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ABSTRACT 
Monocytes are able to undergo homotypic fusion to produce different types of 

multinucleated giant cells in response to infection (Langhans giant cells in 

tuberculosis) or rejection of foreign bodies (foreign body giant cells on medical 

implants). Monocytes exist as a heterogeneous population consisting of three subsets: 

~85% classical, ~5% intermediate and ~10% nonclassical at steady state. However, 

during tuberculosis, the circulating populations of intermediate and nonclassical 

monocytes increase, suggesting they may play a role in the disease outcome. 

Monocyte fusion is a highly coordinated and complex process requiring the 

upregulation and expression of multiple proteins to carry out fusion. Tetraspanins are 

a family of membrane proteins that associate with partner proteins and other 

tetraspanins to form a tetraspanin enriched microdomain. Tetraspanins have been 

shown to associate with fusion proteins and it has been suggested that they play a 

role in coordinating homotypic monocyte fusion. 

 

In this study, peripheral human monocytes were purified by FACS into classical 

(CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) 

monocytes. Monocyte subsets were induced to fuse using concanavalin A (ConA) and 

we showed the intermediate monocytes were able to fuse faster and form significantly 

larger giant cell types. Furthermore, when antibodies targeting CD9, CD53, CD63 and 

CD151 were added, only the intermediate monocytes showed any inhibition of fusion.  

A flow cytometry panel was used to report on the expression of 7 tetraspanins (CD9, 

CD37, CD53, CD63, CD81, CD82 & CD151) on the surface of monocytes before and 

after addition of ConA. We found that freshly isolated intermediate monocytes are 

particularly tetraspanin abundant.  After 4hrs of culture in ConA, the subsets all show 

a significantly decreased expression of CD37, CD53 and CD82. We also identified a 

small population of CD9High Cl that also expressed higher levels of CD63, CD81 and 

CD151 compared to CD9Low. However, the CD9High Cl did not show any greater 

potential to fuse and its role in immunity remains unknown. 
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ABBREVIATIONS 
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Cl Classical monocyte 

CLP Common lymphoid progenitor 

cMOP Common monocyte progenitor 
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NK-cell Natural killer cell 
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PBSE Phosphate Buffered Saline + EDTA 
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PFA Paraformaldehyde 

pH Potential Hydrogen 
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1 CHAPTER 1: INTRODUCTION 

1.1 THE HUMAN IMMUNE SYSTEM 
The human immune system is a dynamic multicellular network that has evolved to 

respond to a seemingly limitless array of threats. The cells of the immune system, 

leukocytes, are able to sense and eliminate foreign threats with a variety of different 

methods. All leukocytes originate from a single multipotent hematopoietic stem cell 

(HSC) progenitor in the bone marrow. Leukocytes are formed as a result of multiple 

differentiations co-ordinated by an ensemble of different signals. Leukocytes are 

divided into two major types based on their initial differentiation from HSC; myeloid 

or lymphoid.  

 

The myeloid cells consist of the monocytes, granulocytes and mast cells of the innate 

immune system. These cells are typically short lived and are able to sense and respond 

to a broad range pathogens. Myeloid progenitors are also able to differentiate into 

platelet-producing megakaryocytes and erythrocyte precursors that develop into 

oxygen-carrying red blood cells. The lymphoid cells consist of the T-cells and B-cells 

of the adaptive immune system and the natural killer cells (NK-cells) of the innate 

immune system. T-cells are able to interact, detect and kill virally infected host cells. 

B-cells confer humoral responses by secreting antibodies to pathogenic antigens that 

can agglutinate bacteria and enhance phagocytosis. NK-cells are able to sense and 

attack virally infected host cells (like T-cells) and even identify and eliminate tumour 

cells. Though NK-cells are derived from lymphoid cell progenitors they have long been 

classified in the innate immune system, however, recent studies (Arase et al., 2002; 

Daniels et al., 2001; Peng et al., 2013; Sun et al., 2009) have identified NK-cells with 

memory features just like T-cells and B-cells.  

 

Leukocytes are not limited to this brief list of processes but are in fact versatile and 

able to alter their functions further depending on the location and severity of a threat. 

Throughout the course of human existence there have been viruses and pathogens 

that test our immune systems each in their own unique way. Human immune systems 

have evolved in a way to combat a wide-range of both new and old threats. The 
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attempt to unravel the intricacy of the human immune system has led to the 

discoveries of various subsets, elaborate cytokine networks and novel mechanisms of 

host defence. This introduction will focus on the complexities associated with just one 

cell type, the monocyte. 

 

1.1.1  THE MONOCYTE LINEAGE 
Before describing the biological origins of the monocyte it is important to explore and 

respect the historical origins of the phagocytic system. The age of leukocytes began 

in 1843, when, rather miraculously, the French pathologist Gabriel Andral (1797-1876) 

and British physician William Addison (1802-1881) both reported independently the 

first ever descriptions of leukocytes. These findings opened up new avenues for future 

research into the role of these odd new white-blood cells in human pathology. In 1873, 

Julius Cohnheim (1839-1884) observed and demonstrated the migration and 

extravasation of leukocytes to a site of inflammation in frog’s tongues that he pinned 

to a corkboard. Cohnheim’s simple model demonstrated that leukocytes could actively 

target injured tissues and laid the groundwork for future studies in chemotaxis. 

 

The first description and identification of phagocytes from leukocytes came from a 

Russian zoologist named Elie Metchnikoff (1845-1916). In 1882 Metchnikoff observed 

for the first time phagocytes surrounding and digesting foreign bodies in transparent 

starfish larvae. He also injected bacilli into the subcutaneous tissues of frogs and 

observed host leukocyte chemoattraction to the site of infection. Metchnikoff has since 

been credited as the discoverer of cell mediated immunity and in 1908 shared a Nobel 

Prize in physiology and medicine with Paul Ehrlich who is equally credited as the 

discoverer of humoral immunity. Controversially, Metchnikoff believed that 

phagocytosis occurred in both steady-state tissues to clear away host debris as well 

as in inflamed tissues to target pathogens.  

 

The discovery of phagocytes by Metchnikoff set into motion a tide of further research 

in the field of immunology. In 1901 Rudolf von Limbeck (1862-1900) demonstrated 

that phagocytes were recruited from the blood and targeted sites of inflammation 

through chemoattraction. Von Limbeck did this by injecting Staphylococcus aureus 
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into the joints of dogs and observed that the number of circulating leukocytes 

increased before accumulating in the infected tissues. This phenomenon would later 

be attributed to the differentiation of circulating monocytes into tissue-bound 

macrophages. Less than a decade later, in 1909, the advances in cinematography 

allowed Jean Comandon (1877-1970) and colleagues to record and distribute moving 

images of Trypanosomes being phagocytosed for the first time. The 

monocyte/macrophage family grew by another member in 1973 when Zanvil Cohn 

(1926-1993) and Ralph Steinman (1943-2011) published their findings on the isolation 

and identification of dendritic cells from mouse spleen. The discovery of dendritic cells 

as antigen presenting cells was a pinnacle finding in linking the innate and adaptive 

immune systems. Over the last few decades, with the use of immunolabeling and flow 

cytometry, the complexity and diversity of the innate immune system has exploded. 

It is unlikely that 134 years ago when Metchnikoff was observing phagocytes 

surrounding splinters within transparent larvae that he grasped the complexity of the 

system he had discovered. The more recent discoveries in monocyte differentiation 

and origins from the bone marrow will now be explored in detail. 

 

Monocytes, unlike most other leukocytes, are able to differentiate into distinct cell 

types that possess their own morphological features and immunological processes. 

Like other myeloid cells, monocytes originate within the bone marrow. HSCs 

differentiate into a common lymphoid progenitor (CLP) or a common myeloid 

progenitor (CMP) that subsequently differentiates into granulocyte-macrophage 

progenitors (GMP) (Figure 1.1). Further differentiation in the bone marrow transforms 

GMP into monoblasts – the committed monocyte precursor. Once these mature into 

monocytes, they enter the bloodstream where they circulate continuously and act as 

a reservoir ready to migrate and enter into steady-state or inflamed tissues and further 

differentiate into macrophages (Mφ) or dendritic cells (moDC).   

 

Current research in mice has shown that between the GMP to monocyte stage, the 

GMP cells differentiate into a macrophage-dendritic precursor (MDP) that after 

transplantation could no longer form granulocytic cells but could generate new 

monocytes, macrophages and DC (Fogg et al., 2006).   
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Figure 1.1: Differentiation of Human Monocyte Subsets from 
Haematopoietic Stem Cells 

In the bone marrow HSCs are able to differentiate to produce any of the leukocytes 

of both the lymphatic and myeloid lineages. Various myeloid precursors have been 

isolated and ordered based on their potential to differentiate into decedent cells. 

HSC: Haematopoietic stem cell, CLP: Common lymphocyte progenitor, NKP: 

Natural killer progenitor, TCP: T-cell progenitor, BCP: B-cell progenitor, CMP: 

Common myeloid progenitor, GMP: Granulocyte-macrophage progenitor, MDP: 

Macrophage-dendritic precursor, cDC: Classical Dendritic Cell, pDC: plasmacytoid 

Dendritic Cell, cMOP: Common monocyte progenitor Cl: Classical, Int: 

Intermediate, NCl: Nonclassical monocyte. 
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In 2013, Hettinger et al. identified a common monocyte progenitor (cMOP) in mice 

that could no longer differentiate into classical dendritic cells (cDC) or plasmacytoid 

dendritic cells (pDC) but could still form monocytes, Mφ and monocyte-derived 

dendritic cells. Human equivalents of MDP and cMOP have also been recently reported 

(Lee et al., 2015). 

 

Human blood monocytes do not exist as one single population. In 1989, Passlick and 

collegues used flow cytometric analysis to identify a small monocyte subset that 

expressed both CD14 and CD16; later termed ‘nonclassical’ monocytes to distinguish 

them from the CD14HighCD16- ‘classical’ monocytes. CD14 is a co-receptor for toll-like 

receptor 4 (TLR4), together they detect extracellular bacterial lipopolysaccharide 

(LPS). CD16 is a low-affinity FcγRIII receptor that binds the Fc domain of IgG and has 

been suggest to aid monocytes in the phagocytosis of antibody opsonised pathogens 

(Clarkson and Ory, 1988). The complexity of monocyte subsets grew when in 2001 a 

paper by Grage-Griebenow et al. reported the existence of more than one population 

of CD16+ monocytes. Like classical monocytes these cells expressed high levels of 

CD14 but had low CD16 expression, existed as a very small percentage of the blood 

monocyte population (<10%) and served separate functions. These monocytes were 

therefore thought to be an “intermediate” state between the classical and the 

nonclassical monocytes and were largely overlooked as a unique subset (Figure 1.2).  

 

In 2010 the Nomenclature Committee of the International Union of Immunological 

Societies accepted the classification of human monocytes into classical (Cl), 

intermediate (Int) and nonclassical (NCl) monocytes (Ziegler-Heitbrock et al., 2010). 

The very next year two vast gene profiling reports were published detailing many of 

the unique attributes of each subset and solidifying their individual nature (Wong et 

al., 2011; Zawada et al., 2011). The origin of the Int and NCl monocytes is largely 

unknown. Multiple studies have observed an increase in the NCl monocyte population 

coupled with a decrease in Cl monocytes but with no overall change to total monocyte 

number (Mukherjee et al., 2015; Semnani et al., 2014; Sunderkotter et al., 2004; 

Ziegler-Heitbrock et al., 2010). It is therefore widely regarded that Int and NCl 

monocytes are at least in some part derived from Cl monocytes (Zawada et al., 2012). 



22 
 

  

Figure 1.2: Classification of the three monocyte subsets based on relative 
CD14 and CD16 expression. 

Human monocyte subsets in blood can be separated into three functionally distinct 

subsets. Classical monocytes are characterised by high expression of CD14 and 

lack of CD16 expression, intermediate monocytes are positive for both CD14 and 

CD16 and nonclassical monocytes express less CD14 and have a relatively high 

CD16 expression. Subset population sizes are donor dependent and many diseases 

cause shifts of one subset to another. At steady state the ratio of Classical: 

Intermediate: Nonclassical ~85:5:10%. 

From (Wong et al., 2012) with permissions.  
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1.1.1.1 TISSUE RESIDENT MACROPHAGES – A STORY OF ORIGINS 
It was originally thought that Mφ found in the tissues all originated from circulating 

monocytes in the blood. This concept of a mononuclear phagocytic system from bone 

marrow to blood to tissue was coined by van Furth and colleagues in 1972 (van Furth 

et al., 1972). However, the simple inflammatory Mφ concept evolved as tissue specific 

Mφ were identified and were found to possess proliferative abilities (Gordon and 

Taylor, 2005; Lichanska and Hume, 2000; Ovchinnikov, 2008). In 2004, Kanitakis and 

collegues reported their observations made on a double hand transplant patient who 

possessed Langerhans macrophages from the donor, but were still self-proliferating 

four years after amputation. In 2013 two independent studies used fate mapping and 

murine models to show that tissue resident alveolar macrophages were self-

proliferative cells that were not seeded from circulating monocytes (Hashimoto et al., 

2013; Yona et al., 2013).  

 

It is now known that tissue resident macrophages exist in a number of different tissues 

and organs such as brain mircoglia (Ajami et al., 2007), cardiac macrophages 

(Epelman et al., 2014), adipose tissue (Amano et al., 2014) and more. Some tissue 

macrophages such as those found in the intestine (Bain et al., 2014) and dermis 

(Zigmond and Jung, 2013) are in least some part replenished from monocyte 

precursors. Studies in murine models has led to the current paradigm that tissue 

resident macrophages originate during early yolk sac to embryo development and are 

seeded from erythromyeloid  progenitor cells (Lavin et al., 2015; Yona et al., 2013). 

As the foetus develops organs and defined tissues these tissue resident macrophages 

are incorporated into the tissues and self-proliferate throughout life. 

 

Compared to the monocyte-derived inflammatory macrophages, tissue resident 

macrophages tend to play a more M2-like role and maintain the resident tissue by 

savaging dead cells, promoting wound healing and carrying out tissue specific 

functions (Davies et al., 2013; Kierdorf et al., 2015). Such examples of tissue specific 

maintenance include synaptic pruning of neurones by mycroglia (Paolicelli et al., 

2012), 
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regulation of insulin sensitivity by adipose Mφ (Odegaard et al., 2007), clearance of 

debris in the lung by alveolar Mφ (Maus et al., 2002) and ruptured erythrocyte 

clearance by Kupffer cells in the liver (Ganz, 2012). 

 

1.1.1.2  OF MICE AND MEN – A TALE OF TWO MODELS 
Before exploring further into the literature on monocyte subsets and their possible 

pathways of differentiation in the tissues it is important to address the differences 

between human and mouse models. Much, if not most, of the experimental studies 

conducted on monocyte subsets, mapping their differentiation pathways and 

formation of multinucleated giant cells (MGC) has been conducted in mice. An 

increasing number of studies are revealing biologically significant differences between 

the two species which raises doubts about the applicability of the mouse model to 

human immunity. Human monocyte subsets are usually described as Cl (CD14++CD16-

), Int (CD14++CD16+) and NCl (CD14+CD16++) monocytes (Ziegler-Heitbrock et al., 

2010). At steady state, the distribution of the subsets is 85% Cl, 5% Int and 10% NCl 

in the bloodstream (or 17:1:2) (Wong et al., 2012). Multiple studies have shown an 

expansion of the Int and NCl subsets during fusion-related inflammatory diseases such 

as tuberculosis (Castaño et al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B 

(Zhang et al., 2011a) and rheumatoid arthritis (Rossol et al., 2012). 

 

Murine monocyte subsets have been categorised in multiple ways over the past decade 

due to the ever growing list of their markers. A team in 2014 sought to simplify the 

nomenclature based on cell ontogeny and proposed that mouse subsets can be 

regarded as classical (Ly6CHigh) or nonclassical (Ly6CLow) (Guilliams et al., 2014). 

Though many other labelling systems exist for mouse subsets the predominating 

feature is the absence of the intermediate subset. Some studies have tried to classify 

mouse monocyte subsets phenotypically into 3 subsets in harmony with the human 

subsets (Ziegler-Heitbrock et al., 2010), however, most studies persist in a classical 

and nonclassical nomenclature. Unlike humans, murine models possess an equal 1:1 

ratio of classical (Ly6CHigh): nonclassical (Ly6CLow) monocytes (Geissmann et al., 2003; 

Sunderkotter et al., 2004).  
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The greatest discrepancies between human and mouse models was revealed in 2010 

by Ingersoll et al. who utilised microarrays to screen hundreds of expressed genes in 

both human and mouse subsets. They also used flow cytometry to compare the 

expression levels of 24 proteins of interest. In relation to this study in monocyte fusion, 

they found that three monocyte fusion markers CD9, CD81 and CD36 (their roles in 

fusion are discussed below) were all differently expressed between human and mouse 

monocytes (Ingersoll et al., 2010). Specifically, CD9 expression was higher in human 

CD16- monocytes than CD16+, however, in mice this was reversed as Ly6CHigh classical 

monocytes possessed the higher expression of CD9. CD81 was detected by flow 

cytometry in both human subsets but only detected at very low levels in all mouse 

monocytes. CD36 was higher in human CD16- than CD16+ monocytes but in mice the 

Ly6CHigh was lower than Ly6CLow monocytes for CD36. CD9 and CD81 have been 

reported to play a vital role in monocyte fusion  (Parthasarathy et al., 2009; Takeda 

et al., 2003) and CD36 is a scavenger receptor that has been shown to participate in 

the formation of multinucleated giant cells (Helming et al., 2009). Because of these 

differences, any murine-derived fusion studies should be viewed with caution and for 

the purposes of this investigation only human monocytes will be used.  

 

1.1.1.3  MONOCYTE SUBSETS  
As previously mentioned there are currently three accepted subsets of human 

monocytes; Cl, Int and NCl monocytes (Ziegler-Heitbrock et al., 2010). Much research 

in the past decade has attempted to reveal the specific roles of each of the different 

subsets and their contribution to disease. It should be noted however, that there 

remain many mysteries of the pathways of differentiation and there appear to be many 

overlaps in functions shared between the subsets. On a transcriptomic level, the Int 

and NCl monocytes share more similarities with one another, differing in only 249 

genes. Understandably, the Int monocytes were found to be the most 

transcriptomically similar of the CD16+ monocytes to the Cl subset – differing by the 

expression of 942 genes  (Wong et al., 2011). Interestingly the Int and NCl subsets 

showed a greater susceptibility to apoptosis compared to the classical monocytes 

when exposed to reactive oxygen species (Zhao et al., 2010) and TB (Castaño et al., 
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2011). These findings were later confirmed on a genetic level by Wong et al. (2011) 

and attributed to the concept that Int and NCls  are late-stage monocytes. 

 

Cl have been labelled as the primary phagocytosing cells (Cros et al., 2010) and have 

been shown to be able to detect pathogen-associated molecular patterns (PAMP) via  

pattern recognition receptors (PRR) such as toll-like receptors and respond by 

internalising bacterial antigens by phagocytosis (Antonelli et al., 2014; Cros et al., 

2010; Yang et al., 2014a). Cl have also been shown to be the most responsive of the 

three subsets to multicellular nematode antigens (Semnani et al., 2014). However, 

two different studies have reported that the Int were the most effective at 

phagocytosing Plasmodium vivax infected red blood cells (Antonelli et al., 2014; Zhou 

et al., 2015). Wong and colleagues also found that steady state Cl transcribed genes 

for angiogenesis at far higher levels than the Int or NCl, whose transcription patterns 

favoured MHC class II production and cell migration proteins respectively (Wong et 

al., 2011). This is in accordance with the Int subset being labelled the “inflammatory” 

subset and NCl the “patrolling” subset (Antonelli et al., 2014; Yang et al., 2014a). It 

seems that the subsets exist in such a way that each one can specialise to specific 

pathogens and responses. 

 

Though monocytes exist in high numbers in the bloodstream, their major role is to 

enter the tissues, patrol, respond to steady-state or inflammatory signals and 

differentiate into effector cells. The Int and NCl have been shown in functional studies 

to be the most effective at migration and endothelial transmigration (Randolph et al., 

2002; Semnani et al., 2014). These properties are conferred by their mutually high 

expression of migration proteins (Wong et al., 2011) and the Int’s high transcription 

of cytoskeletal rearrangement genes (Semnani et al., 2014) granting them the ability 

to rapidly reorganise their morphology during transmigration. NCl also possess the 

ability to inhibit tumour proliferation, in Ly6C- (NCl-equivalent) deficient mice; 

introduction of Ly6C- monocytes resulted in NCl migration to the tumour site, 

activation of NK-cells and prevention of tumour invasion in the lung (Hanna et al., 

2015). 
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1.1.1.4  MONOCYTE SUBSET SIGNALLING 
The monocyte subsets differentially express two different chemokine receptors that 

coordinate their migration; C-C chemokine receptor type 2 (CCR2) and CX3C 

chemokine receptor 1 (CX3CR1). The CCR2 ligand (CCL2 or MCP-1) is associated with 

an inflammatory state and is a powerful chemoattractant for monocytes.  In functional 

studies the subsets showed a Cl>Int>NCl order of secretion of CCL2 when infected 

with P. vivax (Antonelli et al., 2014) or exposed to LPS (Cros et al., 2010). On the 

other hand, the CX3CR1 ligand (CX3CL1) is constitutively expressed in the tissues and 

confers an anti-inflammatory and homeostatic setting (Griffith et al., 2014). In 

accordance with their previously mentioned roles the Cl are (CCR2HighCX3CR1Low), Int 

(CCR2LowCX3CR1Med) and NCl (CCR2LowCX3CR1High) (Wong et al., 2011). Compared to 

the other two subsets, Int expresses much higher levels of the MHC class II complex 

(or HLA-DR) which presents peptides from phagocytosed pathogens to T-cells and 

bridges the innate and adaptive immune systems (Abeles et al., 2012; Wong et al., 

2011). 

 

The Cl and Int subsets secrete a repertoire of pro-inflammatory cytokines in response 

to PAMP to generate a local inflammatory state. Upon stimulation with LPS, the Int 

closely followed by the Cl subset were found to secrete the highest levels of IL-1α, IL-

1β, IL-6 and TNFα (Cros et al., 2010; Semnani et al., 2014). In both studies there was 

no pro-inflammatory cytokine production by the NCl when cultured in LPS. 

Furthermore, Cros et al. (2010) found that after 18hrs of culturing in steady state 

conditions, the NCl produced significantly higher levels of IL-1 receptor antagonist (IL-

1RA) compared to Cl and Int. IL-1RA binds the IL-1 receptor and acts as a competitive 

inhibitor dampening signalling from the pro-inflammatory IL-1 (Weber et al., 2010). 

Walter et al. (2013) demonstrated that CD14High (Cl and Int) monocytes when cultured 

in pro-inflammatory cytokines associated with rheumatoid arthritis were able to 

augment Treg cells into a pro-inflammatory state and secrete more pro-inflammatory 

cytokines. 

 

The IL-1 family of pro-inflammatory cytokines and TNFα are all able to activate the 

canonical pathway of NF-κB (Figure 1.3) (Tedgui and Mallat, 2006; Wajant et al., 
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2003). IL-1, PAMPS and/or TNFα bind their respective receptors on the membrane 

(IL-1R, TLR4 and TNFR1 respectively). Once bound the IL-1R or TLR4 recruit a MyD88 

adaptor (Weber et al., 2010) and the TNFR1 utilises a TRADD adaptor (Wajant et al., 

2003) to facilitate the activation of the IκB kinase (IKK) complex. The IKK complex is 

made of two kinases (α-unit and β-unit) and one regulatory protein (γ-unit), once 

activated the IKK complex facilitates the phosphorylation of IκB (Pelzer and Thome, 

2011; Tedgui and Mallat, 2006). In steady-state IκB is bound to NF-κB to inactivate it 

but once IκB is phosphorylated by the IKK complex it becomes further ubiquitylated 

and is degraded by the proteasome. Free NF-κB is able to enter the nucleus and 

enhance the expression of a whole host of pro-inflammatory cytokines; IL-1α (Mori 

and Prager, 1996), IL-1β (Hiscott et al., 1993), IL-6 (Libermann and Baltimore, 1990), 

IL-17A (Shen et al., 2006), TNFα (Shakhov et al., 1990) and chemoattractants CCL2 

(Ueda et al., 1994), CCL3 (Widmer et al., 1993) and RANTES (Moriuchi et al., 1997) 

to attract more leukocytes to the site of inflammation. 

 

The NF-κB pathway also enhances the secretion of anti-inflammatory cytokines, this 

has been suggested to act as a dampening reaction to avoid over-inflammation 

(Williams et al., 2004). NF-κB is able to produce anti-inflammatory IL-10 (Cao et al., 

2006) and IL-13 (Hinz et al., 2002). As with the pro-inflammatory cytokines, when 

cultured in LPS the Cl and Int subsets secreted significantly more IL-10 but the NCl 

subset secreted significantly less (Cros et al., 2010; Semnani et al., 2014). IL-10 

inhibition has been shown to inhibit the NF-κB pathway by blocking the function of 

the IKK complex (Schottelius et al., 1999) and by blocking the RNA polymerase II 

loading-site on the promotor (Zhou et al., 2004). Another NF-κB anti-inflammatory 

cytokine; IL-13, has been observed to be significantly increased in the serum of 

chronic systolic heart failure patients. Amir et al. (2012) used intracellular flow 

cytometry to show that NCl were able to produce high levels of IL-13 but the Cl and 

Int did not produce any detectable IL-13. 
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Figure 1.3: Simplified Mechanism of TNFα and IL-1 Activation of the NF-
κB 
Proinflammatory cytokines TNFα and IL-1 bind their respective receptors. Binding 

of ligand induces TRADD or MyD88 recruitment to the respective receptors. 

Through a series a steps these adapter proteins lead to the activation of the IκB 

kinase (IKK) complex. NF-κB is constitutively expressed in the cytoplasm however 

it exists in an inactive for bound to IκB. The now active IKK complex phosphorylates 

IκB leading to its ubiquitinylation, detachment from NF-κB and designation for 

degradation. Free NF-κB enters the nucleus and promotes the transcription of 

gamma activated sequences (GAS). 

From (Pelzer and Thome, 2011) with permissions.  
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1.2 MONOCYTE MONONUCLEAR DESCENDANTS: MACROPHAGES AND 

DENDRITIC CELLS 
As mentioned previously monocytes are not terminally differentiated but can in fact 

sense local cytokines and react accordingly by forming effector cells that are more 

specialised to deal with the signal. In steady-state, NCl monocytes will enter the 

tissues from the bloodstream and patrol the tissues while the classical and 

intermediate monocytes are recruited from the bloodstream into the tissues by 

inflammatory signals such as CCL2. Depending on the cytokine signals and tissue 

location, monocytes are able to differentiate into pro-inflammatory (M1) or anti-

inflammatory (M2) macrophages, inflammatory dendritic cells (moDC) or MGC. 

 

There have been multiple studies with conflicting results on the differentiation of 

monocytes and what cytokines drive which destiny. Initially, macrophages were 

subcategorised as either “inflammatory” M1 or “repair/alternative” M2 to match their 

differentiation destinies with T-helper 1 and 2 cells (Th1 & Th2). Th1 cells produce 

IFNγ as their primary response to activation whereas Th2 cells secrete IL-4 and IL-13. 

IFNγ induces monocytes to form M1 (Nathan et al., 1983) whereas IL-4 and IL-13 

induces them to form M2 (Mills et al., 2000). M1 were found to be highly pro-

inflammatory, able to rapidly engulf microbes and secrete IL-1, TNFα and IL-6. M2 

respond by augmenting the local environment into a wound-healing state by secreting 

IL-10 and IL-1RA to inhibit inflammatory cytokine production (Mantovani et al., 2004). 

 

However, the view that monocyte to Mφ differentiation is either inflammatory M1 or 

repair M2 is primitive and simplified (Figure 1.4). The emerging consensus is that 

monocytes differentiate into a spectrum of different effector Mφ and moDC, capable 

of producing different levels of pro-inflammatory and anti-inflammatory responses. 

Early this year Ohradanova-Repic et al. (2016) isolated CD14+ human monocytes, 

exposed them to an array of differentiation factors and used a panel of 70 antibodies 

to culture and classify the resultant Mφ and moDC (Figure 1.5). They characterised 

seven different Mφ ranging in function from highly M1-like (GM-CSF culture, LPS+IFNγ 

primed) to the highly M2-like (M-CSF culture, IL-10 primed). Granulocyte macrophage 

colony-stimulating factor (GM-CSF) induces the upregulation of M1 genes and is   
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Figure 1.4: Polarised vs Spectral Activation Model for Monocyte 
Differentiation. 

Previously it was thought that monocytes differentiate into either M1 or M2 

macrophages or monocyte derived dendritic cells. However the increasing number 

of differentiation pathways and identification of new monocyte derived species has 

demonstrated the incredible plasticity of monocytes and their descendants. 

From (Guilliams and van de Laar, 2015) with permissions.  
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associated with pro-inflammatory microenvironments while macrophage colony-

stimulating factor (M-CSF) induces the expression of M2-like homeostasis and wound 

repair genes and is constitutively expressed in many tissues (Van Overmeire et al., 

2016). However, the generation of both pro-inflammatory and alternative 

macrophages from both GM-CSF and M-CSF as demonstrated by Ohradanova-Repic 

et al. (2016) agrees with the findings of earlier studies (Jaguin et al., 2013) and 

demonstrates that macrophage polarity is a variable process. Ohradanova-Repic et al. 

(2016) also categorised two moDC subsets (immature and mature) from human 

CD14+ monocytes, these could be generated by culture in GM-CSF+IL-4 and the 

mature moDC were primed with LPS. 

 

Little is known about the individual contribution of the monocyte subsets to the 

formation of different types of Mφ and moDC and most of the work thus far has 

compared CD16- (Cl) and CD16+ (Int and NCl) monocytes. However, CD16- 

monocytes have been shown in microarray analyses to express higher levels of the 

GM-CSF receptor while CD16+ monocytes express higher M-CSF receptor (Martinez et 

al., 2006). This suggests that as the monocyte subsets mature from Cl to NCl they 

increase in their tissue patrolling and homeostatic functions. 

 

moDC play an important role as antigen presenting cells (APC) as they are able to 

phagocytose and digest pathogens and present their peptides on the MHC class II 

complex. The moDC can then migrate to the lymph nodes and present the peptide to 

B-cells to elicit a humoral response and T-cells to couple with the T-cell receptor and 

potentially form an immune synapse for the transfer of mRNAs, endosomes and 

proteins  (Alarcón et al., 2011; Angus and Griffiths, 2013; Martín-Cófreces et al., 

2014). moDC therefore represent an important bridge between the innate and 

adaptive immune systems. Sánchez-Torres et al. (2001) found that CD16- derived 

moDC that had been cultured in LPS; secreted more IL-12. IL-12 activates NK-cells 

into a pro-inflammatory state and to secrete TNFα and IFNγ (Zhang et al., 2011b). 

The CD16+ derived moDC responded differently; by transcribing more transforming 

growth factor-β1 (TGF-β1; dampens pro-inflammatory reactions in monocytes and 

Mφ) and were able to stimulate IL-4 secretion in T-cells more than CD16- moDC.  
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A later study confirmed that CD16+ monocytes form moDC that can transmigrate and 

reverse-transmigrate the endothelium and stimulate T-cells to a greater extent than 

CD16- monocytes (Randolph et al., 2002). Conversely, monocyte to moDC 

differentiation may not be necessary for effective antigen presentation. Jakubzick et 

al. (2013) showed that mouse classical (Ly6C+) monocytes could patrol tissues and 

acquire antigen before migrating to the lymph nodes without differentiating into Mφ 

or moDC. 

1.3 MULTINUCLEATED GIANT CELLS 
Monocytes are able to undergo homotypic fusion in certain microenvironments to form 

a variety of different types of MGC (or polykaryons). For example, in bone tissues, 

monocytes are able to fuse in steady state to form multinucleated osteoclasts which 

digest bone material as part of bone homeostasis. However, osteoclast production and 

activity has been shown to be upregulated in chronic inflammatory disorders such as 

rheumatoid arthritis (Aeberli et al., 2016), Crohn’s disease (Park et al., 2013) and 

calcified atherosclerotic plaques (Qiao et al., 2015). At sites of placement of surgical 

implants, foreign body giant cells (FBGC) are reported to be found proximal to 

osteoclasts (Barbeck et al., 2016; Chappuis et al., 2015; Lorenz et al., 2015; Morishita 

et al., 2016). As their name suggests, FBGC form in response to foreign matter that 

pro-inflammatory Mφ cannot phagocytose. When bacterial pathogens such as 

Mycobacterium tuberculosis are phagocytosed by Mφ they are able to avoid 

destruction by inhibiting lysosome-phagosome fusion and arrest apoptotic pathways 

(Behar et al., 2010; Bocchino et al., 2005; Lee et al., 2009) to allow the bacterium to 

proliferate intracellularly. Newly recruited Mφ react to these infected Mφ by fusing 

with one another to form Langhans giant cells (LGC) to engulf and encapsulate the 

infected cells and form a granuloma (Guirado and Schlesinger, 2013). 

 

1.3.1  OSTEOCLASTS: AN MGC FOR BONE HOMEOSTASIS 
Osteoclasts are generated in vitro by culturing monocytes in M-CSF and receptor 

activator of NF-κB ligand (RANKL) (Cody et al., 2011; Long and Humphrey, 2012). 

RANKL is a member of the TNF superfamily and can activate NF-κB and its 
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transcription pathway to initiate the transcription of fusion promoting genes (Yu et al., 

2011).  Komano et al. (2006) showed that in the presence of M-CSF and RANKL, CD16- 

monocytes differentiated and fused to make osteoclasts more favourably than CD16+ 

monocytes. Yu et al. (2011) demonstrated that IL-4 and RANKL induced both 

inflammatory MGC and homeostatic osteoclast formation through the activation of the 

NF-κB pathway. They then went on to show that in the presence of both cytokines IL-

4 directed MGC formation predominated over RANKL mediated fusion. More recently, 

Rivollier et al. (2013) demonstrated that human monocytes could be differentiated 

into immature moDC with GM-CSF and IL-4 and were still able to form osteoclasts 

when cultured in M-CSF and RANKL. It seems the formation of osteoclasts is fairly 

flexible in regard to the source of the fusing cells but is dependent on the presence of 

RANKL. 

 

Until recently, osteoclasts were distinguished from FBGC in immunohistological  

samples by their high production of cathepsin K (Costa et al., 2011) and tartrate-

resistant acid phosphatase (TRAP) (Hayman, 2008). However, Park et al. (2013) 

recently demonstrated that inflammatory MGC in granuloma biopsies produce high 

levels of TRAP and cathepsin K and argued that the latter was a better marker for 

inflammatory MGC. As osteoclasts are steady-state MGC and their generation from 

fusion is initiated through different factors (Yu et al., 2011) the focus henceforth will 

be on MGC formed in inflammatory microenvironments. 

 

1.3.2  FOREIGN BODY GIANT CELLS: AN INFLAMMATORY MGC FOR FOREIGN 

BODY DESTRUCTION 
FBGC form in vivo from the fusion of monocytes attempting to engulf and degrade 

foreign material extracellularly in the tissues. FBGC are larger than LGC, contain 

disorganised clusters of nuclei and are regularly observed on the surface of medical 

implants and stents (Chappuis et al., 2015; Khandwekar et al., 2010). Like osteoclasts, 

FBGC are able to bind tightly to the synthetic surface and form a suction-plug space 

between the surface and the cell (called a podosome) where digestive molecules are 

secreted (DeFife et al., 1999; Zhao et al., 1991).  
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A degradative environment is established within the podosome by secreting reactive 

oxygen species from NADPH oxidase (Quinn and Schepetkin, 2009), exocytosis of 

lysozymes (Harkel et al., 2015), matrix metalloprotease-9 (MMP-9) (Zhu et al., 2007) 

and cathepsin K (Park et al., 2013). FBGC have also been shown to have very high 

phagocytic potential. Milde et al., (2015) compared the ability of IL-4 derived FBGC 

and M2 macrophages to phagocytose antibody and complement-opsonised beads of 

different sizes. They found that of the bead sizes that both could engulf (10-20µm); 

FBGC were able to phagocytose significantly more beads than M2. Furthermore, FBGC 

were confirmed by confocal microscopy to phagocytose 45µm beads which the M2 

could not. 

 

FBGC can be generated in vitro by a range of cytokine treatments:, such as IL-4 alone, 

GM-CSF+IL-4, IL-3+IL-4 (McNally and Anderson, 1995), IL-13 alone (DeFife et al., 

1997), M-CSF+IL-4 and M-CSF+IL-13 (Ikeda et al., 1998). Thus, IL-4 appears to be a 

key cytokine inducing the multinucleation of macrophages into a FBGC destiny. 

Interestingly, IL-4, IL-13 (Ikeda et al., 1998), GM-CSF and IL-3 (Miyamoto et al., 2001) 

have been shown to inhibit osteoclast formation if added in the early stages of 

differentiation. 

