correlations between 

biochar pH and ash content in this study (0.52 and 0.18 in low and high temperature 

biochars, respectively), char pH is less a function of ash content. A significant 

positive correlation between the pH value of high temperature biochars (600–650°C) 

and Mg content were observed however (0.86). Fidel et al. (2017) similarly found 

positive correlations between total biochar alkalinity and specific acid-soluble base 

cations, rather than ash content, soluble and insoluble volatile matter, and fixed 

carbon content. Similarly, positive correlations between biochar pH and acid-soluble 

monovalent base cations were observed (Fidel et al. 2017).  

 

Table 4.4 Pearson correlations between char pH and char 

compositional properties 

Parameter 
250°C     

hydrochars 

400–450°C      

biochars 

600–650°C       

biochars 

Ash 0.93* 0.52 0.18 

Volatile matter 0.08 -0.51 0.34 

Organic matter -0.94* -0.54 -0.20 

Oxygena  -0.90* -0.32 0.40 

P  0.98* 0.12 0.54 

K  0.11 0.26 0.64 

Ca  0.61 -0.24 0.31 

Mg  0.99* 0.60 0.86* 

Na  0.85 -0.38 0.27 

Fe 0.90* 0.27 0.12 

Cu 0.66 -0.23 0.10 

Zn 0.58 0.17 0.03 

B -0.70 0.31 0.78 

Mn 0.49 0.66 0.36 

Mo 0.91* -0.49 0.06 

*Two-tailed test of significance used and correlation is significant at the 0.05 
level, based on ash content (%), elemental content (ppm, db) and aoxygen 
content determined by difference and evaluated here based on % daf basis. 
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4.2.2 Char nutrient content 

Tables 4.5 and 4.6 compare the effect of thermochemical processing on biomass 

feedstock nutrient content. N contents decreased following thermochemical 

treatment of oak, presscake and greenwaste chars but the opposite was observed 

for greenhouse waste and municipal waste hydrochars. Most of the char inorganic 

content was comprised of Ca, followed by K and Mg, reflective of the starting 

feedstocks’ inorganic compositions, and their concentrations generally increased 

following pyrolysis. This is understandable given that biochar mineral contents 

increase due to a relative loss in hydrogen and oxygen as pyrolysis temperature 

increases (Ippolito et al. 2015), although about 20% volatilization of alkali and 

alkaline earth metals occurs during slow pyrolysis depending on biomass 

composition, temperature, heating rate and element valency (Keown et al. 2005). 

For instance, K vaporises at lower temperatures in form of KCl depending on its 

proportion in biomass (Keown et al. 2005) while Ca, Mg, P and Si vaporise at higher 

temperatures (Amonette and Joseph 2009; Ippolito et al. 2015). Manure biochars 

possessed the highest inorganic contents as expected, thus Na contents were 

highest in biochars derived from pig manure followed by municipal waste (600°C). 

Relative to the biochars produced at standard conditions, no major differences were 

observed in municipal waste and presscake biochars pyrolysed for 30 min or in the 

presence of 1% oxygen. In municipal waste biochars however, some inorganics 

were somewhat higher following pyrolysis over 30 min compared to 60 min, notably 

Ca and Mg contents while pyrolysis in the presence of oxygen had a lower impact 

on mineral content. In terms of pollutant concentrations, a previous Fertiplus study 

revealed that in all the chars, the 16 priority polycyclic aromatic hydrocarbons, 

heavy metals, and chlorinated dioxin congeners were within the acceptable range 

recommended by the IBI.  

Tables 4.5–4.6 also show that with the exception of nitrogen content, hydrochar 

inorganic elemental contents were generally lower than the biochars’. As the main 

gas released during HTC is CO2 (Benavente et al. 2015; Ramke et al. 2009), it is 

unlikely that micro- and macro-minerals were volatilized. Analysis of the HTC 

aqueous products confirmed that some minerals were leached into the process 

water, thus certain elements decreased relative to the original biomass. For oak, a 

39–100% reduction in K, Mg, Na and Zn was observed in its hydrochar and this was 

also true for greenhouse waste with the exception of Zn which increased. For both 

municipal waste and presscake, only K and Na contents decreased and for 

greenwaste, K and Zn decreased while Na remained the same. The decrease in K 
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and Na in hydrochars from all feedstocks is expected given that these elements are 

readily leached from various biomass feedstocks using water even at room 

temperature (Saddawi et al. 2011). More inorganic elements were released from 

oak biomass compared to other feedstocks, suggesting that these elements were 

less strongly bound to the biomass structure. This was contrary to the findings of 

Saddawi et al. (2011) who observed woody biomass to release elements like Mg at 

lower proportions than herbaceous feedstocks. Leaching of inorganics may have 

been enhanced by the acidic aqueous phase during HTC, as organic acids are 

known to be present during HTC (Hoekman et al. 2011). Similar decreases in 

mineral content following HTC have been reported in the literature, such as a 48% 

reduction following HTC of plant-based biomass (corn stover, miscanthus, rice hull 

and switch grass) at 260°C for 5 min in Reza et al. (2013). Smith et al. (2016) noted 

up to 97% removal of elements like sodium but less dramatic decreases for 

multivalent elements following HTC of some of the same feedstocks used in this 

study, prepared under identical HTC conditions. 
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Table 4. 5 Standard condition hydrochar and biochar nutrient contents 

ppm (db) 

 

Char 
P K Ca Mg Na Fe Cu Zn B Mn Mo 

 

250°C hydrochars 

OAK 705 336 23200 290 100 169 10 15 82 107 0 

GH 2110 6710 15500 1940 70 391 39 123 131 5 2 

MW 2880 8500 23300 3800 430 8540 105 737 71 21 5 

PK 4660 2140 26700 5570 295 10900 72 502 20 140 5 

GW 5320 3000 29500 4800 269 9790 63 289 15 310 5 

 

400–450°C biochars 

OAK (Comm.) 1700 11500 43800 2410 1410 1950 16 224 21 51 5 

OAK 814 8840 27000 1560 1080 1410 16 103 9 30 3 

GH 3610 40600 35600 9040 3610 2370 47 101 39 86 5 

MW 4330 8210 59100 5110 7330 10200 173 540 33 180 8 

PK 5760 11600 38400 5670 3690 8000 91 445 33 223 7 

GW 2790 6050 41400 5150 1150 9780 36 544 26 391 3 

 

600–650°C biochars 

OAK (Comm.) 1780 6140 50200 2710 361 415 11 56 32 426 <0.5 

OAK 812 2000 30200 0 1560 1870 23 150 11 38 2 

GH 4300 49000 43700 12000 4060 2160 27 68 47 80 2 

MW 4750 8910 81000 290 14000 19900 188 901 46 223 7 

PK 4830 11000 36000 4760 4000 16975 90 460 34 198 5 

GW 2330 3830 31600 4660 981 9490 27 315 20 430 2 

OAK (Comm) & OW: reference & ECN oak wood, respectively; GH: greenhouse waste; MW: Municipal waste; PK: presscake; GW: greenwaste. Concentrations 

presented as average of Fertiplus research group analyses (University of Leeds, CEBAS-CSIC Spain, and ECN). 
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Table 4. 6 Non-standard biochar nutrient contents 
ppm  

Char P K Ca Mg Na Fe Cu Zn B Mn Mo 

 

PK 700°C, 60 min, N2 4330 6340 33800 6290 2690 10000 91 571 29 34 5 

Gasification chars 

GH-FA 600°C (air) 4660 14000 15700 3290 6090 1850 0 57 19 2 2 

GH-FN 600°C (N2) 4490 2480 11800 2600 3900 1180 0 99 33 3 3 

GH-FN 750°C (N2) 6270 28600 29800 9730 8870 1200 0 90 44 5 4 

 

Pyrolysis chars (30 min, N2) 

MW 600°C, 30 min 5200 9920 87800 7630 14500 28850 252 950 55 213 9 

PK 600°C, 30 min 4420 8170 28200 4740 2520 10800 67 410 28 140 5 

PM 600°C, 30 min 31000 20500 38000 16800 31000 1420 68 321 36 238 2 

PM 700°C, 30 min 20500 18600 33000 10200 28800 4000 0 1000 0 0 0 

            

Pyrolysis chars (600°C, 60 min, 1% O2) 

MW 600°C, 60 min 4890 9390 84600 6850 13000 13320 260 890 48 255 8 

PK 600°C, 60 min 4860 9090 32600 4940 2840 11850 91 492 29 157 6 

GH-FA and GH-FN refer to greenhouse waste gasification biochars produced in air and N2, respectively. Concentrations presented as average of Fertiplus research 

group analyses (University of Leeds, CEBAS-CSIC Spain, and ECN).   
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4.3 Effect of thermochemical processing on char functional groups 

4.3.1 Attenuated Total Reflectance Fourier Transform Infrared spectroscopy 

ATR-FTIR spectra of the various biomass feedstocks are presented in Figure 4.3 

and their band assignments are provided in Table 4.7. Spectral characteristics were 

mostly similar between feedstocks even within the ‘fingerprint’ region (1300–650 cm-

1). Predominant bands were from alcohol or phenol groups (3600–3000 cm-1), 

aliphatic groups (2985–2821 cm-1), carboxyl or ketone groups (1700 cm-1) and C-O 

from polysaccharides or inorganics such as silicates or phosphates (1025 cm-1). 

Presscake, however, possessed the most aliphatic and carboxyl or amide groups 

followed by municipal waste, while greenhouse waste possessed the least aliphatics. 

Spectral characteristics of the hydrochars, pyrolysis and gasification chars are 

presented in Figure 4.3(a)–(f). Most of the bands present in the original feedstocks 

were also present in the chars. Pig manure chars were also evaluated for 

comparisons with the plant-derived chars. Some differences were evident between 

feedstocks. For example, less sharp band intensities in oak and greenhouse waste 

biochars were evident, and a slower degradation of aliphatic groups in municipal 

waste was observed relative to the other feedstocks (Figure 4.3(c)). Processing 

temperature appeared to be the most influential factor governing the change in peak 

intensity compared to residence time, atmosphere (N2 or 1% O2) or even processing 

route. For instance, Figure 4.3(b)-(d) showed that there were no marked 

differences between chars pyrolyzed over shorter residence times (30 min), in 1% 

O2 or between pyrolysis and gasification chars. Conversely, while hydrochars 

retained most of the spectral features of the original biomass, 600°C biochars were 

the least similar to the original biomass, with few discernible peaks. 

Liu et al. (2015) attributed this loss of peaks to graphitization of the carbon material. 

Furthermore, the new band at about 870 cm-1 attributed to aromatic C-H vibrations 

only emerged at higher temperatures. At the same time, aliphatic groups (2925– 

2812 cm-1) present in most of the unprocessed feedstocks which increased 

following HTC were absent in biochars with the exception of municipal waste 

pyrolysed at 400°C (Figures 4.6(b)–(e)). O-H groups (3600-3200 cm-1) present in 

the feedstocks were absent in biochars. In pig manure, fewer aliphatic groups were 

likely present compared to other feedstocks (Figure 4.3(f)) and the most prominent 

band was at about 1000 cm-1, attributable to either biomass polysaccharides or 

inorganic elements such as silicates or phosphates. Since peaks were still 

prominent even after pyrolysis at 600°C however, the former category was unlikely 

since hemicellulose and cellulose fractions are completely decomposed at 
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temperatures between 250–380°C (Liu et al. 2015; Reza et al. 2013; White et al. 

2011). The reduction in peak number and intensity in higher temperature chars is 

indicative of increasing aromatization (Liu et al. 2015) and is in agreement with 

several studies which have shown that the degree of carbonization increases with 

processing temperature. Direct-excitation solid-state 13C Nuclear Magnetic 

Resonance (NMR) spectra with composite pulse sequence suppression of 

background signals obtained from the EPSRC UK National Solid-state NMR Service 

at Durham also verified that the functionalities of oak 250°C and 650°C chars were 

markedly different. While the hydrochar had greater abundance of O-alkyl functional 

groups, the biochar possessed a dominant aromatic carbon signal (Figure 4.5). 

Such differences are likely attributable to the extent of carbonization rather than the 

form of thermochemical treatment employed, since Brewer (2012) observed similar 

changes in the peak characteristics of cross-polarisation NMR spectra for biochars 

produced at varying degrees of fast pyrolysis. With regard to the NMR method used 

in this study, long relaxation delays are experienced during direct excitation of nuclei, 

and several scans are often required to attain satisfactory signal-to-noise ratios 

(Bakhmutov 2011). Thus compared to cross-polarisation NMR, direct-excitation 

NMR is less rapid (Apperley et al. 2012). However, signal intensities for complex 

samples are not always proportional to the number of nuclei present during cross-

polarisation NMR (Apperley et al. 2012).   

 

 

 

 

 

 

 

 

 

Figure 4.3 FTIR spectra showing band characteristics of biomass feedstocks: 

MW: municipal waste, PK: presscake, GW: greenwaste, GH: greenhouse waste. 

Inset: band characteristics as they occur at the exact absorbance intensities. 
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Figure 4.4 ATR-FTIR spectra showing bands within the 4000-600 cm-1 region for (a) oak (b) greenhouse waste 

(c) municipal waste (d) presscake (e) greenwaste (f) pig manure. 

(cm-1) (cm-1) 
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Table 4.7 ATR-FTIR functional group assignment of prominent spectral bands in biomass and chars 

Band (nm) Assignment References 

722 Amine group vibrations. Cuetos et al. (2010) 

765, 789 C-H out-of-plane bending of aromatic groups (765 cm-1). Wu et al. (2012) 

800, 870 C-O out-of-plane vibrations or C-H vibrations of aromatic 

groups. 

Provenzano et al. (2014);  

Wu et al. (2012). 

1025, 1032 C-O stretch of polysaccharides, Si-O vibrations of 

silicates, or PO4
3- vibrations. 

Hsu and Lo (1999); Liu et al. 

(2015); Provenzano et al. 

(2014); Wu et al. (2011);  

Wu et al. (2012) 

1050 O-H from aliphatic groups or stretching of PO4
3-. Cao and Harris (2010) 

1048-988 CO3
2- out-of-plane vibrations.  Zhao et al. (2013) 

1100 C-C bending vibrations in aldehydes and ketones. Reusch (2013) 

1204 Phenolic O-H deformations and C-O stretching. Pognani et al. (2010) 

1288, 1271 C=C stretching. Cao and Harris (2010) 

1330 C-N vibrations of amines. Wu et al. (2011) 

1463, 1456 C-H bending of saturated hydrocarbons. Zhao et al. (2013) 

1403 Asymmetric COO- deformation of polysaccharides; C=O 

stretching of phenols or O-H deformation; alpha-CH2 

bending in aldehydes and ketones. 

Cuetos et al. (2010); Reusch 

(2013); Pognani  et al. (2010) 

1412-1477 Two peaks in some cases suggestive of C-H deformation 

from  ignin components. 

Hsu and Lo (1999);   

Wu et al. (2011) 

1507 C=C stretching of aromatic compounds of lignin. Pognani et al. (2010);  

Wu et al. (2011) 

1589 Conjugated C=O stretching. Provenzano et al. (2014) 

1603, 1606 Asymmetric –COO stretching of amino groups, or 

amides. 

Liu et al. (2015);  

Zhao et al. (2013) 

1703, 1700 C=O stretching of carbonyl bonds. (ketone or carboxylic 

acid) e.g.,  lactones. 

Cuetos et al. (2010); Merlic 

(1997); Rutherford et al. (2008); 

Wu et al (2011, 2012) 

2152, 2093-1959 Stretching in nitrile C=N, C≅N, isocyanates, 

isothiocyanates, diimides, adzides and ketenes. 

Reusch (2013); Merlic (1997) 

2300, 2353 Alkynyl C-H or C=C stretching. Merlic (1997) 

2985-2821 Asymmetric -CH2 and –CH3 stretching vibrations 

indicative of aliphatic methylene groups. 

Cao and Harris (2010); Cuetos 

et al. (2010); Pognani et al. 

(2010); Wu et al. (2011) 

3600-3200; 3690 O-H stretching of alcohol or phenol groups. Cuetos et al. (2010);  

Wu et al. (2012) 
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Figure 4.5 NMR spectra of (a) 250°C oak hydrochar and 

(b) 650°C commercial oak biochar showing differences in surface functionality. 
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4.3.2 Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC-MS) 

Pyrolysis-gas chromatography of the biomass feedstocks and hydrochars was 

performed at 500°C to evaluate some of the organic compounds present, and their 

respective pyrograms are presented in Figures. 4.7 and 4.8. As biochars 

possessed fewer functional groups compared to hydrochars, pyrograms of only the 

latter chars have been presented here. Full details of the biochar pyrograms have 

however been presented elsewhere (Anyikude 2016, unpublished). Furthermore, as 

only oak, greenhouse waste, and municipal waste samples had complete datasets 

(i.e., biomass, hydrochar, and humic-like acids extracted from hydrochars), 

pyrograms for only these three samples are presented subsequently. Py-GC-MS 

analysis of unprocessed municipal waste and its hydrochar were performed earlier 

using slightly different analytical conditions and are marked as (*).  

As shown in Figure 4.7, complex mixtures of oxygenated organic species were 

present in all the biomass feedstocks, which is understandable as oxygen is the 

second major constituent of agricultural products, municipal waste and other 

lignocellulosic biomass (Jenkins et al. 1998; Pérez et al. 2002). Thermal 

degradation of lignin, cellulose, and hemicellulose yielded various forms and 

quantities of oxygenated species such as phenols, alcohols, amines and carbonyl 

groups (ketones, aldehydes, carboxylic acids) depending on the feedstock. For oak, 

predominant groups were phenols, indicative of lignin degradation, followed by 

carboxylic acids, alcohols, furans, and amines. Greenhouse waste pyrolysis 

products were similar to those of oak but there were differences in the forms of 

heterocyclic nitrogen compounds present; while oak comprised of more 

basic/Brønsted base nitrogen groups (pyrimidine derivatives), greenhouse waste 

possessed pyrrole and derivative groups, which are relatively weak bases (Brønsted 

acids). During high temperature treatment, aldehydes (e.g. furans) are known to 

react with ammonia at 450–500°C in the presence of certain inorganics (Al, Mo) to 

form pyrrole (Bishop and Denton 1946; Higasio et al. 2001), or from the 

dehydrogenation of pyrrolidine (Higaso et al. 2001). The reaction pathway of pyrrole 

formation from furane might have been more likely for greenhouse waste owing to 

its higher content of Al and to an extent, Mo (the former higher in greenhouse waste 

by 67.9 mg kg-1; dataset not included). Alternatively, differences in the native 

nitrogen forms present in oak and greenhouse waste might have resulted in their 

distinctive decomposition characteristics. Further analysis of the nitrogen forms 

present in the feedstocks preferably using less destructive analytical procedures  
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Figure 4.6 (a) Total Ion Chromatogram from Py-GC-MS of Oak biomass. 

Peak identification: 1: Acetic acid; 2: 2-Pentanone, 5-hydroxy-; 3: Furfural; 4: 2-Propenoic acid, 2-hydroxypropyl ester; 5: 1,4-Butanediamine, 

2,3-dimethoxy-N,N,N',N'-tetramethyl-, [S-(R*,R*)]-; 6: 1,3-Cyclohexanedione; 7: Phenol, 2-methoxy-; 8: Creosol; 9: Phenol, 4-ethyl-2-

methoxy-; 10: 4-Hydroxy-3-methylacetophenone; 11: 1,2-Benzenediol, 3-methoxy-; 12: 5-Hydroxymethylfurfural; 13: Phenol, 2,6-dimethoxy-; 

14: d-Mannitol, 1,4-anhydro-; 15: Phenol, 2-methoxy-4-(1-propenyl)-; 16: 1,2,4-Trimethoxybenzene; 17: Benzaldehyde, 3-hydroxy-4-

methoxy-; 18: Benzene, 1,2,3-trimethoxy-5-methyl-; 19: 3',5'-Dimethoxyacetophenone; 20: Phenol, 2,6-dimethoxy-4-(2-propenyl)-;             

21: Phenol, 2,6-dimethoxy-4-(2-propenyl)-; 22: Phenol, 2,6-dimethoxy-4-(2-propenyl)-; 23: 2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-ethyl-5-(2-

propenyl)-; 24: Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)-; 25:2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-ethyl-5-(2-propenyl)- 

(a) 
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Figure 4.7 (b) Total Ion Chromatogram from Py-GC-MS of Greenhouse waste biomass (*). 
Peak identification: 1: Acetic acid; 2: Phenylalanine; 3: undetermined; 4: Pyrrole; 5: Furfural; 6: 2-Furanmethanol;                 

7: 1,2-Cyclopentanedione; 8: 2-Furancarboxaldehyde, 5-methyl-; 9: undetermined; 10: Oxazolidine, 2,2-diethyl-3-methyl-;   

11: 1,2-Cyclopentanedione, 3-methyl-; 12: Phenol; 13: Phenol, 2-methoxy-; 14: Phenol, 2-methyl-; 15: 2-Cyclopenten-1-one, 

3-ethyl-2-hydroxy-; 16: Phenol, 2-methoxy-3-methyl-; 17: Phenol, 2-methoxy-4-methyl-; 18: Disulfide, (1,1-dimethylethyl)(1-

methylpropyl); 19: Phenol, 4-ethyl-2-methoxy-; 20: 4-Hydroxy-2-methylacetophenone 

(b) 

Retention time 
(min) 
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Figure 4.7 (c) Total Ion Chromatogram from Py-GC-MS of Municipal waste biomass (*) 

Peak identification: 1: Acetic acid; 2: Benzenepropanoic acid, .alpha.,.beta.-dimethyl-; 3: 2-Methyl[1,3,4]oxadiazole;              

4: 3-Furaldehyde; 5: Styrene; 6: Butanoic acid; 7: Furfural; 8: 2-Furanmethanol; 9: D-Limonene; 10: 1,2-Cyclopentanedione; 

11: 1-Octyn-3-ol, 4-ethyl-; 12: undetermined; 13: Oxazolidine, 2,2-diethyl-3-methyl-; 14: 1,2-Cyclopentanedione, 3-methyl-; 

15:  Phosphonic acid, (p-hydroxyphenyl)-; 16: Phenol, 2-methoxy-; 17: Phenol, 2-methoxy-4-methyl-; 18: Diazene, bis(1,1-

dimethylethyl)-; 19: (2,2-Dimethylcyclobutyl)methylamine; 20: 2-Methoxy-4-vinylphenol 

Retention time 
(min) 

Retention time (min) 
(c) 

Retention time 
(min) 
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may provide more information on native nitrogen forms. Greenhouse waste also 

appeared to possess fewer carboxylic acid groups than oak. Generally however, 

functional groups detected in both samples were similar to those observed via XPS 

in the literature (Amonette and Joseph 2009). In municipal waste, D-Limonene and 

styrene were among the main organic species present and were not observed in the 

former two feedstocks. D-Limonene is a cyclic terpene present in biomass 

extractives, and while some types of biomass have small amounts of styrene 

(ATSDR 2012), its high concentration in this feedstock was more suggestive of the 

degradation of polystyrene (plastic).  

In the hydrochars, a reduction in number and intensity of peaks was observed 

suggesting decomposition of some organic species following HTC. Baseline drift 

was observed for some of the greenhouse waste samples. Peaks present in 

municipal and greenhouse waste feedstocks were absent in their respective chars, 

notably acetic acid, which is expected since it is one of the main organics found in 

the HTC aqueous phase (Reza et al. 2013). In place of pyrrolidine, the lower 

basicity thymidine was present in the oak hydrochar. Pyrograms for all three 

hydrochars revealed an increase in peak intensities for phenol compounds however, 

suggesting a relative increase in their concentration (Figure 4.8). This is in 

agreement with the literature as phenol compounds are derivatives of lignin which 

are more resistant to thermal degradation than hemicellulose and cellulose.            

n-hexadecanoic (palmitic) acid is one of many long-chained groups that are present 

in woody feedstocks as an extractive (Salehi 2012). For the municipal waste 

hydrochar, in addition to a relative increase in phenol group intensity, peak areas of 

styrene and D-Limonene groups relative to the unprocessed feedstock as expected. 
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Figure 4.7 (a) Total Ion Chromatogram from Py-GC-MS of Oak 250°C hydrochar. 

Peak identification: 1: 3,5-Dimethylpyrazole-1-methanol; 2: 2-Furancarboxaldehyde, 5-methyl-; 3: 2-Cyclopenten-1-one, 3-methyl-; 4: 2-Cyclopenten-

1-one, 2,3-dimethyl-; 5: Phenol; 6: Phenol, 2-methoxy-; 7: Creosol; 8: Creosol; 9: Phenol, 4-ethyl-2-methoxy-; 10: Ethanone, 1-(2-hydroxy-5-

methylphenyl)-; 11: 1,2-Benzenediol, 3-methoxy-; 12: Catechol; 13: Phenol, 2,6-dimethoxy-; 14: Phenol, 3,4-dimethoxy; 15: Eugenol;                      

16: 1,2,4-Trimethoxybenzene; 17: Benzaldehyde, 3-hydroxy-4-methoxy-; 18: Benzene, 1,2,3-trimethoxy-5-methyl-; 19: 3',5'-Dimethoxyacetophenone; 

20: Ethyl homovanillate; 21: Phenol, 2,6-dimethoxy-4-(2-propenyl)-; 22: Phenol, 2,6-dimethoxy-4-(2-propenyl)-; 23: Benzaldehyde, 4-hydroxy-3,5-

dimethoxy-; 24: Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)-; 25: 2,4,6(1H,3H,5H)-Pyrimidinetrione,5-ethyl-5-(2-propenyl)- 

(a) 
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Figure 4.8 (b) Total Ion Chromatogram from Py-GC-MS of Greenhouse waste 250°C hydrochar. 

Peak identification: 1: Toluene; 2: 1H-Pyrrole, 1-methyl-; 3: 2-Cyclopenten-1-one; 4: 2-Cyclopenten-1-one, 2-methyl-;          

5: 2-Cyclopenten-1-one, 3-methyl-; 6: 2-Cyclopenten-1-one, 2,3-dimethyl-; 7: Phenol; 8: Phenol, 2-methoxy-; 9: p-Cresol;   

10: 2-Methoxy-5-methylphenol; 11: Creosol; 12: Phenol, 3,5-dimethyl-; 13: Propane, 1-bromo-2,2-dimethyl-; 14: Phenol, 4-

ethyl-2-methoxy-; 15: 4-Hydroxy-3-methylacetophenone; 16: Phenol, 2-methoxy-4-propyl-; 17: Phenol, 2,6-dimethoxy-;     

18: trans-Isoeugenol; 19: 1,2,4-Trimethoxybenzene; 20: Apocynin; 21: Benzene, 1,1'-propylidenebis-; 22: 2-Propanone, 1-(4-

hydroxy-3-methoxyphenyl)-; 23: Phenol, 2,6-dimethoxy-4-(2-propenyl)-; 24: n-Hexadecanoic acid; 25: Ethyl homovanillate 

(b) 
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Figure 4.8 (c) Total Ion Chromatogram from Py-GC-MS of Municipal waste 250°C hydrochar (*) 

Peak identification: 1: 1,3-Pentadiene, (Z)-; 2: Furan, 2,5-dimethyl-; 3: Toluene; 4: 1-O-p-Nitrobenzoyl-2,3,4,6-tetra-O-

benzyl-.beta.-d-galactose; 5: Styrene; 6: undetermined; 7: .alpha.-Methylstyrene; 8: D-Limonene; 9: 2-Cyclopenten-1-one, 

2,3-dimethyl-; 10: 1,2-Cyclopentanediol, 3-methyl-; 11: 2-Cyclopenten-1-one, 2,3-dimethyl-; 12: 1,2-Cyclopentanedione, 3-

methyl-; 13: Phenol; 14: Phenol, 2-methoxy-; 15: Phenol, 2-methyl-; 16: 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy-;             

17: Phenol, 4-methyl-; 18: Phenol, 2-methoxy-3-methyl-; 19: Phenol, 2-methoxy-4-methyl-; 20:  Phenol, 4-ethyl-2-methoxy- 

Retention time 
(min) 

(c) 
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4.3.3 Hydrochar fulvic and humic-like substances  

Humification is the process by which low and high molecular weight organic matter 

from plant, animal and microbial cellular matter is decomposed in aerobic conditions 

(Epstein 1997). The resulting high molecular weight humic substances are 

comprised of 80% of humus and are categorised based on their solubilities in dilute 

alkali or acids into humic acid, fulvic acid and humin (Epstein 1997). That is, while 

humic acids are soluble in dilute alkali but not in dilute acids, the opposite is 

observed for humin, while fulvic acids are soluble in both dilute alkali and acid 

(Epstein 1997). Humic acids are defined by colour (dark brown), their insolubility in 

acidic conditions (pH < 1), and are comprised of aliphatic and partially methylated 

carboxylic acids, aliphatic acids (such as carbonyl and quinone groups), aromatic 

acid (phenolic acid) (Ishiwatari 1969; Sánchez-Monedero et al. 2002).  

