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Abstract 

For almost a century composers and engineers have been attempting to create systems that allow 

drawings and imagery to behave as intuitive and efficient musical scores.  Despite the intuitive 

interactions that these systems afford, they are somewhat underutilised by contemporary 

composers.  The research presented here explores the concept of agency and artificial ecosystems 

as a means of creating and exploring new graphic sound synthesis algorithms.  These algorithms are 

subsequently designed to investigate the creation of organic musical gesture and texture using 

granular synthesis.  The output of this investigation consists of an original software artefact, The 

Agent Tool, alongside a suite of acousmatic musical works which the former was designed to 

facilitate.  When designing new musical systems for creative exploration with vast parametric 

controls, careful constraints should be put in place to encourage focused development.  In this 

instance, an evolutionary computing model is utilised as part of an iterative development cycle.  

Each iteration of the system’s development coincides with a composition presented in this 

portfolio.  The features developed as part of this process subsequently serve the author’s 

compositional practice and inspiration.  As the software package is designed to be flexible and open 

ended, each composition represents a refinement of features and controls for the creation of 

musical gesture and texture.  This document subsequently discusses the creative inspirations 

behind each composition alongside the features and agents that were created.  This research is 

contextualised through a review of established literature on graphic sound synthesis, evolutionary 

musical computing and ecosystemic approaches to sound synthesis and control. 
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Chapter 1. Introduction 

The research presented here contains a portfolio of fixed medium acousmatic compositions 

alongside a reprogrammable agent-based control environment that was designed to generate 

materials for these works.  The compositions adhere to the definition of acousmatic music 

proposed by Dhomont (1996) in that they are specifically intended for presentation over 

loudspeakers.  As part of the composition process, a complex and reprogrammable agent-based 

graphic sound synthesis system was created to enable the exploration of ecosystemic granular 

synthesis algorithms as a means of creating evolving textures and gestures.  These original 

synthesis algorithms are designed to enable the exploration of new forms of image sonification and 

audification in an open and flexible manner.  Each composition presented here subsequently used 

imagery as a means of stimulating granular synthesis algorithms in real-time.  The software output 

The Agent Tool (Pearse and Moore, 2014) was developed using an iterative methodology based on 

the principles of agile development (Paetsch et al., 2003).  Each iteration of the software was 

developed as a means of facilitating the compositional aims of each musical composition presented 

here.  After completing each of the five musical works, the software feature-set and methodology 

used was subsequently evaluated before the commencement of the following composition and 

iteration of the software.  Across these works, the system was actively used as a means of 

generating sonic materials that form part of the compositional process rather than entire 

compositions.  While the software allows entire compositions to be crafted within it, akin to 

Waschka II (2007), the author believes that these algorithmic techniques should serve the user 

rather than the other way around.   

Chapter 2 discusses the compositional rationale adopted across the works presented 

alongside subsequent research aims.  Aims relating to the software artefact are subsequently 

explored and justified through a review of contemporary literature in Chapter 3.  Over the course 
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of this chapter literature on graphic sound synthesis, evolutionary computing algorithms and 

ecosystemic agent systems in musical composition will be discussed.  Chapters 4-8 discuss each 

composition and subsequent iteration of The Agent Tool.  Within each of these chapters the aims 

and intentions of the respective composition are examined before presenting how The Agent Tool 

was developed and utilised to facilitate the compositional aims.  Example agents and timings are 

subsequently presented.  Each of these chapters concludes with an evaluation of the agent 

methodologies utilised within that work.  Chapter 9 concludes the document evaluating the 

compositions and software artefact against the previously discussed research aims. 

This thesis also presents a list of public performances of presented compositions as an 

appendix.  An accompanying DVD is provided with all musical works and installers for the software 

artefact.  The DVD (and installer) also contains a comprehensive API reference manual and getting 

started guide that could not be included here due to their size. 
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Chapter 2. Research Aims 

The compositions presented here aim to explore the development of organic musical textures and 

gestures.  Texture as put forward by Smalley (1986) is typified by materials with internal energy and 

motion that do not require provocation to act.  The materials subsequently appear to develop and 

evolve without human interaction.  Gesture on the other hand is concerned with “action directed 

away from a previous goal or towards a new goal; it is concerned with the application of energy 

and its consequences” (Smalley, 1986, p.82).  Gesture, unlike texture, is typified through energy 

that is built up, stored as tension and released externally.  Gestures require provocation and 

purpose within a work.  These materials are often derived or emerge from existing materials that 

are present in the work and are used to drive the composition forward.  As Smalley (1997) 

suggested, across both of these functions the development of materials can be comprised of three 

components.  Materials are presented to the listener in the form of onsets before they continue 

(continuants) in some form before termination.  This research aims to explore an organic and 

somewhat evolutionary approach to the development of these morphologies within composition.  

The Agent Tool, as presented here was subsequently designed to facilitate these explorations using 

imagery and agency as stimuli for these endeavours. 

Composers have been using forms of graphic sound synthesis and image sonification as a 

means of realising their compositional ideas for some time.  Typically these systems use additive 

synthesis to create synthetic materials directly from the colour data within an image.  This 

approach gives rise to materials that are highly synthetic in their output.  Granular synthesis 

algorithms, as put forward by Roads (2001), are constructed through the sequencing of grains of 

microsound (<50ms in duration).  These grains are most often sourced from one or more pre-

recorded sound files or buffers and can offer greater diversity in their sonic output compared to 

additive synthesis. To subsequently generate sonic materials via granular synthesis, a user needs to 
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spend time exploring the contents of the sound files being used to comprehend the sonic 

possibilities that they afford.  The parametric space and favourable settings within a granular 

process subsequently change with every sound-file that is used.  Over the past two decades, artists 

and composers have explored methodologies for optimising exploration within the parameter 

space of granular synthesis algorithms.  Evolutionary algorithms have successfully been utilised to 

do this (see Dahlstedt, 2001, Mandelis, 2001) but have also been used to generate synthesis 

algorithms themselves (see Garcia 2001).  Evolving Artificial Life (a-life) systems have also been 

utilised as a means of generating and controlling granular synthesis algorithms in an ecosystemic 

fashion (see Miranda, 2000, Eldridge, 2005, McCormack, 2001). 

The research presented here questions whether agent-based/a-life graphic sound synthesis 

is an effective means of creating sonic gesture and texture via granular synthesis.  More broadly, 

The Agent Tool aims to investigate how agency can be used to explore open-ended parametric 

spaces.  As part of this, the research aims to explore whether agency can be used as an effective 

means of designing both adaptable and intuitive instruments/controllers to perform compositional 

tasks.  Finally, an investigation of imagery as an effective modality for invoking and stimulating 

sonic ecosystems when designing textures and gestures is discussed. 
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Chapter 3. Existing Research 

Section 3.01 Graphic Sound Synthesis and Image Sonification 

For almost a century composers and engineers have been attempting to utilise imagery as a means 

of creating compositional materials and methodologies.  As Xenakis famously noted, “Why should I 

write them as (musical) notes instead of these lines?  We are used to seeing things in visual shapes; 

it is natural” (in Chadabe, 1997, p.213).  The collection of hardware and software systems that have 

been developed for this purpose perform what is known as Graphic Sound Synthesis (Roads, 1996).  

These systems subsequently perform forms of image sonification and audification.  Sonification is 

typically defined as a system in which numerical relationships within data are realised in sound that 

is to be perceived by a listener (De Campo, 2007, Hermann, 2008, Kramer, 1993, Scaletti, 1994, 

Walker and Nees, 2011).  Audification is a form of direct sonification wherein the data itself is 

realised in sound (De Campo, 2007, Kramer, 1993, Walker and Nees, 2011).  These two approaches 

to sound and music creation can be viewed as opposing ends of a continuum.  As put forward by 

Kramer (1993), sonification is a symbolic realisation of the data which is abstracted and interpreted.  

Audification, on the other hand, is analogical as it is a direct and intrinsic representation of the data.  

The terms symbolic and analogical often vary depending on the target audience for the realisation.  

Hogg and Vickers noted, when these realisations are used to create art in the ars musica domain, the 

terms abstract and concrete are often used over symbolic and analogical (Hogg and Vickers, 2006).   

Within the field of sonification, De Campo categorises three broad approaches to realising 

data (De Campo, 2007). 

1. Event-based 

2. Model-based 

3. Continuous 
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Graphic Sound Synthesis systems typically utilise forms of continuous realisation to 

generate sound.  De Campo proposed that the rate of data extraction directly corresponds to 

whether a realisation is symbolic or analogical, consequently, a sonification over audification (De 

Campo, 2007).  Extracting colour data at high rates, from this perspective, can be viewed as an 

audification.  Traditionally a high rate of extraction implies that the image data should be used as 

raw sound. However, it is also possible to use this data as control data.  Traditionally this would 

take the form of an off-line process, but huge increases in CPU speed and access to the parallel 

processing potential of commonplace GPUs have allowed these high intensive process to be 

calculated in real-time1. In the realm of Graphic Sound Synthesis, the vast majority of systems 

adhere to performing direct image audification. These include L. Lavellèe’s sonothèque, Hugh 

LeCaine’s Coded Music Apparatus, the Cross-Grainger Free Music Machine, O.Kendall’s Composer-

Tron, E.Murzin’s ANS Synthesiser along with contemporary software systems MetaSynth and 

PhotoSounder (Rhea, 1972, Roads, 1996, Rouzic, 2008, Wenger, 2015, Young, 1989).  These systems 

are designed to read an image’s content from left to right.  The vertical axis is then split into a 

discrete collection of bands, each representing a frequency or collection of frequencies.  Each of 

these has a corresponding oscillator (typically a sinusoidal wave) whose amplitude is controlled by 

the brightness of the current pixel.  Thiebaut et al. (2008) suggested that in the process of scoring 

musical materials graphically, composers leave significant amounts of vagueness in their scoring. 

Due to the somewhat empirical nature of audification, contemporary systems that utilise this 

methodology tend to be used explicitly for sound design (on a sound by sound basis) and not 

composition (Thiebaut et al., 2008).  

Parameter Mapping Sonification (PMSon) is another favourable methodology. Data, or 

attributes within, are mapped to acoustic attributes such as pitch, timbre, spatial panning and so 

                                                            
1 The real-time single sample phase vocoder by Bradford and Dobson accurately highlights this 

potential (Bradford, R &Dobson, R. 2011). 
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on (Hermann and Hunt, 2005, Ben-Tal et al., 2002, Hermann and Hunt, 2004, Kramer et al., 2010).  

This approach is particularly well suited for sonifying multivariate data sources as sound is 

inherently multi-dimensional.  Consequently, numerous authors have highlighted this approach 

being the most favourable sonification strategy amongst creative practitioners and composers 

(Flowers, 2005, Flowers et al., 1997, Grond and Berger, 2011, Hermann, 2008, Hermann and Hunt, 

2004, Hermann and Hunt, 2005, Kramer et al., 2010, Walker and Nees, 2011, Worrall, 2010).  Two 

notable Graphic Sound Synthesis systems adhere to this methodology, Daphne Oram’s Oramics 

Machine along with Iannis Xenakis’ Unitè Polyagogique Informatique de CEMAMu (UPIC) system 

(Chadabe, 1997, Lohner, 1986, Manning, 2012, Manning, 2013, Marino et al., 1993, Roads, 1996).  

Walker and Nees (2011) suggest that PMSon typically forces a passive mode of interaction with a 

system once it is running.  It has been noted that both the Oramics Machine and the various 

iterations of UPIC, were designed to allow users to alter parameter mappings through voltage 

control and the arc system within UPIC (Lohner, 1986, Manning, 2012, Marino et al., 1993). As 

indicated by Chadabe, this flexibility in UPIC resulted in it being used by a wide variety of 

composers2 throughout the late 1980s and early 1990s (Chadabe, 1997).  The real-time software 

version of the UPIC (released in 1988) allowed a user to draw two-dimensional arcs that could 

control a multitude of parameters.  This included the speed of playback of each of the sixty-four 

voices.  Arcs were stored in pages which a user could traverse, with each page supporting playback 

of 4000 arcs at once (Manning, 2013).  The system, therefore, offered an enormous number of 

parametric combinations for a user to explore.  Magnusson indicates that being faced with a nearly 

infinite expressive scope can result in a creative paralysis (Magnusson, 2010).  The UPIC system was 

successful as it allowed users to constrain effectively their explorations enabling more focused 

interactions. 

                                                            
2 Notable composers include Bernard Parmegiani, Jean-Claude Eloy, François-Bernard Mâche, Julio 

Estrada, Cort Lippe, Jean-Claude Risset, Joji Yuasa and Curtis Roads (Chadabe, 1997). 
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Unlike, scanning/audification systems, Xenakis made it clear that UPIC was not designed for 

the sonification of images.  For Xenakis, compositions rather than imagery should remain at the 

heart of the activity (Marino et al., 1993).  Within this context, imagery merely provided an efficient 

means of scoring highly complex sonic materials.  If a flexible image sonification system were to be 

designed with the parametric freedom of UPIC while allowing colour data to be freely mapped, 

careful constraints and control mechanisms for control must be offered to the user.   

The work of Yeo and Berger has explored two concepts of time mapping in image 

sonification (Yeo et al., 2004, Yeo and Berger, 2006, Yeo and Berger, 2005b, Yeo and Berger, 

2005a).  UPIC allowed individual voices to have independent speeds; most other graphic sound 

synthesis systems stipulated that all voices advance through time in a unified fashion.  Yeo and 

Berger proposed what they call probing (Yeo and Berger, 2005b).  This technique allows a user to 

select points within the image to sonify and then have them navigate the space freely as 

independent entities.  This approach to free traversal of an image was also put forward by Sedes et 

al. (2004) wherein images were utilised as two-dimensional terrains over greyscale images.  Free 

traversal within an image can be viewed as a model-based sonification requiring exploration by 

human or automated entities.    

Kramer et al. (2010) propose that sonification system development, when used to aid sonic 

exploration should reference the following: 

1. Control: systems should provide efficient, effective and parametric controls  

2. Mapping: should allow the design of new sonifications ‘on the fly’ by giving the user 

flexible, intuitive control over mappings  

3. Integrability: facilitate data importation from a variety of formats 

4. Synchrony: allow easy integration with other systems such as visual monitors  
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5. Experimentation: integrate a perceptual testing framework with the overall sound 

synthesis and mapping functions. 

For experimentations and exploration in new forms of graphic sound synthesis, these key 

points should be adhered to.  Due to the multidimensional nature of the data set and a plethora of 

potential synthesis mappings, careful experimentation of new mapping strategies should be 

explored.  

Section 3.02 Evolutionary Algorithms in Composition and Instrument Design 

Since the pioneering work of John Holland (1975) and Richard Dawkins’ BioMorph framework 

(Dawkins, 1986), Evolutionary Algorithms (EA) systems and Genetic Algorithms (GA) have been 

used as a means of fulfilling a variety of musical tasks by researchers.  These algorithms have been 

used to create musical compositions that suit the style of a composer.  As Husbands et al. (2007) 

along with Burton and Vladimirova (1999) have indicated, many of these have been highly 

successful (Biles, 1994, Biles, 1998, Biles and Eign, 1995, Bilotta et al., 2002, Burton and 

Vladimirova, 1999, Gartland-Jones and Copley, 2003, Hodgson, 1999, Hodgson, 2002, Jacob, 1995).  

The GenJam system devised by Biles (Biles, 1994, Biles, 1998, Biles, 2007, Biles and Eign, 1995) is 

acknowledged as being one of the most sophisticated implementations and has undergone several 

successful iterations (Husbands et al., 2007, Johnson, 1999).  GenJam is designed to generate jazz 

solos whose output and fitness function can be influenced by a user and audience members (Biles 

and Eign, 1995).  The multiple compositions of Waschka II (2007) with the aid of GenDash have 

evidenced that GA can be a highly effective means of generating both components for composition 

and compositions themselves.  As demonstrated by Garcia (2001) and Johnson (1999), both EA and 

GA have also been utilised to explore the creation of new synthesis algorithms.   

In the realm of parametric design and control, Evolutionary Algorithms have proved to be a 

highly efficient and engaging methodology.  As Dahlstedt (2001a) noted:  
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A multi-dimensional parameter space, such as the parameter set of a synthesis 

algorithm, is an ideal target for interactive evolution. The individuals can be 

parameter sets for sound engines or pattern generators, like a synthesiser preset 

consisting of 100 parameters or more. You can navigate the huge parameter 

space without any knowledge of its underlying structure, following your esthetical 

preferences, and still have a very high degree of control (Dahlstedt, 2001a, p.2). 