 

In vivo FBGC can be generated by surgical implants when new materials are being 

tested for use as medical implants. Different materials generate different levels of 

FBGC growth though Brodbeck and collegues demonstrated in 2002 that IL-4 derived 

MGC developed less favourably on materials that were pre-treated to be hydrophilic 

compared to hydrophobic, cationic and anionic surfaces. Many inorganic materials 

used in medical implants induce a greater FBGC response than xenogeneic equivalents 

(Lorenz et al., 2015), however, these animal alternatives come with ethical issues and 

are not appropriate for joint replacements. Between 2005-2030 it is estimated in the 

USA alone that hip and knee arthroplasties are to grow from 328,000 to 572,000 

(174%) and 517,000 to 3.48 million (673%) cases respectfully (Kurtz et al., 2007).   
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1.3.3  LANGHANS GIANT CELL: AN INFLAMMATORY MGC FOR BACTERIAL 

ENCASEMENT 
In 1886 Theodor Langhans first published his sketches and notes on M. tuberculosis 

infected lung in “Archiv fur Pathologische Anatomie und Physiologie und fur Klinische 

Medicin” (Langhans, 1868). He drew detailed sketches of large cellular bodies residing 

in the granuloma that possessed multiple nuclei (3-20 nuclei) arranged in a ring or 

horse-shoe pattern (Byrd, 1998). LGC are commonly found in granulomas of patients 

suffering from tuberculosis infections (Lever and Sheer, 2010) or sarcoidosis (Van 

Maarsseveen et al., 2009).  

 

Rhee et al. (1978) demonstrated in vivo that LGC form on polyester implants in rats 

within two days of implantation. However, from between 4-14 days the number of 

nuclei found within LGC increased until all MGC morphology was that of FBGC. They 

noted a transition in nuclear arrangement stating that 3-6 nuclei MGC-1 were all LGC, 

6-30 nuclei MGC-1 both LGC and FBGC were present and at >30 nuclei MGC-1 all were 

FBGC. The ability of LGC to form FBGC was also confirmed in human sarcoidosis 

extracts (Van Maarsseveen et al., 2009) and in vitro with Concanavalin A (ConA) 

derived MGC (Möst et al., 1997). However, some teams have argued that LGC and 

FBGC are generated in response to different cytokines. As mentioned above FBGC can 

be generated in vitro using IL-4 in combination with other cytokines while IFNγ is 

argued to be the key determinant for LGC formation (Byrd, 1998; McNally and 

Anderson, 1995; Sakai et al., 2012; Takashima et al., 1993) 

 

1.3.3.1 MTB AND HIV COINFECTION 
The World Health Organisation (WHO) Global Tuberculosis Report 2015 states:  

“In 2014, TB killed 1.5 million people (1.1 million HIV-negative and 0.4 million HIV-

positive). The toll comprised 890,000 men, 480,000 women and 140,000 children. TB 

now ranks alongside HIV as a leading cause of death worldwide.” (Anderson et al., 

2015). With so many deaths occurring worldwide from TB infections it is imperative 

to further understand the immune system’s mechanisms of combating this infection 

so that treatments can be augmented to compliment the immune response.  
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Provided the medical infrastructure and speed of diagnosis is sufficient then 

Mycobacterium tuberculosis (Mtb) infection alone is a relatively treatable condition. 

However, the increasing incidence of HIV and Mtb coinfection and increasing reports 

of antibiotic resistant Mtb strains has been flagged by the WHO as a major cause for 

concern (Anderson et al., 2015). Both HIV and Mtb infections have been shown to 

exacerbate one another. A patient infected with HIV who is also infected with the 

latent form of Mycobacterium tuberculosis is 20 times more likely to experience 

reactivation of the pathogen to the active form of the disease (Pawlaowski et al., 

2012).  Conversely, Mtb has also been implicated in accelerating the manifestation of 

opportunistic infections in HIV sufferers  (Whalen et al., 1995). 

 

The formation of the protective granuloma is largely meditated by CD4+ and CD8+ 

T-cells and their production of IFN-γ and other fusogenic cytokines (explained in more 

detail below) (Cooper, 2009; Lewinsohn et al., 2003). The destruction of CD4+ T-cells 

by HIV and subsequent dampening of the cell-mediated immunity results in a delayed 

containment of the bacteria which rapidly invade the lungs and tissues via their 

macrophage vectors (Orme et al., 1993). HIV has also been reported to increase the 

expression of receptors that Mtb utilises to enter their target Mφ (Rosas-Tarco et al., 

2006), dampen the ability of monocytes to produce reactive oxidative species  (Spear 

et al., 1990) and inhibit TNF-α driven apoptosis of Mtb infected Mφ (Patel et al., 2007). 

 

1.3.3.2 MECHANISMS OF MTB DRUG RESISTANCE 
The antibiotic revolution of the last century has been the birthing grounds for a range 

of antibiotic resistant strains of Mtb. Mtb is a surprisingly resilient pathogen that has 

gained resistance through mutations of its own genome rather than through horizontal 

transfer mechanisms such as plasmids and transposons (Kochi et al., 1992). WHO has 

defined these multiple drug resistant strains (MDR-TB) as strains resilient to the 

commonly used isoniazid and rifampin. MDR-TB that has also become resistant to 

fluoroquinolone and any of the intravenously administered anti-Mtb drugs such as  

amikacin, kanamycin or capreomycin have been deemed extensively drug-resistant 

Mtb (XDR-TB). XDR-TB pose a growing threat in the future of TB treatment, as of 

2015, 105 countries have already reported the presence of XDR-TB strains (Anderson 
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et al., 2015). WHO also reported that MDR-TB were present in 3.3% of new TB cases 

and 20% of previously treated cases and that in 2014, ~190,000 people died as a 

result of MDR-TB  (Anderson et al., 2015). 

 

Mtb’s hardiness can be attributed not just to the acquisition of beneficial mutations 

but also to its residual low permeability to antibiotics as a result of its mycolic acid 

containing cell well (Jarlier and Nikaido, 1994). Furthermore, Mtb is immune to β-

lactam based antibiotics due to its ability to produce β-lactamase to hydrolyse the β-

lactam ring thus rendering the drug inactive (Wang et al., 2006). Isoniazid, one of the 

most common TB treating drugs, comprises of a pyridine ring and a hydrazide group 

that is administered in an inactive form. It is the Mtb’s own catalase-peroxidase activity 

(KatG) that activates isoniazid which then binds with high affinity to enoyl-acyl carrier 

protein reductase (InhA) blocking its ability to produce the mycolic acid necessary for 

cell wall integrity (Rawat et al., 2003). Resistance to isoniazid has been confirmed by 

mutations in the Mtb’s KatG to decrease affinity to the drug (Cade et al., 2010) or in 

the InhA promotor to increase InhA expression (Niehaus et al., 2015). InhA mutations 

have the added problem of conferring resistance to other structurally similar drugs 

such as ethionamide (Banerjee et al., 1994). 

 

Rifampicin is a lipophylic ansamycin that has been used to treat Mtb for over 40 years. 

Rifampicin targets the Mtb β-subunit of RNA polymerase, once bound rifampicin 

inhibits the elongation of mRNA resulting in the arrest of protein synthesis (Blanchard, 

1996). Rifampicin resistance has been shown to be conferred by mutations in the rpoB 

gene of Mtb which contains the code for the β-subunit of RNA polymerase. By mutating 

the rpoB sufficiently to lessen the affinity of Rifampicin but maintain activity of the β-

subunit; Mtb is able to gain resistance to the drug (Telenti et al., 1993). The 

aminocyclitol glycoside antibiotic known as Streptomycin was the first ever antibiotic 

used to treat TB. As its name suggests, streptomycin was first isolated from 

Streptomyces griseus in 1943 by Albert Schatz (1920-2005) and Selman Abraham 

Waksman (1888-1973) (Kingston, 2004). Streptomycin is a potent inhibitor of protein 

synthesis as it is able to bind to the 16S rRNA of the 30S subunit of the prokaryotic 

ribosome and block translation initiation (Moazed and Noller, 1987). To circumvent 
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this inhibition, streptomycin resistant Mtb strains regularly show mutations in their rrs 

and rpsL genes at the coding sequences for the streptomycin binding site (Gillespie, 

2002). 

 

1.3.3.3 THE MOLECULAR BASIS OF MTB ENTRY 
Mycobacterium tuberculosis typically enters via the lungs and airways where it is 

phagocytosed by tissue resident Langerhans macrophages (not to be mistaken with 

LGC) which recruit new inflammatory Mφ and moDC. However, M. tuberculosis has 

evolved to inhibit the fusion and maturation of the phagosome with lysosomes to avoid 

acidification and digestion. Early work suggested that the bacterium inhibited 

phagolysosome maturation utilising sulphatides (Goren et al., 1976) and secreted 

ammonia (Gordon et al., 1980) to inhibit phagosome maturation. Later, Via et al. 

(1997) demonstrated that early stage phagosomes contained Rab5 and late stage 

phagosomes contained Rab7, however, M. tuberculosis containing phagosomes 

remained Rab5. The Rab family of GTPases are responsible for coordinating the 

movements of endosomes and phagosomes to lysosomes for fusion and destruction 

of the contents (Seto et al., 2011). The mechanism for how M. tuberculosis inhibits 

the shedding of Rab5 and the integration of Rab7 is not fully understood but it is 

within this phagosome maturation phase that the virulent strains avoid destruction 

(Seto et al., 2011). 

 

Protected within the Mφ, the bacterium is able to proliferate whereby it causes stress 

on the host cell or ruptures the Mφ. The resultant damage-associated molecular 

patterns (DAMP) and PAMP signals released trigger the secretion of CCL2 to attract 

more pro-inflammatory M1. The accumulating Mφ amass and secrete pro-

inflammatory cytokines IFNγ, TNFα, IL-1β, IL-6, IL-12 (Aranday-Cortes et al., 2013; 

Flynn and Chan, 2001) and local Th17 cells secrete IL-17A which acts as a potent pro-

fusion signal (Coury et al., 2008). A granuloma forms as a result of this cocktail of 

cytokines with the infected macrophages in the centre, engulfed by a highly organised 

structure of Mφ, LGC and external T-cells (Figure 1.6) (Guirado and Schlesinger, 

2013).  

 



41 
 

  

F
ig

u
re

 1
.6

: 
S

tr
u

c
tu

re
 o

f 
a

 T
B

 I
n

d
u

c
e

d
 G

ra
n

u
lo

m
a

 

F
a
r 

fr
o
m

 b
e
in

g
 d

is
o
rg

a
n
is

e
d
 c

lu
m

p
s 

o
f 

ce
lls

 a
m

a
ss

in
g
 a

ro
u
n
d
 M

yc
o
b
a
ct

e
ri
u
m

 t
u
b
e
rc

u
lo

si
s 

in
fe

ct
e
d
 m

a
cr

o
p
h
a
g
e
s;

 g
ra

n
u
lo

m
a
 a

re
 

a
ct

u
a
lly

 h
ig

h
ly

 o
rg

a
n
is

e
d
 i
m

m
u
n
e
 s

tr
u
ct

u
re

s 
th

a
t 

a
ct

 t
o
 e

n
ca

p
su

la
te

 a
n
d
 i
n
h
ib

it
 t

h
e
 p

a
th

o
g
e
n
s 

sp
re

a
d
. 

A
. 
A
 h

is
to

lo
g
ic

a
l 
e
x
a
m

p
le

 o
f 

a
 g

ra
n
u
lo

m
a
 f

o
rm

e
d
 i
n
 a

 m
in

ip
ig

’s
 l
u
n
g
. 
C
e
lls

 s
ta

in
e
d
 w

it
h
 h

e
m

a
to

x
y
lin

-e
o
si

n
. 

B
. 

M
o
d
e
l 
d
ia

g
ra

m
 o

f 
a
 g

ra
n
u
lo

m
a
. 

 I
n
fe

ct
e
d
 M

φ
 r

e
le

a
se

 c
h
e
m

o
a
tt

ra
ct

a
n
ts

 t
h
a
t 

a
tt

ra
ct

 m
o
re

 m
a
cr

o
p
h
a
g
e
s,

 N
K

-c
e
lls

 a
n
d
 T

-c
e
lls

 

w
h
ic

h
 i
n
 t

u
rn

 c
re

a
te

 a
n
 I

F
N

γ
 a

n
d
 p

ro
-i
n
fl
a
m

m
a
to

ry
 c

y
to

k
in

e
-r

ic
h
 m

ic
ro

e
n
v
ir
o
n
m

e
n
t 

w
h
ic

h
 s

ti
m

u
la

te
 i
n
co

m
in

g
 m

o
n
o
cy

te
s 

to
 f

u
se

 

a
n
d
 f

o
r 

M
G

C
s 

to
 e

n
ca

se
 t

h
e
 i
n
fe

ct
io

n
. 

F
ro

m
 (

G
u
ir
a
d
o
 a

n
d
 S

ch
le

si
n
g
e
r,

 2
0
1
3
) 

w
it
h
 p

e
rm

is
si

o
n
s.

  

 



42 
 

The granuloma functions to encapsulate the bacterium so that it cannot spread but 

does not actually function to destroy the pathogen. The role of granuloma 

development and whether it is beneficial to the host is still highly debated; Davis and 

Ramakrishnan (2009) demonstrated in zebrafish that early granuloma production 

assisted the bacterium in spreading to newly recruited Mφ. However, they did not 

analyse the effect that MGC formation and engulfment would have during the later 

stages of granuloma formation and their zebrafish model lacked adaptive immune cells 

that are important in cytokine signalling during granuloma development (Bold and 

Ernst, 2009). An increase in CD16+ monocyte populations in the bloodstream in 

response to TB infection or granuloma have been reported by multiple investigators 

(Castaño et al., 2011; Lastrucci et al., 2015; Park et al., 2014). However, the individual 

contribution of the monocyte subsets towards MGC formation remains largely 

unknown and under-investigated and could reveal potential strategies for combating 

advanced-stage granuloma.  

1.4 MECHANISMS OF MONOCYTE FUSION 
The exact mechanism by which monocytes fuse to become MGC is still largely 

unknown and is likely to require the participation of multiple receptors and proteins to 

coordinate the en masse rearrangement of cytoskeletal structures and overcome the 

repulsive forces of the cell membranes. Homotypic monocyte fusion is a complex 

multistep process and can be subdivided into three key stages: competence, contact 

and commitment. In all three stages mentioned below, there is evidence of tetraspanin 

proteins forming partnerships with many of the membrane bound fusion-mediating 

proteins. The role and partnerships of tetraspanins will be discussed at length in the 

next section. 

 

1.4.1  MONOCYTE FUSION: COMPETENCE & COMMUNICATION 
In steady state when circulating in the bloodstream or patrolling the non-bone tissues; 

monocytes and Mφ do not fuse. To initiate a fusion-ready state, the monocytes must 

first be made fusion-competent by pro-fusion cytokines. These cytokines in turn 

trigger the transcription and upregulation of certain genes whose products facilitate 

fusion. Monocyte differentiation into Mφ has been shown to eliminate fusion 
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competence (Möst et al., 1997). Monocyte cultured in serum containing media for 8 

days to form macrophages were unable to fuse when ConA was added. However, Möst 

and collegues (1997) observed that when freshly isolated monocytes were added to 

the Mφ with ConA media the two cells types could fuse and form MGC. These findings 

suggest monocytes are the more fusion-competent of the monocyte lineage. 

 

As previously described, monocytes can be induced to form LGC using IFNγ and FBGC 

in response to IL-4+IL-13. IFNγ binds to the IFNγR which utilises the Jak1/Jak2 

kinases to phosphorylate and activate the signal transducer and activator of 

transcription 1 (STAT1) (Figure 1.7) (O’Shea et al., 2015). Phosphorylated STAT1 

forms a homodimer that is able to enter the nucleus and promote the transcription of 

a multitude of genes by binding the IFN-gamma activated sequences (GAS) to create 

a fusion-competent cell (Ramana et al., 2000). IL-4 and IL-13, on the other hand, are 

both able to bind the same receptor or their own individual receptors and utilise 

Jak1/Jak2/Jak3/Tyk2 kinases to activate and homodimerise STAT6 which binds a 

different array of genes that lead to fusion competence (Goenka and Kaplan, 2011; 

Wurster et al., 2000). It is interesting that these two different pathways are able to 

facilitate fusion and form MGC with different morphological features. 

 

IL-4/IL-13 but not IFNγ signalling are able to upregulate the expression of triggering 

receptor expressed by myeloid cells 2 (TREM-2) on Mφ and moDC (Turnbull et al., 

2006). TREM-2 is an integral membrane receptor that is able to bind a range of anionic 

bacterial factors (e.g. LPS) and apoptotic signals on host cells (Hsieh et al., 2009). 

Upon binding its ligand TREM-2 subsequently recruits DNAX activating protein of 12kD 

(DAP12) which possesses an immunoreceptor tyrosine-based activation motif (ITAM). 

Src family kinases phosphorylate the ITAM sites to recruit spleen tyrosine kinases (syk) 

which is phosphorylated to become activated, detach from DAP12 and activate the 

phosphatidylinositol 3-kinase (PI3K), NF-κB and Akt pathways (Paradowska-Gorycka 

and Jurkowska, 2013).  The end result is a mass upregulation of hundreds of fusion-

competence genes, such as DC-STAMP and E-cadherin (Helming et al., 2008). 
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Expression of particular proteins has been observed on fusion-competent monocytes 

and many have proven to be essential for fusion by using blocking antibodies. 

Dendritic cell-specific transmembrane protein (DC-STAMP) is an integral membrane 

protein that has been shown using knockout mice to be essential for formation of 

FBGC and osteoclasts (Yagi et al., 2005, 2007). Interestingly, DC-STAMP expression 

is controlled by different transcription factors in FBGC and osteoclasts. Yagi et al. 

(2007) demonstrated with chromatin immunoprecipitation that the transcription 

factors PU.1 and NF-κB were responsible for the promotion of DC-STAMP in IL-4 

derived FBGC formation. In RANKL driven osteoclast formation they demonstrated that 

the promotors of DC-STAMP were instead NFATc1 and c-Fos by using an NFATc1 

inhibitor and c-Fos knockout mice. Despite its vital role in FBGC and osteoclast 

formation the mechanism by which DC-STAMP contributes to fusion is still unknown. 

 

Matrix metalloprotease-9 (MMP-9) is a zinc dependent endopeptidase that can digest 

the extracellular matrix and cleave cytokines into active or inactive forms. 

MacLauchlan et al. (2009) demonstrated in vitro that blocking MMP-9 activity with 

antibodies did not arrest fusion but did act to significantly decrease the size of FBGC 

and % of fused nuclei. They then showed in vivo using MMP-9 null mice that FBGC 

could still form on implants but were significantly reduced in their capacity to form 

large FBGC (MacLauchlan et al., 2009). E-cadherin is a calcium dependent 

transmembrane protein that contributes to cell-cell adhesion by binding adjacent E-

cadherins  homotypically (Moreno et al., 2007) and is involved in the formation of tight 

junctions (Wanat et al., 2015). Upon ligand binding the intracellular domain of E-

cadherin recruits α- and β-catenin which facilitates actin polymerisation to link the 

cytoskeleton to the bound E-cadherin (Van Den Bossche et al., 2009). Moreno et al. 

(2007) observed that IL-4 stimulated mouse monocytes expressed E-cadherin in a 

STAT6 dependent manner, they then found that anti-E-cadherin antibodies inhibited 

the formation of large MGC but, unlike anti-DC-STAMP antibodies, they did not arrest 

fusion outright. Wong and colleagues have observed that the surface expression of E-

cadherin was highest in nonclassical and intermediate monocytes and lowest in the 

classical monocytes (unpublished data). They also observed that the expression of 
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DC-STAMP was significantly higher in intermediate monocytes (unpublished data), 

possibly implicating a heightened role of intermediate monocytes in the fusion process. 

 

1.4.2 MONOCYTE FUSION: CONTACT AND CONTRACTION 
Once a monocyte has become fusion-competent and its transcriptome modulated by 

pro-fusion signals it must attract other monocytes or migrate towards other fusion-

competent monocytes to fuse. CCL2 is highly secreted by fusing monocytes (Khan et 

al., 2015; Kyriakides et al., 2004; Moon et al., 2016). Khan et al. (2015) revealed with 

mRNA analysis that CCL2 transcription levels were 9- and 16-fold higher in M-

CSF+RANKL and GM-CSF+IL-4 cultured monocytes compared to Mφ. They also 

showed that FBGC and osteoclast formation was significantly reduced in CCL2 

knockout mice. 

 

Monocytes responding to CCL2 must migrate using adhesion molecules and get close 

to one another by utilising surface adhesion molecules such as integrins. Integrins are 

a family of transmembrane proteins involved in adherence and outside-to-inside 

cellular signalling. Integrins exists as heterodimers comprising of an α subunit and a 

β subunit. Different α and β subunits can dimerise to produce different integrins for 

different ligands. In mammals there are 24 known integrin heterodimers composed of 

18 different α subunits and 8 β subunits (Hynes, 2002). Specifically, β1 and β2 have 

recently been shown to be important in FBGC formation and have been revealed to 

be highly expressed following IL-4 treatment by multiple studies including confocal 

microscopy (McNally et al., 2007). The β2 integrin lymphocyte function-associated 

antigen 1 (LFA-1 or αLβ2 or CD11a:CD18) and its ligand intercellular adhesion 

molecule 1 (ICAM-1 or CD54) have been shown to play an important role in monocyte 

fusion. Möst et al. (1990) used antibodies targeting LFA-1 and ICAM-1 to show almost 

complete arrest of fusion indicating their involvement in cell-cell contacts as a 

necessary step towards monocyte fusion. 

 

The macrophage fusion receptor (MFR) was first observed in 1995 by Saginario and 

collegues when they found that by blocking the MFR with antibodies the rat Mφ would 

still aggregate and make cell clumps but were unable to fuse their membranes. It was 



47 
 

later reported by Han et al. (2000) that CD47 was the ligand for MFR and that fusion-

competent Mφ upregulate their expression of both MFR, CD47 and a partner protein 

CD44. The current hypothetical model (Figure 1.8) is that upon MFR binding to CD47 

on an adjacent monocyte, the MFR undergoes a change in quaternary structure and 

contracts, thus pulling the two membranes together, the CD44 molecule acts to 

stabilise this process and is shed upon MFR-CD47 contortion  (Vignery, 2005). The 

formation of such tight gap junctions between monocytes and MGC has recently been 

confirmed by transmission electron microscopy images (Imaizumi et al., 2016). Signal-

regulatory protein alpha (SIRPα) is another ligand to CD47 that has been implicated 

in the formation of contacts between fusing monocytes (Han et al., 2000; Wang and 

Pfenninger, 2006). The surface expression of SIRPα in intermediate and nonclassical 

monocytes have been shown to be twice that of classical monocytes (Wong et al. 

unpublished data) but its exact roll in fusion remains unknown. 

 

1.4.3 MONOCYTE FUSION: COMMITMENT AND COMPLETION 
Once two fusion-competent monocytes have made contact and their membranes have 

committed to fusion there needs to be an array of proteins facilitating cytoskeletal and 

lipid rearrangements as the two cells merge. 

 

As the membranes are brought into close proximity by MFR-CD47 complexes, the 

presence of the CD44 partner protein allows the recruitment of cytoplasmic ezrin-

radixin-moesin (ERM) proteins. ERMs have been shown to bind the cytoplasmic 

domain of CD44 directly and are able to polymerise actin and rearrange the local 

cytoskeleton to stabilise the close cell contacts. Furthermore, EWI-2 and EWI-F 

(named for their conserved Glu-Trp-Ile motif) are also able to recruit cytoplasmic ERM 

and are partners to the tetraspanin proteins CD9 and CD81 (Sala-Valdés et al., 2006). 

CD9 and CD81 have been increasingly implicated as major organisers of fusion 

proteins (Charrin et al., 2013; Hulme et al., 2014; Parthasarathy et al., 2009; Takeda 

et al., 2003) and cell motility (Berditchevski and Odintsova, 1999; Takeda et al., 2008). 
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Figure 1.8: Theoretical Model of MFR-CD47 Tethering of Fusing 
Membranes 

The MFR of a fusion competent monocyte binds to a CD47 of another monocyte. 

MFR-CD47 complexing favours a contraction of the two proteins to bring the two 

membranes closer together. CD44 acts as a partner protein and stabilises the 

complex and is shed once the contracted state has been achieved. 

From (Vignery, 2005) with permissions.  
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The fusing cells not only need to mediate strong cell-cell contacts but must also 

establish strong contacts with the surface it is adhered to. Kitazawa et al. (1995) used 

Northern blot analysis on IL-4 treated mouse Mφ to show that αVβ3 is upregulated in 

a dose-dependent manner to IL-4. αVβ3 binds vitronectin and when activated form 

clusters of multiple αVβ3 units that are able to activate intercellular actin cytoskeleton 

polymerisation (Cluzel et al., 2005). αVβ3 expression has been shown to be vital for 

correct actin ring formation in osteoclasts for podosome formation (Izawa et al., 2012; 

McHugh et al., 2000) as well as adherence and formation of FBGC (McNally et al., 

2008). 

 

P2X7 is an ATP gated cation channel that is also able to act as membrane pore 

(Rassendren et al., 1996). P2X7 expression has been seen to increase on fusion 

competent monocytes stimulated with IFNγ while anti-P2X7 blocking antibodies  

significantly inhibited MGC formation (Falzoni et al., 1995; Pellegatti et al., 2011). The 

pore function of P2X7 has also been shown to increase the outer membrane content 

of phosphatidylserine (MacKenzie et al., 2001), a phospholipid that is usually in the 

inner leaflet of the plasma membrane that, when exposed on the outer leaflet, labels 

a cell for apoptosis (Fadok et al., 1998; Greenberg et al., 2006) or fusion (Helming et 

al., 2009). Phosphatidylserine is recognised and bound by the class B scavenger 

receptor CD36 (Silverstein et al., 1992). Helming et al. (2009) demonstrated that bone 

marrow derived Mφ from CD36 knockout mice were inhibited in their capacity to form 

FBGC but not osteoclasts. They also demonstrated that CD36 and phosphatidylserine 

interact directly by masking phosphatidylserine with annexin V in CD36 competent 

Mφ, which inhibited fusion. CD36 was later found to be highly co-localised with the 

tetraspanin CD9 on Mφ and genetic deletion of CD9 significantly reduced CD36-

mediated uptake of phosphatidylserine (Huang et al., 2011).  

 

1.4.4 FUSION MECHANISMS IN ALTERNATIVE SYSTEMS 
Though this thesis focuses on the fusion of monocytes to form multinucleated giant 

cells it does not mean that this is the only form of membrane fusion that occurs within 

humans. Indeed, membrane fusion is essential for the creation, development and 

maintenance of all Animalia. At the very creation of life, two haploid gametes must 
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undergo heterotypic fusion of their membranes to create a new totipotent cell; the 

earliest form of “life”. In mammals where gestation occurs in utero; the developing 

blastocyst must gain nutrients from the mother and expel waste products into her 

bloodstream. To do this without evoking an immune reaction from the mother’s 

leukocytes the blastocyst’s outer cytotrophoblasts undergo homotypic fusion to form 

syncytiotrophoblasts (Schumacher et al., 2013). This multinucleated giant cell forms 

a leukocyte-impenetrable layer for the blastocyst whilst allowing for the diffusion of 

vital nutrients. As the foetus develops myoblasts undergo homotypic fusion to 

generate skeletal muscle. Furthermore, within every cell, vesicles are trafficked from 

the endoplasmic reticulum to the surface to express integral membrane proteins or 

release cell signalling molecules by exocytosis. Throughout life our immune systems 

are bombarded by a range of pathogens including viruses. The membrane coated 

viruses enter host cells via membrane fusion to hijack host machinery and replicate. 

It is clear that membrane fusion is an important process in many stages of life and 

are worthy of further explanation before narrowing the focus on homotypic monocyte 

fusion. 

 

To achieve fusion of two lipid bilayers all the membrane fusion events listed previously 

all follow a similar pathway to integration; competence, contact and commitment to 

fusion. The competence state requires that one or both of the fusing membranes 

contain proteins that can tether the two membranous bodies together. Further 

contacts are made between the two membranes and in some cases tethered proteins 

can contract to pull the membranes within the necessary ~4nm distance (Siegel, 1993; 

Warner and O’Shaughnessy, 2012). Although the exact mechanism of membrane 

integration is unknown, it is thought that once the membranes have been brought into 

contact the outer lipid layers mix into a transient state known as hemifusion (Kozlovsky 

and Kozlov, 2002; Warner and O’Shaughnessy, 2012). Through this the inner lipids 

flip and open up a fusion pore whereby membrane assimilation is energetically 

favourable. 

 

In the case of a spermatozoon and an oocyte, the spermatozoon expresses a protein 

called Izumo1 (named after the Izumo-taisha shrine in Japan which honours the god 
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of marriage) while the oocyte expresses Izumo1’s ligand; Juno (named after the 

Roman goddess of love and marriage) (Aguilar et al., 2013; Bianchi et al., 2014; Inoue 

et al., 2005; Melcher, 2016). Before Izumo1 and Juno have made contact the 

spermatozoon must bypass the cumulus cells and zona pellucida protecting the oocyte. 

The spermatozoon releases digestive enzymes to break down the zona pellucida and 

in doing so releases internalised Izumo1 to the outer membrane thus establishing its 

fusion competence (Barros et al., 1996; Krauchunas et al., 2016). As the two 

membranes meet, multiple Izumo1 units on the spermatozoon’s form a tight clamp-

like association with Juno in a 1:1 ratio (Ohto et al., 2016). The mechanisms of fusion 

thereafter are not known but the binding of Juno and Izumo1 has been shown to be 

essential for gamete fusion using Izumo1-targeting antibodies (Inoue et al., 2005). 

CD9 has also been shown to play a vital role in mice using CD9 knockout mice (Kaji 

et al., 2000) but again its exact role in gamete fusion remains elusive. 

 

Within one week of fertilisation the blastocyst must establish a source of nutrients to 

survive and continue growth. Within the womb the only available source of nutrients 

is the mother’s bloodstream. However, the mother’s immune system would quickly 

identify the invading blastocyst and mount an immune attack. To avoid infiltration and 

rejection by the maternal leukocytes the blastocyst produces a multinucleated giant 

cell called a syncytiotrophoblast that shields it from the maternal immune system 

(Guleria and Sayegh, 2007; Koch and Platt, 2012). Patrolling maternal phagocytes can 

transmigrate between cells but they cannot migrate directly though the 

syncytiotrophoblast itself. The syncytiotrophoblast is produced and maintained by the 

fusion of cytotrophoblasts which the blastocyst produces at the uterus-blastocyst 

border. The syncytiotrophoblast invades the uterus epithelium to both embed the 

blastocyst and establish a close-contact site with the maternal capillaries for diffusion 

of waste and nutrients (Huppertz and Gauster, 2011).  

 

Once the blastocyst has been completely surrounded by the uterine endometrium the 

invasive syncytiotrophoblast takes on a more passive role. Maintained by the fusion of 

more cytotrophoblasts, the single all-encompassing syncytiotrophoblast releases β-

human chorionic gonadotropin (β-hCG) and human placental lactogen (hPL) 
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(Handschuh et al., 2007). β-hCG acts to both stimulate the ovaries to release 

progesterone which increases angiogenesis of the uterus lining to sustain the 

developing foetus and attract and activate regulatory T-cells to confer immune 

tolerance of the developing foetus (Cole, 2010). hPL acts to increase the glucose 

content of the mother’s bloodstream (for the developing foetus to utilise) by inhibiting 

maternal insulin sensitivity (Hill et al., 1986). 

 

The fusion of cytotrophoblasts with the growing syncytiotrophoblast has been shown 

to be largely mediated by syncytin proteins (Huppertz and Gauster, 2011; Mi et al., 

2000). Syncytin proteins are believed to be derived from an ancient retroviral insertion 

of env genes into the mammalian genome that was subsequently domesticated to 

facilitate in utero gestation. Syncytins show structural and functional similarities with 

modern day class I cell fusion proteins found on membrane coated viruses 

(Podbilewicz, 2014). Syncytin-1 is expressed on trophoblasts and interacts with human 

sodium-dependent neutral amino acid transporter type 1 and 2 (hASCT1/hASCT2) 

expressed by the syncytiotrophoblast (Lavillette et al., 1998; Marin et al., 2000).  

 

Syncytin-1 has several key structural features that are vital to the fusion mechanism. 

The functioning unit consists of a trimer of syncytin-1 peptides; each containing a 

small cytoplasmic and transmembrane domain, a highly hydrophobic fusion peptide 

sequence proximal to a furin cleavage site (RNKR), two distal cysteine-rich motifs and 

a hASCT2 binding sequence (115-SDGGGX2DX2R-125) (Gerbaud and Pidoux, 2015). The 

two distal cysteine rich motifs form a disulphide bond that is cleaved upon binding of 

trophoblast syncytin-1 to syncytiotrophoblast hASCT2. This cleavage induces a 

structural loop to helix change that propels the hydrophobic fusion peptide into the 

neighbouring membrane ~10nm away (Gerbaud and Pidoux, 2015). Once embedded 

the two opposing membranes are irreversibly anchored and retraction of the syncytin-

1 trimer leads to membrane contortion and eventually fusion. 

 

Syncytin-1 is an example of a domesticated retroviral membrane fusion protein, 

however, modern membrane coated viruses such as influenza, HIV and Ebola utilise 

similar proteins to facilitate membrane fusion and host cell invasion (Podbilewicz, 
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2014). Influenza heamagglutinin, like syncytin-1, is a class I membrane fusion protein 

that follows a similar mechanism to membrane fusion but shares almost no sequence 

similarity. Heamagglutinin forms a trimer on the viral membrane with the hydrophobic 

fusion peptide internalised within the trimer forming contacts with conserved charged 

residues (Epand, 2003; Floyd et al., 2008). When the virus is exposed to an acidic 

environment, such as endocytosis, the conserved charged residues are protonated 

which releases the fusion peptide from its internalised state (Xu and Wilson, 2011). 

Upon protonation the helix-loop-helix supporting the fusion peptide forms an extended 

α-helix that propels the fusion peptide into the nearby host membrane, tethering the 

viral membrane to the host endosome. It is thought that like syncytin-1, subsequent 

contraction of the extended heamagglutinin timer results in merging and fusion of the 

two membranes and the release of viral cargo into the host cytoplasm (Xu and Wilson, 

2011). 

 

In humans at least, it is clear that there is a wide variety of fusion-mediating proteins 

that are utilised by different cell-types to achieve membrane fusion. The coordination 

of all these proteins to achieve fusion is likely to require other proteins to organise the 

machinery, one such family, the tetraspanins, have been implicated as the molecular 

organisers of fusion. 
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1.5 TETRASPANINS 
Tetraspanins are a family of relatively small (20-50kDa; ~250 amino acids) integral 

membrane proteins (Maecker et al., 1997; Wright and Tomlinson, 1994). Humans 

possess 33 tetraspanins and the family has members in other eukaryotes such as 

Drosophila and Caenorhabditis as well as plants, fungi (excluding yeasts) and protozoa 

(Henkle et al., 1990; Todres et al., 2000; Tomlinson and Wright, 1996). Tetraspanins 

have no enzymatic activity yet they are involved in a wide range of processes ranging 

from cell motility, microdomain organisation, viral entry, adhesion and membrane 

fusion (Hemler, 2003, 2005). However, in the context of this review the tetraspanins 

discussed will be the members involved in membrane fusion and formation of 

multinuclear giant cells. 

 

1.6 TETRASPANIN STRUCTURAL FEATURES 
The conservation of tetraspanins across different phyla suggests they originated early 

in evolution of eukaryotes (Figure 1.9) and are involved in important processes 

(Boucheix and Rubinstein, 2001). Key features of the tetraspanin structure include 

four membrane-spanning domains beginning and ending in short N- and C-termini and 

two extracellular domains; one small (EC1) and one large (EC2). CD37, CD63, CD82 

and CD151 possess C-terminal tyrosine based internalisation motifs (Yxxφ) 

(Berditchevski, 2001) which can be recognised by adaptor coat proteins of the 

endocytosis pathway (Pandey, 2009). Due to the dependence of tetraspanins on the 

membrane to maintain structural integrity it has not yet been possible to gain a crystal 

structure of an entire tetraspanin. Crystal structures of the solubilised EC2 domain 

exist (Kitadokoro et al., 2001) and the structure of the transmembrane regions have 

been predicted by molecular modelling (Figure 1.10) (Seigneuret, 2006). 

 

1.6.1  EC1 & EC2  
The two extracellular loops show the most sequence divergence of the whole 

structure, both between different tetraspanins of the same species and orthologues in 

different species. The EC1 and EC2 loop comprise of 13-30 and 70-140 amino acid 
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Figure 1.9: Tetraspanin Primary Structure Distance Tree 

The primary amino acid sequence of each human tetraspanin above is compared 

and distributed to show relative divergence. Tetraspanins are grouped into 

branches based on their similarity and probable divergence after gene duplication. 