In hydrochars, humic-like substances may result from the condensation of polymeric 

sugars and amino acids, since sugars are formed during hydrothermal carbonization 

(Hoekman et al. 2011). Preliminary tests on oak 650°C revealed that humic-like 

substances were absent, so analysis of humic-like acids and fulvic acids was 

reserved for the hydrochars. As there was insufficient presscake biomass to 

generate more hydrochar for this analysis, only oak, greenhouse waste, municipal 

waste and greenwaste hydrochars were evaluated. However, given some 

similarities in organic functional groups between presscake and municipal waste 

hydrochar characteristics (Figure 4.5 (c,d)), it is speculated that presscake 

hydrochar might possess comparable quantities of humic-like substances and fulvic 

acids. Quantities of humic-like acids extracted from the hydrochars were generally 

low. Total carbon contents of the humic-like substances extracted from oak, 

greenhouse waste and municipal waste hydrochars presented in Table 4.8 showed 

that the three samples were comparable although total carbon content was highest 

in the humic-like acid precipitated from oak, while greenhouse waste possessed the 

highest nitrogen content due to its inherently high nitrogen content. Due to the acid 

used for the precipitation of humic-like acid (0.1 M H2SO4), sulphur contents 

increased. 
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Table 4.8 Elemental contents of hydrochar humic-like acids and residual chars 

Sample HA Yield (%) C (%) H (%) N (%) S (%) aO (%) 

OAK 250-HA 13.6 59.3 4.9 0.2 1.7 34.0 

GH 250-HA 3.7 56.4 5.6 2.5 2.5 33.0 

bMW 250-HA 7.1 56.4 6.5 1.6 4.6 30.8 

cOAK 250 residue n/a 67.2 3.3 0.8 0.0 28.8 

cGH 250 residue n/a 58.7 3.7 1.6 0.0 36.1 

 Elemental contents expressed as dry basis; adetermined by difference; bsingle 
analysis performed;  cOAK 250 and GH 250 residue refer to oven-dried (60°C) oak 
and greenhouse waste hydrochars after extraction of humic-like acid (HA), fulvic and 
non-humic like substances using NaOH; n/a: not applicable. 

 While up to 4.5% humic-like acid was extracted from greenwaste hydrochar, 
elemental analysis of this extract could not be performed due to low sample quantity.  

 

The total extractable carbon (EXC) determined from the supernatants obtained 

following NaOH extraction of the hydrochars are presented in Table 4.9, and 

showed that both EXC and humic acid-like Carbon (HAC) (the latter determined the 

difference between EXC, fulvic acid carbon and non-humic substance carbon) were 

positively related to their total carbon contents, the latter earlier presented in Table 

4.2. Expressed relative to EXC, Figure 4.8(a) showed that humic-like substances 

accounted for a large proportion of this carbon for oak, greenhouse waste and 

municipal waste, while greenwaste was predominantly non-humic. In the case of 

nitrogen, no clear trend was observed between the hydrochars’ fulvic, humic-like 

and non-humic components (Figure 4.8(b)) or to their total nitrogen contents. Table 

4.9 also included other humification indices for providing meaningful data 

interpretation, as recommended by Sánchez-Monedero et al. (1999): the degree of 

polymerization (HAC/FAC) is considered to be a good indicator of the humification 

process, and was highest in oak hydrochar. Furthermore, the higher humification 

ratio and humification index of the oak hydrochar, determined as a ratio of EXC and 

HAC to hydrochar TOC, respectively,  suggested that the HTC process had a more 

pronounced effect on oak in terms of humification, followed by greenhouse waste. 

This was presumably due to their higher carbon contents, and further analysis is 

required to confirm whether lignin content was a contributory factor. For instance, 

previous studies exploring the origins of humic acids in terrestrial and aquatic 
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locations have suggested that lignin and to an extent hemicellulose degradation is 

partly responsible for humic acid formation (Wilson et al. 1983). 

 

Table 4.9 Distribution of carbon and nitrogen in hydrochar extracts 

 
mg g-1 char 

  
 

aDP 

 

 

bHR 
(%) 

 

 

cHI  
(%) 

  
EX 

Carbon 

 
HA 

Carbon 

 
FA 

Carbon 

 
NHS Carbon 

 

OAK 250 157.3±2.5 127.7 14.7±0.4 14.9±0.7  8.7 41.6 33.7 

GH 250 116.1±3.5 59.4 16.5±0.1 40.2±0.6  3.6 25.6 13.1 

MW 250 42.6±24.9 21.9 9.6±2.4 11.1±1.3  2.3 13.0 6.7 

GW 250 25.6±0.8 2.3 9.6±0.7 13.7±1.1  0.2 n.a n.a 

         

 mg g-1 char     

 EX 
Nitrogen 

HA 
Nitrogen 

FA 
Nitrogen 

NHS Nitrogen 
   

OAK 250 0.6±0.1 0.1 0.2±0.0 0.3±0.0     

GH 250 8.1±0.2 2.9 0.6±0.0 4.6±0.0     

MW 250 2.1±1.4 1.2 0.3±0.1 0.6±0.4     

GW 250 0.9±0.0 0.5 0.3±0.0 0.2±0.0     

 aDegree of Polymerization (DP) is the ratio of HAC to FAC; bHumification Ratio (HR) is the ratio 
of EXC/TOC x 100; cHumification Index (HI) is the ratio of HAC/TOC x 100 

 EX, HA, FA and NHS refer to total extractable, humic acid-like, fulvic acid and non-humic 
substances respectively; n.a: unavailable data. 

 GH: Greenhouse waste; MW: Municipal waste; GW: Greenwaste; n.a: unavailable data. 
 TOC (mg g-1) Oak 250 °C, GH 250 °C and MW 250 °C = 378.5, 453.0, and 328.0 respectively, 

determined by a Fertiplus research partner). 
 Results reported as average of duplicates ± standard deviation.  

 With the exception of (heterogeneous) municipal waste, coefficients of variation (%RSD) ranged 
from 0.9–17.1% and averaged 3.7% and 8.3% for carbon and nitrogen, respectively. 
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Figure 4.8 Distribution of a) carbon, and b) nitrogen in hydrochar humic-like 

acids, fulvic acids, and non-humic substances expressed as percentages of 

total extractable carbon and nitrogen contents, respectively. 
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FTIR spectra of the humic-like acids obtained from oak and greenhouse waste 

hydrochars were generally similar, and absorption bands were somewhat identical 

to various humic acid infrared spectra presented in Tan (2014). Tan (2014) further 

noted that bands at 1000 cm-1 in humic acids are often indicative of the presence of 

chelated SiO2 impurities which could have otherwise been removed by washing with 

HCl-HF. In this study, strong bands were evident at around 1100 cm-1 however, 

possibly attributable to aldehyde, ketone or sulphate groups although the presence 

of some SiO2 could not be ruled out as the humic-like acids were rinsed once with 

0.1 M H2SO4 followed by distilled water rather than HCl-HF and distilled water. The 

spectra for oak hydrochar extracts and residue presented in Figure 4.9(a) revealed 

similarities in band characteristics but a relative increase in the band intensity was 

evident at around 1100 cm-1. For greenhouse waste, a similar relative increase in 

band intensity also around 1114 cm-1, in addition to a peak attributed to carbonyl 

groups (1700 cm-1) which was absent in the post-alkali extracted hydrochar residue 

suggesting its removal from the hydrochar. The latter peak was much greater in 

intensity than in the un-extracted hydrochar however, suggesting that oxidation 

reactions occurred during extractions.  
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To confirm the findings obtained from ATR-FTIR, Py-GC-MS analysis of the humic-

like acid extracted from oak is presented in Figure 4.10 for comparison with the pre- 

and post-alkali extracted hydrochar. As expected, the extracted hydrochar 

possessed fewer organic species compared to un-extracted hydrochar while humic-

like substances comprised mainly of phenol, aldehyde and ketone compounds. In 

municipal waste humic-like acids, mostly saturated fatty acids and long chain 

aliphatics were detected. Peak areas peaks generally decreased in humic-like acids 

relative to their hydrochars. For example, the prominent peak attributed to 2,6-

dimethoxy phenol was 6.58× greater in the oak hydrochar compared to its humic-

like acid. 

 

Figure 4.9 ATR-FTIR spectra comparing changes in band intensities between 

alkali-extracted and un-extracted a) Oak 250°C, and b) Greenhouse waste (GH 

250°C) hydrochars. Suffixes ‘HA’ and ‘NaOH’ are used to specify the hydrochar 

humic-like acid extract and hydrochar residues obtained after alkali extraction 

respectively. Inset images of band intensities at original absorbance values. 
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Figure 4.10(a) Total Ion Chromatogram from Py-GC-MS of Oak 250°C humic-like acid extract. 

Peak identification: 1: Bicyclo[4.2.0]octa-1,3,5-triene; 2: Cyclotetrasiloxane, octamethyl-; 3: 2-Furancarboxaldehyde, 5-methyl-; 

4: 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- one; 5:Phthalan; 6: Phenol, 2-methoxy-; 7: Benzene, 1,3-bis(1,1-dimethylethyl)-;  

8: Bicyclo[3.2.1]oct-2-ene, 3-chloro-; 9: 1-Propene, 3-chloro-2-(chloromethyl)-; 10: Phenol, 4-ethyl-2-methoxy-; 11: Homovanillyl 

alcohol; 12: Phenol, 2,6-dimethoxy-; 13: Vanillin; 14: Benzene, 1,2,3-trimethoxy-5-methyl-;15: Dodecanoic acid; 16: Apocynin; 

17: 1H-Inden-1-one, 2,3-dihydro-5-methoxy-; 18: Ethanone, 1-(3-hydroxyphenyl)-;19: Benzene, 1,1'-propylidenebis-;                

20: Benzaldehyde, 4-hydroxy-3,5-dimethoxy- ; 21: Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)-; 22: 2,4,6(1H,3H,5H)-

Pyrimidinetrione, 5-ethyl-5-(2-propenyl)-; 23: 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl-; 24: Ethanone, 1,1',1''-(1,3,5-

benzenetriyl)tris-; 25: Pyrrolo[2,3-b]indole, 1,2,3,3a,8,8a-hexahydro-5-methoxy-3a,8-dimethyl- 

 

(a) 
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Figure 4.11 (b) Total Ion Chromatogram from Py-GC-MS of Oak 250°C residue following NaOH extraction. 

Peak identification: 1: Furan, 2-methyl-; 2: Furan, 2,5-dimethyl-; 3: Toluene; 4: 2-Cyclopenten-1-one; 5: 2-Cyclopenten-1-

one, 2-methyl-; 6: 2-Cyclopenten-1-one, 3-methyl-; 7: 2-Cyclopenten-1-one, 2,3-dimethyl-; 8: Phenol; 9: Phenol,  2-methoxy-

; 10: Phenol, 2-methyl-; 11: p-Cresol; 12: Benzeneethanol, 3-hydroxy-; 13: Creosol; 14: Phenol, 3,5-dimethyl-; 15: Phenol, 

3,5-dimethyl-; 16: Phenol, 4-ethyl-2-methoxy-; 17: 1,2-Benzenediol, 3-methoxy- ; 18: Phenol, 2,6-dimethoxy-;                     

19: 1,2-Benzenediol, 3-methyl-; 20: 1,2,3-Trimethoxybenzene; 21: Naphthalene, 2,3,6-trimethyl-; 22: Benzene, 1,2,3-

trimethoxy-5-methyl-; 23: 1-Octadecanol; 24: Behenic alcohol 

 

(b) 
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Figure 4.11 (c) Total Ion Chromatogram from Py-GC-MS of Greenhouse waste 250°C humic-like acid extract. 

Peak identification: 1: Toluene; 2: 1H-Pyrrole, 1-methyl-; 3: Ethanone, 1-(1H-pyrrol-2-yl)-; 4: 2-Cyclopenten-1-one, 2,3-

dimethyl-; 5: Phenol; 6: Phenol, 2-methoxy-; 7: p-Cresol; 8: Creosol; 9: Phosphonic acid, methyl-, bis(trimethylsilyl) ester;  

10: Creosol; 11: Phenol, 4-ethyl-2-methoxy-; 12: 3-Pyridinol; 13: 4-Hydroxy-3-methylacetophenone; 14:  Homovanillyl 

alcohol; 15: Phenol, 2,6-dimethoxy-; 16: Eugenol; 17: 1,2,4-Trimethoxybenzene; 18: Benzene, 1,2,3-trimethoxy-5-methyl-; 

19: Apocynin; 20: 3',5'-Dimethoxyacetophenone; 21: 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)-; 22: Ethanone, 1-(4-

hydroxy-3,5-dimethoxyphenyl)-; 23: n-Hexadecanoic acid; 24: Nalbuphine 

 

(c) 
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Figure 4.11 (d) Total Ion Chromatogram from Py-GC-MS of Greenhouse waste 250°C residue following NaOH extraction. 
Peak identification: 1: 8-Oxabicyclo[5.1.0]octane; 2: 8-Oxabicyclo[5.1.0]octane; 3: Toluene; 4: Bicyclo[4.2.0]octa-1,3,5-

triene; 5: 2-Cyclopenten-1-one; 6: 2-Cyclopenten-1-one, 2-methyl-; 7: 2-Cyclopenten-1-one, 3-methyl-; 8: 2-Cyclopenten-1-

one, 2,3-dimethyl-; 9: Phenol; 10: Phenol, 2-methoxy-; 11: Phenol, 2-methyl-; 12: p-Cresol; 13: 2-Methoxy-5-methylphenol; 

14: 2-Methoxy-5-methylphenol; 15: Creosol; 16: Phenol, 3,5-dimethyl-; 17: 2,3-Dimethoxytoluene; 18: Phenol, 4-ethyl-2-

methoxy-; 19: 4-Hydroxy-3-methylacetophenone; 20: Phenol, 2-methoxy-4-propyl-; 21: Phenol, 2,6-dimethoxy-;                  

22: trans-Isoeugenol; 23: 1,2,4-Trimethoxybenzene; 24: Apocynin; 25: Hexadecanoic acid, methyl ester 

 

(d) 



127 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.0

5.0

10.0

15.0

20.0

25.0

2
4

2
21

7

3

1

2

6

4

5

7

9

1
6

2
0

1
9

2
3

2
5

2
1

1
8

1
3

1
2

1
1

8

1
5

1
4

1
0

TIC

(x1,000,000)

Retention time (min)

 MW 250 
o
C HA

 

Figure 4.11 (e) Total Ion Chromatogram from Py-GC-MS of Municipal waste 250°C humic-like acid extract. 

Peak identification: 1: Toluene; 2: Ethylbenzene; 3:  Bicyclo[4.2.0]octa-1,3,5-triene; 4: .alpha.-Methylstyrene; 5: Phenol;      

6: Phenol, 2-methoxy-; 7: Creosol; 8: Decane, 1-bromo-; 9: Dodecanoic acid; 10: Benzene, 1,1'-(1,3-propanediyl)bis-;       

11: Tetradecanoic acid; 12: n-Hexadecanoic acid; 13: Octacosane; 14: Heneicosane; 15: 9-Octadecenoic acid, (E)-;         

16: Octadecanoic acid; 17: Heneicosane; 18: Heneicosane; 19: Heneicosane; 20: Benzenemethanamine, N-hydroxy-N-

(phenylmethyl)-; 21: Heneicosane; 22: Bis(2-ethylhexyl) phthalate; 23: Heneicosane; 24: Heneicosane; 25: Tetracontane 

 

(e) 
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4.4  Surface area and porosity 

In agreement with literature, oak biochars possessed the highest surface areas 

compared to other feedstocks possibly due to its higher lignin and cellulose content. 

Hydrochar and pyrolysis char surface areas were comparable however, with the 

exception of the commercial (Proininso) oak biochars produced with the traditional 

kiln (450°C and 650°C). Such similarities in this study may have been caused by the 

processing reactors involved rather than feedstock properties, since biochars 

produced with the Pyromaat using the same feedstock (holm oak) as the traditional 

kiln had substantially lower surface areas (Table 4.10  and Table 4.11). Fryda and 

Visser (2015) attributed the low surface areas to partial filling of char pores by 

condensable gases. This possibly occurred due to the nature of the reactor or flow 

of carrier gases during the reaction.  

N2 adsorption isotherms of oak biochars obtained from both traditional kiln and 

Pyromaat reactors reflected these differences (Figure 4.11(a)-(d)); while the 

traditional kiln (commercial oak) biochars exhibited Type IV isotherms indicative of 

mesoporosity (Schneider 1995; Sing et al. 1985), Pyromaat (non-commercial, ECN) 

biochars exhibited Type III isotherms. The presence of some hysteresis during the 

desorption phase in the latter biochars also suggested Type V isotherms however. 

Nevertheless, both Type III and V isotherms are often indicative of weak gas-solid 

interactions (Schneider 1995; Sing et al. 1985). Similar Type III/V isotherms were 

also observed in other Pyromaat biochars. 

Adsorption isotherms for municipal waste biochars are also similar to Type V 

isotherms, and neither variations in pyrolysis processing temperature nor bleeding 1% 

O2 changed isotherm shape and surface area (Figure 4.12). Similarly, gasification 

did not affect adsorption isotherms and surface areas until higher temperatures of 

750°C were used as shown in Figure 4.12 for greenhouse (paprika) waste biochars, 

where a Type IV isotherm was observed. Preliminary tests with greenhouse waste 

biochar pyrolyzed at 600°C in N2 and in 1% O2 revealed similar surface areas (2.0 

and 1.9 m2 g-1 respectively), thus sorption isotherms for the former char have been 

presented as a proxy for greenhouse waste 600°C pyrolyzed in the absence of 

oxygen. 
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Figure 4.11 N2 gas sorption isotherms for commercial and non-commercial oak biochars with manufacturer names in 

parentheses: a) Proininso Oak 450°C; b) Proininso Oak 650 °C; c) ECN Oak 400°C; d) ECN Oak 600°C. 
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Figure 4.12 N2 gas sorption isotherms for ECN greenhouse waste pyrolysis and 

gasification biochars: Pyrolysis biochars: a) GH 400°C; b) *GH 600°C; Gasification 

chars: c) FB-GH 600°C in air; d) FB-GH 600°C in N2; e) FB-GH 750°C in N2. $GH 

600°C pyrolysed in 1% O2 used as a proxy for GH 600°C as surface area and 

porosity development was similar for both. 
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Table 4. 10 Char surface area and porosity development of standard chars 

Char N2 BET Surface 

area (m2 g-1) 

Total pore volume 

(cm3 g-1) 

aAverage pore   

width (nm) 

 

250°C hydrochars 

OAK (Comm.) 6.0 0.035 0.023 

Greenhouse waste (GH) 2.5 0.011 0.021 

Municipal waste (MW) 4.2 0.027 0.028 

Presscake from AD (PK) 0.03 0.615 0.032 

 

400–450°C biochars 

OAK (Comm.) 180.0 0.150 0.003 

Oak wood (OW) 1.0 0.005 0.020 

Greenhouse waste (GH) 1.3 0.003 0.904 

Municipal waste (MW) 2.0 0.007 0.014 

Presscake from AD (PK) 2.0 0.004 0.008 

Greenwaste (GW) 2.0 0.011 0.022 

 

600–650°C biochars 

OAK (Comm.) 280.0 0.160 0.023 

Oak wood (OW) 2.0 0.010 0.020 

Greenhouse waste (GH) 2.0 0.015 0.030 

Municipal waste (MW) 4.0 0.029 0.029 

Presscake from AD (PK) 2.5 0.017 0.027 

Greenwaste (GW) 2.0 0.015 0.030 

aAdsorption average pore width (4V/A by BET). 
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4.3.5 Char morphological properties 

A typical microscope image of reference oak biochars (Proininso oak pyrolysed at 

450°C and 650°C) were each presented in Figure 4.13, confirming the presence of 

various pores. Oak 650°C generally appeared to have a superior pore network 

which was in agreement with gas adsorption results. 

 

Table 4. 11 Char surface area and porosity development of non-standard biochars 

Char N2 BET Surface 

area (m2 g-1) 

Total pore volume 

(cm3 g-1) 

aAverage pore   

width (nm) 

Gasification chars    

GH-FA 600°C (air) 0.7 0.002 2.866 

GH-FN 600°C (N2) 0.7 0.154 0.628 

GH-FN 750°C (N2) 29.0 0.017 0.331 

Pyrolysis chars (600 °C, 30 min) 

MW 600°C, 30 min 6.0 0.031 0.017 

PK 600°C, 30 min 3.1 0.014 0.002 

PM 600°C, 30 min 1.9 1.500 0.016 

Pyrolysis chars ( 600 °C, 60 min, 1% O2) 

MW 600°C, 60 min 5.0 0.028 0.017 

PK 600°C, 60 min 4.0 0.026 0.026 

aAdsorption average pore width (4V/A by BET). GH-FA and GH-FN refer to greenhouse 

waste gasification biochars produced in air and N2 respectively.   
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Figure 4.13 SEM imaging of commercial oak (Proininso) biochars produced at 

(a) 450°C (b) 650°C (L-R: 200× and 1000× magnification, respectively). 

 

 

 

 

4.4 Conclusions 

Details of char physico-chemical properties can provide vital information about 

potential char behaviour in various environments. In this study, the highest char 

carbon contents (>50%) were observed in oak and paprika waste chars and were 

categorised as Class 1 biochars, while hydrochars and pyrolysis chars derived from 

municipal waste, presscake and greenwaste were Class 2–3 as their carbon 

contents were lower. Char morphological properties were found to be a function of 

processing temperature and reactor system; using holm oak chars as a reference, 

substantial differences in surface area were observed in chars produced using 

hydrothermal, traditional kiln (Proininso), screw conveyor (Pyromaat) and fluidized 

bed reactors. In other cases, biochar surface areas were comparable or even lower 

than most hydrochars’ possibly due to reactor-induced interactions between 

condensable gases and solid products.  

With regard to char functional groups, both temperature and biomass feedstock 

property influenced char inorganic content and acidic functional groups such as 

humic-like substances. For instance, oak 250°C hydrochar possessed more humic-

like substances than greenhouse waste, municipal waste and greenwaste 

hydrochars, while oak biochar produced at 650°C did not possess any humic-like 

substances. In spite of substantial differences in carbon and inorganic matter 

content however, the degradation of lignocellulose structures were mostly similar in 

all feedstocks investigated. 
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CHAPTER 5 

Influence of functionality on char interaction in soil 

and nutrient-rich environments 
 

Abstract 

A number of adsorbents have been considered for ammonia/ammonium and 

phosphate recovery and this study was primarily aimed at contributing to growing 

research on some of the factors influencing char-adsorbent sorption capacity in 

nutrient-rich environments. Batch sorption tests involving hydrochars and biochars 

derived from bark-free oak wood, greenhouse (paprika) waste, treated municipal 

waste, presscake, greenwaste and pig manure showed that ammonium and 

phosphate sorption capacities were similar regardless of differences in char 

morphologies. However, char calcium and magnesium contents influenced 

phosphate sorption while oxygen groups were directly related to ammonium 

sorption. The ammonia removal efficiencies of two sets of chars with low and high 

nitrogen contents (chars derived from oak and greenhouse waste, respectively) 

were also evaluated from 7-day batch sorption tests in addition to small-scale co-

composting trials over a period of 17–21 days. In both systems, oak hydrochar 

demonstrated the highest capacity for ammonia sorption compared to its biochar 

counterparts while greenhouse waste char sorption capacity was variable: in the 7-

day batch ammonia sorption tests, greenhouse waste hydrochars showed the least 

potential for ammonia sorption compared to its biochar counterparts while the 

reverse was true in the co-composting system. Furthermore, a number of 

differences were observed between oak and greenhouse waste hydrochar ammonia 

removal efficiencies following extraction with alkaline and organic solvents; while a 

portion of nitrogen was recoverable as both ammonium and nitrate in greenhouse 

waste hydrochar, only ammonium was recoverable in oak hydrochar. Results from 

21-day soil incubation tests with oak, greenhouse waste, and presscake chars were 

in general agreement with recalcitrance indices, O/C ratios and the literature, in that 

hydrochar-amended soils released the most CO2-C and experienced higher 

inorganic nitrogen (NH4-N and NO3-N) mineralization, suggestive of their higher 

tendency to degrade in soils.  
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5.0 Introduction 

Ammonium makes up a very high proportion of soluble nitrogen in animal waste are 

adsorbed onto negatively-charged sites or between clay interlayers in soils 

(Fernando et al. 2005). When released however, nitrifying bacteria convert this to 

nitrate in aerobic conditions which is eventually leached to groundwater (Fernando 

et al. 2005), excess quantities of which result in eutrophication. Furthermore, 

ammonia emission into the atmosphere result in nutrient deposition in nutrient 

sensitive ecosystems, formation of light–scattering aerosols resulting in haze and 

visibility impairment and formation of inhalable aerosol particles which are health 

concerns. High concentrations of ammonium and phosphates can be found in 

various wastewaters (Cai et al. 2013) and their recovery with chars increase the 

economic potential of hydrochars and biochars whilst minimising the risks of 

eutrophication. With growing concerns about its future availability (Rittmann et al. 

2011), phosphorus recovery is also important. Consequently, the overarching aim of 

this chapter is to gain more insight on the factors influencing char nutrient sorption 

capacity, as a better understanding of such factors help to predict char suitability for 

nutrient recovery from certain nutrient-rich environments.  

As a starting point, the CEC of various chars will be evaluated whilst identifying 

some of the relationships between char physico-chemical properties and CEC, 

ammonia / ammonium and phosphate sorption capacities. Furthermore, the 

potential for reducing ammonia and carbon dioxide emissions during laboratory-

scale co-composting with selected hydrochars and biochars are explored. Finally, 

the effects of char physico-chemical characteristics on char mineralization in a high 

pH Mediterranean soil are evaluated in short-term soil incubation tests. Specifically, 

the carbon fluxes and inorganic nitrogen (NH4-N and NO3-N) mineralisation sorption 

capacity of 250°C hydrochars and 400°C biochars derived from oak, greenhouse 

(paprika) waste, and presscake from AD were used for soil incubation tests. Details 

of cation exchange capacity, various sorption tests, co-composting, and soil 

incubation procedures have been outlined in Chapter Three. 
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5.1  Hydrochar and biochar Cation Exchange Capacity (CEC) 

5.1.1 CEC method development 

As earlier mentioned in Section 2.2.5, variations in soil and biochar CEC 

procedures create challenges for biochar CEC comparisons across studies. Table 

5.1 summarises the four CEC methods evaluated in this study, with full descriptions 

of the methods earlier provided in Sections 3.4.5.1–3.4.5.4.  

 

Table 5.1 Description of CEC procedures 

Method No. Method description Descriptio
n section 

CEC-1 Modified BaCl2·2H2O compulsive exchange  3.4.5.1 

CEC-2 Ammonium acetate pH 7 (displacement with KCl after washing)  3.4.5.2 

CEC-3 Ammonium acetate pH 7 (direct displacement with MgO) 3.4.5.3 

CEC-4 Modified ammonium acetate compulsory displacement pH 7 3.4.4.4 

 

Figure 5.1 revealed some similarities in char CEC trend for oak biochars and 

waste-derived chars, yet substantial differences in the actual char CEC values were 

observed depending on the method employed. This variation was also observed in 

Skinner et al. (2001). CEC-1 was rejected due to challenges associated with char 

density as a portion of char tended to float to the top of the supernatant even after 

repeated centrifugation. From this method, low CEC values were obtained for oak 

450°C and 650°C, being 1.1 and 3.1 cmolc kg-1 respectively. Skinner et al. (2001) 

similarly found that this method yielded the lowest CEC values compared to 

analysis performed with buffered pH and ammonium acetate and unbuffered 

ammonium chloride. 

Of the three methods involving ammonium acetate, CEC-2 yielded the lowest CEC 

values but was most comparable with values often reported for similar biochars in 

the literature (Mukherjee et al. 2011). However, the relatively time-consuming nature 

of such a method (>14 h per sample, based on duplicate analysis and two 

distillation units) could be a potential drawback when analysis of large numbers of 

samples is required. CEC values obtained from this method were a factor of 10 

lower than values obtained from CEC-3, and although a lower concentration of 

titrant (0.01 M HCl) was used in this method compared to 0.1 M HCl used in CEC-3, 
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such differences would likely only affect the volume of titrant used, which was 

accounted for in the final CEC calculations (c.f. Equations 3.9 and 3.10). The low 

CEC values obtained from CEC-2 may have been due to some hydrolysis of the 

saturating/index cation (NH4
+ in this case) during the washing stage, a phenomenon 

that has been well discussed in the literature (Bower et al. 1952; Okazaki et al. 