 

Upon discussing the four roles in which Evolutionary Algorithms can be utilised within a 

work (sound design, material generation, structure generation and large-scale form generation) 

Dahlstedt (2001a) suggests that these methods work best at a low level for material and structure 

generation.  Furthermore, the way in which materials are often utilised determines the quality of 

the work rather than the materials themselves, due to listener’s expectation of coherence and 

consistency (Dahlstedt, 2001c).  Perhaps most importantly, he noted that when generating such 

materials within a large parametric space, predicting the impact of parametric manipulations can 

be problematic.  Interactive Evolution can, in turn, be utilised to maximise the proportion of good 

results (Dahlstedt, 2001c).  Historically EA and GA have been utilised as a generalised tool for 

optimisation (Dahlstedt, 2009, Horner and Goldberg, 1991, Husbands et al., 2007).  These 

processes are based upon Darwin’s theory of natural selection (Darwin, 1897) in which results are 

iteratively refined until a preferred output is discovered.  This process can be summarised as 

follows: 

1. A random starting population is generated  

2. A user or fitness function tests the sounds and selects their favourites 

3. A new population is generated based upon variations of the previously selected 

population  

4. The process is repeated from step 2 
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As part of this process, the objects or mappings are stored within a genetic representation 

known as the genome.  This can be a string of text or numbers, a tree structure or programming 

code.  A single instance of a genome (called a genotype) is assessed by the user or a fitness function 

for suitability.  This suitability is measured on a numerical scale before the genome is altered by 

some means to produce a phenome with relevant phenotypes (variations) within.  As Husbands et 

al. (2007) indicated, if automatic suitability testing takes place, this fitness function must somehow 

codify the desired musical outcome.  When such systems are being used to explore an unknown 

parametric space creatively, codifying an effective fitness function is problematic.  As Biles and Eign 

(1995) state, in subjective domains, fitness functions often cannot be expressed algorithmically.  

Similarly, as Husbands et al. (2007) noted, when EA are being used to develop new sounds, unlike 

composition systems there may not be an equivalent source to assess the ‘quality’ of the sound.  

Furthermore, due to the complexity of audio synthesis systems and the difficulty in modelling 

aesthetic judgements, Husbands et al. (2007) justly state that in this domain the subjective rules 

over the objective.  Subsequently, a common but time-consuming solution to this problem is to use 

human judgement as a fitness measure (Husbands et al., 2007, Sims, 1991, Todd and Latham, 1992, 

Burton and Vladimirova, 1999).   

The use of human judgement as a fitness function has been prevalent amongst researchers 

using EA to compose higher level musical structures.  Across the various iteration of Bile’s 

influential GenJam system, human judgment is used to create a narrow fitness bottleneck.   

…what if no suitable algorithm exists for generating fitness, even in the minimal 

case of deciding which of two individuals is better? After initially considering a 

neural network trained to respond as I do to pieces of music, I decided to put off 

the search for an algorithm that implements “I know what I like,” and use myself 

as a fitness function… The human who serves as GenJam’s mentor, then, is a very 

narrow bottleneck and is, in fact, the limiting factor on population sizes, number 

of generations, and size of any generation gap. This is because the mentor must 
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listen carefully to every measure of every phrase to provide their fitnesses (Biles, 

1994, p.135). 

 

GenJam was subsequently developed into an Interactive Genetic Algorithm (IGA) to 

facilitate both audience-mediated performance situations3 and real-time interactive performance 

based upon live performer input (Biles, 1998, Biles and Eign, 1995).  The Variations system of Bruce 

Jacob (1995) and IndagoSonus by Gartland-Jones and Copley (2003) take a higher level approach to 

music generation.  Both of these frameworks use higher level abstractions to represent musical 

phrases.  These blocks are subsequently developed and given the ability to be influenced by 

phrases that are passed to them.  In the case of the Agent Tool which is presented here, this 

approach is adhered to in the form of motion models (see Section 5.01(f)) which can be 

subsequently influenced by agents or the user. 

In the realm of developing new sounds through parametric exploration, similar bottleneck 

techniques are used with some variations on the iteration process (Dahlstedt, 2001c, Husbands et 

al., 2007, Mandelis, 2001, Mandelis and Husbands, 2003).  Whilst this is predominantly the case, 

when EA systems have been used to model particular sounds accurately (Garcia, 2001), target 

sound files have used with an algorithmic fitness function that compares characteristics of the 

resultant audio files with the target. This process is a convergent one where the synthesis 

algorithms and parametric controls converge on a target state.  When these systems are used to 

explore new sound creation with a human bottleneck, parametric evolutions often diverge from 

the source genotype (see Mandelis, 2001) as a means of presenting new parametric possibilities.  

As Husbands et al. (2007) put forward, these overarching processes vary with one being convergent 

and the other divergent, which they liken to ‘survival of the fittest’ and ‘survival of the prettiest’. 

                                                            
3 In this iteration members of an audience could preview variations and act as the 

mentor/bottleneck prior to a performance (Biles and Eign, 1995). 
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The MutaSynth and Genophone systems by Dahlstedt and Mandelis respectively are 

designed specifically to traverse a parameter space as a means of creating new sounds and control 

mechanisms (Dahlstedt, 2001a, Dahlstedt, 2001c, Mandelis, 2001, Mandelis, 2002).  MutaSynth is 

split into two distinct components, the genetic modification programme and a separate sound 

engine which communicate through MIDI Continuous Controller (CC) and System Exclusive 

Messages (Sysex).  The framework stores a parameter mapping genome as a string of numbers.  

The collection of genetic operators can consequently be used to generate a collection of nine new 

phenomes which a user can quickly audition using a numerical keypad (Dahlstedt, 2001c).  Across 

the genetic operators that the system affords, a user can alter settings of each.  For example, the 

mutation operator allows a user to set the probability of random alteration and the maximum 

mutation range.  The mating (crossover) and insemination (asymmetrical crossover) operators 

allow two parent genomes to be combined, controlling a genotype’s inheritence in the child.  

Manual mutation is also possible within the system.  Upon discussing the system, Dahlstedt noted 

that when dealing with large sound engines, parameters should be divided into groups with 

mutations being applied to each of these individually if required to limit the number of bad 

mutations (Dahlstedt, 2001b). Perhaps more significantly he noted that the system should begin 

the process of evolution from genomes that are already somewhat successful (Dahlstedt, 2001a, 

Dahlstedt, 2001c, Dahlstedt, 2007).  However, for this to be achieved a user needs to have an 

awareness of the genome material so as not to disregard the genomes that they deem to be 

successful.  This approach is echoed in the research by Mandelis in the design and usage of the 

hyperinstrument, the Genophone (Mandelis, 2002, Mandelis, 2001, Mandelis and Husbands, 2003).  

Husbands et al. (2007) take this further by suggesting that it is not desirable for the Genophone to 

start with random genomes when exploring new sound.   

These experiments indicated that it is preferable to seed the initial population 

with sounds that have been professionally hand-designed and are of some 
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aesthetic quality. A large amount of knowledge is embedded in the parametric 

definitions of these sounds, information that ultimately encodes a set of aesthetic 

values, albeit in an implicit and not easily decipherable way.  By using such hand-

designed sounds as points of departure for the evolutionary search, this 

embedded knowledge can be exploited (Husbands et al., 2007, p.18). 

 

In a similar fashion to MutaSynth, the Genophone allows a user to control arbitrary 

synthesiser controls using a data glove via MIDI CC and Sysex commands.  Genotypes within the 

Genophone encode both parameter mappings and the current parametric values within the 

parametric space (Husbands et al., 2007, Mandelis, 2002).  The system also allows a user to protect 

(lock) specific genotypes as part of the evolutionary process as a means of guiding the exploration 

process.  

Genetic representation of the data plays a crucial role in the creative possibilities that the 

system affords in establishing the space for possible results and enabling modification. (Dahlstedt, 

2007).  While representations should be as generic as possible to allow for surprises and inspiration 

beyond an artist’s expectation, they should be sufficiently meaningful to allow efficient 

convergence upon ideas.  Dahlstedt (2007) indicates that these representations can be split into 

three forms, basic, object-based and generative.  Each of these three representations can be 

summarised as follows: 

Table 3.1 Genetic Representations in imagery, based on Dahlstedt (2007) 

Genetic Representation Example Image Genome 
Format 

Subject of Transformation 

Basic Raw image data containing 
unfiltered materials 

Raw pixel data 

Object-Based Vector graphics containing a 
list of graphical objects along 
with information about each 

Properties of item/object 

Generative Structural information 
between items within the 
data 

Relative relationships such as 
position and size differentials 
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While Dahlstedt (2007) uses the evolutionary transformation of imagery to describe these 

representations, these strata can also be used to summarise forms of image sonification.  

Analogical and symbolic realisations take the form of basic and object-based representations.  The 

arc system of Xenakis’ UPIC can subsequently be likened to an object-based representation with 

each arc being an effective vector within a space.  Artificial Life systems (a-life), as we shall see, 

have been used to perform a generative traversal of parameters and perform generic musical tasks.  

The emergent and somewhat organic behaviours that form a-life systems are appealing as a means 

of generating both new forms of parametric control and new sonification algorithms.   

Section 3.03 Ecosystemic Approaches to Composition and Sound Design 

For many years biological ecosystems at a variety of metaphorical levels have been used as a 

means of creative discovery (McCormack, 2012). In such systems, rather than creating complex 

top-down systems for control or creation, individual entities within an ecosystem have the capacity 

to make decisions and interact with others to create what Eigenfeldt (2010) states as successful 

complex, dynamic and emergent systems.  These systems model a form of a-life to create new 

methods and paradigms for studying, producing, managing and creating music (Bilotta et al., 2002).  

The potential for these systems as creative tools has been suggested by numerous authors 

(Burtner, 2006, Dahlstedt and Mcburney, 2006, Eigenfeldt, 2010, Eigenfeldt and Pasquier, 2011, 

Murray-Rust, 2008, Murray-Rust et al., 2006, Spicer, 2004, Wooldridge and Jennings, 1995, 

Wulfhorst et al., 2003, Whalley, 2009).  Importantly, as Martins and Miranda (2008) state, a-life 

systems have the potential to avoid some of the pitfalls of EA as they are not designed to generate 

efficient solutions to problems automatically.  A-Life systems are underpinned by combinations of 

entities known as agents.   
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Woolridge (2002, p.15) states broadly that “an agent is a computer system, situated in some 

environment, that is capable of autonomous action in this environment in order to meet its design 

objectives”.  However, as Eigenfeldt (2008) noted, the definition and concept of agency has varied 

greatly across authors and researchers.  The original concept of agency within a creative context, as 

proposed by Minsky (1988) is based on very simple abstractions that subsequently require 

considerable user actions to yield complex results (Eigenfeldt, 2008).  The concept of agency in a-

life systems has been used in a variety of industrial and military applications in areas such as 

scheduling, simulation, architecture, engineering, construction and business (Whalley, 2009).  

Across all of these, an agent is an entity that acts on behalf of another within a process (Whalley, 

2009). 

The usage of agents can be split into three categories.  The most commonplace system is 

that of the Multi-Agent System (MAS) in which agents compete or work with one another to 

achieve an individual or collective task.  The second approach is that of Distributed Artificial 

Intelligence (DAI) in which agents are utilised to solve a problem or task.  The final category is that 

of a Multi-Agent Based Simulation (MABS) which model complex situations and systems.  DAI 

systems have been used extensively in the field of machine learning.  Projects such as OMax 

(Assayag, 2014), the work by Gimenes et al. (2006) along with Goto and Muraoka (1996), Dixon 

(2000) and Goto (2001) have successfully used agency as a means of identifying musical structures, 

stylistic traits of performers and perform low-level beat tracking.  The Ensemble framework by 

Bruel and Queiroz (2014) can somewhat be considered as a Multi-Agent Based Simulation as agents 

are designed to listen and respond to a collection of internal and external audio sources to form 

part of a simulated space. 

Of the three categories, it is the Multi-Agent System which is most appealing to the creative 

practitioner.  As Eigenfeldt (2008), Burtner (2006), Dahlstedt and Mcburney (2006) have all stated, 
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multi-agent interactive systems offer the possibility for new complex behaviours in systems that 

can yield organic structures most similar to ecological systems.  Whilst many MAS based 

approaches have been used to perform machine learning algorithms (Goto and Muraoka, 1996, 

Dixon, 2000) they have also been used as sources of interactive music composition in a variety of 

different forms. (Miranda, 2000, Miranda, 2001b, Miranda, 2003, Murray-Rust et al., 2006, Murray-

Rust and Smaill, 2005, Murray-Rust, 2008, Wulfhorst et al., 2003, Wulfhorst et al., 2001, Spicer, 

2004, Dahlstedt and Mcburney, 2006, Eigenfeldt, 2010, Eigenfeldt, 2007, Eigenfeldt and Pasquier, 

2011).  Agency has been used to generate music and control data from the microscopic level 

(Miranda, 2000) to higher level meso/macro musical phrases and structures (Eldridge, 2005).  One 

criticism of broader agent-based systems put forward by Paine (2002, p.297) is that “human 

agent(s) interact, but the machine largely reacts”.  While this is the case with the aforementioned 

DAIs and MABs, it is not entirely valid when aimed at MAS systems.  These systems are primarily 

proactive in creating new means of exploration.  As Eigenfeldt (2008) highlighted, the system 

proposed by Burtner (2006) is reactionary, and an anomaly when compared to other MAS systems.  

Many practitioners have used cellular automata as a MAS system across varying timescales.  

The Chemical Oscillator (ChaOS) and CAMUS by Miranda utilise the Game of Life with cells/agents 

within the systems creating grains of microsound or musical notes respectively (Miranda, 2001a, 

Miranda, 1995, Miranda, 2000, Miranda, 2001b, Miranda, 2003).  The LiveCell framework by Ash 

and Stavropoulos (2011) utilises the latter approach but is designed for live performance and 

generates materials in real-time for a string quartet.  The Eden project by McCormack populates an 

artificial world with agents which can move around, monitor and generate new musical materials 

(McCormack, 2012, McCormack, 2001, McCormack, 2003).  This framework actively utilises 

stigmergy whereby agents can influence the actions of others through mediating constructs (such 

as virtual food sources) which agents are attracted to.  Furthermore, agents within Eden evolve 

over time to create what Husbands et al. (2007, p.9) deem to be a “highly engaging interactive 
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artwork”.  Genealogy and EA have similarly been applied by Malt (2004) in the Khorwa framework. 

Here, each interaction results in an agent redefining its genetic structure before generating 

offspring that exhibit such traits (Whalley, 2009). 

A-life systems are inherently appealing as a means of generating micro and mesoscopic 

materials and it is fairly common to see agents mapped to individual sound objects.  Several 

important systems have used agency and ecosystems as a means of generating higher level 

structural materials.  Coming Together by Eigenfeldt (2010) utilises agency as a means of 

generating musical phrases that are musically meaningful to one another using appropriate 

harmonic, melodic and rhythmic associations.  Agents within the system subsequently monitor the 

output of one another and react as a means of moving towards a collective goal.  AALIVE and 

AALIVENET by Spicer uses agency in a similar fashion but instead generates relevant phrases and 

structures based upon live musical input and stimuli (Spicer, 2004, Spicer et al., 2003).  This 

approach to using agency has parallels with the VirtuaLatin system by Murray-Rust et al. (2005) 

which utilises agency as a methodology for generating Latin-based rhythmical patterns and 

structures with variations and fills.   

As both Dartnall (2002) and McCormack (2012) identify, the concept of ‘combinationalism’ 

is somewhat problematic in the field of computational creativity.  Combinationalism is the theory 

that “creativity is the creative combination or re-combination of previously existing elements” 

(Dartnall, 2002, p.14).  Combinatoric emergence is the practice of combining existing primitives to 

generate new outputs.  As McCormack (2012) notes, the output of the system is consequently 

dependent on the knowledge embedded in the base primitives that are subsequently combined.  

Creative emergence as first put forward by Cariani (1991), is proposed as a means in which the 

process actively alters and iteratively refines the base primitives that are being used to generate 

the creative output (Cariani, 1991, Cariani, 1997, McCormack, 2012, Eldridge, 2005).  This ability to 
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refine or re-implement the primitives within an a-life system, either through human interference or 

an automated process is highly significant.  Agents and their internal logic can subsequently be 

viewed as these base primitives.  If agents can be altered, they will exhibit one of Eldridges’ three 

desirable characteristics within an a-life system in providing a user “inexhaustible and extremely 

variable outcomes” (Eldridge, 2005, p.3).  The importance of flexibility in design is echoed by 

Murray-Rust et al. (2005) who draw direct parallels between a system of agents and a collection of 

improvising musicians.  Firstly they must exhibit situatedness, an awareness of their environment 

and surroundings.  They must act with autonomy and not simply wait for stimulus.  Finally they 

must offer flexibility if they are to be used successfully, currently and in the future.   

Many implementations mentioned thus far exhibit situatedness and autonomy; a few are 

also flexible in that they can be repurposed for other musical works and roles.  Systems such as 

Andante (Ueda and Kon, 2004), AALIVENET (Spicer, 2004), Ensemble (Bruel and Queiroz, 2014), 

Musings (Spicer, 2014) are designed to allow re-programmability in either Java, Pure Data and 

Max/MSP respectively but users require extensive knowledge of both the language and the custom 

libraries that have been crafted.  For maximum creative emergence from an agent based system, 

this overhead should be reduced to enable more efficient explorations.  If an abstract approach 

(after Minsky (1988)) is adopted, there is the potential for systems to use a multitude of 

approaches across varying timescales using a variety of modalities, such as imagery. 

