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Abstract

In MIMO OFDM systems, channel estimation and detection are very important. Pilot-based

channel estimation using BEMs is widely used for approximating time-frequency variations

of doubly-selective channels. BEMs can provide high estimation performance with low com-

putational load. Data-aided channel estimation outperforms the pilot-based estimation. The

data-aided estimation iteratively improves estimates using tentative data symbols and cor-

responding adaptive weights (reweighted channel estimation). These weights are computed

assuming Gaussian data errors, which is inapplicable to OFDM. In this thesis, this assump-

tion is however shown to improve the channel estimation performance. The reweighted chan-

nel estimation is shown to significantly outperform the unweighted estimation. Most often

used mismatched receivers assume perfect channel estimates when detecting data symbols.

However, due to limited pilot symbols and data errors, the channel estimates are imperfect,

resulting in a degraded detection performance. The optimal receiver without explicit channel

estimation significantly outperform mismatched receivers. However, its complexity is high.

To reduce the complexity, a receiver that combines mismatched and optimal detection is

proposed. The optimal detection is only applied to data symbols unreliably detected by the

mismatched detector, identified using weights computed in the reweighted estimator. The

channel estimator and the optimal receiver require the knowledge of channel statistics, which

are unavailable and difficult to acquire. To overcome this, an adaptive regularization using

the cross-validation criterion is introduced, which finds a regularization matrix providing best

channel estimates. The proposed receiver has a reduced complexity than the optimal receiver

and provides close-to-optimal detection performance without the knowledge of channel PDP.

The adaptive regularization is extended to joint estimation of the Doppler-delay spread and

channel. The Doppler and delay spread corresponding to the optimal regularization are se-

lected as their estimates. This approach outperforms other known techniques and provides

channel estimation performance close to that obtained with perfect channel statistics.
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Overview

In MIMO OFDM systems, the acquisition of channel state information with great precision

is very challenging. Many receiver schemes in the literature are evaluated assuming the per-

fect knowledge of the channel state information. However, such information is unavailable

in practice. Therefore, channel estimation is crucial in MIMO OFDM receivers. Pilot-based

channel estimation is most often used to estimate the channel at pilot locations. Then, chan-

nel estimates at data locations are obtained through interpolation [1]. BEMs are widely used

in the channel estimation to approximate time and frequency variations of the channel [2–10].

When BEMs are used in pilot-based channel estimation, they provide high accuracy channel

estimates jointly at pilot and data locations with low complexity. However, the pilot-based

channel estimation can result in a degraded detection performance especially at low Signal-

to-Noise Ratio (SNR) and in high Doppler spread and delay spread environments.

A better channel estimation can be achieved by using tentative estimates of data symbols

in an iterative manner. The tentative estimates of data symbols can be obtained iteratively

1



from the output of the turbo decoder [6,11,12]. However, the complexity of iterative receivers

with turbo decoding is very high [6] and this limits their practical implementation. Many

low-complexity iterative turbo receivers have been proposed to address this issue [13–15].

The tentative estimates of data symbols also can be obtained iteratively from the output of

a demodulator without using the turbo decoder [16,17]. Although this scheme improves the

estimation performance, the improvement is limited due to errors in the tentative data esti-

mates [11,18]. In [18] tentative estimates of data symbols with weighting were proposed. The

weighting is used to limit the contribution of erroneous tentative estimates of data symbols

into channel estimates, and thus improving the estimation performance.

Iterative channel estimation using tentative estimates of data symbols can provide extra

improvement in the detection performance over that of the pilot-based channel estimation.

However, in the case of a small number of pilot symbols and errors in the tentative data

estimates, the detection performance is limited. A better detection performance is obtained

by using optimal detection [19] that jointly processes the received data and pilot symbols

without explicit channel estimation. In [19], the optimal detection was derived and investi-

gated in MIMO uncorrelated fading channels. The optimal detection with imperfect channel

knowledge outperforms mismatched detection (i.e., a minimum distance detector that as-

sumes perfect channel estimates) with Maximum Likelihood (ML) channel estimates. In [20],

a general optimal detection with imperfect channel knowledge was proposed and investigated

for a MIMO OFDM system in frequency-selective fading channels. The optimal detection

was shown to outperform mismatched detectors with ML and Linear Minimum Mean Square

Error (LMMSE) channel estimates. Although the optimal detection provides high detection

performance, it has a high computational complexity. In this thesis, we investigate the per-

formance of the optimal detection and its complexity reduction in doubly-selective channels.

A new receiver is proposed that combines the mismatched detection with iterative channel

estimation using weighted tentative estimates of data symbols as in [18] and the optimal de-

tection. This new receiver reduces the complexity of the optimal detection while maintaining

its high detection performance. The optimal receiver, the mismatched receiver, and the new

proposed receiver are designed using a channel regularization matrix obtained from the full

knowledge of the channel PDP. The channel PDP is usually not available and it is difficult

to estimate in practice. Therefore, more practical approaches for the channel regularization

are proposed such as adaptive model-based uniform regularization [21]. This regularization

approach shows a performance close to that with known channel statistics. Therefore, the

2



performance of the optimal receiver and the proposed receiver are investigated using the

adaptive regularization.

The adaptive regularization in [21] does not take into account the Doppler spread which

is unknown in practice. Thus, in this thesis, we extend the adaptive regularization approach

to joint Doppler spread, delay spread and channel estimation in doubly-selective channels.

The Doppler frequency estimates of such a scheme are compared with that of the conventional

Doppler frequency estimates [22]. Also, Mean Square Error (MSE) performance of channel

estimates using this scheme are presented and compared with that of LMMSE channel esti-

mates.

1.2 Aims

Recently, MIMO OFDM systems have gained a lot of attention and have been deployed in

various wireless communication standards. For the last two decades, an extensive amount of

research has been conducted to propose practical designs for the MIMO OFDM receivers with

improved performance and reduced complexity. In this thesis, we are motivated to design

MIMO OFDM receivers that match these criteria.

The aims of this research are the following:

• To improve the channel estimation for MIMO OFDM systems in doubly-selective chan-

nels.

• To reduce the computational complexity of detection in MIMO OFDM systems while

maintaining close-to-optimal detection performance.

• To investigate the channel estimation in MIMO OFDM receivers without the knowledge

of channel statistics.

1.3 Contributions

The contributions of this research include the following:

• The weights derived in [18] assuming Gaussian data errors, although not optimum for

OFDM, are proposed for MIMO OFDM systems. The iterative channel estimation with

3



these weights has been investigated in MIMO OFDM under downlink LTE scenarios.

It has been shown that this approach outperforms the iterative unweighted channel

estimation in doubly-selective channels.

• A new receiver with BEM channel estimation and selective optimal detection is pro-

posed for MIMO OFDM systems. This receiver combines the mismatched detection

with the reweighted LMMSE BEM channel estimation and the optimal detection in

order to provide an improved performance with a reduced complexity. Tentative esti-

mates of data symbols and weights are obtained from the reweighted LMMSE BEM

channel estimation/detection. The weights are used to identify unreliably demodulated

data symbols to which the optimal detection is applied (therefore this is called the

selective optimal detection). Simulation results show that a very small percentage of

received data are detected by the optimal detection leading to a low complexity. The

selective optimal detection has a performance that is very close to that of the optimal

detection.

• The new receiver with BEM channel estimation and adaptive model-based regulariza-

tion, which does not require the knowledge of channel statistics, is investigated. The

results show that the receiver provides a performance that is similar or close to that of

the regularization with full knowledge of the channel statistics.

• A joint Doppler frequency, delay spread and channel estimator for doubly-selective

channels is proposed. The proposed technique has been shown to provide the Doppler

frequency estimation performance significantly better than that of the conventional

Doppler frequency estimator. The MSE of channel estimates obtained by this scheme

is significantly lower than that of channel estimates obtained by the channel estima-

tor using the diagonal loading regularization, and is very close to that of the LMMSE

channel estimates.

• A re-adjustable joint Doppler frequency, delay spread and channel estimation in doubly-

selective channels is proposed. The re-adjustable estimator provides more improvement

in the estimation performance of the Doppler frequency and delay spread to that of the
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joint estimator.

1.4 Thesis outline

The thesis chapters are divided into the following:

• Chapter 2: Fundamentals of MIMO OFDM channel estimation and detection

In this chapter, the basics of OFDM, MIMO setup and downlink LTE sub-frame struc-

ture and its design parameters are provided. The doubly-selective channel, Clarke’s

channel model and Jakes’ channel model are discussed in details. The basics of channel

estimation using BEMs are introduced. BEMs such as : Discrete Prolate Spheroidal

Sequences (DPSS) and parabolic B-splines are briefly discussed. Also, a brief descrip-

tion of turbo coding and decoding is provided.

• Chapter 3: Data-aided reweighted iterative channel estimation for MIMO

OFDM

In this chapter, the reweighted iterative LMMSE BEM channel estimation for MIMO

OFDM systems is considered. The weights optimized for Single Carrier-Frequency Di-

vision Multiple Access (SC-FDMA) are proposed to be also used in OFDM systems.

These weights are used iteratively in the reweighted channel estimation. Numerical

results show that the reweighted iterative LMMSE BEM channel estimation/detection

outperforms the unweighted iterative LMMSE BEM channel estimation/detection in

single-user downlink LTE scenarios.

• Chapter 4: Selective detection with adaptive channel estimation for MIMO

OFDM systems

In this chapter, a multi-stage channel estimation and detection scheme with an symbol-

by-symbol selection scheme for a reduced complexity optimal detector (the selective

optimal detector) in MIMO OFDM systems is proposed. In this scheme, the optimal

detector is only applied to unreliably detected data symbols. The reliably received

data symbols are detected by a mismatched detector. The new scheme benefits from

the improvement in the detection performance provided by the optimal detector while

reducing its high computational load. The selection of received data symbols for the
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optimal detector is based on a threshold to weights. The weights are obtained as ex-

plained in Chapter 3. We investigate the performance of this new proposed selective

detector, the optimal and mismatched detectors with different regularization schemes

in single-user downlink LTE scenarios. The regularization schemes are: LMMSE reg-

ularization, model-based uniform regularization, adaptive model-based regularization,

and diagonal loading. Our results show that the selective optimal detector has a perfor-

mance similar to that of the traditional optimal detector. Also, the performance of the

detector with adaptive regularization is close to that of the detector with the LMMSE

regularization.

• Chapter 5: Joint Doppler-delay spread and channel estimation in doubly-

selective channels

In this chapter, a new joint Doppler-delay spread and channel estimator is proposed for

doubly-selective channels. This estimator precomputes a set of regularization matrices

defined by a set of Doppler frequencies and by a set of delay spreads. Then, using the

dichotomous search, it selects the optimal regularization, and its corresponding Doppler

frequency and delay spread based on the Generalized Cross-Validation (GCV). The re-

duction of the memory load for the proposed estimator using the properties of the BEM

matrix and channel covariance is discussed. This estimator has been shown to provide

close-to-optimal channel estimates. However, at low to medium Doppler frequencies,

the proposed estimator is affected by the choice of a GCV constant. Therefore, a re-

adjustable joint Doppler-delay spread and channel estimation is proposed to take the

effect of the adjusted constant into account and to further improve the estimation per-

formance. The performance of the re-adjustable joint estimation is compared with that

of the original joint estimation. The proposed joint estimator and re-adjustable estima-

tor provide channel estimates without the knowledge of the channel statistics close to

that of the LMMSE channel estimator. The re-adjustable estimation provides an extra

improvement in the estimation of the Doppler frequency and delay spread.

• Chapter 6: Conclusions and future work

In this chapter, conclusions and discussion on the possible future work are provided.
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1.5 Notation

In this thesis, capital and small bold fonts are used to denote matrices and vectors, respec-

tively; e.g., W is a matrix and w is a vector. Elements of the matrix are denoted as wi,j .

Elements of the vector are denoted as wi. We also denote: (·)T the matrix transpose; (·)H

the Hermitian transpose; tr(·) the trace operator; || · || the vector norm; (·)∗ the complex con-

jugate; ⊗ the Kronecker product; diag(·) a vector of diagonal elements of a square matrix;

| · | determinant of a matrix; E(·) the expectation operator; IM an M ×M identity matrix;

0M is an M ×M zero matrix; NC(a,C) a complex Gaussian Probability Density Function

with a mean a and covariance C.
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Chapter 2

Fundamentals of MIMO OFDM

channel estimation and detection

Contents
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2.3 Downlink LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 MIMO principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Doubly-selective channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 LTE propagation channel models . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 BEM channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Pilot-based channel estimation using BEMs . . . . . . . . . . . . . . . . . . 26

2.11 Linear MIMO mismatched detection . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Optimal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.13 Turbo coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Introduction

The MIMO technology provides many advantages in wireless communication systems, such

as: spatial diversity, high spectral efficiency, high data rates, improved reliability and cover-

age [28]. These advantages make the MIMO technology very attractive for the deployment

in wireless communication systems. The advances in MIMO technology resulted in its imple-

mentation in current commercialized wireless communications standards [29–32].
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The early research on MIMO focused on basic spatial diversity to reduce the degra-

dation in the performance caused by multipath propagation [33, 34]. In [33] and [34], op-

timal combining was introduced. In 1994, Paulraj and Kailath [35], pioneered the use of

spatial multiplexing with multiple antennas at the transmitter and the receiver. In [36],

Telatar derived the channel capacity for MIMO systems for a single user with and without

fading. His computations showed that the channel capacity is directly proportional to the

number of transmit and receive antennas. In 1996, G. Foschini proposed Bell Laboratories

Layered Space-Time (BLAST) [37]. Then, Vertical-Bell Laboratories Layered Space-Time

(V-BLAST) was proposed by P. Wolniansky et al. [38]. In 1998, Alamouti [39] proposed a

simple transmit diversity scheme that requires less processing at the receiver and provides a

good performance. Currently, a lot of research is conducted to improve the MIMO technology.

Future wireless communication systems will require high data rate transmission with high

reliability and receivers with low complexity. The combination of MIMO and OFDM tech-

nologies can provide most of these requirements. However, the computational complexity

of MIMO OFDM receivers can be high. A MIMO receiver with an optimum data detec-

tor [19, 20, 40–42] that minimizes the probability of errors in detection decisions and uses

an exhaustive search over all possible transmitted data symbols, can provide a high detec-

tion performance. However, the optimal MIMO detection is very complicated, especially in

large MIMO systems [20]. Another option would be the use of sub-optimal linear detection

schemes that have lower complexity, such as: the Zero-Forcing (ZF) detection and Mini-

mum Mean Square Error (MMSE) detection [43]. Although these detection schemes have

lower complexity, they can result in a degraded performance [43]. These detectors treat the

channel estimates used in the detection as perfect, which is not the case in practice. There-

fore, such detectors are called mismatched detectors [19, 20]. In this thesis, we will propose

practical approaches to improve channel estimation and detection in MIMO OFDM receivers.

In this chapter, we discuss fundamentals of MIMO and OFDM technologies, the im-

plementation of MIMO OFDM in the LTE downlink, doubly-selective channels, the fading

based on Clarke’s and Jakes’ channel models, the channel estimation based on BEMs, linear

mismatched detection and basics of channel coding with LTE turbo coding and decoding.
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2.2 OFDM basics

The earlier work on OFDM can be dated back to 1966 in a paper published by Robert W.

Chang [44]. Chang proposed a new scheme for the simultaneous transmission of signals in

a band-limited channel without taking into account the effects of Inter Carrier Interference

(ICI) and Inter Symbol Interference (ISI). In 1971, the Discrete Fourier Transform (DFT)

was introduced to the OFDM modulation and demodulation [45], which resulted in a more

efficient processing. In [45], a guard interval was used between OFDM symbols to avoid the

ICI and ISI. At this point, the benefits of deploying OFDM was reduced due to the loss of

sub-carriers orthogonality. In 1980, the Cyclic Prefix (CP) was suggested in [46] as a solution

to the orthogonality problem between sub-carriers.

In general, OFDM is a digital transmission technique that transmits information on a

number of overlapping and orthogonal narrow-band sub-carriers (frequencies) instead of a

single wide-band sub-carrier. The overlapping of the narrow-band sub-carriers results in

a high spectral efficiency of OFDM. Every narrow-band sub-carrier can transport infor-

mation for a different user, e.g., as in the Orthogonal Frequency-Division Multiple Access

(OFDMA) [29,47]. In wide-band communication systems, the modulation bandwidth is typ-

ically larger than the channel coherence bandwidth. This causes frequency-selective fading.

The frequency-selective fading is very difficult to estimate and equalize. With OFDM, the

channel between every two sub-carriers can be made approximately constant (i.e., flat fading

channel). This makes OFDM more resistant to the channel frequency-selectivity. As the

channel equalization in OFDM is often performed in the frequency domain, it is transformed

into a simple multiplication operation [48].

Figure 2.1 shows the structure of one OFDM symbol in the frequency domain with CP.

Guard sub-carriers (null sub-carriers) are typically placed in the frequency domain at both

sides of an OFDM symbol to reduce ISI between every two consecutive OFDM symbols [49].

The ISI happens due to multipath propagation. Pilot sub-carriers are known at both the

transmitter and the receiver; they are used to perform channel estimation and synchroniza-

tion at the receiver. The Direct Current (DC) sub-carrier is typically a null sub-carrier, which

corresponds to a zero frequency.
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Figure 2.1: OFDM symbol.

In order to avoid the loss of orthogonality due to the ICI, the CP is appended at the be-

ginning of each OFDM symbol [46]. The CP, as shown in Figure 2.1, is a copy of the end part

of the OFDM symbol. Although the appended CP causes a loss in the spectral efficiency, its

role in maintaining the orthogonality justifies this loss. The CP allows converting the linear

convolution between the transmitted OFDM signals and the frequency-selective channel to

a circular convolution operation [50]. Thus, the effect of the channel frequency-selectivity is

limited to point-wise multiplication of the transmitted signal symbols and the channel fre-

quency response. This way, the CP preserves the orthogonality and eliminates ICI between

sub-carriers. The orthogonality between sub-carriers using the CP is maintained as long as

the CP is longer than the length of the channel impulse response. Therefore, the length of

this CP interval is usually selected to be longer than the expected delay spread in the channel.

The main disadvantage of OFDM is that it has a high Peak-to-Average Power Ratio

(PAPR) [51]. The high PAPR results from OFDM having high peak values in time domain

as many sub-carriers are added by the IFFT. The efficiency of power amplifiers at the trans-

mitter is degraded due to the high PAPR [52]. Many solutions were proposed to reduce the
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PAPR value in OFDM [51,53]. However, the high PAPR is more critical in the uplink where

the battery energy of the User Equipment (UE) is limited. In the downlink, there is more

freedom in the power requirement. Thus, OFDM is used in the downlink scenarios of many

current technologies [29–31]. Another disadvantage of OFDM is its sensitivity to the carrier

frequency offset and Doppler spread [54, 55]. The OFDM frequency offset is caused by the

mismatch in the frequency of the local oscillators in both the transmitter and the receiver.

Another cause for the carrier frequency offset is the Doppler shift which results from the

movement of both the transmitter and receiver or the objects surrounding them. The carrier

frequency offset and Doppler spread cause ICI which results in the loss of the sub-carriers

orthogonality.

OFDM is adopted in many wireless standards such as: LTE [29], Worldwide Interoper-

ability for Microwave Access (Wi-MAX) [30], digital video broadcasting [32] and IEEE802.11a

(Wi-Fi) [31]. In the following section, we discuss the implementation of OFDM into the LTE

downlink standard.

2.3 Downlink LTE

The LTE was initiated in 2004 and is currently one of the main technologies commercialized

for the 4th generation cellular services [56]. This technology aims to provide a high data

rate, low latency and packet optimized radio access technology supporting flexible bandwidth

deployments. In this section, an overview of the LTE downlink standard [29] is provided.

The LTE downlink scenarios will be used in our simulations throughout this thesis.

2.3.1 LTE frame/subframe structure

In the LTE, various channels are used to transmit different types of data through the ra-

dio access network [29]. These channels are divided into the following: physical channels,

transport channels and logical channels. The physical channels are used to carry user data

and control messages that originate from higher layers. The transport channels are used to

transfer information to MAC (Medium Access Control) layer or higher layers while the logical

channels provide services to the MAC layer. In the LTE downlink, we are more interested

in the physical channels, particularly in the Physical Downlink Shared Channel (PDSCH) [29].
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Figure 2.2: LTE frame structure type 1.

The PDSCH is a physical channel that carries data dynamically allocated to users. The

user data are carried as transport blocks. In the PDSCH, the turbo coding with recursive

convolutional encoders is used to combat errors [29]. The data in the PDSCH are mapped

into spatial layers based on the LTE downlink transmission modes (e.g., open/closed loop

spatial multiplexing, transmit diversity, or beamforming). After that, the data are mapped to

a constellation (e.g., QPSK, 16 QAM or 64 QAM). Then, the physical resources are mapped

to a radio frame.

There are two types of the radio frame structure: Radio frame type 1 and type 2 [29].

Radio frame type 1 is applicable to the Frequency Division Duplexing (FDD) [29] in full

duplex and half duplex modes. The radio frame type 2 is reserved for the Time Division

Duplexing (TDD) [29]. In this thesis, we focus on the LTE radio frame type 1. Figure 2.2

shows the structure of the LTE radio frame of type 1. In this type, every frame contains 10
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Figure 2.3: LTE downlink resource block with CRS for one transmit antenna.

sub-frames that span over a duration of 10 ms. A sub-frame contains two slots that occupy a

duration of 1 ms in time. A slot occupies a duration of 0.5 ms and contains 7 OFDM symbols.