1961). As shown in Figure 5.1, similar CEC values were obtained from CEC-3 and 

CEC-4 in spite of differences in char mass, index cation, analytical technique 

(distillation and flame AAS respectively). However, linear regression plots of the two 

methods only showed a weak correlation (Pearson r = 0.389) as seen in Figure 5.2. 

but slightly better comparisons can be made between CEC-2 and CEC-3 (Pearson r 

= 0.724*, α=0.05) and between CEC-2 and CEC-4 (Pearson r =0.706*, α=0.05) in 

spite of numerical differences. Skinner et al. (2001) compared the CEC values of 

kaolinite, vermiculite and decomposed soil organic matter using various methods 

and observed that soil organic matter exhibited the greatest variation in CEC (c.f. 

Figure. 2.4) and attributed this to pH-dependent organic matter interactions. In 

terms of repeatability, most RSD values were below 20% for CEC-2, with Proininso 

oak 450°C and 650°C samples at 7.7% and 3.8% respectively. Precision was 

similar  for CEC-4 in most cases, based on RSD values <10% in most cases, at 

13.6% and 0.9% for Proininso oak 450°C and 650°C respectively analysed at 

different periods, but between 25-30% for more heterogeneous samples. 

Unfortunately, conclusions about the precision of CEC-1 and CEC-3 cannot be 

made as these were done as single analyses due to time constraints. CEC-4 was 

chosen for analysis of all the chars investigated in this study due to the relative 

speed with which several char samples could be analysed.  

Findings from this study show that even when the same pH is maintained for all 

saturating solutions in order to control pH-dependent effects on char organic content, 

variations in char CEC still occur. Future comparisons between chars and standard 

materials of similar composition would therefore be beneficial in terms of confirming 

the accuracy of the CEC methods. For instance, Skinner et al. (2001) evaluated the 

CEC of soil samples alongside pre-washed humified organic matter, kaolinite and 

vermiculite whose effective CEC values were determined via saturation and 

subsequent summation of K, Na, Mg, Ca, and Al cations.  
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Figure 5.2 Relationship between char CEC Methods 2, 3, and 4. 

Figure 5.1 Comparison of 3 CEC methods for evaluating cation exchange capacities 

of a) oak b) municipal waste (MW) and c) presscake (PK) biochars at various 

pyrolysis temperatures. Suffixes ’30 min’ and ‘1% O2’ denote prevailing pyrolysis 

conditions: 30 min residence times and in the presence of 1% oxygen respectively. 

For CEC-3, single analysis performed only. 
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5.1.2 Hydrochar and biochar CEC 

CEC results for all chars determined using CEC-4 are presented in Table 5.2 and 

showed that only non-commercial oak chars (OW) exhibited the trend of decreasing 

CEC with increasing pyrolysis temperature. Biochars produced between 600–

650 °C generally possessed higher CEC values than lower temperature biochars 

(400–450 °C). Furthermore, hydrochar CEC values were lower than biochar CEC in 

spite of the higher oxygen contents in the former chars.  CEC is known to be higher 

in chars produced at low temperatures (Lehmann 2007; Silber et al. 2010), and for 

this reason, acid functional groups are thought to influence char CEC as their 

quantities tend to diminish with increasing processing temperature. Yet Mukherjee 

et al. (2011) found no strong positive correlation between these parameters and put 

forth a number of reasons as to why this may be so.  

Positive correlations between hydrochar and standard biochar oxygen contents (daf) 

and CEC were found in this study (Pearson r = 0.832 and 0.651* resp., α=0.05), as 

expected (Wang et al. 2015b). To some extent, positive correlations were also 

found between char CEC and organic matter: Pearson r = 0.731 and 0.537 resp., 

α=0.05 while no correlation was observed between CEC and volatile matter. The 

role of ash content on char CEC Is currently inconclusive; while Kirchmann and 

Witter (1992) and Morales et al. (2015) suggested that CEC may be independent of 

biochar elemental contents, other studies consider the relationship to be positively 

correlated (Gaskin et al. 2008; Zhao et al. 2013b), possibly facilitating the formation 

of oxygen groups (Mészáros et al. 2007). In this study, CEC was negatively 

correlated to ash content, albeit non-significant at the 0.05 level (Pearson r = -0.727 

and -0.560 for hydrochars and biochars respectively). Following gasification of 

greenhouse waste, a sharp decrease in CEC was observed, which appeared 

unrelated to ash content. Similarly, both municipal waste and presscake biochars 

produced at non-standard conditions showed a decrease in CEC relative to 

biochars produced at standard conditions (Table 5.2). Additionally, no relationship 

between char CEC and surface area was evident; for instance, Oak 450 °C and PK 

400 °C possessed similar CECs despite marked differences in surface area (180 m2 

g-1 and 2 m2 g-1 respectively). Mukherjee et al. (2011) similarly found no substantial 

relationship between char CEC and surface area. Char negative surface charges 

were comparable although since presscake hydrochar possessed a comparable 

CEC but low surface area (0.03 m2 g-1), its negative charge was greatest. 
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Table 5.2 Hydrochar and biochar CEC and surface charge 

CEC of chars produced at standard conditions 
 

CEC of chars produced at non-standard conditions 

Char 
CEC  

(cmolc kg-1) 

Negative surface 

charge (mmolc m-2) 

 
Char 

CEC 

(cmolc kg-1) 

Negative surface 

charge (mmolc m-2) 

 

250°C hydrochars 

  

OAK 88.3 9.7 0.15  Gasification chars   

GH 83.1 19.4 0.33  GH 600°C (air) 45.8 0.7 0.65 

MW 44.5 1.7 0.11  GH 600°C (N2) 41.2 1.6 0.59 

PK 62.6 3.5 20.87  GH 750°C (N2) 51.0 20.6 0.02 

 

400-450°C biochars 

  

OAK (Comm.) 59.4 8.1 0.003   

OW 105.8 12.1 1.06  Pyrolysis chars (600 °C, 30 min, N2) 

GH 109.5 21.8 0.84  MW 600 °C, 30 min 76.2 19.5 0.13 

MW 65.7 16.2 0.33  PK 600 °C, 30 min 24.4 12.7 0.08 

PK 51.0 5.5 0.26  PM 600 °C, 30 min 79.1 18.5 0.42 

GW 64.8 11.5 0.32     

 

600-650°C biochars 

  

OAK (Comm.) 76.6 0.7 0.003  Pyrolysis chars ( 600 °C, 60 min, 1% O2) 

OW 65.2 20.2 0.33  MW 600 °C, 60 min 56.3 0.8 0.11 

GH 146.2 32.3 0.73  PK 600 °C, 60 min 45.3 0.4 0.11 

MW 67.9 12.5 0.17     

PK 52.6 11.5 0.21     

GW 62.7 2.1 0.31     

OAK (Comm.): commercial oak produced at 450°C and 650°C; OW: oak wood; GH: greenhouse (paprika) waste; MW: municipal waste 

(cellmat); PK: presscake from AD; GW: greenwaste. Negative surface charge determined as CEC/surface area. 
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5.1.3 CEC of solvent-extracted chars 

Char volatile matter may directly or indirectly influence char CEC; for instance, 

Mukherjee et al. (2011) suggested that based on the strong positive relationship 

observed between volatile matter and total acid functional groups, the former 

influenced the pH-dependency of char CEC. Therefore, to better understand the 

reason behind CEC trends in this study, some chars were extracted with toluene 

and CEC measurements were repeated on these chars. This extraction had 

different effects on the two types of char: in hydrochars, the CEC in most cases 

increased (Figure 5.3(a)); in biochars, CEC either remained unchanged or 

decreased following solvent extraction, the latter more prevalent for the higher 

temperature biochars (Figure 5.3(c)). As CEC is thought to be a function of surface 

area and functionality, an increase in hydrochar CEC following solvent extraction 

could suggest either the unblocking of pores increasing porosity and surface area, 

or that a higher surface functionality is being revealed by removing tars. The latter 

effect may be more important as surface area had negligible influence on char CEC, 

with hydrochars possessing low surface areas (<6 m2 g-1). Based on the assumption 

that carboxyl and other functional groups increase CEC (Boehm 1994; Glaser et al. 

2002; Warner 1977), the removal of volatile hydrocarbons from the surface of the 

biochar containing these groups by solvent extraction is expected to affect CEC by 

revealing a different surface functionality below.  

As aforementioned, biochar CEC was generally similar before and after extraction 

but for the 600–650°C biochars, CEC was slightly higher for the as-received 

biochars indicating that solvent extraction reduced their surface functionality. There 

are some anomalies as observed in 400°C oak biochar, but the general emerging 

trend shows that hydrochar CEC is enhanced after extraction while biochars are 

either unaffected or lowered after extraction. This provides supporting evidence that 

CEC is potentially higher for hydrochar but the tars on its surface affect its CEC. 

Indeed, water-insoluble fatty acids were found sorbed onto hydrochars produced 

from microalgae (Heilmann et al. 2011) and brewer’s spent grain (Poerschmann et 

al. 2015), based on analyses with ether and chloroform/methanol solvents 

respectively. Extracts analysed by GC-MS also confirmed the removal of 

oxygenated groups and hydrocarbons from hydrochars and biochars respectively 

(dataset not included). These findings are contrary to those of Mukherjee et al. 

(2011) who reported that volatile organic matter may be partly responsible for char 

CEC at near-neutral pH conditions. 
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Figure 5.3 Effect of solvent extraction on char CEC 

GH: greenhouse waste; MW: municipal waste; PK: presscake; GW: greenwaste 

CECar and CECsox refer to CEC before and after solvent extraction, respectively. 
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5.2 Char interactions in nutrient-rich environments 

5.2.1 Char ammonium sorption  

Details of ammonium sorption experiments have been outlined in Section 3.12.2. 

All containers were acid-washed prior to analysis. 

5.2.1.1 Adsorption isotherms 

Previous studies have shown that in addition to pH and time, initial ammonium 

concentrations are important factors that determine char adsorption capacity 

(Fernando et al. 2005; Kizito et al. 2015; Schlegel et al. 1999). Sorption tests were 

therefore performed on oak and greenhouse waste chars to determine the effect of 

different initial ammonium solution concentrations on char sorption capacities as 

shown in Figure 5.4. Some studies have reported that greater ammonium sorption 

occurs at increasing pH, but Kizito et al. (2015) observed optimal ammonium 

sorption within the pH range of 6.5–7. In this study, a pH of 7 was similarly used 

unless stated otherwise. For oak chars, ammonium sorption generally increased at 

higher initial solution concentrations in a somewhat S-shape (sigmoidal) trend 

(Figure 5.5), suggestive of low adsorbent affinity at lower solution concentrations. 

This was possibly due to NH4
+-ligand interactions, which are overcome at higher 

solution concentrations (Limousin et al. 2007). In greenhouse waste chars, no 

discernible isotherm shape was observed and was therefore not presented.  

Char ammonium sorption isotherm data were initially fitted to the linearized 

Langmuir and Freundlich models based on Equations 5.1–5.2: 

Linearized Langmuir (Type II):  (5.1) 

 

Linearized Freundlich:  (5.2) 

where qe and qm = amount of species adsorbed at equilibrium and saturated 

monolayer adsorption respectively (mg g-1), Ce =  equilibrium concentration 

(mg L-1), n = adsorption intensity, Ka and KF = Langmuir and Freundlich 

constants respectively (Ho 2004; Kumar and Sivanesan 2007). 

Regression plots of the linearised Langmuir and Freundlich models are provided in 

Annex Fig A1 while their regression parameters are provided in Table 5.3 and 

Table 5.4, which respectively show that model data parameters obtained over an 

(III) 
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initial NH4
+ concentration range of 360–1000 mg L-1 had lower R2 values than those 

obtained over a wider initial NH4
+ concentration range of 40–1000 mg L-1.  
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Figure 5.4 Effect of increasing concentration on NH4
+ sorption by a) oak and b) 

greenhouse waste hydrochars and biochars. No error bars at 600 mg L-1 as only 

single analysis was performed. Sorption performed in triplicate at 1000 mg NH4
+ L-1. 
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This is expected, since a broader range of concentrations provide more accurate 

adsorption isotherm parameters (Kumar and Sivanesan 2006b). Langmuir B 

parameters between 0 and 1 were suggestive of favourable ammonium sorption 

while Freundlich n parameters greater than 1 suggested saturation of cation 

exchange sites (Foo and Hameed 2010; Hale et al. 2013). While the R2 values 

suggested that the linearised Langmuir model described sorption better, its higher 

Χ2 values suggested that the linearised Freundlich model described sorption better, 

a discrepancy which may have resulted from the model linearisation process (Ayoob 

and Gupta 2008) because this process distorts experimental error distributions 

(Kumar and Sivanesan 2006), as discussed in Section 2.3.2.3. This discrepancy 

Figure 5.5 Oak char ammonium sorption (qe) at various equilibrium NH4
+ solution 

concentrations (Ce) for: (a) oak 250°C hydrochar, (b) oak 450°C biochar, (c) oak 

650°C biochar. Experimental data fitted to nonlinear Langmuir, Freundlich, and 

Fowler-Guggenheim adsorption isotherm models. 

(c)        

         

(a)        

         
(b)        
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was further explored by fitting the experimental data to the nonlinear forms of both 

Langmuir and Freundlich models (Equations (2.5) and (2.8), respectively) using 

Solver nonlinear least squares method. However, while the nonlinear Langmuir 

model still possessed higher R2 values than the nonlinear Freundlich model, 

maximum ammonium adsorption Langmuir (qm) values were exaggerated, implying 

that both linear and nonlinear Langmuir models did not describe the experimental 

data accurately. Consequently, more complex nonlinear adsorption isotherm models 

were tested, as recommended by Limousin et al. (2007). Although not optimal, the 

Fowler-Guggenheim model (Equation 5.3) provided closer descriptions of the 

experimental data compared to the Langmuir, Freundlich, and Dubinin-

Radushkevich nonlinear models, in keeping with earlier suggestions about lateral 

NH4
+ adsorbate interactions. Nonlinear plots are presented in Figure 5.5, while the 

nonlinear Fowler-Guggenheim model parameters are summarised in Table 5.4. 

qe = q
m

 
kFGCeexp(

αqe
qm

)

1 + kFGCeexp(
αqe
qm

)
   (5.3) 

where kFG = process adsorption constant (L mg-1); α = constant 

describing inter-molecular interactions between adsorbate species;   

qm = maximum adsorption capacity (Myśliwiec et al. 2016). 

 

 

Table 5.3 Ammonium adsorption isotherm model data I (Co = 360–1000 mg NH4
+ L-1) 

 

Char 

Linearised Langmuir  Linearised Freundlich  
Χ2 

Lang 

Χ2 

Freund 
qm 

(mg g-1) 

B 

(L mg-1) 
R2  KF n R2 

 

OAK 250 370.4 0.0004 0.871  0.13 1.03 0.898  8.6 4.9 

OAK 450 -238.1 -0.0003 0.834  0.03 0.87 0.770  19.1 17.7 

OAK 650 109.9 0.0018 0.357  0.72 1.45 0.553  26.7 17.7 

GH 250 -52.6 -0.0009 0.797  0.00 0.61 0.756  110.6 86.3 

GH 400 44.8 0.0614 0.001  7.68 3.35 0.046  140.1 81.9 

GH 600  -58.8 -0.0008 0.881  0.00 0.64 0.932  42.6 6.2 

Linearized Langmuir and Freundlich parameters respectively obtained from inverse and log plots of Ce 
values of approximately 360, 450, 600, 800, and 1000 mg L-1. Χ2 

Lang and Χ2 
Freund refer to Chi-square values 

of qe calculated from Langmuir and Freundlich parameters respectively. 
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Table 5.4 Ammonium adsorption isotherm model data II (Co = 40–1000 mg NH4
+ L-1)a 

 

 

 

Char 

Linearised Langmuir  Linearised Freundlich  Χ2 

Lang 
Χ2 

Freund qm 

(mg g-1) 

B 

(L mg-1) 
R2 

 
KF n R2  

OAK 250 153.9 0.0012 0.998  0.28 1.17 0.983  19.2 6.6 

OAK 450 57.5 0.0059 0.937  0.89 1.58 0.859  69.2 27.2 

OAK 650 76.3 0.0042 0.979  0.96 1.56 0.910  37.4 18.2 

  
 

Nonlinear Langmuir 

 

Nonlinear Freundlich 

   

 qm 

(mg g-1) 

B 

(L mg-1) 
R2  KF n R2    

OAK 250  4175.5 0.00003 0.972  0.480 1.28 0.937 
   

OAK 450  4175.6 0.00002 0.914  0.010 0.70 0.942    

OAK 650  366.7 0.00034 0.881  0.580 1.36 0.894    

aGH 250 6466.6 0.00020 0.593  0.0001 0.48 0.706    

aGH 400 4934.4 0.00002 0.273  0.080 0.99 0.141    

aGH 600 4934.4 0.00002 0.620  0.010 0.76 0.611    

  
 

Nonlinear Fowler-Guggenheim 

     

 qm 

(mg g-1) 

KFG 
(L mg-1) 

α 
 

R2 
     

OAK 250  198.9 0.0004 2.1400 
 

0.988     

 

OAK 450  
105.0 0.0004 3.5000 

 
0.941     

 

OAK 650  
114.2 3.2500 0.0004 

 
0.950     

 

GH 250 
154.5 4.0100 0.0002 

 
0.988     

 

GH 400 
108.5 0.0001 9.2200 

 
0.993     

 

GH 600 
113.2 0.0004 3.3800 

 
0.999     

 

aWith the exception of GH data, whose parameters were obtained over Co = 360–1000 mg NH4
+ L-1. 

Linearized Langmuir and Freundlich parameters respectively obtained from inverse and log plots of Ce 

values of approximately 40, 360, 450, 600, 800, and 1000 mg L-1. Χ2 
Lang and Χ2 

Freund refer to Chi-square 

values of qe calculated from the linearised Langmuir and Freundlich isotherm parameters, respectively. KF  

unit: mg1−(1/n) L1/n g−1 
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5.2.1.2  Adsorption kinetics 

The ammonium sorption kinetics of oak and greenhouse waste chars at an initial 

concentration of about 450 mg NH4
+ L-1 were evaluated using the first, pseudo-first 

order, pseudo-second order and intra-particle diffusion models, the latter three 

being the frequently used models expressed in Equations 5.3-5.5: 

 

Pseudo-first order:       (5.3) 

 

Pseudo-second order:   (5.4) 

 

Intra-particle diffusion:    (5.5) 

 

Char ammonium sorption generally decreased with time as shown in Figure 5.6 and  

Table 5.5 shows key data obtained from the various plot models. Mohan et al. (2014) 

suggested that sorption kinetics obeying the pseudo-first order model were 

indicative of external mass transfer-controlled adsorption but as the pseudo-first 

order model gave very poor fits in most cases, it was excluded from this table. The 

pseudo-second order model generally had higher R2 values compared to the 

pseudo-first order and intra-particle diffusion models although not an optimal fit in 

many cases based on R2 values. Experimental and calculated qe values were 

similar in the foremost model, however, k2 values were negative. 

 

5.2.1.3  Batch adsorption of NH4
+ at 1000 mg L-1 

Ammonium sorption for oak and greenhouse waste chars were highest at initial 

concentrations of about 1000 mg NH4
+ L-1 (about 780 mg NH4-N L-1). To compare 

the sorption capacities of other chars used in this study, subsequent adsorption 

tests were performed at this range to evaluate the proportion of ammonium 

removed by the chars, using a char/solution ratio of 1 kg char m-3. Tables 5.6–

Table 5.7 show that ammonium sorption capacities were generally comparable for 

chars produced at both standard and non-standard conditions, albeit slightly lower 

in the 
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Table 5.5 Adsorption kinetics model parameters 

 
Pseudo-second order 

 

First 
order 

R2 

Intra-particle 
Diffusion 

R2 

Char qe exp 

(mg g-1) 

qe cal 

(mg g-1) 

k2 

(min g mg-

1) 

R2  

        

OAK 250  39.50 37.5 -0.0004 0.997  0.779 0.003 

OAK 450 28.50 28.2 -0.0011 0.986  0.363 0.542 

OAK 650 25.08 23.3 -0.0004 0.991  0.738 0.193 

GH 250 28.90 27.3 -0.0003 0.986  0.149 0.162 

GH 400 43.23 45.7 0.0001 0.914  0.038 0.353 

GH 600  25.92 24.0 -0.0004 0.995  0.706 0.229 

qe exp and qe cal refer to amount of NH4
+ adsorbed by chars obtained from experimental data and from 

plots respectively. For Pseudo-second order model, parameters obtained from plot of t/qt versus t. 

The Pseudo-first order model gave consistently low R2 values and was therefore excluded. 
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latter chars. For instance, both presscake and municipal waste biochars produced 

within 30 min had lower ammonium sorption capacities compared to those produced 

within 60 min. However, greenhouse waste biochars produced via gasification at 

750°C (GH-FN 750) possessed marginally higher ammonium removal efficiency 

relative to GH 600°C. Conversely, ammonium sorption was marginally higher in 

most hydrochars and 400–450°C biochars compared to 600–650°C biochars thus 

the effect of treatment temperature was inconclusive. Yao et al. (2012) similarly 

found no trend between pyrolysis temperature and ammonium sorption. Char 

ammonium sorption capacities in this study were comparable to some reports in the 

literature for biochar. Wang et al. (2015a) reported 12.1–16.1% removal 

efficienciesof untreated and La-treated 300ºC biochars (initial ammonium 

concentration, Co = 25.7 mg L-1). Other studies reported higher ammonium removal 

efficiencies however: 37.3% sorption by activated phytoremediation plant char (Co = 

39 mg L-1) in Zeng et al. (2013) and about 62–83% sorption by brewer’s grains-

sewage sludge biochar (Co = 100 mg L-1) in Zhang and Wang (2016).   

Readily recoverable ammonium from post-sorption chars was determined using 

0.01 M KCl, and a small number of chars were also extracted with 0.01 M CaCl2 to 

compare the sorption capacity of both extractants. Ammonium desorption was found 

to be < 10 mg g-1 in both cases, thus desorbability ranged between 0.2–0.4. A 

number of studies also reported minimal ammonium release even when 1–2 M KCl 

Figure 5.6 Adsorption kinetics of (a) oak and (b) greenhouse waste chars. 
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was used (Clough et al. 2013; Fernando et al. 2005; Jassal et al. 2015; Saleh et al. 

2012). This may have resulted from a number of factors: ammonium was effectively 

trapped within the biochar pore structure (Clough et al. 2013) or organic matter 

(Fernando et al. 2005); ineffective extractants or extractant concentrations (Saleh et 

al. 2012); ammonia volatilization especially for high pH biochars (Wang et al. 2015b). 

Each of these possibilities were briefly explored in Section 5.4.2. 

.  

5.2.1.4  Possible mechanisms for char NH4
+ sorption 

Previous studies have reported a positive relationship between NH4
+ sorption and 

adsorbent composition (acid functional groups, oxygen content, phenolic species 

associated with humic and fulvic substances, inorganic species) in addition to 

surface properties such as surface area (Canals-Batlle et al. 2008; Clough et al. 

2013; Gai et al. 2014; Leuch et al. 2007; Fernando et al. 2005; Zeng et al. 2013; 

Zhang and Wang 2016). Thus the slightly lower NH4
+ sorption capacities of the 

higher temperature (600–650°C) biochars was expected since NH4
+ sorption 

capacities are often greater in chars produced at low temperatures due to their 

higher proportion of acid or oxygen functional groups (Bargmann et al. 2014; 

Spokas et al. 2012; Wang et al. 2015a; Zheng et al. 2010). Likewise, Zeng et al. 

(2013) noted that the disappearance of aromatic C=O and C=C, -CH2-, CO and CC 

functional groups from a high temperature biochar (600°C) after NH4
+ adsorption 

suggested that these functional groups reacted with NH4
+. A positive relationship 

between biochar acid functional groups and ammonium sorption was also observed 

in Wang et al. (2015a) which corroborated earlier speculations by Zheng et al. (2010) 

that with increasing pyrolysis temperature, ammonium sorption decreased due to 

loss of biochar polar groups.  

In addition to acid functional groups, other species present within chars have been 

found to enhance NH4
+ sorption. For instance, the donation of lone pair electrons 

from N atoms to cationic adsorbent sites such as metal species occur at Lewis acid 

sites (Canals-Batlle et al. 2008; Le Leuch and Bandosz 2007; Petit and Bandosz 

2009; Yin et al. 1999). Zhang and Wang (2016) recovered >60% NH4
+ using a 

sewage sludge and Brewer’s grains biochar partly due to the biochar composite’s 

enhanced Mg and P content. In this study however, there was no correlation 

between % NH4
+ sorption and char ash, P, Mg or Ca content.  
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Table 5.6  Ammonium sorption capacities of chars produced at standard conditions 

Char 

Negative 

surface charge 

(mmolc m-2) 

NH4
+

eq 

(mg g-1) 

qe 

(mg g-1) 

%NH4
+ 

ads. 

 

Kd 
Ammonium 

desorbed 

(mg g-1) 

 

Desor-

bability 

fraction 

 

250°C hydrochars 

OAK 0.147 15.9 109.7 14.1 12 0.12 n.d 0.00 

GH 0.332 15.0 121.7 0.3 13 0.13 4.8 0.03 

MW 0.106 8.0 146.4 5.8 14 0.16 4.0 0.03 

PK 20.87 11.3 129.0 19.5 13 0.15 4.2 0.03 

GW n.d 9.9 86.8 27.1 8 0.09 n.d 0.00 

 

400–450°C biochars 

OAK (Comm.) 0.003 10.7 100.9 3.4 9 0.11 5.0 0.05 

OAK  1.058 19.0 129.4 34.8 13 0.11 5.0 0.05 

GH 0.842 19.7 118.2 26.9 12 0.13 4.8 0.04 

MW 0.329 11.8 137.3 0.6 13 0.15 3.0 0.02 

PK 0.255 9.2 105.8 11.5 9 0.11 4.0 0.04 

GW 0.324 11.7 33.0 17.3 3 0.03 2.2 0.02 

 

600–650°C biochars 

OAK (Comm.) 0.003 13.8 114.4 3.4 11 0.12 5.0 0.04 

OAK  0.326 11.7 123.5 28.7 12 0.16 n.d 0.00 

GH 0.731 26.3 99.3 28.5 10 0.11 n.d 0.00 

MW 0.170 12.2 128.3 6.7 13 0.14 2.8 0.02 

PK 0.210 9.5 136.2 18.1 13 0.15 2.2 0.02 

GW 0.314 11.3 77.8 33.6 8 0.08 3.8 0.01 

        

Initial concentration (Co) 1000 mg NH4
+ L-1 (780 mg NH4-N L-1)+; OAK (Comm) and OW: reference 

& ECN oak wood respectively; GH: greenhouse waste; MW: Municipal waste; PK: presscake;      

GW: greenwaste. Desorbability = ratio of ammonium desorbed to ammonium adsorbed; n.d: not 

detected; n.a: unavailable data;  

NH4
+

eq refers to the theoretical maximum amount of  NH4
+ a char can retain based on the number of 

cation exchange sites, since 1 cmolc kg-1 = 0.18 mg NH4
+ per g char (alternatively, 1 cmolc kg-1 = 0.14 

mg NH4
+-N as frequently used in the literature, resulting in slightly lower NH4

+
eq values).  
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Ammonium sorption onto soluble organic matter on char surfaces has also been 

suggested as a possible mechanism based on observations of increased 

ammonium adsorption in complex solutions (dairy or swine effluents) compared to 

simple solutions (ammonium chloride) (Fernando et al. 2005; Sarkhot et al. 2013) 

although the reverse effect has also been observed, as in Kizito et al. (2015). 