The scale-bar represents 10% amino acid difference. Tetraspanins marked with an 

“*” possess four cysteines in the EC2 domain, “**” possess eight and all other 

tetraspanins possess six. 

From (Boucheix and Rubinstein, 2001) with permissions.  
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Figure 1.10: 3D Crystal Structure of CD81 with Predicted 
Transmembrane Regions. 
A: Ribbon structure of CD81 with a rotational view showing the EC2’s rigid A, B 

and E α-helices (red), C & D fluid α-helices (pink) and short  EC1 β-strand. The 

EC2 domain faces the extracellular (EC) space and the N- and C- termini are 

intracellular (IC). 

B:  The surface topography (left) utilises the same colouring system as “A” and 

shows the spatial arrangement of the different domains with the disulphide bridges 

more obvious in yellow. The right sided surface topography is recoloured with 

highly polar residues as red and hydrophobic residues as blue. 

From (Seigneuret, 2006) with permissions.  
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residues respectively. The EC2 domain contains the highly conserved CCG motif which 

interacts with another conserved Cys that resides near the 4th transmembrane region 

(Hemler, 2001; Parthasarathy et al., 2009). A PXXC motif contains the fourth and final 

Cys required to form the two disulphide bonds that are a characteristic motif of 

tetraspanins (Stipp et al., 2003).  The EC2 is the most variable of the two extracellular 

domains and has been shown to be essential in forming associations with partner 

proteins to carry out functions. Kazarov et al. (2002) demonstrated that by deleting 

the QRD194–196 residues in the CD151 EC2 they could abrogate CD151-α3β1 and –α6β1 

association, trafficking and inhibit cell migration. Zhu et al. (2002) found that deletions 

of the SFQ173-175 residues in the EC2 of CD9 of mouse oocytes completely abolished 

sperm-egg fusion. Furthermore, anti-tetraspanin antibodies targeting the EC2 have 

been used extensively to bind and interfere with tetraspanin enriched microdomain 

(TEM) formation and tetraspanin functions (Parthasarathy et al., 2009; Takeda et al., 

2003; Yáñez-Mó et al., 2001). 

 

More than half of known tetraspanins possess additional cysteines in their EC2 

domains that might form disulphide bridges to add stability to the structure (Hemler, 

2001; Parthasarathy et al., 2009). The crystal structure of CD81-EC2 was solved to 

1.6Å by Kitadokoro and colleagues in 2001. They discovered the EC2 domain to be 

composed of five α-helices (A-E); helices A, B and E form a U-shape on one plane and 

C and D form a more fluid variable region. So far little has been revealed about the 

functions of the EC1 domain, however, Masciopinto et al. (2001) demonstrated that 

CD81-EC1 deletion results in a decreased surface expression of CD81 due to a failure 

to traffic the tetraspanin from the golgi to the surface. 

 

1.6.2  THE FOUR TRANSMEMBRANE HELICES 
The four transmembrane helices of the tetraspanins show notable conservation 

between different species; a necessary feature to allow tetraspanin-tetraspanin 

associations in the TEMs (Kashef et al., 2012). This was demonstrated by Berditchevski 

et al. (2001) when they deleted CD151-EC2 and discovered that it could still co-localise 

with tetraspanins CD9, CD63 and CD81. This style of intramembrane association 

contrasts with the typical mechanism of transmembrane protein complex formation, 
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in which membrane bound proteins interact via charged extracellular domains. Helices 

1, 3 and 4 contain conserved charged and polar residues e.g. Asn, Gln and Glu 

(Hemler, 2005) which are thought to become protonated in the membrane allowing 

them to interact with the lipid alkyl chains via hydrogen bonds and stabilise the 

structure (Gratkowski et al., 2001; Zhou et al., 2000).  

 

1.6.3  PALMITOYLATED CYSTEINES 
There are six conserved cysteines which act as sites of palmitoylation: four cysteines 

in the transmembranal helices, one N- and another C-terminal membrane-proximal 

cysteines. The membrane-proximal cysteine residues on the tetraspanin become 

palmitoylated during post-translational modification, these membrane-embedded 

palmitoyl groups may form hydrophobic interactions with membrane lipids to stabilise 

the structure (Yang et al., 2002).  Palmitoylation of these cysteines has been shown 

to be important for initial establishment of tetraspanin-tetraspanin interactions and 

formation of the tetraspanin web (Charrin et al., 2002; Kovalenko et al., 2004). The 

palmitoylated sites appear to stabilise the tetraspanin structure alongside the 

transmembrane polar residues and maintain a certain level of membrane rigidity. 

Deletion of the palmitoylation sites of CD151 resulted in a decrease in lateral 

associations with CD9 and CD63 but did not inhibit CD151 associating with its α3β1 

binding partner (Yang et al., 2002). Furthermore, site-directed mutagenesis of CD9 

palmitoylation sites led to a loss in its detergent resistant association to CD81 (Charrin 

et al., 2002). 

 

1.7 TETRASPANIN ENRICHED MICRODOMAINS AND THE “TETRASPANIN 

WEB” 
In vivo, tetraspanins are known to co-localise with other membrane proteins and 

associate molecules into a TEM (Charrin et al., 2003; Hemler, 2008). By generating a 

TEM, the tetraspanins group together proteins of similar pathways allowing proteins 

to work together with greater efficiency than if they were scattered throughout the 

membrane (Figure 1.11). This tetraspanin-facilitated organising of transmembrane 

proteins and with binding partners is often referred to as the “tetraspanin web” (Levy 
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and Shoham, 2005a; Zuidscherwoude et al., 2015). TEMs are not the same as lipid 

rafts as the two can be fractionated independently on sucrose gradients (Yang et al., 

2004). Furthermore, there is evidence that tetraspanins can recruit proteins from lipid 

rafts. Suzuki et al. (2009) demonstrated that CD14 and TLR4 on naïve Mφ were 

suspended in lipid rafts but upon LPS stimulation they were recruited by CD9 to the 

TEM fraction of the sucrose gradient. 

 

The structure of TEM has been a point of growing controversy. Proteomic studies 

(André et al., 2006) have revealed long lists of tetraspanin binding partners and multi-

staining fluorescence microscopy (Nydegger et al., 2006) has shown that tetraspanins 

co-localise with other tetraspanins in regions of the membrane leading many 

researchers to conclude that active TEMs exist as a vast scaffold of associated proteins 

(Andreu and Yáñez-Mó, 2014; Levy and Shoham, 2005b; Zöller, 2009). However, the 

van Spriel group used dual colour stimulated emission depletion (STED) microscopy 

to show that CD37, CD53, CD81 and CD82 were localised in separate clusters 

(~120nm in size) on the membrane of moDC. They proposed a new model for TEMs 

whereby tetraspanins exist in small clusters of no more than 10 tetraspanin molecules 

and their binding partners and that separate clusters could drift through the 

membrane and co-localise with other tetraspanin enriched clusters (Zuidscherwoude 

et al., 2015).  

1.8 TETRASPANINS AND FUSION 
Due to their ability to organise multiple proteins and form TEMs, tetraspanins have 

been implicated in orchestrating cell fusion. CD9 and CD81 are among the most widely 

studied of the tetraspanins since the discovery that CD9 (Kaji et al., 2000; Naour et 

al., 2000) and CD81 (Rubinstein et al., 2006) knockouts in mice result in sterility as 

the gametes are unable to fuse. Interestingly this effect seems to be cell specific as 

CD9 and CD81 knockouts in myoblasts fuse uncontrollably and rapidly form 

multinucleated syncytia (Charrin et al., 2013). In vitro experiments utilising anti-

tetraspanin antibodies to bind and interfere with CD9 and CD81 on fusing human 

monocytes increased the number of nuclei per MGC suggesting an enhancement in 

fusion. In the same experiments anti-CD63 treatment significantly decreased the 
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fusion index of MGC but did not affect cell adhesion or migration (Parthasarathy et al., 

2009; Takeda et al., 2003). As the EC2 domains have been shown to be the site of 

many tetraspanin-partner interactions, soluble EC2 mimics have been used to bind the 

tetraspanin binding partners and in theory disrupt TEM formation. CD9-EC2 (Hulme et 

al., 2014) and CD63-EC2 (Parthasarathy et al., 2009) significantly inhibited ConA 

induced fusion of freshly isolated human monocytes.  

 

CD9 has been shown to form partnerships with multiple fusion related proteins (Figure 

1.12) such as the MFR ligand CD47 (Longhurst et al., 1999) and MFR partner protein 

CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 2000), CD36 scavenger receptor 

(Huang et al., 2011), MMP-9 (Herr et al., 2013) and EWI-2 (Stipp et al., 2001). Wong 

and colleagues found in flow cytometric studies that CD36 was expressed highest in 

steady-state human classical and lowest in nonclassical monocytes while CD44 was 

expressed highest in classical and intermediate and only at traceable levels in the 

nonclassical subset (unpublished data). On a genetic level, the expression of CD9 has 

been shown to be linked to the expression of fusion related proteins. Mensah et al. 

(2010) found that when they cultured mouse moDC in RANKL to generate osteoclasts 

the moDC split into DC-STAMPLow and DC-STAMPHigh cells. They noted the DC-

STAMPLow cells were able to augment fusion and appeared to have internalised DC-

STAMP in response to ligand binding and gaining fusion-competence. The DC-

STAMPLow cells showed a 1.5-fold upregulation in the transcription of CD9 and CD47. 

Garner et al. (2016) observed in human kidney cell lines that CD9 knock-down caused 

an 80% decrease in E-cadherin gene expression. In contrast, Huber et al. (2014) 

found that CD63 knock-downs expressed increased E-cadherin but decreased β-

catenin resulting in arrested motility (Figure 1.12). It is therefore unsurprising that 

CD9 has been so eminent in fusion studies, however, the association of CD9 with 

multiple partner proteins makes it difficult to determine which specific interaction is 

affected by CD9 interference.  

 

CD81 has also been shown to associate with CD36 (Heit et al., 2013) and EWI-2 (Sala-

Valdés et al., 2006) (Figure 1.12). CD81 has been shown to associate with MFR (Wang 

and Pfenninger, 2006) which, when bound to CD47 on another cell, could generate   
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Figure 1.12: Interactions of Tetraspanins, Adherence Proteins and 
Fusion Receptors. 

Tetraspanins are able to associate with a range of binding partners involved in 

adhesion (blue segment) or fusion (red segment). Tetraspanin-tetraspanin 

associations (white segment) allow for the formation of tetraspanin enriched 

microdomains containing multiple tetraspanins and binding partners to carry out 

cellular processes en masse. The coloured arrows indicate direct associations 

reported between a tetraspanin and an adhesion/fusion protein. The dotted 

coloured arrows indicate a genetic relationship between a tetraspanin and a 

relevant protein. Arrows for CD9, CD37, CD53, CD63, CD81, CD82 and CD151 are 

coloured as red, orange, yellow, green, blue, purple, pink, respectively. Filled black 

bars (white segment) indicate observed tetraspanin-tetraspanin interactions and 

dashed black arrows (blue/red segments) indicate reported interactions between 

adherence proteins/fusion receptors. 
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TEMs on opposing monocytes; however, existence of such a complex has yet to be 

proven. Of all the fusion proteins discussed, EWI-2 is able to associate with the widest 

range of tetraspanins, namely; CD9, CD81, CD82 (Zhang et al., 2003) and CD151 (this 

interaction is thought to be indirect through CD9) (Charrin et al., 2001). It seems 

therefore that tetraspanins play an active role in coupling adhesion proteins with actin 

cytoskeleton remodelling. CD82 is the only tetraspanin that has been shown to 

associate with and regulate αVβ3 (Ruseva et al., 2009); the integrin responsible for 

podosome integrity (McHugh et al., 2000). Pique et al. (2000) demonstrated with 

CD82 overexpressed cells that increased CD82 on host cells inhibited fusion, 

transmission and syncytia formation by human T-cell leukaemia virus type 1 (HTLV-

1).  

 

Antibodies targeting CD151 have been shown to inhibit human sperm-egg fusion 

(Ziyyat et al., 2006) and overexpression of CD151 in human melanoma cells 

significantly increased MMP-9 production and enhanced cell motility (Hong et al., 

2006). CD151 has also been shown to control β1 integrin trafficking, Liu et al. (2007) 

demonstrated by mutation of the CD151 endocytosis-sorting-motif in mouse 

embryonic fibroblasts that cellular migration could be arrested by inhibited integrin 

cycling.  

 

CD37 and CD53 share a common association with LFA-1 (Figure 1.12) and appear to 

both play a role in transducing apoptotic signals. The LFA-1 integrin associates with 

CD53 (Todros-Dawda et al., 2014) and CD37 via an interaction with the β2 unit (CD18) 

(Wee et al., 2015). CD37 has been shown to be a transducer of apoptosis by direct 

phosphorylation of its N-terminal domain (Lapalombella et al., 2012) whereas CD53 

has been shown by a genome-wide linkage scan to be a regulator of TNFα; an 

important pro-inflammatory cytokine that can activate NF-κB transcription (Bos et al., 

2010). CD53 has also been suggested to be a pro-inflammatory marker as its 

expression was increased when monocytes were differentiated into M1 (Tippett et al., 

2013). Furthermore, patients suffering from recurring non-pulmonary tuberculosis 

were found to have a congenital defect in CD53 (Mollinedo et al., 1997). 
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1.9 EXPRESSION OF TETRASPANINS IN MONOCYTE SUBSETS 
Since monocytes were not publically classified into three subsets until 2010 there is 

very little published data on tetraspanin expression on monocyte subsets. Ingersoll et 

al. (2010) quantified the expression of CD9 and CD81 in CD16- and CD16+ monocytes 

at steady state. They found that CD9 expression was slightly higher in CD16- 

monocytes and CD81 was marginally higher in CD16+ monocytes. Furthermore, they 

found that CD9 was expressed as a bimodal peak in CD16+ monocytes. Peng et al. 

(2011) separated monocytes by their expression of the high-affinity receptor for IgE 

(FcεRI) and found that FcεRIHigh cells expressed higher levels of CD9 and CD81. 

 

Tippett et al. (2013) used CD14/CD16 staining to quantify CD9, CD53, CD63 and CD81 

expression. CD9 and CD63 were expressed predominantly on Cl and at higher 

intensities, they found these decreased across the subsets with NCl expressing the 

least. CD53 was expressed on >95% of all monocytes but surface levels were 

significantly different between each subset with NCl expressing the most and Cl the 

least. CD81 was expressed on ~85% of all the subsets but was expressed significantly 

higher in NCl monocytes and lowest in Cl. While the literature on monocyte subset 

expression of tetraspanins is limited, currently, there is no publications on the 

tetraspanin expression of fusing monocytes/Mφ.  

 

Many questions remain about the role of tetraspanins and the individual contribution 

of the monocyte subsets to the formation of MGC. A greater understanding of MGC 

formation could aid in the development of treatments to tuberculosis and medical 

implant rejection.  

 

“It's the questions we can't answer that teach us the most. They teach us how to 

think. If you give a man an answer, all he gains is a little fact. But give him a question 

and he'll look for his own answers.” - Patrick Rothfuss, The Wise Man's Fear. 
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1.10 HYPOTHESES, AIMS AND OBJECTIVES  

1.10.1 HYPOTHESES 
Hypothesis 1: Monocyte subsets possess different propensities to fuse to form MGC.  

Hypothesis 2: Monocyte subsets mediate fusion by expressing certain combinations 

of tetraspanins. 

Hypothesis 3: The binding of anti-tetraspanin antibodies to fusion-mediating 

tetraspanins will abrogate or enhance fusion by interfering with their normal functions. 

1.10.2 AIMS & OBJECTIVES 
Aim 1: Optimise the fusion assay protocol to increase sampling sizes and automate 

the nuclei counting process to gain an accurate assessment of monocyte fusion. 

Aim 2: Purify the monocyte subsets and quantity their individual ability to fuse. 

Aim 3: Determine the surface expression of tetraspanins at steady state and when 

cultured in fusogenic conditions. 

Aim 4: Establish which anti-tetraspanin antibodies, if any, affect the fusion of ConA 

treated monocytes. 
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2 CHAPTER 2: MATERIALS AND METHODS 

2.1 MATERIALS 
Table 1: Lab Consumables 

Lab Consumable Supplier Cat No 

0.2 ml Individual Flat Cap Tubes 
Thermo Scientific 
Abgene 

AB-0620 

0.4% Trypan Blue Stain (20ml) Sigma-Aldrich T8154-20ML 

0.5M EDTA , pH 7.3, ultra-Pure 
Grade, 1L 

1st BASE 
BUF-1051-1L-pH7.4 

 

0.5ml Micro Tubes Greiner, Germany 667201 

1000μL Traditional Shaped Tip, Blue, 
NP Tip, Bulk, Sterile 

Neptune BITX2110.B 

10X PBS Buffer 
Biopolis Shared 
Facilities Media 
Preparation Unit 

https://www.bsf.a-
star.edu.sg/Portal/P
ages/BMG/BMG 

200μL Univ. Tip, S3 Tip,  Neptune BITX2102 

35mm Glass Bottom Petri Dish, Well 
Diameter 14mm, Thickness no. 0 

MatTek 35-T0-14-U 

96-well Clear V-Bottom, Sterile Corning 3960 

96-well plate, Tissue Culture Treated, 
black frame with clear flat bottom, 
polystyrene (#3904) 

 

Corning™  07-200-588 

Blunt Needle 18gx1.5 inch 
BD - Becton 
Dickinson 

305180 

Bottle Top Vacuum Filter, 0.22μm Corning 430513 

Bovine Serum Albumin (BSA), 
lyophilized powder. 

Sigma-Aldrich A9418 

Cell Scraper 23cm Nunc NNU 179693-PK 
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Centrifuge Tube 50ml Blue Cap 
BD Falcon – 
Becton Dickinson 

35 2070 

Centrifuge Tube 50ml Blue Cap  
BD Falcon - Becton 
Dickinson 

35 2070 

Centrifuge tube, 15ml, Racked Greiner, Germany 188261 

Concanavalin A, Type IV-S, 
Lyophilized powder 

Sigma-Aldrich C5275 

Disposable Haemacytometer C-Chip 
Neubauer  

NanoEnTek, Korea DHC-N01 

PBS (10x) without Ca2+  or Mg2+ Lonza 17-515Q 

Fetal Calf/ Bovine Serum (FCS), Heat 
Inactivated 

Gibco™ Thermo 
Scientific 

10082147 

Ficoll-Paque™ PLUS 
GE Healthcare Life 
Sciences 

17-1440-02 

Human AB Serum  (HS) 
Innovative 
Research Inc 

IPLA-SERAB 

IMDM withL-glutamine, Phenol Red & 
HEPES 

Lonza 12-722F 

8-Chamber Lab-Tek II Slide System  Nunc NNU 154534-PK 

Latex 12" Powder Free Gloves, Large 
Faith Touch 

 

GL-LT-12PFDT-L 

 

MACS Separation LD Columns Miltenyi Biotec 130-042-901 

Micro Tubes 1.5ml Snaplock  Axygen Scientific MCT-150-C 

Microscope Round Cover Glass 
Ø13mm 

Paul Marienfeld, 
Germany 

01 115 30 

Parafilm 2in X 250ft Roll VWR 52858-076 

Paraformaldehyde 

powder, 95% 
Sigma-Aldrich 158127-500G 

Penicillin-Streptomycin (10,000 units 
ml-1 & 10mg ml-1) 

Biological 
Industries 

03-031-1B 

Pipet 10ml Single Wrapped  
BD Falcon - Becton 
Dickinson 

35 7551 
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Pipet 25ml Single Wrapped 

BD Falcon - Becton 
Dickinson 

 

35 7525 

 

Pipet 5ml Single Wrapped  
BD Falcon - Becton 
Dickinson 

35 7543 

Pipette Tip Reload System, 0.1-10ul QSP QSP T104RL-Q-PK 

Sodium Azide (NaN3), ≥99.5% Sigma-Aldrich S2002 

Syringe 20cc Luer-Lok 
BD - Becton 
Dickinson 

300141 

Tally Counter Heinz, Germany 2131 803 

Tissue Cell culture plate 24-well 
sterile with lid 

Greiner, Germany 662160 

2.1.1  CELL SAMPLES 
All experiments were carried out on monocytes derived from human blood collected 

in ethylenediaminetetraacetic acid (EDTA) anticoagulant at a final concentration of 

1.5mg/ml. For experiments with unpurified monocytes and for peripheral monocyte 

tetraspanin expression, Human mononuclear phagocytes were obtained from 

peripheral blood taken from healthy volunteers with ethics approval from the South 

Sheffield Research Ethics Committee [07/Q2305/7]. For all experiments using purified 

monocyte subsets, cells were obtained from apheresis ‘cones’ donated by the 

Singapore Health Sciences Authority from anonymous platelet donors in Singapore. 

Apheresis cones contain 400-1200x106 PBMCs cone-1, of which; 67.78±8.63% 

lymphocytes, 24.62±8.94 monocytes, 4.99±2.59% neutrophils, 2.22±0.72% 

basophils and 0.39±0.49% eosinophils (Néron et al., 2007; Pfeiffer et al., 2013). 

Singapore samples were handled with the guidelines directed by the National 

University of Singapore Institutional Review Board [NUS-IRB 09-256]. 

2.1.2  MEDIA, BUFFERS & SOLUTIONS 
Iscove's Modified Dulbecco's Medium (IMDM) & cIMDM 

All IMDM variants contained 3.996μM L-glutamine, 40.755μM phenol red pH indicator 

and 25.001mM HEPES. For tissue culture complete IMDM (cIMDM) was made by 

combining 470ml IMDM + 25ml pooled human blood group AB Serum + 5ml Penicillin-
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Streptomycin (p/s) solution to make a solution containing 5%(v/v) HS and 1% (v/v) 

p/s. 

 

1xPhosphate Buffered Saline (1xPBS) pH7.3 

1xPBS was used for washing cells that had not been fixed yet and for general washing 

of fixed cells. 10xPBS pH7.3 was purchased from the in-house Biopolis Shared Facilities 

Media Preparation Unit and diluted to 1xPBS by combining 100ml 10xPBS to 900ml 

MilliQ water in tissue culture conditions. 

 

1xPhosphate Buffered Saline pH7.3 without Ca2+ or Mg2+ (1xPBSw/o) 

PBSw/o was used for making PBSE, MACS & FACS buffers and for washing detached 

cells. 10xDPBS pH7.3 without Ca2+ or Mg2+ was diluted by adding 100ml to 900ml 

MilliQ water in tissue culture conditions. 

 

1x Phosphate Buffered Saline + 2mM EDTA (PBSE) pH7.3 

PBSE was used for detaching cells non-enzymatically, for washing detached cells and 

for making MACS & FACS buffers. 3.2ml of 0.5M EDTA was added to 796.8ml of 

1xPBSw/o pH7.3 in tissue culture conditions. 

 

4% Paraformaldehyde (PFA) 

For 1L of 4% (v/v) PFA, 800ml of 1xPBS pH7.3 was added to a glass beaker on a 

magnetic stirrer plate in a fume hood. The liquid was slowly heated to ~60°C whilst 

stirring with a magnetic flea. 40g of 95% (w/v) paraformaldehyde powder was added 

to the warmed 1xPBS. To completely dissolve the powder; 1M NaOH was added drop 

by drop until the solution went clear. The magnetic flea was removed and the solution 

was allowed to cool in the fume hood before it was topped up to 1000ml with 1xPBS.  

The solution was vacuum filtered using a 0.22μm bottle top vacuum filter. The pH was 

adjusted to 7.3 before aliquoting the solution into 15ml tubes. The 4% (v/v) PFA was 

refrigerated at 4°C and discarded after a month, spare tubes were frozen and stored 

at -20°C.  
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Nuclei/Actin Staining Solution 

For every 1ml of staining solution required: 1μl of a 3mg ml-1 DAPI stock and 5μl of 

0.2mg ml-1 phalloidin-TRITC was added to 994μl 1xPBS to give a final concentration 

of 3μg ml-1 DAPI and 1μg ml-1 phalloidin-TRITC.  

 

10x Red Blood Cell Lysis Solution (10x RBC Lysis Solution) 

10x RBC lysis solution was made by combining 16.6g of NH4Cl, 2g KHCO3, 400μl of 

0.5M EDTA pH7.3 and MilliQ water added to 200ml. 25ml of the 10x RBC lysis solution 

was then combined with 225ml MilliQ water in sterile conditions to make a working 1x 

RBC lysis solution and stored at 4°C for up to 3 months. 

 

Magnetic-Activated Cell Sorting (MACS) Buffer 

MACS buffer contained 0.5% (w/v) of BSA powder in 1xPBSE. The solution was 

vacuum filtered (0.22μm) and stored at 4°C and opened only in sterile conditions. 

 

Fluorescence-Activated Cell Sorting (FACS) Buffer 

FACS buffer was made by combining 450ml PBSE, 25ml foetal calf serum (FCS), 25ml 

human serum (HS) and 0.5g sodium azide (NaN3) to make a solution containing 

1xPBS, 2mM EDTA, 5% (w/v) FCS, 5% (v/v) HS and 0.1% (w/v) NaN3. The solution 

was vacuum filtered (0.22μm) and stored at 4°C. 

 

Concanavalin A (ConA)  

5mg of lyophilised ConA from Canavalia ensiformis (Jack bean) was reconstituted in 

1ml of 1xPBS, according to the manufacturer’s instructions. The 5mg ml-1 solution was 

aliquoted into 20μl stocks and frozen at -20°C and once thawed, the aliquots were 

never refrozen but were refrigerated at 4°C for up to 1 month. Fusion media contained 

10μg ml-1 ConA in cIMDM.   

 

ConA has been used in multiple studies to induce reproducible homotypic fusion of 

monocytes (Hulme et al., 2014; Kasugai et al., 2009; Maltesen et al., 2010; Möst et 

al., 1990; Parthasarathy et al., 2009; Takashima et al., 1993; Takeda et al., 2003; Zhu 

et al., 2007). The exact mechanism of ConA facilitated fusion is currently unknown, 
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however, it has been shown that ConA triggers a release of fusion initiating cytokines 

from mouse Mφ e.g. IFNγ, TNF-α, IL-1β and IL-4 (Sodhi et al., 2007; Wang et al., 

2012). In 2000, Suen and collegues showed that ConA induced mitochondrial 

clustering, release of cytochrome c and apoptosis in murine PU5-1.8 macrophages. 

Apoptosis has already been established as a vitally important defence in Mtb infections 

and is thought to play a role in killing infected Mφ whilst priming nearby Mφ against 

the pathogen (Bocchino et al., 2005; Kelly et al., 2008; Lee et al., 2009; Mustafa et 

al., 2008; Patel et al., 2007). Though the exact mechanism of ConA in the proceeding 

experiments cannot be confirmed, it is arguably a sufficiently reproducible and 

obtainable means of inducing monocyte fusion. 

 

MilliQ Water 

MilliQ water was produced in-house using a Direct-Q® water purification system. To 

ensure sterility, bottled MilliQ water was autoclaved at 121°C for 15mins at 15psi 

where after it was only opened in tissue culture conditions. 

 

2.1.3  ANTIBODIES & MARKERS 
Antibodies used are all anti-human antibodies. 

Table 2: Monocyte Negative-Selection: Magnetic Bead-Antibodies 

Target Conjugate Isotype Clone Retailer Cat No 

Monocyte 
Isolation Kit 
II 

n/a n/a n/a 
Miltenyi 
Biotec 

130-091-
153 

FcγR-
blocking 
reagent 

n/a n/a n/a 
Miltenyi 
Biotec 

130-091-
765 

Non-
monocyte 
depletion 
cocktail 

Magnetic 
Bead 

n/a n/a 
Miltenyi 
Biotec 

130-091-
765 

CD3 
Magnetic 
Bead 

n/a n/a 
Miltenyi 
Biotec 

130-097-43 

CD19 
Magnetic 
Bead 

n/a n/a 
Miltenyi 
Biotec 

130-097-
055 
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Table 3: FACS: Monocyte Sorting Antibodies 

Target Conjugate Isotype Clone Retailer Cat No 

CD14 eFluor450 IgG1,κ 61D3 eBioscience 48-0149-42 

CD16 PE-Cy7 IgG1,κ 3G8 
BD 
Biosciences 

560918 

CD14 PE-CF594  IgG2b,κ MφP9 
BD 
Biosciences 

562334 

CD16 PE-Vio770 IgM VEP13 
Miltenyi 
Biotec 

130-100-432 

CD56 APC IgG2b,κ NCAM16.2 
BD 
Biosciences 

341027 

CD9 Biotin IgG1 MEM-61 Abcam ab28094 

Streptavidin APC-Cy7 n/a n/a Biolegend 405208 

CD9 FITC IgG1,κ HI9a Biolegend 312104 

CD36 FITC  IgG2a, κ AC106 
Miltenyi 
Biotec 

130­095­470 

 

Table 4: Flow Cytometry: Anti-Tetraspanin Positive Reporter Antibodies 

Target Conjugate Isotype Clone Retailer Cat No 

LIVE/DEAD 
Blue 

DAPI 
n/a n/a 

ThermoFisher L23105 

CD9 Biotin IgG1 MEM-61 Abcam ab28094 

Streptavidin APC-Cy7 n/a n/a Biolegend 405208 

CD37 APC IgG1,κ MB-1 eBioscience 17-0379-41 

CD53 
CF405M 
(Pacific 
Blue) 

IgG1 HI29 Abcam ab115895 

CD63 PerCP IgG1 MEM259 Abcam ab77227 

CD81 AF700 IgG1,κ 1D6 Novus 
NB100-
65805AF700 

CD82 PE IgG1 B-L2 Abcam ab27338 

CD151 FITC IgG1 11G5a Abcam ab33316 
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Table 5: Flow Cytometry: Anti-Tetraspanin Isotype Control Antibodies 

Target Conjugate Isotype Clone Retailer Cat No 

CD9 (Iso) IgG1-Biotin IgG1,κ P3.6.2.8.1 eBioscience 13-4714-85 

CD37 (Iso) APC IgG1,κ MOPC-21 Biolegend 400122 

CD53 (Iso) CF405M IgG1,κ ICIG1 Abcam ab126026 

CD63 (Iso) PerCP IgG1,κ ICIG1 Abcam ab118658 

CD81 (Iso) AF700 IgG1,κ MOPC-21 
BD 
Biosciences 

557882 

CD82 (Iso) PE IgG1,κ P3.6.2.8.1 eBioscience 12-4714-42 

CD151 (Iso) FITC IgG1,κ P3.6.2.8.1 eBioscience 11-4714-42 

 

Table 6: Fluorescence Microscopy 

Target Stain Retailer Cat No 

DNA DAPI ThermoFisher D1306 

DNA Hoechst (H33342) ThermoFisher H3570 

DNA Propidium Iodide ThermoFisher P3566 

F-Actin  NH3 (IgM) ThermoFisher MA1-80729 

F-Actin  TRITC ThermoFisher R415  

2° reporter for NH3 

(Anti-mouse 
Antibodies) 

Anti-Mouse 
Polyvalent 
Immunoglobulins 
(G,A,M)−FITC 
antibody produced 
in goat 

Sigma-Aldrich F1010 

 

Table 7: Other Marker Reagents 

Name Used in Retailer Cat No 

AbC™ Anti-Mouse 
Bead Kit 

Flow Cytometry, 
Compensation 

ThermoFisher A10344 

ArC™ Amine 
Reactive 
Compensation 
Bead Kit 

Flow Cytometry, 
Compensation 

ThermoFisher A10346 
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8 Peak Rainbow 
Beads 

Flow Cytometry, 
Quality Control 

BioLegend 422903 

Cell Dissociation 
Solution (enzyme-
free) 

Cell Detachment ThermoFisher 13151014 

 

Table 8: Fusion Assay: Anti-Tetraspanin Phenotyping Antibodies 

Target 
Stock 
Conc 

Isotype Clone Retailer Cat No 

IgG1 
LEAF™ 
(Isotype) 

1mg ml-1 IgG1,κ MOPC-21 Biolegend 400153 

CD9 1.4mg ml-1 IgG1 602.29 

Prof Peter 
Andrews, 
University of 
Sheffield 

n/a 

CD37 1.17mg ml-1 IgG2A,κ WR17 

Professor 
Martin Glennie, 
University of 
Southampton 

n/a 

CD53 1mg ml-1 IgG1 MEM-53 Abcam ab667 

CD63 2.3mg ml-1 IgG1 H5C6 

Developmental 
Studies 
Hybridoma 
Bank, Iowa, 
USA 

n/a 

CD81 1mg ml-1 IgG1 1D6 Abcam ab35026 

CD82 1mg ml-1 IgG1 B-L2 Abcam ab47153 

CD151 1.6mg ml-1 IgG1 14A2.H1 

Prof Leonie 
Ashman, 
University of 
Newcastle, 
Australia. 

n/a 
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Table 9: Software 
Software 
(Version) 

Used For Source 

FIJI ImageJ 
(1.50e) 

Viewing, optimisation and 
analysis of images taken by the 
Olympus microscopes. 

http://fiji.sc/#download 

FACSDiva™ 
Recording of all flow cytometry 
data to produce .fcs files. 

https://www.bdbiosciences.com/us/instr
uments/research/software/flow-
cytometry-acquisition/bd-facsdiva-
software/m/111112/overview 

FlowJo (10) 
Analysis of all .fcs files generated 
by FACSDiva™ during flow 
cytometry 

http://www.flowjo.com/download-
newest-version/ 

GraphPad 
Prism (6.04) 

Displaying data as graphs and all 
statistical analysis 

http://www.graphpad.com/scientific-
software/prism/ 

MetaMorph 
(7.8.3.0) 

Image acquisition on Olympus 
microscopes 

https://www.moleculardevices.com/syste
ms/metamorph-research-
imaging/metamorph-microscopy-
automation-and-image-analysis-software 
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2.2 METHODS 

2.2.1  PRIMARY CELL PREPARATION 
PBMC Extraction from Blood 

Human blood from apheresis cones or obtained in-house by venepuncture was diluted 

1:1 in PBSE. 30ml of diluted blood was gently layered on top of 15ml Ficoll-Paque 

PLUS in a 50ml Falcon tube. The blood was then fractionated by density centrifugation 

at 2000xg for 20min at room temperature with no braking so as not to disturb the 

layers. The top plasma layer was removed by aspiration before the white PBMC layer 

was transferred into a fresh 50ml falcon tube and washed of platelets by filling 

completely with PBSE and centrifuging at 480g, 5min at room temperature. The 

supernatant was aspirated and the cell pellet resuspended in 5mL 1xRBC-lysis solution 

and incubated at room temperate for 5min before being topped up to 50ml with PBSE 

and centrifuged at 480g, 5min at room temperature. From this point, every effort was 

made to keep the cells and solutions on ice until cells were seeded (as described 

below), to minimise marker internalisation. Cell density was determined using a 

disposable haemocytometer (NanoEntek C-Chip) using exclusion of 0.04% Trypan 

Blue solution to assess cell viability. 

 

2.2.1.1 PURIFICATION OF MONOCYTES BY ADHERENCE  
PBMCs were resuspended in cIMDM to 1x107 PBMCs ml-1 and seeded on 8-chamber 

Lab-Tek II slides or black framed 96-well plates at 2.2x106 and 1x106 PBMCs well-1 

respectively. The slides or plates were incubated for 2hrs at 37°C, 5% CO2 to allow 

the monocytes to adhere. The liquid phase was then removed and cells washed three 

times with 1xPBS that had been warmed to 37°C, to remove non-adherent cells. 

Fusion assays were performed immediately after this step (see “2.2.3 Fusion Assay”). 

As the Lab-Tek II chambers are 70mm2 and the plate wells are all 31.65mm2 and 

assuming that, on average, 15% of the PBMCs will be monocytes, this would result in 

~3.3x105 and ~1.5x105 monocytes well-1 (4714 and 4739 monocytes mm-2 

respectively). Within PBMCs, 21.6±8.83% of cells were monocytes (Figure 2.1), of 

these 87.13±4.38% were classical (Cl), 6.41±1.43% intermediate (Int) and 

5.18±2.25% nonclassical monocytes (NCl) (N=9). 
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Figure 2.1: Components of PBMCs Isolated from Human Blood 

Flow cytometric analysis of the cellular components within PBMCs before adhesion 

purification; both pseudocolour and contour graphs are shown above for the same 

data.  

Left: Granulocytes show a low forward scatter due to their small size and high side 

scatter due to their internal granule complexity. Monocytes and NK-cells are similar in 

size and granularity and the lymphocytes are the smallest living population with low 

forward and side scatter.  

Middle: NK-cells and any remaining non-monocyte components can be gated out from 

monocytes by their low CD14 expression.  

Right: The remaining cells are all monocytes and can be split up into Classical 

(CD14++CD16-), Intermediate (CD14++CD16+) and Nonclassical (CD14+CD16++). 

