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Abstract 

Visible light communication (VLC) systems have become promising candidates 

to complement conventional radio frequency (RF) systems due to the 

increasingly saturated RF band and the potentially high data rates that can be 

achieved by VLC systems. Over the last decade, significant research effort has 

been directed towards the development of VLC systems due to their numerous 

advantages over RF systems, such as the availability of simple transmitters 

(light emitting diodes, LEDs) and receivers (silicon photo detectors), better 

security at the physical layer, improved energy efficiency due to the dual 

functionally (i.e., illumination and communication) and hundreds of THz of 

license-free bandwidth. However, there are several challenges facing VLC 

systems to achieve high data rates (multi gigabits per second). These 

challenges include the low modulation bandwidth of the LEDs, co-channel 

interference (CCI), inter symbol interference (ISI) due to multipath propagation 

and the light unit (i.e., VLC transmitter) should be ‘‘ON’’ all the time to ensure 

continuous communication.  

       This thesis investigates a number of techniques to overcome these 

challenges to design a robust high-speed indoor VLC system with full mobility. 

A RGB laser diode (LD) is proposed for communication as well as illumination. 

The main goal of using LD is to enable the VLC system to achieve multi-

gigabits data rates when employing a simple modulation technique (such as on-

off keying (OOK)), thus adding simplicity to the VLC system. A delay adaptation 

technique (DAT) is proposed to reduce the delay spread and enable the system 

to operate at higher data rates (10 Gb/s in our case). The thesis proposes 

employing angle diversity receivers (ADR) and imaging diversity receivers to 

mitigate the impact of ISI, CCI, reduce the delay spread (increase the channel 

bandwidth) and increase the signal to noise ratio (SNR) when the VLC system 
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operates at high data rates (5 Gb/s and 10 Gb/s) under the effects of mobility 

and multipath dispersion. 

       Moreover, the work introduces and designs three new VLC systems, an 

ADR relay assisted LD-VLC (ADRR-LD), an imaging relay assisted LD-VLC 

(IMGR-LD) and a select-the-best imaging relay assisted LD-VLC (SBIMGR-LD), 

which are modelled and their performance is compared at 10 Gb/s in two VLC 

room sizes (5m × 5m × 3m and 4m × 8m × 3m). As well as modelling in two 

different room scenarios: an empty room and a realistic environment were 

considered.  

       The work also introduces and designs a high-speed fully adaptive VLC 

system that employs beam steering and computer generated holograms 

(CGHs), which has the ability to achieve 20 Gb/s with full receiver mobility in a 

realistic indoor environment. Furthermore, a new high-speed fast adaptive VLC 

system based on a divide-and-conquer methodology is proposed and integrated 

with the system to reduce the time required to identify the optimum hologram. 

The new system has the ability to achieve 25 Gb/s in the worst case scenario. 

       This thesis also proposes four new infrared (IR) systems to support VLC 

systems when the light is totally turned off. In addition, it introduces the concept 

of a collaborative VLC/IR optical wireless (OW) system and investigates the 

impact of partial dimming on the VLC system performance. An adaptive rate 

technique (ART) is proposed to mitigate the impact of light dimming. Finally, an 

IROW system (cluster distributed with beam steering) is introduced to 

collaborate with a VLC system to maintain the target data rate in the case of 

partial dimming. 
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𝑃𝑆𝐸𝐶  Received powers from the second reflecting elements  

𝑃𝑠 Average transmitted optical power 

𝑃𝑠0 The power associated with logic 0 

𝑃𝑠1 The power associated with logic 1 

𝜓𝑐 Concentrator’s FOV (semi-angle) 

∅ Reception angle for any detector in the ADR 

𝑃𝑟 The total received optical power at the receiver 

𝑞 Electronic charge 
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𝑄 Gaussian function 

𝑅 Photodetector responsivity 

𝑅𝑑  Direct link distance between the receiver and the transmitter 

𝑅1 Distance between the reflective element 1 and the transmitter 

𝑅2 Distance between the receiver and the reflective element 1 

𝑅3  Distance between the receiver and the reflective element 2 

𝑅𝑒1 Position vector of the reflective element 1 

𝑅𝑒2 Position vector of the reflective element 2 

𝑅𝑟 Position vector of the receiver 

𝑅𝑡 Position vector of the transmitter 

𝜌1 Reflection coefficient of the first order reflective elements 

𝜌2 Reflection coefficient of the second order reflective elements 

𝜎𝑠ℎ𝑜𝑡 Background shot noise component 

𝜎𝑝𝑟𝑒𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 Preamplifier shot noise component 

𝜎𝑠𝑖𝑔𝑛𝑎𝑙 Signal noise  

𝑡 Absolute time 

𝑡𝑖 Time delay associated with the received optical power 𝑃𝑟𝑖 

𝑇𝑐(𝛿) Transmission factor of concentrator 

𝑇𝑃 Pulse width of bit 

𝑇𝑏 Duration of the bit 

𝑤𝑖 The weight of every branch/pixel 

𝑋𝑟 Distance between the receiver and the y-z wall 

𝑥(𝑡) Transmitted instantaneous optical power 

𝑌𝑟  Distance between the receiver x-z wall 
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1 Introduction  

Using light as a means of communication is not a new idea. In fact, optical 

wireless (OW) communication is more than three centuries old. Techniques 

such as ship flags, semaphore and fire beacons were the earliest stages of 

OW. The reflection of sunlight by mirrors is another early method of optical 

communication. A good example of such a system is the heliograph shown in 

Figure 1.1, in which mirror movement produces light flashes that can be used to 

send Morse code [1]. In the 19th century, this system was a very effective 

instrument for optical communication over a distance of 50 miles or more. The 

major uses of this device were in surveys, forest protection work and by the 

military. It was in use until 1935 [1]. 

   

 

 

 

 

 

Figure 1.1: The heliograpgh, (a) the British army version (Mance Mark V), (b) 

schematic structure and assembly [1].  

In 1880, Alexander Graham Bell and Sumner Trainer invented and developed 

the photophone, which is a light-based free space communication system. The 

device was used to transmit sound on a beam of light [2]. Figure 1.2 shows the 

photophone. The device was based on electronic detection, and the receiver 

(a) (b) 
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consists of a selenium crystal, which converts the optical signal into an 

electrical current. Bell’s photophone used the conductivity of selenium crystals, 

where the electrical conductivity depends on the intensity of the light it is 

exposed to [2]. The photophone has been recognised as the primogenitor of 

modern fibre optics that today transport over 80% of the world’s 

telecommunications traffic. Nowadays, optical communication systems exhibit 

much higher data rates with better quality of service (QoS) compared to the old 

methods [3]. 

 

 

 

 

 

Figure 1.2: The photophone, (a) transmitter, (b) receiver [2]. 

       Modern telecommunications has experienced exponential growth in 

applications and research over the past decades. Wired physical connections 

have been established to convey information between different devices. 

However, physical connections introduce difficulties in installation, re-wiring and 

maintenance. An alternative method that can achieve the same performance for 

such systems is wireless communication based on radio frequency (RF) 

transmission. The RF band is the basis of most currently used wireless 

communication systems. Unfortunately, the growth in demand for more 

frequencies, high data rate services, better QoS and lower cost components 

have reduced the available RF spectrum. These demands have forced 

researchers to find other options. Figure 1.3 shows the electromagnetic 

spectrum.  

(a) (b) 
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Figure 1.3: The electromagnetic spectrum. 

       Achieving very high data rates (multi gigabits per second) using the 

relatively narrow bandwidth of RF systems is challenging [4]. According to a 

GreenTouch research study, mobile Internet traffic over this decade (2010-

2020) is expected to increase by 150 times [5]. Given this expectation of 

dramatically growing demand for data rates, the quest is already underway for 

alternative spectrum bands beyond microwaves and millimetre waves (RF 

spectrum). Different technology candidates have entered the race to provide 

ultra-fast wireless communication systems for users, such as OW systems for 

indoor and outdoor use [6]-[8], ultra-wideband wireless system (UWB) [9], 60 

GHz band for local wireless multimedia access [10] and terahertz (THz), which 

has been studied as a new alternative in this race [11]-[14]. 

      Modern OW communication systems coincided with the invention of the first 

laser in 1960 [15]. However, this technology was not deployed until the 1990s 

when the transmitter and the receiver components became available at low cost 

[16]. OW communication systems include outdoor systems, such as free-space-

optical (FSO), ultra violet communication (UVC) and underwater 

communications (uFSO), while indoor systems are those such as infrared data 

association (IrDA), infrared optical wireless communication (IROW) and visible 

light communication (VLC) systems [3].  

       The term ‘visible light communication’ refers to the use of light waves in 

free-space propagation in the visible band as a transmission medium for 

10 nm 
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communication (see Figure 1.3). The visible signal is electromagnetic radiation 

whose wavelengths are located between those of IR and UV. Visible radiation 

has wavelengths between 380 nm and 780 nm [4].  

       Along with radio, the term wireless is also applicable to systems which 

utilise other regions of the electromagnetic spectrum, such as infrared. It has 

been more than three decades since OW systems were introduced [6]. OW 

offers a number of advantages over its radio frequency counterpart, such as 

abundance of unregulated bandwidth, no multipath fading and cost effective at 

rates near 100 Mb/s [4]. To an extent, RF and OW may be viewed as 

complementary rather than competitive media. For example, if a wireless LAN 

is required to cover a large area, where users can roam freely and remain 

connected to the network at all times, then radio is the only cost-effective 

medium which can achieve this. If, however, a wireless LAN is required to cover 

a more modest area, but deliver advanced high bandwidth multimedia network 

services such as video conferencing and video on demand, then OW is the only 

medium which truly has the bandwidth available to deliver this [3]. The 

comparison between the properties of RF and OW is shown in Table 1.1 

       So far, commercially available OW systems have not come close to 

delivering the high data rates which are potentially available from the OW 

spectrum, the reasons for this are more to do with the limited range, difficultly to 

operate outdoor, high power requirement and cost constraints rather than any 

fundamental limitations of the core technology [4]. 

      OW is a challenging medium and there are numerous considerations which 

must be taken into account when designing high speed indoor OW links. Non-

directed LOS and diffuse links incur a high optical path loss and must also 

contend with multipath propagation. Whilst multipath propagation does not 

result in multipath fading in indoor OW systems, since detector sizes are huge 

in comparison with the wavelength, it does give rise to inter symbol interference 
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(ISI), which is one of the primary impairments to achieving high speed 

communication [4]. In addition, OW links must be capable of operating in 

environments where intense ambient light levels exist, which degrades link 

performance in two ways. Firstly, the average power of the background 

radiation generates shot noise in the receiver, which is independent of the 

transmitted signal, and secondly, artificial sources of ambient light generate a 

periodic interference signal, which can contain harmonics into the MHz region 

for fluorescent lamps driven by electronic ballasts [6].  

                                    Table  1.1: Properties of RF and OW 

Property RF OW 

Bandwidth regulated Yes No 

Multipath fading? Yes No 

Multipath dispersion Yes Yes 

Dominant noise Other users Background light 

Average power proportional to ∫ |f(t)|2 𝑑𝑡 ∫ |f(t)| 𝑑𝑡 

 

1.1 Motivation and Research Objectives 

Significant research effort is being directed towards the development of VLC 

systems due to their numerous advantages over RF systems, such as: 

 The nature of light gives the VLC system immunity against interference 

caused by adjacent channels with the possibility of frequency reuse in 

different parts of the same building, which means abundant capacity. 

 The VLC system also offers better security at the physical layer.  

 The availability of simple front-end devices at low cost. 

 VLC helps realise energy efficient systems.   

 Hundreds of terahertz of license-free bandwidth. 

 Harmless for humans and other electronic devices. 

 Easy to integrate into the existing lighting infrastructure.  
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There are however several challenges hindering the development of VLC 

systems, and these challenges include: 

 The low modulation bandwidth of light emitting diodes (LEDs). 

 Multipath propagation, which may cause inter-symbol-interference (ISI). 

 Multiple transmitters, which may cause co-channel interference (CCI). 

The primary objectives of this work were to:  

1- Propose and evaluate new techniques to enhance the performance of 

VLC systems under the influence of multipath dispersion and mobility.  

2- Design and model indoor mobile VLC systems that operate at higher 

data rates (i.e., 5, 10, 20 Gb/s and beyond) in a realistic indoor 

environment.  

3- To investigate the benefits of using angle diversity receivers and imaging 

receivers in VLC system.  

4- To investigate the use of delay adaptation to increase the signal to noise 

ratio (SNR), 3 dB channel bandwidth and reduce the delay spread. 

5- To investigate the use of relay nodes in VLC systems to improve VLC 

links.  

6- To investigate additional adaptation methods that can improve the VLC 

system’s performance, such as beam steering and computer generated 

holograms.  

7- To investigate fast and efficient adaptation algorithms for VLC systems. 

8- To propose and evaluate new IROW systems to support VLC. 

9- To investigate the impact of partial dimming on VLC systems 

performance.     
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1.2 Research Contributions 

The author has: 

1- Designed, investigated and evaluated the use of RGB laser diodes (LD) 

for communication as well as illumination in VLC systems instead of light 

emitting diodes (LED). The main goal of using RGB-LD is to enable the 

VLC system to achieve multi-gigabit/s data rates when employing a 

simple modulation technique, such as on-off keying (OOK), thus adding 

simplicity to the VLC system. Based on the new VLC transmitter, the 

author has designed and evaluated different VLC systems: 

A. RGB-LD system in conjunction with three branch angle 

diversity receivers (ADR). 

B. RGB-LD system coupled with an imaging receiver. 

The author optimised the azimuth, elevation and filed of view (FOV) of 

each detector in the ADR to achieve the best SNR and to minimise the 

delay spread. He also introduced a custom imaging receiver with 50 

pixels (detectors). These detectors enable the system to reduce the 

impact of ISI and CCI. The reduction in the delay spread and 

improvement in 3 dB channel bandwidth and SNR enable the new 

systems to operate at a high bit rate of 5 Gb/s. 

2- Introduced a novel delay adaptation technique (DAT) for indoor VLC 

systems. The main goal was to reduce the impact of ISI and enhance the 

SNR, thus enabling the system to achieve mobility while operating at 

high bit rates of 5Gb/s and 10 Gb/s. Based on the DAT, the author has 

designed and evaluated different VLC systems:  

A. DAT LD-VLC system combined with seven branch ADR. 

B. DAT LD-VLC system coupled with an imaging receiver. 

The author has also evaluated the performance of both systems in a 

realistic indoor environment where physical partitions introduce 

shadowing and signal blockage, windows cause signal loss and 
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bookshelves, chairs and cabinets are present and cause additional 

reflections. 

3- Introduced novel mobile VLC systems that employ relay nodes, angle 

diversity and imaging receivers. The author has also designed and 

introduced two novel algorithms for relay node systems. In addition, he 

has proposed and evaluated different VLC systems:  

A. An ADR relay assisted LD-VLC (ADRR-LD). 

B. An imaging relay assisted LD-VLC (IMGR-LD). 

C. A select-the-best imaging relay assisted LD-VLC (SBIMGR-

LD). 

The author has also evaluated and compared the performance of the 

proposed systems at 10 Gb/s in two room sizes (5m × 5m × 3m and 4m 

× 8m × 3m). In addition, two different room scenarios were considered: 

an empty room and a realistic environment room.  

4- Proposed for the first time a VLC system that employs a beam steering 

technique and a new location estimation algorithm (LEA).  The LEA was 

used to estimate the receiver location so that part of the white light can 

be directed towards a desired target (receiver) using beam steering to 

improve the SNR and channel bandwidth. The increase in channel 

bandwidth and SNR were used to achieve a high data rate (20 Gb/s), 

where previous VLC systems used to operate at 5 and 10 Gb/s. The data 

rate achieved is a world record data rate with a single modulation format 

and without colour multiplexing. The system’s robustness against signal 

blockage and shadowing was also considered.  

5- Proposed and designed a fully adaptive high speed 25 Gb/s mobile VLC 

system that employs fast computer generated holograms (FCGHs) and 

DAT coupled with an ADR and an imaging receiver. The FCGHs were 

based on a divide-and-conquer (D&C) method. The new, fast and 

efficient fully adaptive VLC system improved the receiver SNR and 

reduced the time required to estimate the position of the VLC receiver. It 



Chapter One 

9 

 

was also able to adapt to environmental changes, providing a robust link 

against signal blockage and shadowing. It should be noted that the data 

rates achieved by the proposed system (i.e., 25 Gb/s for a stationary 

user and 22.2 Gb/s for a mobile user) are the highest data rates to date 

for an indoor VLC system with a simple modulation format (OOK) and 

without the use of relatively complex wavelength division multiplexing 

approaches. 

6- Proposed, designed and evaluated high data rate (1.25 Gb/s and 2.5 

Gb/s) backup communication systems. Four new IR systems (hybrid 

diffuse IR with wide field of view receiver, hybrid diffuse IR with imaging 

receiver, beam steering IR with imaging receiver and cluster distributed 

IR with imaging receiver) were introduced to support the VLC system 

when the light is totally turned off. 

7- Introduced and implemented the concept of a collaborative VLC/IROW 

system. The author has also investigated the impact of partial dimming 

on the VLC system performance and proposed an adaptive rate 

technique (ART) to mitigate the impact of light dimming. In addition, a 

new IROW system (cluster distributed with beam steering) has been 

proposed to collaborate with the VLC system to maintain the target data 

rate in the case of partial dimming.  

 

1.3 Publications 

The original contributions are supported by the following publications: 

Journals  

1. A. T. Hussein, and J.M.H. Elmirghani, “Mobile Multi-gigabit Visible Light 

Communication System in Realistic Indoor Environment,” Journal 

of Lightwave Technology, vol.33, no.15, pp.3293-3307, August 2015. 

[Best paper award, Carter prize, University of Leeds, 2016]. 
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2. A. T. Hussein, and J.M.H. Elmirghani, “10 Gbps Mobile Visible Light 

Communication System Employing Angle Diversity, Imaging Receivers 

and Relay Nodes,” Journal of Optical Communications and Networking, 

vol.7, issue 8, pp.718–735, August 2015. 

3. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s 

Mobile Indoor Visible Light Communication System Employing Beam 

Steering and Computer Generated Holograms,” Journal of Lightwave 

Technology, vol.33, no.24, pp.5242-5260, December 2015. 

4. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “Fast and 

Efficient Adaptation Techniques for Visible Light Communication 

Systems,” Journal of Optical Communications and Networking, vol.8, 

issue 6, pp.382-397, 2016. 

5. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “High data rate 

Backup Systems for Visible Light Communication,” IET Communications, 

(to be submitted), 2016. 

6. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “Collaborative 

VLC/IROW Systems,” IET Communications, (to be submitted), 2016. 

7. A. T. Hussein, and J. M. H. Elmirghani, “A Survey of Optical and 

Terahertz (THz) Wireless Communication Systems,” IEEE 

Communications Surveys & Tutorials, (to be submitted), 2016. 

 

Conferences  

8. A. T. Hussein, and J.M.H. Elmirghani, “Performance Evaluation of Multi-

gigabit Indoor Visible Light Communication System,” The 20th European 

Conference on Network and Optical Communications, (NOC), pp.1-6, 

June 2015. 

9. A. T. Hussein, and J.M.H. Elmirghani, “High-Speed Indoor Visible Light 

Communication System Employing Laser Diodes and Angle Diversity 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjAB&url=http%3A%2F%2Fwww.opticsinfobase.org%2Fjocn%2Fjournal%2Fjocn%2Fabout.cfm&ei=bG0ZVcWDHIXkaunegOAL&usg=AFQjCNF_iukx4o1Cu9NpQ0-f71-UPLqO4A&bvm=bv.89381419,d.d24
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjAB&url=http%3A%2F%2Fwww.opticsinfobase.org%2Fjocn%2Fjournal%2Fjocn%2Fabout.cfm&ei=bG0ZVcWDHIXkaunegOAL&usg=AFQjCNF_iukx4o1Cu9NpQ0-f71-UPLqO4A&bvm=bv.89381419,d.d24
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjAB&url=http%3A%2F%2Fwww.opticsinfobase.org%2Fjocn%2Fjournal%2Fjocn%2Fabout.cfm&ei=bG0ZVcWDHIXkaunegOAL&usg=AFQjCNF_iukx4o1Cu9NpQ0-f71-UPLqO4A&bvm=bv.89381419,d.d24
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjAB&url=http%3A%2F%2Fwww.opticsinfobase.org%2Fjocn%2Fjournal%2Fjocn%2Fabout.cfm&ei=bG0ZVcWDHIXkaunegOAL&usg=AFQjCNF_iukx4o1Cu9NpQ0-f71-UPLqO4A&bvm=bv.89381419,d.d24
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Receivers,” The 17th International Conference in Transparent Optical 

Networks (ICTON), pp.1-6, July 2015. 

10. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “25 Gbps 

Mobile Visible Light Communication Employing Fast and Efficient 

Adaptation Techniques’’, The 18th International Conference in 

Transparent Optical Networks (ICTON), pp.1-7, July 2016. 

 

1.4 Overview of the Thesis   

The next chapter provides a general review of indoor visible light 

communication systems. Comparison between VLC and RF systems is 

presented. It also presents VLC systems structure, including transmitter and 

receiver components and VLC link configurations. In addition, the chapter 

outlines the design challenges of indoor VLC systems and signal modulation 

techniques. 

Chapter 3 presents the VLC channel model used in all the systems designed 

and presented in this work. It also provides an analysis of the impulse 

response, delay spread and SNR of a single detector receiver with various 

fields of view. 

Chapter 4 introduces a novel VLC transmitter an RGB-LD light unit whose 

design is described. The new VLC transmitter is coupled with angle diversity 

receiver. In addition, a custom design imaging receiver is introduced for this 

VLC system in this chapter. The results show significant improvements in terms 

of data rate.  

Chapter 5 presents a novel delay adaptation technique for VLC systems. The 

VLC systems introduced in Chapter 4 are developed in this chapter. The results 

show that the use of DAT with RGB-LD and an imaging receiver enable the new 

VLC system to achieve BER of 10-5 while operating at high bit rates (10 Gb/s) in 
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a realistic indoor environment. The chapter focuses on designing a high-speed 

indoor VLC system with full mobility, based on a combination of these 

techniques.  

Chapter 6 introduces a 10 Gb/s mobile VLC system that employs relay nodes, 

ADR and imaging receivers. It also introduces two novel algorithms to create 

optimum transmitter-relay and relay-receiver communication links. The 

proposed systems are examined in two different room scenarios: an empty 

room and a realistic room. In addition two room sizes (5m × 5m × 3m and 4m × 

8m × 3m) were considered. It demonstrates that the performance of the 

proposed systems is better in the small office compared to the large office due 

to the shorter distance between the transmitters and receiver, which led to 

reduced path loss and delay spread and to increased SNR. It also 

demonstrates that the BER achieved by the new VLC system is better than 10-7 

at 10 Gb/s in the worst case scenario.   

Chapter 7 proposes a 20 Gb/s Mobile VLC system employing beam steering 

and computer generated holograms (CGHs). The work in this chapter also 

investigates the effect of beam steering on room illumination. The results 

indicate significant enhancements in channel bandwidth and SNR, compared to 

previous systems. Robustness to shadowing and signal blockage is also 

considered, and the results show that the proposed system can typically 

maintain line of sight (LOS) links at any location in the room, and this gives 

immunity against shadowing and mobility.  

Chapter 8 introduces a 25 Gb/s fully adaptive mobile VLC system based on 

fast and efficient adaptation algorithms. A fast computer generated holograms 

(FCGHs) method based on a divide and conquer approach is proposed to 

improve the SNR and reduce the required time to estimate the position of the 

VLC receiver. The performance and system complexity of the new VLC system 

is studied and is compared to previous VLC systems.    
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Chapter 9 Proposes four IR backup systems to support the VLC system when 

the light units are turned off. The proposed systems are able to maintain high 

data rate service (1.25 Gb/s and 2.5 Gb/s) when the VLC system is disabled. 

The simulation results show that the proposed systems have the ability to 

achieve high data rates (1.25 Gb/s and 2.5 Gb/s) with BER of 10-9 in the 

presence of multipath dispersion, receiver noise and mobility.     

Chapter 10 Introduces the concept of collaborative VLC/IROW system. The 

impact of partial dimming on the VLC system performance is investigated. An 

adaptive rate technique (ART) is proposed to mitigate the impact of light 

dimming. In addition, new IROW systems (distributed cluster and distributed 

clusters with beam steering) are introduced to collaborate with a VLC system to 

maintain the target data rate in the case of partial dimming. 

Chapter 11 summarises the contributions of the work and outlines possible 

directions of future work.  
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2 Review of Visible Light 

Communication Systems 

2.1 Introduction 

Traditional radio and microwave communication systems suffer from limited 

channel capacity due to the limited radio spectrum available. Concurrently, the 

data rates requested by users continue to increase exponentially. Nowadays, 

many people carry more than one wireless device at any time, for instance, a 

smart phone, smart watch, tablet and smart glasses. By 2017, it is expected 

that more than 11 Exabytes of data will have to be transferred through mobile 

networks every month [17]. Different technology candidates have proposed to 

provide high data rate services for users. Recently, the wireless gigabit alliance 

(WiGig) has proposed the utilisation of the unlicensed 60 GHz frequency band 

to enable a 7 Gb/s short range wireless link. However, tracking algorithms and 

sophisticated digital beam forming are required for application in mobile 

wireless networks due to the high path loss of radio waves in this spectrum 

range (i.e., 60 GHz) [18].    

       Since the RF spectrum is expensive and limited, new and complementary 

wireless transmission techniques are required to relieve the RF spectrum. 

There is a potential band of the electromagnetic spectrum (i.e., the optical 

band) available that is able to provide tens of gigabits per second for users in 

the near future [19], especially for indoor users. It has been more than three 

decades since the first OW systems were proposed as an alternative 

technology to RF systems to support high data rates [6]. Since then, a large and 

growing body of research in this area has emerged, and in the last ten years 

OW communication has gone from strength to strength as a potential high 

https://en.wikipedia.org/wiki/Extremely_high_frequency
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speed method for local area networks [6], [20]-[27]. OW systems are candidates 

for high data rates in the last mile of network access. One of the most promising 

OW systems for realising ubiquitous wireless networks is a VLC system based 

on white LEDs, because LEDs can be simultaneously used for illumination and 

data communications [28]. The dual functionality of a VLC system, i.e., 

illumination and communication, makes it a very attractive technology for many 

indoor and outdoor applications, such as car-to-car communication via LEDs, 

lighting infrastructures in buildings for high speed data communication and high 

data rate communication in airplane cabins. 

       The main factor that has helped the development of VLC systems is the 

recent development of solid state lighting (SSL), which will provide high 

brightness LEDs of about 100 lx and 200 lx in the near future [29], [30], with a 

longer lifetime (about six years) in comparison to conventional artificial light 

sources, such as incandescent light bulbs (lifetime is about four months). In 

addition, SSL has a high response (speed), smaller size, low power 

consumption and no health hazards. Figure 2.1 shows the practical luminous 

efficacy of different available light sources. 

       There are two different approaches generally used to generate white light 

from LEDs. The first method is white light generated using a phosphor layer 

(yellow light is emitted) that is coated on blue LEDs. The light emitted by blue 

LEDs (λ≈470 nm) is absorbed by the phosphor layer, and the blue wavelength 

excites the phosphor causing it to glow white, and then the phosphor emits light 

at longer wavelengths. The second method is by using RGB LEDs. With the 

correct mixing of three colours (red, green and blue) white light can be created, 

such as in colour TV. The lower cost and lower complexity of the first method 

makes it more popular. However, the modulation bandwidth is limited to tens of 

MHz’s due to the slow response of the phosphor, and this puts a limitation on 

the communication data rate. Both techniques have been demonstrated in 
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conjunction with VLC systems [31], [32]. Figure 2.2 depicts the methods of 

generating white light from the LEDs. 

 

 

 

 

 

 

Figure 2.1: Comparison of different light sources in terms of luminous efficacy. 

 

 

 

 

 

 

 

Figure 2.2: Two white emissions approaches from LEDs, (a) phosphor LED method, 

(b) RGB method. 

Following this introduction, this chapter is organised as follows. The indoor VLC 

system structure is described in Section 2.3. Design challenges in indoor VLC 

systems, such as ISI, multipath dispersion and photodetector high capacitance, 

are discussed in Section 2.4. Next, signal modulation techniques and VLC 
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standards are presented in Sections 2.5 and 2.6, respectively. The chapter 

concludes by describing current indoor VLC systems. 

2.2 Comparison between Visible Light Communication 

and Radio Frequency 

VLC and RF systems have advantages and limitations that need to be carefully 

studied. VLC and RF systems are complementary transmission techniques, 

with different applications favouring the use of one medium over the other. For 

example, RF is favoured in applications where transmission over long distance 

or through walls is desired and user mobility must be maximised. On the other 

hand, VLC is favoured in short to medium link applications where aggregate 

system capacity must be maximised at minimal cost or receiver signal-

processing complexity must be minimised. 

       RF is the basis of most of the current wireless communication systems. 

However, the growth in demand for more frequencies, lower cost components, 

higher data rates and better QoS, have forced researchers to look deeply into 

other options, such as VLC. VLC offers several significant advantages over RF. 

For example, rapid deployment, low start-up operational costs and high 

bandwidth similar to fibre optic. The VLC spectral region offers virtually 

unlimited bandwidth (380~780 nm) that is an unregulated worldwide spectrum, 

and this leads to reduced system cost. The nature of light gives the VLC system 

immunity against interference caused by adjacent channels with the possibility 

of frequency reuse in different parts of the same building, which means 

abundant capacity. The VLC system also offers better security at the physical 

layer, and this is due to the fact that light does not penetrate through opaque 

barriers, which means that eavesdropping is not possible as with radio systems. 

The availability of simple front-end devices at low cost, the provision of energy 

efficiency, hundreds of terahertz of license-free bandwidth, being harmless for 

humans and other electronic devices and being easy to integrate into the 
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existing lighting infrastructure are also benefits. The detector (photodiode) is 

very large in size, typically tens of thousands of wavelengths, hence VLC 

systems are free from fading [23], [26], [33], [34], and the freedom from fading 

can greatly simplify the design of VLC systems.  

       A VLC system is not without drawbacks. VLC access points that are 

interconnected via a wired backbone will need to be installed because the light 

cannot penetrate through walls from one room to another. In addition, the 

spread in the received pulse due to multipath dispersion degrades the SNR. 

Multipath dispersion is attributed to reflective surfaces, such as walls, windows, 

doors and ceilings. Since these reflective elements act as small emitters that 

diffuse the signal in the form of a Lambertian pattern, the transmitted data 

arrives at the receiver from multiple different paths, which makes the 

transmitted pulses spread [26]. Furthermore, the received signal at the receiver 

includes shot noise induced by intense ambient light sources (sunlight and 

other light sources), and this leads to signal corruption by background noise 

[35], [36]. Moreover, the available current modulation bandwidth of the 

transmitters (LEDs) is very low compared with the VLC spectrum, which means 

transmission bandwidth is limited by the LED bandwidth. In addition, using 

white LEDs for communication is naturally a one direction communication 

(downlink), useful for applications such as background music transmission, 

therefore, providing an uplink to a portable transmitter structure can be a big 

challenge. 

       A VLC system requires a photodetector with a large photosensitive area to 

achieve an acceptable performance. However, the photodetector capacitance is 

directly proportional to its area, i.e., a large photosensitive area results in large 

capacitance, and consequently the available bandwidth in the receiver will 

decrease [37]. Table 2.1 summarises the comparison between VLC and RF 

systems. 
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Table  2.1: Comparison between VLC and RF systems in indoor wireless 

communications. 

 VLC systems RF systems 

Advantages 

 Bandwidth is 
unregulated. 

 No interference between 
links operating in 
different rooms. 

 High security.  

 No multipath fading. 

 Inexpensive technology. 

 

 Transmission 
through walls 
and other 
objects is 
possible. 

 High flexibility 
and mobility 
for users. 

Disadvantages 

 

 Multiple transmitters lead 
to CCI. 

 Sensitive to ambient light 
(Background noise). 

 ISI induced due to 
multipath dispersion. 

 Low modulation 
bandwidth of transmitters 
(LEDs). 

 Dynamic range. 

 High path loss. 

 Installation of access 
points for communication 
between rooms.  

 

 Interference 
from other 
users and 
systems.  

 Regulated 
bandwidth. 

 Low security. 

 Multipath 
fading. 
 

 

2.3 Indoor VLC System Structure 

A block diagram of an indoor VLC system is shown in Figure 2.3. The VLC 

system consists of (1) a transmitter that uses white LEDs or visible LD, (2) a 

VLC channel (VLC links design) and (3) a receiver that employs a 

photodetector (PD).  
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       Digital and analogue components are used in the transmitter and receiver 

structure. The data stream, baseband modulator and digital to analogue 

convertor (DAC) are the digital components in the transmitter. Similarly, the 

digital components in the receiver are the analogue to digital convertor (ADC), 

demodulator and data sink. The trans-conductance amplifier (TCA), bias Tee 

and LED/LD are the analogue components in the transmitter. The receiver 

includes the PD, trans-impedance amplifier (TIA) and band pass filter (BPF). 

The AC signal in the transmitter is added onto the DC current by a bias Tee (a 

device used to inject DC power into a high frequency transmission line). Since 

LEDs work in a linear region with unipolar driving currents, the absolute driving 

current (AC+DC) has to be larger than zero. The total current is fed to the LEDs 

to emit the modulated output power. The power received by the PD is converted 

into a current (I-PD), and this current consists of two components: the AC and 

DC parts. The AC component is amplified and then filtered using TIA and BPF 

respectively. Finally, the digital signal is demodulated after conversion with ADC 

[4].  

2.3.1 Transmission of VLC data 

The main function of the VLC transmitter is to convert an electrical signal into 

an optical form and then launch the resulting optical signal into the free space 

link. LEDs are currently used for VLC transmission [38]. White LEDs are 

available at low cost and they are considered eye-safe, even at relatively high 

powers. This is due to their sufficiently large surface area emitting light over a 

relatively wide spectral range [38]. Commercial white LEDs emit light into semi-

angles in the range of 12o to 70o [39].They are also more affordable and reliable 

compared to incandescent light bulbs. Therefore LEDs are a preferable source 

of light for indoor applications. Inspite of LEDs having several advantages, they 

also have some drawbacks, including: 

 Low modulation bandwidth (typically tens of MHz). 
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 Low electro-optic power conversion efficiency (typically 10 to 40%). 

 Non linearity [40].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Block diagram of VLC system. 
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On the other hand, white LD may be considered as alternatives to LEDs in VLC 

systems due to their numerous advantages, which include:   

 Wide modulation bandwidth (typically hundreds of MHz to more than 10 

GHz). 

 High electro-optic power conversion efficiency (typically 30 to 70%). 

 Linear electrical to optical signal conversion characteristics [26]. 

However, LD are more expensive than LEDs as well as requiring a more 

complex drive circuit.   

2.3.2 VLC transmission link design 

There are two criteria to classify VLC links: (i) the degree of directionality 

between the transmitter and the receiver and (ii) the existence of a direct path 

between the transmitter and the receiver. These classifications are based on 

the radiation pattern of the transmitter and field of view (FOV) of the receiver. 

The link classification schemes are illustrated in Figure 2.4.  

 

 

 

 

 

 

 

Figure 2.4: The main types of VLC links, (a) LOS transmission configurations, (b) 

NLOS transmission configurations. 

(a) 

(b) 
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Line of sight (LOS) and non LOS (NLOS) transmission configurations represent 

the two main types of indoor VLC links [34], [41], [42]. LOS links provide a direct 

path between the transmitter and receiver, minimise multipath dispersion and 

enhance the power efficiency of the VLC communication system. However, 

LOS links suffer from shadowing. On the other hand, NLOS links rely on 

reflections from the walls, ceiling and other objects. The NLOS links offer robust 

links and protection against shadowing and signal blockage, but they are 

severely affected by multipath dispersion, which results in ISI and pulse spread 

[34]. The effects of multipath dispersion can be mitigated through the use of 

equalisation and/or diversity. In a VLC system, LOS can be achieved with many 

light units on the ceiling. However, the optical path differences between the light 

units results in ISI. In this work, both LOS and NLOS links are considered. 

       LOS and NLOS systems can further be classified into directed, hybrid and 

diffuse according to the orientation of the transmitter and receiver [43], [44]. In 

directed links both the transmitter and receiver are directed (i.e., have narrow 

beam/FOV). A hybrid link can be formed either by a transmitter with a narrow 

radiation beam and a receiver that is non-directed, or vice versa. In the diffuse 

scenario, the transmitter uses a wide radiation beam and the receiver employs 

a wide FOV detector. The three classifications of LOS and NLOS configurations 

are shown in Figure 2.4 (a) and (b).  

2.3.3 Receiver components 

A VLC receiver converts the received optical signal into an electrical signal. It 

comprises a photodetector and a pre-amplifier circuit that are placed behind a 

front end. The front end consists of a concentrator and an optical filter (see 

Figure 2.3). The concentrator increases the amount of received signal power at 

the receiver [45]-[48]. The optical filter reduces the amount of ambient light 

captured by removing the captured light outside the signal optical spectral band 

[49]-[53]. A key component in a VLC receiver is the photodetector where the 
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optical signal that is represented as ‘’1’’ and ‘’0’’ bits is converted directly into an 

electric current. The next process is the amplification of the electrical current, 

therefore, the photodetector is followed by a preamplifier. The main 

components of a VLC receiver are discussed next. 

2.3.3.1 Concentrators 

Increasing the active area of the photodiode leads to an improvement in the 

received optical power. However, this would increase the capacitance, hence 

reducing the receiver bandwidth and restricting the transmission rates [54]-[56]. 

An optical concentrator can be used to increase the collected signal power by 

increasing the effective collecting area. The main function of optical 

concentrators is to guide light rays incident over a large area into light rays that 

emerge from a smaller area.  

       There are two types of concentrators: imaging and non-imaging. Imaging 

concentrators can be found in long range systems such as FSO. In general, 

most indoor OW links, including VLC, typically consider the use of non-imaging 

concentrators. The effective signal-collection area can be written as [26]: 

𝐴𝑒𝑓𝑓(𝛿) = {
𝐴 cos(𝛿),                              0 ≤ 𝛿 ≤ 𝜋/2
0                                                𝛿 > 𝜋/2     

                           (2.1) 

where 𝛿 is the angle of incidence with respect to the receiver normal and 𝐴 is 

the physical area of the detector. An idealised non-imaging concentrator has a 

relationship between the FOV and gain. The maximum achievable concentrator 

gain is as follows [33], [57]-[59]: 

𝑔(𝛿) = {
𝑁2

sin2𝜓𝑐
,                                            0 ≤ 𝛿 ≤ 𝜓𝑐

      0                                                            𝛿 > 𝜓𝑐      
                     (2.2) 

where 𝑁 is an internal refractive index and 𝜓𝑐 is the semi-angle FOV of the 

concentrator (usually 𝜓𝑐  ≤ 90o). The above formula shows an inverse relation 
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between the gain and FOV of the receiver. If the receiver’s FOV is reduced, the 

gain is increased.  

In this section, two types of optical concentrators are introduced. The non-

directional hemispherical lens and compound parabolic concentrator (CPC). A 

hemispherical concentrator has an acceptance semi-angle of 90o, 

therefore 𝑔(𝛿) =  𝑁2. A hemisphere-based receiver has an effective area of: 

𝐴𝑒𝑓𝑓(𝛿) = 𝐴𝑁
2 𝑐𝑜𝑠(𝛿)                                           (2.3) 

Figure 2.5 shows a non-directional hemispherical lens that employs a planar 

filter.  

 

 

 

 

Figure 2.5: Non-directional hemispherical lens that employs a planar filter. 

The CPC is an angle transforming device that can collect and concentrate the 

light from a large input area down into a smaller detector area. A CPC can 

achieve a much higher gain than a hemispherical concentrator, but this is at the 

cost of a narrow FOV (𝜓𝑐). This makes a CPC more appropriate for LOS links. 

An array of CPC elements can be used with an ADR to reduce the multipath 

dispersion effect and hence improve the performance of the system [60], [61]. A 

CPC can be coupled with an optical filter on the front surface, as shown in 

Figure 2.6. 
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Figure  2.6: Compound parabolic concentrator. 