Moreover, Fernando et al. (2005) observed stronger soil retention of ammonium 

when leached with liquid slurry compared to pure ammonium solutions and 

suggested that dissolved organic carbon–soil complexes with ammonium were 

responsible. The liquid slurry comprised of different ions however, which may also 

have contributed to the observed differences. Fernando et al. (2005) further 

suggested that in certain conditions, organic matter might increase ammonium 

retention; in soils with high humic and fulvic acid content, complexes with 

Table 5.7 Ammonium sorption capacities of chars produced at non-standard conditions 

Char 

Negative 

surface charge 
(mmolc m-2) 

NH4
+

eq 

(mg g-1) 

qe 

(mg g-1) 
% Ads. Kd 

Ammonium 

desorbed 

(mg g-1) 

 

Desor-

bability 

fraction 

PK 700 °C, 60 min, N2      n.a 910.0a 99.3 15.0 10 0.11 2.4 0.005 

 

Gasification chars 

GH-FA 600°C (air) 0.654 8.2 80.6 9.6 8 0.09 3.8 0.009 

GH-FN 600°C (N2) 0.588 7.4 57.5 15.5 6 0.06 1.6 0.004 

GH-FN 750°C (N2) 0.018 9.2 101.8 19.2 10 0.11 5.8 0.012 

 

Pyrolysis chars (30 min, N2) 

MW 600 °C, 30 min 0.127 13.7 92.6 12.3 9 0.10 3.6 0.007 

PK 600 °C, 30 min 0.079 4.4 100.1 13.4 10 0.11 2.2 0.004 

PM 600 °C, 30 min 0.416 14.2 127.1 3.8 13 0.15 5.2 0.008 

PM 700 °C, 30 min n.a n.a 52.1 55.5 5 0.06 5.0 0.010 

 

Pyrolysis chars ( 600 °C, 60 min, 1% O2) 

MW 600 °C, 60 min 0.113 10.1 137.2 3.1 14 0.16 3.6 0.005 

PK 600 °C, 60 min 0.113 8.2 100.1 15.8 10 0.11 4.6 0.010 

Initial concentration (Co) 1000 mg  NH4
+ L-1 (780 mg NH4-N L-1). GH-FA and GH-FN refer to 

greenhouse waste gasification biochars produced in air and N2 resp.; n.a: unavailable data;  

1 cmolc kg-1 = 0.18 mg NH4
+ per g char; abased on single CEC of 55.5 cmolc kg-1.  
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ammonium may be formed in alkaline conditions due to deprotonation of the 

carboxylic and phenolic groups within such species. Based on these findings, it was 

expected that chars with higher organic contents in this study would possess 

greater ammonium sorption capacities, and that oak hydrochars, previously found to 

possess the highest amounts of humic-like subtances (Section 4.3.3), would adsorb 

the most ammonium. Yet this was not the case, as no strong correlation between % 

ammonium sorption and char organic content was observed and the sorption 

capacities of oak hydrochar was similar to the other chars. This trend was observed 

even at lower initial ammonium concentrations; at about 43 mg L-1, % ammonium 

sorption ranged from 15.1–23.3% in the order: 

Oak 450 °C (9.2±0.2 mg g-1) ≅ Oak 650 °C (8.9±0.8 mg g-1) > Oak 250 °C (6.0±0.5 mg g-1) 

An additional trend from the literature which was not observed in this study was the 

influence of surface area. Adsorbents with high surface areas are thought to 

possess better ammonium removal efficiencies (Ismadji et al. 2016) but char 

surface areas had little impact here as presscake and commercial oak biochars 

possessed similar ammonium sorption capacities in spite of very different surface 

areas (2.5 m2 g-1 and 280 m2 g-1 respectively). This suggested that physisorption/ion 

exchange was not a dominant mechanism for ammonium sorption. Similarly, as 

presscake hydrochar possessed the highest negative surface charge, it was 

expected that its ammonium sorption capacity would be highest but this was not the 

case; the general relationship between char negative surface charge and 

ammonium sorption was also very weak (Pearson r = 0.206). Similar results was 

also observed by Tian et al. (2016) who reported that ammonium sorption was 

negatively correlated with char BET surface area. Following solvent extraction, 

hydrochar sorption of ammonium increased in four of six hydrochars (Figure 5.7) as 

was observed for their CEC. A positive relationship between hydrochar oxygen 

content and ammonium sorption was also observed, with Pearson r = 0.962* 

(α=0.05 level) as opposed to Pearson r = -0.887 for un-extracted chars, but this 

relationship remained weak for the biochars. 

Based on the number of cation exchange (negative) sites available on the chars, 

their theoretical maximum ammonium sorption capacities were calculated and 

presented as NH4
+

eq in Table 5.6 which showed that CEC-predicted ammonium 

sorption was considerably lower than actual ammonium sorption for all the chars. 

Comparing the maximum ammonium sorption capacities as determined from 

Langmuir qm values, this trend was also true for oak 250°C, oak 650°C and GH 

400°C. Bolan et al. (2004), Jassal et al. (2015), Taghizadeh-Toosi et al. (2011b) and 
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Zeng et al. (2013) also observed that CEC underestimated actual ammonium 

sorption capacities. Jassal et al. (2015) and Zeng et al. (2013) attributed this 

discrepancy to physical sorption of N into char pores partly because the adsorbed 

ammonium was not readily extractable with 1 M KCl, which should have ensued if 

ion exchange had occurred (Jassal et al. 2015). Alternatively, Bolan et al. (2004) 

reported that both NH4
+ and K+ sorption capacities were comparable to CEC-

predicted values for zeolites, while bark had higher ammonium sorption capacities 

than CEC-predicted values which the authors attributed to ion exchange in the 

former and ammonium conversion to organic nitrogen in the latter. In this study 

however, no strong relationship between char organic content and ammonium 

sorption was observed as aforementioned. On the other hand, Nguyen and Tanner 

(1998) observed maximum NH4
+ sorption by zeolite to be substantially lower than 

CEC-predicted values.  

 

 

 

 

Figure 5.7 Ammonium sorption capacities of as-received and solvent extracted (sox) chars: 

a) GH: greenhouse waste; b) MW: municipal waste; c) CO: commercial oak; d) PK: 

presscake from AD; e) OW: oak wood; GW: greewaste chars. 
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Overall, as factors such as adsorbent composition, particle size and coexisting ions 

understandably influence adsorbent ammonium sorption (Bolan et al. 2004), these 

findings suggest that CEC is not always a reliable predictor of ammonium sorption. 

5.3.2  Char phosphate sorption 

Details on phosphate sorption experiments have been outlined in Section 3.12.2. 

5.3.2.1 Adsorption isotherms 

The phosphate sorption capacities of oak and greenhouse waste chars were 

compared at various phosphate concentrations as shown in Figure 5.8. Due to 

increasing concentration gradients, phosphate sorption (mg g-1) increased with 

increasing initial phosphate concentration, resulting in better filling of reactive 

adsorption sites (Chen et al. 2013; Krishnan and Haridas 2008; Wang et al. 2011; 

Xue et al. 2009). However, Chen et al. (2013) and Wang et al. (2011) found that 

while mg phosphate- sorption per gram of char increased with initial concentration, 

adsorption efficiency (i.e. removal ratio) decreased, possibly because fewer active 

adsorption sites were available at higher initial phosphate- concentrations. This was 

also the case for chars in this study, with adsorption efficiencies (% sorption) 

highest at 170 mg PO4
3- L-1 in most cases.  

While pyrolysis temperature and feedstock composition did not affect char 

adsorption capacity substantially, hydrochars generally exhibited lower adsorption 

capacities. The linearized Langmuir isotherm models fitted to experimental data 

from 170–700 mg PO4
3- L-1 did not fit the data for any of the chars, particularly as its 

adsorption constant (B) values were negative. Similarly, the linearised Freundlich 

isotherm model described the sorption mechanism only slightly better, based on R2 

values and a better agreement between experimental and calculated qe values ( 

Table 5.8). Even oak 450°C, oak 650°C, and GH 400°C evaluated over a wider 

concentration range of 67–700 mg PO4
3- L-1 (22–230 mg PO4-P L-1) possessed  

comparable R2 values. From the literature, the Freundlich model is considered to 

suit phosphate sorption better; as adsorbents become saturated, adsorption affinity 

decreases exponentially (Sakadevan and Bavor 1998), or because precipitation 

reactions occur (Zeng et al. 2013). Conversely, the Langmuir model fitted better 

than Freundlich model in Wang et al. (2011) and Zeng et al. (2013), possibly due to 

biochar P release (Zeng et al. 2013). 

 



158 
 

-60

-40

-20

0

20

40

60

80

100

120

170 250 500 700

P
O

4
3
-
s
o
rp

ti
o
n
, 

q
e

(m
g
 g

-1
)

Initial phosphate concentration (mg L-1)

OAK 250

OAK 450

OAK 650

(a)

 

 
Table 5.8 Phosphate sorption isotherm model data 

 

Char 

Langmuir  Freundlich  Χ2    

Lang 
Χ2 

Freund qm 

(mg g-1) 

B 

(L mg-1) 
R2  KF n R2 

 

OAK 250  

 
-4.2 

 
-0.001 

 
0.423  

 
16.8 

 
-2.3 

 
0.594 

  
-7.0 

 
-9.5 

OAK 450  -5.4 -0.003 0.898  0.0 0.6 0.860  -810.3 -0.1 

OAK 650  -3.0 -0.003 0.886  0.0 0.5 0.862  -4442.4 -0.1 

GH 250  1.3 -0.002 0.576  8.1 -3.3 0.125  138.7 -7.2 

GH 400  6.3 -0.004 0.763  0.0 0.5 0.960  -1145.8 -0.1 

GH 600  -2.4 -0.008 0.021  0.9 7.0 0.011  -25.5 -0.5 

Linearized Langmuir and Freundlich parameters respectively obtained from inverse and log 
plots of Ce values of approximately 67, 170, 250, 500 and 700 mg PO4

3- L-1 for oak 450°C, oak 
650°C, and GH 400°C and the latter four concentrations for other chars.  
Χ2 

Lang and Χ2 
Freund refer to Chi-square values of qe calculated from Langmuir and Freundlich 

parameters respectively. 
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5.3.2.2 Adsorption kinetics 

Oak chars reached maximum, phosphate sorption after 5 h while this took slightly 

longer for the greenhouse waste chars produced at 250°C and 600°C (Figure 5. 9). 

Other studies have reported far shorter maximum sorption times of 5 min (Ye et al. 

2015) and 30 min (Su et al. 2013). Ye et al. (2015) similarly found that adsorption of 

PO4
3- onto acid-treated red mud (rich in iron and aluminium oxides) occurred very 

rapidly, wherein over 90% sorption occurred within the first 5 min and then slowed 

until equilibrium was reached, presumably after 20 min. On the contrary, other 

studies showed that adsorption equilibrium was attained after 24 h at room 

temperature (Wang et al. 2011; Zhang et al. 2012). Su et al. (2013) demonstrated 

that with an increase in initial solution concentration, time to reach equilibrium 

increased, 8 h in their case. Due to such variations, adsorption tests were 

maintained at 24 h in this study. Here, oak char kinetics followed a more predictable 

pattern than greenhouse waste biochars. fitted to kinetic models showed that the 

pseudo-second order model consistently gave a closer fit compared to the pseudo-

first order and intra-particle diffusion models based on linear regression analysis 

(Table 5.9) although k2 values were negative possibly due to phosphate release in 

at some initial (Co) concentrations. Previous studies have also observed many 

metals and heavy elements follow this pattern (Limousin et al. 2007). Wang et al. 

(2011) also found this model fitted better than the intra-particle diffusion model but 

Figure 5 8 Effect of increasing concentration phosphate sorption in chars from 

(a) oak (b) greenhouse waste. 
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also suggested that simultaneous rapid surface sorption of phosphate and slower 

intra-particle diffusion through the adsorbent occurred simultaneously.  

 

Table 5.9 Adsorption kinetics model parameters 

 Pseudo-Second order   
Pseudo-

First  
order     

R2 

 

 
Intraparticle 

Diffusion 
R2 

 

Char 

qe exp 

(mg g-1) 

qe cal 

(mg g-1) 

k2 

(min g mg-1) 
R2  

        

OAK 250  9.41 8.22 -0.0006 0.980  0.870 0.773 

OAK 450  24.08 22.62 -0.0005 0.996  0.548 0.009 

OAK 650 24.14 22.17 -0.0004 0.995  0.758 0.369 

GH 250  18.06 17.12 -0.0005 0.969  0.434 0.103 

GH 400  16.57 15.13 0.0003 0.651  0.090 0.022 

GH 600  28.24 27.78 0.0166 0.981  0.068 0.696 

qe exp and qe cal refer to amount of phosphate adsorbed by biochars obtained from experimental 

data and from plots respectively. For Pseudo-second order model, all parameters obtained from 

plot of t/qt versus t. The pseudo-first order model generally had higher R2 values than the first 

order model. 

 

(a) 
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5.3.2.3 Char phosphate sorption at 400 mg L-1 

Char adsorption tests were performed at about 400 mg PO4
3- L-1 (about 130 mg 

PO4-P L-1) to evaluate the proportion of phosphate removed by other chars in this 

study, using a char/solution ratio of 1 kg char m-3, as presented in Table 5.10. Most 

results had coefficients of variation < 5% but greenhouse waste samples 

consistently showed much higher percent variations, likely due to sample 

heterogeneity. Phosphate release occurred in hydrochars derived from greenhouse 

waste and presscake and 450°C oak biochar. Such release has also been observed 

in low and high temperature biochars elsewhere (Zeng et al. 2013). phosphate 

sorption capacity increased with pyrolysis temperature with the exception of 

commercial oak and greenhouse waste biochars. This is in agreement with findings 

of Wang et al. (2015a) who observed an increase in phosphate asorption with 

pyrolysis temperature up to a certain point (500°C). Phosphate release from some 

chars at certain concentrations did not appear to be due to char P content, as 

extraction of chars with water to ascertain water-soluble phosphate showed that oak 

hydrochars and commercial oak biochars produced at 450°C and 650°C 

respectively released 1.18 0.04, 0.55 0.00 and 1.19 0.03 mg g-1 PO4
3- while 

greenhouse waste biochars produced at 400°C and 600°C released 2.1 0.1 and 

3.5 0.2 mg g-1 phosphate, respectively. On the other hand, char P might not 

  





Figure 5. 9 Phosphate sorption kinetics for (a) oak and (b) greenhouse waste chars. 

(b) 
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always be completely extractable with concentrated acid (Mukherjee and 

Zimmerman 2013) or by water. 

Recoverable phosphate, obtained by desorbing chars with 0.01 M KCl was minimal 

hence phosphate the ratio of desorbed phosphate to total adsorbed phosphate 

(desorbability) could not be determined in all but two biochars. Xue et al. (2009) and 

Ye et al. (2006) also found that basic oxygen furnace slag and palygorskite 

adsorbents respectively did not desorb a lot of phosphate regardless of initial 

phosphate concentration, although desorbabilty increased to some extent with an 

increase in amount of adsorbed phosphate. Low phosphate desorption might have 

been because the extracting solution (0.01 M KCl) was insffiecient; for instance, 

while salt solutions of KCl or NaNO3 are frequently used as extractants, Su et al. 

(2013) found that phosphate release was most effective when using high pH 

solutions such as 0.1 M NaOH. On the other hand, easily desorbed phosphate 

would have suggested physical adsorption rather than strongly bound (chemical) 

sorption (Xue et al. 2009). 

 

5.3.2.4 Possible reaction mechanisms for char phosphate sorption 

Phosphate sorption has been reported to occur via physical (ion-exchange) and 

chemical (chemisorption) reactions.  Generally, char phosphate sorption capacities 

in this study were found to be lower than other adsorbents, but some positive 

correlation between phosphate sorption and Ca or Mg contents were observed in 

hydrochars and biochars, and to a lesser degree with ash content. Xue et al. (2009) 

also found that adsorbent chemical composition was most influential, leading to 

simultaneous chemical precipitation and ligand exchange between adsorbent and 

phosphate. Furthermore, Yao et al. (2011) compared biochars produced from raw 

and from anaerobically digested sugar beet tailings and found that phosphate 

sorption capacities increased in the latter biochars possibly due to the presence of 

surface MgO as this compound was absent in the former. Studies like Su et al. 

(2013) further established that phosphate sorption occurred via inner-sphere 

complex reactions, based on increases in phosphate sorption with increasing ionic 

strength and from differences in adsorbent iso-electric point before and after 

sorption.  
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Other cations including Ca2+, Al3+ and La are known to increase phosphate sorption 

as well (Bolan et al. 2004; Wang et al. 2015a; Xue et al. 2009; Yao et al. 2013; Ye 

et al. 2015; Zeng et al. 2013), particularly if they are present as basic functional 

groups. Wang et al. (2015a) for instance observed that biochar phosphate sorption 

capacity was a function of ketones, pyrones and chromens based on a positive 

Table 5.10 Char phosphate sorption capacities 

Char 
qe 

(mg g-1) 

% PO4
3- 

ads. 
Kd 

Desorbed 

(mg g-1) 

250°C hydrochars 

Oak wood 26.6 10.3 6.28 0.07 n.d 

Greenhouse waste -9.6 7.6 0.00 -0.02 n.d 

Municipal waste 5.1 3.8 1.21 0.01 n.d 

Presscake from AD 37.0 7.1 9.41 0.10 n.d 

Greenwaste 9.6 11.2 2.22 0.02 n.d 

400–450°C biochars 

Oak wood (commercial) -0.3 6.1 0.00 -0.001 n.d 

Oak wood 5.5 19.0 1.33 0.01 n.d 

Greenhouse waste 18.7 1.9 4.42 0.05 n.d 

Municipal waste 11.9 4.3 2.76 0.03 n.d 

Presscake from AD 7.8 1.4 1.81 0.02 n.d 

Greenwaste -10.3 6.8 0.00 -0.02 n.d 

600–650°C biochars 

Oak wood (commercial) 15.1 5.9 3.64 0.04 n.d 

Oak wood 3.6 6.1 0.86 0.01 n.d 

Greenhouse waste 9.1 6.5 2.14 0.02 8.5 

Municipal waste 14.3 0.6 3.46 0.04 n.d 

Presscake from AD 30.0 24.9 6.97 0.08 n.d 

Greenwaste 13.1 13.7 3.17 0.03 n.d 

     

Initial PO4
3- Co  400 mg L-1; n.d: not detected. 
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correlation of these groups with phosphate removal efficiency, although R2 values of 

0.73 suggested that these groups were not solely responsible. As such, phosphate 

sorption mechanisms are thought to be dependent on metal ion reactions 

(precipitation, surface deposition), surface area and surface functionality (Wang et 

al. 2015a; Yao et al. 2013; Zeng et al. 2013). Other studies however suggested that 

since biochars tend to be negatively charged, surface functionality may not 

influence phosphate sorption a great deal (Yao et al. 2011; Zeng et al. 2013) 

although Su et al. (2013) suggested that adsorbent OH- groups interact with 

phosphate. Phosphate sorption capacity was better at lower solution pH in Wang et 

al. (2012) however, owing to the presence of more positively charged atoms (H+) on 

adsorbent surfaces of Fe-treated activated carbons.  

The influence of biochar surface area on phosphate sorption is unclear but some 

studies suggest that its influence may be minor compared to adsorbent elemental 

composition. Wang et al. (2015a) for instance found that the best performing 

biochars did not possess superior surface areas compared to other biochars. 

Conversely, despite similar mineral contents in presscake biochars produced at 

varying slow pyrolysis conditions in this study, greater sorption of phosphate was 

observed following pyrolysis at shorter residence times (PK-30) and in the presence 

of 1% O2 (PK-1%) compared to presscake biochars produced at standard conditions 

(PK) as shown in Figure 5.10(a). With qe values of 47.2 32.3 mg g-1 and 66.3

0.63 mg g-1 for PK-30 and PK-1% respectively, a positive relationship between 

surface area and phosphate sorption was observed:  

 

PK 600 (2.5 m2 g-1) < PK-30 (3.1 m2 g-1) < PK-1% (4.0 m2 g-1) 

Differences in thermochemical processing also influenced phosphate sorption in 

greenhouse waste biochars (Figure 5.10(b)). In this case however, the relationship 

between biochar surface area and phosphate sorption was not as clear between 

greenhouse waste biochars produced at standard conditions (GH 600) and non-

standard conditions (GH-FA 600, GH-FN 600 and GH-FN 750 corresponding to 

gasification in air at 600 °C, N2 at 600°C and 750°C respectively) with similar 

mineral contents: 

GH-FA 600 (0.7 m2 g-1) < GH 600 (2.0 m2 g-1) < GH-FN 600 (0.7 m2 g-1) < GH-FN 750 (29.0 m2 g-1) 
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Solvent extraction had variable effects on char phosphate sorption (Figure 5.11). For 

all but one hydrochar (presscake), solvent extraction (denoted as ‘sox’) increased 

phosphate removal efficiencies. Phosphate  removal efficiencies also increased in 4 

of 6 low temperature biochars (400–450°C); 400°C oak biochar which released 

phosphate into solution prior to extraction performed marginally better after 

extraction. It is currently unclear whether such increases may have been due to the 

creation of more sites for phosphate sorption. However, for four of the six biochars 

produced at 600–650°C, solvent extraction decreased % sorption capacity.  

 

Figure 5.10. Comparison of phosphate sorption capacities of (a) presscake produced at 

standard conditions (PK), slow pyrolysis at 600°C for 30 min (PK-30) and slow pyrolysis in 1% O2 

at 600°C, 60 min (PK-1%); (b) greenhouse waste biochars produced via slow pyrolysis (GH), 

gasification in air (GH-FA), and gasification in N2 (GH-FN). 
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Finally, with regard to method suitability, various methods have been used to 

estimate char ammonium and phosphate sorption, ranging from flow analysis, ion 

chromatography to colorimetry/spectrophotometry. Owing to the number of samples 

to be analysed, batch-wise IC analysis was performed. In addition to calibration 

standards, each batch included reference biochars (Proininso oak 450°C and 

650°C). Blank ammonium and phosphate solutions were analysed alongside 

samples to confirm that no losses occurred due to volatilisation. Results showed 

that while phosphate- results were consistent when using ion chromatography, 

ammonium determination appeared to be partly affected by eluent conditions or by 

residual ammonium carried-over from previously analysed sample regardless of the 

deionised water samples run after every four samples.  

Figure 5.11 Comparison of PO4
3- sorption capacities of as-received and solvent extracted 

(‘sox’) chars: a) MW: municipal waste; b) GH: greenhouse waste; c) PK: presscake; d) OW: 
oak wood; e) CO: commercial oak; f) GW: greenwaste biochars.  
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5.4 Char ammonia sorption capacity  

Batch ammonia sorption tests as described in Section 3.12.3 were performed as a 

simple means of screening char ammonia sorption capacity and comparing batch 

sorption tests with ammonia emissions reduction during laboratory-scale co-

composting. Equivalent ammonia sorption capacities were calculated by converting 

the increase in total nitrogen to NH3 using a conversion factor of 1.21. 

5.4.1 Char ammonia sorption during batch sorption tests 

The ammonia sorption profiles of oak and greenhouse waste hydrochars and 

biochars are presented in Figure 5.13 for ammonia levels equating to (a) 43 mg and 

(b) 450 mg NH3. The different conditions were used to assess the influence of 

concentration of N species on sorption capacity and to simulate low to high levels of 

N species that may be present in real-case scenarios. For oak, the increase in total 

N content after exposure to 43 mg ammonia was 11.0±0.4 mg g-1 for the biomass 

and between 0.58–15.4 mg g-1 for the chars. Char sorption was comparable to 

those observed in previous studies. For instance, Taghizadeh-Toosi et al. (2012a) 

reported an average increase of about 6.7±0.6 mg g-1. Figure 5.13(a) indicated that 

the % sorption of ammonia was higher for the hydrochar than the respective 

biochars (45% and < 10% respectively), equivalent to 18.8 mg g-1 for the hydrochar 

and < 1 mg g-1 for oak 650°C.  

The comparable ammonia sorption capacity of the raw feedstock with the hydrochar 

appeared to be independent of the inorganic concentrations present as Figure 4.1 

showed that oak biomass possessed a lower mineral content compared to all the 

chars. Moreover, minerals such as Mg and P would perhaps need to be present in 

soluble form to facilitate ammonium sorption similar to that observed by Zhang and 

Wang (2015). Boron contents were highest in the unprocessed Oak and hydrochar 

however, which are known to be good sites for ammonia (Doonan et al. 2010).  

Ammonia sorption by both samples were slightly higher when using the higher initial 

ammonia concentration (450 mg L-1), with the hydrochar still maintaining a higher 

capacity than the biochar (c.f. 28.5 mg g-1 for the hydrochar and 8.1 mg g-1 for oak 

650°C). For greenhouse waste samples, an entirely different trend was observed 

(Figure 5.12(c)); greenhouse waste hydrochar, which possessed the highest 

nitrogen content, released the most total nitrogen followed by GH 600°C. 
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Figure 5.12 Effect of increasing ammonia concentration on the performance of oak 

chars: (a) hydrochar and biochar uptake at about 43 mg NH3; (b) hydrochar and 

biochar uptake at about 450 mg NH3; (c) greenhouse waste at about 43 mg NH3. 
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Figure 5.13 shows the change in ammonia sorption for the hydrochar with 

increasing ammonia concentration indicating that while a greater capacity was 

attained at higher initial ammonia concentration, the % sorption reduced 

considerably, suggesting that while sites were available for ammonia sorption even 

at 1500 mg ammonia, its removal efficiency was greatly reduced. Ammonia sorption 

appeared to start levelling off at higher concentration suggesting a maximum 

sorption in the order of 40–50 mg g-1 ammonia for the hydrochar. Also notable was 

the fact that the hydrochar ammonia sorption capacities were higher than their 

ammonium sorption capacities, whereas for the biochars, the opposite was true. 

This might be linked to the increased surface area and porosity of the biochars 

compared to the hydrochar, and the propensity of the former chars for water 

retention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further analyses revealed more differences between oak and greenhouse waste 

samples: a comparison of the two sets of biomass and hydrochars showed that 

exposure to ammonia resulted in some increase in NO3
- for greenhouse waste 

hydrochar whereas no similar increase was detected in the oak hydrochar (Figure 

5.14(a)). Furthermore, analysis of oak and greenhouse waste hydrochars which 

were subjected to NaOH treatment in order to extract humic-like substances 

Figure 5.13  Hydrochar uptake over a range of about 43–1500 mg NH3 generated 

according to Equation (3.26) and analyses performed in duplicate. To obtain 

equivalent NH3 sorption capacities, increases in total nitrogen contents multiplied 

by N to NH3 conversion factor of 1.21. 

 



170 
 

OAK (a.r.) OAK 250 GH (a.r.) GH 250

-6

-3

0

3

6

9

12

15

18

21

24

27

30

T
o

ta
l 
N

 i
n

c
re

a
s
e

 (
m

g
 g

-1
)

 Total N increase 

 NH
4

+
 increase 

 NO
3

-
 increase

(a)

showed that NaOH extraction decreased the ammonia sorption capacity of oak 

hydrochar presumably due to loss of humic and fulvic-like substances (Figures 4.12 

(c) and (d)). The reverse was however observed for the greenhouse waste 

hydrochars; while elemental analysis showed that less nitrogen was present in the 

hydrochar following exposure to ammonia gas, both ammonium and nitrate contents 

increased (Figure 5.14) in spite of the fact that both analyses were performed within 

the same period (within 24 h). Ammonia sorption experiments performed on a 

different batch of GH 250°C hydrochar prepared under the same conditions but on 

different days revealed a similar result. The most feasible explanation for this 

discrepancy might be linked to its high nitrogen content (3.0±0.3%), as ammonia 

sorption tests using microalgae biomass with a high nitrogen content (7.5±0.4%) 

also exhibited similar sorption capacity. It was therefore speculated that upon 

exposure to ammonia, nitrogen forms in some high-nitrogen samples might be 

transformed into less stable forms thus becoming volatilized at elevated 

temperatures; in this case, greater N losses following elemental analysis at 

temperatures >900°C compared to samples prior to ammonia exposure. In-depth 

investigations are required to confirm this however.  

The high nitrogen content of GH 250°C might also explain why its sorption capacity 

increased following extraction with both NaOH and toluene, in spite of the fact that 

the former treatment is known to decrease char and biomass ability to adsorb 

ammonia (Dorward et al. in prep.). After both treatments, char nitrogen content 

decreased from about 2.8% to < 1.8% which suggested that high nitrogen samples 

might not be suitable for ammonia recovery although further studies on other high 

nitrogen samples are required to confirm this. 
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5.4.2 Recoverable nitrogen 

Whilst the levels of ammonia sorption listed in Table 5.11 indicated an increased 

sorption for hydrochar, subsequent washing of the chars in CaCl2 did not release 

the entire adsorbed N. CaCl2-extractable ammonium contents were highest for the 

hydrochar and generally decreased in proportion to ammonia gas concentration 

exposure. Following exposure to 1000 mg and 1500 mg ammonia, only 6.7±0.3 and 

8.6±2.0 mg of ammonium was recoverable per gram of oak 250°C hydrochar 

respectively. For NH3 sorption, both concentrations showed a similar trend and 

indicated that typically 30–40% of the N was released upon washing with CaCl2 in 

form of ammonium. Taghizadeh-Toosi et al. (2012a) similarly observed that 2 M 

KCl-extractable ammonium represented only a fraction of the increase in total N 

following exposure to ammonia.  

