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Abstract 
 

Many researchers have studied conjugated polymer-based photovoltaic cells and 

perovskite-based photovoltaic cells. They have shown lower efficiencies than 

inorganic photovoltaic cells so far. However, they are attractive because of their 

potential low cost and easy process. In order to fabricate organic photovoltaic cells, 

organic solvents are typically used, which results in significant waste solvent being 

produced. These are moderately expensive and many are toxic. Perovskite 

photovoltaics commonly incorporate lead, which is toxic and may hinder their 

adoption. This thesis aims reduce the need for organic solvents during organic 

photovoltaic cell manufacture by employing water-soluble conjugated polymers as 

an alternative. It also seeks to improve the efficiency of the devices such the less 

solvents are required per Watt produced. Reducing the usage of organic solvents 

would reduce fabrication and solvent treatment costs. Bismuth perovskites are also 

studied for use in perovskite photovoltaic cells to replace the toxic lead with a less 

toxic material. 

  

The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole 

transporting layer used in both types of solar cells has been characterised in order 

to understand the influence of moisture and oxygen in air on the layer. Eight 

different thermally annealed PEDOT:PSS films were fabricated namely: as cast, 50, 

75, 100, 125, 150, 175, and 200 °C. UV-vis absorption and conductvity were 

measured. Absorption intensity increased very slightly as thickness increased. 

 

In order to develop fabrication skills and understand the principles of these devices, 

P3HT bulk-heterojunction photovoltaic cells were prepared. The devices were 

fabricated with different blend ratios both in air and in an oxygen free glovebox. 

P3HT:PCBM blend ratios of 1:0.6 and 1:0.8 showed the best efficiencies. 

 

In this thesis, the synthesis of a new low band gap polyelectrolyte based on 

fluorene and dithiano-benzothiadiazole is described. Poly[(9,9-bis(4-sulfonatobutyl 

sodium) fluorene-alt-phenylen)-ran-(4,7-di-2-thienyl-2,1,3-benzothiadiazole-alt-

phenylene)] is an anionic charged conjugated polyelectrolyte and was synthesised 

via Suzuki-cross coupling. Sulfonate groups were introduced to help the low band 

gap polyelectrolyte to dissolve in water. The aim was a new bulk-heterojunction 
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material to be applied in organic photovoltaic cells. It has a strong absorption peak 

at 372 nm, a weaker one at 530 nm and a photoluminescence emission peak at 647 

nm. Although the conjugated polyelectrolyte did not show any photovoltaic effects 

as an active layer, it resulted in an improvement of efficiency when used as an 

additive in the PEDOT:PSS hole transporting layer in the devices. There is an 

efficiency gain as a result of improved carrier generation and charge transport 

across the interface into the hole transporting layer which is optimised at a CPE 

concentration close to 5 mg/ml. Improving the efficiency will improve the 

sustainability of the devices by reducing the materials required and waste produced 

per Watt of power produced. 

 

Although lead-based perovskites have shown high performance in photovoltaic 

cells, they have led to concerns regarding their toxicity. Hybrid perovskites with 

reduced lead content are currently being investigated as a strategy to overcome this 

issue and to this end we evaluate the use of bismuth as a possible candidate for lead 

substitution. A series of hybrid perovskite films with the general composition 

MA(PbyBi1-y)I3-xClx were characterised by their basic optical and structural 

properties using UV-vis spectroscopy, scanning electron microscopy and grazing 

incidence wide angle X-ray scattering. The bismuth perovskite precursors form a 

perovskite crystal structure upon annealing, with a corresponding optical bandgap, 

for MABiI3, of around 2 eV. Whilst the structural and optical characterisation is 

promising, preliminary photovoltaic cell tests show power conversion efficiencies 

below 0.01% with a maximum VOC of 0.78 V. It was suggested that such low 

overall efficiencies reflect a competition between precursor conversion and 

material de-wetting from the substrate that occurs during perovskite formation, the 

overall outcome of which is severely limited photocurrent. In the context of current 

processing methods, these factors may limit the general applicability of hybrid 

bismuth perovskites in photovoltaic applications. A blend ratio of 3:1 MAI:BiCl3 

used to make a perovskite based photovoltaic cell and annealed at 90 °C showed 

the best results in this research but it was very low efficiency. 
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Abbreviation 
 

AFM  atomic force microscopy 

AM 1.5  air mass 1.5 

a-Si  amorphous silicon 

BHJ  bulk heterojunction 

CB  chlorobenzene 

CNT  carbon nanotube 

CPE  conjugated polyelectrolytes 

CV  cyclic voltammetry 

DI  de-ionised 

DNA  deoxyribonucleic acid 

EA  elemental analysis 

EDG  electron donating group 

Eg  band gap 

EWG  electron withdrawing group 

EQE  external quantum efficiency 

FF  fill factor 

FRET  fluorescence resonance energy transfer 

GIWAXS grazing-incidence wide-angle x-ray scattering 

GPC  gel permeation chromatography 

HOMO  high occupied molecular orbital 

ICBA  indene-C60 Bisadduct 

IR  infra-red 

ISC  short circuit current 

ITO  indium tin oxide 

JSC  short circuit current density 

MA  methylamine 

MAI  methylammonium iodide 

µCP  micro-contact printing 

µc-Si  microcrystalline silicon 

NMR  nuclear magnetic resonance 

OLED  organic light emitting diode 

OPVC  organic photovoltaic cell 

OTFT  organic thin film transistor 

P3HT  poly(3-hexylthiophene) 

PCBM  [6,6]-phenyl-C61 butyric acid methyl ester 

PC71BM  [6,6]-phenyl-C71-butyric acid methyl ester 
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PCDTBT poly[N-9”-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-

2’,1’,3’-benzothiadiazole)] 

PCE  power conversion efficiency 

PEDOT  poly(3,4-ethylenedioxythiophene) 

PFN  Poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–

dioctylfluorene)] 

PL  photoluminescence 

Poly-Si  polycrystalline silicon 

PPVC  perovksite photovoltaic cell 

PSS  poly(styrenesulfonate)  

PT  polythiophene 

PTB7  Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-

diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] 

Spiro-OMeTAD 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene 

UPS  ultraviolet photoelectron spectroscopy 

UV  ultra violet 

VOC  open circuit voltage 
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1. Introduction 
 

 

1.1. Objectives and aims 
 

Solar energy is a very attractive energy source because it is a stable source of 

renewable energy and a sustainable fossil fuel alternative, and as such it is studied 

widely (Thompson and Frechet, 2008a). The advantages of organic polymer-based 

photovoltaic cells (OPVCs) and perovskite photovoltaic cells (PPVCs) are that they 

offer a low cost, simple to process, light weight, mechanically flexible route to 

solar cell manufacture. Furthermore, PPVCs have attracted much interest due to 

their outstanding efficiency (Snaith, 2013, Sondergaard et al., 2012, Espinosa et al., 

2012, Azzopardi et al., 2011, Dennler et al., 2009, Gunes et al., 2007, Yu et al., 

1995, Facchetti, 2011, Shaheen et al., 2005, Brabec, 2004). Although, OPVCs have 

the many advantages mentioned above, they still needs to improve to compare with 

inorganic solar cells. The power conversion efficiency (PCE) of OPVC is about 8% 

for bulk heterojunction (BHJ) solar cells based on a blend of conjugated polymer 

and  fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) (He 

et al., 2011) as the active layer. In order to approach over 10% efficiency, it is 

necessary to understand the fundamental active layer morphology and electronic 

interaction between donor and acceptor (Scharber et al., 2006). 

 

Reduction of organic solvent use and harmful materials in OPVCs and PPVCs are 

necessary to help the environment (Capello et al., 2007, Ohlson and Hogstedt, 

1981). In particular, although PPVCs showed good performance, toxicity of lead is 

an issue that still need to be addressed in PPVCs (Flora et al., 2012, Landrigan, 

1989). In order to reduce the effects of these harmful materials, less harmful 

alternatives can be used to instead and/or the performance of the devices improved 

such that less smaller areas of photovoltaic need to be manufactured.  

 

The aim of this PhD research is the development of more sustainable PVCs 

through using less harmful materials in and during the fabrication of the active 

layer and/or interfacial layers in PVCs and also by increasing their efficiency. In 

order to improve their sustainability the research has investigated less toxic 

materials for both OPVC and PPVC. 
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In OPVCs, to reduce the use of organic solvent and harmful materials, water-

soluble conjugated polymers (known as conjugated polyelectrolytes) were 

synthesised and then utilised in OPVCs.  The efficiency of the OPVCs produced 

were determined. Fluorene, thiophene, and benzothiadiazole groups were 

introduced in the synthesis steps for the polyelectrolyte because these polymers 

absorb light from 300 to 600 nm in wavelength. This project focussed on the 

synthesis of suitable polymers and their subsequent characterization through 

various methods (e.g. conductivity, absorption, and morphology). The main 

difference between conventional conjugated polymers in OPVC and conjugated 

polyelectrolytes is that it is possible to dissolve the polyelectrolytes in water. 

Therefore, removing the need to produce the environmental pollutants that results 

from using organic solvents. The fabrication process was optimised using 

conjugated polyelectrolytes both as an active layer and as an interfacial layer. 

When using it as an interfacial layer organic solvents are still needed to make the 

active layer but by achieving a higher overall efficiency than previously report the 

overall environmental impact of OPVCs can be reduced by increasing their 

efficiency. 

 

In PPVCs, to reduce the use of toxic materials such as lead and caesium in 

perovskite, bismuth was introduced as the metal cation. Bismuth is less toxic than 

lead, therefore it will reduce the use of harmful lead in perovskite. Bismuth 

perovskite was applied as an active layer and its structure and morphology was 

studied. Various molar ratios of bismuth perovskite precursor were applied to find 

optimised molar ratio. 

 

 

1.2. Origin of photovoltaic cells 
 

Increasing energy demands and concern about climate change in the world have 

focussed study on renewable, clean and abundant energy sources, of which solar 

cells are a good example. The energy demands in the world are about ~1.3 × 1013 

W, while the Earth receives ~1.2 × 1017 W of solar energy per year (Energy, 2005, 

Tao, 2008). This is 10,000 times larger than the amount of energy that people use. 

In particular, the Sun provides more energy to our planet in one hour, 4.3 × 1020 J, 

than the current worldwide annual energy consumption 4.1 × 1020 J (Energy, 2005). 
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The photovoltaic effect was defined by A. E. Becquerel, a French physicist, in 

1839 (Becquerel, 1839). He observed the generation of current upon illuminating 

platinum electrodes covered with silver chloride in an acidic solution. The first 

solid state photovoltaic cell was developed by C. Fritts, an American inventor, in 

1883 (Fritts, 1883). This photovoltaic cell was made by selenium wafer with a thin 

layer of gold. R. Ohl patented the modern junction semiconductor photovoltaic cell 

in 1946 (Ohl, 1946) and the first silicon photovoltaic cell was realised by D. 

Chapin, C. S. Fuller and G. Pearson in 1954 (Chapin et al., 1954). They worked on 

silicon p–n junction photocells that reached 6% efficiency and showed significant 

improvement compared to the selenium cells that measured 0.5% efficiency. The 

efficiency of PVCs has improved since 1954 and it is now over 40% (NREL, 2015).  

 

1.2.1. Photovoltaic cells based on inorganic materials 

 

Inorganic photovoltaic cells (IPVCs) have shown good results in that they have 

achieved high PCE about 46%, confirmed by the National Renewable Energy 

Laboratory, due to the excellent charge carrier mobility and the environmental 

stability of inorganic materials (NREL, 2015, Green et al., 2016). Since the first 

photovoltaic cells were reported (1946), IPVCs have improved tremendously as 

reported over the last 50 years. Various kinds of IPVCs have been discovered and 

been developed such as single-crystal silicon (sc-Si) cells, polycrystalline silicon 

(poly-Si) cells and heterojunction with intrinsic thin layer (HIT) cells all using 

crystalline Si. Thin-film photovoltaic cell based on CdTe, copper indium gallium 

diselenide (CIGS), amorphous silicon (a-Si), and microcrystalline (µc-Si) and 

others have also been developed (Miles et al., 2007, Schropp et al., 2007, Slaoui 

and Collins, 2007). The best research-cell efficiencies for each type and material of 

photovoltaic cells are shown in Figure 1-1 reported by National Renewable Energy 

Laboratory (NREL) in 2015. 

 

The best PCE in crystalline silicon cell is from single crystalline cells, it has 

approached 24.7% (non-concentrator) and 27.6% (concentrator) for about 

20 years. However, the efficiency of poly-Si cells is shown to be 20.4% in 

2004. The PCE of a-Si cells have gradually increased from 1976 to 2012 

and it reached 13.4% (LG Electronics), while that of CIGS cells has reached 

20.4% (EMPA). The advantage of poly-Si cells is that they are less 

expensive to buy and manufacture. The advantage of a-Si is that they can be 
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deposited in thin films on a variety of substrates at low temperatures and the 

thin film reduces the cost of an individual solar panel. Among the many 

photovoltaic cells, the highest PCE photovoltaic cells are  multijunction 

cells. The multijunction photovoltaic cells are built up of multiple p-n 

junctions using different semiconductor materials (e.g. GaAS/CIS). They 

can respond to several ranges of wavelength by using different materials to 

produce electric current. They have been developed PCE over 40% (Green 

et al., 2016). 

 

 
Figure 1-1 The best efficiencies of various kinds of photovoltaic cells (NREL, 2015). 

4 
 



 

The Shockley-Queisser (S-Q) limit is the maximum theoretical efficiency for  

photovoltaic cells using a single p-n junction. According to the S-Q limit, the 

maximum efficiency for a single junction device is around 33%, see Figure 2-29(a) 

in the section 2.5. However, multijuction photovoltaic cells are able to achieve over 

33% efficiency and approach up to a PCE of 86% in infinite junctions (Green, 

2003). 

 

Silicon-based PVCs lead the PVC market and dominate about 90% of the total 

PVC production (SolarCellCentral.com). Even if IPVCs show good efficiencies 

and account for 90%, the main drawback is their production cost due to expensive 

component materials and fabrication process for the devices. Highly purified 

silicon wafer is made by various steps from raw material in order to make good 

efficiency of photovoltaic cells and it leads to increasing cost. Figure 1-2 shows 

the steps for preparing photovoltaic cells (Saga, 2010). This is an energy intensive 

and therefore expensive process (cost of polysilicon is around €15 per kilogram). 

 

 
Figure 1-2 The procedure of preparing inorganic photovoltaic cells (Saga, 2010). 

 

1.2.2. Photovoltaic cells based on organic materials 

 

Conjugated polymer-based photovoltaic cells are becoming attractive as renewable 

energy sources for energy generation due to the ability to tune their design for 

efficient energy harvesting. Because conjugated polymers are generally able to 

absorb a wider range of visible light by applying donor and acceptor groups in the 

polymer chain whien compared to other organic materials such as monomers and 

oligomers. The solid red-circles and line in Figure 1-1 indicates the PCE of a 

diverse range of organic based photovoltaic cells (NREL, 2015). The best result for 

organic cells was 11.1% in 2012. Although the efficiency of organic photovoltaic 
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cells has improved from 2001 to 2009, it has strikingly increased for the last 4 

years, while other technologies have not been able to show this rate of 

improvement in the same period. The main advantages of organic photovoltaic 

cells are low-cost, flexibility, and their simple production process (Li, 2012, 

Dennler et al., 2009, Thompson and Frechet, 2008b, Yu et al., 1995). Organic 

materials are cheaper than inorganic materials and it is possible to process them 

using diverse techniques such as solution process, spin casting, roller casting and 

inkjet printing. Often several components can be deposited in one step by taking 

advantage of self-organised processing. These techniques help reduce the price of 

devices, decrease processing time and also make large area coating feasible. 

Conjugated polymers and fullerenes are generally used as the active layer and 

organic solvents such as chlorobenzene or dichlorobenzene are needed to dissolve 

these materials. The solvents needed for the production of OPVCs are fairly 

expensive and dangerous both environmentally and from a health and safety point 

of view. In the laboratory scale, organic solvents are inevitably used for OPVCs 

from a few microlitres to a few millilitres. Therefore it will be helpful to use water-

soluble or alcohol-soluble materials to reduce organic solvent use were the 

production of OPVCs to be scaled up to an industrial process. 

 

 

1.3. Conjugated polymers 
 

The term ‘conjugation or conjugated’ refers to a system having connected p-

orbitals by alternating single and multiple bonds with delocalised electrons within 

the molecules. Conjugated polymers have alternate p-orbitals with single and 

multiple bonds and this results in their characteristic conductivity and fluorescence. 

This is because electrons in p-orbitals are able to absorb energy and become 

excited to higher energy state similar to the conduction band in a semiconducting 

crystal and so they can cause conductivity and fluorescence. Fluorescent 

conjugated polymers have attracted much interest due to their thermal stability, 

strong emission properties, good process ability and wide range of potential 

application as organic light emitting diodes (OLED) (Huyal et al., 2008), organic 

thin film transistors (OTFT) (Li et al., 2006), organic photovoltaic cells (Staniec et 

al., 2011), and chemical and biosensors (Thomas et al., 2007, Liu and Bazan, 

2004a). In particular, conjugated polymers used in photovoltaic cells have drawn 

much interest as renewable energy sources due to fast electron transport, low-costs, 

ease of synthesis and the ability to tune their properties by altering their structure. 
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The most valuable advantage of conjugated polymers is that a many differnt 

conjugated polymers can be synthesised and it is easy to change their character 

(solubility, conductivity, band gap, and so on) by introducing various chemical 

groups. 

 

1.3.1. Conjugated polyelectrolytes 

 

Conjugated polyelectrolytes (water-soluble conjugated polymers) are conjugated 

polymers that contain charged side chains which give them water-solubility. 

Conjugated polyelectrolytes have been synthesised with polar ionic functional 

groups, such as anionic carboxylates (Kim et al., 2005), sulfonates (Vetrichelvan et 

al., 2006), and cationic quaternary ammonium salts (Liu and Bazan, 2004b) within 

their polymer backbones. The hydrophobic nature of conjugated polymer main 

chains makes it difficult to dissolve in water because of π-π interactions between 

adjacent polymer backbones causing polymer aggregations. However, by attaching 

charged side chains it is possible to improve water solubility and therefore it is 

possible to expand the application of conjugated polymer to various areas. 

 

Conjugated polyelectrolytes have π-π conjugation and show photophysical 

properties that are similar to conjugated polymer. However, their polarity in 

solution makes polyelectrolytes show different fluorescent properties compared to 

their corresponding polymer due to hydrogen bonding with solvents or reagents, 

even though their polymer backbones are same. The charged side chains of 

polyelectrolytes lead to aggregation with other materials. Positive-charged 

conjugated polyelectrolytes can induce electrostatic assembly with negatively 

charged materials. These properties allow them to be used in applications such as 

biosensors for DNA and protein. Ho et al. suggested a DNA sensor using 

electrostactic interaction with polythiophene and target DNA without additional 

fluorophore and quencher (Ho et al., 2002). Gaylord et al. also synthesised water-

soluble conjugated poly phenylene fluorene as DNA sensors and then detected the 

target DNA through FRET with fluorescein (Gaylord et al., 2002). Kwak et al. 

reported protein sensor using micro-contact printing (µCP) through water-soluble 

conjugated poly(para-phenylene) with fluorescein-labelled streptavidin (Kwak et 

al., 2010). 

 

From previous reports, conjugated polymers/polyelectrolytes have been used as 

biosensor probe (in vitro and in vivo) (Yang et al., 2013, Li and Liu, 2012, Lee et 
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al., 2012) because conjugated polyelectrolytes show high fluorescence, good 

stability and low cytotoxicity. In particular, conjugated polyelectrolytes are bio-

compatible for in vivo experiments on mice or rabbits (Ding et al., 2011). Therefore, 

they are low toxicity materials and could therefore be used in photovoltaic cells as 

more environmentally friendly materials than the currently used polymers. 

 

1.3.2. Conjugated polyelectrolytes use in water for photovoltaic cells 

 

Concern for the environment is one of the most important issues in the world. The 

use of organic solvents in various fields causes health and environmental problems 

(Li, 1993, Narayan et al., 2005). In particular, persistent exposure leads to 

occupational diseases such as Parkinson’s disease, malignant lymphoma, and so on 

(Ohlson and Hogstedt, 1981, Hardell et al., 1981). Therefore, researchers in 

chemistry have tried to change from using organic solvents to using water where 

possible. The advantages of water are that is has low cost, is safe, and is easy to  

recycling. 

 

For use in the OPVCs in this study, conjugated polyelectrolyte was synthesised. 

The conjugated polyelectrolyte was applied as an active layer and also as a hole 

transporting layer in the devices. Unfortunately, the conjugated polyelectrolyte did 

not show any photovoltaic ability within the active layer. However, it showed good 

ability as an additive in HTL in the devices. Although when used as an additive, 

organic solvents were needed for fabrication of photovoltaic cells, water was used 

as the solvent for conjugated polyelectrolyte. In addition, there was no further 

organic solvent use (i.e. chlorobenzene, methanol, and so on) therefore the reported 

improvement of PCE compared to previous reports (Lee et al., 2008, Li et al., 2007) 

means that for the same power output less materials overall would be required, 

therefore improving the environmental benefits of OPVCs. 

 

 

1.4. Perovskite photovoltaic cells 
 

1.4.1. Origin of perovskite 

 

Perovskite was discovered in Ural Mountains by Gustav Rose in 1839 and was 

named after the Russian mineralogist Lew A. Perowski. Perovskite initially denotes 

calcium titanium oxide (CaTiO3), but the term perovskite is used to describe any 
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compound which has a crystal structure similar to CaTiO3 following the pioneering 

synthesis of perovskite by Goldschmidt in 1926. Perovskites have the chemical 

formula ABX3 structure which consists of cations, A and B, of two different sizes, 

and anion X. The ideal structure of ABX3 perovskite is cubic where B cation 

coordinates corner sharing (BX6) octahedral structure with anion X and A cation 

neutralise total charge in 12-fold coordination. In perovskite, various divalent metal 

ions are accepted for B cation (Cu, Ni, Co, Fe, Mn, Cr, Pd, Cd, Ge, Sn, Pb Eu or 

Yb) (Mitzi, 1999, Liang et al., 1998, Baikie et al., 2013). Figure 1-3 shows general 

perovskite structure ABX3. 

 

 
Figure 1-3 The perovskite lattice structure of ABX3 (Eperon et al., 2014). 

 

1.4.2. Organic-metal halide perovskite photovoltaic cells 

 

As shown in Figure 1-1, the perovskite photovoltaic cells have rapidly improved  

since 2010 and they have achieved over 20% PCE (Yang et al., 2015). Perovskites 

are one of the most interesting materials in the photovoltaic cells field due to their 

fast development and high efficiency. The first perovskite solar cell was reported 

by Kojima et al. in 2009 (Kojima et al., 2009). They used methylammonium lead 

halide perovskites (CH3NH3PbX3, X= Br, or/and I) as the light harvester in 

sensitized solar cells. CH3NH3PbI3 or CH3NH3PbBr3 were respectively coated on 

mesoporous TiO2 with liquid electrolyte between electrodes. 

 

Advantages of perovskite photovoltaic cells are low-cost technology (Snaith, 2013), 

easily tuning band gap of perovksite (Kulkarni et al., 2014), and wide range of 

absorption wavelengths up to 800 nm (Eperon et al., 2014), and available versatile 

structures of devices such as sensitised PPVC architecture and planar PPVC 

architecture which are originated in dye-sensitised PVC and planar heterojunction 

PVC respectively. 

9 
 



 

1.4.2.1. Sensitised perovskite photovoltaic cells 

 

A sensitised-perovskite photovoltaic cell is a type of dye-sensitised photovoltaic 

cell which includes a perovskite as the active layer and it is coated on a 

mesoporous TiO2 layer. The general structure of these devices are anode/n-type 

contact/TiO2:perovskite/p-type contact/cathode as shown in Figure 1-4. Sun light 

is harvested by perovskite and dissociated electrons and holes are extracted by n-

type and p-type contacts respectively. Figure 1-4 shows the architecture of 

sensitised perovskite photovoltaic cell (Gamliel and Etgar, 2014). 

 

 
Figure 1-4 Structure of sensitised perovskite photovoltaic cell. 

 

1.4.2.2. Planar perovskite photovoltaic cells 

 

An interesting and remarkable feature of perovskite photovoltaic cells is that they 

can also be used in planar photovoltaic architectures. The advantages of planar 

architectures are that their processing is simple and the planar architecture removes 

infiltration problems of the perovskite and the hole transport material into the 

porous TiO2 in sensitised perovskite photovoltaic cells (Gamliel and Etgar, 2014). 

This leads to less recombination and better reproducibility. The two types of 

architecture of planar perovskite photovoltaic cells are shown in Figure 1-5(a) and 

(b). Figure 1-5(a) shows the architecture having FTO/Metal oxide 

(TiO2)/perovskite/hole transporting layer (Spiro-OMeTAD)/electrode (Au). 

Dissociated electrons and holes pass through the metal oxide into the FTO and the 

hole transporting layer to the electrode (Au). Another architecture of planar 
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perovskite photovoltaic cell is ITO/hole transporting layer 

(PEDOT:PSS)/perovskite/electron transporting layer (PCBM)/electrode (Al). The 

dissociated electrons and holes move in the opposite direction to those in the 

former architecture. 

 

 
Figure 1-5 The two types of planar perovksite photovoltaic cells architecture. 

 

For PPVCs in this study, planar PPVC architecture was used. Bismuth was 

replacement of lead. Bismuth is less toxic than lead due to great insolubility of 

bismuth salts and it prevents their absorption (DiPalma, 2001). Bismuth-based 

perovksite structure was studied in different molar ratios of methylammonium 

iodide and bismuth halide. 

 

Theory and literature related to research will be explained in the Chapter 2 and 3, 

respectively. Chapter 4, 5, 6, and 7 will deal with experiment of research project. 

General P3HT PVC will be explained in Chapter 4, synthesis of conjugated 

polyelectrolyte and study of OPVC with conjugated polyelectrolyte will be dealt 

with in the Chapter 5, and 6. In Chapter 7, bismuth-based perovskite will be 

introduced. 
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2. Theory 
 

 

2.1. Synthesis 
 

 

Some of the synthesis methods and theories described here for the study of 

synthesis of conjugated polyelectrolyte are taken from the texts Organic Chemistry 

(Klein, 2015, Clayden et al., 2012, McMurry, 1996) and Design and Synthesis of 

Conjugated Polymers (Leclerc and Morin, 2010). 

 

Synthesis is an important part of the research process to achieve better results from 

photovoltaic cells using low band gap polymers. In order to synthesise low band 

gap conjugated polyelectrolytes in this study, which are able to absorb sunlight at 

long wavelengths (around 600 nm), an electrophilic substitution reaction, sultone 

ring open reaction, and Suzki-Miyaura cross coupling (polymerisation) using 

palladium catalyst were used. 

 

2.1.1. Electrophilic aromatic substitution (for bromination) 

 

Electrophilic aromatic substitution is a significant reaction for aromatic compounds 

because functional side groups such as halogen, alkyl, sulfonyl, nitryl and acyl 

groups can be attached to conjugated polymer backbone using electrophilic 

aromatic substitution. 

  

Before dealing with electrophilic aromatic reactions, the term aromatic is briefly 

explained. In general aromatic means materials which have scent and chemically 

aromatic refers to chemicals which have conjugated structures similar to benzene 

present. Benzene is a symmetrical planar hexagon having six carbons (sp2) and six 

hydrogens (Hückel’s 4n + 2 rule). Therefore, a benzene ring forms conjugation as 

explained in Chapter 1. A remarkable feature of benzene is that all the carbon 

bond lengths are 139 pm which falls between the single bond (154 pm) and double 

bond (134 pm) lengths. The structure of benzene is illustrated in Figure 2-1. 

Alternating single and double bonds of benzene structure was firstly suggested by 

German chemist Friedrich August Kekulé in 1865 (Kekuié, 1866, Kekulé, 1872). 

 

17 
 



 

 
Figure 2-1 Structure of benzene (Clayden et al., 2012, Kekulé, 1872, Kekuié, 1866). 

 

Alternating double and single bonds make the electrons delocalise in the materials, 

therefore benzene is stabilised by conjugation. Benzene stability is higher than 

expected and this is proven by the energy of hydrogenation of benzene. 

Hydrogenation is the addition of hydrogen to materials. Figure 2-2 shows energy 

diagram of hydrogenation heats for cyclohexene, 1,3-cyclohexadiene, and benzene. 

Hydrogenation heat of an unsaturated compound is the most direct way to measure 

its resonance energy (Rogers and Mclaffer.Fj, 1971). Cyclohexene has one double 

bond (CH2=CH2). The double bond is changed to a single bond during 

hydrogenation and the enthalpy is changed during the reaction. The enthalpy 

change of this reaction by hydrogen is -120 kJ/mol. From this enthalpy change, the 

hydrogenation heat of 1,3-cyclohexadiene was expected to be -240 kJ/mol. The 

observed hydrogenation heat of 1,3-cyclohexadiene was -232 kJ/mol and it was not 

very different from the expected value (Clayden et al., 2012, McMurry, 1996). As 

shown in Figure 2-2, however, the expected hydrogenation heat of benzene is -360 

kJ/mol, but the actual heat of hydrogenation is -208 kJ/mol. The energy difference 

(152 kJ/mol) between the expected value and the actual value is called the 

stabilisation energy of benzene and this value is associated with aromaticity. 

 

 
Figure 2-2 Energy diagram of hydrogenation heats for cyclohexene, 1,3-cyclohexadiene, 

and benzene (Klein, 2015). 
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Table 2-1 summarises the expected and observed hydrogenation heats of 

cyclohexene, 1,3-cyclohexadiene, and benzene. 