2.3.3.2 Optical filters 

OW systems are vulnerable to ambient light and sunlight. Therefore, to reduce 

the effect of unwanted noise components in the received electrical signal, an 

optical filter can be used prior to detection by the photodetector [62]. Figure 2.7 

illustrates the relative spectral power densities of the three common ambient 

light sources. A high pass filter (HPF) and a BPF are generally used in OW 

systems. A HPF passes light at wavelengths higher than the cut off wavelength, 

and they are usually made of colour glass or plastic and their transmission 

characteristics are substantially independent of the angle of incidence [26]. A 

BPF is the other alternative that can be used to minimise the ambient light in 

OW receivers. A BPF can have very narrow bandwidths (typically 1 nm), and 

can be fabricated using multiple thin dielectrics with varying indices of refraction 

and relies upon optical interference in the created Fabry-Perot cavities [63]. The 

transmission characteristics of such BPFs vary greatly depending on the angle 

of incidence. Therefore, they should be used with an adequate concentrator to 

be suitable for diffuse systems, such as a hemispherical concentrator [26]. The 

Filter  

Photodetector  

CPC  
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modulation bandwidth available in the transmitters (LEDs) is typically less than 

the VLC channel bandwidth, which means that the former limits the 

transmission rates. A blue optical filter at the receiver is used to filter the slow 

response yellowish component, and this technique is considered to be the 

simplest and most cost effective approach to increase data rates [64]-[66]. 

 

 

 

 

 

 

 

Figure  2.7: Relative spectral power densities of the three common ambient light 

sources [26]. 

2.3.3.3 Photodetectors  

A photodetector is an optoelectronic transducer that generates an electrical 

signal that is proportional to the incident light. Since, the received light in an OW 

system is generally weak, the photodetector must therefore meet important 

performance specifications, such as:    

 High sensitivity at the operating frequency.  

 High conversion efficiency within its operational range of wavelengths.  

 High response speed. 

 High reliability, low cost and small size.  

 Low noise level. 
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 Low bias voltage required in portable devices together with tolerance to 

temperature fluctuations. 

Two types are commonly used in OW systems: PIN photodiodes and the 

avalanche photodiodes (APDs). PIN photodiodes require less complex biasing 

than APDs and are cheaper and simpler to manufacture. However, PIN 

photodiodes are less sensitive than APDs. APDs are usually 10 to 15 dB more 

sensitive than PINs [26]. APDs provide an inherent current gain through an 

ionisation process, hence improving the SNR and reducing the effect of front-

end noise [67]. APDs are the preferred choice when the ambient induced shot 

noise is weak and the pre-amplifier noise is the major source of noise. Shot 

noise due to the ambient light is present in OW systems, and therefore a PIN 

photodiode is considered to be the better option [68].   

 
       A photodiode should have a large bandwidth and a high responsivity (PIN 

photodiodes are capable of operating at high bit rates [69]). The bandwidth of 

the photodiode is limited by the transit time of the carriers through the PN 

junction. Responsivity is a key parameter in photodiode models and is 

measured at the central optical frequency of operation. Responsivities of silicon 

photodiodes operating in the 430nm-655nm wavelength bands, are in the range 

of 0.21 A/W to 0.46 A/W [70]. The responsivity of the photodiode can be 

expressed as [63]: 

                                            𝑅 =
𝜂𝑞𝜆

ℎ𝑝𝑐
                                                              (2.4) 

where 𝑞 is the electronic charge, 𝜂 is the quantum efficiency of the device, 𝜆 

and 𝑐 are the wavelength and the speed of light respectively and ℎ𝑝 is the 

Planck constant. The internal quantum efficiency (𝜂) is the probability of the 

incident photon producing an electron-hole pair (typically in range of 0.7 to 0.9).  
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2.3.3.4 Preamplifiers 

The preamplifiers that are used in the photo-receivers can be categorised into 

three types: low impedance, high impedance and trans-impedance 

preamplifiers. The low impedance preamplifier offers a large bandwidth but has 

high noise and hence low receiver sensitivity. On the other hand, the high 

impedance preamplifier provides high sensitivity but an equaliser must be used 

to mitigate the limitations imposed on the frequency response by the front end 

RC time constant. In addition, due to their high input load resistance they also 

have a limited dynamic range [3], [68]. In contrast, a trans-impedance 

preamplifier provides a large dynamic range and avoids the need for an 

equaliser. Therefore, it is suitable in most OW link applications. However, it has 

lower sensitivity (high noise level) compared to a high impedance amplifier. 

Sensitivity can be improved when a field-effect transistor (FET) is used as a 

front-end device instead of a bipolar junction transistor (BJT). However, in terms 

of power consumption, a BJT can provide better performance [68], [71]. In this 

work, both FET and BJT are considered and used. 

2.4 Design Challenges of Indoor VLC Systems 

VLC systems have become promising candidates to complement conventional 

RF systems due to the increasingly saturated RF band and the potential high 

data rates that can be achieved by VLC systems [4]. Over the last decade, 

significant research effort has been directed towards the development of VLC 

systems due to their numerous advantages over RF systems, such as the 

availability of simple transmitters (i.e., LED) and receivers (silicon photo 

detectors). However, there are several challenges facing VLC systems to 

achieve high data rates (multi gigabits per second). These challenges include 

the low modulation bandwidth of the LEDs (VLC transmitters), provision of an 

uplink for VLC system, multipath dispersion and photodetector high 

capacitance.   
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2.4.1 Light emitting diodes (LED) modulation bandwidth  

The modulation bandwidth available in the transmitters (LED) is typically less 

than the VLC channel bandwidth, which means that the former limits the 

transmission rates. To achieve high data rates in VLC systems a number of 

different techniques can be used, for instance, optical filters, pre and post 

equalisation (or both), complex modulation techniques for example, modulation 

formats that encode multiple bits per symbol and/or modulation formats able to 

operate at low system bandwidth, and parallel communication (multiple input 

and multiple output, MIMO).  

       A blue optical filter at the receiver is used to filter the slow response 

yellowish component of the phosphor LED, and this technique is considered to 

be the simplest and most cost effective approach to increase data rates [64]. 

However, the achieved bandwidth is insignificant (8 MHz). The drop in the white 

LED response can be compensated for by using a simple analogue pre-

equalisation at the transmitter side, and this technique can offer 40 Mb/s without 

the use of a blue filter [72]. However, the data rate achieved is still very low 

compared to the VLC spectrum. A moderate data rate (80 Mb/s) can be 

achieved using more complex pre-equalisation [73]. However, pre-equalisation 

has the drawback that the drive circuit for the LED needs to be modified, and 

this leads to higher costs and lower efficiency of the emitter (i.e., not all the 

input power is converted into light). By combining simple pre and post 

equalisations, 75 Mb/s can be achieved [74]. A data rate of 100-230 Mb/s was 

the maximum data rate achieved using phosphorescent LEDs with simple OOK 

modulation [75]. Higher data rates can be achieved when complex modulation 

approaches are used, for example, discrete multi-tone modulation (DMT) can 

provide data rates of about 1 Gb/s [32]. However, this type of modulation 

requires a complex transceiver. In terms of parallel transmission, a VLC system 

is the optimal choice for optical MIMO, as many LEDs (transmitters) are used 

for illumination and can send different data streams on every single LED to 
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maximise the throughput. At the same time, an array of photo detectors are 

necessary at the receiver side, and this setup offers improvements in security, 

link range and data range, while the power required is unaltered [76]. A real 

enhancement in the data rates can be achieved with red, green and blue (RGB) 

LEDs. A rate of 1.25 Gb/s was reported in [77] when using RGB LEDs in a 

single colour transmission mode, and 1.5 Gb/s was achieved by using a new 

design based on μLED arrays that use non-return-to-zero OOK (NRZ-OOK) as 

the modulation scheme. The 3 dB modulation bandwidth of this LED was 150 

MHz [78]. The maximum data rate achieved by using commercial RGB LEDs 

with low complexity modulation (OOK) is up to 500 Mb/s [79]. Recently, a 3 

Gb/s VLC system based on a single μLED using orthogonal frequency division 

multiplexing (OFDM) has been successfully demonstrated [80]. Potentially, 10 

Gb/s data rates could be delivered with an RGB triplet in such devices [80]. A 

rate of 3.4 Gb/s has been reported in [31] using DMT, wavelength division 

multiplexing (WDM) and RGB LEDs. Conventional VLC systems have used 

organic LEDs and RGB LEDs as transmitters. However, due to their low 

modulation bandwidth, the highest VLC data rates achieved by LEDs was 

reported in [81], where the aggregate data rate was 4.5 Gb/s when using 

carrier-less amplitude and phase (CAP) modulation and recursive least squares 

(RLS) based adaptive equalisation, wavelength division multiplexing (WDM) 

and RGB LEDs. The design and implementation complexity are a major 

concern in these systems. A high modulation bandwidth transmitter in a VLC 

system is vital for achieving high data rates. 

2.4.2 Provision of uplink for VLC system  

Although VLC systems provide lighting and communications simultaneously 

from LEDs, the uplink channel design in such a system is a challenging task. 

This is due to the energy limitations of mobile devices (where such light does 

not need to be generated for illumination) and also due to the potential glare 
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from the light where VLC signals can cause discomfort to human eyes and 

affect the indoor illumination. Taking these reasons into considerations, VLC 

systems remain a strong candidate for downlink implementation within a local 

network. However, it is better if VLC technology is complemented with an 

alternative uplink technology. 

       Many techniques have been proposed to provide an uplink for VLC 

systems. In [82], retro reflecting transceivers using a corner cube modulator to 

provide a low data rate (few kb/s) uplink were proposed for a VLC system as 

shown in Figure 2.8. Recent work [83], [84] has proposed a hybrid solution 

where the uplink challenge is resolved by the use of a RF-VLC combination as 

shown in Figure 2.9. The system comprised of Wi-Fi uplink and VLC downlink 

to increase the overall capacity with multiple users. This solution is suitable for 

RF insensitive areas, such as schools and homes with relatively small data 

rates. Moreover, different researchers have demonstrated a bi-directional 

indoor communication system based on VLC RGB LEDs [85]. Each colour can 

be used to carry different signals. The study achieved a 300 Mb/s uplink 

transmission rate. A higher data rate has been enabled by higher modulation 

formats (quadrature amplitude modulation, QAM-OFDM), advanced digital 

signal processing and pre and post equalisation. However, this type of 

configuration requires a directional transmission beam that can lead to 

significant deterioration of throughput given the potential movement of users. In 

addition, the uplink VLC can produce light that is uncomfortable to human eyes. 

Therefore, there is a need to find alternative solutions with relatively high 

transmission speed for use in sensitive places and high-security applications. 

       In this thesis, an IR uplink channel is used to overcome the potential issues 

of uplink transmission in VLC systems. IR (invisible light) optical 

communications has the same advantages as VLC systems. It also has some 

additional advantages compared to VLC. For example, light dimming is not an 

issue in IR systems and uplink implementation using IR is convenient as it 
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avoids bright visible light next to the user equipment, next to a laptop, for 

example. It can also provide high transmission rates similar to VLC systems 

and potentially higher data rates (data rates of 5, 10 and 15 Gb/s employing 

OOK modulation can be achieved) [86]-[88]. This is mainly because of the wider 

modulation bandwidth of LD sources used in IR optical wireless instead of white 

LEDs. Recently, a high-speed uplink connection for VLC systems employing IR 

wireless links has achieved 2.5 Gb/s [89].   

  

 

 

 

 

Figure ‎2.8: Retro reflecting technique to provide an uplink link for VLC system. 

 

 

 

 

 

 

 

Figure ‎2.9: Bidirectional VLC system combination with Wi-Fi system. 
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2.4.3 Multipath dispersion 

Multipath dispersion is an important concern in designing a VLC system for an 

indoor environment. This is a result of the reflective proprieties of the VLC 

channel. Multipath dispersion occurs when the transmitted signal reaches the 

receiver through different paths at different times due to reflections from the 

ceiling, walls and other objects. Multipath dispersion causes the received pulse 

to spread, hence causing ISI. The channel root mean square (rms) delay 

spread is an important parameter to measure the ISI induced by multipath 

propagation [4].  

       The indoor channel characteristics of VLC systems have attracted great 

attention to devise techniques that can help alleviate multipath dispersion. VLC 

systems are subjected to ISI when operated at high data rates. Therefore, 

various techniques have been proposed to reduce the impact of ISI in VLC 

systems. The authors in [90] proposed a return to zero OOK (RZ-OOK) 

modulation, with the space between pulses being used as a guard to reduce the 

effect of the delay in low data rate applications. Spread spectrum has also been 

considered to combat ISI, however, spread spectrum reduces the bandwidth 

efficiency as well [91]. The authors in [92] used zero forcing (ZF) equalisation 

with such a transmitter (i.e., LED) arrangements to reduce the effects of ISI. 

The bit error rate (BER) achieved with this technique was similar to the channel 

without ISI. In [28] they found that decreasing the receiver field of view leads to 

reduced ISI, whereas increasing the data rate lead to an increase in ISI. The 

authors in [93] used MIMO techniques to reduce shadowing effects. Other 

approaches can be used to reduce ISI in VLC systems. Adaptive equalisation 

with a least mean square (LMS) algorithm has been used to achieve 1 Gb/s 

[94]. An ADR is a simple and efficient technique that can be used to mitigate the 

effects of ambient light and pulse spread in OW systems [95], [96]. ADR 

employs multiple photo detectors with relatively small FOVs, where each photo 

detector is aimed in a different direction with a specific azimuth and elevation 
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angle to collect information signals [22].  A prism array based receiver has been 

investigated to provide angular diversity to mitigate the effects of ISI [97]. 

OFDM is a modulation technique that is extensively used in VLC systems as it 

successfully combats ISI caused by multipath propagation [98], [99]. 

       In VLC systems, the impact of ISI is larger than the impact of other noise 

components [28]. Therefore, in this thesis, the optimisation of three and seven 

ADRs is proposed to mitigate the impact of multipath dispersion [100]-[102]. 

However, ADR presents some drawbacks, including high cost and large size 

due to using multiple receiving elements. An alternative approach that can be 

implemented to combat multipath dispersion is imaging receivers [103]-[105]. In 

this thesis, an imaging receiver with 50 pixels is proposed to enhance the 

overall system performance. A significant improvement can be achieved in SNR 

by using an imaging receiver at high data rates. This significant improvement in 

the SNR level is attributed to the ability of the imaging receiver to collect the 

VLC signal with minimum ISI, due to its narrow FOV pixels and large overall 

detection area provided by the large number of pixels. 

2.4.4 Photodetector high capacitance 

To collect an adequate optical signal the photodetector active area must be 

large, but the capacitance of the photodetector is directly proportional to its 

area. Therefore, a large photodetcetor area implies a large capacitance, which 

results in a restriction in the attainable bandwidth. The large capacitance at the 

input of the amplifier operates as a low pass filter (LPF), which means that the 

received high frequency components will be attenuated. Although, a large 

capacitance acts as a LPF, it does not eliminate the dominant white thermal 

noise that is observed after the input stage. This noise may negatively affect the 

SNR at higher signal frequencies. When a white noise process following a LPF 

is fed back into the input of the filter, its power spectral density becomes 

quadratic in frequency and is often called 𝑓2 noise [106]. Due to the 𝑓2 noise 
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variance being proportional to the square of the capacitance, an array of 

photodetectors can be used instead of a single photodetector (hence avoiding 

the photodetector’s high capacitance) to reduce the effect of 𝑓2 noise  [107].  

       The authors in [108] proposed the use of an array of photo detectors 

instead of a single photo detector to mitigate the effects of the large 

capacitance and to maximise the collected power at the same time. The photo 

detector’s effective area can be enhanced by using a hemispherical lens, as 

suggested in [26]. Bootstrapping was proposed by the authors in [37] to 

minimise the effective capacitance of a large area photo detector. In this thesis, 

an ADR and an imaging receiver are employed to mitigate the impact of the 

large photodetector area and to improve the system’s performance. 

2.5 Signal Modulation Techniques 

OW system channels are completely different from traditional RF system 

channels, and this has resulted in different methods of modulation being used. 

Modulation schemes that fit well in RF channels do not necessarily perform well 

in the optical domain. There are four criteria for choosing a specific modulation 

technique for OW systems. The most important criterion to be applied is the 

average power requirement used (power efficiency), due to eye hazards and 

power consumption. The second criterion is the receiver’s electrical bandwidth 

requirements. The third factor is the complexity of modulation and power 

consumption in portable devices. The last factor is the physical limitations in the 

transmitter (i.e., LD or LED). Modulation in OW systems consists of two steps: 

in the first step the information is coded as a waveform and then (second step) 

these waveforms are modulated onto the instantaneous power of the carrier 

[26]. This section firstly defines the intensity modulation and direct detection 

(IM/DD) channel, and then discusses the most common modulation schemes 

used over this channel: OOK and pulse position modulation (PPM).  
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2.5.1 IM/DD channel 

IM/DD is the preferred transmission technique in OW systems [26], [109]. IM is 

achieved by varying the bias current of the LD or the LED. In OW systems, the 

transmitted signal power is always positive. Direct detection is the simplest 

method that can be used to detect an intensity modulated signal. The photo 

detector generates a current that is proportional to the incident the optical 

power intensity. Currently, IM/DD is considered to be the only practical 

approach for modulation and detection of the optical carrier in a VLC system 

[54]. A simple description for the IM/DD channel is given as [26]: 

𝑦(𝑡) = 𝑅𝑥(𝑡) ⊗ ℎ(𝑡) + 𝑅𝑛(𝑡)                                       (2.5) 

where 𝑅 is the photo detector responsivity (in amps per watt), 𝑦(𝑡) is the 

instantaneous photo current received, 𝑡 is the absolute time, ⊗ denotes 

convolution, ℎ(𝑡) is an impulse response, 𝑥(𝑡) is the instantaneous transmitted 

power and 𝑛(𝑡) is the background noise (BN), which is modelled as white 

Gaussian noise, and the BN is independent of the received signal.   

       One of the most important factors that should be considered when 

designing a communication system is the modulation scheme. The modulation 

scheme defines the power efficiency and bandwidth of the system, and these 

will affect the overall system performance. One of the main constraints in a 

mobile OW transmitter is the power consumption. Therefore, power efficient 

modulation is required. OOK and PPM are the most popular modulation 

schemes applied in OW systems [59]. 

       The physical layer (PHY) of the IEEE 802.15.7 standard for VLC systems 

supports three different types of modulation schemes: OOK, PPM and colour 

shift keying (CSK) [70]. In this thesis all the proposed systems employ an OOK 

modulation scheme that adds simplicity to the VLC system. Using PPM or CSK 

imposes more system complexity compared to OOK.  
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2.5.2 On-Off Keying (OOK) 

One of the simplest modulation techniques that can be implemented in a VLC 

system is OOK [38], [110], [111]. In OOK, a light pulse is transmitted if the bit is 

‘1’ and no light pulse is transmitted if the bit is ‘0’. There are two types of OOK: 

non return to zero OOK (NRZ-OOK) and return to zero OOK (RZ-OOK). Figure 

2.10 shows NRZ-OOK and RZ-OOK signals. 

𝑇𝑏 represents the duration of the bit. The pulse width is 𝑇𝑝 = 𝑇𝑏 × 𝑘. If 𝑘 is set 

to 1, the result is basically NRZ-OOK, while If 𝑘=0.5 (50% duty cycle) the 

scheme is known as RZ-OOK. NRZ-OOK has several advantages, including 

simplicity of implementation and bandwidth efficiency. However, it requires a 

high average optical power compared to RZ-OOK.    

 

 

 

 

 

 

Figure  2.10: Basic NRZ-OOK and RZ-OOK signals. 

OOK is a suitable modulation technique and easy to implement in OW systems 

because it is very simple for LED or LD to switch on and off quickly [21]. Many 

other types of modulation have been applied in OW systems, such as PPM [36]. 

Differential PPM (DPPM) is applied in OW systems to obtain higher data rates; 

it consumes less power on average than PPM. However, the distortion in the 

DPPM signal is greater than in the PPM signal [112]. More advanced 

techniques could be used in OW systems to transmit multiple carriers, such as 
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subcarrier modulation (SCM). This technique can provide multiple access for 

simultaneous users and a high data rate. However, SCM is not power efficient 

like single carrier schemes are [113]. For instance, each quadrature phase shift 

keying (QPSK) or binary PSK subcarrier requires about 1.5 dB more power 

than OOK. In [114] they achieved high data rates while reducing the average 

power requirements in SCM modulation. In [24] OFDM was applied in indoor 

OW systems to achieve high data rates over a noisy channel and to compact 

ISI. However, the system did not achieve a high SNR. The main disadvantages 

of OFDM are the sensitivity to frequency offset and phase noise as well as the 

high peak to average power ratio (PAR) [99]. In general, the use of complex 

modulation leads to an improvement in the performance of the OW systems, 

such as mitigating the ISI effect and increasing data rates. However, these 

modulation techniques require a complex transceiver. 

       In this thesis we only used NRZ-OOK with VLC and IROW systems and 

this is due to its simplicity and easy to implement. 

2.5.3 Pulse position modulation (PPM) 

PPM is a modulation scheme that offers high average power efficiency at the 

cost of relatively poor bandwidth efficiency [115], which makes it more sensitive 

than OOK to multipath dispersion. PPM is considered in optical communications 

due to its low average power requirements [116], [117]. 

       PPM is a modulation scheme in which data bits are conveyed by a single 

pulse in one of several possible positions. The positions are represented as 

slots, and L-PPM has slots in a single symbol time (frame). Each frame 

contains a pulse occupying one slot and empty slots. The pulse is located at a 

slot that is proportional to the binary value of the original digital symbol. Each 

frame can be concluded by a guard interval to avoid inter frame interference 

and for timing extraction purposes. The time used for communication is divided 
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into equal blocks. Each block is equally divided again into L time slots. Figure 

2.11 shows an example of 4-PPM modulation. 

 

        

 

Figure  2.11: Example of 4-PPM code.  

2.6 Dimming Control and Flicker Brightness of the VLC 

System 

Brightness control for the LEDs in VLC systems is required. Light dimming is 

defined as controlling the perceived brightness of the light source according to 

the user’s requirement and is a cross layer function between the PHY and MAC 

[70]. Many techniques have been used and implemented for dimming control in 

VLC systems [111], [118]-[120]. The simplest method is amplitude modulation 

(AM) dimming control where the luminous flux is controlled by controlling the 

input DC current. However, the chromaticity coordinates of the emitted light can 

be changed [62]. Pulse width modulation (PWM) is another method to control 

the width of the current pulse as shown in Figure 2.12. The main feature in the 

PWM dimming method is that the amplitude of the pulse remains constant. The 

width of the pulse varies according to the dimming level, thus the result is that 

the emitted light spectrum is constant. Binary code modulation or a bit angle 

modulation (BAM) are other dimming methods invented by artistic licence 

engineering (ALE), and it is a new LED drive technique that can be used in VLC 

systems [121]. The main advantages of using this technique are the simplicity 

implementation (easy to realise), potential flicker is reduced, BAM needs less 

processing power and simple operation to recover the data. BAM 

implementation of LED dimming level uses binary data patterns as shown in 
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Figure 2.13. In the BAM 8 bit system, the pulse width of bit 7 (most significant 

bit, MSB) is equal to 27=128, whereas the pulse width of bit 0 (least significant 

bit, LSB) is equal to 20=1 (a unit width). Usually, the brightness of the LED light 

depends on the average current into the LED.  

       Flicker in the VLC system can be defined as the fluctuations of the 

brightness of the LED light. The flicker occurs when the brightness changes 

over periods longer than the maximum flickering time period (MFTP) [70]. The 

flicker in VLC is classified into two groups according to its generation 

mechanism: intra-frame flicker and inter-frame flicker. Intra-frame flicker is 

defined as the perceivable brightness fluctuation within a frame. Inter-frame 

flicker is defined as the perceivable brightness fluctuation between adjacent 

frame transmissions. 

 

 

 

Figure 2.12: Dimming control using PWM. 

 

 

 

 

 

Figure 2.13: Waveform of BAM signal for dimming control. 
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2.7 Standards for VLC Systems 

Standardisation for VLC systems started in 2003 in Japan [122]. In 2007, the 

Japanese electronics and information technology industries association (JEITA) 

proposed two standards for VLC: CP-1221 and CP-1222 [123], [124]. 

Significant efforts from Europe led to the start of the home gigabit access 

network project (OMEGA) in January 2008 to deliver high-bandwidth services 

for home area networks (the OMEGA project was funded by the European 

commission) [125]. In the same year, the national science foundation (NSF) in 

the US established the smart lighting engineering research centre (ERC) [126]. 

Recently, many organisations have been involved in integrated standards such 

as IEEE. In September 2011, IEEE defined standards for physical and medium 

access control (MAC) layers for VLC systems (802.15.7). The standard can 

deliver data rates appropriate for video and audio services (up to 96 Mb/s), and 

also considers noise and interference from light sources [70]. Similar to Wi-Fi, 

the light fidelity (Li-Fi) consortium was established in Norway in 2011 [127]. 

2.8 VLC Applications 

VLC systems cover indoor to outdoor applications. Indoor applications could be 

data communications, indoor location estimation, indoor navigation for visually 

impaired people and accurate position measurements. The outdoor applications 

could be transportation, location information, information broadcast using the 

traffic light infrastructure based on the JEITA CP-1222 standard, environmental 

hazards, security and defence, precise control of robots and aviation [128], 

[129]. 

       Like IROW systems, VLC systems can be used to transfer data within 

offices. User location can be estimated in an indoor environment using white 

LEDs, hallways are assumed to be illuminated by LEDs with a unique ID for 

each LED. White LEDs in conjunction with geometric sensors integrated in 
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smart phones could help visually impaired people move inside buildings [130]. 

Figure 2.14 shows a prototype of a navigation system for visually impaired 

people from [130]. RF signals can be undesirable inside hospital environments, 

especially in operating theatres and magnetic resonance imaging (MRI) 

scanners, therefore VLC systems can be potential solutions to such scenarios. 

 

 

 

 

 

 

 

Figure 2.14: Indoor VLC navigation system for visually impaired people. 

       Recently, various approaches for VLC indoor positioning systems have 

been researched [131], [132]. VLC systems are a promising solution for indoor 

positioning due to many features. Firstly, there is better positioning accuracy 

(few millimetres) compared to radio wave systems, since VLC suffers less from 

interference and multipath effects. Secondly, VLC positioning systems can be 

used in environments where radio positioning systems are restricted, such as in 

hospitals [133].   

       White LEDs can be used to transfer digital data in the automotive field (car 

to car communication), head and tail LED lights can be used to communicate 

between cars, also there is the possibility to communicate between cars and the 
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traffic lights infrastructure [134]. In 2010, the geospatial information authority 

(GSI) of Japan started work on a standard that provides location information 

using visible light, the concept of this standard is to give a unique identification 

number to each 3×3 m2 in Japan  [128]. In risk areas, such as oil rigs and 

mines, safe communication and illumination can be provided by VLC systems 

using LEDs. Nowadays, aircraft use white LEDs for illumination, which can also 

be used to provide media services to passengers instead of wires. This will 

reduce the weight and the cost of the aircraft.  

2.9 Summary  

This chapter has provided an overview of VLC systems. It has introduced a 

comparison between VLC and RF systems. It has also explained the VLC 

system structure including the transmitter (LEDs) and the receiver components 

(concentrator, optical filter, photodetector and preamplifier), in addition to the 

classification of VLC links being presented. It has highlighted the significant 

challenges in VLC systems, such as low modulation bandwidth of transmitters 

(LEDs), multipath dispersion, photodetector high capacitance and the provision 

of an uplink, and has discussed some of the approaches that can be used to 

mitigate these challenges. This chapter has also addressed the most common 

types of modulation schemes in VLC systems. The chapter concluded with an 

overview of the VLC standards and current indoor and outdoor VLC 

applications. 
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3 Channel Modelling of Indoor 

VLC System  

3.1 Introduction 

To evaluate the performance of a VLC link in terms of signal integrity, modelling 

of the VLC channel is essential. The characteristics of the VLC system channel 

are fundamental to address the performance of the system and design issues. 

This chapter describes the tools that were used to model the VLC system 

communication channel in an indoor environment. The VLC signal under the 

effect of multipath dispersion and mobility is assessed for different link 

configurations (LOS and NLOS). For an indoor VLC link, multipath propagation, 

receiver noise, path loss and channel variation due to mobility are the major 

impairments. They can degrade the VLC system performance due to the 

introduction of heavy distortion in the received VLC signal. Light rays cannot 

penetrate opaque barriers such as walls, and hence are confined within the 

room after being reflected, which results in multipath propagation. Mathematical 

relations are derived to determine the received power due to multiple 

reflections. The simulations and calculations reported in this thesis were carried 

out using MATLAB.   

       The indoor VLC communication channel is investigated in Section 3.2. The 

multipath propagation model is discussed in Section 3.3. The impulse response 

is presented in Section 3.4. An analysis of the delay spread of the received 

pulse is given in Section 3.5. The SNR evaluation is provided in Section 3.6. 

The simulation package is explained in Section 3.7. The simulation results of 

the conventional VLC systems with wide FOV receiver are summarised in 

Section 3.8. A summary is then provided at the end of the chapter. 
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3.2 Indoor VLC Communication Channel   

In optical wireless links, including VLC systems, IM/DD is the preferred choice 

[26], [109] due to its low complexity and cost. As shown in Figure 3.1, at the 

transmitter side IM can be simply used to modulate the desired signal into the 

instantaneous power of the optical carrier by varying the intensity of the optical 

source. At the receiver side, DD is used to generate the electrical current 𝐼(𝑡) 

so that it is proportional to the instantaneous received optical power. The typical 

detector area contains tens of thousands of very short wavelengths of the 

received optical signal, and hence allows spatial diversity and prevents fading 

[26]. An indoor OW channel that uses IM/DD can be fully characterised by the 

impulse response (ℎ(𝑡)) of the channel as given in [135]:  

              𝐼(𝑡, 𝐴𝑧, 𝐸𝑙) = ∑ 𝑅𝑥(𝑡) ⊗ ℎ𝑚(𝑡, 𝐴𝑧, 𝐸𝑙) + ∑ 𝑅𝑛𝑚(𝑡, 𝐴𝑧, 𝐸𝑙)
𝑀𝑡
𝑚=1

𝑀𝑡
𝑚=1          (3.1) 

where 𝐼(𝑡, 𝐴𝑧, 𝐸𝑙) is the received instantaneous photocurrent in the photo-

detector with photo-detector responsivity (𝑅) using 𝑀 elements to receive a 

transmitted signal 𝑥(𝑡) through channel ℎ in the presence of AWGN (𝑛𝑚). 𝐴𝑧 

and 𝐸𝑙 are the direction of arrival in the azimuth and elevation angles, 

respectively, 𝑡 is the absolute time and ⊗ denotes convolution. It should be 

noted that 𝑥(𝑡) represents power and not amplitude. This implies that the VLC 

signal is non-negative.  

 

 

                      Figure  3.1: Block diagram of IM/DD VLC system. 
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In addition, the total average transmitted optical power in (3.1) is provided by 

the mean value of 𝑥(𝑡) and not an integral of |𝑥(𝑡)|2  as is the case with RF 

systems. 

       The VLC signal emitted by the LED reaches the receiver through various 

paths of different lengths. These propagation paths change with the receiver 

movement, and/or the movement of the surrounding objects. However, the 

paths are fixed for a given fixed configuration. The channel impulse response 

can be represented approximately as the sum of scaled and delayed Dirac delta 

functions [26]. In this thesis a simulation package based on a ray tracing 

algorithm was developed to compute the impulse response on the entire 

communication plane. The channel impulse response can be given as: 

                                               ℎ (𝑡) = ∑ ℎ(𝑘)(𝑡)∞
𝑘=0                                                     (3.2) 

where ℎ(𝑘) is the impulse response due to the LOS and reflection components. 

3.3 Multipath Propagation  

The indoor channel propagation characteristics depend on the relative positions 

of the transmitter, receiver and reflectors, as well as their patterns (i.e., FOV for 

transmitter and receiver). These characteristics are also affected by the 

movement of the surrounding objects and people, but these changes are slow 

compared with the transmission rate. Hence, the channel can be considered as 

stationary for a given fixed configuration.  

       Multipath propagation causes the transmitted pulses to spread and may 

lead to ISI. Consequently, ISI restricts the attainable transmission rates. 

Multipath dispersion increases when the dimensions of the room increase, and 

this is due to the increase in the difference in paths length. Gfeller and Bapst 

studied the reflection coefficients for a number of materials normally used in 
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indoor settings [6]. They showed that the reflection coefficients ranged from 0.4 

to 0.9. They also found that the power reflected by elements either on the walls 

or the ceiling was well approximated by an ideal Lambertian pattern. Thus, in 

their work and in this thesis the reflection elements on the ceiling and walls are 

treated as a small transmitter that transmits an attenuated version of the 

received signals from its centre in a Lambertian pattern. The power radiated 

into a solid-angle element 𝑑𝛺 can be modelled as [136]: 

                                𝑑𝑃 =
𝑛+1

2𝜋
× 𝑃𝑠 × 𝑐𝑜𝑠

𝑛(𝛼) × 𝑑Ω                                         (3.3) 

where the coefficient (𝑛 + 1)/2𝜋 assures that integrating 𝑑𝑃 over the surface of 

a hemisphere results in the total average transmitted optical power 𝑃𝑠 being 

radiated by the source (i.e., LED): 

                              𝑃𝑠 = ∫ 𝑑𝑃
𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒

                                                          (3.4) 

𝛼  is the angle of incidence with respect to the transmitter’s surface normal and 

the parameter 𝑛 represents the mode number that determines the shape of the 

reflected beam, which is related to the half-power semi-angle (ℎ𝑝𝑠) and can be 

defined as [26]: 

                                 𝑛 =
− 𝑙𝑛(2)

𝑙𝑛(𝑐𝑜𝑠(ℎ𝑝𝑠))
                                                                (3.5) 

It is suitable to use 𝑛 = 1 as all surfaces are presumed to be rough, and this is 

in agreement with experimental measurements in [6]. However, transmitters 

may have a high mode number, to concentrate the power at an area of interest. 

In this thesis, it is assumed that the reflecting elements in a plaster surface 

have an ℎ𝑝𝑠 that is equal to 60o, which corresponds to 𝑛=1. 
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3.3.1 Calculations of received optical power 

More than one path may be present between the transmitter and the receiver as 

a result of multipath propagation. Temporal dispersion in the optical signal 

occurs as a result of multiple paths. A ray tracing algorithm can be used to 

compute the received optical power. The reflected optical rays from different 

reflectors are traced for all potential paths to the other reflectors or the receiver. 

Therefore, to implement ray tracing, the reflecting surfaces were divided into a 

number of equal-sized (square shaped) reflection elements. The optical rays 

reflected from these elements were in the shape of a Lambertian pattern (𝑛 = 

1). The small size of these elements enhances the accuracy of the impulse 

response. However, the computation time increases dramatically when the 

surface element size is decreased. 

       Previous research considered only LOS and reflections up to first order 

[28], [77], [90]. However, this may not provide a full description of the 

characteristics of the system. Therefore, in this work reflections up to second 

order were considered, since the second order reflection can have a great 

impact on the system performance (especially at high data rates). In addition, 

our work has found that most of the received power is within the first and 

second reflections, but that when it goes beyond the second order the signal is 

highly attenuated [101].  

       The total received optical power (𝑃𝑟) at the receiver, considering the LOS 

component (𝑃𝐿𝑂𝑆), first order reflections (𝑃𝐹𝑆𝑇) and second order reflections 

(𝑃𝑆𝐸𝐶) can be expressed as: 

                          𝑃𝑟 = ∑ 𝑃𝐿𝑂𝑆
𝑆
𝑖=1 + ∑ 𝑃𝐹𝑆𝑇

𝑀
𝑖=1 + ∑ 𝑃𝑆𝐸𝐶

𝐹
𝑖=1                                     (3.6) 

where 𝑆 is the number of transmitter units, 𝑀 is the number of reflecting 

elements in the first order reflection and 𝐹 is the number of reflecting elements 

in the second order reflection. 



Chapter Three 

50 

 

Figure 3.2 shows the ray tracing setup for LOS as well as first and second order 

reflections. The impulse response of the VLC channel can be computed by 

tracing all potential light rays between the transmitter and the receiver. 

 

 

 

 

 

 

 

 

 

 

Figure  3.2: Ray tracing setup for LOS, first and second order reflections in VLC 

system. 

3.3.1.1 Line-of-Sight (LOS) analysis 

A LOS component is available when a direct path connects the transmitter and 

the receiver. For example, in the case of a VLC system, when the transmitter is 

placed on the ceiling and has an elevation angle of -90o (facing downwards) 

and the receiver is on the communication plane with an elevation angle of 90o 

(facing upwards), as shown in Figure 3.3, the 𝑃𝐿𝑂𝑆 component can be written as:   
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                      𝑃𝐿𝑂𝑆 = {

𝑛+1

2𝜋𝑅𝑑
2 × 𝑃𝑠 × 𝑐𝑜𝑠

𝑛(𝛼) × cos(𝛿) × 𝐴        0 ≤  𝛿 ≤ 𝜓𝑐
     

0                                                                         𝛿 > 𝜓𝑐

                (3.7) 

where 𝑃𝑠 represents the total average transmitted optical power radiated by the 

light source (LED). 𝐴 is the detector area. 𝛿 is the angle between the normal of 

the photodetector and the incident ray. 𝛼 is the angle between the normal of the 

transmitter and the irradiance ray. 𝑅𝑑  is the distance between the transmitter 

and the receiver. If the received angle (𝛿) is larger than the acceptance semi-

angle (𝜓𝑐), then the direct LOS received power approaches zero. Since, the 

signal must lie within the FOV of the receiver to be received, changing the 

receiver’s FOV can be used to minimise noise (background light) or unwanted 

reflections.  

 

 

 

 

 

 

Figure  3.3: Ray tracing for LOS. 

The transmitting and receiving angles (𝛼, 𝛿) are calculated as follows:  

                                   cos(𝛼) =
𝑛̂𝑡 .(𝑅𝑟−𝑅𝑡)

𝑅𝑑
  𝑎𝑛𝑑    cos(𝛿) =

𝑛̂𝑟 .(𝑅𝑡−𝑅𝑟)

𝑅𝑑
                            (3.8) 
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where  𝑛̂𝑡 is the normal of the transmitter at location 𝑅𝑡 and 𝑛̂𝑟 is the normal of 

the receiver at location 𝑅𝑟. It should be noted that both angles in (3.8) are equal 

if the transmitter and the receiver are placed in parallel planes, like the case in 

Figure 3.3. However, if the  𝑛̂𝑡 is perpendicular to the 𝑛̂𝑟, or vice versa, then the 

transmitting and receiving angles are different. Both situations were considered 

when computing these angles. 𝑅𝑑 is the direct distance between the transmitter 

and the receiver and can be calculated as:   

                       𝑅𝑑 = ‖𝑅𝑟 − 𝑅𝑡‖ =  √(𝑥𝑟 − 𝑥𝑡)2 + (𝑦𝑟 − 𝑦𝑡)2 + (𝑧𝑟 − 𝑧𝑡)2              (3.9) 

where 𝑥𝑡 , 𝑦𝑡,   𝑧𝑡  and 𝑥𝑟 , 𝑦𝑟,   𝑧𝑟 are the transmitter and the receiver coordinates 

respectively.  

3.3.1.2 First order reflection analysis 

Figure 3.4 shows a ray incident from the transmitter on a square reflecting 

element and then from the reflective element to the receiver. Plaster walls can 

be considered as Lambertian reflectors with 𝑛𝑒 = 1 [6]. By using the Lambertian 

model in Equation 3.3 the received optical power of the first order reflections 

𝑃𝐹𝑆𝑇  can be computed as:    

𝑃𝐹𝑆𝑇 =

{
 
 

 
 
(𝑛+1)(𝑛𝑒+1)

4𝜋2𝑅1
2𝑅2
2 × 𝑃𝑠 × 𝜌1 × 𝑑𝐴1 × 𝑐𝑜𝑠

𝑛(𝛼) × cos(𝛽) × 𝑐𝑜𝑠𝑚(𝛾) × cos(𝛿) × 𝐴 

                  0 ≤  𝛿 ≤ 𝜓
𝑐

 0                                                              𝛿 > 𝜓
𝑐
                                                

        

 (3.10 

where  𝑅1 is the distance between the transmitter and the reflective element, 

𝑅2 is the distance between the reflective element and the receiver and 𝛼 is the 

angle between the normal of the transmitter and the irradiance ray. 
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Figure  3.4: Ray tracing for first order reflections. 

𝛽 is the angle between the irradiance ray from the transmitter and the reflective 

element’s normal, 𝛾  is the angle between the reflective element’s normal and 

the reflected ray toward the receiver and 𝛿 is the angle between the normal of 

the receiver and the incident ray. 𝑑𝐴1 is the area of the reflective element and 

𝜌1 is the reflection coefficient of the reflective surface. 

       The reflective elements are treated as secondary small transmitters where 

the retransmitted power is determined by the received optical power from the 

transmitter and its reflection coefficient 𝜌1. The four angles in Equation 3.10 can 

be computed as: 

                {

     cos(𝛼) =
𝑛̂𝑡 .(𝑅𝑒1−𝑅𝑡)

𝑅1
         cos(𝛽) =

𝑛̂1 .(𝑅𝑡−𝑅𝑒1)

𝑅1
    

     

         cos(𝛾) =
𝑛̂1 .(𝑅𝑟−𝑅𝑒1)

𝑅2
       cos(𝛿) =

𝑛̂𝑟 .(𝑅𝑒1−𝑅𝑟)

𝑅2
         

                         (3.11) 

where  𝑛̂1 is the normal of the reflective element 1 at location 𝑅𝑒1. 
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3.3.1.3 Second order reflection analysis 

Extending the reflection to additional surfaces and using the Lambertian model 

once again, the second order reflection can be calculated in three steps:  

1- Compute the amount of incident optical power to the reflective element 

from the transmitter, which is similar to the approach used to calculate 

the LOS received power.  