Further investigations are required to confirm whether even more ammonium can be 

recovered with serial extractions using 2 M KCl and water (Haider et al. 2016; Wang 

et al. 2015b), although N species other than inorganic N may be present in post-

Figure 5.14 (a) Increase in total nitrogen content in oak and greenhouse waste 

hydrochars exposed to 43 mg NH3 for 7 d; (b) effect of alkali (NaOH) and organic solvent 

(‘sox’) extraction on the NH3 uptake capacities of oak and greenhouse waste hydrochars. 

Total N determined by elemental analysis and NH4 from IC and differences before and 

after sorption calculated accordingly. 
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ammonia sorption chars (Taghizadeh-Toosi et al. 2012b) which are not easily 

recoverable with such extractants. For instance, Petit et al. (2010) showed that 

ammonia retention in form of amines is also possible, and extensive studies by 

Thorn and Mikita (1992) on ammonia fixation by organic matter presumably at 

ambient temperatures suggested that matter rich in phenolic and hydroxyl groups 

are likely to retain ammonia in form of heterocyclic nitrogen (indole, pyrrole, 

pyridine). As CaCl2-extractable ammonium is considered plant-available (Houba et 

al. 1986; Lazányi and Loch 2006), these results suggest that hydrochar may be the 

most beneficial in terms of release of N in soils or soil amendment products. No 

changes in nitrate were observed following ammonia sorption tests in either oak 

hydrochar or biochars in agreement with the findings of Taghizadeh-Toosi et al. 

(2012a,b). 

 

 

5.4.3 Small-scale co-composting with chars: Effect on NH3 and CO2  

emissions 

Details on the co-composting experimental setup have been provided in Section 

3.12.1. Table 5.12 summarises the elemental content and pH of the 200 g (db) 

control the mixture comprised of 60% commercial multipurpose compost (particle 

size ≤ 4.75 mm) and 40% shredded savoy cabbage (≤ 9.50 mm), the latter added 

as a source of nitrogen. Identical mixtures were amended with 15% char to give a 

total mass of about 235 g (db). However, the compost used for tests with oak 450°C 

and oak 650°C was of a different brand to the batch used for other chars, and even 

Table 5.11 Untreated (as-received) char NH3 and NH4
+ sorption and release profile 

 

Char 

 NH3  sorption      

(mg g-1) 

CaCl2-extractable 

NH4
+ (mg g-1) 

 NH4
+ sorption 

(mg g-1) 

NH4
+ 

desorbed 

(mg g-1) 

            a43 mg NH3  43 mg NH4
+ L-1 

 

OAK 250 

  

18.8±1.6 

 

7.2±0.3 

  

6.0±0.5 

 

0.0±0.0 

OAK 450  2.9±1.4 1b  9.2±0.2 1.1±1.6 

OAK 650  0.7±0.9 1b  8.9±0.8 0.0±0.0 

  
          a450 mg NH3 

  

450 mg NH4
+ L-1 

 

OAK 250 

  

28.5±0.3 

 

6.1±0.8 

  

45.1±1.7 

 

9b 

OAK 450  4.3±1.2 2.68±0.04  29.9±1.8 12b 

OAK 650  8.1±2.2 2.1±0.1  32.7±6.7 11b 

a43 and 450 mg NH3 generated based on Equation (3.36); bsingle analyses reported while other values are 

reported as mean sorption ± standard deviation; undetected NH4
+ concentrations reported as zero. 
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though the same ratios of chars and cabbages were maintained in all cases, direct 

comparisons between the two batches were therefore not possible. Controls from 

both batches predictably showed an increase in pH with the addition of the biochars 

while hydrochar addition had the opposite effect. After 17 days of composting, pH 

increased in all cases, while moisture content of the mature mixtures decreased 

despite maintaining a steady flow of humidified air. C/N ratios expressed on mass 

basis for the starting materials ranged from 18.1–28.7, and generally decreased 

after the composting process. 

 

Table 5.12 Characteristics of composting mixtures 

Sample C (%) N (%) C/N mass ratio pH 

Prior to composting 

OAK 450 24.5±4.9 0.9±0.1 19.0 6.5±0.1 

OAK 650 14.2±4.4 0.7±0.2 26.1 6.5±0.6 

Control 2 37.1±0.8 2.1±0.1 19.2 6.0±0.6 

OAK 250 46.6±2.7 1.6±0.0 18.1 5.7±0.1 

GH 250 42.2±0.2 2.2±0.0 28.7 5.5a 

GH 600 43.6±1.1 1.6±0.1 19.5 6.4a 

After composting 

Control 1 9.0±0.8 0.5±0.0 17.7 7.2±0.4 

OAK 450 18.3±1.3 0.8±0.2 22.1 7.5±0.0 

OAK 650 9.5±2.4 0.6±0.1 15.9 7.2±0.1 

Control 2 33.7±0.5 1.8±0.0 18.5 6.8±0.1 

OAK 250 42.8±1.8 1.6±0.1 26.7 6.3±0.1 

GH 250 41.8±1.9 2.2±0.1 18.8 7.2±0.1 

GH 600 44.0±5.4 1.5±0.4 29.6 7.5±0.1 

C and N values average (n=4) ± SD; pH values read after shaking a 1:5 w/v 
mixture and average (n=2) ± SD reported; asingle analysis performed only. 

 

 

5.4.2.1 Ammonia emissions 

To ensure sufficient generation of ammonia, composting was maintained at 50°C as 

studies have shown that ammonia volatilization commences at temperatures >45°C 

and high pH levels, also being within the temperature range which microbes flourish 

(Epstein 1997). Ammonia and carbon dioxide generated during the composting 
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process are shown in Figure 5.15 and Figure 5.16, respectively. Ammonia 

emissions peaked at 2–3 days of composting in mixtures amended with oak 450°C 

and oak 650°C while controls within the same batch still had slightly elevated 

ammonia emissions until after 6 days of composting. In the second batch, maximum 

ammonia emissions were observed around 6 days of composting for mixtures 

amended with oak 250°C, GH 250°C and GH 600°C while the associated control 

peaked around 8 days. This time difference between both controls and indeed the 

quantities of ammonia released from both composting batches was likely a function 

of the starting compost characteristics.  

Malińska et al. (2014) reported lower ammonia emissions in biochar-amended 

feedstocks relative to un-amended feedstocks during the first week, but an increase 

by the second week. With the exception of GH 600°C, all chars resulted in some 

decrease in ammonia, with the greatest reduction observed for hydrochar-amended 

mixture and showed no signs of increasing in subsequent days. Figure 5.15 

showed that feedstocks co-composted with oak 650°C had slightly lower ammonia 

emissions than mixtures amended with oak 450°C, in agreement with the lower 

surface area and CEC in the latter. On the other hand, oak 250°C which possessed 

a far lower surface area relative to both oak 450°C and oak 650°C outperformed 

both biochars, suggesting that surface area was not a factor behind the lower 

sorption capacity of oak 450°C. Chen et al. (2010) attributed reduction in total 

kjehldahl nitrogen losses to the high specific surface area and microporosity of 

bamboo charcoal while the organic acids present in bamboo vinegar neutralised 

ammonia generated from the composting sample. Corre et al. (2013) however 

suggested that surface acidity influenced the adsorption of ammonia on carbon-

graphene composites more significantly than surface area and micro-pore volume. 

While all the chars in this study possessed comparable ammonium sorption 

capacities, Langmuir qm values over a range of initial ammonia concentrations 

showed that ammonia sorption capacity followed the order: OAK 250 > OAK 650 > 

GH 250 > GH 600 > OAK 450 (Table 5.4) which reflected the magnitude of 

ammonia emission reduction relative to the controls during co-composting to some 

extent.  

This small-scale composting study would have benefitted from a comparison of the 

mixtures’ inorganic N contents at the start and end of composting to determine the 

organic and inorganic nitrogen species present in the chars, as this may have 

explained why differences between batch ammonia sorption tests and composting 

tests were observed for the greenhouse waste hydrochar while both experimental 
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tests were comparable for the other chars. Furthermore, while this study was 

primarily aimed at assessing hydrochar and biochar potential for minimising 

ammonia emissions while co-composting, additional analyses involving a 

comparison of the mixtures’ inorganic nitrogen contents at the start and end of 

composting would have provided further information on the ammonium and nitrate 

dynamics. Longer-term composting trials performed by López-Cano et al. (2016), 

Sánchez-Garcia et al. (2016) and Vandecasteele et al. (2016) provided useful 

information on the effect of co-composting with one of the biochars used in this 

study (Proininso oak 650°C): López-Cano et al. (2016) reported an increase in NO3
--

N content following Proininso oak 650°C biochar amendment.  Similarly, Sánchez-

Garcia et al (2016) reported an increase in nitrifying bacteria population with the 

application of biochar-amended compost material compared to the application of 

compost or biochar only, which was in agreement with previous studies showing an 

increase in NO3
--N content with biochar amendment (Khan et al. 2014; Prommer et 

al. 2014), of which Prommer et al. (2014) outlined a number of possible 

mechanisms.  

On the other hand, in Vandecasteele et al. (2016), NO3
--N contents were 

comparably low in biochar-amended and un-amended composts; the authors also 

noted that the NH4
+-N content of biochar-amended composting matter was lower 

than un-amended composting matter from the onset of co-composting which was 

maintained up to 27 days of composting but gradually exceeded un-amended 

compost in the maturation phase. Differences between these three studies may 

have resulted from the composting materials and experimental setups. The outdoor 

31-week co-composting study by López-Cano et al. (2016) involved co-composting  

Proininso oak 650°C with olive mill waste and sheep manure, and while similar 

amendments were evaluated in Sánchez-Garcia et al. (2016), the field study 

composting was completed in 2 years. In Vandecasteele et al. (2016), full-scale co-

composting studies incorporated the same biochar into greenwaste and treated 

municipal waste.  

5.4.2.2  Carbon dioxide emissions 

In both batches, maximum carbon dioxide emissions occurred after 2 days, and the 

lower carbon dioxide evolution observed in the second composting batch used for 

oak 250°C, GH 250°C and GH 600°C may have resulted more from the 

substantially higher moisture content (>70%) rather than differences in topsoil, as 

Epstein (1997) noted that microbial activity is affected by moisture content. In both 
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batches, a similar trend was however observed, where decreases in carbon dioxide 

emissions were observed within 17 days, with a sharp drop in carbon dioxide within 

the first 5 days of composting as also reported elsewhere (Epstein 1997; Malińska 

et al. 2014; Steiner et al. 2010). Figures 5.15 (a) and (c) show similarities in carbon 

dioxide evolution between char-amended and un-amended feedstocks. Similarities 

in carbon dioxide emissions between control and char-amended composting matter 

were also observed by López-Cano et al. (2016), while in Vandecasteele et al. 

(2016), composting with biochar resulted in a decrease in carbon dioxide emissions 

during the bio-oxidative stage. Conversely, Malińska et al. (2014) also observed a 

slight increase in carbon dioxide evolution from sewage sludge composted with 

woodchip biochar. Although differences were marginal in this study, the highest total 

carbon dioxide emissions per gram material relative to the controls followed the 

order:  

Batch 1: OAK 650 > Control > OAK 450 

Batch 2: GH 600 > Control > OAK 250 > GH 250 

Thus if carbon dioxide emission is used as a measure of microbial activity (Fang et 

al. 2016; Khan et al. 2014), then it appeared that the oak 650°C and GH 600°C 

biochars may have provided more conducive conditions for microbial activity to a 

greater extent than hydrochars. Microbial biomass was not assayed in this study 

however, and as none of the chars were recovered from the composted mixtures for 

further analysis, it remains unclear whether the lower carbon dioxide emission by 

oak 250°C and GH 250°C may have resulted from some interaction between 

ammonium adsorbed on hydrochar surfaces and carbon dioxide. Reactions with 

NH3 and CO2 could have occurred at about 30–60°C according to the equation: 

2NH3(g) + CO2(g) ↔ (NH4)2CO3(s). Vandecasteele et al. (2016) observed that in spite 

of the 53% reduction in cumulative carbon dioxide emissions in oak 650°C biochar-

amended feedstock relative to un-amended feedstock in the bio-oxidative stage, the 

rate of organic matter degradation increased in the former. This discrepancy was  
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Figure 5.15 NH3 emissions during co-composting with various chars, including cumulative emissions during 17 days 

of composting showing lower NH3 emissions from composting matter amended with oak and greenhouse waste chars. 

Cumulative NH3 emissions were calculated based on total compost-char dry mixture weights. 
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suggested to be due to sorption of carbon dioxide by the alkaline biochar although 

by the end of the composting process both amended and un-amended composts 

had similar losses in organic matter (Vandecasteele et al. 2016). Field composting 

trials by Sánchez-Garcia et al. (2016) similarly showed an increase in organic 

matter decomposition in composts amended with Proininso oak 650°C. 

 

5.5 Char mineralisation 

Char mineralisation in a moderately high-pH soil over short-term incubation studies 

are described here, with CO2 fluxes and inorganic nitrogen dynamics used as a 

measure of this degradation. Details of the experimental setup used have been 

provided in Section 3.11. Jumilla sandy soil from Murcia, Spain (C = 7.41%; H = 

0.30%; N = 0.23%; S = 0.00%) was used for soil incubation tests. Its pH was about 

7.8–8.0 and other chemical/biochemical properties were previously described in 

Mondini et al. (2010). 

5.5.1 Hydrochar and biochar soil respiration 

The rate of soil respiration was higher in hydrochar-amended soils in agreement 

with previous studies (Fang et al. 2016; Khan et al. 2014; Suliman 2015) and 

notably in soil amended with GH 250. In all char-amended soils, CO2 evolution 

peaked after 1–2 days of incubation, which generally agreed with earlier composting 

results. CO2 evolution was in the order: GH 250 > OAK 250 > GH 400 > PK 250 and 

as such was not strongly related to char volatile content but generally corroborated 

trends in elemental O/C (daf) atomic ratios: 

OAK 650 
= 

PK 400 
< 

OAK 450 
< 

GH 400 
< 

OAK 250 
= 

GH 250 

(0.07) (0.07) (0.10) (0.12) (0.21) (0.21) 

 

To some extent, CO2 evolution in char amended soils was also in agreement with 

recalcitrance indices as determined by TPO analysis: 

OAK 650 
> 

OAK 450 
> 

OAK 250 
> 

PK 400 
> 

GH 400 
> 

GH 250 

(0.52) (0.50) (0.49) (0.48) (0.47) (0.44) 
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Figure 5.16 Carbon dioxide emissions during co-composting with various chars, including cumulative emissions during 17 

days of composting showing lower carbon dioxide emissions from composting matter amended with oak and greenhouse 

waste chars. Cumulative carbon dioxide emissions were calculated based on total compost-char dry mixture weights. 
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Hydrochar respiration rates could be attributed to their more easily degradable 

carbon form or high volatile matter content (Malghani et al. 2015; Subedi et al. 2015; 

Quayyum et al. 2012). This suggests that substantial amounts of hydrochar C might 

be lost over longer periods of time although some studies (Malghani et al. 2015) 

have shown that two-thirds of hydrochar C still remains in soil after one year. 

Moreover, Malghani et al. (2015) projected a hydrochar C half-life of 19 years in soil 

based on C mass balance and thermogravimetric analyses, and further suggested 

that hydrochar C mineralization may occur in two stages: a fast initial decomposition 

stage whereby a third of the C is lost within the first months following hydrochar 

application followed by a slower decomposition stage. This timeframe is likely 

hydrochar and soil dependent. Carbon dioxide evolution was slightly lower in OAK 

650 relative to the control (Figure. 5.18) which was contrary to co-composting 

trends outlined earlier but in agreement with the findings of Vandecasteele et al. 

(2016). 
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5.5.2 Hydrochar and biochar N dynamics 

As shown in Figure 5.18, ammonium contents of char-amended soils were higher 

than controls until about 12 days of incubation whereas the opposite trend was 

observed for nitrate content, in that it was after 12 days of incubation that char-

amended soils displayed higher nitrate contents. This was in agreement with the 

findings of Sánchez-Garcia et al. (2016) and Khan et al. (2014) who reported that 

char-amended feedstocks possessed higher nitrate contents, speculated to be due 

to biochars’ positive effect on nitrifying bacteria or some adsorption of nitrate by 

biochar. These trends were most obvious for hydrochar-amended soils, with GH 

250°C in particular but after 21 days of incubation, ammonium contents decreased 

substantially in GH 250-amended soil. This is in agreement with studies like 

Quayyum et al. (2012) who observed similar decreases in ammonium content, 

which were attributed to N immobilization of easily-mineralizable amendments after 

365 days of incubation. Further differences between hydrochar- and biochar-

amended soil characteristics included the period of maximum ammonium availability. 

For hydrochar-amended soils, ammonium generally peaked later than biochar-

amended soils, at about 7–12 days of incubation in the former case compared to 

about 3 days in biochar-amended soils. In the control (soil only), ammonium content 

(b) 

Figure 5.17 (a) CO2-C fluxes from soils amended with hydrochars and biochars 

derived from oak, greenhouse waste and presscake. Cumulative CO2-C fluxes 

determined based on daily carbon dioxide evolution over the 21 days of incubation. 
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peaked after 12 days of incubation while nitrate concentrations peaked earlier at 7 

days of incubation.  With the exception of oak 250°C, maximum nitrate 

concentrations was also extracted from hydrochar-amended soils after 7 days of 

incubation. In soils amended with oak 450°C, oak 650°C and GH 400°C biochars, 

this occurred after 3 days of incubation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.18 Inorganic nitrogen dynamics during soil incubation showing: (a) gradual 

decrease in NH4
+-N contents; (b) variable NO3

--N contents. 

(a) 

(b) 

(b) 
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5.6 Conclusions 

This study investigated the phosphate and ammonium adsorption capacities of 

biochars derived from various waste biomass feed-stocks, comparing key 

physicochemical properties such as surface area, CEC, ash and mineral content. 

Solvent extraction increased hydrochar CEC, possibly due to removal of 

hydrophobic compounds. Conversely, slow pyrolysis biochar CEC generally 

decreased following solvent extraction. Ammonium and phosphate sorption 

capacities ranged from about 105.8–146.4 mg g-1 and 0–30 mg g-1, equivalent to 

about 15% and 7%, respectively and of which only a fraction of which was 0.01 M 

KCl-extractable. Biochar phosphate sorption capacity increased with pyrolysis 

temperature possibly due to metal ion precipitation reactions between phosphate 

and char calcium and magnesium. A positive relationship between char oxygen 

functional groups, CEC and ammonium sorption suggested that ammonium sorption 

may have occurred mainly via chemical reactions with oxygen-containing functional 

groups rather than ion-exchange/physisorption. Results from this study show oak 

hydrochars possessed much higher ammonia and ammonium sorption capacities 

relative to oak biochars. Despite differences in physicochemical properties and 

processing conditions, all chars had comparably low ammonium and phosphate 

sorption capacities, and would benefit from some form of modification to increase 

their sorption capacities.  

An assessment of the impact of biochars and hydrochars on inorganic nitrogen 

dynamics and carbon dioxide evolution from a high pH sandy soil over 21 days of 

incubation showed that the addition of biochars and hydrochars had comparable 

impact on nitrogen dynamics with the exception of greenhouse waste hydrochar 

(GH 250), which generated ammonium after 7 days of incubation, reflecting its 

degradation in soil, as was confirmed by its marked CO2 evolution relative to other 

biochars and hydrochars studied. Most ammonium was transformed in soil to nitrate 

after 12 days of incubation. Similarly, carbon dioxide measurements suggested low 

degradation and organic matter mineralization by most biochars and hydrochars 

excluding GH 250°C. Overall however, hydrochar-amended soils generated higher 

amounts of inorganic nitrogen and carbon dioxide compared to 400°C biochars due 

to higher mineralization rates in the former.  
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 CHAPTER 6 
 

Recovery of ammonia/ammonium and phosphate 

with chemically modified hydrochars and biochars 
 

Abstract 

The potential for increasing hydrochar and biochar properties to enhance their 

ability for nutrient recovery has been widely researched. Following chemical 

modification of biomass (in-situ modification) or biochars (post-treatment) with metal 

salts, acids and alkali at mild activation conditions, the ammonia / ammonium and 

phosphate sorption capacities of oak and greenhouse (paprika) waste chars were 

evaluated using laboratory batch sorption tests. Results indicated that phosphate 

sorption could be increased from relatively low (2.1–3.6%) to high (66.4–70.3%) 

proportions by impregnation with magnesium while increases to biochar surface 

area had no substantial effect on char phosphate or ammonium sorption. Modest 

increases in both ammonia and ammonium sorption were observed following 

chemical modification of biochars and hydrochars. Furthermore, neither ammonium 

nor phosphate sorption capacities were adversely affected by coexisting ions during 

sorption tests with synthetic wastewater. Treatment with phosphoric acid showed 

the greatest potential for enhancing ammonia and/or ammonium sorption in 

biochars, while KOH and H2O2 treatment enhanced ammonia sorption in the 

hydrochar. These findings suggest that char surface functionality is more influential 

than surface area, and modification processes able to change the surface 

functionality enhance char ammonia / ammonium sorption. Findings from this study 

suggest that char composition is a key property influencing char nitrogen and 

phosphorus recovery potential while surface area has less influence on sorption. 
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6.1 Introduction 

Activated carbon has been the standard adsorbent used for recovering a variety of 

contaminants (Pollard et al. 1992) owing to its well-developed pore structure and 

high surface area (Kastner et al. 2009; Pollard et al. 1992; Steiner et al. 2010). 

However, due to the high costs associated with traditional activated carbon, 

alternative waste-derived feed-stocks have been considered, ranging from 

agricultural by-products to industrial waste materials (Kastner et al. 2009; Pollard et 

al. 1992). To be considered suitable however, such alternative feed-stocks are 

required to be abundant, carbon-rich, and possess appreciable pore development, 

(Pollard et al. 1992). Hydrochars and biochars show potential as suitable 

alternatives to traditional activated carbon as they are carbon-rich products that are 

obtainable from various kinds of organic waste, although Nguyen et al. (2014) rightly 

observed that most agricultural by-products considered for such nutrient recovery 

require some form of modification.  

Studies have demonstrated that the presence of basic oxygen functional groups 

such as metal oxides, ketones, pyrones and chromens on adsorbents are 

advantageous for phosphate recovery (Chen et al. 2011; Nguyen et al. 2012, 2014; 

Park et al. 2015; Wang et al. 2015a; Xue et al. 2009; Yao 2013; Zeng et al. 2013). 

Various processing temperatures, activating agents and loading ratios have been 

employed, which understandably produce adsorbents with different phosphate 

sorption capacities even when similar chemical activation agents are used. For 

instance, while some studies have reported increases in adsorbent phosphate 

sorption following Fe-treatment (Krishnan and Haridas 2008; Nguyen et al. 2013), a 

51% decrease has been observed in other studies (Yao 2013).  

With regard to ammonium sorption capacities, low temperature chars tend to have 

higher sorption capacities possibly due to their higher proportion of acid functional 

groups (Wang et al. 2015a; Zheng et al. 2010), char ammonium removal efficiencies 

may be increased by introducing acidic species. Incorporation of cationic species 

also enhance char ammonium sorption, as the donation of lone pair electrons from 

N atoms to cationic adsorbent sites such as metal species occur at Lewis acid sites 

(Canals-Batlle et al. 2008; Le Leuch and Bandosz 2007; Petit and Bandosz 2009; 

Yin et al. 1999). Zhang and Wang (2016) recovered >60% ammonium using a 

sewage sludge and Brewer’s grains biochar partly due to the biochar composite’s 

enhanced Mg and P content. These studies suggest that hydrochars are likely to 

possess greater ability for ammonia and ammonium sorption compared to biochars, 

given the higher proportion of acidic functional groups in the former. On the other 
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hand, the higher surface areas of biochars may compensate for their lower acidic 

functionalities since some studies have reported that high adsorbent surface areas 

and pore volumes increase ammonia and ammonium removal efficiencies (Ismadji 

et al. 2016; Petit and Bandosz 2009). Moreover, the high surface areas of some 

biochars may provide more sites for the loading of acidic or cationic species which 

can increase Brønsted and Lewis acid sites respectively. 

This study was therefore aimed at enhancing char potential for nitrogen and 

phosphorus recovery based on mild activation conditions adapted from frequently 

used char chemical modification methods. It is anticipated that this study will 

contribute to growing research on the factors influencing char nutrient recovery. To 

eliminate uncertainties arising from matrix interferences, wood-based chars with 

carbon contents >50% were used owing to their low contaminant concentrations, 

while selected treatments were performed on greenhouse waste chars. Furthermore, 

the effects of treatment route (i.e., biomass pre-treatment versus biochar post-

treatment as outlined in Chapter Three) were investigated for chemical treatments 

which demonstrated the greatest increases in char ammonium and phosphate 

sorption capacity. 

  

 

6.2 Physicochemical properties of modified hydrochars and  

biochars  

As two types of chemical treatment were used to modify biochars, activating agents 

are prefixed with “SA” and “CA” to represent surface activation and chemical 

activation respectively, the latter treatment involving an additional calcination step. 

Various chemical treatments understandably had variable effects on biochar 

functionality as outlined henceforth. Most treatments focused on oak biochars but 

for comparative purposes, selected treatments were replicated for greenhouse 

(paprika) waste chars produced at 400°C and for oak hydrochars. A range of 

activating agent concentrations were used in preliminary studies as outlined in 

Chapter Three but as further nutrient sorption tests were performed using the 

lowest concentrations (1:1 activating agent/char ratios), only these are reported 

subsequently unless stated otherwise. 
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6.2.1 Treated char elemental content 

Elemental contents of the treated chars listed in Table 6.1 revealed a decrease in 

carbon and nitrogen contents for treated oak 250°C, oak 650°C and most of the GH 

400°C chars, while oxygen contents increased. This was somewhat similar to 

findings of Yakout (2015) who observed a decrease in carbon content while oxygen, 

hydrogen, nitrogen contents increased following acid and KOH treatment, and to 

Latham et al. (2013) after acid and base treatment of hydrothermally treated 

sucrose. Conversely, the carbon contents of most treated oak 450°C treatment 

increased, as found elsewhere (Gai et al. 2014; Zheng et al. 2013) while oxygen 

contents decreased. Zheng et al. (2013) similarly observed increases in carbon, 

hydrogen and nitrogen contents in acid-washed biochars while oxygen content 

decreased. Acid treatment generally resulted in an increase in H and O which 

suggested presence of stable carbon-oxygen complexes and available activated 

sites (Guerrero et al. 2005). This anomaly could also be related to the relative ease 

of leaching of inorganics and the difference in reactivity of the surface towards 

decarboxylation and hydrolysis. Hydrochar yields following the various surface 

treatments ranged from 67.1–86.2%, with H2O2 treatment resulting in the greatest 

material loss while H2SO4 treated hydrochar experienced the least material loss. 

This suggested that surface treatment severity for oak hydrochars followed the 

order: H2O2 > H3PO4 > KOH > H2SO4. Biochar yields following chemical activation 

with KOH were about 56%, while oak 650°C treated with Mg had a yield of about 

51%. 

 

6.2.2 Char CEC and functional groups 

The CEC values of the oak biochars following surface and chemical activation were 

compared in Figure 6.1 which showed that the former treatment increased char 

CEC the most; of these, SA-KOH treatment yielded the most substantial increases. 

Oak 450°C and oak 650°C CEC values increased by about 82 and 56 cmolc kg-1, 

respectively but the reverse was observed in oak biochars after CA-KOH treatment. 