Section 3.04 Summary of Methodology 

For an a-life framework to be successful in promoting new explorations of graphic sound synthesis, 

it should adhere to Murray-Rust et al. (2005) and promote situatedness, integrability and most 

importantly flexibility.  Evolutionary Algorithms maximise the potential for creative exploration and 

emergence and enable the usage of agents and their ecosystems.  The Agent Tool uses strings of 

text containing code as genetic representation.  Within this form, an open Application 
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Programming Interface (API) can result in the code taking the form of an object or generative 

representation.  The development of the agents and ecosystems presented here utilise an adapted 

form of the EA development cycle.  In this process, agents inherit a set of open and flexible 

mechanisms for future use.  These agents are subsequently explored through real-time invocation 

and control.  As these agents are designed for creative exploration, a human fitness bottleneck is 

used to evaluate the control, performance and sonic output both as an individual and within an 

ecosystem.  The logic and controls that influence the agent’s traversal through the parametric 

space has then been altered before being tested again.   
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Chapter 4. Voice Based Graphic Sound Synthesis: Overture (2012) – 

5:38 

Overture is a stereo composition that was completed at the University of Sheffield Sound Studios in 

2012.  It received its premiere at the International Festival for Innovations in Music Production and 

Composition in 2013.  It was subsequently performed at the New York City Electroacoustic Music 

Festival.  At the time of the work’s conception, Overture was designed to be the opening 

movement of a large-scale acousmatic work dedicated to exploring the spectral purity of the 

female voice.  As such the work is experimental and introductory.  While the parent work was 

never completed, the compositional ideas and materials generated throughout this period made 

their way into the composition Liten Röst (see Chapter 7).  This work is a spiritual precursor to all of 

the compositional research that follows.  Compositions completed before Overture (see the 

accompanying DVD) were mainly through-composed with the structure of the work emerging 

through spectral similarity and contrast in a form of abstracted syntax (Emmerson, 1986b).  Spaces 

and materials in these previous works would often emerge in very quick succession with a great 

deal of aggression and variety.  The first Agent Tool prototype was completed as part of a 

composition process facilitating a more thematic and texture-carried approach to composition.  

The system allowed for the real-time exploration of parameter spaces controlling granular 

synthesis algorithms.  The majority of the materials that form the basis of Overture were generated 

through real-time performance with the prototype system.   

The musical materials and the structure of the work were derived from real-time 

exploration of tonal musical material by three distinct voices within a parameter space.  The first 

prototype of the Agent Tool at this time was known as the Draw Tool, and it allowed a user to make 

use of images as a means of adding extra dimensions to this parameter space.  Throughout the 

development of the composition and software, a collection of images comprising subtle colour 
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gradients were created as a means of generating continuously evolving parameters (see Section 

4.01).  In the context of Overture, three voices with identical mappings were used.  The parametric 

automation dictated by the colour attributes for each voice consequently became far more 

noticeable when working with the system and assisted the design of harmonies throughout the 

piece.  The work is inspired in part by the harmonic tendencies found in the dronescapes of the 

works of Five Panels by Matthew Adkins (2009) and the usage of underlying harmonic content in 

Forêt Profonde by Francis Dhomont (1996).  Where the harmonic content of Five Panels is primarily 

static over the course of each movement, the underlying harmonic content in Overture deliberately 

changes throughout creating continuous tension and release. 

The prototype Agent Tool assisted the creation of harmonic relationships deliberately 

imposed upon the sonic materials in question.  The opening drone presented clear harmonic 

partials which act as a tonal centre.  Contrasting materials evolve and supplant this drone 

throughout the piece.  Once materials had been generated, contrasting harmonic intervals were 

imposed or implied through careful filtering and convolution, while attempting to preserve internal 

energy and motion.  This can be heard most prominently in the descending textures between 

03:17-03:34.  The emergence of these textural materials at 02:30 marks the end of section A before 

moving to more agitated textural materials in B.  Further examples of this are as follows. 

Table 4.1 Example harmonic transformations in Overture 

Time of introduction Description  

1:35 Introduction of a clear harmonic drone 

1:50 Gestural elements – harmonic drone now acts as a pedal in contrast to 

grain-based materials 

2:06 Climactic gesture with continued harmonic underpinning before the 

drone again becomes dominant 

2:30 Emergence of textural materials ending the first section 

03:17-3:34 Descending harmonic textures presented in the foreground 
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Section 4.01 The Draw Tool/The Agent Tool V0.01 

 

Figure 4.1 The Draw Tool/Agent Tool V0.01 Prototype 

 

The creation of distinct sonic textures that develop with their own unique sense of internal motion 

was a key focal point in the composition of Overture.  A minimum of three discrete drones would be 

performed live with each of these drones having independent speed and phrase lengths.  While the 

level of activity and engagement with each of the textural drones varied, it was hoped that the cross 

rhythms and phase shifting of these materials would drive the piece forward.  The software was 

designed with a voice-based architecture in which each constituent voice had its own sense of time 

to allow these compositional explorations to take place.  This approach to composition and software 

design is mentioned by Vaggione (2001) and  Dahan (2005) who both argued that time should not 

act as a shared constant but that tools should allow the traversal of various time scales, reflecting 
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the working methods of composers (Thiebaut et al., 2008).  Unlike other graphic sound synthesis 

systems (see Section 3.01), image data was designed to be a source of stimulation and complement 

compositional materials, enabling users to draw paths imposed upon the image within the 

framework to create change.  Image data is therefore used as a control stream within a parametric 

space rather than dictating the sonic output or being the sonic output.  In a fashion similar to other 

voice-oriented graphical sound synthesis systems (notably UPIC and IanniX) the initial version of the 

Agent Tool made it possible for users to draw path-based image data that altered compositional 

parameters, the result not necessarily being perceived as a direct mapping.  While it may be possible 

for these parameters to control global features of the work, or elements within (such as playback 

speed), they are conceptually designed to work within a user-defined structure, i.e. a score which 

the user has dictated.  The system consequently performs a form of abstracted image sonification.   

The Draw Tool was designed to be a small prototype that allowed the realisation of 

Overture and as such, the system was purposefully limited in scope.  The prototype contained no 

internal synthesis engine with each voice emitting its control data via Open Sound Control (OSC) to 

a custom-built Pure Data patch which mapped the continuous data to appropriate synthesis 

parameters.  The Pure Data (see Figure 4.2) synthesis framework made use of the University of 

Sheffield Sound Studio Tools (USSS Tools)4 for rapid prototyping and exploration.  Each voice in the 

Draw Tool was consequently designed to automate parameters of the granular synthesiser 

abstraction found within the tool kit.  A voice within the system comprised this two-dimensional 

path across an image.  When told to play, each voice emitted its position along with the Red, Green 

and Blue (RGB) colour components over OSC to the Pure Data synthesiser algorithm.  As this data 

was emitted for external realisation, it was possible to explore a variety of different mapping 

                                                            
4 The USSS Tools are a collection of Open Source compositional tools for a number of audio 

programming environments (Moore, A & Moore, D. 2010).   
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strategies.  Aside from forcing the user to work with a two-dimensional voice based architecture, 

the prototype imposed no constraints as to how the data could be realised.  Despite exploring a 

variety of different synthesis algorithms and mapping strategies as part of the compositional 

process of Overture, macroscopic control of a number of granular synthesisers proved most fruitful.  

This was in part because different loaded samples or live audio input could be used to create a 

huge variety of sonic materials without needing to alter the data mapping in any way.   

 

Figure 4.2 Pure Data granular synthesis framework designed for Overture using based around the USSS Toolkit 

Throughout the composition of Overture, a number of favourable mapping strategies 

emerged through on-going exploration.  These can be seen in Table 4.2. 
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Table 4.2 Colour mapping strategies explored in Overture 

Data 
Source/Ma
-pping ID 

X Y Red Green Blue Brightness 

(a) Position in 
sound file  

Grain 
Pitch 

N/A N/A N/A Grain Stereo 
Spread 

(b) Position in 
sound file  

Grain 
Pitch 

Grain Size N/A N/A Grain 
Amplitude 

(c) 
Position in 
sound file  

Grain 
Pitch 

Grain Size Random 
Pitch 
Fluctuation 

N/A Grain 
Amplitude 

(d) Reverb 
Amount 

Grain 
Pitch 

Reverb Size Reverb 
Damping 

Reverb 
Width 

Grain 
Amplitude 

 

Across these explorations, grain pitch was consistently mapped to the vertical axis.  This 

ensured predictable harmonic relationships.  Strategy (c) allowed the green channel to influence 

random pitch fluctuations for variations.  This strategy was only used briefly in the work to 

generate the contrasting agitated texture (03:41-04:02) building up to the gesture and change in 

space at 04:02.  Strategies (a) and (b) were utilised prominently throughout the work.  Approach (b) 

was used to generate the materials in the opening of the work (00:00-01:26) in conjunction with 

simple images that were created to vary the size of the grains being produced (see Figure 4.3).   
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Figure 4.3 Images used to create variations in grain durations in Overture 

While (b) was used to generate the dominant static drones in the work, (a) was utilised to 

generate contrasting materials that quickly move across the stereo field.  This technique can be 

heard prominently in the in short noisy bursts of grains presented between 01:47-02:07 and 02:55-

03:06.  Using only pixel brightness and the red component enabled the impact of image data to be 

largely predicable.  This approach behaved as a user bottleneck that subsequently resulted in more 

abstract sonifications.  When more colour channels were used, the impact of the imagery on the 

synthesis algorithm made it harder to hypothesise the sonic output.  The process of using all of the 

channels produced a highly diverse output of sonic materials that could have been used to 

generate complex musical gestures.  As the work is primarily texture-carried, it was felt that the 

stochastic gestures that were generated using this technique should not be included in the work as 
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they may break the illusion of the work existing within a holistic and organic space.  Strategy (d) 

was utilised to generate the short, heavily reverberated passage between 04:02-04:33.  

Section 4.02 Evaluating the Draw Tool/Agent Tool V0.01 

As a prototype system for traversing a parametric space in real-time, the Draw Tool was an 

effective system for the realisation of Overture.  The macro level control over granular synthesis 

algorithms that utilised image data was effective as a tool for sonic exploration but was limited in 

scope.  As the prototype was based entirely around controlling entire voices in Pure Data, a large 

computational overhead is placed on the system.  The result of this overhead is that a limited 

number of voices can be performed in real-time which is evidenced by the usage of only three 

voices in Overture.  At this point, the prototype relied too heavily upon a secondary sound 

synthesis system.  It became important to consider controlling individual grains whilst not imposing 

specific mapping strategies. It was also important to retain an intuitive approach whilst offering 

greater complexity. Systems such as UPIC and IanniX have been used to explore Roads’ concept of 

multi-scale composition (Roads, 2001) in which materials across a variety of timescales are 

explored within the same interface.  Roads mentions that whilst holistic and multi-scale approaches 

are conceptually appealing, they can give unsatisfactory results on at least one level or time-scale 

(Roads, 1996). For example, controls for generating and controlling microscopic grains of sound will 

not necessarily be ideal for controlling meso or macro-time events due to the sheer number of 

entities that need to be controlled.  If a system were designed to be open and ecosystemic in 

nature, could it be used to create an effective multiscale parameter space that feels intuitive 

whether working on microscopic or macroscopic timescales?  Can imagery in such a framework be 

used as a means of mediating forms of stigmergy wherein entities influence one another? If so, can 

stigmergetic interactions facilitate parametric/timbral evolution across differing timescales?  These 

questions arose from creative and computational research, drove future developments of the 

Agent Tool and produced numerous compositions, some working better than others.  
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(a) Timbre Space 

Using imagery as a means of generating granular materials across a variety of timescales adheres 

closely to Xenakis’ concept of a ‘Timbre Space’.  Timbre Space takes the form of a ‘Vector Space' 

where, at any cross section of time within a work, all sonic entities can be represented as grains or 

‘cells’.  Primarily this ‘Vector Space' has three planes: frequency, amplitude5 and time. 

 

Figure 4.4 Xenakis' Vector Space Design (Xenakis, 1992) 

This approach can be effectively achieved in a voice-orientated system with each discrete 

entity within the space corresponding to a given voice. Whilst materials can exist as separate 

entities within this space, their concepts of time are shared. This is to say that whilst each voice can 

alter its pitch and amplitude over time, voices traverse their paths through a shared concept of 

time. Attempts to overcome this issue were explored in the real-time version of the UPIC system 

(Marino et al., 1993).  This has direct parallels with Roads’ definition of multiscale composition in 

that it affords the ability to work across multiple time-scales, primarily the micro and macro (Roads, 

2001). In this instance, it is possible for each part to have its own concept of time and for it to 

                                                            
5 In Xenakis’ case, amplitude is represented by performer intensity. 
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traverse it in a time-varying fashion6.  This mapping of dimensions falls in line with Wessel’s 

description of Timbre Space (Wessel, 1979), however, there is a clear difference in approach to the 

realisation of this sound. Whilst Xenakis’ approach is firmly rooted in the exploration of 

microsound, Wessel’s approach is deeply rooted within the usage of additive synthesis in 

collaboration with spectral analysis of existing instruments (Wessel, 1979).  

Systems such as MetaSynth afford complex additive synthesis using image data to store the 

current Timbre Space. This approach allows quick access to and manipulation of vast quantities of 

spectral audio data which can be sculpted using simple image manipulation tools. Numerous sound 

manipulation techniques can be effectively explored through intuitive image manipulation.  

The approach of Xenakis and Wessel can be summarized thus.  

• Xenakis: Realizing objects and the relationships of objects within a ‘conceptual’ space. Using 

data in an abstract form (sonification) 

• Wessel: Realizing the entire space. Using data in a concrete form (audification). 

 

Furthermore, image data in was not fully explored in these systems7. Red Green, Blue and 

Alpha channels were often neglected or averaged, turning the image into a grey-scale 

representation with the amplitude of a given frequency proportional to pixel brightness.  The Agent 

Tool as used in Overture was designed to allow grain-based realisations of this Timbre Space akin to 

                                                            
6 A direct consequence of this is that it allowed independent parts to speed up and slow 

down independently as one would expect in an instrumental setting. 

7 MetaSynth allows the exploration of Red and Green colour components in mapping these 

colours to the spatial positioning of a given frequency. 
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Xenakis’ definition. It also highlighted the compositional appeal of grain-based exploration of image 

data.  

In relation to the concept of a Vector Space, Xenakis proposed that at any given time 

interval ∆T, grains can be represented on a two-dimensional screen with the axis ∆F and ∆G 

(representing frequency and density respectively).  Consequently one can traverse through these 

screens either to generate a sonic output or to analyse a sonic input. These screens can 

subsequently have a form of elementary operations performed on them. The intersection of two 

screens can produce a shared cloud of grains. The union of screens can produce a cloud based on 

materials in all child screens. A complement screen produces a screen made of all grains that are 

not shared across child screens. Finally, the difference can be represented by subtracting grains 

from another screen.   

 

Figure 4.5 Xenakis' screen manipulations (Xenakis, 1992) 

With this approach to screens in mind, agents exist as entities within a construct whereby 

each frame of animation represents a new screen and a screen represents a snapshot of a timbre 
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space.  Static imagery can be viewed as a screen representing a static view port into a virtual image 

or space. Video represents a collection of sequential screens or timbre spaces.  In the Agent Tool 

there is a clear separation between imagery and agent data. Agents, exist in an entirely separate 

space from the subsequent image stimuli and can even read data from imagery that may not be on 

screen.  Ecosystemic grain exploration of these screens subsequently became the focus of the work 

Modular Void and led to the development of the first significant iteration of The Agent Tool. 
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Chapter 5. The Agent Tool V0.02 and Modular Void (2013) – 32:00  

The first significant version of the Agent Tool was completed during the early stages of composing 

the work Modular Void.  The Agent Tool from this version onward was designed to be a complex and 

reusable composition environment that afforded the scripting of abstract agents of varying 

complexity to control elements of synthesis and sound manipulation. The system is underpinned by 

a micro-threaded architecture which allows a user to define, spawn, manipulate and terminate 

agents from small scripts which can be invoked in real-time.  The micro-threaded architecture is 

designed to allow the creation of complex synthesis and control mechanisms from simple scripts 

that are written from the perspective of a performer/agent within the system.  Consequently, 

complex control mechanisms and ecosystems can be crafted in an efficient manner without 

requiring a significant amount of programming knowledge.  The Agent Tool’s AI system utilises a 

form of co-operative multitasking rather than the commonly used Finite-State Machine (FSM).  Co-

routines are used to allow each AI to operate in its own pseudo-thread without the resource cost of 

system threads (Dawson and Entertainment, 2001).   