2- Compute the amount of incident optical power from the first reflective 

element to the second reflective element. 

3- Compute the amount of received power by the receiver from the second 

reflective element. 

It can be observed that the input power for the second reflective element is 

received from the first reflective element. Figure 3.5 shows the tracing of the 

reflected rays for the second order reflection, and 𝑃𝑆𝐸𝐶 is given as:   

𝑃𝑆𝐸𝐶

=

{
 
 

 
 
(𝑛 + 1)(𝑛𝑒 + 1)

8𝜋3𝑅1
2𝑅2

2𝑅3
2

2

× 𝑃𝑠 × 𝜌1 × 𝜌2 × 𝑑𝐴1 × 𝑑𝐴2 × 𝑐𝑜𝑠
𝑛(𝛼) × cos(𝛽) ×                                                                                                

    𝑐𝑜𝑠𝑚(𝛼1) × cos(𝛽1) × 𝑐𝑜𝑠𝑚(𝛼2) × cos(𝛿) × 𝐴    0 ≤  𝛿 ≤ 𝜓𝑐            (3.12)                                           
                             

      0                                                                                                           𝛿 > 𝜓𝑐                                                                                        

  

where 𝑅1 is the distance between the transmitter and the reflective element 

1. 𝑅2 is the distance between the reflective element 1 and the reflective element 

2. 𝑅3 is the distance between reflective element 2 and the receiver. 𝑑𝐴1 and 

𝑑𝐴2 are the areas of the reflective elements 1 and 2, respectively, 𝛼 is the angle 

between the normal of the transmitter and the irradiance ray, 𝛽 is the angle 

between the irradiance ray from the transmitter and the normal of reflective 

element 1 and 𝛾  is the angle between the normal of reflective element 1 and 

the reflected ray toward reflective element 2. 𝛽1 is the angle between the 
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incident light from the reflective element 1 and the normal of the reflective 

element 2. 𝛼2 is the angle between the normal of the reflective element 2 and 

the second reflected ray and 𝛿 is the angle between the second reflected ray 

and the normal of the receiver. 𝜌1 and 𝜌2 are the reflection coefficients of the 

first and second reflective elements, respectively.  

      

 

 

 

 

                    

Figure  3.5: Ray tracing for second order reflections. 

In the second order reflection, six angles are required and can be computed in 

a similar way to the direct power and first order reflection by tracing the ray from 

the transmitter to the receiver as: 

 

              

{
  
 

  
 cos(𝛼) =

𝑛̂𝑡 . (𝑅𝑒1 − 𝑅𝑡)

𝑅1
             cos(𝛽) =

𝑛̂1 . (𝑅𝑡 − 𝑅𝑒1)

𝑅1
                                                              

       cos(𝛼1) =
𝑛̂1 . (𝑅𝑒2 − 𝑅𝑒1)

𝑅2
          cos(𝛽1) =

𝑛̂2 . (𝑅𝑒1 − 𝑅𝑒2)

𝑅2
                                                                  

 cos(𝛼2) =
𝑛̂2 . (𝑅𝑟 − 𝑅𝑒2)

𝑅3
             cos(𝛿) =

𝑛̂𝑟 . (𝑅𝑒2 − 𝑅𝑟)

𝑅3
                  (3.13)                                  

 

where  𝑛̂2 is the normal of the reflecting element 2 at location 𝑅𝑒2.  
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3.4 Impulse Response  

In a practical VLC system, the impulse response is continuous, but the 

simulator subdivides the reflecting surfaces into discrete elements (reflecting 

elements on the walls, ceiling and floor). Thus, the received optical power is 

recorded at the receiver within time intervals (time bins). Each time bin is 

roughly the time light takes to travel between neighbouring elements [136]. A 

good choice of time bin width is provided by [41], [136]: 

                                            𝑡𝑖𝑚𝑒_𝑏𝑖𝑛 = √𝑑𝐴 𝑐⁄                                              (3.14) 

where 𝑐 is the speed of light and 𝑑𝐴 is the reflection element area. Rays arriving 

within similar time intervals are assembled and stored for a particular receiver-

transmitter location on the CP. An identical histogram of the practical impulse 

response is achieved as 𝑑𝐴 approaches zero. It should be noted that reducing 

𝑑𝐴 leads to improved resolution of the impulse response evaluation together 

with an increase in the computation time exponentially. Thus, the reflective 

element size 𝑑𝐴 has to be selected to keep the computation requirements 

within a reasonable time (the computation time increases dramatically when the 

surface element size is decreased) [71], [137]-[139].  

       The indoor VLC system can be completely analysed via its impulse 

response ℎ(𝑡). Several parameters can be obtained by determining the VLC 

impulse response, such as delay spread, 3 dB channel bandwidth and SNR.    

3.5 Delay Spread 

Indoor VLC systems are subject to multipath dispersion due to non-directed 

transmission, which can cause ISI. Delay spread is a good measure of the 

signal pulse spread due to the temporal dispersion of the incoming signal. The 
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channel spread can be quantified using the root mean square (rms) delay 

spread [140], [141]. The delay spread (𝐷) of an impulse response is given by: 

                                                                   𝐷 = √
∑(𝑡𝑖−𝜇)

2𝑃𝑟𝑖
2

∑𝑃𝑟𝑖
2                                         (3.15) 

where 𝑡𝑖 is the delay time associated with the received optical power 𝑃𝑟𝑖 and 𝜇 

is the mean delay given by: 

                                                        𝜇 =
∑𝑡𝑖𝑃𝑟𝑖

2

∑𝑃𝑟𝑖
2                                                  (3.16) 

In this thesis, the delay spread is computed for each impulse response over the 

entire communication plane. In practice, for a given transmitter and receiver 

location the delay spread may change if the reflecting elements in the room 

move, for instance fans rotating and people moving. These kinds of effects are 

not considered in this thesis, to the best of our knowledge they have not been 

quantified by other researchers. 

3.6 Calculations of Signal to Noise Ratio (SNR) 

The VLC system’s performance is best evaluated using the SNR, which gives 

due consideration to the noise and signal spread (eye opening). The bit error 

rate is expressed as: 

𝐵𝐸𝑅 = 𝑄(√𝑆𝑁𝑅)                                                  (3.17) 

where 𝑄 is the Gaussian function approximated as: 

                               𝑄(𝑥) =
1

2
𝑒𝑟𝑓𝑐 (𝑥

√2
⁄ ) ≈

1

√2𝜋

𝑒
−(𝑥

√2
⁄ )

2

𝑥
                               (3.18) 

The function has the value 𝑥=6 at a BER of 10-9. Hence, SNR=36 (15.6 dB) is 

needed for a 10-9 BER. 
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In OOK the SNR associated with the received signal can be calculated by 

considering 𝑃𝑠1 and  𝑃𝑠0 (the powers associated to logic 1 and 0, respectively). 

These powers (𝑃𝑠1  and 𝑃𝑠0) determine the eye opening at the sample instant, 

thus the ISI. The SNR is given by [142]-[145]: 

                                          𝑆𝑁𝑅 = (
𝑅(𝑃𝑠1−𝑃𝑠0)

𝜎𝑡
)
2

                                              (3.19) 

where 𝑅 is the photodetector responsivity (𝑅 = 0.4 A/W) and 𝜎𝑡 is the standard 

deviation of the total noise, which is the sum of the shot noise, thermal noise 

and signal dependent noise. It can be calculated as: 

                       𝜎𝑡 = √𝜎𝑠ℎ𝑜𝑡
2 + 𝜎𝑝𝑟𝑒𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

2 + 𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2                                       (3.20) 

where 𝜎𝑠ℎ𝑜𝑡
2  represents the background shot noise component, 𝜎𝑝𝑟𝑒𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

2  

represents the preamplifier noise component and 𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2  represents the shot 

noise associated with the received signal. The detection of light by a photodiode 

is a discrete process since the creation of an electron-hole pair is dictated by 

the statistics of photon arrivals. The latter is a discrete process and obeys the 

Poisson distribution. The discrete nature of the photo-detection process creates 

a signal dependent shot noise (quantum noise). Quantum noise results from the 

random generation of electrons by the incident optical radiation [63].    

       In this thesis two schemes are considered to process the electrical signal 

from different branches in the ADR or different pixels in the imaging receiver: 

selection combining (SC) and maximum ratio combing (MRC). In the SC the 

receiver (ADR or imaging) simply selects the branch/pixel with the largest SNR 

among all the branches/pixels. The SC SNR is given by:  

                                           𝑆𝑁𝑅𝑆𝐶 = 𝑚𝑎𝑥𝑖 (
𝑅(𝑃𝑠1−𝑃𝑠0)

𝜎𝑡
)
𝑖

2

      1 ≤ 𝑖 ≤ 𝐽                       (3.21) 
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where 𝐽 represents the total number of detectors/pixels that are used in the 

receiver. In contrast to the SC, the MRC utilises all pixels from the imaging 

receiver (or branches in the ADR). The output signals of all the pixels are 

combined through an adder circuit. Each input to the circuit is added with a 

weight proportional to its SNR to maximise the SNR [146]. The weight of every 

pixel is obtained as [95]: 

                                                     𝑤𝑖 =
𝑅(𝑃𝑠1𝑖−𝑃𝑠0𝑖)

𝜎𝑡2𝑖
    1 ≤ 𝑖 ≤ 𝐽                                  (3.22) 

The SNR at the output of the MRC is: 

                                     𝑆𝑁𝑅𝑀𝑅𝐶 =
(∑ 𝑅(𝑃𝑠1𝑖−𝑃𝑠0𝑖)𝑤𝑖
𝐽
𝑖=1 )

2

∑ (𝜎𝑡𝑖)
2
𝑤𝑖
2𝐽

𝑘=1

                                            (3.23) 

By substituting (𝑊𝑖) in (3.23), the SNR obtained using the MRC combining 

method is given by: 

𝑆𝑁𝑅𝑀𝑅𝐶 =

(∑ 𝑅(𝑃𝑠1 − 𝑃𝑠0)𝑖
𝑗
𝑖=1 (

𝑅(𝑃𝑠1 − 𝑃𝑠0)
𝜎𝑡2

)
𝑖

)

2

∑ 𝜎𝑡𝑖
2  (
𝑅(𝑃𝑠1 − 𝑃𝑠0)

𝜎𝑡2
)
𝑖

2
𝑗
𝑖=1

 

                            = 
∑ 𝑅2 (𝑃𝑠1−𝑃𝑠0)𝑖

2 
𝑗
𝑖=1 (

𝑅(𝑃𝑠1−𝑃𝑠0)

𝜎𝑡
2 )

𝑖

2

∑ 𝜎𝑡𝑖
2 (
𝑅(𝑃𝑠1−𝑃𝑠0)

𝜎𝑡
2 )

𝑖

2
𝑗
𝑖=1

 = ∑
(𝑅(𝑃𝑠1−𝑃𝑠0)𝑖)

2

𝜎𝑡𝑖
2

𝑗
𝑖=1  =  ∑ 𝑆𝑁𝑅𝑖

𝑗
𝑖=1   (3.24) 

This SNR analysis will be used throughout the thesis to evaluate new VLC 

systems.  
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3.7 Simulation Package 

To evaluate the VLC system’s performance under the impact of user mobility 

and multipath propagation, the channel impulse response has to be estimated. 

A simulation tool similar to one developed by Barry et al. [136], is used to 

produce impulse responses, the power distribution and to calculate the delay 

spread, 3dB channel bandwidth and SNR. The simulations and calculations 

reported in this thesis were carried out using MATLAB.  

       A simulation was conducted in an empty room (unfurnished) with 

dimensions of 4 m × 8 m × 3 m (width × length × height). Experimental 

measurements of plaster walls have shown that they are roughly a Lambertian 

reflector [6]. Therefore, all the walls (including ceiling) and the floor were 

modelled as Lambertian reflectors with high reflectivity (reflection coefficients of 

0.3 for the floor and 0.8 for the walls and ceiling). These relatively high 

reflectivities (within the range) were selected as they result in the greatest 

multipath dispersion (worst case scenario), and consequently considerable 

pulse spread. Reflections from doors and windows are considered to be the 

same as reflections from walls. To model the reflections, the room was divided 

into a number of equally sized squares with an area of 𝑑𝐴 and reflection 

coefficient of 𝜌. Each reflection element was treated as a small transmitter that 

transmits an attenuated version of the received signals from its centre in the 

same form as a Lambertian pattern with 𝑛=1, where 𝑛 is the Lambertian 

emission order as defined in [26]. 

       Previous research considered only LOS and reflections up to a first order 

[28], [31], [80]. However, this may not provide a full description of the 

characteristics of the system. Therefore, in this thesis, reflections up to a 

second order were considered, since the second order reflection has a greater 

impact on system performance (especially at high data rates). It should be 

noted that reducing 𝑑𝐴 leads to an improved resolution in the impulse response 
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evaluation together with an increase in the computation time. To keep 

computations within practical measure, surface elements with sizes of 5 cm × 5 

cm for first-order reflections and 20 cm × 20 cm for second-order reflections 

were used in this thesis. 

       The room’s illumination was provided by eight LED light units. Each LED 

light unit was filled with 3600 (60×60) LEDs. The space between LED chips was 

0.5 cm. These LED lights were installed at a height of 3 m above the floor. The 

height of the desk (communication plane) was 1m. The centre illumination 

intensity for each LED chip was 0.73 candela (cd) and the semi angle at half 

power of an LED chip was 70o [28]. The coordinates of the LED light units were 

(1m, 1m, 3m), (1m, 3m, 3m), (1m, 5m, 3m), (1m, 7m, 3m), (3m, 1m, 3m),  (3m, 

3m, 3m), (3m, 5m, 3m) and (3m, 7m, 3m), as shown in Figure 3.6. The 

transmitted power from each LED chip was 20 mW. The specifications of the 

LED light units were adapted from [28]. A single element receiver with various 

FOVs (90o, 60o and 30o) and photo sensitive area of 1 cm2 was used. The latter 

is the most basic receiver configuration widely investigated in previous research 

[6], [28].    

       We compared the results of our simulator in the case of the traditional VLC 

system with the theoretical results detailed in [28], [147]. In addition, the author 

has verified his simulator against the results of the basic IROW systems in the 

literature, such as a conventional diffuse system (CDS), line strip multi-beam 

system (LSMS) and the beam clustering method (BCM) [87], [95], [135], [136], 

[148]. A very good match was observed between the results of the author’s 

simulator and other researchers’ work (see appendices A and B), and this gives 

confidence in the capability of the author’s simulator to assess new VLC 

systems.   
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Figure  3.6: VLC system room. 

3.8 Performance Analysis and Simulation Results 

The simulation was used to assess the channel impulse response of the indoor 

VLC system. This section presents the results of the traditional VLC system 

with single wide FOV receiver. An optical concentrator and/or optical filter were 

not used in this chapter. The results of the simulation are reported in the form of 

impulse response, pulse response, delay spread and SNR at a low data rate of 

50 Mb/s. 

A traditional single optical receiver with wide FOV is the most basic receiver 

configuration that has been widely investigated in previous research [6], [28], 

[149]. A receiver with a wide FOV gathers more optical power than a narrow 

FOV receiver, because a wide FOV receiver collects not only the primary signal 
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(LOS component), but also signals that have one or more reflections, thus 

increasing the amount of signal power collected. On the other hand, multipath 

dispersion can cause increased signal spread in this case.  

To evaluate the effect of FOV on the received impulse response, different 

receiver FOVs (90o, 60o and 30o) were used. Narrower FOVs can be used to 

restrict the range of incident rays accepted and hence reduce the pulse spread, 

at the possible expense of power loss.     

3.8.1 Impulse response and pulse response 

The simulation of the channel impulse response was performed using a single 

detector with an active area of 1 cm2 and with different reception angles (90o, 

60o and 30o). To compute the impulse response of the VLC channel, each ray 

arriving from a direct LOS component as well as the reflecting elements is 

added into one of the respective time bins. The delay associated with the path 

of each ray between transmitters (LEDs) and receiver is calculated to determine 

which time bin each ray should be added to. This process is repeated until all 

the rays falling within the FOV of the receiver have been included. 

Figure 3.7 shows the impulse responses of a single photo detector (at 

FOV=90o, 60o and 30o). Due to the symmetry of the room, the results for x=3 

equal the results for x=1, therefore only x=1m and x=2m results are shown 

along the y-axis. The results show that the shape of the channel impulse 

response is a function of the position of the receiver in the room and the 

receiver’s FOV. The impulse response of the wide FOV receiver contains many 

peaks corresponding to the different direct LOS components coming from 

different LED light units. The impulse response of the wide FOV receiver (90o) 

also shows that the LOS, first and second order reflection components have a 

great impact on the signal, because these components make the signal spread 

over a larger time frame.  
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Figure ‎3.7: Impulse responses of traditional VLC system with single element receiver 

for various FOVs (90o, 60o and 30o) at receiver locations of (a) (1m, 1m, 1m) and (b) 

(1m, 2m, 1m). 

The pulse response was found through the convolution of the impulse response 

with a rectangular pulse with a 20 ns duration (which corresponds to 50 Mb/s). 

In this thesis, for the bit rate of 50 Mb/s we used the p-i-n BJT trans-impedance 

preamplifier in [37]. The impact of multipath propagation on the received signal 

was observed to result in temporal dispersion, hence potentially ISI. The effect 

of the pulse spread can be minimised by reducing the FOV of the receiver. 

However, the received optical power is reduced. For example, when the 

receiver was at location (1m, 1m, 1m) the received optical power is decreased 
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from 1.2 mW to 0.51mW (see Figure 3.8 a) when the FOV is changed from 90o 

to 30o. The pulse responses of the VLC system are depicted in Figure 3.8.  

 

 

 

 

 

 

 

 

 

 

Figure  3.8: Pulse responses of traditional VLC system with single element receiver for 

various FOVs (90o, 60o and 30o) at receiver locations of (a) (1m, 1m, 1m) and (b) (1m, 

2m, 1m). 
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delay spread compared with the other receivers (i.e., FOVs=90o and 60o). This 

improvement is due to the limited range of the rays accepted by the narrow 

FOV. However, at locations (2m, 2m, 1m), (2m, 4m, 1m) and (2m, 6m, 1m) the 

delay spread of the single element receiver with FOV=30o increases 

dramatically, and this is due to all the LOS components from LEDs being 

rejected due to the narrow FOV of the receiver and only a few components of 

first and second order reflections can be received. Therefore, it can be 

concluded that the FOV should not be reduced below 60o (in our given room 

geometry), where the VLC signal still preserves its good power level. It can also 

be noted that at FOV=60o the delay spread is reduced due to the limited range 

of the rays received. 

 

 

 

 

 

 

 

 

 

 

Figure  3.9: Distribution of delay spread for traditional VLC system with single element 

receiver for various FOVs (90o, 60o and 30o) at (a) x=1m and (b) x=2m and along the y-

axis. 
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3.8.3 SNR   

Figure 3.10 shows the SNR of three mobile VLC systems operating at 50 Mb/s. 

Significant improvement in the SNR was achieved at 50 Mb/s when a single 

element receiver with FOV=30o was used instead of 90o and 60o. In addition, it 

can be clearly seen that the VLC systems with FOVs=60o and 30o outperform 

the VLC system with a FOV of 90o. This is attributed to reducing the 

contribution of the reflection component by using a narrow FOV receiver. It can 

be noted that the receiver at FOV=30o achieves about 8 dB SNR gain over the 

wide FOV receiver (90o) and about 4 dB gain over the receiver at FOV=60o at 

the locations (1m, 1m, 1m), (1m, 3m, 1m), (1m, 5m, 1m) and (1m, 7m, 1m), 

which represents the worst communication paths at x=1m for the single element 

receiver with FOV=30o (the SNR gain is higher in the other locations as shown 

in Figure 3.10).  

 

 

 

 

 

 

 

 

Figure  3.10: SNR of traditional VLC system with single element receiver for various 

FOVs (90o, 60o and 30o) at (a) x=1m and (b) x=2m and along the y-axis.        
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3.9 Summary 

The characteristics of an indoor VLC link can be evaluated by modelling the 

VLC channel. This chapter has provided the propagation model that is used in 

this thesis and an explanation was given for the different channel parameters. A 

ray tracing algorithm, calculations of received power and the effects of multipath 

propagation were explained and evaluated. The simulations and calculations 

reported in this thesis were carried out using the MATLAB program. Traditional 

IROW and VLC systems were studied and evaluated. A very good match was 

observed between the results of the author’s simulation results and other 

researchers’ work (see appendices A and B), and this gives confidence in the 

capability of the author’s simulator to assess new VLC systems. The 

performance evaluation of a traditional VLC system with a single element 

receiver that has various FOVs (90o, 60o and 30o) was studied. It was shown 

that reducing the FOV of such a system can lead to a significant enhancement 

(i.e., reducing delay spread and improving SNR). However, it should be noted 

that a very small FOV leads to performance degradation; therefore, an optimum 

FOV should be used.   
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4 Visible Light Communication 

System Employing Laser 

Diodes, Angle Diversity 

Receiver and Imaging Receiver  

4.1 Introduction  

Traditional RF systems suffer from insufficient transmission rate and channel 

capacity due to the limited radio spectrum available. There is a potential band of 

the electromagnetic spectrum (i.e., optical band) available that is able to provide 

tens of Gb/s for users in the near future [19] especially for indoor users. VLC 

systems are among the promising solutions to the bandwidth limitation problem 

faced by radio frequency systems [4]. The main challenges facing high data 

rate visible light communication are the low modulation bandwidth of the current 

transmitters (i.e., LEDs), the ISI caused by multipath propagation and CCI due 

to multiple transmitters. In this chapter, we propose, design and evaluate the 

use of laser diodes (LD) for communication as well as illumination. The main 

advantage of using LD is their high modulation bandwidth that enables 

communication at data rates of multi gigabits per second for VLC when using a 

suitable receiver, such as an ADR or an imaging receiver, which mitigates the 

ISI. 

       Recent research has suggested that LD can provide more-efficient lighting 

than LED. A prototype laser-based headlight system was demonstrated by the 

car maker BMW. This system uses blue lasers and phosphors to generate 

white light [150]. A prototype from Sandia lab showed that by using four colour 
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laser sources it could provide a practical white light illumination source [151]. In 

their experiment, four laser diodes were used (red, green, yellow and blue) to 

generate white light that was similar to that from other light sources, such as 

incandescent lights and white LEDs [151]. Lasers were not expected to be ideal 

light sources because of their extremely narrow line-width and extremely narrow 

spot size. However, the results from using four-colour laser sources have 

shown experimentally that the colour rendering quality of the white light is good, 

and this paved the way for serious consideration of the use of lasers in solid 

state lighting [151]. One of the main potential issues associated with using laser 

lighting is that lasers can be dangerous to human eyes. Therefore, it should be 

noted that while the original sources indeed have laser source properties 

(colours red, green, yellow and blue), once they have been combined (using 

chromatic beam-combiners) and had the beam scattered and diffused to reduce 

speckle then produce white light [152], [153]. In 2011, Toshiba launched LD 

lighting that achieves much higher luminance within a much smaller area. The 

lighting unit can be used for various applications that require much higher 

luminous flux (it produces 4500 lumens using 90 Watts) than available with 

conventional white LEDs [154]. Recently, different types of RGB-LD lights were 

investigated to generate white light, blue lasers in combination with yellow 

emitting YAG:Ces and RGB lasers resulted in a luminous flux of 252 lumens 

and luminous efficacy of 76 lm/W was reported in [155]. 

       An ADR is considered as a simple and efficient technique that can be used 

to mitigate the effects of ambient light and pulse spread in OW systems [95], 

[96]. In this chapter, an ADR with three branches is proposed for a VLC system 

instead of wide FOV receiver to mitigate the impact of ISI, reduce the delay 

spread and increase the SNR when the VLC system operates at high data rates 

under the effects of mobility and multipath dispersion [100]. In addition, a 

custom design imaging receiver with 50 pixels is also proposed to further 

enhance the communication links and to provide higher SNR [103].  
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       In this chapter, LD are introduced as the source of illumination and 

communication for the VLC system (LD-VLC system) in conjunction with three 

different receivers (wide FOV, ADR and imaging receiver). The main goal of 

using LD is to enable the VLC system to achieve multi-gigabit/s data rates when 

employing a simple modulation technique (OOK).  

       The reminder of this chapter is divided into sections as follows: Section 4.2 

introduces the design of the laser VLC system. Section 4.3 shows laser VLC 

system and rooms setup. Section 4.4 presents the performance evaluation of 

the three branches ADR with RGB-LD. Simulation results and discussions 

about the use of LD in conjunction with wide FOV and imaging receivers in an 

empty room are presented in Section 4.5. Finally, a summary is provided in 

Section 4.6. 

4.2 Laser Diodes Light Design  

To achieve comfortable office lighting, a certain amount of illumination is 

required. According to European standard EN 12464-1, illumination should be 

at least 300 lx in an office [156]. Assuming that the LD light has a Lambertian 

radiation pattern, the direct LOS illumination at a point (x, y) in the floor of the 

room can be determined using [157], [158]:   

                                                    𝐸𝐿𝑂𝑆 = 𝐼(0)
𝑐𝑜𝑠𝑛(𝜃) 𝑐𝑜𝑠(∅)

𝐷1
2                                           (4.1) 

where 𝐼(0) is the centre luminous intensity of the LD, 𝜃 is the irradiance angle, 

𝐷1 is the distance between the LD and any point in the floor, ∅ is the angle of 

incidence and 𝑛 is the Lambertian emission order. Then the first reflection of 

illumination can be defined as shown in the following [28], [147]: 

                                     𝐸𝐹𝑆𝑇 =
𝐼(0) 𝑐𝑜𝑠𝑛(𝜃) 𝑐𝑜𝑠(∅)𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝛿1)𝑑𝐴1𝜌1

𝜋𝐷1
2𝐷2

2                                (4.2) 
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where 𝐷1 is the distance from the LD light to the first element, 𝐷2 is the distance 

from the first element to the floor, 𝑑𝐴1 is the area of the element in the first 

reflection, 𝜌1 is the reflection coefficient, 𝜑 and 𝛿1 are the angles of irradiance 

and incidence for the elements respectively. The second reflection of 

illumination can be calculated as [28], [147]: 

                     𝐸𝑆𝐸𝐶 =
𝐼(0)  𝑐𝑜𝑠𝑛(𝜃) 𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝛿1)𝑐𝑜𝑠(𝜑2)𝑐𝑜𝑠(𝛿2)𝑑𝐴1𝑑𝐴2𝜌1𝜌2

𝜋2𝐷1
2𝐷2

2𝐷3
2                  (4.3) 

where 𝐷1 is the distance from the LD light to the first element, 𝐷2 is the distance 

from first element to second element, 𝐷3 is the distance from the second 

element to the floor, 𝑑𝐴2 is the area of the second element in the second 

reflection, 𝜌2 are the reflection coefficients, 𝜑2 and 𝛿2 are the angles of 

irradiance and incidence for the second element respectively. The total 

horizontal illumination at any point in the floor can be calculated as follows:  

                                                    𝐸𝑡 = ∑ 𝐸𝐿𝑂𝑆
𝑆
1 + ∑ 𝐸𝐹𝑆𝑇

𝑀
1 + ∑ 𝐸𝑆𝐸𝐶

𝐹
1                           (4.4) 

where 𝑆 is the number of LD light units, 𝑀 is the number of reflecting elements 

in the first reflection and 𝐹 is the number of reflecting elements in the second 

reflection. 

4.3 Laser VLC System and Room Setup  

To evaluate the proposed VLC systems, a simulation was conducted in an 

empty room with dimensions 4 m× 8 m× 3 m (width × length × height) similar to 

the ones in Chapter 3.  

       A combination of red, green and blue lasers with a diffuser can be used to 

generate white light that has good colour rendering [159]. Therefore, the room’s 

illumination was provided by eight RGB-LD light units which were used to 

ensure that ISO and European standards were satisfied [156]. Each LD light 
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unit has 9 (3×3) RGB-LD. The LD lights were installed at a height of 3 m above 

the floor. The VLC room with the coordinates of the RGB-LD light units is shown 

in Figure 4.1. The specifications of the RGB-LD used in this study were adopted 

from the practical results reported in [151], where the measured illuminace for 

each RGB-LD was 193 lx. Therefore, the centre illumination intensity for each 

RGB-LD was 162 cd. The conversion from illuminace (lx) to luminous intensity 

(cd) was carried out using the inverse square law which is valid if (i) the source 

is a point source (ii) the beam is divergent and (iii) distance of interest is greater 

than ten times of the source size [160]. Figure 4.2 shows the architecture of the 

LD light units, where the light from three lasers (i.e., RGB) is combined using 

beam combiners, then passes through multiple ground glass diffusers to reduce 

speckle before illuminating the room. This design is similar to the one studied in 

[151]. Beam-splitters and detectors were used to monitor and control (tune LD 

light engine) the different laser powers. A few percent of the beam power is 

needed for that purpose. Changing the power emitted by each laser can be 

used to obtain the exact colour desired and set the total emitted power. A 

number of different uniformly distributed LD light unit configurations (i.e., 4, 6 

and 8 LD units) were tested to find the optimum number of units that ensure 

that the ISO and EU standards illumination requirements are satisfied in the 

room. We found that eight units were the optimum for illumination, and we used 

this in our study; four and six light units in the room did not achieve the 

minimum illumination requirement (i.e., 300 lx [156]). The height of the work 

desks where the transmitters and receivers associated with the user equipment 

are placed was 1m. This horizontal plane was referred to as the 

“communication plane”, (CP). Figure 4.3 shows the horizontal illumination 

distributions from the eight RGB-LD light units at the CP level. It is clear from 

this figure that there is sufficient illumination according to EU and ISO standards 

[156]. 
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4.4 Performance Evaluation of LD-VLC with Three-

branch Angle Diversity Receptions   

The performance of the LD-VLC system is assessed in the form of impulse 

response, delay spread, 3 dB channel bandwidth, and SNR. Two types of 

receiver were used an ADR with three branches and a single wide FOV (FOV = 

90o) element with photo sensitive area of 1 cm2. The proposed system is 

evaluated under the influence of receiver mobility, multipath dispersion and 

receiver noise. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: VLC system room. 
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Figure 4.2: Architecture of RGB-LD white light; light from three lasers is combined 

using chromatic beam-combiners, then passes through multiple ground glass diffusers 

to reduce speckle before illuminating the room. 

 

 

 

 

 

 

 

Figure 4.3: Distribution of horizontal illumination at the communication plane, Min. 336 lx 

and Max. 894 lx. 
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0.4 A/W each. The ADR uses a photo detector area of 4 mm2. The ADR was 

always placed on the CP, and results were obtained along the lines x=1m or 

x=2m. The direction of each branch in an ADR is defined by two angles: the 

azimuth angle (𝐴𝑍) and the elevation angle (𝐸𝐿). The 𝐴𝑍s of the three detectors 

were set at 0o, 180o and 0o, and the 𝐸𝐿s of the three branches were fixed at 

90o, 60o and 60o. The corresponding FOVs were fixed at 30o, 25o and 25o. The 

𝐴𝑍s, 𝐸𝐿s and FOVs were chosen through an optimisation process to achieve 

high SNR and low delay spread. To compute the reception angle (𝛷) for any 

detector in the ADR, a point 𝑃 has to be defined (see Figure 4.4), which is 

located 1 m above the detector in our case. 𝐸 is an element on the wall with 

coordinates (𝑥𝐸, 𝑦𝐸, 𝑧𝐸). Figure 4.4 shows light from a reflecting point (𝐸) on a 

wall incident on one of the detectors in the ADR that is located at (𝑥𝑟, 𝑦𝑟, 𝑧𝑟). 𝛷 

can be calculated as [96], [135]: 

                                                                   𝑐𝑜𝑠(𝛷) =
|
𝑃𝑅𝑥 
→   2|+|

𝐸𝑅𝑥 
→   2|−|

𝐸𝑃 
→  2|

2|
𝑃𝑅𝑥 
→   2||

𝐸𝑅𝑥 
→   2|

                               (4.5) 

where: 

 

                                                         |
𝑃𝑅𝑥 
→  2| = 1 + (

1

𝑡𝑎𝑛𝐸𝐿
)
2

                             (4.6) 

  

      

                              |
𝐸𝑅𝑥 
→  2| = (𝑥𝑟 − 𝑥𝐸 )

2 + (𝑦𝑟 − 𝑦𝐸 )
2 + (𝑧𝑟 − 𝑧𝐸 )

2                        (4.7) 

  

                           

                        |
𝐸𝑃 
→ 2| = [(

𝑐𝑜𝑠(𝐴𝑍)

𝑡𝑎𝑛(𝐸𝐿)
+ 𝑥𝑟) − 𝑥𝐸]

2

+  [(
𝑠𝑖𝑛(𝐴𝑍)

𝑡𝑎𝑛(𝐸𝐿)
+ 𝑦𝑟) − 𝑦𝐸]

2

 

 

                                                           +[(𝑧𝑟 + 1) − 𝑧𝐸]
2                                              (4.8) 

 

Figure 4.5 illustrates the physical structure of the ADR and the orientation of 

ADR in the room. The photocurrents received in each branch can be amplified 

separately and can be processed using different methods, such as SC, equal 

gain combining (EGC) or MRC, to maximise the power efficiency of the system. 

MRC can achieve better performance compared to the other methods [95], 
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[103]. Therefore, in this section the ADR LD-VLC system employed an MRC 

approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Angle diversity receiver, azimuth and elevation parameters of the diversity 

detection receiver. 

 

 

 

 

 

 

 

Figure 4.5: Physical structure of the ADR with top view of room that shows orientation 

of ADR receiver. 
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4.4.2 Impulse response  

The impulse responses and frequency responses of the two receivers (wide 

FOV and ADR) at the room centre are depicted in Figure 4.6. The frequency 

response is found by taking Fourier transform to the impulse response. It can 

be seen that the ADR’s impulse response (Figure 4.6b) is better than that of the 

wide FOV receiver in terms of signal spread. The impulse response of the wide 

FOV receiver (Figure 4.6a) contains many peaks that correspond to different 

direct LOS components coming from different RGB-LD light units. The impulse 

response of the wide FOV receiver also shows that the LOS as well as first and 

second order reflection components have a great impact on the signal, because 

these components cause the signal to spread over a large time-range, which is 

due to the wide FOV of this receiver (90o). Simulation results show that the LD-

VLC system in conjunction with an ADR increases the communication channel 

bandwidth from the 114 MHz offered by the wide FOV LD-VLC system to about 

3.7 GHz at room centre(see Figure 4.6). 

 

 

 

 

 

 

 

Figure 4.6: Impulse and frequency responses of (a) wide FOV and (b) ADR.  
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4.4.3 Delay spread and 3 dB channel bandwidth  

Figure 4.7 presents the communication system delay spread associated with the 

wide FOV and ADR LD-VLC systems. The results show that the ADR LD-VLC 

system has a lower delay spread than the wide FOV LD-VLC system at all the 

receiver locations considered. In the ADR LD-VLC system, the results indicate 

that employing an ADR instead of a wide FOV receiver can reduce the delay 

spread by a factor of 12 in our system (when operating in a typical room) from 

0.65 ns to 0.053 ns for the worst communication path (centre of the room, x=2 m 

and y=4m). This improvement is due to the limited range of the rays accepted by 

the narrow FOV associated with each branch of the ADR. In addition, it can be 

noticed that when the wide FOV receiver is located under one of the LD light 

units (i.e., at locations x=1 and y= 1, 3, 5, 7), the delay spread is higher than in 

other locations. This is attributed to the rays coming from the other LD light units 

(seven other LD light units) having to travel a longer distance to reach the 

receiver (distance between transmitters and receiver is maximum). In contrast, 

when the receiver is located midway between LD light units (i.e., at locations x= 

2 and y= 2, 4, 6) the delay spread is the lowest. The ADR performance does not 

follow the wide FOV receiver, because it uses multiple detectors aimed towards 

different locations in the room, and each detector has a certain FOV.      

       Although, the transmitter modulation bandwidth problem in the VLC system 

can be solved by replacing LEDs with LD, the channel bandwidth remains an 

issue that needs to be solved to achieve multi-gigabit per second data rates. 

We dealt with channel bandwidth by using an ADR instead of a wide FOV 

receiver. The 3 dB channel bandwidth achieved by the two receivers is shown 

in Figure 4.8. The results show that the ADR provides a larger bandwidth 

compared to the traditional wide FOV receiver. The minimum communication 

channel bandwidth of the wide FOV receiver was 70 MHz at x=1m and y=1m. In 

contrast, the minimum channel bandwidth in the ADR LD-VLC system was 3.7 

GHz at x=2m and y=4m (this value enables a data rate of up to 5.2 Gb/s [143]). 
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This increased channel bandwidth enables the VLC system to operate at higher 

data rates while using a simple modulation technique (OOK) [88]. At the least 

successful receiver location (x=2m and y=4m), a significant bandwidth 

enhancement can be achieved (a factor of 32 - from 114 MHz to 3.7 GHz) when 

our ADR VLC-LD is used instead of the wide FOV VLC-LD system. Note that 

the variation in channel bandwidth in tandem with the delay spread is due to the 

effects explained. 

 

 

 

 

Figure 4.7: Delay spread in fourteen different locations when the receivers move along 

x=1m and x=2m. 

 

 

 

 

 

Figure 4.8: The 3 dB channel bandwidth of the two systems, when the receivers move 

along x=1m and x=2m. 
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4.4.4 SNR analysis  

In this section, for the bit rate of 50 Mb/s the p-i-n BJT transimpedance 

preamplifier in [37] was used. A higher data rate of 5 Gb/s was also considered, 

and here the p-i-n FET receiver design in [161] was used. This pre-amplifier has 

a noise current density of 4.47 pA/√𝐻𝑧 and a bandwidth of 5GHz. A significant 

improvement in the SNR at low data rates (50 Mb/s) was achieved when the 

ADR LD-VLC system was used instead of the wide FOV LD-VLC system. It can 

be clearly seen that the ADR achieves about 7 dB SNR gain over the wide FOV 

receiver at the centre of the room (x=2m and y=4m), which represents the worst 

communication paths for the ADR receiver (SNR gain is higher in other 

locations as shown in Figure 4.9). To evaluate the performance of the ADR 

system at higher bit rates, the SNR was calculated at 5 Gb/s. Figure 4.10 

shows the SNR of the ADR when it is operated at 5 Gb/s; the lowest SNR 

achieved by the ADR LD-VLC system was 13.5 dB in the room corner. This 

means that the BER provided by our ADR LD-VLC system is better than 10-6 at 

5 Gb/s. The 3 dB channel bandwidth achieved by the wide FOV receiver (see 

Figure 4.8) does not enable it to transfer data at a rate of 5 Gb/s; therefore, we 

only present results for the ADR at high data rates (i.e., 5 Gb/s). 

 

 

 

 

 

Figure 4.9: SNR of the wide FOV and the ADR LD-VLC systems at 50 Mb/s. 
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Figure 4.10: SNR of ADR LD-VLC system at 5 Gb/s when using MRC combing 

scheme, at x=1m and at x=2m along the y-axis. 
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the results for x=1, therefore only x=1m and x=2m results are shown along the 

y-axis. 

4.5.1 Imaging receiver design 

The imaging receiver employs multiple pixels with narrower FOV. Narrow FOVs 

were chosen for the pixels to limit the range of optical rays (representing 

different path lengths) received hence limiting the ISI at high data rates and 

supporting mobility. The imaging receiver presents two potential advantages 

over non-imaging receivers (wide FOV and ADR): firstly, a single planner array 

is used for all photo-detectors, which can facilitate the use of a large number of 

pixels. Secondly, a common concentrator (for example, a lens) can be shared 

among all photo-detectors, reducing the cost and size compared to other kinds 

of receivers [162]. The photocurrents received in each pixel can be amplified 

separately and can be processed using different methods such as SC or MRC 

techniques to maximise the power efficiency of the system [95]. The detector 

array of the imaging receiver is segmented into 𝐽 equal-sized rectangular 

shaped pixels as shown in Figure 4.11. In this case, and under most 

circumstances, the signal falls on no more than four pixels [163]. Therefore, the 

area of each pixel is the photo-detector’s area, which is equal to the exit area of 

the imaging concentrator used, divided by the number of pixels. In this thesis 

the detector array was segmented into 50 pixels and the imaging receiver 

employed a concentrator. The transmission factor of the concentrator is given 

by [162], [164], [165]: 

                                      𝑇𝑐(𝛿) = −0.1982𝛿
2 + 0.0425𝛿 + 0.8778                           (4.9) 

where 𝛿 is the incidence angle measured in radians. We set the semi 

acceptance angle (𝜓𝑎) of this concentrator to 65o so that it can view the whole 

ceiling when the receiver is at the centre of the room. In this work, the photo 

detector array of the imaging receiver was segmented into 50 pixels (5 rows 
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and 10 columns). When the receiver is at the centre of the room it is designed 

to see the whole ceiling, therefore the ceiling was subdivided in this case into 

50 segments (5×10) along the x and y axes respectively, and each reception 

area or segment is cast onto a single pixel.  