A CP is attached at the beginning of every OFDM symbol. In the LTE, there are two types

of CP: normal CP (short) and extended CP (long). The objective of the extended CP is to

address fading channels with longer delay spread. In this thesis, we consider the case of the

normal CP. In OFDM symbol 0, the CP duration is 5.21µs, while at OFDM symbols 1 to 6,

it is 4.69µs [29].

Figure 2.3 shows the time-frequency grid of Resource Elements (REs) in a sub-frame

with two slots and one resource block. An RE occupies one OFDM symbol in time and one

sub-carrier in frequency. A resource block occupies one slot in time (7 OFDM symbols) and

Nf = 12 sub-carrier in frequency. In order to perform the channel estimation, known pilot

symbols (also called reference signals) are inserted in the time-frequency grid (see Figure 2.2).

In the LTE downlink, there are two types of reference signals that support the PDSCH trans-

mission [29]. These two reference signals are: UE-specific Reference Signal (UE-RS) and

Cell-specific reference signals (CRS). In the simulations throughout this thesis, the CRS sig-

nals are used. Figure 2.3 shows an example of the distribution of the CRS samples (pilots)

in a sub-frame for one antenna port.
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Zadoff-Chu sequences

Zadoff-Chu sequences [57] are CAZAC sequences (sequences with constant amplitude

and zero autocorrelation) that are used in the LTE downlink as a primary synchronization

signal for synchronization in the frequency domain [29]. The uth root Zadoff-Chu sequence

is given by

xu(n) = e
−jπun(n+1)

NZF , n = 0, ..., NZF − 1, (2.1)

where NZF is the length of a Zadoff-Chu sequence.

The Zadoff-Chu sequences have a constant amplitude, ideal cyclic auto-correlation and

very good cross-correlation properties [56]. The DFT of a Zadoff-Chu sequence xu(n) is a

weighted cyclic-shifted Zadoff-Chu sequence Xw(k) [56]. Thus, Zadoff-Chu sequences can be

generated directly in the frequency domain without the need for the DFT. In our simulations

throughout this thesis, Zadoff-Chu sequences are used to generate the CRS signals (pilot

symbols) in the frequency domain.

2.3.2 Downlink LTE system parameters

OFDM is adopted as the modulation scheme for the LTE downlink [29]. The LTE supports

QPSK, 16-QAM and 64-QAM modulation schemes [29]. Table 2.1 shows parameters associ-

ated with designing the time-frequency grid of the REs in the LTE downlink. The frequency

spacing ∆f between every two consecutive sub-carriers is 15 kHz. The sampling rate is

fs = ∆fNDFT . For different bandwidths as shown in Table 2.2, although the duration of

the short CP is the same, the number of samples are different. This is because for different

bandwidths, the sampling frequency is different as presented in Table 2.1.

2.4 MIMO principles

MIMO refers to the use of multiple antennas at the base station and the UE. Such setup can

provide spatial diversity in a dense multipath scattering environment, which improves the

reliability of the data link. MIMO also can increase the throughput of the wireless commu-

nication system. The MIMO setup can be used with different transmission techniques (e.g.,
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Table 2.1: LTE system parameters

Bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

sub-carrier spacing 15 kHz 15 kHz 15 kHz 15 kHz 15 kHz 15 kHz

Sampling frequency 1.92 MHz 3.84 MHz 7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz

FFT size (NDFT ) 128 256 512 1024 1536 2048

Used sub-carriers 72 180 300 600 900 1200

No. of resource
blocks

6 15 25 50 75 110

No. of samples per
slot

960 1920 3840 7680 11520 15360

OFDM symbols per
slot (short CP)

7 7 7 7 7 7

Table 2.2: CP duration

Bandwidth Short CP

1.4 MHz
5.21 µs for symbol 0 (10 samples)

4.69 µs for symbols 1-6 (9 samples per
symbol)

3 MHz
5.21 µs for symbol 0 (20 samples)
4.69 µs for symbols 1-6 (18 samples

per symbol)

5 MHz
5.21 µs for symbol 0 (40 samples)
4.69 µs for symbols 1-6 (36 samples

per symbol)

10 MHz
5.21 µs for symbol 0 (80 samples)
4.69 µs for symbols 1-6 (72 samples

per symbol)

15 MHz
5.21 µs for symbol 0 (120 samples)
4.69 µs for symbols 1-6 (108 samples

per symbol)

20 MHz
5.21 µs for symbol 0 (160 samples)
4.69 µs for symbols 1-6 (140 samples

per symbol)

spatial multiplexing, transmit diversity, receive diversity and beamforming). Based on the

selected transmission technique, one or more of the following gains can be exploited: mul-

tiplexing gain, diversity gain and array gain. Most of the transmission techniques focus on

multiplexing gain or diversity gain as it is difficult to obtain all the three gains [58].

Consider a MIMO OFDM system with Nt transmit antennas and Nr receive antennas.

In the frequency domain, the received signal at rth receive antenna, as shown in Figure 2.4,

can be expressed as:

zr =

Nt∑
k=1

Skhr,k + nr, r = 1, ..., Nr, (2.2)

where k is the transmit antenna index, Sk is a diagonal matrix of data and pilot symbols, hr,k
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Figure 2.4: Model of received signal.

is a channel fading vector between the kth transmit antenna and the rth receive antenna, nr

is a complex white Gaussian noise vector with a variance σ2
n.

2.5 Spatial multiplexing

Spatial multiplexing is a MIMO technique that can provide higher data rates by transmitting

independent encoded and modulated data streams [28]. In spatial multiplexing, for equal

number of antennas at the transmitter and receiver, the spatial multiplexing gain is directly

proportional to the number of antennas. This can be represented in terms of data streams

as the following [28]:

Ns = min(Nt, Nr), (2.3)

where Ns is the number of data streams. Equation (2.3) shows that a higher throughput

can be achieved with no requirement for more bandwidth. Thus, the spectral efficiency of

the MIMO system increases with increase in the number of transmit and receive antennas.

Although this technique increases the transmission data rate, its performance is affected by

the lack of redundancy in the transmitted data.

Open/closed loop spatial multiplexing transmission modes were introduced in the LTE

downlink [29] in Release 8. In these modes, the base station uses more than one transmit

antenna (i.e., 2, 4 or 8). In the open loop spatial multiplexing transmission mode, the trans-

mitter has no feedback on the channel state information from the receiver. This mode is
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used when the channel is rapidly changing due to the fast movement of the UE. In the closed

loop spatial multiplexing transmission mode, the UE sends a feedback on the channel state

information to the base station. However, this mode is only applicable for channels with low

mobility (i.e., fading channels with low Doppler frequency). In Chapters 3 to 5, the open

loop spatial multiplexing transmission mode is selected for our investigation.

2.6 Doubly-selective channels

The wireless mobile radio channel is frequency-selective and time-selective. The time and

frequency selectivity of the fading channel is commonly called the doubly-selective chan-

nel [59, 60]. The frequency-selectivity is caused by the multipath propagation and can be

characterized by a delay spread. The channel time-selectivity is caused by the moving trans-

mitter and/or receiver and/or objects within the transmission environment and it can be

characterized by a Doppler spread. In OFDM systems, the accurate estimation of doubly-

selective channels in time and frequency is crucial for achieving a high detection performance.

The Wide Sense Stationary Uncorrelated Scattering (WSSUS) channel model [61] can

be used to model the typical mobile radio wireless channel [62, 63]. In the WSSUS channel

model, the fading coefficients from different paths are statistically independent. The WSSUS

channel impulse response can be modelled as [63],

h(t, τ) =
L−1∑
l=0

γl(t)δ(τ − τl), (2.4)

where t is time and γl(t) represent Wide Sense Stationary (WSS) complex Gaussian processes.

For WSSUS, γl(t) are uncorrelated for different paths, τl is the delay for the lth path and

L is the number of paths. The frequency response of the WSSUS channel can be obtained

applying the Fourier transform to (2.4) over the delay τ ,

H(t, f) =
L−1∑
l=0

γl(t)e
−2πjfτl , (2.5)

where f is frequency. In the following subsections, we discuss the classical fading simulator

based on Clarke’s and Jakes’ models.
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2.6.1 Clarke’s channel model

One of the first proposed mathematical models of the fading channel is Clarke’s model [64].

A special case of Clarke’s reference model is Jakes’ model [65]. However, Jakes’ model is not

WSS and does not meet most of the statistical properties of Clarke’s reference model [66].

Many modifications to Jakes’ model were proposed [66–71] to improve some of it statistical

properties.

In [64], Clarke developed an isotropic scattering model for narrowband cellular chan-

nels assuming a fixed transmission with a vertically polarized antenna. In his model, Clarke

assumed that the field incident on the mobile antenna to be comprised of a number of az-

imuthal plane waves that have arbitrary carrier phases and arbitrary azimuthal angles of

arrival. When there is no line of sight path, every wave has equal average amplitude. Thus,

the arrived scattered components at the receive antenna are expected to experience similar

attenuation in transmissions over small distances.

Let a low-pass fading process describes a frequency-flat fading channel with Npc propa-

gation channels. Then, in complex form, it can be given by

h(t) = h<(t) + jh=(t), (2.6)

where

h<(t) = E0

Npc∑
n=1

Cn cos(ωdt cos(αn) + φn), (2.7)

h=(t) = E0

Npc∑
n=1

Cn sin(ωdt cos(αn) + φn), (2.8)

where E0 is a scaling factor; ωd is the angular Doppler frequency with ωd = 2πfd, fd is the

Doppler frequency; Cn is a random gain of the nth path and αn and φn are phases uniformly

distributed over [−π, π).

The auto-correlation and cross-correlation functions associated with Clarke’s model are

given by the following [65]:

Rh<h<(τ) = E(gr(t)gr(t+ τ)) = J0(ωdτ), (2.9)
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Rh=h=(τ) = J0(ωdτ), (2.10)

Rh<h=(τ) = 0, (2.11)

Rh=h<(τ) = 0, (2.12)

Rhh(τ) = 2J0(ωdτ), (2.13)

where J0(·) is the zero-order Bessel function of the first kind [65].

2.6.2 Jakes’ channel model

Jakes’ channel model [65] is a simplified version of the Clarke’s reference model. Jakes’ model

makes the following assumptions to Clarke’s model:

Cn =
1√
N
, (2.14)

αn =
2πn

N
, n = 1, ..., N, (2.15)

φn = 0, n = 1, ..., N, (2.16)

When the assumptions in (2.14) to (2.16) are applied to Clarke’s model, we arrive at the

complex form of Jakes’ channel model (2.6) with the real and imaginary parts given by

h<(t) =
2√
N

Mos∑
n=1

an cos(ωnt), (2.17)

h=(t) =
2√
N

Mos∑
n=1

bn sin(ωnt), (2.18)

where N = 4Mos + 2 and Mos represents the number of oscillators. The variables an and bn

are obtained as the following [65]

an =


√

2 cos(β0) n = 0

2 cos(βn) n = 0, 1, ...,Mos

(2.19)

bn =


√

2 sin(β0) n = 0

2 sin(βn) n = 0, 1, ...,Mos

(2.20)
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Table 2.3: LTE channel power delay profiles

EPA EVA ETU

Tap Delay (ns) Power (dB) Delay (ns) Power (dB) Delay (ns) Power (dB)

1 0 0.0 0 0.0 0 -1.0

2 30 -1.0 30 -1.5 50 -1.0

3 70 -2.0 150 -1.4 120 -1.0

4 90 -3.0 310 -3.6 200 0.0

5 110 -8.0 370 -0.6 230 0.0

6 190 -17.2 710 -9.1 500 0.0

7 410 -20.8 1090 -7.0 1600 -3.0

8 - - 1730 -12.0 2300 -5.0

9 - - 2510 -16.9 5000 -7.0

βn =


π/4 n = 0

(πn)/Mos n = 0, 1, ...,Mos

(2.21)

ωn =


ωd n = 0

ωd cos(2πn
N ) n = 0, 1, ...,Mos

. (2.22)

The assumptions in (2.14) to (2.16) result in Jakes’ channel model being a deterministic

model [67]. Jakes’ channel model (or its modifications) is often used for fading channel

simulation.

2.7 LTE propagation channel models

The LTE standard defines three PDP models for multipath propagation [72]: Extended

Typical Urban (ETU), Extended Vehicular A (EVA) and Extended Pedestrian A (EPA)

models. As shown in Table 2.3, the ETU PDP represents a high delay spread, while the EVA

and EPA PDPs represent medium and low delay spreads, respectively, in comparison to the

short CP duration. The multipath fading channel in the LTE standard is often described

by one of the PDPs and a maximum Doppler frequency. The Doppler frequency can be

computed as

fd =
vfc
c

cos(αn), (2.23)

where v is the velocity of the moving object measured in meters per seconds (m/s), fc is

the carrier frequency in Hertz, c is the speed of light (c ≈ 3 × 108 m/s) and αn is the angle

of arrival for the nth path. To obtain the maximum Doppler frequency in (2.23), we set

cos(αn) = 1. For example, for a carrier frequency of 2 GHz, a velocity of the user mobile of
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52.5 m/s (about 189 km/h), the maximum Doppler frequency can be calculated as

fd =
(52.5)× (2× 109)

3× 108
≈ 350Hz. (2.24)

2.8 Channel estimation

The channel state information can be obtained through blind channel estimation [73–76],

semi-blind channel estimation [73,77–79] or pilot-based channel estimation [1,80–83]. In the

blind channel estimation, the input of the channel is unavailable at the receiver and pilot

symbols are not used [73–76]. In the literature, many blind channel estimation techniques

were proposed. Most of these techniques rely on the evaluation of second or higher order

channel statistics to perform channel estimation [75]. The blind channel estimation avoids

the large overhead in the spectral efficiency caused by the addition of pilot signals. However,

it requires an accurate knowledge of the channel length and the channel correlation matrix as

well as a high computational complexity [83]. Also, it requires a large time interval (number

of symbols) for the estimation. This can be unavailable in fast varying channels. On the other

hand, semi-blind channel estimation employs techniques that are proposed for blind channel

estimation with partial knowledge of the channel [79]. In the semi-blind channel estimation,

the partial knowledge of the channel can be obtained by using the known pilot symbols [79].

In this thesis, the channel estimation is mostly semi-blind, as the estimation is relying on

unknown data with partial knowledge of the channel through pilot-based channel estimation.

In the LTE downlink, the pilot-based channel estimation is a two dimensional prob-

lem. As the channel is varying in time and frequency (doubly-selective channel), pilots are

distributed over the time-frequency grid (see Figure 2.3). Then, these pilots are used to esti-

mate the doubly-selective channel. This can be achieved by using separable one-dimensional

channel estimators [84] or a joint time-frequency channel estimator (i.e., a two-dimensional

estimator). Two-dimensional channel estimators are more accurate, but they can require a

high computational load. In the following section, the pilot-based channel estimation using

BEMs is introduced, which can reduce the channel estimation complexity.
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2.9 BEM channel estimation

BEMs can be used to estimate doubly-selective channels in time and frequency [2–4]. The

time varying channel response h can be represented in terms of BEMs as:

h = Ba, (2.25)

where B is an N ×M matrix of basis functions, N is the length of data package, M is the

number of basis functions, and a is an M × 1 vector of expansion coefficients. This may

reduce the complexity of channel estimation as M is usually much smaller than N .

The two dimensional BEM matrix B in time and frequency can be computed by [23]

B = Bt ⊗Bf , (2.26)

where Bt is an NOFDM ×Mt matrix of basis functions in time, Mt is the number of basis

functions in time, ⊗ denotes the Kronecker product, Bf is an Nf ×Mf matrix of basis func-

tions in frequency and Mf is the number of basis functions in frequency. The time-frequency

basis functions can be found by selecting the highest Mt and Mf , M = MtMf , that provides

a low approximation error in the case of the worst channel (e.g., in this thesis, the ETU

channel).

Different BEMs have been considered in the literature for the estimation of doubly-

selective channels. Karhunen-Loeve (KL) [5, 85] and Discrete Prolate Spheroidal Sequences

(DPSS) [6,7] basis functions can provide high accuracy when approximating the fading chan-

nel. However, KL and DPSS BEMs require the knowledge of the statistical information of

the channel. Complex Exponentials (CE) [4], B-splines [8–10] and Legandre polynomials [86]

basis functions do not require the knowledge of the channel information, but they can pro-

vide a lower channel approximation performance in comparison to that of the KL and the

DPSS basis functions [87]. On the other hand, the complexity of estimation with the CE and

cubic B-splines can be lower than that with the KL and the DPSS [87]. In this thesis, we

consider DPSS as the basis functions used to estimate the frequency variations of the fading

channel and parabolic B-splines for the time variations. However, these basis functions are

only used for demonstration purpose, and other basis functions can be equally used. Below,
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Figure 2.5: DPSS basis functions Bf for Nf = 36 and Mf = 5.

we introduce the DPSS and the parabolic B-spline basis functions.

2.9.1 Discrete Prolate Spheroidal Sequences (DPSS)

The DPSS (also called Slepian sequences [88]) are widely used for the approximation of

frequency-selective and time-selective fading channels [7,12,59]. These functions are orthog-

onal [59] and optimal (i.e., they are KL basis functions) in multipath channels with a uniform

PDP within the channel delay spread. In frequency-selective channels, the BEM matrix Bf

of DPSS is given by:

[Bf ]u,l = βl(u), u = 1, ..., Nf , (2.27)

where l refers to the lth basis function, l = 1, ...,Mf , and βl(u) represent the first Mf

eigenvectors with the highest eigenvalues of a matrix M given by

[M]i,j =
sin[Ω(i− j)]

Ω(i− j)
, i, j = 1, ..., Nf , (2.28)

Ω is a value in the range (0, 1
2), Ω = τmax∆f

2 , τmax is the channel delay spread, and ∆f
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Figure 2.6: Parabolic B-splines basis functions Bt for NOFDM = 14 and Mt = 4.

is the frequency spacing between two consecutive sub-carriers (e.g., ∆f = 15 kHz for the

LTE [29]). Figure 2.5 shows an example of the DPSS for Mf = 5 basis functions and

Nf = 36 sub-carriers.

2.9.2 Parabolic B-splines

B-splines are popular and widely used for the approximation of continues functions. B-splines

can provide a high estimation accuracy with a low computational load [8–10]. B-spline of

order q is given by [10]:

Bq(tn) =
1

q!

q+1∑
i=0

(−1)i

q + 1

i

( tn
Tb

+
q + 1

2
− i
)q

+
, (2.29)

where (x)+ = max{0, x}, tn is a time instant given by tn = (n − 1) − (m − ((q + 1)/2))Tb,

n = 1, ..., NOFDM , m = 1, ...,Mt, and Tb is the spacing between two basis functions, Tb =
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(NOFDM − 1)/(Mt − q). For the parabolic B-spline (q = 2), the matrix Bt is generated by

[Bt]n,m = B2(tn) =


3
4 −

t2n
T 2
b
, |tn| < Tb

2 ;

1
2( tnTb )

2 − 3|tn|
2Tb

+ 9
8 , |tn| ≥

Tb
2 ;

0, otherwise.

(2.30)

In Figure 2.6, an example of basis functions generated using (2.30) for NOFDM = 14 OFDM

symbols and Mt = 4 is shown.

2.10 Pilot-based channel estimation using BEMs

2.10.1 Least Squares (LS) pilot-based channel estimation

For the case of a SISO OFDM system, the received signal model can be given by

z = Sh + n, (2.31)

where z is an N × 1 received signal vector, S is an N ×N diagonal matrix of data and pilot

symbols, h is an N × 1 vector of channel frequency response and n is an N × 1 vector of

white Gaussian noise. From (2.31), the received pilot signal can be described as

zp = Sphp + np, (2.32)

where zp is an Np × 1 vector of received pilots, p = 1, ..., Np, Np is the total number of pilot

symbols, Sp is an Np×Np diagonal matrix of pilot symbols, hp is an Np×1 vector of channel

frequency response at pilot locations and np is an Np × 1 vector of white Gaussian noise at

pilot locations. The pilot symbol matrix Sp can be obtained from S by selecting the pilot

locations, and thus we have

Sp =


s(0) 0 · · · 0

0 s(1) · · · 0
...

...
. . .

...

0 0 0 s(Np − 1)

 . (2.33)

Representing the channel vector h in terms of BEMs, we have h = Ba. The LS estimate
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âLS of the expansion coefficients a can be obtained by the following:

âLS = (BH
p SHp SpBp)

−1BH
p SHp zp, (2.34)

where Bp is an Np ×M matrix of basis functions obtained from B at pilot location.

Now, we consider the case of a time varying MIMO OFDM system. The received signal

model can be described by

z = Ψa + n, (2.35)

where z is an NNr × 1 vector of received signals, z = [zT1 , ..., z
T
r , ..., z

T
Nr

]T , zr is an N × 1

received vector at the rth receive antenna, Nr is the number of receive antennas, Ψ is an

NNr ×MNtNr matrix, Ψ = INr ⊗ [S1B, ...,SkB, ...,SNtB], Sk is an N ×N diagonal matrix

of data and pilot symbols transmitted by the kth transmit antenna, Nt is the number of

transmit antennas, a = [aT1 , ...,a
T
r , ...,a

T
Nr

]T , ar = [aTr,1, ...,a
T
r,k, ...,a

T
r,Nt

]T , ar,k is an M × 1

vector of BEM expansion coefficients for the channel between the kth transmit antenna and

the rth receive antenna, n ∼ NC(0, σ2
nINNr) is an NNr×1 vector of complex-valued Gaussian

noise with variance σ2
n, n = [nT1 , ...,n

T
r , ...,n

T
Nr

]T , and nr is an N × 1 noise vector on the rth

receive antenna.

