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ABSTRACT

Many researchers approach the problem of building autonomous
systems by looking to biology for inspiration. This has given rise
to a wide-range of artificial systems mimicking their biological
counterparts—artificial neural networks, artificial endocrine systems,
and artificial musculoskeletal systems are prime examples. While
these systems are succinct and work well in isolation, they can
become cumbersome and complicated when combined to perform
more complex tasks. Autonomous behaviour is one such complex
task. This thesis considers autonomy as the complex behaviour it is,
and proposes a bottom-up approach to developing autonomous beha-
viour from cognition. This consists of investigating how cognition can
provide new approaches to the current limitations of swarm systems,
and using this as the basis for one type of autonomous behaviour:
artificial homeostasis.

Distributed cognition, a form of emergent cognition, is most
often described in terms of the immune system and social insects.
By taking inspiration from distributed cognition, this thesis details
the development of novel algorithms for cognitive decision-making
and emergent identity in leaderless, homogenous swarms. Artificial
homeostasis is provided to a robot through an architecture that
combines the cognitive decision-making algorithm with a simple
associative memory. This architecture is used to demonstrate how a
simple architecture can endow a robot with the capacity to adapt
to an unseen environment, and use that information to proactively
seek out what it needs from the environment in order to maintain its

internal state.
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INTRODUCTION

1.1 MOTIVATION

Since its initial proposal (Beni and Wang, 1993), swarm robotics has
piqued the interest of the research community, providing a sense of
excitement that is yet to wane nearly a quarter of a century later.
There are many potential advantages of a decentralised collection
of robots, working together like a colony of social insects (Beni,
2005). These advantages include the ability to withstand the failure of
individuals without disrupting the behaviour of the collective (robust),
the potential to form groups and apply different teams to different
areas of a problem (distributed), and the inherent ability to scale up
(scaleable) (Sahin, 2005).

Despite the potential advantages, swarm robotics are not yet
able to operate reliably in a real-world environment. This stems
from a combination of the relative infancy of the field and the
difficulty of engineering self-organising behaviour, a problem that
is exacerbated in a changing environment (Stepney et al., 2006).
The work presented in this thesis investigates the fundamental
basis of collective intelligence by considering distributed cognition
and its role in adaptivity and homeostasis in robots. Distributed
cognition—such as that found in social insect colonies and the human
immune system—provides a mechanism through which autonomous
behaviour can emerge from the interactions between a robot and its
internal and external environments.

The original assumption that, by mimicking the behaviour of social
insects, robots can inherit their robustness turns out to have counter-
examples (Bjerknes and Winfield, 2013). The emergent high-level
behaviour of social insects is dependent on the low-level interactions
of each insect, both with its environment and with other insects. A
minor perturbation at a low level can cause a significant change
in behaviour at a high level. As demonstrated by the ‘anchoring’
problem in (Bjerknes and Winfield, 2013), this can have a major
impact on even the simplest swarm robotics algorithms, with the
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failure of a single robot slowing the progress of the swarm, and
further failures causing the entire swarm to stall. The failed robots
act as an “anchor’ for the rest of the swarm.

Swarms, as distributed systems, do not have a natural boundary
where one swarm ends and another might begin. While the distrib-
uted nature of swarm robotics can provide a key advantage over
centralised systems, the lack of such a boundary can pose problems
when the system is scaled up. In the same way that the assumption
of robustness has counter-examples, swarms are not necessarily as
scaleable as originally assumed. As a swarm is scaled up, the lack
of a natural boundary can pose problems where multiple swarms
interfere with each other and often combine into one swarm. This
is evident in even a basic algorithm such as Reynolds” (1987) boids,
where multiple swarms can struggle to remain separate from each
other.

There has been a recent drive towards improving the fault tolerance
of swarm robots due to such issues as the anchoring problem
(Bjerknes and Winfield, 2013). This drive to improve the fault tol-
erance of swarm robotics is combined with the need to improve
the adaptivity of the robots. In the anchoring example described
above, if the swarm can recognise the failure of a robot, adapting
the behaviour of the swarm accordingly would allow the swarm to
continue. Timmis et al. (2016) provide a mechanism through which
this is possible, taking inspiration from granuloma formation in the
immune system to help recover from the anchoring problem. This
kind of adaptivity is qualitatively similar to homeostatic behaviour:
altering the high-level behaviour of the system to maintain a specific
environment at the lower level (Ashby, 1960).

Artificial homeostasis—e. g. homeostasis in robots—has been de-
veloped previously, most notably by Neal and Timmis (2003); Var-
gas et al. (2005) and Schmickl et al. (2011), using neuroendocrine
networks to provide adaptive behaviour. By altering the production
of hormones that affect the response of a neural network to the
environment, the neuroendocrine network is able to alter the high-
level behaviour of the system according to low-level signals from
a sensor. While this approach is effective, the range of behaviours
is limited to those already trained into the neural network, and re-
training takes time.

This thesis considers how a model of distributed cognition can help
provide homeostasis and adaptivity to robots. There are similarities
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between homeostasis and cognition—the ability to make decisions,
along with the ability to use previous experiences to influence future
actions—and this similarity can help with the development of a

cognitive-inspired homeostatic system:

DECISION-MAKING  Current collective decision-making algorithms
make use of distributed sensing, and so rely on individuals traversing
the environment and aggregating at a particular point in space to
make a decision (Schmickl and Hamann, 2011; Garnier et al., 2005).
This aggregation poses a problem when making multiple, success-
ive decisions. The process of aggregation removes the distributed
nature of distributed sensing, requiring the robots to re-distribute
themselves before they can make a second decision. By developing a
decision-making algorithm that does not require distributed sensing,
this problem can be solved, as the entire swarm reacts together, and
remains together after the decision is made.

EXPLOITING PREVIOUS EXPERIENCE The ability to adapt the
high-level behaviour of a robot, without the slow process of re-
training the control architecture, would allow a robot to rapidly
respond to new variations in a dynamic environment. By making
use of previous interactions with the environment to influence the
future behaviour of a robot, associative memory neural networks
offer a rapid method of learning and applying experience in order
to maintain the internal state of the robot.

1.2 OUTLINE AND CONTRIBUTIONS OF THE THESIS

The previous section reports the motivation for the thesis. There are
a number of limitations in the function of swarm robotics for which

distributed cognition can provide solutions:

¢ Swarms have no ability to distinguish themselves from other
swarms due to the lack of a natural boundary. This means that
multiple swarms are unable to work in the same area without
interfering with each other.

¢ Collective decision-making algorithms struggle to make suc-
cessive decisions, due to the use of aggregation in a distributed

system.
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¢ Current artificial homeostatic systems have no ability to rapidly
apply new information learned from the environment without

re-training.

These limitations of swarm robotics can be solved by developing
an adaptive, homeostatic system, based on the ideas of distributed
cognition. This system has the potential to work for an extended
period of time in a changing environment, while also providing
a platform for investigating the fundamental basis of collective
intelligence. As such, the aim and objectives of the thesis are listed
below.

THESIS AIM

To investigate whether distributed cognition can be used as the
basis for adaptivity and homeostasis in autonomous robots.

OBJECTIVES

1. Determine a method of providing a distributed system with the
ability to form a boundary.

2. Derive a form of collective decision-making that does not
require distributed sensing.

3. Build an architecture that uses distributed cognition to provide
adaptivity and homeostasis to an autonomous robot.

4. Test the ability of the autonomous robot to adapt to, and sustain
itself in, previously-unseen environments.

The remaining chapters in this thesis, and the objectives they address,
are outlined below:

¢ Chapter 2 reviews the literature surrounding swarm robotics,
artificial homeostasis, and distributed cognition. This chapter
also introduces concepts that are required to understand the
approach taken in both this thesis and the work of other
researchers. The following three results chapters also review
literature that is directly relevant to the results presented.

¢ Chapter 3, the first of three results chapters, presents a model
for emergent identity formation in a swarm. The results presen-
ted in this chapter provide the ability for swarms to form
a boundary, allowing multiple swarms to work in the same
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environment without negatively interfering with each other.

This chapter directly addresses Objective 1.

¢ Chapter 4 presents a model of cognitive decision-making, based
on the ideas of distributed cognition proposed by Cohen
(2000). This second results chapter provides a mechanism
through which swarms are able to collectively make decisions
without distributed sensing, allowing for multiple decisions
to be made without an external force intervening. The model
constructed and tested in this chapter is used as the basis for the
homeostatic architecture developed in chapter 5. This chapter
directly addresses Objective 2.

¢ Chapter 5 presents an architecture for adaptive homeostatic
behaviour in robots. The architecture harnesses the decision-
making abilities of the model presented in chapter 4, and
combines it with an associative memory neural network. This
allows robots to learn about the environment and rapidly
apply the learned knowledge to alter their high-level behaviour,
providing a mechanism for proactive homeostatic behaviour.
This chapter directly addresses Objectives 3 and 4.

¢ Chapter 6 discusses the work presented in this thesis, puts it
back in context of the literature, and considers different avenues
of future research. This chapter then concludes the thesis.

¢ Appendix A presents a description of the materials and meth-
ods used throughout this thesis. This includes statistical ana-
lysis, aleatory uncertainty analysis, parameter sensitivity ana-

lysis, and experimental setups.

CONTRIBUTIONS  The work presented in this thesis shows that:

* A synchronisation algorithm can be used to form emergent
identities in swarms, allowing multiple swarms to operate in
the same area.

¢ Cognitive decision-making provides the ability to make mul-
tiple successive decisions without distributed sensing or leaders
within the swarm.

¢ Distributed cognition can be used to provide homeostatic and

adaptive behaviour to a robot.






LITERATURE REVIEW

As described in the previous chapter, this thesis asks whether
distributed cognition can provide homeostasis and adaptivity to
autonomous robots. This chapter provides the background in swarm
intelligence, distributed cognition, and neuroendocrine networks
required to understand both the approach taken in the later chapters,
and the approaches taken by other researchers. The three results
chapters (chapters 3, 4, and 5) also review literature that is directly
relevant to the presented results.

This chapter is organised as follows: section 2.1 introduces the ideas
of swarm intelligence and self-organising behaviour, which are key
aspects in distributed cognition. Section 2.2 reviews swarm robotics,
an application of swarm intelligence to robotics, and the context in
which the work in this thesis is undertaken. Section 2.3 presents
a review of existing approaches to homeostasis in robots. Section
2.4 discusses distributed cognition and collective decision-making.
Finally, section 2.5 concludes the chapter with a brief summary,
highlighting the holes in the reviewed literature.

21 SWARM INTELLIGENCE

Nature has, over the preceding few million years, solved a large
number of problems. Evolutionary forces provide a continual drive
for natural systems to adapt to changing environments. While these
systems are just doing their utmost to survive for as long as possible,
the resulting mutations appear to be surprisingly creative solutions
to some otherwise difficult problems. Bio-inspired algorithms are
an attempt to use these solutions for our own means. By taking
inspiration from biological approaches, we can harness millions of
years of evolution and exploit the natural solution to solve the
problem we are facing.

A concrete example is the foraging behaviour of ant colonies. While
some species of ant forage in huge raids (Burton and Franks, 1985;
Deneubourg et al., 1989), most ants forage by sending out individual



LITERATURE REVIEW

scouts that return to the nest when they find food (Deneubourg
et al., 1990). By laying pheromone on the return trail, the scouts are
able to lead other ants to the food source they have found. These
new recruits help to reinforce this pheromone signal by laying their
own pheromone on the same trail as the scout has done. Due to
the self-reinforcing nature of this process, the food source with the
shortest path will become the strongest pheromone trail, encouraging
the majority of the ants to follow this path until the food source is
diminished. Dorigo et al. (1996) took inspiration from how ants find
this shortest path and developed an algorithm called “Ant System’
that can be used to solve optimisation problems. Most notably, Dorigo
and Gambardella (1997) show that the NP-hard travelling salesman
problem is particularly amenable to this approach and due to the
nature of ant colony optimisation (ACO) techniques, the algorithm
is able to maintain sub-optimal paths as well as the shortest path.
This feature is an ideal situation for dynamic graphs, such as those
in telecommunication networks (Schoonderwoerd et al., 1997), as it
allows for very rapid re-routing of data if the shortest path is blocked.

2.1.1 Self-organising behaviour

While a large amount of work has focussed on the ability of ant
colonies to search for food, a lot more is happening within the colony.
Ants in the colony will be performing one of a number of tasks at any
given point. These tasks typically include foraging, nest maintenance,
fending off predators, and clearing away refuse (Gordon, 2002). How
each ant knows how to perform each task, and how it decides
which task to perform is a result of self-organising behaviour. Self-
organisation can be described as “a process in which [a] pattern at the
global level of a system emerges solely from numerous interactions among
the lower-level components” (Camazine et al., 2002, p. 8). The emergence
of high-level patterns from low-level interactions typify complex
systems (Anderson, 1972), and as such are ubiquitous throughout
the natural world. For example, in ant colonies, each ant will react
to disturbances in its environment (e. g. discovering a damaged part
of the nest) and will alter its behaviour accordingly. It will also
change behaviour depending on how many other ants are doing a
particular task. If it encounters a large number of ants all in nest
maintenance’ mode, it is more likely to switch to nest maintenance
as well (Gordon, 2002). This self-organising behaviour allows the
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colony to react to external stimuli without the individual ants having
sufficient cognitive capacity to do so.

In considering the intelligence that emerges from the self-organising
behaviour in ant colonies, Hofstadter (1979) compares ants in a colony
to neurons in a brain. There are many similarities, neurons react
to those closest to them (local interactions), and fire only when a
sufficient number of their neighbours fire (simple rules). They are
also remarkably robust, with individual cell death—apoptosis—a
comparatively regular occurrence.! Even with this cell death, we still
have exemplary cognitive function. Similarly, social insect colonies
are able to lose many individual members without the high-level
abilities suffering.

By comparing the intelligence of ant colonies and brains, Hof-
stadter (1979) implies that intelligence is not necessarily substrate-
specific. In other words, if both ants and neurons can support intelli-
gence, it might be possible for alternative substrates (e.g. silicon) to
support intelligence as well. This is the idea of liftable intelligence.

2.1.2 Liftable intelligence

Liftable intelligence is the idea that intelligence is substrate-agnostic.
If it was possible to develop an architecture that precisely mimicked
the behaviour and interactions of all the cells and biochemical
processes in the brain, liftable intelligence says that this artificial
brain would be capable of real intelligent thought. This does, however,
ignore how long it takes to learn and what is available for the brain
to work with during development, in the sense of Edelman’s primary
repertoire (Edelman and Mountcastle, 1978; Edelman, 1987). As such,
Hofstadter (1979) posits that intelligence is a software property, not
a hardware property. It matters not which substrate is used, what
matters is the high-level behaviour of the system. Hofstadter (1979)
describes this concept exceptionally well using an example involving
a range of rather eccentric characters and a copy of a Dickens novel.
The example presented here removes the (albeit very entertaining)
characters and replaces them with three people who all encounter
Charles Dickens” “The Pickwick Papers” in different ways:

The first person reads this book at the ‘letter-level’, i. e. they read

each letter individually, rather than as words or sentences. When

it has been estimated that as adults, we lose around 9000 neurons a day through
apoptosis.



10

LITERATURE REVIEW

reading the book at this level, the reader needs to associate each
letter with a concept in their mind before continuing. Following
Hofstadter’s example, instead of reading ‘the” as ‘t’, ‘h’, ‘e’, this
person considers each letter as their associated definite concept before

continuing, hence:

“Hmm. .. You mean that every time I hit a word such as
the, I have to think of three definite concepts, one after

another, with no room for variation?”

“Exactly. They are the t-concept, the h-concept, and the e-
concept—and every time, those concepts are as they were
the preceding time.” (Hofstadter, 1979, p.326, emphasis
added)

Due to the nature of reading the book at this level, it would not
be possible to understand the plot of the book. Regardless of which
concepts are associated with each letter, they would not map properly
to the real-world in such a way as to allow the reader to understand
the plot, it is only the interactions between these concepts that convey
the wide range of meanings required.

Two further people, however, read the book at higher levels:
the ‘word-level’, and the ‘sentence-level’. As before, each word
and sentence is associated with a definite concept, but due to the
interactions between letters to make words—and again to make
sentences—the range of concepts required is sufficiently large that
the plot is easily comprehended by both readers.

As these readers are compared, the resolution at which they
interpret the story is increasingly broad, although the plot remains
the same. The idea of resolution and scope are discussed at length by
Ryan (2007) in the context of emergent systems.

Finally, consider the case of two further people who have not yet
read this book, who shall be referred to as Person A and Person B.
Person A is bilingual, fluent in both French and English, and reads
The Pickwick Papers in English. Person B is a French national, and
does not speak a word of English. If Person A, having read the book
in English, describes in extensive detail the plot of the book in French
to Person B, such that Person B has as much an understanding of the
plot as the other readers described above, then Person B has ‘read’
the book at the “plot-level’. At this stage, the underlying substrate of
the book (previously words and sentences in ink on paper), has no
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bearing on the ability of Person B to understand the plot of the book.
The plot is substrate-agnostic.

Liftable intelligence implies that, regardless of whether the sub-
strate is natural or artificial, it should be possible to produce a system
that exhibits intelligent behaviour. Most importantly—for the work in
this thesis at least—this implies that it should be possible to develop
intelligent behaviour in robots. Liftable intelligence is just another
name for the philosophical concept of functionalism—the idea that an
object is characterised by the function it performs, not the substance
from which it is made (Putnam, 1960). The downside to using the
term ‘functionalism’ is that it is a contentious concept, and therefore
is difficult to present an argument without the possibility that the
reader might colour the discussion with their preconceived notion of
functionalism.

2.2 SWARM ROBOTICS

Swarm robotics is a field of study that uses inspiration from swarm
intelligence to produce certain behaviours in groups (or ‘swarms’) of
robots.

Sahin (2005) presents a review of swarm robotics, collecting to-
gether the various terms used in the literature in order to produce
a reliable definition of swarm robotics. Sahin proposes the following
five criteria for identifying a ‘swarm robotics” system:

e Autonomous robots

Large number of robots

Few homogenous groups of robots

Relatively incapable or inefficient robots

Robots with local sensing and communication capabilities

Interestingly, these five properties do not include self-organising
behaviour. The large number of algorithms that make use of self-
organisation shows how effectively emergent effects can be used to
produce behaviour from an otherwise simple control architecture.
This is addressed by Dorigo and Sahin (2004), by suggesting that
criteria such as these should not be “used as a checklist for determining
whether a particular study is a swarm robotics study or not. Instead, they
should be used as yardsticks for measuring the degree to which the term
“swarm robotic” might apply” (p.111).
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While swarm robotics do not require the use of self-organising
algorithms, the decentralised nature of swarms makes self-organising
behaviour very attractive. There are a few examples of swarm
robotics with non-self-organising behaviour (Flushing et al., 2012;
Dorigo et al., 2013), but the advantages of using self-organisation
is substantial enough for the majority of projects to make use of
it. Engineering self-organising behaviour is difficult (Stepney et al.,
2006), so many researchers opt for mimicking biology in order to
make the design of self-organising behaviour easier.

Swarm robots have been used for a number of very interesting toy
examples, but as yet have not found a reliable real-world application.
The SWARMIX project (Flushing et al., 2012) is the closest to have
come to a real-world application, with experiments run outside of
a controlled laboratory environment (albeit still in relatively quiet
areas). The SWARMIX project consists of an attempt to provide a
dynamic ad-hoc communication network to a heterogenous search-
and-rescue team working in the mountains. The swarm of drones
form a dynamic chain between mountain rescue dogs and a human
search party. As the distance between the dogs and the humans varies,
the chain varies between a lattice formation (Olfati-Saber, 2006) and a
stretched-out line of drones, in order to maintain connectivity across
the network.

The lack of real-world applications for swarm robotics, however,
stems predominantly from the fragility of self-organising algorithms.
Contrary to early ideas that a large number of robots would give
inherent robustness to the swarm (Sahin, 2005), a single robot failing
can be enough to disrupt the swarm, and further failures cause it to
stall completely, resulting from the lack of fault tolerance in swarm
robotics systems (Bjerknes and Winfield, 2013).

The only viable methods of fault tolerance consist of using external
tracking systems (Millard et al., 2014) or using aggregation to try
and counter the effects of a failed robot (by re-charging the failed
robot, for example) (Timmis et al., 2016). Despite the reliability issues
of swarm robot algorithms, algorithms are still being developed.
Holland and Melhuish (1999) describe an algorithm for emergent
sorting behaviour in a swarm based on the stigmergic behaviour
of ant colonies. This is similar to the construction mechanisms
used by termites, which make use of pheromones as well as stig-
mergic communication. Werfel et al. (2014) have used termites as
inspiration to develop collective construction behaviour for swarms
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of robots (Petersen et al., 2011; Werfel et al.,, 2014). Ijspeert et al.
(2001) present an experiment in producing collective behaviour. The
experiment consists of a series of sticks that must be removed from
their holes. The only way to remove a stick is if two robots both pull
the stick at the same time. Gauci et al. (2014b) present a method for
self-organised aggregation based on a single binary sensor, which is
extended to the clustering of objects in an environment (Gauci et al.,
2014a).

2.2.1 Swarm taxis

The ‘swarm taxis’ algorithm (Bjerknes et al., 2007) is often cited as
one of the quintessential swarm robotics algorithms. This algorithm
allows the swarm to locate an infrared beacon without any individual
having the ability to calculate which direction the beacon is in.

The swarm taxis algorithm consists of two main behaviours,
coherence and avoidance. If a robot strays from the swarm, then the
coherence behaviour will rotate the robot 180° to head back towards
the swarm. Robots avoid colliding with other robots by maintaining
an ‘avoid radius’ around them (avoidance behaviour). When not in
either of these states, the robots randomly move, turning often to
help with cohesion (Bjerknes et al., 2007).

When these behaviours are implemented across multiple robots
in a swarm they aggregate the swarm into one group. In order
for this aggregate to perform taxis, an infrared beacon is added to
the environment. While the robots have no capacity to detect the
direction of the beacon, they can detect the directionless signal from
it. Using this information, Bjerknes et al. alter the robots such that
they have a slightly larger ‘avoid radius” when they are receiving this
infrared signal, compared to when they are not. As such, the shadow
cast by those robots closest to the beacon prevents those robots farther
away from receiving the signal (see fig. 2.1). The ‘illuminated” robots,
with a larger avoid radius, try to move away from those ‘shadowed’
robots. The shadowed robots, however, still have the smaller avoid
radius, so they move towards the illuminated robots in response.
This provides the swarm with information regarding the direction of
the beacon, even though the individuals have no knowledge of this
information. Over time, the swarm moves across the environment to
the beacon.

13
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Figure 2.1: Diagram showing the operation of a swarm taxis algorithm.
Robots B and C do not receive the signal from the beacon, and so
try to stay close to the other robots. Robots D and A do recieve
the signal from the beacon, and so move farther away from those
robots near them. The effect is that the swarm slowly moves
across to the beacon. Diagram from (Bjerknes et al., 2007).

The emergent behaviour is what makes algorithms like the swarm
taxis algorithm so challenging to design. In single robots, the robot
would have a sensor to detect the direction of the beacon, and
this would be included in the robot controller. In swarms, however,
the behaviour of the collective is qualitatively different from the
behaviour of the individual.

2.2.2  Limitations of swarm robotics

Due to the difficulties in engineering self-organising behaviour (Stepney
et al., 2006), some researchers instead focus on computational meth-
ods of producing controllers. Evolutionary algorithms have been
used widely in developing collective behaviour for robots. By pla-
cing constraints on the individual controllers, and setting the fit-
ness function to something only collective behaviour can achieve,
evolutionary algorithms are able to produce self-organising swarm
algorithms (Floreano and Mondada, 1998; Nolfi et al., 2000). By
simulating the behaviour of the swarm, evolutionary algorithms are
able to test the collective behaviour of a controller and optimise the
behaviour of the individual according to this high-level behaviour.
There are, however, problems with this approach. Jakobi et al. (1995)
present the idea of the ‘reality gap’, where controllers optimised in
the perfect, noise-free world of a simulation will likely fail upon
bridging the reality gap to noisy, imperfect, real-world experiments.
Further to the problems introduced by the reality gap, due to the

nature of swarm robots to react to the environment and other robots
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around them, it becomes a reasonable concern that an external party
might be able to subvert the behaviour of the swarm. By introducing
a robot to the swarm that alters the high-level behaviour, a single
robot could prevent the swarm from completing its objective. The
‘anchoring’ problem in the swarm taxis algorithm (Bjerknes and
Winfield, 2013), where a single robot failing can disrupt the swarm,
and further failures can anchor the swarm to a single point, could
easily be achieved by subverting robots. By responding to any signals
it receives but refusing to move, a subverting robot could trigger the
stalling of the entire swarm. While this is currently not an actively
researched area (most likely due to swarm robotics algorithms still
being tested in laboratory environments), this is a serious concern
when considered in terms of real-world applicability.

Finally, one of the most prominent limitations of swarm robotics
is that they are implemented on relatively incapable platforms. This
is actually one of the points Sahin (2005) identifies as a defining
property of swarm robots. The problem of developing a robot
controller with self-organising behaviour is difficult on an idealised
platform, but when the platform is limited in its abilities it becomes
even more challenging. For example, the small capacity for charge in
swarm robots is exacerbated by any advanced controller that attempts
to use too much processing power. As such, emergent behaviour that
makes use of the simplest possible controllers will help to increase the
battery life of the robots. Eventually, however, the batteries will run
out of charge. Before swarm robotics can be moved to the real world,
the ability to detect and alter the behaviour of the robot/swarm to
find a recharge station is essential. This adaptivity of behaviour is

commonly referred to as artificial homeostasis.

2.3 HOMEOSTASIS AND ADAPTIVITY

Homeostasis, “the automatic regulation of physiological functions” (Ver-
non, 2015, p.94), is an essential part of keeping biological systems
functioning. It provides the ability to keep a specific variable within
certain limits around a set point, allowing the organism to maintain
an optimal working environment for its biochemical reactions. As dis-
cussed in section 2.1.1 above, minute changes in low-level behaviour
can have large effects on high-level behaviour. The capacity to adapt
the high-level behaviour of the system in order to maintain an optimal
working environment for the lower levels is a worthwhile expenditure
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of energy, resulting in a system that can survive in a wider range of
environments. For example, if humans struggled to survive once the
surrounding temperature lifted above 25°C, it is highly unlikely that
we would be the most dominant species on the planet. This approach
to homeostasis through adaptivity is a useful way to think of the
problem, and is one that is used throughout this thesis, essentially
considering the problem of homeostasis as a combination of adapting
to the environment, and making decisions about what to do based on
previous experiences.