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Physical structure of an imaging receiver which uses a single imaging lens 

with a photo-detector segmented into multiple pixels. 

The detector array is assumed to fit exactly into its corresponding 

concentrator’s exit area. Therefore, the detector array has a photosensitive area 

of 2 cm2 and each pixel has an area of 4 mm2. In our design, each reception 

area is cast onto a single pixel when the receiver is at the centre of the room. A 

pixel’s reception area can be found by calculating the reception angles 𝛼𝑥 and 

𝛼𝑦 with respect to the receiver’s normal along the x and y directions as shown 
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in Figure 4.12. 𝛼𝑥 and 𝛼𝑦 can be calculated by  𝛼𝑥 = 𝑡𝑎𝑛
−1  (

𝑑𝑥

ℎ
) and 𝛼𝑦 =

𝑡𝑎𝑛−1 (
𝑑𝑦

ℎ
), where 𝑑𝑥 and 𝑑𝑦 are the x-axis and y-axis horizontal separations 

and ℎ𝑟 is the reception area height [163]. In addition, the reception area 

observed by each pixel varies as the imaging receiver moves (the new 

reception area should be calculated when the receiver moves). These reception 

angles (𝛼𝑥 and 𝛼𝑦) become a design property (reference points) of the imaging 

receiver at all locations. At certain locations on the CP, some of the reception 

areas on the ceiling start to appear on one of the walls, when the receiver is 

located at the room corner, as shown in Figure 4.13. The height of the centre of 

the reception area above the CP, 𝑍𝑦 or 𝑍𝑥 on the xz-wall or the yz-wall, 

respectively, can be calculated by: 

                                         𝑍𝑦 = (
𝑌𝑟

𝑡𝑎𝑛𝛼𝑦
)  and  𝑍𝑥 = (

𝑋𝑟

𝑡𝑎𝑛 𝛼𝑥
)                                   (4.10)                                                         

where 𝑌𝑟 and 𝑋𝑟 are the horizontal separation distances between the imaging 

receiver and the xz-wall and yz-wall respectively.  

 

 

 

 

 

Figure 4.12: Reception area distribution associated with the photo-detector array when 

the receiver is placed at the centre of the room. 
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Figure 4.13: Reception area distribution associated with the photo-detector array when 

the receiver is placed at the corner of the room. 

4.5.2 Impulse response 
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spread. The impulse response of the wide FOV receiver (Figure 4.14) contains 

many peaks that correspond to different direct LOS components coming from 

different LD light units. The impulse response of the wide FOV receiver also 
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have a great impact on the signal, because these components cause the signal 

to spread over a large time-range (see Figure 4.14), which is due to the wide 

FOV’s of this receiver. From Figure 4.15 we can see that the first and the 

second order reflections were significantly reduced when using the imaging 

receiver at this location, which means the ISI was almost eliminated. In addition, 

the power received by the imaging receiver was low (6.7 µW for single pixel and 

34.8 for all pixels) compared to the wide FOV receiver (345 µW) as shown in 

Figure 4.15. This difference in received power between the imaging receiver 
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and wide FOV receiver is due to three reasons: 1) the concentrator acceptance 

angle in the imaging receiver is 65o which reduces the number of rays accepted 

(to reduce ISI) 2) the narrow FOV of each pixel (about 21o) also restricts the 

number of rays and hence the overall received power 3) the photo detector area 

for each pixel is 4 mm2 while the wide FOV receiver has 1 cm2 area with 90o 

FOV. However, when SNR is calculated (see equation 3.19) most of the 

received power in the wide FOV receiver contributes to 𝑃𝑠0 (powers associated 

with logic 0) due to dispersion in the signal received by the wide FOV receiver, 

which leads to ISI. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Impulse and frequency responses of wide FOV receiver at room centre 

(x=2m, y=4m, z=1m). 
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Figure 4.15: Impulse and frequency responses of imaging receiver at room centre 

(x=2m, y=4m, z=1m). 

4.5.3 Delay spread and 3dB channel bandwidth 
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path (centre of the room, (x=2m, y=4m)). This improvement is due to the limited 

range of the rays accepted by the small pixels with narrow FOV. The variation 

in delay spread along the x=1m and x=2m is due to the dominance of the direct 

line of sight component under a VLC light source and its weakness at locations 

between VLC light sources.  

 

 

 

 

 

 

Figure 4.16: Delay spread of the wide FOV and the imaging LD-VLC systems in 

fourteen different locations when the receivers move along the y-axis. 

The 3 dB channel bandwidth achieved by the two receivers is shown in Figure 

4.17, note the variation in channel bandwidth in tandem with the delay spread 

due to the effects explained. The results show that the imaging receiver 

provides a larger bandwidth compared to the traditional wide FOV receiver. The 

minimum communication channel bandwidth of the wide-FOV receiver was 70 

MHz at x=1m and y=1m (worst communication path for the wide FOV receiver 

due to high multipath propagation). In contrast, the minimum channel bandwidth 

in the imaging LD-VLC system was 4.2 GHz at x=2m and y=4m (this value 

enables a data rate of up to 6 Gb/s [143]). This increased channel bandwidth 

enables the VLC system to operate at higher data rates [87]. The imaging LD-
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reducing the contribution of the reflection components by using a narrow FOV 

pixel and by appropriately weighing (MRC fashion) the pixels’ contributions 

resulting in an emphasis on the direct power component (i.e., LOS). For 

instance, at location x=2m and y=4m, a significant bandwidth enhancement can 

be achieved, a factor of 36 (from 116 MHz to 4.2 GHz), when our imaging LD-

VLC is used instead of the wide FOV LD-VLC system. To the best of our 

knowledge, this is the highest channel bandwidth and data rates reported for an 

indoor mobile VLC system with simple modulation format and system design. 

Also, it should be noted that the results in Figure 4.17 are in agreement with the 

general observation made in Figure 4.16. For instance, in the imaging system at 

the point x=1m and y=1m the delay spread is lowest resulting in the highest 

channel bandwidth (Figure 4.17). Similar agreement is observed when 

comparing other locations. In an optical direct detection system, the optimum 

receiver bandwidth is 0.7 times the bit rate. Therefore, the maximum data rate 

that can be achieved by a wide FOV receiver is 100 Mb/s due to the channel 

bandwidth being 70 MHz. The 0.7 figure is based on Personick’s optical 

receiver design [143]. 

 

 

 

 

 

 

Figure 4.17: The 3 dB channel bandwidth of the wide FOV and the imaging LD-VLC 

systems in fourteen different locations when all the receivers move along the y-axis.  
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4.5.4 SNR results  

In this section, for the bit rate of 30 Mb/s we used the p-i-n FET [162] receiver. 

Note that this lower data rate of 30 Mb/s was used to compare the performance 

of the imaging receiver with results in the literature [163], [165] to verify our 

equations and simulator. Higher data rates of 5 Gb/s is also considered, and 

here we used the p-i-n FET receiver designed in [161]. Significant improvement 

in the SNR was achieved at 30 Mb/s when the imaging LD-VLC system was 

used instead of the wide FOV LD-VLC system. It can be clearly seen that the 

imaging receiver achieves about 3 dB SNR gain over the wide FOV receiver 

when the SC technique was applied and about 8 dB when the MRC technique 

was applied at the centre of the room (x=2m and y=4m), which represents the 

worst communication paths for the imaging receiver (SNR gain is higher in 

other locations as shown in Figure 4.18). In the VLC systems, the impact of ISI 

is larger than other noise components, typically up to 20 Gb/s [28]. Therefore, 

significant improvements can be achieved by using an imaging receiver at high 

data rates. This significant improvement in the SNR level is attributed to the 

ability of the imaging receiver to collect the VLC signal with minimum ISI, due to 

its narrow FOV pixels and large overall detection area provided by the large 

number of pixels. 

       To evaluate the performance of the imaging system at higher bit rates, the 

SNR was calculated at 5 Gb/s. Figure 4.19 illustrates the SNR of the imaging 

system when it operated at 5 Gb/s; the imaging LD-VLC system achieved about 

16.1 dB SNR when using the SC approach and approximately 19.1 dB SNR at 

the room centre when using MRC. This means that the BER provided by our 

imaging system is better than 10-9 at 5 Gb/s. It should be noted that an MRC 

imaging system outperforms an SC imaging system. SC is a simple form of 

diversity, where the receiver simply selects the pixel with the largest SNR 

among all the pixels. In contrast, MRC utilises all the pixels in the imaging 

receiver and combines the output signals from the pixels with weights dictated 
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by the SNR observed by each pixel. A pixel that observes a better SNR is given 

a higher weight. Therefore, SC is a subset of MRC and the MRC receiver is as 

such comparable to or better than SC as our results show.  In Figure 4.17 the 3 

dB channel bandwidth achieved by the wide FOV receivers does not enable 

them to transfer data at a rate of 5 Gb/s, therefore, we only present results for 

the imaging receiver at high data rates (i.e., 5 Gb/s).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: SNR of the two systems operating at 30 Mb/s and using two combing 

schemes (SC and MRC for imaging receiver), (a) at x=1m and (b) at x=2m along the y-

axis. 
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Figure 4.19: SNR of imaging LD-VLC system operating at 5 Gb/s and using two 

combing schemes (SC and MRC), at x=1m and at x=2m along the y-axis. 

4.6 Summary 
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modulation bandwidth of the LEDs and ISI caused by multipath dispersion.  
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delay spread of the wide FOV LD-VLC system by 91% from 0.65 ns to 0.053 ns 
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channel bandwidth by a factor of 32 from 114 MHz to 3.7 GHz. Our ADR LD-

VLC system provides full mobility within the test area in the presence of 
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multipath propagation and achieves a BER better than 10-6 at 5 Gb/s when 

using a simple modulation format (OOK). 

       In this chapter, a custom design imaging receiver is introduced for VLC 

systems. The imaging LD-VLC system has the ability to decrease the delay 

spread associated with the wide FOV LD-VLC system by 94% from 0.7 ns to 

0.04 ns at the room centre (x=2m and y=4m), which leads to an increase in the 

channel bandwidth by a factor of 36 from 116 MHz to 4.2 GHz. Furthermore, at 

a low data rate (30 Mb/s) our proposed system (imaging LD-VLC) offers SNR 

improvement of 8 dB, and the lowest SNR achieved was 19.2 dB at a high data 

rate (5 Gb/s) at the room centre. Moreover, our imaging LD-VLC system 

employs an OOK modulation scheme that adds simplicity to the VLC system. 

Our system provides full mobility within the test area in the presence of 

multipath propagation and achieves a BER better than 10-9 at 5 Gb/s.  

       Chapter 5 will address methods to enhance the SNR of the imaging LD-

VLC system to achieve data rates higher than 5 Gb/s. 
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5 Mobile Multi-gigabit Indoor 

Visible Light Communication 

Systems Employing Angle 

Diversity Receiver, Imaging 

Receiver and Delay Adaptation 

Technique in Realistic 

Environment  

5.1 Introduction 

In a mobile indoor VLC system the distance between the LD light units and the 

receiver is a key factor; thus, sending the information signals from all LD units 

at the same time increases the delay spread which decreases the 3 dB channel 

bandwidth. To further enhance the communication links and to provide higher 

data rates (beyond 5 Gb/s) with the ADR and the imaging LD-VLC systems, a 

novel delay adaptation technique (DAT) is introduced in this chapter coupled 

with a seven branch ADR (DAT ADR) and imaging LD-VLC system (DAT 

imaging LD-VLC system) to mitigate the ISI, the CCI due to multiple 

transmitters and reduce the impact of multipath dispersion due to mobility at the 

receiver. Instead of transmitting the signals at the same time from different LD 

light units, the proposed algorithm sends the signal that has the longest journey 

first, and then it sends the other signals with different differential delays (Δt) so 
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that all the signals reach the receiver at the same time. To ensure that all the 

transmissions reach the receiver at the same time, the beam delay adaptation 

technique introduces a differential delay (Δt) between the transmissions. We 

also model two different room scenarios: an empty room and a realistic 

environment room that has a door, windows, bookshelves, mini cubicles and 

other objects. The difficulty related with all two room arrangements is the ability 

to establish LOS communication link between transmitter (i.e., LD light unit) and 

receiver at all possible locations. The results showed an enhancement in 

channel bandwidth from 4.2 GHz to 23 GHz when the imaging LD-VLC system 

was combined with our algorithm in a worst case scenario (i.e., real 

environment). In addition, the DAT imaging LD-VLC system has the ability to 

maintain a strong LOS component in a harsh realistic environment in all 

receiver locations which leads to receiving high optical power in addition to 

reducing multipath dispersion. Our results indicate that the DAT imaging LD-

VLC system achieves significant 3 dB channel bandwidth enhancements over 

DAT ADR, imaging LD-VLC and wide FOV systems when a realistic 

environment is considered. 

       The reminder of this chapter is divided into sections as follows: Section 5.2 

describes the delay adaptation technique. Section 5.3 describes the rooms’ 

setup. Section 5.4 presents the DAT ADR system configuration and simulation 

results. Simulation results and discussions of the DAT imaging LD-VLC system 

in an empty room are presented in Section 5.5. The robustness of the proposed 

DAT imaging system against mobility, shadowing and signal blockage is 

investigated in Section 5.6.  At the end of the chapter a summary is provided.  

5.2 Delay Adaptation Technique (DAT) 

All the LD units typically emit signals simultaneously, which means the signal 

from the closest LD light unit reaches the receiver first before signals from 

distant LD units, and this causes significant induced performance degradation. 
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To reduce the impact of this impairment we proposed a delay adaptation 

technique coupled with an ADR and an imaging receiver (ADR and imaging 

receiver eliminate the effect of ISI) to enhance the SNR and system bandwidth. 

To ensure that all the transmissions reach the receiver at the same time, our 

beam delay adaptation technique introduces a differential delay (Δt) between 

the transmissions. It should be noted that DAT cannot be employed in a straight 

forward fashion with VLC systems when employing MIMO transmission. This 

technique can be easily applied when all VLC transmitters send the same 

information signal at the same time. The delay adaptation adjusts the 

transmission times of the signals as follows:  

1- Send a pilot signal from the first RGB-LD unit to calculate the mean 

delay (𝜇) at the receiver for this RGB-LD unit. 

2- Repeat step 1 for all branches in the ADR or pixels in the imaging 

receiver (the aim of this step is to find the best pixel that has the lowest 

mean delay (𝜇) among all pixels). 

3- Repeat steps 1 and 2 for all RGB-LD units.  

4- The receiver calculates the differential delays (Δt) between the received 

pulses from each of the RGB-LD units. 

5- The receiver uses an infrared beam at a low data rate to send a control 

feedback signal to inform all the transmitters of the delays associated 

with each transmitter (eight delay values relayed to each transmitter in 

the case of an empty room or a realistic room both have eight RGB-LD 

light units). 

6- The transmitters send signals from the RGB-LD units in an ascending 

order according to the delay values such that a RGB-LD unit that has the 

largest delay, i.e. longest path to the receiver transmits first. 

       A pedestrian speed of 1 m/s is typical for indoor users [166], we therefore 

propose that the receiver re-estimates its delay values for all LD light units at 

the start of a 1 second frame and if these have changed compared to the 
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previous frame values then the receiver uses the feedback channel to update 

the transmitters. If the time taken to determine the value of each delay 

associated with each LD unit (relative to the start of the frame) is equal to 1 ms 

(based on typical processor speeds), we have used a Microchips 32 bits 

microcontroller (PIC32MX110F016B) with clock rate of 50 KHz (1/50 KHz × 50 

pixels =1ms) therefore the value of each delay associated with each LD unit is 

equal to 1 ms. The delay adaptation method set up or training time is 72 ms (9 

RGB-LD in each unit × 8 light units × 1 ms). This training rate (once every 1 

second frame) is sufficient given that the delay adaptation has to be carried out 

at the rate at which the environment changes (pedestrian movement). 

Therefore, the adaptive system can achieve 100% of the specified data rate 

when it is stationary, and 92.8% in the case of typical user movement. The 

MAC protocol used to share the VLC medium between users should include a 

repetitive training period to perform the beam delay adaptation. The design of 

the MAC protocol is not considered in this work. Our delay adaptation algorithm 

has been considered at one given receiver location in a single user scenario. In 

the case of a multiuser scenario, scheduling [167] can be used where the delay 

adaptation algorithm is chosen to maximise the 3 dB channel bandwidth and 

the SNR in a given region for a given time period. The delay adaptation can be 

implemented through delayed switching of the VLC sources. It should be noted 

that the RGB-LD light units (i.e. eight transmitters) should always be ‘ON’ to 

provide illumination for the room. Therefore, to prevent flickering dimming 

technique may be used [70].  

5.3 Rooms Setup  

To study the benefits of the DAT technique for an indoor VLC system, a 

simulation based on a ray tracing algorithm was performed in two room 

configurations. The simulation model was developed using room dimensions of 

4m × 8m (width × length) with a ceiling height of 3 m, and the room 
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configurations were denoted as room (A) and room (B). Figures 5.1 a and b 

show room A, which is an empty room, and room B, which is a realistic 

environment as normally experienced in office arrangements where a door, 

windows, furniture and mini cubicles block the optical signal. Both rooms 

experience multipath propagation. Given typical indoor walls and floor colours 

and textures, typical reflection coefficients of 0.3 for the floor and 0.8 for the 

walls and ceiling were used for room A [6], [88]. These relatively high 

reflectivities (within the typical range) were selected as they result in the 

greatest multipath dispersion (worst case scenario), and consequently 

considerable pulse spread. Figure 5.1b shows room B which has three large 

windows, a door, bookshelves, furniture, chairs and cubicles that have surfaces 

parallel to the walls of the room. These objects can create shadowing. In room 

B, the door and three glass windows were assumed to not reflect any signal; 

therefore, their diffuse reflectivities were set to zero. Moreover, the walls and 

the ceiling have a diffuse reflectivity of 0.8 and the floor has a 0.3 diffuse 

reflectivity. Two of the walls: x=4m (excluding the door) and y=8m were covered 

by filling cabinets and bookshelves with diffuse reflectivity of 0.4. It was 

assumed that signals encountering a physical barrier were either blocked or 

absorbed. Additionally, desks, tables and chairs inside room B have similar 

reflectivities to the floor (i.e., 0.3). The complexity is distinct in room B where 

low reflectivity objects and physical partitions can create significant shadowing 

and signal blocking. 

      Experimental measurements of plaster walls have shown that they are 

roughly a Lambertian reflector [6]. Therefore, all the walls, the ceiling and the 

floor in rooms A and B were modelled as Lambertian reflectors with high 

reflectivity. To model the reflections, the room was divided into a number of 

equally sized squares with an area of 𝑑𝐴 and reflection coefficient of 𝜌. Each 

reflection element was treated as a small transmitter that transmits an 

attenuated version of the received signals from its centre in a Lambertian 

pattern with 𝑛 =1. 
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       To ensure computations can be performed within a reasonable time, 

surface elements of size 5 cm × 5 cm for first-order reflections and 20 cm × 20 

cm for second-order reflections were used. In our evaluation channel 

characteristics, optical power received, delay spread, 3 dB channel bandwidth, 

and path-loss calculations were determined in similar way to that used in [26], 

[88].  The simulations and calculations reported in this chapter were carried out 

using the MATLAB program. Simulation tool is similar to one developed by 

Barry et al.  [136], and is used to produce impulse responses, the power 

distribution and to calculate the delay spread, 3 dB channel bandwidth and 

SNR. The LD lights were installed at a height of 3 m above the floor. The height 

of the work desks where the transmitters and receivers associated with the user 

equipment are placed was 1m. This horizontal plane was referred to as the CP.  
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Figure 5.1: VLC system rooms (a) an empty room (Room A) and (b) a realistic room 

which has a door, three large glass windows a number of rectangular-shaped cubicles 

with surfaces parallel to the room walls (Room B). 

5.4 DAT Angle Diversity Receiver (DAT ADR)  

This section presents a performance evaluation of a mobile multi-gigabit VLC 

system in the two different environments. The VLC channel characteristics and 

links were evaluated under the diverse situations of an empty room and a room 

with very strong shadowing effects resulting from mini cubicle offices. RGB-LD 

were used to mitigate the low modulation bandwidth of conventional 

transmitters (LEDs) in the VLC system. In addition, an ADR was introduced to 

mitigate ISI. The proposed ADR has seven sub-detectors. We optimised the 
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azimuth angle, elevation angle and FOV for each detector to obtain high system 

performance (i.e. low delay spread and high SNR) under the impact of mobility 

and multipath propagation. Furthermore, a DAT was used to further reduce the 

effect of ISI and multipath dispersion. The combination of delay adaptation and 

ADR (DAT ADR system) added a degree of freedom to the link design, which 

resulted in a VLC system that has the ability to provide high data rates (i.e., 5 

Gb/s) in the considered harsh indoor environment. The proposed system used 

a OOK modulation format and it was able to provide data rates of 5 Gb/s and a 

BER of 10-3 in the worst case scenario in the considered realistic indoor 

environment.  

       In this section, the performance of the proposed system (i.e., DAT ADR) 

was evaluated in two different environments: in an empty room in the presence 

of multipath dispersion and mobility as well as in a realistic room environment 

with mobility. In the realistic environment, signal blockage (as a result of 

cubicles), a door, windows, furniture, multipath propagation and mobility are all 

present. To evaluate the effect of signal blockage, mobility and shadowing on 

the VLC communication link, we considered the room shown in Figure 5.1b. 

The results of the DAT ADR was compared in rooms A (an empty room) and B 

(realistic room) in terms of impulse response, path loss, delay spread and SNR. 

The proposed system is examined in fourteen different locations when the ADR 

moves along the y-axis. 

       In this chapter, for the bit rate of 30 Mb/s we used the p-i-n FET preamplifier 

receiver [162]. Higher data rates of 5 Gb/s and 10 Gb/s are also considered, and 

here we used the p-i-n FET receivers designed in [161], [168], respectively. 

5.4.1 Angle diversity receiver design  

The ADR is a group of narrow FOV detectors. A responsivity of 0.4 A/W and a 

photo detector area of 4 mm2 were used for each branch. The ADR was always 
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placed on the CP along the lines x=1m or x=2m. The direction of each branch in 

the ADR was defined by two angles: the azimuth angle (𝐴𝑍) and the elevation 

angle (𝐸𝐿). The 𝐴𝑍s of the seven detectors were set at 0o, 45o, 90o, 135o, 225o, 

270o and 315o, and the 𝐸𝐿s for the seven branches were fixed at 90o, 45o, 60o, 

45o, 45o, 60o and 45o. The corresponding FOVs were fixed to 20o, 15o, 25o, 15o, 

15o, 25o and 15o. The 𝐴𝑍s, 𝐸𝐿s and FOVs were chosen through an optimisation 

process to achieve the best SNR and minimum delay spread. The reception 

angle calculations for any detector in the ADR are given in detail in Chapter 4, 

Section 4.4.1. Figure 5.2 illustrates the physical structure of the ADR. The 

photocurrents received in each branch can be amplified separately and can be 

processed using different methods, such as SC, EGC or MRC, to maximise the 

power efficiency of the system. In this section, SC and MRC were used. SC is a 

simple form of diversity, where the receiver simply selects the branch with the 

largest SNR among all the branches. In contrast, MRC utilises all branches in 

the ADR. 

 

 

 

Figure 5.2: Physical structure of the angle diversity receiver with seven branches. 

5.4.2 Impulse response  

Channel impulse responses at the room centre (i.e., x=2m and y=4m) for the 

DAT ADR system are shown in Figure 5.3 for rooms A and B. It should be 

noted that both impulse responses of the proposed system are dominated by 

short initial impulses due to the LOS path between the transmitter and receiver. 

It can be clearly seen that the effect of shadowing is clear when the receiver is 
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located at the room centre in room B (see Figure 5.3). The LOS received power 

in room A is 4.5 μW, whereas it is 2.25 μW in room B (about 3 dB reduction in 

received power), and this is due to one of the LOS components being blocked 

by the wall of a cubicle. It should also be noted that the amount of received 

optical power from the reflections in room B was less than that received in room 

A, as shown in Figure 5.3, and this is due to the existence of the door, windows, 

cubicles, partitions and bookshelves in room B that lead to reduced multipath 

propagation. These impulse responses suggest that the DAT ADR system 

performs better in room A (without shadowing) than in room B. 

 

 

 

 

 

 

Figure 5.3: Impulse responses of DAT ADR system at room centre (2m, 4m, 1m) in two 

different environments (rooms A and B).  

5.4.3 Optical path loss  

One of the main targets of any communication system is to achieve high SNR 

at the receiver. The SNR in OW systems is based on the square of the received 

optical signal power and receiver and ambient noises [26]. Therefore, the 

average received optical power and path loss explain part of the main VLC 

system performance in the two different environments. Optical path loss can be 

defined as [169]:               
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                                        𝑃𝐿(𝑑𝐵) = −10𝑙𝑜𝑔10(∫ℎ(𝑡)𝑑𝑡 )                                                  (5.1) 

where ℎ(𝑡) is the system impulse response. Figure 5.4 shows the optical path 

loss of the DAT ADR system in rooms A and B. It should be observed that the 

performance of the proposed system is degraded in room B at x=2m (the path 

loss increased by 3 dB in room B at x=2m), and this can be attributed to signal 

blockage as a result of cubicles, which lead to reduced received optical power. 

It can be noticed that the path loss is comparable in rooms A and B when the 

receiver moves along x=1m. This is due to the LOS links available at this line 

(i.e., x=1m), which protect against shadowing and mobility in this system. 

 

 

 

 

 

 

Figure 5.4: Optical path loss distribution of DAT ADR system in two different 

environments (rooms A and B) at x=1m and x=2m along y-axis. 

5.4.4 Delay spread  

Figure 5.5 illustrates the delay spread of the DAT ADR system in two different 

environments (i.e., rooms A and B). It can be noted that the proposed system 

has lower delay spreads in room B than in room A, and this is attributed to two 

reasons: firstly, the proposed system has the ability to establish a LOS link at all 

receiver positions. Secondly, reflections from the door and windows were set to 

zero, while the other two walls in room B were covered by filling cabinets and 
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bookshelves with a smaller diffuse reflectivity of 0.4. This means that the power 

contribution from the reflections was minimal and this reduced the delay spread. 

The non-symmetry in the delay spread curve in room B is due to the presence 

of windows at one end of the room and the presence of bookshelves at the 

other end. In room B, when the receiver position is close to the windows, for 

example, at points (x=1m and y=1m) and (x=2m and y=1m) the delay spread 

becomes very low because the received power from the reflections is very low. 

However, when the receiver moves towards the other side of the room (i.e. 

receiver positions close to bookshelves), for instance, at points (x=1m and 

y=7m) and (x=2m and y=7m), the delay spread increased due to the power 

received from the signals reflected by the bookshelves. 

       The minimum communication channel bandwidth of the DAT ADR system 

in rooms A and B was 8.3 GHz (where the delay spread is 0.02 ns at points 

x=2m, y=1m, 3m, 5m, 7m). The significant increase in the channel bandwidth 

enables our proposed system to operate at higher data rates using a simple 

modulation technique, OOK [87].  

 

 

 

 

 

 

Figure 5.5: Delay spread of DAT ADR system in two different environments (rooms A 

and B) at x=1m and at x=2m and along y-axis. 
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5.4.5 SNR analysis  

In this section, for the bit rate of 5 Gb/s we used the p-i-n FET receiver 

designed in [161]. Figure 5.6 shows the SNRSC results against receiver location 

for the DAT ADR system in the two room scenarios. The DAT ADR system has 

a slightly lower SNR in room B at x=1m and this is due to the reduction in 

received power.  In addition, at x=2m the SNR decreased by 3 dB in room B in 

all receiver locations, this is because when the receiver moves along the middle 

of the room some transmitters cannot be detected by the receiver due to the 

cubicles. It should be noted that the results in Figure 5.6 are in agreement with 

the general observation made in Figure 5.4. For instance, the DAT ADR system 

in room B at x=2m had a path loss higher than that in room A, which led to a 

decrease in SNR. Note the variation in SNR in tandem with the path loss (see 

Figure 5.4) due to the effects explained. 

Figure 5.7 illustrates the SNRMRC of the DAT ADR system in the two 

environments. At x=1m, the simulation results of the SC and MRC techniques in 

rooms A and B show comparable SNR results (about 1 to 2.5 dB difference, 

see Figures 5.6 and 5.7). This is due to the fact that the power received by one 

of the detectors is dominant, compared to other detectors, and also due to the 

limited number of detectors that can collect direct LOS optical signals. It is 

observed that at x=2m the MRC technique outperformed SC (see Figures 5.6 

and 5.7), the SNR gain was over 3 dB in all receiver locations in both 

environments. This is due to the two branches of ADR having received the 

same amount of optical signals. 

The highest BER provided by our proposed system in room A was about 10-5, 

whereas it was approximately 10-3 in room B when the proposed system 

operated at 5 Gb/s (when using MRC method). Forward error correction codes 

(FEC) can be used to further reduce the BER in this proposed DAT ADR 

system. 
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Figure 5.6: SNRSC of DAT ADR system in two different environments (rooms A and B) 

when operated at 5 Gb/s at x=1m and at x=2m and along y-axis. 

 

 

 

 

 

 

Figure 5.7: SNRMRC of DAT ADR system in two different environments (rooms A and B) 

when operated at 5 Gb/s at x=1m and at x=2m and along y-axis. 
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imaging LD-VLC system (DAT imaging LD-VLC system) to mitigate the ISI, CCI 

due to multiple transmitters and reduce the impact of multipath dispersion due 

to mobility at the receiver. We evaluated the performance of the DAT in the 

presence of multipath propagation, ISI and mobility for the two VLC systems in 

an empty room. The results of the imaging LD-VLC system are compared with 

those of the DAT imaging LD-VLC system. The results are presented in terms 

of impulse response, delay spread, 3 dB channel bandwidth and SNR. 

5.5.1 Impulse responses  

The impulse responses of the imaging LD-VLC and DAT imaging LD-VLC at the 

room centre (worst case scenario) are depicted in Figure 5.8. At the room 

centre the distance between the transmitter and receiver becomes maximum 

which leads to increase in delay spread, path loss and decrease in SNR. 

Therefore, the location ((2m, 4m, 1m), room centre) is the worst case scenario.  

The LOS components have a great impact on the system performance. 

Therefore, we magnified the impulse response for these systems to show the 

LOS clearly. It can be seen that the DAT imaging system impulse response is 

better than the imaging system in terms of signal spread. By reducing the signal 

spread, this leads to an increase in the 3 dB channel bandwidth which 

decreases the multipath induced ISI and enables higher throughput for the VLC 

system. 

5.5.2 Delay spread and 3 dB channel bandwidth 

Figure 5.9 presents the delay spread performance of the imaging and DAT 

imaging systems in a worst case scenario (when the receiver moves along the 

line x=2m). The results show that the DAT imaging LD-VLC system outperforms 

the imaging LD-VLC system by decreasing the delay spread by a factor of 6, 

from 0.04 ns to 0.007 ns at the room centre. The 3 dB channel bandwidth of the 
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two systems (i.e. imaging LD-VLC and DAT imaging LD-VLC) when the 

receiver moves along the x=2m line is given in Table 5.1. 

 

 

 

 

 

Figure 5.8: Impulse responses of two systems at room centre (2m, 4m, 1m). 

The results show that the DAT imaging LD-VLC system offers 3 dB channel 

bandwidth of more than 16 GHz in the worst case in the rooms examined 

(which are of typical size), which is the highest channel bandwidth reported for 

a VLC system to the best of our knowledge. The significant increase in channel 

bandwidth enables our proposed systems to operate at higher data rates. For 

example, a 10 Gb/s data rate requires a 7 GHz channel bandwidth with simple 

OOK modulation, the new DAT imaging LD-VLC system can achieve higher 

data rates [143]. 

 

 

 

 

 

Figure 5.9: Delay spread of two systems at x=2m and along y-axis. 
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Table 5.1: Channel bandwidth of proposed systems. 

 

5.5.3 SNR performance   

Figure 5.10 illustrates the SNR (SC and MRC) of the imaging and DAT imaging 

systems when operating at 30 Mb/s. It is observed that the DAT system does not 

give any advantage over the imaging system at low data rates due to the high 

channel bandwidth achieved by the imaging system (i.e., 4.2 GHz), which 

guarantees low ISI at the low operating bit rate considered (30 Mb/s). Figure 

5.11 shows the SNR of the imaging and DAT imaging systems at a high data 

rate (10 Gb/s). These results show that the SNR fluctuations in the imaging 

system at high data rates are reduced and the SNR is improved by 6 dB when 

using MRC combing (BER about 10-5) in the DAT imaging system. The DAT 

imaging system has the ability to achieve more than 23 Gb/s (16 GHz channel 

bandwidth is achieved). FEC can be used to further reduce the BER form 10-5 to 

10-9 in this proposed DAT imaging LD-VLC system.  

 

 

 

 

 

System 

3 dB channel Bandwidth [GHz] 

Receiver Locations along the y-axis, Y [m] 

1 2 3 4 5 6 7 

Imaging LD-VLC 5.2 4.2 5.2 4.2 5.2 4.2 5.2 

DAT Imaging LD-VLC 16.6 23.4 16.6 23.4 16.6 23.4 16.6 
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Figure 5.10: SNR of imaging system and DAT imaging system when both operate at 30 

Mb/s, when the receivers move at x=2m and along y-axis. 

 

 

 

 

 

 

Figure 5.11: SNR of imaging system and DAT imaging system when both operate at 10 

Gb/s, when the receivers move at x=2m and along y-axis. 
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door, windows, furniture, multipath propagation and mobility all present. To 

evaluate the effect of signal blockage, mobility and shadowing on the VLC 

communication link, we considered the room shown in Figure 5.1b. The results 

of the DAT system was compared in rooms A (an empty room) and B (realistic 

room) in terms of impulse response, path loss, delay spread and SNR. We have 

considered a mobile user with a speed of 1 m/s moving along the y-axis in the 

lines x=1m or x=2m, the results in this section are presented in two places in 

the room 1) when the user is inside a mini cubicles (x=1m and along y-axis) and 

2) when the mobile user is in the middle of the room (x=2m and along y-axis). In 

this section a simulation package based on a ray tracing algorithm was 

developed using MATLAB to compute the impulse response of the DAT 

imaging LD-VLC system in a realistic environment. Additional features were 

introduced for a realistic room. In the realistic environment for each receiver 

location the first step is to check the availability of LOS component (certain 

conditions were introduced to the simulator to check the existence of LOS, 1st 

and 2nd order reflection components in each location) then the received power 

due to 1st and 2nd order reflections is also calculated. 

5.6.1 Impulse response 

Channel impulse responses at the room centre for the DAT imaging system are 

shown in Figure 5.12 for rooms A and B. It should be noted that both impulse 

responses of the proposed system are dominated by short initial impulses due 

to the LOS path between transmitter and receiver. In addition, it can be clearly 

seen that the proposed system has good robustness against shadowing and 

mobility, and it has the ability to maintain LOS even in this harsh environment 

(i.e., room B), which is attributed to the number of transmitters that are 

distributed on the ceiling (i.e., eight RGB LD light units). However, the amount 

of received optical power from the reflections in room B is less than that 

received in room A, as shown in Figure 5.12, and this is because of the 

existence of the door, windows, cubicles, partitions and bookshelves in room B 
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that lead to reduced multipath propagation. Although the received power from 

reflections was severely affected in room B, the LOS component remained the 

same in both room configurations in both systems, and the LOS component has 

the largest impact on the system performance. For example, the received 

optical power associated with the DAT imaging LD-VLC system in room A was 

6.69 μW, whereas it was 6.63 μW in room B, which indicates that the reduction 

in power is negligible (the reduction in power was 0.063 μW).   

 

 

 

 

 

Figure 5.12: Impulse responses of DAT imaging system at room centre (2m, 4m, 1m) 

in two different environments (rooms A and B). 
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A and B. It is observed that the performance of the proposed system is 
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available on the entire CP, which protects against shadowing and mobility in 

this system. It can be noticed that the path loss can be higher when the receiver 

moves along x=2m. This is due to the larger distance between the receiver and 
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that they are able to achieve similar performance levels in an empty room and 

in a realistic indoor environment. 

 

 

 

 

Figure 5.13: Optical path loss distribution of DAT imaging system in two different 

environments (rooms A and B) at x=1m and x=2m along y-axis. 

5.6.3 Delay spread and 3 dB channel bandwidth 

Figure 5.14 shows the delay spread of the DAT system in two different 

environments (i.e., rooms A and B). It can be clearly seen that the DAT imaging 

system has lower delay spreads in room B than in room A, and this is attributed 

to two reasons: firstly, the proposed system has the ability to establish a LOS 

link at all receiver positions. Secondly, reflections from the door and windows 

are set to zero, while the other two walls in room B are covered by filling 

cabinets and bookshelves with a small diffuse reflectivity of 0.4. This means 

that the power contribution from the reflections is minimal and this reduced the 

delay spread. The non-symmetry in the delay spread curve in room B is due to 

the presence of windows at one end of the room and the presence of 

bookshelves at the other end. In room B, when the receiver position was close 

to the windows, for example, at points (x=1m and y=1m) and (x=2m and y=1m) 

the delay spread becomes very low because the received power from the 

reflections is very low. However, when the receiver moves towards the other 

side of the room (i.e. receiver positions close to bookshelves), for instance, at  
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points (x=1m and y=7m) and (x=2m and y=7m), the delay spread increases due 

to the power received from the signals reflected by the bookshelves. The 3 dB 

channel bandwidth of the DAT imaging LD-VLC in two different environments 

(rooms A and B) when the receiver moves along the x=2m line is given in Table 

5.2. The results show that the DAT imaging LD-VLC system offers 3 dB channel 

bandwidth of more than 24 GHz in room B. Therefore, room B outperforms 

room A in terms of 3 dB channel bandwidth as the delay spread decreased in 

room B (see Figure 5.14).  

 

 

 

 

 

Figure 5.14: Delay spread of DAT imaging system in two different environments (rooms 

A and B) at x=1m and at x=2m and along y-axis. 

Table 5.2: Channel bandwidth of the DAT imaging LD-VLC in two different 

environments. 

DAT Imaging LD-VLC 

3 dB channel Bandwidth [GHz] 

Receiver locations along the y-axis, Y [m] 

1 2 3 4 5 6 7 

Room A 16.6 23.4 16.6 23.4 16.6 23.4 16.6 

Room B 37.1 38.9 28.7 36.7 27.7 31.6 24.1 
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5.6.4 SNR 

Figure 5.15 shows the SNRSC results against receiver location for the DAT 

system in two room scenarios. The DAT imaging system has a slightly lower 

SNR in Room B and this due to the reduction in received power. It should be 

noted that the results in Figure 5.15 are in agreement with the general 

observation made in Figure 5.13. For instance, the DAT system in room B has a 

path loss higher than that in room A which leads to a decrease in SNR. 

 

 

 

 

 

 

 

Figure 5.15: SNRSC of DAT system in two different environments (rooms A and B) when 

system operated at 10 Gb/s at x=1m and at x=2m and along y-axis. 

 

5.7 Summary  

A novel delay adaptation technique was introduced for a VLC system and an 

ADR and an imaging receivers were used to improve the SNR and channel 

bandwidth as well as to reduce the effect of multipath dispersion. In addition, 

our proposed systems were evaluated in a harsh environment with mobility, and 

the results showed that our systems are robust in the presence of shadowing 

and mobility. 
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       In this chapter, we proposed, designed and evaluated a novel LD-VLC 

system with ADR and delay adaptation in two different environments (an empty 

room and a realistic room). The DAT ADR system achieved 5 Gb/s and a BER 

of 10-5 at the least successful point in the empty room with simple modulation 

format (OOK). However, there was degradation in the performance (BER 

increase) when the DAT ADR system operated in the realistic environment 

considered. The DAT ADR system in a realistic room (room B) had a lower 

delay spread (high 3 dB channel bandwidth) but also a lower received power 

and overall lower SNR. From the results of DAT ADR we can conclude that the 

room design can play an important role in changing the SNR distribution, delay 

spread and impulse response uniformity.  