 

 

 

 

   

 

 



188 
 

O
A
K
 4

50

O
A
K
 4

50
-H

2
S
O 4

O
A
K
 4

50
-H

3
P
O 4

O
A
K
 4

50
-H

2
O 2

O
A
K
 4

50
-F

e(
N
O 3

) 3

O
A
K
 4

50
-K S

A

O
A
K
 4

50
-K C

A

O
A
K
 4

50
-F

eC
l 3

O
A
K
 4

50
-M

gC
l 2

0

25

50

75

100

125

150

175

200

225

250

275

300

Chemical activation

C
E

C
 (

c
m

o
l c
 k

g
-1
)

Surface activation

(a)

O
A
K
 6

50

O
A
K
 6

50
-H

2
S
O 4

O
A
K
 6

50
-H

3
P
O 4

O
A
K
 6

50
-H

2
O 2

O
A
K
 6

50
-F

e(
N
O 3

) 3

O
A
K
 6

50
-K S

A

O
A
K
 6

50
-K C

A

O
A
K
 6

50
-F

eC
l 3

O
A
K
 6

50
-M

gC
l 2

0

25

50

75

100

125

150

175

200

225

250

275

300

Chemical activation

Surface activation

C
E

C
 (

c
m

o
l c
 k

g
-1
)

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Effect of various chemical treatments on char CEC (a) Oak 450 °C; (b) Oak 650°C. 
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Table 6.1 Elemental content and CEC values for a selection of modified chars 

 
Char 

CEC 
(cmolc kg-1) 

aNH4
+

eq 
(mg g-1) 

C 
(%) 

H 
(%) 

N 
(%) 

S  
(%) 

bO 
(%) 

        

Surface activated (“SA”) chars 

OAK 250 88.3±9.7 15.9 67.9 6.5 1.4 0.1 24.1 

OAK 250-H2SO4 81.1±4.6 14.6 61.3 4.9 0.4 
 

0.04 33.4 

OAK 250-H3PO4 86.8±4.7 15.6 60.2 4.8 0.3 0.0 34.6 

OAK 250-H2O2 102.4±7.3 18.4 56.1 4.5 0.3 0.0 39.1 

OAK 250-KOH 102.0±8.2 18.4 62.0 4.9 0.4 0.0 32.7 

        

OAK 450 59.4±8.1 10.7 65.7 2.7 0.6 0.0 31.0 

OAK 450-H2SO4 66.3±15.6 11.9 73.6 4.8 0.5 0.0 21.1 

OAK 450-H3PO4 103.5±33.0 18.6 70.0 4.1 0.4 0.0 25.5 

OAK 450-H2O2 147.2±6.9 26.5 71.3 3.9 0.5 0.0 24.3 

OAK 450-KOH 141.0±13.2 25.4 74.1 3.2 0.5 0.02 22.2 

OAK 450-Fe 100.6±7.9 18.1 64.6 2.9 1.3 0.0 31.2 

        

OAK 650 76.6±0.7 13.8 76.5 1.4 0.8 0.0 21.3 

OAK 650-H2SO4 106.8±18.7 19.2 62.9 2.4 0.6 0.0 34.2 

OAK 650-H3PO4 126.3±63.9 22.7 50.5 3.6 0.5 0.0 45.4 

OAK 650-H2O2 71.2±7.4 12.8 63.7 2.3 0.5 0.0 33.5 

OAK 650-KOH 132.3±11.2 23.8 59.5 3.1 0.5 0.03 36.9 

OAK 650-Fe 155.3±38.1 28.0 59.3 1.9 1.6 0.0 37.2 

        

GH 250 83.1±19.4 15.0 66.4 6.8 3.1 0.2 23.5 

GH 250-KOH 226c 41 55.2 3.5 2.2 0.0 39.1 

GH 400 109.5±21.8 19.7 59.0 2.9 1.2 0.3 36.6 

GH 400-H2SO4 120.3±9.5 21.7 68.0 4.5 1.2 0.0 26.3 
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Table 6.1 Elemental content and CEC values for a selection of modified chars 

 
Char 

CEC 
(cmolc kg-1) 

aNH4
+

eq 
(mg g-1) 

C 
(%) 

H 
(%) 

N 
(%) 

S  
(%) 

bO 
(%) 

GH 400-H3PO4 150.8±15.2 27.1 67.4 5.1 1.0 0.03 26.5 

GH 400-H2O2 156.7±45.9 28.2 68.8 4.6 0.9 0.46 25.2 

GH 400-KOH 366.1±9.1 65.9 70.3 4.0 0.9 0.05 24.8 

GH 400-Fe 162.3±13.7 29.2 49.1 3.2 2.8 0.0 44.9 

Chemical activated (“CA”) chars 

OAK 450-Mg 400 53.7±1.4 9.7 57.1 2.6 3.6 0.00 36.7 

OAK 650-Mg 600 65.0±15.4 11.7 65.1 1.8 0.7 0.11 32.3 

OAK-Mg 600 50c 9.0 53.6 2.5 0.3 0.20 43.5 

GH-Mg 600 n.a n.a 43.4 1.6 0.9 0.00 54.1 

aNH4
+

eq refers to the maximum equivalent char NH4
+ sorption capacity since 1 cmolc kg-1 = 0.18 mg 

NH4
+ kg-1 char;  bOxygen content determined as difference between % C, H, N and S from 100 (dry 

basis); csingle analysis only; CEC expressed as average of duplicates ± standard deviation; n.a. = 
unavailable data. 

 

 

 

The greatest increase in CEC was observed for KOH-activated GH 400°C as shown 

in Table 6.1. Min et al. (2004) also observed CEC increases following surface 

modification with bases, but it is uncertain whether the increase in GHW 400 CEC 

following SA-KOH treatment could be attributed to oxidation of the biochar surface 

resulting from the presence of K and O following Equation (6.1) as outlined in 

Viswanathan et al. (2009), because while potassium salt complexes are formed 

even without carbonization (Ehrburger et al. 1986; Lillo-Ródenas et al. 2003). 

Equation (6.1) might only occur at much higher temperatures (Ehrburger et al. 1986; 

Lillo-Ródenas et al. 2003; Viswanathan et al. 2009): 

KKOCCOK2    (6.1) 

It is more likely that CEC increases resulted from an increase in carbonyl groups. 

This hypothesis is based on the increase observed following SA-KOH treatment of 

GH 400°C compared to oak biochars, the former biochar possessing more carbonyl 

groups as seen in Figure 6.2 (1760–1665 cm-1 bands). Mallampati and Valiyaveettil 

(2013) reported ester bond cleavage into hydroxyl groups following NaOH treatment. 

Yakout (2015) also found that KOH treatment increased biochar phenolic groups; 

such base treatment increases char CEC (Han et al. 2005). SA-H2O2 treatment also 
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increased CEC although not as greatly as SA-KOH treatment. This increase was 

possibly due to the formation of oxygen-containing species following acid-catalysed 

hydrolysis reactions (Lin et al. 2012; Marsh and Rodríguez-Reinoso 2006). Acid 

treatment similarly had varying effects on char CEC: while there was little change in 

hydrochars treated with H2SO4 and H3PO4, all other treatments had a positive 

impact on CEC. For instance, following H2O2 treatment, a two-fold increase in the 

CEC of oak 450°C was observed although the increase for the oak hydrochar was 

less obvious. Previous studies (Huff et al. 2016; Liang et al. 2006) have attributed 

this effect to an increase in oxygen functional groups due to oxidation of aromatic 

carbon and increase in carbonyl groups. Also apparent was that the increase in 

CEC cannot be attributed to changes in surface area since H2O2 treatment resulted 

in a drastic reduction in surface area (>50%) for both oak biochars as discussed 

subsequently. 

 

6.2.2 Treated char functional groups 

Char functional groups as determined by ATR-FTIR, solid-state NMR and TPO 

analysis all showed that treated chars did not differ substantially from their untreated 

counterparts. Relative to unprocessed oak biomass, additional peaks were 

observed in treated and untreated chars reflective of the biomass degradation to 

carbonyl, hydroxyl and other reactive functional groups (Figure 6.2). Amongst 

treated and untreated chars, no major differences in functional group intensities are 

observed, suggesting that chemical treatment does not alter char functionality 

substantially. A slight relative increase in the intensity of carbonyl functional groups 

(1700 cm-1) is however observed following H2O2 treatment. 

FTIR spectra confirmed that some band intensities increased following some 

surface activation treatments, notably the 1700 cm-1 and 1440 cm-1 bands in GH 

400°C following SA-KOH treatment (Figure 6.2). SA-KOH oak 450°C also 

possessed a marginally higher peak at 1585 cm-1 relative to untreated oak 450°C. 

These suggest an increase in C=O groups. Following H2O2 and Mg treatment, 

absorbance intensities either had no marked effect on biochar functional groups or 

decreased their intensities.  In the 1800–600 cm-1 region, four bands were observed 

in all biochars: sharp peaks around 1714–1698 cm-1 attributable to C=O stretching 

of carbonyl groups (Pradhan and Sandle 1999; Wu et al. 2011); 1440 cm-1 likely 

corresponding to ketone stretching as observed in lignocellulosic materials 

(Keiluweit et al. 2010); 1400 cm-1 likely due to aromatic C=C stretching (Park et al. 

2015);  875 cm-1 possibly due to out-of-plane bending vibrations for β-glucosidic 
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linkages or for C-O groups, aldehydes and benzene derivatives (Krishnan and 

Haridas 2008; Sricharoenchaikul et al. 2008). Additional bands were also present in 

oak 450°C and GH 400°C biochars at 1610 cm-1, attributable to aromatic C=C 

stretching or conjugated ketone and quinone C=O stretching vibrations (Keiluweit et 

al. 2010; Park et al. 2015). A band at 1583-1575 cm-1 resulting from conjugated 

C=O stretching vibrations of hemicellulose or aromatic rings (Krishnan and Haridas 

2008; Sricharoenchaikul et al. 2008). Overall, the observed changes in elemental 

and organic composition, CEC and surface area suggest that benefits are derived 

from chemical treatment in terms of increased CEC and in some cases surface area 

without a great deal of material loss.  

 

6.2.3 Physical characteristics of treated chars: Surface area and morphology 

Chemical activation is thought to enhance char surface area and porosity 

development to a greater extent compared to surface activation due to the higher 

activation temperatures employed (>450°C). Despite the lower temperatures used 

in surface modification (60–80°C) however, comparable increases to surface area 

have been observed by Sricharoenchaikul et al. (2008). In this study, SA-KOH 

treatment increased the surface area of GH 400°C by 55% while a drastic decrease 

of >75% was observed in SA-KOH treated oak biochars. An increase in GH 400 

surface area may have resulted from demineralization by KOH or HCl (the latter 

introduced during the rinsing stage of the procedure), as is known to occur following 

alkali or acid treatment of feedstocks (Mahmoud et al. 2012; Mukherjee 2003; 

Yakout 2015). Demineralization from KOH action is more likely, since preliminary 

tests showed that increasing KOH/biochar loading ratios whilst maintaining the 

same HCl concentration increased surface areas in all 3 biochars. For instance, SA-

KOH treated oak 650°C at 1:1 and 5:1 KOH/char loading ratios had a surface area 

of 59.3 m2 g-1 and 67.8 m2 g-1 respectively as shown in Table 6.2. The 

demineralization was possibly more pronounced in GH 400°C owing to its higher 

ash content, especially if such inorganics were more loosely bound to its carbon 

structure than in oak biochars. Dislodgement of these inorganics would 

consequently increase pore spaces, although more studies are required to confirm 

this. Increasing KOH/carbon ratios result in greater microporosity while converse is 

true for increasing H3PO4/carbon ratios. In the latter case, while low ratios result in 

micropore development, increasing ratios result in mesoporosity development 

(Marsh and Rodríguez-Reinoso 2006). 

The decrease in oak biochar surface areas following SA-KOH treatment likely 

occurred because surface activation was not followed by high temperature 
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treatment. This was validated by the fact that an additional pyrolysis step performed 

on oak 650°C increased its surface area to 344.3 m2 g-1 (Table 6.2). Yet a similar 

KOH surface activation process on  physic nut waste biochar without further heat 

treatment resulted in an increase in surface area from about 200 m2 g-1 to >500 m2 

g-1 in Sricharoenchaikul et al. (2008). As this study was aimed at increasing biochar 

ammonium and phosphate removal efficiencies however, less emphasis was placed 

on increasing biochar surface area as it was observed that high and low surface 

area biochars performed comparably. This was further demonstrated by CA-KOH 

oak 650°C (i.e., oak 650°C pyrolyzed after KOH treatment) whose higher surface 

area did not increase its PO4
3- removal efficiency as briefly discussed in Section 

6.4.3 KOH treatment  

Generally however, KOH treatment is known to significantly increase surface areas 

in feedstock (Azargohar and Dalai 2008; Gu and Wang 2012; Sricharoenchaikul et 

al. 2008) owing to intercalation of K atoms within carbon lamella. This results in an 

increase in char porosity following their removal in a rinsing step (Sricharoenchaikul 

et al. 2008; Viswanathan et al. 2009) but such reactions typically occur at high 

temperatures through the series of reactions outlined in Viswanathan et al. (2009). 

Indeed in terms of porosity development, while chars benefit from H3PO4 and ZnCl2 

treatment at temperatures of < 450°C and < 500°C respectively, KOH treatment 

requires higher activation temperatures (Marsh and Rodríguez-Reinoso 2006). 

Furthermore, increases in char surface area during KOH treatment is also time-

dependent as shown in Table 6.2, where suffixes A and B refer to KOH treatment 

involving pyrolysis at 600°C after shaking the char-KOH mixture; in treatment A, the 

char-KOH mixture was allowed to stand for some hours before pyrolyzing at 600°C 

and in treatment B, chars were immediately pyrolyzed at 600°C after shaking. The 

substantial increase in char surface area following the latter treatment likely 

because there was less time for KOH-treated char to react with atmospheric CO2.  

 

Following a similar trend to SA-KOH treatment, H2O2 treatment resulted in a 

decrease in oak biochar surface areas by about 53.3% and 73.1% for oak 450°C 

and oak 650°C, respectively, with even greater reduction following 30% H2O2 

treatment. Pereira et al. (2003) and Pradhan and Sandle (1999) respectively 

reported a 12% and 9.2% reduction in surface area following surface activation of 

activated carbon with <10% and 30% H2O2. It is not unusual for char surface areas 

to decrease following chemical treatment due to pore wall collapse (Moreno-Castilla 

et al. 2000; Pereira et al. 2003; Pradhan and Sandle 1999) or blockage of 

micropores by newly formed surface oxygen groups (Pradhan and Sandle 1999). 
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However, Xue et al. (2012) and Yakout (2015) respectively reported that peanut hull 

hydrochar and rice straw biochar treated with 10% and 30% H2O2 increased char 

surface area by 7.7% and 55.4%. It remains unclear why H2O2 surface treatment 

has such variable effects, and further investigations are required to confirm whether 

compositional differences in ash content are influential factors. 

 

Table 6.2 Surface areas of selected treated chars 

Treatment Concentration BET surface 

area N2 (m2 g-1) 

t-Plot micropore 

volume (cm3 g-1) 

aAverage pore 

width (nm) 

 

H2O2  

    

 10% OAK 450-H2O2 65.4 0.018 3.126 

 30% OAK 450-H2O2 53.6 0.015 3.418 

 10% OAK 650-H2O2 64.5 0.016 3.241 

 30% OAK 650-H2O2 45.4 0.002 0.191b 

KOH     

SA-KOH     

 1:1 KOH-OAK 450 0.2 0.001 1.572 

 5:1 KOH-OAK 450 3.3 0.002 1.895 

 1:1 KOH-OAK 650 59.3 0.013 3.462 

 5:1 KOH-OAK 650 67.8 0.019 2.862 

 1:1 KOH-GH 400 2.0 0.001 7.522 

 5:1 KOH-GH 400 2.5 0.001 5.484 

CA-KOH     

 1:1 KOH-OAK 650 A 43.3 0.012 3.030 

 1:1 KOH-OAK 650 B 344.3 0.125 2.096 

Untreated chars 

 GH 400 1.3 0.003 0.904 

 OAK 450 180.0 0.150 0.003 

 OAK 650 280.0 0.160 0.023 

SA-KOH and CA-KOH refer to KOH treatment via surface and chemical activation respectively;  
aadsorption average pore width (4V/A by BET); bbased on desorption average pore width 4V/A by 

single point analysis; cbased on BJH adsorption average; the surface areas of 1:1 OAK 450-KOH 

were measured thrice and found to be low on each occasion. 

 

 

SEM imaging of a selection of treated oak biochars presented in Figure 6.3 showed 

that chemical treatment did not alter char morphologies substantially; at best, CA-

KOH treated oak 450°C had somewhat rougher edges compared to untreated oak 

450°C (Figure 6.3(ii)). A visible difference in oak 650°C following magnesium 
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treatment at 600°C was evident however, although magnesium was unevenly 

distributed, ranging from 1.45–5.95% in the sample points analysed. SEM/EDS 

imaging of a section of Mg-treated oak 650°C presented in Figure 6.4 showed the 

distribution of Mg on the char.  No differences in Mg-treated OAK 450 were evident 

and as such SEM images were not included. Generally, the SEM results 

corroborated ATR-FTIR (Figure 6.2) and NMR findings (Figure 6.5(a)) which 

showed no distinctive differences between treated and untreated char surface 

functional groups. TPO analysis of a selection of chars showed that chemical 

modification increased recalcitrance indices of oak and greenhouse waste biochars 

however: while recalcitrance indices for GH 400°C, oak 450°C and oak 650°C 

biochars were 0.47, 0.50 and 0.52 respectively, KOH-treated greenhouse waste and 

oak biochars ranged from 0.52–0.55; similarly, H2O2-treated biochars were between 

0.47–0.56, lowest in GH 400°C. Figure 6.5(b) showed an example TPO plot for 

KOH-treated oak biochars. 

 

 

6.3 Influence of chemical treatment on char ammonia / 
ammonium sorption  

6.3.1 Ammonia / ammonium sorption by treated hydrochar and biochars 

The nitrogen contents of the untreated chars are presented in Annex Table A4 and 

ranged from 4.3–23.8 mg N g-1 char, highest in the greenhouse waste hydrochar. 

The N contents of the treated chars decreased with the exception of H2SO4 and 

KOH treated biochars, equivalent to 5.4–5.9 and 6.3–7.0 mg N g-1 respectively. This 

reduction was possibly due to modification disrupting N-containing compounds in 

the biomass thus increasing N release while the relative increase in N content for 

the few chars was speculated to be primarily due to loss of carbon. There was an 

increase in sample weights of post-ammonia sorption chars while carbon contents 

decreased in all cases, likely due to sorption of moisture by the chars. This was 

expected since moisture is known to enhance ammonia sorption (Chou et al. 2006; 

Le Leuch and Bandosz 2007). The ammonia sorption capacities of the treated chars  
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Figure 6.2 ATR-FTIR spectra of treated chars showing no substantial differences in functional groups. 
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OAK 450 

 

CA-KOH OAK 450 

  

 
OAK 650 CA-KOH OAK 650 

  

OAK 650-MgCl2 
 

OAK 650-FeCl3 

Figure 6.3 SEM imaging (1000-2000x magnification) of a selection of oak biochars showing 

similarities in char morphology before and after chemical treatment. CA-KOH refers to chemical 

activation of chars using KOH. 

(vi) 

(iii) (iv) 

(v) 

(ii) (i) 
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Spectrum 22 

Element Wt% 
Wt.% 
Sigma 

C 76.11 0.24 
O 16.08 0.21 
Mg 5.95 0.05 
Si 0.09 0.01 
P 0.13 0.02 
S 0.09 0.01 
Cl 0.38 0.02 
Ca 0.94 0.03 
Cu 0.23 0.07 
Yb 0.01 0.14 

Total: 100.00  

 

_____ OAK 650 

_____ OAK 650-H3PO4 

_____ OAK 650-KOH 

_____ OAK 650-H2SO4 

Figure 6.4 SEM/EDS imaging of magnesium-treated oak 650°C. 

(a) 
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shown in Figure 6.6 and 6.7 showed that treatment with KOH increased ammonia 

sorption in oak 250°C and GH 250°C and 400°C. For the oak biochars, acid 

treatment appeared more influential, resulting in a two- to three-fold increase in 

ammonia sorption by acid-treated oak 450°C and some increase in H3PO4-treated 

oak 650°C. Comparatively, chemical treatment had a greater impact on oak 

biochars compared to oak hydrochar. 

Conversely, ammonium sorption following char modification yielded variable results 

as shown in Figure 6.6; ammonium sorption capacities were evaluated at 450 mg 

NH4
+ L-1 to investigate their potential for ammonium recovery from a representative 

concentration range encountered in real-case conditions (Cai et al. 2013). In 

general, modification of the chars resulted in a reduction in ammonium sorption 

capacity, particularly for H2O2 and KOH treatment. Some studies have noted that 

the presence of cationic (metal) species enhance ammonium sorption so this was 

tested for both ammonia and ammonium sorption. Figure 6.7(b) revealed that Mg 

incorporation had negligible effect on char ammonia sorption and a detrimental 

Figure 6.5 (a) Solid-state direct-excitation 13C NMR analysis of various treated OAK 

650 biochars showing similarities in aromatic functional groups; (b) TGA-

Temperature-Programmed Oxidation (TPO) plot for KOH-treated chars. 

(b) 
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effect on char ammonium sorption (Figure 6.8) but in the presence of coexisting 

ions, Mg-treated chars outperformed their untreated counterparts (Table 6.4). 

Preliminary sorption tests done with Mg-treated oak and greenhouse waste biomass 

in pure ammonium solutions were similar to untreated oak 650°C and GH 600°C 

biochars. These results were not included here as sorption tests were done at initial 

concentrations of about 1000 mg NH4
+ L-1 whereas values reported in this section 

were obtained following sorption tests at about 450 mg NH4
+ L-1 . 

As observed in untreated chars, ammonium release from treated chars were low 

following desorption tests. For instance, KOH-treated oak 450 and 650°C 

respectively released 8.5 and 9.7 mg g-1; H2O2-treated oak 450 and oak 650°C 

released 9.4 and 6.7 mg g-1, respectively. As blank sorption tests performed 

alongside char sorption tests showed negligible ammonium losses during sorption 

tests, it is speculated that ammonium release from chars was low either due to 

strong interactions between ammonium and chars or due to the low extractant 

concentrations (0.01 M KCl or 0.01 M CaCl2) used as aforementioned.  

6.3.2 Possible mechanisms for ammonia sorption by treated chars 

Mechanisms for ammonia sorption involve interactions at Brønsted and/or Lewis 

acid sites; in the former case, protonation of ammonia occurs as it dissociates in 

water or via acid-base neutralization reactions with carbonyl and phenolic OH- 

groups present on adsorbents to form NH4-complexes (Corre et al. 2013; Le Leuch 

and Bandosz 2007; Long et al. 2008; Petit and Bandosz 2009; Steiner et al. 2010; 

Taghizadeh-Toosi et al. 2012a). Acid treatment generally showed the greatest 

potential for increasing biochar ammonia and ammonium sorption capacities, 

particularly for oak 450°C resulting from acid-catalysed hydrolysis of polymeric units 

in lignocellulosic materials and labile carbon in biochars lead to ketone formation 

after H3PO4 treatment (Lin et al. 2012; Marsh and Rodríguez-Reinoso 2006). 

Additionally, the formation of ammonium complexes with H3PO4 may have occurred 

as observed by Oya and Iu (2002) whose extensive studies confirmed the presence 

of NH4H2PO4 and/or (NH4)2HPO4 depending on the H3PO4 loading ratio employed. 

Substantial variability in ammonium sorption by all H3PO4-treated chars was 

observed in this study however (Figure 6.8), possibly due to uneven distribution of 

reagent onto chars. H2SO4 treatment had variable effects on char ammonia and 

ammonium sorption capacities: for oak 450°C, increases in both ammonia and 

ammonium sorption capacity were observed while no substantial increase in 

ammonium sorption was observed in oak 250°C and oak 650°C sorption relative to 

their untreated counterparts. Ammonia sorption decreased in oak 250°C but 
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marginally increased in oak 650. The increase in ammonia sorption of H2SO4-

treated biochars was in agreement with Petit et al. (2010) who showed that sulphur-

containing groups may be as influential as oxygen functional groups for ammonia 

sorption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Ammonia sorption capacities of various treated chars relative to untreated chars 

showing: (a) marginal increase in treated oak hydrochars; (b) considerable improvements 

in treated oak 450°C biochars; (c) variable effects for treated oak 650°C biochars. 
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Similar increases in ammonia sorption have also been reported by Chou et al. (2006) 

and Ritz et al. (2011). Such increases likely resulted from the formation of 

recoverable ammonium sulphate salts on adsorbent sites possibly following similar 

Figure 6.7 Ammonia sorption by treated chars: (a) Increases in greenhouse waste 

char ammonia sorption; (b) variable effects following Mg treatment of oak and 

greenhouse waste biochars (OAK 450-Mg and OAK 650-Mg) and biomass (OAK-Mg 

and GH-Mg). All KOH treatments here involved surface activation only. 
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reactions to those outlined in Chou et al. (2006). It is also likely that increasing 

H2SO4 concentration up to a certain point could enhance ammonia sorption capacity 

based on findings of Chou et al. (2006). H2O2 treatment also has variable effects on 

char ammonium and ammonia sorption capacities; a marked increase to the 

ammonia sorption by H2O2-treated oak 250°C and oak 450°C is evident. H2O2 

modification done by Gómez-Serrano et al. (1994) resulted in an increase in 

hydroxyl and carbonyl groups with increasing treatment time. This suggested that 

increases to ammonia sorption capacity by H2O2-treated chars might have occurred 

due to interactions between ammonia and OH or CO groups.  

All oak chars experienced a reduction in ammonium sorption by KOH- and H2O2-

treated chars (Figure 6.8). regardless of substantial increases in char CEC. Huff et 

al. (2016) similarly noted that while H2O2 treatment increased CEC, methylene blue 

adsorption capacity decreased, which emphasises that CEC may not be a suitable 

predictor of char sorption capacity. This might possibly be because ion exchange 

was not the dominant mechanism for char ammonium sorption, based on 

ammonium sorption kinetics which generally followed pseudo-second order kinetic 

model (Table 6.3), suggestive of chemisorption reactions. Conversely, in the 

presence of coexisting ions, a 6-fold increase in ammonium sorption by H2O2-

treated oak 450°C is observed while that of H2O2-treated oak 650°C decreases 

relative to untreated oak 450°C and 650°C respectively (Table 6.4). This is contrary 

to expectations since increases to ammonium sorption by H2O2–treated chars are 

anticipated when there is less competition between ammonium, other protonated 

species and metals for adsorption sites (Wang et al. 2015b). Compared to other 

treatments, both low and high temperature biochars responded better to H3PO4 

treatment with regard to ammonia sorption, with greater effects in oak 450°C, with 

about 6.8% to 20.5% ammonia removal efficiency. Such an increase was still lower 

than untreated and treated oak hydrochars however, with 43% and 57% ammonia 

removal efficiencies respectively. Optimization of the chemical treatment processes 

may yield greater increases. 
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Figure 6.8 Variable effects of surface and chemical activation on the char ammonium sorption capacities of (a) oak 250°C hydrochar; (b) oak 

450°C biochar; (c) oak 650°C biochar; (d) GH 400°C biochar. Error bars not included in GH samples because single analysis done only. 
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Table 6.3 Adsorption kinetics model parameters 

 Pseudo-second order   
First order 

R2 

Intra-particle 
Diffusion 

R2 
Char qe exp 

(mg g-1) 

qe cal 

(mg g-1) 

k2 

(min g mg-1) 
R2  

OAK 450-KOH -5.97 -5.2 0.0003 0.166  0.003 0.830 

OAK 650-KOH 14.10 12.3 -0.0004 0.976  0.673 0.640 

GH 400-KOH 17.70 16.4 -0.0003 0.933  0.306 0.014 

OAK 450-H2O2 14.90 13.8 -0.0006 0.999  0.965 0.297 

OAK 650-H2O2 8.50 7.1 0.0004 0.117  0.144 0.114 

GH 400-H2O2 25.32 26.5 0.0005 0.707  0.026 0.110 

OAK 450-Fe(NO3)3 -6.30 
 

5.1 0.0005 0.841  0.215 0.045 

OAK 450-FeCl3 8.90 8.4 -0.0010 0.955  0.345 0.033 

OAK 650-FeCl3 5.20 4.5 -0.0009 0.956  0.509 0.889 

qe exp and qe cal refer to amount of NH4
+ adsorbed by chars obtained from experimental data and from 

plots respectively. For Pseudo-second order model, parameters obtained from plot of t/qt versus t. 

The Pseudo-first order model gave consistently low R2 values and was therefore excluded. 