The received data and pilot signals can be obtained from (2.35) as

zd = Ψda + nd, (2.36)

zp = Ψpa + np, (2.37)

where zd is an NdNr × 1 vector of received data, zd = [zTd,1, ..., z
T
d,r, ..., z

T
d,Nr

]T , zd,r is an

Nd× 1 vector of received data at the rth receive antenna, Nd is the number of data symbols,

Ψd = INr ⊗ [Sd,1Bd, ...,Sd,kBd, ...,Sd,NtBd] is NdNr ×MNrNt matrix, Sd,k is an Nd × Nd

diagonal matrix obtained from Sk at data locations, Bd is an Nd ×M matrix of basis func-

tions (B at data locations), nd is an NdNr × 1 vector of complex-valued Gaussian noise,

zp is an NpNr × 1 vector of received pilot symbols, Np is the number of pilot symbols,

Ψp = INr ⊗ [Sp,1Bp, ...,Sp,kBp, ...,Sp,NtBp] is NpNr ×MNrNt matrix, Sp,k is an Np×Np di-

agonal matrix obtained from Sk at pilot locations, Bp is an Np×M matrix of basis functions

(B at pilot locations), np is an NpNr × 1 vector of complex-valued Gaussian noise.
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The LS estimate âLS of a is given by

âLS = (ΨH
p Ψp)

−1ΨH
p zp. (2.38)

The implementation of the LS channel estimator is straightforward. However, the LS

channel estimation does not take into account the effect of the additive noise and the channel

time-frequency correlation. It enhances the noise power and results in a degraded perfor-

mance.

2.10.2 Pilot-based LMMSE BEM channel estimation

Pilot-based LMMSE BEM channel estimation extends the LS channel estimation by taking

into account the noise power and channel time-frequency correlation. For the SISO case, the

BEM-based LMMSE channel estimate âLMMSE of a can be obtained by the following:

âLMMSE = (BH
p SHp SpBp + Γ)−1BH

p SHp zp, (2.39)

where Γ is an M ×M regularization matrix, Γ = σ2
nR
−1
a and Ra is an M ×M covariance

matrix of the expansion coefficients. The covariance matrix Ra is given by

Ra = E[aaH ]. (2.40)

An explicit expression for the covariance matrix of the expansion coefficients Ra can be

obtained using the channel covariance matrix Υ as the following

Υ = E[hhH ]

= E[BaaHBH ]

= BE[aaH ]BH

= BRaB
H .

(2.41)

Rearranging (2.41) to obtain an expression for Ra, we multiply the left side of Υ by (BHB)−1BH

and the right side of Υ by B(BHB)−1. From this, Ra can be found as

Ra = E[ar,ka
H
r,k] = (BHB)−1BHΥB(BHB)−1. (2.42)
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For the case of MIMO OFDM, using the linear models for data and pilots in (2.36) and (2.37),

the LMMSE estimate âLMMSE is given by

âLMMSE = (ΨH
p Ψp + ΓMIMO)−1ΨH

p zp, (2.43)

where ΓMIMO = σ2
n(INr ⊗ INt ⊗Ra)

−1. In the following section, we show how the channel

estimates are used in MIMO detection.

2.11 Linear MIMO mismatched detection

In this section we introduce two popular linear detectors: Zero Forcing (ZF) detector and

Minimum Mean Square Error (MMSE) detector. These detectors assume that the channel

estimates used in the detection process are prefect. However, in practice, the obtained channel

estimates are imperfect and thus when used in these detectors they are called mismatched

detectors. The ZF and MMSE detectors are Symbol-by-Symbol (SbS) detectors. This means

that the detection is performed on a symbol basis. Therefore, we simplify the signal model

in (2.35) which describes all data and pilot symbols. For the SbS case, z is simplified to

z = [z
(i)
1 , ..., z

(i)
r , ..., z

(i)
Nr

]T , i = 1, ..., N , z
(i)
r is the ith element of the received vector zr,

Ψ is simplified to Ψ = INr ⊗ [s
(i)
1 b(i), ..., s

(i)
k b(i), ..., s

(i)
Nt

b(i)], s
(i)
k is the ith element of the

transmitted vector sk, Sk = diag(sk), b(i) is an 1×M vector obtained as the ith row of the

matrix B.

2.11.1 ZF MIMO mismatched detection

ZF MIMO detection is a linear MIMO detection technique that provides sub-optimal perfor-

mance with a relatively low complexity. In this detection, the ZF filter is simply an inverse

filter which eliminates the ISI while the effect of noise is ignored. Therefore, the performance

of this detector is degraded due to the enhancement of the noise. The ZF filter is given by [43]

FZF = (HH
i Hi)

−1HH
i , (2.44)
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where Hi is an ith Nr ×Nt MIMO channel matrix given by

Hi =



h
(i)
1,1 · · · h

(i)
1,k · · · h

(i)
1,Nt

...
. . .

...
...

h
(i)
r,1 · · · h

(i)
r,k · · · h

(i)
r,Nt

...
...

. . .
...

h
(i)
Nr,1

· · · h
(i)
Nr,k

· · · h
(i)
Nr,Nt


, (2.45)

where h
(i)
r,k is the ith element of a channel vector hr,k that describes the channel frequency

response between the rth receive and kth transmit antennas. Using (2.44), the ith symbol

estimate in the linear ZF detector is given by [43]

ŝ
(i)
ZF = FZFz(i)

= (HH
i Hi)

−1HH
i z(i)

= s(i) + (HH
i Hi)

−1HH
i n(i),

(2.46)

where ŝ
(i)
ZF is an Nt × 1 vector of estimates of the transmitted data symbols, ŝ

(i)
ZF = [ŝ

(i)
1 , ...,

ŝ
(i)
k , ..., ŝ

(i)
Nt

]T , z(i) is an ith Nr × 1 vector of received signals, z(i) = [z
(i)
1 , ..., z

(i)
r , ..., z

(i)
Nr

]T , s(i)

is an Nt × 1 vector of transmitted data symbols, s(i) = [s
(i)
1 , ..., s

(i)
k , ..., s

(i)
Nt

]T , and n(i) is an

an Nr × 1 vector of complex noise, n = [n
(i)
1 , ..., n

(i)
r , ..., n

(i)
Nr

]T . The term s(i) in (2.46) is

free of ISI, thus it is called zero forcing detection (i.e., forces the ISI to zero). The term

[(HH
i Hi)

−1HH
i n(i)] in (2.46) causes an enhancement of the noise, and subsequently degrades

the performance of the ZF detector.

2.11.2 MMSE MIMO mismatched detection

The ZF detector removes the ISI, but does not give the best detection performance as it does

not take the noise enhancement into account. A better linear detector is the MMSE detector

which reduces the effect of the ISI while taking into account the effect of noise. The MMSE

filter is given by [43]

FMMSE = (HH
i Hi + σ2

nINt)
−1HH

i . (2.47)

Using (2.47), the ith symbol estimate in the linear MMSE detector is given by [43]

ŝ
(i)
MMSE = FMMSEz(i)

= š(i) + (HH
i Hi + σ2

nINt)
−1HH

i n(i),
(2.48)
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where ŝ
(i)
MMSE is an ith Nt×1 vector of estimates of the transmitted data symbols, ŝ

(i)
MMSE =

[ŝ
(i)
1 , ..., ŝ

(i)
k , ..., ŝ

(i)
Nt

]T . The regularization term σ2
nINt causes the effect of the noise power on

the symbol estimate to be reduced [89].

2.12 Optimal detection

In the previous section, mismatched detectors that have relatively low complexity were dis-

cussed. However, these detectors can result in a degraded performance [43]. A better detec-

tion can be achieved by the use of the optimal detector [19,20,40–42]. This detector processes

the received data and pilot symbols jointly to detect the transmitted data symbols without

explicit channel estimation. The optimal detector exploits the same a priori information as

that of the mismatched detector with LMMSE channel estimates. However, the LMMSE

channel estimator minimizes errors in the channel estimates while the optimal detector min-

imizes the probability of detection errors [87]. Therefore, the optimal detection outperforms

the mismatched detection with LMMSE channel estimation [20]. Although the optimal de-

tector provides the best performance, it is impractical due to its high complexity. A detailed

discussion on the optimal detector, its detection performance and complexity reduction is

presented in Chapter 4.

2.13 Turbo coding

The noisy channel introduces data errors to the received data. These errors can be corrected

by the use of Forward Error Correction (FEC), i.e., channel coding. The FEC encodes the

transmitted data bits by adding redundant information bits which allow the receiver to cor-

rect the errors. One of popular FEC techniques that is widely used is the turbo coding [90].

The turbo coding was first proposed by Berrou, Glavieux and Thitimajshima in [91,92]. This

coding was shown through numerical simulation to provide a performance close to that of

the Shannon channel capacity limit with the Binary Phase Shift Keying (BPSK) modula-

tion scheme. A turbo encoder usually consists of two parallel identical encoders as shown

in Figure 2.7. The parallel encoders can be convolutional or block encoders. The first en-

coder encodes the input bits directly. The second encoder encodes an interleaved version

of the input bits using an internal interleaver. This guarantees a low probability of both

encoders having input bits that result in low weight outputs [90]. For LTE uplink/downlink

scenarios [29], the two encoders are 8-state constituent encoders with an interleaver forming a

31



Input bits
Systematic output

Parity output

Encoder 1

Encoder 2

Interleaver MUX
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Figure 2.8: Rate 1
3 turbo encoder.

recursive parallel concatenated convolutional coding. LTE supports trubo codes with a 1
3 -code

rate only [29]. In order to achieve different code rates for turbo coding, rate matching is used.

Figure 2.8 shows the detailed structure of the encoders used in turbo codes [29,90]. The

turbo encoder has a systematic output Xk and two parity outputs Zk and Z
′
k. D refers to

a delay. The systematic output Xk is passed without change from the input bits while the

two parity outputs Zk and Z
′
k are encoded by convolutional encoders 1 and 2, respectively.

The dotted lines in Figure 2.8 refer to trellis termination. The turbo encoder multiplexes the

three streams: the systematic output Xk and two parity outputs Zk and Z
′
k (as shown in

Figures 2.7 and 2.8).
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2.13.1 Turbo decoding

Figure 2.9 shows the general structure of a turbo decoder. For each turbo encoder used,

we have one decoder that estimates the a posteriori probability (APP) for every data bit.

In the LTE, the turbo decoder is a Soft Input Soft Output (SISO) decoder [29]. The first

SISO decoder has two inputs: a systematic data input and an a priori Log Likelihood Ratio

(LLR) input. The second SISO decoder has the same two inputs, but the first input is an

interleaved version of the systematic data. The interleaver and deinterleaver are used in the

trubo decoding operations to eliminate the correlation between neighbouring data bits. This

decoding process is used in an iterative manner for typically 4 to 8 iterations to improve the

performance. In this thesis, we perform 8 iterations for the iterative decoder as shown in [93].

The LLR value λb of a data bit b is obtained as the log of the ratio of two probabilities

(i.e., for b = 1 or b = 0)

λb = ln
[P (b = 1|y)

P (b = 0|y)

]
, (2.49)

where the two probabilities P (b = 1|y) and P (b = 0|y) correspond to the reliability in the

transmitted data bit b being data bit 1 and data bit 0, respectively. These two probabilities

are conditioned on a received sequence y (i.e., the systematic data in Figure 2.9). The condi-

tional probabilities P (b = 1|y) and P (b = 0|y) are the APP the turbo decoders estimate for

every bit.

Maximum a-posteriori Probability (MAP) decoding algorithm (also known as BCJR al-

gorithm) is a recursive symbol-by-symbol decoding scheme that was initially proposed in [94].

33



The MAP decoding algorithm provides the optimum decoding performance. However, it is

very complicated, especially for large data blocks. Therefore, the data are decoded at the

receiver by a simplified versions of the MAP decoding algorithm. This can be achieved by

transforming the MAP decoding algorithm to the logarithmic domain in order to reduce its

computational complexity. This results in two simplified versions of the MAP algorithm: the

Log-MAP and Max-Log-MAP algorithm [95].

In Log-MAP, the Jacobian algorithm can be computed as the following [96]:

max∗(x, y) = ln(ex + ey)

= max(x, y) + ln(1 + e−|y−x|)

= max(x, y) + fc(|y − x|),

(2.50)

where fc(|y−x|) is a correction function. fc(|y−x|) can be stored in a simple look-up table [96].

The Log-MAP decoding algorithm computed using (2.50) can achieve the close-to-optimal

performance of the MAP decoding algorithm with significantly lower complexity [96].

The Max-Log-MAP can be obtained from (2.50) by omitting the correction function

fc(|y − x|),

max∗(x, y) ≈ max(x, y). (2.51)

Max Log-MAP decoding algorithm is much faster than Log-MAP, but this is at the expense

of a degradation in the decoding performance. Also, the Max Log-MAP algorithm is sub-

optimal at low SNR values. Therefore, we consider Log-MAP decoding algorithm for the

turbo decoder in our simulations. In the LTE standard [29], Log-MAP and Max Log-MAP

algorithms are supported for the turbo decoding.

2.14 Summary

This chapter can be summarized as the following:

• The combination of MIMO and OFDM technologies for wireless communication systems

has been discussed.

• Downlink LTE system specifications and parameters were presented and explained. The
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implementation of OFDM in the LTE downlink has been discussed.

• Doubly-selective channels have been introduced. Mathematical representations of Clarke’s

and Jakes’ channel models were presented.

• Pilot-based channel estimation techniques, such as LS and LMMSE channel estimators

using BEMs were introduced. The DPSS and parabolic B-spline basis functions were

presented for estimation of channel variations in time and frequency.

• An introduction to linear MIMO mismatched detectors such as ZF and MMSE detectors

has been provided. The optimal detector that can outperform the mismatched detectors

was briefly discussed.

• Channel coding and decoding using turbo codes were presented and explained.

• The techniques considered in this chapter will be used for our design and simulation in

the rest of this thesis.
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Chapter 3

Data-aided reweighted iterative

channel estimation for MIMO

OFDM
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3.1 Introduction

In wireless communications, a wide-band mobile radio channel is doubly-selective in time

and frequency. The accurate estimation of such channels is challenging. Pilot-based channel

estimation is most often used in practice, but it may provide a low estimation performance.

Tentative estimates of data symbols can be used to improve the estimation performance in

an iterative manner [12,16,17,97]. In [18], a reweighted channel estimator based on tentative

data estimates is shown to outperform the unweighted estimation in a multi-user system with

Single Carrier Frequency Division Multiple Access (SC-FDMA) modulation in the LTE uplink

scenarios. The weights in [18] are optimized for Gaussian data errors, the assumption that

holds for the SC-FDMA modulation. In the downlink LTE scenarios, however the OFDM
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modulation is used [29], and the Gaussian assumption on data errors is not applicable. As fol-

lows from [18], if the residual power for a resource element (defined by time-frequency location

of a transmitted symbol) is smaller than the noise variance, the corresponding weight should

be unity as in conventional unweighted estimators. However, for higher residual powers, the

higher the power the smaller is the weight. Thus the contribution from potentially erroneous

data to the channel estimate is reduced. We can expect that any weights that follow this

idea should be effective. In particular, weights optimized in [18] for SC-FDMA can also be

expected to be efficient for OFDM. In this chapter, we show that indeed by applying such

weights, a significant improvement in the performance of MIMO OFDM systems is achieved.

In this chapter, a sequential interference cancellation scheme with reweighted LMMSE

channel estimation is proposed for MIMO OFDM systems. In every iteration, the tentative

data symbols are recovered without decoding, thus reducing the estimator complexity. It is

shown through simulation for downlink LTE scenarios that the reweighted iterative channel

estimation significantly outperforms the conventional unweighted iterative estimation.

The organization of the remainder of this chapter is as follows: In Section 3.2, a signal

model is introduced. Weighted channel estimation is described in Section 3.3. In Section 3.4,

reweighted iterative BEM based channel estimation is presented. In section 3.5, detection

and equalization are discussed. Numerical results are given in Section 3.6. A summary of

this chapter is given in Section 3.7.

3.2 Signal model

Consider a MIMO OFDM system. In the frequency domain, the N × 1 received signal vector

at receive antenna r can be represented with the following model,

zr =

Nt∑
k=1

Skhr,k + nr, r = 1, ..., Nr, (3.1)

where N is the number of data and pilot symbols distributed over time and frequency (OFDM

symbols in time and sub-carriers in frequency), Nt is the number of transmit antennas (k =

1, ..., Nt), Sk is an N × N diagonal matrix of data and pilot symbols transmitted by the

kth transmit antenna, hr,k is an N × 1 vector describing the channel response between the
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kth transmit and rth receive antennas, nr is an N × 1 complex-valued noise vector with

independent Gaussian elements of zero mean and variance σ2
n and Nr is the number of receive

antennas. We assume that the channel vector hr,k is represented by an M × 1 vector ar,k of

BEM expansion coefficients, i.e.,

hr,k = Bar,k, (3.2)

B is an N ×M matrix with M columns being the basis functions. We assume that the data

symbols of Sk are not accurately known and introduce an error diagonal matrix Ek, i.e.,

Sk = S̄k + Ek, and thus (3.1) can be rewritten as

zr =

Nt∑
k=1

S̄khr,k +

Nt∑
k=1

Ekhr,k + nr, (3.3)

where S̄k is an N ×N diagonal matrix of tentative data and pilot symbols.

If the diagonal elements (data errors) of the matrix Ek were described by Gaussian

distribution with a zero-mean and variances σ2
e,k, denoting that yr =

∑Nt
k=1 Ekhr,k + nr and

a = [aTr,1, ...,a
T
r,k, ...,a

T
r,Nt

]T , we would arrive at the Probability Density Function (PDF) of

the received signal

p(zr|a) =
e−y

H
r R−1

y yr

πNdet(Ry)
, (3.4)

where Ry = E[yry
H
r ] is the covariance matrix of the error and noise.

3.3 Weighted channel estimation

Although for OFDM systems, the expression in (3.4) does not hold, the weighted channel

estimation algorithm that results from the Gaussian model is happened to be also useful for

OFDM. Therefore, in this section below we revise the estimator in [18] following from the

Gaussian model in (3.4).

In general, the channel estimation problem can be represented as maximizing the log-likelihood

function ln[p(zr|a)] under some constraints, more specifically,

â = arg max
a∈A

ln[p(zr|a)], (3.5)
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whereA is a set of constraints on the vector a. E.g., for the LMMSE estimation, the expansion

coefficients a are assumed to be zero-mean Gaussian with a covariance matrix Ra = E[aaH ].

Using (3.4), the log-likelihood function in (3.5) can be given as [18]:

ln[p(zr|a)] = −N ln[π]− ln[det(Ry)]− yHr R−1
y yr. (3.6)

Letting,

ηr,i =

Nt∑
k=1

∣∣h(i)
r,k

∣∣2σ2
e,k

σ2
n

, (3.7)

`r,i =
1

σ2
n

∣∣∣∣∣zr,i −
Nt∑
k=1

h
(i)
r,ksk,i

∣∣∣∣∣
2

, (3.8)

we obtain

ln[det(Ry)] = N ln[σ2
n] +

N∑
i=1

ln[ηr,i + 1], (3.9)

yHr R−1
y yr =

N∑
i=1

`r,i
ηr,i + 1

, (3.10)

where h
(i)
r,k is the ith element of the channel vector hr,k, zr,i is the ith element of the received

signal vector zr and sk,i is the ith element of sk, sk = diag(Sk). Then, (3.6) becomes

ln[p(zr|a)] = −N ln[π]−N ln[σ2
n]−

N∑
i=1

ln[ηr,i + 1]−
N∑
i=1

`r,i
ηr,i + 1

. (3.11)

Omitting the terms that do not affect the optimization (−N ln[π]−N ln[σ2
n]), we finally get

ln[p(zr|a)] = −
N∑
i=1

(
ln[ηr,i + 1] +

`r,i
ηr,i + 1

)
. (3.12)

Then, the problem in (3.5) can be rewritten as [18]

â = arg min
a∈A

N∑
i=1

(
ln[ηr,i + 1] +

`r,i
ηr,i + 1

)
. (3.13)

The value ηr,i is a ratio of powers of the data errors and noise for the ith data element

of the rth receive antenna. If ηr,i = 0, the transmitted data are perfectly known, and

from (3.13), we arrive at the conventional (unweighted) pilot-based LMMSE BEM estimator:

â = arg mina∈A
∑N

i=1 `i. For non-zero ηr,i, the estimate of the basis expansion coefficients â

should be found by solving the complicated non-linear optimization problem in (3.13).
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Figure 3.1: The relation between weights wr,i and residual powers `r,i.

The problem in (3.13) can be represented as an optimization problem over ηr,i,

â = arg min
a∈A

min
ηr,i

N∑
i=1

Λ(ηr,i, `r,i), (3.14)

where

Λ(ηr,i, `r,i) =
(

ln[ηr,i + 1] +
`r,i

ηr,i + 1

)
. (3.15)

The values ηr,i are unknown since the variances of data errors σ2
e,k are unknown. However,

we can treat ηr,i as nuisance parameters and set ηr,i ∈ [0,∞] [18]. Also, the unconstrained

minimizer of Λ(ηr,i, `r,i) is obtained as ηr,i = `r,i − 1 by differentiating Λ(ηr,i, `r,i) over ηr,i,

∂Λ(ηr,i, `i)

∂ηr,i
=

1

ηr,i + 1
− `r,i

(ηr,i + 1)2
= 0. (3.16)

Then, we arrive at the weighted optimization problem from (3.14) by letting

Λ(ηr,i, `r,i) = wr,i`r,i, (3.17)

then, from (3.15) and (3.17), the weights wr,i are given by [18]

wr,i =
ln[ηr,i + 1]

`r,i
+

1

ηr,i + 1
. (3.18)

Using ηr,i = `r,i − 1 in (3.18), we arrive at

wr,i =
ln[`r,i] + 1

`r,i
. (3.19)
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Finally, using ηr,i = `r,i − 1 and ηr,i ∈ [0,∞], the range for `r,i can be set to `r,i ∈ [1,∞] and

then the weights in (3.19) can be rewritten as

wr,i =

 1, `r,i ≤ 1;

ln[`r,i]+1
`r,i

, `r,i > 1,
(3.20)

which are independent of ηr,i. Note that in (3.20), for `r,i < 1, the residual powers `r,i are very

small, and thus for such case wr,i are set to unity. Figure 3.1 shows the relationship between

the weights wr,i and residual powers `r,i as described by (3.20). It can be seen that large

residual powers `r,i are penalized by reducing contribution from the corresponding tentative

data symbols into the channel estimate.