       The DAT imaging LD-VLC system has the ability to decrease the delay 

spread of the imaging LD-VLC system by 83% from 0.04 ns to 0.007 ns at the 

room centre, which leads to an increase in the channel bandwidth by a factor of 

5.4 from 4.2 GHz to 23 GHz, and this channel bandwidth has the ability to 

provide data rates of up to 33 Gb/s. Moreover, at low data rates (30 Mb/s), the 

proposed algorithm does not offer SNR improvements, which is due to the low 

ISI at these data rates. The BER provided by our DAT imaging LD-VLC system 

is better than 10-5 at 10 Gb/s, in the worst case scenarios. The DAT imaging 

system in a realistic room has lower delay spread (higher 3 dB channel 

bandwidth) but also lower received power and overall has slightly lower SNR. 
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6 10 Gb/s Mobile Visible Light 

Communication System 

Employing Angle Diversity, 

Imaging Receivers and Relay 

Nodes  

6.1 Introduction 

In the near future, indoor wireless systems will be required to offer multi-gigabit 

per second connectivity. VLC systems are potential candidates to provide high 

data rates services for indoor users. However, the traditional VLC system 

suffers from limitations in the modulation bandwidth of the transmitters (i.e. 

LEDs) [4]. Therefore, alternative transmitters are needed for VLC systems to 

achieve high data rates. An ADR and an imaging receiver are solutions that can 

tackle the signal spread caused by multipath in a VLC system [4], [170]. A three 

branch ADR with RGB-LD has been proposed in [100], and 5 Gb/s was 

achieved in an empty room (see Chapter 4). Our previous work in this area has 

shown that significant enhancements can be achieved when using an imaging 

receiver (see Chapter 4) [103]. The data rate achieved by this previously 

developed VLC system was 5 Gb/s by introducing a LD and an imaging 

receiver [103].The main limitations in the traditional VLC system (i.e., the low 

modulation bandwidth of the LEDs and ISI) have been addressed previously by 

using LD instead of LEDs and the wide FOV receiver has been replaced by the 

imaging receiver which has narrow FOV pixels [103]. The data rate achieved by 

this previously developed VLC system was 5 Gb/s in the worst case scenario 
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[103]. However, its link performance was negatively affected by mobility and 

this leads to performance degradation in the SNR and channel bandwidth. 

Therefore, in this chapter we introduce the concept of relay assisted VLC 

systems to improve the overall system performance. 

       Relays have been previously considered for use in different networks to 

reduce the transmission distances and increase system capacity [171], [172]. 

Relays were introduced by Meulen in 1971 [173] and spread widely in radio 

communication after the emergence of the cooperative communication idea 

[172]. In the literature, relay assisted FSO wireless systems have been 

proposed [174], [175]. Relays were used in FSO system to provide multi-hop 

diversity to the destination. In [176] an LED light bulb in a desk lamp is used as 

a relay when it receives a radio signal from a mobile device and broadcasts it 

back to the desk with larger coverage and higher light intensity. In an infrared 

OW system the concept of relays is studied in [177]. The use of intermediate 

nodes in OW systems can lead to significant improvements in SNR and 

considerable extra bandwidth in the channel. Relays can either be idle users 

present in the communication plane who can cooperate in the transmission, or 

they can be transceivers deployed solely for this purpose [177]. 

       In this chapter three new VLC systems, an ADR relay assisted LD-VLC 

(ADRR-LD), an imaging relay assisted LD-VLC (IMGR-LD) and select-the-best 

imaging relay assisted LD-VLC (SBIMGR-LD) are modelled and their 

performance is compared at 10 Gb/s in two VLC room sizes (5×5×3 m3 and 

4×8×3 m3). We also model two different room scenarios: an empty room and a 

real environment room that has a door, windows, bookshelves, mini cubicles 

and other objects. The challenge in both rooms is the ability to establish LOS 

communication link between transmitter and receiver at all relevant locations. 

We have used the previously introduced LD and imaging receiver in Chapter 4 

and delay adaptation technique in Chapter 5 and we have achieved 10 Gb/s in 

a realistic environment, which is a 2x increase in data rate compared with [100] 
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and [103], and in the current work we introduce the concept of relays in VLC 

systems for the first time to the best of our knowledge. The main difference 

between the proposed VLC systems in this study and traditional VLC systems is 

the use of RGB LD as the transmitters instead of LED. The main advantage of 

using visible LD is their wide modulation bandwidths ranging from hundreds of 

MHz to more than 10 GHz.  

       The remainder of this chapter is organised into the following sections: 

Section 6.2 explains the simulation environment and VLC channel model; 

Section 6.3 describes the proposed VLC systems’ configurations. Section 6.4 

provides the simulation results and discussion of the ADRR-LD system, IMGR-

LD system and SBIMGR-LD system in an empty room. Section 6.5 presents the 

simulation results and discussion of the proposed systems in a small office 

environment. The robustness of the proposed systems against mobility, 

shadowing and signal blockage is investigated in Section 6.6. Finally, a 

summary is provided in Section 6.7. 

6.2 Simulation Environment  

To study the benefits of our techniques for an indoor VLC system, a simulation 

based on a ray tracing algorithm was performed in an empty room.  

       Three new VLC systems are considered in this work: ADRR-LD, IMGR-LD 

and SBIMGR-LD systems. All the proposed systems use an upright transmitter 

at the CP and the transmitter is placed at three different locations on the CP: (1 

m, 1 m, 1 m), (2 m, 1 m, 1 m) and (2 m, 4 m,1 m). These transmitter locations 

represent three main cases: transmitter underneath relay (best case), 

transmitter between two relays and transmitter at the centre of the room, which 

is considered the worst case scenario due to the large distance between 

transmitter and relay. Figure 6.1 shows the VLC room with eight RGB-LD light 

units (eight relays) with upright transmitter and receiver both located on CP. 
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Figure 6.1: VLC system room. 

 

6.3 Systems’ Configurations  

In this section, three new VLC systems are presented, analysed and compared 

in order to identify the most appropriate system for use in multi-gigabit VLC 

systems.  

6.3.1 ADRR-LD  

The ADRR-LD system employs one upright transmitter on the CP, eight relays 

(lighting fixtures) on the ceiling connected by fibre interconnects and controlled 

by a central controller and a seven branch ADR (similar to that in Chapter 5) 

located on the CP as shown in Figure 6.2. A communication set up (CS) 
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algorithm is proposed to select the optimum link between the transmitter and 

the relays (under mobility, this algorithm can be called periodically). For a single 

transmitter at a given set of positions, the CS algorithm identifies the optimum 

link according to the following steps: 

1- The controller activates a listening mode in all the relays (eight relays). 

2- The transmitter on the CP sends a pilot signal. 

3- SNR is computed at each relay. 

4- The relay that yields the best SNR is chosen by the controller (which is 

mostly the closest relay to the transmitter).  

5- The controller deactivates the remaining seven relays and keeps the 

closest relay ‘ON’. 

6- The closest relay sends a feedback signal to the transmitter to start 

operating mode (i.e., start sending information signals). 

 

       Once the information signals are sent by the transmitter, the closest relay 

to the transmitter receives it and the controller broadcasts the information to the 

rest of the relays to start transmission to the destination (ADR). Switching ‘ON’ 

the relays and emitting signals simultaneously from the relays (light fixtures) 

may result in receiving the signals at different times due to multipath 

propagation. Therefore, a DAT is coupled with the ADRR-LD system to 

enhance the SNR and channel bandwidth. The delay adaptation technique was 

previously proposed in Chapter 5 [103].  

       If the time taken to determine the value of each SNR and delay associated 

with each relay (relative to the start of the frame) is equal to 1 ms, then our CS 

algorithm and delay adaptation method training time is 80 ms (8 relays × 1 ms + 

9 RGB-LD in each relay unit × 8 relay units × 1 ms). This rate (80 ms, once 

every 1-second frame) is sufficient given that the CS and delay adaptation have 

to be carried out at the rate at which the environment changes (pedestrian 

movement). Therefore, the adaptive system can achieve 100% of the specified 

data rate when it is stationary, and 92% in the case of transmitter or user 
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movement, i.e. 10 Gb/s when it is stationary and 9.2 Gb/s when there are 

environmental changes (user or object movement in the room). Our delay 

adaptation algorithm has been considered at one given receiver location in a 

single user scenario. In the case of a multiuser scenario, opportunistic 

scheduling can be employed [167].  

       The photocurrents received in each branch can be processed using 

different approaches (SC, EGC or MRC). The MRC technique can achieve 

better performance compared to other methods [95]. Therefore, the ADRR-LD 

system employs an MRC approach. 

 

 

 

 

 

 

 

 

 

Figure 6.2: ADRR-LD system. 
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6.3.2 IMGR-LD  

The IMGR-LD system has a similar room configuration and uses the same 

algorithms as the previous system (i.e., CS and delay adaptation). However, the 

main difference between the two systems is the type of receiver (see Figure 

6.3). An imaging receiver with 50 pixels is employed here. The IMGR-LD 

system combines the signals coming from eight relays by using the MRC 

method. It should be noted that the uplink signal from the transmitter is only 

received by one relay (the closest relay to the transmitter) then the controller 

broadcasts the information to the rest of the relays to start transmission to the 

destination (imaging receiver). 

 

 

 

 

 

 

 

Figure 6.3: IMGR-LD system. 

6.3.3 SBIMGR-LD  

In contrast to IMGR-LD, in the SBIMGR-LD system only one relay sends the 

information to the receiver (i.e., the relay closest to the receiver) as shown in 

Figure 6.4. The CS algorithm is used to find the optimum path between 
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transmitter and relay. Then, a select-the-best (SB) algorithm is applied between 

relays and receiver to find the closest relay to the receiver. The SB algorithm 

identifies the closest relay to the receiver according to the following steps: 

1- A pilot signal is sent from one of the relays. 

2- SNR is estimated at the receiver by pixel 1 of the imaging receiver. 

3- Repeat step 2 for other pixels in the imaging receiver.   

4- Repeat steps 2 and 3 for other relay units.  

5- The receiver sends a low data rate control feedback signal to inform the 

controller of the SNRs associated with each relay. 

6- The relay that yields the best SNR is chosen by the controller (typically 

the closest relay to the receiver in our simulations).  

7- The controller activates a silent mode for the remaining six relays and 

keeps the closest relay to the transmitter ‘ON’ to receive information 

signals from the transmitter, and it also keeps the closest relay to the 

receiver ‘ON’ for transmission (see Figure 6.4). When the transmitter and 

receiver are at the same position (special case) only one relay will be ‘ON’ 

to receive and transmit information signals.    

 

Like IMGR-LD, SBIMGR-LD employs a delay adaptation technique to improve 

SNR. The time taken by our algorithms (i.e., CS, SB and delay adaptation) is 

equal to 25 ms (8 relays × 1 ms (for CS) + 8 relays × 1 ms (for SB) + 9 RGB-LD 

in each relay unit × 1 relay unit × 1 ms (for delay adaptation)). Therefore, 100% 

of the specified data rate can be achieved by the adaptive system when it is 

stationary and 97.5% in the case of transmitter or receiver movement. The 

proposed algorithms (SB, CS and DAT) require a repetitive training and 

feedback channel from the receiver to the controller at a low data rate. An IR 

diffuse channel is suggested to achieve this. 

       Figure 6.5 shows a block diagram of the transmitter, relay and receiver with 

uplink and downlink channels (note that if a VLC transmitter near the user 

(laptop for example) is deemed too bright for user comfort, an IR uplink can be 
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implemented). After CS the VLC transmitter sends the information signals, the 

relay unit receives the data and then the controller (a Microchips 32 bits 

microcontroller was used as the controller (PIC32MX110F016B) [178]) 

broadcasts the information to all relays. The backbone of our room network is 

for example based on plastic optical fibre (POF) cables (multimode fibres or 

even single mode fibres can be used to support higher data rates in future) and 

there are used for illumination (LD light engine is used to generate RGB lasers) 

and to carry the data. RGB LD emit the same information signal simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: SBIMGR-LD system. 

The use of a RGB triplet in such devices could potentially deliver data rates in 

the order of 30 Gb/s by using WDM. It should be noted that the source of the 

information (transmitter) is fixed and located on the CP, its main function is to 

send the information signals to relays. Each mobile user has a compact 

transceiver that has the ability to send and receive data. The size of the photo 

detector and concentrator are acceptable in mobile terminals and they can be 
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securely fixed to the mobile unit. 

 

 

 

 

 

 

 

Figure 6.5: Block diagram of relay assisted VLC system. 

6.4 Simulation Results in an Empty Room  

We evaluated the performance of the proposed systems (ADRR-LD, IMGR-LD 

and SBIMGR-LD) using ADR and imaging receivers in an empty room in the 

presence of multipath dispersion and mobility. The proposed systems are 

examined in fourteen different locations when the receivers move along the y-

axis and the transmitter is at the room centre (worst case scenario). The results 

are presented in terms of impulse response, delay spread, 3 dB channel 

bandwidth and SNR.  

6.4.1 Impulse responses 

The impulse responses of the ADRR-LD, IMGR-LD and SBIMGR-LD at the 

room centre are depicted in Figures 6.6 a, b and c, respectively. It can be seen 

that the SBIMGR-LD impulse response is better than that of ADRR-LD and 

IMGR-LD systems. The impulse responses of the three systems consist of first 
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and second reflection components as well as LOS. It can be noted that received 

power from reflection components in the SBIMGR-LD system has lower power 

than in ADRR-LD or IMGR-LD. This is because only the closest relay to the 

receiver transmits the information signals, whereas in the case of the ADRR-LD 

and IMGR-LD systems, eight relays emit optical signals together. 
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Figure 6.6: Impulse responses at room centre (x=2m, y=4m, z=1m) (a) ADRR-LD, (b) 

IMGR-LD and (c) SBIMGR-LD. 

6.4.2 Delay spread distribution  

Figure 6.7 presents the delay spread of the proposed systems when receivers 

move at x=1m and x=2m along the y-axis (in 1 m step). A 0.2 m user step has 

been considered and combined with the results of the 1 m step as shown in 

Figures 6.7, 6.8 and 6.9. Reducing the step size from 1 m to 0.2 m led to 

smoothing the results curves for the delay spread, 3 dB channel bandwidth and 

SNR. The results show that the SBIMGR-LD has the lowest delay spread 

compared with ADRR-LD and IMGR-LD. This is attributed to two reasons: first, 

in SBIMGR-LD only one relay sends information signals towards the receiver. 

Second, LOS is dominant over other components. The results indicate that 

employing the SBIMGR-LD system instead of the ADRR-LD system can reduce 

the delay spread by a factor of 1.6, from 0.01 ns to 0.006 ns in the worst 

communication path. It was observed that, at x=1m in the ADRR-LD and the 

IMGRR-LD systems, the delay spread can be lower than at x=2m. This is due to 
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link distances which increase at x=2m leading to increase in delay spread. 

However, the SBIMGR-LD system delay spread is about the same in both lines 

x=1m and x=2m. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Delay spread of the three systems, (a) at x=1m and (b) at x=2m. 

6.4.3 The 3 dB channel bandwidth  

Although the transmitter modulation bandwidth problem in the traditional VLC 

system can be tackled by replacing LEDs with LD, channel bandwidth remains 

an issue that needs to be solved to achieve multi-gigabit data rates. Previous 

work has shown that adopting LD with an imaging receiver can provide a 3 dB 

channel bandwidth of more than 4 GHz [103]. The 3 dB channel bandwidth 
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achieved by three systems at x=1m and x=2m is depicted in Figure 6.8. The 

results show that the SBIMGR-LD system offers 3 dB channel bandwidth of 

more than 26 GHz in the worst case. The minimum communication channel 

bandwidth of the ADRR-LD system was 8.3 GHz at x=2m. The significant 

increase in the channel bandwidth enables our proposed systems to operate at 

higher data rates using a simple modulation technique, OOK [87]. Also, it 

should be noted that the results in Figure 6.8 are in agreement with the general 

observation made in Figure 6.7. For instance, in the SBIMGR-LD system at the 

point x=1m and y=2m, the delay spread is the lowest resulting in the highest 

channel bandwidth (see Figure 6.8 a). Similar agreement is observed when 

comparing other locations. 

 

 

 

 

 

 

 

 

 

Figure 6.8: The 3 dB channel bandwidth of three systems, (a) at x=1m and (b) x=2m 

and along y-axis. 
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Third order reflections were also considered when the receiver was located at 

the worst case scenario position (2m, 4m, 1m). Table 6.1 shows the delay 

spread and 3 dB channel bandwidth of the proposed systems with and without 

third order reflections. The increase in the delay spread and reduction in 

receiver bandwidth were extremely small when the third order reflections were 

included. This can be attributed to strong LOS components and the limited 

range of the rays accepted by the small FOV branches of the ADR and pixels in 

the imaging receiver with narrow FOV. This is an important distinction between 

VLC systems and IROW systems, where, in the latter, third order reflections 

may play a significant role at high data rates [34]. Received power from the third 

order reflections for the three systems was extremely low compared to LOS, 

first order and second order reflections. For example, in the IMGR-LD system, 

the LOS, first order, second order and third order received powers were 6.36 

µW, 0.2 µW, 0.131 µW and 0.01 µW respectively, which means that the third 

order reflections have a power contribution of about 0.14% of the total power 

received. Therefore, for convenience, computer analysis up to second order 

reflections has been considered in this thesis. 

Table 6.1: Delay spread and 3 dB channel bandwidth with and without 3rd order 

reflections. 

Receiver at (2m, 4m, 1m) ADRR IMGR SBIMGR 

Delay spread [ns] up to 2nd order 

reflections 

0.0159 0.0064 0.0036 

Delay spread [ns] up to 3rd order 

reflections 

0.0162 0.0066 0.0037 

3 dB channel bandwidth [GHz] 

up to 2nd order reflections 

10.42 24.2 36.7 

3 dB channel bandwidth [GHz] 

up to 3rd order reflections 

10.28 23.5 36.2 
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6.4.4 SNR results  

To evaluate the performance of ADRR-LD, IMGR-LD and SBIMGR-LD at high 

bit rates, the SNR was calculated at 10 Gb/s. Figure 6.9 shows the SNRMRC of 

three mobile VLC systems operating at 10 Gb/s. The IMGR-LD and the 

SBIMGR-LD systems outperform the ADRR-LD system. The imaging receiver 

produced significant improvements in SNR compared to the ADR. This is 

attributed to reducing the contribution of the reflection component by using 

narrow FOV pixels and by appropriately weighing (MRC-fashion) the pixels’ 

contributions resulting in an emphasis on the direct power component (i.e. 

LOS). SBIMGR-LD has lower SNRs values at x=1m and x=2m compared with 

the IMGR-LD system. This is due to only one source of information transmitting 

data (one relay transmits information), whereas in IMGR-LD eight relays emit 

information signals simultaneously and, at the receiver side, MRC is used which 

leads to significant improvement in SNR. Simulation results at x=1m showed 

that the IMGR-LD system achieved about 15.7 dB SNR when using the MRC 

approach. This means that the BER provided by our IMGR-LD system is better 

than 10-9 at 10 Gb/s. However, the SNR is observed to decay slightly when the 

receiver moved along the x=2m (BER better than 10-7). This decay occurs due 

to the increased distance between relay and receiver. FEC can be used to 

reduce further the BER from 10-7 to 10-9 in this proposed IMGR-LD system. 
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Figure 6.9: SNR of ADRR-LD, IMGR-LD and SBIMGR-LD systems when operated at 

10 Gb/s (a) at x=1m and (b) at x=2m and along y-axis. 

Higher data rates of 10 Gb/s is considered, and here we used the p-i-n FET 

receiver designed in [168]. 

Tables 6.2, 6.3 and 6.4 present the BER at 10 Gb/s of the ADRR-LD, IMGR-LD 

and SBIMGR-LD, respectively. Due to room symmetry, we calculated BER for 1 

m to 4 m along the y-axis. If we compare the values in Tables 6.3, 6.4 and 6.5 

for x=1m and x=2m, we can clearly see that the IMGR-LD system has the best 

performance compared to the other systems. At x=2m, the BER of the IMGR-

LD system has increased slightly. However, this increase does not severely 

affect the performance of the system; for example, the smallest value of BER in 

Table 6.3 at x=2m is equal to 2.9×10-7, and this value can provide a strong 

communication link. 
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Table 6.2: BER performance of ADRR-LD system. 

 

Table 6.3: BER performance of IMGR-LD system. 

 

 

 

 

 

Table 6.4: BER performance of SBIMGR-LD system. 

 

x=1m 

Receiver Location y-axis 1m 2m 3m 4m 

BER   2.8×10-2 3.6×10-2 1.4×10-2 3×10-2 

x=2m 

Receiver Location y-axis 1m 2m 3m 4m 

BER 2.9×10-2 7.2×10-4 2.3×10-2 7.2×10-4 

x=1m 

Receiver Location y-axis 1m 2m 3m 4m 

BER   5.6×10-10 8.6×10-10 5.6×10-10 8.6×10-10 

x=2m 

Receiver Location y-axis 1m 2m 3m 4m 

BER 2.9×10-7 3.3×10-9 2.9×10-7 3.3×10-9 

x=1m 

Receiver Location y-axis 1m 2m 3m 4m 

BER   7.2×10-5 9.2×10-5 7.2×10-5 9.2×10-5 

x=2m 

Receiver Location y-axis 1m 2m 3m 4m 

BER 6.2×10-3 4.6×10-3 6.2×10-3 4.6×10-3 
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In Figure 6.10, the SNR penalty was calculated based on the old CS and old 

DAT settings while in motion. The results show the SNR penalty incurred as a 

result of mobility. The proposed systems’ design should allow a link margin. For 

instance, with a link power margin of 3 dB for ADRR-LD, Figure 6.10 shows that 

adaptation has to be done every time the receiver moves by 0.6 m 

approximately. If the SNR penalty is lower than 1 dB, as desired in ADRR-LD, 

then Figure 6.10 shows how often the system has to adapt its settings. For 

example, for the SNR penalty to be below 1 dB, the system has to adapt the CS 

and delay adaptation every 0.2 m approximately, which corresponds to a 0.2 

second adaptation frequency. It should be noted that this adaptation has been 

done at the rate at which the environment changes and not at the system’s bit 

rate. In addition, we can clearly see that the IMGR-LD and SBIMGR-LD 

systems outperform the ADRR-LD and this is due to using the imaging receiver 

instead of the ADR. 

6.5 Small Office Environment 

A simulation tool was developed to model a new VLC room with dimensions of 

5×5×3 m3 to enable comparison with previous work [28], [147] (room 

dimensions, source distribution, surrounding surface reflectance and receiver 

positions are similar to [28]), and to evaluate the performance of the proposed 

systems in two different room sizes. The results are presented in terms of delay 

spread and SNR, and compared to the results presented in the previous 

Section. Figure 6.11 shows the new VLC room (small office). 
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Figure 6.10: The SNR penalty of proposed systems when the receiver moves from the 

optimum location at (2m, 1m, 1m) along y-axis. 

 

 

 

 

 

 

 

 

 

Figure 6.11: VLC system room with dimensions of 5×5×3 m3. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Delta Y [m]

S
N

R
 P

e
n

a
lt
y
 [
d

B
]

 

 

ADRR-LD

IMGR-LD

SBIMGR-LD



Chapter Six 

139 

 

6.5.1 Delay spread  

Figure 6.12 presents the delay spread of the proposed systems when receivers 

were moved at x=1.25m (line underneath relay units) and x=2.5m (middle of the 

room) along the y-axis. It should be noted that the delay spread of the proposed 

systems in the small office (5×5×3 m3) is much lower than that in the large office 

(4×8×3 m3), and this could be due to two reasons: 1) the distance between the 

relay unit and receiver is less than that in the large office and 2) decreasing the 

room size leads to a decrease in the number of reflectance elements which 

decreases the power received from the reflections. The delay spread results are 

comparable to the results in [147]. However, in the current work the delay 

spread becomes very low because we used an imaging receiver and ADR with 

narrow FOV, which lead to a reduction in the effect of the reflection 

components. Due to the symmetry of the room, the results for x=1.25m, y=1 are 

equal to the results for x=1.25m, y=4 (or y=2 and y=3); a similar behaviour was 

observed when the receiver moved along the x=2.5m line. 

 

 

 

 

Figure 6.12: Delay spread of three systems, (a) at x=1.25m and (b) at x=2.5m and 

along y-axis. 
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the small room was higher than that in the large room due to the small distance 

between the transmitter and receiver, which lead to a reduced path loss and 

increased SNR. It should be noted that the IMGR-LD system outperformed the 

other systems (ADRR-LD and SBIMGR-LD) in the small office (5×5×3 m3), as it 

did in the large office (4×8×3 m3). 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: SNR of three systems, (a) at x=1.25m and (b) at x=2.5m and along y-axis. 
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conducted in a room that was comparable in dimensions to that explained in 

Section 6.2 (see Figure 6.1). The realistic room environment is similar to that in 

Chapter 5, Section 5.3 (Figure 5.1b). In Section 6.3 a simulation package based 

on a ray tracing algorithm was developed using MATLAB to compute the 

impulse response of the different VLC systems in an empty room. In the 

realistic environment for each receiver location, the first step is to check the 

availability of the LOS component (certain conditions were introduced to the 

simulator to check the existence of LOS, first and second order reflection 

components in each location) and then the received power due to first and 

second order reflections is calculated. In some locations over the CP some of 

the LOS components were blocked by mini cubicles, and this affected the SNR 

severely. Figure 6.14 shows a block diagram of the simulator with ADR and 

imaging receiver. 

6.6.1 Impulse response  

Channel impulse responses at the room centre (i.e. x=2m and y=4m, chosen as 

they represent the worst communication link over the entire CP (motion 

between cubicles)) for the ADRR-LD, IMGR-LD and SBIMGR-LD systems are 

shown in Figure 6.15 for rooms A and B (room A is an empty room and room B 

is a realistic room). It should be noted that the impulse responses of the 

proposed systems were dominated by short initial impulses due to the LOS 

paths between the transmitters and receiver. In addition, it can be clearly seen 

that the IMGR-LD and SBIMGR-LD systems have good robustness against 

shadowing and mobility. 
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Figure 6.14: Block diagram of simulator. 

However, the amount of received optical power from the reflections in room B 

was less than that received in room A, as shown in Figure 6.15, and this was 

due to the existence of the door, windows, cubicles, partitions and bookshelves 

in room B that lead to reduced multipath propagation. Although the received 

power from the reflections was severely affected in room B, the LOS 

component remained the same in both room configurations in both systems, 

and the LOS component had the largest impact on the system performance. 

For example, the received optical power associated with the IMGR-LD system 

in room A was 6.69 μW, whereas it was 6.63 μW in room B, which indicates 

that the reduction in power was negligible (the reduction in power was 0.063 
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μW). Moreover, it can be noted that the effect of shadowing on the ADRR-LD 

system was clear when the receiver was located at the room centre in room B. 

The LOS received power in room A was 4.5 μW, whereas it was 2.25 μW in 

room B (about 3 dB reduction in received power), and this was due to one of 

the LOS components being blocked by the wall of a cubicle. These impulse 

responses suggest that the ADRR-LD system performs better in room A 

(without shadowing) than in room B, and the  IMGR-LD and SBIMGR-LD 

systems were affected by the shadowing geometry considered (office cubicles). 
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Figure 6.15: Impulse responses at room centre (x=2m, y=4m, z=1m) in two different 

environments (rooms A and B) (a) ADRR-LD, (b) IMGR-LD and (c) SBIMGR-LD. 

6.6.2 SNR  
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reduction approximately). This is because, when the ADR moves along lines 

x=1m and x=2m, some transmitters (RGB-LD relay unit) cannot be detected by 
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high channel bandwidth (8.3 GHz and beyond, see Figure 6.8), which is more 

than enough to operate at 10 Gb/s. In addition, the backbone of the room 

network is fibre cable that is able to carry 10 Gb/s, and the modulation 

bandwidth of the LD (the sources used in our work) can be in the GHz range 
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internal capacitance of the PD would not affect the performance of our 

receivers. The fabrication and testing of a high speed VLC receiver array are 

very challenging tasks. To the best of our knowledge, there is no commercial 

high speed VLC receiver to date that has specially been designed for indoor 

VLC use. At a data rate of 10 Gb/s, most of the components will probably be 

adopted from the IROW and optical fibre domain [179], which is not ideal for 

VLC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: SNR of ADRR-LD, IMGR-LD and SBIMGR-LD systems in two different 

environments (rooms A and B) when the systems operated at 10 Gb/s at (a) x=1m and 

(b) x=2m and along the y-axis. 
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6.7 Summary 

In this chapter, we proposed, designed and investigated the concept of relays in 

a VLC system. We introduced two novel algorithms (CS and SB) to create 

optimum transmitter-relay and relay-receiver communication links. Three novel 

VLC systems (ADRR-LD, IMGR-LD and SBIMGR-LD) are introduced. These 

VLC systems use LD instead of LEDs as transmitters, and they use two different 

types of receiver: an ADR with 7 branches and an imaging receiver with 50 

pixels. We optimised the FOVs, 𝐴𝑍s and 𝐸𝐿s of the ADR and the FOVs of the 

imaging receiver. In the worst case scenario, SBIMGR-LD achieves significant 

improvements in VLC channel bandwidth and delay spread over the ADRR-LD 

and IMGR-LD systems. It has the ability to achieve 26 GHz channel bandwidth 

(about 0.0058 ns delay spread). On the other hand, the IMGR-LD outperforms 

the ADRR-LD and the SBIMGR-LD systems in SNR (14.1 dB in the worst case 

scenario). The BER provided by our IMGR-LD system is better than 10-7 at 10 

Gb/s in the worst case scenario. 

       Different room sizes were also considered to examine the performance of 

the proposed systems. The performance of the proposed systems was better in 

the small office than the large office and this is due to the distance between the 

transmitter and receiver, which was smaller and led to reduced path loss, delay 

spread and increased SNR.  

       The proposed systems were evaluated under diverse situations including 

an empty room and a realistic room. The IMGR-LD and SBIMGR-LD systems 

have good robustness against shadowing and mobility. However, the ADRR-LD 

system performance was severely affected when it is operated in the realistic 

environment characterised by shadowing.      
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7 Mobile Indoor Visible Light 

Communication System 

Employing Beam Steering and 

Computer Generated Holograms  

7.1 Introduction 

VLC systems have typically operated at data rates below 10 Gb/s and operation at 

this data rate was shown to be feasible by using LD, imaging receivers, relay 

nodes and delay adaptation techniques (DAT imaging LD-VLC system in Chapter 

5 and IMGR-LD system in Chapter 6). However, higher data rates, beyond 10 Gb/s, 

are challenging due to the low SNR and ISI. In this chapter, for the first time, to the 

best of our knowledge, we propose, design and evaluate a VLC system that 

employs beam steering (of part of the VLC beam) using adaptive finite vocabulary 

of holograms in conjunction with an imaging receiver and a delay adaptation 

technique to enhance SNR and to mitigate the impact of ISI at high data rates (20 

Gb/s). An algorithm was used to estimate the receiver location, so that part of the 

white light can be directed towards a desired target (receiver) using beam steering 

to improve SNR. Simulation results of our location estimation algorithm (LEA) 

indicated that the required time to estimate the position of the VLC receiver is 

typically within 224 ms in our system and environment. A finite vocabulary of stored 

holograms is introduced to identify the best location to steer the beam to the 

receiver location. The beam steering approach improved the SNR of the fully 

adaptive VLC system by 15 dB at high data rates (20 Gb/s) over the DAT 

imaging LD-VLC system in the worst case scenario.  
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Previous chapters have shown that significant enhancements in the VLC 

system data rates can be achieved by replacing LEDs with LD coupled with the 

use of an imaging receiver instead of the conventional wide FOV receiver [100], 

[103]. In addition, performance evaluations were carried out for a mobile multi-

gigabit VLC system in two different environments in the previous chapters. A 

rate of 10 Gb/s in a realistic environment has been shown to be possible with a 

VLC system when a delay adaptation technique in conjunction with laser diodes 

and imaging receiver were used with a simple modulation format (OOK) [103]. 

Significant improvements were shown to be possible when a VLC relay assisted 

system is combined with an imaging receiver and a delay adaptation technique 

[101]. However given typical parameters, the latter system cannot provide a 

throughput beyond 10 Gb/s due to its low SNR.  

       Beam steering has been widely investigated in communication systems to 

maximise the SNR at the receiver [86], [163], [180]. Therefore, beam steering 

can also be an attractive option to consider in VLC systems to enhance the 

system performance. Recently, transmission beam steering for MIMO IROW 

systems with intensity modulation and direct detection has been developed 

[181]. In addition, recent work has demonstrated optical wireless energy 

transmission using optical beam steering and beam forming with a spatial light 

modulator (SLM). They focused light on the desired target using optical beam 

steering and beam forming to transfer optical wireless energy [182]. A VLC 

beam steering array can be constructed using electronically controlled mirrors 

in front of the receiver. An inexpensive approach that can be used to provide 

good link quality during mobility is to use mirrors with piezoelectric actuators in 

front of the receiver [4], [129]. Another approach is the tilting of the transmitter 

and receiver together using piezoelectric actuators that are controlled 

electronically. As with the mirror method, the tilting method also needs to be 

controlled by an electronic circuit. However, these methods lead to a bulky 

receiver and cannot be used for mobile devices [4].  
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       Recently, various approaches for VLC indoor positioning systems have 

been researched [131], [132]. VLC systems are a promising solution for indoor 

positioning due to many features. Firstly, there is better positioning accuracy 

(few millimetres) compared to radio wave systems, since VLC suffers less from 

interference and multipath effects. Secondly, VLC positioning systems can be 

used in environments where radio positioning systems are restricted, such as in 

hospitals [133].   

       The work presented in this chapter aims to address the impairments of VLC 

systems and provide practical solutions, hence achieving data rates beyond 

those reported in the previous chapters. In this chapter, we propose a novel 

LEA and beam steering (BSR) technique to improve the SNR of a VLC system 

at high data rates (20 Gb/s and beyond). In addition, we introduce a new 

adaptive finite vocabulary hologram approach for beam steering making use of 

simulated annealing optimisation. To best of our knowledge this represents the 

first time these techniques are used in VLC systems. The holograms are pre-

calculated and stored in the proposed system (each is suited for a given (range 

of) transmitter and receiver locations) and eliminate the need to calculate 

holograms real time at each transmitter and receiver location. The concept of 

finite adaptive computer-generated holograms has been recently proposed in 

[183], [184] and it is adapted here for the first time to VLC systems.  

       The first step is to estimate the receiver location using the LEA algorithm 

then the BSR technique steers part of RGB-LD white light to the VLC receiver, 

which leads to enhanced received SNR. The enhancement in the signal 

strength by the BSR approach can improve the transmission distance. Imaging 

receivers were shown to be attractive and efficient in mitigating the effects of 

ambient light and pulse spread in infrared optical wireless systems [87], [88], 

[162], [170]. In our previous work we proposed the use of an imaging receiver 

for a VLC system to provide a robust link and mitigate multipath dispersion, as 

well as to improve the overall system performance. In this chapter we used an 
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imaging receiver and two types of diversity schemes SC and MRC to choose or 

add the received power collected by different pixels. A DAT for a VLC system 

was proposed in and it is used here as it was shown to offer channel 

bandwidths of more than 36 GHz, which enables the VLC system to operate at 

data rates of more than 20 Gb/s. The adaptation techniques (LEA, BSR and 

DAT) require a repetitive training and feedback channel from the receiver to 

transmitter at a low data rate. An IR diffuse channel is suggested to achieve this 

channel. The ultimate goal of this work is to enhance the SNR at high data 

rates, reduce the effect of receiver mobility and minimise delay spread 

(maximise channel bandwidth) within a realistic environment. 

The rest of the chapter is organised as follows: The VLC system model is 

described in the next Section. Section 7.3 describes the VLC systems’ 

configurations. The impact of beam steering on illumination is investigated in 

Section 7.4. Adaptive finite vocabulary of holograms for VLC is considered in 

Section 7.5. The simulation results in an empty room are outlined in Section 

7.6. Robustness against shadowing is evaluated in Section 7.7. A high speed 

adaptive mobile VLC system is introduced in Section 7.8. Finally, a summary is 

presented in Section 7.9. 

7.2 Simulation Setup 

To evaluate our proposed techniques (LEA, BSR and DAT), a simulation was 

conducted in an empty room with dimensions of 4m×8m×3m (width × length × 

height). The simulation tool used is similar to the ones used in previous 

chapters (3, 4, 5, and 6). The simulations and calculations reported in this 

chapter were carried out using MATLAB. In our evaluation, the channel 

characteristics, optical power received, delay spread, 3 dB channel bandwidth 

and SNR calculations were determined in similar ways to those used in 

Chapters 3, 4, 5 and 6. Imaging receiver with 50 pixels is used to reduce the 

impact of multipath dispersion. The imaging receiver design provided in 
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Chapters 4 and it is used here with BSR technique. To enable BSR technique 

three different holograms should be used at each light unit and this is due to 

using RGB-LD (i.e., a different hologram for each colour). The VLC room with 

the coordinates of the RGB-LD light units and the imaging receiver is shown in 

Figure 7.1.  

 

 

 

 

 

 

 

 

Figure 7.1: VLC system room and the physical structure of imaging receiver. 

The imaging receiver is always placed on the communication plane along the 

x=1m and x=2m lines (see Figure 7.2). Each pixel in the imaging receiver has its 

own amplifier to amplify the received photocurrent (see Figure 7.1). In our 

previous work, a simulation package based on a ray tracing algorithm was 

developed to compute the impulse response for different VLC systems. In this 

chapter, additional features were introduced to enable LEA, BSR and delay 

adaptation. 
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Figure 7.2: Imaging receiver test area locations on communication plane. 

7.3 VLC Systems’ Configurations  

In this section, four VLC systems are presented, analysed and compared to 

identify the most appropriate system for use in high-speed VLC systems (20 

Gb/s and beyond). 

7.3.1 Imaging LD-VLC system  

The imaging LD-VLC system employed eight RGB-LD transmitters (lighting 

fixtures) on the ceiling connected by fibre interconnect and controlled by a 

central controller and an imaging receiver with 50 pixels. The imaging LD-VLC 

system was proposed in Chapter 4 [103] and it is considered here to compare it 

with our new proposed VLC systems.  
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7.3.2 DAT imaging LD-VLC system  

The DAT imaging LD-VLC system has a similar configuration as the previous 

system. However, the delay adaptation technique is combined with imaging LD-

VLC (DAT imaging LD-VLC) to enhance the overall system performance.  The 

DAT imaging LD-VLC system was previously proposed in Chapter 5 [103].  

7.3.3 Beam steering LD-VLC system  

The newly proposed beam steering LD-VLC system has a similar room 

configuration and uses the same transmitters and receiver as in the previous 

systems. However, three new algorithms were introduced to enable the system 

to achieve data rates higher than 10 Gb/s. Select-the-best (STB), LEA and BSR 

algorithms were used to enhance the SNR of the new VLC system. 

7.3.4 Fully adaptive VLC system  

In contrast to the beam steering LD-VLC system, the fully adaptive VLC system 

employed the delay adaptation technique to further improve the communication 

link performance. In contrast to our previous work in [100]-[103] where the 

RGB-LD light unit had a fixed form pattern, we propose here a fully adaptive 

VLC system where the transmitter (RGB-LD light unit) has the ability to direct 

part of the white light towards the receiver location to enhance the SNR when 

operating at high data rates. LEA and BSR were implemented in a certain RGB-

LD light unit for a single receiver at a given set of positions; when the receiver 

starts moving, they are applied in another RGB-LD light unit according to the 

new receiver location (coordinates). The SNR improvement at high data rates 

(i.e., 20 Gb/s) could be achieved according to the following algorithms:- 
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 STB algorithm is proposed to locate the closest transmitter (RGB-LD) to the 

receiver to implement LEA and BSR. The STB algorithm identifies the 

closest transmitter to the receiver according to the following steps: 

 

1- A pilot signal is sent from one of the VLC transmitters. 

2- The SNR is estimated at the receiver by pixel 1 of the imaging 

receiver. 

3- Repeat step 2 for the other pixels in the imaging receiver.   

4- Repeat steps 2 and 3 for the other VLC transmitter units.  

5- The receiver sends (using an infrared beam) a low data rate control 

feedback signal to inform the controller of the SNRs associated with 

each transmitter. 

6- The transmitter that yields the best SNR is chosen by the controller 

(typically the closest transmitter to the receiver in our simulations). 

  

It should be noted that the RGB-LD light units should always be ‘ON’ to provide 

illumination for the room. The information signals are coded (each RGB-LD unit 

has its own code) and sent from each RGB-LD light unit by the central 

controller. Once the receiver receives the coded signal from the RGB-LD light 

unit, the SNR is computed and a feedback signal is sent. If the time taken to 

calculate the value of each SNR with each RGB-LD unit is equal to 1 ms then 

the STB algorithm training time is 8 ms (8 RGB-LD units × 1 ms).  

 

 A new LEA is introduced to the VLC system to identify the optimum location 

to carry out optical BSR. The RGB-LD light unit that has been chosen in the 

STB algorithm initially produces a single beam using a computer generated 

hologram (CGH) and scans it along a number of possible locations in the 

room to identify the location of the receiver. At each beam setting the 

receiver computes the SNR and the optimum beam location is selected at 

the controller. The location estimation algorithm is an effective approach 
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that can help identify the optimum direction for BSR in a way that gives the 

best SNR at the receiver. 