 
Table 2-1 Hydrogenation heats of cyclohexene, 1,3-cyclohexadiene, and benzene 

materials 
Expected 

hydrogenation heats 

Observed 

hydrogenation heats 

Cyclohexene -120 kJ/mol -120 kJ/mol 

1,3-cyclohexadiene -240 kJ/mol -232 kJ/mol 

Benzene -360 kJ/mol -208 kJ/mol 

 

A benzene ring has a high electron density due to its six π electrons. Therefore, 

benzene reacts as an electron donor to electrophilic materials (electron acceptor) 

during electrophilic aromatic substitution. In order to understand electrophilic 

aromatic substitution, this reaction is compared with an electrophilic addition 

reaction. Alkenes react easily with electrophiles such as hydrochloric acid (HCl) or 

bromine (Br2) and the alkane is produced by an additional reaction. If HCl is added 

into the alkene, the electrophile H+ combines with a carbon which is double bonded 

and the other carbon becomes a carbocation. Then the Cl- ion attacks the 

carbocation. 

 

When Br2 is added into the cyclohexene, trans-1,2-dibromo-cyclohexane is 

produced. The reaction mechanism is same with HCl additional reaction above 

mentioned and it is rapidly processed. When Br2 is added into the benzene, 

hydrogen is replaced by bromine. However, a Lewis acid catalyst such as FeBr3 or 

AlCl3 is needed in order for the electrophilic aromatic substitution to occur. 

Because the reactivity of benzene is lower than the alkene due to the stability of its 

aromatic ring. The mechanism of both electrophilic addition and electrophilic 

substitution is illustrated in Figure 2-3. 

 

 
Figure 2-3 The mechanism of electrophilic addtion on cycloalkene and electrophilic 

substitution on benzene (Clayden et al., 2012). 
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As shown in Figure 2-3 the catalyst, AlCl3 or FeBr3, makes a complex with Br2, so 

the electrophilicity of complexed Br2 is increased compared to Br2 and it acts like 

Br+ in electrophilic substitution. Then the π electrons of the benzene attack the 

polarised bromine and it forms an intermediate carbocation. In contrast with 

electrophilic addition, H+ is eliminated from the benzene intermediate carbocation 

and it forms an aromatic (benzene) ring again in order to preserve delocalisation 

and stability in electrophilic substitution. The mechanism and energy diagram of 

electrophilic aromatic substitution is shown in Figure 2-4. 

 

 
Figure 2-4 Energy diagram of electrophilic substituted bromination of benzene (McMurry, 

1996). 

 

2.1.2. Nucleophilic substitution (for fluorene and sultone reaction) 

 

Polyfluorene (fluorene) is a polycyclic aromatic hydrocarbon. Polyfluorene 

(fluorene) is obtained from coal tar and discovered by M. Berthelot in 1883 (W. R. 

Hodgkinson, 1883). A term ‘fluorene’ is related to its fluorescence. Because of this 

blue fluorescence, fluorene has been applied in various fields such as 

electroluminescence devices (Jiang et al., 2000), and photovoltaic cells (Yohannes 

et al., 2004). Figure 2-5 shows fluorene. 

 

 
Figure 2-5 The structure of fluorene. 
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Sultone is any heterocyclic ester of the hydroxy sulfonic acids. It is similar to 

lactone. The term of sultone and structure was first introduced in 1888 by H. 

Erdmann to explain the aromatic ring including hydroxyl sulfonic acid, 1,8-

naphthosultone (Erdmann, 1888, Mondal, 2012) in Figure 2-6. 

 

O S O
O

 
Figure 2-6 The structure of 1,8-naphthosultone. 

 

Sultone is an interesting heterocyclic compound which permits the attachment of 

alkyl chains accompanying the sulfonic acid groups. In this research, sulfoalkyl 

groups from sultone were introduced to enhance water-solubility of conjugated 

polymer. 

 

Sultone and fluorene reaction is based on nucelophilic substitution and product was 

2,7-dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium in the research. Therefore, 

in this part, nucleophilic substitution will be mentioned. Nucleophilic substitution 

is a fundamental technique in organic synthesis. Figure 2-7 shows the structure of 

2,7-dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium. 

 

 

Br Br

NaO3S SO3Na  
Figure 2-7 The structure of 2,7-dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium 

 

In this chapter, the mechanism of nucleophilic substitution will be explained. 

Nucleophilic substitution (SN) is the reaction where one group is replaced by a 

nucleophile. In general, SN is easily achieved with alkyl halide because the carbon 

linked to the halogen is slightly positively charged due to electronegativity of 

halogen. In Figure 2-8, a nucleophile attacks the positive carbon and the halogen is 

replaced by the nucleophile. 
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SSNN22
HOHO MeMe II HOHO MeMe II  

Figure 2-8 The mechanism of SN2 reaction with methyl iodide and hydroxide (Clayden et 

al., 2012). 

 

In Figure 2-8, the reaction rate is determined by the concentration of OH- and MeI. 

In other words, if the amounts of reactant or nucleophile are increased, their 

reaction is rapidly processed. This SN reaction mechanism was suggested by E. D. 

Hugh, and C. Ingold in 1937 and it explains both the reaction rate and 

stereochemistry. This reaction is named an SN2 reaction because it is a substitution 

reaction which is, nucleophilic, and bimolecular. 

 

The most important feature of SN2 reactions are that the reaction progressed in one 

step and it is affected by steric hindrance. As shown in Figure 2-9, the new 

bonding with an incoming nucleophile is produced and another bonding is cleaved 

in same time. The incoming nucleophile attacks the carbon on the opposite side to 

that linked with the halide (electron withdrawing group or leaving group) and then 

it enters the transition state. In a transition state, carbon and three substituents are 

in a planar arrangement. The nucleophile is connected with the carbon and the 

halide group is disconnected. 

 

 
Figure 2-9 The mechanism of SN2 reaction. The nucleophile attacks carbon through 180° 

oppoite directioin of leaving group (McMurry, 1996). 

 

Steric effects (hindrance) are important factors in deciding whether a reaction is 

SN2 or SN1. In SN2 reactions, since the incoming nucleophile has partial bond 

formation with the alkyl halide in transition state, it is sensible that a hindered, 

bulky substrate should prevent easy approach of the nucleophile, making bond 

formation difficult. Figure 2-10 shows steric hindrance to the SN2 reaction. 
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Figure 2-10 Steric hindrance of SN2 reaction. (a) bromomethane has the fastest SN2 

reaction rate, the reaction rates of (b) bromoethane, (c) bromopropane (secondary), and (d) 

2-bromo-2-methylpropane (tertiary) are gradually reduced due to steric hindrance 

(McMurry, 1996). 

 

 
Figure 2-11 The mechanism of SN1 reaction (Clayden et al., 2012). 

 

Another nucleophilic substitution mechanism is illustrated in Figure 2-11. This 

nucleophilic substitution is processed by two steps. There is loss of halogen 

(leaving) group and it forms an intermediate carbocation and then the nucleophile 

attacks the intermediate carbocation. In the reaction, reaction rate is only 

determined by concentration of the reactant. Therefore, the reaction is named as 

SN1 from substitution, nucleophilic, and unimolecular. The main difference with an 

SN2 reaction is that SN1 reaction is a stepwise process due to steric hindrance. As a 

result, SN1 reaction produces a racemic mixture and it is described in Figure 2-12. 

 

 
Figure 2-12 Stereochemistry of SN1. This reaction produces racemic structure via 

carbocation intermediate (McMurry, 1996). 
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In the reaction, tertiary alkyl halides react most quickly, but methyl and primary 

alkyl halide are unreactive via SN1. Tertiary alkyl halides show the fastest reaction 

because a nucleophile is not directly attacking the reactant due to steric hindrance. 

Therefore, the leaving group is cleaved first; then the resulting intermediate 

carbocation reacts with a nucleophile. 

 

 
Figure 2-13 The stability of methyl, primary, secondary, and tertiary carbocation (Klein, 

2015). 

 

In the SN1 reaction, the dominant factor is the stability of the carbocation. Figure 

2-13 shows the stability of the carbocations. As shown in Figure 2-13, the 

carbocations are stabilised by neighboring alkyl groups. Formation of tertiary 

carbocation is more stable and faster than other carbocation in SN1 reactions. 

 

2.1.3. Suzuki-Miyaura cross coupling 

 

Conjugated polymers can be directly or indirectly connected by conjugation of 

aromatic units or double or triple bonds. In order to synthesise the conjugated 

polymer, several synthesis techniques are used such as Stille, Sonogashira, Heck, 

Suzuki-Miyaura cross coupling and so on. The common feature of these coupling 

reactions is using palladium (Pd) catalyst. Among many cross coupling reactions 

using Pd catalyst, Suzuki-Miyaura cross coupling is frequently used for synthesis 

of aromatic-aromatic single bond reactions. In this research, Suzuki-Miyaura cross 

coupling was used for synthesis of a conjugated polyelectrolyte. 

 

Suzuki-Miyaura cross coupling was first invented by Suzuki, Miyaura, and 

colleagues in 1979. It allows the connection of two specific sp2-hybridized C atoms 

more efficiently and under milder conditions. It has been used worldwide for a few 

decades and it is often simply called “Suzuki coupling”. 
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Figure 2-14 The two different types (a) XX/BB and (b) XB approaches to Suzuki coupling. 

X is halogen group such as Br, Cl, and I, but Br is commonly used (Leclerc and Morin, 

2010). X is halogen and B is boronic acid. 

 

Suzuki coupling is the reaction in which aryl halides and organoboronic acids are 

reacted in the presence of Pd catalyst. Although lots of conditions for Suzuki 

coupling such as solvents, catalysts, and bases are important, in this chapter, the 

reaction mechanism will be dealt with. This is stepwise growth type reaction and 

the chemical equation is illustrated in Figure 2-14. 

 

As shown in Figure 2-14, it is possible to approach with two types of XX/BB and 

XB. X and B are functional groups in the monomer including boronic acid and 

halogen, respectively. XX/BB type needs two different materials aryl halide and 

aryl boronic acid resulting in polyarylene backbone. The polyarylene made by 

AA/BB type is an alternating polymer and it allows that various aromatic groups 

are applied. However, AB type is only making one kind of repeating unit.  
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Figure 2-15 Suzuki Coupling full mechanism with NaOtBu (Leclerc and Morin, 2010). 

 

The mechanism of Suzuki coupling is shown in Figure 2-15. The first step is that 

Pd catalyst is oxidative addition to halide then it forms the R2-Pd-X formation (3). 

The halide is replaced by NaOtBu and R2-Pd-OtBu intermediate (4) is formed. 

Boron part is changed by NaOtBu to R1-BY2-OtBu (6). (4) is transmetalated with (6) 

and it forms R1-Pd-R2 (8). Pd catalyst is restored by reductive elimination and (8) is 

changed to R1-R2. The Suzuki coupling was applied to final step of synthesis for 

conjugated polyelectrolyte in the research and the procedure of synthesis is 

described in Chapter 5. 

 

 

2.2 Photovoltaic cell 
 

In this section, the basic principles of photovoltaic cells are described and general 

fabrication mechanisms are explained. The various theories are taken from 

textbooks (Nelson, 2003, Wenham, 2007). 

 

2. 2. 1. Solar radiation 

 

In order to find suitable polymers and achieve good efficiency for PVCs, 

understanding solar radiation is an important factor. Even if solar radiation is 
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constant, the radiation which reaches the Earth’s surface is altered due to 

atmospheric effects such as absorption and scattering. The atmospheric effects may 

cause reduction of the incident light available to terrestrial PVCs. Figure 2-16 

shows the spectra of the solar radiation of outside the atmosphere (AM 0), and the 

Earth’s surface (AM 1.5) (NREL).  
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Figure 2-16 The solar radiation of outside the atmosphere (AM 0, red), and the Earth’s 

surface (AM 1.5, blue) (NREL). 

 

According to the blue line (AM 1.5) in Figure 2-16, the solar radiation has been 

absorbed and scattered by O3, O2, H2O, and CO2 as well as air molecules and dust 

in the atmosphere. These factors cause significant reduction in the sunlight 

intensity. As shown in Figure 2-16, sunlight intensity is reduced in the atmosphere, 

however lots of photons still reach the surface of the Earth at around 0.5 µm. 

Therefore when materials can absorb light at around 0.5 µm, they can capture more 

of the available photons and convert them to current. 

 

The term Air Mass (AM) refers to the direct path length which the sunlight must 

pass through the atmosphere on way to reach the Earth’s surface when the sun is 

vertically upwards. The equation of AM is defined as: 

 

                               AM = 1
cosθ

                    (2.1) 
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The AM relies on the angle of the sun. When θ is zero from overhead, AM equals 1. 

AM 1.5 (θ is 48.2° from overhead) and is used as the standard sunlight spectrum 

for photovoltaic cell testing.  In order to achieve a standard test of photovoltaic 

cells, standard test conditions have been specified. They are a cell temperature of 

25 °C and an irradiance of 1000 W/m2 with an AM 1.5 spectrum. These correspond 

to the irradiance and spectrum of incident sunlight on a clear day with the sun at an 

angle of 41.8° above the horizon, which is a reasonable approximation for the 

average insolation at mid lattitudes. 

 

 
Figure 2-17 The Air Mass through which radiation must pass before striking the Earth's 

surface (Wenham et al., 2007). 

 

 

2.3. Theory of I-V characterisation in photovoltaic cells 
 

2.3.1. The effect of light 

 

Photovoltaic cells have been designed as a current source and to generate current 

when they absorb incident light, while photovoltaic cells acts like a diode when 

they are in the dark (Wenham, 2007, Nelson, 2003). Therefore, photovoltaic cells 

in the dark can be described using the ideal diode law below (2.2): 

 

                       I = I0 �exp �𝑞𝑉
𝑘𝑇
� − 1�                    (2.2) 

 

Where I is current, I0 is the saturation current (leakage current of the diode when 

there is no light), V is measured voltage, q is electric charge (1.6 X 10-19 
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Coulombs), k is Boltzmann constant (1.38 X 10-23 J/K), and T is the temperature in 

Kelvin. Figure 2-18 shows I-V curve of photovoltaic cells as a diode in dark. 

 

 
Figure 2-18 The I-V curve of photovoltaic cells in dark. 

 

However, when photovoltaic cells absorb the incident light, the light effect is added 

to the diode law. According to the equation (2.3): 

 

                               I = I0 �exp � 𝑞𝑉
𝑛𝑘𝑇

� − 1� − IL                    (2.3) 

 

Where IL is light generated current, and n is ideal factor (1<n<2). As showing 

Figure 2-19, absorbed light shifts the I-V curve down into fourth quadrant. 

 

 
Figure 2-19 The I-V curve of photovoltaic cells toward effect of incident light. 
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2.3.2. Short circuit current (ISC) and open circuit voltage (VOC) 

 

The equation (2.3) for the I-V curve in light can be re-defined so the direction of 

current flow is opposite such that the current produced is positive rather than 

negative and it can be written in first quadrant as shown below in equation (2.4): 

 

                           I = IL − I0 �exp � 𝑞𝑉
𝑛𝑘𝑇

� − 1�                    (2.4) 

 

According to the equation (2.4), Figure 2-20 shows I-V curve in first quadrant and 

ISC and VOC are described in the section below. 

 

 
Figure 2-20 The I-V curve of photovoltaic cells in light (first quadrant). 

 

The short circuit current (ISC) is defined as the maximum current when the voltage 

across the photovoltaic cell equals 0. For an ideal cell, current value (ISC) equals IL 

when V=0. ISC value relates to the number of photons captured as the area of the 

photovoltaic cell is increased. To reduce any effects due to different the cell areas 

and allow comparison between cells, short circuit current density (JSC = ISC/area 

(mA/cm2)) is more useful than ISC. 

 

The open circuit voltage (VOC) is defined as the maximum voltage on a cell when 

no current flows. VOC corresponds to the amount of voltage across the solar cell 

when no current is flowing in the solar cell in sunlight. VOC is determined by the 

difference between the HOMO of the donor and LUMO of the acceptor 

components (Brabec et al., 2001). 
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2.3.3. Maximum power (Pmp), maximum current (Imp), and maximum voltage 

(Vmp) 

 

 
Figure 2-21 Maximum power in I-V curve of photovoltaic cells. 

 

The power of the photovoltaic cells is characterised by the equation P = IV. The 

maximum power point is shown in Figure 2-21. According to the equation, the 

theoretical maximum power (Pmp) is the product of ISC and VOC when they have 

ideal conditions but it is not realistic due to resistivity in the devices. However, 

maximum power is generally the multiplication of some value for Vmp between 

zero and VOC on the V-axis and another for Imp between zero and ISC on the I-axis. 

The maximum value of current and voltage at the Pmp are represented as Vmp and 

Imp respectively. 

 

2.3.4. Fill factor 

 

The quality of the solar cell is evaluated by fill factor (FF). FF is the ratio of 

maximum power output (Imp, Vmp green rectangle) to theoretical power output (ISC, 

VOC pink rectangle). The equation (2.5) and area of ratio are depicted below: 

 

                                FF = Pmp

PT
= ImpVmp

IscVoc
                        (2.5) 
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Figure 2-22 The areas for calculation of FF (FF is the green region over pink region). 

 

The quality of solar cells develops when FF is closer to 1.  

 

2.3.5. The effects of parasitic (series and shunt) resistances 

 

In general solar cells have parasitic resistances known as series (Rs) and shunt (Rsh).  

A simplified equivalent circuit for a photovoltaic cell is described in Figure 2-23 

and also the equation included resistances is shown below (2.6). 

 

                  I = IL − I0 �exp� V+IRs
�nkT q� �

� − 1� − V+IRs
Rsh

          (2.6) 

 

 
Figure 2-23 Simplified equivalent circuit of a photovoltaic cell. 

 

These two resistances cause reduction of the FF and the efficiency of solar cells. 

The main reason of series resistance is from bulk resistance which is from resistive 

contacts, carrier mobility through front surface to the contacts, and the resistance of 

semiconductor to metal current flow.  The effect of series resistance is illustrated in 

Figure 2-24. According to the Figure 2-24 and equation ∆V=IRs, medium Rs 

makes V is decreased, while large Rs causes ISC to fall down. 
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Figure 2-24 The I-V curve from the effect of series resistance. 

 

The main causes of shunt resistance are due to leakage across the p-n junction and 

impurities in the junction region like the edge of the cell. The effect of shunt 

resistance is shown by Figure 2-25. In Figure 2-25, if Rsh is largely decreased, VOC 

will decline. 

 

 
Figure 2-25 The I-V curve from the effect of shunt resistance. 

 

2.3.6. Power conversion efficiency (PCE, η) of photovoltaic cells 

 

The PCE of photovoltaic cell is the ratio of power output from the solar cell to 

power input from the sun. The efficiency is considerably influenced by the 

spectrum and intensity of the sunlight and temperature. Therefore, the performance 

of solar cells must be measured in same condition to compare to other cells. The 

photovoltaic cells on the Earth are measured under AM 1.5 conditions (light output 

from solar simulator is 100 mW/cm2) and at 25°C. The equation of efficiency is 

defined as (2.7): 
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                           η = Pout
Pin

≅ Pmax
Pin

= VOCISCFF
Pin

                  (2.7) 

 

Where, Pout is Pmax when the cell can be worked up to its maximum power output to 

get maximum efficiency. In this section, general principles of which apply to all 

photovoltaic cells have been explained so far, but in the next section, the operation 

mechanism of BHJ in OPVCs and PPVCs will be explained because these are the 

device types used for this project. 

 

 

2.4. Organic bulk-heterojunction (BHJ) photovoltaic cells 
 

2.4.1. The operation of organic BHJ photovoltaic cells 

 

A solar cell or photovoltaic cell is a device which absorbs light and then converts 

the energy from light to electricity by charge separation and transport (Thompson 

and Frechet, 2008a). Absorbed light generates excitons (bound state of an electron 

and an electron hole) that can dissociate to form electrons and holes. The electrons 

from the highest occupied molecular orbital (HOMO, valence band) are excited to 

the lowest unoccupied molecular orbital (LUMO, conduction band) and quickly 

relax upon illumination in the active layer. In order to generate a photocurrent the 

electrons and holes need to be separated from the active layer and transferred to the 

front contact and rear contact (e.g. metal layer and ITO layer), along percolating 

pathways, respectively. Figure 2-26 shows the band structure of organic BHJ cells. 

A BHJ active layer has an interpenetrating nanostructure of donor and acceptor 

materials and this means that electrons and holes are easily dissociated. 

 

 
Figure 2-26 The energy structure of an organic bulk-heterojunction cells. 
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2.4.2. How BHJ photovoltaic cells work 

 

To date, OPVCs have shown lower PCE than that of IPVCs. Therefore, increasing 

PCE of OPVCs is an important issue to achieve effective conversion of solar 

energy into electricity and to replace IPVCs in industry, and also to improve their 

environmental sustainability. Bulk-heterojunction (BHJ) solar cells based on 

conjugated polymer are a promising technology to improve PCE of OPVCs. 

 

 
Figure 2-27 The architecture of bulk-heterojunction photovoltaic cell. 

 

The active layers in BHJ solar cells consist of mixtures of a polymer donor and 

acceptor. The two components in the active layer of a BHJ form an interpenetrating 

network which provides nanostructure and offers a large interfacial area for 

efficient exciton dissociation. This nanostructure of BHJ is important because 

exciton diffusion lengths of organic polymers are only a few nanometres (Tamai et 

al., 2015). The active layer polymer absorbs the incident light and then electrons 

are excited to conduction band then dissociated electrons move to metal cathode 

through PCBM; and holes move to ITO through PEDOT:PSS. PEDOT:PSS gives 

photovoltaic cells positive effects that PEDOT:PSS block the electron from active 

layer to ITO because it has higher LUMO level than materials in active layer and 

improve smoothness of the ITO contact (Arias et al., 1999, Kim et al., 2009). 

Conjugated polymers (Liang et al., 2010), oligomers (Sun et al., 2012b) and 

monomers (Sun et al., 2012a) can be applied as donors, in terms of acceptors, 

fullerene derivatives are most commonly employed. Fullerene is the best acceptor 

group so far as it is known to have a high electron affinity and ability to transport 

charges. The typical structure of BHJ solar cells is illustrated in Figure 2-27. The 

active layer is generally located between PEDOT:PSS and metal layer. 
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2.5. Low band gap polymers 
 

The energy band gap of polymers is defined as the difference between HOMO and 

LUMO level (Figure 2-28). Low band gap polymers are generally defined as a 

polymer with a band gap less than 2 eV. Organic polymers for PVCs should have 

suitable energy band matched to that of fullerene which is used as the acceptor of 

electrons. It needs to have higher LUMO level than fullerene’s LUMO level for 

efficient charge dissociation. In addition, polymers should absorb the whole visible 

spectrum and into near IR area, and retain high extinction coefficients (Bundgaard 

and Krebs, 2007). 

  

 
Figure 2-28 Definition of (low) band gap. 

 

Figure 2-29 shows the effect of band gap (Nelson, 2003). Nelson suggested 

optimum band gap for solar cells. 

 

 
Figure 2-29 The graph of (a) calculated limiting efficiency for a single band gap solar cell 

in AM 1.5, (b) power spectrum of a black body sun at 5760 K, and power available to the 

optimum band gap (Nelson, 2003). (This figure has got permission for use by World 

Scientific. Figure 2.8 and 2.9 ‘The Physics of Solar Cells’, Jenny Nelson, Copyright @ 

2003 by Imperial College Press). 

 

According to Figure 2-29(a), very small and very large band gaps will cause a 

reduction of efficiency. When the band gap is very small, it leads to small value of 

V (VOC is always less than Eg), and the band gap is very large, it causes a 
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photocurrent that is very small. The calculated S-Q limit on efficiency is around 33% 

when the band gap is around 1.4 eV. In Figure 2-29(b), if a photon’s energy is 

lower than the energy gap, it cannot contribute to generation of excitons because 

the photons cannot be absorbed by the active layer. If photon’s energy is larger 

than energy gap, it can be absorbed but only ∆µ/E is available power. 

 

In order to demonstrate why low band gap polymers are needed, E. Bundgaard 

(Bundgaard and Krebs, 2007) shows Figure 2-30 and Table 2-1 which include 

maximum integrated photon flux, current density and possibility to harvest photons 

with wavelength over 280 nm within solar cells. In Figure 2-30, black line shows 

the photon flux and red line shows the percentage of integrated photon flux and 

integrated current.  

 

 
Figure 2-30 Photon flux (black line) from the sun (AM 1.5) and the integral of the curve 

(red line) refers to the total number of photons and obtainable current density (Bundgaard 

and Krebs, 2007). (This figure has got permission for use by Elsevier. Figure 2 ‘Low band 

gap polymers for organic photovoltaics’, Eva Bundgarrd, Frederik C. Krebs, Copyright @ 

2007 by Elsevier.) 

 

The data is summarised in Table 2-2. According to the table and figure, the 

polymer having 1.9 eV band gap (about 650 nm) is able to harvest only 22.4% 

photon flux and it has 14.3 mA/cm2 current density. Therefore, low band gap 

polymers of 1.3-1.8 eV (650 nm to 1000 nm) are expected to harvest more photons 

and to have higher efficiencies. 
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Table 2-2 The integrated maximum harvest and current density available of each 

wavelength for solar cells assumed that every photon is changed to one electron in the 

external circuit (Bundgaard and Krebs, 2007) 

Wavelength 

(nm) 

Max % harvested 

( from 280 nm) 

Current density 

(mA/cm2) 

500 8.0 5.1 

600 17.3 11.1 

650 22.4 14.3 

700 27.6 17.6 

750 35.6 20.8 

800 37.3 23.8 

900 46.7 29.8 

1000 53.0 33.9 

1250 68.7 43.9 

1500 75.0 47.9 

 

 

Scharber et al. reported a calculation of the optimum band gap for BHJ solar cells 

using conjugated polymer with fullerene (Scharber et al., 2006). The ideal band 

gap of conjugated polymer is considered 1.3-1.8 eV for polymer-fullerene BHJ 

photovoltaic cells to achieve over 10% of PCE and the highest PCEs of OPVCs 

were approached by 1.5 eV of band gap of conjugated polymer in the report. In 

addition, organic conducting materials (donor) need electron acceptor compare to 

inorganic materials such as Si or Ge in order to increase charge carrier dissociation 

because quantum efficiency for charge generation in organic conducting materials 

is low (typically 1%). The sufficient energy difference between donor’s LUMO 

and acceptor’s LUMO is 0.3 eV (Bredas et al., 2004, Scharber et al., 2006). 

 

Mismatch of absorption spectra will cause a reduction of exciton generation. To 

achieve high efficiency solar cells based on organic polymers, a low band gap 
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polymer, which absorbs in the long wavelength area and has a good match with 

high density photon area, is necessary. Many researchers have reported organic 

BHJ photovoltaic cells using various kinds of conjugated polymer. The structures 

of low band gap polymers are described later in section 3.2.2. 

 

 

2.6. Perovskite photovoltaic cells 
 

Perovskite when applied in photovoltaic cells has been a remarkable material and is 

of huge interest to the researchers due to rapid growth of their PCE. According to 

the NREL solar cell efficiency table (Figure 1-1), PCE of perovskite photovoltaic 

cells (PPVCs) has sharply increased from 2009 to 2015. It is very fast growth 

compared to other PVCs. In addition, PPVCs still have potential for further 

research because perovksites can be applied to various types of PVCs, such as dye-

sensitised PVC and planar PVC, and fabrication and operation methods of PPVCs 

are still being developed. 

 

2.6.1. Formation of perovskite 

 

Three dimensional organic-inorganic hybrid perovskite (OIHP) are described by 

the formula ABX3. A is a monovalent large cation (e.g. methylammonium (MA)) 

coordinated to 12 X anions (Mitzi, 1999, Liang et al., 1998, Baikie et al., 2013). B 

is a divalent metal halide cation (e.g. Pb, Sn, Ge) satisfying charge balancing and 

bonded to six X anions as BX6. The BX6 adopts octahedral anion coordination, 

where X is a halogen (e.g. Br, I or Cl) (Mitzi, 1999, Liang et al., 1998). The 

inorganic layers form sheets of corner-sharing metal halide octahedron for full 

coordination. 

 

Figure 2-31 shows general procedure of forming perovskite crystals from 

perovskite precursors. As above mentioned, when the OIHP crystal crystallises in 

space the Pb2+ ion is coordinated with six surrounding halides and adopts the 

distorted octahedral coordination. PbX6 octahedra form the face or corner-sharing 

PbI6 octahedral chain and the organic cations are aligned into PbX6 octahedral 

chain (Manser et al., 2016, Yan et al., 2015, Gao et al., 2013). 
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Figure 2-31 The schematic illustration of forming perovksite from perovskite precursor. 

 

2.6.2. How perovskite photovoltaic cells work 

 

The perovskite is able to work as an active layer and it is easily merged into a 

standard OPVC structure. The PPVCs have generally two types of structure 

sensitised perovskite photovoltaic cell and planar perovskite photovoltaic cell. 

 

The active layer in sensitised perovksite photovoltaic cells is composed of 

perovskite and mesoporous TiO2. Figure 2-32 shows architecture of sensitised 

perovskite PVC. Perovskite is coated onto the mesoporous TiO2. The perovskite 

absorbs the incident light and then electrons and holes easily dissociate due to low 

exciton binding energy (Tanaka et al., 2003). Free electrons move to anode (FTO) 

through mesoporous and compact TiO2 layers. Free holes move to cathode (Au) 

through hole transporting material (Spiro-MeOTAD). 

 

 
Figure 2-32 (a) The architecture of sensitised peorvskite photovoltaic cell and (b) 

magnification of rectangle area. 

 

In planar perovskite photovoltaic cell, perovskite is used as donor in the active 

layer. The architecture of planar perovskite photovoltaic cell is illustrated in Figure 

2-33. The architecture of planar perovskite photovoltaic cell is ITO/hole 
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transporting layer (PEDOT:PSS)/perovskite/electron transporting layer 

(PCBM)/electrode (Al). The active layer of planar perovskite photovoltaic cell has 

two layers contrast to organic BHJ photovoltaic cells. Perovskite does not need to 

form a BHJ because the exciton binding energy is much lower (about 35-150 meV) 

than that of conjugated polymer (Tanaka et al., 2003, Alvarado et al., 1998) and 

that results in a higher diffusion length (0.27-1.7 µm of electrons and 0.46-6.3 µm 

of holes) compared to that of conjugated polymer (few nanometres) (Tamai et al., 

2015). The free electrons move to the cathode (Al) through the electron 

transporting layer (PCBM) and the free holes move to the anode (ITO) through 

hole transporting layer (PEDOT:PSS). 