 

 

Table 6.4 The effect of co-existing ions on char ammonium sorption capacity 

Char 

NH4
+ equilibrium 

concentration (Ce) 

mg L-1 

NH4
+ adsorbed 

(Qe) mg g-1 

%  NH4
+ 

adsorbed Kd 

 

OAK 250 

 

536.5±27.5 

 

24.5 

 

4.4 

 

0.046 

OAK 450 554.7±20.9 6.3 1.1 0.011 

OAK 650 544.6±3.1 16.4 2.9 0.030 

GH 250 544.9±3.8 16.1 2.9 0.030 

GH 400 534.5±19.9 26.5 4.7 0.050 

GH 600 533.5±20.8 27.6 4.9 0.052 

OAK 450-H2O2 524.6±12.1 36.4 6.5 0.069 

OAK 650-H2O2 549.9±12.9 11.1 2.0 0.020 

OAK (a.r.)-Mg 600 °C 498.4±29.9 62.6 11.2 0.126 

GH (a.r.)-Mg 600 °C 485.6±15.8 75.4 13.4 0.155 

Synthetic wastewater concentration (mg L-1): NH4
+: 561.0±5.4; Mg2+: 28.6±5.3; Ca2+: 

150.2±0.6; Na+: 318.7±14.3; K+: 513.5±6.0; SO4
2-: 27.5±0.5; NO2

-: 46.4±0.5; PO4
3-: 

67.4±4.2; NO3
-: 889.1±7.3. 
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6.3.2 Recoverable nitrogen  

Figure 6.9 shows the proportion of ammonium recovered for selected treated chars, 

amounting to a little under half of the total adsorbed ammonium. 0.01 M KCl-

extractable ammonium suggests that some ammonium may be readily available for 

plants when treated chars are in contact with soil water although specific pot trials 

are required to confirm this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9 Similarities in amounts of 0.01 M KCl-extractable ammonium from 

some treated chars: (a) oak 450°C; (b) oak 650°C; (c) GH 400°C. Columns 

without error bars are single analyses only. 
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6.4 Influence of chemical treatment on char phosphate sorption 

The phosphate sorption capacities of biochar derived from traditionally used 

biomass (oak) and agricultural waste (paprika waste) with comparable carbon 

contents (>40%) were evaluated following activation with various chemical agents to 

understand the effect of these treatments on biochar phosphate recovery.  

 

6.4.1 Chemical activation with magnesium  

Figure 6.10 shows that biochars treated with magnesium salts adsorbed the highest 

phosphate, with Mg-OAK 650 adsorbing more phosphate than Mg-oak 450°C. Mg 

treatment of oak biochar resulted in much greater phosphate sorption, particularly 

smaller particle size (850 µm) biochars (Figure 6.11). To identify whether this was 

due to differences in biochar properties or to temperature, the phosphate removal 

efficiencies of oak 650°C pyrolyzed at 400ºC and 600ºC were compared. Phosphate 

sorption was found to be lower in the former suggesting that temperatures >400°C 

are required for developing adequate phosphate adsorbents. SEM/EDS of oak 

650°C following Mg treatment at 600ºC confirmed the presence of Mg (Figure 6.12) 

while no visible differences were observed in oak 450ºC after 400°C Mg treatment  

(data not included). Some Mg2+ was leached into the phosphate solution during the 

test, as evidenced by the slightly lower count number and from ion chromatography 

data (data not included). As there was a marked increase to phosphate sorption 

observed for 600°C Mg treatment, this temperature was used for Mg-treatment of 

unpyrolyzed oak and greenhouse waste. Both Mg-treated biomass samples showed 

even greater phosphate sorption compared to their Mg-treated biochar counterparts 

and compared favourably with adsorbents from previous studies (Table 6.5). Thus 

in-situ magnesium modification is more reasonable than biochar post-treatment in 

terms of phosphate sorption and cost, as a single-step modification and pyrolysis 

process is involved which reduces energy requirements.  

Following desorption tests, 8.9 mg g-1 phosphate was released from Mg-treated oak 

biomass, but was undetected in the case of greenhouse waste biomass. Only a 

small portion of phosphate was recoverable by 0.01 M KCl as shown in Figure 6.11, 

regardless of the particle size of oak biochar treated with magnesium. Further 

investigations are required to better understand why phosphate release was low, as 

this impacts its potential for use as a soil fertilizer, or for repeated use in wastewater. 

Alternatively, the incorporation of post-sorption Mg-oak 650°C biochars in composts 

shows potential for minimising nitrogen losses that arise during the composting 

process. For instance, Wong et al. (2017) recommended the addition of  
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Figure 6.11 Effect of biochar particle size on sorption of phosphate: (a) oak 650°C; (b) oak 450°C 

where suffixes 1, 2 and 3 refer to Mg treatments performed thus; (1):  biochars ( ≤4.75 mm) left to 

stand for  2 h in Mg solution, filtered and pyrolysed; (2): biochars (≤ 4.75 mm) left to stand for 2 h in Mg 

solution, heated overnight at 90°C,  filtered and pyrolysed; (3): biochars (≤850 µm) treated as in (2). 
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Figure 6.10 Effect of various chemical treatments on char phosphate sorption. 
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Mg and P salts to composts to facilitate struvite precipitation to minimise such 

nitrogen losses, but also noted some of the challenges associated with this option, 

such as the insolubility or pH of some of the magnesium salts or oxides suggested. 

EDS imaging shows that some Mg is still present in the post-sorption Mg-treated 

oak 650°C biochar (Figure 6.12). Although the ammonium sorption capacity of the 

post-PO4 sorption Mg-oak 650°C biochar was not tested in this study, Mg-treated 

oak 650°C (i.e., pre-PO4
3- sorption) demonstrated good NH4

+ sorption ability from 

batch sorption tests using synthetic wastewater (Table 6.5). For both in-situ and 

post-treatment magnesium modification processes, coexisting ions were not found 

to have an adverse effect on phosphate sorption: from a synthetic solution 

containing 450 mg NH4
+ L-1 and 67 mg PO4

3- L-1, oak chips pyrolysed following Mg 

treatment (in-situ modification) recovered 66% and 72% phosphate at pH 7 and 8.5 

respectively. This is expected, given that pH ranges >7 are typically used for struvite 

precipitation. Similarly, high phosphate removal efficiencies were maintained by in-

situ modified greenhouse waste and oak biomass feedstocks in synthetic 

wastewater (Table 6.5). Other studies (Yao 2013; Zhang et al. 2009) similarly found 

that PO4
3- sorption was not greatly affected by coexisting ions.  

Over time, it is possible that Mg-treated chars may react with atmospheric CO2 

however; soil incubation tests with oak 650°C-Mg revealed that this char behaved 

differently from other chars in that negative CO2 evolution occurred, suggestive of 

CO2 sorption (Annex Fig. A4(a)). Inorganic nitrogen retention did not appear to be 

adversely affected however (Annex Fig. A4(b,c)). The dynamics of CO2 interactions 

with Mg-treated char and the impact of such reactions on nutrient sorption and 

treated char storage therefore require further investigation.  
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Spectrum 15 

Element Wt.% Wt% Sigma 

C 74.14 0.23 
O 20.90 0.23 
Mg 1.72 0.03 
Al 0.05 0.01 
Si 0.09 0.01 
P 1.38 0.03 
Cl 0.21 0.02 
K 0.10 0.02 
Ca 1.27 0.03 
Mo 0.14 0.04 

Total: 100.00  

Figure 6.12 (a) SEM image of Mg-treated oak 650°C biochar following phosphate sorption; 

(b) EDS imaging confirming presence of Mg and P species on oak 650°C biochar 

(a) 

(b) 
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Table 6.5 Phosphate removal efficiencies of some adsorbents 

 Present study 

 
PO4

3- sorption 
(Co = 67 mg PO4

3- L-1)  

aPO4
3- sorption 

(synthetic 
wastewater) 

Adsorbent %  mg g-1  %  mg g-1 

 

Oak 450 °C biochar 

 

1.5 

 

1.0 2.2 

 

7.2 

 

14.8 0.6 

Oak 650 °C biochar 1 0.7 0.1 6.1 4.1 0.7 

GHW 400 °C biochar 0 -2.2 0.2 0 -4.9 

Oak-Mg 600 °C biochar (in-situ) 95.9 64.6 0.2 >95b >64 

GH-Mg 600 °C biochar (in-situ) 96.5  65.1 1.3 >95b >64 

 

 Previous studies 

 % Phosphate 

sorption 

(Co = 61 mg L-1) 

 

Reference 

 

La oak sawdust  biochar (500 ºC) 

 

~33 

 

    Wang et al. (2015a) 

Fe (II) sugarcane bagasse fibre 97c     Carvalho et al. (2011) 

MgO sugarcane bagasse biochar >35     Zhang et al. (2012) 

MgO sugar beet tailing biochar >65     Zhang et al. (2012) 

Digested sugar beet tailing biochar >70     Yao (2013) 

Fe-Mn binary oxide >95     Zhang et al. (2009) 

Fe (II) activated carbon ~63 – 96c     Wang et al. (2012) 

aSynthetic wastewater concentrations (mg L-1): SO4
2-: 27.5 0.5; NO2

-: 46.4 0.5; PO4
3-: 67.4 4.2; 

NO3
-: 889.1 7.3; Mg2+: 28.6 5.3; Ca2+: 150.2 0.6; Na+: 318.7 14.3; K+: 513.5 6.0; NH4

+: 561.0

5.4; bno PO4
3- detected in final solution after 24 h so total PO4

3- sorption assumed although Mg2+ 

present in synthetic wastewater may have contributed to PO4
3- removal; cInitial PO4

3- concentrations of 

11-46 mg L -1. Oak and GH biomass treated with Mg. 

 

6.4.2 Iron treatment 

Both ferric nitrate and chloride treatments performed on oak biochars resulted in 

only modest increases to phosphate removal efficiency despite the fact that up to 33 

mg g-1 iron was present in the biochars treated with ferric nitrate. Yao (2013) found 

that surface modification of biochars with iron nitrate decreased their phosphate 

sorption capacity from pure phosphate solutions (pH 7) by about 51%. Conversely, 

Krishnan and Haridas (2008) and Nguyen et al. (2013) found that adsorbent 

treatment with iron nitrate and chloride salts increased phosphate sorption from 
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pure phosphate solutions (pH 3). Three hypotheses may be drawn from these 

studies: Fe-treated adsorbents may perform best in phosphate solutions with low pH; 

in other words, phosphate solution pH is more important than the nature of Fe salt 

used for adsorbent modification. This is understandable given that anion exchange 

capacity is pH-dependent (Biswas et al. 2007; Zhang et al. 2009). While Wang et al. 

(2011) demonstrated that adsorbent treatment with Fe2+ salt increased phosphate 

sorption capacity to a greater extent than with Fe3+ salt, maximum phosphate 

sorption was achieved at the lowest pH conditions for both Fe2+ and Fe3+ treated 

adsorbents. Secondly, Fe treatment process influences adsorbent phosphate 

sorption. Nguyen et al. (2014) recommended the base treatment (saponification) or 

oxidation of adsorbent materials prior to metal loading as evidence suggests that 

such cationization processes increase the effectiveness of metal deposition onto 

adsorbents, thus enhancing their phosphate removal efficiency. In one study 

however (Carvalho et al. 2011), although adsorbent etherification prior to Fe2+-

treatment increased adsorbent phosphate sorption, a comparable result was 

obtained by non-etherified Fe2+-treated adsorbent, with 97% and 93% removal 

efficiencies respectively. Finally, it is reasonable for biomass or biochar composition 

to influence the effectiveness of Fe treatment. From the few studies highlighted 

earlier however, differences between high efficiency Fe-treated phosphate 

adsorbents (coir pith, sugarcane bagasse, orange waste, activated carbon) and low 

efficiency Fe-treated adsorbents (anaerobically digested sugar beet tailing biochar, 

oak biochar) were not readily discernible. Yao (2013) however suggested that ferric 

hydroxide precipitates might have coated biochar MgO (periclase), the latter likely 

being responsible for phosphate sorption.  

Overall, these findings suggest that surface activation of biochars with or without a 

pre-treatment step is sufficient for increasing adsorbent phosphate removal 

efficiency. In this study, as further pyrolysis yielded only marginal increases to 

phosphate sorption, this additional heat treatment step was considered 

uneconomical. Furthermore, based on earlier highlighted studies, pH appeared to 

influence Fe-loaded adsorbent phosphate removal efficiency to a larger extent than 

adsorbent composition or treatment route. In other words, an additional pyrolysis 

step following biochar treatment in Fe solutions may not be necessary.  

 

6.4.3 KOH treatment 

SA-KOH treatment increased the phosphate sorption capacity of GH 400°C, and 

previous studies (Samadi 2006; Sarkhot et al. 2013) have suggested ligand 
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exchange between OH- and PO4
3-. Further studies are required however, as FTIR 

did not reveal a substantial increase in hydroxyl groups present in GHW 400 and 

most other chars in this study. Furthermore, preliminary phosphate sorption tests on 

SA-KOH treated oak biochars showed some increase in their removal efficiencies, 

but were comparable to CA-KOH treated oak biochars. Low phosphate sorption 

following similar CA-KOH treatment was also observed elsewhere (Park et al. 2015).  

6.4.4 H2O2 treatment 

H2O2-treated OAK 450 and GHW 400 did not increase phosphate sorption possibly 

due to a reduction in magnesium and other inorganic elements as earlier suggested, 

but further analysis is required to confirm this. This lack of increase following acid 

treatment has also been observed elsewhere (Park et al. 2015), attributed to the 

formation of greater negative functional groups on biochar surfaces after acid 

treatment (Wang et al. 2015b). 

 

6.4.5 Char phosphate adsorption kinetics 

Phosphate adsorption kinetics of some surface and chemically treated biochars as 

shown in Table 6.6.  qe values obtained from adsorption kinetics experiments were 

generally lower than batch adsorption qe values possibly due to some sample loss 

while taking aliquots periodically.  Experimental qe values were fitted to the pseudo-

first order, pseudo-second order and intra-particle diffusion models with parameters 

determined from models’ plots. Both pseudo-first order and intra-particle diffusion 

models gave very poor fits for most biochars compared to the linearized pseudo-

second order model. R2 values in the lattermost were higher and there was better 

agreement between experimental and calculated qe values although some K2 values 

were negative possibly due to some phosphate release during the sorption tests. 

The pseudo-second order model has also been found to be a better fit for describing 

char dye sorption (Mahmoud et al. 2012). Intercept values were high in the intra-

particle diffusion model and the regression plot not passing through the origin 

suggested that intra-particle diffusion was not a rate-controlling step (Cheung et al. 

2007).  
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Table 6.6 Adsorption kinetics model parameters 

 Pseudo-second order   
Pseudo-

First 

order R2 

Intra-

particle 

Diffusion 

R2 

Char qe exp 

(mg g-1) 

qe cal 

(mg g-1) 

k2 

(min g mg-1) 
R2  

OAK 450-KOH 17.2 16.1 -0.0008 0.994  0.486 0.037 

OAK 650-KOH 25.9 21.2 0.0198 0.984  0.212 0.228 

GH 400-KOH 21.5 21.2 0.0198 0.984  0.151 0.026 

OAK 450-Fe(NO3)3 -15.0 -14.4 -0.0028 0.833  0.000 0.137 

OAK 650-Fe(NO3)3 19.4 17.8 -0.0003 0.974  0.788 0.006 

GH 400-Fe(NO3)3 16.1 14.5 -0.0013 0.854  0.330 0.332 

OAK 450-MgCl2 16.9 15.6 -0.0004 0.974  0.863 0.059 

OAK 650-MgCl2 101.8 108.7 0.0001 0.991  0.342 0.856 

OAK 450-FeCl3 16.6 16.0 -0.0009 0.991  0.475 0.293 

OAK 650-FeCl3 25.0 23.4 -0.0004 0.990  0.950 0.065 

qe exp and qe cal refer to amount of PO4
3- adsorbed by chars obtained from experimental data and from plots 

respectively. In Pseudo-second order model, parameters obtained from plot of t/qt versus t. The pseudo-first order 
model generally had higher R2 values than the first order model but in some cases was substantially higher, e.g., 
GH 400-KOH = 0.672; OAK 650-Mg = 0.912; OAK 450-FeCl3 = 0.607. 

 

6.5 Conclusions  

The potential for increasing char ammonia, ammonium, and phosphate sorption 

capacities following chemical activation of biochars (post-treatment) and biomass 

(in-situ treatment) with metal salts, KOH and acids was investigated. Of the 

chemical treatments performed in this study, phosphoric acid showed the greatest 

potential for increasing ammonia and ammonium sorption capacities in both low and 

high temperature biochars. For phosphate recovery, while most chemical activation 

methods resulted in marginal increases, biochars and biomass feedstocks treated 

with magnesium salts increased phosphate sorption capacity the most. Compared 

to their untreated biochars, Mg-treatment of oak and greenhouse waste biomass 

feedstocks resulted in an increase in phosphate sorption capacity from 3.6% to 70.3% 

and from 2.1% to 66.4%, respectively. With further process optimization, chemical 

treatment of oak biochars could serve as templates for similar chemical treatments 

with waste-derived chars. These findings demonstrate that char surface functionality 

is more influential than surface area in terms of ammonia, ammonium, and 

phosphate recovery, thus modification processes aimed at increasing surface 

functionality are suitable methods for upgrading char sorption capacities for such 

nutrients. 
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CHAPTER 7 
 

Conclusions, Recommendations and Future Work 

 

This thesis set out to address three main research questions: Can hydrochars and 

biochars produced from herbaceous and treated municipal waste be used for 

nutrient recovery? Which char properties may serve as predictors of char nutrient 

(nitrogen and phosphorus) sorption capacity from wastewater? How do hydrochars 

and biochars influence inorganic nitrogen and carbon dioxide evolution in a 

relatively high pH soil, and are these effects comparable to widely used char 

stability measurement tools? It is anticipated that this study will contribute to 

growing hydrochar and biochar research, in terms of addressing wastewater quality 

issues and challenges associated with char commercial competitiveness. To 

address these research questions, an evaluation of key char physicochemical 

properties was performed, followed by modification of some of these properties 

using well-known carbon modification methods at mild activation conditions. 

Hydrochars and biochars produced at 250–650°C were derived from predominantly 

herbaceous waste and treated municipal waste feedstocks, namely pepper waste 

from a greenhouse; air-dried presscake from the anaerobic digestion of municipal 

organic waste; the cellulose-rich fraction of steam-autoclaved municipal waste; 

greenwaste, and pig manure. These were compared with relatively low-contaminant, 

bark-free holm oak wood hydrochars and biochars produced by a traditional 

pyrolysis kiln reactor and an auger reactor. A small set of 600–750°C gasification 

chars derived from greenhouse waste were also evaluated to gain better 

understanding of the relationships between feedstock properties and processing 

conditions on char properties. 

 

Based on a comparison of key char physicochemical properties, pyrolysis reactor 

type appeared to influence mainly char surface physical properties likely due to re-

deposition of condensable gases onto char pores within the auger screw conveyor 

pyrolysis reactor. Other char properties were comparable across all reactor types 

however: as expected, processing temperature accounted for most of the 

differencesin char functional groups; the degradation of lignocellulose structures 

were mostly similar in all feedstocks, while char inorganic contents were mostly 

feedstock-dependent. Short-term laboratory incubation tests designed to quantify 
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the carbon dioxide emissions and inorganic nitrogen (NH4-N and NO3-N)  

mineralisation of a pH 8 Mediterranean soil amended with hydrochars and biochars 

derived from oak, greenhouse waste and presscake were in agreement with 

elemental analysis and recalcitrance data, in that the chars tested had comparable 

effects on carbon dioxide and inorganic nitrogen mineralisation in soil although 

hydrochars, notably greenhouse waste hydrochar, generated higher amounts of 

ammonium and carbon dioxide compared to the 400°C biochars tested, showing 

higher mineralization rates in the former. These findings suggest that various 

pyrolysis reactors can be expected to yield chars with fairly similar chemical 

properties although the removal of condensable volatiles during pyrolysis may 

enhance char surface areas. 

 

The relationships between char physicochemical properties and char behaviour in 

nutrient-rich environments as well as a high pH soil were explored as a means of 

predicting char suitability for nutrient recovery. Key physicochemical properties 

evaluated included surface area, CEC, ash and mineral content. From evaluations 

of char ammonium/ammonia and phosphate sorption capacities from pure solutions 

in batch sorption tests, it was found that ammonium and phosphate nutrient sorption 

was mostly independent of char surface areas and more a function of acidic oxygen 

functional groups and specific minerals (magnesium and calcium), respectively. This 

was demonstrated in the case of oak hydrochars, whose acidic nature favoured the 

sorption of ammonia compared to oak biochars. This implied that for chars deficient 

in such species, the incorporation of acidic oxygenated species and mineral matter 

via chemical treatment could enhance their ammonium/ammonia and phosphate 

sorption capacities. Conversely, greenhouse waste hydrochars were also acidic in 

nature behaved differently in the presence of ammonia gas possibly due to its 

higher nitrogen content. Overall however, there were similarities between all char 

sorption capacities, as ammonium and phosphate removal capacities ranged from 

105.8–146.4 mg g-1 and 0–30 mg g-1, equivalent to about 15% and 7%, respectively 

of which only a fraction was 0.01 M KCl-extractable.  

 

As nutrient recovery from wastewater using untreated chars were generally low, 

various chemical treatments were evaluated to enhance char potential for nitrogen 

and phosphorus recovery based on frequently used char chemical modification 

methods. Furthermore, the effects of treatment route (i.e., biomass pre-treatment 

versus biochar post-treatment on char ammonium/ammonia and phosphate sorption 

were evaluated. Findings showed that char surface functionality was more influential 
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than surface area for both ammonium, ammonia, and phosphate recovery, and 

modification processes aimed at improving the former enhanced char ammonia and 

ammonium sorption to some extent. For instance, while untreated biochars 

adsorbed 0-4.4% phosphate-, the treatment of oak and greenhouse waste increased 

phosphate adsorption from 3.6% to 70.3% in oak biochars, and from 2.1% to 66.4% 

in greenhouse waste biochars. 

A number of studies on modifying chars for environmental management involve 

additional pyrolysis/calcination steps but as shown in this study, this is not always 

required. For instance, compared to surface activation of chars with iron nitrate, 

further pyrolysis of oak 450°C and oak 650°C treated with FeCl3 did not increase 

both ammonium and phosphate sorption capacity sufficiently to justify increase in 

cost and energy. Similarly, simple surface activation processes with KOH which did 

not involve further high heat treatment yielded substantial improvements in char 

performance in a previous study. In this study, similar KOH surface activation of oak 

and greenhouse waste hydrochar resulted in increases to ammonia sorption 

particularly in the latter char. These findings suggest that other treatment 

parameters such as activating agent dosage or contact time are factors to consider 

for optimization before resorting to (high) temperature treatment, from a cost and 

energy perspective. Furthermore, based on this study, surface area does not 

influence char ammonia / ammonium and phosphate as much as char functional 

groups. In fact, it was expected that the high surface area of chars such as oak 

650°C would respond better to chemical treatment in the sense that more sites 

would be available for the various species introduced during chemical treatment, yet 

this was not the case. 

 

Potential applications for nitrogen-loaded chars may involve cascading-use systems, 

wherein hydrochars and modified biochars can be used to minimize ammonia 

emissions from animal housing and effluents. Likewise, phosphate-loaded chars 

could be applied directly to soil or incorporated in composts to minimise nitrogen 

losses during composting. However, the feasibility of using treated and untreated 

hydrochars and biochars as litter, animal bedding material, or soil / compost 

enhancers requires in depth investigation as to the effects of chemically treated 

adsorbents on livestock health and soil microbial activity. The ammonia batch set-up 

used in this study may be regarded as a useful tool for screening potential ammonia 

adsorbents, and benefits could also arise from comparison of adsorbent 

performance in dynamic test conditions, or in batch set-ups where humidity and 

other factors are better controlled. Overall, findings from this study suggest that it is 
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possible to enhance waste-derived char capacity for ammonia/ammonium and 

phosphate sorption by treatment of biochars or biochar precursors (raw feedstock) 

with inorganic chemicals, albeit with more process optimization. 

Limitations of this study and recommendations for future work 

1. The small-scale composting study would have benefitted from further 

analysis of the chars recovered from the composted mixtures to determine 

the organic and inorganic nitrogen species present in the chars, as this may 

have explained some of the differences between batch ammonia sorption 

tests and composting tests. Co-composting and soil incubation trials with 

more treated chars using the same soil/organic materials would have 

provided further comprehensive understanding of the impact of char 

treatment. Furthermore, plant growth trials preferably over long (> 1 year) 

timeframes including analyses of the effect of treated chars on nutrient 

retention and on soil microbial communities to provide more information on 

the potential benefits and shortcomings of treated chars for large-scale 

application. 

2. Optimization of the chemical treatments which showed the greatest potential 

for nitrogen recovery was not possible due to time constraints. Furthermore, 

the full range of chemical treatments was limited to oak samples due to its 

relatively low contaminant concentrations. Realistically, oak is not 

sustainable and its low contaminant level does not provide a comprehensive 

outlook of the impact of chemical treatment on char nutrient sorption. 

Furthermore, the enhancement of waste-based feedstocks/chars is more 

sustainable from a waste management perspective. 

3. Char ammonium and phosphate sorption capacities were evaluated at pH 7 

as this is a typical range found in wastewater, and to ensure that findings 

from the study would be comparable with previous studies in the literature. 

Further tests recommended therefore include:   

(i) Ammonium and phosphate sorption tests at more pH ranges, 

particularly as previous studies have shown that for phosphate 

sorption, lower pH ranges of about 3 are most suitable for Fe-

loaded adsorbents while higher pH ranges >8 are optimal for 

struvite recovery. 

(ii) Sorption kinetics tests with more frequent sampling intervals, 

particularly at the onset of adsorption tests as some studies 
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show that ammonium and phosphate sorption may occur rapidly 

within the first 30 min. 

(iii)  Ammonium and phosphate sorption tests over a wider range of 

concentrations to provide more accurate information on potential 

sorption model fits. 

4. Repeat desorption cycles to determine ammonium and phosphate release 

rates would be useful to investigate as this would give a clearer idea of the 

potential agronomical benefits of such treated chars, since the number of 

times chars can be used for nitrogen and phosphorus recovery has impact 

on char economic viability, which ultimately facilitates sound decision-

making on the economic viability and sustainability of the various treated 

chars. Further research is also required to better understand why adsorbed 

nutrient release was minimal for most biochars, as this determines biochars’ 

potential for reuse or for soil amendment.  

5. Experimental design: (i) while some studies have shown that experimental 

batch and column nutrient sorption systems are comparable, this study 

would have benefitted from a comparison of both setups particularly for best-

performing chars using real wastewater; (ii) ammonia sorption tests using 

ammonia gas of known concentration would have validated the method used 

in this study, which involved the generation of ammonia from reagent 

reactions which, although carefully prepared, could still be vulnerable to 

operator errors. Furthermore, ammonia sorption setups which account for 

changes in humidity would provide more information on char sorption 

performance at different moisture conditions. 

6. Results from chemical treatment of oak biochars could serve as templates 

for similar chemical treatments with waste-derived biochars. For instance, 

results from sorption tests with chemically treated chars shows that surface 

activation with KOH and with some acids is suitable for enhancing low 

temperature (250–450°C) char ammonia sorption capacity, while acid 

treatment may be more suitable for chars produced at higher temperatures. 

This is presumably due to the introduction of hydroxyl and other acidic 

species. Blending low and high temperature chars with waste matter rich in 

hydroxyl and mineral matter such as magnesium would be more sustainable 

for nitrogen and phosphorus recovery.  
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Annex A: Char physico-chemical properties as a function of processing conditions and feedstock properties 
Table A1. Biochar and hydrochar properties and possible influencing factors 

Property Property Property Property 
 
Carbon structure 

 
Condensed, predominantly aromatic C. 

 
Amorphous, mostly aliphatic C lignin-type molecules. 

Cao and Harris (2010); Sun et al. (2011); 
Wiedner et al. (2013a). 

 
Elemental content 

 
C content tends to increase with pyrolysis temperature 
while oxygen content decreases with pyrolysis 
temperature, thus surface hydrophilicity decreases 
with temperature as well.With temperature, O/C ratios 
tend to decrease with pyrolysis temperature while N 
content varies.  

 
C content tends to increase with temperature and 
residence time while O content decreases. O/C ratio 
therefore decreases with temperature. Temperature 
appears to have a slightly more pronounced effect on 
elemental content compared to residence time however. N 
content varies. 

 
Benavente et al. (2015); Cao and Harris (2010); 
Chun et al. (2004); Danso-Boateng et al. (2015); 
Fang et al. (2015); Gronwald et al. (2015); 
Hoekman et al. (2011); Kalderis et al. (2014); 
Parshetti et al. (2014); Tian et al. (2016); Wiedner et 
al. (2013a); Xie et al. (2014); Zhao et al. (2013b). 

 
Mineral content 

 
P, Ca, Mg tend to increase with pyrolysis temperature 

 
Varies with feedstock and temperature: 
Decrease: d,gRelative to original biomass, Na, Ca, Mg, Al, 
S, P, Si, Fe, K and Mn decreased with increasing 
temperature up to a certain point, esome decrease in K, 
Ca, Fe while most other minerals were unaffected. 
No effect: cTemperature did not appear to influence Ca, 
Mg, Al although minerals leached into aqueous phase; eno 
effect on Mg, Zn, Al, Li, B. Increase: with temperature,  dP 
increased but no definite trend for Ca, Mg, K though an 
increase observed in some cases; fZn and eNa increased. 