 

The RGB-LD light unit is followed by the CGH that generates beams whose 

locations can be varied where the transmission angles 𝜃𝑥 and 𝜃𝑦 in the xy-axes 

are varied between -70o and 70o (half power beam angle of RGB-LD light unit 

was 70o) with respect to the transmitter’s normal in both the x and the y (𝛼−𝑥 to 

𝛼𝑥 and 𝛼−𝑦 to 𝛼𝑦) directions respectively. The LEA produces a single beam and 

scans it with step angle (𝛽) along a range of rows and columns in the room to 

identify the location that yields the best receiver SNR. The coordinates of this 

location are used as the centre of the BSR direction. 𝛽 is chosen to be large in 

the first iteration (26.5o, which allows the spot to move 100 cm) to reduce the 

number of locations that have to be scanned. The angle is then reduced by a 

factor of two in each following iteration. The position that results in the best 

SNR is identified as a sub-optimum location, and the area that includes this 

sub-optimum location is selected as a new scanning area for the next iteration. 

A number of iterations are carried out until the final optimum location is 

identified (eight scan iterations are considered to achieve 𝛽=0.28o or step size 

of 1 cm). The LEA scans 224 possible locations in eight iterations until reaching 

the target step size (1 cm). The LEA determines the two transmission angles 𝜃𝑥 

and 𝜃𝑦 that identify the coordinates (x, y, z) of the best SNR location according 

to the following steps:  

   

1- Configure the RGB-LD light unit to implement scan locations according 

to the associated parameters: the x-axis scan range (𝜃𝑥
𝑆𝑡𝑎𝑟𝑡 to 𝜃𝑥

𝐸𝑛𝑑), the 

y-axis scan range (𝜃𝑦
𝑆𝑡𝑎𝑟𝑡to 𝜃𝑦

𝐸𝑛𝑑) and the step angle (𝛽). A single beam 

is moved by changing the beam angles between -70o and 70o in steps of 

𝛽 to determine the sub-optimum location. Some of the scan points will be 

on the walls due to the RGB-LD light unit’s position, as shown in Figure 

7.3.         
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2- The SNR is computed at each step and the receiver sends a control 

feedback signal at a low rate to inform the controller of the SNR 

associated with each scan. This feedback channel can be implemented 

using an infrared beam. 

3- Compare the SNR computed and recorded with the associated 

transmission angles 𝜃𝑥 and 𝜃𝑦 that give the maximum SNR. 

4- Determine the sub-optimum coordinates (xs, ys, zs) of the beam that 

produces the sub-optimum SNR based on its transmission angles 𝜃𝑥 and 

𝜃𝑦. 

5- To configure the next iteration, the controller identifies the area that 

includes the sub-optimum location from 𝜃𝑥 and 𝜃𝑦 and assigns it as the 

boundary angles of the new scanning area (𝛼−𝑥 to 𝛼𝑥 and 𝛼−𝑦 to 𝛼𝑦).  

6- 𝛽 is reduced by a factor of two. 

7- Repeat steps 1 to 4 to identify the best location that gives the highest 

SNR. The iterations stop when 𝛽 ≤ 0.28o (beam step is 1 cm). 

8- The controller assigns the optimum location with the coordinates (x, y, z) 

to the transmitter. 

 The new BSR technique focuses a part of the light of one of the RGB-LD 

towards the coordinates that were found by the LEA algorithm. According to 

the illumination results, which will be discussed in the next section, up to 

20% of the RGB-LD light unit can be beam steered towards the receiver’s 

location while the remaining white light (i.e., 80%) is used for illumination. 

The adaptation techniques (LEA, BSR and DAT) require a repetitive training 

and feedback channel from the receiver to transmitter at a low data rate. A 

diffuse IR channel (λ=850 nm) is suggested to achieve this channel. An IR 

detector is attached to the RGB-LD light unit.  
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Figure 7.3: LEA implemented at one of corner RGB-LD light units. 

Heat sources such as RGB-LD light unit may negatively affect the performance 

of the feedback channel (IR diffuse) as they may be considered as interference 

sources [185]. However, it should be noted that in this work we have used the 

RGB-LD light units which have lower heat emission than conventional lamps 

such as halogen or incandescent. In addition, the main function of this channel 

is to send a feedback signal and the data rates used in this channel are very 

low (i.e., tens of kb/s). Figure 7.4 shows a block diagram of the transmitter and 

receiver with uplink and downlink channels. The CGH in the transmitter is used 

for beam steering, and it is a transparent or reflective device that is used to 

spatially modulate the phase or amplitude of each pixel [186]. The CGH devices 

have μs to ms response times that are sufficient to carry out the BSR technique 

at the rate of mobile receiver movements [187]. The CGH and control circuit 

can generate beams to scan the communication plane and estimate the 

receiver location (see Figure 7.5). Changing the holographic function through 

the control circuit can generate variable optical beam locations on the 
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communication plane with different switching times. Once, the beam steering 

technique is applied, delay adaptation can be utilised to reduce the effect of 

multipath and reduce the delay spread (increase channel bandwidth). An 

imaging receiver employing narrow FOV pixels can be used to mitigate the 

effect of multipath propagation due to the limited range of rays received. 

However, it has been seen in a VLC system that the delay spread is influenced 

by the RGB-LD spots’ relative positions and the number of RGB-LD spots seen 

by the FOV of each pixel [103]. Thus, emitting signals from all RGB-LD units at 

the same time may cause a time delay differential between the signals received 

at the pixel, which results in spreading the received pulse and hence limiting the 

bandwidth. The delay adaptation algorithm for a VLC system was proposed in 

Chapter 5 [103], and it is used here to offer improvements in terms of bandwidth 

efficiency. The delay adaptation can be implemented through array elements 

delayed switching.  

 

 

 

 

 

 

 

Figure 7.4: Block diagram of fully adaptive VLC system. 
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Figure 7.5: Beam steering technique applied at one of RGB-LD light unit. 

       A pedestrian user moves indoor at a speed of about 1 m/s [166]. We 

therefore propose that the receiver re-estimates its SNR and delay values for all 

RGB-LD light units at the start of a one second frame, and if these have 

changed compared to the previous frame’s values then the receiver uses the 

feedback channel to update the controller. The LEA and the delay adaptation 

method training time will be 296 ms (224 possible locations should be scanned 

in all iterations × 1 ms + 9 RGB-LD in each transmitter unit × 8 transmitter units 

× 1 ms). This time (296 ms, once every one second frame) is sufficient given 

that LEA and delay adaptation have to be carried out at the rate at which the 

environment changes (pedestrian movement). Therefore, the beam steering 

LD-VLC system can achieve 100% of the specified data rate when it is 

stationary, and 70.4% in the case of user movement, (user or object movement 

in the room). The 30 % overhead (data loss in the case of user movement) is 

considered too high. Therefore, fast and efficient algorithms should be 

implemented to reduce the loss in data rate during mobility.  LEA, BSR and 

delay adaptation algorithms are carried out at one given receiver location for the 

single user scenario to enhance the SNR and bandwidth at the receiver, and 
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this can be achieved through the algorithms given in Figure 7.6. In the case of a 

multiple user scenario, opportunistic scheduling [167] can be used where LEA, 

BSR and delay adaptation algorithms are implemented opportunistically (or 

randomly between users/regions) to maximise the 3 dB channel bandwidth and 

the SNR in a given region for a given time period. The MAC protocol should 

include a repetitive training period to perform the algorithms in Figure 7.6.  
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Figure 7.6: Flow chart of STB, LEA, BSR and DAT algorithms. 
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7.4 The Impact of the Beam Steering Technique on 

Illumination  

The main function of the RGB-LD light units is to provide sufficient illumination 

according to ISO and European standards [156]. Therefore, to ensure the 

illumination is at an acceptable level we controlled the white light directed 

towards the receiver so that only a small amount of the RGB-LD light is beam 

steered towards the receiver (20% of light of RGB-LD unit), and the remaining 

light is used for illumination. We examined different values of light beam 

steering (10%, 20% and 30%) and we found that 20% achieves good 

performance in terms of the improvement in the achievable channel bandwidth 

and data rate while obeying the illumination standards with an acceptable 

change in illumination (i.e., the reduction in illumination is within the threshold 

level of European standards, which is 300 lx).  

Figure 7.7 shows the horizontal illumination distribution for the eight RGB-LD 

units, the comparison is carried out for the illumination with and without beam 

steering when 10%, 20% and 30% of the beam power is steered, applied at 

LD1 (see Figure 7.2 for RGB-LD numbers and locations). The LD1, LD4, LD5 

and LD8 light units were located at the room corners, and when beam steering 

of more than 20% is carried out at one of these light units, this led to reduced 

illumination in the room corners that is less than the threshold level (i.e. less 

than 300 lx, see Figure 7.7c). The minimum illumination in the corner without 

beam steering was 336 lx, as shown in Figure 7.7 a, b and c. However, when 

beam steering was applied at one of the corner RGB-LD units (worst case 

scenario) the illumination decreased, due to a part of the RGB-LD’ light being 

steered towards the receiver location (e.g. at 1m, 1m, 1m). The minimum 

illumination values of 10%, 20% and 30% beam steering were 323 lx, 300 lx and 

275 lx respectively. Therefore, we chose 20% beam steering as an acceptable 

value that kept the illumination at an acceptable level (300 lx) and improved the 
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SNR. We emphasise that the beam steering technique is carried out at one 

RGB-LD light unit that is nearest to the receiver location (the RGB-LD that has 

been chosen by the STB), while the remaining RGB-LD light units (seven RGB-

LD light units) operate normally. Note that steering light to a receiver, not only 

increases the received power, it more importantly reduces the delay spread by 

increasing the power received through the direct ray well beyond the power 

received through reflections. 
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Without beam steering 
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Figure 7.7: The distribution of horizontal illumination on the communication plane 

without beam steering minimum illumination 336lx and maximum illumination 894lx: (a) 

10% beam steering minimum illumination 323 lx and maximum illumination 892 lx (b) 

20% beam steering minimum illumination 300 lx and maximum illumination 889 lx (c) 

30% beam steering minimum illumination 275 lx and maximum illumination 887 lx. 

7.5 Adaptive Finite Vocabulary of Holograms for VLC  

An angle and power adaptive IROW system has recently been introduced [86], 

[163]. Beam angle adaptation for VLC systems can be an effective technique 

that helps to provide the strongest path between the transmitter and the receiver 

at every receiver location. The adaptive transmitter first produces a single spot 

to scan the communication plane at approximately 224 possible locations in 

order to identify the best location. Once the optimum angles are found, the 

transmitter generates the hologram. These processes require intensive 

calculations and time from a digital signal processor (DSP). Figure (7.8) shows 

an example of VLC communication architecture when the transmitter is placed at 

(1m,1m,3m) and the receiver is at (1m,1m,1m). 

 

Without beam steering 

30% beam steering 

(c) 
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       Computer generated holograms can produce spots with any prescribed 

amplitude and phase distribution. The CGH’s have many useful properties. Spot 

distributions can be computed on the basis of diffraction theory and encoded into 

a hologram. Calculating a CGH means the calculation of its complex 

transmittance. The transmittance is expressed as: 

     𝐻(𝑢, 𝑣) = 𝐴(𝑣, 𝑢). 𝑒𝑥𝑝[𝑗𝜙(𝑢, 𝑣)]                               (7.1)  

where 𝐴(𝑢, 𝑣) is the hologram’s amplitude distribution, 𝜙(𝑢, 𝑣) is its phase 

distribution, and (𝑢, 𝑣) are coordinates in the frequency space. The relative 

phases of the generated spots are the objects of interest. The hologram is able 

to modulate only the phase of an incoming wave front, the transmittance 

amplitude being equal to unity.  

        The analysis used in [183], [184], [188] was used for the design of the 

CGHs. The hologram 𝐻(𝑢, 𝑣) is considered to be in the frequency domain. The 

pixels’ locations in the hologram are defined by the frequency coordinates 𝑢 and 

𝑣 (two dimensions). The observed diffraction pattern ℎ(𝑥, 𝑦) is in the spatial 

domain (far field). They are related by the continuous Fourier transform: 

                            ℎ(𝑥, 𝑦) = ∬𝐻(𝑢, 𝑣)𝑒𝑥𝑝[−𝑖2𝜋(𝑢𝑥 + 𝑣𝑦)]𝑑𝑢𝑑𝑣                           (7.2) 

The hologram structure is an 𝑀 × 𝑁 array of rectangular cells, with 

dimension 𝑅 ×  𝑆. Each cell represents a complex transmittance value 𝐻𝑘𝑙: -

𝑀/2 <  𝑘 <  𝑀/2 and −𝑁/2 <  𝑙 <  𝑁/2. If the hologram is placed in the 

frequency plane, the diffraction pattern is given by [184], [189]: 

               ℎ(𝑥, 𝑦) = 𝑅𝑆𝑠𝑖𝑛𝑐(𝑅𝑥, 𝑆𝑦)∑ ∑ 𝐻𝑘𝑙

𝑁

2
−1

𝑙=−
𝑁

2

𝑀

2
−1

𝑘=−
𝑀

2

𝑒𝑥𝑝[𝑖2𝜋(𝑅𝑘𝑥 + 𝑆𝑦𝑙)]             (7.3) 

where 𝑠𝑖𝑛𝑐(𝑎, 𝑏)= 𝑠𝑖𝑛(𝜋𝑎) 𝑠𝑖𝑛(𝜋𝑏)/𝜋2𝑎𝑏. The hologram is designed such that 

the complex amplitude of the spots is proportional to some value of interest. 
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However, because of the finite resolution of the output device and the complex 

transmittance of the resulting hologram, the reconstruction will be in error. This 

error can be used as a cost function. Simulated annealing was employed to 

minimise the cost function. The amplitudes and phases of every spot are 

determined by the hologram pixels’ pattern and are given by its Fourier 

transform. 

 

 

 

 

 

 

Figure 7.8: VLC communication architecture of our proposed system when the 

transmitter is placed at (1m,1m,3m) and the receiver is at (1m,1m,1m). 

 

The desired distribution of spots in the far field is 

𝑓(𝑥 ,y) = |𝑓(𝑥 ,y)|𝑒𝑥𝑝 (𝑖𝜑(𝑥 ,y)). The main goal of the design is to determine the 

CGH distribution 𝑔(𝑣, 𝑢) that generates a reconstruction 𝑔(𝑥, 𝑦) as close as 

possible to the desired distribution 𝑓(𝑥, 𝑦). The cost function (CF) is defined as 

a mean squared error which can be interpreted as the difference between the 

normalized desired object energy 𝑓"(𝑥, 𝑦) and the scaled reconstruction 

energy 𝑔"(𝑥, 𝑦): 

𝐶𝐹𝑘 = √∑ ∑ (|𝑓"(𝑖, 𝑗)|2 − |𝑔"𝑘(𝑖, 𝑗)|2)2
𝑁
𝑗=1

𝑀
𝑖=1                           (7.4) 
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where 𝑓"(𝑥 , y) represents the normalised desired object energy and 𝑔"𝑘(𝑖, 𝑗) 

represents the scaled reconstruction energy of the kth iteration. Simulated 

annealing was used to optimise the phase of the holograms offline by 

minimising the cost function. 

       A large number of holograms are required in order to accurately identify the 

receiver location within the region [184].  Each hologram produces the optimum 

pattern which was pre-calculated based on the LEA. An example of one 

hologram, when the transmitter is placed in the corner of room at: (1m, 1m, 3m) 

and the receiver is present at (1m, 1m, 1m), as shown in Figure 7.8. Simulated 

annealing was used to optimise the phase of the CGHs. Figure 7.9 shows three 

snapshots of hologram phase distributions, 𝑔(𝑥, 𝑦), in the far filed at different 

iterations. When the number of iterations increases, the hologram phase 

distributions improve. The cost function versus the number of iterations 

completed is shown in Figure 7.10. 
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Figure 7.9: The hologram phase pattern at iterations 5, 15 and 100 using simulated 

annealing optimisation.  

 

 

 

 

 

 

Figure 7.10: Cost function versus number of iterations. 

7.6 Simulation Results and Performance Analysis  

In this section, we evaluate the performance of LEA, BSR and delay adaptation 

techniques in the presence of multipath propagation, ISI and mobility of the VLC 

system in an empty room. Two new VLC systems, beam steering LD-VLC and 

fully adaptive LD-VLC, were compared with imaging LD-VLC and DAT imaging 
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LD-VLC. The results are presented in terms of impulse response, delay spread, 

3 dB channel bandwidth and SNR. 

7.6.1 Impulse response  

The impulse responses of the four VLC systems: imaging LD-VLC, DAT 

imaging LD-VLC, beam steering LD-VLC and fully adaptive LD-VLC, at the 

room centre are depicted in Figure 7.11. The LOS components have a great 

impact on the system performance; therefore, we magnified the impulse 

responses for these systems to show the LOS contributions clearly. First and 

second order reflection components exist in the original impulse response, but 

they do not appear in this figure due to magnification of the LOS components. It 

can be clearly seen that the systems that employ the delay adaptation 

technique (DAT imaging LD-VLC and fully adaptive) are significantly better than 

the other systems (imaging LD-VLC and beam steering LD-VLC) in terms of 

signal spread (recall that there are multiple VLC light sources in the room). The 

imaging LD-VLC system (black line) produces 6.68 μW received power with a 

much greater signal spread due to sending the signals at the same time from 

different LD light units. A considerable reduction in the signal spread is 

observed when the delay adaptation technique is adopted in the imaging the 

LD-VLC system as shown in blue line Figure 7.11. However, there is no 

increase in the amount of received optical power (the sum of received power is 

the same in both systems in imaging LD-VLC and DAT imaging LD-VLC). On 

the other hand, a significant increase in the received optical power can be 

achieved when the beam steering LD-VLC system replaces the DAT imaging 

LD-VLC system, by a factor of 7, from 6.68 μW to 47.46 μW, as shown in red 

line Figure 7.11. This significant improvement in the received power is due to 

steering a beam of white light towards the receiver location. However, signal 

spread still exists in this system, and this lead to degradation in the system 

performance at high data rates. It can be clearly seen that the fully adaptive LD-

VLC system’s impulse response is better than the other systems in terms of 
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signal spread and received optical power, as shown in Figure 7.11 compared to 

other systems. Reducing the signal spread of the beam steering LD-VLC 

system leads to an increase in the 3 dB channel bandwidth that enables higher 

data rates in the VLC system and decreases the ISI caused by multipath. 

 

 

 

 

 

 

Figure 7.11: Impulse responses of different VLC systems at room centre: laser diodes 

transmitters with an imaging receiver (imaging LD-VLC), delay adaptation technique 

with laser diodes transmitters and imaging receiver (DAT imaging LD-VLC), location 

estimation and beam steering techniques with laser diodes transmitters and imaging 

receiver (beam steering LD-VLC) and location estimation, beam steering, delay 

adaptation, CGHs with laser diodes transmitters and imaging receiver (fully adaptive 

LD-VLC). 

7.6.2 Delay spread and 3 dB channel bandwidth  

Figure 7.12 evaluates the delay spread of the four systems under the worst 

case scenario (when the receiver moves along x=2m). The middle of the room 

(x=2m) is considered to be the worst communication link in the communication 

plane area due to its associated high ISI and multipath propagation level; 

therefore, we only consider the x=2m line. The delay spread for the imaging LD-

VLC system is relatively low (0.04 ns in the worst case) and this is due to the 

narrow FOVs associated with each pixel in the imaging receiver, and this 
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limitation in the FOV minimises the number of rays accepted. However, to 

operate at high data rates (10 Gb/s and beyond) the delay spread should be 

further reduced (i.e., less than 0.04 ns). To improve the quality of the link we 

combined the delay adaptation technique with imaging LD-VLC system. The 

DAT imaging LD-VLC system outperforms the imaging LD-VLC system, as it 

dramatically decreases the delay spread from 0.04 ns to 0.007 ns (by a factor of 

5) at the room centre. The beam steering LD-VLC system has a slightly lower 

delay spread (0.036 ns at the room centre) compared to the imaging LD-VLC 

system and this is due to the advantage of beam steering, which increases the 

amplitude of the LOS components (see Figure 7.11) and this makes this LOS 

component dominant compared to the first and second order reflections. 

Moreover, the DAT imaging LD-VLC system performs better than the beam 

steering system in terms of delay spread. This is due to the signal spread in the 

beam steering system, as shown in Figure 7.11. Thus, to further enhance the 

performance of the beam steering system we combined the delay adaptation 

technique with beam steering to produce a fully adaptive VLC system that has 

the lowest delay spread reported to date to the best of our knowledge (0.0035 

ns in the worst case scenario) compared with other systems. The results show 

that the fully adaptive system reduces the delay spread by a factor of 13 

compared with the imaging LD-VLC system (from 0.04 ns to 0.0035 ns) at the 

room centre. The receiver’s locations of y=2m, 4m and 6m in the non-adaptive 

systems (imaging LD-VLC and beam steering LD-VLC) in Figure 7.12 are 

considered to be the worst receiver locations (due to high multipath 

propagation). However, by employing the delay adaptation approach, these 

locations become better than other locations (y=1m, 3m, 5m and 7m) due to the 

ability of this delay adaptation method to reduce the effect of multipath 

propagation to the lowest level. 

Previous work [103] has shown that delay adaptation with an imaging receiver 

can provide a 3 dB channel bandwidth of more than 16 GHz under the worst 
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case scenario. However, the main problem with such a system is the low SNR 

at high data rates (10 Gb/s and beyond). 

 

 

 

 

 

 

Figure 7.12: Delay spread of four systems at x=2m and along the y-axis. 

Therefore, to enable it to operate at 20 Gb/s we proposed the beam steering 

technique to enhance the SNR at high data rates and to utilise the significant 

increase in the channel bandwidth that will enable our proposed system (fully 

adaptive VLC system) to operate at 20 Gb/s. The 3 dB channel bandwidth at 

x=2m in our four systems is given in Table 7.1. The results show that the fully 

adaptive VLC system has the ability to offer a communication channel with 3 dB 

channel bandwidth greater than 36 GHz.       

       It should be noted that the channel bandwidth is negatively affected by the 

number of light spots seen within the pixel’s FOV, because when the number of 

spots increases this can result in the introduction of a time delay between the 

signals received from the spots within the receiver’s FOV, and hence this limits 

the bandwidth. For instance, the impulse response of non-adaptive systems 

(systems that do not employ the delay adaption approach) has many peaks 

(see Figure 7.11), which increases the delay spread for these systems (see 

Figure 7.12). However, when the delay adaptation technique is combined with 
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those systems the channel bandwidth increases dramatically, as shown in 

Table 7.1.  

Table 7.1: The 3 dB channel bandwidth of proposed systems.  

System 

3 dB Channel Bandwidth [GHz] 

Receiver Locations along the y-axis, y[m] 

1 2 3 4 5 6 7 

Imaging LD-VLC 5.1 4.19 5.1 4.19 5.1 4.19 5.1 

DAT Imaging LD-VLC 16.6 23.4 16.6 23.4 16.6 23.4 16.6 

Beam steering LD-VLC 5.37 4.54 5.37 4.54 5.37 4.54 5.37 

Fully Adaptive LD-VLC 36.7 38.5 36.7 38.5 36.7 38.5 36.7 

7.6.3 SNR  

In this section, we consider a low data rate (30 Mb/s) to enable a comparison 

with previous work in Chapter 5. A higher data rate of 20 Gb/s is also 

considered. For a bit rate of 30 Mb/s we employed the p-i-n FET trans-

impedance preamplifier used in [162]. For the higher data rate we used the p-i-n 

HEMT receiver designed in [190]. Figure 7.13 illustrates the SNRSC and 

SNRMRC of the imaging LD-VLC, DAT imaging LD-VLC, beam steering LD-VLC 

and fully adaptive LD-VLC systems at low data rates (30Mb/s). It is observed 

that the adaptive systems (systems that applied the delay adaptation technique) 

did not give any advantage over non-adaptive systems at low data rates due to 

the high channel bandwidth achieved by all systems, which guarantees low ISI 

at the low operating bit rate considered (30 Mb/s). The beam steering LD-VLC 

and fully adaptive LD-VLC systems achieved about a 10 dB SNR gain over the 

imaging LD-VLC and DAT imaging LD-VLC systems when the beam steering 

technique is applied with the low data rate systems. In addition, it can be seen 

that the difference between SC and MRC is about 4 dB on average in all 
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systems. This is because the MRC receiver effectively produces an SNR which 

is equal to the sum of the SNRs experienced by all the pixels versus SC which 

simply chooses the pixel with the best SNR. Moreover, the number of RGB-LD 

visible within the pixel’s FOV is a key to achieving a high SNR. As a result of 

this fact, the beam steering technique has the ability to enhance the SNR by 

directing a part of the white light towards the receiver location and thus 

increases the number of LOS components within the pixel’s FOV.  
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Figure 7.13: SNR of four systems (imaging LD-VLC, DAT imaging LD-VLC, beam 

steering LD-VLC and fully adaptive LD-VLC) when operated at 30 Mb/s and using two 

combing schemes (SC and MRC), (a) at x=1m and (b) at x=2m along the y-axis. 

To evaluate the performance of our four systems at higher bit rates, the SNR is 

calculated at 20 Gb/s. Figure 7.14 shows the SNRSC and SNRMRC of the four 

VLC systems at 20 Gb/s. To achieve a BER of 10-9 for OOK, a SNR of 15.6 dB 

is required [87], [191]. It can be noted that the fully adaptive system has the 

ability to provide SNR values higher than this required value in all the receiver 

locations. The fully adaptive VLC system outperforms other systems in terms of 

SNR, it achieves about a 15 dB SNR gain over the DAT imaging LD-VLC 

system in the middle of the room. This significant improvement in the SNR level 

is attributed to the ability of the beam steering technique to steer a part of the 

light towards the receiver location and thus increase the power received by the 

pixels. Although, the beam steering technique increases the power level at the 

receiver with the beam steering LD-VLC system as shown in Figure 7.11 and 

increases the SNR at low data rates as shown in Figure 7.13, at high data rates 

(20 Gb/s) the performance decreases dramatically. This is due to the high 

multipath dispersion and ISI at the high data rates. Therefore, when the delay 

adaptation technique is combined with the beam steering system (fully adaptive 

system) we can achieve considerable enhancements in terms of SNR and 3 dB 

channel bandwidth, as shown in Table 7.1 and Figure 7.14. In addition, the 

delay adaptation technique adds a degree of freedom to the link design for the 

adaptive systems (DAT imaging and fully adaptive VLC), resulting in VLC 

systems that can provide higher SNR compared to the non-adaptive systems 

(imaging LD-VLC and beam steering LD-VLC). At x=1m, the SNR fluctuations in 

the non-adaptive systems due to ISI and multipath propagation can be 

mitigated by employing the delay adaptation approach. Moreover, when the 

VLC receiver moves along x=1m in all four systems, we noticed that it has a 

high SNR compared to when the receiver moves along x=2m, and this is due to 

the high multipath, ISI and path loss in the middle of the room (x=2m). 
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       Table 7.2 presents the BER values corresponding to the achieved SNRs at 

20 Gb/s for the imaging LD-VLC, DAT imaging LD-VLC, beam steering LD-VLC 

and fully adaptive LD-VLC systems respectively at line x=2m when using SC 

(due to room symmetry, we calculated BER for 1 m to 4 m along the y-axis). It 

can clearly be seen that the fully adaptive LD-VLC system has the best 

performance compared to the other systems. The highest value of BER in the 

fully adaptive LD-VLC system is equal to 4.1×10-16, and this value can provide a 

strong communication link. 
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Figure 7.14: SNR of four systems (imaging LD-VLC, DAT imaging LD-VLC, beam 

steering LD-VLC and fully adaptive LD-VLC) when operated at 20 Gb/s and using two 

combing schemes (SC and MRC), (a) at x=1m and (b) at x=2m along the y-axis. 

Table 7.2: BER performance of the proposed systems at x=2m. 

 

7.7 Robustness to Shadowing, Signal Blockage and 

Mobility  

In this section we extended the analysis to evaluate performance of proposed 

systems in realistic indoor environment. For realistic indoor environment we 

have used the same parameters and characteristics of the room in Chapter 5 

(see Figure 5.1b).  

       Comparisons were performed between the fully adaptive and DAT imaging 

LD-VLC systems in two different environments (i.e., room A that is an empty 

room, see Figure 7.1 and room B that is a realistic room, see Figure 5.1b) when 

operating at 20 Gb/s with full mobility. The complex environment in this room 

results in shadowing created by low reflectivity objects and physical partitions. 

In this section, the results of the adaptive systems are compared in rooms A 

and B in terms of impulse response, path loss and SNR. We have considered a 

System 

BER 

Receiver Locations along the y-axis, y[m] 

1 2 3 4 

Imaging LD-VLC 7.9×10-1 9.9×10-1 7.9×10-1 9.9×10-1 

DAT Imaging LD-VLC 4.7×10-2 3.9×10-2 4.7×10-2 3.9×10-2 

Beam steering LD-VLC 6.8×10-1 6.8×10-1 6.8×10-1 6.8×10-1 

Fully Adaptive LD-VLC 4.1×10-16 Error free 4.1×10-16 Error free 
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mobile user with a speed of 1 m/s moving along the y-axis in the lines x=1m, 

x=2m and x=3m, the results in this section are presented in two places in room 

1) when the user is inside a mini cubicle (x=1m and x=3m along the y-axis) and 

2) when the mobile user is in the middle of the room (x=2m and along the y-

axis). In this section a simulation package based on a ray tracing algorithm was 

developed using MATLAB to compute the impulse response of the proposed 

systems.  

7.7.1 Impulse response  

It is observed that in all room locations both systems have the ability to 

establish LOS links between the transmitters and receiver, which is due to a 

good distribution of RGB-LD on the ceiling. For example, Figure 7.15 shows the 

impulse responses at the room centre (2 m, 4 m, 1 m) for the fully adaptive 

system and for the DAT imaging LD-VLC system in rooms A and B (room A is 

an empty room and room B is a realistic environment). In both room scenarios 

for the two systems the LOS components are the same. However, the power 

collected from the signals coming to the receiver from the ceiling, strip walls that 

surround the windows and bookshelves is decreased due to many reasons. 

Firstly, the physical partitions prevent rays from reaching the receiver. In 

addition, the reflectivity of the two windows is zero, which means no signals will 

be received from the two walls at x=0 and y=0. Moreover, the bookshelves have 

a reflectivity of 0.4, and this reduces the power of the signals received from 

them. However, we should note that the LOS link has the largest amount of 

received power and the reduction in received power from reflections is 

negligible. For instance, the associated power at the room centre position for 

the fully adaptive system in room A is 47.46 μW whereas it was 47.41 μW in 

room B.     
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7.7.2 Path loss analysis  

Figure 7.16 illustrates the path loss distributions for rooms A and B at x=1m, 

and x=2m along the y-axis. It can be seen that the path loss for the two systems 

is comparable in both room scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: Impulse responses of two systems (a) DAT imaging LD-VLC and (b) fully 

adaptive LD-VLC in two different environments at room centre. 

The path loss increased less than 0.5 dB when both systems were evaluated in 

room B. This insignificant increase in the path loss is attributed to the fact that 

our systems have the ability to establish LOS links in both rooms (i.e. A and B), 
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which leads to similar performances when operated in different environments. 

Therefore both systems possess robustness against shadowing and mobility 

and they are able to achieve similar performance levels in an empty room and a 

realistic environment. In DAT imaging LD-VLC system when the receiver 

position was close to the windows (along x=1m), for example, at point (x=1m 

and y=1m) the path loss becomes higher because the received power from the 

reflections is very low (glass windows are considered to not reflect any signal). 

However, when the receiver moves towards the other side of the room (i.e., 

receiver positions close to bookshelves). In addition, it can be seen that the 

path loss in the two systems is higher when the receiver moves along x=2m. 

This is due to the larger distance between the receiver and transmitter. 

 

 

 

 

 

 

 

 

 

Figure 7.16: Path loss of DAT imaging LD-VLC and fully adaptive LD-VLC systems in 

two different environments (a) at x=1m and (b) at x=2m.  
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7.7.3 SNR and BER  

Figure 7.17 shows the SNR of four systems (imaging LD-VLC, DAT imaging 

LD-VLC, beam steering LD-VLC and fully adaptive system) at x=1m and x=2m 

along the y-axis over the communication plane for different environments (i.e., 

rooms A and B). In rooms A and B both adaptive systems have comparable 

results, there was very low degradation in the SNR when both systems 

operated in room B. This is attributed to the ability of our adaptive systems to 

adapt to such an environment. Also, it should be noted that the results in Figure 

7.17 are in agreement with the general observation made in Figure 7.16. For 

example, for the DAT imaging LD-VLC system at the point x=1m and y=4m, the 

path loss is highest resulting in the lowest SNR. Similar behaviour was 

observed when comparing Figure 7.16 and Figure 7.17 for the fully adaptive 

system.   

       In a realistic environment when the user is inside a mini cubicle (x=1m 

along the y-axis) the SNRs of the proposed systems are comparable. In 

addition, it should be noted that the systems that employ the delay adaptation 

technique (DAT imaging and fully adaptive VLC) can provide higher SNR 

compared to the non-adaptive systems (imaging LD-VLC and beam steering 

LD-VLC). It can be noted that the fully adaptive system has smooth SNR at all 

relevant locations in the room (see Figures 7.14 and 7.17).  

       Table 7.3 shows the BER at 20 Gb/s of the proposed systems (imaging LD-

VLC, DAT imaging LD-VLC, beam steering LD-VLC and fully adaptive LD-VLC) 

at line x=2m when using SC. It can be noted that the fully adaptive LD-VLC 

system has the best performance compared to the other systems. In the 

realistic environment, the BER of the fully adaptive VLC system has increased 

slightly compared to an empty room. However, this increase does not severely 

affect the performance of the system; for example, the maximum value of BER 

provided by the fully adaptive LD-VLC system is equal to 6.9 × 10−16. 



Chapter Seven 

182 

 

 

 

 

 

 

 

 

 

 

Figure 7.17: SNRSC of four systems (imaging LD-VLC, DAT imaging LD-VLC, beam 

steering LD-VLC and fully adaptive LD-VLC) when operated at 20 Gb/s in two different 

room scenarios at (a) x=1m and (b) at x=2m, along y-axis. 

Table 7.3: BER performance of the proposed systems at x=2m. 

System 

BER 

Receiver Locations along the 𝑦-axis, 𝑦 [m] 

1 2 3 4 

Imaging LD-VLC 9.8×10-1 9.9×10-1 9.8×10-1 9.9×10-1 

DAT Imaging LD-VLC 
4.8×10-2 4×10-2 4.8×10-2 4×10-2 

Beam steering LD-VLC 
7×10-1 7×10-1 7×10-1 7×10-1 

Fully Adaptive LD-VLC 
6.9×10-16 Error free 6.9×10-16 Error free 
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7.8 High Speed Adaptive Mobile VLC System 

The high channel bandwidth achieved through the delay adaptation technique 

coupled with the additional SNR accomplished by the beam steering technique, 

can be used to provide high data rates (20 Gb/s and beyond) with the new VLC 

system. The p-i-n HEMT optical receiver proposed by Gimlett [190] was used 

for the fully adaptive VLC system to operate at 20 Gb/s. The noise current 

spectral density for this preamplifier is 12 pA/√Hz and the preamplifier has a 

bandwidth of 16 GHz. Through the use of a suitable filter the preamplifier 

bandwidth can be limited to 14 GHz.  

       Transmitters for data rates of up to 40 Gb/s are established in fibre systems 

[192], therefore the rise and fall times of the LD based transmitter is not 

considered in this thesis. A laser driver with high power is required to enable 

our light unit to emit 2 W from each RGB-LD at bandwidth of 14 GHz. This may 

incurred more cost and complexity to our system. The OOK modulation format 

is used with intensity modulation and direct detection. The OOK modulation is 

an appropriate modulation scheme for high data rates in OW systems [193] due 

to its simplicity, however higher order modulation formats can be investigated. 

Adaptive equalisation can be used to further reduce the ISI [94]. The SNR 

calculations in equation (3.19) take into account eye closure (𝑃𝑠1 − 𝑃𝑠0), and 

therefore the SNR values reported consider ISI and receiver preamplifier noise. 

The imaging LD-VLC, DAT imaging LD-VLC and beam steering LD-VLC 

systems performed identically at a bit rate of 30 Mb/s, and this is evident due to 

the excess channel bandwidth available. ISI increased noticeably at 20 Gb/s 

which results in significant SNR degradations. The fully adaptive LD-VLC 

system can offers high SNR (18 dB at the least successful point) and bandwidth 

of more than 36 GHz (see Table 7.1), which enables it to support data rates of 

20 Gb/s. Figure 7.14 shows that an SNR gain of 27 dB can be achieved when 

the fully adaptive system is used instead of the beam steering system in the 
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middle of the room (worst case scenario). This improvement is due to the use of 

the delay adaptation technique with beam steering (fully adaptive system), and 

it significantly reduces the effect of ISI and multipath dispersion. The SNR 

results of the fully adaptive system in the real environment (see Figure 7.17) 

show that our proposed system achieves an SNRSC of 18 dB under the worst 

case scenario (at point x=2, y=1, 3, 5 and 7 in Figure 7.17b), which is greater 

than the 15.6 dB needed to achieve 10-9 BER. This SNR is obtained when 

multipath propagation, shadowing, signal blockage and mobility are all present.  

       The feedback link is vital for the proposed systems as it affects directly the 

performance of the systems. The feedback channel is used to send information 

(such as SNR measured for STB algorithm and mean delay for DAT algorithm) 

at very low data rate. If any error occurs in this channel, this will degrade the 

performance of the fully adaptive system. The feedback channel operates at a 

very low data rate, which means that SNRs in excess of 33 dB can be achieved 

at data rates up to 30 Mb/s [22], [32], [44]. This in turn means that the BER 

achieved in the feedback channel is extremely small which would be considered 

an almost ideal communication link. However, FEC coding can be used to 

ensure that any errors in the feedback channel are minimised.  

       Simulation results have shown that LEA and beam steering coupled with 

imaging receiver detection, can significantly improve performance in the 

proposed system (beam steering LD-VLC system). However this is at the cost 

of complexity in the design of beam steering LD-VLC. The complexity is 

associated with the computation time required to identify the optimum location 

to perform beam steering. For example, in a typical room with dimensions of 4m 

× 8m × 3m (width  × length × height), LEA generates a single spot which scans 

the  communication plane changing the beam angle associated with the spot 

between -70o and 70o, a total of 224 possible locations, which requires 224 ms 

adaptation time in order to identify the optimum location.  
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7.9 Summary 

In this chapter, for the first time to best of our knowledge, we introduced beam 

steering and location estimation algorithms for a mobile multi-gigabit/s VLC 

system. We also combined these algorithms with the concept of delay 

adaptation to produce a fully adaptive VLC system that has the ability to 

achieve 20 Gb/s with full receiver mobility in a realistic indoor environment. The 

LEA estimates the best locations to steer the beam to by scanning a single 

beam over the communication plane and computing the resultant SNR for every 

single beam.  

        We investigated the effect of beam steering on the illumination and found 

that up to 20% of the light from the RGB-LD can be beam steered towards the 

receiver position to improve SNR without affecting the illumination. The beam 

steering technique steers 20% of the white light from a certain RGB-LD light 

unit (close to receiver) towards the optimum location that was found by LEA to 

maximise the SNR. In addition, at a low data rate (30 Mb/s) our fully adaptive 

system offers an SNR improvement of 10 dB over the imaging LD-VLC system 

when using the MRC approach. At a high data rate (20 Gb/s) a 29 dB SNR gain 

is achieved when the fully adaptive system replaces the imaging LD-VLC 

system under the worst case scenario, and these improvements in the SNR 

enable our fully adaptive system to provide a BER of better than 10-9 at all 

receiver locations when operated at 20 Gb/s in a harsh room environment. 

       Furthermore, the delay adaptation technique was combined with the beam 

steering technique and location estimation algorithm to mitigate the effect of ISI 

and multipath dispersion. The delay adaptation adjusts the switching times of 

the signals in a fashion that allows the signals to reach the receiver at the same 

time. The significant improvements in channel bandwidth and SNR enhance the 

performance of our VLC system and enable it to operate at higher data rates 

(20 Gb/s and beyond). Moreover, the fully adaptive VLC system can achieve 
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100% of the data rate (20 Gb/s) when it is stationary and 70.4% (14 Gb/s) in the 

case of user movement, and this is due to the time needed (296 ms) for the 

adaptation process.  