 

 
Figure 2-33 The architecture of planar perovskite photovoltaic cell. 

 

 

2.7. References 
 

ALVARADO, S. F., SEIDLER, P. F., LIDZEY, D. G. & BRADLEY, D. D. C. 

1998. Direct determination of the exciton binding energy of conjugated 

polymers using a scanning tunneling microscope. Physical Review Letters, 

81, 1082-1085. 

ARIAS, A. C., GRANSTROM, M., THOMAS, D. S., PETRITSCH, K. & 

FRIEND, R. H. 1999. Doped conducting-polymer-semiconducting-

polymer interfaces: Their use in organic photovoltaic devices. Physical 

Review B, 60, 1854-1860. 

BRABEC, C. J., CRAVINO, A., MEISSNER, D., SARICIFTCI, N. S., 

FROMHERZ, T., RISPENS, M. T., SANCHEZ, L. & HUMMELEN, J. C. 

2001. Origin of the open circuit voltage of plastic solar cells. Advanced 

Functional Materials, 11, 374-380. 

41 
 



 

BREDAS, J. L., BELJONNE, D., COROPCEANU, V. & CORNIL, J. 2004. 

Charge-transfer and energy-transfer processes in pi-conjugated oligomers 

and polymers: A molecular picture. Chemical Reviews, 104, 4971-5003. 

BUNDGAARD, E. & KREBS, F. C. 2007. Low band gap polymers for organic 

photovoltaics. Solar Energy Materials and Solar Cells, 91, 954-985. 

CLAYDEN, J., GREEVES, N. & WARREN, S. G. 2012. Organic chemistry, 

Oxford, Oxford University Press. 

ERDMANN, H. 1888. Die Constitution der isomeren Naphtalinderivate. I. Die α-

α-disubstituirten Verbindungen. Justus Liebigs Annalen der Chemie, 247, 

306-366. 

GAO, H., YUAN, G. J., LU, Y. N., ZHAO, S. P. & REN, X. M. 2013. Inorganic-

organic hybrid compound with face-sharing iodoplumbate chains showing 

novel dielectric relaxation. Inorganic Chemistry Communications, 32, 18-

21. 

JIANG, X. Z., LIU, S., MA, H. & JEN, A. K. Y. 2000. High-performance blue 

light-emitting diode based on a binaphthyl-containing polyfluorene. 

Applied Physics Letters, 76, 1813-1815. 

KEKUI , A. 1866. Untersuchungen über aromatische Verbindungen Ueber die 

Constitution der aromatischen Verbindungen. I. Ueber die Constitution der 

aromatischen Verbindungen. Justus Liebigs Annalen der Chemie, 137, 

129-196. 

KEKUL , A. 1872. Ueber einige Condensationsproducte des Aldehyds. Justus 

Liebigs Annalen der Chemie, 162, 77-124. 

KIM, Y., BALLANTYNE, A. M., NELSON, J. & BRADLEY, D. D. C. 2009. 

Effects of thickness and thermal annealing of the PEDOT:PSS layer on the 

performance of polymer solar cells. Organic Electronics, 10, 205-209. 

KLEIN, D. R. A. 2015. Organic chemistry, Hoboken, NJ, Wiley. 

LECLERC, M. & MORIN, J.-F. O. 2010. Design and synthesis of conjugated 

polymers, Weinheim, Wiley-VCH. 

LIANG, Y. Y., XU, Z., XIA, J. B., TSAI, S. T., WU, Y., LI, G., RAY, C. & YU, L. 

P. 2010. For the Bright Future-Bulk Heterojunction Polymer Solar Cells 

with Power Conversion Efficiency of 7.4%. Advanced Materials, 22, 

E135-+. 

MANSER, J. S., SAIDAMINOV, M. I., CHRISTIANS, J. A., BAKR, O. M. & 

KAMAT, P. V. 2016. Making and Breaking of Lead Halide Perovskites. 

Accounts of Chemical Research, 49, 330-338. 

42 
 



 

MCMURRY, J. 1996. Organic chemistry, Pacific Grove, CA ; London, 

Brooks/Cole. 

MONDAL, S. 2012. Recent Developments in the Synthesis and Application of 

Sultones. Chemical Reviews, 112, 5339-5355. 

NELSON, J. 2003. The physics of solar cells, London, Imperial College Press. 

NREL http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. 

ROGERS, D. W. & MCLAFFER.FJ 1971. Heats of Hydrogenation - Physical-

Organic Laboratory Experiment. Journal of Chemical Education, 48, 548-

&. 

SCHARBER, M. C., WUHLBACHER, D., KOPPE, M., DENK, P., WALDAUF, 

C., HEEGER, A. J. & BRABEC, C. L. 2006. Design rules for donors in 

bulk-heterojunction solar cells - Towards 10 % energy-conversion 

efficiency. Advanced Materials, 18, 789-+. 

SUN, Y., WELCH, G. C., LEONG, W. L., TAKACS, C. J., BAZAN, G. C. & 

HEEGER, A. J. 2012a. Solution-processed small-molecule solar cells with 

6.7% efficiency. Nat Mater, 11, 44-8. 

SUN, Y. M., WELCH, G. C., LEONG, W. L., TAKACS, C. J., BAZAN, G. C. & 

HEEGER, A. J. 2012b. Solution-processed small-molecule solar cells with 

6.7% efficiency. Nature Materials, 11, 44-48. 

TAMAI, Y., OHKITA, H., BENTEN, H. & ITO, S. 2015. Exciton Diffusion in 

Conjugated Polymers: From Fundamental Understanding to Improvement 

in Photovoltaic Conversion Efficiency. Journal of Physical Chemistry 

Letters, 6, 3417-3428. 

TANAKA, K., TAKAHASHI, T., BAN, T., KONDO, T., UCHIDA, K. & MIURA, 

N. 2003. Comparative study on the excitons in lead-halide-based 

perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3. Solid State 

Communications, 127, 619-623. 

THOMPSON, B. C. & FRECHET, J. M. 2008. Polymer-fullerene composite solar 

cells. Angew Chem Int Ed Engl, 47, 58-77. 

W. R. HODGKINSON, F. E. M. 1883. XXIII.—Note on some derivatives of 

fluorene, C13H10. Journal of the Chemical Society, Transactions, 43, 163-

172. 

WENHAM, S. R. 2007. Applied photovoltaics, London, Earthscan. 

YAN, K. Y., LONG, M. Z., ZHANG, T. K., WEI, Z. H., CHEN, H. N., YANG, S. 

H. & XU, J. B. 2015. Hybrid Halide Perovskite Solar Cell Precursors: 

Colloidal Chemistry and Coordination Engineering behind Device 

43 
 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html


 

Processing for High Efficiency. Journal of the American Chemical Society, 

137, 4460-4468. 

YOHANNES, T., ZHANG, F., SVENSSON, A., HUMMELEN, J. C., 

ANDERSSON, M. R. & INGANAS, O. 2004. Polyfluorene copolymer 

based bulk heterojunction solar cells. Thin Solid Films, 449, 152-157. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 
 



 

3. Literature review 
 

 

3.1. Introduction 
 

The literature on OPVCs and PPVCs is large and rapidly growing. Therefore, the 

literature in this chapter does not seek to cover all the literature but instead to 

highlight some of the most relevant to the work carried out in this project. PVCs 

have been one of the most attractive devices to deal with the problems associated 

with increasing energy demands and the finite supply of fossil fuel. Sunlight 

provides natural, green and safe energy at the Earth’s surface. Since the first 

modern p-n junction semiconductor solar cells were developed significantly and 

inorganic photovoltaic cells (IPVCs) have now achieved efficiencies over 40%. 

OPVCs show lower PCEs than that of inorganic solar cells. Some OPVCs have 

improved to about 10% PCE by incorporating a BHJ. However, even if OPVCs 

have lower PCEs than IPVCs, OPVCs have some advantages such as low cost, 

light weight, ease of manufacture and mechanical flexibility (Facchetti, 2011, 

Dennler et al., 2009, Gunes et al., 2007, Shaheen et al., 2005, Yu et al., 1995, 

Brabec, 2004). These are positive factors for the fabrication of OPVCs. In addition, 

hybrid organic and inorganic based PPVCs have rapidly developed since 2012. 

There fabrication process is also short. This section focuses on BHJ solar cells 

based on conjugated polymer and conjugated polyelectrolytes and PPVCs. 

 

 

3.2. Photovoltaic cells via bulk-heterojunction 
 

Many researchers in the area of OPVCs have studied planar BHJs because of their 

advantages; the structure of BHJ cells is simple and they are easier to produce than 

planar PVCs. The active layer in planar PVCs is fabricated by coating several times 

but for an active layer in BHJs it is deposited all at once. It leads to low-cost 

fabrication and a reduction of production time. PEDOT:PSS has been typically 

used as HTL in OPVCs due to improved selectivity of the anode and higher work 

function relative to ITO. The active layer in OPVC typically consists of a blend of 

donor (e.g. conjugated polymer) and acceptor (e.g. fullerene) materials. Upon 

drying from the processing solution during fabrication the donor and acceptor 

materials undergo self-organised phase separation and form a BHJ nanostructure 
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which efficiently provides electrons and holes transportation. A lot of conjugated 

polymers have been used for OPVC and they are still being studied by many 

research teams because it is easy to change polymer structure and attach additive 

groups. In addition, even if the polymer structures are not changed, better results in 

PVC performance can be achieved by optimising processing conditions. To date, 

many researchers have reported various kinds of solar cells based on P3HT (Al-

Ibrahim et al., 2005), poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-

thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) (Moon et al., 2012), and many other 

polymers (Liang et al., 2010, Zhang et al., 2006). 

 

3.2.1. PEDOT:PSS for HTL in OPVCs 

 

Use of PEDOT:PSS as HTL in OPVC is apparently a benefit to achieve high 

efficiency, but specific properties of the ideal PEDOT:PSS layer have not yet been 

fixed (e.g. thickness, morphology, and conductivity). The thickness, and thermal 

annealing process of PEDOT:PSS has been reported by many researchers. Kim et 

al. reported PEDOT:PSS characteristics under various condition in the 

P3HT:PCBM PVC. In order for thickness dependence, they applied thickness of 

PEDOT:PSS varied from 0 (ITO only) to 165 nm and non-annealed (Kim et al., 

2009). For the annealing temperature dependence, PEDOT:PSS films were non-

annealed and annealed from 75 to 230 °C. According to the report, the performance 

of P3HT:PCBM devices was not strongly sensitive to film thickness of 

PEDOT:PSS (from 60 to 165 nm) apart from 0 nm (ITO only). While the 

conductivity of PEDOT:PSS increased when annealing temperature above 100 °C, 

but decreased as annealing temperature increased above 200 °C. According to the 

author, the change of conductivity is likely related to change of oxidation state in 

the polymer. The best annealing temperature between 100 and 200 °C was 

attributed to an increase of oxidation state but at temperatures above 200 °C over 

oxidation and degradation of the film occurs.  

 

Dimitriev et al. reported an effect of organic solvent additive to PEDOT:PSS with 

thermal annealed films and effect of solvent vapour exposure (Dimitriev et al., 

2009). They introduced ethylene glycol (EG) or dimethyl sulfoxide (DMSO) to 

PEDOT:PSS films in two ways. It was added directly to the PEDOT:PSS 

dispersion from which the film was cast or by exposure to the casted PEDOT:PSS 

film to the solvent vapours in a closed vessel. Their results showed that the 

conductivity of both pristine PEDOT:PSS and solvent added PEDOT:PSS films 
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which was prepared with organic solvent addition to the dispersion of polymer 

decreased as annealing temperature was increased. When the PEDOT:PSS film 

exposed to DMSO vapour, the conductivity of film was increased and it was easily  

controlled by exposure time to vapour. 

 

The two literature reports above showed different conductivity behaviour upon 

thermal annealing. One showed that the conductivity of PEDOT:PSS film 

increased as annealing temperature increase above 100 °C but another showed a 

decrease in conductivity of PEDOT:PSS film as annealing temperature increase. 

However both these two literature reports showed low conductivity around 200 °C. 

 

 

3.3. Use of conjugated polymer for BHJ photovoltaic cells 

 

Since the invention of conductive polyacetylene by Giulio Natta in 1958 (Ikeda, 

1971), organic conjugated monomers and polymers have been recognised as an 

attractive class of novel conducting materials which has useful electrical and 

optical properties, in addition, to solution processing advantages. As demonstrated 

for the last few decades, conjugated polymers have attracted much attention due to 

their thermal stability, low cost, strong emission properties (Grimsdale et al., 2009, 

Hadziioannou and Hutten, 2000) and they have been utilised as the active materials 

in organic light emitting diodes (Gross et al., 2000), organic field effect transistor 

(Li et al., 2006), chemical sensors (Na et al., 2004), and organic photovoltaic cells 

(Yu et al., 1995). The main character of conjugated polymers is conductivity 

because of the conjugation system which has p-orbitals with alternating single and 

multiple bonds in the material’s backbone. This character means that the 

conjugated polymers are stable, having fluorescence and use in electronic 

applications. In particular, the fluorescence emission is determined by the energy 

levels of conjugated polymers and as such can be tuned by changing various 

polymer main chains, and side groups with varying π-conjugation length, inter- or 

intramolecular charge transfer between electron donors and acceptors. This flexible 

character is a huge advantage as it allows the chemist within certain limits to 

design the polymers to have the properties desired. 
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3.3.1 Poly(3-hexylthiophene) based photovoltaic cells 

 

Poly-thiophene (PT) has attracted attention since the 1980s because it is one of the 

most versatile, important types of π-conjugated polymer and organic electronic 

material due to its facile synthesis, processability, and charge carrier transport 

properties. T. Yamamoto et al. published a synthesis process of PT via Grignard 

cross-coupling (Yamamoto et al., 1980). The Grignard cross-coupling is a reaction 

using organomagnesium halides. They synthesised a regularly repeating polymer 

which had high regio-regularities and showed high electric conductivity when it 

has doped with iodine. However, it showed poor solubility in organic solvents. In 

order to improve solubility, an alkyl group was attached to the 3-position. 

Elsenbaumer et al. synthesised two series of soluble poly(3-alkylthiophene), 

poly(3-butylthiophene) and poly(3-methylthiophene) based copolymers, via 

Grignard cross-coupling (Elsenbaumer et al., 1986). After regioregular P3HT (band 

gap of 1.9 eV) was invented in the 1990s (Chen and Rieke, 1992), it has been used 

as the semiconducting material due to its large hole mobility (~10-4 – 10-3 cm2V-1s-1) 

(C. Tanase, 2003). 

 

Li et al. reported PVCs showing 4.4% efficiency (Li et al., 2005). They introduced 

thermally annealed devices, annealing at 110 °C. They dealt with four different 

annealing times 0, 10, 20 and 30 min. The best result was from the 10 min 

annealed device. The JSC was slightly increased from 9.9 to 10.6 mA/cm2 and FF 

was changed from 60.3 to 67.4% which was the highest FF at that time. The 

annealing was also effective in reducing resistance from 2.41 to 1.56 Ω cm2. Ma et 

al. also suggested thermally annealed photovoltaic cells (Ma et al., 2005). They 

compared with three different conditions. The solar cell without annealing showed 

VOC of 0.6 V, JSC of 3.83 mA/cm2, FF of 30% and PCE of 0.82%, while annealed 

solar cells at 150 °C for 30 min exhibited PCE of 5.1%, JSC of 9.5 mA/cm2, and FF 

of 68%.  Almost all factors were improved, while VOC remained at 0.63 V. Pearson 

et al. reported P3HT:PCBM PVC with different thermal annealing temperature and 

blend ratio of active layer (Pearson et al., 2012). They demonstrated two distinct 

compositional amorphous phases exist and proper annealing temperature to 

improve the PCE of OPVCs. According to the report, they suggested 40% 

concentration of PCBM in active layer showed the best PCE of 3.4% at 140 °C 

annealed temperature. However, the devices with lower and higher PCBM 

concentration than 40% in active layer appeared PCE of 0.2-2.5%. The good PCEs 

of devices with annealing temperature were shown at 130-150 °C. Even if the 
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components of the active layer were not changed, they revealed a good PCE via 

thermal annealing.  

 

Some researchers reported different buffer layers instead of PEDOT:PSS. Irwin et 

al. introduced NiO, a cubic wide band gap semiconductor, which facilitates hole 

conduction (Irwin et al., 2008). The best PCE was 5.2% from 10 nm thickness of 

NiO buffer layer. It had JSC of 11.3 mA/cm2 and FF of 69.3%. Compared to the 

NiO buffer layer, a PEDOT:PSS buffer layer (40 nm thickness) solar cell resulted 

in a JSC of 9.54 mA/cm2, FF of 40.4% and PCE of 2.40%. Most P3HT:PCBM solar 

cells have VOC of 0.6 V. It is the main reason that P3HT:PCBM solar cells showed 

low efficiencies, although it had good hole mobility. 

 

In order to improve VOC, Zhao et al. reported P3HT donor with indene-C60 

bisadduct (ICBA) acceptor based solar cells (Zhao et al., 2010). The LUMO level 

was raised by ICBA (-3.74 eV) which was 0.17 eV higher than LUMO level of 

PCBM (-3.91 eV). As a result, VOC of P3HT:ICBA solar cell increased from 0.6 to 

0.84 V. They also tried to optimise the devices. The best result solar cell was blend 

ratio of P3HT:ICBA of 1:1 with pre-baking at 150 °C for 10 min. It was attained 

the PCE as high as 6.48% with VOC of 0.84 V, JSC of 10.61 mA/cm2, and FF of 

72.7%. All of this result was the highest values suggested in the literatures by 2010 

for P3HT based solar cells. Figure 3-1 shows the structures of P3HT, PCBM and 

ICBA. 

 

 
Figure 3-1 The structures of P3HT, PC60BM, and ICBA 

 

3.3.2. Low band gap polymer based photovoltaic cells 

 

In order to synthesise low band gap polymers, many researchers introduced donor-

acceptor parts in a polymer. Low band gap polymers are expected to harvest more 

photons (see Figure 2-28 in Chapter 2). The inclusion of donor-acceptor groups 
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leads to electron delocalization over the polymer chain. The HOMO level of the 

donor and the acceptor build up two new HOMO levels and also the LUMO level 

of the donor and the acceptor form two new LUMO levels (Cheng et al., 2009). 

This facilitates control over the energy band gaps. The typical donating (electron-

rich) groups are dithiophene (Wienk et al., 2008), cyclopentadithiophene (Li et al., 

2011), carbazole (Park et al., 2009), dibenzosilole (Boudreault et al., 2007), 

dithienosilole (Hou et al., 2008), and dialkoxybenzodithiophene (Cabanetos et al., 

2013). The typical accepting groups are benzothiadiazole (Wang et al., 2011), 

quinoxaline (Gadisa et al., 2007), thieno[3,4-c]pyrrole-4,6-dione (Zou et al., 2010), 

and diketo-pyrrolopyrrole (Bijleveld et al., 2009). Figure 3-2 shows the donors and 

acceptors. 

 

 
Figure 3-2 Structures of (a) donors (electron-rich) and (b) acceptors (electron-deficient). 

 

Bijleveld et al. reported conjugated polymer (P1 in Figure 3-3) based on 

dithiophene with diketo-pyrrolopyrrole (DPP) in 2009 (Bijleveld et al., 2009). P1 

was synthesised via a Suzuki-cross coupling (Mn = 54 kDa). The Suzuki-cross 

coupling is reaction in which the coupling partners are aryl- or vinyl- boronic acid 

with aryl- or vinyl- halide by catalyst palladium(0) which oxidation state is 0. The 

HOMO and LUMO levels were measured at – 5.17 eV and – 3.61 eV (energy band 

gap showed 1.56 eV in a thin film), respectively. In application to solar cells with 

PC71BM, the PCE showed 4.7% and it had VOC of 0.65 V, JSC of 11.8 mA/cm2, and 

FF of 60%. Woo et al. also suggested DPP based polymer (P2 in Figure 3-3) (Woo 
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et al., 2010). P1 incorporated dithiophene, whereas P2 introduced thiophenyl-furan 

instead. P2 was measured and showed an energy band gap of 1.41 eV in a film 

(HOMO of – 5.4 eV and LUMO of – 3.8 eV vs vacuum). The PCE of P2 achieved 

was up to 5.0% when 9% 1-chloronaphthalene (CN) was added in spin-coating 

process. It achieved VOC of 0.74 V, JSC of 11.2 mA/cm2, and FF of 60%. 

 

A thieno[3,4-c]pyrrole-4,6-dione based copolymer (P3 in Figure 3-3) for solar 

cells was published by Zou et al. in 2010 (Zou et al., 2010). Thieno-pyrroledione is 

beneficial for electron delocalisation due to simple, compact, symmetric, and 

planar structure. The P3 was synthesised by Stille coupling polymerisation. 2-

ethylhexyl group and octyl chain was attached to benzodithiophene and 

thienopyrrole moieties, respectively. It showed a band gap of 1.8 eV in a film. P3 

with Pc71BM solar cells obtained a PCE of 5.5%, VOC of 0.85 V, JSC of 9.81 

mA/cm2, and FF of 66%. Cabanetos et al. also reported benzodithiophene with 

thienopyrrole copolymer (P4 in Figure 3-3) (Cabanetos et al., 2013). In 

comparison to P3, the side chain of pyrrole moiety in P4 is hepthane and CN was 

added when spin coating. The best result of these series was P4 (PCE of 8.5%) and 

it had VOC of 0.97 V, JSC of 12.6 mA/cm2, and FF of 70%. 

 

According to Liang et al., thienothiophene based polymer was reported (Liang et 

al., 2010, Liang et al., 2009). They suggested 7 polymers and the first 6 polymers 

were published in 2009, then, the last one was developed in 2010. The best PCE of 

the 6 polymers was from P5 (specified PTB4 in the paper). P5 has fluorine in 

thienothiophene. It played an important role to lower the HOMO level due to 

electron-withdrawing character. P5 has a 1.63 eV band gap and up to 6.10% PCE. 

It had VOC of 0.74 V, JSC of 13.0 mA/cm2, and FF of 61.4%. P6 was similar 

structure with P5, but, 2-ethylhexyl group was introduced to benzodithiophene. 

The HOMO and LUMO levels of P6 were – 5.15 eV and – 3.31 eV. The PCE of 

7.4% was shown by P6 and it had VOC of 0.74 V, JSC of 14.16 mA/cm2, and FF of 

68.97%. The structures of P1-P6 are illustrated in Figure 3-3 and the device 

parameters of six polymers are summarised in Table 3-1. 
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Figure 3-3 The polymer structures of P1-P6. 

 
Table 3-1 The device parameters of 6 polymers 

Polymers PCE (%) Voc (V) Jsc (mA/cm2) FF (%) 

P1 4.7 0.65 11.8 60 

P2 5.0 0.74 11.2 60 

P3 5.5 0.85 9.81 66 

P4 8.5 0.97 12.6 70 

P5 6.1 0.74 13.0 61.4 

P6 7.4 0.74 14.16 68.97 

 

Zhang et al.  reported fluorine based polymers such as a poly[{2,7-(9,9-

dialkylfluorene)}c-alt-{5,5-(4,7-di-2’-thienyl-2,1,3-benzothiadiazole)}] (P7 in 

Figure 3-4) (Zhang et al., 2006). The best performing device recorded PCE of 

2.84%, VOC of 1.01 V, JSC of 6.3 mA/cm2, and FF of 44%. Even if P7 showed low 

efficiency due to low match with solar spectrum, it recorded high VOC. They also 

published work on polyfluorene with quinoxaline (P8 in Figure 3-4) (Gadisa et al., 

2007). The 5′,8′-di-2-thienyl-(2′,3′-bis-(3′′-octyloxyphenyl)-quinoxaline) moiety 

was introduced instead of benzothiadiazole. The device fabricated with PC60BM 

recorded a PCE of 3.7%, VOC of 1 V, JSC of 6 mA/cm2, and FF of 63%. P8 has a 

HOMO level of - 6.3 eV and and LUMO of – 3.6 eV. 
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Another series of polymers are reported by Muhlbacher et al. They presented 

cyclopenta-dithiophene and benzothiadiazole based polymer (P9 in Figure 3-4) 

(Muhlbacher et al., 2006). This polymer recorded the band gap of 1.40 eV in the 

solid state and HOMO and LUMO levels of – 5.3 eV and – 3.7 eV. The best result 

was a device made by P9 with PC71BM which was measured PCE of 3.4%, VOC of 

0.7 V, JSC 10-11 mA/cm2 and FF of 47%. 

 

Hoven et al. suggested poly[(4,4-didodecyldithieno[3,2-b:20,30-d]silole)-2,6-diyl-

alt-(2,1,3-benzoxadiazole)-4,7-diyl] (P10 in Figure 3-4) in 2010 (Hoven et al., 

2010). The HOMO and LUMO of P10 are – 5.5 eV and –3.7 eV, respectively. The 

average devices made by P10:PC71BM appeared different results with CN and 

without CN. The devices without CN was PCE of 1.8%, VOC of 0.70 V, JSC of 

4.8mA/cm2, and FF of 55%, while the devices with CN recorded PCE of 5.4%, 

VOC of 0.68V, JSC of 13.7mA/cm2, and FF of 58%. 

 

Park et al. achieved the PCE of 6.1% using Poly[N-9'-heptadecanyl-2,7-carbazole-

alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) which is used in 

my research as well (P11 in Figure 3-4) with PC71BM (Park et al., 2009). The 

device has VOC of 0.88 V, JSC of 10.6 mA/cm2, and FF of 66%. Watters et al. also 

reported PCDTBT solar cell (Watters et al., 2012). They introduced dual metal 

cathode layer (Ca/Al) and it showed PCE of 5.01%, VOC of 0.86 ± 0.01 V, JSC of 

9,4 ± 0.1 mA/cm2, and FF of 60.6 ± 0.3%. The structures of P7-P11 are illustrated 

in Figure 3-4 and the device performances of five polymers are summarised in 

Table 3-2. 

 

 
Figure 3-4 The polymer structures of P7-P11. 
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Table 3-2 The device parameters of 5 polymers 

Polymers PCE (%) VOC (V) JSC (mA/cm2) FF (%) 

P7 2.84 1.01 6.3 44 

P8 3.7 1.0 6.0 63 

P9 3.4 0.7 10-11 47 

P10 with CN 5.4 0.68 13.7 58 

P11 6.1 & 5.01 0.88 & 0.86 10.6 & 9.4 66 & 60.6 

 

 

3.4. Use of conjugated polyelectrolytes for photovoltaic cells 
 

Water-solubility is an important characteristic of conjugated polyelectrolytes. In 

order to dissolve in water, polar side chains such as negative (Vetrichelvan et al., 

2006) or positive (Liu and Bazan, 2004) charged side chains and ethylene glycol 

(Pu et al., 2010) groups are added during synthesis. 

 

When polyelectrolytes are dissolved in water, sometimes they show specific 

mobility of electrons in connection with water. As a result, their absorption or 

fluorescence spectral features may be red or blue shifted and increase or decrease 

in intensity when compared to conventional conjugated polymers in organic 

solvents due to hydrogen bonding with solvents or reagents, even though their 

backbone structure is the same (Seo et al., 2014, Huang et al., 2004). In addition, 

when conjugated polyelectrolytes combine other oppositely charged conjugated 

polyelectrolytes or materials, their emission and absorption peaks are changed by 

intermolecular charge transfer or fluorescence resonance energy transfer (FRET) 

(Bardeen, 2011, Pu et al., 2010, Kwak et al., 2010). 

 

Conjugated polyelectrolytes are able to coat layer by layer with other materials 

using organic solvents in films. Therefore, it would be possible to be introduced to 

various layers such as HTL, ETL or active layer in the devices. 
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3.4.1. Synthesis of conjugated polyelectrolytes 

 

Some of the literature which is related to synthesis of conjugated polyelectrolytes is 

discussed in this section. Although their results do not include the properties for 

photovoltaic cells, the band gaps of their polymers can be inferred from absorption 

and fluorescence peaks. To date, various conjugated polyelectrolytes have been 

reported since the early 1990s; for example poly(para-phenylene), polythiophene, 

polyfluorene. G. C. Bazan et al. reported a cationic poly(fluorene-co-phenylene) 

polymer chain having 2,1,3-benzothiadiazole (P12 in Figure 3-5) for DNA sensor 

(Liu and Bazan, 2004). The copolymer was synthesised by Suzuki cross coupling. 

Molecular weight by GPC was found to be ~ 11 kDa. A benzothiadiazole group 

was introduced in polymer backbone in order to attain two emission colours from 

polymer. The absorption and emission of P12 are λmax of 380 nm and 400–500 nm 

below 1 × 10-6 M. However, green fluorescence (500-650 nm) is emitted over 1 × 

10-6 M due to aggregation which shortened the distance between polymer and 

boosted energy transfer to lower energy benzothiadiazole group. They applied 

interpolymer interaction to detect target ss-DNA (5¢-ATC TTG ACT ATG TGG 

GTG CT). The contraction and aggregation between polymer and DNA lead to 

efficient energy transfer to benzothiadiazole and as a result the colour changed. 

 

Kim et al. studied water-soluble poly(p-phenyleneethynylene) (P13, P14) as a 

biosensor (Kim et al., 2005). P13 and P14 included negatively charged carboxylate 

side chain and it was synthesised via Sonogashira coupling. They have compared 

to two polymers (P13, and P14) and one oligomer attached protein. P13 has one 

water-soluble side chain, while P14 has a sugar group, as compared to P13, to give 

lower charge density. They compared fluorescence quenching of P13, P14 and the 

6 protein oligomers. Both polymers showed good fluorescence quenching upon 

exposure to histone, whereas the fluorescence was increased by bovine serum 

albumin (BSA) exposure. These differences were because histone is positively 

charged, but BSA is negatively charged. Therefore, histone leads to charge transfer 

or induced aggregation which is responsible for the quenching processes with 

polymer. P13 also showed more quenching effect than P14 due to charge density in 

polymer. 
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Figure 3-5 The polymer structures of P12-P15. 