Artificial homeostasis is the problem of maintaining an appropriate
working environment for artificial systems such as robots. Swarm
robotics systems, often assumed to be inherently robust, have recently
been shown to be surprisingly delicate (Bjerknes and Winfield, 2013).
The failure of a single robot is sufficient to disrupt the entire system.
The difference with swarm systems from other robotic systems is that
they have another level where minor variations could be magnified.
The swarm can be viewed at a number of different levels (micro-,
meso- and macro-scopic, corresponding to the sensor/controller level,
individual robot level, and swarm level, respectively). Variation at any
of these levels will directly affect the other levels. At the microscopic
level (i.e. sensor/controller level), a small discrepancy between a
sensor value and real value can have large effects on the behaviour of
the algorithm at the macroscopic level, but might only result in almost
imperceptible variation at the mesoscopic level (Jakobi et al., 1995).
Such is the nature of complex systems (Ryan, 2007). Before swarm
robotics can be exploited for real-world applications, the ability to
autonomously alter the macroscopic behaviour to maintain the micro-
and meso-scopic states must be developed.

A simple example of how this might happen is to consider a robot
in a swarm that is about to run out of charge. The change at the
microscopic level is that the charge sensor has been steadily reducing
for an extended period of time, such that it finally drops below a
threshold. At the mesoscopic level, this could result in the single
robot failing as it has too little charge to perform any tasks. At
the macroscopic level, the entire swarm is disrupted, and possibly
fails entirely due to the anchoring effect described by Bjerknes and
Winfield (2013). As such, a small signal in one of many robots
is indicative of a problem that prevents the entire swarm from

performing its task.
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A popular method for approaching these complex problems is to
look to biology for inspiration (Floreano and Mattiussi, 2008). By
mimicking the biological approach to homeostasis, researchers have
developed methods for providing artificial homeostasis to robots
(Neal and Timmis, 2003, 2005; Vargas et al., 2005; Timmis et al., 2009;
Stradner et al., 2009; Moioli et al., 2009; Schmickl et al., 2011). The
approach taken by these researchers is to develop artificial neural,
endocrine, and immune networks to mimic the biological processes
at play within the body. This approach has its merits, but often
produces controllers that are complicated, and difficult or slow to
adapt. Neuroendocrine systems often use a number of separate
neural networks designed to perform specific tasks, and the ability
to adapt present only in the option to switch between pre-trained

neural networks, or to completely retrain the network.

2.3.1 Neural and neuroendocrine networks

Artificial neural networks are a simplified computational model of
collections of neurons in the human brain (Rosenblatt, 1958). By
passing data between layers of the network, neural networks are
able to approximate any mathematical function required (provided
sufficient neurons are available) (Hornik et al., 1989). In the context
of robotics, using a model of the brain provides a simple, intuitive
way of thinking about how information passes through the controller.
With sensor inputs lined up on one side of the network, and actuators
on the other, the processing occurs on the journey between one and
the other. The simplest method of using a neural network for a robot
controller is Braitenberg’s vehicles (Braitenberg, 1986). These vehicles
had a small number of sensors and wheels. By connecting the sensors
to the wheels directly in different arrangements, the vehicles exhibit
very different behaviour. Some flee from light, while others appear to
cautiously approach it.

In order to use a neural network to control a robot, the network
needs to be trained to exhibit the correct behaviour when provided
with certain stimuli. Neural networks can be trained through a
process called ‘backward propagation of error’ (Rumelhart et al.,
1986). This process consists of presenting a series of input-output
pairs to the network and adjusting the weights between neurons in
order to minimise the error between the desired and actual output.
While this method does work, it is not the most efficient or the best at
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generalising the problem. Overfitting often causes problems where
the network does not produce the desired output when provided
with inputs that it has not been trained on.

More recently, evolutionary algorithms have been used to not only
train the network, but also to alter the structure of the network in
order to meet the constraints of the problem (Floreano and Mondada,
1998). Reinforcement learning is also a method that can be adopted
to train a network, and is based on the dopamine reward system
in the brain, where correct behaviour is rewarded and incorrect
behaviour is not (Watkins and Dayan, 1992). Over time, the system
learns which behaviours are correct by altering the weights of the
neural network (Williams, 1992).

Neuroendocrine networks take inspiration from the interaction
between the nervous system and the endocrine system in the body.
The endocrine system produces and stores hormones that help to
regulate the behaviour of the nervous system. In doing so, they
provide a mechanism for signalling a change in behaviour to all
tissues and cells in the body. They are able to alter the response
of the system to certain stimuli. The well-known fight-or-flight
mechanism relies on stress hormones such as cortisol, noradrenaline,
and adrenaline to prepare the body to rapidly respond to a threat.
Part of this response is decreased reaction times that come from more
efficient neural signalling, a classic example of how the endocrine
network can affect the behaviour of the nervous system.

The hormones in artificial neuroendocrine networks are used to
alter the response of a neuron to stimuli. This is achieved by adding a
new weight term to the inputs of each neuron that is affected by any
hormone present. In doing so, the hormone can increase or decrease
the response of the neuron to that stimulus. If the network is set up in
such a way that two paths through the network have complementary
responses to the hormone, then the endocrine network is able to
switch between behaviours by varying the release of hormone.

The architecture developed in (Neal and Timmis, 2003, 2005; Vargas
et al.,, 2005) makes use of a neuroendocrine network to control
the behaviour of a robot. This consists of a neural network that is
linked to sensor inputs, but is regulated using artificial hormones. As
these hormones vary, the behaviour of the neural network changes.
For example, by connecting the hormone production controller to
a distance sensor that fires when the robot approaches an object,
the robot can avoid objects in the environment. As the hormone
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concentration increases, the high-level behaviour of the robot will
alter such that the robot diverts. This can be achieved by having
complementary responses to the hormone on each wheel. As such,
the presence of the hormone will drive each wheel in opposite
directions, turning the robot away from the object in the environment.
Once diverted, the hormone production will decrease again due to
the lack of an object to drive it. As such, neuroendocrine systems
can provide an alternative to re-training a single neural network for
multiple behaviours. Similar results can also be achieved without
the neural network, relying instead on the interactions between
hormones and actuators to perform collision avoidance (Stradner
et al., 2009; Schmickl et al., 2011).

This approach to adaptivity in an artificial system is effective
so long as the required behaviour is already trained into a neural
network for the endocrine network to switch between. In order
to train new behaviour into the robot, a method for altering the
function of the network is required. In (Neal and Timmis, 2005) this
is provided by an artificial immune system that is able to change the
structure and weights of the neural and endocrine networks. This
tries to mimic the behaviour of the body, where the interactions
between the neural, endocrine, and immune systems give rise to
homeostasis (Neal and Timmis, 2003).

One of the main problems with this approach to adaptivity is the
speed at which the robot can adapt. The network will adapt quickly
to behaviours that the neural network is already trained for, but new
behaviours would require a training phase in order to learn about
the new environment. The work presented in chapter 5 provides a
mechanism through which a robot is able to rapidly adapt to an
unseen environment and continually learn about the environment
to provide adaptivity. The system presented achieves this through

associative memory neural networks, which are described below.

2.3.2  Associative memory

Associative memory is a form of memory that associates stimuli
with responses. In biological systems, the memory often results from
temporal associations that emerge between two sets of interacting
neurons (Palm, 1980, 1981). As the stimulus is presented to the first
set of neurons, the response of those neurons is sent to the second
set of neurons, which subsequently respond. This second response
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is similar every time, indicating that the same response will occur if
given the same stimulus.

Willshaw et al. (1969) first proposed a method for the brain to store
memories inspired by ‘correlograms’. Correlograms are produced
by shining light through two pieces of card with pinholes in. The
correlations between the two sets of holes are captured on a third
piece of card. Inverting this pattern would allow either of the original
sets to be reconstructed from the inverted correlation pattern and the
other original card.

The correlogram was simplified to the ‘associative net” (Willshaw
et al., 1969), helping to remove the imperfections of the original setup.
By simultaneously presenting a series of input-output pairs to the
associative net, the associations between stimulus and response are
encoded into the network. The stored associations are retrieved by
re-presenting one of the original stimuli.

The correlation matrix memory (CMM) (Kohonen, 1972) is a matrix-
based representation of an associative net. The matrix represents
the binary weights from a fully-connected, two-layer artificial neural
network (one input layer, one output layer; see fig. 2.2b). As such, the
network in fig. 2.2b would be represented by the CMM, M, with k
input-output pairs Z and O in fig. 2.2a.

Before training, the initial matrix M is filled with zeros (as there are
no associations stored in the network). As the k binary-valued input-
output pairs are presented to the network, the associations are built
up in the matrix, M. These associations are stored as 1s in the matrix,
corresponding to coincident 1s in both input and output vectors. For
example, in fig. 2.2a, if 2 and e were both 1, then ae would be set to 1
on training.

This approach to training is in direct contrast to a ‘typical” artificial
neural network. The typical feedforward neural network will train the
connections between neurons based on the stimulus-response pairs
provided to it, as done here, but the difference is the presence of a
‘learning rate’. This learning rate represents how quickly the network
learns about the patterns presented to it, and is typically very small
(¢ = 0.05 is an appropriate starting point). The use of a learning
rate helps to prevent overfitting of the data, by relying on multiple
examples of similar data to reinforce the signal, building on previous
examples until it recognises the patterns in the data. This is not the
approach taken with CMMs. While feedforward neural networks re-
cognise patterns through repeated presentation of examples, CMMs
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(a) Basic CMM architecture (left), where M represents the matrix of binary weights,
Z and O represent the input-output pair corresponding to the neurons a,b, c and
d,e, f in (b), respectively.

(b) CMM associative memory neural net-
work. The binary weights between the
two layers are represented by the matrix

M in (a).

Figure 2.2

recognise patterns through a process called ‘generalisation’, which
consists of applying a threshold to the response from the network.

The downside to this approach is that a CMM currently will
immediately learn every example presented to it—this is what
contributes to its exceptionally-quick training speeds. By immediately
learning every example, the CMM makes the assumption that every
example presented to it must have happened (i. e. there are no false
examples in the training set). From the perspective of robotics, where
stimulus data values are typically taken directly from a sensor, this
is an appropriate approach. Even allowing for noise in the sensor
values, these are representative of the values that would be presented
during real sensor readings.

To recall, we present an input pattern Z,, and we get the follow-
ing: (Haykin, 1994)

O:MIr

where Z, is the input pattern, and O is the output from the network
trained with associations stored in M. The desired output pattern,
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Oy is currently combined with noise from the other patterns stored
in the network, ¢,, hence:

O - Or + ey
k
e = ¥ (I1T,) O,
=1
o

Thresholding the output vector O leaves the desired output vector O.
Different thresholding strategies offer different advantages in terms
of the ability of the network to generalise from noisy or incomplete
patterns to a correct output (Austin and Stonham, 1987).

The ability of the network to generalise noisy inputs suggests
a range of applications in real-world environments, where a noisy
signal is far more common than a clean signal. If a CMM is
distributed across a swarm of robots, the swarm could potentially
survive the failure of a single robot by generalising the signal that
would have been contributed by the failed robot. This concept is
beyond the scope of this thesis, but is discussed as part of the further
work section (section 6.3).

24 DISTRIBUTED COGNITION

The collective behaviour of ants is one of the most fascinating areas
of the natural world, and has been studied at great length (Franks,
1989; Franks et al., 2002; Couzin et al., 2005). By researching the
underlying mechanisms behind distributed cognition (also known
as colony-level, swarm, or collective cognition), researchers are able
to develop analytical techniques and theories that can be applied in
other cognitive systems (Marshall and Franks, 2009). For example,
taking techniques for analysing collective decision-making processes
in ant colonies and comparing them to similar processes in the visual
activity of primates (Marshall et al., 2009; Franks et al., 2013). Passino
et al. (2008) use the ideas from distributed cognition to compare
the nest-site selection behaviour of honey bees with the brain. The
famous ‘waggle dance” behaviour, and the associated positive and
negative feedback mechanisms give rise to very efficient collective
decision-making processes (Visscher and Camazine, 1999; Camazine
et al., 1999; Seeley et al., 2012; Marshall et al., 2015).

Cognition is a concept that is notoriously difficult to define (Boden,
2008). There are a wide range of different definitions of cognition,
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each based on evidence and ideas from different sources. Due to the
sparse nature of these definitions, it is inevitable that each definition
is ‘incorrect’” in some way, for the application at hand. The lack of
a single definition of cognition gives rise to the problem of which
definition to use. Most researchers will pick a definition of cognition
that fits closest with the application or source of inspiration used.

This thesis focusses on distributed cognition. This particular defini-
tion is used because of its foundations in the immune system (Cohen,
1992a,b, 2000) and social insects (Mitchell, 2005), and because when
considering swarm systems, it makes sense to use a definition for
cognition that is distributed, making use of the interactions between
underlying agents.

The cognitive view of the immune system differs from the con-
ventional clonal selection theory (Cohen, 1992a,b). It suggests that
the various cells of the immune system adapt to the presence of
pathogens by maintaining an imprint, or ‘internal image’, of the
environment that it has been exposed to. This imprint is stored
primarily in the antigen receptors, and influence any interactions that
may take place.

Cohen (2000) defines (distributed) cognition as:

“Cognitive systems, I propose, differ strategically from
other systems in the way they combine three properties:

1. They can exercise options; decisions.

2. They contain within them images of their environ-

ments; internal images.

3. They use experience to build and update their in-
ternal structures and images; self-organization.” (p. 64,

emphasis original)

This definition serves as a measuring stick for the work presented
in this thesis, and is used as the framework around which we
construct an architecture for cognition in robots. It is, however, worth
noting that Cohen’s final point, referring to the use of experience to
update internal structures of the agents within a cognitive system
can be thought of as a learning mechanism. At its most basic level,
any learning system will use previous experience to alter future
behaviour, which is exactly what the immune system is doing during
what Cohen has termed ‘self-organization’. In order to prevent too
much confusion of terms, given the extensive use of the term ’self-

organisation” in the swarm intelligence literature, when referring to
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self-organisation throughout the rest of this thesis, it is the swarm
intelligence definition that is being intended, unless specifically
stated otherwise.

2.4.1 Collective decision-making

Of the three points laid out by Cohen (2000) in section 2.4 above, we
have covered internal images (associative memory, section 2.3.2) and
self-organisation and adaptation (sections 2.1.1 and 2.3). Decision-
making is one of the key features of intelligent systems (Pfeifer and
Scheier, 2001). The ability to change behaviour based on previous
experience and the current situation allows for the wide repertoire
of behaviours that typify cognitive systems. This could be through
adaptation, re-learning, or just through altering the parameters in a
control architecture. These action selection mechanisms vary between
implementations, but are still decisions about what action to take
next (Pfeifer and Scheier, 2001).

One of the most heavily researched natural decision-making pro-
cesses is the nest-site selection of the honey bee (genus Apis),
including the famous ‘waggle dance” (von Frisch, 1967). The waggle
dance has many similarities to the behaviour of neurons in the
brain (Passino et al., 2008; Seeley et al., 2012). It is a process through
which scout bees are able to provide information to the rest of the hive
about potential nest sites. Each scout reports the quality and location
of the nest site it has found to the hive through a variety of ‘waggles’.
As multiple scouts dance for their respective sites, there are positive
and negative feedback mechanisms through which the lower-quality
sites are filtered out (Seeley and Buhrman, 1999; Seeley et al., 2012).
The negative feedback mechanisms are provided through stop signals
from scouts that have encountered something on their scouting route
(e.g. a predator) and are discouraging other sites in the area (Nieh,
2010). This is provided through the scout vibrating, then butting her
head against the bee she wants to inhibit (Nieh, 1993).

Cross-inhibition helps to drive the overall system towards a de-
cision faster, through positive and negative feedback mechanisms.
This process is analogous to behaviour seen in the brain. As a neuron
fires (or bee dances), it inhibits other neurons around it, making it
more likely to be the most prominently-firing neuron at that point.
If all neurons behave in this way, inhibiting others around them,
then whichever neuron is firing the fastest will be inhibited less, and
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inhibit others more. This results in a self-reinforcing process, after
which the less-prominently-firing neurons are inhibited by the most-
prominent neuron, and a decision is made. Through cross-inhibition,
distributed decision-making systems are able to increase the speed at
which they reach consensus (Marshall et al., 2015).

The idea of self-organising collective decision-making has been
implemented in a number of bio-inspired algorithms. The BEECLUST
algorithm (Schmickl et al., 2007) takes inspiration from the behaviour
of young honey bees in a temperature gradient to produce collective
aggregation in a swarm of robots. This is extended in (Schmickl
et al., 2009; Schmickl and Hamann, 2011) in the form of a collective
decision-making algorithm where the aggregation behaviour of the
robots decides between two sources with different temperatures (in
this case, selecting the higher temperature). Similarly, Garnier et al.
(2005) implements an algorithm based on the collective behaviour
of cockroaches that decides between two shelters. The cockroaches
preferentially decide on the larger of two shelters without any
mechanism for measuring their size. These two systems work in
very similar ways, with individuals pausing for lengths of time
proportional to some property of the environment. For BEECLUST,
this is the temperature of the environment, for the cockroaches, it
is how many other cockroaches are present. These methods allow
for effective aggregation of individuals in order to make a decision,
but rely on the behaviour of distributed individuals sampling the
environment. This approach is an effective method in biology as it
allows the colony to sample a wider area of the environment before
settling on a decision. In real-world applications of swarm robotics,
on the other hand, this approach is unlikely to be as effective, as
described below.

The aggregation approach allows the swarm to interact with the
environment (through the distributed sampling of each individual).
This provides information regarding any gradients that exist, allow-
ing for a collective decision to be made. The alternative is for the
swarm to traverse the environment as a group, and react to the
gradient as a group. This is similar to the approach that army ants
take when foraging, where they move as a group and react to the
presence of prey in a way that is appropriate to the distribution
of prey in the environment (Deneubourg et al., 1989). While each
approach has its merits (distributed sensing gives wider coverage of
the environment, group sensing keeps the swarm together), when it
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comes to constructing artificial decision-making systems, practicality
becomes an important issue. For example, can the swarm make
multiple decisions repeatedly? How efficiently can the swarm make
the decision? In the sense of heuristic decision-making systems, real-
world systems often do not require the global optimum and a local
optimum will suffice.

The ‘best-of-n” problem is the problem of selecting the best option
out of n alternatives. It is a way of formalising the decision-making
process, making it amenable to formal mathematical analysis. When
considering bio-inspired decision-making systems, it is often helpful
to think in terms of the best-of-n problem, if only to highlight
how they differ from other decision-making processes. For example,
Ant Colony Optimisation (ACO) (Dorigo et al., 1996; Dorigo and
Gambardella, 1997) makes a collective decision between n alternative
routes from nest to a food source (assuming single food source and
single nest). ACO does not, however, just select the global optimum
and ignore all the other routes: it selects the global optimum from n
alternatives, and maintains a network of local optima as well. This
allows the algorithm to rapidly adapt to a changing environment,
such as a blocked route on the network, switching to the next best
option. This alternative formulation is sometimes referred to as the
k-best-of-n problem—as in, selecting the x best options out of n
alternatives (Louchard and Bruss, 2015).

There are alternative methods of decision-making in a collection
of distributed agents that do not rely on self-organising behaviour.
Zavlanos and Pappas (2008) present a method of using an auction
between agents that allows decisions to be made regarding the
removal of communication links within the swarm itself. One of
the main drawbacks of this approach is that, by introducing a very
small communication delay to the network, it is possible to disrupt
the algorithm to such an extent that a link can be removed before
all agents have been consulted. This problem can be circumvented
through the inclusion of a timestamp during the voting process,
and delaying the end of auction until all votes contain the same
timestamp, but this adds further delays to an already slow process.

For self-organising decision-making algorithms, robots are an
effective method of testing an algorithm. The noise that is included
in simulation rarely approximates real-world environments (Jakobi
et al., 1995), so implementing the algorithm on a real-world, robotic
platform offers unique insight into how well the algorithm functions.
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Some of the algorithms we discussed above, specifically the cock-
roach (Garnier et al.,, 2005) and BEECLUST algorithms (Schmickl
et al., 2007, 2009; Schmickl and Hamann, 2011) are implemented
on robots in either original papers, or follow-up papers. Further
examples include Parker and Zhang’s approach to the problem of
binary nest-site selection (i. e. best-of-2 problem) by providing light
sources for the robots to decide between (Parker and Zhang, 2009,
2011). This is contrasted by the work in (Trianni and Dorigo, 2005)
which prevents the swarm from distributing itself. Instead, they
consider the problem of collective decisions in physically-connected
robots, using an experimental setup that consists of the swarm
collectively deciding whether it can traverse different-sized troughs
in the ground. In larger-scale experiments, Valentini et al. (2015a)
consider the speed-accuracy trade-off in decision-making using the
binary discrimination problem (best-of-2 problem), implemented
using 100 kilobots? and analysed from a theoretical standpoint
to determine what effect different parameters have on the speed-
accuracy trade-off (Valentini et al., 2015a,b).

2.5 SUMMARY

This chapter has introduced some potentially new concepts, and
reviewed important areas of the literature. The three results chapters
(chapters 3, 4, and 5) also review the literature that is directly relevant
to the results presented. The literature presented in this chapter
has been focussed on the ideas of distributed cognition, and the
possibility of using distributed cognition to develop homeostatic
behaviour for robots.

Through the review of the literature presented in this chapter, it is
evident that there are currently holes in the literature. First, at present
there is no way of determining the boundary of a distributed system.
One of the main side-effects of swarm robot systems being tested
in isolation is that they rarely encounter anything other than the
controlled environment of the lab. While this is essential to ensure
that the results gathered are viable, it means that swarms are not
being tested in the same environment as other swarms. Providing a
method for forming a distributed boundary would help to isolate one
swarm from another, while still offering the potential for interactions
between the two. Chapter 3 presents such a method.

2 Exceptionally-small swarm robots for use in large swarms (Rubenstein et al., 2014)
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Second, current decision-making algorithms (such as BEECLUST
(Schmickl and Hamann, 2011)) rely on distributed sensing, where
robots are distributed across an environment in order to collectively
sample all areas of the environment, and then aggregate on the
best area to make the decision. While effective, this method relies
on aggregation, which makes successive decisions slow, as after
aggregating, the robots will need to re-distribute themselves around
the environment. This also requires the robots to know when a
decision has been reached, or an external force would need to inter-
vene. Alternative approaches consist of using flocking algorithms to
maintain a coherent collection of robots, but this approach currently
requires ‘leaders” within the swarm to guide it towards a decision (Yu
et al., 2010). The leader-based approach again implies that an external
force is required to impart this knowledge into the few leaders
within the swarm. Chapter 4 presents a decision-making algorithm
that takes inspiration from Cohen’s (2000) discussion of distributed
cognition in the immune system. It makes decisions using a flocking
mechanism, but without the requirement of having leaders to guide
the swarm.

Third, the reliance on biomimetic approaches to artificial homeo-
stasis (Neal and Timmis, 2003; Vargas et al., 2005, Timmis et al.,
2009) results in complicated controllers that are often slow to adapt.
Taking a bottom-up approach to the problem, chapter 5 presents a
controller inspired by distributed cognition, and shows that artificial
homeostasis and adaptation can be implemented through the interac-
tions of a decision-making algorithm with a learned imprint of the

environment.



EMERGENT FORMATION OF IDENTITY IN
DISTRIBUTED POPULATIONS

The previous chapter presented a review of the literature surround-
ing distributed cognition, homeostasis and adaptation, and swarm
robotics. This chapters directly addresses objective 1 of the thesis
(Determine a method of providing a distributed system with the ability
to form a boundary). The ability of a swarm to form a boundary
helps with the problems associated with scaling the system up. If
a swarm is able to differentiate itself from other swarms in the same
environment, then multiple swarms are able to work together without
interference. In order to increase the speed with which results can
be gathered, rather than make use of real-world robots, simulated
swarms of generic ‘agents” are used in this chapter. Details of these
agents are provided in appendix A, but they are essentially massless
points in a virtual environment.

This chapter presents the ‘identity algorithm’, which provides a
mechanism for swarms to form a boundary, in order to function
more effectively in the presence of other swarms. The identity of a
swarm emerges from the interactions between agents and between
swarms. The firefly synchronisation algorithm (Tyrrell et al., 2006)
provides the ability for swarms to distinguish those agents that are
members of the same swarm from those in other swarms. Linking the
firefly algorithm with the control algorithm for the agents provides
a mechanism through which the agents are more likely to respond
to agents that they are synchronised with. This process provides
a swarm with the ability to differentiate itself from other swarms,
by reacting less strongly to the agents in the other swarms. This
is achieved by weighting the behaviour of agents towards those
agents that are synchronised together. This self-not-self distinction
is key for multiple swarms to be able to work in the same area
without interfering with each other. Although the physical members
(individuals) of the swarm could (and often do) vary, the identity of
the swarm remains for an extended period of time, and even while

interacting with other swarms.
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The results presented in this chapter address a number of specific
questions about swarms and their interactions with each other.
Specifically whether swarms can form identities and remain as
coherent swarms for an extended period of time, while in the
presence of other swarms. By providing swarms with the ability to
form identities, swarms are able to distinguish themselves from other
swarms. Mitchell (2005) considers this idea in the context of self-
awareness and distributed cognition in ant colonies and the immune
system. Both Mitchell and Cohen (2000) consider how, for example,
the immune system can determine what is part of the body, and what
is an intruder. This self-not-self distinction is a key part of developing
a collective identity.

The rest of the chapter is organised as follows: section 3.1 discusses
the idea of collective identity, section 3.2 presents the identity
algorithm and the analysis performed on the simulation software.
Section 3.3 investigates three specific questions that, when combined,
provide sufficient evidence to reason that the system meets the
requirements for collective identity in a swarm. Finally, section 3.4
concludes the chapter by reconsidering the definition of collective
identity from the perspective of the algorithm presented.

3.1 COLLECTIVE IDENTITY

Melucci (1995) defines identity in a sociological context:

“The term identity...implies the notion of unity, which
establishes the limits of a subject and distinguishes it from
all others; it implies a relation between two actors that
allows their (mutual) recognition.” (p. 45)

This definition implies that identity is essential for determining the
limits of a subject (in this chapter, the limits of the swarm) and hence
how it can act in relation to an environment that also contains other
(similar) agents and swarm:s.