The problem in (3.14) can now be solved iteratively by using, at every iteration, weights

ŵr,i =

 1, ˆ̀
r,i ≤ 1;

ln[ˆ̀r,i]+1
ˆ̀
r,i

, ˆ̀
r,i > 1,

(3.21)

where

ˆ̀
r,i =

1

σ2
n

∣∣∣∣∣zr,i −
Nt∑
k=1

ĥ
(i)
r,ks̄k,i

∣∣∣∣∣
2

, (3.22)

obtained by replacing the channel response h
(i)
r,k with the channel estimates ĥ

(i)
r,k and true

unknown data symbols sk,i with the tentative data symbol s̄k,i.

The approach described in this section is used for designing reweighted iterative LMMSE

channel estimator in the MIMO OFDM receiver.

3.4 Reweighted iterative channel estimation

Figure 3.2 shows the block diagram of the proposed reweighted iterative LMMSE channel

estimator. In the first step, the channel is estimated using the pilot-based LS BEM channel

estimator. Then, tentative data estimates are obtained using the initial channel estimates

ĥr,k in the linear MMSE MIMO detector as described in Chapter 2 (see Subsection 2.11.2).

The MMSE soft data estimates obtained are mapped into a constellation (e.g., 16-QAM) to

recover the tentative data symbols S̄k. After that, the weights are computed as described

in (3.21) and (3.22). The estimates ĥr,k and S̄k are also used to recover a portion ẑr,k of the
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MMSE MIMO detection

ĥr,k

Ŝk

ĥr,k, S̄k

ŵr,iẑr,k, S̄k

ĥr,k

Figure 3.2: Reweighted iterative LMMSE channel estimation.

received signal corresponding to the kth transmit antenna. The recovered signal ẑr,k is given

by

ẑr,k = zr −
Nt∑
q=1
q 6=k

S̄qĥr,q, (3.23)

where signals received from the Nt − 1 transmit antennas are treated as interference and

their estimates are subtracted from the received signal zr. The weights ŵr,i are then used

in the weighted LMMSE channel estimation to re-estimate the channel hr,k. The channel

estimation based on the signal estimate ẑr,k is sub-optimal, but it provides a reduction in

the complexity in comparison with a channel estimation joint for all transmit antennas. The

updated channel estimates ĥr,k are used in the next iteration with the total number of Nit

iterations. The value of Nit should not be high. In our experiments, as shown in the next
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Figure 3.3: LTE downlink sub-frame structure for two transmit antennas.

section, Nit = 3 iterations are enough to converge.

BEMs are used to estimate the time and frequency variations of fading channels [2–4].

Below we will be using the following BEMs. In frequency (over Nf sub-carriers), we use Mf

DPSS [6, 7]. In time (over NOFDM OFDM symbols), we use Mt parabolic B-splines [8–10].

However, other BEMs can also be used. The BEM matrix B is given by

(B)i,j = ϕs(g)ψm(n) = ξj(i), (3.24)

where: M = MfMt, N = NfNOFDM ; i = {g, n} and j = {s,m} are composite indices;

ϕs(g) is the sth basis function over frequency with s = 1, ...,Mf and g = 1, ..., Nf ; ψm(n) is

the mth basis function over time with m = 1, ...,Mt and n = 1, ..., NOFDM ; ξj(i) is the jth

time-frequency basis function with j = 1, ...,M and i = 1, ..., N .

The initial pilot-based channel estimate is given by

ĥr,k = Bâr,k, (3.25)
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where an estimate âr,k of the vector of expansion coefficients ar,k is given by

âr,k = (BHSHn,kSn,kB + Γ)−1BHSHn,kẑr,k, (3.26)

where Sn,k is an N × N diagonal matrix of pilot symbols transmitted by the kth transmit

antenna with zeros at data locations, Γ is an M ×M regularization matrix defined by the

set A. At the initialization step, we use ẑr,k = zr. Note that in the LTE downlink as seen in

Figure 3.3, the pilot symbols occupy different locations for different transmit antennas and

the pilot symbols of one transmit antenna are not overlapping with data or pilot symbols of

the other transmit antennas. This justifies the relationship ẑr,k = zr. When Γ is an M ×M

zero matrix, we have the pilot-based LS BEM channel estimator. When Γ = σ2
nR
−1
a , we have

the pilot-based LMMSE channel estimator with the covariance Ra = E[ar,ka
H
r,k] computed

by

Ra = (BHB)−1BHΥB(BHB)−1, (3.27)

where Υ = E[hr,kh
H
r,k] is the channel time-frequency autocorrelation matrix. The matrix Υ

is obtained as the Kronecker product of the channel autocorrelation matrices in frequency

and time,

Υ = Υt ⊗Υf , (3.28)

where Υt is an NOFDM × NOFDM channel autocorrelation matrix in time and Υf is an

Nf ×Nf channel autocorrelation matrix in frequency. The autocorrelation in time is defined

by the Jakes’ model [64],

Υt = σ2
hJ0(2πfdτ), (3.29)

where σ2
h is the channel variance (σ2

h = 1), J0(·) is the zero-order Bessel function of the

first kind and fd is the Doppler frequency. The autocorrelation matrix in frequency at two

frequencies f1 and f2 is obtained as the following

Υf = E[hr,k(f1)h∗r,k(f2)]

= E[

L−1∑
l=0

ble
−j2πf1τl

L−1∑
m=0

b∗me
−j2πf2τm ]

=

L−1∑
l=0

L−1∑
m=0

E[blb
∗
m]e−j2π(f1τl−f2τm),

(3.30)

44



when l 6= m, E[blb
∗
m] = 0, and thus (3.30) can be rewritten as

Υf =
L−1∑
l=0

ple
−jτl(f1−f2), (3.31)

where pl = E[|bl|2] and it is the average power at the lth path. The autocorrelation matrix

in frequency is defined by the channel PDP, {pl, τl}Ll=1.

For the weighted LMMSE channel estimation (the last step before the MIMO detection

in Figure 3.2), ĥr,k is estimated as in (3.25) with âr,k given by

âr,k = (BH S̄
H
k ŴrS̄kB + σ2

nR
−1
a )−1BH S̄

H
k Ŵrẑr,k, (3.32)

where S̄k is an N × N diagonal matrix of tentative data and pilot symbols, S̄k = diag(s̄k)

and Ŵr is a diagonal matrix of estimated weights computed from (3.21) for data locations

and set to unity for pilot symbol locations, and ẑr,k is found from (3.23). When Ŵ = IN , we

arrive at the conventional unweighted LMMSE BEM channel estimator.

3.5 Numerical results

For simulation, we consider a single-user MIMO downlink LTE scenario [29] with two trans-

mit antennas at the base station and two receive antennas at the UE. This system employs

the spatial multiplexing [29]. One sub-frame (as shown in Figure 3.3) consists of two slots

with 7 OFDM symbols in each slot. A resource block occupies one slot with 7 OFDM symbols

in time and 12 sub-carriers in frequency (N = 14× 12 = 504 symbols from which 24 symbols

are pilots). In our simulation, data are transmitted on 36 sub-carriers (six resource blocks).

Other simulation parameters are presented in Table 3.1 [29,98,99].

The data are mapped to a 16-QAM constellation. The QAM data symbols are mapped

with pilot symbols in time and frequency to construct the LTE subframe structure in Fig-

ure 3.3. The pilot symbols are generated from Zadoff-Chu sequences [29] as explained in

Chapter 2. Then, IFFT is used to convert the OFDM symbols from the frequency domain

to the time domain. The CP is then appended at the beginning of each OFDM symbol

to be transmitted through the channel. The number of simulation trials used for the MSE

performance results is 103 trials. The Block Error rate (BLER) is calculated as the ratio of
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Table 3.1: Simulation Parameters

No. of simulated slots 2

Channel bandwidth 5 MHz

Sampling rate 7.68 MHz

Slot length 0.5 ms

No. of used sub-carriers (NRB) 36

Frequency spacing between two sub-carriers 15 kHz

IDFT/DFT size 512

Modulation 16-QAM

Delay profile / Doppler frequency EVA/ETU

/ 350 Hz

Cyclic Prefix (Normal) 5.21µs for Symbol 0 (see Figure 3.3)

4.69 µs for Symbols 1-6

Reference Signal Cell-specific Reference

Signal (CRS) / Zadoff Chu sequence

Coding Turbo codes: code rate 1/3

the number of transport blocks with errors (with at least one error) to the total number of

transmitted transport blocks. The number of simulation trials used for the BLER perfor-

mance results is 104 trials.

Figure 3.4 shows the MSE performance of the LS and LMMSE pilot-based channel

estimators versus the number of basis functions in frequency Mf at Mt = 3, 4, 5 and SNR =

15 dB. The MSE of the channel estimation is defined by the following

MSE =
tr{E[(hr,k − ĥr,k)(hr,k − ĥr,k)

H ]}
tr{E[hr,kh

H
r,k]}

. (3.33)

As the reweighted and unweightd iterations are based on the LMMSE channel estimation, we

select Mt and Mf that provide the better performance for the LMMSE channel estimator. In

Figure 3.4, it can be seen that with higher Mf , the LMMSE channel estimator performance

becomes better in the ETU and EVA channels. However, the larger Mf , the more compu-

tational load incurred by the estimator. Therefore, we try to select the lowest Mt and Mf

that can provide a low approximation error. In the ETU channel (Figure 3.4 (a)), Mt is set

to Mt = 4 for the basis functions in time, and in frequency, Mf is set to Mf = 11. In the

EVA channel (Figure 3.4 (b)), Mt and Mf are set to Mt = 4 and Mf = 5.
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Figure 3.4: MSE performance of the LS and LMMSE pilot-based BEM channel estimators
(for the basis functions in time Mt = 3, 4, 5) versus the number of basis functions in frequency
Mf in (a) ETU and (b) EVA channels at a 350 Hz Doppler frequency and SNR=15 dB.
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Figure 3.5 shows the channel estimation performance of the iterative channel estimators

for Nit = 3 and Nit = 10 in the EVA channel. When the initial estimates are obtained from

the LS channel estimator (Figure 3.5 (a)), the MSE performance of the reweighted estima-

tor for Nit = 3 is significantly better than that of the unweighted estimator. At Nit = 10,

the performance of the reweighted estimator is better than that of the unweighted estima-

tor by approximately 1 to 3 dB. When the initial estimates are obtained from the LMMSE

channel estimator (Figure 3.5 (b)), the MSE performance of the reweighted estimator for

Nit = 3 and Nit = 10 provides an improvement of about 1 to 2 dB in comparison with

the unweighted estimator. The unweighted estimator is affected by the quality of the initial

channel estimates. On the other hand, the reweighted estimator is slightly affected by worse

initial channel estimate (the LS channel estimates) at Nit = 3. At Nit = 10, the reweighted

estimator performance is almost the same when the initial LS or LMMSE estimates are used

as clearly shown in Figure 3.5 (a) and (b). It shows that at a high number of iterations the

reweighted estimator still provides the same performance with better or worse initial channel

estimates.

Note that in the ETU channel, M = MtMf = 4×11 = 44, which is higher than the num-

ber of the available pilots (24 pilot symbols). This means that this problem is ill conditioned

and the LS channel estimation will result in wrong results. Therefore, we only use the initial

LMMSE channel estimates in the reweighted and unweighted estimators in the ETU channel.

Figure 3.6 shows the MSE performance of the iterative reweighted channel estimators with

the initial LMMSE channel estimates for Nit = 3 and 10 in the ETU channel at a 350 Hz

Doppler frequency. Similar to the EVA channel, the performance of the reweighted estimator

is better than that of the unweighted estimator by 1 to 2 dB. Note that, with better initial

channel estimates (see Figure 3.5 (b) and Figure 3.6), the difference in the performance of

the reweighted estimator between low and high Nit is very small. Thus, a small number of

iterations can be used in the estimators in such case to achieve close-to-optimal performance.

Figures 3.7 to 3.9 show the BLER performance achieved in the receivers with the

reweighted and unweighted LMMSE channel estimators in the EVA and ETU channels. The

BLER performance of Perfect Channel Information (PCI) is obtained using the true channel

response in the MIMO MMSE detector. In the EVA channel, when the initial channel es-

timates are obtained using the LS channel estimator (Figure 3.7), the reweighted estimator
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Figure 3.5: MSE performance of the reweighted and unweighted LMMSE iterative channel
estimators with initial (a) LS and (b) LMMSE channel estimates versus SNR in the EVA
channel at a 350 Hz Doppler frequency.
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Figure 3.6: MSE performance of the reweighted and unweighted LMMSE iterative channel
estimators with LMMSE initial channel estimates versus SNR in the ETU channel at a 350 Hz
Doppler frequency.

outperforms the unweighted estimator. When the initial channel estimates are obtained using

the LMMSE channel estimation (Figure 3.8), the improvement in the performance becomes

very small. It can be seen that, as shown in Figure 3.8, the BLER performance at Nit = 10

is almost the same for the initial LS and LMMSE channel estimates. Also, the performance

with Nit = 3 and Nit = 10 is approximately the same when the initial LMMSE channel

estimates are used. In the ETU channel (Figure 3.9), the improvement in the performance

of the reweighted estimator over that of the unweighted estimator is almost negligible. From

Figures 3.7 to 3.9, it can be concluded that in the case of better initial channel estimates

(e.g., the LMMSE channel estimates) and a low rate turbo coding, the improvement in the

reweighted estimator performance over the unweighed estimator is very small to almost neg-

ligible. However, with worse initial channel estimates (e.g., the LS channel estimates), the

improvement is significant. This shows that, in scenarios with worse initial channel estimates,

the reweighted channel estimator can significantly outperform the unweighted estimator.
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Figure 3.7: BLER performance of the reweighted and unweighted LMMSE iterative channel
estimators with initial LS channel estimates versus SNR in the EVA channel at a 350 Hz
Doppler frequency.
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Figure 3.8: BLER performance of the reweighted and unweighted LMMSE iterative channel
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Figure 3.9: BLER performance of the reweighted and unweighted LMMSE iterative channel
estimators with initial LMMSE channel estimates versus SNR in the ETU channel at a 350 Hz
Doppler frequency.

As can be seen in Figure 3.1, when the weights wr,i are near to unity, we would expect

high reliability in the detection of data symbols that correspond to such weights. On the other

hand, when wr,i is near zero, the detection of data symbols may result in errors. Therefore,

another advantage of the proposed weights is that they can be used as a measure of reliability

for the detected received data. In the following chapter, we will exploit the benefit of using

the proposed weights as a measure of data reliability and the reweighted channel estimation

for complexity reduction of high performance detectors.

3.6 Summary

This chapter can be summarized as the following:

• The optimized weights for uplink LTE scenarios derived in [18] are proposed for using

in the LTE downlink. Although, the assumption of Gaussian data errors in [18] is

invalid for OFDM, it is shown through simulation results that such weights can pro-
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vide improvement in the channel estimation performance over that of the unweighted

estimation.

• Data-aided reweighted LMMSE iterative BEM channel estimator for a single-user MIMO

OFDM in downlink LTE scenarios was investigated. We have compared the perfor-

mance of this estimator with that of the conventional unweighted estimator. It has

been shown through simulation that the reweighted LMMSE channel estimator with

weights from [18] outperforms the unweighted channel estimator in channels with the

ETU and EVA PDPs and a high Doppler frequency.

• It has been shown that the performance of the reweighted LMMSE BEM channel esti-

mation is the same with LS or LMMSE pilot-based initial channel estimates if a high

number of reweighted iterations is used. This result shows that the effect of worse

initial channel estimates on the reweighted LMMSE estimator is almost negligible with

high Nit. Thus, a lower complexity channel estimation can be used to provide the initial

channel estimates in the reweighted LMMSE BEM channel estimator.

• It has been shown that in the case of better initial channel estimates (e.g., the LMMSE

channel estimates), a small number of iterations can be used to arrive to the close-to-

optimal performance.
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Chapter 4

Selective detection with adaptive

channel estimation for MIMO

OFDM systems
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4.1 Introduction

Detection schemes based on pilot-aided channel estimation are widely used in wireless com-

munication systems. When the estimates are treated as perfect, the detector is a mismatched

detector, and it does not provide the best performance [19]. The optimal detector on the

other hand uses the received data and pilot symbols jointly to detect the transmitted data

without explicit channel estimation [19,20,40–42].

Although the optimal detection can provide a significant improvement in the perfor-

mance, its computational complexity is high and increases exponentially with the size of data

package, modulation order and number of transmit antennas. SbS optimal detection can sig-
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nificantly reduce the complexity with slight degradation in the performance [20]. However,

despite the reduction in complexity, the SbS optimal detection is still very complicated. The

SbS optimal detection has been shown to provide a better performance than mismatched de-

tectors with LS or LMMSE channel estimates in time-varying [40] and frequency-selective [20]

channels. The improvement in the detection performance becomes more apparent for higher

modulation orders and MIMO setup [20,41]. The SbS optimal detector and the mismatched

detector with LMMSE channel estimates in [20,40,41] were implemented assuming full knowl-

edge of the channel PDP and/or Doppler spectrum. However, such information is usually

not available and hard to estimate in practice. This chapter addresses: (i) the reduction

in complexity of the SbS optimal detection; and (ii) the channel estimation and detection

without knowledge of the channel PDP.

The complexity of high performance detectors can be reduced by using a two-stage de-

tection scheme [100, 101]. The first stage involves low complexity channel estimation and

detection. The second stage applies a high performance detector to received data that are

most likely unreliably detected at the first stage. However, the scheme in [100] is limited to

code-division multiple-access systems and BPSK modulation. In [101], a two-stage maximum

likelihood detection algorithm was proposed for multiuser detection. This algorithm assumes

perfect knowledge of the channel. However, in practice, such information is unavailable.

In this chapter, we propose a two-stage detection scheme to reduce the complexity of the

SbS optimal detector in a MIMO OFDM system in doubly-selective channels. At the first

stage, a re-weighted iterative channel estimation and mismatched detection are used. The

re-weighted iterative LMMSE channel estimation is far superior to that of the pilot-based

LMMSE channel estimation [18,25]. At this stage, tentative data estimates [11] are obtained

without decoding and used for improving the performance of channel estimation [16, 18].

The weights obtained from the re-weighted channel estimator are used to identify the un-

reliably detected symbols, to which, at the second stage, the SbS optimal detection is applied.

Both the LMMSE channel estimation and SbS optimal detection require knowledge of

the channel statistics. This information is hard to acquire in practice. Model-based (e.g.,

uniform) channel regularization [21] is more practical for channel estimation, but it requires

knowledge of the channel delay spread, which is difficult to estimate. In [21], an adaptive

model-based regularization was proposed for multi-carrier systems, such a channel estimator
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Figure 4.1: Time-frequency grid for one transmit antenna.

was shown to provide a performance close to that of the LMMSE estimator in LTE uplink

scenarios without knowledge of the channel statistics. Hence, we investigate the proposed se-

lective detection with the adaptive model-based regularization. The variation of the channel

in time and frequency is approximated using BEMs. BEMs are widely used for estimation

of doubly-selective channels, since they can provide a high channel estimation performance

with low computational complexity [2–10].

In this chapter, A new two stage channel estimation and SbS detection receiver is pro-

posed to reduce the complexity of the SbS optimal detector (i.e., selective SbS optimal de-

tector) while maintaining its high detection performance. We show that the selective SbS

detector can provide a performance close to that of the SbS optimal detector with significantly

lower complexity. We show that detectors using the adaptive model-based regularization can

provide a performance close to that of the detectors with known channel statistics.

This chapter is organized as follows. Signal and channel models are presented in Sec-

tion 4.2. In Section 4.3, the optimal detection with imperfect channel knowledge and mis-

matched detection are revised. In Section 4.4, the new receiver is proposed. Numerical results

are given in Section 4.5. Section 4.6 provides a brief summary of the chapter.
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4.2 Signal and channel models

We first consider the time-frequency structure of a data package transmitted from a single

transmit antenna, see Figure 4.1 as an example. In the data package, there are NOFDM

OFDM symbols and Nf subcarriers. A single subcarrier of a single OFDM symbol repre-

sents a resource element (RE), e.g., such as a QAM symbol; thus the data package contains

N = NOFDMNf REs. Every RE is occupied by either data or pilot symbol; it is also possi-

ble that some REs are zeros. In a MIMO system, from every transmit antenna, a signal is

transmitted with a structure similar to that in Figure 4.1. The difference in data packages

transmitted by different antennas can be in positions of pilot symbols. For example, in the

LTE downlink, positions of pilot symbols of different transmit antennas are not overlapping

and data symbols being zeros at these positions (see Figure 3.3), thus providing an oppor-

tunity for independent estimation of the multiple channels between transmit and receive

antennas.