In 9 donors 21.60±8.83% of cells were monocytes, of these 87.13±4.38% were 

Classical, 6.41±1.43% Intermediate and 5.18±2.25% were Nonclassical monocytes. 
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2.2.1.2 ISOLATION OF MONOCYTES BY MAGNETIC-ACTIVATED 

CELL SORTING USING NEGATIVE-SELECTION 
For every 1x108 PBMCs, 200μl MACS-buffer and 80μl FcγR-blocking reagent was added 

and the cells were incubated for 5min at 4°C. Then a cocktail containing 100μl MACS-

buffer, 50μl non-monocyte depletion cocktail, 45μl anti-CD3-beads (B-cell targeting) 

and 45μl anti-CD19-beads (T-cell targeting) were added and the cell suspension. N.B. 

For non-monocyte cell depletion, the antibody cocktail contained anti-CD7, anti-CD56, 

anti-CD123 and glycophorin-A to target CD8+ T-cells, NK-cells, stem cells and 

erythrocyte precursors, respectively. The cells were refrigerated for 15min at 4°C with 

gentle resuspension at 5min intervals. The suspension was topped up to 10ml with 

MACS-buffer before centrifuging for 5min at 480g and resuspended in 1ml MACS-

buffer. An LD column was placed in the MACS magnetic separator and equilibrated 

with 2ml MACS-buffer. The cells were then added to the column when depleted the 

column was washed at least twice with 1ml MACS-buffer. Total monocytes were 

collected from the flow-through and counted using a haemocytometer as previously 

described. MACs-enriched cells contained 68.74±9.73% monocytes (Figure 2.2); of 

these 79.71±6.70% were Cl, 8.77±2.80% Int and 10.57±4.49% NCl monocytes 

(N=21). 

 

2.2.1.3 SORTING MONOCYTE SUBSETS USING FLUORESCENCE-

ACTIVATED CELL SORTING 
After counting, the desired number of total monocytes was placed in a new tube and 

pelleted by centrifugation for 5min at 480g before being labelled depending on the 

experiment they were used in. 

 

FACS 1:  Monocyte Subsets for Phenotyping Experiments 

For every 1x107 monocytes; a cocktail containing 8μl anti-CD14-efluor450, 12μl anti-

CD16-FITC, 6μl anti-CD56-APC (NK-cell targeting) and 10μl MACS-buffer was made 

before rapidly resuspending the pellet in the cocktail. The cell suspension was 

refrigerated for 15min at 4°C and at 5min intervals the cells were gently resuspended. 

The suspension was topped up to 10ml with MACS-buffer before centrifuging for 5min 

at 480g and resuspended in MACS-buffer to a cell density of 12x106 monocytes ml-1. 
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Figure 2.2: Components of MACs Isolated Cells from Human Blood 

Flow cytometric analysis of the cellular components within MACs isolated cells; both 

pseudocolour and contour graphs are shown above for the same data. The same gating 

strategy as Figure 2.1 has been used. After MACs purification the granulocyte and 

lymphocyte population were depleted dramatically and the monocyte population 

became the major cell type of the suspension.  In 21 donors MACs enriched cells 

comprised of 68.74±9.73% monocytes, of these 79.71±6.70% were Classical, 

8.77±2.80% Intermediate and 10.57±4.49% Nonclassical monocytes. 
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This cell suspension was stored and transported in the dark on ice to the SIgN Flow 

Cytometry Facility.  

 

FACS 1 Gating Strategy 

Cells were gated using their forward and side (FSC-A/SSC-A) scatter characteristics 

(Figure 2.3. Singlet monocytes were selected by consecutive FSC-A/FSC-W and SSC-

A/SSC-W gating and CD56LowCD14Low-High monocytes were gated to ignore 

contaminating NK-cells and gated again by their CD14-eflour450/CD16-FITC binding 

into monocyte subsets: Cl (CD14++CD16-), Int (CD14++CD16+) and NCl 

(CD14+CD16++). To maintain reproducibility, subsets were always gated with equal 

sized square gates with perpendicular borders. Subsets were collected into 5ml 

polypropylene tubes containing 0.5ml cIMDM. A post-sort check was conducted on 

100 cells in every subset to ensure that the purity was ≥99%. Cells were stored on 

ice until collection was complete. Subsets were then counted as described above (see 

“2.2.1 PBMC Extraction from Blood”) and diluted accordingly in cIMDM. A post-sort 

check was conducted on every sorted sample by the operator to ensure ≥98% purity 

was maintained. 

 

FACS 2: Monocyte Subsets for MGC Flow Cytometric Analysis 

A different set of antibodies and conjugates was used to sort monocytes for flow 

cytometry experiments to avoid fluorescence emission overlaps in the panel. For 1x106 

monocytes, cells were rapidly resuspended in a cocktail containing 1μl anti-CD14-PE-

C594, 2.3μl anti-CD16-PE-Vio770 and 47μl MACS. The cells were then treated in the 

same way as described above. 

 

FACS 2 Gating Strategy 

The same gating strategy as FACS 1 was applied but with the alternative CD14 and 

CD16 fluorophore channels in place. 
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FACS 3: Monocyte Subsets for Classical CD9 Low vs High Fusion Assay 

For every 1x106 monocytes, cells were first resuspended in a mixture of 0.18μl anti-

CD14-efluor450, 0.7μl anti-CD16-PE-Cy7 and 49μl MACS buffer then split accordingly. 

Cells were labelled for CD9 either directly or indirectly. 

Direct Labelling of CD9: 2.5μl anti-CD9-FITC per 1x106 monocytes was added to the 

cell suspension, then incubated for 30min at 4°C in the dark before being washed by 

topping up the wells with MACS buffer and spinning for 5min at 480g. Cells were 

resuspended in MACS-buffer to a cell density of 12x106 monocytes ml-1 for sorting. 

Direct labelling of CD36: CD36 was also used as a substitute marker for CD9 as the 

markers appeared to co-express in Cl monocytes (Figure 2.4). 3μl anti-CD36-FITC was 

added to the cell suspension for every 1x106 monocytes and incubated and washed 

as previously described.  

Indirect Labelling of CD9: 0.4μl anti-CD9-Biotin was added, incubated and washed as 

described in direct labelling then the cell pellet was resuspended in 0.4μl Strepavidin-

APC-Cy7 for every 1x106 monocytes and made up to 50μl with MACS buffer. After 

incubation and washing cells were resuspended for FACS as previously described. 

 

FACS 3 Gating Strategy 

A CD9-APC-Cy7 CD36-FITC double stained sample was used to set up the gating. Cells 

were gated into singlets, NK-cells removed and monocyte subsets allocated as outlined 

in “FACS 1 Gating Strategy” and Figure 2.3. The Cl (CD14++CD16-) subset was 

displayed into a dot plot. The CD9Lo/CD36Lo and CD9HiCD36Hi populations were gated 

as the lowest 25% and the highest 25% of the MFI readings respectively (see Figure 

2.4). Once the gates had been set the single stained cells were loaded and sorted. 

Cells were collected and stored as previously described. 

 

2.2.2  FLOW CYTOMETRIC ANALYSIS OF TETRASPANINS 
A 10-marker panel was developed that could identify the three monocyte subsets, 

quantify the expression of all seven tetraspanins of interest and detect cell viability all 

in one sample. The panel consisted of a LIVE/DEAD Blue dye, two monocyte subset 

markers (anti-CD14- PE-CF594 & anti-CD16- PE-Vio770) and seven tetraspanin 

markers 
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(anti-CD9-Biotin, anti-CD37-APC, anti-CD53-CF405M, anti-CD63-PerCP, anti-CD81-

Alexa Fluor 700, anti-CD82-PE, anti-CD151-FITC). Strepavidin-APC-Cy7 was used as 

the secondary reporter for CD9-Biotin and all anti-tetraspanin antibodies had an IgG1 

isotype equivalent in a separate sample. Each antibody was individually titrated to 

ascertain the concentration for optimum binding and reporting (data not shown).  

 

2.2.2.1 STAINING FRESHLY ISOLATED PERIPHERAL BLOOD 

MONOCYTES FOR FLOW CYTOMETRY 
PBMCs from in-house volunteer donors were pelleted and washed with PBS in a 15ml 

Falcon tube (480g, 5min at room temperature) and resuspended in 1ml PBS + 1μl 

LIVE/DEAD Blue dye and incubated for 30min in the dark at room temperature. Excess 

dye was removed by adding 2mls of FACS buffer before cells were pelleted (480g, 

5min at room temperature) and washed again in 1ml FACs buffer. The PBMC pellet 

was resuspended in 200μl FACS buffer containing 1μl anti-CD14-PE-C594 and 2.3μl 

anti-CD16-PE-Vio770 per million cells. PBMCs were refrigerated at 4°C for 30min in 

the dark, topped up to 3ml with FACS Buffer and centrifuged (480g, 5min at room 

temperature). The pellet was washed in 1ml FACS buffer, spun again and resuspended 

to a suitable density to allow the PBMCs to be seeded in v-bottomed wells on a 96-

well plate at 1x106 PBMCs well-1. Hereafter PBMCs were split into positive and isotype. 

The following master mixtures were made up and the PBMCs were rapidly 

resuspended in them before incubation for 30min, 4°C, in the dark. 

Positive Panel (for 1x106 PBMCs): 0.4μl anti-CD9-Biotin, 5μl anti-CD37-APC, 1.5μl 

anti-CD53-CF405M, 10μl anti-CD63-PerCP, 5μl anti-CD81-Alexa Fluor 700, 5μl anti-

CD82-PE, 10μl anti-CD151-FITC and 13.1μl FACS buffer. 

Isotype Panel (for 1x106 PBMCs): 0.4μl IgG1-Biotin, 5μl IgG1-APC, 2.4μl IgG1-

CF405M, 2.4μl IgG1-PerCP, 6μl IgG1-Alexa Fluor 700, 1.2μl IgG1-PE, 2μl IgG1-FITC 

and 30.6μl FACS buffer. 

The PBMCs were washed with FACS buffer and pelleted (480g, 5min at room 

temperature). A mixed secondary antibodies solution was made by adding 0.8μl 

streptavidin-APC-Cy7 to 60μl FACS buffer and 30μl of this solution was added to both 

the positive and isotype pellets. PBMCs were incubated for 20min, 4°C, in the dark 

before a final wash and resuspended in 150μl FACS buffer and transferred into 1.1ml 
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FACS tubes and stored on ice to be taken to the SIgN Flow Cytometry Facility and 

analysed on a BD LSRII 5-Laser analyser. 

 

2.2.2.2 FLUORESCENCE COMPENSATION 
A compensation matrix was generated on FACSDiva before any flow cytometric 

analysis was conducted (excluding any observations where only one fluorophore was 

used). Antibody compensation beads were prepared by combining 1 drop each of 

negative and capture anti-mouse Fc compensation beads into a 1.1ml FACS tube that 

was labelled with a specific antibody (one tube for every antibody-fluorophore used). 

Each tube then had its own 1μl of antibody added and rapidly mixed by pipette, these 

tubes were incubated in the dark on ice for 5min before adding 200μl of FACS buffer. 

 

ArC beads were used for the LIVE/DEAD Blue stain as the dye targets amines and is 

unreactive to Fc targeting mechanisms. ArC beads were prepared by adding 1 drop of 

capture ArC compensation beads into a 1.5ml Eppendorf tube and allowed to warm to 

room temperature for 5min. 1μl of LIVE/DEAD Blue dye was added to the ArC beads 

and mixed rapidly by pipette before being incubated at room temperature in the dark 

for 30min. 1ml of PBS was added to the tube before it was spun at 300g for 5min. 

The liquid phase was carefully removed and 200μl FACS buffer was used to resuspend 

the bead pellet. 1 drop of negative ArC beads was added before briefly vortexing the 

tube and running the beads through flow. 

Rainbow beads were run as a separate sample alongside any quantitative flow 

cytometric analysis to verify instrument performance and allow readings to be 

standardised between long periods of use. 

 

2.2.2.3 MONOCYTES CULTURED FOR 4 HRS IN IMDM VS 

IMDM+CONA 
Monocyte subsets obtained from FACS 2 sorting strategy were seeded at 0.25x106 

monocytes well-1 (positive, isotype & unstained) in a u-shaped 96-well plate in either 

200μl cIMDM or 200μl cIMDM + 10μg ml-1 ConA. The plate was incubated for 4hrs at 

37°C, 5% CO2. The plate was centrifuged at 500g for 5min before the liquid phase 

was removed from the wells. 200μl of cold cell dissociation solution was added to each 
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well and the plate placed on ice for 30min. By repeatedly pipetting up and down in 

each well the highly adherent cells were removed from the plate walls before being 

spun (500g, 5min), resuspended in 200μl ice-cold PBSE and transferred into new wells 

and pelleted again. A stock LIVE/DEAD Blue solution was made by adding 2μl of 

LIVE/DEAD Blue dye to 1500μl 1xPBS and 200μl was added to each of the isotype and 

positive pellets and 1xPBS alone was added to the unstained wells. After 20min 

incubation at room temperature in the dark, the cells were pelleted and washed once 

in 200μl FACS buffer to remove excess dye and pelleted once more before adding the 

positive or isotype antibodies. Antibody master mixes were made as outlined below 

on ice: 

Positive Panel (for 1.5x106 monocytes): 1.2μl anti-CD9-Biotin, 15μl anti-CD37-APC, 

4.5μl anti-CD53-CF405M, 30μl anti-CD63-PerCP, 15μl anti-CD81-Alexa Fluor 700, 15μl 

anti-CD82-PE, 30μl anti-CD151-FITC and 189.3μl FACS buffer. 

Isotype Panel (for 1.5x106 monocytes): 1.2μl IgG1-Biotin, 15μl IgG1-APC, 7.2μl 

IgG1-CF405M, 7.2μl IgG1-PerCP, 18μl IgG1-Alexa Fluor 700, 3.6μl IgG1-PE, 6μl IgG1-

FITC and 241.8μl FACS buffer. 

50μl of the corresponding master mix was added to the six positive or six isotype wells 

and refrigerated for 30min at 4°C in the dark. Wells were topped up with 150μl of 

FACS buffer and spun at 500g for 5min to pellet the cells, washed with 200μl FACS 

buffer and pelleted again. A master mix containing 2.8μl streptavidin-APC-Cy7 + 

597.2μl FACS buffer was made and 50μl was added to each of the positive and isotype 

wells (unstained cells were resuspended in FACS buffer alone). The cells were 

refrigerated for 20min at 4°C in the dark before being topped up with 150μl of FACS 

buffer and spun at 500g for 5min to pellet the cells. After a final wash with 200μl FACS 

buffer the cells were pelleted, resuspended in 150μl FACS buffer and transferred into 

1.1ml FACS tubes and stored on ice to be taken to the SIgN Flow Cytometry Facility 

and analysed on a BD LSRII 5-Laser analyser (Figure 2.5). 
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Figure 2.5: Gating of Subset Derived MGCs for 
Flow Cytometric Analysis. 

The gating strategy for FACS sorted monocyte 

subsets that were cultured in cIMDM or ConA for 

4hrs and then analysed with flow cytometry. Only 

one positive subset is shown here as forward and 

side scatter was indistinguishable between subsets. 

In all donors; CD14 expression dropped to near zero 

for all subsets in both in cIMDM and ConA after 4hrs. 
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2.2.3  FUSION ASSAYS 
Fusion assays were carried out on total monocytes and FACS 1 sorted subsets. 

Monocytes were resuspended in cIMDM to 1.5x106 monocytes ml-1 and 100μl of this 

cell suspension was seeded per well in a 96-well plate to give 1.5x105 monocytes well-

1. Where relevant, 100μl of cIMDM containing 2xConA (20μg ml-1) and 2xanti-

tetraspanin antibodies (20μg ml-1) was added to the each well. This way, monocytes 

were always cultured at a density of 4740 monocytes mm-2 unless specified otherwise. 

Monocytes were incubated at 37°C in 5% CO2 for 72hrs in all total, subset and anti-

tetraspanin antibody assays. For the fusion kinetics analysis and Luminex™ ELISA 

samples individual time-points were taken at 24hrs, 48hrs and 72hrs.  

Fixing Lab-Tek II slides: The media was discarded before the cells were washed 

with pre-warmed (37°C) 1xPBS, aspirated, fixed and permeabilised by adding ~200μl 

of 100% (v/v) acetone. Cells were left to fix and permeabilise for 5min in 100% (v/v) 

acetone before being bathed in a glass tank containing 500ml of 1xPBS which was 

refrigerated at 4°C until staining could be performed. 

For the fusion kinetics samples & Luminex™ ELISA: At the specific time-points 

the media in the well was collected and put into separate 1ml tubes for ELISA analysis. 

The tubes were spun at 3000g for 5min to pellet any cells/debris and two 75μl aliquots 

were taken from the resultant liquid phase and placed into PCR tubes and stored at -

20°C. The cells in the wells were fixed as outlined below. 

For all other assays: The media was discarded before the cells were washed with 

pre-warmed (37°C) 1xPBS, aspirated, fixed by adding 100μl of pre-warmed 4% (v/v) 

PFA and incubated at 37°C, 20 min, 5% CO2. The wells were aspirated and washed 

with 200μl PBS and stored at 4°C in the dark until the day before imaging, cells were 

always stained and imaged within one week of fixing.  

 

2.2.4  STAINING CELLS FOR FLUORESCENCE MICROSCOPY 

2.2.4.1 STAINING LAB-TEK II SLIDES: 
This staining protocol was only used on total monocytes in Chapter 3. Unless specified 

otherwise, all staining for fluorescence microscopy was performed using the 

“Optimised Staining of 96-Well Plates” protocol below. 
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Lab-Tek II slides were removed from the 1xPBS tank and excess liquid was aspirated. 

Each chamber was stained with 100μl of a nuclei/actin staining solution (containing 

1μg ml-1 propidium iodide and 20μg ml-1 NH3 anti-F-actin primary antibody. For 1ml 

of stain 14.3μl of 1.4mg ml-1 NH3 antibody + 1μl of 1mg ml-1 propidium iodide was 

added to 984.7μl 1xPBS. Slides were refrigerated for 30min at 4°C in the dark, then 

the chambers were washed with 1xPBS. A secondary staining solution was made 

containing 4μg ml-1 goat anti-mouse polyvalent immunoglobulins with a FITC label. 

100μl of the secondary stain was added to each chamber and refrigerated for 30min 

at 4°C in the dark. Chambers were then aspirated, washed with 1xPBS and the Lab-

Tek II frame was removed as per the manufacturer’s instructions and mounted with 

a few drops of 1xPBS and a glass coverslip fixed in place with nail varnish. Slides were 

imaged immediately after staining. 

 

2.2.4.2 OPTIMISED STAINING OF 96-WELL PLATES: 
PBS was aspirated from the wells and fixed cells (see “2.2.3 Fusion Assays”) were 

stained with 50μl of nuclei/actin staining solution (containing 3μg ml-1 DAPI and 1μg 

ml-1 Phalloidin-TRITC). Cells were left to stain overnight at 4°C in the dark. Prior to 

imaging, the staining solution was aspirated and wells were washed with PBS, 

aspirated and resuspended in 200μl PBS and taken to the Institute of Molecular and 

Cell Biology (IMCB) microscope facility. 

 

2.2.5  FLUORESCENCE IMAGING 
An Olympus IX83 inverted microscope running MetaMorph was used for image 

acquisition. Each well was imaged at 4x magnification in a 4x4 grid, 0µm spacing 

between images with DAPI and TRITC channels then imaged again at 10x 

magnification in a 4x4 grid, 200µm spacing with DAPI, TRITC and brightfield channels. 

All images were taken at 16-Bit scale with Binning at 2, Gain 2 (1x) and the autofocus 

set to ±60µm. The exposure of each fluorophore was set by finding a particularly MGC 

dense region in one of the wells and adjusting the exposure so that the 16-bit scale 

slider on the left never saturated to more than ~95-98%. The stringency of these 

parameters was maintained so that the downstream macros and calculations based 

on pixel size/value were accurate and reproducible. 
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2.2.6  IMAGE OPTIMISATION 
Raw image files were arranged into a Stack on FIJI ImageJ and a Hyperstack was 

generated. The channels were then split apart (Image>Color>Split Channels) from 

the Hyperstack and each was individually background reduced (Process>Subtract 

Background…), inadequate background removal from the DAPI channel led to poor 

macro sensitivity during counting (see Figure 2.6). The Stacks were then combined 

again (Image>Color>Merge Channels…) and converted to an RGB format (Type>RGB 

Color) so that each view could be saved as a Tiff file for future analysis. 

 

The 4x images were collaged on FIJI ImageJ by creating a stack of all the images in 

a chosen well then aligned and combined (Plugins>Stitching>Grid/Collection 

Stitching). The 4x well collages were used to give an overall view of the fusion in the 

well. Four representative 10x images were selected for each well (covering a total area 

of 2.6mm2) and arranged into a separate stack with the other conditions for image 

analysis. The ordering of the sample images in the stack was noted on a spreadsheet 

so that each image in a stack did not have an obvious label that would detail the 

condition; this way double-blind analysis could be carried out. 

 

2.2.7  IMAGE ANALYSIS 
MGCs were identified from the image Stack on FIJI ImageJ and freehand outlines were 

drawn around each MGC with >3 nuclei or more to make “Region Of Interest” (ROI) 

coordinates that could be saved alongside the Stack files. The stack and ROI list file 

were mounted onto ImageJ, the Stack was split up into its three colour channels 

(Image>Color>Split Channels) and all but the DAPI channel were closed. The DAPI 

stack and ROI lists were used in conjunction with the corresponding macro below to 

count the nuclei per MGC, measure MGC area and count the total number of nuclei 

per view. Despite efforts to automate the designation of MGC type there was no 

reliable method other than manually scoring the MGCs for morphological features (see 

Figure 2.7). 
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The three MGCs observed were: 

Table 10: MGC Types 

Type Key Morphological Features 

Langhans Giant 

Cell (LGC) 

Type 1 

Ring or horse-shoe arrangement of the nuclei, typically 

containing 3-18 nuclei, small surface area and roundish 

shape. Actin staining typically consistent. 

Foreign Body 

Giant Cell (FBGC) 

Type 2 

Stacked ball of nuclei at the centre, typically containing 20-

80 nuclei, medium surface area and roundish shape. Actin 

staining typically consistent. 

Syncytial Giant 

Cell (SGC) 

Type 3 

Disorganised spread of nuclei, occasional circular clumps 

evident where large MGCs have potentially fused, 80-600 

nuclei, very large surface area and no apparent shape. Actin 

staining shows patches of high and low staining. 

 

In the course of this study three morphologically distinct MGC types (see Table 10: 

MGC Types) were observed when human monocytes were cultured in ConA for 1-3 

days. Currently there are no known surface markers to differentiate LGC, FBGC and 

SGC. Soluble markers such as cathepsin K and tartrate-resistant acid phosphatase 

were once thought to be produced solely by osteoclasts but even these have been 

scrutinised and shown to be a feature common to other types of MGC (Park et al., 

2013). It has been suggested previously that in vivo FBGC could form from further 

enlargement and fusion events of LGC (Rhee et al., 1978). Studies of implants in 

animal models (Barbeck et al., 2016; Chappuis et al., 2015) and human granuloma 

biopsies (Okamoto et al., 2003) has shown that LGC typically accumulate at the early 

stages of investigation with increasing incidence of FBGC over time.  

 

While LGC and FBGC are reported to show some organisation of their nuclei and 

membrane perimeter, the SGC are classified as such due to their disorganised nuclei 

and asymmetrically spread shape. This vast cellular structure is structurally similar 

with the syncytiotrophoblast found encasing mammalian blastocysts (Huppertz and 

Gauster, 2011). The SGC represents the largest and most aggressively fused of the 

three MGC types. Through using these morphological classifications we hope to 

identify if any of the monocyte subsets show any predisposition to forming any of 

these MGC types. 
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2.2.7.1 MACROS FOR ANALYSING IMAGES 
For each DAPI stack to be analysed the Noise Tolerance was set, a handful of MGC 

ROIs were selected within the stack and the individual noise tolerance (Process>Find 

Maxima…) for each was ascertained. This usually ranged between 3-10 and once a 

‘best-fit’ value had been found it was recorded and used henceforth for any macro on 

that stack to maintain consistency.  

 

Nuclei per MGC 

N.B. “NUMBER” was replaced with the appropriate Noise Tolerance number 

ascertained by the maxima testing described above. The results window produced will 

have a list of all the MGCs in their order in the ROI list and the number of nuclei 

detected in each. 

Number of Pixels per MGC 

The raw output for this macro was a list of the number of Pixels within each MGC in 

the ROI list, this was later converted into MGC Area using the calculations below. 

 

n= roiManager("count"); 

 

for(i=0; i<n; i++){ 

 roiManager("select", i); 

 //wait(200); 

 run("Find Maxima...", "noise=NUMBER output=Count exclude"); 

 run("Find Maxima...", "noise=NUMBER output=[Point Selection]"); 

 run("Add Selection..."); 

} 

n= roiManager("count"); 

 

for(i=0; i<n; i++){ 

 roiManager("select", i); 

 {run("Measure"); 

 run("Add Selection...");} 

} 
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Total Number of Nuclei per View 

N.B. “NUMBER” was replaced with the appropriate Noise Tolerance number 

ascertained by the maxima testing described above. The counts generated from this 

show the total number of nuclei per image i.e. both fused or single cell.  

 

The results from all the macros was entered into a spreadsheet template that would 

convert all the raw macro data into useful values using the formulas below. 

 

2.2.8  FUSION ASSAY MATHEMATICS & EQUATIONS 
Median Nuclei per MGC 

The number of Nuclei per MGC in any given condition typically possessed a positive 

skew whereby smaller 3-8 nuclei MGCs were far more common than larger ≥20 nuclei 

MGCs. The median was therefore used to describe the average size of a giant cell in 

any given condition. 

 

Single Cells & Fused Nuclei 

By having both the Total Number of Nuclei per View and a list of all the Nuclei per 

MGC; the number of single cells per condition could be deduced: 

𝑆𝑖𝑛𝑔𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑉𝑖𝑒𝑤 − ∑(𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑀𝐺𝐶) 

 

Fusion Index (FI)  

s= nSlices; 

 

for(i=1; i<=s; i++){ 

 setSlice(i); 

 //wait(200); 

 run("Find Maxima...", "noise= NUMBER output=Count exclude"); 

 run("Find Maxima...", "noise= NUMBER output=[Point Selection]"); 

 run("Add Selection..."); 

} 
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The FI expresses the fusibility of cells in a given condition, the higher the FI the more 

cells have committed to fusion. FI was generated by dividing the number of fused 

nuclei by the total number of nuclei and expressed as a percentage.  

𝐹𝐼 = (
𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑙𝑒𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑐𝑙𝑒𝑖
) × 100 

 

Converting Pixels per MGC to MGC Area 

Each 10x image taken on the microscope was 696 (width) by 520 (height) pixels. The 

width and height of each pixel was 1.35189µm and so the area of each pixel and the 

area of each MGC could be calculated: 

𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎 = (𝑃𝑖𝑥𝑒𝑙 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡) = (1.35189µ𝑚 × 1.35189µ𝑚)

= 1.827606572µm2 

Therefore: 

𝑀𝐺𝐶 𝐴𝑟𝑒𝑎 (µm2) = 𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎 (1.827606572µm2 ) × 𝑁𝑜 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑀𝐺𝐶 

 

% of Well Covered by MGCs  

% of well covered by MGCs was generated by taking the sum of all the MGC area 

(µm2) values recorded for a given condition and dividing it by the total number of the 

views analysed multiplied by the area of one view (µm2) and expressing it as a 

percentage. 

% 𝑂𝑓 𝑊𝑒𝑙𝑙 𝐸𝑛𝑔𝑢𝑙𝑓𝑒𝑑 =  (
∑ 𝑀𝐺𝐶 𝐴𝑟𝑒𝑎   𝑝𝑒𝑟 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

(𝑁𝑜 𝑜𝑓 𝑉𝑖𝑒𝑤𝑠 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 × 𝐴𝑟𝑒𝑎 𝑝𝑒𝑟 𝑉𝑖𝑒𝑤)
) × 100 

 

Calculating the Percentage of Single, Fused, and Detached Cells 

The number of fused and single cells were calculated as shown in “Single Cells & Fused 

Nuclei”, to convert the values into a percentage and ascertain the amount of detached 

cells: 

A. 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 = (
∑ 𝐴𝑙𝑙 𝑁𝑢𝑐𝑙𝑒𝑖 𝑖𝑛 𝑎 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑖𝑒𝑤𝑠 𝐴𝑛𝑎𝑙𝑦𝑠𝑒𝑑
) × (

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑙𝑙 𝐴𝑟𝑒𝑎 (31.65𝑚𝑚2)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑉𝑖𝑒𝑤 (0.661𝑚𝑚2)
) 

B. 𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 = (
∑ 𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑙𝑒𝑖 𝑖𝑛 𝑎 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑖𝑒𝑤𝑠 𝐴𝑛𝑎𝑙𝑦𝑠𝑒𝑑
) × (

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑙𝑙 𝐴𝑟𝑒𝑎 (31.65𝑚𝑚2)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑉𝑖𝑒𝑤 (0.661𝑚𝑚2)
) 

C. 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 = (𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 −  𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙) 

D. 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 = 𝐶𝑒𝑙𝑙𝑠 𝑆𝑒𝑒𝑑𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙 − 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙  
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As nuclei could only exist in 3 states (single cell, fused nuclei or detached cell) B, C 

and D could all be expressed as a percentage of the Cells Seeded per well. 

% 𝐹𝑢𝑠𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 =  (
𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙

𝐶𝑒𝑙𝑙𝑠 𝑆𝑒𝑒𝑑𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙
) × 100 

% 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑒𝑙𝑙𝑠 =  (
𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙

𝐶𝑒𝑙𝑙𝑠 𝑆𝑒𝑒𝑑𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙
) × 100 

% 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 =  (
𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙

𝐶𝑒𝑙𝑙𝑠 𝑆𝑒𝑒𝑑𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙
) × 100 

Whereby:  

(% 𝐹𝑢𝑠𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 + % 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑒𝑙𝑙𝑠 +  % 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 𝐶𝑒𝑙𝑙𝑠) = 100% 

 

Calculating the Percentage of LGC, FBGC and SGC 

The sum of the nuclei in each of the three types of MGCs was totalled for each 

condition tested in a spreadsheet. The Total LGC/FBGC/SGC Nuclei per Well was 

calculated in the same way as Fused Nuclei per well (B) by instead substituting “Fused 

Nuclei in a Condition” with “Total LGC/FBGC/SGC in a Condition”. The Total 

LGC/FBGC/SGC Nuclei per Well could then be expressed as a percentage of the Fused 

Nuclei per Well. 

e.g. 

𝐿𝐺𝐶 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙 = (
∑ 𝐿𝐺𝐶 𝑁𝑢𝑐𝑙𝑒𝑖 𝑖𝑛 𝑎 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑖𝑒𝑤𝑠 𝐴𝑛𝑎𝑙𝑦𝑠𝑒𝑑
) × (

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑙𝑙 𝐴𝑟𝑒𝑎 (31.65𝑚𝑚2)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑉𝑖𝑒𝑤 (0.661𝑚𝑚2)
)  

 

% 𝑜𝑓 𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑒𝑙𝑖 𝑖𝑛 𝐿𝐺𝐶𝑠  =  (
𝐿𝐺𝐶 𝑁𝑢𝑐𝑙𝑒𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙

𝐹𝑢𝑠𝑒𝑑 𝑁𝑢𝑐𝑒𝑙𝑖 𝑝𝑒𝑟 𝑊𝑒𝑙𝑙
) × 100 

 

Statistics 

All statistical analysis were conducted in GraphPad Prism (6.04) and the appropriate 

tests are noted in the legend of each figure. In all graphs the “N=x” value represents 

the number of different donor repeats in the experiment and the standard error of the 

mean (SEM) is reported in all graphs where N≥3. After performing the calculations 

described previously, the results for each parameter was tested with an analysis of 

variance (ANOVA) or a Kruskal-Wallis test for results that were integers or percentages 

respectively. Afterwards an appropriate post-hoc test (described below) was selected 

to compare the values of interest. An ANOVA assumes a parametric distribution of 
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integer values (e.g. MFI or MGC area in µm2) and detects if there is a dominant 

member of three or more samples. The Kruskal-Wallis test is designed for non-

parametric and pure numbers such as percentages (e.g. fusion index or % surface 

covered by MGCs) and reports if one or more conditions is dominating over the others.  

 

As the primary statistics tests only measure the variance between the conditions post-

hoc tests were conducted to make direct paired comparisons (e.g. control vs condition 

1). A Dunnett’s post-hoc test was run after an ANOVA to compare the average of the 

control samples to that of the other samples. A Dunn’s post hoc test was used in 

conjunction with a Kruskal-Wallis test to conduct pairwise comparisons based on rank 

sum between individual samples to a control sample. A Tukey post hoc test was used 

after an ANOVA to compare the mean values of different time-points whereby all 

possible combinations are compared and reported. 

A Fishers LSD post hoc test was conducted after an ANOVA to compare the expression 

of tetraspanins between the monocyte subsets. Because the fluoresce index is 

different for each anti-tetraspanin antibody reporter, it is only accurate to compare 

the significant differences between the same antibody reporter itself on different 

subsets or in different conditions. Therefore, in the Fishers LSD each comparison 

stands alone, the means are pooled and square rooted and this value becomes an 

assumed SD. A comparison is then run to see if group differences exceed this pooled 

SD. All stars (*) mentioned hereafter refer to the following scale of significance:  

ns: p≥0.05 * p≤0.05 ** p≤0.01 *** p≤0.001  **** p≤0.0001 

 

2.2.9  ADHESION ASSAY 

The adhesion assay protocol was adapted and optimised from an experiment 

conducted by Lisa Mauracher. Monocyte seeding densities (0.5x105, 1.0x105 & 1.5x105 

monocytes well-1) and incubations times (1, 2, 4, 6hrs) were all tested and the 

following protocol generated from the optimal results (data not shown). 

 

Total Monocytes from in-house venepuncture donors were resuspended to a density 

of 5x105 monocytes ml-1 in cIMDM. 100μl of cell suspension was added to each well 

in a clear bottomed black framed 96-well plate to give 0.5x105 monocytes well-1. 3ml 
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of 2xConA media (20μg ml-1 ConA) was made by adding 12μl of 5mg ml-1 ConA 

solution to 2988μl cIMDM, this was then subdivided into 9 tubes containing 300μl 

each. Anti-tetraspanin antibodies were added at double concentration (20μg ml-1) to 

the corresponding tube of 300μl 2xConA media. 100μl of the 2xConA 2xtetraspanin 

antibody cIMDM was added to each of the corresponding wells (containing 100μl of 

seeded monocytes) to bring ConA and antibodies to 1x concentration (10μg ml-1) and 

induce fusion conditions.  Control wells containing cIMDM without ConA and 

ConA+IgG1 were also prepared with each assay. Once placed in the incubator at 37°C, 

5% CO2 the cells were left to adhere for 2 hours. Media was aspirated and 200μl of 

1xPBS (pre-warmed to 37°C) was added to the wells, then drawn up and down at a 

steady speed at the North, South, West & East of the well to ensure non-adherent 

cells were removed before fixing. The PBS was aspirated and 100μl of 4% (v/v) PFA 

(pre-warmed to 37°C) was added to each well and the plate was returned to the 

incubator for 20min. The 4% (v/v) PFA was removed and wells were washed with 

1xPBS, the plates were stored at 4°C until they could be stained and imaged. 

 

The liquid phase was aspirated prior to staining. A 10μg ml-1 Hoechst 33342 staining 

solution was made, for ever 1ml of staining solution; 1μl of 10mg ml-1 Hoechst 33342 

was added to 999μl 1xPBS. 50μl of the solution was added to each well and the plate 

was left in the dark at room temperature for 15min. The staining solution was 

aspirated and cells resuspended in 200μl 1xPBS and taken to the Institute of Molecular 

and Cell Biology (IMCB) microscope facility. An Olympus IX83 inverted microscope 

running MetaMorph was used to take the images. Automated microscope acquisition 

was performed as outlined in “Fluorescence Imaging” above but only 4x images in the 

DAPI channel were collected. Images obtained were analysed with the following macro 

in ImageJ FIJI to count cell numbers: 

 

setAutoThreshold("Otsu dark"); 

run("Analyze Particles...", "size=4-400 circularity=0.00-1.00 show=Nothing display 

summarize"); 

close(); 
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2.2.10 TANDEM FLUORESCENCE-SCANNING ELECTRON MICROSCOPY 

(FLU-SEM) OF MGCS 
Subset monocytes from FACS 1 were resuspended in cIMDM to 3.65x106 monocytes 

ml-1 and 200μl of cell suspension was seeded onto a 35mm glass bottom petri dish 

(well diameter 14mm, glass thickness no. 0) to give a cell density of ~4740 monocytes 

mm-2. After 1hr incubation at 37°C at 5% CO2 to allow the monocytes to adhere the 

dish was filled with 2ml cIMDM + 1xConA (10μg ml-1) and returned to the incubator 

for 72 hrs. 3μl of 10mg ml-1 Hoechst 33342 was added to 2997μl cIMDM to make 3ml 

of Hoechst stain media (10μg ml-1) which was warmed to 37°C. 1ml of the warm 

Hoechst stain media was added directly into the already present 2ml of culture media 

in the three dishes thus diluting the final concentration of Hoechst 33342 to 3.3μg ml-

1. At the same time the glass well was marked with a small downwards facing triangle 

using the pipette tip to create an arbitrary 12 o’clock marking. The dish was incubated 

for 1hr to allow the Hoechst to permeate the cells. The dishes were then taken to the 

IMCB microscope facility and mounted on the IX83 equipped with an environment 

chamber. The cells were maintained at 37°C and 5% CO2 throughout the imaging. 