       Next Chapter will address methods to accelerate the location estimation 

algorithm and reduce the time required to find the receiver location below 224 

ms. 
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8 Fast and Efficient Adaptation 

Techniques for Visible Light 

Communication Systems  

8.1 Introduction 

Beam steering fully adaptive VLC system has been shown to offer performance 

enhancements over traditional VLC systems in the previous chapter (Chapter 

7). However, an increase in the computational cost is incurred. In this chapter, 

we introduce fast computer generated holograms (FCGHs) to speed up the 

adaptation process. The new, fast and efficient fully adaptive VLC system can 

improve the receiver SNR and reduce the required time to estimate the position 

of the VLC receiver. It can also adapt to environmental changes, providing a 

robust link against signal blockage and shadowing. In addition, an ADR and a 

delay adaptation technique are used to reduce the effect of ISI and multipath 

dispersion. Significant enhancements in the SNR, with VLC channel bandwidths 

of more than 26 GHz are obtained, resulting in a compact impulse response 

and a VLC system that is able to achieve higher data rates (25 Gb/s) with full 

mobility in the considered realistic indoor environment. VLC systems are among 

the promising solutions to the bandwidth limitation problem faced by microwave 

systems. They are also among the potential candidates for 5G indoor systems 

[194].  

       Recently, beam steering has been proposed in VLC systems to maximise 

the SNR at the receiver [104]. Simulation results have shown that a significant 

improvement in the data rate (20 Gb/s for a stationary user and 14 Gb/s for a 

mobile user) can be achieved in a mobile VLC system that employs beam 
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steering. The improvements achieved are however at the cost of complex 

adaptation requirements. The complexity is associated with the computation 

time required to identify the optimum location to steer the beam to. In this 

chapter, for the first time to the best of our knowledge, we report the use of 

holograms and beam steering in VLC systems with efficient adaptation. The 

concept of finite computer generated holograms has been recently proposed in 

VLC system [104]. The work in Chapter 7 investigated a very limited case of 

finite pre-stored holograms and studied it in a realistic indoor environment to 

examine the impact of shadowing. Here we extend the work in [104] by (i) 

introducing FCGHs, (ii) studying the VLC system complexity and SNR penalty, 

(iii) employing angle diversity receiver with narrow FOVs, (iv) evaluating a high 

data rate system (25 Gb/s), and (v) considering a real environment that 

experiences shadowing to assess the utility of FCGHs. 

       In Chapter 4, we proposed the use of an ADR for a VLC system to provide 

a robust link and mitigate multipath dispersion, as well as to improve the overall 

system performance. In this chapter we used an ADR with selective combining 

to choose the best branch. A DAT for a VLC system was proposed in Chapter 5 

and it is used here as it is shown to offer channel bandwidths of more than 26 

GHz (in a worst case scenario), which enables the VLC system to operate at 

data rates of more than 25 Gb/s. The adaptation techniques (FCGHs and DAT) 

require repetitive training and a feedback channel from the receiver to 

transmitter at a low data rate. An infrared diffuse channel is suggested to realise 

this link. The ultimate goal of this study is to enhance the 3 dB channel 

bandwidth, minimise the impact of ISI, and increase the SNR when the VLC 

system operates at a high bit rate of 25 Gb/s under the effect of multipath 

dispersion, shadowing, mobility and receiver noise. 

       The rest of the chapter is organised as follows: Section 8.2 describes the 

VLC system configurations and fast computer generated holograms for VLC 

system. The VLC system complexity is considered in Section 8.3. The 
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simulation results in an empty room are outlined in Section 8.4. Robustness 

against shadowing is evaluated in Section 8.5. The simulation results of fully 

adaptive employing imaging receiver are outlined in Section 8.6. Finally, a 

summary is provided at the end of the chapter.  

8.2 VLC Systems’ Configurations 

In this section, two VLC systems are presented, analysed and compared to find 

the most suitable system for use in high-speed VLC systems (25 Gb/s and 

beyond). 

8.2.1 DAT ADR LD-VLC system  

The DAT ADR LD-VLC system employed eight RGB-LD transmitters (lighting 

fixtures) on the ceiling connected by fibre interconnect and controlled by a 

central controller and an ADR with three branches (similar to one that used in 

Chapter 4). The DAT is combined with ADR LD-VLC (DAT ADR LD-VLC) to 

enhance the overall system performance.  The DAT ADR LD-VLC system was 

previously proposed in Chapter 5 and it is considered here to compare it with 

our new proposed VLC system.  

8.2.2 Fully adaptive ADR VLC system  

The recently proposed fully adaptive VLC system has achieved 20 Gb/s for 

stationary user and 14 Gb/s for mobile user (the time required for adaptation 

algorithms during mobility was 296 ms). However, high complexity is associated 

with the computation required to identify the optimum beam steering location. In 

order to solve this problem, we introduce a new FCGHs using simulated 

annealing to speed up the beam steering process. In this chapter the RGB-LD 

light unit has the ability to direct part of the white light towards the receiver 

location to enhance the SNR when operating at high data rates. 
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       The adaptation algorithms are implemented in a certain RGB-LD light unit 

for a single receiver at a given set of positions. When the receiver starts 

moving, they are applied in another RGB-LD light unit according to the new 

receiver location (coordinates). The reduction in complexity and SNR 

improvement at high data rates (i.e., 25 Gb/s) can be achieved according to the 

following algorithms:- 

 Select-the-best (STB) 

STB algorithm is introduced in Chapter 7 and it is used here to locate the 

closest transmitter (RGB-LD) to the receiver to implement the fully adaptive 

ADR VLC system.  

 Fast computer generated holograms (FCGHs) 

For a large room of 4m × 8m, the communication plane is divided into eight 

regions (2m × 2m per region). The floor (2m × 2m) under the visible light 

sources is subdivided into small areas, for example we divided it to 256 

subdivisions (see Figure 8.1). In the case of classic beam steering [104] the 

transmitter first sequentially tries all m holograms (256 holograms in this case) 

and the receiver computes the SNR associated with each hologram at the 

receiver and relays this information to the transmitter for the transmitter to 

identify the best hologram to use (update the holograms). This is an exhaustive 

search mechanism among the stored holograms. If each SNR computation is 

carried out in 1 ms (based on typical processor) then the total adaptation time 

when the receiver moves is 256 ms. A further improvement in SNR can be 

achieved by increasing the number of regions on the floor which leads to 

smaller regions and improved SNR, but a larger number of holograms to 

choose from leading to an increase in the time required to identify the best 

holograms. For instance, increasing the number of regions from 256 to 512 will 

lead to an increase in the total number of holograms to 512. Hence the 
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computation time required to identify the optimum holograms is increased to 

512 ms. In order to overcome this problem, a FCGHs algorithm is introduced to 

effectively improve the SNR (through the use of more holograms) while 

reducing the computation time required to identify the optimum hologram. 

 

 

 

 

 

 

Figure 8.1: Architecture of our proposed VLC communication system when the 

transmitter is placed at (1m,1m,3m) and the receiver is on communication plane. 

The FCGHs algorithm determines the optimum hologram that yields the best 

receiver SNR based on a divide and conquer (D&C) algorithm. The transmitter 

divides the stored holograms into four quadrants with a boundary based on the 

hologram transmission angles (−𝛿𝑚𝑖𝑛 to 0) and (0 to 𝛿𝑚𝑎𝑥) in both x, y axes. 

The transmitter first tries the middle hologram at each quadrant (four holograms 

will be first tried) to identify the sub-optimal quadrant; hence reducing the 

number of holograms that need to be tried by a factor of 4 in the first step. The 

receiver sends a feedback signal at a low rate, which informs the transmitter 

about the SNR associated with each hologram. The hologram that results in the 

best receiver SNR is identified as a sub-optimum hologram, and the quadrant 

that includes this sub-optimum hologram will be divided in the next step into 

four sub-quadrants. The transmitter again scans the middle hologram at four 

new sub-quadrants and identifies the second sub-optimal hologram; hence 

VLC beam 

0.125m×0.125m 
2m×2m 

Transmitter 
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identifying the second sub-optimal quadrant. The transmitter again divides the 

new second sub-optimal quadrant into four quadrants in a similar manner to the 

first and second sub-optimal quadrants to identify the third sub-optimal 

quadrant. The quadrant that is represented by the third sub-optimal hologram 

will be scanned. This technique helps to reduce the computation time required 

to identify the optimum hologram when a very large number of holograms is 

used. The proposed FCGHs algorithm can be described for a single transmitter 

and receiver as follows: 

1- The RGB-LD light unit that has been chosen in the STB algorithm first 

divides the stored holograms into four main groups associated with 

quadrants based on the hologram transmission angles. The boundary 

angles associated with the first quadrant are 𝛿𝑚𝑎𝑥−𝑥 to 0 in the x-axis 

and 𝛿𝑚𝑎𝑥−𝑦 to 0 in y-axis. 

2- The RGB-LD transmits a pilot signal using the middle hologram in each 

quadrant in order to determine the first sub-optimum hologram. 

3- The SNR is computed at each step (each hologram) and the receiver 

sends a control feedback signal at a low rate to inform the controller of 

the SNR associated with each scan. This feedback channel can be 

implemented using an infrared beam.  

4- The hologram that yield the best SNR is chosen by the controller 

(identifies sub-optimal quadrant for next iteration).   

5- The new scanning area is divided into four quadrants and repeats steps 

2 to 4 to identify the second sub-optimal quadrant.  

6- Repeat steps 2 to 5 to identify the best location that gives the highest 

SNR (the divide and conquer process continues and the transmitter 

determines the optimal hologram transmission angles that maximise the 

receiver’s SNR).  
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The proposed FCGHs reduce the computation time from 224 ms taken by the 

classic beam steering LD-VLC system to 32 ms (32 possible locations should 

be scanned in all iterations × 1 ms). 

 Delay adaptation technique (DAT) 

DAT is proposed in Chapter 5 and it is used here to reduce time delay 

differential between the signals received at the detector and to improve channel 

bandwidth. The MAC protocol should include a repetitive training period to 

perform the algorithms in Tables 8.1 and 8.2. It should be noted that the FCGHs 

described apply to a single transmitter and a single receiver position. If there is 

more than a single receiver (multi user) in the room, then a MAC protocol 

should be used. This will regulate which transmitter-receiver pair can use which 

resources (for example time slots, code, wavelength) and when.  

Table 8.1: STB algorithm. 

 

 

 

 

 

 

 

 

 

Inputs:  𝑁 =8;   (Number of RGB-LD light units)                 
                  𝑗 =3;       (Number of branches in ADR) 

                  𝑝(. ) is a rectangular pulse over [0, 𝑇𝑏], 
                  𝑇𝑏 = 1/𝐵 (𝐵 is the bit  rate). 
1.  for S =1: 𝑗; 
2.      for R = 1: 𝑁; 
3. Calculate and sum the received powers 

within a time bin (0.01 ns duration) 
4. Produce the impulse response   ℎ𝑗(𝑡)   

5. Calculate the pulse response ℎ𝑗(𝑡) ⊗ 

 𝑃(𝑡 − 𝑇𝑏) and then calculate (𝑃𝑆1 − 𝑃𝑆0)  

6. Compute 𝑆𝑁𝑅𝑗 = (
𝑅(𝑃𝑆1−𝑃𝑆0)

𝜎𝑡
)
2
 

7.      end for 
8.      𝑆𝑁𝑅𝑁 = 𝑚𝑎𝑥 (𝑆𝑁𝑅𝑗) 

9.  end for 
10. 𝑆𝑁𝑅𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑆𝑁𝑅𝑁) 
11. Select RGB-LD unit that yields  𝑆𝑁𝑅𝑚𝑎𝑥     
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Table 8.2: DAT algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3 VLC System Complexity 

Significant SNR and 3dB channel enhancements can be achieved by 

introducing beam steering and computer generated holograms in VLC systems, 

however the implementation complexity increases. This complexity is 

associated with the resources and computational time (computing the SNR and 

1.     for S =1: 𝑗; 

2.          for R =1: 𝑁; 

3.          Compute the impulse response observed 
by the desired branch. 

4.           𝜇𝑁𝐿𝐷𝑆 =
∑ 𝑡𝑖𝑃𝑟𝑖

2
𝑖 

∑ 𝑃𝑟𝑖
2

𝑖 
; (compute mean delay 

associated    with each signal from 
each RGB-LD unit).   

5. end for 
6.  end for 

7. 𝜇𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝜇𝑁𝐿𝐷𝑆) ; 

8. for R = 1: 𝑁;      
9. 𝛥𝑡_𝑁𝐿𝐷=𝜇𝑚𝑎𝑥- 𝜇𝑁𝐿𝐷𝑆;  (Calculate the time 

delay). 
10.  Compute the impulse response ℎ𝑁𝐿𝐷(𝑡)  

observed by   the desired branch. 
11.  Introduce time delay as ℎ𝑁𝐿𝐷(𝑡 −

𝛥𝑡_𝑁𝐿𝐷);  (shift the   impulse response) 
12. end for                                                        
13. Produce the optimised impulse response 

ℎ𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑(𝑡)   

14. Calculate the pulse response ℎ𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑(𝑡)  

⊗  𝑃(𝑡 − 𝑇𝑏) and then calculate (𝑃𝑆1 −
𝑃𝑆0) 

15. Compute the delay spread, 3dB channel 
and SNR optimised. 
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time delay) required to identify the optimum location to steer the optical beam 

to. In this section we evaluate the efficiency of the proposed FCGHs by 

considering time complexity.  

       The nature of a function T(m) [195] can be used to measure the 

computational complexity of algorithms, for example a linear algorithm of input 

size m can induce a linear time complexity of T(m)=O(m). A single pass 

implementation algorithm with complexity order of O(m) has an acceptable 

performance with a small value of m. However, a large value of m makes it too 

complex. The classical beam steering algorithm with computer generated 

holograms [104] can identify the optimum hologram by scanning all the areas 

underneath the best transmitter (see Figure 8.1), which has similar properties 

as the “one-pass” style algorithms. Therefore, the time complexity of the 

classical computer generated holograms is linear and can be given T(m) = 

O(m). Here m represents the total number of regions that should be covered for 

each transmitter. Significant SNR improvements can be achieved by increasing 

the value of m. However, the time complexity increases dramatically and this is 

due to the total number of holograms required, which is m. In contrast, the 

FCGHs is a recursive algorithm based on a D&C method, where the process 

used to find the optimum hologram is recursively broken down into a number of 

iterations S. For example, in the case of four iterations (S=4), then the 

complexity can be given as [195]:   

                                  𝑇(𝑚) = 𝑗 𝑙𝑜𝑔2 (
𝑚

𝑗
)                                                         (8.1) 

where j is the number of sub-problems (quadrants in our FCGHs). In each 

iteration the transmitter divides the stored holograms into four quadrants (i.e., j 

= 4). For instance, in the case of m=256 (number of regions underneath the 

transmitter), hence the number of holograms required for classical computer 

generated hologram is 256. Then the computation time required to identify the 

optimum holograms is 256 ms (If each SNR computation is carried out in 1 ms, 
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based on typical processor). On the other hand, the computation time required 

to identify the optimum holograms in the FCGHs is 24 ms (based on equation 

8.1). 

8.4 Simulation Results in Empty Room  

In order to study the performance of our proposed system, under mobility and 

multipath dispersion, consideration was given to an unoccupied rectangular 

room that had no furnishings, with dimensions of 8m × 4m × 3m (length × width 

× height). The simulation model was created with room measurements 

comparable to the one used in Chapters 3, 4, 5, 6 and 7.  

       In this section, we evaluate the performance of the proposed fully adaptive 

ADR VLC system in an empty room in the presence of multipath dispersion and 

mobility. The proposed system is examined in fourteen different locations when 

the receiver moves along the y-axis. The results are presented in terms of 

impulse response, delay spread, 3 dB channel bandwidth, SNR and BER.  

       An ADR with three branches is used for both systems (DAT ADR LD-VLC 

and fully adaptive ADR VLC). The ADR consists of three branches with 

photodetectors that have a responsivity of 0.4 A/W each. The ADR uses 

photodetectors with an area of 4 mm2 each. The ADR was always placed on 

the communication plane, and results were obtained along the lines x=1 m or 

x=2 m. The direction of each branch in an ADR is defined by two angles: the 

azimuth angle (𝐴𝑍) and the elevation angle (𝐸𝐿). The 𝐴𝑍s of the three detectors 

were set at 0o, 180o and 0o, and the 𝐸𝐿s for the three branches were fixed at 

90o, 60o and 60o. The corresponding FOVs were fixed to 30o, 25o and 25o. The 

𝐴𝑍s, 𝐸𝐿s and FOVs were chosen through an optimisation process to achieve 

high SNR and low delay spread. For simplicity, SC is considered here in order 

to process the resulting electrical signals. SC represents a simple form of 

diversity, where the receiver simply selects the branch with the best SNR. 
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8.4.1 Impulse response  

The impulse responses of the two systems (DAT ADR LD-VLC and fully 

adaptive ADR) at the room centre are depicted in Figure 8.2. It can be seen that 

the fully adaptive ADR VLC’s impulse response is better than that of the DAT 

ADR LD-VLC in terms of received optical power. A significant increase in the 

received optical power can be achieved when the fully adaptive ADR replaces 

the DAT ADR LD-VLC system. A factor of 4 improvement is achieved, from 4.6 

μW to 18.64 μW. This significant improvement in the received power is due to 

steering a beam of white light towards the receiver location. 

  

 

 

 

 

 

 

 

 

  

 

Figure 8.2: Impulse responses of different VLC systems at room centre: (a) DAT ADR 

LD-VLC and (b) fully adaptive ADR VLC. 
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8.4.2 Delay spread and 3 dB channel bandwidth  

Figure 8.3 presents the communication system delay spread associated with 

the DAT ADR LD-VLC and fully adaptive ADR VLC systems. The results show 

that the fully adaptive system has a lower delay spread than the DAT ADR LD-

VLC system at all the receiver locations considered. The delay spread for the 

DAT ADR system is relatively low (0.02 ns in the worst case) and this is 

attributed to two reasons: firstly, due to the narrow FOVs associated with each 

branch in the ADR, and this limitation in the FOV minimises the number of rays 

accepted. Secondly, DAT is used. However, to operate at high data rates (25 

Gb/s and beyond) the delay spread should be further reduced (i.e. less than 

0.02 ns). The fully adaptive ADR system outperforms the DAT ADR system, as 

it dramatically decreases the delay spread from 0.02 ns to 0.0058 ns (by a 

factor of 3.4) at the room centre. The minimum communication channel 

bandwidth of the fully adaptive ADR was 26 GHz (where the delay spread is 

0.0058 ns at points x=2m, y=2m, 4m, 6m). It should be observed that the 

performance of both systems is degraded at x=2m (high delay spread), and this 

can be attributed to the high ISI due to multipath propagation in the middle of 

the room (i.e. x=2m). It should be noted that steering light to a receiver, not only 

increases the received power, it more importantly reduces the delay spread by 

increasing the power received through the direct ray well beyond the power 

received through reflections. Chapter 5 has shown that DAT with an ADR can 

provide a 3 dB channel bandwidth of more than 8.3 GHz under the worst case 

scenario. However, the main problem with such a system is the low SNR. 

Therefore, to enable it to operate at 25 Gb/s we proposed FCGHs to enhance 

the SNR and to utilise the significant increase in the channel bandwidth that will 

enable our proposed system (fully adaptive ADR VLC system) to operate at 25 

Gb/s. The 3 dB channel bandwidth at x=2m in our systems is shown in Table 

8.3. The results show that the proposed system has the ability to offer a 

communication channel with 3 dB bandwidth greater than 26 GHz. 
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Figure 8.3: Delay spread of two systems at x=1m, x=2m and along y-axis. 
 

 

Table 8.3: Channel bandwidth of proposed systems. 

 

8.4.3 SNR and BER  

The p-i-n HEMT optical receiver proposed by Klepser [196] was used for the 

fully adaptive 25 Gb/s ADR VLC system. The noise current spectral density for 

this preamplifier is 12 pA/√Hz. In this study we considered SC method of 

processing the electrical signal from different branches in an ADR. 

It should be noted that the fully adaptive ADR system has the ability to provide 

SNR values higher than those associated with the DAT ADR system. The 

results in Figure 8.4 are in agreement with the general observation made in 
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Figure 8.3. For instance, the DAT ADR system at x=2m and y=4m had a delay 

spread higher than other locations, which led to a decrease in SNR. Note the 

variation in SNR in tandem with the delay spread (see Figure 8.3) due to the 

effects explained. The DAT ADR system does not have the ability to operate at 

25 Gb/s due to the impact of ISI and multipath propagation. However, these 

effects can be mitigated by employing fully adaptive ADR VLC. It can be noticed 

that for both systems the SNR can be lower when the receiver moves along 

x=2m. This is due to the larger distance between the receiver and transmitter. 

Table 8.4 presents the BER values corresponding to the achieved SNRs at 25 

Gb/s for the DAT ADR and fully adaptive ADR systems at the line x=2m (due to 

room symmetry, we calculated BER at 1 m to 4 m along the y-axis). It can 

clearly be seen that the fully adaptive ADR system has the best performance 

compared to the other systems. The highest value of BER in the fully adaptive 

ADR system is equal to 2.9×10-6, and this value can provide a good 

communication link. FEC can be used to further reduce the BER from 10−6 to 

10−9 in the proposed system. 

 

 

 

 

 

 

Figure 8.4: SNR of two systems (DAT ADR and fully adaptive ADR) when operated at 

25 Gb/s at x=1m, x=2m and along the y-axis. 
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The system may choose to update its holograms less frequently even in the 

presence of mobility. This simplification is at the cost of an SNR penalty. In 

Figure 8.5, the SNR penalty was calculated based on the old holograms 

settings while in motion. The results show the SNR penalty incurred as a result 

of mobility. The proposed system (fully adaptive ADR) design should allow a 

link margin. For instance, with a link power margin of 3 dB, Figure 8.5 shows 

that adaptation has to be done every time the receiver moves by ~1.4 m. If the 

SNR penalty is lower than 1 dB as desired in the proposed system, then Figure 

8.5 shows how often the system has to adapt its settings. For example, for the 

SNR penalty to be below 1 dB, the system has to adapt every 0.4 m, which 

corresponds to a 0.4 s adaptation rate. It should be noted that this adaptation 

has been done at the rate at which the environment changes and not at the 

system’s bit rate.  

Table 8.4: BER performance of proposed systems at x=2m. 

 

8.5 Simulation Results in Realistic Room  

In this section, we expand the analysis and the evaluation of the fully adaptive 

ADR system in realistic office arrangements where VLC signal blockage (as a 

result of mini-cubicles), doors and windows, furniture and multipath propagation 

all exist. The simulation model was created with room measurements 

comparable to the one used in Chapter 5 (see Figure 5.1b). 

System 

BER 

Receiver Locations along the y-axis, Y[m] 

1 2 3 4 

DAT ADR 7.7×10-2 10×10-1 7.7×10-2 10×10-1 

Fully Adaptive ADR 1.6×10-9 2.9×10-6 1.6×10-9 2.9×10-6 
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Figure 8.5: SNR penalty of proposed system when receiver moves from optimum 

location at (2m,1m,1m) along the y-axis. 

       Comparisons are performed of the proposed system in two different 

environments (i.e., an empty room A and a realistic room B) when operating at 

25 Gb/s with full mobility. The results of the fully adaptive ADR VLC system 

were compared in rooms A (an empty room) and B (realistic room) in terms of 

impulse response, path loss and SNR. The proposed system is examined in 

fourteen different locations when the receiver moves along the y-axis. 

8.5.1 Impulse response  

Channel impulse responses at the room centre (i.e., x=2m and y=4m) for the 

fully adaptive ADR VLC system are shown in Figure 8.6 for rooms A and B. It 

should be noted that both impulse responses of the proposed system are 

dominated by short initial impulses due to the LOS path between the transmitter 

and receiver. It can be clearly seen that the amount of received optical power 

from the reflections in room B is less than that received in room A, as shown in 

Figure 8.6, and this is due to the existence of the door, windows, cubicles, 

partitions and bookshelves in room B that lead to reduced multipath 

propagation. These impulse responses suggest that the proposed system has 

good robustness against shadowing and mobility, which is attributed to the 
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FCGHs that maintain acceptable SNR in different environments. Although the 

received power from reflections was severely affected in room B, the LOS 

component remained the same in both room configurations in both systems, 

and the LOS component has the largest impact on the system performance. For 

instance, the power received by the proposed VLC system in room A was 18.64 

μW, whereas it was 18.61 μW in room B, which indicates that the reduction in 

received power is negligible. 

 

 

 

 

 

Figure 8.6: Impulse responses of fully adaptive ADR VLC system at room centre (2m, 

4m, 1m) in two different environments (rooms A and B). 

8.5.2 Path loss  

Figure 8.7 shows the optical path loss of the proposed system in rooms A and 

B. It should be observed that the performance of the proposed system is 

comparable in rooms A and B, and this can be attributed to the LOS links 

available on the entire communication plane, which protects against shadowing 

and mobility in this system. It can be noticed that the path loss can be higher 

when the receiver moves along x=2m. This is due to the larger distance 

between the receiver and transmitter. Overall, the proposed system was 

evaluated and it was shown that it is able to achieve similar performance levels 

in an empty room and in a realistic indoor environment. 
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Figure 8.7: Optical path loss distribution of fully adaptive ADR VLC system in two 

different environments (rooms A and B) at x=1m and x=2m along y-axis. 

8.5.3 SNR and BER  

Figure 8.8 shows the SNR of the fully adaptive ADR VLC system at x=1m and 

x=2m along the y-axis over the communication plane for different environments 

(i.e. rooms A and B). In rooms A and B the proposed system has comparable 

results. There is very low degradation in the SNR when the proposed system 

operated in room B. This is attributed to the ability of our fully adaptive VLC 

system to adapt to such an environment. Also, it should be noted that the 

results in Figure 8.8 are in agreement with the general observation made in 

Figure 8.7. For instance, at the point x=2m and y=4m, the path loss is highest 

resulting in the lowest SNR.  

Table 8.5 shows the BER at 25 Gb/s of the proposed system at line x=2m. It 

can be noted that in the realistic environment, the BER of the fully adaptive VLC 

system has increased slightly compared to an empty room. However, this 

increase does not severely affect the performance of the system; for example, 

the maximum value of BER provided by the proposed system is equal to 4.1× 

10−6. 
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Figure 8.8: SNR of fully adaptive VLC when operated at 25 Gb/s in two different room 

scenarios at x=1m and at x=2m along the y-axis. 

 

Table 8.5: BER performance of proposed system at x=2m in different environments. 

 

8.6 Fully Adaptive System Employing Imaging Receiver  

The fully adaptive imaging (FAI) system has a similar room configuration and 

uses the same algorithms as the previous system (i.e., fully adaptive ADR). 

However, the main difference between the two systems is the type of receiver. 

An imaging receiver with 50 pixels is employed here (similar to the ones used in 

Chapter 4). In this section we used an imaging receiver with SC to choose the 

best pixel. We evaluate the performance of the proposed fully adaptive imaging 

VLC system in an empty room in the presence of multipath dispersion and 
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mobility. In this section, two VLC systems (FAI and imaging LD-VLC) are 

compared to identify the most appropriate system for use in high-speed VLC 

systems (25 Gb/s and beyond). The imaging LD-VLC system was previously 

introduced in Chapter 4 and it is considered here to compare it with FAI system.   

The results are presented in terms of delay spread, 3 dB channel bandwidth 

and SNR. 

8.6.1 Delay spread and 3 dB channel bandwidth 

Figure 8.9 evaluates delay spread and 3 dB channel bandwidth of the two 

systems under the worst case scenario (when the receiver moves along x=2m). 

The delay spread for the imaging LD-VLC system is relatively low (0.04 ns in 

the worst case). But, to operate at high data rates (25 Gb/s and beyond) the 

delay spread should be further reduced (i.e. less than 0.04 ns). The results 

show that the FAI system reduces the delay spread by a factor of 11.4 

compared with the imaging LD-VLC system (from 0.04 ns to 0.0035 ns) at the 

room centre. The results show that the fully adaptive imaging VLC system has 

the ability to offer a communication channel with 3 dB bandwidth greater than 

36 GHz. 
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Figure 8.9: Delay spread and 3 dB channel bandwidth of two systems, (a) delay spread 

(b) 3 dB channel bandwidth. 

8.6.2 SNR 

It can be noted that FAI system has the ability to provide SNR values higher 

than this required value in all the receiver locations. The fully adaptive imaging 

system outperforms imaging LD-VLC system in terms of SNR (see Figure 8.10). 

It achieves about a 25 dB SNR gain over the imaging LD-VLC system at the 

worst case scenario. The imaging LD-VLC system does not have the ability to 

operate at 25 Gb/s due to the impact of ISI and multipath propagation. 

However, these effects can be mitigated by employing fully adaptive imaging 

system. The highest value of BER in the fully adaptive imaging system is equal 

to 4×10-12, and this value can provide very good communication link.  

 

 

 

 

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

Y [m]

3
 d

B
 C

h
a

n
n
e

l 
B

a
n

d
w

id
th

 [
G

H
z
]

 

 

Imaging LD-VLC

Fully adaptive imaging

(b) 



Chapter Eight 

208 

 

 

 

 

 

 

 

Figure 8.10: SNR of two systems when operating at 25 Gb/s at x=2m and along the y-

axis. 

8.7 Summary 

In this chapter, we introduced a FCGHs VLC system and introduced a new fully 

adaptive VLC system that has ability to achieve 25 Gb/s. In addition, DAT was 

introduced to FCGHs to reduce the effect of multipath dispersion, delay spread 

and increase the 3dB channel bandwidth and SNR when the system operates 

at high data rates.  

       Increasing the number of holograms/regions helps the transmitter 

accurately identify the receiver’s location, hence improving the system 

performance. A search algorithm based on D&C was used in order to reduce 

the time needed to select the best pre-calculated hologram which leads to high 

SNR. The proposed system is coupled with an ADR to improve the received 

VLC signal in the presence of multipath dispersion, mobility, and shadowing.  

       The proposed FCGHs can effectively steer the VLC beam nearer to the 

receiver location at each given receiver location. The time required to find the 

optimum location to steer the beam to, was reduced from 224 ms to 32 ms.  
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       The simulation results show that the fully adaptive ADR VLC system can 

significantly improve the impulse response, SNR, as well as the delay spread 

compared to DAT ADR VLC system. In addition, the proposed system can also 

adapt to environmental changes, offering a link that is robust against signal 

blockage and shadowing. The BER provided by our proposed system in 

realistic indoor environment is about 10−6 at 25 Gb/s in the worst case scenario. 

       To the best of our knowledge, the data rates achieved by our proposed 

system (i.e. 25 Gb/s for a stationary user and 22.2 Gb/s for a mobile user) are 

the highest data rates to date for an indoor VLC system.  

       Finally, further improvement can be achieved when our fully adaptive 

system is used in conjunction with the imaging receiver. The highest value of 

BER in the fully adaptive imaging system is equal to 4×10-12.  
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9 High Data Rate Backup Systems 

for Visible Light Communication  

9.1 Introduction 

Dimming is an important feature of an indoor lighting system where the 

illumination level can be controlled by the user. Therefore, integrating a VLC 

system with an illumination system poses some challenges. One of the main 

issues is that the light unit should be ‘‘ON’’ all the time to ensure continuous 

communication. Using light units (i.e., LED or LD) for communications raises a 

key question relating to establishing communication channels when the lights 

are off. The power at the VLC receiver is reduced when the user dims the lights 

to low levels, and this may lead to a degradation in the SNR and affect the 

achievable data rate. In the case of light dimming and ultimately turning off the 

light, the SNR degrades and the communication link is disconnected. Recently, 

hybrid schemes were proposed to support VLC systems, RF based systems are 

used to supplement the VLC system [197], [198], [199]. However, achieving a 

high transmission rate (multi gigabits per second) and security are the most 

challenging parts. The main goal of the work presented here is to provide 

practical solutions when the light is switched off and achieving data rates higher 

than those reported in [197], [198], [199]. In this chapter, we report the use of IR 

systems that utilise a LD source to support the VLC system when the light is 

totally switched off. IR optical communication has the same advantages as VLC 

systems. It can also provide high transmission data rates similar to VLC 

systems and potentially higher data rates (data rates up to 15 Gb/s employing 

OOK modulation can be achieved) [87], [88]. This is mainly because of the 

wider modulation bandwidth of the LD sources used in IROW systems instead 

of white LEDs. Despite these advantages, wireless IR systems encounter two 
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major impairments. The first is concerned with sensitivity to additive shot noise 

owing to sunlight or artificial background lighting. The second is the multipath 

dispersion associated with reflections from walls, the ceiling and room surfaces 

as well as the NLOS transmission of OW signals. Various techniques have 

recently been proposed to combat the impairments of IR systems, and higher 

bit rates have been achieved [86], [200]. Our goal in this chapter is to achieve 

high data rates when the VLC system is turned off by employing a hybrid diffuse 

IR system (HDIR) coupled with (i) a wide FOV receiver, (ii) a custom design 

imaging receiver, (iii) a beam steering IR (BSIR) system or (iv) a cluster 

distributed IR (CDIR) system. The data rates achieved (i.e., 1.25 Gb/s and 2.5 

Gb/s) by our proposed backup systems are high compared with the ones 

provided by RF systems with the additional advantage that an infrared source 

can easily be integrated in current solid state lighting systems. In Chapter 4, we 

proposed the use of an imaging receiver for a VLC system to provide a robust 

link and mitigate multipath dispersion, as well as to improve the overall system 

performance. In this study we used two types of receivers: wide FOV and an 

imaging receiver (similar to the one that used in Chapter 4) with selective 

combining to choose the best pixel. The ultimate goal of this study is to provide 

alternative high data rate systems when the VLC system is disabled. The 

simulation results show that the proposed systems have the ability to achieve 

high data rates (1.25 Gb/s and 2.5 Gb/s) with a BER of 10-9 in the presence of 

multipath dispersion, receiver noise and mobility. 

      The rest of the chapter is organised as follows: Section 9.2 describes the 

simulation setup. Section 9.3 describes the backup system’s configurations for 

VLC. The simulation results in an empty room are outlined in Section 9.4. The 

impact of the power transmitted and photo detector area are evaluated in 

Section 9.5. Finally, a summary is provided at the end of the chapter.   
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9.2 Simulation Setup 

To study the performance of our proposed system, under mobility and multipath 

dispersion, simulations were run in a typical rectangular room that was 

unfurnished similar to the ones used in previous chapters. Previous research on 

IROW has found that the majority of the transmitted power is inside the first and 

second reflections, and that the power within the third and higher order 

reflections is very small [6], [136]. Therefore, reflections up to the second order 

were taken into account in our simulator. In this study, we do not consider the 

background noise from other artificial lights, since the light is off when the IR 

communication link is used. Higher bit rates of 1.25 Gb/s and 2.5 Gb/s are 

evaluated in our backup systems. We used the preamplifier design proposed in 

[161].  

9.3 Backup Systems’ Configurations  

In this section, four IROW systems are presented, analysed and compared to 

identify the most proper system for use as a backup for VLC systems. 

9.3.1 Hybrid diffuse IR (HDIR) system employing wide FOV receiver  

The hybrid diffuse system employed one IR transmitter located at the centre of 

the ceiling, which can provide a direct LOS link at the receiver on the CP. 

Figure 9.1 shows the hybrid diffuse IR (HDIR) communication architecture. In 

this case, the majority of the power is collected from the direct link and lower 

power is collected through reflections. Our proposed transmitter (HDIR) uses a 

single wide beam source, typically with a Lambertian pattern where the 

transmitted optical signal fully diffuses over the environment. The IR transmitter 

is connected to all the visible light sources via fibre links (to link to main network 

in the building) and simple control circuits (located at the centre of the room). 

When the light is dimmed or the received optical power falls below a certain 
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threshold, the receiver sends a feedback signal at a low rate to the controller to 

switch the link into the backup system (i.e., HDIR). In this system we used a 

conventional single element wide FOV (90o) photodetector with photo sensitive 

area of 4 mm2. The HDIR transmitter is positioned at the centre of the room at 

(2m, 4m, 3m), is pointed downwards and emits 1 W with an ideal diffuse 

pattern. Exposure to optical radiation at such power levels can be hazardous to 

the skin and eyes. Nevertheless, different techniques can be used to reduce the 

impact of the high laser power, such as extending the source size, destroying 

its spatial coherence using holograms mounted on the transmitter or the use of 

arrays of transmitters. Pohl et al. have shown that such a source may use an 

integrating sphere as a diffuser to emit optical power in the range of 100 mW to 

1 W [201]. Therefore, a transmitter power of 1 W will be assumed in this 

system. 

 

 

 

 

 

 

Figure 9.1: Architecture of HDIR with wide FOV receiver on communication plane. 

9.3.2 Hybrid diffuse IR (HDIR) system employing imaging receiver  

The HDIR system with imaging receiver has a similar room configuration and 

uses the same IR transmitter as the previous system. However, the main 

difference between the two systems is the type of receiver (see Figure 9.2). An 
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imaging receiver with 50 pixels is employed here. The imaging receiver offers 

two main advantages over the traditional non imaging receivers. Firstly, all 

detectors share a common concentrator (e.g., a lens). Hence, it can be 

fabricated with a smaller size and lower cost. Secondly, all photodetectors can 

be placed on a single plane. Therefore, the designer can opt to use a larger 

number of detectors with small detector areas and narrow FOV. This will reduce 

the impact of multipath dispersion and reduce the high capacitance associated 

with large area detectors, and consequently improve the receiver bandwidth. 

       In this chapter, we employed the imaging receiver design proposed in 

[103]. It is comprised of a single imaging lens and detector array that is 

subdivided into 50 pixels. The receiver detector array has a photosensitive area 

of 2 cm2 and each pixel has an individual area of 4 mm2. The reception zone of 

each pixel (on the ceiling) varies as the receiver terminal moves around the 

room over the CP. The calculation of the new reception zone associated with 

each pixel is discussed in detail in Chapter 4 [103]. The calculation of the 

received optical power is discussed in [103]. The simulation results were 

obtained at various receiver positions within the indoor environment. 

9.3.3 Beam Steering IR (BSIR) system employing imaging receiver 

In contrast to the HDIR, in the BSIR system the IR transmitter uses beam 

steering to steer the IR beam towards the receiver location. The IR transmitter 

faces downward at the centre of the ceiling as shown in Figure 9.3. Angle 

adaptation techniques, based on liquid crystal devices, have been investigated 

in IROW systems to maximise the SNR at the receiver [86], [87]. It has been 

shown to be an effective technique that can help optimise the distribution of the 

diffusing spots to maximise the receiver’s SNR, regardless of the transmitter’s 

position, the receiver’s orientation and the receiver’s FOV. However, this 

technique requires intensive calculations and time on a DSP to generate a 

hologram at each step. 
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Figure 9.2: Architecture of HDIR with imaging receiver on communication plane. 

In our new BSIR system, we propose an adaptive finite vocabulary (stored) 

hologram approach for beam steering in our backup system. For a large room 

of 4 m × 8m, the floor (i.e., CP) is divided into number of regions. The total 

number of holograms to be stored in our design is 𝑁, where 𝑁 represents the 

number of regions into which the CP is divided. This large number of regions 

has been chosen to accurately identify the receiver location during its motion 

(user mobility). Since the transmitter is fixed at the centre of the room (close to 

the controller), the transmitter uses a hologram that steers the beam (narrow 

direct LOS link) to the optimum location if the receiver is present in any one of 

the regions. The concept of finite computer generated holograms has been 

recently proposed in IR diffusing spot systems and VLC systems [104], [184], 

and it is developed here for the first time in the BSIR system to improve the 

performance of the HDIR system. 
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Figure 9.3: Architecture of BSIR with imaging receiver on communication plane. 

9.3.4 Cluster distributed IR (CDIR) system employing imaging receiver 

In the CDIR system, IR transmitters are used that utilise LD sources to support 

the VLC systems when the light is switched off. The CDIR system employs 

more than one IR source and distributes them on the ceiling, i.e., each IR 

source is attached to a VLC transmitter (i.e., light unit). All IR sources are 

connected via fibre and a control unit to perform cluster mechanisms. The new 

concept of using IR clusters is employed to design a new geometry that can 

achieve a good performance in mobile IR communications. A custom design for 

the imaging receiver (similar to the one in the previous systems) is used to 

reduce the impact of multipath dispersion and ISI. Figure 9.4 shows the 

architecture of our CDIR system. The proposed system consists of eight IR 

sources, and each is attached to a visible light source located on the ceiling, 

which can provide a direct LOS link to the receiver on the CP. The IR 

transmitters are connected to all visible light sources via fibre links (to link to the 
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main network in the building) and simple control circuits. As shown in Fig. 4, 

each IR source forms part of a cluster that can cover over 2m × 2m. When the 

light is dimmed or the received optical power falls below a certain threshold, the 

receiver sends a feedback signal at a low rate to the VLC transmitter to switch 

the link into the supporting CDIR system. A STB algorithm is used (similar to 

the ones used in Chapter 7) to select the optimum link between the IR 

transmitter and receiver (under mobility, this algorithm can be called 

periodically). The first step is to switch ON each IR source individually. Each 

source uses a single wide beam, typically with a Lambertian pattern with 𝑛=1, 

where 𝑛 is the Lambertian emission order (the transmitted optical signal fully 

diffuses over the environment). The receiver then computes the received power 

and the SNR associated with each source. The receiver sends a signal, at a low 

rate, back to the control unit conveying the information about the SNR weight 

associated with each source to identify the receiver location (the receiver is 

located near to the source that has the highest SNR). The transmitter switches 

ON only the optimal IR source (source that is nearest to the receiver location) 

and other sources remain off to reduce the impact of multipath dispersion.  