In a MIMO OFDM system, the signal model can be described as

z = Ψa + n, (4.1)

where z is an NNr × 1 vector of received signals, z = [zT1 , ..., z
T
r , ..., z

T
Nr

]T , zr is an N × 1

signal vector at the rth receive antenna, Nr is the number of receive antennas, Ψ is an

NNr × MNtNr matrix so that Ψ = INr ⊗ [S1B, ...,SkB, ...,SNtB], Sk is an N × N di-

agonal matrix of data and pilot symbols transmitted by the kth transmit antenna, Nt is

the number of transmit antennas, B is an N × M matrix of basis functions (see below),

a = [aT1 , ...,a
T
r , ...,a

T
Nr

]T , ar = [aTr,1, ...,a
T
r,k, ...,a

T
r,Nt

]T , ar,k is an M × 1 vector of BEM ex-

pansion coefficients for the channel between the kth transmit antenna and the rth receive

antenna, n ∼ NC(0, σ2
nINNr) is an NNr×1 vector of complex-valued Gaussian noise with vari-

ance σ2
n, n = [nT1 , ...,n

T
r , ...,n

T
Nr

]T , and nr is an N×1 noise vector on the rth receive antenna.

Let hr,k be an N × 1 vector representing the channel response between the kth transmit

and rth receive antennas at positions of the N REs within the data package. It is assumed

that, in a doubly-selective channel, the channel response can be represented as hr,k = Bar,k.

We consider here two-dimensional (time-frequency) basis functions, represented by the N×M
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matrix B defined as

B = Bt ⊗Bf . (4.2)

The NOFDM×Mt matrix Bt represents Mt basis functions across time, i.e., across the NOFDM

OFDM symbols. The Nf×Mf matrix Bf represents Mf basis functions across frequency, i.e.,

across the Nf sub-carriers. Thus, we have M = MtMf . We assume that hr,k ∼ NC(0N ,Υ).

The N ×N channel covariance matrix Υ = E{hr,khHr,k} is defined through the channel PDP

and Doppler spectrum [102]; we assume here the Jakes’ Doppler spectrum. The covariance

matrix Ra of the expansion coefficients ar,k can then be represented as

Ra = E{ar,kaHr,k} = (BHB)−1BHΥB(BHB)−1. (4.3)

The received data and pilots can be equivalently represented as

zd = Ψda + nd, (4.4)

zp = Ψpa + np, (4.5)

where zd is an NdNr × 1 vector of received data, zd = [zTd,1, ..., z
T
d,r, ..., z

T
d,Nr

]T , zd,r is an

Nd× 1 vector of received data at the rth receive antenna, Nd is the number of data symbols,

Ψd = INr ⊗ [Sd,1Bd, ...,Sd,kBd, ...,Sd,NtBd] is NdNr ×MNrNt matrix, Sd,k is an Nd × Nd

diagonal matrix obtained from Sk at data locations, Bd is an Nd×M matrix of basis functions

(B at data locations), nd is an NdNr × 1 vector of complex-valued Gaussian noise, zp is

an NpNr × 1 vector of received pilot symbols, Np is the number of pilot symbols, Ψp =

INr ⊗ [Sp,1Bp, ...,Sp,kBp, ...,Sp,NtBp] is NpNr ×MNrNt matrix, Sp,k is an Np ×Np diagonal

matrix obtained from Sk at pilot locations, Bp is an Np ×M matrix of basis functions (B

at pilot locations), np is an NpNr × 1 vector of complex-valued Gaussian noise. We assume

that the Nd data symbols for each of Nt transmit antennas are obtained independently from

data symbols for the other transmit antennas by interleaving and encoding Nt binary data

packages, and further mapping the encoded bits into the QAM constellation.

4.3 Optimal and mismatched detection

A mismatched detector assumes that channel estimates (e.g., LMMSE channel estimates) are

perfect [19]. The optimal detector does not make such an assumption and jointly processes

the received data and pilot symbols to detect the transmitted data, without an explicit chan-
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nel estimation. The optimal detector minimizes the probability of detection error, and thus

provides better performance than mismatched detectors.

Now we describe the optimal detection with imperfect channel estimation by modifying

results presented in [20] to adjust them to the signal model and the doubly-selective channel

model described in Section 4.2. The optimal detector is a maximizer of the log-likelihood

function λopt(sd) = ln[p(zd|sd, zp)]:

ŝd,opt = arg max
sd∈ANDNt×1

λopt(sd), (4.6)

where sd = diag(Sd), A is the QAM constellation and ND is the number of data symbols

simultaneously detected. In the optimal detector, all (ND = Nd) data symbols are jointly

detected. The PDF p(zd|sd, zp) is found by integrating the PDF p(zd|sd,a) over the nuisance

parameters a:

p(zd|sd, zp) =

∫
p(zd|sd,a)f(a|zp)da, (4.7)

where

p(zd|sd,a) = NC(Ψda,Rd), (4.8)

f(a|zp) = NC(ma,Ca), (4.9)

Rd = E{ndnHd } = σ2
nINdNr (4.10)

ma = CaLp, (4.11)

Ca = Rc(ΓpRc + IMNrNt)
−1, (4.12)

Lp = σ−2
n ΨH

p zp, (4.13)

Γp = σ−2
n ΨH

p Ψp, (4.14)

Rc = INr ⊗ INt ⊗Ra, (4.15)

Ld = σ−2
n ΨH

d zd, (4.16)

Γd = σ−2
n ΨH

d Ψd, (4.17)

Rd is the noise covariance matrix for data REs and Rc is an MNtNr ×MNtNr covariance

matrix of the expansion coefficients for channels between all transmit and all receive antennas.
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By using complex multivariate normal distributions for p(zd|sd,a) and f(a|zp), we obtain

p(zd|sd,a) =
1

πNd |Rd|
exp(−(zd −Ψda)HR−1

d (zd −Ψda))

=
1

πNd |Rd|
exp(−zHd R−1

d zd + 2<(aHΨH
d R−1

d zd)− aHΨH
d R−1

d Ψda),

(4.18)

Replacing some of the parameters with Rd, Ld and Γd, we arrive at

p(zd|sd,a) =
σ−2
n

πNd
exp(−σ−2

n |zd|2 + 2<(aHLd)− aHΓda). (4.19)

f(a|zp) =
1

πN |Ca|
exp(−(a−ma)

HC−1
a (a−ma))

=
1

πN |Ca|
exp(−aHC−1

a a + 2<(aHC−1
a ma)−mH

a C−1
a ma).

(4.20)

By substituting (4.19) and (4.20) in (4.7) and integrating over the real and imaginary parts

of a, we arrive at

p(zd|sd, zp) = c

∫
exp(2<(aHLd)− aHΓda)

exp(−aHC−1
a a + 2<(aHC−1

a ma))d<(a)d=(a),

(4.21)

where c is a constant,

c =
σ−2
n exp(−σ−2

n |zd|2) exp(−mH
a C−1

a ma)

πNd |Ca|
> 0. (4.22)

Solving (4.21) with Lp = C−1
a ma, we get

p(zd|sd, zp) = c

∫
exp(2<(aH(Ld + Lp))− aH(Γd + C−1

a )a)d<(a)d=(a). (4.23)

Lemma 4.1 [40]:

If q and y are complex M -dimensional vectors and Γ is an M × M definite positive

Hermitian matrix, then

∫
exp(2<(qHy)− qHΓ−1q)d<(q)d=(q) = πM |Γ| exp(yHΓy). (4.24)
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Applying Lemma 4.1 to (4.23), we get

p(zd|sd, zp) =
c

|CaΓd + IMNrNt |
exp{(Ld + Lp)

H(Γd + C−1
a )−1(Ld + Lp)}. (4.25)

Using (4.25), the metric λopt(sd) is given by

λopt(sd) = ln[p(zd|sd, zp)],

= ln
[ c

|CaΓd + IMNrNt |
exp{(Ld + Lp)

H(Γd + C−1
a )−1(Ld + Lp)}

]
,

= ln[c]− ln[|CaΓd + IMNrNt |] + ((Ld + Lp)
H(Γd + C−1

a )−1(Ld + Lp)),

(4.26)

Omitting terms that do not affect the optimization (i.e., ln[c]) and replacing some parameters

by (4.12) to (4.17), we arrive at the optimal metric:

λopt(sd) = {σ−2
n (ΨH

d zd + ΨH
p zp)

H

× (ΨH
d Ψd + ΨH

p Ψp + σ2
nR
−1
c )−1(ΨH

d zd + ΨH
p zp)

− ln |ΨH
d Ψd + ΨH

p Ψp + σ2
nR
−1
c |}. (4.27)

Note that the optimal detector maximizing the metric λopt(sd) in (4.27) simultaneously

for all Nd symbols in the data package is extremely complicated. It has been shown in [20]

that, with a slightly reduced detection performance, the optimization can be done in a SbS

fashion (i.e., by setting ND = 1), thus significantly reducing the complexity of the detector.

In the SbS optimal detection, zd is simplified to zd = [z
(g)
d,1 , ..., z

(g)
d,r , ..., z

(g)
d,Nr

]T , which

is an Nr × 1 vector of received data at the gth RE, z
(g)
d,r is the gth element of the vec-

tor zd,r, g = 1, ..., Nd, Ψd is simplified to Ψd = INr ⊗ [s
(g)
d,1bd, ..., s

(g)
d,kbd, ..., s

(g)
d,Nt

bd], s
(g)
d,k is

the kth element of the vector s
(g)
d = [s

(g)
d,1, ..., s

(g)
d,k, ..., s

(g)
d,Nt

] and gth element of the vector

sd,k = [s
(1)
d,k, ..., s

(g)
d,k, ..., s

(Nd)
d,k ]T , Sd,k = diag(sd,k), bd is an 1 ×M vector obtained as the gth

row of the matrix Bd.

It can be seen that the optimal metric depends on the covariance matrix Rc of channel

expansion coefficients a. This covariance is unknown in practice. Besides, the SbS optimal

detector is still complicated. Therefore, two problems should be addressed: (i) to reduce com-

plexity of the detector, and (ii) to make the detector operating without the perfect knowledge

of the channel statistics.
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For Nt transmit antennas, ND = Nd data symbols and a modulation with 2K constel-

lation points, the optimal metric λopt(sd) in (4.27) is calculated 2KNdNt times, which results

in a high computational load. In the SbS optimal detector (ND = 1), the optimal metric is

calculated 2KNt times for every symbol and Nd2
KNt times for all symbols. Since Nd � 2Nd ,

this significantly reduces the overall complexity of the detector. However, the SbS optimal

detector is still complicated for implementation. To analyse the SbS optimal detector com-

plexity, we consider the case of Nt = Nr = 1 (i.e., single input single output system) and

known data and pilot basis functions Bd and Bp, noise power σ2
n and covariance Rc. For

such case, the following parameters are simplified: sd = sd, zd = zd and Ψd = sdbd. Then,

the metric in (4.27) can be rewritten as (see [20] for more details)

λopt(sd) = {σ−2
n |sd|2|zd|2%+ 2σ−2

n <{sdz∗dεzp}+ σ−2
n zHp Ξzp + ln |Y|}. (4.28)

where % = bdYbHd , ε = bdYΨp, Ξ = ΨpYΨH
p and Y = (ΨH

d Ψd + ΨH
p Ψp + σ2

nR
−1
c )−1.

In (4.28), %, ε, Ξ, Y and [ln |Y|] can be precomputed and saved in the memory. The terms [εzp]

and [σ−2
n zHp Ξzp] can be computed once for all data symbols. However, the terms [|sd|2|zd|2]

and [sdz
∗
d] are to be computed on SbS basis. Using (4.28),

[
2N2

p+2Np+D

Nd
+ 2K + D

]
real-

time complex multiplications are required to detect one data symbol (Nd = 1) [20], where

D represents all possible values of |sd| (e.g., for 16-QAM, D = 4). For Nd data symbols,[
Nd

(
2N2

p+2Np+D

Nd
+ 2K +D

)]
complex multiplications are required to be computed. For high

Nd, Nt and modulation order, the complex multiplications required will increase significantly.

The main objective of the selective receiver proposed in the following section is to signif-

icantly reduce the number of data symbols processed in the SbS optimal detector. In other

words, calculating the optimal metric Nsel2
KNt times instead of Nd2

KNt times, with Nsel are

the number of data symbols processed in the SbS optimal detector and Nsel � Nd. This

significantly reduce the overall complexity of the receiver, while keeping its high detection

performance. For the case of Nt = Nr = 1,
[
Nsel

(
2N2

p+2Np+D

Nd
+ 2K + D

)]
complex multi-

plications only are required to be computed by the selective receiver. We will show through

simulation that using the proposed selection scheme, Nsel symbols (which represent a small

percentage of Nd symbols) are only selected for processing in the SbS optimal detector. The

most of the received symbols are processed in a more simple mismatched detector, e.g., such

as the MMSE detector. The complexity of an MMSE detector for one symbol is only O(N3
t )
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arithmetic operations, which is significantly lower than that of the SbS optimal detector.
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4.4 Proposed receiver

In the proposed receiver, the SbS optimal and mismatched detection are combined into a two-

stage detection scheme. Firstly, the mismatched detection is applied to all data symbols in

the data package and unreliably detected symbols are identified. The mismatched detection

is based on the re-weighted channel estimation (see below) which, as a by-pass product, for

every data symbol, generates weights characterizing the reliability of the symbol estimates.

These weights are exploited in a selection scheme that identifies unreliable symbols. Only

these symbols are processed in the SbS optimal detector. This approach allows reduction in

the receiver complexity.

However, for operation of the SbS optimal receiver, the problem of the knowledge of

channel statistics should also be addressed. To deal with this problem, we propose the

following approach. In the channel estimator operating with the mismatched detector, we

propose to use an adaptive regularization, i.e., finding a regularization matrix that results

in the most accurate channel estimate. This allows an improved detection performance in

the mismatched detector. However, it also provides an estimate of the channel statistics for

operation of the SbS optimal detector. Since the optimal regularization matrix is the inverse

of the channel covariance matrix, the adaptively found regularization matrix can be treated

as an estimate of the covariance inverse and be directly applied in the SbS optimal detector.

Although the optimal regularization can be found jointly for all NtNr channels between

the Nt transmit and Nr receive antennas, it is more practical (and significantly less compli-

cated) to find it separately for every channel. Besides, the complexity of the joint channel

estimation for all channels would be O(Nr(MNt)
3) arithmetic operations, which is high. On

the other hand, the complexity of independently estimating the multiple channels between

transmit and receive antennas is only O(NrNtM
3) operations. Thus, the proposed receiver

should recover the received signals corresponding to the channels to enable the separate chan-

nel estimation.

Figure 4.3 describes the channel estimation and detection stages of the proposed receiver.

The pilot-based BEM channel estimation is used to provide initial channel estimates [see Fig-

ure 4.3 (a)]. The re-weighted iterative BEM channel estimation [Figure 4.3 (b)] is used to
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improve the channel estimation performance and provide information that is necessary to

implement the selective optimal detector. The selective detector [Figure 4.3 (c)] selects the

received data that are assumed to be detected unreliably at stage (b) and applies the SbS

optimal detector to these symbols. Below, these stages are explained in more details.

4.4.1 Pilot-based BEM channel estimation

For better explanation of how the proposed receiver operates, we consider an equivalent model

of the received signal. The received signal zr at the rth receive antenna can be expressed as

zr =

Nt∑
k=1

Skhr,k + nr, r = 1, ..., Nr. (4.29)

The initial pilot-based channel estimate ĥr,k is given by

ĥr,k = Bâr,k, (4.30)

where the estimate âr,k of the expansion coefficients ar,k is given by

âr,k = (BHSHn,kSn,kB + Φr,k)
−1BHSHn,kz̃r,k, (4.31)

Sn,k is an N ×N diagonal matrix of symbols transmitted by the kth transmit antenna with

zeros at data REs, Φr,k is an M ×M regularization matrix for the channel between the kth

transmit antenna and the rth receive antenna and z̃r,k is an N × 1 vector of received pilot

symbols from the kth transmit antenna with zeros at data locations. The matrix Sn,k is

obtained from Sk by zeroing the data symbols. In the LTE downlink [29] (which we adopt for

our simulation), as shown in Figure 3.3, pilot symbols transmitted from one transmit antenna

are not overlapping with data or pilot symbols from the other transmit antennas. Thus, the

received pilot symbols from the kth transmit antenna will be free from the multi-antenna

interference and can be recovered separately. This justifies the estimation of ar,k from z̃r,k

as in (4.31). If Φr,k = σ2
nR
−1
a with Ra = E(ar,ka

H
r,k), we arrive at the pilot-based LMMSE

channel estimation. The covariance matrix Ra of the expansion coefficients can be computed

from the channel covariance (defined by the PDP and the Doppler spectrum) as in (4.3). As

the true channel PDP is unavailable in practice, we use a more practical approach for finding

the regularization matrix, as suggested in [21].
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If Φr,k = σ2
nR
−1
ξ , where Rξ is an M ×M covariance matrix for a model PDP, we arrive

at the pilot-based channel estimation with model-based regularization. If Φr,k = σ2
nIM ,

we arrive at the pilot-based channel estimation with diagonal loading, which only requires

the knowledge of the noise variance σ2
n. However, it causes a significant degradation in the

estimation performance as will be seen from numerical results.

4.4.2 Re-weighted iterative BEM channel estimation

In stage (b) of the proposed receiver, see Figure 4.3, tentative soft data estimates Ŝk are

obtained in the MMSE MIMO detector using the initial channel estimates ĥr,k. The ten-

tative data symbols S̄k are recovered by mapping the soft data estimates onto the QAM

constellation. Then, for the rth receive antenna, the weights wr,i are computed by [18]

wr,i =

 1, `r,i ≤ 1;

ln(`r,i)+1
`r,i

, `r,i > 1,
(4.32)

where

`r,i =
1

σ2
n

∣∣zr,i − Nt∑
k=1

ĥ
(i)
r,ks̄k,i

∣∣2, (4.33)

wr,i is the ith element of the rth weight vector wr = [wr,1, ..., wr,i, ..., wr,N ], zr,i is the ith

element of the received signal vector zr, ĥ
(i)
r,k is the ith element of the estimated channel vector

ĥr,k, and s̄k,i is the ith element of the tentative data and pilot vector s̄k. From (4.32), it can be

seen that the weight wr,i is in the range (0, 1]. When the weight is unity, the received symbol

is perfectly known. For pilot symbols, the weights wr,i are set to unity (since the pilot symbols

are perfectly known). Equation (4.32) implies that when the normalized residual power `r,i

is high, the contribution (weight) of the corresponding tentative data symbols s̄k,i into the

channel estimate is reduced.

A portion ẑr,k of the received signal corresponding to the kth transmit antenna is recov-

ered as

ẑr,k = zr −
Nt∑

j=1,j 6=k
S̄jĥr,j , (4.34)

where signals received from other transmit antennas are treated as interference and their

estimates are subtracted from the received signal zr. After the interference cancellation, the
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channel is re-estimated from ẑr,k, and the re-weighted estimate of ar,k is given by

âr,k = (BH S̄Hk WrS̄kB + Φr,k)
−1BH S̄Hk Wrẑr,k, (4.35)

where S̄k is an N × N diagonal matrix of tentative data and pilot symbols, S̄k = diag(s̄k),

and Wr = diag(wr) is the diagonal matrix of weights computed using (4.32). If Wr = IN ,

we arrive at the conventional unweighted BEM channel estimator, which however has inferior

performance compared to the re-weighted estimation [18].

Note that, the channel estimate obtained from ẑr,k is sub-optimal as the channel esti-

mation is performed independently instead of jointly for all transmit antennas. However,

this approach reduces the complexity and it simplifies the adaptive regularization, which

is described in Subsection 4.4.4. The updated channel estimates ĥr,k are used in the next

re-weighted iteration of a total number of Nit. Note that the accuracy of tentative data

estimates can be improved if decoding is used in the iterative re-weighted estimator. How-

ever, this will result in higher complexity of the receiver. Thus, we obtain the tentative data

estimates without decoding as shown in Figure 4.3 (b). In the final iteration, the channel

estimates ĥr,k are used in the MIMO MMSE detector to obtain soft estimates of data symbols

in Ŝk. Then, the weights wr,i are used to construct the SbS selection scheme for the optimal

detection.
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4.4.3 The selection scheme

Figure 4.4 shows the relationship between the weights wr,i and the residual powers `r,i as

in (4.32). For a single receive antenna, the idea of the proposed selection scheme is based on

setting a threshold for the weights wr,i. The weights that are below the threshold correspond

to unreliable data symbols while weights above the threshold correspond to reliable data

symbols. Using the weights as a measure of the data reliability, we can combine detectors

with high complexity and high detection performance (i.e., the SbS optimal detection) with

detectors that have lower complexity and lower detection performance (i.e., the re-weighted

channel estimation with the MMSE detection). At first, the detection is performed by the

lower complexity detector. Then, based on the weights and a threshold, the unreliable re-

ceived data are processed in the higher complexity detector, thus reducing the complexity of

the better detector (as it is applied on a small percentage of the received data) and having

its high detection performance. The threshold value µ that provides a trade-off between the

complexity and the detection performance in the worse channel case ( i.e., the ETU channel)

is selected from the values µ ∈ (0, 1].

Now we describe the selection scheme for the case of multiple receive antennas. Let wr,g

be the weights at data locations, where wr,g is obtained from wr,i by only selecting the data

locations (g is the index i at data locations). For different receive antennas, the weight wr,g

can be different. Consider the first receive antenna (r = 1), let v1 = w1,g be the weight

that corresponds to the gth received data element z
(g)
d,1 (z

(g)
d,r at r = 1). For the second receive

antenna (r = 2), let v2 = wr,g be the weight that corresponds to the gth received data element

z
(g)
d,2 . Let µ be a threshold value in the range (0, 1]. When v1 and v2 are below µ, we can

assume that the received data zd at this location has not been detected reliably. Then, the

scheme selects this zd for detection by the SbS optimal detector. If one of the weights or

both the weights are greater than or equal to µ, the scheme decides that the received data

have already been detected correctly. Note that, the selective detector is applied only on a

small percentage of the received data symbols (see Section 4.5) which significantly reduces

the detector complexity in comparison with the SbS optimal detector.