The triangular mark made on the dish was aligned at the 12 o’clock of the camera and 

the wells were raster scanned in a 5x5 grid below the mark at 20x magnification (DAPI 

and brightfield channels). After imaging, the plates were handed over to Mr Benoît 

Malleret for fixation and preparation for SEM. 

 

The subsequent stages were all performed by Mr Benoît Malleret, Miss Tan Suat Hoon 

and Mr Lu Thong Beng of the Electron Microscopy Unit, National University of 

Singapore: 

The media was aspirated and the cells were then fixed in a suspension with 2.5% 

(w/v) glutaraldehyde in a 0.1M phosphate buffer for 1hr (pH 7.4) at room 

temperature. Then the cells are washed twice in 1xPBS. The glass well at the centre 

of the dish was carefully removed using a diamond-tipped glass cutter to be handled 

as a glass coverslip. After post-fixation with 1% (w/v) osmium tetroxide (Ted Pella 

Inc., USA) at room temperature for 1 hour, cells were washed in deionised water and 

dehydrated with a graded series of ethanol starting at 25% (v/v) to 100% (v/v) and 

critical point dried (CPD 030, Bal-Tec, Liechtenstein). The glass coverslip with the dry 
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cells on it was laid on an adhesive film on an SEM sample holder. This was firmly 

touched with another adhesive sample holder and pulled away. The surface on which 

the cells were grown and the adhesive surface were coated with 5nm of gold by 

sputter coating in a high-vacuum sputtering device (SCD005 sputter coater, Bal-Tec, 

Liechtenstein). The coated samples were examined with a field emission scanning 

electron microscope (JSM-6701F, JEOL, Japan) at an acceleration voltage of 8kV using 

the in-lens secondary electron detector. 

 

Combining Tandem Flu-SEM Images 

The fluorescence images taken at 20x magnification were collaged into a larger “map” 

image using ImageJ FIJI (Plugins>Stitching>Grid/Collection Stitching). The brightfield 

map was compared with the low magnification SEM images to identify the location of 

the high magnification images. The appropriate high magnification SEM images and 

20x magnification DAPI images were then matched, cropped (Image>Crop) and 

merged (Image>Color>Merge Channels…).   

 

2.2.11 LUMINEX® ELISA OF FUSION ASSAY SUPERNATANTS 
Frozen Sample Preparation: The 24, 48 & 72hr supernatants from the fusion 

kinetics study stored at -80°C were thawed and 10μl aliquots were taken to be diluted 

before analysis. 24hr samples remained undiluted, 48hr samples were 2x diluted (10μl 

sample + 10μl cIMDM) and 72hr samples were 3x diluted (10μl sample + 20μl cIMDM). 

Samples and media were handled and stored on ice. 

 

ELISA was carried out on the Luminex® platform by Miss Esther Mok and an in-house 

team following the protocol below: 

Diluted samples were quantified for:  CCL2 (MCP-1), CCL3 (MIP-1α), RANTES, IL-1α, 

IL-1β, TNFα, IL-6, IL-17A, IL-4, IL-10, IL-13, GM-CSF, IL-3, IFNγ & VEGF. Luminex® 

bead-based multiplex assays are based on Luminex® xMAP® technology and they 

are designed to simultaneously measure multiple specific protein targets in a single 

sample. Customized human 9- and 15-plex kits (Merck Millipore, cat# HCYTOMAG-

60K) were measured with DropArray™-bead plates (Curiox).  

9-plex: Human GM-CSF, IFNγ, IL-10, IL-6, IL-13, IL-1α, IL-1β, IL-4, and TNFα. 
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15-plex: Human GM-CSF, IFNγ, IL-10, IL-6, IL-13, IL-17A, IL-1α, IL-1β, IL-3, IL-4, 

CCL2, CCL3, RANTES, TNFα and VEGF 

 

Using DropArray-bead plates, samples or standards were incubated with fluorescent-

coded magnetic beads, which had been pre-coated with respective capture antibodies. 

After an overnight incubation at 4°C with shaking, plates were washed twice with 

wash buffer. Biotinylated detection antibodies were incubated with the complex for 1 

hour and subsequently streptavidin-PE was added and incubated for another 30 min. 

Plates were washed twice again, and beads were re-suspended with sheath fluid in 

PCR plates before reading on the Luminex analyzer FLEXMAP® 3D (Merck Millipore). 

Data acquisition was done using xPONENT® 4.0 (Luminex) acquisition software and 

data analysis was done using Bio-Plex Manager® 6.1.1 (Bio-Rad). Standard curves 

were generated with a 5-parameter logistic algorithm which provided a better fit than 

a 4-parameter logistic when the response curve was asymmetrical/non- sigmoidal. 

Lastly, a report was generated with values for both MFI and concentration data. 
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3 CHAPTER 3: TOTAL MONOCYTE FUSION 

3.1 RESULTS 

3.1.1    OPTIMISATION OF THE FUSION ASSAY 
At the beginning of the study the protocols and techniques used were developed by 

previous PhD students, Dr Marzieh Fanaei and Dr Varadarajan Parthasarathy. These 

techniques relied on a monocyte purification method that did not separate subsets 

and was too slow for the testing of multiple tetraspanins in the subsets.   

 

Monocyte Purification 

Initially, monocyte purification relied on the adhesive properties of monocytes (see 

“2.2.1.1 Materials and Methods” for details). While MGCs could be generated 

reproducibly with this method, it is flawed in three ways. Firstly, the adherence 

technique assumes that all monocytes are equally adherent, but later studies with 

isolated subsets showed that this is not the case. Intermediate monocytes were the 

least adherent yet were the most aggressive fusers of the subsets. Secondly, the 

adherence method meant that PBMCs were seeded directly into the well at a 

predetermined density but after washing the exact number of monocytes present in 

each well was not known and prone to donor variation. Thirdly, the adherence method 

is subject to contamination with platelets and lymphocytes which are also able to 

adhere within the 2hr incubation time. The presence of lymphocytes and platelets 

could alter the fusion behaviour of the monocytes. 

 

The monocyte purification protocol was improved by utilising a negative selection 

method (see Figure 3.1) which was able to remove non-monocytic cells directly using 

antibodies bound to magnetic beads (MACS purification). The resultant monocyte 

suspension could be counted and seeded accurately, possessed a high purity and all 

three monocyte subsets were enriched equally. It is also worthy of note that for later 

subset work; apheresis cones were used as the source of monocytes as they contained 

400-1500x106 PMBCs of which 40-50% were typically monocytes. In-house 

venepuncture donors in the UK and Singapore were limited to ~550ml and 40ml 
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B) Cell Culture Container 

 

A) Monocyte Purification 

C) Culture Conditions 

Once the magnetic enrichment method was adapted it was possible to count and seed the monocytes to a very high 

degree of accuracy. A range of seeding densities and culture times were compared for 96-well plates to find the 

optimum culture conditions. 150,000 cells fixed at 72hrs was chosen as the optimum test conditions as the FI was at 

the ideal 50% mark and between 48-72hrs the variation between recordings seemed to lessen. N=4, Mean±SEM. All 

conditions in cIMDM+10ug ml-1 ConA. 
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Original Technique (Left): Monocyte were purified using adherence purification. PBMCs were seeded in media and 
incubated for 2hrs then washed with warm media to remove non-adherent cells. Issues: Final cell number of 
monocytes is unknown, contamination levels are relatively high, non-adherent monocytes are washed away. 
Optimised Technique (Right): Negative selection using an antibody-magnetic bead cocktail that targets all 
leukocytes except monocytes. The resultant suspension of monocytes are high purity, can be counted and seeded to 
a high accuracy and there is no loss of non-adherent monocytes. 

Original Technique (Left): Monocytes were seeded onto glass 8-chamber Lab-Tek II slides. Issues: High cell 
number required per condition, only 8 chambers per slide, (see “Fixing & Staining” and “Imaging” below).  
Optimised Technique (Right): Black-frame 96-well plate. Advantages: Fewer cells required per condition as plate 

well area (31.65mm2) is 2.2x smaller than the Lab-Tek II chamber (70mm2), up to 96 conditions per plate available, 

(see “Fixing & Staining” and “Imaging” below). 

Figure 3.1: Optimisation of Fusion Assay 

M: Monocyte 
T: T-Cell 
B: B-Cell 
N: NK-Cell 
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   D) Fixing & Staining 

 

E) Imaging 

F) Analysis 

Original Technique (Left): Lab-Tek II slides were fixed and permeabilized with acetone and stained with DAPI+NH3 
(anti-F-actin) and after washing counterstained with an anti-IgM-GFP secondary. This robust protocol meant that MGCs 
would often rupture giving poor resolution of the membrane borders and lots of background artefacts. 
Optimised Technique (Right): In the 96-well plates a gentler protocol was developed to maximise preservation and 

resolution. Warmed 4% PFA was used to fix before adding a high affinity Phalloidin-TRITC and DAPI overnight stain. 

Original Technique (Left): Each “Site” had to be manually chosen and imaged in a Lab-Tek II chamber. 
Disadvantages: user bias, slow (30-40 images hour-1), only a few sample images per condition. 
Optimised Technique (Right): The plate dimensions were calibrated to the microscope so that the computer could 

raster scan the whole well at 4x to generate a “well map” then subsequently take 16 sample images equally spaced 

at 10x for analysis. The automated protocol possessed an autofocus option allowing high resolution images to be 

taken much faster than before (~720 images hour-1). 

Original Technique (Left): Images were counted individually by manually selecting each nuclei using the ImageJ 
FIJI “Cell Counter”. Disadvantages: Slow, user bias, no way to measure MGC area. 
Optimised Technique (Right): By creating a stack on ImageJ FIJI and drawing ROI boundaries on each MGC a 

macro could be used to instantaneously count all the nuclei in each MGC and measure the area of each. Advantages: 

Rapid, higher throughput, more parameters recorded, ROIs and macros can be saved and reused/reanalysed.  
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respectively and averaged at 1.2x106 PBMCs ml-1 of blood of which 20-30% were 

monocytes. 

 

Cell Culture Conditions 

The 8-chamber Lab-Tek II slide had a culture surface area of 70mm2 and early 

experiments utilising adherence purification required 2.2x106 PBMCs to be seeded in 

each well. 96-well plates could accommodate many more conditions than the 8-

chambered Lab-Tek II slides and due to the lower surface area (31.65mm2), each well 

required 2.2x fewer cells and lower reagent quantities per condition. The black wall 

96-well plates also had the added advantages of low background fluorescence and 

were compatible with automated imaging protocols on the microscope (see “Imaging” 

below). 

 

Once it was established that the MACS beads significantly enriched the monocyte 

population (Figure 2.1 & 2.1) and could be seeded to an accurate density, it was 

essential to compare the effects that seeding density and total culture time in ConA 

media had on fusion (see Figure 3.1). By 48hrs total monocytes reached a peak for 

both Fusion Index (FI) and % coverage, with increasing seeding densities resulting in 

higher values for each parameter. Interestingly, by 72hrs the values decreased slightly 

but the variability of each parameter also decreased (FI: 

38±90%61±15%53±13%; % covered: 21±70%41±10%29±40%). It was 

decided that 150,000 monocytes well-1 for 72hrs yielded the most reproducible results 

in most parameters and provided a sub-maximal (~50%) FI. Thus allowing 

subsequent treatments (e.g. with antibodies) to either increase or decrease the FI.  

 

Fixing and staining 

The initial protocol utilised acetone to both fix and permeabilise the cells to the glass 

coverslip before washing and staining with DAPI and an anti-actin antibody (NH3) and 

an anti-mouse GFP secondary antibody. The resultant images showed poor resolution 

between grouped nuclei, low resolution of the MGC membrane borders and multiple 

membranous artefacts and evidence of ruptured MGCs (see Figure 3.1). The use of 

96-well plates made acetone a poor fixative/permeabilisation reagent as it would 
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dissolve the plastic and so pre-warmed 4% (w/v) PFA was substituted. Initially 0.1% 

(v/v) Triton-X100 was used to permeabilise the cells but again membrane fragments 

were evident and overnight staining without any permeabilisation proved effective, so 

the permeabilisation stage was removed. DAPI was maintained as the nuclear stain 

but the NH3 antibody which required secondary staining was replaced with phalloidin-

TRITC. With this method, fixed cells could be stained in one batch without an 

additional wash and secondary stain that could cause cells to rupture. 

 

Imaging 

Initially, after focusing and exposure settings were adjusted, four 10x images were 

taken randomly for each chamber of the Lab-Tek II slides using a fluorescence 

microscope. Thus there were not many images per condition and any “site” choice 

could be subject to bias. As the slide was moved manually by hand and the focusing 

would often need readjusting this method also did not have a sufficient output. At an 

average speed of 30-40 images hour-1 it was not feasible to take more sample images 

without somehow increasing the image output. The 96-well plate was compatible with 

an automated plate-holder on an Olympus IX83 inverted microscope and MetaMorph 

software allowed automated imaging to be conducted. The autofocus function meant 

that image resolution was always maximised in every image and could be performed 

far faster than manual adjustment. A personalised acquisition set-up was made so 

that settings could be reused and make imaging reproducible. The set-up included an 

initial well mapping phase where 16 images per well were taken for every well in 4x 

magnification. These images were later combined into a montage to give an overall 

impression of the fusion in each well and to observe if MGCs were distributed uniformly 

on the well surface. A subsequent scan at 10x magnification was conducted; 16 equally 

spaced sample images per well were taken throughout the well. These higher 

magnification images would be the images for analysis and counting. The new 

automated plate method removed all human bias in choosing sites and was able to 

acquire 18-24x more images per hour; averaging at ~720 images hour-1. 
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Analysis 

Previously, images were analysed individually by counting the number of nuclei in each 

MGC and then counting the single cells that had not fused. With these values it was 

possible to calculate the “Median Number of Nuclei per MGC” and “Fusion Index” (see 

“2.2.8 Fusion Assay Mathematics & Equations”). The original protocol was similar to 

that developed by Annette Gasser and Johannes Möst (Gasser and Möst, 1999); where 

300-400 nuclei from each condition were analysed and every MGC had to contain ≥3 

nuclei. The problem with such a technique is that not all images obtained were of a 

uniform number of nuclei so some conditions called for more images to be analysed 

than others leading to disproportionate sampling. Furthermore, the analysis only took 

into account the number of the nuclei in each MGC and whether it was in a fused or 

unfused state. By measuring a fixed number of images on a calibrated microscope it 

was possible to ascertain the area analysed. In this way each analysis consisted of 

four images covering 0.66mm2 totalling an area of 2.65mm2 (8.4% of the 31.65mm2 

well). The total number of nuclei analysed across the four images averaged at 2400 

nuclei; a 6-fold increase in the number of nuclei analysed as suggested by Gasser and 

Möst. 

 

Region of Interest (ROI) borders were drawn around each MGC and these coordinate 

files could be saved and recalled at any time – a function essential for the analysis 

macros developed later. The ROIs also allowed the number of pixels within each 

border to be counted which could then be easily converted into an area thus allowing 

direct measurement of MGC area and % surface covered by MGCs. The biggest 

challenge by far was in the automation of the counting. With the images arranged into 

stacks combined with the ROI files and the specific acquisition settings it was then 

possible to develop a macro that would systematically count the peaks in fluorescence 

generated by each nuclei (see “2.2.7.1 Macros for Analysing Images”). Manually 

counting the nuclei, it was possible to count ~5,000 nuclei per hour, the counting 

macro was able to count ~65,000 nuclei per hour; a ~13 fold increase in output. The 

other two macros generated counted all the nuclei in each image and listed the 

number of pixels in each MGC ROI so that further calculations could be conducted 



109 
 

(Figure 3.1 “Analysis”). The final addition to the analysis was a manual allocation of 

MGC type based on the morphology of the MGCs observed.  

 

Conclusion of Optimisation: 

Quantitatively, the optimised protocol produced monocytes of a greater purity (3.18-

fold higher purity), required 2.2x fewer cells per condition, could acquire images ~18-

24x faster, analyse ~6x more nuclei per condition and count nuclei ~13x faster than 

before. The greater output and larger sampling sizes ensured that results were 

representative and the ROI files to facilitate post hoc reanalysis of images. 

 

3.1.2 FUSION KINETICS OF TOTAL MONOCYTES 
Fusion of monocytes relies on the ability of the cells to adhere to a surface, migrate 

to one another, make contact and merge membranes (Aguilar et al., 2013). The 

adherence purification method meant that exact monocyte seeding numbers were 

always estimated as a percentage of the total PBMCs and there was always the 

possibility that low-adherence monocytes were washed away. With the new optimised 

protocol it was possible to count and seed monocytes at an exact density to generate 

a reproducible film of fusible monocytes. It was therefore essential to find out how 

the monocyte density affected the rate and outcomes of fusion over time. 

 

Figure 3.2 shows the changes in fusion parameters of 4 donors at 24hrs, 48hrs and 

72hrs through a range of seeding densities (0.25x105, 0.50 x105, 1.00 x105 and 1.50 

x105 total monocytes well-1). It is evident in all four parameters that an increase in 

monocyte seeding density increases the number of nuclei per MGC, the size (area) of 

the MGCs and the percentage of fused nuclei and area of the well covered by MGCs.  

 

Within 24hrs fusion was evident at all monocyte densities cultured in ConA. Controls 

cultured without ConA (not shown) showed no evidence of fusion. With the exception 

of 0.25x105 total monocytes well-1 (which only produced a small increase), all other 

seeding densities increased notably in FI, MGC area and % coverage between 24hrs 

and 48hrs. Curiously, the same conditions that showed a sharp increase in these 

values between 24hrs to 48hrs subsequently showed a decrease from 48hrs to 72hrs.  
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Figure 3.2: Fusion Kinetics of Total Monocytes. 

Total monocytes from the same donors were purified using the optimised protocols, 

seeded at different densities and fixed at 24hrs, 48hrs and 72hrs. Overall, an 

increasing seeding density produced an increase in all parameters observed. There 

was no fusion evident in the cIMDM only time points. N=4, Mean±SEM for all 

points. 
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It may be worth noting that the standard errors for readings taken at 48hrs were 

markedly larger than those recorded at 72hrs. When 0.25x105 monocytes were seeded 

per well a more consistent increase from 24hrs to 72hrs was observed. 

 

The median nuclei per MGC measure showed the least dramatic changes and only the 

1.50x105 total monocytes well-1 samples showed any distinct increase (7.6 to 9.5 nuclei 

per MGC) from 24hrs 48hrs. At 24hrs the median area of MGCs cultured in all seeding 

densities was approximately the same (~4550μm2) but by 48hrs they showed an 

increasing size with an increasing seeding density, therefore the MGC size is positively 

correlated with the seeding density.  

 

Figure 3.3 shows the types of MGCs produced as a percentage of the fused nuclei at 

each of the time points. When seeded at the lowest density (0.25x105 monocytes well-

1) there is exclusive formation of LGCs up to 48hrs and FBGCs are only generated by 

72hrs. Thereafter there is a positive correlation between seeding density and the 

formation of larger FBGCs and LGCs. Between 0.50x105 and 1.00x105 monocytes well-

1, there is a dramatic increase in the formation of FBGCs and SGCs formed within 

24hrs. At 0.50x105 monocytes well-1 a population containing all three MGCs (LGC: 

70.45%, FBGC: 7.38%, SGC: 22.18%) did not occur until 48rs. A similar distribution 

of all three MGCs (LGC: 71.65%, FBGC: 15.40%, SGC: 12.95%) was achieved in only 

24hrs when monocytes were seeded at double the density.  

 

When comparing time points between Figure 3.2 and Figure 3.3 it is evident that an 

increase in the formation of larger FBGCs and SGCs results in an increase in the FI, 

MGC median area and % coverage. The formation of SGCs seemed to have a threshold 

for the seeding density across all the time points observed.  No SGCs were evident in 

any well seeded with 0.25x105 monocytes well-1. Between 48-72hrs the percentage of 

SGCs in all higher monocyte densities in Figure 3.3 show a decrease; similar to that 

of the parameters in Figure 3.2. Like the FI, MGC median area and % surface covered 

the formation of SGCs in all cell densities seemed to be maximal at 48hrs. There was 

no evidence of fusion in all control wells cultures in cIMDM alone.
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Figure 3.3: MGC Types Generated from Fusion Kinetics Analysis of MACS 
Purified Total Monocytes. 

The types of MGC generated in the fusion kinetics study on total monocytes were 

allocated into either Langerhans, Foreign Body or Syncytial Giant cells. The nuclei 

counted in each type is expressed above as a percentage of all the fused nuclei 

analysed. N=4, Mean±SEM for all points. 
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3.1.3  ADHERENCE OF TOTAL MONOCYTES CULTURED IN ANTI-TETRASPANIN 

ANTIBODIES 
As tetraspanins have been shown to partner with integrins and mediate cellular 

adhesion (Kazarov et al., 2002; Liu et al., 2007) it was essential to test if the antibodies 

could inhibit adhesion to the well surface. If anti-tetraspanin antibodies inhibit initial 

adherence this would inhibit fusion and give false-positive fusion inhibition results. 

 

There was no significant difference in the initial adherence of total monocytes in all 

wells containing either IgG1 control or anti-tetraspanin antibodies when ConA was 

present (Figure 3.4). Monocytes grown in the absence of ConA showed a 40.73% 

decrease in adherence (compared to ConA+IgG1 control). There was no significant 

difference between ConA+IgG1 and ConA only wells. From these results it is clear that 

the anti-tetraspanin antibodies do not interfere with the initial adherence of monocytes 

in the first 2hrs after seeding. 

 

3.1.4  COMPARISON OF FUSION FROM ADHERENCE AND MACS PURIFIED 

TOTAL MONOCYTES. 
Anti-tetraspanin antibodies were used on both adherence purified total monocytes and 

MACS isolated total monocytes. Previous studies have predominantly been conducted 

on adherence purified monocytes and have not been analysed with high throughput 

automated techniques or have MGC types assessed. 

 

Figure 3.5a and Figure 3.5b show a selection of sample images of MGCs generated 

from either adherence or MACS purified total monocytes from a single donor and 

cultured in ConA and IgG1 or an anti-tetraspanin antibody. Figure 3.6a and Figure 

3.6b show the fusion parameters from all the donors analysed and Figure 3.7 shows 

the MGC types generated. It is clear that there are differences in MGC formation 

between the two purification techniques. All parameters in MACS purified cells were 

higher than the adherence purified monocyte equivalents. Furthermore, the 

distribution of the types of MGCs found in the ConA+IgG1 controls is different between 

the two purification methods. The LGC population decreases by -50.15%, the FBGC 

remains almost the same with a -0.65% difference and the SGC type increases by 
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Figure 3.4: Total Monocyte Adherence after 2hr Incubation with Anti-
Tetraspanin Antibodies. 

The number of total cells counted in a 96-well plate well after being seeded with 

50,000 total monocytes in media containing cIMDM, cIMDM+ConA or 

cIMDM+Antibody (IgG1 or tetraspanin) and incubated for 2hrs to allow cells to 

adhere. Bars represent the mean±SEM. Each donor performed in triplicate, N=4, 

tested with a Dunnett’s 1-Way ANOVA. 
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Figure 3.5a: Sample 10x Images from Fusion Assays (Part 1/2) 
The left column contains images from adherence purified monocytes, the right 

column are image from the MACS purified monocytes. All conditions contain cIMDM 

containing 10µg ml-1 ConA and 10µg ml-1 of an IgG1 control or an anti- tetraspanin 

antibody. Scale bars are all 100µm. 

 

Adherence Purified MACS Purified 

IgG1 IgG1 

CD9 CD9 

CD37 CD37 

CD53 CD53 
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Adherence Purified MACS Purified 

CD63 CD63 

CD81 CD81 

CD82 CD82 

CD151 CD151 

Figure 3.5b: Sample 10x Images from Fusion Assays (Part 2/2) 

The left column contains images from adherence purified monocytes, the right 

column are image from the MACS purified monocytes. All conditions contain cIMDM 

containing 10µg ml-1 ConA and 10µg ml-1 of an IgG1 control or an anti- tetraspanin 

antibody. Scale bars are all 100µm. 
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Figure 3.6a: Comparison of Fusion Results from Adherence and MACs 
Purified Monocytes (Part 1/2) 

The Median Nuclei per MGC and Fusion Index results from total monocytes purified 

by adhesion (left) and MACS (right) cultured for 72hrs in ConA media and 

corresponding anti- tetraspanin antibody. Bars represent the mean±SEM. N=4 for 

Adherence graphs and N=5 for MACS graphs, tested with a Dunn’s multiple 

comparison test with all column means compared to IgG1+ConA control. 
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Figure 3.6b: Comparison of Fusion Results from Adherence and MACs 

Purified Monocytes (Part 2/2) 

The MGC Median Area and % of Well Covered results from total monocytes purified 

by adhesion (left) and MACS (right) cultured for 72hrs in ConA media and 

corresponding anti-tetraspanin antibody. Bars represent the mean±SEM. N=4 for 

Adherence graphs and N=5 for MACS graphs, tested with a Dunn’s multiple 

comparison test with all column means compared to IgG1+ConA control. 
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Figure 3.7: MGC Types Generated from Adherence or MACs Purified Total 
Monocytes. 

The MGC types generated from total monocytes purified by adhesion (top) or MACS 

(bottom) cultured for 72hrs in ConA media and corresponding anti-tetraspanin 

antibody. Fused nuclei were tallied into either LGC, FBGC or SGC depending on 

what MGC type they were found in and expressed as a percentage of all fused 

nuclei. Bars represent the mean±SEM. N=4 for adherence graphs and N=5 for 

MACS graphs. Tested with a Dunn’s multiple comparison test; comparing the mean 

ranks of each MGC type to the IgG1+ConA control. 
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+50.75%. From this it is clear that the MACS purification method produces monocytes 

with a greater potential for forming larger MGCs. 

 

For median nuclei per MGC, the Kruskal-Wallis test showed there was no significant 

differences between the IgG1 control and the anti-tetraspanin antibodies in either 

purification method. Both methods produced similar values for the control samples 

with 9.13 and 11.20 nuclei per MGC for adherence and MACS purification respectively. 

In the MACS monocytes anti-CD81 antibody showed an increase to 19.00 nuclei per 

MGC, however; this was not significant. 

 

The FI for the IgG1 controls was lower in the adherence purified monocytes (63.63%) 

than for the MACS monocytes (85.32%). However, the adherence purified monocytes 

showed a significant reduction in FI when cultured in anti-CD151 (P=0.037) but a 

similar effect was not observed in MACS monocytes. For MACS monocytes only anti-

CD63 antibody caused a reduction in the FI (67.04%; P=0.4891), however, it was not 

found to be significant. 

 

MGC derived from adherence purified monocytes were notably smaller than the MACS 

derived MGCs (2,824μm2 vs 11,783μm2). The median area of the MGCs for the 

adherence purified monocytes remains relatively unchanged in the presence of any 

anti-tetraspanin antibody and show no significant difference to the control.  

 

The % surface covered by MGCs was 2.9x greater when MACS purified monocytes 

(58.52%) were used compared to adherence purified monocytes (20.18%) for IgG1 

controls. The only statistically significant decrease was from anti-CD151 (2.68% at 

P=0.0292) for adherence purified monocytes. Anti-CD82 also showed a decrease 

(3.98%) but was not significant.  

 

Comparing the MGC types (Figure 3.7) formed from adherence and MACS purified 

monocytes it is apparent that the MACS purified monocytes are able to form far more 

of the larger SGCs. Of the fused nuclei analysed within the IgG1 controls; the 

adherence purified monocytes produced a LGC:FBGC:SGC ratio of 
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93.75%:4.50%:1.75% compared to the 43.60%:3.80%:52.60% of the MACS purified 

monocytes. The most obvious change in the MGC distribution for adherence purified 

monocytes came from the addition of anti-CD9 (71.25%:11.00%:17.75%) but the 

Dunn’s test retuned all comparisons as insignificant (P>0.9999). Though not 

statistically significant; the addition of antibodies targeting CD37, CD53, CD81, CD82 

& CD151 were sufficient to eliminate the presence of any SGCs from the adherence 

purified cells. Anti-CD82 in particular produced MGCs that were only LGC type.  

 

With the addition of anti-CD63 to the fusion media the MACS purified monocytes 

committed 3.9x fewer nuclei to the SGC population (52.60%13.40% for IgG1anti-

CD63) to an almost significant difference (P=0.0798). Anti-CD63 also caused nearly 

double the number of nuclei in the LGC population (43.60%83.80%; P=0.0559). 

Addition of anti-CD81 produced the lowest number of nuclei located in LGCs (32.40%, 

P>0.9999) and the highest amount of SGCs (64.80%, P>0.9999).  The addition of 

any of the other tetraspanin antibodies to the fusion media did not produce any 

statistically observable changes in fusion, nor was it sufficient to completely eliminate 

the presence of any of the MGC types. 

 

3.1.5  FUSION OF ADHERENCE PURIFIED TOTAL MONOCYTES CULTURED 

WITH DUAL ANTI-TETRASPANIN ANTIBODIES 
Tetraspanins have been reported to possess a high degree of redundancy with one 

another. It is therefore possible that the removal of one tetraspanin can be 

compensated by another. Furthermore, many studies report tetraspanin interact in 

heterotypic groups (Mazurov et al., 2013)  in which correct couplings could lead to the 

formation of a fusion-mediating TEM. By binding pairs of tetraspanins at the same 

time it could elucidate some of the interactions between tetraspanins in a fusion 

setting; be they additive, compensatory, inhibitory or null. 

 

There was no significant increases or decreases in the median number of nuclei per 

MGC (Figure 3.8a) for any combination of antibodies when compared to the IgG1 

control (red stars) or the single antibody equivalents (black stars). However, the FI, 

MGC Area and % coverage (Figures 3.8b-c) were more sensitive to double anti-
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Figure 3.8a: Median Nuclei per MGC of 
Adherence Purified Monocytes Cultured 
with Dual Anti-Tetraspanin Antibodies. 

Monocytes were cultured for 72hrs in ConA media 

with either single or dual anti-tetraspanin 

antibodies. Bars represent mean±SEM, N=4. 

Tested with a Dunn’s multiple comparison test 

comparing the means of each dual-antibody 

treatment to the single antibody treatment (black 

stars) or to the IgG1 control (red stars; 8.75nu 

MGC-1). 
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Figure 3.8b: Median Nuclei per MGC from 
Adherence Purified Monocytes Cultured 
with Dual Anti-Tetraspanin Antibodies. 

Monocytes were cultured for 72hrs in ConA 

media with either single or dual anti-tetraspanin 

antibodies. Bars represent mean±SEM, N=4. 

Tested with a Dunn’s multiple comparison test 

comparing the mean rank of each dual-antibody 

treatment to the single antibody treatment (black 

stars) or to the IgG1 control (red stars; 61.75%). 
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Figure 3.8c: Median MGC Area from 
Adherence Purified Monocytes Cultured 
with Dual Anti- Tetraspanin Antibodies. 
Monocytes were cultured for 72hrs in ConA media 

with either single or dual anti-tetraspanin 

antibodies. Bars represent mean±SEM, N=4. 

Tested with a Dunn’s multiple comparison test 

comparing the means of each dual-antibody 

treatment to the single antibody treatment (black 

stars) or to the IgG1 control (red stars; 2511um2). 
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Figure 3.8d: % of Well Covered with MGCs 
from Adherence Purified Monocytes Cultured 
with Dual Anti-Tetraspanin Antibodies. 
Monocytes were cultured for 72hrs in ConA media 

with either single or dual anti-tetraspanin 

antibodies. Bars represent mean±SEM, N=4. 

Tested with a Dunn’s multiple comparison test 

comparing the mean rank of each dual-antibody 

treatment to the single antibody treatment (black 

stars) or to the IgG1 control (red stars; 19.13%). 
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tetraspanin antibody treatment than median nuclei per MGC. Overall, anti-CD82 alone 

had the lowest median nuclei per MGC at 4.5 nuclei per MGC (P=0.2252). The 

population distributions for anti-CD82 in Figure 3.9 shows that the presence of anti-

CD82 in any combination other than with anti-CD9 was sufficient to completely impede 

the formation of FBGCs and SGCs. 

 

Anti-CD9+anti-CD37 was the only combinational treatment that was similar to the 

IgG1 control (IgG1: 8.75nu MGC-1, 61.75% FI, 2511μm2, 19.13% covered vs anti-

CD9+anti-CD37: 11.25nu MGC-1, 63.00%, 3127μm2, 16.25% covered). All other anti-

tetraspanin antibody combinations produced considerable decreases in fusion 

parameters compared to the single antibodies alone. Anti-CD9+anti-CD37 treatment 

also produced similar results to anti-CD9 alone treatment in all parameters except the 

number of nuclei per MGC. In Figure 3.9 addition of anti-CD9+anti-CD37 is sufficient 

to cause a significant decrease in the % nuclei in LGCs (87.75%) compared to anti-

CD36 alone (96.75%) as a result of more FBGCs and SGCs are forming. 

 

The lowest FI, MGC area and % coverage for a single antibody treatment was anti-

CD151 at 25.25%, 1402μm2 and 2.50% respectively. Only 6 of the 21 double anti-

tetraspanin treatments possessed FI above anti-CD151 (four of which contained anti-

CD9), the remaining 15 combinations were all less than any of the single anti-

tetraspanin antibody treatments. Anti-CD81+anti-CD151 was ranked the most 

inhibitory; possessing the lowest FI (9.5%), third smallest MGC area (1103μm2) and 

second lowest % covered (1.25%). Anti-CD82 had the second lowest rank amongst 

the single antibody treatments with a FI of 29.25% and when combined with anti-

CD151 resulted in a FI that was lower than both (14.25%). 

 

Anti-CD151 double antibody treatments had the lowest collective FI with anti-

CD9+anti-CD151 being the only combination above 20% FI. With the exception of 

anti-CD9+anti-CD151 all other anti-CD151 containing combinations were ranked in 

the bottom 8 of the FI and bottom 7 of the % surface covered. These showed 

significant reductions compared to the IgG1 control (red stars, Figure 3.8b & 3.8d, 
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Figure 3.9: MGC Types Generated from 
Adherence Purified Monocytes Cultured 
with Dual Anti-Tetraspanin Antibodies. 
Monocytes were cultured for 72hrs in ConA 

containing cIMDM with either single or dual anti-

tetraspanin antibodies. Bars represent 

mean±SEM, N=4. Tested with a two-way ANOVA 

with a Dunnett’s multiple comparison test 

comparing the mean rank of each MGC type of 

the dual-antibody treatment to the same MGC 

type of the equivalent single antibody treatment 

or IgG1. Red stars: LGCs, Green: FBGCs & Blue: 

SGCs. 
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anti-CD151 graph). Antibody combinations containing anti-CD82 showed an inhibiting 

effect similar to anti-CD151, but to a lesser extent. 

 

Curiously, anti-CD81 produced the second highest FI (48.25%) of the single antibody 

treatments yet anti-CD81 was also present in the two lowest FI treatments: anti-

CD81+anti-CD151 (9.50%) and anti-CD37+anti-CD81 (10.00%). Compared to anti-

CD81 alone, the Dunn’s test reported significant reductions in anti-CD81+anti-CD151 

(P=0.0431) and anti-CD37+anti-CD81 (P=0.0459) treatments. Compared to the 

original IgG1 control (red stars) these reductions were even more significant 

(P=0.0039 and P=0.0053 respectively). The % coverage reflects the same trend as 

the FI with anti-CD81+anti-CD151 and anti-CD37+anti-CD81 both producing only 

1.25% coverage (both P=0.0392) compared anti-CD81 alone (11.25%). Thus the 

combining of anti-CD37 or anti-CD151 produced a % coverage that was lesser than 

any of the single antibody equivalents (anti-CD37: 10.25%, anti-CD151: 2.50% and 

IgG1: 19.13%).  

 

As a group, anti-CD9 and its combinations collectively produced the largest MGCs by 

area. Anti-CD9+anti-CD37 were the biggest of all single and double antibody 

conditions (3127μm2) with anti-CD9+anti-CD151 (1373μm2) being the smallest of the 

group. The smallest MGCs out of all the conditions tested were in anti-CD63+anti-

CD151 (970μm2). In Figure 3.9 anti-CD9 was the only condition (single or double) to 

produce a significant decrease in the % of LGC nuclei (P=0.0037) and an increase in 

the SGC nuclei (P=0.0495) compared to IgG1. Whereas anti-CD63+anti-CD151 was 

the only condition to cause significant decrease in the MGC area compared to both 

anti-CD63 alone (P=0.0284) or IgG1 (P=0.0113). 