 

Kwon et al. suggested water-soluble poly(bisthienylbenzothiadiazole-co-p-

phenylene) (P15), which has sulfonate group, as a sensor(Kwon et al., 2011). P15 

was synthesised by Suzuki-cross polymerisation and molecular weight of 1.24 kDa. 

P15 exhibited λmax of 327 nm and small absorption peak showed (515 nm) in an 

aqueous solution. The P15 also showed similar absorption properties at 348 nm 

(λmax) and at 519 nm in solid state. However, the fluorescence in a solid state 

exhibited red emission at 653 nm due to intermolecular exciton migration to 

thienylbenzothiadiazole unit. This peak was not shown in an aqueous solution. This 

polymer detected mercury ions effectively. The colour of the polymer was changed 

from blue to red in both an aqueous solution and solid state. P12-P15 are illustrated 

in Figure 3-5. 

 

3.4.2 Conjugated polyelectrolyte photovoltaic cells. 

 

Conjugated polyelectrolytes (CPE) for photovoltaic cells have been studied by 

researchers for a decade. CPE has been used as an active layer or a buffer layer. 
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Water-soluble poly(thiophene), sodium poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] 

(PTEBS:Na+) (P16) with fullerene was reported by Yang et al. in 2007 (Yang et al., 

2007). P16 has butylsulfonate side chain instead of hexyl group. They reported 

bilayer photovoltaic cell and an architecture of devices was 

ITO/PTEBS:Na+/C60/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Al. 

The device obtained PCE of 0.43 %, VOC of 0.58 ± 0.01 V, JSC of 0.95 ± 0.02 

mA/cm2, and FF of 0.57 ± 0.01%. 

 

J. T. McLeskey and Q. Qiao also reported PTEBS based solar cells (McLeskey and 

Qiao, 2006). They compared them to TiO2 bilayer devices, TiO2 BHJ devices, and 

carbon nanotubes (CNTs) BHJ cell. Figure 3-6 illustrates polymer and device 

structure. All active layers in the devices were prepared by drop casting. The best 

result was achieved by the TiO2 bilayer device. It showed PCE of 0.15%, VOC of 

0.84 V, JSC of 0.15 mA/cm2, and FF of 91%. Attempting to use CNTs as an 

acceptor in polymer solar cell was expected to show good performances due to 

high electrons mobilities, however, it only showed a PCE of 1.35 × 10-4%. 

 

 
Figure 3-6 The polymer and devices structure. (a) PTEBS, (b) aligned carbon nanotubes in 

BHJ cell, (c) bilayer heterojunction cell, and (d) bulk-heterojunction cell (Yang et al., 2007, 

McLeskey and Qiao, 2006) 

 

3.4.3. Use of conjugated polyelectrolyte as interfacial layer in photovoltaic 

cells 

 

The use of conjugated polyelectrolyte as an interfacial layer has improved the PCE 

of photovoltaic cells. In the past, CPEs have been introduced as ETLs to improve 

electron collecting ability and VOC. Seo et al. reported PCDTBT photovoltaic cell 

with poly[3-(6-trimethylammoniumhexyl)thiophene] (P3TMAHT, P17) or fluorene 

and thiophene based CPE poly(9,9-bis(2-ethylhexyl)- 
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fluorene]-b-poly[3-(6-trimethylammoniumhexyl)thiophene] (PF2/6-b-P3TMAHT, 

P18) in the ETL (Seo et al., 2011). The polymer structure is in Figure 3-7. P17 

appeared HOMO of 4.98 eV and LUMO of 2.93 eV and P18 showed HOMO of 

5.06 eV and LUMO of 3.04 eV. The device architecture was 

ITO/PEDOT:PSS/PCDTBT:PC71BM/CPE/Al. They improved the PCE of their 

devices up to 6.5 %. According to the report, the device’s efficiencies were 

improved from 5 to over 6% and VOC of 0.89 ± 0.01 V, JSC of 10.6 ± 0.3 mA/cm2, 

and FF of 67± 1% value were higher than general PCDTBT photovoltaic cell. Yao 

et al. also developed P17 and used it as an ETL for P3HT:PCBM photovoltaic cells 

(Yao et al., 2011). The best device’s PCE was 3.28% and it was enhanced from 

1.8%. 

 

 
Figure 3-7 The polymer structure of P17, P18 and P19. 

 

Recently, CPE has been also utilised as HTL in organic photovoltaic cells. Zhou et 

al. reported the water/alcohol soluble CPE and it was used as HTL instead of 

PEDOT:PSS (Zhou et al., 2014). The CPE is poly[2,6-(4,4-bis-

potassiumbutanylsulfonate-4H-cyclopenta-[2,1-b;3,4-b’]-dithiophene)-alt-4,7-

(2,1,3-benzothiadiazole)] (PCPDTBT-SO3-K, P19). The CPE structure is in Figure 

3-7. Their HOMO and LUMO levels were -4.9 eV and -3.5 eV. The architectures 

of their devices were ITO/CPE (P19)/PTB7:PC71BM/Al and the best PCE was 

8.2%. When the device compared with general PEDOT:PSS HTL device, CPE 

HTL device showed a larger JSC, a higher FF and a smaller VOC. Smaller Voc was 

caused by shallower HOMO for CPE (-4.9 eV) than that of PEDOT:PSS (-5.0 eV). 

. 
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3.5. Perovskite photovoltaic cells 
 

The relevant perovskite photovoltaic cells (PPVCs) literature is discussed in this 

chapter. Organic-metal halide perovskites have a structure of ABX3, generally A is 

organic cations and X is halide anion. Organic cations, which have one or two 

ammonium groups, are placed between halide anions and it extends into the space 

between the inorganic layers. In general, methylammonium or formamidinium has 

been used as organic cation A, and lead (Pb) has been introduced as metal cation B. 

X halide anions are normally chloride (Cl-), bromide (Br-) and iodide (I-). These 

perovskites are good materials when used as a light harvester in solar cells, because 

of their bad gap, large absorption coefficients, high carrier mobility, and small 

exciton binding energy.  

 

3.5.1. Methylammonium lead trihalide based perovskite 

 

Perovskite photovoltaic cells have achieved high PCE for last few years; therefore 

perovskites have become highly interesting materials for PVCs. The first 

perovskite photovoltaic cell was reported by Kojima et al.. They suggested 

MA(CH3NH3)PbI3 and MAPbBr3-based cells. The architecture of devices was 

FTO/TiO2/mp-TiO2/perovskite/electrode.  The photovoltaic characteristics of 

MAPbI3 PVC were VOC of 0.61 V, JSC of 11 mA/cm2, FF of 57%, and PCE of 

3.81%. The photovoltaic characteristics of MAPbBr3 PVC were VOC of 0.96 V, JSC 

of 5.57 mA/cm2, FF of 59%, and PCE of 3.13%. The band gap of MAPbI3 and 

MAPbBr3 was 1.44 eV and 2.02 eV respectively. 

 

The first perovskite photovoltaic cells approached PCE up to 3.8%. However, 

PPVCs have been rapidly developed by myriad research groups. Kim et al. 

reported MAPbI3 sensitised PVC and it showed VOC of 0.89 V, JSC of 17 mA/cm2, 

FF of 62%, and PCE of 9.7%. The device’s architecture was FTO/compact 

TiO2/mp-TiO2/perovskite/spiro-MeOTAD/Au. Spiro-MeOTAD was used as hole 

transporting material and band gap of MAPbI3 was 1.5 eV. 

 

Although PPVCs have approached high PCE over 20%, the perovskite active layer 

was applied to the cells with various methods in order to achieve theoretical values 

over 30%. Barrows and Kwak et al. reported MAPbI3-xClx PVC using spray coating. 

The PVC achieved VOC of 0.92 V, JSC of 16.8 mA/cm2, FF of 72%, and PCE of 

11.1%. The architecture of PVC was ITO/PEDOT:PSS/perovskite/PCBM/Ca/Al. 
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Wu et al. reported two-step spin-coating procedure for MAPbI3. Therefore, the 

grain size of perovskite was increased and the performance of PVC was 

dramatically developed. The PCE of devices showed up to 15.3% and other 

characteristics of devices were VOC of 1.01 V, JSC of 21.8 mA/cm2, and FF of 

69.8%. 

 

3.5.2. Lead free perovskite 

 

Reducing use of lead in the PPVCs is the one of the research aims of this work. 

Some research groups reported lead free perovksite PVCs due to toxicity of lead. 

Tin shows similar chemical characteristic with other 14 group metals such as 

germanium and lead. According to a recent report by Y. Ogomi et al., tin-lead 

mixed perovskite (CH3NH3Sn0.5Pb0.5I3) showed VOC of 0.42 V, JSC of 20.04 

mA/cm2, FF of 50%, and PCE of 4.18%. The remarkable thing is that IPCE curve 

of CH3NH3Sn0.5Pb0.5I3 reached 1060 nm. However, unfortunately they found that 

CH3NH3SnI3 perovskite did not play a role as active layer. 

 

N. K. Noel reported lead free perovskite (MASnI3) for photovoltaic applications 

(Noel et al., 2014). They approached PCE of 6.4% 1 sun illumination and VOC of 

0.88 V, JSC of 16.8 mA/cm2, and FF of 42% with a band gap of 1.23 eV. The 

architecture of MASnI3 sensitised PVC was FTO/compact TiO2/mp-

TiO2/perovksite/Spiro-OMeTAD/Au. 

 

Bismuth is one metal with lower toxicity than lead. Park et al. reported MA 

bismuth perovskite (MA3Bi2I9) and caesium (Cs) bismuth perovskite  (Cs3Bi2I9) 

PVCs. In their study MA3Bi2I9 showed a PCE of 0.12%, VOC of 0.68, JSC of 0.52 

mA/cm2, and FF of 33%. Cs3Bi2I9 appeared a PCE of 1.09%, VOC of 0.85 V, JSC of 

2.15 mA/cm2, and FF of 60%. The energy band gap of MA3Bi2I9 and Cs3Bi2I9 was 

2.1 eV and 2.2 eV respectively.  
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4. Fabrication and characterisation of P3HT 

photovoltaic cells 
 

 

4.1. Introduction 
 

As previously mentioned in the introduction Chapter 1, organic photovoltaic cells 

(OPVCs) are an attractive technology due to potential source of renewable and 

clean energy and an alternative to fossil fuel. OPVCs are a type of solar cell which 

uses organic materials such as conductive conjugated polymers or small molecules. 

The most typical architecture for devices is bulk heterojunction (BHJ) based on an 

organic material:fullerene blend for the active layer. In general, organic materials 

used as active layer are conjugated polymers such as P3HT, PCDTBT, PTB7, and 

many others. Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) 

(PEDOT:PSS) is frequently used for the hole transporting layer (HTL), indium tin 

oxide (ITO) for the anode, and aluminium for the cathode (Iyer et al., 2006, 

Benanti and Venkataraman, 2006, Thompson and Frechet, 2008). In this chapter, to 

understand PEDOT:PSS as the HTL, thin films of PEDOT:PSS were fabricated 

and measured using a 4-probe sheet resistance measurement and UV-vis absorption 

experiments. In order to gain a general understanding of OPVCs, P3HT BHJ PVCs 

were also fabricated and characterised. Experiments comparing OPVCs with 

different blend ratios of P3HT:PCBM (1:0, 1:0.4, 1:0.6, 1:0.8, and 1:1), and 

comparing two fabrication conditions i.e. in glovebox and in atmosphere, and also 

a comparison of different cathode layers are reported. The experiments in this 

chapter were helpful to understand OPVCs and to increase fabrication technique 

for further experiments.  

 

 

4.2. Experimental 
 

4.2.1. Materials 

 

Regioregular poly(3-hexylthiophene) (P3HT, (M106) RR: 94.7%, Mw: 34,100), 

[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM (M111)), encapsulation epoxy 

(E131) and poly(3,4-ethylenedioxythiophene) with poly(styrenesulfonate) 

(PEDOT:PSS – HC Stark Clevios P VP AI4083 (M121)) were purchased from 
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Ossila Ltd. Hellmanex, chlorobenzene, acetone and isopropanol (IPA) were 

purchased from Sigma-Aldrich. All organic components were used without any 

further purification. Pre-patterned ITO glass substrates (S171, 20 Ω/square) and 

encapsulation glass were provided by Ossila Ltd. 

 

4.2.2. Fabrication of thin films for characterisation of PEDOT:PSS 

 

In order to fabricate thin PEDOT:PSS films, PEDOT:PSS was spin coated on glass 

substrates using a Laurell WS-400BZ-6NPP/lite spin coater. First, the glass 

substrates were washed in Helmanex and then IPA for 10 min in an ultrasonic bath. 

After sonication, glass substrates were rinsed in DI water. For the research on 

conductivity of PEDOT:PSS thin films under various temperature, filtered (PVDF 

0.45 µm) PEDOT:PSS was spin coated at 5000 rpm for 40 sec and thermally 

annealed at 50, 75, 100, 125, 150, 175, and 200 °C for 15 min on the hot plate and 

as cast. For the research on UV-vis absorption of PEDOT:PSS thin films under 

different thickness, filtered PEDOT:PSS was spin coated at 2500, 5000, 7500, and 

10000 rpm for 40 sec and then thermally annealed at 150 °C for 15 min. 

 

4.2.3. Fabrication of photovoltaic cells 

 

Pre-patterned ITO substrates were loaded into the substrate rack. In order to wash 

the ITO substrates, the rack was submerged in Hellmanex and was cleaned for 10 

min in ultrasonic bath with hot water followed by immersing into hot DI water 

twice and once in cool. The ITO substrates were washed using Iso-propyl alcohol 

(IPA) followed by dump rinse in cool DI water twice. The substrates were blown 

dry using nitrogen before use. A substrate was transferred to spin coater and then 

PEDOT:PSS filtered through PVDF 0.45 µm was coated at 5000 rpm for 40 sec. 

After the deposition of the PEDOT:PSS layer, the PEDOT:PSS film covering the 

edge part of ITO substrates was removed by a damp cotton bud and then the 

samples were annealed at 150 °C for 10 min. The PEDOT:PSS coated films were 

brought into the glovebox and thermally annealed 5 min more due to absorption of 

moisture on the PEDOT:PSS layer (This step is omitted when devices are 

fabricated in atmosphere). Solutions of P3HT and PCBM, 25 mg/ml in 

chlorobenzene, were prepared separately in chlorobenzene and heated at 70 °C 

overnight. The two solutions were then mixed by various volume. A blend of 

P3HT and PCBM solution was heated at 70 °C over 3 h to fully dissolve and then 

filtered before use. The blend (various blend ratio) of P3HT:PCBM was deposited 

68 
 



 

on the PEDOT:PSS layer at 2000 rpm for 40 sec and then P3HT:PCBM on the 

edge of substrates was wiped off with cotton bud soaked in chlorobenzene. P3HT 

and PCBM solution were heated at 70 °C over 3 h to fully dissolve. Aluminum (Al) 

(100 nm) or calcium (Ca) (5 nm)/Al (100 nm) was coated onto the P3HT:PCBM by 

vacuum evaporation under <10-6 mbar. The devices were thermally annealed for 30 

min at 150 °C and then encapsulated with glass using UV-epoxy under UV light 

for 30 min. 

 

4.2.4. Instruments for characterisation of thin films and devices 

 

UV-vis absorption spectra were obtained using an Ocean Optics USB2000+ 

spectrometer and a DT-MINI-2-GS combined with a Deutrium-Halogen light 

source. Photoluminescence spectra were collected by a silicon diode detector and a 

Keithley 2700 multimeter under illumination by a Laser- LDCU CW 450nm diode 

laser. Samples were measured under vacuum at approximately 1 x 10-3 mbar. Sheet 

resistance and conductivity were measured by Keithley 2612 and four-point probe, 

which is 20 µm gold coated nickel, was used with 1.07 mm probe tip diameter and 

1.27 mm tip spacing. Film thickness was measured by J. A. Woollam Co. M-2000 

ellipsometer with a charge-coupled device (CCD) camera as the detector. The 

atomic force microscope (AFM) images were obtained by a Veeco Dimension 

3100 AFM with a Nanoscope IIIa controller and basic extender. Tapping mode was 

operated with Bruker TESPA tapping mode cantilevers with a nominal spring 

constant of 42 N/m and a nominal resonant frequency of 320 kHz. The 

performance of devices were measured using a Newport 92251A-1000 solar 

simulator in ambient conditions under simulated AM 1.5 sunlight at an intensity of 

100 mW/cm as determined using an NREL calibrated silicon photovoltaic 

reference cell. The devices were masked with an aperture (0.025 cm2) to define the 

active area during the J-V measurement to minimize any edge effects. The PCE 

was subsequently calculated from the J-V curve and the known illumination 

intensity. 

 

 

4.3. Study of PEDOT:PSS 
 

This section aims to better understand PEDOT:PSS as a hole transporting layer. 

PEDOT:PSS is the most commonly used hole transporting (electron blocking) 

layer in OPVCs. Thermal annealing of PEDOT:PSS layer is an important step in 
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the process because PEDOT:PSS can readily absorbs moisture from the air 

(Elschner, 2011) and annealing will dry it removing the moisture in the 

PEDOT:PSS layer. Also the influence of oxygen on solar cells is not perfectly 

understood (Nam et al., 2009). Oxygen exposure in some reports was shown to 

increase charge carrier mobility in the organic semiconductors (Fan et al., 2008) 

but other reports showed a decrease of charge carrier mobility (Sze, 1981, 

Schafferhans et al., 2008). In order to understand the HTL in OPVCs, PEDOT:PSS 

has been characterised as a HTL. Firstly, how the conductivity of PEDOT:PSS 

under various conditions is described in this chapter. Secondly, UV-vis absorption 

of PEDOT:PSS deposited under different spin speeds is also be described in this 

chapter. The absorption measurement provides detail of the transmittance of the 

HTL. 

  

4.3.1. Conductivity of PEDOT:PSS films in various annealing temperatures 

 

Sheet conductivities of various films were measured using a 4-point probe 

developed by Ossila Ltd. and Keithley 2612 source meter. The probe has linear 

tips with an equal tip diameter of 1.07 mm and spacing of 1.27 mm. Outer 

probes deliver a current to the sample whilst the inner probes measure the resulting 

voltage drop. 

 

The experiment has been conducted using eight different annealing temperatures 

namely as cast, 50, 75, 100, 125, 150, 175, and 200 °C. To reduce effects from 

other materials such as ITO and P3HT, only PEDOT:PSS was coated on the clean 

glass substrates without ITO. The conductivity of all the PEDOT:PSS samples 

were measured using Keithley 2612 by sourcing either 200 pA or 1nA current 

(with a compliance of 20 V). The sheet resistance was calculated using equation 

(4.1) below (Smits, 1958). 

                                    𝐑𝐒 = 𝟒.𝟓𝟑 𝐕
𝐈
                             (4.1) 

 

Where, RS is sheet resistance, V is voltage, I is current, and 4.53 is correction 

factor. RS is also related with resistivity (ohm) and film thickness (cm) and its 

equation (4.2) followed by, 

                        RS = resistivity/thickness                (4.2) 
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The thickness (t) of the film and sheet resistance (RS) is related to conductivity (σ) 

and the equation (4.3) is below. 

                                         σ = 1
RS∙t

                              (4.3) 

 

The first conductivity measurement result of each two PEDOT:PSS thin films 

under various temperature are shown in Figure 4-1.  
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Figure 4-1 The average conductivity of each two PEDOT:PSS thin films as cast, 50, 75, 

100, 125, 150, 175, and 200 °C by sourcing at 200 pA current (black line and circle) and 1 

nA current (red line and square). 

 

Two PEDOT:PSS films were made for each fabrication condition (as cast, 50, 75, 

100, 125, 150, 175, and 200 °C) so 16 films were fabricated. All the each films 

were measured three times with the probes located at different random position and 

then average values were shown in Figure 4-1. The black line and circle were first 

measured by sourcing a current of 200 pA and the red line and squares in the  

second measurement were found when sourcing a current of 1 nA. The second set 

of experiments attempted to reduce noise in the experiment by adopting a higher 

current than first set. In the first measurements, the as casted PEDOT:PSS film had 

a higher conductivity than the 100 °C and 125 °C annealed PEDOT:PSS films. The 

highest conductivity is shown at 150 °C (3.15 x 10-4 S/cm). 75 and 175 °C 

annealed films showed similar high conductivity. The conductivity then decreased 

as annealed temperature increased above 175 °C. Although the conductivity of 

PEDOT:PSS at 100 and 125 °C were lower than expected (conductivity of 
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PEDOT:PSS provided by Ossila Ltd. is 1.5 x 10-3 - 1.5 x 10-4 S/cm or 600 - 6000 

Ω/cm), the behaviour shown was similar to a previous report (Kim et al., 2009). 

According to the report, the conductivity of PEDOT:PSS increases as annealing 

temperature is increased above 100 °C, then conductivity is decreased as annealing 

temperature goes above 200°C. The change of conductivity is likely due to a 

change of oxidation state of PEDOT:PSS or decomposition of polymer in high 

temperature (Kim et al., 2009).  

 

The second conductivity measurement result (red line and square) of each of two 

freshly prepared PEDOT:PSS thin films annealed at various temperature are shown 

in Figure 4-1. The fabrication process of the PEDOT:PSS films was the same as 

the former experiment. 

 

The result of the second measurement did not yield stable results below 100 °C 

annealing temperature, so only the results over 100 °C are shown in the Figure 4-1. 

As shown in Figure 4-1, the PEDOT:PSS film annealed at 175 °C showed the 

highest conductivity and the conductivity of PEDOT:PSS films annealed over 

200 °C was decreased. The second measurement showed slightly different results 

compared to the first measurement. However, second results showed reasonable 

conductivity values of PEDOT:PSS above 100 °C. The conductivity of 

PEDOT:PSS above 100 °C was from 2.32 x 10-4 to 3.8 x 10-4 S/cm. These values 

are in the range of conductivity from supplier (5 x 10-3 - 1.5 x 10-4 S/cm (600 - 

6000 Ω/cm)). 

 

According to a previous report by Dimitriev et al. (Dimitriev et al., 2009). 

Conductivity of pristine PEDOT:PSS films was decreased as annealing 

temperature increased above 100 °C. In the report, 50 °C showed the highest 

conductivity of PEDOT:PSS films. This is conflict with the results shown here and 

also those of  Kim et al (Kim et al., 2009). 

 

From this conductivity measurement and the previous reports, the conductivity of 

PEDOT:PSS film are evidently very sensitive and it can be dramatically changed 

by surface conditions and circumstance such as temperature and humidity. 

Therefore, uncontrolled changes of the PEDOT:PSS films may well be occurring 

during device fabrication/degradation if care is not taken. In order to get consistent 

results, constant temperature and humidity are needed and the process time after 
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annealing and before conductivity measurement should be kept similar because 

PEDOT:PSS is able to absorb moisture quickly. 

 

4.3.2.  Absorption of PEDOT:PSS thin film under different thickness 

 

The UV-vis absorbance of PEDOT:PSS thin films is an important parameter for 

PVCs. If there is significant absorbance, the sunlight cannot reach the active layers. 

Therefore, it should be as small as possible. Increasing the absorption of light by 

PEDOT:PSS is more probable with increasing thickness. To determine the 

dependence of thickness, UV absorption spectrometry of PEDOT:PSS films was 

measured. The results are shown in Figure 4-2. The film thickness of PEDOT:PSS 

film at 2500, 5000, 7500, and 10000 rpm is about 57, 41, 32, and 26 nm, 

respectively. 

 

400 600 800
0.00

0.02

0.04

0.06

0.08

0.10

 

 

Ab
so

rb
an

ce

Wavelength (nm)

 2500 rpm
 5000 rpm
 7500 rpm
 10000 rpm

 
Figure 4-2 The absorbance of PEDOT:PSS films with different spin speed at 2500 (57 nm), 

5000 (41 nm), 7500 (32 nm), and 10000 (26 nm) rpm annealed at 150 °C. The values in 

brackets are thickness. 

 

In Figure 4-2, a weak absorption feature associated with the PEDOT:PSS films 

appeared about 300 nm for all films. A small broad rise in absorbance is also 

observed over 700 nm for all films. The films fabricated in lower speed showed 

higher absorption in both around 300 nm and 780 nm. Although the absorption of 

the films slightly increased as film thickness increased, in accordance with the Beer 

Lambert law it should not significantly affect the amount of light entering the 
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active layer in a device due to the very absorbance observed. Therefore, 

PEDOT:PSS does not obstruct an active layer harvesting the sunlight due to its 

very small absorption. 

 

 

4.4. Study on BHJ OPVCs using P3HT:PCBM 
 

P3HT:PCBM is the one of the fundamental materials in organic (polymer) bulk-

heterojunction photovoltaic cell. P3HT:PCBM organic photovoltaic cells based on 

bulk-heterojunction were studied in order to understand device structure and 

improve the skills for device preparation. These experiments were performed using 

various blend ratio of P3HT:PCBM and two different cathode layers. Then, it was 

also fabricated in standard atmospheric condition at room temperature and in 

nitrogen filled glovebox. 

 

4.4.1. Different blend ratio of P3HT:PCBM based OPVCs 

 

A series of OPVCs were fabricated to optimise the blend solution ratio of 

P3HT:PCBM. The different blend ratio of P3HT:PCBM (1:0.4, 1:0.6, 1:0.8, and 

1:1) were applied to devices. The P3HT and PCBM solutions in chlorobenzene 

were heated over 3 h at 70 °C then each solution were mixed following four 

different volume blend ratio. The device structure is 

ITO/PEDOT:PSS/P3HT:PCBM/(Ca)/Al, with PEDOT:PSS and PCBM performing 

as hole- and electron- transporting layers respectively. The pre-patterned ITO/Glass 

substrate which has 6 pixels in one substrate is illustrated in Figure 4-3. 

 

 
Figure 4-3 The pre-patterned ITO/Glass architecture in use (yellow patterned region is 

where there is an ITO coating on the glass substrate and grey is uncoated glass). 

 

The performance of P3HT PVCs with different blend ratios made in glovebox were 

measured using a Newport Lot Oriel 91159 Solar Simulator, with light filtered to 

approximate the AM 1.5G solar spectrum. 
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4.4.1.1. Optical properties of P3HT:PCBM 

 

In order to understand light harvesting system of P3HT:PCBM, UV-vis absorption 

and photoluminescence (PL) spectra were measured. Figure 4-4 shows the 

absorption of P3HT:PCBM blend films. P3HT shows strong absorption at 500 and 

552 nm and shoulder peak at 602 nm. The absorption at 552 nm is caused by 

extended conjugation of P3HT in the film and the shoulder at 602 nm comes from 

the intermolecular π-π stacking of P3HT suggesting improved crystallinity (Lin et 

al., 2012, Chang and Wang, 2008, Liu et al., 2010). When the PCBM concentration 

of the blend ratio is increased, the absorbance was decreased from 500 to 600 nm 

due to reduction of P3HT concentration. However the absorbance at 337 nm was 

increased as much as PCBM concentration increased. 
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Figure 4-4 The absorbance of P3HT:PCBM films with blend ratios of 1:0 (black), 1:0.4 

(red), 1:0.6 (blue), 1:0.8 (magenta), and 1:1 (green). 

 

Fluorscence of P3HT:PCBM films are shown in Figure 4-5. As shown in Figure 

4-5, a strong emission peak from P3HT (1:0) is apparent between 650 and 750 nm. 

P3HT films showed significant emission quenching after mixing with PCBM. 

When PCBM concentration increased, the emission peak of P3HT was decreased 

because increasing PCBM concentration enables P3HT and PCBM to make 

interface in the BHJ and then more excited electrons in P3HT to move more easily. 

1:0.8 blend ratio of P3HT:PCBM showed sufficient quenching but 1:0.4 blend ratio 

of P3HT:PCBM showed not enough quenching for electron transfer. From the PL 
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spectra, it showed that electron charge transfer was appeared and PCBM is used as 

electron acceptor for P3HT. 
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Figure 4-5 PL spectra of the P3HT:PCBM films with blend ratios of 1:0 (black), 1:0.4 

(red), 1:0.6 (blue), 1:0.8 (magenta), and 1:1 (green). 

 

4.4.1.2. Morphology of P3HT:PCBM films 

 

To understand nanoscale morphology of bulk heterojunction active layer, 

P3HT:PCBM films were measured by atomic force microscopy (AFM). AFM is 

good technology to see the phase separation of nanocomposites. The AFM images 

of P3HT:PCBM with different blend ratios were shown in Figure 4-6. As shown in 

Figure 4-6(a), AFM image of the P3HT film shows root mean square (RMS) of 

11.14 nm. However, AFM images of P3HT:PCBM films shows RMS of 1.62 

(1:0.4), 0.88 (1:0.6), 1.58 (1:0.8), and 1.65 (1:1) nm, this values are about 10% of 

RMS of P3HT surface. Therefore this result indicates that surface of P3HT:PCBM 

blended films appeared smoother than only P3HT film and also from the AFM 

images, P3HT and PCBM blend forms the nanoscale bulk heterojunction. Exciton 

diffusion length of P3HT is 2 – 8 nm (Shaw et al., 2008, Goh et al., 2007, 

Kroeze et al., 2003), so electrons in P3HT were likely to transfer well to 

PCBM in nanoscale BHJ. P3HT forms ordered crystalline domains, and 

PCBM molecules also aggregate to form nanocrystals. The phase separation 

between P3HT and PCBM forms a bi-continuous network enabling charge 

transfer to the electrodes. 
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Figure 4-6 AFM images of the P3HT:PCBM films with blend ratios of (a) 1:0, (b) 1:0.4, (c) 

1:0.6, (d) 1:0.8, and (e) 1:1. (scale bar is 2 µm) 

 

4.4.1.3. Photovoltaic device characterisation 

 

Figure 4-7 shows the J-V curves from best performing pixel of each of the 6-pixel 

devices. The four samples showed PCE between 1.62 and 2.73%. The device of 

1:0.4 blend ratios shows the PCE of 1.6%. 1:0.6 blend ratio device exhibits the best 

PCE of 2.73% in all the devices 1:0.8 and 1:1 blend ratio shows the PCE of 2.39 

and 2.35% respectively. Corresponding data is shown in Figure 4-8. 
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Figure 4-7 J-V curves of P3HT:PCBM devices. Blend ratio of P3HT:PCBM is 1:0.4 (black 

line), 1:0.6 (blue line), 1:0.8 (red line), and 1:1 (green line). 
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Figure 4-8 PCE (%) of devices depend on PCBM concentration. 