One of the key challenges when considering the identity of a
swarm rather than an individual is the question of what happens
when the members of the swarm change. In the simplest case, what
happens when a single agent or robot leaves the swarm: does that
swarm have the same identity as before? This is a well-known and
oft-debated philosophical problem, commonly referred to as the Ship
of Theseus problem (Chisholm, 2004), or colloquially as the Trigger’s
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Broom problem.! The Ship of Theseus problem questions whether
replacing a single panel in a ship changes the identity of the ship, or if
it remains the same ship. This is directly analogous to the question of
what happens to the identity of a swarm when an individual leaves
the swarm. While many others have debated this issue, an in-depth
discussion on the topic is outside the scope of this thesis. The work
presented makes the assumption that, provided there is no more than
a 10% change in the members of the swarm at once, the swarm retains
the same identity. This 10% value has been determined through a
qualitative examination of the behaviour of the presented simulation.
By setting this to 10%, the swarm tracking system in the simulation
is able to reliably follow sub-swarms as the members of the swarms
vary.

By introducing an accepted 10% change in the members of a
swarm, it is possible to see where different questions could be raised
regarding the identity of the swarm. For example, what happens if all
the members of the swarm are eventually changed for other members,
10% at a time? Hofstadter (1979) considers this problem in his famous
...Ant Fugue where he considers how groups of ants redistribute
themselves across the colony. These ants form into groups (termed
‘signals’), and move across the colony to the point where they are
required. Throughout this process, the ants could slowly be replaced

by other ants, but the signal still remains:

Tortoise: ...Does a signal, from its creation until its

dissolution, always consist of the same set of ants?

Anteater: As a matter of fact, the individuals in a signal
sometimes break off and get replaced by others of the
same caste, if there are a few in the area. Most often,
signals arrive at their disintegration points with nary an
ant in common with their starting lineup. (Hofstadter,
1979, p. 323)

Another important part of Hofstadter’s depiction of ant signals is
a description of what happens when two signals meet in the colony
at the same time. In the colony, the two signals pass directly through
each other, without impeding the progress of the other signal. This
is ascribed to being a result of the caste distribution (the distribution

From the British sitcom “Only Fools and Horses”, where the character Trigger
proclaims “Maintained it for 20 years. This old broom’s had 17 new heads and 14
new handles in its time”.
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of jobs within the colony), where two signals can cross each other
because they are heading to different parts of the colony to do
different jobs, and so they fail to recognise the other signal because
they are performing a different job. As described in our identity
algorithm later, this is represented in our system by the synchronised
flashing of a swarm of agents: if two swarms are not flashing in time
with each other, they do not react to each other as strongly.

Returning to Melucci’s (1995) definition of identity, there are a
number of key characteristics that are adaptable to work with swarms
instead of humans. Specifically, Melucci describes three features that
identity always refers to:

¢ Continuity through time
* Separation from others

* Recognition of and by others

This definition implies that a swarm needs to be able to form and
maintain an identity through time (continuity through time), needs
to be able to maintain an identity through space (separation from
others), and be able to react to other swarms in the area (recognition
of and by others).

Through the use of the firefly algorithm (Tyrrell et al., 2006), the
work in this chapter introduces a method of forming emergent iden-
tities in a simulated swarm of agents. By linking the synchronisation
effect of the firefly algorithm to the alignment vector in Reynolds’
boids algorithm (Reynolds, 1987), small swarms of agents are shown
to behave independently of other swarms, and embody the three
features of identity formation described by Melucci above.

The firefly algorithm is used to vary the sensitivity of the agent to
its neighbours. Specifically, the sensitivity affects the weighting of the
alignment vector provided by the boids algorithm (Reynolds, 1987).
This results in a system where those agents that are synchronised will
be more likely to remain aligned to each other, providing the positive
feedback necessary to hold the swarm together over both time and
space.

Three specific questions are asked of the behaviour of the identity
algorithm which, when combined, provide evidence towards the sys-
tem meeting the requirements laid out in Melucci’s (1995) definition
of identity:

RQ1: Do distinct sub-swarms form and behave independently?
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RQ2: Can sub-swarms preserve their identity for an extended period
of time?

RQ3: Can sub-swarms preserve their identity across space?

3.2 IMPLEMENTATION

This section describes how the algorithm for collective identity is
implemented in a simulated environment. As described in section 3.1,
the emergent synchronisation effects of the firefly algorithm (Tyrrell
et al., 2006) are linked to Reynolds” boids model, which provides the
control logic (Reynolds, 1987).

Tyrrell et al’s firefly algorithm (shown in code listing 3.1) syn-
chronises agents as an emergent effect of each agent running a
simple procedure. Each agent increment an internal counter up to
a predetermined threshold over time. Once it reaches that threshold,
the agent flashes a light and resets to zero. If one agent sees another
agent flash, it will immediately increment its own counter by a set
amount (referred to as jumping). As a result, all agents that can see
each other for an extended period of time will synchronise to the
same frequency. Fig. 3.1 shows one counter reaching its threshold
and resetting (left), and also the jumping effect of seeing another
agent flashing in its vicinity (right). Over time this is sufficient to
synchronise all the counters such that they reach the threshold at the

same time, and so flash in time with each other.
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Figure 3.1: Graphical depiction of the firefly algorithm. Left: the internal

counter on a robot counts up to the threshold, before flashing
and returning to its baseline level. Right: After four steps, the
internal counter jumps as a result of stimulation from a different
robot, resulting in it reaching the threshold level earlier than
before. Over time, this process synchronises the flashing of all

the robots in the area.
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Listing 3.1: Pseudo-code for firefly synchronisation behaviour

foreach (agent in agents)
{
agent.jump = false;
neighbours = agent.getAgentsWithin(radius);
if (flashingNow(neighbours)) agent.jump = true;

agent.counter++;
if (agent.jump) agent.counter += JUMP_RATE;

if (agent.counter >= FLASH_THRESHOLD)
{
agent.shouldFlashNext();
agent.counter = 0;
}
}

setFlashForNextTimestep(agents);

In the boids algorithm (Reynolds, 1987), (shown in code listing 3.2)
each agent, or ‘boid’, follows three simple rules: alignment, coherence,
and separation. At each discrete timestep t, each of the agents
calculates its unit velocity vector, v, for time t 4+ 1 by considering
those other agents in its immediate vicinity (see fig. 3.2). If there are
any agents in the region of separation, it will turn away from its
closest neighbour. If there are no agents in this region, then it will
align itself to all those agents in the region of alignment by taking the
mean of their headings, and combining it with an adjustment to turn

towards the closest agent in the region of coherence.
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Listing 3.2: Pseudo-code for boids flocking algorithm

foreach (boid in boids)

{

}

neighbours = boid.getBoidsWithin(radius);

foreach (neighbour in neighbours)

{
distanceToNeighbour = boid.distanceToNeighbour(neighbour);
if (distanceToNeighbour <= AVOID_RADIUS)

{
boid.turn_away_from(neighbour);
}
else
{
if (distanceToNeighbour <= ALIGN_RADIUS)
{
boid.align_with(neighbour);
}
else
{
boid.turn_towards(neighbour);
}
1

}

moveForwards (boids, 1.0);

Region of Separation ZE__
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Figure 3.2: The agent in question (a) turns away from those agents in the

region of separation (b), maintaining a set amount of space
around them at all times. If agent b is not present, the agent turns
towards the average heading of those in the region of alignment
(agents c), and turns towards the closest agent in the region of
coherence (d).
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The boids algorithm is used as a control algorithm for the agents as
it only requires local interactions, in a similar way to a real robotics
platform, and offers a cheap method of controlling agents so that the
focus can be on the larger-scale effects of linking a synchronisation
algorithm with a control algorithm.

The firefly algorithm provides a swarm with the ability to dis-
tinguish between individuals that are members of the swarm and
individuals that are not, simply by whether they are flashing at the
same time. Each agent combines the boids and firefly algorithms
by increasing the sensitivity of the alignment vector in the boids
algorithm when aligning to agents that are flashing in time with itself.

The dynamics of this model are simulated using NetLogo (Wi-
lensky, 1999). The code used in the simulation is based on two
existing simulations of the boids and firefly algorithms (available in
the NetLogo models library (Wilensky, 1997, 1998)). The alignment
vector in the boids algorithm is linked to the firefly algorithm
by defining a new form of neighbourhood in each agent: while
previously the agents would search for ‘flockmates’ (or ‘neighbours’)
in their vicinity, and use the headings of those flockmates to calculate
a new heading for themselves, the new system introduces ‘flashmates’
as well. Flashmates are defined as those agents in the immediate
vicinity that have flashed at the same time as the agent in question.
The algorithm turns each agent towards the mean of its flashmates,
rather than the flockmates used in the original system. A pseudo-code
description of the identity algorithm is provided in code listing 3.3.

Fig. 3.3 shows two screenshots of the system, with fig. 3.3a showing
an initial, random start position, and fig. 3.3b shows the system after
it has been run for 1000 timesteps, where small distinct swarms are
clearly visible.

3.2.1 Tracking system

A tracking system is developed as part of the above simulation that
identifies swarms between timesteps. The tracking system identifies
swarms in the simulation by taking an agent, then looking at each
of its flashmates in turn and adding them to a group. This process
is then repeated until all the flashmates of the flashmates have
been identified—the resulting group is considered a single swarm.
Once a swarm is identified by the tracking system, it is assigned
a numerical group ID and the number of agents in the swarm
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Listing 3.3: Pseudo-code for full identity algorithm

foreach (boid in boids)
{
boid.jump = false;
neighbours = boid.getBoidsWithin(radius);

if (flashingNow(neighbours))
{
boid.jump = true;

}

foreach (neighbour in neighbours)
{
distanceToNeighbour = boid.distanceToNeighbour(neighbour);
if (distanceToNeighbour <= AVOID_RADIUS)
{
boid.turn_away_from(neighbour);
}
else
{
// if they last flashed at the same time, then align
if (distanceToNeighbour <= ALIGN_RADIUS &&
neighbour.counter == boid.counter)
{
boid.align_with(neighbour);
}
else if (distanceToNeighbour <= COHERE_RADIUS)
{
boid.turn_towards(neighbour);
}
}

}
}

moveForwards (boids,1.0);
increaseAllCounters(boids);
setFlashForNextTimestep(boids)
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(a) Random start position. (b) System state after 1000 timesteps.

Figure 3.3: Screenshots of the simulation, showing the initial, random start
position (a), and the state of the system after 1000 timesteps (b),
showing small, distinct swarmes.

is stored alongside it. In the subsequent timesteps the number of
agents is updated as agents join and leave the swarm. The parameter
group-comparison-threshold tells the tracking system how large the
percentage change in swarm size can be between timesteps. If the
swarm size changes more than this, then the swarm has changed
sufficiently to be considered a new swarm and a new group ID is
assigned. This approach assumes that it is the number of agents, not
the specific agents that make up a swarm. This means that if one
agent is replaced with another agent within the same timestep, the
swarm is considered the same swarm. This is directly analogous to
the ideas presented by Hofstadter (1979), where the ant signal can be
made up of different ants throughout the process of traversing the
colony.

3.2.2  Assumptions in the simulation

There are a number of assumptions made during the construction
of this model. First, the agents in the simulation are modelled as a
single point in space; second, the agents do not have a restricted field
of view; third, the environment has a periodic boundary:.

Of the three assumptions listed, the first will have the largest effect
on the behaviour of the system. Having all agents modelled as points
means that the firefly algorithm will potentially be able to see more
agents within its radius of vision (vision parameter) than it would
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be able to otherwise (as they could be blocked by other agents).
This concern is negated by adjusting the firefly algorithm so that
it will only jump once if it sees other agents, rather than jumping
once for each other agent it sees. In addition, there will also be an
implication for the boids algorithm, as multiple agents could occupy
the same point in space, whereas real robots would block each other
if travelling in different directions.

The other two assumptions have a very small impact on the
behaviour of the system: the 360° visibility is unrealistic in terms
of natural systems, but is viable in artificial systems. The periodic
boundary on the environment might have an impact on how the
swarms form in the simulation, but this is unlikely. If the swarms
were constrained to an environment without a periodic boundary,
then—with sufficient space—similar swarms would form and the
system would continue as it would before. A periodic boundary
provides this sufficient space without requiring a simulator that is
too slow to run.

One further concern is that the agents have perfect vision (some-
thing that is completely unrealistic in the real world)—if an agent
flashes in the vicinity of another agent, it is guaranteed to see
that flash. This could easily contribute towards widening the reality
gap (Jakobi et al.,, 1995) between our proof-of-principle and an
implementation on a real robotics platform. To combat this, we
introduce a simple noise term into the firefly algorithm, where each
time the algorithm runs, there is a small probability that it sees a
flash that is not actually there. This probability is parameterised as
noise-rate in the simulation. While it may seem as though this is
contradicting what we are aiming to do (introducing more flashes,
rather than restricting the likelihood of seeing existing flashes), the
result is the same: the firefly algorithm is destabilised. Whether that
destabilisation occurs from the an agent not jumping when it sees
a flash, or from an agent jumping when it does not see a flash, the
result is that the synchronisation process is perturbed.

A list of relevant parameters, including typical values/ranges is
given in table 3.1.

3.2.3 Simulation analysis

A major problem with stochastic simulations is how to ensure the
effects observed are a result of varying the parameters and not a
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Parameter ‘ Value
population 100 (50 in fixed setup)
vision 3.0 patches
max-align-turn 2.50 degrees
max-cohere-turn 1.75 degrees
max-separate-turn 1.00 degrees
cycle-length 4
flash-length 1
jump-level 1

noise true / false
noise-rate 0.00005
control true / false
group-threshold 10
group-comparison-threshold | 90%

Table 3.1: Parameters used in the identity algorithm simulation, and their

typical values.

result of the inherent stochasticity within the system (Read et al,,
2012). Aleatory uncertainty analysis, provided through the spartan
package (Alden et al., 2013) provides a method of determining how
many replicate runs are required to prevent this problem. Fig. 3.4
shows that 350 runs are required for the simulation.

In order to quantify the effect that each parameter has on the be-
haviour of the system, spartan offers multiple options for parameter
sensitivity analysis. The option used here is known as ‘one-at-a-time’
analysis, relating to its approach of holding all parameters steady at
their baseline levels and varying one parameter at a time, measuring
the effect it has on the macroscopic behaviour of the simulation.
Multi-dimensional options, often used in conjunction with one-at-
a-time analysis, sample combinations of parameters using ‘Latin
Hypercube’ sampling (Marino et al,, 2008) and run the analysis
on these combinations. This provides a mechanism through which
more complex interactions between parameters can be detected. In
the work in this chapter (and throughout this thesis), only one-
at-a-time analysis is performed, as more complex interactions are
highly unlikely to occur in such simple models, especially given how
unsensitive the simulation is to the parameters through one-at-a-time
analysis.
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Maximum A-Test Scores for each Sample Size
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Figure 3.4: Aleatory uncertainty analysis, as generated by spartan, showing
that we require at least 350 replicate runs to ensure the effects we
are seeing are a result of any changes we make rather than from

the inherent stochasticity within the simulation.

One-at-a-time analysis is run for each of the parameters listed in
table 3.2, with the results for the population and noise-rate paramet-
ers shown in figs. 3.5 and 3.6 respectively. All other parameters tested
did not reveal that the simulation was sensitive to the parameters.

Parameter Baseline Min value Increment Max value
population 100 50 10 150
max-align-turn 2.5 0.5 0.5 10.0
noise-rate 0.00005 0.00000 0.00001 0.00010
cycle-length 4 2 2 16
jump-level 1 1 1 5

Table 3.2: Parameters varied during the ‘one-at-a-time” parameter sensitivity

analysis.

The graph in fig. 3.5 shows the sensitivity of the system to
the population parameter. The number of distinct swarms and
the average lifespan of the swarms are both significantly sensitive
to the change in population (positively and negatively correlated,
respectively).

The noise-rate parameter in fig. 3.6 shows negatively-correlated
significant sensitivity to both longest swarm lifespan and average

lifespan, but not to the number of distinct swarms.
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A-Test Scores when adjusting parameter

population
S
B
TA
. L
w ~
(=2 f—\\ -+
[T [ n..._..large difference AT -
C\S\ /7*‘
Q| ) -
v o AN e
] AN o
@ e————6—— . __nodifference
7 B 75
& e * =
< < | /,’ s —G__
= A+ e ——— o
P * e
,’+/ \‘\
T o _./_;_’,./.._._ T Targe difference S, TS T .
o -
=] e AN
-7 -"+7 \.A‘-
+- Ny
L
o TR
[=]
T T T T T T T T T T T
50 60 70 80 90 100 110 120 130 140 150

Parameter Value

Figure 3.5: One-at-a-time parameter sensitivity analysis for the population
parameter. The cross represents the number of groups in the
simulation, the triangles represent the average lifespan of a
swarm, and the circles represent the longest lifespan of the

swarms.

While both the noise-rate and population parameters show
significant sensitivity, the system is not so sensitive that the selected
baseline values are too much of a behavioural niche to be useful.
The population parameter, for example, is only significantly different
from the baseline with a change of 10-15 agents, meaning that for
minor fluctuations in the population, the behaviour remains steady.
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Figure 3.6: One-at-a-time parameter sensitivity analysis for the noise-rate

parameter. The cross represents the number of groups in the
simulation, the triangles represent the average lifespan of a
swarm, and the circles represent the longest lifespan of the

swarms.

3.3 RESULTS

The algorithm presented is able to form multiple swarms from

randomly-initialised, simulated agents. These swarms are observable
after only 1000 simulated timesteps. Using the simulation described

in section 3.2, the three questions defined in section 3.1 are answered.

The questions are repeated below:

RQ1: Do distinct sub-swarms form and behave independently?

RQ2: Can sub-swarms preserve their identity for an extended period
of time?

RQ3: Can sub-swarms preserve their identity across space?
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3.3.1 Distinct sub-swarms remain highly-polarised through time while
global polarisation varies

To determine whether distinct sub-swarms are able to form and
behave independently, a measure of coherence for sub-swarms is
required. This can also be used to measure the global coherence of
the swarm. Flock polarisation is a measure of the degree of alignment
between swarm members (Couzin et al., 2002). This measure is
extended to take into account local neighbourhoods, measuring the
polarisation of smaller, distinct swarm:s.

To test RQ1, the following null hypothesis is defined:

NULL HYPOTHESIS (Hp):  The identity algorithm has no effect on
the polarisation of sub-swarms compared with the overall swarm.

The polarisation of the overall swarm, Pgjop,1, is a value between
0 and 1, where 0 implies the vector sum of the headings of all
individuals is zero (e.g. two individuals heading east and west),
and 1 implies the headings of all individuals are identical (e.g. two
individuals both heading west) (Couzin et al., 2002):

N

Y vi(t)

i=1

1

Pglobal(t) = N 3.1

where N is the number of agents, and v;(t) is the unit velocity vector
of agent i at time ¢.

Our extended metric, Pj,.,;, measures the polarisation within each
sub-swarm, such that a value of 0 implies all individuals in each
sub-swarm are heading in opposite directions, and a value of 1
implies that all individuals in each sub-swarm are heading the same
direction (but not necessarily the same direction as those in another
sub-swarm).

_1 - 1 My .
Plocal(t) T K Z M, ‘ijl V](t)‘ (3.2)
k=1

where K is the number of sub-swarms, My is the number of agents
in sub-swarm k, and v;(t) is the unit velocity vector of flashmate j at
time t. When K is zero (i. e. there are no sub-swarms detected by the
tracking system), Pj,.,; is set to zero (this can be seen in fig. 3.8b).
These two measures are compared to determine whether there
are large numbers of aligned individuals in few swarms, or fewer
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aligned individuals in many distinct swarms. Calculating the ratio of

p
local to global polarisation measures (=tocal

global
for comparing the effect of the algorithm at the local with the

) provides a measure

global level. A high ratio of local-global polarisation indicates that
the sub-swarms are polarised more highly than the overall swarm,
and the higher the ratio, the more the sub-swarms are behaving
independently (by heading in different directions to each other). A
low ratio of local-global polarisation, however, indicates the opposite,
that the sub-swarms are not distinct or behaving independently
compared to the overall swarm.

Fig. 3.7 shows the difference between local and global polarisation
as sub-swarms form, and then repeatedly merge and split. It can
be seen that, after the initial swarm formation and settling-down
period, the local polarisation stays above 0.9 for the remainder of the
experiment. This shows that within each swarm the individuals are
well-aligned to each other, which is as we expect if the swarms are
synchronised.

In comparison, the global polarisation varies considerably over
time but remains predominantly below 0.4 throughout. We can infer
from this that there were a number of swarms flocking together,
rather than one large swarm, and because those swarms were aligned
well to each other (as shown by the local polarisation), they were also
synchronised with each other.

The same polarisation experiment is run with a control case,
without the link between the firefly and boids algorithms. The effect
of removing this link is shown in fig. 3.8, where it is evident that the
entire population is consistently heading in a very similar direction
throughout. This implies zero, or very few, sub-swarms, with the
overall swarm heading in the same direction as the few sub-swarms
that have formed.

To reject Hy, the ratio of local to global polarisation is calculated. As
mentioned above, this ratio provides an indicator of how different the
behaviour is at the local level compared with the global level. Fig. 3.9
shows this ratio for the two experiments above. Using the Vargha-
Delaney A-test, the polarisation ratio for the control case is shown to
be is significantly higher than the test case (A = 0.97), indicating that
Hj can be rejected, and concluding that distinct sub-swarms can form
and behave independently through the identity algorithm.
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(b) Local polarisation (Pj,.,;) remains high over the course of the experiment (after the
initial settling-down period as swarms initially form). This shows that all swarms
in the experiment are coherent.
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(c) Global polarisation (Pgj,pa) varies over the course of the experiment as the number
of swarms (fig. 3.7a) varies, and remains low throughout. This shows that the
swarms that have formed are not all travelling in the same direction.

Figure 3.7: When the two algorithms are linked, local polarisation remains
high throughout the experiment and the global polarisation
varies, but remains low, while swarms split and merge. This
shows that sub-swarms can travel in different directions (as
shown by Pgjep,) while still remaining as coherent sub-swarms
(as shown by Pjycq1).



3.3 RESULTS

Nurnber of groups vs. time
T T

o

k=)

L=

Mumber of groups
T

I I I I
[IR= 1 15 2 25

Time (simulated time staps) w10°

=

=

(a) The number of swarms varies over time as swarms split into sub-swarms, and
merge back into super-swarms.
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(b) Local polarisation (Pj,.,;) remains high throughout the course of the experiment.

When the number of swarms (fig. 3.8a) is zero, Py, is also set to zero, which can
be seen regularly through this experiment.
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(c) Global polarisation (Pgjopa) is consistently high throughout this experiment. This
shows that the agents have formed into swarms that are all heading in the same
direction, as in the classic boids algorithm (Reynolds, 1987).

Figure 3.8: When the two algorithms are unlinked, swarms are highly
polarised, both globally and locally. This shows that all the
swarms in the experiment are heading in approximately the

same direction throughout.
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(a) Test case polarisation ratio. A ratio above 1 indicates that the sub-swarms are more
highly-polarised than the overall swarm. This shows that distinct sub-swarms have
formed, and as the ratio increases, the sub-swarms are increasingly heading in
different directions to each other, while remaining polarised within the sub-swarm.

Ratio of local--global polarisation (control case)
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(b) Control case polarisation ratio. A ratio that settles at 1 indicates that the sub-
swarms and overall swarm are equally polarised. This shows that the sub-swarms
are not distinct and are not behaving independently from each other.

p
Figure 3.9: Ratio of local-global polarisation measures (=221 for test and
global

control cases.
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3.3.2  Swarms preserve identity over an extended period of time

The swarms formed by the system need to be able to persist through
both time and space. To show this, specific swarms are tracked
as they traverse the environment. These swarms remain intact for
an extended period of time even if they occupy the same area in
space as another swarm. The swarms are also resilient to small
perturbations in the membership of the swarm (showing that the
identity of the swarms are unaffected by individual robots switching
swarms). Details of the tracking system are given in section 3.2.1.
To test RQ2, the null hypothesis is defined:

NULL HYPOTHESIS (Hp):  The identity algorithm has no effect on
how long swarms can survive.

Fig. 3.10 shows the length of time that each swarm exists for. There
are a large number of transient swarms forming (this is a typical
effect of the random start position), and fewer, longer-lasting swarms
that are able to traverse the environment for an extended period of
time (in this case, up to 6694 simulated timesteps, from a simulation
lasting 25000 timesteps).

In the following results, the ‘baseline” experiments consist of runs
where the two algorithms are linked and there is no additional
noise; the ‘noise” experiments consist of runs where there has been
additional noise added to the simulation (see section 3.2 for details
of this noise); and the ‘control” experiments consist of runs where the
two algorithms are unlinked.

The most notable difference between the boxplots in fig. 3.10 is that
the longest-lasting swarm in the baseline case is 3750 timesteps longer
compared with the noise case, and 3991 longer compared with the
control case. To confirm that this is typical behavior, the simulation
is run again, and the longest-lasting swarm tracked for each. The
results are presented in fig. 3.11, where the first two boxplots show
the behaviour of the system when the two algorithms are linked, and
the second two when the algorithms are unlinked (control cases).

Corroborating the previous data, the inclusion of noise in the
model reduces the lifespan of the longest-lasting swarm when
compared to the baseline case. As anticipated, unlinking the two
algorithms—as in the control cases—has a more drastic effect on
the lifespan, reducing it much more significantly compared with the
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Figure 3.10: Logarithmic-scale boxplots showing the lifespan of every
swarm (> 10 agents) for baseline, control, and noisy
experimental cases, over runs of 25000 timesteps. Comparing
the baseline and control datasets gives p = 0.126 and A = 0.519;
comparing baseline and noise gives p = 0.0104 and A = 0.533;
comparing noise and control + noise gives p = 0.0513 and A =
0.520; comparing control and control + noise gives p = 4.9e—14
and A = 0.569. All A-Test values are below 0.66, implying
that there is not sufficient evidence to suggest the data are
from different distributions. Details of the tests are given in
appendix A.

baseline case. When noise is included in the control case, however,
there is some unexpected behavior: the inclusion of noise increases
the lifespan of swarms when the two algorithms are unlinked.