 



129 
 

3.2 DISCUSSION 
The Optimised Protocol Produces Purer Monocytes and Larger Sample Sizes 

Previous studies on the fusion of monocytes have used an adhesion purification 

method but this runs the risk of variable contamination with cytokine-producing 

lymphocytes. T-cells and NK-cells have been shown to be responsive to ConA which 

causes differentiation, activation and cytokine release (Lei and Chang, 2009; 

Takashima et al., 1993; Wang et al., 2012). T-cells and NK-cells are selectively 

removed in the MACS method. Figure 2.1 and Figure 2.2 show that the MACS 

purification effectively removed the granulocyte and lymphocyte populations. 

However, in the “CD14- removal” plots it is clear that MACS treatment was not 

sufficient to remove the NK-cell population. Studies have shown that ConA is able to 

activate NK-cells to produce IFNγ which is known to initiate fusion.  

 

The use of FACs or positive selection MACS to purify monocytes may produce greater 

purities but the goal of the optimisation reported here was to increase purity with 

minimal interference to the monocytes themselves. Binding of large beads or antibody-

fluorophore conjugates could alter the fusion behaviour of the monocytes and give 

false results.  

 

Different strategies were attempted to automate the selection of MGC borders and 

type but none were sufficient to match manual selection. When performing a threshold 

adjustment and subsequent watershed on the actin images it was still not possible to 

separate MGCs effectively. There were many images that contained overlapping, 

touching or partly-stained MGCs or even non-fused cell aggregates. The uniformity of 

actin staining was less consistent for SGC (such as those seen in Figure 2.6) which 

have regions of low actin. It is possible that because of the sheer size of the SGCs that 

at the single z-slice is unable to capture enough actin fluorescence signal for parts of 

the MGC structure that are particularly raised above the surface of the well. In 2014 

Pegoraro and colleagues published a paper describing an automated MGC analysis 

method using confocal microscopy and the PerkinElmer program ‘Acapella 2.7’ to 

select Burkholderia infected giant cells. Unfortunately, such an advanced image 
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analysis program was unavailable to us and an equivalent plugin on ImageJ was not 

found. Though time consuming, manual ROI selection of MGCs was the only way to 

ensure accurate selection of MGCs and identification of MGC type. 

 

The automation of the imaging removed any user bias and allowed low-magnification 

maps to be made by collaging the 4x images. For the first time it was possible to see 

the distribution of giant cells in the well and showed that, on some occasions, the 

distribution was uneven. If the wells contained an even distribution of MGCs and single 

cells then the sample images selected for counting were #5-8 to bisect the well from 

one side to the other. In cases of extremely uneven distribution an alternative 

row/column of sample images was selected that best represented the total population. 

Though this approach does confer some sample bias it was deemed to be the best 

method for generating a representative sample population for unevenly distributed 

wells. 

 

The stacking of nuclei particularly in FBGCs posed an issue for the automated counting 

macro. As the nuclei get closer or overlap the fluorescence signal stacks (see red box 

in Figure 2.5) and the resolution of individual peaks is lessened. Using background 

reduction and ensuring that the pixels were not saturated prior to imaging; ensured 

that the resolution between the signal peaks was maximised. The automated 

technique for counting nuclei gave a 6-fold increase in nuclei counted per condition 

and further removed user bias. 

 

The More the Merrier; Fusion Parameters Increase with Increasing 

Monocyte Seeding Numbers 

The apparent increase in all fusion parameters in Figure 3.2 when monocyte seeding 

density was increased can be explained by two features of fusion. Firstly, the number 

of monocyte-monocyte contacts will increase with increasing cell density. This 

increases the chance that direct contact between monocytes will occur as they 

randomly patrol the well surface. Secondly, with more monocytes present in the well 

the concentration of fusion-triggering cytokines may go up faster. Though the exact 

mechanism of ConA directed fusion is still unknown, it has been shown that ConA 
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triggers a release of fusion initiating cytokines e.g. IFNγ, TNF-α, IL-1β and IL-4 (Sodhi 

et al., 2007; Wang et al., 2012). With more monocytes present the concentration of 

these cytokines will accumulate faster in the media and therefore trigger fusion at a 

faster rate. 

 

The median nuclei per MGC is a commonly used parameter in MGC experiments (Coury 

et al., 2008; Harkel et al., 2015; Kondo et al., 2009). In the kinetics experiments 

(Figure 3.2), there was no significant change in the median nuclei per MGC throughout 

all the time points observed. The lack of change in this particular parameter could be 

a consequence of the large sampling size. MGC populations were almost exclusively 

positively skewed, with smaller (3-8 nuclei) MGCs being the most prevalent and larger 

MGCs being less common. As the seeding density is increased there is an increase in 

the MGC size across all three time points but little change between time points. It is 

possible that though there are larger MGCs present in the sample population at later 

time points, they are not affecting the median because the smaller MGCs are far more 

numerous. The median area of MGCs for example is another median measurement 

but because the differences in MGC area are often in hundreds to thousands of square 

micrometres; changes in the median are far more apparent. 

 

For the other parameters there are initial increases between 24-48hrs but then a 

plateau or decline in measurements between 48-72hrs. There is no evidence in the 

literature or in the images obtained that fusion is a reversible process. It is more likely 

that at 48hrs the smaller MGCs are reaching peak activity and are then moving and 

fusing with one another, thus appear similar to SGCs. This would account for the 

higher number of SCGs at 48hrs in all densities in Figure 3.3. At 72hrs when the media 

has been depleted it is possible that the MGCs are less motile and stop moving over 

and across one another which would give fewer false counts of SGCs. Another 

possibility is that after 48hrs, the larger MGCs become unstable and rupture either 

prior or during the washing and fixing stage and so they are not present in the 72hrs 

images. The parameters for the lowest seeded density (0.25x105 monocytes well-1) in 

Figure 3.2 do not show the post-48hrs decline in values. This could mean that there 
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is some sort of negative feedback occurring in the higher densities which is why the 

parameters decrease in the higher seeding densities. 

 

Based on the results from the kinetics experiments it was decided that 1.50x105 

monocytes well-1 was the preferable seeding density for future assays because it 

produced higher values in all the measured parameters. This would mean that when 

fusion was inhibited or enhanced by anti-tetraspanin antibodies the change from the 

control would be apparent.  

 

Anti-Tetraspanin Antibodies Do Not Affect Initial Adherence 

The adhesion assay (Figure 3.4) showed that anti-tetraspanin antibodies did not affect 

the early monocyte behaviour in any observable way. However, even if adherence 

machinery is not affected this is not to say that other processes such as migration 

(which also utilises integrins and other proteins that complex with tetraspanins) are 

not affected. If for example the monocytes could adhere but an anti-tetraspanin 

antibody inhibits the ability for the monocyte to migrate then fusion would also be 

inhibited, leading to a false negative result. 

 

Despite the seeding density for the adhesion assay being 50,000 monocytes per well, 

only approximately 20,000 monocytes were recorded per well (a ~40% return). It 

could be that when the wells were washed and fixed at 2hrs many weakly adhered 

monocytes were washed off thus reducing the final count. It is unlikely to be a point 

of concern as all the controls and anti-tetraspanin antibody wells all produced 

consistent results in all triplicates and produced consistent cell counts across all ConA-

containing conditions. 

 

The results of the adherence assay highlights a serious pitfall of the adherence 

purification method. In the absence of ConA, significantly fewer monocytes remained 

adhered to the well after 2hrs. The adherence purification method requires that wells 

be washed after 2hrs to remove adherent leukocytes but in Figure 3.4 we see that 

washing and fixing at this time results in substantial monocyte loss. The loss of these 

lesser-adherent monocytes could potentially have a big influence on the results of 
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fusion as the monocyte density will be lowered and there is no way to know if these 

monocytes have low adherence properties but are highly influential to the fusion 

process. 

 

MACS Purification Enhanced the Fusion Potential of Monocytes 

The MACS purified cells produced for more fusion, bigger MGCs, higher % coverage, 

greater SGC populations and less significant changes in response to anti-tetraspanin 

antibodies. It could be that the monocyte density is so high compared to the 

adherence purified cells (as what is seeded remains in the well) that the fusion has 

reached a saturated state. If the monocyte density was so high that monocytes and 

MGCs were in constant contact then fusion would occur to a greater extent than for 

the adherence purified cells and vast SGCs would form more often. Not only is the 

density of the seeded monocytes potentially higher in the MACS method but the 

presence of NK-Cells is higher (Figure 2.2). As potent producers of GM-CSF and TNFα 

it is possible that the NK-cells are becoming activated by ConA or ConA-induced 

monocyte cytokines to greatly enhance the fusion of the monocytes and produce more 

SGCs. It is likely that there is a lower number of monocytes in the adherence purified 

well due to the washing of non-adherent monocytes and this is why the fusion 

parameters are lesser than that of the ~3x purer MACS monocytes. The greater degree 

of fusion caused by either the higher density of monocytes or the presence of NK-cells 

could be saturating and thus masking the effects of the anti-tetraspanin antibodies on 

the fusion parameters.  

 

In both purification methods the addition of any of the anti-tetraspanins antibodies 

was not sufficient to completely arrest fusion and in most cases had subtle or little 

effect. Although the antibodies were added in saturated amounts it is possible that 

the monocytes endocytose and degrade any bound tetraspanins and express new 

functioning tetraspanins to replace them, though this would still show reduced fusion 

potential to the control. It is possible that the lack of any effect is because there are 

varying degrees of redundancy amongst the tetraspanins and that the effect of binding 

one tetraspanin using an antibody is being masked by the contributions of other 

tetraspanins involved in organising the fusion machinery. 
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CD63 and CD81 Altered the MGC Types Formed From MACS Cells 

Though the number of nuclei per MGC (Figure 3.6a) for the IgG1 controls did not differ 

very much between purification methods the median area of the MGCs showed a 4-

fold difference. This could be attributed to the more varied distribution of MGC types, 

particularly in the MACS derived MGCs (Figure 3.7). The increased presence of larger 

SGCs could increase the average area of the MGCs while the presence of multiple 

smaller LGCs would keep the median number of nuclei down. Furthermore, the unit 

measurement of MGC area had a much larger range in measurement (typically 

800μm2-60,000μm2) compared to the number of nuclei per MGC (typically 3-150nu 

per MGC) and therefore it is more sensitive to change/shifts in the median value. The 

presence of the much larger SGCs in the MACS purified cells is possibly the cause of 

this overall increase. 

 

For the MACS purified monocytes, the apparent decrease in MGC area for anti-CD63 

and increase for anti-CD81 in Figure 3.6b seems linked to the equivalent 

decrease/increase in the SGC population in Figure 3.7. It seems that the anti-CD63 

and anti-CD151 antibodies are inhibiting the formation of the larger SGCs to an extent 

that causes the median area and FI to decrease. CD81 had the opposite effect 

whereby the increase in the larger SGC population seemingly triggered an increase in 

the median nuclei per MGC and median area. These results are in accordance with 

previous studies which observed inhibition of fusion with the addition of anti-CD63 or 

anti-CD151 and enhancement with anti-CD81 (Parthasarathy et al., 2009; Takeda et 

al., 2003). 

 

Antibodies Targeting CD9 Had No Significant Effect on Fusion 

Anti-CD9 antibodies are well documented as causing significant enhancement of fusion 

in other assays, however, for the adherence purified monocytes only small increases 

in the SGC population were observed and there were no significant changes in the 

fusion parameters. The MACS purified monocytes produced no apparent changes to 

the distribution of MGCs or the fusion parameters in the presence of anti-CD9. Takeda 

and collegues (2003) demonstrated that anti-CD9 antibodies enhanced fusion of 
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monocytes in their experiments, however, they used Bu16 [IgG2a] and MM2/57 

[IgG2bκ] antibodies whereas our antibody was a 602.29 [IgG1]. It is likely that the 

different antibodies bind the EC2 at different sites and therefore some may block 

associations with partner proteins while others may lock them into active 

conformations. 

 

CD9 is expressed by other leukocytes of the immune system and as the adherence 

method relies on washing off non-adherent cells so it is possible that anti-CD9 may 

also target and influence contaminating leukocytes. The contamination of the 

adherence wells with T-cells could be of particular concern. Both ConA (Wands et al., 

1976) and anti-CD9 (Tai et al., 1996) have been shown to have an effect on T-cells  

so it is not fully clear if these results are due to anti-tetraspanin and ConA affecting 

the fusion of monocytes or responses from contaminating T-cells.  

 

Combinational Anti-Tetraspanin Antibody Treatment Greatly Inhibited 

Fusion 

The combining of two anti-tetraspanins antibodies together generally resulted in a 

greater reduction in fusion parameters. However, anti-CD9 was present in the 

antibody combination treatments that scored highest in the fusion parameters. CD9 

has been reported as a fusion inhibitor (Takeda et al., 2003) so antibody interference 

should enhance fusion. Anti-CD9 single antibody treatment did not show an increase 

in the FI or % coverage above that of the IgG1 control but the presence of an anti-

CD9 antibody in the treatment did predominantly act to lessen the inhibitory effect of 

some of the other antibodies to a degree. While the presence of some of the anti-

tetraspanin antibodies e.g. anti-CD151 may act to inhibit fusion by binding the 

respective tetraspanin’s EC2 domain and blocking binding partners and TEM 

formation, anti-CD9 binding is somehow enhancing fusion enough to overcome the 

negative effect to an extent. It could be that when CD9 is removed from the TEM its 

binding partners are freed up to participate in fusion. Alternatively, CD9 could be 

sequestering other tetraspanins and their binding partners thus making fusion 

initiation unfavourable and when CD9 is bound by anti-CD9 it frees up these 

tetraspanins and allows them to form a fusion TEM. 
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CD81 is also reported as a restrictor of fusion and other reports show increased fusion 

with anti-CD81 antibodies (Takeda et al., 2003) but our results do not reflect such an 

effect. Furthermore, anti-CD81 was present in the antibody combination that produced 

the greatest inhibitory effect (anti-CD81+anti-CD151). As CD81 and CD151 have both 

been shown to associate with EWI-2 (Charrin et al., 2001; Sala-Valdés et al., 2006) to 

facilitate actin polymerisation at the site of adhesion complexes the extreme loss in 

fusion when these tetraspanins as targeted together could be a result of EWI-2 

interference. Anti-CD151 and anti-CD82 were both potent inhibitors of fusion and 

when used in combination with other tetraspanins had the biggest negative effect on 

fusion. The presence of anti-CD82 or anti-CD151 were sufficient to reduce even the 

higher-fusing anti-CD9 conditions down to their lower limits. Just like CD81 and 

CD151; CD82 has been shown to associate with EWI-2 (Zhang et al., 2003). 

Furthermore, CD151 and CD82 are well documented as a facilitators of migration via 

associations with integrins (Berditchevski and Odintsova, 1999; Yáñez-Mó et al., 2001) 

so it is uncertain whether their interaction with the cells acts to slow/arrest migration 

or inhibit the formation of a fusion TEM. 

 

Anti-CD37, anti-CD53 and anti-CD63 produced very similar effects in the fusion 

parameters as single antibodies but when used in combination with each other they 

produced an additive negative effect together. This could imply that they share a 

degree of redundancy with each other or that they form homotypic tetraspanin 

partnerships with each other during fusion. As CD37 and CD53 have both been shown 

to associate with LFA-1 and CD63 with E-cadherin it is possible that the negative 

additive effect is a result of the anti-tetraspanin antibodies removing available 

adhesion proteins from the TEM. Furthermore, CD37, CD53, CD81 and CD82 have 

previously been shown on leukocytes to form associations via MHC class II proteins 

(Angelisova et al., 1994) so it is possible they form a similar TEM during fusion. 

 

Conclusion 

To what level of involvement do tetraspanins have in the fusion process of monocytes 

is still an elusive question. These experiments in total monocytes purified with two 
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common methods has shown that monocyte purity plays a big part in the outcome of 

fusion and can mask inhibitory effects of the anti-tetraspanin antibodies. While anti-

CD82 and anti-CD151 in adherence purified monocytes and anti-CD63 in MACS 

purified monocytes seem to be the most potent inhibitors of fusion; the results are 

still unclear. Furthermore, the contribution of the different monocyte subsets to the 

fusion process is still unknown and whether they would react equally to the anti-

tetraspanin antibodies is still to be seen. To further understand the role of tetraspanins 

in monocyte fusion the monocyte subsets need to be separated to high purity, quantify 

their tetraspanin surface expression and analyse their potential to form MGCs. 
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4 CHAPTER 4: MONOCYTE SUBSET FUSION 

4.1 INTRODUCTION 
Previous studies in MGC formation have either been conducted in vivo on mice (Skokos 

et al., 2011; Yang et al., 2014b), or in vitro in mouse cell lines (Levaot et al., 2015; 

Verma et al., 2014) and total human monocytes (McNally and Anderson, 1995; McNally 

et al., 1996; Möst et al., 1997). However, mice are lacking in the Int monocyte subsets 

and so do not possess the three subsets seen in humans. Total human monocyte 

studies do not provide any insight into the individual contribution of the subsets toward 

fusion. Furthermore, the percentage of each subset population is variable between 

donors and so changes in subset distributions may affect the results of fusion 

experiments. In Chapter 3 it was evident that other contaminating leukocytes were 

often present in the fusion assays when purified by adherence or MACS and so an 

accurate assessment of monocyte behaviour could not be made. The monocytes used 

in the current chapter were FACS sorted to a high purity (≥99%) by depleting non-

monocyte leukocytes with MACS, anti-CD56 to FACS-deplete NK-cells (Figure 2.3) and 

stringent gating of subsets using CD14 and CD16 expression. 

4.2 FUSOGENIC PROPERTIES OF MONOCYTE SUBSETS 
In the experiments described in Chapter 3, the total monocyte purity was unlikely to 

be constant because the adherence and MACS purification methods had varying levels 

of leukocyte contamination. With FACS sorted subsets the purity is ≈100% so it is 

possible to calculate the contributions of the seeded monocytes to the final result. 

Figure 4.1 shows what percentage of the monocytes (from the original 1.5x105 

monocytes seeded well-1) committed to fusion or was not found in the final images 

and so classified as detached/dead. Of the initially seeded cells, a surprisingly large 

percentage (67-77%) were classified as detached/dead after 72hrs ConA treatment. 

This is equivalent to a loss of 105000, 115500 and 100500 cells well-1 for Cl, Int and 

NCl monocytes respectively.  

The numbers of cells that remained as adherent single cells were almost equal in Cl 

(24.73%) and NCl (23.45%) monocytes which were ~1.9-fold higher than Int 
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Figure 4.1: Monocyte Subset Contributions During Fusion. 

As FACS purified monocytes were ~100% pure it is possible to calculate from the 

sample population data what the relative contribution of each subset during MGC 

formation. After 72hrs culture in ConA media the nuclei of the 1.5x105 monocytes 

seeded in every well were recorded as: within a single cell, within an MGC as a 

fused cell, or as not present (i.e. a dead or detached cell). Bars represent 

mean±SEM, N=25, tested by a Kruskal-Wallis test with Dunn’s multiple 

comparisons tests comparing the means of percentage of each subset to the 

different nuclear locations. 
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(12.86%) monocytes. The Dunn’s test reported significant differences comparing the 

single cell population of the Int monocytes to the Cl (P=0.0019) and NCl (P=0.0358) 

monocytes. Of the fused cells the Int (9.92%; P=0.0021) and NCl (9.13%; P=0.0348) 

subsets committed ~2-times more cells to fusion compared to the Cl monocytes 

(4.72%). This is equivalent to every 1 in 21 Cl monocytes, 1 in 10 Int and 1 in 11 NCl 

monocytes committing to fusion. 

4.3 SUBSET CONTRIBUTIONS TO FUSION 
Monocyte subsets when isolated and cultured in ConA for 72hrs at the same density 

show very different propensities to fusion (Figure 4.2 and Figure 4.3). Surprisingly, 

the most abundant subset – the Cl monocytes (79.71±6.70% of monocytes) - had the 

lowest values in all 4 fusion parameters: median nuclei per MGC (4.78 nuclei MGC-1), 

fusion index (19.50%), MGC Area (2372µm2) and % coverage (11.28%). The fusion 

index for Int monocytes was significantly higher than the Cl (P< 0.0001) and notably 

higher than the NCl (P=0.0929). The MGC area for Int monocytes was on average 

2.4-fold larger than Cl (P<0.0001) and 1.9-fold larger than NCl monocytes (P=0.0175). 

The only significant difference between the Cl and NCl subsets in Figure 4.2 was in 

the % coverage. Cl derived MGC showed significantly reduced coverage compared to 

both NCl (P=0.0357) and Int (P=0.0002) derived MGC.  

 

Fused nuclei were counted as being in LGC, FBGC or SGC (see Figure 2.7) and 

populations of each MGC type is shown in Figure 4.4. Cl monocytes were significantly 

more likely to contribute to the formation of LGC (79.51%) compared to NCl (55.33%; 

P=0.0122) and Int monocytes (43.44%; P<0.0001). Compared to the Cl monocytes, 

the Int had a significantly greater propensity to form FBGC (P=0.0018), with Int 

committing 2.14-fold more cells to FBGC than Cl. Int (15.49%; P=0.0005) and NCl 

monocytes (15.98%; P=0.0185) were ~12-fold more likely to commit to SGC 

formation compared to Cl monocytes (1.34%). Overall it is clear that despite being 

smaller components of the total monocyte population, the NCl and Int monocytes are 

able to fuse to a greater extent than Cl monocytes. They are also able to form more 

of the larger FBGC and SGC than the Cl monocytes. Whether these differences are 

due to differential tetraspanin expression or other factors is yet to be revealed.
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Figure 4.2: Fluorescence 
Microscopy of Monocyte 
Subset Derived MGCs. 

Three representative 

montages containing four 

images taken at 4x 

magnification of each of the 

monocyte subsets from one 

donor after 72hrs ConA 

treatment. Red = Nuclei, 

Blue = F-Actin.   

Classical 

Intermediate 

NonClassical 
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Figure 4.3: Fusion Parameters for Monocyte Subset Fusion. 

Monocytes were sorted into subsets by FACS and seeded at an exact density of 

1.5x105 monocytes well-1 and incubated for 72hrs in 10µgml-1 ConA to induce 

fusion. After fluorescence imaging the four parameters above were generated from 

the resultant data. Bars represent mean±SEM, N=25, tested by a Kruskal-Wallis 

test with Dunn’s multiple comparisons tests comparing the mean of each subset 

against one another. 
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Figure 4.4: MGC Types Generated from FACS Purified Monocyte Subsets. 

Nuclei inside each type of MGC is shown as a percentage of the total nuclei within 

fused cells. Bars represent mean±SEM, N=25, all parameters were tested with a 

Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means 

of the same MGC type with that of the other subsets. 
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4.4 FLUORESCENCE-SCANNING ELECTRON MICROSCOPY OF MONOCYTE 

SUBSETS 
It is clear from the fluorescence microscopy images that the three monocyte subsets 

have different propensities to produce the different MGC types. While fluorescent 

microscopy is sufficient for designation of MGC type, it does not reveal the high-detail 

3-dimensional features of the membrane. Therefore, scanning electron microscopy 

(SEM) was used to visualise the surface features of the MGC, sometimes in tandem 

with fluorescence microscopy to show the location of the multiple nuclei. 

SEM revealed that larger more developed MGC produce large filamentous networks 

and possess ruffled membranes (Figure 4.5a-c). Surrounding the central dome that 

holds the multiple nuclei is a wide, flat bed of filaments which look to be tightly 

anchoring the MGC to the surface. Figure 4.5c.1-2 shows a section of an MGC where 

the fixing and dehydration process has caused these fibres to break and lift off that 

allows us to see how thick these fibres are. The MGC surface is not a smooth structure 

but appears flaky and ruffled. Two monocytes in Figures 4.5a1-2 and 4.5a5-6 can be 

seen to be tightly bound by the MGC membrane and perhaps are being pulled into the 

structure. Figure 4.5c3 shows two NCl monocytes moving towards the MGC, possibly 

to fuse. 

In all subsets, MGC seemed to exist as either flattened dome structures (Figures 

4.5a.1, 4.5b.1 & 4.5c.1) or had the appearance of fried-eggs where they would be 

predominantly flat with a yolk-like bulge in the centre (Figures 4.5b.3, 4.5b.5 & 

4.5c.4).  

These bulbous structures were more regularly observed in the SEM images of Int and 

NCl derived MGC but previous fluorescent images did not reveal similar structures. 

Particularly in the Int and NCl derived MGC, there were examples of very large 

distorted bulges but such structures were not observed in the Cl-derived MGC. The Cl 

MGC typically consisted of smaller MGC (Figure 4.5a.3-4) clustered together with fewer 

large MGC. The Int MGC were dominated by vast MGC which required very low 

magnifications for SEM. The NCl MGC were the most varied in MGC size but many of 

the images showed damage from the fixing and dehydrating steps.



145 
 

Figure 4.5a: SEM of Classical Monocyte Derived MGCs. 

Figure 4.5: SEM Monocyte Subset Derived MGCs. 
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Figure 4.5b: SEM of Intermediate Monocyte Derived MGCs. 
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Figure 4.5c: SEM of NonClassical Monocyte Derived MGCs. 

Figure 4.5a-c show a collection of scanning Electron Microscopy images of subset 

derived MGCs. Low magnification Images are shown on the left and the coloured 

box inside show the high-magnification image on the right. The cells of these 

images were purified with FACS and allowed to fuse for 72hrs before being sent to 

the SEM unit for fixing and imaging. Electron voltages, magnification, working 

distance (WD) and scale bars shown at the foot of each image. 
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Figure 4.6.a-c show three example images from tandem fluorescence-scanning 

electron microscopy (Flu-SEM). They were each conducted on MGC derived from each 

of the subsets with the nuclear images overlaid. Figure 4.6.a&c possess ring-like 

nuclear arrangements typical of LGC while the Int MGC shows a tight nuclear dome in 

the centre and a cluster of nuclei in the centre typical of FBGC. 

4.5 FUSION KINETICS OF MONOCYTE SUBSETS  
The subsets were investigated at different time points to analyse the progression of 

fusion over time and to provide samples for ELISA analysis of the cytokine signals (see 

Chapter 5). 

In less than 24hrs of culture in ConA media, all subsets were able to produce MGC 

containing ≥3 nuclei (Figure 4.7). By 24hrs the Int subset had covered 3.2-fold more 

of the well surface (30.52%) in MGC than the Cl (9.54%) and 7.7-fold more than the 

NCl subsets (3.96%). At 24hrs the NCl subset produces slightly lower values than the 

Cl subset in all fusion parameters shown in Figure 4.7 but by 72hrs the NCl increase 

in fusion beyond the Cl. 

MGC from Int and Cl subsets appear to reach a steady-state in the fusion parameters 

from 48hrs onwards whereas the NCl continue to increase in all parameters. Between 

24-48hrs the Int had a significant increase in MGC area (P=0.0005, Figure 4.7) which 

coincided with a 12.64% increase in the FBGC population (Figure 4.9). Between the 

same two time points; NCl had a significant increase in fusion index (P=0.0450, Figure 

4.7) which matched with the +3.62% increase in fused cells and -6.80% decrease in 

single cells (Figure 4.8). As with the total monocytes, the median nuclei per MGC did 

not change significantly over the 72hr period for any of the subsets. 

By 24hrs there was a significant difference between the number of fused nuclei 

between Int (14.32%) and NCl (3.21%; P=0.0194) but not with the Cl (5.74%; 

P=0.1555). 

By 48hrs the Int have the lowest number of unfused single cells (8.60%) compared 

to Cl (26.18%, P=0.0126) and NCl (21.50%, P=0.0175) and in turn the highest FI 

(52.87%). By 72hrs the difference in remaining single cells became even greater (Int 

vs Cl P=0.0021; vs NCl P=0.0030). At 24hrs the number of detached cells appears 



149 
 

Figure 4.6: Flu-SEM Images of 
Nuclear Arrangement Within MGCs. 
Utilising the same protocol as Figure 4.5, 
subsets MGCs were generated and prior to 
SEM fixing and imaging the cells were 
stained with Hoechst and the well raster 
scanned so that the MGCs imaged in SEM 
could be located and the nuclear channel 
overlaid onto the image. Above: Classical, 
Right: Intermediate, Below: Nonclassical 
derived MGCs with scale bars and nuclei 

shown in blue. 
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Figure 4.7: Fusion Kinetics of Monocyte Subsets. 

FACS purified monocytes were seeded at 1.5x105 monocytes well-1 and incubated 

for 24hrs, 48hrs and 72hrs in 10ugml-1 ConA to induce fusion. Red lines with 

circles: classical, orange lines with squares: intermediate and yellow lines 

with triangles; nonclassical monocyte derived MGCs. Each point represents 

mean±SEM, N=8, all parameters were tested with a two-way ANOVA with a 

Tukey’s multiple comparisons tests comparing each subset time-point to the 

previous one (e.g. MGC Median Area: intermediate 48hrs vs intermediate 24hrs 

shows “***” (P<0.0005) significance). Comparison of monocyte subsets to each 

other is covered at the end-point, in Figure 4.3. 
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Figure 4.8: Subset Fusion Kinetics - Nuclear State Analysis. 

At each of the time-points in the subset fusion kinetics experiment the ‘state’ of 

each nuclei was calculated and analysed above. Bars represent mean±SEM, N=8, 

all time-points were tested with a Kruskal-Wallis test  with Dunn’s multiple 

comparisons tests comparing the means of the same nuclei ‘state’ within the same 

time-point against the other subset means. e.g. 24hrs intermediate fused nuclei vs 

24hrs nonclassical fused nuclei. Red stars: detached cells, green stars: single cells 

and blue stars: fused cells. 
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Figure 4.9: Subset Fusion Kinetics – MGC Type Analysis. 

At each of the time-points in the subset fusion kinetics experiment the nuclei 

counted inside each MGC was tallied into one of three observed MGC types and 

presented as a percentage of the fused nuclei counted. Bars represent mean±SEM, 

N=8, all time-points were tested with a Kruskal-Wallis test  with Dunn’s multiple 

comparisons tests comparing the means of the same MGC type within the same 

time-point against the other subset means. e.g. 24hrs classical LGC vs 24hrs 

intermediate LGC. Red stars: LGC nuclei, green stars: FBGC nuclei and blue stars: 

SGC nuclei. 
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almost the same between the three subsets. However, at 48hrs the difference 

between the detached populations of Cl and Int monocytes is almost significant 

(P=0.0777). After 72hrs the Int has a significantly higher number of detached cells 

(85.27%) compared to Cl (73.52%, P=0.0486) and Int (72.70%, P=0.0296) groups.  

Confusingly, the fused population of the Int subset decreases from 24-72hrs but 

increases in both the Cl and NCl subsets (Figure 4.7: Cl: +1.01%, Int: -6.15% & NCl: 

+1.01%). In Figure 4.9 the distributions of the different MGC types are significantly 

different within 24hrs. Only the Int subset was able to produce significantly more SGC 

than Cl (P=0.0034) and NCl (P=0.0145) subsets. Not until 48hrs did all three subsets 

possess all three MGC types to some degree. At 48hrs the Int monocytes had 

significantly less LGC (46.50%; P=0.0262) than the Cl monocytes (82.61%). By 72hrs 

the population distributions in Figures 4.8 and 4.9 were comparable with Figures 4.3 

and 4.4 respectively.  

4.6 ANALYSIS OF CYTOKINE PRODUCTION BY MONOCYTE SUBSETS 

UNDERGOING FUSION  
Fusion competent monocytes secrete chemoattractants and cytokines to augment 

fusion and differentiation (see 1.3.1-1.3.3). As the subsets showed different 

propensities to fusion it is possible that they secrete a different array of cytokines in 

response to gaining fusion-competence. The supernatants from the fusion kinetics 

samples were collected at 24, 48 and 72hrs for analysis of the cytokines produced by 

the monocyte subsets during fusion. 

Figure 4.10a shows the unstimulated vs ConA stimulated comparison at each time 

point to ascertain which cytokines were upregulated in fusogenic conditions. Figure 

4.10b compares the ConA-stimulated conditions between different time points within 

the same subset to show how cytokine secretion changed over time. Figure 4.10c 

compares the levels of each cytokine between the three subsets at the same time 

points to ascertain if the differences in fusion parameters shown in Figures 4.7, 4.8 

and 4.9 were directly correlated with the cytokine signals. 

CCL2, IL-6, TNFα, CCL3, IL-1β, GM-CSF and IL-1α were the most highly secreted 

cytokines (>1000pg ml-1). IFNγ, IL-10, IL-13, IL-4, IL-17A, IL-3 and VEGF were all 
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Figure 4.10: Fusion Cytokines 

Figure 4.10a: Fusion Cytokines - Comparison of Subsets Cultured in –ConA vs +ConA. 

Supernatants from the subset kinetics cultures were collected and analysed by ELISA for 15 targets 

of interest. Clear bars: –ConA, striped bars: +ConA; with each time point (24, 48, 72hrs) presented 

in adjacent pairs. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA with a Sidak’s 

multiple comparison test comparing the means of  -ConA vs +ConA of the same time point within 

each subset. 
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Figure 4.10b: Fusion Cytokines - Comparison of Different Time Points for Subsets 

Cultured in ConA. 

Only the +ConA samples from Figure 4.10a are shown above; arranged in 24, 48 and 72hrs for 

each subset. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA with a Tukey’s 

multiple comparison test comparing the means of the different time points within each subset. 

Red bars/stars are for samples that did not show any significant differences between –ConA and 

+ConA in Figure 4.10a. 

 



156 
 

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0 IL -1

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

* *

*

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0
IL -1 

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

*****

** **

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0 IL -6

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

*** **

*

***

***
***

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

5

1 0

1 5
IL -1 7 A

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

2 0 0 0

4 0 0 0

6 0 0 0
T N F 

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

*

*

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

5

1 0

1 5

2 0 IL -4

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 IL -1 0

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

***

*

*

*

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

5

1 0

1 5

2 0

2 5 IL -1 3

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0 C C L 2

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

**
**

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0
C C L 3

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

*

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0 R A N T E S  (C C L 5 )

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1 0 0 0

2 0 0 0

3 0 0 0 G M -C S F

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) * *

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1

2

3

4 IL -3

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) ***

***

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0
IF N 

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

+
C

o
n

A
 (

2
4
h

r )

+
C

o
n

A
 (

4
8
h

r )

+
C

o
n

A
 (

7
2
h

r )

0

1 0 0

2 0 0

3 0 0

4 0 0
V E G F

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l)

Figure 4.10c: Fusion Cytokines – Comparison of Subsets Cultured in ConA at Different 

Time Points. 

Only the +ConA samples from Figure 4.10a are shown above; arranged into subsets at the same 

time point. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA and Tukey’s multiple 

comparison test comparing the means of each subset against one another at the same time point. 

Red bars/stars are for samples that did not show any significant differences between –ConA and 

+ConA in Figure 4.10a. 
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<1000pg ml-1 and RANTES was undetectable. There was no significant difference 

between the ConA and unstimulated time points for IL-17A, IL-10, RANTES, IFNγ and 

VEGF. The NCl subset was particularly low in both conditions for IL-1α, IL-1β, IL-6, 

TNFα, IL-4, IL-13 and GM-CSF at all time points.  

The pro-inflammatory cytokines IL-1α and IL-1β were significantly higher in the ConA 

Int time points (Figure 4.10a) and peaked in secretion at 48hrs (Figure 10b). Within 

24hrs IL-6 was ~27-times higher in Cl+ConA cells than the no ConA equivalent (P< 

0.0001) and ~6-times higher in Int+ConA (P<0.0001). The Int+ConA increased 

significantly (P=0.0402) between 24-72hrs and by the last time point both Cl+ConA 

(14,269pg ml-1; P=0.0001) and Int+ConA (13,586pg ml-1; P=0.0003) were 

significantly higher than NCl+ConA (1,888pg ml-1). TNFα was another fast responding 

pro-inflammatory cytokine; at 24hrs the Cl+ConA and Int+ConA were 85 and 11-times 

higher (Cl: 3105pg ml-1; P=0.0044. Int: 4620pg ml-1; P=0.0001) than the no ConA 

equivalent (Cl: 36pg ml-1. Int: 438pg ml-1). TNFα decreased over each time point in 

the Cl+ConA and Int+ConA samples but remained stable from 24-72hrs in NCl+ConA. 

IL-17A is relatively low compared to the other pro-inflammatory cytokines (no sample 

exceeded 6.04pg ml-1).  

The concentrations of the anti-inflammatory cytokines (IL-4, IL-10 and IL-13) were all 

relatively low compared to the pro-inflammatory cytokines. IL-10 was the highest to 

be secreted but showed no significant difference between the ConA and no ConA 

conditions at any time point. IL-4 and IL-13 was significantly higher in ConA containing 

Cl samples by 24hrs (P=0.0019 & P=0.0025 respectively). Both cytokines generally 

increased over the time points but a significant difference between the subsets was 

not observed.  