4.4.4 Adaptive model-based regularization

The model-based regularization is computed assuming a model PDP with uniformly dis-

tributed delays within a delay spread τmax. The model PDP can differ from the true channel
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PDP. The model-based regularization requires the knowledge of the delay spread. However,

in practice, it is unknown and difficult to estimate. Our approach is to use an adaptive

model-based regularization with a set of delay spreads given by [21]

τmax ∈ {τ1, ..., τξ, ..., τQ}, (4.36)

where τξ is the ξth maximum delay spread and Q is its total number. The step ∆τ between

delay spreads in the set can be selected to about uniformly cover the maximum channel delays

for the worst channel (e.g., for the ETU model [98]). For example, one can set ∆τ =
τQ
Q

and τQ is greater than the maximum delay spread of the ETU channel. As long as the set

in (4.36) sufficiently covers the possible delay spreads of the high, medium and low delay

spread channels, any ∆τ can be selected.

For the ξth delay spread τξ, an M × M model-based covariance matrix Rξ is pre-

computed, thus providing a set {Rξ}Qξ=1. In order to select the best covariance matrix

for channel estimation from this set, we use the GCV method [103]. The GCV method has

been previously used for selection of smoothing parameters of a spline fitting without the

knowledge of noise variance [21, 104]. In the GCV method, one sample of observed data (in

our case, one RE) is removed and the remaining samples are used to estimate this sample;

this procedure is repeated for all samples. When a smoothing parameter is the best fit for

the estimation for all these samples, the overall prediction error (i.e., the GCV) is minimized.

Using the GCV method, for every ξ, the cross-validation parameter is computed [21,103],

which in application to the channel estimation problem amounts to:

Vr,k(ξ) =
||z̃r,k −G

(ξ)
n,kz̃r,k||

2

(Np − tr{G(ξ)
n,k})2

, (4.37)

G
(ξ)
n,k = Sn,kB(BHSHn,kSn,kB + σ2

nR
−1
ξ )−1BHSHn,k, (4.38)

where Vr,k(ξ) is a ξth cross-validation parameter for the channel between the rth receive

antenna and kth transmit antenna. The covariance matrix Rξ that provides the minimum

value of Vr,k(ξ) from the set of matrices {Rξ}Qξ=1 is selected for the BEM channel estimation.

Note that the covariance matrix Rξ is computed without the knowledge of the true
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channel PDP. However, the Doppler frequency in our investigation is assumed perfectly

known when computing the matrix Rξ. We make this assumption to simplify the presen-

tation. Indeed, the adaptive regularization can be easily extended to the case of unknown

Doppler frequency. Besides, there are techniques that can be used to estimate the Doppler

frequency [105–110].

4.4.5 Complexity reduction

In the proposed receiver, the overall complexity is reduced, compared to the optimal detector,

because of the following:

• The SbS optimal detector is used which significantly reduces the complexity in com-

parison to the optimal detector that jointly processes all symbols in the data package

as explained in Section 4.3.

• The number of data symbols to which the SbS optimal detector is applied is significantly

reduced as detailed in Section 4.3.

• Decoding is not used in the iterations involving the re-weighted channel estimation and

mismatched detection.

• Pilot-based and re-weighted channel estimation is performed independently (not jointly)

for the multiple Nt ×Nr channels of the MIMO system as discussed in Section 4.4.

4.5 Numerical results

In the simulation, we consider a single-user MIMO downlink LTE scenario [29] in the spa-

tial multiplexing transmission mode with two transmit antennas at the base station and two

receive antennas at the user side. The channel frequency-selectivity is defined by the EPA,

EVA, or ETU PDP [98]. The ETU channel has a high delay spread (slightly longer than

the cyclic prefix length), while EVA and EPA channels have medium and low delay spreads,

respectively. The multipath time-variant channel is described by Jakes’ model with Doppler

frequencies of 5 Hz for EPA and 350 Hz for EVA and ETU channels.

A transport block of one sub-frame (see Figure 3.3) with six resource blocks (36 sub-

carriers) is transmitted. A resource block occupies one slot of duration 0.5 ms and contains
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7 OFDM symbols in time and 12 sub-carriers in frequency. The cyclic prefix duration is

5.2 µs for the first OFDM symbol in a slot and 4.69 µs for the rest of the OFDM symbols,

each having the useful length 66.7 µs. The pilot symbols are generated from Zadoff-Chu

sequences [29]. Data are encoded by turbo codes with 1/3-code rate [99]. The modulation

scheme is 16-QAM.

For the adaptive regularization, the channel covariance for a set of uniform PDPs is

precomputed with the following delay spreads (Q = 8):

τmax
τCP

∈ {1, 6, 14, 22, 30, 38, 44, 50}/36, τCP = 4.69 µs. (4.39)

With the adaptive regularization, no knowledge of the true channel PDP is assumed. The

number of basis functions in time Mt and frequency Mf are set large enough to guarantee

a low approximation error for the worst-case channel (the ETU channel with a Doppler fre-

quency of 350 Hz). The receiver adopts these Mt and Mf for other channels. In this case,

the receiver does not need to change its configuration for different channels which would be

difficult to achieve in practice. Figure 4.5 shows the MSE performance of the pilot-based

LMMSE BEM channel estimation for different values of basis functions Mt and Mf in the

ETU channel with a Doppler frequency of 350 Hz at SNR=18 dB. It can be seen that Mt = 4

and Mf = 11 allow negligible approximation errors (i.e., the lowest Mt and Mf that can

provide close-to-optimal MSE performance).

For the simulations, the following receivers are considered:

(1) Receiver 1 (R1): The MMSE detection with the pilot-based channel estimation. In this

receiver, the pilot-based channel estimation in (4.31) is implemented with one of the

following regularization schemes:

• LMMSE: Φr,k = σ2
nR
−1
a .

• Adaptive: Φr,k = σ2
nR
−1
ξ , ξ = 1, . . . , Q.

• Diagonal loading: Φr,k = σ2
nIM .

• ETU: In this scheme, the channel covariance matrix is computed using the ETU

PDP.
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Figure 4.5: MSE performance of the pilot-based LMMSE BEM channel estimation for basis
functions in time Mt = 3, 4 and 5 versus the number of basis functions in frequency Mf in a
fading channel with the ETU PDP and a 350 Hz Doppler frequency at SNR = 18 dB.

(2) Receiver 2 (R2): The MMSE detection with the re-weighted channel estimation. In this

receiver, the initial channel estimates are obtained via the pilot-based channel estimation

in (4.31). For the iterative re-weighted channel estimation in (4.35), the number of iter-

ations is set to Nit = 3. The channel estimates are based on the following regularization

schemes:

• LMMSE: Φr,k = σ2
nR
−1
a .

• Adaptive: Φr,k = σ2
nR
−1
ξ , ξ = 1, . . . , Q.

• Diagonal loading: Φr,k = σ2
nIM .

(3) Receiver 3 (R3): The SbS optimal receiver (4.6) with ND = 1. In this receiver, the

optimal detector exploits full knowledge of the channel covariance matrix (i.e., the true

channel PDP) with Rc = INr ⊗ INt ⊗Ra in (4.15).

72



(4) Receiver 4 (R4): The SbS sub-optimal receiver. This receiver is the same as R3, but with

an approximation to the true Ra in (4.15). Thus, the detector becomes sub-optimal.

Depending on the covariance matrix replacing Ra in (4.15), the following sub-optimal

detectors are considered:

• Adaptive: Φr,k = σ2
nR
−1
ξ , ξ = 1, . . . , Q.

• Model-based: In this case, the covariance matrix is computed for a uniform PDP

with the delay spread of the true channel, i.e., the channel delay spread is assumed

perfectly known.

• Diagonal loading: Φr,k = σ2
nIM .

(5) Receiver 5 (R5): The selective SbS optimal receiver (see Figure 4.3). In this receiver, the

re-weighted channel estimation with the LMMSE regularization matrix is used.

(6) Receiver 6 (R6): The selective SbS sub-optimal receiver (see Figure 4.3). This receiver

is the same as R5, but uses the adaptive regularization for the re-weighted channel esti-

mation and for detection.

After the last stage in the receivers, the turbo decoding is performed. The LLR values for

the data detected in the re-weighted channel estimation/detection iterations are calculated

directly using the soft information obtained at the output of the MIMO MMSE detector [111].

The LLR λb for each bit of the data detected by the SbS optimal detector are computed as [40]:

λb = ln
∑
A+
k

e−λopt(sd) − ln
∑
A−k

e−λopt(sd), (4.40)

where A±k = {sd ∈ A|b = ±1}. More details on the LLR calculation in the optimal detector

can be found in [40,112].

We first investigate the performance of the adaptive regularization. Figure 4.6 shows

the BLER performance of the receiver (R1) with the pilot-based channel estimates in the

EPA channel. The BLER performance of the receiver with the channel estimation using the

diagonal loading (R1: Diagonal loading) shows a relatively poor performance. The channel

estimation with the ETU regularization (R1: ETU reg.), i.e., the worst-case regularization,

also causes a significant degradation in the performance. Thus, the often attractive approach
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Figure 4.6: BLER performance of the receivers in the EPA channel with a Doppler frequency
of 5 Hz.

of the estimation tuned to the worst-case scenario does not work well here. The MMSE

detection with the pilot-based LMMSE channel estimation (R1: LMMSE) provides a perfor-

mance that is very close to that of the SbS optimal detection (R3). The receiver with the

adaptive regularization (R1: Adaptive) is more practical than the receiver with the LMMSE

regularization as it can be applied without the knowledge of the channel PDP; but it also

provides a performance very close to that of the SbS optrimal receiver with full knowledge

of channel statistics (R3). Interestingly, the receiver with the model-based regularization

(R1: Model-based), though based on perfect knowledge of the channel delay spread, shows

an inferior performance when compared to the receiver with adaptive regularization.

In the EPA channel, where the channel is almost frequency-flat, the pilot-based channel

estimation is enough to produce close-to-optimal detection performance. In the channels with

longer delay spreads, such as the ETU and EVA channels, in addition to the pilot symbols,

tentative data estimates need to be used for the channel estimation to achieve the close-to-

optimal detection performance. Figure 4.7 shows the BLER performance of the receivers in
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Figure 4.7: BLER performance of the receivers in the ETU channel with a Doppler frequency
of 350 Hz.

the ETU channel. It is seen that the performance of all receivers with the diagonal loading is

significantly inferior to that of the receivers with other regularization schemes. However, it

is also seen that the use of the tentative data estimates for channel estimation (R2) provides

a significant improvement in the performance compared to the pilot-based channel estima-

tion (R1). It can also be seen that the sub-optimal receiver with the diagonal loading (R4:

diagonal loading) results in a much better performance, compared to receivers R1 and R2

with diagonal loading. The receiver with the re-weighted channel estimation and adaptive

regularization (R2: Adaptive) shows a good performance and is only about 0.7 dB away

from that of the receiver with the re-weighted LMMSE channel estimation (R2: LMMSE)

at a BLER of 10−2. The sub-optimal receiver with adaptive regularization (R4: Adaptive)

has almost the same performance as that of the receiver with the model-based regularization

requiring perfect knowledge of the channel delay spread (R4: Model-based). The sub-optimal

receiver with the adaptive regularization (R4: Adaptive) is about 0.7 dB away from the SbS

optimal receiver with perfect knowledge of the channel statistics (R3). Thus, the sub-optimal

receiver with the adaptive regularization provides a performance close to that of the optimal

receiver.
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Figure 4.8: Average percentage of selection of received data elements versus the threshold µ
for the selective detection with channel estimation using the LMMSE regularization and the
adaptive regularization at SNR = 18 dB in the ETU channel with a Doppler frequency of
350 Hz.

Figure 4.8 shows the average percentage of selected unreliably received data elements

versus the threshold µ for the cases of the LMMSE and adaptive regularization in the ETU

channel. This represents the percentage of received data symbols selected for the optimal

detection of the total number of data symbols Nd, averaged over 104 sub-frames. Figure 4.8

also shows that the percentage for the adaptive regularization is close to that of the LMMSE

regularization. When the threshold value is reduced from µ = 1 to µ = 0.5, the percentage is

significantly reduced and fewer received symbols are selected for the optimal detection. The

less the percentage, the less complicated is the receiver, but with a drop in the performance.

Figure 4.9 shows the BLER performance of the receiver with the selective optimal detec-

tion (R5) for different values of the threshold (µ = 1, 0.8, 0.7, 0.5) in the ETU channel. The

selective optimal receiver with µ = 0.8 has almost the same BLER performance as that of the

optimal receiver (R3). The threshold value µ = 0.8 provides a good performance-complexity

trade-off. As shown in Figure 4.8, for µ = 0.8, as few as 3.3 % of received data symbols are

processed in the SbS optimal detector, while 4.4 % are processed in the case of the adaptive
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Figure 4.9: BLER performance of the selective detection versus the selection threshold µ in
the ETU channel with a Doppler frequency of 350 Hz.

regularization. Thus, the complexity is reduced by approximately 30 times in comparison to

applying the SbS optimal detection to all received data for the case of the known channel

statistics and 23 times for the case of the adaptive regularization.

Figure 4.10 compares the BLER performance of the selective detection (optimal receiver

R5 and sub-optimal receiver R6, µ = 0.8) and the SbS optimal receiver (R3) with the LMMSE

and adaptive regularization in the ETU channel. It can be seen that the selective receiver

with the LMMSE regularization (R5) provides almost the same performance as that of the

optimal receiver (R3). The selective receiver with the adaptive regularization (R6) has almost

the same performance as the SbS sub-optimal receiver with the adaptive regularization (R4),

but the complexity of the receiver R6 is significantly lower, as was explained in Sections 4.3

and 4.4.

Figure 4.11 shows the BLER performance of the receivers in the EVA channel. Similar

to the ETU channel, the performance of the receivers with the channel estimation using the

diagonal loading is inferior to that of the receivers with the other regularization schemes. The

SbS sub-optimal receiver with adaptive regularization (R4: Adaptive) has almost the same

performance as that with the model-based regularization (R4: Model-based) and only about
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Figure 4.10: BLER performance of the selective detection (R5 and R6, µ = 0.8) with LMMSE
and adaptive regularization in the ETU channel with a Doppler frequency of 350 Hz.
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Figure 4.11: BLER performance of the receivers in the EVA channel with a Doppler frequency
of 350 Hz.
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Figure 4.12: BLER performance of the selective detection receivers (R5 and R6, µ = 0.8) us-
ing the LMMSE and the adaptive regularization in the EVA channel with a Doppler frequency
of 350 Hz.

0.4 dB away from the SbS optimal detector (R3). Thus, the detection with the adaptive

regularization again provides a performance close to that of the optimal detection.

As in the ETU channel, based on simulation that is not shown here, µ = 0.8 provides a

good performance-complexity trade-off in the EVA channel. For the LMMSE regularization,

only 1.5 % of the received data are processed in the SbS optimal detector, and thus the com-

plexity is reduced by approximately 65 times in comparison to applying the optimal detector

to all received data. For the adaptive regularization, 2.4 % or received data are processed,

and thus the complexity is reduced by approximately 42 times.

Figure 4.12 compares the BLER performance of the selective optimal receiver (R5) and

selective sub-optimal receiver (R6) in the EVA channel. It can be seen again that the selec-

tive SbS optimal receiver (R5) provides almost the same performance as that of the optimal

receiver (R3), whereas the selective receiver with the adaptive regularization (R6) shows a
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performance very close to that of the SbS sub-optimal receiver with adaptive regulariza-

tion (R4: Adaptive).

4.6 Summary

This chapter can be summarized as the following:

• A selective symbol-by-symbol detection with adaptive channel estimation was proposed

for MIMO OFDM systems in doubly-selective channels.

• The proposed selective detection allows significantly lower complexity with almost the

same detection performance in comparison with the symbol-by-symbol optimal receiver

applied to all received data symbols.

• The performance of receivers with the adaptive regularization without knowledge of

channel statistics is close to that of receivers with full knowledge of channel statistics.
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Chapter 5

Joint Doppler-delay spread and

channel estimation in

doubly-selective channels
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5.1 Introduction

Channel estimation is an important step in receivers of wireless communication systems.

Pilot-based channel estimation, using BEMs, is often used for this purpose [2–10]. BEMs

can provide high channel estimation performance with a low computational complexity [8,9].

However, the channel estimation may result in a poor estimation performance if ignoring the

channel response smoothness (correlation) and noise. The estimation can be improved by

taking these into account, which can be achieved by the use of a regularization. The best
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estimation performance can be achieved if the regularization is based on the perfect knowl-

edge of channel statistics, such as the Doppler spectrum and PDP. However, these are often

unavailable in practice. For channel estimation, the Doppler spectrum is well described by

such a parameter as the Doppler spread (or Doppler frequency). The PDP, for the purpose

of channel estimation, can be represented by the delay spread. Therefore, in this chapter,

we address the joint pilot-based estimation of the Doppler frequency, delay spread and BEM

coefficients.

Several techniques for estimation of the Doppler frequency [105,106,110,113] and delay

spread [82,114–116] with and without the channel estimation have been proposed in the lit-

erature for doubly-selective channels. However, only a few papers have addressed the joint

estimation of the Doppler frequency, delay spread and the channel [117–120]. In [117], the

channel was estimated for medium to high Doppler frequencies assuming some estimates of

the Doppler frequency in doubly-selective channels. However, it does not consider the channel

estimation at low Doppler frequencies. In [118], a Doppler frequency estimator with delay-

subspace tracking was shown to provide high accuracy in the estimation of medium to high

Doppler frequencies. However, this estimator utilizes a high number of pilot symbols and has

high estimation errors at low Doppler frequencies. In [119] and [120], the estimation perfor-

mance was investigated at low Doppler frequencies only. In this chapter, we are motivated to

find a joint estimator for the Doppler frequency, delay spread and channel that outperforms

existing estimators in doubly-selective channels at low to high Doppler frequencies.

In [21], the channel estimation with adaptive model-based regularization was proposed.

This approach selects, using a cross-validation (CV) criterion, a regularization matrix from a

set of regularization matrices defined by a set of delay spreads. Such an estimation achieves

a performance close to that of the channel estimation with the knowledge of the true channel

delay spread. However, it does assume that the Doppler frequency is known, which however is

unavailable in practice. Here, we extend the approach in [21] to jointly estimate the Doppler

frequency, delay spread and channel response.

In the joint estimation, a large set of regularization matrices defined by the Doppler fre-

quency and delay spread (i.e., two-dimensional set) is required. This involves a large number

of matrices to be precomputed and stored, which may occupy a large space in the memory.
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Also, when the CV approach [103,121] uses the exhaustive search to find the optimal solution

from this set, it results in a high computational load. To reduce the memory load, we use

properties of the BEM matrices. The dichotomous search [122] can be used instead of the

exhaustive search to reduce the complexity.

In general, Doppler frequency estimators designed for a specific Doppler spread model

will have large modelling errors when in reality a different Doppler model describes the real

channel [105]. For example, in macro-cells, the Doppler spectrum is well described by Jakes’

Doppler spectrum [123]. On the other hand, in indoor environments, the Doppler spectrum is

often uniform [124]. When the Doppler frequency estimator designed for an environment with

the uniform Doppler spectrum is applied on an environment described by the Jakes’ Doppler

spectrum, this may cause high estimation errors. This may also affect the performance of the

joint estimation. In our investigation, the Doppler model mismatch is investigated.

In this chapter, a new joint Doppler-delay spread and channel estimation is proposed for

doubly-selective channels. This estimator exploits the GCV, dichotomous search and some

properties of the BEM matrices to achieve high estimation performance with a reduced mem-

ory space and reduced complexity. A MIMO OFDM system in downlink LTE scenarios [29]

is used to investigate the performance of the proposed joint estimator. In this chapter, more

emphasis is put on uncertainty in the Doppler spread and channel estimation. The perfor-

mance of the Doppler frequency estimation by the proposed estimator is compared with that

obtained by a conventional Doppler frequency estimator [22]. The performance of channel

estimates obtained by the proposed approach is compared with that of the LMMSE channel

estimates. It is shown that the proposed estimator provides channel estimates without the

knowledge of the channel statistics with accuracy, which are close to those obtained with

perfect knowledge of channel statistics.

The remainder of this chapter is organized as follows: signal and channel models are

introduced in Section 5.2. Pilot-based BEM channel estimation is described in Section 5.3.

The conventional Doppler frequency estimation is described in Section 5.4. In Section 5.5,

the new joint estimator is presented. In Section 5.6, the complexity reduction of the joint

estimator is discussed. In Section 5.7, a re-adjustable estimation is proposed to provide

further improvement to the joint Doppler-delay spread and channel estimation. Numerical
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results are given in Section 5.8. Section 5.9 concludes the chapter.

5.2 Signal and channel models

Consider a single-user MIMO OFDM system. At the rth receive antenna, the received signal

yr is modelled as

zr =

Nt∑
k=1

Skhr,k + nr, r = 1, ..., Nr, (5.1)

where Sk is an N × N diagonal matrix of data and pilot symbols transmitted by the kth

transmit antenna, N is the number of data and pilot symbols, hr,k is an N×1 vector describ-

ing the channel time-frequency response between the kth transmit and rth receive antennas,

nr is an N × 1 complex noise vector with independent Gaussian elements of zero mean and

variance σ2
n, Nt is the number of transmit antennas and Nr is the number of receive antennas.

It is assumed that the channel vector hr,k is represented by an M ×1 vector ar,k of BEM

coefficients,

hr,k = Bar,k, (5.2)

where B is an N ×M matrix of basis functions with M being the number of basis functions.