This increase is due to the increased rate of firefly flashing in
noisy, unsynchronised swarms: the tracking algorithm finds mul-
tiple ‘swarms’ in each unsynchronised swarm. This results from
one swarm containing multiple ‘sub-swarms’ that are flashing in
synchrony, rather than distinct swarms. This occurs even though
there are other agents in the swarm that are not synchronised.
This means that when noise is introduced, those individuals who
would otherwise change swarms when they are affected by noise, or
who would disrupt the synchronisation of the swarm (resulting in
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Figure 3.11: Boxplots showing longest lifespans of swarms. The algorithms
are linked in the baseline and noise cases, and are unlinked
in the control and control + noise cases. Comparing the
distributions gives the following results: baseline and noise: p =
1.70e—16 and A = 0.978; baseline and control: p = 8.98¢—18
and A = 0.998; noise and control + noise: p = 0.0019 and A =
0.681. This shows that, statistically, these are all from different

distributions. Details of the tests are given in appendix A.

the swarm breaking up), will now remain in the same swarm but
contribute to a different tracked swarm.

The above results show that the system consistently produces long-
lasting swarms, even in the presence of noise. The control case shows
that when the two algorithms are unlinked, the identity of a swarm
does not persist for any extended period of time (median: 1934.5),
compared to the baseline case (median: 8373), and the noisy case
(median: 3472), which is as anticipated.

Considering the longest-lasting swarms in each setup (fig. 3.11),
Hy is rejected through the Vargha-Delaney A-test. The A-test results
between baseline and control cases, and between noise and control
+ noise are both significantly different (A = 0.998 and A = 0.681,
respectively). As both of these values is greater than 0.66 Hy can be
rejected, indicating that the identity algorithm does have an effect on
how long swarms can survive, and so implying that sub-swarms can
preserve their identity for an extended period of time.
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3.3.3 Swarms preserve identity across space

For two swarms to preserve their identities through space, they must
be able to occupy the same area in the environment at the same time
without disintegrating. To measure this, the total overlap between
swarms at each timestep is calculated, to determine the proportion
of sub-swarms that are occupying the same area of space at the same
time.

To test RQ3, the null hypothesis is defined:

NULL HYPOTHESIS (Hp):  The identity algorithm has no effect on

the coherence of a swarm, when encountering another swarm.

The overlap measure O(t) at timestep ¢, is defined as the extent
to which the areas of each swarm coincides with the area of another

swarm:

i <Oif « 100) (3.3)
o 0.5(Ai+Aj)

where K is the total number of swarms, A; is the area of the swarm
(calculated as the smallest rectangle that encapsulates the entire
swarm), and o;; is the overlap of the areas of swarms i and j.

Fig. 3.13 shows how the overlap varies as the swarms cross each
other over time (for clarity, this is just a smaller section of the 25000
timesteps recorded). The plots in figs. 3.14a and 3.14b show the
overlap from a fixed start point. The experiment was setup as in
fig. 3.12 such that two swarms were already present, and set on paths
that coincide with each other. This allows for an examination of the
behaviour of the swarms without interference from stray individuals
or from other groups. The plot in fig. 3.14a shows the overlap as
the two swarms cross each other, with fig. 3.14b showing the same
situation, but with the two algorithms unlinked. Both figs. 3.14a and
3.14b contain three plots pertaining to the median, 5th and 95th
percentile of the data over 50 runs.

Finally, fig. 3.14c shows the Vargha—-Delaney A-test value, compar-
ing the test case and control case for each timestep. It is evident that
between timesteps 40 and 60, there is a significant difference between
the test and control cases. As this is immediately after the two

swarms overlap, Hy can be rejected, and conclude that the identity
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algorithm helps to maintain coherence in a swarm as it encounters

other swarms, thus preserving its identity through space.

Figure 3.12: Start position of the fixed-start overlap experiment. The two
swarms of 25 agents are randomly distributed within a radius
of 4 patches from each start point.
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Figure 3.13: Plot showing the percentage of total overlap as swarms cross
over each other. This is a smaller section of a 25000-timestep

run, for the purposes of clarity.

53



54

EMERGENT FORMATION OF IDENTITY IN DISTRIBUTED POPULATIONS
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(a) Plots showing median, 5th, and 95th percentile of overlaps from a fixed start
position (over 50 runs). The consistent rise and fall of the overlap over a large
number of runs shows that the swarms remain coherent while they pass across
each other in space.
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(b) Plots showing median, 5th, and 95th percentile of overlaps from a fixed start
position (over 50 runs), with the two algorithms unlinked. The consistent rise, but
inconsistent fall of the overlap over a large number of runs shows that the swarms
are unable to remain coherent when they encounter another swarm in the area.
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(c) Plot showing the Vargha-Delaney A-test value over time, comparing the test
case and control case from (a) and (b) respectively. The dashed lines indicate no
difference (A = 0.50), and significant difference (A = 0.34 and A = 0.66).

Figure 3.14: When the two algorithms are linked, the swarms are able
to remain coherent while encountering other swarms in the

environment.

34 DISCUSSION

Just as the cognitive behaviour of the immune system (Cohen, 2000)
depends on its ability to distinguish self and not-self (Mitchell, 2005),
for swarm robots to work reliably in the presence of other swarms,
they require some method of determining the boundary of the system.
The emergent identity provided by the presented algorithm offers
this ability, making use of synchronisation between agents to allow
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swarms to form identities and maintain that identity over time and
through space.

Providing swarms with the ability to form an identity helps to
expand the possible application areas of swarm systems. Because
swarms with identities are able to distinguish between self and not-
self, yet still interact with other swarms in the environment, it enables
multiple swarms to work in the same area without interfering with
each other.

As described in section 3.1, Melucci’s (1995) definition of identity
consists of three criteria:

¢ Continuity through time
* Separation from others

¢ Recognition of and by others

This chapter has shown that by coupling a synchronisation method
with the control architecture, swarms are able to meet all three criteria.
Provided the synchronisation method is visible (in some form) to the
other agents and swarms in the environment, then the specifics of
the synchronisation method are of little consequence. For example, a
more robust synchronisation method is likely to provide the swarm
with an identity that will be less susceptible to perturbations.

The use of synchronisation in a swarm is not wholly original. It
has been used previously to help guide flying robots towards a goal.
By using a synchronisation method, the flying robots are able to
loiter, preventing them from falling out the sky (Hauert et al., 2013).
While this is different from the work presented here, the ideas are
related: by using synchonisation, multiple agents/robots are able to
perform tasks as a group more effectively than they would otherwise
(the identity algorithm provides a mechanism for multiple swarms
to work in the same area, while the loitering, flying robots use
synchronisation to keep the swarm together without falling).

A specific set of parameters has been used for the results presented
(given in table 3.1), but the system has been thoroughly analysed to
determine how sensitive the system is to these parameter settings (see
section 3.2). The most important parameter in the system in terms of
scaleability is the cycle length of the firefly algorithm (i. e. how high
the threshold is for each agent), as this parameter dictates how many
different identities can exist simultaneously in the same area, and so

explicitly imposes a limit on the system.
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The results presented are entirely from computer simulations,
the limitations of which are discussed in section 3.2. Further work
would need to include the effect of physical robots on the algorithm,
as physical robots can block the firefly signals if they are visual.
This problem could potentially be alleviated by using sound or
a Bluetooth communication system instead, but these could also
introduce unexpected problems.

In summary, the firefly algorithm can be used to influence the
control logic of agents, allowing a swarm to form an identity and
maintain it through both time and space. The use of collective iden-
tity increases the scaleability of swarm systems, allowing multiple
swarms to work in the same environment without interfering with
each other.

The next chapter considers the problem of collectively making a
decision without distributing robots across the environment. This is
achieved through flocking algorithms, and so the identity algorithm
presented in this chapter could easily be integrated alongside it.



COLLECTIVE DECISION-MAKING WITHOUT
DISTRIBUTED SENSING

The previous chapter presented an algorithm that helps to increase
the scaleability of swarm systems. By forming identities, multiple
swarms are able to work in the same environment. This increases
the robustness of the swarm by isolating each swarm from other
swarms, but not from the environment. The work provides insight
into the nature of collective systems, and suggests new methods for
dealing with the problems associated with moving swarm robotics
from laboratory test cases to real-world applications.

This chapter addresses objective 2 (Derive a form of collective decision-
making that does not require distributed sensing). By not using distributed
sensing, the speed with which successive decisions are made can be
increased. The method used in this chapter is to collect the swarm
into a flock that reacts to environmental cues collectively. As such, the
work in chapter 3 can be applied to the decision-making algorithm
presented in this chapter, in order to maintain multiple flocks of
agents within the same decision-making environment. This would
further increase the speed with which successive decisions can be
made.

The work in this chapter considers the problem of how a ho-
mogenous swarm of agents are able to collectively make decisions.
Contrary to previous work in collective decision-making that requires
distributed sensing and the aggregation of individuals, the algorithm
presented in this chapter uses flocking to keep the swarm together
and the flock reacts as a whole to environmental cues, rather than as
individuals. This results in an approach to decision-making that few
other researchers have used. Yu et al. (2010) use this approach, but
require leaders within the flock to guide it to a decision, the approach
taken here removes the need for these leaders by providing a method
for the swarm to generate its own (emergent) motive. As a result, this
approach to decision making allows for multiple successive decisions
to be made, without an external force (e.g. an experimenter) re-
distributing the swarm across the environment.
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Addressing a number of specific questions about the ability of
leaderless flocks to make cognitive decisions, this chapter asks how
population size and the physical size of the flock affects the decision
made, along with asking how effectively the flock can make decisions
when confronted with multiple, opposing environmental cues.

The chapter is organised as follows: section 4.1 discusses different
approaches to decision-making in natural and artificial systems;
section 4.2 contains a description of a model for flock-based cognitive
decision-making; section 4.3 presents a number of experiments invest-
igating how the number of agents in a swarm, along with physical
swarm size, can have an effect on the decision made; and section 4.4
presents initial results from an extension to the system that helps
to increase the speed with which successive decisions can be made.
Finally, section 4.5 concludes the chapter.

As in chapter 3, rather than make use of real-world robots,
simulated swarms of generic ‘agents” are used. The details of these
agents are provided in appendix A, but they are essentially massless
points in a virtual environment that have limited communication with
each other and the environment. Using simulated agents increases
the speed with which the algorithm can be tested, and—as shown in
chapter 5—this does not affect the decision-making capacity of the

system presented.

41 DECISION-MAKING

Both natural and artificial systems exhibit decision-making beha-
viour (Seeley et al., 1991; Garnier et al., 2005). The most prominent
examples are of nest-site selection (Lindauer, 1957; Seeley and
Visscher, 2004; Pais et al., 2013) and foraging behaviours (Burton and
Franks, 1985; Gordon, 2002) in colonies of ants (Evison et al., 2012;
Kaur et al., 2012) and bees (List et al., 2009; Makinson et al., 2010;
Diwold et al., 2011; Schaerf et al., 2013).

The typical approach of collective decision-making systems is to
have individual agents react to the environment and (either actively
or passively) ‘recruit’ other agents to join them. The swarm-level
decision is made through one of two methods: either (1) a quorum-
sensing approach where once the number of agents with the same
decision reaches some threshold, the entire swarm switches to that
decision (Lindauer, 1957; Visscher and Camazine, 1999); or (2) an
aggregation method, where individuals collect together at some point
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in the environment, and the number of agents at each point dictates
the decision made (Jeanson et al., 2004; Garnier et al., 2005).

One of the most prominent examples in natural systems is the nest-
site selection behaviour in bees (Lindauer, 1957). Scout bees search
for a new nest site, and recruit other bees to follow them through the
well-known waggle dance. This behaviour spreads from the original
few scouts to others that have followed, with cross-inhibition between
opposing scouts being used to prevent stalemate (Seeley et al., 2012).
Eventually, sufficient scouts are recruiting for the same site that a
quorum is reached, and the decision is made: the hive moves to a new
site (Seeley and Visscher, 2004). This is a process that Passino et al.
(2008) uses as an example for swarm cognition, and is often cited as
one of the key cognitive decision-making processes in nature (Passino
et al., 2008, 2010; Couzin, 2009; Goldstone and Gureckis, 2009; Reina
et al., 2015a,b).

Franks et al. (2013) discuss the tradeoff between speed of the
decision made and the cohesion of the swarm making the decision.
From the perspective of artificial systems, cohesion of a swarm of
robots after making a decision is an important factor, as it allows
the system to continue working after making a decision—in real-
world applications, the system is rarely expected to make a single
decision and be reset. Previous collective decision-making algorithms
(Kengyel et al., 2011; Parker and Zhang, 2011; Valentini et al., 2015b)
do not maintain coherence of the swarm throughout the process.

By making use of flocks, coherence can be maintained throughout
the decision-making process, with the entire swarm reacting together,
rather than individually. The work in this chapter takes this flock-
based approach, but unlike Yu et al. (2010), the work in this chapter
does so without the use of ‘leaders’ in the swarm to guide it, allowing
the swarm to generate its own (emergent) motive instead.

Cohen (2000) discusses the concept of decision-making in terms of
distributed cognitive systems, and proposes a definition of cognitive

decision-making;:

“[A] decision emerges...from a match between an en-
vironmental case and an internal motive. Decisions are
associations.” (p.69)

He continues:

“Decision-making is positive action; instead of passively
receiving what the environment imposes, the cognitive

system exerts its will. . . in choosing among alternatives” (p. 69)
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This definition implies that for an agent to make a cognitive
decision, it must be able to do more than simply react to the environ-
ment, it must be able to react differently to the same environmental
situation based on the internal state of the agent.

For the cognitive decision-making algorithm in this chapter, the
following terms are defined: ‘context’ is the state of the environment
as perceived by an agent; ‘motive” is the likelihood of picking
certain actions, should an appropriate context arise. In an empty
environment, therefore, the actions of the swarm can only be a result
of the inherent predisposition of certain actions within the swarm,
and is representative of the motive of the swarm.

In short, decision-making in a cognitive system is a function of

context and motive:
Decision = f(motive, context)

Cognitive decision-making has been formally analysed from a
‘bottom-up’ perspective (Reina et al., 2015a,b), specifically focussing
on the link between the microscopic (individual-level) behaviour
and how it gives rise to a specific desired macroscopic (swarm-
level) behaviour. The main drawback with this work is that, while
Reina et al. have provided a design pattern for a single algorithm
(collective decision-making through cross-inhibition), it is difficult
to extrapolate from this to many other forms of decision-making
systems, something that is typical of software engineering design
patterns (Gamma et al., 1994).

The work presented in this chapter is a model of (microscopically-
defined) swarm-level cognitive decision-making. This work differs
from the typical collective decision-making approach described above,
as individuals do not act alone in reacting to the environment. By
collecting the swarm into a flock, the entire swarm is able to react
to environmental cues. As the first agents in the flock react to an
environmental cue, other agents in the flock will react to the first
agents, rapidly passing the information about the cue across the
flock. Through this mechanism, the entire flock is able to react very
quickly to environmental cues. Previous flock-based decision-making
systems have had to rely on informed individuals within the flock
that guide the swarm (Yu et al., 2010). The work presented here allows
the swarm to make decisions without extra information provided by
leaders, while still retaining the property of cohesion (Franks et al.,
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2013). As such, the work presented in this chapter seeks to answer
the following research questions:

RQ1: Does the motive of the swarm increase as more members

are added to the swarm?

RQ2: Does the motive of the swarm increase as the physical size

of the swarm increases?

RQ3: Does adding more members to the swarm help the swarm
to decide between equal options?

42 IMPLEMENTATION

The previous section concluded with a list of research questions this
chapter is seeking to answer. This section describes the experimental
setup and simulation software that is used to answer these questions.
As described in section 4.1 above, the approach to decision-making
taken in this chapter is to use Cohen’s (2000) definition of cognitive
decision-making, combined with a flocking algorithm that allows the
swarm to react quickly to environmental cues.

As discussed in section 3.2, Reynolds’ (1987) ‘boids” algorithm is
an algorithm that produces flocking behaviour in simulated agents.
Originally designed to provide realistic behaviour to animations, it
is suitable for producing basic flocking behaviour, but agents in the
flock do have a tendency to ‘overlap” each other—a result of having
massless agents that do not collide.

For the behaviour in the decision-making algorithm proposed here,
agents that overlap will result in a slowing of information transfer
across the flock, reducing the speed with which other agents react to
the change in position. By using a flocking algorithm that provides
more structure to the flock, this problem is alleviated. The algorithm
proposed by Olfati-Saber (2006) pushes the agents into a semi-rigid
lattice structure. The agents are less likely to overlap, as the force
pushing the agents apart is sufficiently strong, without resulting in
disintegration. As a result, information is able to transfer very quickly
across the flock as it reacts to variations from the lattice structure.

The agents in the flock move according to three forces: the flock
force, the motive force, and the context force. These three forces—
described in detail below—combine to provide a final directional
force that the agents follow. The flock force is provided by Olfati-
Saber’s (2006) algorithm, and works to keep the flock in its lattice
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Listing 4.1: Pseudo-code for CDM algorithm

calcAgentForces()

{
if (neighbours)
{

Ui = vectorAdd( calcFlockForce(),
calcMotiveForce(),
calcContextForce()

)
}
else
{

// if alone, move to attractor and wait to be picked

up by a flock

Ui = calcContextForce();

}

dX = Ui[0];

dY = Ui[1l];

direction = fmodf(atan(dX, dY), 2 x PI);

magnitude = 0.005 * sqrt(pow(dX, 2) + pow(dY, 2));
}

formation. The motive force is provided by flock-generated ‘virtual
goals’ that are projected ahead of the flock. The context force provides
environmental cues to the agents, resulting from a gradient towards
an attractor in the environment.

The overall algorithm, combining each of the three forces listed
above can be described by a series of vector-adjustments, u;, for an
agent i:

u = S+ f7 (4.1)

where f? acts to form a lattice structure amongst the neighbours
in a swarm (flock force); and f;" provides ‘navigational feedback’
towards a goal (combining motive and context forces). Our definition
of u; varies from Olfati-Saber’s (2006) original definition through the
removal of the directional term f?, relying instead on the navigational
feedback provided through f;'. The algorithm is given in pseudo-code
alongside the mathematical descriptions to aid in reproducibility.
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FLOCK FORCE The flock force, fig , provides the cohesive force that
pushes the agents into a lattice formation. It is defined by Olfati-Saber
(2006) as:

fE==VyV(q) (4.2)

where V(gq) is an attractive/repulsive force based on the distance
to the nearest neighbouring agents, and g; is the two-dimensional
position of agent i. f¥ provides the force required to keep an agent
i a set distance from its neighbouring agents. The full details of the
flocking algorithm are provided in (Olfati-Saber, 2006), and pseudo-
code provided in code listing 4.2.

By restricting the agents to only local interactions, the algorithm
is applicable to both simulated and real (robotic) platforms. The
use of only local interactions does, however, pose new challenges.
Olfati-Saber’s (2006) algorithm requires navigational feedback—in
the form of a goal in the environment—in order to prevent the flock
from disintegrating. With only local interactions, information about a
global goal will not be easy to provide, so ‘virtual goals” are used to
provide this mechanism at a local level. As each agent moves through
the environment, it periodically projects a new goal directly in front
of it, at such a rate that it can never reach it. This virtual goal provides
sufficient navigational feedback to the flock to prevent disintegration,
while also providing motive to the agents (as defined in section 4.1).!

MOTIVE FORCE The motive force is provided through a ‘virtual
goal” in the environment. The motive force draws each agent toward
its virtual goal, while the context force (described below) draws
each agent towards any environmental attractors. The strength of the
motive force varies according to how easily the virtual goal of an
agent is influenced by environmental factors. If there is a particularly
strong attractor in the environment when the agent re-calculates its
goal, then the new goal will reflect that influence. At the same time,
however, the other agents in the flock will also have an influence
on the new position of the goal through the flock force, resulting in
three balanced forces that depend on the number of agents and the
parameters of the algorithm.

A virtual goal is calculated by each agent projecting forward by a
predetermined distance d and using that position in the environment
as its goal for a set period of time, G'P%*®. These parameters, d

1 The virtual goal is analogous to holding a carrot on a stick ahead of a mule
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Listing 4.2: Pseudo-code for flock force calculations

calcFlockForce()

{

cumulativeSum[] = {0, 0};

foreach (neighbour in neighbours)

{
// calculate distance/direction to neighbour
dist = -distanceToAgent(neighbour);
dir = directionToAgent(neighbour);
diffPosel] = {dist * cos(dir),

dist * sin(dir)};

// calculate denominator and divide...
auxVecDivide =1/ sqrt(l + eps * dist * dist);
vecNij = vectorMult(diffPose, auxVecDivide);
sigmaNorm = calcSigmaNorm(diffPose);
phiAlpha = calcPhiAlpha(sigmaNorm);
result = vectorMult(vecNij, phiAlpha);
cumulativeSum = vectorAdd(cumulativeSum, result);

}

fg = cumulativeSum;

return fg;

}

// helper functions
calcSigmaNorm(double z[2])

{
magSq = pow(z[0], 2) + pow(z[1l], 2);
magSqPrime = magSq * eps + 1;
sigmaNorm = (1 / eps) * (sqrt(magSgPrime) - 1);
return sigmaNorm;
}
calcPhiAlpha(double z)
{
// r and d are globally-defined parameters
rSigma = calcSigmaNorm({r, 0});
dSigma = calcSigmaNorm({d, 0});
return calcRho(z / rSigma) * calcPhi(z - dSigma);
}
calcRho(double z)
{
if (z < h)
return 1;
else if (z <= 1)
return 0.5 * (1 + cos((PI x (z - h) / (1 - h) )));
else
return 0;
}

calcPhi(double z)
{
y =2+ C;
sig =y / sqrt(l + pow(y, 2));
return 0.5 * ((a + b) * sig + (a - b));
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and GYP42te are set at the start of each simulation run, and do not
vary throughout the run or between agents?. Between them, these
parameters provide the above mentioned weighting towards motive
or context for the agents.

Specifically, an agent i calculates its virtual goal, G;, by taking the
average heading of its neighbours, N;, within a pre-defined radius, r.
Let the average heading of the neighbours of agent i be ¢;, defined as:

1
¢i = Y 6 (4.3)
’Ni| jeN; !

then projecting forwards by the predefined distance, d, gives the

virtual goal for an agent i as the coordinate pair G; = (x¢,, yG].):3
xG, =X +d - sin(¢;) (4.4)
Yy, =Yyi+d-cos(¢;) (4.5)

The goal is recalculated periodically so that the motive reflects the
current state of the agent, including influences from the environment.
This update period is parameterised as the virtual goal update
interval (6"P9*¢). As the interval is increased, the agent is weighted
further towards the motive than the context (and vice-versa), as
information from the context will influence the position of the virtual
goal less often.

CONTEXT FORCE The environment is empty other than any at-
tractor sources included. An attractor, j, exerts a force on all agents
in the environment. The force at any point can be described by
the Gaussian probability density function, with mean p;, standard
deviation i, and distance to the centre of the attractor from agent i,

(9 — )

- (q:i — .”j)2
contex 1 20—2
fEMe (g, 07,9i) = ——=e j (4.6)
2027

these could vary in a heterogenous swarm, but this is beyond the scope of this thesis.
the trigonometric functions sin and cos may appear to be backwards, but this is a
result of the way NetLogo calculates its headings and, if appropriate, can be reversed
for other simulation setups.
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Listing 4.3: Pseudo-code for motive force calculations

calcMotiveForce(double aveHeading)

{
if (shouldUpdateGoal()) calcVirtualGoalPos (aveHeading,
virtualGoal);
dist = distanceToGoal();
dir = directionToGoal();
diffPose[] = {dist * cos(dir), dist *x sin(dir)};
qDiff[] = {0,0};
qbiff = vectorMult(diffPose, cl);
fmotive = gDiff;
return fmotive;
}
calcVirtualGoalPos(double aveHeading, double returnVall])
{
virtXcor = (xcor + (distToVirtGoal * cos(aveHeading)));
virtYcor = (ycor + (distToVirtGoal * sin(aveHeading)));
returnVal[0] = virtXcor;
returnVal[l] = virtYcor;
}

The agent calculates f; based on the coordinates of G; and the
gradient formed by the attractors in the environment:

£ = N (qi, pis e, pa,) + £ (g, 07, 91) (4.7)

Each agent multiplies the attractor gradient by a global parameter
ctx_mult as it senses it, in order to provide a weighting between
fimotive and feontext Gee table 4.1 for a summary of each term used in
the definition of f'.

Variable ‘ Description

qi Two-dimensional position of agent i
pi Velocity of agent i

Gi Position of virtual goal for agent i
1 Centre-point of attractor j

0j Spread of attractor j

Table 4.1: Descriptions of the variables used in equation 4.7.
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Listing 4.4: Pseudo-code for context force calculations

calcContextForce()

{

// get attraction at neighbouring co-ordinates

S

E
N
W

patchAt(0,1)->attr;
patchAt(1,0)->attr;
patchAt(0,-1)->attr;
patchAt(-1,0)->attr;

// differences...
X=E - W;
Y=N-S5;

// context multiplier (weighting of context vs.

ctx_mult = getContextMultiplier();
X *x= ctx_mult;
Y x= ctx_mult;

fctx[0]
fctx[1]

X;
Y;

return fctx;

motive)

Parameter

Description

Typical Values
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ctx_mult

Multiplier for attractor gradient

185

d

Distance from agent to virtual goal

30

Gupdate

Update period for virtual goal

25

r

Radius used to calculate neighbourhood

8

Table 4.2: Typical parameter values and descriptions for the simulation.

42.1 Simulation analysis

ALEATORY UNCERTAINTY ANALYSIS

As with the identity al-

gorithm in chapter 3, the inherent stochasticity within the simulation

has the potential to affect the results. Aleatory uncertainty (AU)

analysis provides a method to check that any effects measured in

the simulation are a result of changes to parameters. The spartan

package (Alden et al., 2013) provides AU analysis along with a
NetLogo wrapper (Alden et al., 2014).
The graph in fig. 4.1 shows that a minimum of 200 replicates is

sufficient for the CDM simulation.
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Maximum A-Test Scores for each Sample Size
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Figure 4.1: Aleatory uncertainty analysis for the CDM simulation. 200
replicates are required for this simulation, as measured through
by the number of agents that remain within 20 of an attractor
source in the environment at the end of the run.

PARAMETER SENSITIVITY ANALYSIS Varying the parameters of
a simulation can change the behaviour considerably. The behaviour
of any simulation will be more sensitive to certain parameters than to
others. In order to quantify the effect that each parameter has on the
behaviour of the simulation, spartan offers ‘one-at-a-time” parameter
sensitivity analysis (Read et al., 2012; Alden et al., 2013). This method
consists of holding all parameters steady at their baseline levels and
varying one of the parameters at a time to see how much of an effect
it has on the macroscopic behaviour of the simulation. Running this
analysis on the simulation for the parameters listed in table 4.3 gives
selected results in figs. 4.2a and 4.2b.