 

 

 

 

 

 

 

Figure 9.4: Architecture of CDIR when all IR transmitters are ‘‘ON’’. 
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The selected IR transmitter in the STB algorithm will then start to send 

information signals to the receiver. Figure 9.5 shows CDIR after employing 

STB. For the first step in the CDIR system (when applying the STB algorithm), 

each IR transmitter emits 100 mW (800 mW from eight transmitters). A 100 mW 

signal will be fully diffuse within the indoor environment (see Figure 9.4), while 

for next step (when the controller selects only one IR transmitter) only a 100 

mW signal will be transmitted from the best IR transmitter as shown in Figure 

9.5.  

 

 

 

 

 

 

 

 

Figure 9.5: Architecture of CDIR when only one IR transmitter is ‘‘ON’’. 

9.4 Simulation Results in Empty Room  

In this section, we evaluate the performance of the proposed backup systems in 

an empty room in the presence of multipath dispersion, receiver noise and 

mobility. The results are presented in terms of delay spread, 3 dB channel 

bandwidth, SNR and BER.  
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9.4.1 Delay spread and 3 dB channel bandwidth 

A comparison of the channel delay spreads of our proposed systems is given in 

Figure 9.6. The receiver moves along the x=1 m line in the HDIR (with wide 

FOV and imaging receiver) and BSIR systems, where this line is considered to 

be the worst communication link in the CP area due to its associated high ISI, 

path loss and multipath propagation level. In the CDIR system, the receiver 

moves along x=2m, which is considered the worst communication path. The 

HDIR system with wide FOV receiver shows much more signal delay spread 

due to  the wide receiver FOV (FOV = 90o), which accepts a wide range of rays 

with different path lengths from the transmitter to the receiver. In the HDIR 

system with an imaging receiver the delay spread results are quoted when the 

system employs selection combining of the imaging receiver pixels where the 

pixel with the best SNR (note the SNR expression accounts for delay spread) is 

selected. The delay spread of our HDIR is reduced from almost 1.55 ns to 0.1 

ns when an imaging receiver replaces the wide FOV receiver. This is attributed 

to the narrow FOV associated with each pixel, which limits the rays received by 

using 50 small FOV (about 21°) pixels and selecting the best imaging receiver 

pixel. The proposed BSIR system coupled with an imaging receiver reduces the 

delay spread from 1.55 ns to 0.07 ns. This is attributed to two reasons: firstly, 

due to the narrow FOVs associated with each pixel in the imaging receiver, 

which minimises the number of rays accepted. Secondly, the use of beam 

steering helps reduce delay spread. It should be noted that steering light to a 

receiver, not only increases the received power, it more importantly reduces the 

delay spread by increasing the power received through the direct ray well 

beyond the power received through reflections. To further decrease the delay 

spread, the CDIR system is proposed.  The CDIR system has the lowest delay 

spread compared with the other systems. The results show that the CDIR 

system reduces the delay spread by a factor of 10 compared with the HDIR 

system (from 0.3 to 0.03 ns) at the room centre. This is due to the distance 
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between the IR transmitter and the receiver being at a minimum compared with 

the other systems. 

 

 

 

 

 

Figure 9.6: Delay spread of proposed systems. 

Table 9.1 shows the 3 dB channel bandwidth of the proposed systems. The 3 

dB channel bandwidth of the HDIR system is very low and this is due to the 

number of IR spots seen within the receiver’s FOV. However, when the HDIR is 

combined with the imaging receiver (with narrow FOV) the channel bandwidth 

increases dramatically, as shown in Table 9.1. It can be clearly seen that when 

the BSIR system replaces the HDIR (with wide FOV and imaging) system the 

channel bandwidth increases, and this is due to the effects explained. The 

results show that the CDIR system has the ability to offer a communication 

channel with 3 dB bandwidth greater than 5 GHz in the worst case scenario.  
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Table 9.1: 3 dB channel bandwidth of proposed systems. 

 

9.4.2 SNR and BER 

The SNR evaluation of the proposed backup VLC systems was performed 

under the effect of receiver noise, mobility and multipath propagation. The 

proposed systems were set to operate at 1.25 Gb/s and 2.5 Gb/s. Figure 9.7 

shows the SNR of the proposed systems when operated at 1.25 Gb/s. It can be 

clearly seen that the HDIR system with wide FOV receiver does not have the 

ability to operate at a high data rate. However, when the imaging receiver is 

combined with this system it can perform better than when using the wide FOV 

receiver. This is due to the ability of the imaging receiver to combine the signals 

from the optimum pixels that monitor the best received signal during mobility. 

The imaging receiver uses a large number of detectors with a narrow FOV and 

small detector area. The HDIR system coupled with an imaging receiver 

provides around 10 dB under the worst case scenario, while the HDIR system 

with wide FOV can only achieve -14 dB at the same location. It should be noted 

that the BSIR system has comparable performance with the HDIR imaging 

system when both used a 100 mW transmission power. To achieve a BER of 

System 

3 dB Channel Bandwidth [GHz] 

Receiver Locations along the y-axis, y [m] 

1 2 3 4 5 6 7 

HDIR-wide 0.1 0.1 0.4 0.5 0.4 0.1 0.1 

HDIR-image 2 2.7 4 7.9 4 2.7 2 

BSIR-image 2.4 3.9 6.9 8.7 6.9 3.9 2.4 

CDIR-image 7.8 5.5 7.8 5.5 7.8 5.5 7.8 



Chapter Nine  

222 

 

10−9 in OOK, a SNR of 15.6 dB is required. It can be noted that the CDIR 

system has the ability to provide SNR values higher than this required value in 

all the receiver locations. The CDIR system outperforms other systems in terms 

of SNR, as it achieves about a 22.5 dB SNR gain over the HDIR system (with 

wide FOV) in the middle of the room. This significant improvement in the SNR 

level is attributed to the small path loss between the transmitter and the receiver 

(the IR transmitter is always close to the receiver). 

 

 

 

 

 

 

Figure 9.7: SNR of four systems when operated at 1.25 Gb/s. 

Figure 9.8 shows the SNR of the VLC backup systems at 2.5 Gb/s. Our 

simulation findings illustrate a degradation in the SNR of the HDIR system when 

employing the wide FOV or imaging receiver. This is due to most of the 

received power coming from the reflections and will be considered as ISI at high 

data rates (i.e., 2.5 Gb/s). A considerable enhancement can be obtained by 

using the BSIR system, which offers a 33 dB SNR advantage above the HDIR 

wide FOV receiver at location x=1m, y=1m, z=1m. This enhancement in the 

SNR is due to the fact that the SBIR system has the ability to steer the IR beam 

towards the receiver location and, thus, increase the power received by the 

pixels. Although improvements were achieved in the BSIR system SNR, a 
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degradation in the SNR is noted when the receiver is on the move (mobile). 

Therefore, the effect of receiver mobility can be reduced by employing our 

CDIR system, which is capable of equally covering its environment through the 

use of a number of IR transmitters distributed on the ceiling (see Figure 9.4). 

 

 

 

 

 

 

Figure 9.8: SNR of four systems when operated at 2.5 Gb/s. 

Table 9.2 shows the BER at 2.5 Gb/s for the proposed systems (HDIR wide 

FOV, HDIR imaging, BSIR and CDIR). It should be noted that the CDIR system 

has the best performance compared to the other systems. At certain locations 

in the room, e.g., at x=2m, y=2, z=1m, the BER of the CDIR system is higher. 

However, this increase does not severely affect the performance of the system; 

for example, the maximum value of the BER provided by the CDIR system is 

equal to 2.3 × 10−10. 
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Table 9.2: BER of proposed systems. 

 

9.5 Summary 

In this chapter, we addressed a key problem related to the implementation of 

dimming in VLC systems. We introduced four backup systems to support a VLC 

system in the case of full dimming (lights off). We proposed new systems that 

use diffuse IR, beam steering and clustering distribution coupled with imaging 

receivers to improve the system performance at high transmission rates (1.25 

Gb/s and 2.5 Gb/s) to provide alternative high data rate wireless communication 

during the dimming time.  

       The proposed HDIR system is coupled with a wide FOV and imaging 

receiver to improve the received optical signal SNR in the presence of multipath 

dispersion, receiver noise and mobility. The imaging receiver is shown to be 

tremendously efficient in reducing the channel delay spread from 1.55 ns to 0.1 

ns. A BSIR system is also proposed to further reduce the delay spread and 

increase the SNR by steering the IR beam nearer to the receiver location at 

each given receiver location. In addition, our CDIR system has the ability to 

decrease the delay spread of the HDIR wide FOV system by 90% from 0.3 to 

System 

BER 

Receiver Locations along the 𝑦-axis, 𝑦 [m] 

1 2 3 4 

HDIR-wide Error Error Error 8×10-1 

HDIR-image 3×10-1 1.6×10-2 2.2×10-9 Error free 

BSIR-image 5.5×10-3 3.6×10-8 Error free Error free 

CDIR-image 8.3×10-23 2.3×10-10 Error free 2.3×10-10 
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0.03 ns at the room centre (x=2m, y=4m), which leads to an increase in the 

channel bandwidth by a factor of 10 from 550 MHz to 5.5 GHz. 

       Simulation results show that the HDIR and the BSIR systems coupled with 

an imaging receiver achieved around -2 dB and 8.2 dB SNR at 2.5 Gb/s, 

respectively. Further improvement of the SNR can be achieved by introducing a 

new CDIR system and employing more than one IR source distributed on the 

ceiling (attached to the VLC sources). The simulation results show that the 

CDIR system can significantly improve the SNR, as well as reduce the delay 

spread, compared to other systems. The BER provided by the CDIR system is 

better than 10−9 at 2.5 Gb/s in the worst case scenario. 

       One of the key issues in such a backup system is that we require the same 

device to be operated in the lights ‘‘ON’’ regime (i.e., VLC) and also work in the 

lights ‘‘OFF’’ regime (i.e., IR). However, to deal with this issue the receiver may 

employ VLC and IR detectors connected through an electronic switching 

mechanism to control their functions. The development of control algorithms to 

switch between VLC and our HDIR, BSIR and CDIR systems is of interest and 

should be pursued. Additional future work will address methods to enhance the 

SNR of the CDIR system to achieve data rates higher than 2.5 Gb/s.  
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10 Collaborative VLC/IROW 

Systems  

10.1 Introduction 

The concept of VLC systems is based on the use of light units (LED/LD) for 

both lighting and communications. Therefore, using light units (i.e., LED or LD) 

for communications should not interfere with the light units’ main function (i.e., 

illumination). A user may arbitrarily dim the light source in the VLC system to 

save power, so it is essential to maintain communication in this case. 

       The received power at the VLC receiver is reduced when the user dims the 

light to low levels, and this will lead to a degradation in the SNR and affect the 

data rate achievable. The VLC link needs to collaborate with the IROW 

connection to provide continuous data transmission. When the VLC link has 

recovered (i.e., there is no dimming), the VLC and IROW systems can 

cooperated together to increase the data rate at the receiver side.   

       The main target of the work presented in this chapter is to provide practical 

solutions in the case of light dimming, hence to maintain the achievable data 

rate (5 Gb/s) even when under dimming or the light is totally off. In this chapter 

we investigate the performance of a VLC system under the impact of different 

levels of dimming, propose an adaptive rate technique (ART) and produce the 

concept of cooperation between VLC and IROW systems. The VLC system is 

able to achieve high data rates (5 Gb/s) when the light units are ‘ON’. However, 

the achieved data rate (i.e., 5 Gb/s) will decrease as a result of light dimming. 

Therefore, IROW systems are proposed to ensure the continuity of the wireless 

communication and to maintain the target data rate (5 Gb/s), as the IROW 

system can be used to compensate for the degradation of the data rate due to 



Chapter Ten  

227 

 

dimming in the VLC system. In addition, the IROW system can be used to 

increase the data rates so they are higher than the target (5 Gb/s) when the 

lights are ‘ON’ and the VLC system is operating normally. 

       Two IROW systems are proposed: CDIR system and a cluster distributed 

beam steering IR (CDBSIR) system, to collaborate with the VLC system. The 

data rates achieved by our proposed backup systems are 5 Gb/s when using a 

very simple modulation format (OOK). In this study we used an imaging 

receiver that employs 50 pixels. The photocurrents received in each pixel can 

be amplified separately and can be processed using different methods (SC, 

EGC or MRC). For simplicity, SC is considered here.   

The remainder of this chapter is organised into the following sections: 

Section 10.2 presents the proposed systems’ configurations. Section 10.3 

introduces the ART and the impact of dimming on the VLC system 

performance. Section 10.4 introduces the simulation results and discussion of 

the IROW systems. Section 10.5 provides the simulation results and discussion 

of the collaborative VLC/IROW system in an empty room. Finally, a summary is 

provided at the end of the chapter.   

10.2 Proposed Systems’ Configurations 

In this section, four OW systems are presented, analysed and compared to 

identify a reliable and high data rate wireless communication system for an 

indoor user.  

10.2.1 Imaging LD-VLC system 

The imaging LD-VLC system employed eight RGB-LD transmitters (lighting 

fixtures) on the ceiling connected by fibre interconnect and controlled by a 

central controller and an imaging receiver with 50 pixels. The imaging LD-VLC 

system was proposed in Chapter 4 and it is considered here to investigate its 
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performance under the impact of different levels of dimming. In addition, it will 

be integrated with an IROW system to provide reliable and high data rate 

services for an indoor user. Figure 10.1 shows the architecture of the imaging 

LD-VLC system. 

 

 

 

 

 

 

 

 

 

Figure 10.1: Architecture of imaging LD-VLC system with imaging receiver on 

communication plane. 

10.2.2 IROW systems 

Two IROW systems are presented, analysed and compared to identify the most 

appropriate system for use to collaborate with the VLC system (imaging LD-

VLC). 

10.2.2.1 Cluster distributed IR (CDIR) system 
 
The CDIR system employed eight IR transmitters attached to the light units 

(VLC transmitters), and each IR transmitter can provide a direct LOS link to the 

receiver on the CP. All IR sources are connected via fibre and a control unit is 
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used to perform the cluster mechanism. Figure 10.2 shows the CDIR 

communication architecture. The CDIR system was proposed in Chapter 9 and 

it is considered here to compare it with CDBSIR system.   

 

 

 

 

 

 

 

 

 

 

Figure 10.2: Architecture of CDIR system with imaging receiver on communication 

plane. 

 

10.2.2.2 Cluster distributed beam steering IR (CDBSIR) system 

In contrast to the CDIR, in the CDBSIR system the IR transmitter uses the 

beam steering to steer the IR beam toward the receiver location. Like, CDIR, 

the CDBSIR system employs a STB algorithm to select the closest IR 

transmitter to the receiver. Then selected IR transmitter in the STB algorithm 

will then apply fast beam steering technique similar to the ones used in Chapter 

8.    



Chapter Ten  

230 

 

 

 

 

 

 

 

 

 

 

Figure 10.3: Architecture of CDBSIR system. 

10.2.3 Collaborative VLC/IROW system 

It is desirable to continue to provide a high data rate service while a user dims 

the light source to any level. However, the received power at the VLC receiver 

is reduced when the user dims the light to low levels, and this leads to a 

degradation in the SNR and affects the achievable data rate. Therefore, a 

collaborative VLC/IROW system is introduced to address this issue, and when 

the VLC has partial dimming, such as 75% or 50%, both the IROW and VLC 

systems can collaborate to maintain the target data rate (5 Gb/s). The IROW 

system can be used to compensate for the degradation of the data rate due to 

dimming in the VLC system. It should be noted that the IROW system sends 

information at a fixed rate of 5 Gb/s. In the case of no dimming, the VLC and 

IROW can be used to increase the data rate higher than the maximum VLC 

data rate (i.e., higher than 5 Gb/s); hence, the achieved data rate will be 10 
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Gb/s instead of 5 Gb/s. Figure 10.4 shows the architecture of the VLC/IROW 

system. The proposed system consists of eight IR sources (similar to those 

used in the CDBSIR system) and eight VLC transmitters (similar to those used 

in the imaging LD-VLC system) and employs an imaging receiver with 50 pixels. 

 

 

 

 

 

 

 

 

 

Figure 10.4: Architecture of collaborative system. 

10.3 Adaptive Rate Technique 

In this section, we introduce the ART and evaluate the performance of the 

imaging LD-VLC system under the impact of multiple levels of light dimming 

(25%, 50% and 75%). The results are presented in terms of the SNR at 

different operating data rates (5 Gb/s, 2.5 Gb/s and 1.25 Gb/s). 

       It should be noted that an SNR equal to 13.5 dB is needed for a 10-6 BER. 

Therefore, we have chosen BER=10-6 as the threshold in the imaging LD-VLC 
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and we employ an ART to ensure that we have an acceptable quality 

communication link under different levels of dimming. ART is carried out at the 

receiver and the controller. First, the receiver monitors BER continuously, and 

when it becomes higher than 10-6, the receiver send a feedback signal called 

the channel quality indicator (CQI) to inform the controller to move to the next 

transmission rate (lower transmission rate when the BER becomes higher than 

10-6). 

       In our VLC system we provide three data rates (5 Gb/s, 2.5 Gb/s and 1.25 

Gb/s). For example, when the receiver is operating at 5 Gb/s and the BER 

becomes higher than 10-6 (i.e., the SNR decrease below 13.5 dB), the receiver 

will send CQI_1 to inform the controller to reduce the transmission rate to 2.5 

Gb/s. Then the receiver measures the SNR and if the BER is still higher than 

10-6, then the receiver will send CQI_2 to inform the controller to further reduce 

the data rate (i.e., from 2.5 Gb/s to 1.25 Gb/s). Again, if the BER is still higher 

than 10-6, then the receiver will send CQI_3 to inform the controller to stop 

transmission and the communication link is disconnected. However, it is 

desirable to maintain communication while a user arbitrarily dims the light 

source. Therefore, we have introduced a collaborative VLC/IROW system to 

address this issue (i.e., degradation in the SNR due to dimming will lead to a 

disconnect in the communication link). It should be noted that the ART has two 

procedures: down convert and up convert. Down convert is when the controller 

reduces the data rate due to degradation in the BER (when dimming occurs). 

Up convert is when the controller increases the data rate (e.g., from 1.25 Gb/s 

to 2.5 Gb/s) due to maintaining a very low BER at the receiver side (i.e., 10-9). 

The CQI_4 and CQI_5 signals can be used to inform the controller to increase 

the data rate from 1.25 Gb/s to 2.5 Gb/s and from 2.5 Gb/s to 5 Gb/s, 

respectively.     

       ART is carried out at the start of a one second frame, and if the BER has 

changed compared to the previous frame’s values then the receiver uses the 
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feedback channel to update the controller. The ART (down convert) can be 

applied according to the following steps: 

1- The receiver sends (using an infrared beam) a low data rate control 

feedback signal (CQI) to inform the controller that the BER has become 

lower than 10-6. 

2- The controller decreases the current data rate to the lower service (e.g., 

5 Gb/s to 2.5 Gb/s). 

3- The receiver estimates the BER, and if it is still below 10-6, it will send 

another CQI to inform the controller. 

4- The controller further decreases the data rates (e.g., from 2.5 Gb/s to 

1.25 Gb/s), and if it receives another CQI from the receiver, the controller 

will stop the transmission.  

A flow chart of the down convert ART is shown in Figure 10.5. To evaluate the 

performance of the imaging LD-VLC system at different levels of light dimming, 

the SNR was calculated at 5 Gb/s, 2.5 Gb/s and 1.25 Gb/s. Figure 10.6 

illustrates the SNR of the VLC system when it was operated at 5 Gb/s; the 

imaging LD-VLC system achieved about a 15.6 dB SNR at the room centre 

(worst case scenario) when dimming did not exist. However, it can be clearly 

seen that when the user dims the light by more than 25% the SNR is decreased 

and the BER becomes higher than 10-6. This means that the VLC system 

cannot operate at this data rate (5 Gb/s) when the light is dimmed by more than 

25%. Figures 10.7 and 10.8 show the SNR of the imaging LD-VLC system 

when operating at 2.5 Gb/s and 1.25 Gb/s, respectively. When the imaging LD-

VLC is operated at 2.5 Gb/s it is able to maintain a BER of 10-6 at a dimming 

level of up to 50%. On the other hand, the VLC system has the ability to 

achieve 1.25 Gb/s with a BER lower than 10-6 at deferent levels of dimming 

(25%, 50% and 75%), as shown in Figure 10.8. It should be noted that the 

receiver bandwidth has to be changed (reduced) when the data rate is 

decreased.   
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Figure 10.5: Flow chart of ART (down convert case). 
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Figure 10.6: SNR of imaging LD-VLC system operating at 5 Gb/s with different levels of 

dimming (25%, 50% and 75%) when receiver moves at x=2m along y-axis. 

 

 

 

 

 

Figure 10.7: SNR of imaging LD-VLC system operating at 2.5 Gb/s with different levels 

of dimming (25%, 50% and 75%) when receiver moves at x=2m along y-axis. 

 

 

 

 

Figure 10.8: SNR of imaging LD-VLC system operating at 1.25 Gb/s with different 

levels of dimming (25%, 50% and 75%) when receiver moves at x=2m along y-axis. 
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10.4 Simulation Results and Discussions of IROW 

Systems 

In this section, we evaluate the performance of the proposed support systems 

in an empty room in the presence of multipath dispersion, receiver noise, back 

ground noise (light units) and mobility. The results are presented in terms of 

delay spread, 3 dB channel bandwidth, SNR and BER. 

10.4.1 Delay spread and 3 dB channel bandwidth 

Figure 10.9 presents the communication system delay spread associated with 

the CDIR and CDBSIR systems. The results show that the CDBSIR system has 

a lower delay spread than the CDIR system at all the receiver locations 

considered. The delay spread for the CDIR system is relatively low (0.03 ns in 

the worst case), and this is attributed to two reasons: firstly, due to the narrow 

FOVs associated with each pixel in the imaging receiver, and this limitation in 

the FOV minimises the number of rays accepted. Secondly, the IR transmitter is 

very close to the receiver (IR sources distributed on the ceiling see Figure 

10.2). However, the delay spread can be further reduced (i.e., less than 0.03 

ns) by employing beam steering. The CDBSIR system outperforms the CDIR 

system, as it dramatically decreases the delay spread from 0.03 ns to 0.003 ns 

(by a factor of 10) at the room centre. The minimum communication channel 

bandwidth of the CDBSIR was 29 GHz (where the delay spread is 0.003 ns at 

points x=2m, y=2m, 4m, 6m) as shown in Table 10.1.  

10.4.2 SNR and BER 

Since the IROW systems operate when the VLC system is also present, we 

therefore considered the background noise component coming from the light 

units (VLC transmitters). Figure 10.10 shows the SNR of the proposed systems 

when operated at 5 Gb/s. It can be clearly seen that the CDIR system with 
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imaging receiver does not have the ability to operate at a high data rate. 

However, when the beam steering technique is combined with this system it 

can perform better. The significant improvement in the SNR level is attributed to 

the ability of the beam steering technique to steer the IR beam towards the 

receiver location and, thus, increase the power received by the pixels.  

 

 

 

 

 

 

Figure 10.9: Delay spread of two systems at x=2m and along y-axis. 

 

Table 10.1: Channel bandwidth of proposed systems at x=2m. 
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3 dB Channel Bandwidth [GHz] 
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Table 10.2 shows the BER at 5 Gb/s for the proposed systems (CDIR and 

CDBSIR). It can be noted that the CDBSIR system has a better performance 

compared to the CDIR. At certain locations in the room, e.g., at x=2m, y=2m 

and z=1m, the BER of the CDIR system was increased. This is due to 

increasing path loss. However, this increase in BER does not severely affect 

the performance of the system; for example, the maximum value of the BER 

provided by the CDBSIR system is equal to 8.8 × 10−7. 

 

 

 

 

 

 

Figure 10.10: SNR of two systems operating at 5 Gb/s when receiver moves at x=2m 

along y-axis. 

 

Table 10.2: BER of proposed systems at x=2m. 
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BER 

Receiver Locations along the 𝑦-axis, 𝑦 [m] 

1 2 3 4 

CDIR 8.7×10-4 2.5×10-2 8.7×10-4 2.5×10-2 

CDBSIR 6.5×10-9 8.8×10-7 6.5×10-9 8.8×10-7 
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10.5 Simulation Results and Discussions for 

Collaborative VLC/IROW System 

Dimming is an important feature of an indoor lighting system where the 

illumination level can be controlled by the user. One of the main issues in VLC 

systems is that the light unit should be ‘‘ON’’ all the time to ensure continuous 

communication. However, the user may dim the light at any time and this will 

severally degrade the performance of the VLC system. In this section, a 

collaboration between VLC and IROW systems (CDBSIR) is proposed to 

support the VLC system when the light is dimmed at different levels (25%, 50% 

and 75%). An ART can be used with the VLC system to manage the reduction 

in the SNR due to the light dimming and to establish a high quality 

communication link under the impact of dimming. To provide a high data rate 

service for an indoor user under different conditions (with\without dimming), an 

IROW (CDBSIR) system can be used to support the VLC system. Figure 10.11 

shows the SNR of the VLC system when the ART is carried out. It can be 

clearly seen that the data rate diminishes in a very graceful manner when the 

light is dimmed beyond 50%. However, when employing the CDBSIR system 

the achieved data rates at the receiver will be 5 Gb/s even though the VLC 

system is off. It means that the user can dim the lights and maintain a high 

quality communication service (5 Gb/s and beyond). In the case of partial 

dimming (50% and 75%) in the VLC system, it can achieve 2.5 Gb/s and 1.25 

Gb/s, respectively. Therefore, the collaborating system (VLC/IROW) can always 

achieve higher than the target data rate (5 Gb/s). For example, 7.5 Gb/s (2.5 

Gb/s from the VLC system and 5 Gb/s from the CDBSIR) can be achieved 

when the light is dimmed by 50%. In the case of no dimming, 10 Gb/s can be 

achieved by using both systems (VLC and IROW). 

 

 



Chapter Ten  

240 

 

 

 

 

 

 

 

Figure 10.11: SNR of collaborative systems when receiver moves at x=2m along y-

axis. 

10.6 Summary 

In this chapter we proposed, designed and investigated the concept of a 

collaborative VLC/IROW system. In addition, we investigated the impact of 

partial dimming (25%, 50% and 75%) on the performance of the VLC system. 

Moreover, we introduced a novel ART to reduce the effect of the dimming and 

to create an optimum communication link under the impact of partial dimming. 

       Two novel IROW systems (CDIR and CDBSIR) were introduced to support 

and collaborate with the VLC system in the case of partial dimming. These 

IROW systems used an imaging receiver with 50 pixels.  

       The proposed CDIR system is coupled with the imaging receiver to improve 

the received optical signal SNR in the presence of back ground noise, multipath 

dispersion, receiver noise and mobility. A beam steering technique is also 

proposed to further reduce the delay spread and increase the SNR by steering 

the IR beam nearer to the receiver at each given location. Simulation results 

show that the CDBSIR system has the ability to decrease the delay spread of 

the CDIR system by 90% from 0.03 to 0.003 ns at the room centre (x=2m and 
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y=4m), which leads to an increase in the channel bandwidth by a factor of 5.5 

from 5.5 GHz to 29 GHz. In addition, a notable enhancement in the SNR can be 

achieved by introducing beam steering to the CDIR system. The simulation 

results show that the CDBSIR system can significantly improve the SNR. The 

BER provided by the CDBSIR system is better than 10−6 at 5 Gb/s in the worst 

case scenario. Therefore, we used the CDBSIR to collaborate with a VLC 

system. 

        Simulation results show that the collaborative VLC/IROW system has the 

ability to achieve 10 Gb/s when dimming does not exist and 6.25 Gb/s (5 Gb/s 

from the IROW and 1.25 Gb/s from the VLC) in the case of 75% light dimming 

(worst case scenario).  

 

 

 

 

 



Chapter Eleven 

242 

 

11 Summary of Contributions and 

Future Directions  

11.1 Introduction 

This chapter summarises the work that has been achieved and presented in 

this thesis as well as its findings and original contributions. In addition, it 

suggests possible directions for future research in the area. Next section 

presents the contributions of the thesis. Section 11.3 introduces the potential 

areas that deserve further investigations. 

11.2 Summary of Contributions  

VLC systems have become promising candidates to complement conventional 

radio frequency systems due to the increasingly saturated RF band and the 

potential high data rates that can be achieved by VLC systems. A major interest 

in VLC systems is to understand and tackle the design challenges to achieve 

multi gigabits per second. These challenges include the low modulation 

bandwidth of the LEDs, ISI due to multipath propagation and CCI due to 

multiple transmitters. This thesis has presented a range of tools and 

mathematical models and simulation methods to model the VLC channel link in 

different indoor environments. This thesis has concentrated on VLC system 

design, with emphasis on approaches that can tackle the impairments 

discussed as well as shadowing effect and user mobility. In addition, it has 

designed high speed VLC systems that can operate at high data rates (5 Gb/s, 

10 Gb/s, 20 Gb/s and 25 Gb/s). Most of the proposed systems were evaluated 

in a typical rectangular room with dimensions of 4m × 8m × 3m (width × length 

× height). The simulation results were carried out through the use of a light ray 
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tracing algorithm where the transmitted VLC signal travels through various 

paths (LOS, first and second reflections) of different lengths before it reaches to 

the receiver. The simulations and calculations reported in this thesis were 

carried out using MATLAB. The performance evaluation of the VLC systems 

concentrated on the impulse response, delay spread, 3 dB channel bandwidth, 

SNR and BER.  

       In this thesis, we proposed, designed and investigated a novel LD-VLC 

system that uses LD instead of LEDs as the transmitters in conjunction with 

different receivers (wide-FOV receiver, an ADR with three and seven branches 

and an imaging receiver with 50 pixels) to deal with the main constraints of the 

traditional VLC system, namely the low modulation bandwidth of the LEDs and 

ISI caused by multipath dispersion. 

       The ADR with three branches is introduced for VLC system. The 𝐴𝑍s, 𝐸𝐿s 

and FOVs were chosen through an optimisation process to achieve high SNR 

and low delay spread. The ADR LD-VLC system has the ability to decrease the 

delay spread of the wide FOV LD-VLC system by 91% from 0.65 ns to 0.053 ns 

at the room centre (x=2m and y=4m), which leads to an increase in the channel 

bandwidth by a factor of 32 from 114 MHz to 3.7 GHz. Our ADR LD-VLC 

system provides full mobility within the test area in the presence of multipath 

propagation and achieves a BER better than 10-6 at 5 Gb/s when using a simple 

modulation format (OOK).         

       A custom design imaging receiver was introduced for VLC system. In 

addition, the LD-VLC system was studied with an imaging receiver (50 pixels) to 

enhance the mobile VLC system performance. Imaging reception can 

significantly help to reduce the delay spread and improve 3 dB channel 

bandwidth. The imaging LD-VLC has the ability to decrease the delay spread of 

the wide FOV LD-VLC system by 94% from 0.7 ns to 0.04 ns at the room 

centre, which leads to an increase in the channel bandwidth by a factor of 36 
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from 116 MHz to 4.2 GHz. Furthermore, at a low data rate (30 Mb/s) imaging 

LD-VLC was obtained 8 dB SNR gain over the wide FOV LD-VLC system, and 

the lowest SNR achieved was 19.2 dB at a high data rate (5 Gb/s) at the room 

centre.   

       A novel DAT was introduced for a VLC system to improve the SNR and 

channel bandwidth as well as to reduce the effect of multipath dispersion. The 

DAT was combined with seven branched ADR (DAT ADR) and an imaging 

receiver (DAT imaging LD-VLC). The DAT ADR system achieved 5 Gb/s and a 

BER of 10-5 at the least successful point in the empty room. However, there was 

degradation in the performance (BER increase) when the DAT ADR system 

operated in the realistic environment considered. On the other hand, the DAT 

imaging LD-VLC system has the ability to decrease the delay spread of the 

imaging LD-VLC system by 83% from 0.04 ns to 0.007 ns at the room centre, 

which leads to an increase in the channel bandwidth by a factor of 5.4 from 4.2 

GHz to 23 GHz, and this channel bandwidth has the ability to provide data rates 

of up to 33 Gb/s. Moreover, at low data rates (30 Mb/s), the proposed algorithm 

does not offer SNR improvements, which is due to the low ISI at these data 

rates. The BER provided by our DAT imaging LD-VLC system is better than 10-5 

at 10 Gb/s, in the worst case scenarios. The DAT imaging system in a realistic 

room has lower delay spread (higher 3 dB channel bandwidth) but also lower 

received power and overall has slightly lower SNR. 

       The concept of relays in a VLC system has been proposed to improve 

performance of VLC system. Two novel algorithms were introduced (CS and SB) 

to create optimum transmitter-relay and relay-receiver communication links. 

Three novel VLC systems (ADRR-LD, IMGR-LD and SBIMGR-LD) are 

proposed. These VLC systems use LD instead of LEDs as transmitters, and they 

use two different types of receiver: an ADR with 7 branches and an imaging 

receiver with 50 pixels. Different room sizes were also considered to examine 

the performance of the proposed systems. The performance of the proposed 
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systems was better in the small office than the large office and this is due to the 

distance between the transmitter and receiver, which was smaller and led to 

reduced path loss, delay spread and increased SNR. The proposed systems 

were evaluated under diverse situations including an empty room and a room 

with very strong shadowing effects resulting from mini cubicle offices.        

       This thesis also introduces beam steering and location estimation 

algorithms for VLC system. It is combined these algorithms with the concept of 

delay adaptation to produce a fully adaptive VLC system that has the ability to 

achieve 20 Gb/s with full receiver mobility in a realistic indoor environment. The 

effect of beam steering on the illumination was investigated and it was observed 

that up to 20% of the light from the RGB-LD can be beam steered towards the 

receiver position to improve SNR without affecting the illumination. In addition, 

at a low data rate (30 Mb/s) fully adaptive system offers an SNR improvement 

of 10 dB over the imaging LD-VLC system when using the MRC approach. At a 

high data rate (20 Gb/s) a 29 dB SNR gain is achieved when the fully adaptive 

system replaces the imaging LD-VLC system under the worst case scenario, 

and these improvements in the SNR enable our fully adaptive system to provide 

a BER of better than 10-9 at all receiver locations when operated at 20 Gb/s in a 

harsh room environment. The delay adaptation adjusts the switching times of 

the signals in a fashion that allows the signals to reach the receiver at the same 

time. The significant enhancements in channel bandwidth and SNR enable our 

proposed system to operate at higher data rates (20 Gb/s and beyond). 

Moreover, the fully adaptive VLC system can achieve 100% of the data rate (20 

Gb/s) when it is stationary and 70.4% (14 Gb/s) in the case of user movement, 

and this is due to the time needed (296 ms) for the adaptation process.  

       We introduced a FCGHs VLC system and introduced a new fully adaptive 

ADR VLC system that has ability to achieve 25 Gb/s. The proposed system is 

coupled with three branched ADR and an imaging receiver to improve the 

received VLC signal in the presence of multipath dispersion, mobility, and 
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shadowing. The proposed FCGHs can effectively steer the VLC beam nearer to 

the receiver location at each given receiver location. It should be noted that the 

time required to find the optimum location to steer the beam to, was reduced 

from 224 ms to 32 ms. Moreover, the proposed system can also adapt to 

environmental changes, offering a link that is robust against signal blockage 

and shadowing. The BER provided by our proposed system in realistic indoor 

environment is about 10−6 at 25 Gb/s in the worst case scenario. Further 

enhancement can be achieved when our fully adaptive system is used in 

conjunction with imaging receiver instead of ADR. The highest value of BER in 

the fully adaptive imaging system is equal to 4×10-12.  

       We proposed four IROW systems (hybrid diffuse IR with wide field of view 

receiver, hybrid diffuse IR with imaging receiver, beam steering IR with imaging 

receiver and cluster distributed IR with imaging receiver) to support VLC 

systems when the light is totally turned off. The ultimate goal of our proposed 

systems is to maintain a high data rate service when the VLC system is 

disabled. The simulation results show that the proposed systems have the 

ability to achieve high data rates (1.25 Gb/s and 2.5 Gb/s) with a BER of 10-9 in 

the presence of multipath dispersion, receiver noise and mobility. 

 

       Finally, we introduced and implemented the concept of a collaborative 

VLC/IROW system. In addition, we investigated the impact of partial dimming 

on the VLC system’s performance and we proposed an ART to mitigate the 

impact of light dimming. Furthermore, we proposed new IROW systems (CDIR 

and CDBSIR) to collaborate with the VLC system to maintain the target data 

rate in the case of partial dimming. We have achieved 10 Gb/s in an indoor 

environment, which is a 2× increase in the data rate compared with a pure VLC 

system. 
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11.3 Future Directions  

The following is a list of potential areas that deserve further investigation and 

research: 

1- Investigate WDM scheme with LD, the use of colour-mixed laser light 

would enable to send different data sources on different wavelengths on 

a single channel. WDM promise great flexibility and bandwidth efficiency 

as it did in the case of fibre optic communication system and VLC system 

using LEDs. This scheme will ensure an efficient use of available 

spectrum and abundant data rate (up to 75 Gb/s).  

2- A MIMO VLC system employing LD can be demonstrated. The 

transmission capacity of VLC system can be significantly increased by 

space division de-multiplexing scheme. Such a MIMO LD-VLC system 

would be attractive for providing high data rate service.   

3- Multicarrier code division multiple access (MC-CDMA) is a transmission 

scheme that combines the robustness of orthogonal modulation with the 

flexibility of CDMA schemes. MC-CDMA can be used to provide high 

data rates for multi user scenarios. 

4- To further reduce the BER in the proposed VLC systems FEC codes can 

be used when the VLC systems operate at high data rates. 

5- LEA, BSR and delay adaptation technique have been investigated for a 

single user scenario where the VLC beam is assigned to one receiver 

location. In the case of a multiple users scenario, opportunistic 

scheduling can be used where LEA, BSR and delay adaptation 

algorithms are implemented opportunistically (or randomly between 

users/regions) to maximise the 3 dB channel bandwidth and the SNR in 

a given region for a given time period. 

6- Due to the energy efficiency, scalability and flexibility of VLC systems, 

they can be used in the next generation of data centres replacing a 

hundred metres of UTP cable or optical fibre. Investigations in this area 
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are required to examine the benefits of applying VLC systems in data 

centres. 

7- VLC transmitter mapping, each transmitter can be allocated to one user 

or more according to the numbers of active users and their locations on 

the CP. This technique can be used to further reduce delay spread, 

increase 3 dB channel bandwidth and enable multi users’ scenario.  
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Appendix A 

Results of Traditional VLC System 

 

 

 

 

 

Figure A1.1: Distribution of horizontal illumination at the communication plane 

(0.85m) in room with dimensions of 5 m × 5 m × 3 m. 

 

 

 

 

 

Figure A1.2: Impulse response at 0.01m, 0.01m, 0.85m in room with dimensions 

of 5 m × 5 m × 3 m. 
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Figure A1.3: The distribution of the received power from LOS component. Min. -

2.8 dBm, Max. 3.5 dBm. 

 

 

 

 

 

 

 

 

 

Figure A1.4: The distribution of the received power from LOS and first reflection 

component. Min. -2.8 dBm, Max. 3.8 dBm. 
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Appendix B 

Results of Traditional IROW Systems 

 

 

 

 

Figure A2.1: Impulse response of CDS system with wide FOV receiver and an 

imaging receiver with 200 pixels. 
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Figure A2:2: The delay spread of CDS system with two receivers (a) at x=1m, 

(b) at x=2m over communication plane. 
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Figure A2.3: The SNR of CDS system with wide-FOV receiver and imaging 

receiver (a) at x=1m, (b) at x=2m over CP. 

 

 

 

 

 

 

Figure A2.4: Impulse response of LSMS system with wide-FOV receiver and 

ADR receiver. 
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Figure A2.5: Delay spread distribution of LSMS system using wide-FOV and 

ADR receiver (a) at x=1m, (b) at x=2m over communication plane. 
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Figure A2.6: SNR of LSMS system using wide-FOV receiver and ADR receiver 

(a) at x=1m, (b) at x=2m over communication plane. 
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Figure A2.7: Impulse response of BCM system with wide-FOV receiver and 

ADR receiver. 
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Figure A2.8: Delay spread distribution of BCM system using wide-FOV receiver 

and ADR receiver (a) at x=1m, (b) at x=2m over communication plane. 
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Figure A2.9: SNR of BCM system using wide-FOV and ADR receiver (a) at 

x=1m, (b) at x=2m over communication plane. 
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