The two-dimensional (time and frequency) BEM matrix B is computed as

B = Bt ⊗Bf , (5.3)

where Bt is an NOFDM × Mt matrix of basis functions in time, NOFDM is the number

of OFDM symbols, Mt is the number of basis functions in time, ⊗ denotes the Kronecker

product, Bf is an Nf ×Mf matrix of basis functions in frequency, Nf is the number of sub-

carriers, Mf is the number of basis functions in frequency, and M = MtMf . Different basis

functions can be used to approximate the channel variations in frequency and time [2–10]. In

our simulations, the discrete prolate spheroidal sequences [6,7] are used as the basis functions

in frequency. In time, parabolic B-splines [8–10] are used.
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5.3 Pilot-based BEM channel estimation

The pilot-based channel estimation is considered. With BEMs, the estimated channel vector

ĥr,k is given by

ĥr,k = Bâr,k, (5.4)

where the estimate âr,k of the expansion coefficients ar,k is found as [18]

âr,k = (BHSHn,kSn,kB + Γr,k)
−1BHSHn,kz̃r,k, (5.5)

Sn,k is an N ×N diagonal matrix of pilot symbols transmitted by the kth transmit antenna

with zeros at data locations, and it is obtained from Sk by selecting Np pilot symbols, Γr,k

is an M ×M regularization matrix for the channel between the kth transmit antenna and

the rth receive antenna and z̃r,k is an N × 1 vector of received pilots from the kth transmit

antenna with zeros at data locations. In the LTE downlink [29], as shown in Figure 3.3, a

single RE represents a single OFDM symbol in time and a single subcarrier in frequency.

REs with pilot symbols from one transmit antenna are not overlapping with non-zero REs

transmitted from the other transmit antennas [29]. Hence, the pilot symbols received from

the kth transmit antenna can be recovered without the multi-antenna interference, and this

justifies the estimation of ar,k as in (5.5).

When Γr,k = σ2
nR
−1
c , where Rc = E[ar,ka

H
r,k], we arrive at the pilot-based LMMSE

channel estimation. The M ×M covariance matrix of the expansion coefficients Rc can be

computed from [40]

Rc = E[ar,ka
H
r,k] = (BHB)−1BHΥB(BHB)−1, (5.6)

where Υ = E[hr,kh
H
r,k] is the channel time-frequency auto-correlation matrix defined by the

channel PDP and Doppler spectrum. The matrix Υ is given by

Υ = Υt ⊗Υf , (5.7)

where the channel auto-correlation in time Υt, as an example, is based on Jakes’ model [64],

[Υt]p,q = ρt((p− q)TOFDM ), (5.8)
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where

ρt(τ) = J0(2πfdτ), p, q = 1, ..., NOFDM , (5.9)

J0(·) denotes the zero order Bessel function of first kind, fd is the Doppler frequency, τ is a

delay and TOFDM is the duration of a single OFDM symbol. The channel auto-correlation

in frequency Υf is given by [102]

[Υf ]p,q = ρf ((p− q)∆f), (5.10)

where

ρf (F ) =
L∑
l=1

σ2
l e
−2πjFτl , p, q = 1, ..., Nf , (5.11)

where σ2
l is the average power of the lth path, τl is the delay of the lth path, l = 1, ..., L, L is

the number of paths and ∆f is the frequency spacing between two consecutive sub-carriers

(in the LTE downlink, ∆f=15 kHz [29]). The powers σ2
l and delays τl define the channel PDP.

When Γr,k = σ2
nR
−1
ξ and Rξ is an M×M model (not true) covariance matrix defined by a

model PDP and a model Doppler spectrum, we arrive at a model-based regularization. When

Γr,k = σ2
nIM and IM is an M×M identity matrix, we arrive at the channel estimation with the

diagonal loading, which is a popular regularization technique [21,125,126]. It however cannot

provide the channel estimation performance close to that with the LMMSE regularization.

5.4 Conventional Doppler frequency estimation

The time-frequency auto-correlation function is given by

ρ(τ, F ) = E[h
(u)
r,kh

(v)∗
r,k ] = ρt(τ)ρf (F ), (5.12)

where the positions of the two elements h
(u)
r,k and h

(v)
r,k are separated in time by τ and in

frequency by F ; (·)∗ denotes the complex conjugate. In [22], Lin and Proakis proposed to

estimate the Doppler frequency by fitting the auto-correlation of channel estimates using the

optimization:

f̂d = arg min
fd

[J0(2πfdτ)− ρ̂t(τ)]2, (5.13)
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where ρ̂t(τ) is an estimate of the channel time auto-correlation. In application to the LTE

downlink scenarios, the channel time auto-correlation estimate can be obtained as

ρ̂t(τ) =
ρ̂1 + ρ̂2

2
, (5.14)

where

ρ̂1 =
<(h̃T1 )<(h̃2)√

<(hTp1)<(h̃1)
√
<(h̃T2 )<(h̃2)

, (5.15)

ρ̂2 =
=(h̃1)T=(h̃2)√

=(h̃1)T=(h̃1)

√
=(h̃2)T=(h̃2)

, (5.16)

<[·] and =[·] are the real and imaginary parts of a complex number, respectively, h̃1 is an

Np
2 × 1 vector of LS channel estimates obtained at pilot locations in slot 1 (see Figure 3.3)

and h̃2 is an
Np
2 × 1 vector of LS channel estimates obtained at pilot locations in slot 2. The

value of τ , in this case, is equal to τ = Tslot, where Tslot is the slot duration (in the LTE

downlink, Tslot = 0.5ms [29]). The LS channel estimate h̃1 for the first slot is given by

h̃1(g) =
z̃r(g)

s̃k(g)
, (5.17)

where z̃r(g) and s̃k(g) are elements of the received and transmitted pilot symbols, respec-

tively, that correspond to the gth element of h̃1, g = 1, ...,
Np
2 . The LS channel estimate h̃2

for the second slot can be obtained in the same manner as in (5.17).

The optimization problem in (5.13) provides a biased solution and it can be modified as

suggested in [106] by introducing a correction term, taking into account the SNR:

f̂d = arg min
fd

[ J0(2πfdτ)

1 + 1/SNR
− ρ̂t(τ)

]2
. (5.18)

The solution to the optimization problem in (5.18) is used as the conventional Doppler fre-

quency estimate.

The conventional Doppler frequency estimator based on (5.18) corresponds to an en-

vironment with Jakes’ Doppler spectrum. As another example, the time auto-correlation
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function can be considered [127]

ρt(τ) = sinc(2fdτ). (5.19)

The auto-correlation function in (5.19) corresponds to an environment with a Doppler spec-

trum that is uniform over the frequency interval [−fd, fd]. In the following sections, the

performance of the conventional and proposed estimators designed based on a Doppler model

that is different from the true Doppler model is investigated.

5.5 Joint Doppler-delay spread and channel estimation

In the proposed estimator, regularization matrices for a two-dimensional set of Doppler fre-

quencies and delay spreads are precomputed and stored. In this set, the estimator finds

a regularization matrix that minimizes the GCV. The Doppler frequency and delay spread

defining this matrix are considered as their estimates. The exhaustive search over all reg-

ularization matrices in the set will require a high complexity, especially for a high number

of Doppler frequencies and delay spreads. To reduce the complexity, the estimator uses the

dichotomous search [122].

In the frequency domain, the model-based regularization matrices are defined by a set

of Doppler frequencies :

fd ∈ {fd,1, ..., fd,j , ..., fd,P }, j = 1, ..., P, (5.20)

where fd,j+1 = fd,j + ∆fd and ∆fd defines the Doppler frequency resolution. In time, these

matrices are defined by a set of root mean squares (rms) delay spreads :

τrms ∈ {τrms,1, ..., τrms,i, ..., τrms,Q}, i = 1, ..., Q, (5.21)

where τrms,i+1 = τrms,i + ∆τ and ∆τ defines the rms delay spread resolution.

The P ×Q set of Doppler-delay regularization matrices is denoted as {σ2
nR
−1
j,i }

(P,Q)
(j=1,i=1).

The covariance matrix of expansion coefficients Rj,i is computed using (5.6) and (5.7), where

the matrix Υt is computed using (5.9) for every Doppler frequency in (5.20), while the matrix
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Υf is computed for every rms delay spread in (5.21). For modelling PDPs, the exponentially

decaying model is used, for Nm multipath components, as the following [128]:

θ(τk) = e−τk/τrms , (5.22)

where τk is a random delay and the probability density function of the delays τk is given by

fτk(τk) =


1/Td if τk ∈ [0, Td]

0 otherwise

, (5.23)

where Td is set to be greater than the expected maximum delay spread. The frequency

auto-correlation for this model can be obtained in a closed form as [128]

[Υf ]p,q =
1− e−Td

(
1

τrms
+2πj(p−q)∆f

)
(

1− e−(
Td
τrms

)
)(

1 + 2πj(p− q)∆fτrms
) , (5.24)

where (5.24) corresponds to a truncated exponentially decaying PDP in the range [0, Td].

The optimal regularization matrix of expansion coefficients from the set {σ2
nR
−1
j,i }

(P,Q)
(j=1,i=1)

is found in the proposed estimator by using the GCV method [103, 121]. The (j, i)th cross-

validation Vr,k is computed for the channel between the kth transmit and rth receive anten-

nas [103,121]:

Vr,k(j, i) =
||z̃r,k −G

(j,i)
k z̃r,k||2

(Np − αtr{G(j,i)
k })2

, (5.25)

G
(j,i)
k = Sn,kB(BHSHn,kSn,kB + σ2

nR
−1
j,i )−1BHSHn,k, (5.26)

where α is an adjusted parameter, 1 ≤ α ≤ 2. The regularization matrix that provides the

minimum of Vr,k(j, i) is selected for the channel estimation,

{j, i} = arg min
p,q

Vr,k(p, q), (5.27)

where the optimal regularization matrix is Γr,k = σ2
nR
−1
j,i , and its corresponding Doppler

frequency and delay spread are considered as estimates of these parameters.

The search for the optimal solution through the computation of the GCV for all matrices

in the set {σ2
nR
−1
j,i }

(P,Q)
(j=1,i=1) using an exhaustive search results in high complexity. To reduce
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fd,v1 fd,v2 fd,v3

∆d/2

∆d

fd,vmin

Vr,k(j, i)

Figure 5.1: The dichotomous search.

the complexity, the dichotomous search is used in the proposed estimator. The GCV with

the dichotomous search can be performed jointly on the two-dimensional set of Doppler fre-

quencies and delay spreads or independently on one of these sets. In this chapter, the search

is performed on the set of Doppler frequencies. Below, the dichotomous search is introduced

and its use with the GCV method is explained.

Figure 5.1 shows an example of using the dichotomous search to find a minimum of

Vr,k(j, i) for a set of Doppler frequencies fd and a known PDP. At the first iteration, the

values fd,v1 , fd,v2 and fd,v3 are available, v1, v2 and v3 are indices of Doppler frequen-

cies, Vr,k(j = v1, i) > Vr,k(j = v2, i) and Vr,k(j = v3, i) > Vr,k(j = v2, i). The di-

chotomous search finds the minimum of Vr,k(j, i) from two samples fd,v1 and fd,v3 . If

Vr,k(j = v1, i) < Vr,k(j = v3, i), the search at the next iteration is performed between points

v1 and v2, thus reducing the search size by half. If Vr,k(j = v1, i) > Vr,k(j = v3, i), the search

is performed between v2 and v3; point v2 becomes v1 and the function Vr,k(j, i) is computed

at a new point v2 = (v1 + v3)/2. This procedure is repeated Dit times, reducing the search

area by half at every iteration. Dit is found by increasing the number of iterations until we

arrive at v3−v1 = 1 (last two elements to be compared). Note that the problem in Figure 5.1

represents a convex optimization problem. However, the optimization problem in reality is

non-convex and this may cause a wrong selection of the search area, especially at the first

iteration. Therefore, the dichotomous search is modified only at the first iteration by adding
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more samples between v1 and v3 to guarantee more accurate selection of the initial search area.

In the proposed estimator, the GCV with the dichotomous iterations is performed over

Doppler frequencies. At the first iteration, Ns Doppler frequencies {fd,1, ..., fd,n, ..., fd,Ns}

are selected from (5.20), where fd,1 = fd,j=1, fd,Ns = fd,j=P and n = 1, ..., Ns. Note that

the higher Ns, the better the accuracy in the selection of the initial search area. For every

Doppler frequency fd,n, the GCV is computed for all Q delay spreads in (5.21) and thus an

Ns × Q set of Vr,k(n, i) values is obtained. Then, the minimum Vr,k(n, i) over i is found for

every Doppler frequency fd,jn as the following

in = arg min
i=1:Q

Vr,k(n, i), n = 1, ..., Ns. (5.28)

This results in Ns values of Vr,k(n, in). The minimum of Vr,k(n, in) is found and its cor-

responding delay spread is selected as the estimated delay spread. Note that the optimal

delay spread from the set in (5.21) can be obtained with already a high accuracy at the first

iteration (see Section 5.8) without necessarily having the optimal Doppler frequency, which

is only found at the final iteration. For Dit > 1, the search is performed using the classical

dichotomous search as the optimization problem at this stage is almost a convex problem

(see Figure 5.1). At the output of the first iteration, v1 and v3 are obtained as the following:

v1 =



1 if n = 1,

Ns − 1 if n = Ns,

n− 1 if Vr,k(n− 1, in) < Vr,k(n+ 1, in), n 6= 1 and n 6= Ns,

n if Vr,k(n− 1, in) > Vr,k(n+ 1, in), n 6= 1 and n 6= Ns,

(5.29)

v3 =



2 if n = 1,

Ns if n = Ns,

n if Vr,k(n− 1, in) < Vr,k(n+ 1, in), n 6= 1 and n 6= Ns,

n+ 1 if Vr,k(n− 1, in) > Vr,k(n+ 1, in), n 6= 1 and n 6= Ns.

(5.30)

At iterations Dit > 1, the GCV is only computed at fd,v2 with the estimated delay spread

obtained from the first iteration. The indices v1 and v3 at the output of the second iteration
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and subsequent iterations, are obtained as the following:

v1 =


v1 if Vr,k(v1, in) < Vr,k(v3, in),

v2 if Vr,k(v1, in) > Vr,k(v3, in),

(5.31)

v3 =


v2 if Vr,k(v1, in) < Vr,k(v3, in),

v3 if Vr,k(v1, in) > Vr,k(v3, in),

(5.32)

where v2 is the half distance between v1 and v3, v2 = v1+v3
2 . At the final iteration, the optimal

regularization matrix and the estimate of Doppler frequency are given by

Γr,k =


{σ2

nR
−1
j,i }j=v1,in if Vr,k(v1, in) < Vr,k(v3, in),

{σ2
nR
−1
j,i }j=v3,in if Vr,k(v1, in) > Vr,k(v3, in),

(5.33)

f̂d =


fd,v1 if Vr,k(v1, in) < Vr,k(v3, in),

fd,v3 if Vr,k(v1, in) > Vr,k(v3, in).

(5.34)

The adaptive regularization matrix obtained in (5.33) is used for the pilot-based channel

estimation in (5.5).

5.6 Complexity reduction

When the GCV method is applied using the two-dimensional regularization set, PQ GCV

computations are necessary to find the minimum of the cross-validation parameter. For high

P and Q, this results in a high computational load. To reduce the complexity, the GCV

method is implemented using the dichotomous search. Using Ns samples at the first it-

eration and Dit iterations in the GCV with the dichotomous search, the number of GCV

computations is reduced from PQ to NsQ + (Dit − 1). For example, for P = 230, Q = 20,

Ns = 11 and Dit = 6, the number of GCV computations is reduced from PQ = 4600 to

NsQ + (Dit − 1) = 225, and thus, for this example, the complexity is reduced by approxi-

mately 20.4 times.

The resolution of the joint estimator depends on the selected values ∆fd and ∆τ . The

lower ∆fd and ∆τ , the better the estimation accuracy, the larger the set of regularization ma-
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trices and higher computational load. Implementing the GCV method with the dichotomous

search provides more freedom in selection of ∆fd and ∆τ to achieve a desired estimation

performance.

For storing the precomputed regularization matrices, a large memory space may be

required. To reduce the memory, the following properties of the BEM matrix B and channel

covariance Υ are used. Let B+ = (BHB)−1BH , then (5.6) can be rewritten as

Rc = B+Υ(B+)H . (5.35)

Using B = Bt ⊗ Bf , Υ = Υt ⊗ Υf and the property of the Kronecker product, we have

B+ = B+
t ⊗B+

f , and (5.35) becomes [129]

Rc = [B+
t ⊗B+

f ][Υt ⊗Υf ][B+
t ⊗B+

f ]H

= [B+
t Υt ⊗B+

f Υf ][(B+
t )H ⊗ (B+

f )H ]

= (B+
t Υt(B

+
t )H)⊗ (B+

f Υf (B+
f )H)

= Rt ⊗Rf .

(5.36)

The inverse of (5.36) is then given by

R−1
c = R−1

t ⊗R−1
f , (5.37)

where Rt = B+
t Υt(B

+
t )H is an Mt ×Mt time covariance matrix of expansion coefficients,

B+
t = (BH

t Bt)
−1BH

t , and Rf = B+
f Υf (B+

f )H is an Mf ×Mf frequency covariance matrix

of expansion coefficients, B+
f = (BH

f Bf )−1BH
f . Using (5.37), instead of storing PQ regu-

larization matrices {σ2
nR
−1
j,i }

(P,Q)
(j=1,i=1), each of size MtMf ×MtMf , we only store P inverse

time covariance matrices, each of size Mt ×Mt and Q inverse frequency covariance matrices,

each of size Mf ×Mf . As a result, the memory is reduced from PQM2 to PM2
t + QM2

f .

For example, if P = 230, Q = 20, Mt = 4 and Mf = 11, as in our simulation scenarios, the

memory is reduced from PQM2 ≈ 8.9× 106 elements to PM2
t +QM2

f ≈ 6.1× 103 elements.

In this example, the memory is reduced by about 1.5× 103 times, which is a very significant

reduction in the memory size.
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if f̂d,avg ≤ f̂d,thr1 and
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α = α1.

else
α = α2.

end if

Final

joint estimator

α

Figure 5.2: Re-adjustable joint estimator.

5.7 Re-adjustable joint Doppler-delay spread and channel es-

timation

The constant α in (5.25), providing the best Doppler-delay spread and channel estimation

performance can be different over different range of Doppler frequencies (as will be shown in

Section 5.8). Therefore, the division of Doppler frequencies into low, medium and high range

and apply different α at each Doppler frequency range to improve the estimation performance

is proposed. To do this, an initial estimate of the Doppler frequency is required. This can be

achieved first applying the joint estimator as described in Section 5.5 with an initial α over all

Doppler frequencies. Then, the initial Doppler frequency estimate is used to set the value of α.

Figure. 5.2 shows the block diagram of the proposed re-adjustable joint estimator. Initial

joint estimator is designed as described in Section 5.5. Let f̂d,avg be the estimated Doppler

frequency in the initial joint estimator, averaged over all multiple NtNr channels in the MIMO

system, and fd,thr1 and fd,thr2 are Doppler frequency thresholds defining the low, medium and

high Doppler frequencies. If f̂d,avg > fd,thr1, then the estimated Doppler frequency is in the

high frequency range and there is no need for re-adjustment (as will be shown in Section 5.8).

If f̂d,avg ≤ fd,thr1, then α is re-adjusted for the final joint estimator (which is designed as
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described in Section 5.5). If fd,avg ≤ fd,thr1 and f̂d,avg > fd,thr2, α is re-adjusted as α = α1

for the medium frequency range. If f̂d,avg ≤ fd,thr2, the estimated Doppler frequency is in the

low frequency range and therefore α is re-adjusted as α = α2. In the proposed re-adjustable

estimator, in the final joint estimator, G
(j,i)
k is not computed. This is because it has already

been saved from the initial joint estimator. In the following section, an example to show how

the values of fd,thr1, fd,thr2 and α are found is presented for the re-adjustable estimator.

5.8 Numerical results

A single-user MIMO-OFDM system is considered in the LTE downlink scenarios [29], with

two transmit antennas at the base station and two receive antennas at the user side. The

MIMO system is in a spatial multiplexing transmission mode [29]. Jakes’ channel with ETU

or EVA [98] PDP is used; such PDPs correspond to high and medium delay spreads, respec-

tively, in comparison to the length of the cyclic prefix.

A transport block containing one sub-frame (see Figure 3.3) with 36 sub-carriers in fre-

quency and 14 OFDM symbols in time is transmitted (it carries N = 14× 36 = 504 symbols

of which Np = 24 are pilot symbols). The number of basis functions in time is Mt = 4

and in frequency Mf = 11 [23]. The modulation scheme is 16-QAM. The pilot symbols are

generated using the Zadoff-Chu sequences [29].

The number of pilots used is Np = 24 while the total number of basis functions is

M = MtMf = 4 × 11 = 44. Thus, the number of parameters to estimate is higher than

the number of available measurements. Hence, this problem is ill conditioned. For example,

this means that the LS BEM channel estimation (obtained when Γr,k is an M × M zero

matrix in (5.5)) could not provide reliable results. The only way around this is the channel

estimation with regularization. Therefore, the regularization is extremely important. Also,

it motivates us to compare the adaptive regularization (obtained in the proposed estimator

without knowledge of the channel statistics) with the diagonal loading regularization and the

LMMSE regularization.

In the dichotomous search, the number of iterations is set to Dit = 6 and number of

samples at the first iteration Ns = 11. The following Doppler frequencies and delay spreads
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are considered:

fd ∈ {1, 3, 5, 7, 9, ..., 459} Hz, (5.38)

τrms ∈
{

0.2, 0.4, ..., 4

}
µs, (5.39)

where ∆fd = 2 Hz and ∆τ = 0.2µs. Td is set to 1.3 the length of the cyclic prefix, i.e.,

Td = 1.3 × 4.69µs ≈ 6.1µs. The reason for this is that the delay spread of some channels

(such as the ETU channel) may exceed the cyclic prefix duration, and thus Td must be large

enough to take this into account.