 

aCao and Harris (2010); 
bDanso-Boateng et al. (2015);  
cFang et al. (2015);  
dGronwald et al. (2015); 
eParshetti et al. (2014);  
fKalderis et al. (2014); 
gReza et al. (2013). 

 
Surface area    (BET, N2) 

 
Tend to be higher than hydrochar surface areas 
although exceptions exist: h2.1–6.7 m2 g-1 (higher in 
poultry litter than wheat straw biochar); positive 
correlation found between surface area and ash 
content; aranged from 2.7–13.2 m2 g-1. 

 
Temperature, time and feedstock dependent; increases 
with temperature but to a certain point:h4.0–8.8 m2 g-1 

(higher in poultry litter than sewage solid hydrochar), and 
positive correlation found between surface area and ash 
content. Surface areas were highest at 200 °C in 
studiesc,d,e,f  but a general decrease > 300 °Cc. A six-fold 
decrease (6.1 to 1.0 m2 g-1) as temperature increased from 
250 °C to 350 °Ce. fIncrease in surface area with time. 

 

aCao and Harris (2010);  
cFang et al. (2015);  
dGronwald et al. (2015);  
eParshetti et al. (2014); 
fKalderis et al. (2014);  
hSun et al. (2011) 

 
Ash content 

 
Tends to increase with temperature due to 
concentration of mineral matter relative to other 
species. 

 
Varies with temperature and feedstock:  
Decrease: I,ngenerally decreased with temperature but also 
dependent on feedstock: relative to raw biomass, ash 
content decreased in olive mill waste and lignocelluloses 
but increased in organic wastes -artichoke, orange juice 
waste, sewage sludge. Increase: b,d,f, j with temperature 
and residence time; j,nash increased with temperature but 
lower compared to raw feedstock  between 180-210 ºC 
compared to 230 ºC in all hydrochars.  

 

iBenavente et al. (2015);  
aCao and Harris (2010);  
bDanso-Boateng et al. (2015); dGronwald et al. 
(2015);  
fKalderis et al. (2014);  
nSmith et al. (2016) 
jWiedner et al. (2013a) 
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Table A1. Biochar and hydrochar properties and possible influencing factors 

Property Property Property Property 
 
Volatile matter (VM) 

 
Decreases with increasing temperature; woody 
biomass may have higher VM than agric.residues. 

 
Tends to decrease with process temperature. 

 
Kalderis et al. (2014); Xie et al. (2014) 

 
pH 

 
Biochars mostly alkaline and are temperature- and 
feedstock-dependenta,k,m: 
apH of raw feedstock was alkaline but became acidic 
after 200 °C pyrolysis. Beyond 200 °C, pH rose and 
peaked at about 350 °C suggesting formation of acidic 
species due to cellulose and hemicellulose 
degradation at 200 °C, but other studiesk report 
cellulose degradation at higher temperature (400 ºC). 

 
Hydrochars are mostly acidic and effect of  processing 
temperature varies: 
No effect: jpH did not change between 180-230 ºC and 
was comparable between biochar types studied. 
Decrease: ftemperature and time dependent but former 
had a more pronounced effect. 
 

 

aCao and Harris (2010);  
kGaskin et al. (2008);  
fKalderis et al. (2014);  
jWiedner et al. (2013a);  
lXie et al. (2014);  
mZhao et al. (2013a) 

 
PAH, PCB, 
PCDD 

 
3-,4- and 5-ring PAH but generally low total PAH 
content in pyrolysis and gasification chars. 

Likely temperature and feedstock dependent: 
Single total PAH content increase with temperature; all 
hydrochars in the study had low levels of 6-ring PAH as 
temperature increased, but variations in the increase in 
levels of 2-, 4- and 5-rings were observed for hydrochars 
from different feedstocks. PCDD contents low in the 
hydrochars likely due to the low temperature (<250–300 
ºC) involved. At 300 ºC, presence of chlorine and organic 
C led to PCDD formation. 

 
Wiedner et al. (2013a; 2013b) 

Yield Generally dependent on feedstock properties e.g., 
high lignin results in higher char yields; decreases with 
temperature. 

 
Decrease with process temperature and residence time. 
 

Ahmad et al. (2014a); Danso-Boateng et al. 
(2015); Hoekman et al. (2011); Sohi et al. 
(2009); Wiedner et al. (2013a) 

Char HHV (MJ kg-1) Likely increase with temperature due to increase in 5-
HMF. 

Increase with temperature and residence time. 
 

Danso-Boateng et al. (2015);; Kalderis et al. 
(2014); Stemman et al. (2013). 

Key processing conditions:  
Benavente et al. (2015): Fresh olive mill, artichoke and orange juice waste, 200 g wet-weight, 200–225 °C, 2–24 h. 
Cao and Harris (2010): Dairy manure biochars, 100–500 °C 4h, 25 °C min-1. 
Chun et al. (2004): Wheat residue biochars 300–700 °C, 6 h followed by acid washing to demineralise chars. 
Danso-Boateng et al. (2015): Sewage sludge hydrochar 160–200 °C, 1-4 h. 
Eibisch et al. (2015): Corn digestate, miscanthus, woodchips of poplar and willow: biochars: 750 °C, 45 min; hydrochars: 200 °C and 250 °C, 6h. 
Fang et al. (2015): Bagasse, hickory and peanut hull hydrochars, 13–18 wt.% ratio, 200–300 °C, 6 h rinsed with tap and deionised water for 1 h 10 min to remove water-soluble volatile matter. 
Gronwald et al. (2015): Maize digestate, miscanthus and woodchip hydrochars, 200 °C and 250 °C, 10 wt.%, 6 h. 
Hoekman et al. (2011): Pine and fir (Tahoe Mix) hydrochar, 216–295 °C, 5–60 min. 
Kalderis et al. (2014):  Rice husk; washed with water and dried. 1:5 biomass/water ratio, pre-heated to 85 °C prior to HTC at 200 and 300 °C for 2 –16 h, filtered, washed with acetone followed by water and air-dried for 24 h. 
Parshetti et al. (2014):  Foodwaste; 250 °C and 350 °C, 25 wt.% ratio, 20 min followed by rapid quenching, hydrochars rinsed with deionised water. 
Reza et al. (2013): Corn stover, miscanthus, rice hull, switch grass hydrochars produced at 200, 230 and 260 °C, 5 min. 1:5 biomass/water ratio, reactor purged with nitrogen, Reactor vessel rapidly cooled to room temperature 
with ice-water bath. Chars filtered and oven dried. 
Smith et al. (2016). Willow, miscanthus, oak, greenhouse waste, presscake from AD, sewage sludge, food waste, municipal solid waste, microalgae, macro algae; 250 °C, 1 h, 10 wt.% unrinsed. 
Sun et al. (2011):  Poultry litter and swine solid hydrochars 250 °C, 20 h followed by acetone washing to remove tarry matter; poultry litter and wheat straw biochar 400  °C, 2–7 h followed by acid washing to remove minerals. 
Wiedner et al. (2013a): Poplar wood, olive residue and wheat straw hydrochar 180–230 ºC, about 30 wt.%, 8 h; Zhao et al. (2013b): 500 °C, 4 h. 
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Annex B: Adsorption models 

S/N Model Expression Plot Definition of key terms and their implications References 

A. Typical equilibrium sorption models 

 
1 

 
Langmuir 
for concave isotherms 

 

(A2.1) Q = Qmax
LC

1+ LC
  

          or 

        qe = 
QobCe

1+bCe
 

      
 
 
 
Linearised: 

(A2.2) 
Ce

qe

= 
1

bQo
+ 

Ce

Qo
  

        or 

          
Ce

q
e

=  
1

kaq
m

+ 
Ce

q
m

 

 

(A2.3) 
1

qe
=  (

1

kaqm
)

1

Ce
+ 

1

qm
 

 

(A2.4) q
e 

= q
m

- (
1

ka
)

qe

Ce
 

 

(A2.5) 
qe

Ce
= kaq

m
 - kaq

e
 

 

(A2.6) Qi= Qmax, i 1+ ∑ LjCj
q
j=1

L1Ci  

 
 
 

 
 
 
 
 
 
 
 

Ce

qe

  vs Ce 

 
 
 

1

qe

 vs 
1

Ce
 

 

qe vs  
qe

Ce
 

 
qe

Ce
 vs qe 

 

n.a 

 
2 degrees of freedom; 
Qmax is saturated monolayer adsorption (mg g-1); b is the 
ratio of adsorption and desorption rate constants, and is 
related to the binding energy of adsorption, higher values 
suggest that desorption will be more challenging; at very low 
concentrations, QmaxL becomes KD (distribution coefficient) 
so that qe = KDCe thus obeying Henry’s Law. 
 
Ce is equilibrium concentration (mg L-1); qe is amount of 
adsorbed solute in adsorbent at equilibrium (mg g-1); Qo is 
maximum monolayer coverage capacity (mg g-1). Linear 
versions of Equations (4.6) and (4.7) are more popular 
because their error distribution is better (Kumar and 
Sivanesan, 2007). 
 
 
 
 
 
 
 
 
 
 
Here, Qmax is unaffected by competing species while Lj 
(affinity constant) is. 

 
Ayoob and Gupta (2008); 
Foo and Hameed (2010); 
Limousin et al. (2007); 
Maurya and Mittal (2006); 
Kumar and Sivanesan 
(2007); Prasad and 
Srivastava (2009); Sun et 
al. (2015); Wang et al. 
(2012) 

 
2 

 
Freundlich 
for concave (L and H) 
isotherms 

 

(A2.7) qe = KF
Ce

1

n  

 
(A2.8) Linearised:  

         log qe = log KF + 
1

n
 log Ce 

 
 

 
 
 
 

Log qe vs log Ce 

 
2 degrees of freedom; 
n is adsorption intensity or surface heterogeneity: high n is 
said to be indicative of sample heterogeneity;  
1/n is slope, and 0 < 1/n < 1  
 
 
 

 
Ayoob and Gupta 
(2008);Foo and Hameed, 
(2010); Limousin et al. 
(2007); Lin et al. (2009); 
Maurya and Mittal (2006); 
Wang et al. (2012) 

Table A2 Classical equilibrium and kinetic adsorption models 
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S/N Model Expression Plot Definition of key terms and their implications References 

 
(A2.9) Modified Freundlich: 

         Q = FiCi(∑ ai,jCi,j
m
j=1 )

ni-1
 

 

 
 
i, j refer to competing species. 

 
3 

 
Langmuir-Freundlich 

 

(A2.10) Qe = 
KLF qmax Ce

n

1 + KLF Ce
n  

 
 

 
KLF is the Langmuir-Freundlich affinity parameter (Ln mg−n); n 
is the Freundlich linearity constant (dimensionless); qmax is 
maximum adsorbent adsorption capacity (mg g-1); Ce is the 
equilibrium concentration (mg L-1). 

 
Ye et al. (2015) 

 
4 
 

 
Linear with intercept for 
C curve 

 
(A2.11) Q = KdC + m 
 
 

 
n.a 

 
2 degrees of freedom; 
Applicable at high concentrations 

 
Limousin et al. (2007); 
Maurya and Mittal (2006) 

 
5 

 
Sips 

(A2.12) qe = 
KsCe

β
S

1+asCe
β
S
 

 
(A2.13) Linearised: 

          βsln(Ce) = -ln
Ks

qe

 + ln(as) 

 
 
 
 

ln
Ks

qe

 vs ln(Ce) 

3 degrees of freedom; 
Ks is Sips isotherm model constant (L g-1); as is Sips 
isotherm model constant (L mg-1). 
 
 
βs is the Sips isotherm model exponent. 

 
Foo and Hameed (2010); 
Maurya and Mittal (2006) 

 
6 

 
Redlich-Peterson 

 

(A2.14) qe = 
kgCe

1+aRCe
g 

 
(A2.15) Linearised: 

         In(KR
Ce

qe

-1) =gln(Ce)+In(aR) 

 
 
 
 

In(KR
Ce

qe

-1)vs 

ln(Ce) 

 
3 degrees of freedom; 
g is Redlich-Peterson isotherm exponent;  aR is Redlich-
Peterson isotherm constant (mg-1); KR is Redlich-Peterson 
isotherm constant (L mg-1). 
 

 
Foo and Hameed (2010); 
Kumar and Sivanesan 
(2007); Mane et al. (2007); 
Maurya and Mittal (2006)  

 
7 

 
Dubinin-Radushkevich 

 

(A2.16) q
e
= q

m
exp(-Bɛ

2
)            

  
2 degrees of freedom 

 
Maurya and Mittal (2006) 

 
B. Typical kinetic sorption  models 
 

 
1 

 
First order 

    

 (A2.17) 
dQ

dt
=

θ

ρ
 K1C-K-1Q 

 
 

 
n.a 

 
Θ is volumetric water content; ρ is bulk density. 
 

 
Limousin et al. (2007) 
 
 
 
Namasivayam and 
Ranganathan (1994) 
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  t
2.303

1
k

e
logqq

e
qlog 

S/N Model Expression Plot Definition of key terms and their implications References 

(A2.18): 

 
2 

 
Pseudo-first-order 

 

(A2.19) 
dqt

dt
 = kf(q

e
-q

t
) 

 
(A2.20) Linearised:  

           ln(q
e
-q

t
)=lnq

e
-k1t  

 

 

ln(q
e
-q

t
) vs t 

 
qt is amount of adsorbed solute in adsorbent at equilibrium 
(mg g-1); kf is the pseudo-first-order rate constant (min-1). 
 

 
Ahmad et al. (2014b); 
Mane et al. (2007) 

 
3 

 
(Ho’s) Pseudo-second-
order 

 

(A2.21) 
dqt

dt
 = ks(q

e
-q

t
)

2
 

 

(A2.22) 
t

qt

 = 
1

k2qe
2
+ 

1

qe

t 

 
 
 
 

t

qe

 vs t  

 

 
Ks is the pseudo-second-order rate constant (g mg-1 min-1) 
 

 
Ahmad et al. (2014b); 
Mane et al. (2007); Prasad 
and Srivastava (2009) 

 
4 

 
Elovich 

 

(A2.23) 
dqt

dt
 = α exp (-β𝑞𝑡) 

 
(A2.24) Linearised: 

          q
t
=

1

β
lnαβ + 

1

β
ln t 

 

 
 
 
 

qt vs ln t 

 
α is initial sorption rate (mg g-1 min-1); β is sorption constant 
(g mg-1) 

 
Ahmad et al. (2014b); 
Prasad and Srivastava 
(2009) 

 
5 

 
External diffusion 
model 

                                         (A2.25)  ln
Ct

Co
= -

kf
a

V
t 

 

ln
Ct

Co
 vs t 

 
a is total interfacial particle area (cm2); V is total solution 
volume (L); kf is external mass transfer coefficient 
 

 
Prasad and Srivastava 
(2009) 

n.a denotes unavailable data. 
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Annex C: Ammonium and phosphate linear regression plots 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 Ammonium sorption isotherm models: (a) oak chars fitted to linearised Langmuir isotherm; (b) Oak chars fitted to linearised 

Freundlich isotherms; (c) Greenhouse waste chars fitted to linearized Langmuir isotherms; (d) Greenhouse waste chars fitted to 

linearized Freundlich isotherms. Initial NH4
+ concentrations ≈ 360, 450, 600, 800 and 1000 mg L-1. 
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Figure A2 Ammonium sorption isotherm models for oak chars fitted to (a) linearised Langmuir; (b) linearised 

Freundlich isotherm models. Initial NH4
+ concentrations ≈ 40, 360, 450, 600, 800 and 1000 mg L-1. 
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Figure A3 Phosphate sorption isotherm models: (a) oak chars fitted to linearized Langmuir isotherm; (b) Oak chars fitted to linearized Freundlich 

isotherms; (c) Greenhouse waste chars fitted to linearized Langmuir isotherms; (d) Greenhouse waste chars fitted to linearized Freundlich 

isotherms. Initial PO4
3- concentrations 61–700 mg L-1 for Oak 450, 650 and GH 400 and between 170–700 mg L-1 for remaining chars. 
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NH4
+: H

2
BO

3

-

     +    H+Cl-   →    NH4Cl   +   H3BO3 

 

0.01 mol HCl 1 Eq HCl 

   L 1 mol 

 
 

If titre value = 9.8 mL = 0.0098 L 

 

Then nHCl = CV = 0.01  
Eq

L
  × 0.0098 L = 0.00098 Eq HCl 

 

Since stoichiometric equation shows that 1 mol of NH4
+ reacts with 1 mol of H+,  

 

0.00098 Eq of NH4
+ will react with 0.000098 Eq of H+ 

 

Thus C NH4 =  
0.000098 Eq

0.020 L
 = 0.0049 

Eq

L
  NH4

+ 

 

 

 

0.0049 Eq 0.025 L 

L 2.5 g 

 
CEC =  
 
 

This CEC calculation is based on Eq. (3.9):  CEC (mEq /100 g) =   
(V1 -V2 )  × N

Va 
  × 

VL

w 
 × 100  

  

C = ? 

n = ? 

v = 20 mL = 0.02 L 

C = 0.01 M 

n = ? 

v = titre volume (L) 

= 0.01 Eq L-1 

= 0.000049 
Eq

g
   = 0.049 

mEq

g
   

 0.049 
m Eq

g
  × 100 = 4.9 mEq /100 g 

Annex D: CEC Calculations 
 

Equation of reaction: NH4
+: H

2
BO

3

-

  +   HCl  →   NH4Cl   +   H3BO3 

 

CEC Method 2 
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There were differences in titrant concentration and volume of sample leachate used in 

CEC Methods 2 and 3; in Method 2, 20 mL aliquots of the final leachates were distilled 

and titrated against 0.01 M HCl while the entire 200 mL of the final leachate was distilled 

and titrated against 0.1 M HCl in Method 3. To account for these differences, slight 

variations to the CEC calculations were made.  

 

CEC Method 3 

 Eq. (3.10) as outlined in Section 3.4.5.3 is as follows: 

CEC (meq/100 g) =  
(V1 -V2 ) L × N 

Eq 

L
 × 100 × 1000

Mass of sample g
  

 

where V1 and V2 = titre values for sample and blank resp. (L); N = normality of HCl 

based on stoichiometric equation = 0.1 Eq L-1. Thus, given a sample titre of 64.3 

mL, 

 

CEC =  
(0.0643 - 0.0005) L × 0.1 

Eq 

L
 × 100 × 1000

10 g
 = 63.8 mEq /100 g 

 

 

Theoretical NH4
+ uptake based on CEC (cmolc kg-1 or mEq/100 g) 

Theoretical (maximum) NH4
+ uptake capacity (mg g-1) calculated from CEC (cmolc kg-1): 

 

 

 

 

 

Thus 1 cmolc kg-1
 = 0.18 mg NH4

+ per g, so that char having a CEC of 88.3 cmolc kg-1
 

should be able to retain 88.3 × 0.18 = 15.89 mg NH4
+ per gram of char.  

Alternatively, 1 cmolc kg-1 = 0.14 mg NH4
+-N as frequently used in the literature, which is 

equivalent to 12.36 mg NH4
+ per gram of char. 

 

1  × 10
-2

 molc 
1 mol NH4

+ 18 g NH4
+ 1 kg 1000 mg 

kg 1 molc NH4
+ 1 mol NH4

+ 1000 g 1 g 
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Table A3. Titre values obtained from CEC-2 (displacement after washing method) 

Sample Titre 1 (mL) Titre 2 (mL) Titre 3 (mL) 

ECN Cellmat 400 °C, 60min 9.8 9.9 - 

ECN Cellmat 600 °C, 30min 30.5 18.7 15.1 

ECN Cellmat  600 °C, 60min, 1% O2 26.3 22.7 - 

ECN Cellmat 600 °C, 60min 13.3 8.9 - 

ECN Presscake 400 °C, 60min 9.8 13.4 - 

ECN Presscake 600 °C, 30min 19.3 22.2 - 

ECN Presscake 600 °C, 60min, 1% O2 29.0 24.3 - 

ECN Presscake 600 °C, 60min 4.7 6.0 - 

ECN Presscake 700 °C, 60min 10.0 7.0 - 

ECN Greenhouse waste 400 °C, 60min 67.3 75.4 73.0 

ECN Greenhouse waste 600 °C, 60min, 0% O2 46.8 - - 

ECN Oak 400 °C, 60min 32.3 54.6 - 

ECN Oak  600 °C, 60min 34.6 46.0 - 

Proininso Oak 450 °C 23.3 20.9 - 

Proininso Oak 650 °C 14.4 15.2 - 

Proininso 650 °C in vermi compost 28.9 23.9 - 

ECN Greenwaste 400 °C, 60min 31.8 11.0 - 

ECN Greenwaste 600 °C, 60min, 0% O2 14.2 12.0 10.3 

Dashed lines indicate unavailable data. 

 

 

Table A4. Titre values obtained from CEC-3 (direct displacement method) 

Sample Titre (mL) 

ECN Presscake 600 °C, 30 mins, 0% O2  64.3 

ECN Cellmat 400 °C, 60 mins, 0% O2  29.7 

ECN Oak 400 °C, 60 mins, 0% O2  99.0 

ECN Presscake 600 °C, 60 mins, 0% O2  35.1 

ECN Press cake 400 °C, 60 mins, 0% O2  31.7 

ECN Presscake 700 °C, 60 mins, 0% O2  47.6 

Proinsino Oak  650 °C 74.0 

ECN Cellmat 600 °C, 60mins, 1% O2  122.7 

ECN Cellmat 600 °C, 30 mins, 0% O2  45.9 
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Balanced equation:  2NH
4

+

: H
2
BO

3

-

  +   H2SO4  →   (NH4)2SO4 +  2H3BO3
 

 

 
 

 

If sample titre = 10 mL, then nH2SO4 = 0.04 
mol

L
  × 0.010 L = 0.0004 mol 

As 2 mol NH4
+ reacts with 1 mol H+, 2 × 0.0004 mol NH4

+ will react with 0.0004 mol H+  

so that CNH4 = 
n

v
=  

0.0008

0.050
 = 0.016 mol L-1 = 288 mg NH4

+ L-1 × 
17

18
 = 272 mg NH3 L-1 

Alternatively, since 1 mg NH4-N per L = 1 mg NH3-N per L, 

 

C NH3-N = 0.016 
mol

L
 × 14

g

mol
 × 1000 

mg

g
 = 224 mg NH3-N L-1 

 

To confirm:  

1 M H2SO4 = 2 Eq H2SO4 L-1 so that 0.04 M = 0.08 Eq L-1 

 

NH3-N (mg L-1) = 
(0.010 - 0)L

0.050 L
×

0.08 Eq
H+

L
×

14 g

1 Eq
NH3-N

×
1000 mg

1 g
 = 224 mg NH3-N L-1 

 

 

 

C = 0.04 M 
n = ? 
v = Titre value (mL) 

C = ? 
n = ? 
v = 50 mL 

Annex E: Composting calculations 

Equation of reaction during titration of NH4
+ analyte with H2SO4: 

 

N mole balance: a = 2c 

H mole balance: 6a + 2b = 8c + 3d 

BO3
- mole balance: a = d 

SO4
2- mole balance: b = 

aNH
4

+

: H
2
BO

3

-

  +   bH2SO4  →   c(NH4)2SO4 +   dH3BO3
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Annex F: NH3 / NH4
+ Additional Information 

 

Table A5 Char nitrogen content before and after NH3 batch sorption test 

Char 
amg NH3 

generated 

Initial N  

content (mg g-1) 

N content after 

sorption (mg g-1) 

 

Untreated chars 

bOAK (a.r.) 43 1.4±0.2 12.5±0.4 

OAK 250 °C  43 4.3±0.2 19.7±1.6 

OAK 250 °C 450 4.3±0.2 27.8±0.1 

OAK 250 °C 1000 4.3±0.2 36.3±0.1 

OAK 250 °C 1500 4.3±0.2 40.8±3.1 

OAK 450 °C  43 5.3±0.9 7.7±1.1 

OAK 650 °C  43 5.5±1.0 6.1±0.1 

bGH (a.r.) 43 11.3±1.6 11.7±1.8 

GH 250 °C 43 28.3±0.8 23.2±0.6 

GH 400 °C 43 11.3±1.7 12.4±0.4 

GH 600 °C 43 9.4±0.5 7.5±3.1 

 

 

   

(c) 

Figure A4 (a) Comparison of cumulative CO2 evolution during soil incubation tests with 

various untreated chars and Mg-treated Oak 650 °C; (b) peak NH4
+-N by 12 days of 

incubation with OAK 650-Mg while NO3
--N contents similar for all treatments. 
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Table A5 Char nitrogen content before and after NH3 batch sorption test 

Char 
amg NH3 

generated 

Initial N  

content (mg g-1) 

N content after 

sorption (mg g-1) 

Acid-treated chars 

OAK 250-H3PO4 43 3.4±0.3 17.99±0.02 

OAK 450-H3PO4 43 4.3±0.7 11.5±0.3 

OAK 650-H3PO4 43 5.2±0.6 8.4±1.9 

OAK 250-H2SO4 43 3.9±0.3 16.7±0.5 

OAK 450-H2SO4 43 5.4±0.8 12.2±0.7 

OAK 650-H2SO4 43 5.9±0.1 7c 

GH 400-H2SO4 43 12.9±1.6 20c 

OAK 250-H2O2 43 3.3±0.3 23.7±1.4 

OAK 450-H2O2 43 4.6±0.8 12.9±1.0 

OAK 650-H2O2 43 4.9±0.5 4.8±0.8 

    

KOH-treated chars 

OAK 250-KOH 43 3.7±0.6 24.2±0.7 

OAK 450-KOH 43 6.3±1.0 11.0±0.3 

OAK 650-KOH 43 7.0±0.3 7.8±0.6 

GH 250-KOH 43 23.0±1.1 37c 

GH 400-KOH 43 16.1±1.6 31.71±0.01 

    

Mg-treated chars    

OAK 450-Mg 400 °C 43 11.8±5.0 10.9±0.4 

OAK 650-Mg 600 °C 43 7.5±3.9 10.1±0.6 

dOAK (a.r.)-Mg 600 °C 43 3.3±0.4 6c 

dGH (a.r.)-Mg 600 °C 43 8.7±0.3 10c 

    

Solvent-extracted hydrochars 

OAK 250-C7H8 43 4.2±0.3 20.5±0.3 

GH 250-C7H8 43 17.7±0.9 26.1±3.9 

OAK 250-NaOH 43 7.5±0.8 12.4±0.6 

GH 250-NaOH 43 15.6±2.3 22.1±0.5 

aBased on mg NH3 generated according to Equation (3.26); N contents reported as 
average of duplicate analysis ± standard deviation; bunprocessed oak and 
greenhouse waste biomass respectively; csingle analysis only; dunprocessed oak 
and greenhouse waste biomass pre-treated with Mg and pyrolysed at 600 °C. 
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Annex G: Safety Data Sheet of commercial compost 
 

As outlined in Section 3.12.1, composting experiments were performed using a 60% 

commercial-brand multipurpose compost  (≤ 4.75 mm) and 40% shredded savoy cabbage 

(≤ 9.50 mm) mixture. Information on the commercial-brand compost is provided in Table A6. 

 

Table A6 Key properties of commercial-brand multipurpose compost  

 

1 

 

Product company and identification 

 Product name:  

Company:  

Address:  

 

Peat-free growing media 

Bord na Mona Horticulture Limited. 

Bord na Mona, Main Street,  

Newbridge, County Kildare, Ireland. 

 

2 

 

Composition / Ingredient information 

 

  

Composted and stabilised coniferous tree bark 

fines plus added nutrients 

 

100% 

 

3 

 

Physical and chemical characteristics 

 

 Appearance:  

 

 

Properties: 

Brown soil-like bark material with an earthy 

smell. 

 

Composted coniferous bark fines. 

Insoluble in water, but will retain 

up to 70% green weight 

moisture.  

Bulk density 300–500 g L-1. 

 

4 

 

Stability and reactivity 

 

 Stability: 

Conditions to avoid: 

 

Materials to avoid: 

 

Hazardous decomposition products: 

Stable under normal ambient conditions. 

Extreme temperatures, sources of ignition. 

None specifically  

  Produces smoke if ignited. 

 

5 

 

Recommended use 

 

 Non-hazardous.For use in general gardening 

and horticultural applications. 

 

 

Created: 10 January 2008. Full details available online: http://www.diy.com/departments/verve-multipurpose-

compost-peat-free-12l/236990_BQ.prd 

 

 