 

External quantum efficiency (EQE) spectra of all devices are shown in Figure 4-9. 

It shows that device of 1:0.4 blend ratio appeared lower EQE from 450 to 620 nm 

than other devices and it showed lower short-circuit current density (JSC) as shown 

in the Figure 4-9. However, other devices having 1:0.6, 1:0.8, and 1:1 blend ratio 

showed similar EQE spectra and appeared similar JSC value. 
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Figure 4-9 EQE spectra of P3HT:PCBM devices. Blend ratio of P3HT:PCBM is 1:0.4 

(black line), 1:0.6 (blue line), 1:0.8 (red line), and 1:1 (green line). 

 

The characteristics of all devices are described in Table 4-1. As shown in Table 4-

1, 1:0.4 blend devices appeared the lowest values with JSC of -6.84 ± 0.12 mA/cm2, 
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open-circuit voltage (VOC) of 0.5 ± 0.01 V, and fill factor (FF) of 46.72 ± 0.14 % 

then that of other devices. Because, lower concentrated PCBM in active layer could 

not show sufficient exciton dissociation and transfer electrons to cathode layer due 

to insufficient PCBM, so it shows low Jsc (Bavel et al., 2010, Baek et al., 2010, 

Pearson et al., 2012). It is corresponded with PL data in the Figure 4-5.  Lower 

concentrated PCBM in active layer also led to lower Voc, because much P3HT 

directly contacts cathode layer. While 1:1 blend ratio devices showed lower PCE 

than 1:0.6 and 1:0.8 blended devices. There are not specific changes of surface in 

the Figure 4-7(b)-(e). However, according to the previous report, it could not 

extract well and transport holes because of large-scale phase separation and it 

reduce absorption ability of P3HT due to covering of active layer in higher 

concentrated PCBM in active layer (Pearson et al., 2012, Baek et al., 2010). 1:0.6 

blend ratio devices showed the highest characteristics in J-V curves with Jsc of -

8.39 ± 0.21 mA/cm2, Voc of 0.57 ± 0.01 V, and FF of 54.56 ± 0.34 %.  

 
Table 4-1 The chatacteristics of P3HT:PCBM photovoltaic cells with various blend ratio of 

active layer (1:0.4, 1:0.6, 1:0.8, and 1:1) All data was collected from 5 devices with 6 pixels 

each, and the average results for the higher 50% taken 

P3HT:PCBM 

Blend ratio 

JSC 

(mA/cm2) 
VOC (V) FF (%) 

PCE (%) 

Average Best 

1:0.4 -6.84 ± 0.12 0.5 ± 0.01 46.72 ± 0.14 1.56 1.62 

1:0.6 -8.39 ± 0.21 0.57 ± 0.01 54.56 ± 0.34 2.57 2.73 

1:0.8 -8.36 ± 0.2 0.54 ± 0.01 51.35 ± 0.72 2.31 2.39 

1:1 -8.84 ± 0.53 0.53 ± 0.01 51.62 ± 0.62 2.27 2.35 

 

4.4.2. Comparing fabrication of OPVCs in the glovebox and atmosphere 

 

In order to compare performance of OPVCs fabricated in the glovebox and 

atmosphere, the blend ratio of 1:0.6 and 1:0.8 P3HT:PCBM devices, which is 

chosen from two higher performance by above results in, were fabricated in the 

two different environments. The architecture of devices was 

ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al. The PCE of devices were also measured 

using the same solar simulator. 
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4.4.2.1. Photovoltaic device characterisation 

 

Two devices (1:0.6 and 1:0.8 of P3HT:PCBM blend ratio) were fabricated by the 

same procedure above mentioned in a glovebox. Another two devices (1:0.6 and 

1:0.8 of P3HT:PCBM blend ratio) were also fabricated by same procedure, this 

time in an air atmosphere. In the Figure 4-10, J-V curves of the devices are shown. 

As shown in the Figure 4-10, all PCE of devices shows between 2.65 and 3.06%. 

Interestingly, devices in atmosphere appeared higher or similar PCE compared to 

those devices made in the glovebox against expectation. While it is not fully 

understood, it could be because the solvent used was not sufficiently anhydrous. 

Therefore, devices made in the glovebox also included small amounts of moisture 

in the active layer and showed similar results with devices fabricated in atmosphere. 

In addition, according to the previous report by Nam et al., suitable post annealing 

process causes the devices improving good PCE resulting from a reduction in 

electron and hole trap densities and growth of thin Al oxide hole blocking layer at 

the top metal contact interface (Nam et al., 2009). The best PCE is from 1:0.8 (A) 

device. It approached the PCE of 3.06%. 
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Figure 4-10 J-V curves of P3HT:PCBM fabricated in the glovebox or air. 1:0.8 (black and 

red line) 1:0.6 (blue and green line) is the blend ratio of P3HT:PCBM. (G) indicates the 

devices made in the glovebox and (A) indicates the devices made in atmosphere. 

 

It is summarized that the average of PCE, JSC, VOC and FF of four devices are 

represented in Table 4-2. This result is different with above result with different 

blend ratio devices. In this experiment, 1:0.8 blend ratio devices were shown better 

performance than 1:0.6 blend ratio devices. 1:0.8 (A) device showed the highest 
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values than that of others. It has Jsc of -8.78 ± 0.11 mA/cm2, Voc of 0.53 ± 0.01 V, 

and FF of 63.6 ± 0.4%. As mentioned above, the devices fabricated in suitable 

condition process such as annealing or moisture and oxygen concentration in air 

may also show the good PCE compare to the devices fabricated in the glovebox.  

 
Table 4-2 The chatacteristics of P3HT:PCBM photovoltaic cells fabricated in the glovebox 

or atmosphere (1:0.8 (G), 1:0.8 (A), 1:0.6 (G), and 1:0.6 (A), (G) and (A) refer to glovebox 

and atmosphere, respectively) All data was collected from 5 devices with 6 pixels each, and 

the average results for the higher 50% taken 

Device’s 

fabrication 

condition 

JSC (mA/cm2) VOC (V) FF (%) 

PCE (%) 

Average Best 

1:0.8 (G) -8.38 ± 0.13 0.51 ± 0.01 63.1 ± 0.4 2.74 2.79 

1:0.8 (A) -8.78 ± 0.11 0.53 ± 0.01 63.6 ± 0.4 2.98 3.06 

1:0.6 (G) -8.31 ± 0.14 0.53 ± 0.01 58.9 ± 0.3 2.63 2.65 

1:0.6 (A) -8.73 ± 0.08 0.53 ± 0.01 60.1 ± 0.5 2.78 2.93 

 

4.4.3. Fabrication of OPVCs with only Al cathode layer 

 

In order to eliminate any cathode layer effects, a layer of only Al was used in the 

OPVCs as a cathode layer in this section. All the devices were fabricated in same 

condition with above experiment apart from cathode layer. The architecture of 

devices is ITO/PEDOT:PSS/P3HT:PCBM/Al/. 

 

4.4.3.1. Photovoltaic device characterisation 

 

The J-V curves of devices are shown in Figure 4-11. The best performance of 

photovoltaic effect was from 1:0.8 (G) device. It showed the PCE of 3.29% and 

other devices 1:0.8 (A), 1:0.6 (G), and 1:0.6 (A) appeared 3.24, 3.11, and 3.11 

respectively. All the PCE of devices are higher than devices which has Ca/Al 

cathode layers in above section 4.4.2. It could be possible that although the devices 

were fabricated in the glovebox, the Ca layer was easily oxidised by residual 

oxygen in the glovebox after thermal evaporation coating was deposited. In 

addition according to Eo et al., calcium forms a Schottky type contact and a non-
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spontaneous electron extraction process due to high work function (- value)  of 

calcium. It is significantly lower than LUMO of PCBM. In this case, PCE was 

decreased due to space charge limited current and it was about 40% reduction in 

PCE of aluminium cathode device (Eo et al., 2009). 
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Figure 4-11 J-V curves of P3HT:PCBM which has ITO/PEDOT:PSS/P3HT:PCBM/Al 

device structure. 1:0.8 (black and red line) 1:0.6 (blue and green line) is the blend ratio of 

P3HT:PCBM. (G) indicates the devices made in the glovebox and (A) indicates the devices 

made in atmosphere. Device’s structure is ITO/PEDOT:PSS/P3HT:PCBM/Al. 

 

EQE spectra of all devices are shown in Figure 4-12. All devices showed EQE 

values over 60 % from 480 to 530 nm.  Using this data, the theoretical JSC for 

devices was 8.0 mA/cm2 and it was slightly different value with measured JSC of 

8.7 mA/cm2 because it was measured from 400 nm. 
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Figure 4-12 EQE spectra of P3HT:PCBM devices. Blend ratio of P3HT:PCBM is 1:0.8 (G) 

(black line), 1:0.8 (A) (red line), 1:0.6 (G) (blue line), and 1:0.6 (A) (green line). 
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The characteristics of all photovoltaic cells are summarised in Table 4-3. When the 

devices use only Al cathode layer, PCE of 1:0.8 (G) device was increased from 

2.78 to 3.29%. This is an 18% increase in PCE. As shown in Table 4-3 compared 

with Table 4-2, PCEs of all devices (only Al cathode) are higher than the PCE of 

devices (Ca/Al cathode layer). Voc was not shown much specific change, but Jsc 

and FF were increased. Therefore, it means that devices using Al cathode layer 

move electrons well and reduce resistivity. 

 
Table 4-3 The chatacteristics of P3HT:PCBM photovoltaic cells fabricated with only Al 

cathode layer (1:0.8 (G), 1:0.8 (A), 1:0.6 (G), and 1:0.6 (A), (G) and (A) refer to glovebox 

and atmosphere, respectively) All data was collected from 5 devices with 6 pixels each, and 

the average results for the higher 50% taken 

Device’s 

fabrication 

condition 

JSC (mA/cm2) VOC (V) FF (%) 

PCE (%) 

Average Best 

1:0.8 (G) -8.76 ± 0.21 0.54 ± 0.01 66.3 ± 0.9 3.19 3.29 

1:0.8 (A) -8.75 ± 0.17 0.54 ± 0.01 65.4 ± 0.9 3.11 3.24 

1:0.6 (G) -8.71 ± 0.22 0.54 ± 0.01 63.2 ± 0.8 3.02 3.11 

1:0.6 (A) -8.71 ± 0.2 0.55 ± 0.01 62.4 ± 0.5 3.02 3.11 

 

None of the PCEs of P3HT PVCs reported in the experiments were above the PCE 

of 4-5% previously reported. However, the results showed similar results to the 

report by Pearson et al. under very similar fabrication condition. From this result, it 

was determined that the fabrication process and technique of device testing is 

robust and reliable.  

 

 

4.5. Conclusions 

 

In this chapter, in order to understand each layer, architecture, characteristic, and 

fabrication process of general OPVCs, thin films of PEDOT:PSS and photovoltaic 

devices of P3HT:PCBM were fabricated and analysed. The effects of annealing 

PEDOT:PSS at various temperatures and its influence on its conductivity were 

studied for the HTL. The conductivity measurements were performed after 
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applying various annealing temperatures. From the conductivity measurement, my 

understanding is that PEDOT:PSS is a high resistive material and sensitive to 

moisture. In order to get repeatable results, it would be necessary that all 

PEDOT:PSS films are fabricated in same atmosphere (e.g. temperature, and 

humidity) before annealing. After annealing, it is necessary to minimise side 

effects by preventing the reabsorption of moisture in air. While from the UV-vis 

absorption spectra of PEDOT:PSS thin films, it was more clear than conductivity 

experiment. Absorption of PEDOT:PSS increased as thickness increased, but 

absorption intensity was very small. All the PEDOT:PSS films fabricated at 2500, 

5000, 7500, and 10000 rpm were very small absorbing sunlight from 300 to 800 

nm so it does not obstruct the active layer to harvest incident light. 

 

The effect of different blend ratios of the active layer and its fabrication process in 

the glovebox and air were studied. In the active layer, the blend ratio of 

P3HT:PCBM played an important role to achieve high performance. The PL peak 

of P3HT appeared between 650 and 750 nm and it was quenched by PCBM. The 

PL intensity of P3HT was reduced as PCBM concentration increased. The 

morphology of P3HT was changed when mixed with PCBM. The RMS roughness 

of P3HT was 11.14 nm but RMS roughness of P3HT:PCBM blend was 0.88-1.65 

nm. In low PCBM concentration blend, the device PCE was low due to 

recombination of dissociated electrons and holes. In P3HT:PCBM PVCs, 1:0.8 and 

1:0.6 blend ratio showed good results and it achieved PCEs up to 3.29%. All the 

characteristics of PVCs fabricated with 1:0.8 and 1:0.6 blend ratios were higher 

than other blend ratio devices. The devices fabricated in an air atmosphere also 

showed good PCEs of over 3%. In Ca/Al cathode devices, due to significantly 

higher work function of calcium than LUMO of PCBM (Eo et al., 2009), and the 

possible oxidation of the Ca, the PCE of Ca/Al cathode devices were reduced 

compared to those with Al only cathodes. In addition, Ca is very reactive to O2, so 

thin layer of Ca and controlled O2 may help to improve device performance but if 

not, it would decrease device performance. 

 

The results from this Chapter, have helped to understand OPVC fabrication further. 

The device fabrication is very sensitive to circumstance and the results can be 

easily affected by the device fabrication conditions and the composition of the 

materials in each layer.  
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5. Synthesis of conjugated polyelectrolyte 
 

 

5.1 Introduction 
 

Conjugated polyelectrolytes (CPEs, water-soluble conjugated polymers) have been 

studied for the last two decades. Here they are used in order to reduce the use of 

organic solvents which will help to reduce the need for environmentally toxic 

organic solvents and reduce risks to human health in the manufacture of PVCs. 

CPEs are promising materials for chemical (Son et al., 2013, Kwon et al., 2011) 

and biological (Pu and Liu, 2010, Kwak et al., 2010, Yu et al., 2008, Liu and Bazan, 

2004) sensors, thin film transistors, (Yang et al., 2010) organic light emitting 

diodes, (Grimsdale et al., 2009) and organic solar cells (Duan et al., 2013, Yang et 

al., 2007, Seo et al., 2011, Cheng et al., 2009). For the last decade, some 

conjugated polyelectrolytes have been used as an active layer (Qiao et al., 2005), a 

hole transporting layer (Zhou et al., 2014), and an electron transporting layer (Yao 

et al., 2011) in photovoltaic cells. 

 

5.1.1. Synthesis of conjugated polyelectrolyte 

 

The chemical structures and synthesis methods of polyelectrolyte poly[(9,9-bis(4-

sulfonatobutyl sodium) fluorene-alt-phenylen)-ran-(4,7-di-2-thienyl-2,1,3-

benzothiadiazole-alt-phenylene)] (PSFP-DTBTP) are described in Scheme 5-1. 

The PSFP-DTBTP was designed based on the concept that it can dissolve in water 

and serve as a low energy band gap polyelectrolyte which is significant because 

such a material can reduce organic solvent use and match the electronic properties 

required for solar cell manufacture. In order to fabricate the low band gap polymer, 

fluorene and phenylene groups were used as electron donors and di-thienyl-

benzothiadiazole groups were introduced as electron acceptors in the 

polyelectrolyte. In addition, to absorb a wide range of wavelengths, fluorene which 

can absorb from 300 to 400 nm and di-thienyl-benzothiadiazole which can absorb 

from 450 to 550 nm groups were introduced. The negatively charged sufonatobutyl 

side chain in fluorene was applied to produce the electrolytic property of the 

polymer, thereby enhancing water solubility. In addition, fluorene groups were 

applied to absorb short wavelengths. The 2,7-dibromo-9,9-bis(4-

sulfonatobutyl)fluorene disodium (1) was synthesised from 2,7-dibromofluorene 
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and 1,4-butane sultone in the presence of tetrabutylammonium bromide (TBAB) in 

a mixture of dimethyl sulfoxide (DMSO) and 50 wt % aqueous sodium hydroxide 

(NaOH). The 4,7-dibromo-2,1,3-benzothiadiazole (2) was prepared by the 

bromination of benzothiadiazole with bromine in hydrobromic acid (HBr). The 4,7-

di-2-thienyl-2,1,3-benzothiadiazole (3) was synthesised via the Suzuki cross-

coupling of (2) and thiophene-2-boronic acid pinacol ester with Pd(OAc)2/tri(o-

tolyl)phosphine catalyst in toluene and 2M aqueous Na2CO3. The 4,7-Bis(5-bromo-

2-thienyl)-2,1,3-benzothiadizole (4) was prepared through the bromination of (3) 

with N-bromosuccinimide (NBS) in a mixture of chloroform and acetic acid. For 

the synthesis of conjugated polyelectrolyte PSFP-DTBTP, Suzuki cross-coupling 

was carried out with (1), (4), and 1,4-phenylene-bisboronic acid pinacol ester at a 

molar ratio of 9:1:10 in N,N-dimethylformaide (DMF) and 2M aqueous Na2CO3 in 

the presence of Pd(OAc)2/Tri(o-tolyl)phosphine catalyst. Purification of PSFP-

DTBTP was performed by dialysis using a dialysis cellulose membrane (molecular 

weight cut-off: 12.4 KDa) for 3 d. The molar ratio 9:1 of sulfonatobutyl attached 

fluorene and di-thienyl-benzothiadiazole in PSFP-DTBTP afforded good solubility 

in water. 

 

In order to study the use of conducting polyelectrolytes in organic photovoltaic 

cells, the conjugated polyelectrolyte PSFP-DTBTP was synthesised. In this chapter, 

the synthesis method, analysis, and material characterisation of the polymer are 

described. 

 

 

5.2 Experimental 

 
5.2.1. Materials 

 

2,7-dibromofluorene (97%), 1,4-butane sultone (99%), tetrabutylammonium 

bromide (98%), 2,1,3-benzothiadiazole (98%), bromine (99%), thiophene-2-

boronic acid pinacol ester (98%), sodium carbonate (99.5%), magnesium sulphate 

(97%), 1,4-phenylene-bisboronic acid pinacol ester (97%), and N-

bromosuccinimide (99%) were purchased from Sigma-Aldrich and used without 

any further purification. Palladium (II) acetate trimer (99.98%), and tri(o-

tolyl)phosphine (98%) were purchased from Alfa Aesar and used without further 

purification. All solvents used in the synthesis of the monomers and polymer were 
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purchased from Sigma-Aldrich, Acros Organics, and Fisher scientific, and used as 

supplied. 

 

5.2.2. Instruments for characterisation of monomers and a polymer 

 
1H and 13C nuclear magnetic resonance (NMR) spectra were recorded using a 

Bruker DRX-500 NMR spectrometer and deuterium oxide (D2O) or chloroform-d 

(CDCl3) as the solvent. Elemental analysis (EA) results were measured using a 

Perkin Elmer 2400 series II CHN analyzer. UV-vis absorption spectra were 

obtained by an Ocean Optics USB2000+ spectrometer and DT-MINI-2-GS 

combined Deuterium-Halogen light source. Fourier transform infrared (FT-IR) 

spectra were recorded by Perkin Elmer Frontier MID ATR FT-IR Spectrometer. 

Photoluminescence (PL) spectra were collected under vacuum at 1 x 10-3 mbar 

using a Laser- LDCU CW 450nm diode laser and silicon diode detector and 

recorded by a Keithley 2700 multimeter. Cyclic voltammetry (CV) measurement 

was carried out with a Princeton Applied Research model 263A 

Potentiostat/Galvanostat with 10 ml of 0.1 M tetrabutylammonium perchlorate in 

acetonitrile used as the electrolyte solution. A three electrodes system of Ag/Ag+ 

reference electrode (Ag wire in 0.01 M AgNO3 solution in the electrolyte solution), 

Pt working electrode (2mm diameter smooth Pt disc, area = 3.14 x 10-2 cm2) and Pt 

counter electrode (Pt wire) was used for the measurement. 

 

5.2.3. Synthesis of monomers and conjugated polyelectrolyte 

 

5.2.3.1. The overall plan of synthesis for conjugated polyelectrolyte 

 

 
Scheme 5-1 The overall plan in synthesis of conjugated polyelectrolyte. 
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The synthesis followed the steps in the scheme above. Firstly, water-soluble 

fluorene for donor material in the polymer was synthesised. The other monomers 

for the acceptor in the polymer were synthesised. Finally, the CPE was synthesised 

using Suzuki-coupling. 

 

5.2.3.2. Synthesis of 2,7-dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium (1) 

(Pu et al., 2010) 

 

Br Br
Br BrTBAB

50 wt % NaOH, DMSO

NaO3S SO3Na

O
S

O O

1  
Scheme 5-2 Synthesis of 2,7-dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium. 

 

Following the procedure described by Pu et al. 100 mg of tetrabutylammonium 

bromide (TBAB) was dissolved in 50 wt % sodium hydroxide solution (NaOH) (10 

ml) and dimethyl sulfoxide (DMSO) (70 ml) in a 250 ml 3-necked round-bottomed 

flask under nitrogen. 5 g (15.43 mmol) of 2,7-Dibromofluorene was added into the 

mixture in the flask (the colour changed from white to orange). A solution of 1,4-

butane sultone (5.25g, 38.58 mmol) and DMSO (26 ml) was added dropwised into 

the mixture. The mixture was reacted for 3 h at room temperature under nitrogen 

(the mixture’s colour changed from orange to dark purple) and then the reacted 

mixture was precipitated into 500 ml of acetone. The crude product was isolated by 

vacuum filtration and washed with ethanol. The product was re-crystallised twice 

in acetone/H2O in order to purify it then dried in vacuum at 40 °C for 24 h. White 

crystals were obtained. Yield 6.28 g (63.56 %). 1H NMR (500 MHz, D2O, δ ppm): 

7.62 (d, 2H), 7.59 (d, 2H), 7.47 (dd, 2H), 2.58-2.42 (m, 4H), 2.05-1.88 (m, 4H), 

1.47-1.26 (m, 4H), 0.6-0.41 (m, 4H). 13C NMR (125 MHz, D2O, δ ppm): 167.75, 

152.15, 138.88, 130.31, 126.47, 121.44, 121.26, 55.18, 50.76, 38.57, 24.24, 22.39. 

Element Anal. Calcd. for C21H22Br2Na2O6S2: C, 39.39; H, 3.46; Br, 24.96; S, 10.01; 

found: C, 34.93; H, 3.67; Br, 21.18; S, 8.71.  
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5.2.3.3. Synthesis of 4,7-dibromo-2,1,3-benzothiadiazole (2) (Yang et al., 2005) 

 

N
S

N N
S

N

Br BrHBr

Br2

2  
Scheme 5-3 Synthesis of 4,7-dibromo-2,1,3-benzothiadiazole. 

 

Following the procedure described by Yang et al.. 10 g (73.4 mmol) of 2,1,3-

benzothiadiazole and 150 ml of hydrobromic acid (HBr) were added into a 500 ml 

two-necked round-bottomed flask and stirred (2,1,3-benzothiadiazole did not 

dissolve in HBr). A mixture of bromine (35.19 g, 220.2 mmol) and HBr (100 ml) 

was very slowly added dropwise into the flask (the colour changed to dark brown 

and no solids appeared immediately after bromine added). The mixture was heated 

under reflux for 6 h at 100 °C. Dark orange coloured solids were appeared after the 

reaction. The mixture was cooled down and then neutralised with sodium bisulfite 

solution (~40 %, 250 ml) to remove excess bromine. The crude product was 

filtered and washed well in deionised water over 1 h then washed with diethyl ether. 

The product was recrystllaised in chloroform/methanol and dried in vacuum at 

40 °C for 24 h. Yellowish needled crystals were obtained. Yield 15.9 g (73.7 %). 
1H NMR (500 MHz, CDCl3, δ ppm): 7.75 (s, 2H). 13C NMR (125 MHz, CDCl3, δ 

ppm) 152.99, 132.38, 113.94. Element Anal. Calcd. for C6H2Br2N2S: C, 24.52; H, 

0.69; Br, 54.36; N, 9.53; S, 10.91; found: C, 24.55; H, 0.73; Br, 53.36; N, 9.4; S, 

10.22. 

 

5.2.3.4. Synthesis of  4,7-di-2-thienyl-2,1,3-benzothiadiazole (3) (Liu et al., 2013) 

 

N
S

N

Br Br

N
S

N
SSS B

O

O

Toluene 90-95 oC, 24 h

Pd(OAc)2/P(o-tol)3,
Na2CO3 aq. (2M)

3  
Scheme 5-4 Synthesis of 4,7-di-2-thienyl-2,1,3-benzothiadiazole. 

 

Using the method of Liu et al.. The yellow crystals of 1 g (3.4 mmol) of 4,7-

dibromo-2,1,3-benzothiadiazole (2) produced as described above and 1.79 g (8.5 

mmol) of thiophene-2-boronic acid pinacol ester were added into a 100 ml three-

necked round-bottomed flask. The mixture was dissolved in toluene (30 ml) and 

2M aqueous Na2CO3 (10 ml) under nitrogen. A catalyst of Pd(OAc)2 (20 mg, 0.09 
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mmol)/Tri(o-tolyl)phosphine (54.2 mg, 0.18 mmol) (1:2 molar ratio, 4 mol % of 

mixture) was added into the flask (the colour was yellow) and then the mixture was 

strongly stirred at 95 °C under reflux for 24 h (the colour changed to red). The 

mixture was cooled down to room temperature and then deionised water was added 

to the mixture. The organic phase was separated and then washed with deionised 

water and brine three times respectively. The organic phase was dried over MgSO4 

and then filtered. The organic phase solvent was evaporated using a rotary 

evaporator. The crude product was purified by column chromatography using 

dichloromethane (DCM)/hexane (1/3, v/v). The product was crystallised in 

toluene/ethanol (1/1, v/v). Red crystals were obtained. Yield 0.33 g (32.3 %). 1H 

NMR (500 MHz, CDCl3, δ ppm): 8.11 (dd, 2H), 7.88 (s, 2H), 7.45 (dd, 2H), 7.21 

(dd, 2H). 13C NMR (125 MHz, CDCl3, δ ppm): 152.5, 139.3, 128.1, 127.5, 

126.8,126, 125.8. Element Anal. Calcd. for C14H8N2S3: C, 55.97; H, 2.68; N, 9.33; 

S, 32.02; found: C, 56.15; H, 3.06; N, 9.07; S, 30.85. 

 

5.2.3.5. Synthesis of 4,7-bis(5-bromo-2-thienyl)-2,1,3-benzothiadizole (4) (Yang 

et al., 2005, Hou et al., 2009) 

 

N
S

N
SS

chloroform/acetic acid
r.t., overnight

N
S

N
SS

NBS Br Br

4  
Scheme 5-5 Synthesis of 4,7-bis(5-bromo-2-thienyl)-2,1,3-benzothiadiazole. 

 

The procedures described by Yang et al. and Hou et al. were use to synthesise 4,7-

Bis(5-bromo-2-thienyl)-2,1,3-benzothiadiazole. Starting with 0.3 g (1 mmol) of 

4,7-di-2-thienyl-2,1,3-benzothiadiazole (3) which was dissolved in a mixture of 

chloroform (7 ml) and acetic acid (7 ml) in a 250 ml round-bottomed flask (the 

material was well dissolved in the solvent). N-bromosuccinimide (NBS) (0.4 g, 2.2 

mmol) was then slowly added into the mixture. The mixture was stirred at room 

temperature overnight (about 24 h). Dark red solids were precipitated in the flask 

and filtered off. The product was washed with methanol and recrystallised in N,N-

dimethylformamide (DMF). Dark red crystals were obtained. Yield 0.29 g (63.8 %). 
1H NMR (500 MHz, CDCl3, δ ppm): 7.80 (dd, 2H), 7.78 (s, 2H), 7.15 (dd, 2H). 

Element Anal. Calcd. for C14H6Br2N2S3: C, 36.70; H, 1.32; Br, 34.88; N, 6.11; S, 

20.99; found: C, 29.93; H, 1.08; Br, 48.66; N, 4.92; S, 17.10. 
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5.2.3.6. The polymerisation reaction used to synthesise Poly[(9,9-bis(4-

sulfonatobutyl sodium) fluorene-alt-phenylen)-ran-(4,7-di-2-thienyl-2,1,3-

benzothiadiazole-alt-phenylene)] (PSFP-DTBTP) (Lee et al., 2011, Kwak et al., 

2010) 
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N
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Scheme 5-6 Synthesis of conjugated polyelectrolyte. 

 

The final stage of the synthesis was similar to the synthesis method previously 

described by Lee et al. and Kwak et al.. 0.63 g (0.98 mmol) of 2,7-dibromo-9,9-

bis(4-sulfonatobutyl)fluorene disodium (1), 0.05 g (0.11 mmol) of 4,7-Bis(5-

bromo-2-thienyl)-2,1,3-benzothiadizole (4), and 0.36 g (1.09 mmol) of 1,4-

phenylene-bisboronic acid pinacol ester purchased from Sigma-Aldrich were 

dissolved in the solvents of anhydrous DMF (10 ml) and 2M aqueous Na2CO3 (15 

ml) and placed in a 100 ml round-bottomed flask. After the monomers fully 

dissolved in the solvents, 1.23 mg (0.006 mmol) of Pd(OAc)2 and 6.7 mg (0.022 

mmol) of Tri(o-tolyl)phosphine (molar ratio of 1/4, 5 mol %) was added into the 

mixture then degassed with argon (if the solids were not well dissolved, the 

temperature was slightly increased to 40 °C). The reaction mixture was stirred at 

85-90 °C under reflux for 3 d. The mixture was cooled down to room temperature 

and then poured into acetone. The precipitate was re-dissolved in deionised water. 