In the simulations, the joint estimator using the GCV method with the exhaustive search

is referred to as GCV-E, while the GCV with the dichotomous search is referred to as GCV-D.

Two sets of scenarios are considered: (i) known PDP and (ii) unknown PDP. The investigation

of the scenarios with known PDP can help us find the best performance achieved when the

Doppler frequency and channel are jointly estimated. Such estimation performance is then

compared with that of the estimation with unknown PDP.

5.8.1 PDP is known

In this scenario, the channel delay spread is perfectly known and the joint estimator is

simplified to a one dimensional search over Doppler frequencies only. First, the best value

of parameter α is to be found. Figure 5.3 shows the performance of Doppler frequency

estimation for different α. In simulation, the mean of the Doppler frequency estimates is

found as

f̄d =
1

Ntrial

Ntrial∑
m=1

f̂
(m)
d , (5.40)

where f̂
(m)
d is the Doppler frequency estimate in the mth trial; averaged over the NtNr chan-

nels in the MIMO system. For the simulation trials, Ntrial is set to Ntrial = 103 trials. In

Figure 5.3, as α increases, the estimation accuracy improves at low Doppler frequencies. On

the other hand, the higher the value of α, the more degraded the Doppler frequency estima-

tion is at high Doppler frequencies. Overall, α = 1.1 can provide a trade-off in the estimation

performance for the ETU and EVA channels over all Doppler frequencies. Therefore, α = 1.1

is set for the simulation.

Figure 5.4 compares the performance of the proposed Doppler frequency estimator with
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Figure 5.3: Performance of Doppler frequency estimation of the proposed estimator in a
scenario with known PDP; (a) ETU channel; (b) EVA channel. SNR=15 dB.
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Figure 5.4: Performance of Doppler frequency estimation of the conventional estimator and
the proposed estimator in (a) ETU and (b) EVA channels. SNR=15 dB and α = 1.1.
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Figure 5.5: MSE performance of the proposed channel estimator in scenarios with known
PDP in (a) ETU and (b) EVA channels.
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the exhaustive search (GCV-E) and dichotomous search (GCV-D) with that of the conven-

tional estimator. The GCV with dichotomous search has almost the same performance as

that of the GCV with exhaustive search. Thus, the dichotomous search provides reduction in

the estimator complexity without loss in the performance. It is also seen that the proposed

estimator outperforms the conventional estimator, especially at low Doppler frequencies.

Figure 5.5 shows the MSE performance of channel estimation. The frequency fd denotes

the true Doppler frequency. The MSE is defined as

MSEh =
tr{E[(hr,k − ĥr,k)(hr,k − ĥr,k)

H ]}
tr{E[hr,kh

H
r,k]}

. (5.41)

In simulation, this is estimated as

M̂SEh =

∑Ntrial
m=1

∑Nr
r=1

∑Nt
k=1 ||hr,k − ĥr,k||2∑Ntrial

m=1

∑Nr
r=1

∑Nt
k=1 ||hr,k||2

, (5.42)

where ĥr,k is the estimated frequency channel response. As shown in Figure 5.5, the MSE

performance of the channel estimator is very close to that of the LMMSE channel estimator

(i.e., with knowledge of the true Doppler frequency and true channel PDP).

5.8.2 PDP is unknown

In this scenario, the proposed technique estimates the Doppler-delay spread and channel as

described in Section 5.5. First, the effect of unknown PDP on the performance of Doppler

frequency estimation is investigated. In Figure 5.6, it can be seen that the Doppler frequency

estimates without PDP knowledge are almost as accurate as in the case of known PDP.

Figure 5.7 compares the performance of the proposed delay spread estimation with that

of the theoretical rms delay spread. The rms delay spread of a given PDP is computed

as [82,130]

τrms =

√
τ̄2 − (τ̄)2, (5.43)

where

τ̄2 =

∑
l τ

2
l σ

2
l∑

l σ
2
l

, (5.44)

τ̄ =

∑
l τlσ

2
l∑

l σ
2
l

. (5.45)
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In simulation, the mean of the rms delay spread estimates is found as

τ̂rms =
1

Ntrial

Ntrial∑
m=1

τ̂ (m)
rms, (5.46)

where τ̂
(m)
rms is the rms delay spread estimate in the mth trial; averaged over the NtNr channels

in the MIMO system. It can be seen from Figure 5.7 that the delay spread estimate at the

first iteration Dit = 1 is almost as accurate as that obtained from the final iteration Dit = 6

(over all Doppler frequencies). In the ETU channel, the estimated delay spread is around

19 ∼ 24% greater than the theoretical delay spread at fd ∈ [50, 350] Hz. At fd ∈ [0, 50) Hz,

τ̂rms is about 24 ∼ 32% greater than the theoretical values. In the EVA channel, the esti-

mated delay spread is about 12 ∼ 22% greater than the theoretical values at fd ∈ [50, 350]

Hz and 22 ∼ 33% at fd ∈ [0, 50) Hz. This shows that the proposed estimator provides good

estimates of the delay spread, especially at medium to high Doppler frequencies.

Now, the performance of the conventional and proposed estimators when the Doppler

model used in designing the estimators is different from the true Doppler model is compared.

The sinc auto-correlation function in (5.19) is used in designing the estimators (which corre-

sponds to uniform Doppler model). The estimation performance using the uniform Doppler

model is investigated in Jakes’ channel. The value α = 1.3 is used for the proposed estimator

(see Appendix A for more details) when using (5.19) for computing Υt. In Figure 5.8, it can be

seen that the conventional Doppler frequency estimator with the sinc time auto-correlation

function degrades due to the Doppler modelling errors. In comparison, the difference in

the performance of the proposed joint estimator when using Jakes’ or the sinc time auto-

correlation functions in designing the estimator is very small. This shows that the proposed

estimator is robust to the choice of the Doppler model.

Figure 5.9 shows the MSE performance of the channel estimator using different regular-

ization schemes. The channel estimator with the diagonal loading is inferior to the channel

estimator with the adaptive regularization. It can be also seen that the proposed channel

estimator without knowledge of PDP provides only slightly degraded performance in com-

parison to the proposed estimator with known PDP. Overall, the performance of the channel

estimator with the adaptive regularization is close to that of the LMMSE channel estimator

(with perfect knowledge of channel statistics). When using Jakes’ or sinc functions in the
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Figure 5.6: Performance of Doppler frequency estimation of the the proposed estimator in
scenarios with known and unknown PDP; (a) ETU channel; (b) EVA channel. SNR=15 dB
and α = 1.1.
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Figure 5.7: Performance of the proposed rms delay spread estimator in (a) ETU and (b) EVA
channels at SNR=15 dB and α = 1.1.
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Figure 5.8: Performance of Doppler frequency estimators in the case of Doppler spectrum
mismatch; (a) ETU channel; (b) EVA channel. SNR=15 dB.
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Figure 5.9: MSE performance of the proposed channel estimator using matched and mis-
matched Doppler spectrum; (a) ETU channel, (b) EVA channel.
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computation of Υt, the difference in the estimation performance is very small, which again

shows the robustness of the proposed estimator. In Figure 5.9 (b), in the EVA channel at

5 Hz Doppler frequency, the performance of the proposed estimator using Jakes’ Doppler

model (Jakes’ auto-correlation function) at α = 1.1 is about 1.2∼1.5 dB away from that of

the pilot-based LMMSE channel estimator. When α = 1.6, the gap is reduced to about 0.7∼1

dB. This shows that, in the EVA channel, more improvement at low Doppler frequencies can

be achieved by re-adjusting α. It can be seen that the efficiency of the proposed estimator

can be affected by the choice of α. Therefore, α should be re-adjusted for different scenarios

in order to achieve an improved performance. The adjusted α the same over all Doppler fre-

quencies has shown a good performance, especially at medium to high Doppler frequencies.

However, a better performance can be achieved by varying α over Doppler frequencies.

Now, the simulations for the re-adjustable joint estimator that is described in Section 5.7

is considered. First, α is adjusted over different range of Doppler frequencies. From Fig-

ure 5.3, it can be seen that at fd ∈ [150, 350] Hz, the constant α = 1.1 provides a better

Doppler frequency estimation performance than other values of α. For Doppler frequencies

lower than fd = 150 Hz, a better performance is achieved by α > 1.1. In Figure 5.10 (a),

α = 1.2 provides the better estimation performance for fd ∈ [10, 150] Hz, while α = 1.5

provides the better performance for fd ∈ [0, 10) Hz. In Figure 5.10 (b), α = 1.3 is the better

for fd ∈ [10, 150] Hz, while α = 1.6 is the better for fd ∈ [0, 10) Hz. The value of α is set to

α = 1.1 in the initial joint estimator. The Doppler frequency estimation error at fd,thr2 = 10

Hz is high and can effect the estimation performance of the re-adjustable estimator. There-

fore, fd,thr1 is set to fd,thr1 = 150 Hz and fd,thr2 is set high enough to take into account the

effect of the estimation error, and thus fd,thr2 is set to fd,thr2 = 25 Hz. The values α1 and

α2 are set to α1 = 1.2 and α2 = 1.5 as they can provide the best performance in the ETU

channel with small degradation in the EVA channel.

Figure 5.11 compares the Doppler frequency estimation of the GCV-D using the adjusted

α = 1.1 and the proposed re-adjustable GCV-D. It can be seen that the re-adjustable estima-

tor significantly improves the Doppler frequency estimation performance at low to medium

Doppler frequencies in both the ETU and EVA channels. At high Doppler frequencies, the

re-adjustable GCV-D has similar performance as that of the GCV-D.
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Figure 5.10: Performance of estimation of small to medium Doppler frequencies in (a) ETU
and (b) EVA channels. SNR=15 dB.
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Figure 5.11: Performance of Doppler frequency estimation of the re-adjustable GCV-D esti-
mator in the ETU and EVA channels at SNR=15 dB.

Figure 5.12 shows the performance of rms delay spread estimation by the re-adjustable

GCV-D. In the ETU channel, in the range fd ∈ [0, 150] Hz, the re-adjustable GCV-D provides

around 4 ∼ 17% improvement in the rms delay spread estimation performance over that of

the original GCV-D. In the EVA channel, the improvement is in the range of 4 ∼ 19%.

Figures 5.13 and 5.14 show the channel estimation performance of the re-adjustable chan-

nel estimator. Figure 5.13 (a) and Figure. 5.14 show that the improvement obtained by the

re-adjustable GCV-D estimator over the GCV-D estimator is very small to almost negligible.

In Figure 5.13 (b), at fd = 5 Hz, the improvement achieved by the re-adjustable estimator

over the GCV-D estimator is around 0.4 dB and the performance is almost 1 dB away from

that of the LMMSE estimator. For Doppler frequencies greater than fd = 5 Hz, in the EVA

channel (see Figure 5.13 and Figure 5.14), the improvement is very small. When the channel

estimation performance of the re-adjustable GCV-D estimator is compared with that of the

GCV-D estimator. It can be concluded that the channel estimates obtained by the GCV-D

estimator (with α = 1.1) are already good enough. This shows that the GCV-D estimator
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Figure 5.12: Performance of the re-adjustable delay spread estimator in (a) ETU and (b)
EVA channels. SNR=15 dB.

109



0 5 10 15 20
−30

−25

−20

−15

−10

SNR (dB)

M
S

E
 (

dB
)

 

 

GCV-D : fd= 50 Hz, α = 1.1

Re-adjustable GCV-D : fd= 50 Hz

LMMSE : fd= 50 Hz

GCV-D : fd= 5 Hz, α = 1.1

Re-adjustable GCV-D : fd= 5 Hz

LMMSE : fd= 5 Hz

(a)

0 5 10 15 20
−30

−25

−20

−15

−10

SNR (dB)

M
S

E
 (

dB
)

 

 
GCV-D : fd= 50 Hz, α = 1.1

Re-adjustable GCV-D : fd= 50 Hz

LMMSE : fd= 50 Hz

GCV-D : fd= 5 Hz, α = 1.1

Re-adjustable GCV-D : fd= 5 Hz

LMMSE : fd= 5 Hz

(b)

Figure 5.13: Channel estimation performance of the re-adjustable channel estimator in (a)
ETU and (b) EVA channels at low Doppler frequencies.
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Figure 5.14: Channel estimation performance of the re-adjustable channel estimator in the
ETU and EVA channels at a Doppler frequency of fd = 100 Hz.

without the re-adjustment is robust to a certain degree to the inaccuracy of the Doppler

frequency and delay spread estimation and still can provide channel estimates close to that

obtained with perfect channel statistics. However, the re-adjustable estimator provides an

extra improvement in the estimation performance for the Doppler frequency and the delay

spread at low to medium Doppler frequencies.

It is important to note that the proposed re-adjustment of the constant α is considered

for the case of Jakes’ Doppler model. For other Doppler models, the values of fd,thr1, fd,thr2,

and α may be different. Therefore, the re-adjustment has to be modified for Doppler spec-

trum models different from Jakes’ model.

5.9 Summary

This chapter can be summarized as the following:

111



• A new joint Doppler frequency, delay spread and channel estimator using the GCV

method is proposed.

• It is proposed to use the dichotomous search for the implementation of the GCV method.

The complexity of the GCV method with the dichotomous search is significantly reduced

compared to the exhaustive search.

• It has been shown that, in the LTE downlink scenarios, this estimator can provide a

significantly better Doppler frequency estimation performance than the conventional

Doppler frequency estimator. The channel estimation performance of the proposed

estimator without knowledge of the channel statistics is close to that of the LMMSE

channel estimator (with the perfect knowledge of channel statistics).

• The reduction of the memory load using the properties of the BEM matrix and channel

covariance has been discussed for the proposed estimator.

• It has been shown that when the Doppler model used in the estimator differs from the

true Doppler model, the proposed estimator shows robustness.

• A re-adjustable joint Doppler frequency, delay spread and channel estimator is proposed

to further improve the estimation performance at low to medium Doppler frequencies.

• The improvement in the channel estimation performance achieved by the re-adjustable

estimator is small at low to medium Doppler frequencies. However, at very low Doppler

frequencies, the improvement is relatively good compared to the joint estimation with

a single GCV constant.

• However, the re-adjustable estimator provides extra improvement in the estimation

performance of the Doppler frequency and delay spread over that of the joint estimator

with a single GCV constant.
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Chapter 6

Conclusions and future work

Contents
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6.1 Conclusions

The conclusions of this thesis can be summarized as the following:

• Chapter 1 provided an introduction to the research topic while Chapter 2 provided the

literature review of previous work that we used throughout this thesis which includes:

the principles of OFDM and MIMO setup, the LTE downlink and its design parameters,

doubly-selective channels, channel modelling, the use of BEMs in channel estimation,

mismatched detection and basics of turbo coding.

• In Chapter 3, the performance of the mismatched detection with the reweighted LMMSE

BEM channel estimation was investigated in a doubly-selective channel under the down-

link LTE scenarios. The reweighted LMMSE channel estimation performance was

shown to outperform that of the traditional (unweighted) LMMSE channel estima-

tion.

• In Chapter 4, a selective symbol-by-symbol optimal receiver with an adaptive channel

estimator was proposed for MIMO OFDM systems in doubly-selective channels. The
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proposed receiver allows significantly lower complexity with almost the same detec-

tion performance in comparison with the symbol-by-symbol optimal receiver applied to

all received data symbols. The performance of the optimal and the selective optimal

receivers with adaptive regularization was investigated. The performance of these re-

ceivers with the adaptive regularisation was found to be close to that of receivers with

full knowledge of channel statistics.

• In Chapter 5, a joint Doppler frequency, delay spread and channel estimator was pro-

posed, based on the adaptive regularization. The Doppler frequency and delay spread

that correspond to the optimal regularization matrix are selected as their estimates.

The performance of these estimates is very close to that of estimates obtained with the

perfect knowledge of channel statistics. Re-adjustment of the optimization criterion

was proposed to further improve the estimator performance. The re-adjustment was

shown to provide extra improvement in the performance of the Doppler frequency and

delay spread estimation at low to medium Doppler frequencies.

6.2 Future work

Based on the analysis and results obtained in this thesis, the following suggestions for future

research are suggested:

• In Chapter 4, the sub-optimal and selective sub-optimal receivers were implemented

using the adaptive regularization with perfect knowledge of the Doppler frequency. In

Chapter 5, the adaptive regularization that estimates jointly the Doppler frequency and

delay spread was presented. Also, this adaptive regularization provides improvement

in the estimation performance by utilizing a better model for the PDP. Therefore, the

investigation of the sub-optimal and selective sub-optimal receivers using the approach

in Chapter 5 is suggested.

• In Chapter 5, the joint Doppler-delay spread and channel estimation was investigated

using the uniform Doppler spectrum that is different from the true channel Doppler

spectrum (Jakes’ Doppler spectrum). The estimation performance of the proposed

joint estimator with the mismatched Doppler model showed a good performance. How-

ever, for future work, the investigation of the proposed joint estimator performance is
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suggested for different channel models, other than Jakes’ model. For example, different

Doppler models can be used to design the proposed estimator, which then will be inves-

tigated in environments with a direct line of sight (i.e, Rician fading) or environments

with non-isotropic scattering models [131–133].

• In this thesis, an efficient complexity reduction technique was proposed in Chapter 4.

In Chapter 5, a joint Doppler-delay spread and channel estimation technique was pre-

sented. The techniques in Chapters 4 and 5 were investigated for the case of a single

user MIMO OFDM transmission. The investigation of theses techniques is suggested

for other cases, where the channel estimation and/or receiver complexity reduction are

crucial, such as multi-user MIMO OFDM transmission, the LTE uplink scenarios [29]

(with single and multi-user transmissions).
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Appendix A

In the appendix, extra results for the proposed GCV-D estimator in Chapter 5 are provided.

Figure A.1 shows the performance of the Doppler frequency estimation of GCV-D using a

mismatched Doppler model (sinc time auto-correlation function) against α. The constant

α = 1.3 provides a better Doppler frequency estimation performance in the ETU channel

than other values of α, while α = 1.4 provides the better performance in the EVA channel.

It can be seen that α = 1.4 significantly degrades the estimation performance in the ETU

channel at medium to high Doppler frequencies. A trade-off with small degradation in the

performance in the EVA channel can be obtained by selecting α = 1.3 for both the channels,

which is used in the simulations in Chapter 5.

Now, the effect of the choice of the PDP model, used in designing the proposed estimator,

on the estimation performance is investigated. Figure A.2 compares the channel estimation

performance of the proposed channel estimator for a frequency auto-correlation computed us-

ing the uniform or exponential PDP models. The frequency auto-correlation that corresponds

to the uniform PDP model can be obtained from (5.24), by setting τrms →∞ [128]:

[Υf ]p,q =
1− e−2πjTd(p−q)∆f

2πjTd(p− q)∆f
. (A.1)

The frequency auto-correlation function in (A.1) is used in the simulation with replacing Td

by τmax, which is defined by the set in (4.36). In Figure A.2 (a), in the ETU channel, the

channel estimator using the exponential PDP model outperforms that of the uniform PDP

model. In Figure A.2 (b), in the EVA channel, the channel estimator using the exponential

PDP model outperforms that of the uniform PDP model, especially at low SNR. This shows

that the exponential PDP model provides a better approximation of the PDPs of the ETU

and EVA channels. Therefore, the exponential model is used in our simulations in Chapter 5.
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Figure A.1: Performance of Doppler frequency estimation of the proposed GCV-D estima-
tor with different values of α using mismatched Doppler model (sinc time auto-correlation
function) in (a) ETU and (b) EVA channels. SNR=15 dB.
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Figure A.2: Comparison of the channel estimation performance of the proposed GCV-D
estimator in case of different PDP models in (a) ETU and (b) EVA channels. α = 1.1.
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Glossary

APP A Posteriori Probability

BLAST Bell Laboratories Layered Space Time

BEM Basis Expansion Model

BLER Block Error Rate

BPSK Binary Phase Shift Keying

CE Complex Exponentials

CP Cyclic Prefix

CRC Cyclic Redundancy Check

CRS Cell-Specifc Reference

DFT Discrete Fourier Transform

DPSS Discrete Prolate Spheroidal Sequences

EPA Extended Pedestrian A model

EVA Extended Vehicular A model

ETU Extended Typical Urban model

FDD Frequency Division Duplexing

FEC Forward Error Correction

FFT Fast Fourier Transform

GCV Generalized Cross-Validation

ICI Inter Carrier Interference

IFFT Inverse Fast Fourier Transform

ISI Inter Symbol Interference

KL Karhunen Loeve

LLR Log Likelihood Ratio

LMMSE Linear Minimum Mean Square Error
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LS Least Squares

LTE Long Term Evolution

MAC Medium Access Control

MAP Maximum A Posteriori

MIMO Multi Input Multi Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PAPR Peak-to-Average Power

PCI Perfect Channel Information

PDF Probability Density Function

PDP Power Delay Profile

PDSCH Physical Downlink Shared Channel

QAM Quadrature Amplitude Modulation

RE Resource Element

SbS Symbol-by-Symbol

SC-FDMA Single Carrier- Frequency Division Multiple Access

SISO Single Input Single Output

SISO Soft Input Soft Output

SNR Signal-to-Noise Ratio

TDD Time Division Duplexing

UE User Equipment

UE-RS UE-specifc Reference Signal

V-BLAST Vertical-Bell Laboratories Layered Space Time

Wi-Fi Wireless-Fidelity

Wi-Max Worldwide Interoperability for Microwave Access

WSS Wide Sense Stationary

WSSUS Wide Sense Stationary Uncorrelated Scattering

ZF Zero Forcing
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