CCL2 was highly secreted in both no ConA and ConA conditions for Cl and Int 

monocytes. NCl+ConA samples were significantly higher in CCL2 at all three time 

points compared to the no ConA equivalents (24hrs: P=0.0201; 48hrs: P=0.0066; 

72hrs: P=0.0416). CCL2 seemingly increased over time from 24-72hrs for all ConA 

treated subsets, however, the samples were saturated beyond the detection limit of 

the ELISA beads (0.632-10004pg ml-1) from 48hrs onwards. CCL3 is rapidly secreted 

by all three subsets containing ConA and remain significantly higher than the no ConA 
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samples at every time point. Only the Int+ConA increased significantly across all the 

time points (24-72hrs: P=0.0007; Figure 4.10b). By 72hrs the Int+ConA (3744pg ml-

1) supernatant contained a far greater concentration of CCL3 than NCl+ConA (1305pg 

ml-1; P=0.0291) and Cl+ConA (1831pg ml-1; P=0.0645). RANTES was not detected in 

any condition for any donor within the 366-9961pg ml-1 range. 

Within 24hrs the Cl and Int monocytes cultured with ConA contained significantly 

higher GM-CSF than the no ConA equivalents (Cl: 534pg ml-1; P=0.0085; Int: 500pg 

ml-1; P=0.0158). The Cl+ConA GM-CSF concentration does not change significantly 

after the 24hrs time point. However, the Int+ConA increase GM-CSF concentration 

3.5-fold between 24-48hrs where it plateaus until 72hrs at 1731-1770pg ml-1 

(P=0.0038). In contrast, IFNγ was a more delayed cytokine response and increased 

across the time points peaking at 72hrs. The concentration of IFNγ increased rapidly 

between 48-72hrs in the ConA containing Int and NCl samples and by 72hrs were 3.3- 

and 3.9-fold higher than the Cl+ConA respectfully. IL-3 was secreted in very low 

concentrations compared to other cytokines (Figure 4.10a) but significant increases 

were observed across all the time points (Figure 4.10b) for ConA cultured Cl (24-

72hrs: P=0.0028) and Int (24-72hrs: P=0.0004) samples. VEGF was only detected in 

50% of the ConA containing samples at 24hrs and subsequent time points did not test 

positive for any VEGF presence.  The VEGF detection range (393-9999pg ml-1) 

suggests that the assay is relatively insensitive to low concentrations compared to 

other cytokines. 

4.7 MONOCYTE SUBSETS CULTURED WITH ANTI-TETRASPANIN ANTIBODIES  
It is possible that the high-fusing Int and NCl monocytes express a particular pattern 

of tetraspanins compared to Cl monocytes. In Chapter 3 the presence of other 

leukocytes in the isolated cells makes it difficult to ascertain whether the anti-

tetraspanin antibodies were directly targeting the monocytes or the contaminating 

cells to affect fusion behaviour. Anti-tetraspanin antibodies have been tested on total 

monocytes but here we observe their effect on purified individual subsets. From Figure 

4.11a-c alone it is clear that the purified monocyte subsets not only fuse differently to 

total monocytes but also react to anti-tetraspanin antibodies differently. The Cl and 

NCl subsets remain largely unaffected by most of the antibody treatments and the 
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Figure 4.11a: Fluorescence Microscopy of Classical Monocyte Derived 

MGCs Cultured with Anti-Tetraspanin Antibodies.  

 

Classical+IgG1 Classical+CD9 

Classical+CD37 Classical+CD53 

Classical+CD63 Classical+CD81 

Classical+CD82 Classical+CD151 
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Intermediate+IgG1 Intermediate+CD9 

Intermediate+CD37 Intermediate+CD53 

Intermediate+CD63 Intermediate+CD81 

Intermediate+CD82 Intermediate+CD151 

Figure 4.11b: Fluorescence Microscopy of Intermediate Monocyte 

Derived MGCs Cultured with Anti- Tetraspanin Antibodies.  
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NonClassical+IgG1 NonClassical+CD9 

NonClassical+CD37 NonClassical+CD53 

NonClassical+CD63 NonClassical+CD81 

NonClassical+CD82 NonClassical+CD151 

Figure 4.11c: Fluorescence Microscopy of NonClassical Monocyte 

Derived MGCs Cultured with Anti-Tetraspanins Antibodies. 
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Figure 4.11a-c: Fluorescence Microscopy of Monocyte Subset Derived 

MGCs Cultured with Anti-Tetraspanin Antibodies. 

Figures 4.11a-c each show a representative image taken at 4x magnification of 

each of the monocyte subsets from the same donor after 72hrs ConA + IgG1 or 

an anti-tetraspanin antibody treatment. Red = Nuclei, Blue = F-Actin.   
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majority of the MGC produced are LGC. The Int monocytes produce larger and more 

regular MGC than the Cl but anti-CD9, anti-CD53, anti-CD63 and anti-CD151 seem to 

inhibit the fusion down to a Cl-like level. 

Figure 4.12 summarises the data collected from 3-8 donors (8 donors tested with 

IgG1, anti-CD9 & anti-CD151, 4 donors with anti-CD37 & anti-CD63, 3 donors with 

anti-CD53, anti-CD81 & anti-CD82). While the Cl monocytes remain largely unchanged 

in their fusion parameters by the addition of anti-tetraspanin antibodies, the Int 

monocytes reacted significantly to the addition of certain anti-tetraspanin antibodies. 

Anti-CD63 was sufficient to significantly reduce the median nuclei MGC-1 (P=0.0347), 

fusion index (P=0.0444), MGC area (P=0.0136) and % coverage (P=0.0406) of Int 

monocytes compared to the IgG1 control. Anti-CD53 produced similar reductions in 

the fusion parameters but with only three donor repeats, however, this was not 

sufficient to obtain statistical significance in all parameters. Anti-CD151 produced 

significant decreases in the MGC area (P=0.0149) and % coverage (P=0.0406) and 

notable decreases in the fusion index and median number of nuclei MGC-1. The 

addition of anti-CD9 caused a decrease in the fusion index (P= 0.1528) and a 

significant decrease in the Int % coverage (P=0.0331).  

The decrease in Int FI for the Int monocytes with the addition of anti-CD9 seems to 

be due to the decrease in the number of fused cells and the increase in the number 

of adherent single cells in Figure 4.13. Similarly, anti-CD53, anti-CD63 and anti-CD151 

also seem to decrease the number of cells committing to fusion while increasing the 

number of adherent single cells compared to the Int IgG1 control. For the Cl and NCl 

subsets anti-CD9, anti-CD53, anti-CD63 and anti-CD151 did not greatly affect the 

number of fused cells as it did for the Int. There were however, notable reductions in 

the number of adherent cells for NCl monocytes cultured with anti-CD9, anti-CD53, 

anti-CD63 and anti-CD151 (Figure 4.13). The reductions in the fusion parameters in 

Figure 4.12 are proportional to the increase in the formation of the smaller LGC and 

decrease in the larger FBGC and SGC of Int monocytes cultured in anti-CD9, anti-

CD53, anti-CD63 and anti-CD151. Anti-CD63 in particular showed significant 

reductions in the formation of FBGC (5.70%; P=0.0494) and a significant increase in 
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Figure 4.12: Fusion Parameters for Monocyte Subsets Cultured with Anti-
Tetraspanin Antibodies. 

FACS purified monocyte subsets were cultured in media containing ConA and either 

an anti-tetraspanin antibody or IgG1 control for 72hrs. Bars represent mean±SEM, 

N=3-8, all parameters were tested with a Kruskal-Wallis test (data was non-Gaussian) 

and a Dunn’s multiple comparisons tests comparing the anti-tetraspanin antibody 

means against the IgG1 control within each subset. As the intermediate subset showed 

the most response to antibody treatment the columns have been arranged into 

ascending order for each parameter for intermediates. 
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Figure 4.13: Monocyte Subsets Cultured with Anti-Tetraspanin 
Antibodies - Nuclear State Analysis. 
The ‘state’ of each nuclei is summarised for each subset cultured for 72hrs in 

ConA media containing either IgG1 control or an anti-tetraspanin antibody. Bars 

represent mean±SEM, N=3-8, all time-points were tested with a Kruskal-Wallis 

test  with Dunn’s multiple comparisons tests comparing the means of the same 

nuclei ‘state’ within the same subset’s IgG1 control.  
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the LGC (94.30%; P=0.0340) population compared to the IgG1 control (LGC: 26.94% 

& FBGC: 55.09%). 

The Cl and NCl subsets when cultured with anti-CD37 did not change from their 

respective controls (Figure 4.13), however, the Int fused cell population increased 

1.51-fold from the control with the addition of anti-CD37. The increase in the SGC 

population for Int cultured with anti-CD37 in Figure 4.14 could be the cause of the 

increased fused cell counts in Figure 4.13. In Int the addition of anti-CD81 resulted in 

a 3.34-fold increase in the SGC population, the highest recorded in all conditions but 

did not affect the fusion parameters significantly. Unlike the total monocytes 

experiments anti-CD82 had little effect on any of the individual monocyte subsets in 

the fusion parameters, fused/single cell analysis or MGC type. 
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Figure 4.14: Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies – 
MGC Type. 
All the nuclei counted inside each MGC from the anti-tetraspanin experiments were tallied 

into one of three observed MGC types and presented as a percentage of the fused nuclei 

counted. Bars represent mean±SEM, N=3-8, all time-points were tested with a Kruskal-

Wallis test  with Dunn’s multiple comparisons tests comparing ‘like’ MGC types between 

the anti-tetraspanin conditions and the IgG1 control. Red stars: LGC nuclei, green stars: 

FBGC nuclei and blue stars: SGC nuclei. 
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4.8 DISCUSSION: 
Monocyte Subsets Possess Different Predispositions to Fusion.  

Previous studies have always tested monocytes as a total population and not sorted 

the subsets prior to the induction of fusion. Unlike the experiments performed in 

Chapter 3, there are no blood-derived leukocyte contaminants present in these 

experiments because FACS produces tightly selected subsets devoid of NK-cells or T-

cells.  

Cl monocytes are typically ~17-fold and ~8.5-fold more numerous in the bloodstream 

than Int and NCl monocytes in healthy donors. Multiple studies have shown an 

expansion of the Int and NCl subsets during fusion-related inflammatory diseases such 

as tuberculosis (Castaño et al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B 

(Zhang et al., 2011a) and rheumatoid arthritis (Rossol et al., 2012). The increase in 

these subsets could be an immune response to increase the number of fusion-ready 

monocytes in the blood to facilitate the formation of MGC in the tissues. 

 

Figure 4.1 revealed that the subsets each commit different proportions to fusion. 

Furthermore, the subsets produced different ratios of LGC, FBGC and SGC compared 

to one another. This could indicate that the three subsets have distinct roles in regards 

to fusion which would have important implications on the development of treatments 

for the rejection of prosthesis and treating granulomatous masses. These findings are 

also a cautionary note for the study of fusion in mice because murine models only 

possess Cl and NCl monocytes but not the highest fusing Int monocytes. Fusion is an 

irreversible commitment of monocytes and there has been no evidence in the literature 

or in these experiments that MGC can revert to single cells. MGC are relatively short 

lived cells and so any monocytes committed to fusion are lost from circulation. It is 

possible that the high-fusing Int and NCl monocytes are less prevalent in the 

bloodstream to avoid over-reactions to fusion-promoting signals which could otherwise 

be more detrimental than beneficial to the host.  
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Fusion Index Is Not an Accurate Measurement of Subset Fusibility 

Fusion index (Figure 4.3) has long been a standard measurement of fusion; it is the 

ratio of nuclei in fused cells to total nuclei counted in a sample. For total monocyte 

work, this has always been adequate but by analysing the relative contributions of the 

subsets to fusion (Figure 4.1) it is clear that the fusion index can be misleading. For 

example, all three subsets produced a different fusion index but in Figure 4.1 it is clear 

that the subsets retain different numbers of adherent single cells (green segment). 

The higher the number of these single cells compared to the fused nuclei - the lower 

the FI. Int and NCl appear to have almost identical numbers of fused nuclei (blue 

segment) but because the Int monocytes retain less adherent single cells the fusion 

index increases and gives a somewhat misinformed view on the fusion behaviour. 

Fusion index is still a useful method of quantifying fusion between monocytes of a 

similar origin (e.g. Cl vs Cl) but due to the differing adherence properties of the subsets 

the fusion index must be considered with caution. It is therefore important to consider 

other measurements such as the ratio of nuclei in detached/single/fused cells, the 

MGC types formed and the % coverage. The % well covered in MGC was far more 

representative than FI for analysing the propensity of a subset to undergo fusion. The 

% coverage just analysed the total area of the well covered by MGC independent of 

what type of MGC it was or how many nuclei it contained or how many single cells 

remained unfused. 

 

The Majority of Seeded Cells Detached or Died – Are Monocytes Committing 

Suicide To Attract More To Their Funeral? 

Of the initially seeded 1.5x105 monocytes well-1, a surprisingly high number of cells 

did not fuse or remain adhered as single cells. It is possible that a large number of 

single cells detach prior to the fixing stage. The larger MGC are tightly adhered but 

could instead rupture prior to fixing resulting in their loss from the analysed images. 

It is possible that only a small number of cells within each subset is fusion-competent 

and that Int and NCl subsets possess more of these cells. The remaining single cells 

appeared to detach slowly over time which could indicate that if a monocyte for 

whatever reason does not commit to fusion then it either detaches to patrol elsewhere 

or dies.  
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ConA has been shown to be internalised by monocytes and its internalisation in 

hepatomas triggers apoptosis via mitochondrial autophagy and release of cytochrome 

c (Li et al., 2011; Liu et al., 2009; Sodhi et al., 2007). Many studies have supported a 

pro-inflammatory role of apoptosis via the release of internal IL-1α and IL-1β 

(Hogquist et al., 1991; Sarih et al., 1993). The massive loss of monocyte cell numbers 

over time (Figure 4.8) and the increase in pro-apoptotic cytokines such as IFNγ, IL1β 

and TNFα (Figure 4.10a) could indicate that some monocytes undergo apoptosis to 

generate a cytokine signature that promotes fusion. In accordance with this, Sodhi et 

al. (2007) observed that ConA enhanced the expression of TLR and adaptor protein 

MyD88 in murine Mφ which are both components of the NF-κB pathway (Figure 1.3 

and Figure 1.7). Furthermore, Kelly et al. (2008) observed that after TB infected Mφ 

undergo apoptosis they trigger apoptosis of bystander Mφ that are not infected with 

TB. Wong and colleagues have shown that the CD16+ monocyte subsets are more 

susceptible to apoptosis than the Cl monocytes (Zhao et al., 2010). In persistent TB 

infections, the phagocytosed pathogen arrests lysosome-phagosome fusion and 

generates anti-apoptotic mediators to allow it to proliferate within the host cell. 

Successful apoptosis in TB infections is thought to confer an anti-proliferative outcome 

(Bocchino et al., 2005; Lee et al., 2009). Though it is just speculation, apoptosis could 

play an important part in generating fusion-promoting microenvironments. 

   

In vivo fresh monocytes would be constantly recruited from the bloodstream to the 

source of fusion (be it a foreign body or TB infection), however, in this in vitro model 

there is only one initial input of monocytes. It is important to keep this in mind as this 

model is limited to a finite number of monocytes in the well, of which the majority 

seemed to detach. Thus the level of fusion in vivo could potentially be much greater 

than that seen here. For our experiments, subset monocytes had to be sourced from 

apheresis cones to gain sufficient numbers of Int and NCl monocytes through FACS. 

It therefore not possible to arrange subsequent monocyte ‘seeding’ time-points from 

the same donor such as the technique demonstrated by Möst et al. (1997).  

 



171 
 

Subset Derived MGC All Possess Ruffled Membranes and a Network of 

Securing Filaments 

SEM was able to show in high resolution that many MGC are tethered down by 

networks of long filaments. Using confocal microscopy, DeFife et al. (1999) also 

observed these microfilaments in FBGC but not Mφ and found them to be composed 

predominantly of F-actin. These filamentous structures could be a trait of particularly 

late-stage MGC that have low motility and high adherence to allow them to form a 

secure podosome on the surface to secrete digestive molecules. Smaller early-stage 

MGC may not have these large filamentous networks to allow a greater degree of 

mobility. In vivo these long filaments may also act not only as a strong tethering 

system but as ‘tracks’ to reel in wandering monocytes for fusion. It is unclear whether 

these filaments are a particular feature of glass-adhered MGC or if they are also 

present on plastic or in tissues. 

 

The bulbous structures commonly observed in the Int and NCl MGC were not observed 

in any detail in the fluorescence images. Furthermore, in larger MGC the central 

‘nuclear compartment’ of the MGC stained notably weaker with the phalloidin stain 

indicating a lower abundance of F-actin. DeFife et al. (1999) found that late stage 

FBGC (10 days culture with IL-13) had FBGC with weak central F-actin staining as the 

clusters of nuclei were instead supported with networks of microtubules and Int 

filaments. If these bulbous structures found in the SEM images are indeed composed 

of tubulin and Int filaments then they would not be apparent in the phalloidin stained 

fluorescence images. Alternatively they arrear to be elevated off of the MGC structure 

and so they could be out of focus of the fluoresce microscope. The fixing and 

dehydrating treatments seemed to be very damaging to the MGC especially the larger 

ones (Figure 4.5c.4). It is unclear whether some of the structures are representative 

of the MGC morphology or if they are just distortions produced by the sample 

preparation techniques. 

Ruffled membranes is a morphological feature typically found on osteoclasts (Quinn 

and Schepetkin, 2009; Xia and Triffitt, 2006; Yagi et al., 2005) though some have 

reported this morphology on FBGC (Athanasou and Quinn, 1990; Milde et al., 2015; 

Saginario et al., 1995). Milde et al. (2015) suggested that these ruffled membranes 
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grant MGC a greater phagocytic ability, particularly with complement-opsonised 

targets. In Figure 4.5a2 we see the ruffled membrane of an MGC interacting with two 

Cl monocytes. It is possible that this image shows the beginnings of endocytosis/fusion 

of these two monocytes prior to their incorporation into the MGC structure. 

Though Flu-SEM allows the nuclei arrangements to be overlaid over the SEM images 

it is still subject to user bias and error as the techniques are conducted independently 

of one another. Furthermore, Flu-SEM was only carried out in one z-frame so it only 

produced a 2D image of the nuclei which is inadequate for analysing nuclear stacking. 

Transmission electron microscopy would be far more effective at capturing all the 

layers of MGC from the external surfaces to the internal arrangement of the nuclei and 

even digestive vesicles being secreted at the well surface. 

 

ConA Treatment Produces MGC Formed From Monocytes Not Mφ: 

In the fusion kinetics study all three subsets were able to fuse and form MGC within 

24hrs. Multiple studies state that MGC form from “the fusion of macrophages”, 

however, freshly isolated monocytes typically take 5-8 days of differentiation in GM-

CSF/M-CSF (Ohradanova-Repic et al., 2016) and other factors to form Mφ. The freshly 

isolated monocytes were able to fuse in less than 24hrs, indicating that fusion was 

initiated and facilitated by monocytes not macrophages. This is in accordance with the 

findings of Möst et al. (1997) who found that freshly isolated monocytes were able to 

form MGC but cultured Mφ could not. 

 

NCl monocytes were slow to start in fusion and possessed the lowest fusion 

parameters of all the subsets at 24hrs. However, by the final 72hr time point they 

overtook the low-fusing Cl. The plateauing of the fusion parameters in the high-fusing 

Int after 48hrs also suggests that they have reached their maximal fusion potential. 

72hrs is therefore an ideal end point for all the fusion assays though it is not clear if 

by 72hrs the lack of further fusion is due to a lack of monocytes, lack of nutrients in 

the media, excess waste in the media or negative feedback from the MGC.  
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LGC Are Precursors to FBGC and SGC 

There was a relationship between the median MGC area and the abundance of larger 

FBGC and SGC within the same time points. The smaller LGC typically range from 3-

15 nuclei per MGC with an area of 1044-8599µm2, when the larger FBGC and SGC 

become more abundant there is a big increase in the median MGC area. At the earliest 

time points the majority of MGC were LGC and the appearance of larger FBGC and 

SGC increases as time increases. As the FBGC and SGC increase the LGC population 

decreases; this supports the notion that the three MGC types are not distinct and that 

the larger MGC are later stages of the smaller LGC. The ability for LGC to develop into 

FBGC has been observed in vivo on rat implants (Rhee et al., 1978) in humans 

suffering from sarcoidosis (Van Maarsseveen et al., 2009) and in vitro with ConA (Möst 

et al., 1997). Presently MGC classification is based predominantly on morphology so 

until markers of the different MGC are found, such conclusions can only be speculative. 

 

ConA Produced A Strong Pro-Inflammatory and Pro-Apoptotic Response in 

Cl and Int Monocytes. 

Within the first 24hrs of culture in ConA the Cl and Int monocytes reacted by secreting 

high levels of IL-6 and TNFα. TNFα is able to both induce the transcription of GAS 

genes via the NF-κB  pathway and is also an inducer of apoptosis (Wajant et al., 2003). 

Thereafter, by 48hrs the detectable levels IL-1α and IL-1β were at their highest in the 

Cl and Int subsets but were virtually undetectable in the NCl subset. Monocytes and 

Mφ have been shown to release internal stores of IL-1 derivatives during apoptosis 

(Hogquist et al., 1991; Sarih et al., 1993). Following this, Figure 4.8 shows that 

between 24-48hrs there is a large increase in the number of dead cells for the Cl and 

Int subsets but less so for the NCl. These cytokine patterns suggest that the Cl and 

Int subsets could be generating a pro-apoptotic microenvironment in the first 24-48hrs 

following which the Int subset responds by forming larger FBGC and SGC whereas the 

Cl forms smaller LGC. The NCl subset does not secrete pro-apoptotic cytokines but 

does secrete the highest levels of IFNγ by 72hrs suggesting that activation of NCl 

fusion is mediated by a different pathway to the other two subsets. 
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ConA Induced Rapid Secretion of Pro-Fusion Cytokines IFNγ, IL4, IL-17A, 

IL-13 and IL-3. 

FBGC have been shown to form in response to combinations of IL-4, GM-CSF, IL-3 

and IL-13 (DeFife et al., 1997; McNally and Anderson, 1995) while LGC form more 

favourably in response to IFNγ and IL-17A (Byrd, 1998; Coury et al., 2008; McNally 

and Anderson, 1995; Sakai et al., 2012; Takashima et al., 1993). Compared to the 

concentrations of pro-inflammatory cytokines the secreted levels of IL-4, IL-3, IL-13 

and IL-17A were minute. However, pro-fusion cytokines have been shown to be 

effective at very low concentrations. MGC have been generated in vitro with IL-4 at 

concentrations of  15ng ml-1 (McNally and Anderson, 2014) to 10ng ml-1 (Moreno et 

al., 2007). DeFife et al. (1997) titrated IL-4 and IL-13 and found MGC to develop at 

concentrations as low as 1ng ml-1. IL-17A is a potent stimulator of fusion and has 

shown to be effective at 1ng ml-1 (Kotake et al., 1999). IL-3 was shown by McNally 

and Anderson (1995) to develop small MGC at 10ng ml-1 and the addition of IL-4 had 

an additive effect on the size of the MGC produced. Therefore, despite the apparently 

low concentrations of IL-3, IL-4, IL-13 and IL-17A, they are all detected at biologically 

effective concentrations and perhaps are initiating fusion at the earlier time points 

(24-48hrs).  

 

GM-CSF is routinely used to differentiate monocytes into M1-like Mφ and was secreted 

at quite high levels in Cl and Int subsets cultured in ConA. It’s likely that the presence 

of pro-inflammatory cytokines such as IL-6 and TNFα at 24hrs were triggering the 

transcription and secretion of other cytokines such as GM-CSF at 48hrs. From Cl to 

NCl the expression of the GM-CSF receptor decreases and the M-CSF receptor 

increases (Figure 1.1) (Martinez et al., 2006). Though M-CSF was not tested in these 

samples it is possible that the NCl monocytes were utilising M-CSF over GM-CSF 

signalling in accordance with their respective receptor expression. Sakai et al. (2012) 

measured IFNγ and found concentrations of 10ng ml-1 to be sufficient to induce fusion. 

However, their cultures also contained cytokine producing T-cells. Möst et al. (1990) 

used anti-IFNγ antibodies to demonstrate that IFNγ is essential in MGC formation. Our 

results show that within 24hrs IFNγ was secreted at concentrations exceeding 10ng 

ml-1 and increased through each time point peaking at 72hrs. At 72hrs time point the 
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concentration of IFNγ was highest in the Int and NCl subsets.  At the same 72hr time-

point the Int and NCl possessed the highest % coverage of MGC (Figure 4.7) 

suggesting that IFNγ is a later stage pro-fusion cytokine. 

 

ConA Stimulated CCL2 & CCL3 Cytokine Secretion 

CCL2, CCL3 and RANTES are secreted by monocytes and Mφ to attract leukocytes to 

sites of inflammation (Moriuchi et al., 1997; Ueda et al., 1994; Widmer et al., 1993). 

RANTES is produced in sites of viral infection and is secreted to attract cytotoxic T-

cells, NK-cells and DC (Crawford et al., 2011). There was no detectable level of 

RANTES in both ConA and untreated wells for any of the subsets at any time-point. 

Therefore it seems that none of the monocyte subsets utilise RANTES signalling during 

fusion. The secreted levels of CCL2 on the other hand were so high in both ConA and 

unstimulated conditions that by 48hrs it exceeded the ELISA detection limit for some 

samples. CCL2 is secreted not just by leukocytes but also endothelial cells, smooth 

muscle cells and fibroblasts and is a potent chemoattractant for monocytes towards 

sites of inflammation (Deshmane et al., 2009). 

 

Like CCL2, CCL3 is secreted by multiple cells types to attract monocytes and other 

leukocytes and is particularly upregulated in monocytes and Mφ in response to LPS 

detection (Menten et al., 2002). Compared to untreated wells CCL3 was detected at 

significantly higher concentrations in ConA cultured cells as early as 24hrs. Unlike 

CCL2; CCL3 was not produced secreted in large quantities in the untreated wells 

suggesting its secretion was ConA specific.  

 

Only Int Monocytes Were Responsive to Anti-Tetraspanin Antibodies 

Previous studies utilising anti-tetraspanin antibodies have always been conducted on 

total monocytes. The total monocyte work in Chapter 3 did not replicate the results 

published by other research groups, however, to date no study has used FACS to 

isolate monocyte subsets to absolute purity. In the anti-tetraspanin antibody assays 

conducted on subset monocytes it is clear that the subsets not only fuse differently 

but react to the anti-tetraspanin antibodies differently. This has important implications 

for the previous work that has reported on the effects of these antibodies in total 
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monocytes as it appears that the significant effects are primarily a result of the Int 

monocytes.  

 

Anti-CD9, anti-CD53, anti-CD63 and anti-CD151 abrogated fusion in Int monocytes 

but their effects were almost negligible on Cl and NCl monocytes. Firstly, addition of 

any one of these antibodies to the fusion media of Int was sufficient to reduce the FI, 

MGC area and % coverage to half their respective readings in the IgG1 control (Figure 

4.12).  Secondly, these four anti-tetraspanin antibodies greatly reduced the population 

of fused nuclei (Figure 4.13) while increasing the number of single cells. Finally, anti-

CD9, anti-CD53, anti-CD63 and anti-CD151 caused drastic reductions in the FBGC and 

SGC populations, instead favouring the formation of smaller LGC (Figure 4.14), 

however, this effect was not observed in the Cl and NCl subset. 

 

Conclusion: 

Int monocytes, despite being up only 5-8% of the monocyte population, have the 

greatest potential to fuse and form large MGC. In the kinetics study, we have shown 

that Int monocytes are the first to form MGC of the three subsets. The ELISA data 

revealed that compared to the other subsets the Int secrete high levels of pro-

apoptotic and pro-inflammatory cytokines and release high levels of chemokines to 

recruit more monocytes for fusion. The Int monocytes showed a greater potential to 

form larger FBGC and SGC. However, addition of anti-tetraspanin antibodies targeting 

CD9, CD53, CD63 and CD151 was sufficient to reduce measured fusion parameters 

and MGC populations of Int to that of Cl monocytes. A greater understanding of the 

expression of tetraspanins on monocyte subsets may reveal why Int monocytes are 

so fusogenic and why these select anti-tetraspanin antibodies are able to limit their 

fusion potential. 

 



177 
 

5 CHAPTER 5: TETRASPANIN EXPRESSION IN 

MONOCYTE SUBSETS 

5.1 INTRODUCTION 
Monocyte subsets are able to fuse to form MGC but the rates of fusion and the types 

of MGC produced are different in each subset (see Chapter 4). Furthermore certain 

anti-tetraspanin antibodies are able to affect the fusion outcomes of the high-fusing 

Int subset more than the NCl and Cl subsets. It has been suggested that tetraspanins 

play a vital role in establishing fusion-facilitating TEMs (Hemler, 2003). This model has 

been supported by multiple studies utilising mouse knock outs, antibody-interference 

and soluble EC2 proteins that all act to disrupt the formation of a functioning TEM.  

 

Knock outs in mouse gametes have shown that CD9 (Kaji et al., 2000; Naour et al., 

2000) and CD81 (Rubinstein et al., 2006) play a vital role in gamete cell fusion in mice. 

Whereas human sperm-egg fusion can be blocked using CD151 targeting antibodies 

(Ziyyat et al., 2006). Anti-CD63 has been shown to greatly inhibit the fusion of human 

monocytes (Parthasarathy et al., 2009; Takeda et al., 2003). CD53 is a regulator of 

TNFα (Bos et al., 2010), in Chapter 4 TNFα was highly secreted in high-fusing Int and 

anti-CD53 antibodies subdued their ability to fuse. CD37 is able to transduce apoptotic 

signals (Lapalombella et al., 2012) which from the cytokine patterns in Chapter 4 

appeared to be an important  step in fusion initiation. CD82 has been shown to play 

an important role in virus induced syncytium formation (Daenke et al., 1999; Hildreth, 

1998; Hildreth et al., 1997). An understanding of the surface expression of these 

tetraspanins on monocyte subsets may reveal differences in the tetraspanin 

stoichiometry that could be responsible for their differing fusion potentials.  
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5.2 RESULTS 

5.2.1  SURFACE EXPRESSION OF TETRASPANINS ON HUMAN MONOCYTE 

SUBSETS. 
Figure 5.1 shows the relative intensity of the surface expression of tetraspanins on 

the different monocyte subsets and the percentage of cells positive for each 

tetraspanin. CD53 was expressed on 100% of cells in all subsets but was significantly 

different in the level of expression between all subsets (MFI Cl: 3185, Int: 4734 & NCl: 

4147). High percentage expression was also observed in CD81 (78-90%) and CD82 

(92-99%). CD81 expression levels were very similar on all subsets but for CD82, the 

Cl monocytes (MFI: 1671) expressed higher levels than the Int and NCl subsets (MFI: 

954; P=0.0037 and 827; P=0.0007. Compared to the expression of the other 

tetraspanins, CD63 and CD151 were expressed on a minority of monocytes (CD63: 5-

8% & CD151: 41-51%). The MFI readings were also very low and no significant 

difference between the subsets was found. The percentage of monocytes expressing 

CD37 was significantly lower in the Cl (47%) subset than the Int (78%; P<0.0001) 

and NCl (65%; P=0.0193) monocytes. However, there was no significant difference 

between the MFIs of the CD37 positive subsets. CD9 was expressed significantly 

higher in Cl monocytes, however, as the histograms in Figure 5.2 show, CD9 was 

expressed as a bimodal population in Cl monocytes. The CD9low population consisted 

of 76.77% of the Cl monocytes and the remaining 23.23% were termed the CD9high 

population. Expression of CD9 in the Int subset was positively skewed (59% positive 

for CD9) and the NCl showed a Gaussian distribution but with only 28% positive for 

CD9. The MFI for the CD9-positive cells was significantly lower in the NCl (MFI: 349) 

compared to the Int (MFI: 1174; P=0.0009) but not compared to the Cl (MFI: 804; 

P=0.0635). 

 

Figure 5.3 shows the co-expression of the 7 tetraspanins compared to each other. The 

degree of correlation of expression of two tetraspanins is shown by a shift of the dots 

to the upper-right region of the panel. As the Cl (red) monocytes are the most 

abundant in the PBMCs they are the most prominent population on the graphs. The 

CD9 row shows small shifts indicative of correlated expression of CD9/CD81 and 
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Figure 5.1:  Surface Expression of Tetraspanins on Human Monocyte 
Subsets. 

Freshly isolated human PBMCs were stained with a 10-antibody panel and their 

surface tetraspanin expression was analysed on a flow cytometer.  MFI and 

percentage positive graphs are shown above for each tetraspanin detected on the 

monocytes subsets. Bars represent the mean±SEM, N=10. Tested with a two-way 

ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column means. 
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Figure 5.2: Histograms for Surface Expression 
of Tetraspanins on Human Monocyte Subsets. 

Histograms showing the distribution of fluorescence 

signal from freshly isolated human monocyte subsets. 

PBMCs were stained with a 10-antibody panel prior to 

analysis and recording on a flow cytometer.  Positive 

signals for Classical, Intermediate and Nonclassical 

shown in Red, Orange and Yellow respectively. Their 

equivalent isotypes are shown in black to grey and 

represent the background/nil signal. 
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Figure 5.3: Tetraspanin Co-Expression on Human Monocyte Subsets. 

Dot plots showing the co-expression of CD9, CD37, CD53, CD63, CD81, CD82 and 

CD151 on freshly isolated monocyte subsets. Classical, Intermediate and 

NonClassical shown as dots in Red, Orange and Yellow respectively. An isotype 

control is shown in black. Note that CD9 was the only tetraspanin in the histograms 

to show a bimodal peak of expression and that co-expression of two tetraspanins 

results in a shift of dots to the top right of the respective plot (e.g.CD9/CD151). 
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CD9/CD82 in the Cl subset, and a strong positive correlation between CD9/CD151. 

CD82/CD151 also appear to have correlated expression in Cl monocytes. 

 

5.2.2  COMPARISON OF CD9LOW AND CD9HIGH CLASSICAL MONOCYTES 
Multiple studies have reported that CD9 is an important component in the fusion 

machinery. The bimodal distribution of CD9 expression in Cl monocytes in Figure 5.2 

and the co-expression of CD9/CD151 (Figure 5.3) led us to believe there may be a 

subset of tetraspanin-high Cl monocytes that could have a unique role in the fusion 

process. 

 

The Cl monocytes from Figure 5.1 were gated into CD9Low (76.77% of Cl) or CD9High 

(23.23% of Cl) (Figure 2.4) and the MFI values of the other tetraspanins were 

compared (Figure 5.4). In Figure 5.4 it is clear that even though the CD9High population 

comprises only 1/4th of the Cl monocytes, it is significantly higher in CD9 (MFI: 5545) 

than CD9Low (MFI: 560; P<0.0001). CD63 and CD81 had MFI values 1.52-fold higher 

(P=0.6643) and 1.40-fold higher (P=0.1210) in CD9High compared to CD9Low Cl. CD151 

was 6.56-fold higher expressed in CD9High (MFI: 479) than CD9Low (MFI: 73; 

P=0.2434), in Figure 5.5 it is clear that the CD9High Cl monocytes are positively skewed 

for CD151 expression.  

 

Though not statistically significant, the CD9High Cl monocytes appeared to consist of a 

small population of tetraspanin-rich monocytes. To see if there was a difference in 

their fusion behaviour the two populations were sorted by FACs into either total Cl (Cl 

monocytes that had not been separated further), CD9Low or CD9High Cl monocytes 

(Figure 5.6 and 5.7). Initially, CD9Low and CD9High Cl were sorted using the indirect 

anti-CD9 label that was used in flow cytometry (anti-CD9-biotin + streptavidin-APC-

Cy7). Later a direct anti-CD9-FITC was used as a control to see if indirect labelling 

was having an effect. Compared to the CD9Low cells, the CD9High Cl monocytes purified 

with the biotin-streptavidin conjugate (B-S); produced MGC with 1.5-fold more nuclei 

per MGC (P=0.0692), 2.3-fold MGC area (P=0.0718), had a 5.2-fold higher fusion 

index (P=0.0219) and 6.1-fold higher % coverage (P=0.0219). The MGC types 

produced from each population (Figure 5.7) show that the CD9Low (B-S) produced 
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Figure 5.4: Surface Expression of Tetraspanins on CD9Low vs CD9High 
Classical Monocytes 

Classical monocytes possess a CD9Low and CD9High population in freshly isolated 

monocytes. To see if there was a correlation between CD9 expression and 

expression of other tetraspanin markers the CD9Low and CD9High classicals were 

gated and the MFIs of other tetraspanins displayed. Bars represent the mean±SEM, 

N=10. Tested with a two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc 

test to compare column means. 
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Figure 5.5: Histograms for Surface Expression of 
Tetraspanins on CD9Low and CD9High Classical 
Monocytes. 
Histograms showing the distribution of fluorescence signal 

from freshly isolated human CD9Low and CD9High Classical 

Monocytes. Positive signals for CD9Low and CD9High shown in 

pale red and dark red respectively. Total Classical isotype is 

shown in black to represent the background/nil signal. No 

equivalent bimodal peak in CD9 expression was observed in 

Intermediate or NonClassical monocytes. 
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Figure 5.6: Comparison of Fusion Results from Total, CD9Low & CD9High Classical 
Monocytes from Different FACS Isolation Methods. 
The first triad in each graph are Total, CD9Low and CD9High Classical monocytes that had 

been FACS sorted via an indirect CD9 staining method (Anti-CD9-Biotin+Steptravidin-APC-

Cy7). The second triad were sorted using a direct anti-CD9-FITC label. The third triad 

were sorted into Total, CD36Low and CD36High classical monocytes due to the high 

CD9/CD36 co-expression in Classical monocytes. This was to see if binding of CD9 in the 

other methods was affecting fusion. Bars represent the mean±SEM. N=25 for Total Cl 

(FACS), N=3 for B-S samples & N=2 for all others. A) and C): the means of the B-S triad 

were tested with a one-way ANOVA with a Tukey multiple comparisons test. For B) and 

D): the B-S triad was tested with a Kruskal-Wallis test with a Dunn’s multiple comparisons 

test. A subsequent test was conducted comparing the B-S CD9Low and CD9High with Total 

Cl (FACS), same statistics models as before; shown in blue. Lastly a T-test (Mann-

Whitney; orange) was conducted comparing the means of Total Cl (B-S) and Total Cl 

(FACS). 
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Figure 5.7: MGC Types Formed from CD9Low vs CD9High Classical 
Monocytes from Different FACS Isolation Methods. 