The system was designed to be an open-ended framework whereby all agent data could be 

emitted via Open Sound Control (OSC) for realisation externally thus imposing as few constraints on 

the user as possible.  Whilst the system can be used to control any audio software that accepts OSC, 

the micro-threaded design of the system works in a fashion similar to the Node-based architecture 

of SuperCollider.  The system is optimised for this package and features a collection of tools which 

can dynamically spawn and manipulate nodes on a remote SuperCollider server.  It also contains an 

OSC server which allows external software packages and controllers to manipulate the properties of 

any instantiated agent.  This facilitates a unique form of object-oriented composition and interaction 

(see Section 5.01(b)).  The framework allows the usage of static imagery, recorded video and real-

time camera input as a means of stimulating agents within the system.  Usage of imagery is not 
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imposed upon the user, but can be used as a means of controlling and invoking agents (see Section 

7.01(a) and Section 8.01).  Imagery is also designed as a means or invoking stigmergy whereby 

agents can influence the performance of others via altering or drawing on the underlying image 

canvas (see Section 6.02).  

 

Figure 5.1 The Agent Tool Graphical User Interface 

Section 5.01 Implementation and Technical Notes 

The Agent Tool was developed using C++ with the Qt Windowing System.  All agents within the 

system can have their behaviour scripted by a user using an embedded form of the scripting 

language Lua (Ierusalimschy et al., 1996). A comprehensive collection of Lua functions and data 

types are provided alongside appropriate documentation with the software installer. The 

accompanying data DVD contains installers for both Mac OS X (10.7+) and Ubuntu (12.04+). The 

package contains a suite of agent scripts that the user can begin using upon booting the system. In 

this instance, a suite of specific examples is provided.  Both Agent scripts and subsequent 

SuperCollider synthesiser definitions can be found in a folder called TheAgentTool which should be 

placed in the user's home directory upon running the package for the first time. 
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(a) Lua Integration 

The Agent Tool’s AI system utilises a form of co-operative multitasking rather than the commonly 

used Finite-State Machine (FSM).  Each agent within the system runs in its own co-routine/pseudo-

thread.  Within the system, a single Lua state exists. When an agent is created, it is spawned within 

its own thread that belongs to the parent Lua state. Upon commencing playback, the Lua state goes 

through each agent ‘brain’ that is active and executes its code accordingly (see Figure 5.3). However, 

as Lua state itself is not multi-threaded, it executes each sub-thread sequentially. This means that 

unless a brain-script indicates that it is finished, for the time being, the system will become caught 

within that thread. To overcome this, the user must allow other co-routines a chance to process, 

either by calling a Lua function ‘coroutine.yield()’ or an Agent Tool function ‘pause( )’ (Figure 5.3).  A 

collection of core functions within the system (such as spawning a SuperCollider node) will 

automatically yield.  To create a brain-script, the user simply needs to create a Lua text file and 

create a function that represents what the agent should do when asked to run. This function should 

be prefixed with ‘ai_’ and call a function ‘\initai()’8 from within it (see Figure 5.2 for the equivalent of 

‘hello world’).   Upon loading a Lua script, the system parses all of the text within it and identifies all 

functions with the prefixes ‘ai_’. The interface is then updated to reflect this, showing the names of 

all available functions and consequently allows the user to select which agents it wishes to spawn. 

                                                            
8 ‘initai()’ acts as means of ensuring that the thread does not immediately start running 

upon its spawning 
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Figure 5.2 A basic agent who plays a single note upon spawning 

 

Figure 5.3 Example blocking and non-blocking agent script 

 

The Agent Tool provides a rich set of features on top of the Lua Application Programming 

Interface (API).  In addition to functions controlling and manipulating agents and imagery, it also 
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contains a fully featured two-dimensional vector class and RGBA colour class that can be utilised for 

the creation of streamlined two-dimensional maths and colour manipulation. 

An agent can also request image data from within its component script. All forms of imagery 

are stored within a ‘screen database’ which the user can traverse. Within this context, each ‘world’ 

can have a complete database of useable imagery. The system is designed to allow multiple ‘worlds’ 

to exist at any given time. Currently, only one instance is permissible. ‘Worlds’, similar to agents, can 

be spawned, controlled, manipulated and destroyed from within the scripting engine. Consequently 

‘worlds’ can be viewed as an auxiliary means of grouping agents together within the system. Within 

these constructs, Agents are constrained to the bounds of its parent ‘world’. Upon activating the 

‘physics’ motion model (see Section 5.01(f)), agents will react to the gravity and bounds of its parent 

world. Furthermore, in this context, agents will utilise thrust, mass, damping and energy loss 

components so that they can subsequently ‘rebound’. 

Image data may be obtained in three distinct forms from within the system: 

1. From the pixel at an agent's current position.  

2. Via an intermediate agent.  If the identifier (id) of an agent is known, it is possible to 

obtain associated colour data at its location.  

3. Via direct access to pixel data at specified co-ordinates. 

 

Across all three instances, it is possible to obtain red, green and blue components along with 

the total and the average colour weighting.  Given these three interfaces and the relationship 

model within the system, highly complex abstract realisations of graphic sound synthesis can occur.   

(b) TreeNodes, WorldAgents and Agents 

Within the system three core object types exist: TreeNode, WorldAgent and Agent. The TreeNode 

acts as the base class for the system for both WorldAgents and Agents alike.  These subclasses can, 

therefore, be viewed ‘as’ TreeNodes with specialised feature sets (Meyers, 2005).  The GUI for the 
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system in turn, allows a user to show and interact with the features of any TreeNode within the 

system.  Consequently, both Agent and Worlds can be viewed within the same interface.  Their 

parent-child relationships are visualised within the framework.   

  

The purpose of the TreeNode class is six-fold: 

1. Provide a standardised interface for graphical user interaction 

2. Manage object life-cycles 

3. Store and manage properties 

4. Manage SuperCollider connections 

5. Manage the life-cycles of child nodes 

6. Manage an object’s motion model 

 
It is possible for any TreeNode within the system to have an active lifecycle or duration.  The 

TreeNode base class is responsible for managing the life and death of a node/agent.  The 

duration/lifetime of a TreeNode can be set by itself, by another TreeNode or by graphical user 

interaction.  At any given time a TreeNode can obtain the time it has been alive and how long until it 

is scheduled to be terminated. 

(c) Properties 

A property within the system represents a unified form of storage for data of different types. 

Properties can be used to represent booleans (true or false states), integers, floating point numbers, 

text or two-dimensional vectors. A TreeNode (including WorldNode and Agent) features a container 

of properties which can be accessed both within the GUI and the scripting engine alike. Within both 

contexts, the user has the ability to get and set the property in question. Properties do not just 

represent an element of data however. Every instance of a property contains a set of internal flags 

that indicate whether the user can read, write and/or send this data directly to SuperCollider. By 
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default, every node within the system is constructed with a suite of properties (and controls) of 

differing types. These include controls for motion simulations and lifetime management. The 

scripting API allows an Agent to add, get, and set its own properties (addP, getP and setP). In the 

case of adding and setting, entire Lua tables can be provided which contain key-value pairs of data 

(i.e. freq=440). Across all instances, alternative forms exist in which the function can be performed 

on any Agent if its ID is known (addPID, getPID and setPID).  Example usage of the property system 

from the scripting environment can be seen below in Figure 5.4. 

 

Figure 5.4 A basic agent script illustrating a variety property interactions 

(d) SuperCollider Integration 

Each instantiated node within the system stores an accessible unique identifier.  This ID is used to 

control a node running on a SuperCollider server if requested.  In this case, the life and death of a 

node on a SuperCollider server is dictated by the system.  Furthermore, if a property's flag is set to 

‘send’ when its value is changed, the subsequent SuperCollider node is sent the new value.  Each 

TreeNode in the system monitors when a user ‘sets’ a property. To initialize this connection to 
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SuperCollider, a property entitled ‘SynthDef’ is monitored9. When the ‘SynthDef’ is either set or 

added, a SuperCollider node will be spawned with the TreeNode’s ID.  All properties that exist within 

that TreeNode that can be sent, are then bundled into the construction arguments for a 

SuperCollider Node. By default, when one creates a property, data is sent to the appropriate address 

with the same name. For example, if a property called ‘BandWidth’ is created, whenever it is 

updated, the data that this property is storing will be bundled into an appropriate OSC message with 

the name ‘BandWidth’.  The working sequence of events can be seen in Figure 5.5. 

 

Figure 5.5 A typical agent life cycle illustrating general SuperCollider usage in pseudo code 

                                                            
9 For convenience the property is named ‘SynthDef’ to mirror its name within the 

SuperCollider environment 



Agent-Based Graphic Sound Synthesis and Acousmatic Composition 
   

55 
 
 

Each property has an optional storage for a personalised OSC path. If this is set, when the 

value is updated, the data will be sent via that path instead. The user can specify the IP Address and 

port number for this connection so that it can connect to remote instances of SuperCollider or 

alternative audio packages. From within the scripting engine, there are commands that are provided 

specifically for usage with SuperCollider, ‘scNew’,’scSet’ and ‘scFree’ (see Figure 5.7). These allow 

the manual spawning of SuperCollider nodes, setting an argument/control within a node and the 

‘free-ing’ (deletion) of a Node. Similarly, a set of basic functions to send raw OSC data exist. These 

functions allow the sending of integers, floats and strings of text. The ‘send' function can be used to 

send any data to a specified IP address, port and path. 

 

Figure 5.6 An agent script illustrating how OSC data can be sent to external packages 

The Agent Tool allows a user to store a path to a folder containing a collection of compiled 

Supercollider synthesisers.  If the user indicates to the framework where this folder is, the system 

will connect to SuperCollider and invoke it to load these instruments automatically.  A set of basic 

pre-built synthesisers that come with the system can be used, resulting in the user not needing to 

program in SuperCollider if they so wish. Alongside a collection of example scripts, the framework 
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similarly provides a small collection of pre-compiled SuperCollider instruments which can be found 

in the TheAgentTool folder in the user's home directory. The system also contains GUI functions to 

boot, clear and shutdown a remote SuperCollider server.  It also allows users to graphically load 

sound files into SuperCollider buffers at indexes that they can specify.  Consequently, it is possible 

for a user to utilise SuperCollider without necessarily needing to program or invoke code within it. 

(e) Relationships 

Active agents are afforded the ability to spawn and manipulate child agents that they may or may 

not assume responsibility for. The framework imposes no direct limit on the number of potential 

children that can be spawned. However, spawning thousands of agents that each invoke sound from 

SuperCollider will potentially lead to system slowdown.  It is up to the user and system's discretion 

to impose a limit on the number of agents to spawn.  At any time, an Agent has the ability to spawn 

other agents of any given type.  To add a child, either the functions ‘spawn’, ‘spawnRelative', 

‘spawnP' or ‘spawnRelativeP’ can be called from within the scripting engine (see Figure 5.7).  In the 

case of the latter two functions, a table of properties needs to be provided to establish or set 

properties of a child agent from within the parent. All of these functions return the Id of the child 

that has been spawned for usage within the scripting engine at a later time. These spawned agents 

can exist as children of the parent agent, children of an alternative agent or they can be assigned to 

exist simply within the current ‘world’.  All agents consequently have the ability to manipulate the 

properties of their children.  Parent agents may wish to monitor the properties of child agents 

accordingly.  This approach enables musical features such as amplitude, spatial positioning and 

harmonic content of child agents to be studied by a parent. Upon monitoring such features or 

properties, related agents can influence those whom they have access to.  For example, a parent 

agent could be utilised to ensure that child agents are adhering to a set of pitch strata. 
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Figure 5.7 An agent script illustrating how to spawn relative Agents 

As agents do not implicitly create audio, it is possible to utilise hierarchical relationships 

within the framework to create ‘control’ agents who create, manipulate and destroy scores of 

agents through a variety of means.  These control agents can therefore be used as a means of 

creating effective instruments and interactions.  This approach is highly effective for creating 

granular synthesis frameworks. In this context, a single control agent can act as the primary interface 

spawning hundreds of child agents at discrete time intervals which represent individual grains. It is 

entirely up to the user to decide what these child agents should be, whether they should generate 

sonic material, or whether they themselves merely control other agents or systems. This affords the 

realisation of complex, yet efficient granular synthesis systems (see Figure 5.8 and Figure 5.9 ) and 

recursive compositional ideas (see Figure 5.10 and Figure 5.11). 
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Figure 5.8 An agent script representing a grain and a control Agent who continuously spawns these grains 
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Figure 5.9 The resultant realisation of ai_BasicGranular 

 

Figure 5.10 A resultant realisation of ai_LSystem. 
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Figure 5.11 An example recursive L-System using a pair of agent scripts  
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This approach to relationships and the unified parametric control of properties enables an 

agent to represent an entire generative musical structure.  Controls can be efficiently created and 

manipulated through the property interface. Alternatively, these properties can control elements of 

musical form.  As entire structures of sonic agents can be invoked from single instances, these 

instances themselves can be utilised within a sequence of scripted events.  As such, the composition 

process moves away from sound design to more formal score creation. 

Agents within this context can become components of a generative musical system and form 

finite sonic objects.  This difference between the generative and finite is reflected in different 

approaches to the ownership of an agent’s lifetime and existence. When any agent is spawned from 

within the scripting interface, the unique identifier of a parent agent must be provided. When an 

agent dies, it kills all of the children for which it is responsible. Consequently to efficiently terminate 

an entire generative system, the user only needs to destroy the controlling parent agent.  By default, 

this ensures that all sonic structures exist in a finite form.  Similar frameworks such as Khorwa (Malt, 

2004) adapt a more generative approach to an agent’s existence. In the context of Khorwa, a parent 

agent generates offspring which then exist detached from the parent. A result of this is that when 

the parent dies, the offspring remain and continue to perform tasks. Such an approach results in a 

complex generative system that is comprised of many discrete agents with hundreds of controls.  

Due to the polymorphic relationship between WorldNodes, Agents and their base class, TreeNode, it 

is entirely possible to create purely generative systems within The Agent Tool. When a parent ID is 

provided upon the spawning of an agent, this ID must belong to a TreeNode, i.e., it can belong to 

either an agent, or a world. Therefore, for Agents to exist as truly independent entities, the ID of a 

world can be provided (the default world has an ID of 0). 

The parent-child relationship in The Agent Tool enables a single agent to spawn a variety of 

sounds and control materials with timing and position data that is entirely relative to its existence. 
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This approach can be used to generate groupings of musical materials across different time scales 

and represent clouds of grains, sonic objects, musical phrases, passages or even an entire work. 

From the user's perspective, the underlying scripting approach remains the same: spawn a child 

agent, wait for a period of time, spawn another agent etc., before dying and killing off all child 

agents (if they themselves haven't already finished). 

(f) Motion Models 

To enable agents to traverse the parametric space with predictable and repeatable motions, every 

agent within the system contains a construct known as a ‘Motion Model’.  It is the purpose of these 

‘Motion Models’ to dictate the way an agent moves within its parent world.  The first iteration of the 

Motion Model system contained three core ‘models’: static, linear and physics.  After the completion 

of Modular Void and preliminary sketches for the composition Furcifer, the path model was added to 

explore convergence and divergence through a parametric space (see Section 6.02).  When using the 

static motion model, real-time control over the Agent's velocity and calls to ‘move()’ in the scripting 

engines will be ineffective.  The linear motion model gives access to the node’s velocity property and 

also scripted motion in the Lua engine.  The physics motion, on the other hand, combines a variety 

of world and agent properties to calculate movement.  World properties such as gravity, uniform 

energy loss and world size are combined with an agent’s thrust, mass, velocity and damping to 

calculate an artificial physics simulation in which agents can be effected by gravity and interact with 

the edges of the ‘world’.  Gravity within the framework is a two-dimensional construct which can 

influence agents in both axes. 

Section 5.02 Modular Void (2013) 

Modular Void is a suite of three works composed between May and November of 2013. The work is 

an exploration of ‘dronescapes’ generated from an assortment of granular synthesis systems 

created within the Agent Tool. The suite can be performed as a whole or as individual movements. 
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The first two movements contain materials that are all structurally linked, with content being 

introduced and developed before the movement concludes.  The third movement contains a 

number of references to previous movements in its final section.  Movement One and Movement 

Two received their premiere at the International Festival for Innovations in Music Production and 

Composition 2014 in Leeds. 

The work explores the usage of grain-based image sonification and audification using the 

Agent Tool.  Movements evolve from being texture-carried to gesture-carried, ultimately resulting 

in entropic gestures.  The work moves from tightly knit clouds of grains generated from explicit 

real-time user control to granular synthesis systems that relinquish user control in favour of forms 

of abstract image sonification.   

As a ‘dronescape’ piece, the work focuses upon the subtleties of spectral motion and 

internal dynamics of each component sound object.  The primary textures that make up the work 

function to “demonstrate internal behaviour without indicating direction” (Stavropolous, 2006, 

p.253), whilst streams of micro-sound serve to add contrast and suggest further development.  

Harsh and dissonant harmonic textures emerge out of key structural gestures. Similar to With What 

Remains and Malfunction 30931 by Gough (2008) and Thigpen (2011) respectively, the base source 

materials are drawn from computer errors and glitches that have been rendered to produce usable 

audio. Initially, these materials are heard indirectly with heavily processed forms serving as a pedal 

for the first two movements.  As the listener travels through the work, more and more of these 

original recordings are gradually exposed as the work's gestural intensity grows. 