Parameter ‘Baseline Min value Increment Max value

ctx_mult 185 150 10 200
d (dist) 30 15 5 40
population 35 5 5 75
Gupdate 25 15 5 40
r (vision) 10 5 1 15

Table 4.3: Parameters varied during the one-at-a-time parameter sensitivity
analysis. Parameters are held at their baseline values when not
being varied.
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A-Test Scores when adjusting parameter
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(a) Parameter sensitivity analysis for the ctx_mult parameter.
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(b) Parameter sensitivitiy analysis for the r (vision) parameter.

Figure 4.2: One-at-a-time parameter sensitivity analysis for the (a) ctx_mult

and (b) r (vision) parameters. The graph in (a) shows that
the simulation is highly sensitive to variations in the ctx_mult
parameter, whereas it is robust to even quite large changes in the

r parameter.
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4.3 RESULTS

There are a number of different areas to investigate in flock-based cog-
nitive decision-making (CDM), this section focusses on the simplest
change possible and varies the number of agents in a flock. Because
the motive is a result of the interactions between individuals, more
individuals should give rise to a flock that is less susceptible to being
drawn into an attractor.

4.3.1 Increasing flock size increases motive

This section investigates the effect of the number of agents in the
flock on the decision-making behaviour. As the number of agents
increases, the number of virtual goals contributing to the swarm
motive increases, which should decrease the probability that the
swarm will follow the context rather than the motive.

The experimental setup is sketched in fig. 4.3. The flock, E travels
left-to-right across the environment, reacting to the contextual cues
provided by the attractor gradient, A. Either the flock will follow the
context and stay in the attractor formed by A, or follow its motive
and ‘escape’ the attractor. The percentage of all agents that are within
the attractor at the end of the run is measured.

In order to balance computational load with accuracy of results, the
population value is incremented by 5 between sets of runs. To analyse
these results, a measure is needed that is not biased by the value used
for this increment. This allows the same method to be used, and for
comparable results to be gathered, regardless of the increment used in
each experiment. The method used consists of examining the effects
of increasing the population over a specified ‘interval’. For example,
an interval of 10 would compare the runs with population values 5
and 15, 10 and 20, 15 and 25, etc. This approach shows the effect of
increasing the population by a specific amount.

As the population interval increases, we expect to see a larger
probability of the swarm escaping the attractor (and so, more runs
ending with zero agents in the attractor).

NULL HYPOTHESIS (Hp): Increasing the population interval has

no effect on the percentage of agents in the attractor.
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The percentage of all agents that are within 2¢ of the attractor source

is measured. The environment consists of 140x140 simulated patches.

The source is centred at p; = (58,110), with o; = 15. The flock is
centred at (15,72), with a spread that is proportional to the number
of agents in the flock.

The population value—i.e. the number of agents in the flock—is
varied between 5 and 75, at intervals of 5. Each population value
is run for 200 replicates, as calculated using aleatory uncertainty
analysis of the simulation (see appendix A.3.1 and (Alden et al., 2013)
for details).

Gr—

Figure 4.3: Sketch showing the initial layout of the simulation for this
experiment. The environment consists of 140x140 simulated
patches. The flock, F, is initialised with each agent at a random
location within a specified radius of the start point (15, 72). The
attractor source, A, is centred at Hj = (58, 110), with spread
defined as 0; = 15.

The nature of the experimental setup means that clustering in the
data is highly likely. Most runs will result in either all the agents in
the attractor, or none at all. Because of this clustering in the data,
the median is very sensitive to small changes in the size of the two
clusters, meaning a boxplot is not sufficient to represent the data in
a form that can be interpreted easily (see fig. 4.4a). By measuring
the size of each of these clusters, along with those that are not part
of a cluster (as described above), the distribution can be represented
through stacked bar charts instead (fig. 4.4b).

Fig. 4.4 shows a clear progression from 100% to 0% (i.e. from
context to motive) as the number of agents in the flock is increased. In
order to reject Hy, the increase in population interval (the difference
in number of agents) needs to result in decreasing the likelihood of
the flock being in the attractor.
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Population Test; d: 30, G-update: 25
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Figure 4.4: Three graphs showing how the behaviour of the system switches
from following context to following motive as flock size increases.
The top graph shows boxplots for each swarm size between 5
and 75 at 5-agent increments. It is evident that there is a large
change between 30 and 40 which is difficult to characterise. The
lower graph shows the progression between context (blue) and
motive (red) based on the comparative size of the clusters at 100%
and 0%, respectively.

The clustered nature of the data invalidates any statistical test
that measures a change in median, as the median is very sensitive
to minor changes in the size of the clusters. The Kolmogorov—-
Smirnov test (Massey, 1951), however, is more sensitive to the shape
of the distribution. The Kolmogorov-Smirnov test shows that the
distributions are significantly different from each other. Those that are
different are compared using the Vargha-Delaney effect-magnitude
test (Vargha and Delaney, 2000).

Fig. 4.5 shows the output of these tests. When considered alongside
fig. 4.4, there is a statistically-significant transition period between
population values 30 and 50. Fig. 4.5b shows that a population
interval of 10 is sufficient to confirm the magnitude of this effect
over the same transition period. From this, it is evident that the null
hypothesis Hy can be rejected with 95% confidence.
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KS-test and A-test results (population interval: 5)
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(a) Kolmogorov-Smirnov (top) and Vargha—Delaney A-test (bottom)
results for population interval 5.

KS-test and A-test results (population interval: 10)

T T T T T T T
1k o o —

08F b
0B b
04 ° o
02z2r b

KS result

08 b
oer T o '"’O’"}{"? ”””” b
04 b
o2f b

A-test result
(e}

0 10 20 30 40 50 60 70 80
Population size

(b) Kolmogorov-Smirnov (top) and Vargha-Delaney A-test (bottom)
results for population interval 10.

Figure 4.5: Two sets of graphs showing the effect of increasing the
population by 5 (a) and 10 (b). As shown in fig. 4.4 above, there
is a clear transition period between population values 30 and
50, with significantly different behaviour when the population
value is changed by at least 10. Significant results (with 95%
confidence) are shown as red filled circles, other results as blue
hollow circles. Significance levels are given by the dashed red
lines.
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4.3.2 Does the size of the swarm or number of agents affect the motive?

The results presented in section 4.3.1 show that an increase in flock
population results in the flock following its motive, rather than the
environmental context. This section investigates whether it is the
increase in the number of agents within a flock, or an increase in
the physical size of the flock that has this effect.

The environment is scaled based on the number of agents. By
measuring the density of agents within the environment, a multiplier,
m, can be calculated for the size of the environment and attractor. By
controlling for the physical size of the flock, it can be determined if
the behaviour seen in section 4.3.1 results from the change in number
of agents, or from the change in physical size of the flock (a natural
result of changing the number of agents).

NULL HYPOTHESIS (Hp): An increase in the physical size of a
flock will not cause an increase in the probability of following motive.

EXPERIMENTAL SETUP: The agents react to the attractors based
on the gradient rather than on single point values. As such, the
attractor function needs to be scaled along with the environment.
If the distance from an agent to the attractor source is originally
x = (q; — u), this can now be scaled to mx, and the same with o
tomo.

The derivative of the Gaussian attractor function (eqn. 4.6) is used
to assert that the gradient will be the same after scaling by m:

2

1 —m(x—p)
, Mo ) =——e¢ 2(me)? 4.8
Sl ) V2mmo (*8)
assuming y = 0 (4.9)
2
d xe 202
TN -

When compared to the derivative of the attractor function:

g2

d xe 202
_ 4.11
dx o321 (4.11)

1
there is a difference of ot To counter this, the ctx_mult parameter
is altered for each run. This means that the runs are not comparable
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with other experiments unless m = 1.0, but this does not affect any
of the results in this thesis.

As before, the number of agents is increased, and the agents are
measured within 20 of the attractor source. To determine whether
the physical size of the flock or the number of agents has an effect on
the behaviour, there are two environmental setups: one with m = 1.0,
one with m = 1.5. By pairing runs from the first setup with runs from
the second based on the number of agents (e. g. 16 agents in the first
setup with 24 in the second), this setup allows the physical size of
the flock to remain constant in relation to the size of the environment.
By comparing the two setups in this way, it becomes evident whether
the physical size of the flock or the number of agents is causing the
behaviour presented in section 4.3.1.

As before, the percentage of agents that remain within 20 of
the attractor source is measured. The source is centred at p; =
(58m,110m), with o;j = 15m and flock centre at (15m,72m), where
m is the multiplier calculated as above.

For environmental setup one (m = 1.0), the number of agents
varies between 8 and 76, at intervals of 4. For environmental setup
two (m = 1.5), the number of agents varies between 12 and 114, at
intervals of 6 (i.e. the same as setup one, but scaled up by m). The
resulting datasets are compared using the Kolmogorov—Smirnov test
and Vargha-Delaney effect-magnitude test.

To reject the null hypothesis Hp, i) needs to be rejected for each of
the paired data sets, where:

Hy: |Fy — Fx| > A (4.12)

Using the Kolmogorov-Smirnov test statistic (D) to test for equival-
ence (details in appendix A) gives:

hy: DY > A =|max(Fy — Fx)| > A (4.13)

where Fx and Fy are the empirical CDFs for the two paired data sets,
D™ is the maximum difference between Fx and Fy, and A = 0.1601
(follows from theorem 3.5 in (Gibbons and Chakraborti, 2011)).

RESULTS:  Values for D" are given in fig. 4.6, showing that K can
be rejected at the 95% confidence level for all i, and hence Hj is
rejected with 95% confidence. This implies that that it is the physical
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size of the swarm relative to the size of the attractor that affects

whether the swarm is more likely to follow motive or context.

Physical size test
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Figure 4.6: Graph showing the effect of increasing the physical size of the
flock. Population values are listed for m = 1.0, graph shows
the result of comparing with corresponding population value
at m = 1.5 (e.g. comparing population of 12 with 18, with a
comparatively larger environment such that the physical size
of the swarm remains the same). All comparisons produced
significantly similar results at 95% confidence (D' < A, where
A = 0.1601).
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4.3.3 How does the presence of multiple attractors affect the decision made?

Section 3.1 investigated the idea that increasing the number of agents
in a swarm would affect whether the swarm followed its motive or
the contextual cues provided to it, when faced with a single attractor
source. This section looks at whether similar effects are observed
when the swarm is presented with two attractors. By positioning the
two attractor sources equidistant from the start point of the swarm,
the attraction towards both the two sources is equal, and so the effects
that motive has on the decision-making process can be observed.

In the context of this experiment a ‘decision’ is interpreted as the
situation where at least 95% of the flock remains in the same attractor,
or neither attractor, at the end of the experimental run.

NULL HYPOTHESIS (Hp): Increasing the population interval has
no effect on the probability of the flock making a decision.

EXPERIMENTAL SETUP:  The number of agents within 2¢ of both
attractor sources are measured. In this case, there are two attractor
sources: u1 = (58,110), u» = (58,34) and 01 = 0, = 15. The flock
is centred at (15,72), with a spread that is proportional to the
number of agents in the flock. We vary the population value (the
number of agents in the flock) between 5 and 75, at intervals of 5.

Fig. 4.7 shows the output from the experiment. Each replicate
produces two values, measuring the number of agents within 2¢
of the respective attractor source. The two datasets are statistically
similar (shown using the same method as used in section 4.3.2),
meaning they can be reduced down to a single dataset using the
following method, simplifying the analysis. The data between the
two sources is not independent (if an agent is in one of the sources,
it cannot be in the other). Therefore those results with >= 95% in
one source can replace the corresponding <= 5% in the other source.
As the two datasets are statistically similar before this, the rest of the
data can be left the same, reducing the data down to one dimension,
and making it amenable to statistical analysis.

With this one-dimensional data, the same approach can be used
as in section 4.3.1, applying the Kolmogorov-Smirnov test (Massey,
1951) to increasingly large population intervals. Unlike before, how-
ever, the data here are not suitable for analysis with the Vargha-
Delaney A-test (Vargha and Delaney, 2000), so in order to ensure
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Two attractor source results
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Figure 4.7: Stacked bar chart showing the effect of increasing the population
in a dual-attractor setup. As the number of agents is increased,
the probability of the swarm being able to make a decision
decreases (i.e. it is less likely to pick just one attractor). Blue
denotes following context and > 95% of agents in the same
attractor; red denotes following motive and < 5% of agents in
any attractor; green is all other situations, denoting indecision.

there are no artificially-generated low p-values, the number of
replicates is restricted to be below 85 for « = 0.05 and statistical
power of 90% (Stepney, 2015).

Fig. 4.8 shows that once the population interval reaches 10, signi-
ficant changes are observed. Once the population interval exceeds 15,
there is a very clear transition period between 35 and 60. From this
the null hypothesis can be rejected with 95% confidence, concluding
that increasing the number of agents in a flock by 15 does reduce
the probability of the flock making a decision when faced with two
opposing contextual cues.

44 SENSOR DESENSITISATION

As discussed in section 4.1, real-world applications often demand
that the system be able to make multiple, successive decisions. If
the swarm in the presented system follows motive and does not stay
in the attractor then it should be able to continue making further
decisions. If the swarm does not follow motive, however, then it will

be stuck in an attractor until the environment changes—in the case
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Figure 4.8: Three graphs showing the effect of increasing the population in
a dual-attractor setup. Kolmogorov-Smirnov (KS) test results for
population intervals between 5 and 15.

of a dynamic environment—or will be stuck in the attractor if the
environment is static.

This section looks at one approach to providing the swarm with
the ability to escape an attractor after a short period of time, based
on the concept of olfactory fatigue (the process through which we ‘get
used to” a smell). This allows the swarm to make a decision, and then
regardless of the decision it made, allows it to make further decisions.

The work presented in this section does not specifically ask
questions of the system, but is instead an implementation of a new
feature in the system. As such, the work in this section is presented
in an engineering fashion (with requirements and tests), rather than
the scientific fashion used throughout the rest of the chapter.
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AIm:  Allow the flock to escape an attractor, without compromising
the existing behaviour.

REQUIREMENTS:

Req. 1: The flock must escape the attractor without disintegrat-
ing.

Req. 2: The flock must make the same decisions as before.

The addition to the system consists of reducing the effect that the
attractor has on an agent if the agent has been close to a source for
an extended period of time. Each agent can not only measure the
gradient towards an attractor at each time step, but also measures
the value itself (referred to as the concentration at that point). While
said concentration is sufficiently high, each agent increases a counter
(d5ontext) by a small amount each timestep. Once d5”"**! is greater than
1, it will be divided into the f{"* term from eqn. 4.7:

f’y __ gmotive fl,COVltExt

NS max(lldlgontext) (4.14)

To test whether the system is able to successfully escape the
attractor, the environment is set up as sketched in fig. 4.9. By varying
the start point of the flock, F, across the x-axis (between values of
25 and 115 at intervals of 5), the setup mimics different approach
angles to the attractor source, A. The agents are set up with a high
predisposition towards the contextual cues (i.e. high ctx_mult, see
section 4.2 for details) to encourage the flock to get stuck in the
attractor, in order to test the ability of the system to escape when
the flock is heavily weighted towards remaining in the attractor.
The simulation is run for 150 replicates, in line with the aleatory
uncertainty analysis performed on the simulation.

Fig. 4.10 shows the effect that sensor desensitisation has on the
swarm. Fig. 4.10a shows two sets of stacked bar charts, the top graph
is the control case (without desensitisation), where over 90% of runs
results in the swarm getting stuck in the attractor. The bottom graph
shows the anticipated effect, with approximately two-thirds of the
results now escaping the attractor with the help of desensitisation.

Fig. 4.10b shows the field lines pertaining to the attractor formed
by the attractor source, and a trace of a single agent starting from
x-coordinate 30. It is evident that the swarm is caught in the attractor
for an extended period of time, but eventually the desensitization
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Figure 4.9: Diagram showing the initial layout of the simulation for this
experiment. The flock, F is initialised with each agent at a
random location within a specified radius of the start point
(x, 15), where x is an input parameter, varied between 25 and
115 at intervals of 5. The attractor source, A, is centred at
uj = (70, 70), with spread defined as ¢; = 15.

takes hold and the swarm is able to escape and continue traversing
the environment.

Requirement 2 states that the flock must make the same decisions
as before. To test this, the single- and dual-attractor experiments
from section 4.3 are re-run, comparing the original results with the
new system. Fig. 4.11 shows that when comparing to the either
experimental setup, there is statistically-similar behaviour (using the
same equivalence testing method as section 4.3.2).
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(a) Two graphs showing the effect of including sensor desensitisation in the model.
The top graph shows the behaviour of the system without desensitisation (the
system is set up to encourage the flock to follow the context), and every run gets
trapped in the attractor. The lower graph shows the effect of including sensor
desensitisation in the model, with a large number of the runs able to escape the
attractor.
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(b) Field lines and trace of a single agent in the flock showing
the flock getting trapped in the attractor, then escaping
later in the simulation.

Figure 4.10
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Figure 4.11: Two graphs showing the effect of the desensitisation extension
on the decision-making abilities of the system. For single (a)
and dual (b) attractor setups, the behaviour of the systems is
compared to the results presented throughout section 4.3. All
behaviour is statistically similar to the behaviour before the
extension is implemented.
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4.5 DISCUSSION

The results presented in this chapter show that a homogenous flock
of agents is able to make decisions without relying on distributed
sensing through a cognition-inspired algorithm. The use of Olfati-
Saber’s (2006) flocking mechanism is key to this ability, as it allows
information about the environment to spread through the swarm of
agents very quickly due to its rigid lattice-based structure (in contrast
to the much more fluid structure that features in Reynolds’ boids
algorithm (Reynolds, 1987)).

Previous efforts at flock-based decision-making consist primarily
of (Yu et al., 2010) which requires leaders within the flock to guide it
towards a goal in the environment. The system presented is able to
react to environmental cues and act according to its emergent internal
motive to make a decision. This use of emergent motive allows the
agents in the system to remain coherent and make decisions through
a leaderless, homogenous flock.

Many notable examples of collective decision-making are based on
the idea of aggregation at a certain point in space (Garnier et al., 2005;
Schmickl et al., 2007, 2009). This approach makes use of distributed
sensing to more effectively sense the environment, then decides on
the best option from those sensed by the individuals. This is in direct
contrast to the flock-based approach taken here. By using a flock to
keep the swarm together, information about the local environment
is rapidly distributed amongst the swarm, and so a decision can be
made more quickly. This approach has an impact on accuracy, as it is
possible that elsewhere in the environment is a ‘better” decision, but
real-world applications rarely need the global optimum, a heuristic
approach is often sufficient (Russell and Norvig, 2003).

Natural collective decision-making systems exhibit a speed—cohesion
tradeoff (Franks et al., 2013). The use of flocking behaviour as a
control mechanism allows for the reduction in the effect of this
tradeoff on the decision-making process. While the disparity between
speed and cohesion has been reduced in this approach, the tradeoff
emerges in other ways—most notably through the speed-accuracy
tradeoff. The system is able to make a decision quickly and cohesively,
but by keeping all agents in one area in the environment the swarm
becomes more susceptible to local variations in the environment, and
so is less able to find the global optimum. By allowing multiple flocks
to work in the same environment without interfering with each other,
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it should be possible to help alleviate this problem. While no results
have been presented to confirm this, the work on identity formation
presented in chapter 3 provides an appropriate starting point for
future work in this area.

In summary, this chapter has reported the development of a
decision-making algorithm based on Cohen’s (2000) definition of
distributed cognition. Section 4.1 takes Cohen’s (2000) definition of
cognitive decision-making and reduces it to a function of internal
motive and environmental context. The environmental context con-
sist, in this case, of cues from attractor sources in the simulated
environment. The internal motive emerges from the interactions
between the agents in a flock. Section 4.2 details the development of
the simulation platform, and is used in section 4.3 to answer three
research questions about the behaviour of the cognitive decision-
making system. The research questions focus primarily on the effect
of varying the number of agents or physical size of the flock on
the decision-making process. As the number of agents increases, the
strength of the internal motive increases, compared with the context.
This is analogous to the idea of how social influence can change the
decisions of individuals in a group (Lorenz et al., 2011).

Incorporating cognitive decision-making into a robotic system,
without requiring distributed sensing, offers a promising step to-
wards cognitive behaviour. This raises the possibility of having a
system that can decide the best course of action based on its current
motive, taking into account the mission objectives, and the current
environmental situation. Chapter 5 shows how the decision-making
system presented in this chapter can be used as a virtual swarm on
a simple robotics platform (Hilder et al., 2014) as part of an adaptive
homeostatic system.

85






COGNITIVE ADAPTIVE HOMEOSTASIS IN ROBOTS

The previous two chapters have looked at two different areas of
distributed cognition: emergent identity formation and cognitive
decision-making. The results presented have been collected using
agent-based simulations, which increases the speed that experiments
can be run. This chapter, on the other hand, makes use of both
simulation and a robotic platform for the experiments. The use of
a robotic platform shows that the effects of the ‘reality gap” are not so
substantial as to invalidate the simulated results (Jakobi et al., 1995).
In this chapter, simulation is used only for basic testing of the control
architecture, to ensure that the system works as expected in a perfect,
noise-free environment—if it fails in a perfect environment it is far
less likely to function correctly in a noisy environment.

This chapter reports the development of the CAH architecture
(Cognitive Adaptive Homeostasis). The CAH architecture takes the
approach of decision-making from chapter 4 and pairs it with
an associative memory neural network. This associative memory
provides the ‘internal image’ of the environment that is discussed
at length by Cohen (2000) and in section 2.3.2. This combination
provides another incremental step towards using cognition in a robot.
The results presented in this chapter focus on using cognition as the
basis for adaptation and homeostasis in a robot.

The chapter is organised as follows: section 5.1 discusses the
problem of artificial homeostasis, presenting alternative approaches
taken by other researchers. Section 5.2 describes the CAH architecture
that allows the robot to use the cognitive decision-making abilities
described in chapter 4 for homeostasis. Section 5.3 presents the results
from our experiments with the robotic platform. Finally, section 5.4
concludes the chapter with some discussion on the link between

cognition and homeostasis.
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51 ARTIFICIAL HOMEOSTASIS AND ADAPTIVITY

Biological homeostasis is “the automatic requlation of physiological func-
tions” (Vernon, 2015, p.94). This regulation is provided through the
interconnected mechanisms of the nervous, endocrine, and immune
systems that react to the internal state of the system (Neal and
Timmis, 2003). By altering the high-level behaviour of the organism,
the regulatory functions are able to provide an appropriate low-level
environment for the various biochemical reactions taking place. A
(simplified) example, in humans, is that the acidity of the blood is
used to sense the level of carbon dioxide in the body. Carbon dioxide
is carried through the bloodstream as carbonic acid. Therefore, as
the concentration of carbonic acid in the blood increases, the acidity
of the blood will increase. As the acidity increases, our body reacts
by increasing our breathing rate, which expels more carbon dioxide,
helping to reduce the acidity of the blood. This change in high-level
behaviour in response to a small variation in an internal value is a
prime example of the process of biological homeostasis.

Artificial homeostasis is the implementation of appropriate control
mechanisms to provide homeostatic behaviour to an artificial system
(such as a robot). This has been approached in a number of ways
previously, most notably by mimicking the biological regulatory
mechanisms that give rise to homeostasis. Neal and Timmis (2003,
2005); Vargas et al. (2005) combined artificial neural networks, arti-
ficial endocrine systems, and artificial immune systems in a robot
control architecture, directly mimicking the homeostatic processes at
work in the body.

The architecture proposed by Neal and Timmis (2003) uses an
artificial endocrine system to switch between neural networks that are
trained to do separate tasks. The artificial endocrine system provides
a global "hormone’ that affects the behaviour of the neural networks.
This hormone acts as a multiplier for the weights of the networks,
allowing the hormone levels to decide which neural network is
dominant (and hence, the behaviour of the robot). This approach
involves building and training multiple, distinct neural networks
that provide the behaviours the robot is expected to perform. The
endocrine system can then switch between these trained networks.
Neal and Timmis (2005) showed that the architecture could adapt
through the use of an artificial immune system that acts on the
nodes and connections of the other two systems. By acting on the
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components of the neural and endocrine systems, the immune system
allows the architecture to develop from a simple starting point to a
system that has learnt and adapted to the environment it is exposed
to. The three systems are able to regulate internal processes, read
from sensors and drive actuators, monitor internal state and remove
problematic areas of the system. This results in an architecture that
has the capacity to provide artificial homeostasis to a robot. The
disadvantage of this approach is the speed with which it is able to
adapt. In order to provide new behaviour to the robot, the neural and
endocrine networks need to be trained to provide the new behaviour
(either by an external force, or through the adaptive immune system).

The neuroendocrine approach to regulating the behaviour of a
robot is an appropriate one, providing a mechanism through which
sensors are able to alter the high-level behaviour of a neural network
(section 2.3.1 provides a more thorough description of the approach).
Stradner et al. (2009); Schmickl et al. (2011) follow a similar approach
but without the neural network. The sensors on the robot secrete
hormones that interact with each other and diffuse around the robot.
The actuators react to the concentrations of each hormone in the
system around them, providing movement in the environment. The
resulting network has no capacity to adapt to new environments, but
is able to avoid collisions.

This approach to homeostasis—directly mimicking mechanisms in
the body—has its advantages and disadvantages. The advantages
are that, because this system is already implemented and working
in almost all living systems, there is substantial evidence that it
works. All that is required is to work out what is happening and
to copy it, abstracting away any unnecessary biochemical details.
The disadvantage is that simulating biological systems, even after
abstraction, is complicated. Biology is complex, abstracting away
seemingly minor details can alter the behaviour of the system in
unexpected ways (Andrews et al., 2010).

The approach taken in this chapter is to look at homeostasis from
the perspective of cognition and autonomy (Vernon, 2015). The high-
level behaviour of homeostasis has many similarities to cognition,
such as making decisions about the high-level behaviour of the
system, adapting to variations in the low-level environment. Much
in the same way as Neal and Timmis (2005) proposed using an
artificial immune system to provide adaptation, this chapter looks at
how distributed cognition—often referred to in terms of the cognitive

89



90

COGNITIVE ADAPTIVE HOMEOSTASIS IN ROBOTS

immune system (Cohen, 2000)—can provide homeostatic behaviour
to a robot.