The solution was then dialysed using a cellulose membrane (MWCO 12,400) for 3 

d (deionised water for dialysis was changed every day). A red product was 

obtained through freeze-drying, yield 0.22 g (37%). 1H NMR (500 MHz, D2O, δ 

ppm): 8.39-6.78 (br, 10H), 3.88-3.51 (br, 3.6H), 2.68-2.02 (br, 3.6H), 1.58-1.09 (br, 

3.6H), 0.83-0.6 (br, 3.6H). 

 

 

 

 

93 
 



 

5.3 Results and discussion 
 

5.3.1. NMR analysis of monomers and PSFP-DTBTP 

 

Nuclear magnetic resonance spectroscopy (NMR spectroscopy) is a powerful 

research technique to get information about the structure, dynamics, reaction state, 

and chemical environment of molecules. It uses the magnetic properties of certain 

atomic nuclei, which possesses intrinsic angular momentum or spin, immersed in a 

strong magnetic field. It deals with the phenomenon of nuclear magnetic resonance 

and provides specific information about the molecules as mentioned above. In 

order to know that the conjugated polyelectrolyte was synthesised properly NMR 

spectroscopy was carried out. This was done at many stages during the synthesis so 

the state of the products was checked at each stage. Table 5-1(a) and (b) show 

tables of correlation of 1H and 13C NMR chemical shift. 

 
Table 5-1 Correlation of (a) 1H and (b) 13C NMR chemical shift (Klein, 2015) 

 
 

The structure of all monomers and PSFP-DTBTP were confirmed by 1H and 13C 

NMR. 
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Figure 5-1 (a) 1H NMR and (b) 13C NMR spectra of 2,7-dibromo-9,9-bis(4-sulfonatobutyl) 

fluorene disodium. 

 

All NMR data from the monomers and PSFP-DTBTP are shown in Figures 5-1 to 

5-5. Figure 5-1(a) and (b) shows the 1H and 13C NMR of synthesis of 2,7-

Dibromo-9,9-bis(4-sulfonatobutyl)fluorene disodium (1). In 1H NMR, proton peaks 

of aromatic compounds are shown between 7.7 and 7.4 ppm and proton peaks of 

alkyl chains appear from 2.6 to 0.4 ppm (the deuterium oxide (solvent) peak 

appears at 4.8 ppm). In 13C NMR, carbon peaks of aromatic rings are indicated 

between 168 and 120 ppm and alkyl chains’ peaks are shown from 55 to 22 ppm. 
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All the peaks are well matched with expected peaks chemical shift, confirming a 

successful synthesis. 

 

 
Figure 5-2 (a) 1H NMR and (b) 13C NMR spectra of 2,7-dibromo-2,1,3-benzothiadiazole. 

 

Figure 5-2(a) and (b) shows the 1H and 13C NMR spectra of 4,7-dibromo-2,1,3-

benzothiadiazole (2). For this molecule (2), only one proton is in the aromatic 

group, so only one proton peak shows at 7.75 ppm (other peaks are chloroform-d 

(solvent) peak at 7.24 ppm and water peak at 1.5 ppm). In the 13C NMR spectrum, 

three carbon peaks from the aromatic group appear at 152.99, 132.38, and 113.94 
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ppm (the chloroform-d (solvent) peak is shown at 77.23 ppm). The solvent peak is 

always shown in the NMR spectrum and this peak appears at a specific point 

(77.23 ppm). Therefore, the solvent peak will be shown in further NMR data. 

 

 
Figure 5-3 (a) 1H NMR and (b) 13C NMR spectra of 4,7-di-2-thienyl-2,1,3-

benzothiadiazole 

 

Figure 5-3(a) and (b) is the 1H and 13C NMR spectra of 4,7-di-2-thienyl-2,1,3-

benzothiadiazole (3). The proton peaks of the material appeared at 8.11, 7.88, 7.45, 
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and 7.21 ppm corresponding to aromatic rings in 1H NMR. Three more peaks are 

shown in comparison with (2) in the spectrum. The seven carbon peaks are shown 

between 152.5 and 125.8 ppm in 13C NMR and four more peaks appeared in the 

spectrum. From the two NMR data, it is evident that the molecule is well 

synthesised. 

 

 
Figure 5-4 1H NMR spectrum of 4,7-bis(5-bromo-2-thienyl)-2,1,3-benzothiadizole. 

 

Figure 5-4 shows the 1H NMR spectrum of 4,7-bis(5-bromo-2-thienyl)-2,1,3-

benzothiadizole (4). Three proton peaks in the aromatic group emerged at 7.80, 

7.78, and 7.15 ppm. One proton peak was removed due to bromine attached to the 

ring in this material and the peaks are slightly shifted by a change of electron 

density due to the bromine within the molecule. Small impurity peaks also 

appeared as well as a big water peak.  This indicated the sample was not well 

purified and dried. 
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Figure 5-5 1H NMR spectrum of conjugated polyelectrolyte PSFP-DTBTP. 
 

The 1H NMR spectrum of PSFP-DTBTP is shown in Figure 5-5. In 1H NMR, 

proton peaks of aromatic compounds are broadly present between 8.39 and 6.78 

ppm and proton peaks of alkyl chains appear from 3.88 to 0.6 ppm. 

 

All the synthesised materials are analysed by 1H and 13C NMR spectra. In the 

analysis, the molecular weight of PSFP-DTBTP was not measured by gel 

permeation chromatography (GPC) due to this technique generating inaccurate data 

for water soluble polymers. In general, for water-soluble polymers it is hard to 

measure molecular weight (Mw) because it is not well dissolved in the organic 

solvent required for GPC and even if it is dissolved in protic solvent such as 

DMSO, the molecular weight of the polymer is not accurate. Therefore, the Mw of 

PSFP-DTBTP was predicted by dialysis membrane molecular weight cut-off 

(MWCO). The molecular weight of dialysis membrane in this experiment was 

12,400, so the Mw of polyelectrolyte should be over 12,400. 

 

In addition, PSFP-DTBTP was synthesised three times in three different batches. 

However, the polyelectrolyte from a single batch was used for all experiments in 

the research to ensure consistency. 

 

5.3.2. FT-IR spectrum of PSFP-DTBTP 

 

Infrared (IR) spectroscopy measures the transmittance within the infrared region of 

the electromagnetic spectrum. This technique is used to identify and study 

chemicals by identifying what functional groups they have. To understand the 
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components of the polymer backbone and its functional groups, PSFP-DTBTP 

solid was measured by FT-IR spectroscopy. Table 5-2 shows the IR spectroscopy 

correlation table of some functional groups. 

 
Table 5-2 Correlation IR absorption signals of some functional groups (McMurry, 1996) 

Functional group class Band position (cm-1) Intensity of absorption 

Alkanes, alkyl groups 

C H  

 

2850-2960 

 

Medium to strong 

Alkenes 

C H  
C C  

 

3020-3100 

1640-1680 

 

Medium 

Medium 

Alkynes 

C H  
C C  

 

3300 

2100-2260 

 

Strong 

Medium 

Alkyl halides 

C Cl  
C Br  
C I  

 

600-800 

500-600 

500 

 

Strong 

Strong 

Strong 

Alcohols 

O H  
C O  

 

3400-3650 

1050-1150 

 

Strong and broad 

Strong 

Aromatics 

C H
 

C
CC

C
C C  

 

3030 

 

 

1600, 1500 

 

Medium 

 

 

Strong 

Amines 
N H  
C N  

 

3300-3500 

1030, 1230 

 

Medium 

Medium 

Carbonyl compounds 

C O  

 

1680-1750 

 

Strong 

Carboxylic acids 

O H  

 

2500-3100 

 

Strong and very broad 

Nitriles 

C N  

 

2210-2260 

 

Medium 

Nitro compounds 

NO2 

 

1540 

 

Strong 
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The FT-IR spectrum of PSFP-DTBTP is illustrated in Figure 5-6. Vibration bands 

of sulfonate groups in PSFP-DTBTP are confirmed at 1042 and 1167 cm-1 and this 

is well matched with previous reports at approximately 1040 and 1180 cm-1 

(Borozenko et al., 2014, Martins et al., 2003). The bands of aromatic rings in 

PSFP-DTBTP were evident at 1462 and 1600 cm-1. Aromatic C-C stretch peaks 

appeared at 1462 and 1602 cm-1. C-H stretch peak of alkyl chain in polyelectrolyte 

also appeared at 2870 cm-1. All the peaks are well matched with previous reports 

and the correlating IR functional peaks. Therefore, we can confirm the all 

functional groups expected are present in the PSFP-DTBTP. 
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Figure 5-6 ATR FT-IR spectrum of PSFP-DTBTP. 

 

5.3.3. Optical properties of PSFP-DTBTP 

 

To characterise the optical properties, a thin film of the conjugated polyelectrolyte 

was prepared on a clean glass substrate. 5 mg of the conjugated polyelectrolyte was 

dissolved in 1 ml of deionised water. The solution was spin-cast on the glass 

substrate at 6000 rpm for 40 sec and thermally annealed at 150 °C for 15 min. 

Figure 5-7(a) shows UV-vis absorption spectra and PL spectrum of PSFP-DTBTP 

solution in water and a thin film of PSFP-DTBTP. Corresponding photos of the 

solution and the films are shown in the Figure 5-7(b).  
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Figure 5-7 (a) UV-vis absorption spectra of PSFP-DTBTP solution in water (2.76 X 10-5 M 

[R. U.]) (black) and PSFP-DTBTP film (red) and PL spectrum of PSFP-DTBRP film (blue), 

(b) photographs of PSFP-DTBTP solution (1) and film (2) and film (3) taken under uv 

illumination. 

 

The PSFP-DTBTP film shows a strong absorption peak at 366 nm from the 

fluorene-phenylene groups and a very weak absorption peak at around 530 nm with 

a shoulder edge around 590 nm from di-thienyl benzothiadiazole-phenylene groups. 

This result was red-shifted by about 8 nm from the PSFP-DTBTP solution peak at 

358 nm due to a conjugation length change of rigid conjugated polymer backbone 

in the thin film. The number of aromatic rings along the backbone of the polymer 

determines its conjugation length. In the solution, the aromatic rings easily rotate 

relative to each other through the single bond in the polymer backbone. In the solid 

state, however, fewer twists of the polymer backbone increases co-planarity. 

Therefore, conjugation length of the polymer is increased in the solid state and the 

absorbance of the polymer film is slightly red-shifted. It was not possible to 

confirm that the peak of DTBTP group around 530 nm was changed from solution 

because of the weak signal strength, however the absorption peak strength of the 

film around 530 nm was increased compared to the solution peak. The PL spectrum 

of PSFP-DTBTP film showed a strong fluorescence peak at 647 nm, even though 

they had a strong absorption peak at 366 nm. The emission peak of molecules 

normally shows an absorbance edge peak due to the energy band gap of the system. 
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Excited electrons which are generated by absorption of light in molecules move to 

the conduction band edge and they emit fluorescence when they relax down from 

lowest conduction band (LUMO) to the valence band (HOMO). In such cases, the 

band gap energy is matched with the absorption band edge of the molecules. 

However, PSFP-DTBTP shows red fluorescence. This is because of exciton 

migration effects, they migrate from the electron donating fluorene group to the 

electron accepting benzothiadiazole group in the polyelectrolyte (Bardeen, 2011, 

Lee et al., 2011). These results were as expected because similar UV-vis absorption 

and PL peaks have been observed in previous reports. 

 

5.3.4. Cyclic voltammetry (CV) measurement of PSFP-DTBTP 

 

The intention was to use PSFP-DTBTP as both an active layer and interfacial layer 

in photovoltaic cells, therefore CV was carried out to measure its electronic energy 

levels. A CV measurement is used to study the oxidation and reduction properties 

of the material and it is a useful technique to understand the HOMO and LUMO 

level of materials. The CV measurement of PSFP-DTBTP was performed in the 

presence of tetrabutylammonium perchlorate (0.1 M) as an electrolyte in 

acetonitrile and Ag/Ag+ reference electrode (Ag wire in 0.01 M AgNO3 solution).  

For calibration, the energy level of HOMO and LUMO was calculated using the 

equations below (Liang et al., 2009). 

 

EHOMO = −(∅ox + 4.8 − 0.082) eV 

ELUMO = −(∅red + 4.8 − 0.082)eV 

 

Where ∅ox and ∅red are the onset oxidation point and onset reduction point vs. 

Ag/Ag+ respectively. This equation is based on the redox potential of 

ferrocene/ferrocenium being -4.8 eV in absolute energy level below the vacuum 

level (located at 0.082 V to the Ag/Ag+ electrode). 

 

A CV curve of PSFP-DTBTP is shown in Figure 5-8. The onset point of oxidation 

∅ox is determined to be 0.66 V, which is determined by intersection point of two 

tangents (red lines in the Figure 5-8), and the energy level of highest occupied 

molecular orbital (HOMO) was calculated at -5.38 eV using the equation above. 

The reduction onset point is -1.33 V and the energy level of lowest unoccupied 

molecular orbital (LUMO) was calculated at -3.39 eV. Therefore, PSFP-DTBTP 

has band gap of 1.99 eV and it is well matched with UV-vis absorption spectrum, 
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although it was very weak peak at around 530 nm in PSFP-DTBTP, the spectral 

edge of PSFP-DTBTP absorption is around 600 nm. To convert wavelength to 

energy, it is calculated by Plank-Eistein relation below; 

 

E = hν 

ν =
c
λ
 

E =
hc
λ

 

From the equation, where E is the energy of photon, ν is frequency, h is the Plank 

constant, and c is speed of light. 

 

 
Figure 5-8 Cyclic Voltammetry (CV) diagram of PSFP-DTBTP. 

 

These results were compared to a similar CPE material poly[(9,9-bis(3'-(N,N-

dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN, fluorene 

groups are included). The energy levels compared reasonably well with PFN 

(HOMO of -5.61 eV and LUMO of -2.14 eV) (Zhang et al., 2010). The effect of 

the fluorene side group and the donor and acceptor nature of PSFP-DTBTP 

resulted in a lower oxidation and reduction potential than PFN. The ionic sulfonyl 

groups of PSFP-DTBTP lead to easier oxidation than the general fluorine. The 

DTBTP groups gave the polymer a lower reduction potential and lower band gap 

than PFN due to the donor and acceptor structure of the polymer (Cheng et al., 

2009). Hou et al. reported fluorene-based red-emitting copolymer (9,9-

dioctylfluorene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole, PFO-DBT) (Hou et al., 

2002).  In the report, the HOMO and LUMO levels were slightly altered by 
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different ratios of fluorene and benzothiadiazole parts but generally the HOMO 

was -5.47 to -5.61 eV and the LUMO was -3.46 to -3.54 eV. As mentioned above, 

PSFP-DTBTP showed a slightly higher HOMO and LUMO level than PFO-DBT. 

However, PSFP-DTBTP showed higher band gap than PCDTBT (HOMO of -5.4 

eV and LUMO of -3.6 eV). This is attributed to PSFP-DTBTP (blocked copolymer) 

consisting of 90% of fluorene groups (donor) and 10% of dithienyl-

benzothiadiazole groups (acceptor). There is a relatively small amount og the 

acceptor groups compared to the donor groups. However, in comparison PCDTBT 

has alternating 1:1 donor and acceptor groups, so in PCDTBT the electrons are 

more readily moved from donors to acceptors.  

 

 

5.4. Conclusions 

 

The low band gap conjugated polyelectrolyte PSFP-DTBTP was synthesised and 

its structure was confirmed by NMR and IR. It dissolves easily at a concentration 

of <30 mg/ml in water. The CPE had sulfonate side chains in the fluorene groups 

to aid dissolution in water and this CPE had donor and acceptor groups in the 

polymer backbone. PSFP-DTBTP showed a strong absorption peak at 366 nm and 

a weak absorption peak at 530 nm. It showed red fluorescence and the PL peak was 

at 647 nm due to intramolecular charge transfer from the fluorene groups (donor) 

to the benzothiadiazole groups (acceptor) within the polymer backbone. The 

HOMO and LUMO energy levels were determined by CV to be -5.38 and-3.39 eV 

and the band gap of the CPE was found to be 1.99 eV. This CPE was synthesised 

in order to address the challenge of applying CPEs in PVCs and the electronic 

energy levels measured were suitable for application in PVCs. 
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6. Polymer photovoltaic cells with conjugated 

polyelectrolyte 
 

 

6.1. Introduction 
 

Conjugated polyelectrolytes (CPEs) are conjugated polymers that contain ionic 

charged side chains which give it water-solubility (Huang et al., 2005, Tran-Van et 

al., 2004, Huang et al., 2004, Stork et al., 2002, Gaylord et al., 2001). During the 

past decade, CPEs have been used within the active layer (Yang et al., 2007, 

McLeskey and Qiao, 2006), electron transporting layers (ETLs) or hole 

transporting layers (HTLs) in OPVCs. CPEs when used as interlayers helped to 

improve the PCE of devices (Zhou et al., 2014, Duan et al., 2013, Seo et al., 2011, 

Zhang et al., 2010, He et al., 2011). 

 

Yang et al. and McLeskey and Qioao reported water-soluble polythiophene based 

photovoltaic cells. Poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] (PTEBS) was used 

as a water-soluble polythiophene. Yang et al. applied PTEBS and C60 as the 

electron donor and hole transporting layer and 2,9-dimethyl-4,7-diphenyl-1,10-

phenanthroline (BCP) was used as the exciton blocking layer. They achieved a 

PCE of 0.43%. McLeskey and Qioao reported organic solar cells made from 

PTEBS and TiO2. PTEBS was used as the electron donor and TiO2 as the electron 

acceptor. The highest PCE of the devices produced was 0.13%. 

 

Seo et al. and Zhou et al. reported fluorene and cyclopenta-dithiophene based CPE 

as materials for application in thin ETLs and HTLs, respectively and showed an 

improvement of JSC, VOC, FF and PCE. Seo et al. reported that PCDTBT based 

PVCs achieved a PCE of over 6% with a positively charged poly[3-(6-

trimethylammoniumhexyl)thiophene] (P3TMAHT) or poly(9,9-bis(2-ethylhexyl)-

fluorene]-b-poly[3-(6-trimethylammoniumhexyl)thiophene] (PF2/6-b-P3TMAHT) 

interlayer where the employed device architecture was 

ITO/PEDOT:PSS/PCDTBT:PC71BM/CPE/Al (Seo et al., 2011). Zhou et al. 

showed an improvement of JSC, VOC, FF and PCE using CPE-K negatively charged 

conjugated polyelectrolyte as a HTL instead of PEDOT:PSS. The solar cell 

performance was increased up to 8.2% and their device structure was ITO/CPE-

K/PTB7:PC71BM/Ca/Al (Zhou et al., 2014). 
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The use of a PSFP-DTBTP as both as an active layer and hole transporting layer is 

described in this chapter. Conjugated polyelectrolyte was synthesised as described 

in Chapter 5 for use both as an active layer material therefore avoiding the need 

for organic solvents and also as an additive in the hole transporting layer so as to 

improve the efficiency of OPVCs. Improving the device efficiency is expected to 

improve the overall sustainability of OPVC fabrication by reducing the quantites of 

materials needed per Watt of power produced. Unfortunately, PSFP-DTBTP did 

not show any photovoltaic behaviour as an active layer material, but it did show an 

increase of the PCE and reproducibility of OPVC performance as an additive in the 

PEDOT:PSS layer. 

 

 

6.2. Experimental 
 

6.2.1. Materials 

 

Poly(3,4-ethylenedioxythiophene) with poly(styrenesulfonate) (PEDOT:PSS – HC 

Stark Clevios P VP AI4083 (M121)), poly[N-9”-hepta-decanyl-2,7-carbazole-alt-

5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT, (M1311) Mw: 

34,900), [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), Poly(3-

hexylthiophene-2,5-diyl) (P3HT, (M106) RR: 94.7%, Mw: 34,100), [6,6]-phenyl-

C61-butyric acid methyl ester (PCBM), Indium tin oxide (ITO) glass substrates 

(S171, 20 Ω/square), and UV-epoxy resin were purchased from Ossila Ltd. Water-

soluble C60 (C60-(N,N-dimethyl pyrrolidinium iodide)) was purchased from 

Solaris Chem Inc.. 

 

6.2.2. Organic photovoltaic cell fabrication (PSFP-DTBTP used as active layer) 

 

PSFP-DTBTP was synthesised as explained in Chapter 5 for use as an active layer. 

Pre-patterned ITO glass substrates were washed with Hellmanex solution, iso-

propyl alcohol (IPA), and deionised (DI) water in an ultrasonic bath for 10 min 

each. The substrates were then dump rinsed twice in hot deionised water and once 

in cold deionised water. For the ITO/PEDOT:PSS/PSFP-DTBTP:W-C60/Ca/Al 

structured devices, PEDOT:PSS (filtered by 0.45 µm PVDF filter) was spin coated 

on the ITO glass substrate and thermally annealed for 15 min at 150 °C. A blend of 

PSFP-DTBTP and W-C60 (1:4 volume ratio) was spin coated at 2000 rpm on the 

PEDOT:PSS and thermally annealed at 150 °C for 15 min. For the 
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ITO/PEDOT:PSS:PSFP-DTBTP:W-C60/Ca/Al structured devices, PEDOT:PSS 

and PSFP-DTBTP:W-C60 were mixed in a 1:1 volume ratio. The mixture of 

PEDOT:PSS and PSFP-DTBTP:W-C60 was then spin coated at 2000 rpm and 

thermally annealed at 150 °C for 15 min. For ITO/PEDOT:PSS/PSFP-

DTBTP/PCBM/Ca/Al, PEDOT:PSS was spin coated at 5000 rpm and annealed at 

150 °C for 15 min on the ITO glass substrate and then PSFP-DTBTP was spin 

coated at 2000 rpm on the PEDOT:PSS layer and annealed at 150 °C. The substrate 

was then moved into the glovebox and PCBM (25 mg/ml) was spin coated at 2000 

rpm on the PSFP-DTBTP layer. All the cathode layers for these various devices 

structures were deposited onto the active layer in a vacuum evaporator. Calcium 

(2.5 nm) and aluminium (100 nm) cathodes were deposited under 1 x 10-6 mbar. 

Devices were subsequently thermally annealed on a hot plate at 80 °C 15 min. All 

devices were finally encapsulated using  uv-epoxy resin and a glass cover slide. 

 

6.2.3. Organic photovoltaic cells fabrication (PSFP-DTBTP used as HTL or 

additive in HTL) 

 

All materials for device fabrication were purchased from Ossila Ltd. and used 

without further treatment apart from CPE and metals for electrodes. The device 

architecture used was glass substrate/ITO/hole transporting layer 

(HTL)/polymer:PC71BM/calcium (Ca)/aluminium (Al). PCDTBT:PC71BM (1:4 by 

weight, 20 mg/ml) or P3HT:PCBM (1:0.8 by weight, 25 mg/ml) were used as 

active layer materials. Pre-patterned ITO glass substrates were cleaned with the 

same process above mentioned. The HTL solution was filtered by PVDF filter 

(0.45 µm) and was spin-coated on the ITO substrate at 6000 rpm then annealed at 

150 °C on a hot plate for 15 min. For the PCDTBT solar cells, PCDTBT (4 mg) 

was dissolved in chlorobenzene and the solution was heated at 80 °C with stirring 

overnight to fully solubilise. This was then mixed with PC71BM (16 mg) and the 

blend solution was heated at 80 °C for 2 h. The blend solution was filtered with 

PTFE (0.45 µm) before use. The blended mixture of PCDTBT:PC71BM was spin 

coated on the HTL at 700 rpm to achieve a thickness of ~75 nm as measured by J. 

A. Woollam Co. M-2000 ellipsometer. For the P3HT solar cells, solutions (25 

mg/ml in chlorobenzene) of P3HT and PCBM were prepared separately in 

chlorobenzene and heated at 70 °C overnight. The P3HT and PCBM solutions were 

then mixed by volume portion of 1:0.8. A blend of P3HT and PCBM solution was 

heated at 70 °C over 3 h to fully dissolve and then filtered before use. The blended 

mixture of P3HT:PCBM was spin coated on the HTL at 2000 rpm to give a 
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thickness of ~70 nm. Calcium (2.5 nm) and aluminium (100 nm) cathodes (for 

PCDTBT solar cell) or aluminium (100 nm) cathode (for P3HT solar cells) were 

deposited onto the active layer in a vacuum evaporator. The base pressure of 

evaporation chamber was less than 1 x 10-6 mbar.  Devices were thermally 

annealed on a hot plate at 80 °C (for PCDTBT PVCs) for 15 min or 150 °C (for 

P3HT PVCs) for 30 min. All devices were finally encapsulated by UV-epoxy resin 

and a glass cover slide. 

 

6.2.4. Preparation of films for characterisation 

 

In order to measure UV-vis absorption, thickness, AFM, and PL of the HTL, 

PEDOT:PSS or PEDOT:PSS:PSFP-DTBTP thin films similar samples were spin-

coated at 6000 rpm for 40 sec on to glass substrates, silicon wafer or ITO patterned 

glass substrates. The glass substrates were cleaned using the same procedure used 

to prepare ITO substrates and the thin films were thermally annealed on a hotplate 

at 150 °C for 15 min after spinning. For the PL measurement of PSFP-DTBTP and 

PCDTBT, PSFP-DTBTP solution of 15 mg/ml in water were spin-coated at 6000 

rpm for 40 sec on glass substrates and thermally annealed at 150 °C for 15 min 

then, PCDTBT (4 mg/ml in chlorobenzene) was spin-coated at 700 rpm for 30 sec 

and thermally annealed at 80 °C for 15 min.  

 

6.2.5. Instruments 

 

NMR, EA, UV-vis, PL, FT-IR, and CV for analysis of polymer are described in 

synthesis Chapter 5. The Ultraviolet photoemission spectroscopy (UPS) data was 

collected using the Kratos Axis Ultra DLD instrument with a helium (He) source. 

A 5 eV pass energy was set, and an area of 110 µm diameter analysed. The data 

was collected between 25 eV to 0 eV in steps of 0.025 eV and for a 200 ms dwell 

time. The thickness of the HTL thin films were measured using a J. A. Woollam 

Co. M-2000 ellipsometer with a charge-coupled devices (CCD) camera detector. 

Atomic force microscope (AFM) images were obtained using a Veeco Dimension 

3100 AFM with a Nanoscope IIIa controller and basic extender. It was operated in 

tapping mode with Bruker TESPA tapping mode cantilevers with a nominal spring 

constant of 42 N/m and a nominal resonant frequency of 320 kHz. 

Photoluminescence spectra were collected by Keithley 2700 multimeter with 

Laser- LDCU CW 450nm diode laser and detector was silicon diode. Samples were 

measured under vacuum at approximately 1 x 10-3 mbar.  
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6.3. Use PSFP-DTBTP in active layer 
 

In order to reduce the usage of organic solvents for devices, a CPE was synthesised 

and applied as part of the active layer. As mentioned in the synthesis Chapter 5, 

the CPE has donor and acceptor parts and it showed low band gap about 2.0 eV. 

 

6.3.1. Thickness change of PEDOT:PSS HTL caused by spin casting 

subsequent water soluble layers 

 

Before using PSFP-DTBTP as an active layer, it was necessary to test the thickness 

of the PEDOT:PSS after spin casting water on top of the HTL to check whether the 

PEDOT:PSS is entirely washed away during the process or not. Water was spin 

cast on top of both an annealed and as cast PEDOT:PSS films. Because both 

materials can be dissolved in water the PEDOT:PSS may be washed away by spin 

coating subsequent water based solutions. Thin films of PEDOT:PSS were 

fabricated on the pieces of silicon wafer and the film thickness was measured by 

ellipsometry. To measure thickness before and after water casting on the 

PEDOT:PSS film, PEDOT:PSS was spin coated at 5000 rpm on the silicon wafer 

then one sample was not annealed and another sample was annealed at 150 °C for 

15 min. Two of each type of film was made. Water was spin coated on each 

PEDOT:PSS film at 2000 rpm. The thickness of all four films was measured. 

Table 6-1 shows the change of thickness before and after water casting with non-

annealed and annealed at 150 °C PEDOT:PSS. 

 
Table 6-1 The average film thickness of non-annealed and annealed PEDOT:PSS before 

and after water casting (the data was collected by 2 films of each condition) 

Samples 
Thickness of film 

Before water drop 

Thickness of film 

After water drop 

Non-annealed 45 ± 1 nm 3 ± 1.5 nm 

Annealed at 150 °C 42 ± 0.6 nm 31 ± 1 nm 

 

 

As shown in Table 6-1, almost all PEDOT:PSS was washed out by water at non-

annealed film, but the PEDOT:PSS film annealed at 150 °C showed 42 and 31 nm 

thickness before and after water dropping respectively. 
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6.3.2. Fabrication of water-based photovoltaic cells 

 

To fabricate a water based BHJ photovoltaic cell, both PCBM and water-soluble 

C60 (W-C60) (C60-(N,N-dimethyl pyrrolidinium iodide)) was used as an electron 

acceptor. The molecular structures of materials are shown in Figure 6-1. 

 

 
Figure 6-1 Structures of water-soluble C60 and PCBM. 

 

Four types of device structure were produced as shown in Figure 6-2. The 

architecture shown in Figure 6-2(a) is similar to the usual BHJ OPVC with an 

active layer consisting of a blend of CPE and W-C60 and the concentration of CPE 

and W-C60 was 25 mg/ml (1:4 volume blend ratio). The blend of CPE:W-C60 and 

PEDOT:PSS used in Figure 6-2(b) was prepared in a 1:1 volume ratio. This device 

architecture required only one spin-casting step for all the organic materials. In 

Figure 6-2(c) the blend of CPE and PEDOT:PSS was 1:1 by volume ratio and 

PCBM (25 mg/ml) was used as an electron transporting layer. In order to avoid 

aggregation of CPE and W-C60, PCBM was applied in the device as a separate 

layer. In Figure 6-2(d), the concentrations of CPE and PCBM were 25 mg/ml. This 

architecture of device has a bi-layer structure rather than a BHJ active layer in the 

device to compare to device’s architectures in Figure 6-2(a) and (c). 