Section 5.03 Relative Granular Synthesis and Meta-Controllers 

Across the entirety of Modular Void, a variety of original granular synthesis systems were created 

within the Agent Tool, based around relative object/agent-orientated scripting. The composition 

explores three key features of Agent Tool functionality.   
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1. Real-time control and performance of agent-based granular synthesis algorithms.  Simple 

control mechanisms based around an agent’s properties relative to the world around it and 

other agents. 

2. Image audification and sonification as a means of influencing and enhancing these 

algorithms.   

3. Tracking agents within the system.   

This final feature was explored late in the compositional process and became a key area of 

interest for future works (notably Liten Röst and Mikro Studie A).  Throughout the compositional 

process of this work a body of 50+ agents were created who were in turn invoked and controlled in 

real-time as a means of exploring sonic material. A large number of these agents had their scripts 

altered in real-time whilst sonic output was recorded10.  The examples that follow are a collection 

of agents that were all used and modified within Modular Void.   

(a) Granular Synthesis Meta Controllers 

As mentioned previously in the section Relationships, the parent/child hierarchy within the Agent 

Tool makes it highly efficient to programme controller agents that do not generate sound.  As 

evidenced in Figure 5.8 and Figure 5.9 this approach works well with granular synthesis algorithms as 

the user can create an agent who goes on to spawn other agents (with varying durations).  Timing 

and positioning within the parametric space are controlled through the creation of appropriate 

properties within the parent controller agent. In the case of both the parent agent and its child 

agents, any of their component properties can be controlled by the sonification or audification of 

image data.   

  Across the entirety of the compositional portfolio presented here a large suite of both 

audible and control agents were developed. All of the audible agents utilised their own independent 

mapping and playback mechanisms. A collection of agents that invoked the playback of a single 

sound file in SuperCollider were created. These agents would then map the amplitude, panning, 
                                                            
10 Live coding within the framework will in turn be discussed further in 0. 
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duration, the sound file to play, speed of sound file playback and start position of playback to 

different properties such as world coordinates, pixel brightness or the value of underlying colour 

components.   

The composition of Modular Void also saw the development of a number of different 

mapping strategies (of position and colour) for ‘audible’ grain agents as shown below.  

Table 5.1 Mapping strategies employed in Modular Void 

Data Source Parametric Mappings 
RGB colour at agent’s position Grain position in sound file, grain window 

shape, grain size, grain pitch 
Vertical / horizontal position Grain position in sound file, amplitude, grain 

pitch and panning 
 

Mapping the position in this instance felt somewhat familiar compositionally, but using 

colour data required extensive experimentation in order to generate subtle textural materials.  This 

was partly due to a necessity to become familiar with the relationship between the colour palette of 

an image and the spectromorphology of the sound file being granulated.  One favourable mapping 

strategy that emerged in the early experiments for Modular Void was to map the start position of 

sound file/grain playback to the horizontal position within the world.  

When controller agents spawned at very high rates moved across the horizontal axis at 

different speeds, differing time stretches of the source material would emerge. This led to the 

creation of a suite of grain agents that utilised this mapping in conjunction with strategies for the 

vertical position and colour components.   

Modular Void makes full use of harmonic transformations of drones.  The opening of the 

first movement is a key example of this. This movement is driven by a largely static drone on C# 

spread across several octaves. Variations of this drone, a tritone below and a perfect fourth above 

are utilised to contrast and drive the work forward (heard in the low bass at 01:30 and developed 
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again at 03:30).  To achieve materials that contained relative harmonic content, a second common 

mapping strategy for grains emerged, this time mapping pitch to vertical position.  A typical example 

of such a grain can be seen in Figure 5.12 with pitch being altered via changes in playback speed. 

 

Figure 5.12 ai_GrainA used as a blueprint for grain development 

‘ai_GrainA’ uses the greyscale average of the current pixel to control the amplitude of the 

current grain.  This rather simple approach to sonifying colour data allows the influence of an 

image’s content to be predictable.  This predictability allows imagery to be used as a performance 

space which can be easily traversed in real-time.  In composing Modular Void these agent grains 

were invoked and controlled manually on a number of occasions.  Timing information for these 

usages can be found below in Table 5.2.  In the opening movement, this agent type is used to 
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generate short (30ms in duration) grains over 10Khz which stand in contrast to a pre-existing long 

harmonic drone.  Swells in amplitude were generated through the creation of imagery comprising 

bands of white on a black background (see Figure 5.13).   

 

Figure 5.13 Black and White barcode used as part of the opening of Modular Void Movement Two (00:00-01:30) alongside 
the spectrogram of the passage 

In this instance the movement of the spawning agent was controlled manually.  The sonic 

output of these grains is designed to introduce the listener to the noisier and more gestural 

materials that follow in subsequent movements.  This approach to using bands of colour as a means 

of generating amplitude control data takes on more of a significant compositional role in the 

following movements.  In Movement Two this technique was used to generate a series of harmonic 

swells which are developed and reprised throughout.   
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Table 5.2 ai_GrainA usage in Modular Void 
Ai

_G
ra

in
A 

Movement Timing Description 
1 02:55 – 03:19 Short high frequency (10Khx+) 

bursts approx. 30ms in duration   
2 00:30 – 01:10 Harmonic swell phrase 
2 02:17 – 03:30 Harmonic phrase variation A 
2 04:00 – 04:55 Harmonic phrase variation B 
2 08:24 – 09:42 Harmonic swell phrase reprise 
2 11:30 – 12:04 Variation A reprise 

 

In Movement Three an alternative approach to amplitude control was taken as a means of 

generating more erratic and aggressive variations in amplitude.  In this instance, individual RGB 

components were used to control the respective volume of three contrasting sources of noise.  This 

gave rise to some highly dynamic sonic material that acted as a precursor to an aggressive final 

passage (10:30-11:20).  One of the agents used can be seen in Figure 5.21. Similar to the techniques 

used on Divide by Zero (Thigpen, 2007), raw binary files are used as sonic input, generating a harsh 

and abrasive sound world.  These sources of noise were then presented at 01:43-02:12, 02:20-03:02 

in Movement Three and 00:24-01:25 in Movement Two.  In the closing passage of the work, imagery 

constructed from strict bands of colour were used (see Figure 5.15) which generated rapid and 

repeatable mix automation. 

Throughout the composition of Modular Void two different approaches to grain based image 

sonification were explored.  In the first of these forms, the agent continuously updates the audio 

engine of choice throughout its life cycle as seen previously in ‘ai_GrainA’ and ‘ai_PlayerMorpher’.  

In these instances, agents act as augmented controllers for sound file playback no matter what their 

duration.  Within this context, grains perform continuous audification or sonification of the 

underlying data.  The alternative approach sees agents invoke an appropriate sound file when 

appropriate colour data is detected.  From this perspective agents can perform event-based image 

sonification.  A comprehensive RGBA interface, at this point not developed, began to be explored to 

aid the development of the composition Mikro Studie A (see Chapter 8). 



Agent-Based Graphic Sound Synthesis and Acousmatic Composition 
   

69 
 
 

 

Figure 5.14 ai_PlayerMorpher used in Modular Void and extensively in Furcifer in which RGB components control the mix of 
three sound files 
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Figure 5.15 Barcode image used to automate mixing of three audio streams in Modular Void Movement Three (10:22-
11:22) alongside the spectrogram of the passage 

(b) Relative controls and logic 

Alongside a suite of grain agents, a collection of spawning controller agents were created and, 

similar to Figure 5.8, agents were spawned at a given rate.  Grain position randomisation (as seen in 

Figure 5.16 in and Figure 5.17) was a key feature of such agents. The majority of child agents had 

their position in the sound file mapped to the horizontal axis and their pitch to the vertical axis. This 

allowed both subtle and extreme transformations of materials.  Large passages in Movement Two 

were created by applying minuscule pitch fluctuations to harmonically pure materials, resulting in 

amplitude modulation through beating.  Many of the drones presented in the opening of this 

movement (00:00-01:20) were derived using this technique.  Real-time control over ‘xRandom’ and 

‘yRandom’ properties of the basic ‘ai_Granulator’ (see Figure 5.16) generated high-frequency noise, 

the first occurrence of which is at 00:11.  It was then used extensively as a sound generation device.  
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This agent was also used to spawn instances of ‘ai_GrainA’ in Movement One as discussed previously 

in Granular Synthesis Meta Controllers. 

 

Figure 5.16 ai_Granulator agent that acted as a template for other granular synthesis systems 

In this instance, random pitch variations were altered through text input in the user 

interface.  (The speed of alteration was dictated by how fast a user can input variations in text!) As a 

result of this limitation a variation of this basic granulator was created (see Figure 5.17).  

‘ai_ColourGranulator’ utilises the red and green colour components of a pixel to alter the random 

variations of child positions in both dimensions. A series of images were consequently created to 

automate the random child positions.  This controller was subsequently used to generate the 
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harmonic swells throughout Movement Two (00:00-00:33) via the creation of images with thin 

vertical bands of green (see Figure 5.19) which ‘ai_ColourGranulator’ read from left to right. 

 

Figure 5.17 ai_ColourGranulator used to spawn and alter grain displacements in space based upon red and green colour 
components. 

 

Figure 5.18 Two instances of ai_ColourGranulator. Note the vertical and horizontal displacements of child agents. 
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Figure 5.19 Green band imagery used to generate the opening pulsing drone of Modular Void Movement Two  

Towards the end of the compositional process, focus shifted from using agency to create 

grains and controllers to the creation of meta-controllers.  These were used frequently to impose 

harmonic structures onto drones.  The opening drones of Movement One and Movement Three were 

constructed using ‘ai_QuadGranularController’ (see Figure 5.20 and Figure 5.21).  These drones are 

dominant in the opening of Movement One but are presented in distal space in the opening of 

Movement Three.  This agent encapsulates four ‘ai_ColourGranulators’ and affords real-time control 

of pitch and position information.  Drones were generated by setting the granular agents at finite 

vertical spacings.  The quad controller was then used to slowly traverse the source file at a slow rate, 

giving rise to time-stretches with imposed pitch content that was influenced by imagery.  This 

approach was also used in Liten Röst (the opening of Movement One and 02:20-02:40 of Movement 

Two). 

Relative controls in the system were used to explore implosion and explosion around set 

points in the parametric space. This can be heard throughout the composition of Movement Three 

(see Figure 5.24).  This approach to movement and clustering of agents in a parameter space 
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generates pronounced forms of parameter convergence or divergence across a number of controls.  

Whilst this was theoretically appealing, these experiments were not used in the final composition as 

the mappings were difficult to implement in such a way as to be musically useful.  

Convergence/divergence led to binary mappings and the point of interest in these experiments 

remained static.  The point of interest could dictate spatial positioning or the position within a 

sound-file: altering these once instantiated, is somewhat cumbersome when using the text entry 

system in the UI.  This shortcoming informed the development of the path system utilised when 

composing Furcifer (see Chapter 6).  One of the more favourable mapping strategies that emerged 

was the mapping of grain position in the parent sound-file to the x-axis and the pitch of these grains 

to the y-axis respectively.  In this parametric space, ‘ai_StackSpawn’ (an agent which explored 

relative movement and spawning in time - see Figure 5.22) generated ascending/descending 

sequences of pitch transformations similar to pitch accumulation transformations.  These time-pitch 

variations consequently contrast greatly with the static drones that are the focus of the work.  

Figure 5.20 A graphical representation of ai_QuadGranularController 
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Figure 5.21 The meta-granular synthesis controller used in Modular Void and Liten Röst 
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Figure 5.22 ai_StackSpawn designed to generate stacks/accumulations of other Agents 

 

Figure 5.23 Several instances of ai_StackSpawn employed in Modular Void 
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Figure 5.24 Graphical representation of colour granulators imploding and exploding explored in the creation of Modular 
Void  

(c) Primitive Agent Tracking  

As part of the compositional process for Modular Void a number of initial experiments were 

undertaken in which agents track/monitor the properties of other agents.  As the parametric space 

is open, the tracking of elements can have a variety of compositional metaphors11.  The impact of 

such tracking has the potential to be directly audible or a component within a control structure.  As 

the logic for the tracking of properties exists within the scripting engine, the routing and usage of 

these streams can vary over time.  Within the system an agent can have access to any property 

currently extant if the ID of the parent agent and property name is known.  Throughout writing 

Movement Two variations on the implosion system were being developed as a means of generating 

complex glissandi.  Initially this was done through the creation of a property representing gravity 

(two-dimensionally) in the WorldNode which agents then monitored.  This property would then be 

manipulated in real-time to impose motions throughout the current parameter space.  This 

                                                            
11 The metaphors for tracking agents, whether explicit, implied, audible to the listener or simply 

visible to the composer was often musically beneficial.   
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mechanism was consequently utilised by a suite of agents scripted manually.  To optimise this 

process the physics motion model was devised to make this accessible to all agents within the 

system (see Section 5.01(f)) with their own unique masses.  As motion models can be set through 

the property interface, they too can be tracked and altered.   

In the final version of the composition glissandi are used as a means of generating tension 

prior to gestural events in Movement Two.  ‘ai_GravityExample’ was used to achieve this on a 

number of occasions (see Figure 5.26 and Figure 5.25), most notably between 05:07-05:28 and 8:03-

08:17 in extensive upward glissandi. 

 

Figure 5.25 Several instances of ai_GravityExample under the influence of gravity.  Their velocities are represented by grey 
lines 
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Figure 5.26 The sound file player Agent whose rate of playback and position is influenced by gravity used in Modular Void 

As the position of an agent can be obtained through the property interface, agents can 

directly track the position of one another within the parameter space.  Across the research 

presented here this basic mechanism is used in a variety of ways, culminating in flocking and 

predator prey simulations used throughout Liten Röst and Mikro Studie A (see Section 7.01(c) and 

Section 8.01).  In Modular Void position tracking was purposefully one dimensional.   
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 ‘ai_HorizontalFollower’ (see Figure 5.28 and Figure 5.27) was used to generate a number of 

high frequency canopies across the work.  These materials are presented at the close of the 

Movement One and feature prominently in Movement Two and Three.  Musical interest and 

development of these canopies is created through the cyclic loops and artificial beating generated 

from pairs of these agents continuously seeking to converge on one another. 

Table 5.3 Usage of ai_HorizontalFollower in Modular Void 

Ai
_H

or
iz

on
ta

lF
ol

lo
w

er
 Movement Timing 

1 04:41-05:30 
2 00:11-00:25 
2 01:20-02:05 
2 03:04-05:09 
2 05:52-07:57 
3 02:43-05:00 

 

 

Figure 5.27 A Graphical representation of ai_HorizontalFollowers being used on Modular Void 
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Figure 5.28 The horizontal follower agent used to create clustered canopies in Modular Void 
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Section 5.04 Evaluation of Agent Tool V0.02 - Modular Void 

Throughout the creation of Modular Void it became clear that the biggest strength of the 

framework was the efficient creation of complex granular synthesis algorithms and controllers.  The 

combination of the open parent-child relationship model of the system and the micro-threaded 

nature of Lua became one of the system’s key strengths.  As there is a separation between the 

spawning agent and the child agent, the script for audible grains can be generated and modified 

whilst the parent agent is spawning them.  This allows grains to be altered rapidly for sonic 

exploration and the embellishment of existing materials. Grains can also be enhanced to suit a 

specific source, sound or image. Altering agents in real-time worked well with extended textural 

materials.   

The usage of imagery as a stimulus for spawning agents and grain agents is highly 

perceivable, and can be used to generate both audifications and sonifications within the same 

framework.  Imagery as a form of parametric automation on both levels can yield highly predictable 

results if the image data being used is constructed with a somewhat simple colour content.  

Similarly, when subtle gradients or imagery with repeating patterns were used with this 

agent, the influence of imagery was noticeable.  Using imagery with dense changes in pixel content 

yields largely unpredictable sonic outputs.  Imagery within this context consequently gives rise to 

stochastic behaviours.  When this approach to explicit pixel mapping is combined with granular 

synthesis algorithms, huge variations in musical output can be generated.   

Throughout the composition of Modular Void attempts were made to create agents that 

traversed the parameter space in a set way.  Whilst it is possible to script specific motions, crafting 

an agent that moves to a series of points in the space is achievable via the creation of a finite state 

machine within the agent’s script.  This approach allows a user to be highly explicit in the motion of 

the agent, but it is rather time-consuming to implement within a single agent and is dependent on 
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significant programming experience.  This issue is made more cumbersome when image 

audification or sonification is involved as the points, and the motions have to be re-scripted for 

each image source that is imported into the system.  To mitigate this, attempts were made to 

create repeatable patterns of entropic materials via scripting ‘ai_PlayerMorphers’ to move in and 

around materials with dense pixel colour changes. This form of automation through the parameter 

space became a key inspiration for the work Furcifer.  Subsequently a system for creating, editing 

and deleting paths efficiently within scripts and on the graphical interface was devised.  
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Chapter 6. The Path System and Furcifer (2013) – 09:32 

Furcifer was completed in early 2013 and received its premiere at the ‘From Tape to Typedef’ 

conference at the University of Sheffield.  The term Furcifer is a reference to a genus of chameleon 

based on the Latin term Furci, meaning forked (a reference to their feet). As a chameleon changes 

its colour according to mood, so Furcifer uses spectral colour change and spatial references to 

invoke different emotions in the listener.  The work was composed around a number of key sonic 

gestures and textures that were generated via the creation of paths through a parameter space 

within the Agent Tool.  As such the composition demonstrates the use of path generation and 

control to sculpt sonic gestures and textures.   