The CAH architecture (Cognitive Adaptive Homeostasis) presen-
ted in this chapter provides adaptive homeostasis to a robot. Making
use of the cognitive decision-making (CDM) system from chapter 4
to provide action selection based on the internal state. By pairing
the CDM simulation with an associative memory neural network, the
architecture is able to associate and recall previous experiences from
the environment. This pairing of CDM with associative memory en-
dows the robot with the ability to alter its high-level behaviour, based
on its internal state and previous experience. It is able to associate
contextual cues with corresponding effects on the system, and then
recall these based on the current needs of the system. This allows the
robot to make cognitive decisions, both internally (through the CDM
simulation), and externally (through the associative memory). These
cognitive decisions can be used to alter the high-level behaviour of
the robot to help it to survive for an extended period of time.

This architecture is compared with a robot controller that reacts to
its internal state directly, instead of relying on the CDM simulation.
Comparing with this system, termed the “purely needs-based system’,
will help to provide evidence in support of the following research
questions:

Can the CAH architecture. ..

RQ1: ...learn from previous experiences and use them to
influence future behaviour?

RQ2: ... provide homeostatic behaviour to a robot?

RQ3: .. .balance two conflicting requirements to provide homeo-
static behaviour to a robot?

Does the CDM component. ..

RQ4: ...change decisions more slowly at the start of the
simulation?

5.2 IMPLEMENTATION AND EXPERIMENTAL SETUP

This section details the development of the adaptive homeostatic
architecture, including simulations of the architecture in a simple

environment. This section also presents the experimental setup and
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robot platform used in experiments, along with the needs-based’
system that will be used for comparison.

5.2.1 CAH architecture

Cohen (2000) proposed three components of distributed cognition:
self-organising behaviour, decision making, and internal images. The
similarities between cognition and homeostasis have been discussed
above, in section 5.1. The architecture presented in this section
provides adaptive homeostasis to a robot, based on these components
of cognition.

Fig. 5.1 shows the proposed CAH (Cognitive Adaptive Homeo-
stasis) architecture. The cognitive decision-making (CDM) simulation
from chapter 4 is used to decide which of the low-level signals should
affect the high-level behaviour. By considering the CDM component
as a black box, it can be replaced by a different component to provide
different behaviour to the robot. The ‘needs-based” system that is
used as a control case in the experiments uses a simple threshold
component in place of the CDM. This threshold component provides
output signals based on, for example, the charge in the battery
dropping below a certain, fixed threshold.

The CDM component is linked to the robot sensor inputs through
the attractor sources in its virtual environment. By increasing the
attraction towards the attractor source based on the sensor inputs,
the agents can react to the sensor inputs collectively as a flock. In
the test cases for this chapter, the attractor sources are linked to the
charge level and temperature sensors on the robot.

Having already discussed the CDM component at length in the
previous chapter (section 4.2), the rest of this section describes the
behaviour of the CMM and proof-of-principle simulation. This is
followed by a description of the robot platform and experimental
setup.

CORRELATION MATRIX MEMORIES The outputs from the CDM
component are fed into a CMM (Correlation Matrix Memory). As
described in section 2.3.2, a CMM is a form of memory that associates
stimuli with stored responses. In the CAH architecture the CMM
stores an ‘internal image’—or imprint—of the environment for the
robot to use. As such, the CMM offers the robot the capacity to make
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Figure 5.1: Diagram depicting the high-level architecture of the CAH system.
The internal sensors (battery charge, temperature) drive the
behaviour of the CDM simulation. As the agents within the CDM
react to the internal sensors, we count the proportion of agents
in each attractor source within the CDM, and use this to drive
the binary signals (black arrow) to the CMM input. The CMM
(trained to recall which colour lamp is mounted above charging
stations and high-temperature areas) then recalls the colour to
search for according to which input is triggered by the CDM.
The output from the CMM is then fed into the light-seeking
circuits that perform basic chromotaxis (algorithm described in
Appendix A.5) and seek out or flee from the appropriate colour
in the environment.

associations between changes in internal and external sensor values
that occur at the same time.

For example, by marking a charging station with a blue light, the
robot can sense the increase in blue light at the same time as an
increase in battery charge. By associating these two signals, the CMM
offers the ability to recall which colour to search for in order to find
a charging station.

Fig. 5.2 shows how the CMM is constructed for two internal sensors
(charge, ¢, and temperature, ) and for the three colour components
from the external light sensor (red, green, and blue). When one of the
sensors passes a threshold, the corresponding binary value switches
from 0 to 1. If this occurs on one of the internal sensors, at the same
time as one of the external sensors, then the corresponding value
in the association matrix is set to 1 as well, storing this association
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between the two sensors. To recall the association, we can re-present
one of the internal sensor inputs (e.g. ‘charge’), by setting it to 1
again. This will result in the stored associations to be recalled, and
the appropriate values set in the output vector. This allows the system
to test which colours have been associated with the ‘charge” input.

I G I I Y I G
(5 1) (v 0 1)

Figure 5.2: Basic CMM architecture (left), where ¢ and t correspond to the
internal sensors for charge and temperature, and r, g, and b

correspond to the red, green, and blue colour components from
c

the light sensor, respectively. The vectors (§) and (rgb) are
provided as stimuli to the association matrix. Any points in the
association matrix that has a 1 on both input vectors is set to 1,
storing the association between the two. An example association
is shown on the right, as would occur after the robot finds a
charging station under a blue light.

5.2.2  Experimental setup

In order to answer the research questions laid out in section 5.1, a
laboratory-based arena is required. This section details the exper-
imental setup, including the robot platform that the architecture
controls.

The arena is 224x108cm with 15cm high boundaries (see fig. 5.3). It
has coloured LED lamps that can be moved so they point at different
parts of the arena.

The robot platform is the Pi-Swarm (Hilder et al., 2014). This
platform provides basic IR distance sensing and wheeled movement,
along with colour LEDs on the top edge of the robot, and a
simple speaker built-in. The robot is controlled using an ARM mbed
LPC1768 chip (mbed, 2016) which runs custom C++ code. It has very
limited flash and RAM storage, along with limited computational
capacity. In order to provide information to the robot about the
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Figure 5.3: Photo showing the laboratory arena. The arena is 224x108cm

with 15cm high boundaries and coloured LED lamps (out of
view) that provide environmental cues to the robot.

environment, the Pi-Swarm platform has a single! RGB colour sensor
(TCS3472) mounted on top.

LED lamps, mounted on tripods, provide a gradient of colour for
the robot, using Perspex colour filters over the front in order to sep-
arate the different gradients. After initial analysis (see appendix A.4),
the best colours for this laboratory setup (in terms of other lights in
the surrounding area and the contrast in the sensor) is a combination
of the orange and yellow-green filters, or the blue filter.

For the purposes of this work, the robot makes use of two internal
sensors: battery charge and temperature. These sensors are simulated,
exploiting the fact that they are always beneath a lamp. As such, by
setting the threshold for ‘detecting’” a charging station higher than the
threshold for detecting the corresponding colour, the charging station
is placed at the centre of the lamp’s gradient. The colour sensor
returns values that are scaled according to the integration time and
gain of the sensor (see (AMS, 2012) for full details). The integration
time and gain used for this experimental setup are 14.4ms and 60x,
respectively. The colour sensor returns values based on the irradiance
of its sensor, which is dependent on a wide range of environmental
factors. The values used are proportional to lux, but it makes more
sense to report values in terms of the relative responsivity of the
sensor. For this reason, we define the ‘arbitrary colour unit’ (acu) as
the value returned from the TCS3472 given an integration time of
14.4ms and gain of 60.

Appendix A.5 gives details of how the single colour sensor detects gradients in the
environment.
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The high-level behaviour of the CAH architecture is given in code
listing 5.1.

5.2.3  Proof-of-principle simulation

Before the architecture is implemented on the robot platform, the
idealised behaviour of the system is tested using a simulation. This
proof-of-principle simulation provides key information about how
the architecture should behave, before the ‘reality gap’ is crossed (see
section 2.2 and (Jakobi et al., 1995)).

The proof-of-principle simulation is shown in fig. 5.4. This simula-
tion, constructed in NetLogo (Wilensky, 1999), has the entire CAH
architecture, other than the CDM component, implemented. The
signals provided by the CDM to the rest of the architecture are
simulated using switches on the simulator interface. The simulation
consists of a single, zero-mass agent that roams around a simple
environment of different light gradients. The agent performs a
random walk around the environment, until one of the ‘motives’ is
switched on. This is a simple switch telling the agent that it has a
certain need, and that the architecture should find the corresponding
part of the environment. For example, need charge’ recalls the
appropriate colour from the CMM and searches for that colour in
order to recharge.

Fig. 5.4 shows a trace of the agent heading towards the green light
source in the environment when the ‘need charge’ switch is enabled
(green arrow). Once this motive is removed (blue arrow), the agent
leaves the light source. The simulation shows that the architecture
functions as it should when appropriate signals are provided from
the CDM component (which is missing in this case). This implies that
any variation we see by including a CDM component (or a control
component) can only be from the changes within the CDM, or noise
in the environment, rather than as a result of the architecture.

5.2.4 Training phase

The CAH architecture adapts to the environment in which it is placed,
through the use of a CMM. The CMM associates large changes in the
internal sensors with large changes in external sensors. For example,
if the robot discovers a charging station under a blue lamp, the CMM
will associate blue light with charging. While the CAH architecture is

95



96

COGNITIVE ADAPTIVE HOMEOSTASIS IN ROBOTS

Listing 5.1: Pseudo-code for high-level CAH robot control code

// ask CMM how to behave...
behaviourVec[3] {false, false, false};
inputs[2] {fleeTemp, wantCharge};
output[3] {0,0,0};

// perform CMM recall and threshold
output = cmm.recall(inputs);
behaviourVec = cmm.thresholdResults(output, false);

// translate CMM response to real-world...

seekRed = behaviourVec[0];
seekGreen = behaviourVec[1];
seekBlue = behaviourVec[2];

// and again for flee behaviour

behaviourVec[0] = false;

behaviourVec[1l] = false;

behaviourVec[2] = false;

behaviourVec = cmm.thresholdResults(output, true);
fleeRed = behaviourVec[0];

fleeGreen = behaviourVec[1];

fleeBlue = behaviourVec[2];

// seek/flee colour
if (seekRed || seekGreen || seekBlue ||
fleeRed || fleeGreen || fleeBlue)
{
if (seekRed)
seek_colour(RED);

if (seekGreen)
seek_colour (GREEN) ;

if (seekBlue)
seek_colour(BLUE);

if (fleeRed)
flee_colour(RED);

if (fleeGreen)
flee_colour(GREEN);

if (fleeBlue)
flee_colour(BLUE);

}

else

{
// default behaviour: random walk...
piswarm.forward(0.1);

// if we have reached where we want to be, pause...

while ( (charging && wantCharge) || (cooling && fleeTemp)

{
piswarm.stop();
wait(1l.0f);




5.2 IMPLEMENTATION AND EXPERIMENTAL SETUP

Figure 5.4: Screenshot of the proof-of-principle simulation, along with trace
of the agent searching for the green light source. The white
arrows are the trace of the agent position, the green and blue
arrows signify when the ‘needs charge’” motive switch is enabled
and disabled.

able to adapt on-line, this functionality is disabled in all experiments
presented in this chapter. This ensures that any variation between test
and control cases are only due to swapping out the CDM component.
This section details how the CAH architecture is trained before the
experiments described in section 5.3 below. While section 5.2.3 made
use of a simulation, this section, and the results presented below in
section 5.3 are gathered using a real robot.

In the training phase, the robot is trained using a random walk
around the environment from an arbitrary start point. As the robot
wanders, the CMM associates high values from the internal sensors
with high values from the external sensors. The threshold for external
(colour) sensor values is 600 acu; for charging stations, 500 acu; for
high-temperature areas, 300 acu.

Due to the small size of the CMM used in this chapter (3x2 matrix),
the training phase can be tested with relative ease. In the following
matrices, the following key can be used to determine whether the
training has been successful, where r,g,b correspond to the red,
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green, and blue external sensors, and c,t correspond to the charge

and temperature internal sensors:

cr cg cb
tr tg tb

After exposing the robot to an environment with one blue lamp over
a charging station, the CMM is trained correctly as:

0 0 1
0 0 O

After exposing the robot to an environment with one orange-green
lamp over a high-temperature area, the CMM is trained correctly as:

After exposing the robot to an environment with both an orange-
green lamp over a high-temperature area and a blue lamp over a
charging station, the CMM is trained correctly as:

Finally, testing the combination of two stations in the same area, after
exposing the robot to an environment with a single orange-green
lamp over a charging station and high-temperature area, the CMM
is trained correctly as:

1 0 0
1 0 0

At this stage, it is evident that the robot is able to train the
CAH architecture based on its experiences in the environment. As
such, the results presented in the rest of this chapter will have the
training phase omitted, and the corresponding CMM matrix from the
above results inserted in its place. This will reduce any possibility of
variation between replicates throughout the remaining experiments.
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5.3 RESULTS
This section aims to answer to research questions RQ2 and RQ3, as

stated in section 5.1. The work in this section also contributes (jointly
with section 5.2.4) towards RQI1.

5.3.1 CAH architecture provides homeostatic behaviour to a robot

This section looks at how well the CAH architecture is able to alter

the high-level behaviour of a robot according to its low-level needs.

As the internal state of the robot varies, the CDM signals to the rest of
the CAH architecture what it needs in order to keep the state within
its limits.

The internal state for the robot platform is markedly different to
that of biological systems, but providing even limited information to
the CDM is sufficient for it to guide the behaviour of the robot in
the environment. The CDM will work to keep the internal sensors
(charge and temperature, see section 5.2.2) within certain limits. If
the temperature gets too high or the charge too low then the robot
will fail. The values used for these variables are given in table 5.1.

Temperature ‘ Charge

Start value 10.0 5.0
+ve Delta 1.8 0.8
-ve Delta 0.5 0.1
Fail Point 55.0 0.1
Limits 10.0, 60.0 0.01, 15.0
Control threshold N/A 2.5

Table 5.1: Parameter values used in the basic homeostasis experiment. These
values have been picked to result in a challenging, but possible

scenario.

This section looks at a basic scenario: asking whether the robot is
able to keep itself charged while attending to another task. This other
task is to warm itself under a lamp. By arranging the experimental
arena (depicted in fig. 5.5) so that the charging station (a blue lamp)
is far away from the warming lamp (a red lamp), the robot needs to
leave the warming lamp in order to recharge, and vice-versa. This
should result in the robot switching from sitting under one lamp to
sitting under the other repeatedly and indefinitely. The parameters
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are chosen such that it is not able to warm itself sufficiently to
complete its task before needing to charge again (thus cooling the
robot back down again).

Charging

Station

Figure 5.5: Photo of arena with charging and warm areas superimposed,
arena size: 224x108cm

NULL HYPOTHESIS (Hp): A robot running the CAH architecture
will survive no longer with the CDM component than with the

threshold component.

The design of the architecture described in section 5.2 was such that
the CDM component could be replaced by another component that
provides different signals, based on the values of the internal sensors.
The threshold component (described in section 5.2.2) is used in this
way, and has a simple threshold mechanism. The output switches
from 0 to 1 once the charge value drops below the control threshold
of 2.5 (see table 5.1).

The threshold value for the control system was calculated from the
amount of time it takes for the robot to get to the light source it is
searching for. This was determined empirically as 45 seconds (the
upper quartile of the data represented by fig. 5.6). Using this value
for traversing the environment, the threshold can be calculated as 2.0.
In order to take into account the variability of working in a noisy
environment, the threshold was increased slightly to 2.5, allowing 54
seconds in the worst case for the robot to find its way to the light
source. This also helps to reduce the chance of a false positive result
by making it easier for the control setup to survive for longer.

Fig. 5.7 shows the path of one run (a) with the CDM in place. The
graph in (b) shows the internal sensor data provided to the CDM
component for the duration of the experimental run. The robot was
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Figure 5.6: Boxplot showing how long it takes to cross the arena between
light sources.

allowed to continue running until it reached 29 minutes, at which
point it would be stopped.? The traces show that the robot is able to
perform a task while preventing itself from running low on charge.

Table 5.2 shows the length of time that the robot survived when set
up with the two components described above (up to the maximum
of 29 minutes). This data is presented in a table format, rather than
a boxplot due to the relatively few replicates in this experiment.
The high variance in the CDM data is unexpected and is the
basis for further experimentation in section 5.3.3. Even with only
6 replicates, it is clear that the CDM code can survive for longer
than the control code. This is confirmed through the Mann-Whitney—
Wilcoxon test and Vargha-Delaney A-test, giving p < 0.05 and
A < 0.16 respectively. From this, Hy can be rejected at the 95%
confidence level.

While performing a relatively simple task, the results presented
in this section show that the CAH architecture is a viable option
for providing simple artificial homeostasis to a robot. This provides
the evidence required to answer the research question RQ2. The next
section discusses how well the architecture survives when faced with
more complicated scenarios that involve conflicting needs.

29 minutes was used because this was the maximum length of video that could be
recorded with the used camera, and was a sufficiently long period of time that any
transient behaviour occurring at the beginning of the run had settled and was not
the behaviour observed.
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(a) Trace of robot path between 5.5 and 10.5 mins superimposed on the environment.
The blue and red circles indicate points where the robot stopped to charge or
warm itself respectively. The green and white circles indicate the start and end
points. The red and blue solid lines indicate that the robot is searching for that
colour. The white dotted line is when the robot wanders (not actively searching for
anything).
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(b) Graphs showing internal sensor values (top) and CDM outputs (bottom) for the
robot between 5.5 and 10.5 mins. The red and blue line show the internal values
for temperature and charge as presented to the CDM component. The red and blue
blocks of colour in the bottom graph show the output of the CDM component (red
indicating to the robot to search for red light, and blue indicating to search for blue
light).

Figure 5.7: A short (5 min) excerpt from one of the 29-minute replicates. The
trace (a) shows how the robot moves between the red and blue
areas in the environment as it needs to charge. The graphs in (b)
show that as the internal sensor values for charge get too low,
the robot actively searches for the charging station, and once it
is charged sufficiently, it returns to warming itself under the red

lamp.
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Replicate | CDM (mins) | Threshold (mins)

1129 3.5
2|25 4
3129 2
416 25
5129 10
6|29 3

Table 5.2: Table showing how long the robot survived in the environment
when using the CDM (test) component and the threshold (control)
component. Mann-Whitney—Wilcoxon test and Vargha—Delaney
A-test give p < 0.05 and A < 0.16 respectively, rejecting Hy with
95% confidence.

5.3.2  Conflicting decisions

While the work above showed how the CDM system could be used to
control a robot in a simple environment (two distinct light sources),
with a simple task (survive as long as possible, while performing
a basic task), this section addresses research question RQ3: how
long the CAH-controlled robot is able to survive when faced with
conflicting decisions about what to do.

In order to achieve this, the experimental setup is altered such that
the charging station and the higher temperature area are provided
by the same light source (see fig. 5.8). The behaviour of the CDM
is inverted with respect to temperature, so that the robot now tries
to avoid getting warm. Therefore, in order to charge its battery, the
robot will have to endure warmer temperatures. Once the battery
runs out, the robot will fail, and once the temperature reaches a set
maximum, the robot will fail. This experiment once again makes use
of the same architecture between test and control cases, except for the
CDM component that will be replaced by the threshold component
for the control case.

NULL HYPOTHESIS (Hp): A robot running CAH architecture will
survive no longer than the threshold component in the presence of
conflicting requirements.

The experimental setup is as shown in fig. 5.8. This is the same
arena as above, except for the removal of the blue light from the right-

hand side. In this more difficult scenario, the robot is expected to
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fail more often than it did in the previous setup, as before it was
possible for the robot to sit and charge indefinitely without failing,
whereas here this would result in a failure. After preliminary testing,
it was evident that the parameter values used previously (as given
in table. 5.1) provided a scenario that was too difficult for the robot
to complete with either CDM or threshold-based results (all survival
times were under 2.5 minutes). As such, the parameter values are
adjusted to those shown in table 5.3, to make the robot less likely
to overheat straight away, but balancing this by making it slower to
charge.

Charging

Figure 5.8: Photo showing the new arena for conflicting decisions

experiment, arena size: 224x108cm

Temperature | Charge

Start value 10.0 5.0
+ve Delta 1.3 0.3
-ve Delta 0.8 0.1
Fail Point 55.0 0.1
Limits 10.0, 60.0 0.01, 15.0
Control threshold 25.0 2.5

Table 5.3: Table showing the parameters used in the ‘conflicting decisions’
experiment. These values have been picked to result in a

challenging, but possible scenario.

Fig. 5.9 shows a trace of the sensor values as provided to the CDM
component. The graphs show how the robot balances the need to
charge its battery while avoiding getting too warm. The robot with
CDM component was able to balance the conflicting decisions well,
failing only once in 13 replicates, whereas the control case failed 6

times out of 13. These results are presented in the boxplots in fig. 5.10.
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(a) Trace of robot path between 14 and 19 mins superimposed on the environment.
The blue and red circles indicate points where the robot stopped to charge or cool
itself respectively. The green and white circles indicate the start and end points.
The blue and red solid lines indicate that the robot is searching for, or fleeing from,
the red light, respectively. The white dotted line is when the robot wanders (not
actively searching for anything).
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(b) Graphs showing internal sensor values (top) and CDM outputs (bottom) for the
robot between 14 and 19 mins. The red and blue lines show the internal values for
temperature and charge, as presented to the CDM component. The red and blue
blocks of colour in the bottom graph show the output of the CDM component (red
indicating to the robot to flee red light, and blue indicating to search for red light).

Figure 5.9: A short (5 min) excerpt from one of the 29-minute replicates. The
trace (a) shows how the robot moves in and out of the red area in
the environment as it needs to charge and cool down. The graphs
in (b) show that as the internal sensor values for charge get too
low, the robot actively searches for the charging station, and vice-
versa for when the temperature gets too high. Note that, contrary
to the behaviour described in fig. 5.7, when the temperature gets
too high at around 17 mins, the CDM does not actively push the
robot away from the red light, as it is already out of the area by
chance. This has the effect of starting to reduce the temperature,
reducing the likelihood that the CDM component would push

the robot to seek out a cooler area.
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The boxplots in fig. 5.10 show the amount of time that the two
setups survived (up to the maximum of 29 minutes). There are 13
replicates for each. Results from the control code are presented on
the left, and from the CDM (test) code on the right.
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Figure 5.10: Boxplots showing the distribution of survival times from the
conflicting decisions experiment. The two distributions are
significantly different, with p = 0.03 and A = 0.30.

While these results were expected to be less clear-cut than the
previous experiment above, analysis of the data using the same tech-
niques as before gives similar results. The Mann-Whitney—-Wilcoxon
test gives p = 0.03, and the Vargha-Delaney effect-magnitude test
gives A = 0.30. From this, Hy can be rejected with 95% confidence,
resulting in the conclusion that the CDM component is better at
balancing conflicting decisions than the threshold component, and

providing sufficient evidence to answer research question RQ3.

5.3.3 Burn-in period

The plot in fig. 5.11 shows a compilation of the test data from the
previous two experiments. 100% of the failed replicates result in a
value that is below 50% of the maximum. This suggests that, once the
algorithm ‘settles’, it is able to run for much longer, as though there
is a threshold past which the system is more stable, and so can run
for an extended period of time without trouble.

Analogous to the effects seen in the Ising model (Ising, 1925), it
appears that the CDM component might require a ‘burn-in” period
before it can reliably make decisions, possibly due to the time taken
for the agents to move across the environment at the start. The lack
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Figure 5.11: Test-case data from two previous experiments. Of those failed
replicates, all are below 50%, indicating that initially ‘burning-
in’ the simulation might help the decision-making process.

of a burn-in period can give rise to failed runs (as shown in fig. 5.11)
that result from the inability of the CDM component to respond to
changes in the internal environment quickly enough. The burn-in
period provides the opportunity for the simulation to settle down,
allowing the agents to flock towards the attractors, reducing the
time required for the flock to switch between attractors when the

environment changes.

NULL HYPOTHESIS (Hp): Burning-in the CDM has no effect on
the speed it can change decisions.

This hypothesis is tested using simulation. A rapidly-changing
signal is provided to the CDM component, and the CDM output is
recorded. In order to test its ability to change decision quickly, the
simulation measures how long the CDM takes to switch decision after
the signal changes from increasing to decreasing, and vice-versa.

The CDM component is inserted into the architecture shown in
tig. 5.12. This provides the CDM component with the number of
positive and negative gradients between the preceding 5 samples
from the signal. The CDM then tries to decide whether the signal
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will increase or decrease next. The signal is produced using a sine
wave centred around 1. Two experiments are run, the first with the
clean signal as described here, the second with a noisy signal that
includes a small amount of pseudo-random noise (SNR = 22).

—) -
CDM |

down

Figure 5.12: The experimental setup for testing whether burning-in the
CDM component enables it to make decisions more quickly.
The CDM component samples the input signal, and calculates
whether there is a positive or negative gradient between each
sample. These samples are then used to alter the strength of
two attractors. The number of agents in each attractor is then
measured and the higher value is considered the decision made
(‘up’ or ‘down’, relating to which way the signal is moving).
As the signal varies, the difference between the signal and the
output of the CDM is measured, and is used to determine the
‘speed’ of the decision, presented in fig. 5.15.

As in previous chapters, aleatory uncertainty analysis provides
the minimum number of replicates needed for the simulation. The
results—shown in figs. 5.13 and 5.14—show that a minimum of 1000
replicates are required. This number of replicates is high, indicating
that the simulation is particularly sensitive to the input signal.

Fig. 5.15 shows the distribution of results from the simulation. The
first set of boxplots in fig. 5.15 show the first set of runs, with the
clean signal. It is evident that there is a change in the behaviour
between the two sets of runs, confirmed with the Mann-Whitney-
Wilcoxon (p = 2.8¢7?°) and Vargha-Delaney (A = 0.3808) tests. This
indicates a ‘medium’ change between the two distributions (as per
Vargha and Delaney’s (2000) definition of the A test, summarised
in appendix A.1.1). The second set of boxplots in fig. 5.15 show the
second set of runs, with the noisy signal. It is less clear whether these
two distributions are different, with analysis showing p = 0.014 and
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Figure 5.13: Aleatory uncertainty analysis for the burn-in simulation, with
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Figure 5.14: Aleatory uncertainty analysis for the burn-in simulation, with

the noisy signal.
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A = 0.53. This shows that the two distributions are not significantly
different. Taking the results presented here, Hy can be rejected with

95% confidence when the signal is clean, but not when it is noisy.
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Figure 5.15: Boxplots showing the distributions of data for noiseless and
noisy experiments in the burn-in experiment. The noiseless
case shows a significant difference between control and test
(p = 2.8¢7%, A = 0.38). The noisy case shows no significant
difference between control and test (p = 0.014, A = 0.53). The
‘speed” of a decision is calculated as the difference between
the point where the signal gradient switches from positive to
negative, and the point at which the CDM output switches.