 

 
Figure 6-2 Four kinds of architecture of devices using PSFP-DTBTP as an active layer. 
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Unfortunately, none of these devices showed any photovoltaic behaviour. There 

were two possible reasons for this. First, when making the blend of CPE and W-

C60, many aggregations of solids appeared. It may be that because CPE and W-

C60 are negatively and positively charged materials respectively they are bind well 

together to form aggregates and therefore fall out of solution prior to spin casting. 

Even if CPE and W-C60 were dissolved in solvent separately, they still made 

precipitates after mixing them. As a result, the solution was much too transparent 

after filtering. Filtering is needed to fabricate uniform films free of defects by 

removing undissolved or large particles. Therefore, it was not possible to make a 

proper functioning bulk-heterojunction layer from the materials due to their 

aggregation. Secondly, the absorption wavelength of the CPE is short. As shown in 

Figure 5-9 in Chapter 5, the main absorption peak of PSFP-DTBTP is around 370 

nm and only a weak absorption peak is shown around 530 nm. Therefore, although 

CPE absorbs the short wavelengths, a lot of photons pass thorough the active layer 

at longer wavelength so the devices cannot harvest large amounts of photons. In 

order to increase of absorption around 530 nm, CPE was synthesised using 1:1 

ratio of donor (fluorene group) and acceptor (dithienyl-benzothiadiazole group). 

However, when the relative fraction of acceptor groups was increased, the polymer 

would not dissolve in water. 

 

 

6.4. Use PSFP-DTBTP in HTL 
 

In order to study the PCE of devices made using CPE as an additive in the HTL or 

as a replacement HTL, photovoltaic cells with typical blends of PCDTBT and 

PC71BM and P3HT with PCBM as the active layer BHJ were fabricated. ITO and 

calcium/aluminium (Ca/Al) were used as the anode and cathode materials, 

respectively. Device architecture of the OPVCs was ITO/PEDOT:PSS:PSFP-

DTBTP /Active layer/(Ca)/Al and they were compared to more standard 

ITO/PEDOT:PSS/Active layer/(Ca)/Al reference devices. In this Chapter, a Ca/Al 

cathode layer was used for PCDTBT PVCs to allow direct comparison to the P3HT 

PVCs. According to previous reports (Watters et al., 2012), PCDTBT PVCs with a 

Ca/Al cathode showed high VOC, relatively high JSC and significant enhanced FF. 
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6.4.1. Optical characterisation of conjugated polyelectrolyte with PEDOT:PSS 

and PCDTBT:PC71BM 

 

Hole transporting layer blends of PEDOT:PSS:PSFP-DTBTP (with 2 mg/ml or 5 

mg/ml or 8 mg/ml of the CPE dissolved in the as acquired PEDOT:PSS solution) 

were named as HTL2, HTL5, and HTL8 respectively in this chapter. HTL2 related 

to 2 mg of PSFP-DTBTP per 1 ml of PEDOT:PSS solution. HTL5 related to 5 mg 

of PSFP-DTBTP per 1 ml of PEDOT:PSS solution. HTL8 related to 8 mg of PSFP-

DTBTP per 1 ml of PEDOT:PSS solution. Figure 6-3(a) shows the UV-vis 

absorption spectra of the PSFP-DTBTP, PEDOT:PSS, HTL2, HTL5, and HTL8 

thin films after spin casting onto glass substrates. To measure the UV-vis 

absorption of the thin films, PSFP-DTBTP, PEDOT:PSS, HTL2, HTL5, and HTL8 

were spin coated at 6000 rpm on glass substrates for 40 sec and then thermally 

annealed at 150 °C for 15 min. The PSFP-DTBTP film shows a strong π-π* 

absorption peak at 367 nm from fluorene-phenylene groups and a very weak 

absorption peak at around 530 nm from intramolecular charge transfer between 

donor and acceptor units along polymer chains. The 367 nm absorption peak 

observed in the PSFP-DTBTP film was shifted by about 9 nm compared to the 

solution spectra where the peak was at about 358 nm. The number of co-planar 

rings along the backbone of the polymer determines its conjugation length. The 

longer the conjugation length, the smaller the separation between adjacent energy 

levels due to quantum confinement effects. Fewer twists in the polymer increase 

the co-planarity and can result from changes in the environment. Therefore the 

absorbance shift is attributed to increasing the conjugation length of the rigid 

backbone in the film, when the polymer is in the sold state. However, we could not 

confirm whether the peak from the DTBTP group around 530 nm was changed 

from solution because of the weak signal strength. The pristine PEDOT:PSS film 

did not show any specific absorption features. HTL films showed a small 

absorption peak at 372 nm which increased with increasing concentration (2 mg/ml, 

and 5 mg/ml) and it has a very small trace of an absorption peak at around 530 nm 

from PSFP-DTBTP. The absorption peaks of HTL2 and HTL5 were slightly red 

shifted from the PSFP-DTBTP peak at 367 to 372 nm. However, HTL8 was blue 

shifted and had an absorption peak at 362 nm.  

 

Although it was very weak peak at around 530 nm in PSFP-DTBTP, the spectral 

edge of PSFP-DTBTP absorption is around 600 nm which equates to a band gap 
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for PSFP-DTBTP of 2.0 eV from the UV-vis absorption spectra and it was (1.99 

eV) in the CV measurement in synthesis Chapter 5. 

 

 
Figure 6-3 UV-vis absorption spectra of (a) PSFP-DTBTP film (black), PEDOT:PSS (red), 

HTL2 (blue), HTL5 (purple), and HTL8 (green) and (b) PCDTBT (black), 

PCDTBT:PC71BM (red), PEDOT:PSS/PCDTBT:PC71BM (blue), and HTL2 (purple), or 

HTL5 (green), HTL8/PCDTBT:PC71BM (orange) (HTL is hole transporting layer of 

PEDOT:PSS:PSFP-DTBTP). 

 

In order to understand the combined absorption abilities of the active layer and the 

HTLs, UV-vis absorption spectra of PCDTBT, PCDTBT:PC71BM (blend ratio of 

1:4) and HTL/PCDTBT:PC71BM were measured and are shown in Figure 6-3(b).  

All HTLs were spin coated on glass substrates at 6000 rpm and the HTLs were 

thermally annealed at 150 °C for 15 min then PCDTBT:PC71BM was spin coated at 
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700 rpm on the HTL and thermally annealed at 80 °C for 15 min. The PCDTBT 

film showed a strong absorption peak at 403 nm and strong broad absorption band 

from 560 to 590 nm (Yi et al., 2011). The blended PCDTBT:PC71BM film showed 

increased absorption ability from 300 to 580 nm due to absorption by PC71BM. 

PEDOT:PSS/PCDTBT:PC71BM did not show any specific difference with 

PCDTBT:PC71BM. However, HTL2, HTL5, and HTL8/PCDTBT:PC71BM films 

showed a peak around 370 nm which increased with increasing CPE concentration 

in the HTL and this corresponds with the results for the PSFP-DTBTP absorption 

peak in Figure 6-3(a). 

 

6.4.2. FT-IR spectra of CPE and HTL layers 
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Figure 6-4 ATR FT-IR transmittance of PEDOT:PSS (black), HTL2 (red), HTL5 (blue), 

and HTL8 (green). 

 

The FT-IR spectra of polymers PEDOT:PSS, HTL2, HTL5, and HTL8 are shown 

in Figure 6-4. They were measured to better understand the components within the  

HTL. Comparing the spectra of PEDOT:PSS and PSFP-DTBTP, it is hard to 

determine whether PSFP-DTBTP was left in the films because PEDOT:PSS has a 

similar structure and functional groups and therefore similar FT-IR spectrum. 

However, when PSFP-DTBTP is included in PEDOT:PSS, the amounts of the 

absorbance due to the functional groups and molecules present increased and the 

transmittance at these specific bands decreased. As shown in Figure 6-4, the 

spectra show an increase in absorption around 1300-1000 cm-1 when the PSFP-

DTBTP concentration was increased and the spectra were normalised for 
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comparison. A weak C-H stretch peak of alkyl chain in CPE was observed at 2870 

cm-1 in the HTL peaks. 

 

6.4.3. The characterisation of the band gaps of each layer 

 

Figure 6-5(a) summarises the energy levels of ITO, PEDOT:PSS, PSFP-DTBTP, 

P3HT, PCDTBT, PC71BM, PCBM, Ca, and Al and is similar to those reported 

elsewhere (Yao et al., 2011, Thompson and Frechet, 2008, da Silva et al., 2015). 

As shown in Figure 6-5(a), the HOMO level of PSFP-DTBTP is located between 

the HOMO level of PCDTBT and PEDOT:PSS, so holes generated in PCDTBT 

should be able to easily move to the ITO electrode. Also electrons will be blocked 

from going to ITO anode. In addition, absorption by the PSFP-DTBTP means it is 

possible to make excitons in the PSFP-DTBTP. Therefore, it would be possible that 

more electrons move to the cathode via PCDTBT and PC71BM and holes move to 

anode ITO via PEDOT:PSS. However, in comparison the HOMO and LUMO 

levels of PSFP-DTBTP are lower than HOMO and LUMO levels of P3HT, 

respectively, so in the P3HT devices the PSFP-DTBTP would interrupt the flow of 

holes to the anode. As a result, it is unsurprising that the P3HT device with PSFP-

DTBTP showed a reduction of PCE as described in Figure 6-7(c) and Table 6-1. 

 

 
Figure 6-5 (a) The energy diagram of materials in a photovoltaic cell (PSFP-DTBTP band 

gap is measured by CV, others are from previous report (Yao et al., 2011, Thompson and 

Frechet, 2008, da Silva et al., 2015)), (b) the structure of PSFP-DTBTP, PCDTBT, and 

PC71BM, and (c) the architecture of BHJ organic photovoltaic cell. 
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6.4.4. Work function of HTLs 

 

In order to confirm the electronic properties of the HTLs with CPE additive, the 

work functions of thin films of pristine PEDOT:PSS, and blends of PSFP-DTBTP 

mixed with PEDOT:PSS were measured by ultraviolet photoemission spectra (UPS) 

(helium lamp at 21.2 eV). UPS spectra of PEDOT:PSS, HTL2, HTL5 and HTL8 

were measured three times. All 3 data sets showed similar trends. The data from 

one of these measurements are shown in Figure 6-6. The work function is seen as a 

"cut-off" in the UPS spectrum at the low kinetic energy side. As shown in Figure 

6-6, the work function of PEDOT:PSS. HTL2, HTL5, and HTL8 are 4.95, 5.07, 

5.14, and 5.11 eV, respectively. The HTL5 has higher work function compare to 

the others. 

 

 
Figure 6-6 The UPS spectra of PEDOT:PSS, HTL2, HTL5, and HTL8 thin films. 

 

6.4.5. Photovoltaic properties of devices with CPE additive in HTL 

 

The architecture of the PCDTBT BHJ PVCs was ITO/PEDOT:PSS, or HTL2, or 

HTL5, or HTL8/PCDTBT:PC71BM/Ca/Al and P3HT BHJ PVCs were 

ITO/PEDOT:PSS, or HTL5/P3HT:PCBM/Al. In order to investigate the 

performance of the CPE additive in P3HT PVCs, HTL5 (the best HTL for 

PCDTBT) was chosen for comparison with HTL5 in PCDTBT PVCs. The device’s 

structure, materials, and energy level of each material are described in Figure 6-

5(c). The corresponding J-V curves and external quantum efficiency (EQE) of the 
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devices are shown in Figure 6-7 and their photovoltaic characteristics are 

described in Table 6-2. The J-V curves of the BHJ PCDTBT photovoltaic cell 

devices were measured using a solar simulator under AM 1.5G irradiation. 

Reference PCDTBT devices showed JSC of -8.63 ± 1.7 mA/cm2, VOC of 0.84 ± 0.03 

V, and FF of 62.28 ± 7.85%. The average PCE was 4.63% and the best PCE was 

5.36%. HTL2 devices and HTL8 devices showed better average efficiency, but the 

reference devices recorded a better champion PCE than HTL2 and HTL8. However, 

the HTL5 devices recorded an improved JSC of -9.46 ± 0.88 mA/cm2, VOC of 0.88 ± 

0.03 V, FF of 66.25 ± 2.85%, average PCE of 5.26% and the best PCE of 5.67%, 

which are evidently better results than other devices. In general, enhancement of all 

parameters JSC, VOC, and FF for the HTL5 device resulted in an improvement of 

both average and best efficiency. The devices with CPE added showed higher VOC 

by 0.02 – 0.1 V than the reference device. The ideal maximum VOC in photovoltaic 

cells is defined as the difference between the HOMO level of the donor and the 

LUMO level of the acceptor, but the VOC in actual devices showed a lower value 

than the VOC of ideal devices. Because the actual VOC is affected by the work 

function of electrodes and interfacial layer (Zhao et al., 2015, Ratcliff et al., 2013, 

Greiner and Lu, 2013). The devices with CPE added have a lower work function (-

5.14 eV) than pristine PEDOT:PSS (-4.95 eV) which gave the devices with CPE 

added a higher VOC than the reference device. The PCE of reference PCDTBT 

devices delivered higher performance when compared to previous reports under 

similar experimental condition (Watters et al., 2012, Yi et al., 2011). As mentioned 

in the introduction section, Seo et al. reported the PCE of PCDTBT PVCs were 

increased by an interlayer of fluorene and thiophene based conjugated copolymer 

deposited from a methanol solution beneath the Al cathode (Seo et al., 2011). The 

PCE of the devices increased from 5.3 to 6.5%. When compared to this research, it 

showed a PCE 0.8% higher than reported here. However, it should not be directly 

compared to this research because the CPE was used in a different layer. In 

addition, they used methanol as the CPE solvent, but water to deposit the CPE in 

this research. Therefore, the device in this research is more environmental friendly. 

 

In Figure 6-7(b), the HTL5 based device showed a lower EQE below 390 nm. This 

is attributed to some of the light <390 nm being absorbed by the CPE rather than 

PCDTBT and therefore not undergoing efficient charge separation at the interfaces 

within the BHJ. However, as demonstrated below in our PL experiments 

significant energy transfer can occur between the CPE and PCDTBT which 

minimises this effect. Above 390 nm the EQE of the HTL5 device is higher than 
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the PEDOT:PSS device, which is attributed to improved charge transfer into the 

HTL because of the improved match between the work function of the HTL and 

the PCDTBT BHJ layer HOMO level. The HTL5 device has a higher JSC than the 

pristine PEDOT:PSS based device because the charge transport is more efficient. 

Fewer generated charges are lost to recombination processes. 

 

P3HT PVCs were also fabricated, with CPE added to the HTL. The reference 

P3HT PVC showed JSC of -8.99 ± 0.18 mA/cm2, VOC of 0.56 ± 0.01 V, FF of 66.55 

± 0.81%, average PCE of 3.35% and the best PCE of 3.55%. However, the HTL5 

based P3HT PVC showed lower performance characteristics with a JSC of -6.83 ± 

0.98 mA/cm2, VOC of 0.57 ± 0.01 V, FF of 40.54 ± 9.46%, average PCE of 1.68%, 

and the best PCE of 2.18%. HTL5 based P3HT exhibited a similar VOC (0.01 V 

increased) to the reference P3HT PVC due to the lower HOMO level of HTL5. 

However, JSC was significantly reduced because the energy level of PSFP-DTBTP 

is lower than the P3HT HOMO level and so would act as a barrier to hole transport 

across this interface, reducing the efficiency of charge transport. Therefore the 

series resistance in P3HT PVC was increased resulting in a decrease of JSC as is 

explained in Figure 2-23 in Chapter 2. 
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Figure 6-7 (a) J-V curves of the PCDTBT photovoltaic cells with PEDOT:PSS (black), 

HTL2 (red), HTL5 (blue), and HTL8 (green). (b) EQE of the PCDTBT photovoltaic cells 

with PEDOT:PSS (black) and HTL5 (blue) the PEDOT:PSS/PCDTBT:PC71BM 

photovoltaic cell, and HTL5/PCDTBT:PC71BM photovoltaic cell. (c) J-V curves of the 

P3HT photovoltaic cells with PEDOT:PSS (dark yellow) and HTL5 (orange). 
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Table 6-2 Photovoltaic properties of PCDTBT and P3HT photovoltaic cells with various 

HTL (The average value was calculated with the best 50% of pixels of over 6 devices) 

 

 

6.4.6. Conductivity of HTLs 

 

 
Figure 6-8 Effect of PSFP-DTBTP concentration on the film conductivity for the hole 

transporting layers (blue) and the film UV-vis absorption at 370 nm for the hole 

transporting layers. (Conductivity measurement was performed by same condition with 

previous Chapter 4.) 

 

The conductivity and absorption values of the HTL are described in Figure 6-8. In 

Figure 6-8, the PEDOT:PSS shows the highest sheet conductivity 1.8 x 10-4 S/cm 

and HTL2, HTL5, and HTL8 showed decreased of conductivities of 5.4 x 10-5 S/cm, 

HTL 
HTL 

Thickness 
Jsc (mA/cm2) Voc (V) FF (%) 

PCE (%) 

Ave. Best 

PCDTBT photovoltaic cells 

PEDOT:PSS 29 nm -8.63 ± 1.7 0.84 ± 0.03 62.28 ± 7.85 4.63 5.32 

HTL2 35 nm -8.88 ± 0.54 0.86 ± 0.04 62.51 ± 6.79 4.83 5.18 

HTL5 47 nm -9.46 ± 0.88 0.88 ± 0.03 66.25 ± 2.85 5.26 5.67 

HTL8 61 nm -8.84 ± 0.53 0.86 ± 0.03 63.62 ± 4.42 4.85 5.18 

P3HT photovoltaic cells 

PEDOT:PSS 29 nm -8.99 ± 0.18 0.56 ± 0.01 66.55 ± 0.81 3.35 3.55 

HTL5 47 nm -6.83 ± 0.98 0.57 ± 0.01 40.54 ± 9.46 1.68 2.18 
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3.0 x 10-5 S/cm, and 1.8 x 10-5 S/cm respectively with increasing concentration of 

PSFP-DTBTP in the films. Therefore assuming the carrier conductivity vertically 

through the HTL film follows the same trend as the sheet conductivity the presence 

of CPE in the HTL would be expected to reduce performance. The PSFP-DTBTP 

acted as an insulator in the HTL, but yet the HTL5 based photovoltaic cell showed 

the best efficiency. Considering the absorbance of these devices the incident light 

will be absorbed more efficiently between 330 nm and 420 nm in those devices 

with CPE in the HTL layers compared to the pristine PEDOT:PSS. Therefore, 

although the CPE mixed with PEDOT:PSS showed lower conductivity than that of 

PEDOT:PSS, the HTL5 based solar cell had a higher PCE than that of pristine 

PEDOT:PSS based solar cell because, the presence of CPE improved the energy 

transfer that occurred between the active layer and HTL and therefore it helped 

charge transport to be more efficient. There is a trade-off between reduced 

conductivity through the HTL layer and improved carrier generation and charge 

transport across the interface into the HTL layer which is optimised at a CPE 

concentration close to 5 mg/ml. 

 

6.4.7. Photoluminescence (PL) characterisation of HTL and active layer 

 

 
Figure 6-9 Normallized PL spectra of PSFP-DTBTP, PCDTBT and bi-layer of PSFP-

DTBTP and PCDTBT. 

 

Figure 6-9 shows the photoluminescence (PL) spectra of PSFP-DTBTP (15 mg/ml 

in H2O) film, PCDTBT (4 mg/ml in chlorobenzene) film, and PSFP-DTBTP and 

PCDTBT bi-layer film. The PL spectrum of PCDTBT shows emission peak at 698 

nm and small shoulder peak at 810 nm. It is similar to the emission peak of 
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PCDTBT from a previous report (Duan et al., 2013). The PL spectrum of PSFP-

DTBTP film has an emission peak at 647 nm, even though they had strong 

absorption peak at 367 nm. It was red emission due to exciton migration from the 

electron donating fluorene groups to the electron accepting benzothiadiazole 

groups in the polyelectrolyte (Bardeen, 2011). 

 

To understand the correlation of HTL5 with PCDTBT, PSFP-DTBTP and 

PCDTBT a bi-layer film was prepared. The spectra of the PSFP-DTBTP and 

PCDTBT bi-layer film did not exhibit an emission peak at 647 nm (Figure 6-9) 

and it showed an emission peak at 695 nm. This is attributed to the overlapping of 

the PSFP-DTBTP emission peak with absorption peak of PCDTBT around 600 nm 

to 650 nm and the resulting quenching of the PSFP-DTBTP emission by PCDTBT. 

It implies that intermolecular charge transfer was occurring from the CPE to the 

PCDTBT (Mataga and Tanimoto, 1969, Hutchison et al., 2005). Therefore, much 

of the light absorbed by CPE in our devices will likely be transferred to the 

PCDTBT minimising losses. 
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Figure 6-10 PL spectra of PCDTBT (black) and PCDTBT:PC71BM in a blend ratio of 1:4 

(red). 

 

PCDTBT PL was well quenched when mixed with PC71BM in a blend (1:4 weight 

ratio) film in Figure 6-10. 
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Figure 6-11 PL spectra of PEDOT:PSS (black), HTL2 (red), HTL5 (blue), and HTL8 

(pink). 

 

The PL spectra of PEDOT:PSS with PSFP-DTBTP are illustrated in Figure 6-11. 

PEDOT:PSS thin films with CPE included showed a weak PL peak around 647 nm. 

The PL intensity around 640 nm increases slightly with CPE concentration increase.  

 

6.4.8. AFM characterisation of HTLs 

 

Changes in the surface morphology of the HTL between the ITO and active layer 

were imaged by atomic force microscopy (AFM) in tapping mode. A HTL was 

spin-coated on an ITO surface. Resulting AFM height images are illustrated in 

Figure 6-12. The height images (Figure 6-12(b), (c), and (d)) of HTL2, HTL5 and 

HTL8 were not visibly different from the pristine PEDOT:PSS image (Figure 6-

12(a)). However their root-mean-square (RMS) roughness values showed small 

changes. The RMS roughness of pristine PEDOT:PSS was 1.12 nm and the RMS 

roughness was reduced when the PSFP-DTBTP were added into the PEDOT:PSS 

(HTL2 and HTL8). On the other hand, the RMS roughness of HTL5 was increased 

to 1.22 nm. The correlation between RMS roughness of all HTLs and PCE of the 

corresponding devices are shown in graph Figure 6-13 and RMS roughness has a 

coincident trend with PCE. The PCE of HTL5 based device showed the highest 

value and it corresponded with the highest RMS roughness HTL surface. The other 

HTL2 and HTL8 based devices had lower PCE than pristine PEDOT:PSS based 

device and also showed lower RMS roughness. 
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Figure 6-12 AFM images (1 x 1 µm) of hole transporting layer (a) PEDOT:PSS, (b) HTL2, 

(c) HTL5, and (d) HTL8. 

 

PEDOT:PSS HTL2 HTL5 HTL8
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 

 RMS
 PCE

RM
S 

(n
m

)

3.5

4.0

4.5

5.0

5.5

6.0

PC
E 

(%
)

 
Figure 6-13 RMS values and the best device PCE of each hole transporting layers. 

 

6.4.9. Photovoltaic properties of devices with PSFP-DTBTP HTL 

 

BHJ PCDTBT PVCs were fabricated without a PEDOT:PSS layer, instead using a 

PSFP-DTBTP layer as the HTL. Their device structure is ITO/PSFP-

DTBTP/PCDTBT:PC71BM/Ca/Al. PSFP-DTBTP was applied as the HTL with 
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various thicknesses. The thickness 2, 8, and 15 nm were adjusted by varying the 

concentration of PSFP-DTBTP solution in DI water from 2, 10, and 15 mg/ml used 

for spin coating respectively. The J-V curves of all devices are shown in Figure 6-

14. The devices were all measured using the same solar simulator previously 

mentioned. 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-12

-10

-8

-6

-4

-2

0

2

 

 

C
ur

re
nt

 D
en

sit
y 

(m
A/

cm
2 )

Voltage (V)

 2 nm
 8 nm
 15 nm

 
Figure 6-14 J-V curves of PCDTBT photovoltaic cells with only PSFP-DTBTP HTL. The 

thickness of HTLs is 2 (black), 8 (red), and 15 nm (blue). 

 

PSFP-DTBTP (3.6 x 10-5 – 4 x 10-5 S/cm) is high resistively material, so holes did 

not well pass through the HTL easily. Therefore, the thinner HTL devices showed 

higher PCE than thicker HTL devices. As shown in Figure 6-14, the efficiency 

results are lower than the those for the devices with a PEDOT:PSS HTL and also 

they showed S-shaped J-V curves for the 8 and 15 nm thick HTL devices which 

critically reduces the FF and PCE. S-kink behaviour can be attributed to an 

imbalanced charge carrier mobility of electrons and holes in the planar 

heterojunction photovoltaic cells and is caused by energy barriers at the interfaces 

between the active layer and the electrode (Wagner et al., 2012, Zhang et al., 2011, 

Tress et al., 2011, Huh et al., 2014). There is a barrier to charge extraction due to 

the close HOMO energy level of CPE (-5.38 eV) and PCDTBT (-5.4 eV). 

Therefore, it would be possible that holes in the active layer did not easily move 

into the HTL and therefore accumulated around the contact between PCDTBT and 

PSFP-DTBTP before recombining with electrons. The photovoltaic properties of 

devices are in the Table 6-3. The 2 nm thickness of HTL based PVC showed the 
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best result with PCE of 2.28%, JSC of -9.72 ± 0.52 mA/cm2, VOC of 0.42 ± 0.02 V, and 

FF of 46.39 ± 3.71%. 

  
Table 6-3 Photovoltaic properties of PCDTBT photovoltaic cells with PSFP-DTBTP HTL 

(The average value was calculated with the best 50% of pixels of over 6 devices). 

 

 

6.5. Conclusions 

 

Poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-alt-phenylen)-ran-(4,7-di-2-

thienyl-2,1,3-benzothiadiazole-alt-phenylene)] (PSFP-DTBTP) synthesised as 

described in Chapter 4 showed a strong absorption peak at 370 nm with small 

absorption features around 550 nm, and a PL emission peak at 645 nm. When 

PSFP-DTBTP was used as an active layer, the devices did not show any 

photovoltaic abilities due to a much too transparent film being produced as a result 

of aggregation and an unsuitable absorption wavelength. When the conjugated 

polyelectrolyte was used as an additive in the hole transporting layer of OPVCs, 

the PSFP-DTBTP HTL5 based PCDTBT:PC71BM photovoltaic cell had a PCE of 

5.67%. It was a significant improvement over the control device without CPE. All 

characteristics of the photovoltaic cell with CPE were higher than that of the 

reference device without the additive. The repeat ability of the device performance 

was also improved. Although the HTL with the conjugated polyelectrolyte had a 

lower conductivity, the improved charge transport into the HTL and absorption 

ability of polyelectrolyte more than compensated for this because it improved 

generation of carriers which subsequently transferred to the ITO or active layer. 

From the PL spectrum it is evident that energy transfer can occur from the CPE to 

PCDTBT. The work function of the HTLs with CPE added is lower than the 

pristine PEDOT:PSS, so the HTL5 devices had a higher VOC by about 0.02-0.04 

compared to the reference devices. The improved match between the HTL with 

CPE work function and the PCDTBT BHJ layer is shown to improved charge 

PSFP-DTBTP 

Thickness (nm) 

JSC 

(mA/cm2) 
VOC (V) FF (%) 

PCE (%) 

Ave. Best 

2 ± 0.5 -9.72 ± 0.52 0.42 ± 0.02 46.39 ± 3.71 1.94 2.28 

8 ± 0.6 -7.74 ± 0.37 0.49 ± 0.07 25.51 ± 6.48 1.05 1.12 

15 ± 0.5 -8.46 ± 0.58 0.56 ± 0.11 22.45 ± 7.15 0.72 0.9 
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transfer into the HTL. For these reasons, the photovoltaic cells with the CPE 

showed an average PCE improvement of 13% compared to the reference devices. 

This 13% improvement would mean a 13% reduction in materials and energy 

required to make the devices and deliver the same energy output. 

 

When the PSFP-DTBTP was used as the HTL without any PEDOT:PSS, the PCE 

of devices was decreased and in some cases they showed S-shaped J-V curves due 

to imbalanced charge carrier mobility of electrons and holes due to energy barriers 

at the interface between the active layer and HTL. 
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7. Perovskite photovoltaic cell 
 

 

7.1. Introduction 
 

The abundance of sunlight makes it a highly attractive source of green energy. 

Within the field of photovoltaic (PV) technologies, silicon is the dominant 

technology due to its mature manufacturing methods and moderate processing 

costs (Shaheen et al., 2005). Recently, hybrid perovskite photovoltaics have 

attracted great interest due to their outstanding efficiency, a composition that is 

based on inexpensive materials and their ease of fabrication (Liu and Kelly, 2014, 

Liu et al., 2013, Burschka et al., 2013, Ball et al., 2013, Lee et al., 2012, Eperon et 

al., 2014). As a consequence of these promising characteristics, hybrid perovskites 

are showing strong potential to drive the next wave of widespread PV adoption; 

both in areas currently dominated by silicon and in innovative applications such as 

building integrated PV. 

 

Among the challenges facing the scale-up of perovskite PVCs, the toxicity of the 

semiconductors has been raised as a potential issue owing to the presence of lead 

(Landrigan, 1989, Flora et al., 2012). Specifically, beyond the hazards present 

during solar cell fabrication and end-of-life recycling, the ability to deploy such 

cells in real world applications may be prohibited by the potential risk for lead 

seepage that occurs due to encapsulation failure (the solubility of organo-lead 

halide perovskites in water has been well-documented) (Babayigit et al., 2016). To 

overcome this, research into reduced lead or lead-free perovskites has gained 

traction over the past few years and amongst the possible substitute metals, tin has 

showed reasonable promise (Ogomi et al., 2014, Hao et al., 2014, Noel et al., 2014). 