The work is in an ABA form with the B section exposing the listener to a primarily surreal 

space and the surrounding sections exploring real and unreal source-space relationships. Both A 

sections feature a dialogue between what Wishart called unreal objects/real space and real 

objects/unreal space (Wishart, 1996). Similar to Bayle’s Erosphere (Bayle, 1992) and Gobeil’s Point 

De Passage (Gobeil, 2001), the metaphor of a door is used at key points in the work to indicate 

entering a new space.   

Furcifer relies heavily on the listener's perception of recordings of common sonic landscapes 

and phenomena as a means of invoking tension. Similar to works such as Stollery’s Still Voices 

(Stollery, 2007) and Harrison's Undertow (Harrison, 2007), the sonic landscape regularly morphs 

between what Harrison describes as real, unreal and surreal spaces (Harrison, 1999) and this 

becomes a structural device.  Amongst unreal sonic objects, the sound of (real) doors is significant 

as it is one of a few clearly source-bonded sonic objects (Smalley, 1997). As Windsor and Kendall 

discussed (Windsor, 2000; Kendall, 1991), the usage of everyday sound events afford the 

perception of not only the event that triggered the sound but also recollections of what 

traditionally follows this event. 
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There are several types of source-bonded materials that are used throughout the work. 

These include recordings of orchestral strings, orchestral percussion and recordings of the sung and 

spoken voice.  Several of these have defined functions throughout the work, either as clear 

structural reference points or as a means of embellishing unreal spaces with real objects.  The 

majority of these sources are transformed and mixed through agents traversing a path which 

performs parametric automation.   

The key thematic sonic object that opens the work appears in several variations at the end 

of A (03:01), at the start of the reprise (06:45), re-harmonized (07:15) and marks the start of the 

closing passage (07:55). These variations were purposefully devised with the path system.  The 

path system was also used to create a series of ongoing glissandi. This key thematic object is used 

as a metaphorical door, signifying transitions into new spaces throughout the work.  Similar to the 

works Overture (see Chapter 4) and Liten Röst (see Chapter 7) the human voice was used as a 

source for the creation of textural materials and more harmonic content. Structurally, the voice 

was used as a means of supporting important events and phrases.  For example, elements of 

human breathing can be heard in the main sonic object of the work and acts as an unreal backdrop 

when the first real space (a forest) is heard around 01:40.   

Upon commencing work on Furcifer, The Agent Tool was adapted to enable the 

establishment of paths through current parametric space. Unlike systems such as Swarm Lake 

(Kaliakatsos–Papakostas et al., 2014) where an agent's relationship with a path is binary, agents in 

the Agent Tool are attracted to or repelled by paths.  This approach was adopted so that attraction 

can be altered in real-time by a user or via scripting the ‘thrust’ property.  Detailed mechanisms 

involved and examples of use will be discussed in Section 6.02.  As with other elements within the 

Agent Tool, path modification can be created and manipulated in both the GUI and the scripting 
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engine.  Allowing the scripting interface to create, move and delete both paths and points means 

that paths can be algorithmically manipulated as part of a work.  

Section 6.01 Path Implementation 

The path system can be accessed from within an agent via the ‘Path’ motion model.  The usage of 

the system can therefore be scripted.  A path within the framework consists of an array of points 

which agents can interpolate.  The space between two points is referred to as a segment. A path 

comprised of three points [a,b,c] subsequently contains two segments [a-b] and [b-c]. When 

utilising the path system, an agent will traverse along a segment until it reaches the target point at 

the end of the segment. Upon doing so, the agent will then shift to the next segment (see Figure 

6.1).   

 

Figure 6.1 The breakdown of an agent on a path containing three points 

To do this, the Path motion model utilises a set of properties that are stored within its 

parent agent.  A direct result of this is that both the user and the scripting engine have the ability to 

alter directly the way in which the agent traverses the path.  For example, upon prompting, the 

scripting engine can enforce the looping of segments or the traversal across segments (in a 

prescribed or random manner).  The system relies on six properties being present for full 

functionality.  A summary of these are as follows. 
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Table 6.1 Summary of path related agent properties 

Property Identifier Function 

path The ID of the path it is currently interacting with 

segment The segment of the path the agent is on 

segpos The agent’s position on the current segment 

pspeed The speed of an agent’s traversal along a path 

pathlock Snap an agent’s motion to the current path 

thrust Two dimensional attraction/repulsion to current path 

 

The system in place allows agents to interact with the paths to varying amounts. An agent 

may either be locked to a path, or influenced by a path’s presence (allowing both attraction and 

repulsion). The ‘pathLock’ property allows this interaction to be fixed or not. When ‘pathLock’ is off, 

the system utilises the ‘thrust’ property to represent the strength of attraction (in two dimensions) 

to its relative position on the path.  As a direct consequence of this, it is possible for agents to drift 

between path points, shifting in and out of coherence with the path that it is following. 

Depending on the mapping strategy employed by an agent, paths can become highly 

perceivable with interactions being clearly audible. Mapping pitch to one axis of the world is the 

most obvious approach. Within this context, paths can be used to set out chords or clusters of notes. 

Increasing the attraction factor of the agents will consequently force them to adhere more and more 

to this pitch strata. In the context of spatialization, paths can be used to represent spatial 

trajectories of materials whose influence can vary over time. 
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Figure 6.2 Comparison of path lock alongside positive and negative thrust 

 

Section 6.02 Agent Explorations in Furcifer 

The agents used in the composition of Furcifer are all based on iterative and evolutionary 

developments of an agent explored previously in the work Modular Void.  Alongside a basic 

granular synthesis controller (see Section 5.03), the work uses four further agents.  Two of these 

agents investigate position-based agent tracking in a parametric space.  The first of these, 

‘ai_trackWorld’ is designed to track the position of the current WorldNode and advance towards it 

continuously (see Figure 6.3 and Figure 6.4).  When using these agents as part of the compositional 

process, the present WorldNode’s motion model was set to path.  An assortment of paths were 

then drawn and modified whilst these agents were tracking the WorldNode.  This approach allowed 

the indirect creation and influence of parametric motions in a highly efficient manner.  Within 
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Furcifer this mechanism was used specifically to generate continuously ascending and descending 

tones that appear prior, during and after key thematic gestures in the work.   

 

Table 6.2 Primary ai_trackWorld uses in Furcifer 

Ai
_T

ra
ck

W
or

ld
  Timing Description 

00:37-00:48 Ascending synthetic tones 

02:58-03:00 Descending swoop into key 
gesture 

08:30-08:40 Ascending tones culminating in the close of 
the work 

 

 

 

 

 

Figure 6.3 A graphical representation of a single ai_TrackWorld Agent moving towards the World Node as seen in the 
centre 
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Figure 6.4 ai_TrackWorld agent who continuously seeks the position of the World Node used in Furcifer 
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A second agent was designed to explicitly create high-frequency, pulse-based textures 

similar to those created by ‘ai_HorizontalFollower’ in Modular Void (see 0).  ‘ai_BasicFollower’ was 

consequently devised to track and seek the closest other agent (see Figure 6.6 and Figure 6.5).  This 

simple one-to-one tracking mechanism results in stable cyclic patterns when an agent is paired with 

another.  When a number of other agents are near one another, the ‘attraction’ property which 

influences the thrust of the agents towards one another is highly significant.  The default condition 

of this property highlights the nonlinear approach to the system and demonstrates the butterfly 

effect (Lorenz, 2000) in action.  Small modifications to this variable can have radical consequences 

when a number of agents are in proximity to one another.  In Furcifer, to ensure controllability, 

these agents were instantiated in pairs across the stereo field.  A variety of cyclic beating patterns 

were subsequently created using this method and can be heard throughout section A (see Table 

6.3). 

 

Figure 6.5 A graphical representation of the pairs of 'ai_BasicFollower' and their velocities 
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Figure 6.6 The Basic Follower Agent used in Furcifer and Liten Röst 

  



Agent-Based Graphic Sound Synthesis and Acousmatic Composition 
   

93 
 
 

Table 6.3 ai_BasicFollower usage in Furcifer 

Ai
_B

as
ic

Fo
llo

w
er

 
Timing 
00:31-00:40 
00:57-01:09 
01:21-01:30 
01:39-01:55 
04:35-04:53 
04:58-05:20 

 

Agent-based image sonification played a key role in the creation of the main thematic 

gesture within the work (see Table 6.4).  It was decided that this gesture would be constructed 

from a corpus of harmonically related source files, between which the granular synthesis agents 

would morph.  As such the musical gesture was split across a number of voices and timbres in a 

fashion similar to Schoenberg’s Klangfarbenmelodie12 - a spectral synthesis of sorts. 

‘ai_ColourMangler’ was consequently designed to generate grains using source files dictated by the 

brightness of a pixel (see Figure 6.7).  The opening gesture and all subsequent variations 

throughout the composition were generated using this mechanism in conjunction with the path 

system.  Each version of the gesture was subsequently generated through real-time variations in 

speed, and attraction to a single set path drawn over an image (see Figure 6.8). 

Table 6.4 Key gesture and ai_ColourMangler usage in Furcifer 

Ai
_C

ol
ou

rM
an

gl
er

 Timing 
00:00-00:20 
02:38-02:50 
03:00-03:10 
06:32 – 07:17 
07:17 – 07:22 
07:57 – 08:19 

 

                                                            
12 This form of synthesis is similar in design to that of CataRT by Ircam but is not based on an 

extensive corpus of descriptor analysed sounds (Schwartz et. al, 2006). 
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Figure 6.7 The colour mangler Agent script which used greyscale brightness to dictate the sound file to granulate 
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Figure 6.8 Example image used in conjunction with the path system to generate the main thematic gesture 

Section B (03:00-06:31) presents contrasting material compared to surrounding sections.  

The sonic landscape mimics the depths of the ocean in a surreal fashion in which the listener is 

presented with a journey through a dark distal space before moving towards the unreal space in 

the reprise of section A.  The section is underpinned by an agent who explicitly explores stigmergy - 

in which agents were indirectly influenced through the path system.  ‘ai_RedCulture’ (see Figure 

6.10) utilises imagery as an environment that it monitors and subsequently alters.  This agent was 

designed to be attracted to high concentrations of red whilst seeking to avoid pixels with significant 

amounts of blue.  Once the agent has finished computing where it should move to next, and has 

emitted its parametric data, it alters the pixel it is monitoring and those around it by drawing new 

data onto the surface.  An agent designed to draw colours and gradients along a path was 

consequently constructed (see Figure 6.9) to set up the initial conditions for these agents.  The 

drawing of paths and the stigmergetic interactions that follow in this instance behaves as a form of 

complex score generation.  This approach is consequently similar to the PheroMusic system in 

which agents leave behind pheromone trails similar to that of ants and their colonies (Nymoen et 



Agent-Based Graphic Sound Synthesis and Acousmatic Composition 
   

96 
 
 

al., 2014).  The open nature of agency in this instance allows these stigmergetic entities to vary 

over time and be altered in real-time.  Pixel content in this environment behaves in a similar 

fashion to pheromones which other agents are consequently attracted to.  The space becomes 

more environmental, the world more evolutionary and the music potentially more abstract.  

‘ai_RedCulture’ is designed to alter the speed of playback, stereo pan position and amplitude of 

samples in the harmonic corpus with the horizontal position, vertical position and red pixel 

components respectively.  This agent can be heard almost exclusively between 03:20-04:20 before 

other materials emerge alongside in the latter half of the section.  

 

Figure 6.9 The output of an Agent which continuously draws on a user-defined path for other ai_RedCulture Agents to 
interact with 
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Figure 6.10 The Red Culture Agent used as part of Furcifer which is attracted to red content and is killed by blue whilst 
continuously transforming the underlying material 
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Section 6.03 Evaluation of the Relative Path System - Furcifer 

In the traditional sense, paths within an nth dimensional parametric space can be viewed as a 

means of automating controls over time.  In allowing paths to influence agents, their impact on a 

controller or compositional system can be carefully regulated in real-time.  When in use, agent 

movements within the parametric space can be altered to converge or dissipate from a repeatable 

path.  This concept has a significant amount of artistic potential as a means of explicitly controlling 

parameters, or relinquishing control to the logic of an agent as part of a performance or 

composition.  As the path system itself can be manipulated via the scripting system, agents could 

be devised to subsequently generate and manipulate paths in a prescriptive manner.  As such, the 

path system itself can be a potential mediator of stigmergy.   
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Chapter 7. Liten Röst (2014) – 25:05 

Liten Röst is a large-scale work in 5.1 format that originates primarily from a single short recording 

of a female voice. The work was completed in early 2014 at the Visby International Centre for 

Composers (VICC) in Gotland, Sweden and received its premiere at Sound Junction (2014) at the 

University of Sheffield.  It was also performed at the 2014 International Computer Music 

Conference.  Its title when translated into English means, ‘Little Voice’.  The work is 26:00 in 

duration, however, it can be split into four distinct movements. The first two of these (I - 09:30 and 

II - 05:50) can be performed as individual works. III and IV, despite their shorter duration, rely on 

materials that are exposed and developed in previous sections. Awareness of these previous 

instances, even if subconscious, is required to appreciate the concluding sections. 

Unlike previous works, Liten Röst explores autonomous traversal of parametric space.  The 

path and later stigmergic approaches to movement throughout a parametric space in the Agent 

Tool found in Furcifer were an effective means of controlling agent movement indirectly.  In the 

case of Liten Röst, the work was used to explore abstracted and indirect movement through 

controlling emergent behaviours.  The work explores two forms of agent-based tracking as a means 

of generating evolving musical textures and spatializing them around the listener.  These are as 

follows: 

1. Average group position tracking 

2. Flocking simulations based on rules of separation, alignment and cohesion  

Both of these approaches were consequently explored and evaluated throughout the 

compositional process using a number of different mapping techniques.  

Throughout the compositional process and the development of appropriate agents for the 

work, experiments using colour data to invoke agents was conducted.  While these experiments 
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were successful (see Section 7.01(a)), such techniques were not used as an active part of the 

compositional process until Mikro Studie A (see Section 8.01).  In the course of conducting these 

experiments, live coding was used as a means of rapidly prototyping, developing, evaluating and 

refining agents and relationships.   

Over the course of the work, sets of contrasting materials are used to create and explore 

an assortment of sonic spaces. While the majority of the work may appear to reside in distal space, 

forms of microsound, both natural and synthetic function as a means of transporting the listener 

back to a more direct proximate space (Smalley, 2007). Similar to the work Furcifer (see Chapter 6), 

the sonic landscapes that are present within Liten Röst morph between real, unreal and surreal 

spaces (Harrison, 1999). However, there are very few references to ‘real’ spaces in the work. 

Instead, Liten Röst utilises a variety of mimetic references to birds and beaches that are synthesised 

to invoke a warped view of “real objects in unreal spaces” (Wishart and Emmerson, 1996).  These 

references were generated using the three tracking approaches mentioned previously and will be 

discussed at length in Section 7.01. 

Liten Röst is composed in 5.1 surround sound, and much of the material is explored both 

panoramically and laterally around the listener. The energy of the spatial motions varies widely 

depending on the spectral content of the materials. In the context of this work, flocking algorithms 

are used as a means to spatialize high-frequency audio material. The dialogue between natural and 

synthetic microsound, when used in conjunction with these flocking algorithms, allows materials to 

traverse the continuum of Emmerson’s aural and mimetic discourse (Emmerson, 2007).  

Furthermore, these materials traverse both perspective and distal space with position being used 

as a structural function throughout the work. 

Liten Röst was envisaged as a large scale work over twenty-five minutes in duration and at 

the time of composition, this was the largest work created by the author. Careful attention was 
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paid to the perception of time and the structural form of the work when it was being composed. 

Across the work, materials are introduced to the listener gradually and are designed to emerge 

from spectromorphological content that is already present.  Emmerson’s axis of abstract and 

abstracted syntax was also of importance here (Emmerson, 1986a). A loose structural schema was 

created before commencing composition and evolved as materials were generated. Whilst the 

work at first may appear somewhat through-composed, each section draws upon and explores 

materials from surrounding sections to create relationships.  Sections I and II both explore the 

purity of the female voice.  Sustained notes and a limited number of harmonic overtones enabled 

subtle manipulations and variations of agents to be more identifiable when developing and 

exploring tracking mechanisms.  These will be discussed in greater detail in Section 7.01(c). 