The results presented show that—as expected—the burn-in period
can help the CDM component make decisions at the start of the runs.
This was, however, only the case when no noise is involved in the
input signal. A small amount of noise is sufficient to remove any
effect of burn-in. It is likely that the effect of the noise indicates why
burn-in was not required to gather usable results in the previous
sections. The failed runs seen in the compilation in fig. 5.11 are not
described by the burn-in theory after all, and could just be a result
of noise in the environment, or an artefact in the laboratory arena
affecting the movement of the robot.
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54 DISCUSSION

This chapter has presented an architecture for cognitive adapt-
ive homeostasis, based on the cognitive decision-making algorithm
presented in chapter 4. Evidence towards answering four research
questions is provided in sections 5.2.2 and 5.3. These research
questions are summarised below.

RQ1 (Can the CAH architecture learn from previous experiences and
use them to influence future behaviour?) Section 5.2.2 presents the
testing of the CMM training phase. This process consists of the
robot performing a random walk in the environment and associating
simultaneous changes in the internal and external sensors. These
associated changes represent the previous experiences that the robot
has learnt. The behaviour of the robot in sections 5.3.1 and 5.3.2 show
that the robot is able to successfully recall these experiences and use
them to influence its high-level behaviour.

RQ2 (Can the CAH architecture provide homeostatic behaviour to a robot?)
Section 5.3.1 presents results showing that the robot is able to alter
its high-level behaviour according to the value of the two internal
sensors (temperature and charge). The behaviour of the robot is
compared between two versions of the CAH architecture: one with
the CDM component, one with a simple threshold function (see
section 5.2.2). The CDM component consistently outperforms the
threshold function at providing homeostatic behaviour to a robot, as
shown by the survival task in fig. 5.7.

RQ3 (Can the CAH architecture balance two conflicting requirements to
provide homeostatic behaviour to a robot?) Section 5.3.2 presents results
showing that the robot is able to balance two conflicting requirements.
The robot was required to withstand a high-temperature region in
order to gain access to a charging station. The behaviour of the robot
is again compared between two versions of the CAH architecture as
with RQ2, above. The CDM component once again consistently out-
performs the threshold function at providing homeostatic behaviour
to a robot, while balancing two conflicting requirements.

RQ4 (Does the CDM component change decisions more slowly at the start
of the simulation?) Section 5.3.3 presents an experiment to test whether
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the CDM component requires a ‘burn-in” period before it can make
successive decisions. The results show that the CDM component does
change decisions slower at the start of the simulation, but that the
effect is only significant if there is no noise on the input signal. Given
the inherently noisy environment in which the robot operates, the
results in this chapter show that the CDM component in the CAH
architecture does not need the burn-in period.

While other approaches to homeostasis have directly mimicked
the natural systems of the body (Neal and Timmis, 2003, 2005;
Vargas et al., 2005; Stradner et al., 2009; Schmickl et al., 2011), the
CAH architecture presented in this chapter is based on the ideas
of distributed cognition (Cohen, 2000; Mitchell, 2005). Distributed
cognition has many similarities to adaptive homeostasis, combining
self-organisation, decision-making and an internal image of the
environment to alter the behaviour of the system (Cohen, 2000).
Combining the CDM with a CMM associative memory provides the
CAH architecture with the ability to alter its high-level behaviour
according to the low-level state of the robot, while adapting to
previous experiences.

The CMM is trained by coincident ‘spikes” in the internal and
external sensors (e.g. when the ‘charge” internal sensor rises at the
same time as the ‘blue’ external sensor—this relates to a charging
station under a blue light in the real-world environment). This
provides adaptivity to the robot, as it is able to learn about new
parts of an environment and adapt its behaviour accordingly (for
example, if the robot were to find another charging station, it would
store the association in the CMM and recall it as before). The robot
is able to make decisions about its current internal state through
the CDM, and transfer this to high-level behavioural changes in
the environment, showing that the CAH architecture provides the
capacity for homeostasis to the robot. Furthermore, the use of the
CMM to recall previous experiences allows the robot to proactively
search for, or flee from, specific areas in the environment. This
proactivity allows for behaviour that is more realistic for real-world

applications.



DISCUSSION

To conclude the work in this thesis, this chapter discusses the
contribution each chapter has made, reflects on the use of terms such
as cognition and autonomy, and puts the results in the context of
the literature. The results presented in chapters 3, 4, and 5 have each
contributed towards the aim of using cognition to provide adaptivity
and homeostasis to a robotics system.

Section 6.1.1 discusses the use of the terms cognition and autonomy
in the literature and how this might affect the interpretation of
the work presented. Section 6.1.2 addresses the effect of using
different flocking algorithms in chapters 3 and 4. Section 6.1.3 ties
the cognitive decision-making formula derived in section 4.1 to
the formal mathematical models of decisions from the cognitive
psychology literature. Section 6.2 addresses the results in turn,
placing them in the context of the thesis aim, and detailing how
each chapter meets its objectives along with the contributions made.
Finally, section 6.3 presents potential avenues of future research, and
section 6.4 concludes the thesis.

6.1 REFLECTIONS ON THE USE OF COGNITION IN AUTONOMOUS
ROBOTS

The work in this thesis is motivated by a drive to understand the
fundamental basis of collective intelligence and cognition, with a
view to move swarm robotics from laboratory test cases towards real-
world applications. The work presented provides an incremental step
towards this goal, helping to provide the foundations for swarms of
robots to form identities, enabling them to work in environments
containing other swarms, as well as providing the ability to learn
about and adapt to placement of resources in the environment.

The evolution of animals in complex, hazardous environments gave
rise to complex behaviours. The ability to make decisions, to adapt,
and to learn from experience, gave some animals an advantage over
other animals, allowing them to survive for longer. The work in
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this thesis takes inspiration from this as the basis for a system that
is able to continually adapt and survive in a complex, real-world
environment, unaided by human operators—an autonomous system.

If swarm robotics is to move from laboratory test cases to real-
world applications, then new methods for providing autonomous
behaviour to robots will need to be developed. Cognition is a key
part of this, closely associated with autonomy in a number of ways.
The relationship between the concepts of autonomy and cognition are
discussed below, in section 6.1.1.

This thesis has focussed on two areas of collective intelligence.
First, by considering the problem of how multiple swarms are
able to work in the same environment, the identity algorithm was
developed, allowing for the emergent formation of identity in swarms
of robots through the use of a synchronisation algorithm. Second, the
problem of collective decision-making without distributed sensing
was addressed. The ability to make a decision repeatedly, in a timely
fashion, is essential to the long-running of real robotics platforms,
and distributed sensing can cause problems with this. By combining
cognitive decision-making with sensor desensitisation, a robot is able
to repeatedly make decisions, without leaders or distributed sensing.

The remainder of this section discusses the relationship between
autonomy and cognition (section 6.1.1), addresses the compatibility of
the two algorithms presented in this thesis (section 6.1.2), and finally,
puts the cognitive decision-making algorithm derived in section 4.1
in the context of the literature on cognitive psychology (section 6.1.3).

6.1.1 Autonomy and cognition

Many researchers have previously used a top-down, reductionist
approach to developing artificial homeostasis (Neal and Timmis, 2003,
2005; Vargas et al.,, 2005; Timmis et al., 2009). This approach, as
described in section 5.1, consists of building artificial systems that
mimic their biological counterparts—for example, artificial nervous
systems for controlling the robot, artificial immune systems for
adapting to changing environments, artificial endocrine systems to
help switch between behaviours. While this approach is effective, top-
down approaches can result in large architectures that are difficult
to scale. The complicated systems used by Neal and Timmis; Vargas
et al. are limited in how they can approach the complex problem of
autonomous behaviour.
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Cognition could provide the complex approach needed to ap-
proach the complex problem of autonomy. As discussed in detail
in (Vernon, 2015), autonomy and cognition are two closely-linked
concepts, stating that “cognition may be an important attribute of an
autonomous system.” (p.103). Vernon continues to discuss the links
between autonomy and cognition, specifically arguing that without
cognition, an autonomous system would be less robust in precarious
or changeable environments. The descriptions of autonomous and
cognitive systems are so close that it can be difficult to distinguish
the two. Why is one system described in terms of autonomy, one
in terms of cognition? It seems plausible that this problem comes
from the way these terms are defined. Autonomy and cognition both
have notoriously nebulous definitions (Boden, 2008). Furthermore,
the definitions that do exist are often inconsistent with each other.
This has resulted in a large number of ‘sub-forms’ of autonomy,
such as ‘behavioural autonomy’ (Froese et al., 2007) or ‘energy
autonomy’ (Melhuish et al., 2006), which describe the areas of the
system that are considered autonomous.

Cognition, as with autonomy, has many different definitions. The
large number of definitions for sub-types of autonomy or cognition
(in excess of 20 separate types and definitions (Schillo and Fischer,
2004; Vernon, 2015)) gives rise to the problem of how to develop an
‘autonomous’ or ‘cognitive’ system. While it might be possible to con-
struct a system that meets the requirements for one definition, there
are a large number of other definitions that contradict it. Because of
this, the work presented in this thesis has been based on one specific
definition. While this will inevitably not meet the requirements for
all cognitive systems, this definition also has evidence in biological
systems to support it (Cohen, 1992a,b; Mitchell, 2005).

Given the focus on swarm robotics, the work presented in this
thesis made use of Cohen’s (2000) definition of ‘distributed cognition’,
shown below. This aligns well with the distributed nature of swarm
robotics, and so was deemed to be the most appropriate definition of
cognition to use: (Cohen, 2000)

“Cognitive systems, I propose, differ strategically from
other systems in the way they combine three properties:
1. They can exercise options; decisions.

2. They contain within them images of their environ-
ments; internal images.
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3. They use experience to build and update their in-
ternal structures and images; self-organization.” (p. 64,

emphasis original)

The thesis aim focusses on the role cognition has in “adaptivity and
homeostasis in autonomous robots”. The system presented provides a
specific form of autonomy, described by Bickhard (2000). This form of
autonomous system is called a recursive self-maintenant system, and is
based on the idea that it can employ different processes or behaviours
(related to self-maintenance) depending on the environment it is
in. The behaviour of the Cognitive Adaptive Homeostasis (CAH)
architecture described in chapter 5 is such that it is specifically
aimed at altering its behaviour to survive as long as possible in the
environment. As its internal and external environments change, the
behaviour it employs varies accordingly. The associative memory in
the CAH architecture is able to learn about the environment through
previous experiences in order to adjust its behaviour as necessary.

The process of homeostasis consists of keeping a specific variable
from varying too far from a setpoint (Ashby, 1960). As such, homeo-
static behaviour works very well for simple systems like thermostats.
The problem with homeostatic systems is that the setpoint is either
fixed, or is only varied by an external agent (e.g. a human changing
the temperature on the thermostat). The mammalian body works dif-
ferently, however. While there are processes that exhibit homeostatic
behaviour, Sterling and Eyer (1988) suggest that the human body is
more complex. The idea of our body blindly maintaining a constant
internal environment is replaced by a predictive, adaptive system
that tries to balance the needs of our body with what is available
to it. This idea of allostasis (Sterling and Eyer, 1981, 1988; Sterling,
2004, 2012) can be thought of as a cognitive system overriding the
behaviour of the reactive homeostatic system based on environmental
pressures (Vernon, 2015).

The system presented in this thesis appears to be providing
something more than just homeostasis by combining it with cognitive
decision-making, and looks to be an appropriate starting point for
developing artificial allostasis. Further work is needed in order
to determine whether this system could meet the comprehensive
definition of allostasis provided by Sterling (2004), and section 6.3.3
considers how allostasis could be used to provide more efficient
control systems for robots.
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6.1.2  Flocking algorithms

Chapters 3 and 4 both present work based on the flocking of agents.
The identity algorithm presented in chapter 3 consists of linking a
synchronisation algorithm with the flocking algorithm controlling the
agents. In this case, the synchronisation algorithm is based on the
flashing of fireflies (Tyrrell et al., 2006), and the flocking algorithm
is Reynolds’ boids algorithm (Reynolds, 1987). Chapter 4 presents a
method of using a flock to make cognitive decisions, based on the
Olfati-Saber (2006) flocking algorithm. This section looks at how the
algorithms in each chapter are based on different flocking algorithms,
yet the results presented are still compatible with each other.

The identity algorithm is focussed on the effect of synchronisation
on the control algorithm. Provided that the synchronisation is used
to influence the alignment of agents, then the specific flocking
algorithm is less important. The decision-making algorithm, on the
other hand, does require a specific form of flocking algorithm. The
algorithm described by Olfati-Saber (2006) is based on pushing the
agents towards a lattice formation, helping to prevent agents from
overlapping each other. Reynolds’ (1987) boids algorithm, on the
other hand, has very little to prevent the agents from passing over
the top of one another, or from the flock compressing in response
to external pressures. Without this rigidity, the CDM algorithm
would not function in the way it does. The more rigid structure
provided by the quasi-lattice formation in Olfati-Saber’s algorithm
means that when the flock is presented with an environmental cue,
that information is transmitted across the flock quickly. For example,
if the flock is pushed or pulled from one side (such as by one
of the attractors), the other side responds very quickly, unlike in
Reynolds” (1987) boids where the flock is more likely to split or
disintegrate. Without Olfati-Saber’s algorithm, the CDM algorithm
would not function correctly: it would not be able to decide between
contextual cues and internal motive, the motive would be overridden
by context every time, as the information from the contextual cues
would not be incorporated into the motive.

There is a specific link between the Olfati-Saber’s (2006) flocking
algorithm and Reynolds’ (1987) boids algorithm (see (Olfati-Saber,
2006), section 6, pp. 16-17), where the algorithm provided by Olfati-
Saber is shown to “[embody] extended forms of all three rules of Reynolds
in a single equation”. This link between the two flocking algorithms
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shows that while all the results for the identity algorithm are presen-
ted using Reynolds” boids algorithm, the results are still applicable
for the Olfati-Saber flocking algorithm used for the decision-making
results in chapter 4.

If the CDM algorithm is extended to comprise of multiple flocks,
then the identity algorithm could be introduced to prevent the flocks
from interfering with each other during the decision-making process.
For example, consider an extension to the CDM algorithm that makes
use of multiple flocks and multiple attractors in a much larger
environment. As one attractor diminishes (and those agents in the
attractor leave), the rest of the flocks are already forming close to
the other attractors. By giving these flocks the ability to form distinct
identities, the agents leaving the first attractor will not interfere with
or influence other decisions until later. The process of maintaining
multiple swarms in the same CDM environment is analogous to the
flexibility exhibited by the ant colony optimisation (ACO) algorithm
(Dorigo et al., 1996), where sub-optimal paths through a graph are
maintained in case the optimal route becomes blocked. This also
provides a mechanism through which the problems associated with
not using distributed sensing can be alleviated by distributing flocks,

rather than individuals, across an environment.

6.1.3 Cognitive decision-making

This section discusses the question of how the cognitive decision-
making algorithm described in this thesis is different from conven-
tional decision-making algorithms in the literature. Returning to the
definition of distributed cognition from (Cohen, 2000):

“Cognitive systems, I propose, differ strategically from
other systems in the way they combine three properties:
1. They can exercise options; decisions.

2. They contain within them images of their environ-
ments; internal images.

3. They use experience to build and update their in-
ternal structures and images; self-organization.” (p. 64,

emphasis original)

The first point (as is the case with a large number of definitions of
cognition) is that the cognitive system must be able to make decisions.
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Cohen describes the process of decision-making in a cognitive system
as:

“[A] decision emerges...from a match between an en-
vironmental case and an internal motive. Decisions are

associations.” (p.69)

Section 4.1 discusses how an agent can make a cognitive decision.
Specifically, it must be able to do more than simply react to the envir-
onment: it must be able to react differently to the same environmental
context, based on the internal state of the agent. This is reduced to a
formula for cognitive decision-making:

Decision = f(motive, context)

An alternative (but similar) perspective comes from Wang and Ruhe
(2007). Wang and Ruhe define a mathematical model for the cognitive
process of making decisions:

“A decision, d, is a selected alternative a € A from a
nonempty set of alternatives A, A C U, based on a given
set of criteria C, i.e. :

d=f(A,C)
—fiAXC— A ACU A#D

where x represents a Cartesian product [, and U is the
universal set.]” (p.75, emphasis original)

This definition depicts how the cognitive process of making a decision
is very similar to that presented in section 4.1. By considering the
definition of Wang and Ruhe in the terms used throughout this thesis
then the similarity becomes more evident (‘context” to represent the
perceived environment, and ‘motive’ to represent the likelihood of
selecting an action in a context).

As ‘context’ is the perceived environment, this can be considered as
the set of alternatives, A, and motive—as the likelihood of selecting
one of the alternatives—can be considered as the set of criteria,
C. With these terms linked, the similarity of the two definitions
becomes evident (one derived from the definition of distributed
cognition in (Cohen, 2000), and one from a strict mathematical
model of the cognitive processes involved in decision-making. This
is an interesting congruence between two different approaches to
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defining decision-making, and is something that warrants further

investigation.

6.2 THESIS SUMMARY AND CONTRIBUTIONS

This section summarises the contribution of each chapter in turn,
considering the work in terms of the thesis aim and objectives, as

provided in the introduction.

THESIS AIM

To investigate whether distributed cognition can be used as the
basis for adaptivity and homeostasis in autonomous robots.

OBJECTIVES

1. Determine a method of providing a distributed system with the
ability to form a boundary.

2. Derive a form of collective decision-making that does not
require distributed sensing.

3. Build an architecture that uses distributed cognition to provide

adaptivity and homeostasis to an autonomous robot.

4. Test the ability of the autonomous robot to adapt to, and sustain

itself in, previously-unseen environments.

CHAPTER 3: EMERGENT IDENTITY FORMATION This chapter
details the development of an algorithm that allows a distributed
system to form a boundary. Due to the nature of swarm systems,
if a system is scaled up such that there are multiple swarms of agents
in the same environment, those swarms will require some method of
distinguishing themselves from each other. Without this self-not-self
distinction, the swarms will combine into one large swarm, rather
than remaining as distinct swarms.

The work presented in this chapter specifically addresses objective
1 (Determine a method of providing a distributed system with the ability to
form a boundary). The algorithm presented allows swarms of agents
to form identities, and to distinguish themselves from other swarms.
By considering the effects that the identity algorithm has on local
and global polarisation, along with the relative survival time for
swarms, the results presented show that swarms are able to form
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identities, and maintain those identities over time. As multiple sub-
swarms encounter each other in space, the identity that a sub-swarm
has formed helps to decouple its interactions with other swarms,
enabling the swarms to overlap and pass through the same areas of
space without disintegrating.

The results presented in this chapter surrounding the formation
of identities, and the general ideas of how distributed systems form
boundaries provides the first insights into the fundamental basis of
collective intelligence presented throughout this thesis. Furthermore,
there are certain similarities between the development of a collective
identity and the theories of autopoiesis from Varela et al. (1974),
where the boundary of a ‘unity” is defined from the interactions of
the components within it. This is outside the scope of this thesis, but
raises a number of interesting avenues of future research regarding
collective intelligence and its relationship to the behaviour of living
cells.

In terms of impactful applications in the real world, swarm robotics
is the natural outlet. When considering real-world applications of
swarm robotics, search-and-rescue applications are one of the most
promising routes, due to the potential for using divide-and-conquer
methods. This approach is only possible, however, if multiple swarms
are able to function effectively in the same environment. The work
presented in this chapter provides an incremental step towards
making this possible.

CHAPTER 4: COLLECTIVE DECISION-MAKING WITHOUT DISTRIB-
UTED SENSING This chapter presents the algorithm for, and
results from, a simulation of flock-based cognitive decision-making
(CDM). One of the key aspects of the CDM algorithm is the
development of leaderless directionality, based on emergent flock
motive. This attribute of the CDM algorithm is key to distinguishing
it from other flock-based methods in the literature. The use of
a flock in our CDM algorithm has the benefit of removing the
need for distributed sensing in the decision-making process. This
distinguishes it from a wide range of other collective decision-making
algorithms that rely on the aggregation of individuals to make a
decision (Schmickl and Hamann, 2011; Garnier et al., 2005). The
algorithm presented makes decisions in such a way that the system is

able to repeat the process without the swarm disintegrating, allowing
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the system to respond to changing environments, and to make
successive decisions.

The work in this chapter specifically contributes towards objective 2
(Derive a form of collective decision-making that does not require distributed
sensing). The work presented takes the definition of a decision from
(Cohen, 2000) and derives a formula (decision = f(context, motive))
from which the CDM algorithm is developed. Analysis of the
CDM is then undertaken in a simulated environment, specifically
focussing on the effect of varying the number of individuals, when
presented with either one or two attractors in the environment. This
analysis characterises the behaviour of the algorithm over a range
of population values (between 5 and 75), providing the information
required to effectively use it in a robotic control architecture.

The ability to make a decision is one of the few points that is
consistent across the definitions of cognition, and it is essential to
consider in any discussion of intelligence (Pfeifer and Scheier, 2001).
Comparing the work in chapter 4 with existing decision-making
algorithms, such as BEECLUST (Schmickl and Hamann, 2011), shows
that decision-making in distributed systems can occur in many
different forms. While distributed sensing is used by ant colonies,
it is highly likely that flocks of birds make decisions in a similar way
to the CDM. Reducing decision-making down to a formula consisting
of just environmental context and internal motive allows for different
methods of decision-making to be considered through the same
mechanisms. The congruence between the CDM and the work of
Wang and Ruhe (2007) shows that, even though the perspective of
decision-making might differ, the processes are often very similar.

CHAPTER 5: COGNITIVE ADAPTIVE HOMEOSTASIS IN ROBOTS
The final results chapter details the development of an architecture
for artificial homeostasis in robots, based on the cognitive decision-
making algorithm described in chapter 4. The CAH (Cognitive Ad-
aptive Homeostasis) architecture described in this chapter combines
the CDM algorithm from chapter 4 with an associative memory
to provide homeostasis and adaptivity to a robot. The architecture
developed is able to adapt its high-level behaviour based on the
decisions made by the CDM component. The CDM is set up to
provide internal motive, based on the state of internal sensors in the
robot. Furthermore, by providing the ability to associate the internal
motive of the robot (the output of the CDM component) with the
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environmental context (provided by the light sources in the arena),
the associative memory allows the robot to make cognitive decisions
at a higher level (robot level) as well as within the CDM component
(component level). These multiple layers of cognitive behaviour
are characteristic of collective and group cognition (Goldstone and
Gureckis, 2009; Trianni et al., 2011). This results in a system that is
able to make cognitive decisions about how to survive for extended
periods of time. This is indicative of something more advanced than
homeostasis, as discussed in section 6.1.1.

The work presented in this chapter specifically contributes towards
objectives 3 and 4. In targeting objective 3 (Build an architecture that
uses distributed cognition to provide adaptivity and homeostasis to an
autonomous robot), the architecture presented makes use of the CDM
system from chapter 4 by coupling the (virtual) environment of the
CDM to the internal sensors on the robot. This allows the attractors
to vary as the sensor values vary. The output of this CDM is passed
to the associative memory (CMM) that recalls the colour in the
environment to search for. This CMM acts as the ‘internal image’ to
the robot (Cohen, 2000), maintaining an ‘imprint” of the world it has
experienced over the course of the lifetime of the robot. The CMM
is trained by coincident ‘spikes” in the internal and external sensors
(e.g. when the ‘battery” internal sensor rises at the same time as the
‘blue” external sensor—this relates to a charging station under a blue
light in the real-world environment). This provides adaptivity to the
robot, as it is able to learn about new parts of an environment and
adapt its behaviour accordingly (for example, if the robot were to
find another charging station, it would store the new association in
the CMM and recall it as before). The robot is able to make decisions
about its current internal state through the CDM, and transfer this
to high-level behavioural changes in the environment. This process is
indicative of the basic process of homeostasis, and so shows that this
architecture provides the capacity for homeostasis in a robot.

In targeting objective 4 (Test the ability of the autonomous robot to
adapt to, and sustain itself in, previously-unseen environments), the robot
is presented with a laboratory environment, set up with either one or
two light sources (filtered to only present one colour each, in order
for the colour sensor to reliably distinguish them). The system is
able to simulate charging stations and high-temperature areas in the
environment. This is achieved by programming a small controller that
increases and decreases the internal sensors based on the brightness
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of specific colours in the environment. This environment is then used
to test how well the architecture is able to adapt to, and sustain itself
in an environment, having not seen it before. The CMM provides the
ability to learn about, and adapt to, the unseen environment, and
the homeostatic behaviour provides the ability to sustain itself over
extended periods of time, making use of the internal “imprint” of the
environment, as learnt by the CMM.

6.2.1 Summary of contributions

¢ A synchronisation algorithm can be used to form emergent
identities in swarms, allowing multiple swarms to operate in

the same area.

¢ Cognitive decision-making provides the ability to make mul-
tiple successive decisions without distributed sensing or leaders
within the swarm.

¢ Distributed cognition can be used to provide homeostatic and
adaptive behaviour to a robot.

6.3 FUTURE WORK

Over the course of this thesis, a number of avenues for potential
future work have been identified. This section discusses these in
relation to the work already presented. Three areas of future work
are presented, relating to: cognition within a swarm, in section 6.3.1;
swarm-level distributed memory, in section 6.3.2; and, allostatic load
and stress hormones, in section 6.3.3.

6.3.1 Swarm cognition

The first area of future work consists of extending the cognitive
architecture from single robots to a swarm of robots. Developing a
‘cognitive swarm’ is the next logical step in considering collective
intelligence, and how it relates to moving swarm robotics towards
real-world applications. Providing the swarm with the ability to react
to each other, and make decisions as a swarm as well as individually,
opens up new possibilities to the swarm system.