Total, CD9Low and CD9High classical monocytes were FACS purified using an indirect 

aCD9-biotin-strpetavidin-APC-Cy7 reporter (1st triad), a direct aCD9-FITC antibody 

(2nd triad) and direct CD36-FITC antibody (3rd triad). The bars show the distribution 

of fused nuclei into different MGC types; LGC, FBGC and SGC. Bars represent the 

mean±SEM. N=25 for Total Cl (FACS), N=3 for B-S samples & N=2 for all others. 

A Kruskal-Wallis Test with a post hoc Dunn's multiple comparisons test was used 

to compare the percentages of fused nuclei in ‘like’ MGC types in the Biotin-

Streptavidin (B-S) triad. A subsequent Kruskal-Wallis & Dunn's test was performed 

comparing the Total Cl (FACS) with the B-S CD9Low and CD9High results (blue). 
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more of the smaller LGC and fewer of the larger FBGC and SGC (85.79%:14.21%: 

0%) than the CD9High (B-S) (29.56%:52.48%:17.96%). However, directly labelled 

CD9Low and CD9High did not produce a large discrepancy in the FBGC and SGC 

populations nor did they show any differences in the fusion parameters. 

 

To see if the different labels were the cause of this discrepancy the indirectly labelled 

“Total Cl (B-S)” were compared with the direct “Total Cl (FACS)”. The “Total Cl (FACS)” 

were the values from the FACS purified Cl monocytes that have been used in Chapter 

4 to characterise the subset fusion (Figure 4.3). There was a significant increase in 

the % coverage of total Cl (B-S) (24.79%) compared to the total Cl (FACS) (11.19%; 

P=0.0405. Figure 5.6D: Orange star). The only difference between “Total Cl (B-S)” 

and “Total Cl (FACS)” was that the former was purified with an indirect biotin-

streptavidin label and the latter was directly labelled. Thus, is appears as though the 

indirect B-S purification method was somehow causing cells to fuse at a greater rate 

(see Figure 5.12 and “5.3. Discussion” section). 

 

As anti-CD9 antibodies have been shown in other studies to influence monocyte fusion 

behaviour (Parthasarathy et al., 2009; Takeda et al., 2003) we sought to target an 

alternative marker to separate CD9Low and CD9High Cl monocytes. As the scavenger 

receptor CD36 has been shown to be highly co-expressed with CD9 (Huang et al., 

2011);  it was selected as an alternative target for FACS sorting (Figure 2.4). The cells 

were all seeded at 1.5x105 cells well-1 in ConA and allowed to fuse for 72hrs. Figure 

5.6 and 5.7 show that the CD36Low showed no significant differences in fusion 

behaviour to CD36High. Furthermore, the CD36 sorted cells were no different to the 

directly labelled CD9 confirming that the B-S indirect tag was the source of the 

increased fusion in the B-S labelled cells and not because of the level of CD9 

expression.  
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5.2.3  SURFACE EXPRESSION OF TETRASPANINS ON FACS SORTED 

MONOCYTE SUBSETS AFTER 4HRS CULTURE IN +/-CONA MEDIA. 
To see if tetraspanin expression changed in response to fusion initiation the monocyte 

subsets were cultured for 4hrs with and without ConA then subjected to flow 

cytometry. Compared to the freshly isolated monocytes in Figure 5.1 there was a 

reduction in the overall MFI signal of every tetraspanin (Figure 5.8). After ConA 

stimulation, only CD53, CD37 and CD82 showed any significant variation with the 

untreated samples; the MFI values of CD53 and CD82 were both higher in the 

unstimulated samples. Though the MFIs of CD37 did not show any significant 

difference in the subsets there was very different reaction to ConA in the % positive 

cell parameter for CD37. The % positive of Cl cells was notably lower in ConA treated 

Cl (P=0.1095) and significantly lower in Int (P=0.0134) and NCl (P=0.0013).  

 

Figure 5.9 shows all the subsets cultured in ConA compared to one another (Figure 

5.8 compares ConA treated vs untreated subsets). The percentage of cells expressing 

CD37 was significantly higher in the Int than the Cl (P=0.0134) but not to the NCl 

(P=0.3193). CD53 expression was significantly lower in NCl monocytes (MFI: 601) 

compared to Cl (MFI: 1042; P<0.0001) and Int (MFI: 941; P=0.0004) monocytes. 

Both the percentage of cells expressing CD82 and the resultant MFIs were significantly 

higher in the Cl cells compared to the Int and NCl cells. The histograms for ConA 

treated monocytes (Figure 5.10a-c) reveal that the expression of most of the 

tetraspanins is Gaussian. However, the expression of CD53 is bimodal in Cl, negatively 

skewed in Int and positively skewed for NCl monocytes when treated with ConA 

(Figure 5.11). CD82 in ConA treated Cl also possesses a bimodal distribution but the 

Int and NCl monocytes show a Gaussian distribution of expression.  
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Figure 5.8: Surface Expression of Tetraspanins on FACS Sorted Monocyte 
Subsets After 4hrs Culture in +/-ConA Media. 
Monocytes were first sorted by FACS into subsets, then cultured in normal cIMDM 

media (empty bars) or ConA media (banded bars) for 4hrs. Cells were then 

detached, stained and analysed for surface Tspan expression by flow cytometry. 

MFI and percentage positive graphs are shown above for each tetraspanin detected 

on the subset derived cells. Bars represent the mean±SEM, N=4. Tested with a 

two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column 

means between cIMDM or cIMDM+ConA cultured subsets. 
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Figure 5.9: Comparison of Surface Tetraspanin Expression on FACS 
Sorted Monocyte Subsets After 4hrs Culturing in ConA Media. 

Only the ConA samples and data from Figure 5.8 are shown above to allow 

comparison between the fusion-primed cells. MFI and percentage positive 

graphs are shown above for each tetraspanin detected on the subset derived 

cells. Bars represent the mean±SEM, N=4. Tested with a two-way ANOVA 

with an Uncorrected Fisher’s LSD post-hoc test to compare column means in 

MFI or % positive between ConA exposed subset derived cells. 
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Figure 5.10a: Histograms for Surface 

Expression of Tetraspanins on Human 

Classical Monocyte in +/-ConA Media. 

Histograms showing the distribution of fluorescence 

signal from FACS sorted classical monocytes cultured 

for 4hrs in cIMDM (pale red) or ConA+cIMDM (dark 

red). Their equivalent isotypes are shown in black 

and grey and represent the background/nil signal. 

 

 

 

Figure 5.10: Histograms for Surface Expression of Tetraspanins on 
Monocyte Subsets in +/-ConA Media. 
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Figure 5.10b: Histograms for Surface 

Expression of Tetraspanins on Human 

Intermediate Monocyte in +/-ConA Media. 

Histograms showing the distribution of fluorescence 

signal from FACS sorted intermediate monocytes 

cultured for 4hrs in cIMDM (pale orange) or 

ConA+cIMDM (dark orange). Their equivalent 

isotypes are shown in black and grey and represent 

the background/nil signal. 
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Figure 5.10c: Histograms for Surface 

Expression of Tetraspanins on Human 

NonClassical Monocyte in +/-ConA Media. 

Histograms showing the distribution of fluorescence 

signal from FACS sorted nonclassical monocytes 

cultured for 4hrs in cIMDM (pale yellow) or 

ConA+cIMDM (dark yellow). Their equivalent 

isotypes are shown in black and grey and represent 

the background/nil signal. 
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5.3 DISCUSSION 
Intermediate Monocytes Are Tetraspanin Abundant 

Depending on the species, cell type and proteome of a cell, a tetraspanin will have a 

wide range of different binding partners it can associate with and therefore facilitate 

many possible functions. For this reason it is particularly challenging to deduce the 

effect that changes in tetraspanin expression might have on cellular functions. 

 

Freshly isolated Int monocytes expressed the highest levels of all tetraspanins except 

CD82 (highest in the Cl monocytes) and CD63 (equal expression in Cl and Int 

monocytes). The NCl monocytes had the lowest MFI and percentage of cells positive 

for CD9 and CD81. CD9 and CD81 have been already been described as fusion 

regulators (Takeda et al., 2003) with decreased expression in mice resulting in greater 

degrees of fusion. CD9 forms partnerships with many proteins implicated in fusion: 

CD47 (Longhurst et al., 1999), CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 

2000), CD36 (Huang et al., 2011), MMP-9 (Herr et al., 2013) and EWI-2 (Stipp et al., 

2001). The higher % of cells positive for CD37 and significantly higher MFI for CD53 

in the Int could suggest the Int have a higher baseline of LFA-1 which has been 

observed in partnership with these tetraspanins (Todros-Dawda et al., 2014; Wee et 

al., 2015). The higher expression of LFA-1 could confer stronger cell-cell interactions 

through LFA-1:ICAM-1 binding and enhance fusion. It is unsurprising therefore that 

when separated and stimulated at equal densities the Int are able to produce larger 

giant cells at a much faster rate. 

 

The Cl possessed the highest % positive cells and MFI signal for CD82, which has 

been shown to be important in associating with αVβ3 (Ruseva et al., 2009) and EWI-

2 (Zhang et al., 2003), thus, CD82 has the potential to facilitate surface adhesion and 

cytoskeletal rearrangements. Though we can only speculate on the binding partners 

of each tetraspanin in each subset what is clear is that they each have their own 

tetraspanin fingerprint. 
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ConA Treatment Induces an Overall Decrease in Tetraspanin Expression 

The ConA treated cells showed a general reduction in expression levels and % positive 

cells (Figure 5.8). ConA induces a significant reduction in both the intensity and % of 

cells expressing CD53 and a reduction in the % of cells expressing CD37. CD37 and 

CD53 have both been shown to associate with LFA-1 which mediates cell-cell adhesion 

and cell crawling by binding and being internalised (Kinashi, 2005). Therefore the 

decrease in % positive cells for CD37 and CD53 may be a result of the cell becoming 

polarised upon binding the surface and facilitating increased internalisation of LFA-1 

as part of the crawling mechanism. In accordance with this, the decrease in CD81 % 

positive cells could be a response to internalisation of EWI-2 which facilitates actin 

polymerisation around LFA-1. It is also possible that ConA enhances the formation of 

tight tetraspanin clusters (as observed by Zuidscherwoude et al. (2015) with MHC 

class II complexes) which may sterically hinder the binding of antibodies to all of the 

tightly packed tetraspanins.   

 

CD37 was expressed on a significantly higher % population of ConA treated Int 

compared to ConA treated Cl and NCl (Figure 5.9). This could suggest that the high 

fusion potential of the Int is largely mediated by its ability to produce more LFA-1 

expressing cells compared to the other subsets. In accordance with this, the Cl 

possessed the lowest % positive population of CD37 cells. Multiple studies have 

reported the effectiveness of anti-LFA-1 antibodies at inhibiting fusion (Gasser and 

Möst, 1999; Kazazi et al., 1994; Möst et al., 1990), therefore it is possible that co-

expression of CD37 and LFA-1 are responsible for the Int high fusion potential. 

 

Due to the increased clumping of ConA treated monocytes we were only able to 

analyse tetraspanin expression by flow cytometry up to 4hrs without risking blocking 

the cytometer. However, the significant differences in ConA treated and untreated 

cells suggests that within 4hrs the monocytes are responding to the ConA and are 

potentially fusion competent. Flow cytometric analysis into which fusion-related 

proteins are being trafficked by the tetraspanins is required to make more accurate 

conclusions. Furthermore, fluorescence microscopy could be used to investigate co-
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expression of tetraspanins and fusion-related proteins at the surface at later time-

points. 

 

CD9High Cl Monocytes Express More CD63, CD81 and CD151  

Initially we observed that the Cl expression of CD9 was bimodal (Figure 5.2) and that 

there was a positive correlation between CD9 and CD151 (Figure 5.3). After gating 

the Cl into CD9Low and CD9High we observed that the CD9High cells also had increased 

(though not significant) expression of CD9, CD63, CD81 and CD151 (9.9-fold, 1.5- 

fold, 1.4-fold and 6.6-fold increase, respectively) (Figure 5.4). CD9 and CD151 both 

form associations with MMP-9 which has been shown to enhance migration and EWI-

2 which enhances adhesion by linking adhesion proteins to the cytoskeleton. 

Furthermore, the increased CD63 could result in the CD9High Cl having higher 

expression of E-cadherin. Therefore, the CD9High Cl may be able to switch between 

highly motile or highly adherent behaviours by simply changing their expression of 

EWI-2 or MMP-9. Alternatively, the CD9High Cl could represent a small subset of Cl 

maturing into Int, as Int express higher levels of these tetraspanins. 

 

Suzuki et al (2009) observed that CD9 associates with CD14 to sequester it in a TEM 

to prevent the formation of the functional CD14:TLR4 LPS receptor. Therefore, it is 

possible that the CD9High Cl represent an LPS-insensitive population of the Cl and have 

no differing fusion potential to CD9Low Cl. 

 

Indirect Labelling Caused High Fusion Rates in CD9High Cl Monocytes  

We hypothesised that these tetraspanin-high Cl cells may show different fusion 

tendencies to the larger CD9Low population. Initially, we sorted the CD9Low and CD9High 

Cl using an anti-CD9-biotin primary antibody with a streptavidin-APC-Cy7 secondary 

reporter. The initial results indicated that CD9High Cl had a significantly higher fusion 

potential (Figure 5.6), however, when we compared with a directly labelled CD9-FITC 

or CD36-FITC antibody the increased fusion in CD9High was lost.  

 

We postulated that because the streptavidin conjugate on the secondary reporter was 

multivalent (able to bind up to 4 biotin molecules) it was able to tether monocytes 
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together (Figure 5.12). This would explain why the fusion parameters for the CD9High 

cells were so much greater than the CD9Low Cl. The function of the CD9High Cl remains 

unclear but it does not appear to represent a high-fusing subset of cells. We have also 

shown that an increase in cell-cell adhesion can significantly enhance the fusion 

potential of even the relatively low-fusing Cl subset. Indeed, perhaps the Int and NCl 

subsets are able to fuse at a faster rate because they express a higher degree of cell-

cell adherence proteins. It would be interesting to see if tethering other tetraspanins 

in the same way would produce similar increases in fusion or if this effect is specific 

to CD9 TEMs. 

 

Conclusion: 

It seems as though at steady state Int are particularly tetraspanin rich but upon 

treatment with ConA there is a significant reduction in the expression of tetraspanins 

involved in adhesion and cytoskeletal polymerisation (CD37, CD53 & CD82); possibly 

granting them higher motility. ConA also induced the Int to increase the % positive 

cells expressing CD9 while the opposite was true for CD81. This could indicate that 

the Int favour the expression of the CD47/CD44 components of the MFR complex as 

so far only CD9 has been shown to associate with CD47 (Longhurst et al., 1999) and 

CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 2000) and CD81 with MFR (Wang 

and Pfenninger, 2006). Though a CD9High Cl population was identified it did not show 

any differences in fusion potential compared to CD9Low Cl. Furthermore, we found that 

tethering monocytes by their CD9 molecules enhances fusion indicating that increased 

cell-cell contacts can enhance the fusibility of monocytes. 
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Figure 5.12: Theoretical Explanation for the Increased Fusion in 
Indirectly labelled CD9High Classical Monocytes. 
CD9High Classical monocytes that were FACS purified with an indirect label had 

fusion parameters far higher than directly labelled equivalents, but the directly 

labelled cells did not. In the first stage of indirect labelling the monocytes are 

bound by the anti-CD9-biotin antibody, after washing a streptavidin-APC-Cy7 

is added to bind the biotin with high affinity and produce a fluorescence signal. 

However streptavidin in a multivalent protein; up to four biotins are able to 

bind every one streptavidin. Once the classical monocytes are seeded after 

seeding it is possible that the CD9High cells will clump and fuse faster because 

of the increased number of strong biotin-streptavidin links formed. Directly 

labelled CD9High or CD36High classical monocytes or did not show similar fusion 

behaviour. 
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6 CHAPTER 6: FINAL DISCUSSION  

6.1 INTRODUCTION 
Human monocytes are able to migrate from the bloodstream into the tissues and 

differentiate into Mφ, moDC and MGC to respond to different pathogens and threats. 

Monocytes are themselves a heterogeneous population consisting of ~85% Cl, ~5% 

Int and ~10% NCl at steady state and genetic analysis suggests that they mature 

from ClIntNCl (Martinez et al., 2006). Each of the subsets show specialisation 

towards certain functions, thus they are also been regarded as Cl: “phagocytic”, Int: 

“inflammatory” and NCl: “patrolling”. The blood populations of the Int and NCl have 

been observed to increase during certain diseases such as tuberculosis (Castaño et 

al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B (Zhang et al., 2011a) and 

rheumatoid arthritis (Rossol et al., 2012).  

 

Monocytes form MGC (osteoclasts) in steady-state at the bone tissues to digest the 

bone and maintain bone homeostasis (Kotake et al., 1999). However, monocytes also 

form inflammatory MGC such as Langhans giant cells in response to Mycobacterium 

tuberculosis infections and encase infected Mφ with LGC to form a granuloma (Byrd, 

1998). Alternatively, monocytes can fuse in response to medical implants to from FBGC 

(Anderson et al., 2008). After fusing the FBGC forms a podosome, secretes acidic H+ 

containing vacuoles and digestive enzymes such as cathepsin K  to break down the 

foreign body (Harkel et al., 2015; Park et al., 2013). The mechanics and mechanism 

of monocyte fusion is still largely unknown and only a handful of essential proteins 

have been identified. Furthermore, LGC and FBGC appear to be initiated by different 

cytokines which could suggest that they coordinate fusion utilising different signal 

transduction pathways (McNally and Anderson, 1995). 

 

FBGC form in response to IL-4 which results in the activation of the STAT6 and the 

NF-κB pathway (Goenka and Kaplan, 2011; Wurster et al., 2000) while LGC form in 

response to IFNγ and STAT1 promotion (O’Shea et al., 2015). The proteins that are 

transcribed from these gene upregulations grants the monocytes a fusion-competent 
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state. Fusion-competent monocytes secrete chemokines to attract more monocytes 

(CCL2 & CCL3), upregulate cell-cell adhesion proteins (LFA-1, ICAM-1 & E-cadherin) 

and fusion facilitating proteins such as (MFR, CD47, CD44, DC-STAMP & TREM-2). 

Once cell-cell contact has been established between two monocytes, they are pulled 

together and the actin cytoskeleton undergoes rearrangements and a common 

pathway of fusion mediated by pore-forming P2X7 is performed (Falzoni et al., 1995; 

Pellegatti et al., 2011). 

 

Such a complex assembly of fusion-mediating proteins at the site of cell-cell contacts 

requires careful organisation of proteins. Tetraspanins are relatively small proteins 

that are able to associate homotypically with other tetraspanins and heterotypically 

with membrane proteins. CD9, CD37, CD53, CD63, CD81, CD82 and CD151 have all 

been shown to interact with monocyte fusion proteins and anti-tetraspanin antibodies 

have been shown to inhibit or enhance the formation of MGC (Parthasarathy et al., 

2009; Takeda et al., 2003). Recently, CD9, CD53, CD63 and CD81 were shown to be 

expressed differently on the three monocyte subsets (Tippett et al., 2013) indicating 

that monocyte subsets may respond differently in fusogenic conditions. 

 

The aims of this study were to assess the effects of anti-tetraspanin antibodies on 

fusing monocytes, to determine if the monocyte subsets show different propensities 

to fusion and to determine if the monocyte subsets express different levels of 

tetraspanins. Further understanding of the contribution of monocyte subsets to fusion 

and the role tetraspanins play in the fusion process may help develop treatments for 

granulomatous diseases such as TB and inhibit foreign body reactions during medical 

implant rejection. 

 

6.2 THESIS SUMMARY 
In Chapter 3, we analysed the steps taken to optimise the fusion assay to allow 

increased sample sizes, higher monocyte purity, more accurate seeding densities and 

automated nuclei counting. We observed that MACS-purified monocytes fused more 

aggressively than monocytes purified by adherence. We demonstrated that treatment 
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of monocytes with anti-tetraspanin antibodies did not affect the adherence of 

monocytes. Treatment with anti-CD9 antibodies did not produce a significant fusion-

enhancement effect as observed previously (Parthasarathy et al., 2009; Takeda et al., 

2003). However, certain combinations of anti-tetraspanin antibodies reduced the 

fusion parameters far more than single antibody treatment. Most notably, 

combinations containing anti-CD82 and anti-CD151 produced the most significant 

decreases in fusion. 

 

In Chapter 4, we demonstrated for the first time that monocyte subsets show very 

different propensities to form MGC in response to ConA stimulation. The Int fused 

faster and formed more of the larger FBGC and SGC types while the Cl fused to form 

mostly the smaller LGC. We found that ConA induces the secretion of pro-inflammatory 

and pro-apoptotic cytokines in Int and Cl but not NCl. Furthermore, all the subsets 

secreted chemokines CCL2 and CCL3 but not RANTES in response to ConA. Of the 

fusion-mediating cytokines, the Cl and Int secreted more IL-4, IL-13, IL-17A and GM-

CSF while NCl secreted more IL-3 by 48hrs and by the final time-point secreted the 

most IFNγ. Surprisingly, the monocyte subsets reacted differently to anti-tetraspanin 

antibodies. Only Int showed significant inhibition to fusion parameters in response to 

antibodies targeting CD9, CD53, CD63 and CD151. 

 

In Chapter 5, we quantified the surface expression of CD9, CD37, CD53, CD63, CD81, 

CD82 and CD151 on the surface of the monocyte subsets and found that at steady-

state the Int are particularly “tetraspanin rich”. We then compared the expression of 

tetraspanins on ConA treated and untreated monocytes. In ConA the subsets all 

decrease in % population of CD37 and the intensity of CD53 and CD82 expression 

decreases. However, the high-fusing Int possess the highest % of cells expressing 

CD37, which can associate with LFA-1 to establish cell-cell contacts. Therefore the 

high fusion potential of the Int may be a result of CD37 and LFA-1 co-expression. 

Finally we identified a small population of CD9High Cl that also expressed higher levels 

of CD63, CD81 and CD151 compared to CD9Low. However, the CD9High Cl did not show 

a greater ability to fuse. 
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6.3 DIFFERENTIAL EXPRESSION OF TETRASPANINS IN MONOCYTE SUBSETS 
At steady-state, CD53 was expressed by 100% of monocytes in all subsets and was 

by far the most highly expressed tetraspanin observed. Our results for the % of cells 

expressing CD9, CD53, CD63 and CD81 and their respective expression levels (MFI) 

do not match those measured by Tippett et al. (2013), who observed overall higher 

% of cells expressing CD9 and CD63 in each subset. Furthermore, they found that the 

intensity of surface expression of CD9 was ranked Cl>Int>NCl, CD53 was NCL>Int>Cl 

and CD81 was NCL>Int>Cl whereas in our results all three tetraspanins were highest 

in Int. However, their CD14/CD16 gating strategy for classifying the subsets was far 

less restrictive as their subset gates all flowed into one another so there is less clear 

distinction between the subsets. Furthermore, in their report they do not mention any 

techniques to remove CD16-positive NK-cells which overlap with NCl in CD14/CD16 

plots and could generate erroneous results. 

 

Overall we found the Int to express the highest amounts of all tetraspanins at steady-

state with the exception of CD82 which was expressed significantly higher in the Cl. 

The Cl showed an intriguing bimodal population for CD9 expression (Figure 5.2) and 

when all the tetraspanins were analysed for co-expression (Figure 5.3) it was clear 

that there was a positive correlation between CD9 and CD151 expression on Cl. When 

we gated the Cl into CD9Low and CD9High we observed notable but not significant 

increases in the surface expression of CD63, CD81 and CD151 but in fusion assays 

there was no difference in fusion potential. It is possible that these CD9High cells 

represent an LPS-insensitive population of the Cl monocytes, however, further analysis 

will be required to confirm this hypothesis.  

 

Though we demonstrated a new flow cytometry panel capable of quantifying seven of 

the most common tetraspanins in monocytes; there are still other members of the 

tetraspanin family that were not analysed. Other tetraspanins have been implicated in 

fusion; such as NET-6 and Tspan-5 which have been shown to decrease and increase 

in expression respectively in response to RANKL stimulation (Iwai et al., 2007). Tarrant 

et al. (2002) knocked out Tssc6 in mice which produced T-cells that became hyper-

stimulated by ConA. The quantification of surface tetraspanins with mass cytometry, 
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a flow cytometry technique that utilises antibodies tagged with heavy metal isotopes 

coupled with time-of-flight mass spectrometry allows for over 30 markers to be 

quantified at once (Bodenmiller et al., 2012; Cheung and Utz, 2011). Using such a 

technique, it would be possible to measure all the tetraspanins and monocyte surface 

markers without compensation issues.  

 

6.4 DIFFERENT FUSION POTENTIALS OF MONOCYTE SUBSETS  
First it was observed that MACS-purified monocytes had a greater fusion potential 

than the adherence-purified monocytes. The MACS technique depleted all non-

monocyte cells using microscopic magnetic beads coated with antibodies to non-

monocytic cells. The adherence method relied on the ability of the monocytes to 

rapidly adhere to plastic surfaces. However, such a crude technique is vulnerable to 

contamination by T-cells and NK-cell which could enhance or subdue the cytokine 

signalling between fusing monocytes. The MACS technique did not rely on a washing 

step after seeding which also meant that more accurate seeding densities were 

possible whereas the adherence purified monocytes were seeded assuming ~15% of 

PBMCs would be monocytes.  

 

We later found from the subset fusion kinetics (Figure 4.8) that not all subsets adhere 

equally; the Int and NCl were less adherent within the first 24hrs. This could mean 

that previous fusion studies that used the adherence method purified more of the 

initially adherent Cl and fewer of the high-fusing Int and NCl. Furthermore, the 

differences in adherence and fusion in Figure 4.8 demonstrates that for subset 

observations; the fusion index (FI) is not a representative quantification of fusion. This 

is because FI reports on the ratio of fused to total cells but in the kinetics studies with 

the subsets it was clear that at some time-points the number of fused cells were the 

same between Int and NCl but the number of adherent unfused cells was different. 

This meant that despite initially seeding the same number of cells, the higher number 

of remaining single cells in the NCl was resulting in a lower FI. The “% of surface 

covered” measurement was introduced to provide a more accurate quantification of 

total fusion. 
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The Int subset was significantly more fusogenic than the other subsets and produced 

the highest measurements in all fusion parameters (Figure 4.3). For the first time, the 

MGC type formed from each subset was quantified (Figure 4.4) and showed that the 

Int and NCl showed a decidedly higher ability to form the larger FBGC and SGC types. 

Such an observation could have implications for the treatment of medical implant 

rejection as in our model it is clearly the Int and NCl forming the larger MGC associated 

with implant rejection. The increased ability of the Cl subset to form LGC could mean 

that they are dedicated to responding to TB infections, as LGC are commonly found 

in granulomatous infections in vivo. Further studies with alternative fusion-inducing 

molecules needs to be conducted to confirm such a hypothesis. Screening FACS-

purified subsets with BCG antigens or IL-4 and analysing their ability to form LGC and 

FBGC would reveal if the Cl are indeed LGC precursors and Int/NCl FBGC precursors. 

 

The subsets show remarkably different cytokine profiles during fusion (Figure 4.10a-

c). The Int and Cl rapidity secreted pro-apoptotic cytokines (TNFα) within the first 

24hrs followed by an increase in pro-inflammatory cytokines (IL-1α, IL-1β and IL-6) 

by 48hrs. IL-1α and IL-1β has been shown to be released from cells undergoing 

apoptosis (Hogquist et al., 1991) and we also observed at these same time-points that 

a large number of monocytes (57-65%) were dead or detached (Figure 4.8). This 

could mean that many ConA stimulated monocytes undergo apoptosis, which results 

in the release of internalised IL-1 and is a necessary step to generate the cytokines to 

promote fusion. ConA has been shown in human melanoma cell lines (Liu et al., 2009) 

and mouse Mφ (Suen et al., 2000) to induce apoptosis by releasing cytochrome c from 

mitochondria and activating caspase 3 and 9. As the cytokines that we selected were 

predominantly fusion related molecules it is still too early to draw conclusions. By 

conducting an assay on the same cryopreserved samples targeting apoptosis markers, 

it may be possible to confirm if ConA does indeed create fusion-competent monocytes 

by first inducing some monocytes to commit apoptosis. Apoptosis already appears to 

be an important process in TB infections as uninfected bystander Mφ have been 

observed to undergo apoptosis in close proximity to infected Mφ (Kelly et al., 2008). 

However, the NCl were able to achieve fusion rates greater than the Cl but did not 
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release high levels of IL-1α, IL-1β or TNFα; suggesting that they may not undergo 

apoptosis as a pre-requisite of fusion. 

 

Though Int were observed to be the most fusogenic of the subsets (Figure 4.3 & 

Figure 4.4), the ConA-stimulated MACS-purified monocytes (Figure 3.6a-b and Figure 

3.7) produced even higher fusion parameters and far more FBGC and SGC. This could 

indicate that even though the Int on their own are high-fusers, their potency is 

increased with the addition of the other two subsets. Considering that the Cl consist 

of ~85% of blood monocytes at steady state it is possible that Int act as the “fusion 

initiators” and the Cl are the “fusion acceptors”. To confirm this the subsets would 

need to be FACS purified first to ensure absolute purity then recombined with each 

other at different ratios and seeded at equal densities in ConA. If certain subset 

combinations produce greater fusion rates than the single subset only equivalents then 

it would confirm that the subsets have an additive effect on one another. 

 

6.5 ASSESSING THE ROLE OF TETRASPANINS WITH ANTI-TETRASPANIN 

ANTIBODIES 
Anti-tetraspanin antibodies have been used in multiple studies to interfere with 

tetraspanin functions. In the initial total monocyte studies we observed that only anti-

CD151 showed any significant inhibition to fusion in adherence purified monocytes, 

whereas in MACS purified monocytes, the formation of FBGC and SGC was inhibited 

by anti-CD63, and anti-CD81 appeared to enhance fusion. Unlike FACS purification, 

the adherence and MACs purification methods were never sufficient to produce 

~100% pure monocyte cultures. Therefore, it is possible that these differences in anti-

tetraspanin responses are due to their interaction with contaminating T-cells and NK-

cells which are able to secrete cytokines in response to activation and may affect 

fusion. To ensure absolute purity, freshly isolated monocytes should first be FACS 

sorted with an anti-CD56 antibody to remove NK cells and seeded as a total population 

in the presence of ConA and anti-tetraspanin antibodies. This would ensure absolute 

purity and maintain the monocytes at a steady-state ratio of Cl, Int and NCl. 
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The combination anti-tetraspanin antibody treatment yielded far more significant 

reductions in fusion parameters than single antibody treatment (Figure 3.8a-d). 

Combinations containing anti-CD82 or anti-CD151 showed the greatest inhibition to 

fusion while combinations containing anti-CD9 showed the lowest inhibition. As CD151 

and CD82 share a common association with EWI-2 (Charrin et al., 2001; Zhang et al., 

2003), we hypothesised that the decreases in fusion potential could be a result of 

antibody-bound CD82/CD151 interfering with the functions of EWI-2. As the 

monocytes in these experiments were all purified using adherence purification it is 

unclear whether the effects seen here are a result of antibody binding monocytes or 

contaminating lymphocytes. The combination antibody assay requires a large number 

of cells (at least 3.6 million) so it is not feasible to perform all 24 combinations on 

subsets in one donor. Therefore, many repeats with multiple donors will be required 

to account for the donor variability observed in monocyte fusion.  

 

Interestingly, the anti-tetraspanin antibodies had a different effect on the subsets. The 

Int showed clear significant decreases in fusion parameters and MGC types produced 

when cultured in anti-CD9, anti-CD53, anti-CD63 and anti-CD151 (Figure 4.12, 4.13 

and 4.14) whereas the Cl and NCl did not. This suggests that the Cl and NCl could be 

orchestrating fusion differently to the Int and that they possess different partner 

proteins interacting with these tetraspanins. Alternatively the lower baseline fusion 

rates of the Cl and the NCl could be masking any notable reductions by these 

antibodies. Using siRNA targeting tetraspanin mRNA could be a potential improvement 

as it is still not clear whether antibodies binding tetraspanins block the binding of 

partner proteins or lock them in an active state etc. By knocking down the tetraspanins 

with siRNA we could ensure that the effects observed would be a direct result of 

specific tetraspanin downregulation.  

 

Binding of CD9, CD53, CD63 and CD151 with antibodies may interfere with adherence 

and migration of monocytes resulting in decreased fusion. CD9 and CD151 have both 

been shown to interact with EWI-2 (Charrin et al., 2001; Stipp et al., 2001) which 

facilitates actin polymerisation at the sites of adhesion proteins. CD53 associates with 

LFA-1 (Todros-Dawda et al., 2014) and CD63 knock-downs show arrested motility due 
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to insufficient β-catenin which facilitates actin polymerisation for E-cadherin (Huber et 

al., 2014). Therefore, it is possible that the decrease in fusion is a result of arrested 

mobility and not interference of the fusion mechanics. Further quantification of the 

subsets’ migratory abilities in the presence of anti-tetraspanin antibodies is necessary 

to determine if these antibodies are inhibiting fusion or migration.  

 

The addition of ConA in the culture media induced significant decreases in the MFI of 

CD53 and CD82 and a decrease in the % population of cells expressing CD37, CD53 

and CD82 (Figure 5.8). It appears as though ConA induces rapid loss of these 

tetraspanins, though it is still not known if the loss is a result of internalisation, 

shedding or decreased synthesis. The Int remain significantly high in CD37 expression 

(Figure 5.9) which could confer the Int a greater ability to form cell-cell interactions 

via LFA-1. By designing a flow panel targeting fusion proteins commonly associated 

with tetraspanins we would be able to ascertain what proteins are being internalised 

with the tetraspanins. Chiu et al. (2012) observed that the internalisation of DC-STAMP 

in RANKL stimulated DC resulted in enhanced fusion and the generation of a fusion 

leader population. Therefore the internalisation of these tetraspanins and their binding 

partners may be following a similar mechanism. Rather than forming fusion mediated 

TEMs the subsets may be playing an essential role as traffickers of other fusion 

proteins. By running a few repeated analysis on permeabilised cells it would be 

possible to ascertain if these tetraspanins have indeed been internalised. 

 

6.6 CONCLUSION AND FUTURE DIRECTIONS 
In this study we have shown that monocyte subsets possess different propensities to 

fuse with the smallest blood population, the Int, possessing the greatest ability to fuse 

and form larger FBGC and SGC. The Cl subset though being the most abundant subset 

in the blood is conversely the least fusogenic of the subsets. The Cl and Int secrete 

high levels of pro-inflammatory cytokines in our fusion assays suggesting they favour 

a more pro-inflammatory MGC types while the NCl appear to be far less inflammatory. 

The Int subset also expressed the highest levels of most of the tetraspanins we 
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observed. Within 4hrs of stimulation with ConA it appears as though all the monocyte 

subsets rapidly internalise or shed CD53 and CD82. 

 

Further investigation is required on the effect of other cytokine treatments (such as 

IL-4 and IFNγ) on the subsets, investigating the possibility that the Int are “fusion 

leaders” and the analysis of tetraspanin associating fusion proteins during fusion. 

There is still much to be learned about the individual monocyte subset involvement in 

fusion and indeed the involvement of tetraspanins in this complex process. For every 

answer we get it seems a hundred new questions appear. 

 

We have shown that monocyte subsets do indeed possess differing propensities to 

fusion which could have big implications for the future design of treatments against 

advanced granulomatous diseases and medical implant rejection. With the ever 

increasing life expectancies of the developed world the demand for medical implants 

and joint replacements is an ever growing concern. Our research can contribute to the 

understanding of foreign body rejection and aid in the development of treatments that 

could target Int monocytes that could be the primary source of FBGC. 
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