Across the first two sections, the perception of the female voice morphs between being 

very pure (real) to very synthetic invoking images of birds through the use of flocking algorithms. 

Throughout portions of section I however, forms of microsound using both the female voice and 

recordings of small shells (circa 02:45-04:20) are actively spatialized around the listener. Within this 

context, this material is underpinned by large vocal drones in the distal space. By juxtaposing these 

contrasting spaces, a clear dialogue emerges, with each acting as a continuous canopy designed to 

either attract or detract attention from the opposing material. In section I it is clear that the 

material existing within the distal space overpowers the more active microsound with a complete 

return to the distal space by approximately 05:00. Section III explores this more active microsound. 

Section IV is a reprise of Section I while emphasising the relationship between I and III. 

Section 7.01 Agent Usage in Liten Röst 

Liten Röst explores a collection of new agents designed specifically for the work, alongside a 

number of pre-existing agents.  Additionally, a number of core mechanisms and agents from 

previous versions of The Agent Tool were refined.  Agents and grains of microsound that are 
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influenced by artificial gravity were used to create a collection of glissandi.  In a similar fashion to 

Furcifer, ‘ai_TrackWorld’ agents (see Section 6.02) generated these glissandi which are associated 

with the creation and release of tension (see Table 7.1).   

Table 7.1 Ai_TrackWorld usage in Liten Röst 

ai
_T

ra
ck

W
or

ld
 Movement Timing 

2 00:00-00:15 
2 00:43-01:03 
2 05:22-05:58 
4 03:33-03:38 
4 04:26-04:30 

 

The composition uses colour tracking agents to generate drone based materials in a similar 

fashion to those heard in Modular Void (see Section 5.03).  ‘Ai_ColourGranulator’ (see Figure 5.17) 

was used to generate evolving drones to contrast with more active microsound.  As with Modular 

Void, simple imagery generated pitch and panning variations in grains that underpin portions of the 

opening section (see Table 7.2).  This technique is also prominent between 04:41 and 08:02.  

Section III differs from other sections in being gesture carried rather than texture carried.  In the 

climax of this section, a bass pedal emerges between 02:04-03:15 which was devised using a live 

coded version of this agent13. 

Table 7.2 ai_ColourGranulator usage in Liten Röst 

ai
_C

ol
ou

rG
ra

nu
la

to
r 

Movement Timing 

1 00:00-00:58 

1 01:57-02:16 

1 04:41-08:02 

3 02:04-03:15 

 

                                                            
13A discussion of live coding in the work can be found in 0 
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(a) Event Based Image Sonification 

All forms of image sonification/audification in this research prior to Liten Röst were exclusively 

based on continuous parameter mappings.  Gradually, a move towards repeatable gestures using 

granular synthesis was generated using a form of event-based sonification.  This was achieved 

through the creation of a prototype agent which uses a set of purpose built Lua functions that tests 

for user specified RGBA configurations at the position of a given agent (see Figure 7.1 and Figure 

7.2).  This approach allows agents to be invoked based on specific colours within an image.  This 

technique was used to generate a number of rhythmic pulses and gestures within Liten Röst (see 

Table 7.3).  ‘ai_ColourSpawner’ was used to generate pulses of microsound that instantiate other 

instances (creating delayed variations) via imagery with strict bands of colour (see Figure 7.1, Figure 

7.2  and Figure 7.3) between 02:46-04:33 in section I and the opening of section III.  This ‘barcode’ 

technique became a key focus in Mikro Studie A in which imagery was used to dictate the timing of 

gestures within the work (see Section 8.01).   

Table 7.3 ai_ColourSpawner usage in Liten Röst 

ai
_C

ol
ou

rS
pa

w
ne

r 

Movement Timing 

1 02:46-04:33 

1 07:59-08:28 

2 00:25-00:40 

3 00:00-00:25 
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Figure 7.1 Lua functions created to detect and spawn agents based upon specified colours 

 

Figure 7.2 The prototype colour spawner agent that spawned agents when approximate colours were detected 
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Figure 7.3 Barcode image used to generate pulses in Liten Röst Section I 02:46-02:59 alongside the spectrogram of the 
passage 

(b) Live Coding in Liten Röst 

Throughout the course of composing Liten Röst live coding was used as a means of experimenting 

and generating accompanying materials.  Rather than being used as a performance technique it 

was used as a methodology for prototyping new agents in various sections in response to materials 

that had previously been written or generated.  Two methodologies were used in the work to 

enable live coding of agents within the composition.  The first of these was through the live coding 

of agents that are being continuously spawned by an existing control or generation mechanism. For 

example, the first instance of the boids flocking algorithm (see Section 7.01(c)) that is presented 

between 05:38-06:52 in section I, all child grains (which contain very high pitch material) that are 

spawned by the boid generators were altered live throughout the passage (mainly grain duration 
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and reverb).  This performative technique (altering child agents) was subsequently used with the 

children of ‘ai_ColourGranulator’ throughout section I and III (see Table 7.2).   

 

Figure 7.4 The simple call-back mechanism used to live code agent spawning and control current instances 

The second approach adopted as part of the composition was achieved via the creation of a 

callback function.  If an agent in the system continuously invokes an arbitrary user-defined Lua 

function, upon saving the file containing the definition of that function14, all instances of the agent 

in question will switch to using the newly compiled version of that function.  This basic mechanism 

can be seen in ‘ai_LiveSpawn’ (see Figure 7.4) which was subsequently used to invoke boid agents, 

                                                            
14 Upon saving a Lua file that has been loaded into the system, all functions and agents within that 

file will be recompiled. 
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and image sonification agents, such as ‘ai_ColourGenerator’, heard in their entirely throughout 

02:25-04:44 in section II. 

(c) Agent Tracking and Flocking in Liten Röst  

Liten Röst further explores the impact of tracking agents within a parametric space.  As previously 

mentioned, the work explores two new methods for performing agent tracking.  Both of these 

methods are based on monitoring position but are distinguishable by the way in which this data is 

utilised.  One of these is based upon simple logic. Each agent seeks an average position with those 

surrounding it.  This rather basic approach allows agents to converge on a set position within the 

parametric space with a good degree of stability and predictability.  ‘ai_BasicGroupFollower’ was 

created to generate a suite of materials in Liten Röst (see Figure 7.5 and Figure 7.8).  This approach 

also allows the generation of simple flocks of agents within the parametric space.  When a user 

influences the velocity of one member within a group, the velocity change subsequently alters the 

average position of a group which others are tracking.  This indirectly allows the velocity variation 

to propagate through all agents within the group in a controllable fashion.  It allows gravity to 

influence the velocity of the group throughout the space.  Musically, this technique generated 

clusters of tones and grains and was employed within the final section of the work.  

‘ai_GroupGranulator’ was designed to perform this function.  This agent only tracks others of the 

same type whilst continuously spawning grains with pitch and position within the sound file 

mapped to the vertical and horizontal axes.  Gravity was subsequently applied to the world that 

forced the agents to perform a pseudo- time stretch on given source files.  This approach can be 

heard predominantly within the opening of the final section (see Table 7.4 and Figure 7.7). 
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Table 7.4 ai_GroupGranulator usage in Liten Röst 
ai

_G
ro

up
G

ra
nu

la
to

r 
Movement Timing 

4 00:00:20 

4 00:24-00:58 

4 02:16-03:31 

 

Two further agents were developed.  ‘ai_TrackWorldFlock’ (see Figure 7.9) generates a 

flock of grains around the WorldNode.  While the agent is functional it only allows the creation of 

one flock at a time.  ‘ai_PlayerReverb’ (see Figure 7.10) plays a sound file through a reverb whose 

room size and wet/dry mix is influenced by the tracking algorithm.  This agent was used to further 

process the closing materials of section I (08:40-09:15) - to metaphorically drag the materials into 

the distal space.  

 

Figure 7.5 Several instances of ai_BasicGroupFollower flocking into small clusters at differing pitches across the stereo 
field. 
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Figure 7.6 The code for the basic group follower used in early experiments in which agents are attracted to the average 
position of the surrounding agents. 
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Figure 7.7 ai_GroupGranulator agent who performs basic flocking and granular synthesis 
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Figure 7.8 Collections of group granulators creating textural drones in Liten Röst. 

 

Figure 7.9 ai_TrackWorldFlock agent who spawns and controls ai_TrackWorld agents 
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Figure 7.10 ai_PlayerReverb agent that uses flocking dynamics to control reverb on sound files being played 
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An additional approach to tracking (used across all sections of the work) took the form of a 

reworking of Reynold’s influential boids flocking algorithm (Reynolds, 1987).  The ‘boid_calculation’ 

function was designed specifically to achieve this (see Figure 7.11).  Similar to the original boids 

algorithm, each agent is aware of its neighbours within a given radius and the positions and 

velocities of each agent is governed by three rules.  Firstly, agents must separate from those 

around it to avoid overcrowding.  Secondly, agents are aligned to ensure that its velocity correlates 

with the average of all others within its flock.  Finally, each agent attempts a form of cohesion by 

trying to move towards the mean position of the flock.  The ‘boid_calculation’ function enhances 

this algorithm by allowing a user to specify what agent type is part of the same flock.  This allows 

agents to flock explicitly with others of the same type or alternative entities.  When agents utilise 

this mechanism to explore granular synthesis,  the flocking simulation acts as an intuitive means of 

exploring microsound by traversing the content of a sound file in a natural and fluid fashion.   

The agents ‘ai_BoidGranulator’ and ‘ai_BoidFiveOneGranulator’ (see Figure 7.12 and Figure 

7.15)  were both designed to enable the exploration of flocking granular synthesis in stereo and 5.1 

surround.  Both of these agents are control entities which spawn audible grains.  

‘ai_BoidGranulator’ grains mapped pitch and sound file position to vertical and horizontal 

placements.  ‘ai_BoidFiveOneGranulator’ child grains interacted with the position of speaker agents 

which were placed within the parametric space.  The relative distance between the agent and each 

of these speakers consequently altered the grain’s amplitude in each speaker.  This subsequently 

allowed agents to flock around the listener in 5.1 surround sound15.  ‘ai_BoidFiveOneGranulator’ 

was used to generate a suite of mimetic and non-mimetic materials throughout the first three 

sections.  Within the section I it was used to generate flocks of abstract and noisy grains (02:44-

05:03).  These agents were then used to create mimetic materials imitating flocking birds by 

                                                            
15 Whilst the materials here are presented in 5.1 surround, this mechanism was successfully adapted 

and tested in eight and sixteen channel surround sound with no perceivable latency. 
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granulating recordings of the female voice (05:38-06-52 and 08:30-09:28).  In section II these 

agents were used to create highly synthetic flocks before using short noisy bursts in section III (see  

Table 7.5).  This agent was used throughout the entirety of section III with multiple instances of 

these flocks being gradually presented alongside one another before building to the climax of the 

section at 03:15. 

Table 7.5 ai_BoidFiveOneGranulator usage in Liten Röst 

ai
_ 

Bo
id

Fi
ve

O
ne

G
ra

nu
la

to
r 

Movement Timing 

1 02:44-05:03 
 

1 05:38–06:52 

1 08:30–09:28 

2 01:05–02:45   

2 02:18–02:45   

3 00:48-01:38 

3 01:45-03:15 

3 03:22-03:47 
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Figure 7.11 Boid_Calculation function used to impose flocking characteristics on agents in Liten Röst and Mikro Studie A 
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Figure 7.12 One of the boid granular synthesis agents used in Liten Röst wherein spawning agents flock around one 
another while continuously spawning grains 
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Figure 7.13 Agent mechanism utilised to set up speaker positions in the world 
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Figure 7.14 Agent based methodology used to calculate speaker amplitude coefficients 
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Figure 7.15 ai_BoidFiveOneGranulator agent that performs five channel diffusion and granulation based on flocking 
dynamics 
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Section 7.02 Evaluating Agent Tool Flocking/Swarming 

Flocking/Swarming provides a huge terrain for compositional and artistic exploration.  The 

emergent properties of these systems have great appeal as means of traversing an abstract 

parametric space.  While working with this flocking methodology, a number of mapping strategies 

and synthesis types were briefly explored.  Directly mapping boids to amplitudes of sine waves 

created initial sound objects.  However, such a direct approach to mapping and synthesis resulted 

in the dynamics of agents within collective clusters being hard to perceive; a viewpoint shared by 

Huepe et al. (2014).  When working with forms of granular synthesis, these clusters quickly became 

interesting textural clouds.  As the system can also spatialise real-time granular synthesis, it can be 

seen as a successful continuation of swarming systems such as Swarm Granulator (Blackwell and 

Young, 2004), BATBoids (Lewis, 2013), BMSwarmGranulator (Wilson, 2008) and the work by Huepe 

et al. (2014).  The flocking system employed here is highly engaging to use due to the open nature 

of the scripting framework and the ability to code logic live.  Consequently, an interesting area of 

future research is the live coding of a-life systems themselves.   

From a compositional perspective, the open nature of the framework affords an appealing 

and somewhat organic method to traversing a parametric space.  Flocking throughout the contents 

of a sound file and a physical performance space was an engaging and highly fruitful means of 

composing materials for Liten Röst.  The explorations as part of this composition echoes two 

significant swarming strategies put forward by Schacher et al. (2011).  Firstly, it is appropriate to 

map continuous changes in agent parameters to equally continuous changes in musical materials.  

Secondly, swams/flocks that have a tendency of settling into a stable configuration within the 

space may be best served controlling static materials within a work.  The approach adopted in the 

context of Liten Röst adheres to the basic methodology that each agent is used to generate musical 

materials.  In future, and in a fashion to that outlined by Schacher et al. (2011), these agents could 

also be utilised to create synergetic interactions.  In this instance, agents could be utilised to draw 
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paths throughout an image with which other agent types (such as ai_RedCulture) could then 

interact.  Another alternative approach worthy of investigation, after Bisig and Neukom (2008), 

would be the creation of proximity based events.  When the properties of the agents or flock share 

common factors, such as a space or similar alignment values, musical events or agents could be 

invoked.  This approach could also be utilised as a means of performing event-based image 

sonification wherein the flock is utilised to identify regions of interest within an image.   

  The ability to influence a flock in real-time is a highly desirable feature in any system.  

Besides the creation of control agents within the system, the Agent Tool also affords several other 

methodologies for higher-level control and interaction with flocking simulations.  Each of these has 

a large amount of compositional research potential.  Firstly the path system can be utilised to 

influence the flock in time.  As the path system can be scripted and coded in real-time, algorithmic 

systems and compositions could be created.  Furthermore, these systems can potentially be 

controlled via computer vision in a fashion similar to Unemi and Bisig (2004) but in an entirely open 

and scriptable manner. 
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Chapter 8. Mikro Studie A (2014) - 06:05 

Mikro Studie A is a 5.1 work dedicated to exploring flocking and timbral variations of microsound 

generated through colour detection with predator-prey simulations being used as a basis for 

controlling granular synthesis.  Mikro Studie A was completed in February 2014 at VICC shortly after 

the completion of Liten Röst (see Chapter 7) and many of the techniques and agents used in the 

former are present in this work.  The composition is based on a refined usage of the Agent Tool to 

create a piece that contrasts previous work.  Mikro Studie A is gesture carried with the majority of 

materials being heard in a close proximate space (Smalley, 2007).  The microscopic grains that are 

generated using the Agent Tool are presented in what Smalley (2007) calls, microphone space in 

which the sonic images are amplified and then granulated directly to the listener with no added 

audio processing.  As such the work aims to draw the listener’s attention to the subtleties in the 

streams of grains and their motions in space around the listener.  The composition reuses agents 

coded for previous versions of The Agent Tool. Each agent is provided a specific function within the 

Mikro Studie A and each will be discussed in turn. 

The name of the work pays direct tribute to Analogique A+B by Iannis Xenakis for orchestra 

and tape which is considered to be the first composition to utilise a form of granular synthesis161. 

Similar to Analogique A+B, Mikro Studie A is designed around a call and response between two 

contrasting sets of materials. Analogique A presents clouds of grains constructed from orchestral 

strings against Analogique B which presents synthetic sinusoidal material. The structure of the work 

is based on a continuous call and response between these two elements; the dialogue is held 

between two differing energy levels reinforced by the usage of pulse based materials. 

Mikro Studie A draws inspiration from an assortment of differing approaches to granular 

synthesis.  The work is driven by a constant sense of pulse and internal motion (motion within the 
                                                            

16  The granular synthesis in Analogique B is constructed from sinusoidal grains that can be likened to Denis Gabor's 
construct known as ‘Atoms’ (Xenakis, 1992) 
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grains themselves). It was inspired by the presentation of streams of grains in Points Critiques and 

Nodal by Vaggione (2011) in which the speed of the underlying pulses is a key structural 

component.  Mikro Studie A attempts to use this sense of pulse to draw the listener’s attention to 

timbral variations and spatialization of the grains presented.  As Vaggione (1994) suggests, analysis 

of events in microtime can be discussed with regards to syntax used in macrotime, without 

necessarily making the relationships between the two uniform (Vaggione, 1994, Vaggione, 1996). 