The CAH architecture presented in chapter 5 provides a robot with
the ability to make decisions based on the internal motive of the robot,
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and the environmental context in which it is situated. By connecting
robots together through the CAH architecture, we are able to provide
the motive of each robot to its neighbours” CMM. Connecting these
robots together in this way provides each robot with the ability to
make decisions based on the motives of all the robots around it, along
with the environmental context. This opens up the possibility of one
group of robots deciding to act in one way, and another group (within
the same swarm) deciding to act in a different way. When faced with
this conflicting decision at a swarm-level, the result could be the
swarm splitting into two sub-swarms. Using the identity algorithm
alongside the CAH architecture would then help to keep these two
sub-swarms separate once they move apart.

Real-world applications, such as search-and-rescue operations and
environment mapping, can be approached in a more efficient way if a
‘divide-and-conquer” approach is taken. By reacting to environmental
information during the course of a search-and-rescue operation, a
swarm of robots is able to make a decision about when to split to
cover more area. This could be as simple as detecting something
through a chemical sensor, or from finding a natural split in the
path (such as a Y-junction). If there is no obvious consensus among
the robots on which direction to take, then splitting into two groups
makes the most sense. Due to the nature of swarm robots (they react
to the presence of other robots), getting a swarm to split reliably
is surprisingly difficult. The CAH architecture allows the robots to
make associations between high-level behaviour and the motives of
the individual and the swarm. This provides the basic building blocks
to develop a system that can make decisions about when to split. The
identity algorithm is able to help the two groups of robots ignore
signals from those robots in the other sub-swarm, helping it to split
cleanly and reliably.

6.3.2  Endogenous fault detection through a swarm-level distributed memory

Section 6.3.1 presented a way of using the motive from other robots
to influence the decisions of the swarm, essentially connecting the
CMMs in each robot together. This section proposes an approach
to the problem of fault detection in a swarm by implementing a
swarm-level CMM, distributed across each robot. While these two

architectures are distinct, the ideas are related because the swarm-
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level memory could be built on top of the previous CAH architecture,
rather than replacing it.

Fault detection is a vital aspect of swarm robotics research. Con-
trary to early ideas that a large number of robots would provide
inherent robustness, swarms and swarm algorithms are surprisingly
fragile (Bjerknes et al., 2007; Bjerknes and Winfield, 2013). Recent
research in fault detection has aimed to circumvent this by making
use of an external robot tracking system (Millard et al., 2014), or by
helping to recharge the failed robot (Timmis et al., 2016). The tracking
system provides individual robots with information about whether
the swarm is behaving correctly, but would require a robot tracking
system in place for all applications—not something that is possible in
real-world applications. By using a distributed swarm-level memory
in place of this tracking system, the robots are able to determine what
is happening at the higher level, provided they can communicate with
other members of the swarm. Further to this, through the ability of
the CMM to generalise inputs (see section 2.3.2), if a robot fails, the
rest of the swarm is still able to recall the information that was on the
failed robot. The CMM allows this missing information in the input
pattern to be generalised, just like noise in a signal, and the stored
pattern is still retrievable.

Due to the hazardous nature of real-world applications, fault
detection is likely to be one of the most important topics in the
move from laboratory test cases to real-world applications. The
distributed, swarm-level memory proposed here provides the basis
for endogenous fault detection, that ultimately could be used for a
wide range of real-world problems, while providing insight into the

nature of organisational memory (Walsh and Ungson, 1991).

6.3.3 Allostatic load and stress hormones

The third avenue for future work addresses the idea of allostasis, as
discussed above in section 6.1.1. Allostasis is commonly associated
with ‘allostatic load’, a buzzword for the pathophysiology of chronic
stress. The mammalian body has methods for effectively handling
acute threats, such as the presence of a predator, in the form
of the ‘fight-or-flight’ mechanism. This is implemented using a
wide range of different internal mechanisms, largely centred around
stress hormones such as adrenaline, noradrenaline, and cortisol. By
implementing a similar system in a robotic platform, it might be
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possible to use stress hormones to alter the behaviour of a robot
to survive for longer. For example, implementing a fight-or-flight
mechanism into the robot would allow it to alter its internal state
rapidly, according to the presence of certain environmental cues. This
could include switching from passive to active sensing or increasing
its maximum speed and turning speed—essentially switching from
a power-saving mode to a high-power mode, in order to effectively
handle the situation presented to it.

6.4 CONCLUDING REMARKS

The distinction between biomimesis and bioinspiration is subtle, but
important. Both biomimesis and bioinspiration consist of exploiting a
natural solution to the problem we are trying to solve. The difference
comes from how the solution provided by nature is used. Biomimesis
consists of imitating (mimicking) the solution directly, such as the
tiny hooks on Velcro tape that mimic the structure of hooks found on
burrs (De Mestral, 1961). Bioinspiration, however, consists of taking
the essence of the natural solution and engineering an alternative
that works better for our purposes. Rajeshwar (2012) discusses this
in terms of early attempts at flight: mimicking the flight mechanisms
of birds (i.e. flapping wings) produces too little lift for a human to
reliably fly; by reducing this to the essence of what is needed (more
lift), we are able to construct planes with fixed wings that produce
sufficient lift and allow us to fly.

Vullev (2011) shows the difference between biomimesis and bioin-
spiration with the image reproduced in fig. 6.1. The two molecular
structures provide similar solutions to the same problem, but one
has been engineered, the other is mimicking nature directly. The
biomimetic structure has evolved over millions of years, whereas the
bioinspired structure has been engineered based on how the structure
of the biological system works. As such, without biomimesis the
bioinspired solution would not exist, as it took the initial mimicry
in order to determine how the system worked, to subsequently
improve upon it. This is the approach taken in this thesis. While
many previous researchers have mimicked natural systems (neural,
endocrine, immune, etc.) to achieve the behaviour required, the work
presented in this thesis attempts to take a step back, and use the
essence of what is going on (basic cognitive behaviour) in order to
achieve something similar with a simpler system. This follows the
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path described in (Vullev, 2011), which suggests that the move to
bioinspiration from biomimesis “represents the. .. nature of technological
development” (p.507).

bioinspired electrets

Figure 6.1: A simple example of the difference between biomimetic and
bioinspired approaches to a problem. The biomimetic electrets
are a result of natural selection over millions of years, whereas
the bioinspired electrets are engineered for a specific problem,
using inspiration from the natural system. Figure from (Vullev,
2011).

In conclusion, the bioinspired system presented in this thesis
provides insight into the fundamental basis of collective intelligence,
and represents an incremental step in the move from laboratory test
cases to real-world applications of swarm robotics. By making use of
distributed cognition, compared with previous reductionist (biomi-
metic) systems, adaptive homeostatic behaviour can be provided to
individual robots, and the use of CMMs in the architecture provide
the basis for moving to swarm-based systems (see section 6.3). While
only an incremental step, the work presented shows that the use of
cognition in robotic systems can be effective. Its close relationship
with autonomy makes it a topic that will provide a rich source of
interesting problems in the future.
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MATERIALS AND METHODS

This appendix details the statistical techniques, simulation platforms,
simulation analysis, laboratory setup, and light sensor readings made
use of throughout the work in this thesis. Section A.1 describes
the Vargha-Delaney A-test and the process of testing equivalence
through the Kolmogorov-Smirnov test. Section A.2 describes the
simulation platform, both the NetLogo and C++ versions, and
describes the process of ensuring the two simulations produce
consistent behaviour. Section A.3 describes the simulation robustness
analysis and parameter sensitivity analysis used throughout the
thesis to ensure the simulated results are being interpreted correctly.
Section A.4 describes the laboratory setup and filters required for the
LED lamps, along with light sensor readings from the robot sensor.
Finally, section A.5 describes the chromotaxis algorithm used by the
robot in chapter 5 to detect a gradient from a single sensor.

A.l STATISTICAL METHODS

This section describes the statistical methods used throughout this
thesis. Some statistical analysis is performed using conventional
methods such as the Mann-Whitney—-Wilcoxon test (Mann and Whit-
ney, 1947), but the less well-known Vargha-Delaney A-test, and
equivalence testing in the Kolmogorov-Smirnov test are explained
here in sections A.1.1 and A.1.2 respectively.

A.1.1  Vargha—Delaney A-test

The nature of computer simulations, especially the ease of rapidly
increasing the number of replicates, means that artificially producing
small p-values is a possibility. As such, conventional statistical tests
such as the Mann-Whitney—Wilcoxon U-test and Student’s ¢-test are
less useful in comparing simulation outputs. This problem comes
down to the nature of these tests, as described below.
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The Student’s t-test tests the null hypothesis that the means of two
populations are equal (Student, 1908). In doing so, the test acts on
a population of samples from the real distribution. As the number
of replicates increases, the amount of evidence the test has increases.
Increasing the amount of evidence allows much smaller variations in
the data to be detected. Without a way of measuring the effect this has
(i.e. how big is the change in means between the two populations),
a small p-value has little use. Pairing the p-value with an effect-
magnitude test provides a mechanism for achieving this.

The Vargha-Delaney A-test is such an effect-magnitude test (Var-
gha and Delaney, 2000). Running the A-test on two distributions, A
and B, returns the probability that a randomly-selected sample a € A
is larger than a randomly-selected sample b € B. As such, the A-test
can determine how dissimilar two distributions are and, unlike the
t-test, this value cannot be manipulated by increasing the number of

replicates. Typical values for the A-test are provided in table A.1.

Effect size ‘ A-test
No effect (A = B) | 0.5

‘Small’ effect > 0.56
‘Medium’ effect > 0.66
‘Large’ effect >0.73

Table A.1: The effect size and typical values for the Vargha—Delaney A-test.

A.1.2  Equivalence testing in KS test

The Kolmogorov-Smirnov (KS) test (Massey, 1951) is used in chapter
4 to compare distributions of highly-clustered data. The nature
of the experiments in sections 4.3.1 and 4.3.2 is such that the
distribution of data is clustered at the minimum and maximum
measured values (0% and 100%). Due to this highly-clustered nature,
switching comparatively few data points from one cluster to the
other has a disproportionately-large effect on the median. As a
consequence, conventional statistical methods such as the Mann-
Whitney-Wilcoxon (Mann and Whitney, 1947) that operate on the
differences of medians will not work with this data.

The Kolmogorov—-Smirnov (KS) test operates on the cumulative
distribution function (CDF), rather than the probability distribution
function (PDF). Consequently, it is less susceptible to the problems
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associated with highly-clustered data. The test consists of measuring
the maximum difference between two empirical CDFs (eCDF)—see

tig. A.1 for an example.

1

Cumulative Probability
e g o
~ <D @

o
o

Figure A.1: Two-sample Kolmogorov-Smirnov example. The KS statistic
(D) is shown by the black arrow between two eCDFs shown
in blue and red. Image courtesy of Wikipedia user ‘Bscan’,
distributed under CCO0 1.0 license.

Testing for equivalence using the KS test statistic is performed as
follows. The null hypothesis, Hy, is given that at some point ¢, the
eCDFs Fx and Fy differ by some amount greater than or equal to A,
hence:

Hy : |Fx(t) — Fy(t)| > A (A.1)
As such, we can use the KS test to calculate DT, hence:
Hy : DT > A = |max(Fy — Fx)| > A (A.2)

where A = 0.1601 (follows from Theorem 3.5 in (Gibbons and
Chakraborti, 2011), with &« = 0.05). Once we have D™ it is trivial
to determine whether to reject Hy.

A.2 SIMULATION DETAILS

The work presented in this thesis makes use of simulation more often
than real-world robots. The use of simulation drastically increases the
speed with which algorithms can be developed, even after the reality
gap is accounted for (Jakobi et al., 1995).
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The simulations described in sections 3.2, 4.2, and 5.2.3 are all based
on the NetLogo simulation platform (Wilensky, 1999). NetLogo is too
large and CPU-intensive to run on the robot directly, so the CDM
component (described in section 4.2) is implemented in C++ for the
CAH control architecture described in section 5.2.1.

This section describes the two simulation platforms, and details
the analysis undertaken to ensure the behaviour between the C++

simulation and NetLogo simulation were consistent.

NETLOGO  The NetLogo simulation platform (Wilensky, 1999) con-
sists of a customisable environment, and one or more massless agents.
The agents are able to interact with the environment around them,
and with other agents. The environment is divided up according to
a coordinate system. Each cell is termed a “patch’ of the environment.
Each patch stores information about its area in the environment (for
example, the concentration of chemicals, the temperature, or how
bright the light is, at that point in the environment). This information
can be queried (and if necessary, edited) by the agents. NetLogo
provides functions for pseudo-random placing of agents across the
environment, and the order with which the agents execute the control

code is also stochastic.

c++  The basic NetLogo simulation platform is too large and CPU-
intensive to be able to run on the Pi-Swarm robot platform (Hilder
et al., 2014). In order to implement the CDM simulation on the robot
for the CAH architecture, a stripped-down version of the NetLogo
simulation environment is implemented in C++. In order to reduce
the memory footprint, the static environment is removed, and all
environmental variables are calculated when they are required, rather
than storing each variable for each patch.

SIMULATION CONSISTENCY After developing the C++ simula-
tion, it needs to be tested against the original NetLogo simulation.
This process is essential because of the nature of swarm algorithms,
where a minute change at a low level can have drastically-large
effects at a higher level. For example, during the process of testing
the new C++ system, the behaviour of the agents was qualitatively
different from that of the NetLogo system. This was a result of a
minor implementation difference in the way the agents interact with
the environment. In the NetLogo system, when an agent looks ahead
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by one patch, it will round the coordinates of the patch to the nearest
value. In the C++ system, this same operation always rounded down
to an integer. While both are correct, this minor change caused large
changes in the behaviour of the swarm.

To ensure the C++ simulation used on the robot correctly produces
behaviour consistent with the NetLogo simulation, the equivalence
testing method described in section A.1.2 is used. Fig. A.2 shows
the result of running the experiment from section 4.3.1 on both
simulation platforms. The third plot in this figure shows the KS test
statistic, along with the A-test values when comparing the two sets of
distributions. For equivalence, the KS test statistic needs to be below
0.1601, and the A-test to be below 0.56, as described in section A.1.2
above. Both of these conditions are met.

Results from C++
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Figure A.2: Results from the simulation consistency experiment. By running
the experiment from section 4.3.1 on both C++ and NetLogo
simulation platforms, we are able to see any variation between
the two platforms. Each population value is run for 200
replicates, and for equivalence, we require KS < 0.1601 and
A < 0.56, as described in section A.1.2, above. The results show
that the two simulations exhibit equivalent behaviour.

A.3 SIMULATION ANALYSIS

Stochastic agent-based simulations, like those used in chapters 3

and 4, require a minimum number of replicates to be sure that any
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effects observed are a result of varying the parameters, and not an
artefact of the inherent stochasticity within the simulation (Read et al.,
2012). Furthermore, when varying the parameters of a simulation, it
is important to understand the amplitude of the effect that change
will make to the simulation, as shown by the minor change between
simulations in section A.2 above.

This section describes aleatory uncertainty and parameter sensitiv-

ity analysis, including any limitations that the analysis might have.

A3.1 Aleatory uncertainty analysis

Aleatory uncertainty (AU) analysis provides a mechanism through
which the minimum number of replicates for stochastic, agent-based
simulations can be ascertained. While section A.1.1 describes the
problems associated with too many replicates, the natural comple-
ment to this is what the minimum number of replicates is for any
given simulation. AU analysis tests the simulation with increasing
numbers of replicates until the variation between replicates from the
inherent stochasticity is too small to have an effect on the results of the
experiments. At this stage, any changes observed in the simulation
must be a consequence of varying a parameter, rather than the
stochastic nature of the simulation.

Example spartan output for AU analysis is shown in fig. A.3. As
the number of replicates increases, the variation reduces until the
variation is low enough to not affect the results of an experiment
(i. e. when the line drops beneath the ‘small effect’ line, see table A.1).

A.3.2  Parameter sensitivity analysis

Parameter sensitivity analysis provides a method of quantifying the
effect each parameter has on the behaviour of the simulation. The
behaviour of a simulation will be more sensitive to certain parameters
than to others. By holding each parameter at their baseline values,
and varying each in turn, the analysis provides an accurate measure
of how quickly the behaviour changes, and hence how sensitive the
simulation is to that parameter. This method is called ‘one-at-a-time’
analysis (Read et al., 2012; Alden et al., 2013).

Example spartan output for parameter sensitivity analysis is
shown in fig. A.4. This is an example graph taken from the CDM
simulation analysis in chapter 4. In this particular example, the
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Figure A.3: Example AU analysis output from spartan. As the number of
replicates is increased (Sample Size, x-axis), the variation of
behaviour decreases, as measured by the A-Test. This particular
graph shows that the simulation requires a minimum of 200

replicates to be sure that any effects witnessed are a result of
changing a parameter.

population parameter is varied, and the effect on the number of
agents that remain in the attractor after a set period of time is
measured. spartan produces a graph like this to help visualise the
effect of changing this parameter. It is clear from this example that
varying the population parameter by 10-15 agents is enough for a
‘large” difference in the A-test score, which is sufficient to quantify
the sensitivity of this particular metric to the population parameter.
It is worth noting that this will vary according to the metric used.

A4 LIGHT SENSOR READINGS

This section details how the colour filters were chosen for the
experimental setup, including finding the distances that the robot
needs to move in order to detect the light gradient for the filters.

FILTER COMPARISONS Fig. A.5 shows the readings from the

RGB sensor when stationary under a series of different filters. The
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Figure A.4: Example one-at-a-time analysis output from spartan. This
particular example is varying the population parameter (i. e. the
number of agents in the simulation). As the number of agents
increases, the effect on the metric varies. In this case, the
metric is the number of agents in the attractor from the CDM
simulation in chapter 4. (N.B. While the A-test score increases
as the population value increases, the number of agents in the
attractor actually decreases. This is a result of the A-test score

being symmetrical around 0.5, and has no effect on the analysis.)

combination of two filters (yellow-green and orange) was best when
the robot has to detect the gradient.

While fig. A.5 shows the RGB readings for a series of filters when
the robot is stationary, fig. A.6 shows the readings for different filters
when the robot is moving. Fig. A.6a shows the light values for a
red filter. Almost all the blue and green has been filtered out (a
few values drop below zero after removing the background light).
Comparing this with fig. A.6b, which shows the light values when
using a combination of yellow-green and orange filters, we see that
the absolute values for the combination of filters is much higher
(red values in the region of 500-1500, compared with 100-500 in
the pure red filter). This combination of filters was used for this
reason, as it lets a much larger amount of light through. For those

experiments that require a second colour in the environment, the
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Light levels from different colour filters
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Figure A.5: Red, green, and blue light levels as recorded by a stationary
robot under a series of different colour filters. Filter colours (I-r):

blue, red, yellow-green, orange.

blue filter (fig. A.6c) lets through as much red light as the red filter,
indicating that the robot would struggle to distinguish between the
two light sources.

While these graphs show how easily the sensor can distinguish
between colours while under bright light, we are interested in
how easily it can perform this task when further away from the
light source. Without this information, the limits of the system are
not certain, in terms of locating light sources in the environment.
Fig. A.7b shows the measurements taken during similar tests at Ocm
(as above), 50cm, and 100cm perpendicular from the source (see
tig. A.7a for a diagram depicting the experimental setup).

Fig. A.8 shows a heatmap of the sensor readings over a 1m? arena.
This was built up by taking between 55 and 60 measurements! across
a Im strip at 10cm intervals from the light source (see fig. A.8b for a
diagram showing the experimental setup).

Fig. A.8a shows the heatmap corresponding to the baseline meas-
urements of red light across the environment. The baseline measure-
ments are taken with no light sources switched on, to characterise the
background light in the environment. This also serves as a method
for validating the method for taking measurements, by comparing
the heatmap (fig. A.8a) with a photo of the setup (fig. A.8b), and
observing that the heatmap correctly characterises the shadow in the
top-left corner, along with the progressive decrease in light towards

we set the robot up to take measurements every 0.25sec, but the robot would
occasionally take slightly longer to traverse the environment, resulting in the
variation in measurements we see here. The number of measurements were
truncated in order to form a matrix containing all the results.
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(a) Light sensor responses for red filter.
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(b) Light sensor responses for yellow-green and
orange filters.
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(c) Light sensor responses for blue filter.

Figure A.6: Light sensor responses for a slow-moving robot under different-
coloured filters. The robot traverses the environment in a

straight line across the Ocm line shown in fig. A.7a.

the bottom-right corner, resulting from the increase in distance from
the workshop lights in the lab.
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(b) Slow-moving tests at Ocm, 50cm, and 100cm. As the robot
traverses the environment at increasing perpendicular distances,
the prominence of the red light decreases compared with the blue

and green.

Figure A.7

Following the same process as for fig. A.8a, fig. A.9 shows how the
robot perceives the 1m? arena, and tig. A.10 shows the effect that the

light source has on the environment (i. e. the difference between the

raw sensor data in fig. A.9 and the baseline data in fig. A.8a).
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Red baseline light readings. 1m square setup
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robotic platform in a series of baseline due to shadows in the environment.
measurements.

Figure A.8

GRADIENT DETECTION  The gradient test shows us how easily the
robot can detect changes in the gradient of light. By setting the robot
up a set distance from the light source and having it steadily move
adjacent to the light source at a constant speed, the resolution of the
system can be determined, in terms of detecting small changes in
light. This information can then be used to determine the minimum
distance that the robot would have to travel before resampling the
environment. These values directly influence the behaviour of the
algorithm described in appendix A.5.

The robot follows the 50cm grid-line shown in fig. A.8b, which is
50cm from the light source at its closest. By picking this line, the
ability of the robot to detect changes in light when further from the
light source can be calculated.

Based on the values from the blue filter in fig. A.11, the following
is calculated: the robot moved 50cm in 33 timesteps, giving 1.5152cm
per timestep. The change in light per cm can therefore be calculated

as 3.68acu cm™!

, meaning that to detect a colour change of 50, the
robot needs to move approximately 14cm. Similar results follow for

the yellow-green filter.
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Red light readings. 1m square setup
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(a) Heatmap showing the concentration of red light
as measured by the robotic platform when the
light source is enabled with yellow-green and
orange filters.
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(b) Heatmap showing the concentration of green
light as measured by the robotic platform when
the light source is enabled with yellow-green
and orange filters.
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(c) Heatmap showing the concentration of blue
light as measured by the robotic platform when
the light source is enabled with yellow-green
and orange filters.

Figure A.9: These values are those as actually measured by the robot

(including any background light), and so are an accurate

representation of what the robot will be reacting to.
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Red adjusted light readings. 1m square setur
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(a) Heatmap showing the concentration of red light
as provided by the light source with yellow-
green and orange filters.
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(b) Heatmap showing the concentration of green
light as provided by the light source with
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Figure A.10: These values are those as measured by the robot, after being
adjusted for the background light, to show how the light
sources affect the environment.
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Gradient detection test, blue filter.
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(b) Yellow-green and orange combination filters.

Figure A.11: Colour sensor readings from a robot travelling along the 50cm
line (see fig. A.7a). Data used as the basis for calculating the
minimum distance to travel in order to detect a given change

in light.
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A5 CHROMOTAXIS FROM A SINGLE SENSOR

The architecture described and demonstrated in simulation in sec-
tion 5.2 relies on a control architecture that uses a light-seeking
circuit similar to Braitenberg’s (1986) vehicles 2a and 2b (“fear” and
“aggression”). This very simple circuit drives the robot towards the
source of light that it is currently trying to find (or drives it away
when it is trying to avoid light).

The robotic platform—as described above in section 5.2.2—only has
one colour sensor on it. This poses a problem, as the Braitenberg
vehicles require two sensors to be mounted on them in order to
detect a gradient in the light. To solve this problem, an algorithm
is developed for the robot to search its way up (respectively, down)
the light gradient. Fig. A.12 and code listing A.1 show how this
algorithm works. The robot moves to the three points, A, B, and C,
to take measurements. It then calculates the highest (lowest) of the
measurements taken, and continues in the appropriate direction. If
the highest (lowest) of the measurements is A, it returns to A and
performs a 180° turn. The effect this algorithm has when repeatedly
applied is shown in fig. A.12b. In order to prevent the robot getting
stuck, the algorithm alternates whether the robot moves to the left or
to the right for C, and keeps B in line with its current direction.

While this algorithm is used to seek out a light source in the
environment (i.e. phototaxis), for the purposes of the experiments
in chapter 5, the ability to seek out a specific-coloured lamp in the
environment is requird (i.e. chromotaxis). The algorithm described
is sufficient to perform chromotaxis in theory (and in simulation),
but in reality there are imperfect filters on the lamps, which will, for
example, let some red light through a blue filter. Fig. A.13 shows the
colour that is detected by the colour sensor beneath each lamp in the
environment.

The problem with imperfect filters is that when the robot is sat
under the red light, and wants to go to the blue light, every direction
it heads in will have less blue light than where it currently is, as it
will have less light overall. As such, the robot will be stuck under
the red lamp because it has no way of telling the difference between
the two lamps. To deal with this, in multi-lamp setups the colour-
measurement code is altered to return the difference between the

colour it is searching for and the other colour in the environment.
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Listing A.1: Pseudo-code algorithm for light-seeking behaviour

// take measurements
move_to(B);
b = measure();

move_to(A);
a = measure();

move_to(C);
Cc = measure();

// compare measurements to find highest value
if (c>a & c > b)
{
// already at C, just return
return;
}
else
{
// currently at C, move back to A
move_to(A);
if (a>b & a > ¢)
{
// at A, facing wrong way
turn(180);
return;
}
else
{
// currently at A, move to B
move_to(B);
return;
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(B)
(A—C

(a) Light-seeking algorithm.
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(b) Expected path of robot climbing a light gradient.

Figure A.12: (a) The basic chromotaxis algorithm, and (b) the longer-term

behaviour of the algorithm as it climbs a gradient.

This will return a weaker signal for the colour it is searching for, but
in return the robot is less likely to get stuck under the wrong lamp.
This change should have no effect of the validity of the reported
results. The experiments described are testing the idea that the CAH
architecture can perform certain tasks. The robot in these experiments
is making use of coloured lamps but in any real-world situation the
robot would have a more advanced platform, capable of localisation
and mapping (Smith et al., 1988; Durrant-Whyte and Bailey, 2006)
and could make use of an on-board camera that is able to store
more information about the environment, rather than just relying on

a simple colour gradient.



A5 CHROMOTAXIS FROM A SINGLE SENSOR

Blue filter light levels
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Figure A.13: Graphs showing the difference in light levels between the two
colour filters used in the experiments. The blue filter (a) has
a prominent blue component (as expected), but also has a
significant portion of red and green. The combination of filters

in (b) reduces this problem for the red component.
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