The structure of Mikro Studie A is based on a theme and variation, in which pulse based materials 

are used to focus the listener’s attention to the intricacies of the grains, their spectral and timbral 

content and their spatial trajectories. Furthermore, while being primarily a synthetic work, source-

bonded materials (primarily recordings of metallic objects) are used at key structural events for 

emphasis. Similar to Points Critiques, these materials are veiled in the background behind far more 

active materials. 

The palette of sonic materials used within Mikro Studie A was deliberately constrained. This 

was done for two reasons, the first of which, is to create a consistent sound world/sonic landscape 

wherein all materials have very similar spectral content and energy.  In doing so, the composition 

aims to encourage focused listening on the intricacies of the materials presented and their 

movement around the listener.  Secondly, this decision was taken in the belief that explicit 

constraints sometimes allow creativity to flourish (Boden, 2004, Magnusson, 2010). 

Unlike previous works, Mikro Studie A was composed with active diffusion in mind. In 

previous works such as Liten Röst, the textural nature of the work meant that rapid diffusion and 

motions imposed in real-time detracted from the content of the work. Being a gesture carried 

work, Mikro Studie A inherently affords greater possibilities for concert diffusion with gestures (on 

differing time-scales) and the release of energy from within acting as prime opportunities for a 

performer to alter the spatial positioning of such materials.   
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The usage of regular pulsed grains was similarly utilised as a means of aiding diffusion, 

suggesting positional changes take place on regular divisions of the pulses. Pulse-based grains 

emerge at several points in the piece, often utilising different pitch content and at different speeds. 

The pulses that follow the large gesture at 01:50 are, for example, similar to the materials found in 

the opening gesture, however, they are presented at different speeds. If in performance the 

diffuser somewhat replicates spatial trajectories at these points, the differences between the 

pulse-based materials will be highlighted, and the structure of the work will be further enhanced. 

As Mikro Studie A is composed in 5.1 format, extensive spatial motions have been crafted 

as part of the compositional process and the extent to which a performer can actively diffuse the 

materials may be limited to the sound diffusion system being employed. Rather than diffusing the 

materials to specific locations (as is the case with the diffusion of stereo files), in performance, 

panoramic and lateral spaces presented within the work should simply be expanded and 

contracted. Furthermore, this means that at no point should any of the speakers in the core 5.1 set-

up be reduced so that materials cannot be heard. 

Section 8.01 Crafting Mikro Studie A 

Mikro Studie A can be broadly split into two halves.  Each of these halves explores differing 

approaches to agent-based granulation.  The first half (00:00-03:04) was composed through explicit 

user control over a collection of agents.  Throughout this section, a total of five different streams of 

audio are presented.  The second half of the work (03:04 up to the closing gesture at 05:33) 

explores a purpose-built predator-prey system using agents where user-control is limited.  This 

latter half uses the same source recording as many of the materials in the former, resulting in the 

section acting as a complex development of previous materials. 

The first half of the composition is underpinned by several closely linked musical gestures. 

These gestures were constructed through an exploration of event-based colour sonification.  Each 
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of these gestures comprises several agents performing at once but is signified by glass hits.  The 

timing for these hits was directly generated from imagery that was crafted as part of the 

composition.  Images comprising vertical bands of colour akin to a barcode were created to be read 

by an assortment of agents (see Figure 8.2 ).  ‘ai_RedGenerator’ (see Figure 8.1) was utilised to 

generate all five key gestures in the opening half of the work (see Table 8.1). Rather than using the 

colour matching functions explored briefly in Furcifer (see Section 6.02), the agent was designed to 

monitor the amount of red at a given position.  This approach was highly efficient and resulted in 

the generated barcodes acting as basic repeatable scores.  

Table 8.1 Gestures created by ai_RedGenerator in Mikro Studie A 

Ai
_R

ed
G

en
er

at
or

 Gesture Timing 

00:00 

00:14 

00:48 

01:49 

02:56 

 

To generate materials that increased and decreased in amplitude either side of these 

gestures in time, the barcode patterns that were used were blurred with gradients applied, 

increasing and decreasing the red around these bars (see Figure 8.3).  The basic ‘ai_Granulator’ (see 

Figure 5.16) was utilised with grains whose amplitudes were dictated by pixel brightness, to 

generate drones that crescendo and diminuendo around the key thematic gestures.  
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Figure 8.1 The red generator used to spawn agents in the Mikro Studie A   

The opening half of the work utilises two other agents with defined roles.  

‘ai_ColourGranulator’ (see Figure 5.17), previously used in Furcifer and Liten Röst, was utilised to 

generate slowly evolving low-frequency drones that provide a backdrop for the contrasting 

microsound and gestures above them.  In the first two instances, this agent was used to provide a 

backdrop for the flocking algorithms that were being explored in the first half of the composition.  

The agent then appears alongside the predator-prey simulation for the entirety of the second half 

acting as a bridge.  The agent was also utilised to generate the repetitive pulses which underpin the 

opening half of the work. 
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Figure 8.2 The red barcodes used to generate primary events in Mikro Studie A 00:00-03:04 

 

Figure 8.3 Red gradients used to generate swells in Mikro Studie A 00:00-03:04 
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Table 8.2 ai_ColourGranulator usage in Mikro Studie A 
Ai

_C
ol

ou
rG

ra
nu

la
to

r Timing 

01:13-01:49 

02:22-02:55 
 
03:06-04:54 

The opening half of the composition also uses ‘ai_BoidFiveOneGranulator’ (also previously 

used in Liten Röst (see Figure 7.15).  Unlike the audible flocking trajectories that can be heard in 

Liten Röst, the flocks used in Mikro Studie A were purposefully less identifiable.  As such, the 

cohesion and alignment of the flocks were deliberately very low.   

Table 8.3 ai_BoidFiveOneGranulator usage in Mikro Studie A 

Ai
_ 

Bo
id

Fi
ve

O
ne

Gr
an

ul
at

or
 Timing 

00:03-0:08 

00:14-00:27 

00:38-00:48 

00:49-1:06 

01:10—1:38 

02:20-02:41 
 

Section 8.02 Predator-Prey Simulations  

The second half of Mikro Studie A was generated almost exclusively through a predator-prey 

simulation (see  

Table 8.4) .  This simulation algorithmically spawns and kills granular synthesis agents with a small 

collection of controls to influence the likelihood of generating offspring for either predator or prey 

at regular intervals.  This was achieved through the core tracking functions within the system and 

property interface.  Allowing agents to kill one another when they are within proximity can be 

conceived as a simple `predator' model as there is no differentiation between agent types.  The 

property system was utilised to store a property that represents an agents ‘type’.  Subsequently, 
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when a predator monitors the world around it, it can check that an agent is of the right type before 

seeking towards it to destroy it.  This mechanism underpins both the inaudible ‘ai_Predator’ and 

audible ‘ai_MikroPreyGrainSynth’ (see Figure 8.4 and Figure 8.5).  The raw prey agent has no 

means of instantiating other prey.  Instead, it continuously invokes child grain agents until it is 

killed.  When used in conjunction with the predator, a predictable and linear sequence of events 

emerge.  Collections of sounds are spawned, and the predators hunt these sounds until they cease 

to exist.  To overcome this, a higher-level control agent, ‘ai_MikroLifeSystem’ (see Figure 8.6) was 

created to spawn predators and potential prey simultaneously while providing higher levels of user 

control over these agents. Most notably, this agent controls the percentage outcome of predator 

or prey to be spawned at the next given time interval.  These probabilities are independent of one 

another and can be controlled in real-time allowing the simulation to be controlled and biased.  To 

stop the predators from simply spawning and killing agents indefinitely, predators were given a 

limit to the number of prey they could kill before they themselves died.  This limit was 

consequently controlled in real-time when the simulation was invoked.  This mechanism was 

actively used to replicate the pulsing grains of the first half of the composition between 05:01-

05:34.  In this passage, the thrust for the prey was set extremely high with a low kill limit.  

Spawning these at regular intervals consequently resulted in prey being killed almost immediately 

after they had been spawned.  The thrust control of the predator became a key musical control as 

it directly dictated the lifetime of all audible materials in the simulation.   

Table 8.4 ai_MikroLifeSystem usage in Mikro Studie A 

Ai
_ 

M
ik

ro
Li

fe
Sy

st
em

 Timing 

03:04-04:56 
 
03:47-04:56  

05:01-05:34 
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  Figure 8.4 ai_Predator agent designed to track and hunt prey agents 
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Figure 8.5 ai_MikroPreyGrainSynth agent used to spawn grains that are prey 
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Figure 8.6 The predator-prey system that was used in Mikro Studie A 
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Section 8.03 Evaluating the Agent Tool Post Mikro Studie A 

Mikro Studie A suggested that event-based image sonification was possible through the use of 

abstract agents.  The system employed here was an effective tool for generating musical events 

and gestures.  The use of a single colour channel in this instance resulted in image creation 

becoming an engaging means generating events, as events could easily and accurately be predicted 

when designing the images to be used.  Similar to Metasynth, the creation of musical events was 

driven both by the agents employed and the drawings they used. While the scripting interface can 

be used to detect specific colours within an image, perceiving when and where these events will be 

invoked within a complex image is problematic.  Images with diverse colour content would require 

extensive user experimentation and training to be able to learn and accurately predict how events 

will be generated.  This approach to RGB detection enables the entire 8 bit RGB colour palette to be 

used to invoke events or unique synthesis voices.  In practice, a smaller colour pallette of up to 32 

unique colours could be used to create a predictable sonic output.  As such, imagery could be used 

as a means of generating event-based image sonifications more akin to audification.  Alternatively, 

the scripting framework could be utilised to perform blob or edge detection algorithms as a means 

of identifying objects within an image with a relatively small processing overhead.  

The successful experimentation and usage of predator-prey systems within Mikro Studie A 

demonstrated that complex granular synthesis algorithms could be used effectively in an organic 

fashion.  Mikro Studie A also led to the conclusion that complex predator-prey relationships and 

simulations have great potential for further investigation.  The open nature of the scripting 

framework including the property and path systems means that complex and bespoke control 

mechanisms could easily be employed.  When using predator-prey models in such a context, 

allowing the composer to tweak, balance and re-balance the simulation plays a major role in the 

composition process. It is this interaction that allows users to participate actively in the simulation 

rather than being mere observers who set up initial environmental conditions.  



Agent-Based Graphic Sound Synthesis and Acousmatic Composition 
   

134 
 
 

Chapter 9. Conclusions 

Across the course of the portfolio of compositions, organic and evolutionary texture design became 

more and more refined.  As the Agent Tool’s control mechanisms became more defined so did the 

development of musical textures and their corresponding agents.  Familiarity and continual usage of 

certain mapping strategies led to proficiency in agent definition and control culminating in the 

agents used in Liten Röst and Mikro Studie A.  During the composition of earlier works, the feature 

set and the scripting interface for the Agent Tool was continuously being developed.  When work 

commenced on Liten Röst, the feature set of the scripting interface became standardised.  

Consequently, these two final works are the most refined and focused, with new techniques being 

explored explicitly within the scripting engine itself.  While developing a familiarity with the scripting 

interface, the focus of compositional development moved towards the creation of evolving textures.  

All of the compositions in the portfolio except Mikro Studie A were subsequently texture-carried 

(Smalley, 1986).  Mikro Studie A marked a departure in the compositional style in being primarily 

gesture-carried.  The scriptable predator-prey ecosystem that was designed for the work enabled 

controllable and predictable gestures to be created as part of the compositional process.  This foray 

into real-time control over predator-prey systems as a means of generating gestural materials was 

largely successful and could provide the basis for future compositional research.  In the future, it is 

possible that entire compositions could be scored through the control of such algorithms.   

Furthermore, conclusions from this portfolio suggest that agency can effectively be used as 

a means of designing sonic gestures and textures.  The Agent Tool was used predominantly to 

create texture-carried compositions and the interface and agent paradigm enabled slowly evolving 

textures and drones to appear with relative ease.  The impact of an agent’s surroundings and an 

agent’s relationships to others are often not perceivable until relevant data or controls are 

tweaked.  Real- time control over these agent systems subsequently requires time to develop once 
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spawned.  The approach to agency explored here consequently favours real-time control and 

exploration of sustained textures.  The separation of control/spawning agents with audible grains, 

when combined with the motion models of the software, offer a highly controllable and 

perceivable influence over the internal motion of grain-based textures.  Altering the gravity of child 

grains or attraction/repulsion to paths allows them to converge or diverge from the current point in 

the parametric space.  This approach to creating internal motion was successfully used across 

Furcifer and Liten Röst.  The flexibility of the motion system successfully enables the creation of 

predictable and repeatable motions throughout the parameter space if required.  As seen in 

Furcifer this can be used as a means of creating defined gestures.  This methodology is somewhat 

time-consuming and less immediate than exploring the creation of textures as agents need to be 

invoked, monitored, and destroyed before altering the path or motion logic within the agent.  This 

process has the potential to be significantly more time consuming because of the varied nature of 

both parametric mappings and sound sources.  To create explicit and concise gestures with agency 

in this manner users must be familiar with both the content of the source sound file and the 

parametric mappings employed by the agent/s being invoked. 

The compositions and the software suggest that agency and ecosystemic approaches to 

exploring parameter spaces and granular synthesis algorithms are worthy of further creative 

investigation.  The open nature of the scripting framework and the feature set provided means that 

the development of new controllers and algorithms is possible for those with little programming 

experience.  This is important if the software is ever to be used by others.  Initial exploration needs 

to be quick and it needs to generate reasonable results from basic presets and tutorials. Most 

importantly, it needs to motivate the composer to learn more and become familiar with the 

concepts involved.  The evolutionary nature of the spawn protocols (flocking, predator/prey) 

naturally encourages engagement.  
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The design of the software removes many requirements for users to know complex 

programming concepts17.  As the framework itself was designed for a broad range of uses with the 

potential for highly complex simulations that utilise either large numbers of calculations or agents, 

the refresh rate of the system was deliberately restricted. By default, the refresh rate of the system 

is locked to 60 hertz. The framework is consequently inappropriate to audio rate audifcations. This 

refresh rate directly represents the lowest possible latency in the system.  The speed of Lua 

execution also plays a crucial role.  Due to the micro-threaded nature of Lua, once an agent has 

finished performing a task at a given speed it must yield to allow other agents’ threads to run.  It is, 

therefore, possible for a heavy computational load in one agent to hold up and offset the execution 

of another agent if it does not yield appropriately. 

Conclusions from the portfolio also indicate that imagery is an effective modality for 

stimulating granular synthesis through the intuitive use of agent-based ecosystems.  For events to 

be predictable, it became apparent that imagery with clear and straightforward colour 

relationships should be used.  Across the works, images with bands of colour and gradients were 

successfully used to automate parametric controls predictably.  Imagery with rapid changes in pixel 

content, on the other hand, can be hard to predict but has the potential to generate interesting 

automation patterns.  The software is therefore highly successful in performing continuous 

parametric sonification.  As agents can freely traverse imagery, the system also behaves as an 

effective model-based sonification environment.  Imagery has the potential to set out parametric 

controls which the user can then excite, control and subsequently perform if they so wish.  The 

experiments in event-based sonification culminating in Mikro Studie A, indicated that simple 

imagery and colour can be used to invoke musical events and gestures.  When using raw pixel data 

                                                            
17 The scripting API ensures that users do not have to worry about different data types and defining 

their own class that inherits the properties of another. The inheritance model is the most commonplace 
approach to designing agent-based systems and innately relies upon the user to be aware of classes and 
inheritance in either Java or C++.   
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to invoke events, complex image data make the sequence of events hard to predict.  Blob detection 

(Danker and Rosenfeld, 1981) or object detection algorithms could be utilised to trigger events 

within the system. However, the trade-off here is an overhead within the scripting interface 

resulting in a slowdown in real-time execution.  If this slowdown could be overcome, 

traversing/influencing an ecosystem or invoking events with real world objects is a highly appealing 

area for future research.   

Across the creation of this portfolio, the open approach to designing multi-agent systems 

allowed agents to be easily repurposed and adapted for different compositional ideas.  The 

approach to agency used here continuously offered new avenues for exploring musical creativity.  

The LUA interface allowed the creation of agents and control structures that were highly engaging 

and easy to adapt.  The concept of agency works both as a simple function (performing a finite 

action) and as a complex evolutionary process where not only can granulations occur but a 

granulation system can spawn further granulations (the sonic material becoming both audio and 

control data).  With such a vast scope of possibilities, careful constraints should be designed when 

using such an open system.  In this context, imagery was utilised to constrain explorations 

successfully in conjunction with a human bottleneck regulating agent development.  The simple 

scripting interface that the system offers enabled the evolutionary approach of refining agents to 

be largely enjoyable and efficient with new agents generating exciting controls and materials. 
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NYCEMF 2013 (New York Contemporary Electroacoustic Music Festival 

Pompeu Fabra University 2013 (Barcelona, Spain) 

 

Modular Void Suite (2013) 
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Furcifer (2013) 
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