Notable highlights include the demonstration of CH3NH3SnI3 solar cells with an 

initial PCE above 6% (Noel et al., 2014), however the efficient photovoltaic 

functionality of Sn rich phases in mixed Sn/Pb perovskites has been questioned 

(Ogomi et al., 2014). Additional issues that include semiconductor oxidation and 

the mitigation of hysteresis effects in devices continues to drive the development of 

reduced lead perovskites with the ultimate goal of matching the performance 

characteristics of the original lead-based semiconductors. Another study considered 

other metals that match the requirements on electron valency and size tolerance 

within the perovskite lattice (Travis et al., 2016). In order to reduce the use of lead, 
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Park et al. have introduced bismuth as substitute for lead (Park et al., 2015). 

Bismuth has much lower toxicity than lead (Mohan, 2010) and they found that 

caesium-bismuth perovskite showed a PCE of 1.09%, however, Cs is still 

considered mildy toxic. They also reported methylammonium Bi-perovskite which 

was assigned a MA3Bi2I9 structure and measured a PCE of 0.12%. Slavney et al. 

studied a double-perovskite structure Cs2Ag+Bi3+Br6  finding lattice a unit-cell axis 

of 11.25 Å is roughly double that of CH3NH3PbBr3 however they did not test any 

photovoltaic devices (Slavney et al., 2016). 

 

In this work the use of bismuth was explored as a low toxicity alternative to lead in 

hybrid perovskite semiconductors. A control sample of CH3NH3PbI3-xClx was 

investigated alongside a range of perovskites with the composition CH3NH3 

(PbyBi1-y)I3-xClx where y varies between 0 and 1 and x is small, with such samples 

prepared from a range of precursors (including BiCl3 and BiI3) and using various 

precursor blend ratios. This study places particular focus on the crystallinity and 

phase purity of each perovskite, with scanning electron microscopy (SEM), energy-

dispersive X-ray spectroscopy (EDS), and grazing incidence wide angle X-ray 

scattering (GIWAXS) measurements used to characterize their nanoscale structure 

and composition. Although their initial performance in solar cell devices is not 

promising, the structural data presented helps us to understand why this is the case. 

In general the results provide important insight into the processability of bismuth 

perovskites, thereby helping to refine the choice of materials and processing 

methods used for developing high performance hybrid perovskites with low 

toxicity. 

 

The presentation of results proceeds as follows. The UV-vis absorption spectra of 

each perovskite sample is considered first, before discussing composition and 

microstructure characteristics in depth via SEM, EDS and GIWAXS analysis. The 

GIWAXS data is modelled in order to help explain how the perovskite film forms 

for bismuth perovskites. In addition this provides insight into the ability for binary-

metal compositions (i.e. Pb/Bi mixtures) to form crystalline semiconductors 

structures of high phase purity. Lastly, the results from initial solar cell devices are 

presented. This study concludes by considering engineering strategies for 

improving bismuth perovskite film quality.  
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7.2. Experimental 
 

7.2.1. Materials 

 

Perovskite precursors were made from methylamine (33 wt % in ethanol, Sigma-

Aldrich Company Ltd.), hydriodic acid (57 wt % in water, Acros Organics), PbCl2 

(98%, Acros Organics), BiI3 (99%, Sigma-Aldrich Company Ltd.), BiCl3 (98%, 

Acros Organics), and anhydrous DMF (Sigma-Aldrich Company Ltd.). Phenyl-C61-

buryric acid methyl ester (PCBM), PEDOT:PSS (Heraeus Clevios™ P VP AI 

4083), and encapsulating UV-epoxy were purchased from Ossila Ltd..  These 

materials were used as purchased without any further purification. Pre-patterned 

ITO glass substrates (20 Ω sq–1) were purchased from Ossila Ltd. 

 

7.2.2. Synthesis of methylamine iodide (MAI) 

 

 
Scheme 7-1 The procedure of making MAI. 

 

48 ml (0.386 mol) of methylamine solution (CH3NH2, 33 wt % in absolute ethanol) 

and 200 ml of ethanol were added into a 500 ml 2-necked round-bottomed flask. 20 

ml (0.152 mol) of hydriodic acid (HI, 57 wt % in deionised water) was added 

dropwise into the flask and then degassed with nitrogen. The mixed solution was 

stirred at room temperature for 2 h then all solvent was evaporated using a rotary 

evaporator. The resulting solid was washed with acetone and dried in vacuum at 

40 °C for 2 d. A white coloured crystal was obtained. 1H NMR (500MHz, DMSO-

d6, δ): 7.52-7.39 (m, 3H), 2.36 (3H). Anal. Calcd. for CH3NH3I: C, 7.55; H, 3.81; N, 

8.8; I, 79.82. Found: C, 7.67; H, 3.63; N, 8.71; I, 79.80. 

 

7.2.3. Mixed perovskite precursor of various blend ratios 

 

7.2.3.1. Methylammonium lead iodide chloride (MAPbI3-xClx, MAI:PbCl2 = 

3:1) precursor 

 

A blend of 419.4 mg (2.63 mmol) of MAI and 244.6 mg (0.88 mmol) of PbCl2 was 

dissolved in 1 ml of anhydrous N,N-dimethyl-formamide (DMF) with a solid 

concentration of 664 mg/ml.  
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7.2.3.2. Methylammonium bismuth iodide chloride (MABiI3-xClx, MAI:BiCl3 = 

3:1) precursor 

 

A blend of 419.4 mg (2.63 mmol) of MAI and 277.3 mg (0.88 mmol) of BiCl3 was 

dissolved in 1 ml of anhydrous DMF with a solid concentration of 938 mg/ml. 

 

7.2.3.3. Mixed metal methylammonium lead bismuth iodide chloride 

precursors 

 

Three mixed metal precursor solutions were made by mixing the prepared MAPbI3-

xClx and MABiI3-xClx solutions in different ratios. The MA(Pb0.75Bi0.25)I3-xClx was 

made up of 0.75 ml of MAPbI3-xClx and 0.25 ml of MABiI3-xClx. The 

MA(Pb0.5Bi0.5)I3-xClx was made from 0.50 ml of MAPbI3-xClx and 0.50 ml of 

MABiI3-xClx. Finally, the MA(Pb0.25Bi0.75)IxCly was made from 0.25 ml of MAPbI3-

xClx and 0.75 ml of MABiI3-xClx. 

 

7.2.3.4. Methylammonium bismuth iodide (MABiI3, MAI:BiI3 = 1:1) precursor 

 

A mixture of 139.8 mg (0.88 mmol) of MAI and 518.6 mg (0.88 mmol) of BiI3 was 

dissolved in 1 ml of anhydrous DMF and its resulting solid concentration was 

658.4 mg/ml. 

 

7.2.3.5. Methylammonium bismuth iodide (MABiIy, MAI:BiI3 = 3:1) precursor 

 

A mixture of 419.4 mg (2.63 mmol) of MAI and 518.6 mg (0.88 mmol) of BiI3 was 

dissolved in 1 ml of anhydrous DMF with total solid concentration of 938 mg/ml. 

 

All the precursor solutions were heated overnight at 70 °C to ensure fully 

dissolution of mixture solids. The precursor solutions were cooled to room 

temperature and then filtered using a 0.45 µm PTFE filter before use. 

 

7.2.4. Thin films fabrication for SEM, EDS, and GIWAXS 

 

For the SEM, EDS, and GIWAXS characterisation approximately 15 mm x 15 mm 

pieces of Si wafer were used as the substrates. Pieces of silicon wafers were 

cleaned with acetone and isopropyl alcohol (IPA) in turn in the ultrasonic bath for 

10 min each and then exposed to oxygen plasma for 10 min to remove any organic 
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residues. The perovskite layer was spin coated on the silicon wafer at 5000 rpm 

then thermally annealed at 90 °C for 90 min. The films were fabricated in air. 

 

7.2.5. Thin films fabrication for UV-vis absorption spectroscopy 

 

For the UV-vis absorption spectroscopy 25 mm x 25 mm pieces of glass were used. 

Glass substrates were cleaned in Helmanex solution, IPA and deionized 

water in an ultrasonic bath for 10 min for each rinse respectively. The films 

were fabricated by spin coating on the glass substrates. The films were 

thermally annealed at 90 °C for 90 min. The films were fabricated in air. 

 

7.2.6. Device fabrication and characterisation 

 

The planar heterojunction architecture used in this work is a relatively easy and fast 

way to fabricate perovskite solar cells. The perovskite layer is sandwiched between 

PEDOT:PSS and fullerene layers which act as hole and electron transporting layers, 

respectively. An advantage of this system is the relative ease with which the 

thickness of films produced is controlled using spin-coating. Pre-patterned 

substrates were washed for 10 min each in Helmanex solution, IPA, and deionized 

water in an ultrasonic bath to remove any dirt on the ITO substrates. After washing, 

the substrates are blown dry using clean dry nitrogen. PEDOT:PSS (Heraeus 

Clevios™ P VP AI 4083) filtered through a 0.45 µm PVDF filter was then spin-

coated at 5000 rpm for 30 sec on the substrates resulting in a thin film of ~40 nm 

thickness. The PEDOT:PSS coated ITO substrates were then annealed on a hot 

plate at 130 °C for 15-30 min. The perovskite precursor was subsequently 

deposited on top of the PEDOT:PSS layer by spin coating at 5000 rpm for 30 sec. 

A small strip of the perovskite film on the edge of substrates was wiped off with a 

cotton bud to leave an area of the ITO electrodes exposed for contacting. The 

perovskite coated films were annealed on a hot plate for 90 min at 90 °C. PCBM 

solution (50 mg/ml in chlorobenzene filtered through a 0.45 µm PTFE filter before 

use) was heated to 70 °C for 12 h. It was then spin-coated on top of the perovskite 

layers in an oxygen and moisture free glovebox. Again some of the ITO electrode 

was exposed by wiping off a strip of the PCBM on the edge of substrates using a 

cotton bud. Calcium and aluminium were deposited onto the PCBM layer through 

a mask to form cathodes in a vacuum evaporator. The thicknesses of the calcium 

139 
 



 

and aluminium layers were nominally 5 and 100 nm respectively. The devices were 

then encapsulated with glass using UV-cured epoxy under UV light for 30 min. 

 

7.2.7. Instruments 

 
1H NMR was collected using a Bruker DRX 500 spectrometer. Elemental analysis 

was performed by Perkin Elmer 2400 series II CHN analyzer. The spin coater used 

to deposit for films and devices was a Laurell WS-400BZ-6NPP/lite. UV-vis 

absorption spectra were measured using an Ocean Optics USB2000+ spectrometer 

and DT-MINI-2-GS combined Deuterium-Halogen light source. SEM images and 

EDS analysis were obtained using JEOL JSM6010LA (thermionic emission gun) 

scanning electron microscope (10kV, Multi-segment secondary electron detector). 

GIWAXS analysis was performed at beamline I07 at the Diamond Light Source 

(10keV, Pilatus 2M detector, sample-detector distance of ~ 40 cm). 2D GIWAXS 

images were taken by detector and the line profiles were obtained by radial integral 

of the 2D GIWAXS images. The line profiles were calibrated using a 2D GIWAXS 

image of silver behenate. All the images and line profiles were processed using 

Dawn software from Diamond Light Source. The photovoltaic characteristics of 

the devices were measured using a Newport 92251A-1000 solar simulator in 

ambient conditions under 100 mW cm-2 of simulated AM 1.5 sunlight as 

determined using an NREL calibrated silicon photovoltaic reference cell. The 

devices were masked with an aperture (0.025 cm2) to define the active area during 

the J-V measurement to minimize any edge effects. 

 

 

7.3. Results and discussion 
 

The general route for preparing hybrid perovskite films involves the coordination 

of an organic cation within a metal-halide lattice structure. This process can take 

place in solution, or via thermal annealing of a precursor film with an appropriate 

starting stoichiometry (i.e. relative concentrations of organic and inorganic 

material). To synthesise organo-bismuth halide perovskites, CH3NH3I 

(methylammonium iodide, hereafter referred to as MAI), BiI3 and BiCl3 were used 

as precursor materials to form MABiI3 and MABiI3-xClx. The role of starting 

stoichiometry for the pure tri-iodide perovskite MABiI3 was investigated by 

considering 1:1 or 3:1 mol% mixtures of MAI and BiI3 respectively. Finally, The 

precursors for MABiI3-xClx and MAPbI3-xClx were mixed to form three mixed metal 
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cation perovskites with nominal compositions MA(Pb0.25Bi0.75)I3-xClx, 

MA(Pb0.5Bi0.5)I3-xClx and MA(Pb0.75Bi0.25)I3-xClx. A total of seven perovskite 

samples are considered in this study, with full preparation details provided in the 

experimental methods. 

 

7.3.1. UV-vis absorption of perovskites 

 

 
Figure 7-1 Absorbance spectra of MAPbI3-xClx, MABiI3-xClx, MABiI3(1:1), MABiI3(3:1), 

MA(Pb0.25Bi0.75)I3-xClx, MA(Pb0.5Bi0.5)I3-xClx and MA(Pb0.75Bi0.25)I3-xClx films prepared on 

glass substrates. All samples were annealed at 90°C after spin casting the precursor solution. 

 

Figure 7-1 shows the UV-vis absorption spectra for each perovskite film, where it 

can be seen that each sample exhibits a relatively strong absorption peak centred 

around 500 nm. The signal to noise ratio was very large at less than 400 nm 

because the absorption is very strong so the intensity of light measured was very 

small therefore the data was truncated at 400 nm. For our control sample MAPbI3-

xClx, its optical absorption extends to long wavelengths >750 nm where there is a 

distinct edge which when extrapolated meets the x-axis at approximately 820 nm, 

equating to a band gap of 1.51 eV in reasonable agreement with earlier reports 

(Colella et al., 2013, Lee et al., 2012). This is close to the value reported for 

MAPbI3 (Kulkarni et al., 2014, Bi et al., 2014), suggesting there are low / trace 

levels of Cl in this perovskite. Among the mixed metal perovskites only 
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MA(Pb0.75Bi0.25)I3-xClx showed a weaker absorption shoulder in the near-IR region 

of the light spectrum, at a wavelength similar to that observed for the control 

sample (> 750 nm). This feature was tentatively attributed to the presence of pure 

lead perovskite phases within the sample, given the 3x difference in lead molar 

content compared to bismuth in the precursor. Further increases in bismuth content 

within the sample, from Pb0.75Bi0.25 to Pb0.25Bi0.75, results in the eventual 

disappearance of this feature. For the pure bismuth perovskites, MABiI3 (1:1) 

prepared from a 1:1 precursor stoichiometry shows a weak absorption edge at 

approximately 605 nm, whereas MABiI3(3:1) prepared from a 3:1 precursor 

stoichiometry and MABiI3-xClx do not. The MABiI3-xClx was estimated to have an 

optical band gap of 2.1 eV via extrapolation of the absorption edge observed 

beyond 510 nm. Note however that this method does not readily extend to every 

perovskite considered here, as the slow and incomplete drop-off in absorption 

(likely an indication of pronounced light scatter) will introduce unintended 

artefacts (Tian and Scheblykin, 2015). 

 

7.3.2. SEM and EDS characterisation 

 

 

 
Figure 7-2 SEM images of (a) MAPbI3-xClx, (b) MA(Pb0.75Bi0.25)I3-xClx, (c) 

MA(Pb0.5Bi0.5)I3-xClx, (d) MA(Pb0.25Bi0.75)I3-xClx, (e) MABiI3-xClx, (f) MABiI3(1:1), and (g) 

MABiI3(3:1) films prepared on silicon substrates. Scale bar corresponds to 10 µm. 
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To study in detail the microstructure of each perovskite film, in addition to 

confirming their composition, a series of SEM images and EDS chemical surveys 

were recorded. Figure 7-2 shows representative SEM images for each perovskite. 

 

From Figure 7-2(a), which corresponds to our control sample, it can be seen that 

MAPbI3-xClx consists of a relatively dense distribution of elongated crystals, each 

having a characteristic length between 3 and 10 µm. Quantitative analysis of this 

image suggests a surface coverage of 60%. For the mixed metal perovskites, shown 

here in Figure 7-2(b)-(d), two distinct structure types are present; a compact 

distribution of micron-sized crystallites that cover a sizable fraction of the 

substrate, and dispersed structures with a size between 20 and 30 µm. Note that 

these relatively large features are often surrounded by a region void of any 

material, suggesting that mass transport and/or substrate de-wetting has taken place 

during their formation (Barrows et al., 2014, Colella et al., 2013, Yu et al., 2014). 

In general, these structures are present in greater number when the relative 

concentration of Bi in the sample increases. Although this might suggest the 

presence of separate perovskite phases in the sample (i.e. regions of pure MAPbI3-

xClx that are spatially distinct from regions of pure MABiI3-xClx), EDS mapping 

indicates that the distribution of Bi throughout the sample is reasonably uniform. 

As a consequence we suggest that the formation of either crystallite structure is not 

determined primarily by metal content, and is instead governed by factors that 

include halide composition, the dynamics of precursor conversion and the local 

presence of defects / impurities in the sample that act as possible nucleation sites 

for crystal formation. 

 

The SEM image for MABiI3-xClx is shown in Figure 7-2(e). Here it can be seen 

that multiple ‘flower’ shaped features are present, many of which appear to sit edge 

on from the substrate surface. These features are often surrounded by regions of 

what appears to be less structured material, however their total surface coverage is 

low (c. 50%). 

 

In Figure 7-2(f) the film corresponding to MABiI3(1:1) shows a mixture of short 

needle like crystals protruding from central points (about 10 µm long) sitting on 

top of round unstructured regions that are between 10 and 35 µm in diameter. For 

this sample the total surface coverage is much higher than for MABiI3-xClx. The 

MABiI3(3:1) perovskite film is principally characterized by large crystals (> 50 µm 

in length) alongside local regions containing smaller structures as shown in Figure 
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7-2(g). Connectivity between these regions is however poor, with many areas of 

the substrate containing no material whatsoever. 

 

Having established that the bismuth perovskite films were comprised of multiple 

crystal structures with characteristically distinct sizes, EDS mapping was employed 

to determine their chemical composition. Table 7-1 summarises the results of these 

measurements, where values correspond to the stoichiometric ratio of each element 

 

 
Table 7-1 The stoichiometric ratio of elements as determined by EDS for the MAPbI3-xClx, 

mixed metal perovskites, MABiI3-xClx, and MABiI3 films as determined by EDS. The 

numbers in parenthesise shows correspond to the target stoichiometric ratio determined by 

the composition of the precursor solutions used 

Materials C N Pb Bi I Cl 

MAPbI3-xClx 3.12 (1) 0.33 (1) 1 (1) - 
2.58 

(3-x) 
0.03 (x) 

MA(Pb0.75Bi0.25)I3-xClx 2.96 (1) 0.55 (1) 0.72 (0.75) 0.28 (0.25) 
2.76 

(3.5-x) 
0.46 (x) 

MA(Pb0.5Bi0.5)I3-xClx 2.59 (1) 0.72 (1) 0.38 (0.50) 0.62 (0.50) 
2.94 

(3.5-x) 
0.76 (x) 

MA(Pb0.25Bi0.75)I3-xClx 2.61 (1) 0.97 (1) 0.26 (0.25) 0.74 (0.75) 
2.5 

(3.5-x) 
1.01 (x) 

MABiI3-xClx 3.34 (1) 0.91 (1) - 1 (1) 
2.47 

(4-x) 
1.47 (x) 

MABiI3 (1:1) 2.76 (1) 0.30 (1) - 1 (1) 3.43 (4) - 

MABiI3 (3:1) 4.70 (3) 1.71 (3) - 1 (1) 4.27 (6) - 

 

The corresponding images are presented in the Figures 7-3 to 7-9. 
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Figure 7-3 SEM image of (a) MABiI3-xClx and corresponding EDS analysis with elemental 

mapping of (b) carbon, (c) nitrogen, (d) bismuth, (e) iodine, and (f) chlorine. 

 

 
Figure 7-4 SEM image of (a) MAPbI3-xClx, and EDS analysis with elemental mapping of 

(b) carbon, (c) nitrogen, (d) lead, (e) iodine, and (f) chlorine. 
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Figure 7-5 SEM image of (a) MA(Pb0.75Bi0.25)I3-xClx, and EDS analysis with elemental 

mapping of (b) carbon, (c) nitrogen, (d) lead, (e) bismuth, (f) iodine, and (g) chlorine. 

 

 
Figure 7-6 SEM image of (a) MA(Pb0.5Bi0.5)I3-xClx, and EDS analysis with elemental 

mapping of (b) carbon, (c) nitrogen, (d) lead, (e) bismuth, (f) iodine, and (g) chlorine. 
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Figure 7-7 SEM image of (a) MA(Pb0.25Bi0.75)I3-xClx, and EDS analysis with elemental 

mapping of (b) carbon, (c) nitrogen, (d) lead, (e) bismuth, (f) iodine, and (g) chlorine. 

 

 
Figure 7-8 SEM image of (a) MABiI3(1:1) and EDS analysis with elemental mapping of (b) 

carbon, (c) nitrogen, (d) bismuth, and (e) iodine. 
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Figure 7-9 SEM image of (a) MABiI3(3:1) and EDS analysis with elemental mapping of (b) 

carbon, (c) nitrogen, (d) bismuth, and (e) iodine. 

 

As reported previously, Cl was almost completely absent in the MAPbI3-xClx film, 

(Zhao and Zhu, 2014) indicating its removal from the sample during processing 

(i.e. via sublimation with excess MAI) (Yu et al., 2014, Unger et al., 2014, Zhang 

et al., 2015) or its preferential location at the substrate interface. As the ratio of Bi 

is increased in the mixed metal perovskite the Cl content rises from 0.46 (25% Bi) 

up to 1.47 (100% Bi). Spatially averaged EDS data for MABiI3-xClx indicates a 

halide ratio of approximately 2.5:1.5 I:Cl, however this result masks important 

local variations that will be discussed later. In line with the choice of starting 

precursor stoichiometries, MABiI3 (3:1) shows the highest concentration of iodine. 

Although carbon was found to exist in a 1:1 ratio with nitrogen during elemental 

analysis of MAI, its relative concentration in each film is increased. This enhanced 

carbon content was attributed to combination of sample contamination by carbon 

caused by electron beam exposure in the SEM and residual levels of trapped 

precursor solvent (DMF). 

 

To identify the origin(s) for the different crystal structures present in the mixed 

Pb/Bi perovskite films, we note that EDS maps show a generally homogenous 

distribution of these specific elements throughout each sample. Cl and I are also 

similarly distributed in both the large and small structures. In contrast, from Figure 

7-3 where noticeable differences in the distribution of the halides in the MABiI3-

xClx film are determined. I closely maps to the large flower shaped structures 

present and Cl maps to the thin layer than lies beneath. It appears therefore that in 

these films there are two different stoichiometries which we subsequently refer to 

as I-rich and Cl-rich. To determine their molar ratio in each region we conducted a 

series of point EDS chemical surveys. 
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As summarised in Table 7-2, in the I-rich regions bismuth preferentially binds to 

iodine when forming crystalline structures. Unlike in the lead-halide perovskite, a 

significant amount of chlorine is present in the film, suggesting that its removal 

during perovskite formation is less efficient when bismuth is present. In the I-rich 

regions the Bi:Cl:I ratio 1:0.67:2.67. Within the Cl-rich regions the Bi:Cl:I ratio is 

1:1.37:1.64. These ratios indicate that the bismuth to halide ratio in both cases is 

almost 1:3, as one would expect for an ABX3 perovskite. 

 
Table 7-2 The EDS point analysis for the MABiI3-xClx film highlighting the distribution of 

iodine and chlorine rich regions areas 

Materials C N Bi I Cl 

I-Rich Region 2.02 0.71 1 2.67 0.67 

Cl-Rich Region 2.57 0.97 1 1.64 1.37 

 

 

7.3.3. GIWAXS characterization of perovskite thin films 

 

Given the difference in ionic radii for lead, bismuth, chlorine and iodine, it 

suggests that the various structures imaged using SEM will also have different 

crystal lattice parameters. To test this hypothesis, and to also verify the presence of 

crystallites with a perovskite unit cell structure, samples were measured using 

GIWAXS. Radially integrated 1D X-ray scattering patterns from each sample are 

shown in Figure 7-10, alongside patterns from films prepared using the precursor 

materials MAI, BiCl3 and BiI3. 
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Figure 7-10 The 1D radially integrated GIWAXS patterns of MAPbI3-xClx, 

MA(Pb0.75Bi0.25)I3-xClx, MA(Pb0.5Bi0.5)I3-xClx, MA(Pb0.25Bi0.75)I3-xClx, MABiI3-xClx, 

MABiI3(1:1), and MABiI3(3:1) films prepared on silicon substrates. 2D GIWAXS images 

are illustrated by each GIWAXS patterns. The GIWAXS patterns are taken by 2D 

GIWAXS image’s radial integral. 

 

Immediately it can be seen that the diffraction pattern of each perovskite is not a 

simple linear combination of its precursor ingredients, thereby confirming the 

precursor components have combined to form new crystalline phases. The 

GIWAXS data for MABiI3-xClx shown in Figure 7-10 demonstrates minimal 

evidence for X-ray scattering from MAI and BiCl3, supporting the idea that the 

perovskite has a stoichiometry close to its target value. Nevertheless the presence 

of X-ray scattering peaks other than those attributable to the perovskite suggests 

more than one crystalline phase has been formed. For MABiI3(1:1) and 

MABiI3(3:1), there are clear indications that unreacted BiI3 is present within the 

film as well as unreacted MAI. This result implies that for these blends the 

precursors do not undergo complete conversion possibly because they are not 

stoichiometrically well matched and also the annealing conditions may not be 

optimal. Despite the different mixing ratios used the X-ray scatter pattern from 

both these new crystal phases are very similar. This is in stark contrast to the 
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different structures observed using SEM (see Figure 7-3), demonstrating a strong 

sensitivity of sample microstructure to precursor composition (Yu et al., 2014, 

Colella et al., 2013). 

 

The X-ray scattering from MAPbI3-xClx is similar to previously published data, 

(Tan et al., 2014, Park et al., 2014, Colella et al., 2013) allowing us attribute the 

scattering peaks at q = 0.99 to 1.00 Å-1, q = 1.41 to 1.42 Å-1, and q = 1.99 to 2.00 

Å-1 to X-ray scatter from the (002) and (110), (112) and (200), and (004) and (220) 

features of tetragonal MAPbI3-xClx respectively. For this system the corresponding 

lattice parameters are a = b = 8.85 Å and c = 12.69 Å, close to the values reported 

for the pure tri-iodide perovskite (Baikie et al., 2013, Im et al., 2011, Stoumpos et 

al., 2013). The GIWAXS pattern for MA(Pb0.75Bi0.25)I3-xClx is broadly similar to 

MAPbI3-xClx, albeit with the addition of new scattering peaks at q = 0.89 Å-1, q = 

1.21 Å-1 and peaks of relatively weak intensity between 1.50 and 2.00 Å-1. This is 

consistent with the UV-vis data presented in Figure 7-1 that indicated a similar 

absorption onset for the two samples. For MA(Pb0.5Bi0.5)I3-xClx, the relative 

intensity of the peaks at 0.89 and 1.21 Å-1 is higher, however the peaks 

corresponding to the (110) and (220) reflections from MAPbI3-xClx are found to 

undergo both a reduction in relative intensity alongside a small shift (c. 1%) to 

higher q values. This not only implies a reduction in Pb-rich perovskite content 

within the sample, consistent with the sample preparation conditions and UV-vis / 

EDS data discussed earlier, but also a contraction in the unit cell size that may 

result from compressive strain. Further reductions in Pb content within the sample 

(i.e. MA(Pb0.25Bi0.75)I3-xClx), results in an X-ray scattering pattern that is consistent 

with the observed trend. 

 

In agreement with the SEM data presented in Figure 7-2, the presence of X-ray 

scattering peaks that can be partly attributed to MAPbI3-xClx in the mixed metal 

samples suggests the formation of distinct crystal phases rather than the formation 

of an alloy. We suggest that prior to mixing precursor solutions for MAPbI3-xClx 

and MABiI3-xClx, the partial formation of metal halide complexes has already taken 

place that favours the eventual formation of crystals containing either (but not 

both) metals. Interestingly, the observed peaks in the MABiI3-xClx GIWAXS 

pattern at 0.89 and 1.90 Å-1 match those from BiI3, despite the fact that BiI3 was 

not present as precursor material. It appears therefore that for these mixed Pb/Bi 

samples significant halide ion exchange has taken place during sample processing 

that result in the formation of BiI3. Furthermore, from Figure 7-10 it can also be 
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seen that the mixed Pb/Bi samples follow a trend that more closely resembles a 

transition from MAPbI3 to MABiI3, rather than to MABiI3-xClx, even though the 

precursors for MABiI3-xClx were used for mixing, further indicating that halide 

exchange occurs (Yoon et al., 2016). 

 

To better understand the origin of each new feature observed in our GIWAXS 

measurements, X-ray scattering patterns of single phase powder samples were 

simulated the using CrystalDiffract 6 software package (Crystalmaker). Crystal 

structures (.cif files) for MAPbI3 and BiI3 were taken from a previous report. 

(Stoumpos et al., 2013) The MAPbI3 scattering pattern measured was in good 

agreement with the previously reported structure. Crystal structures for bismuth 

perovskites have not been widely reported; therefore we started from a generic 

ABX3 structure file (A= methylammonium, B=Bi and X=halide) and iteratively 

adjusted the lattice parameters until it matched the experimental data. The fitted 

lattice parameters for MABiI3 (prepared from both the 1:1 and 3:1 precursor 

mixtures) correspond to a tetragonal structure. Figure 7-11 shows the simulated 

GIWAXS pattern of a perovskite with unit cell dimensions a = b = 8.67 Å and c = 

12.41 Å and a mixture of this simulated pattern BiI3 and MAI. This mixture is 

compared to the measured data for MABiI3 and as shown, there is reasonable 

agreement between the mixture and the experimentally measured data. 

Specifically, the simulated ABX3 pattern shows two peaks at q = 1.01 and 1.02 Å-1, 

corresponding to the (002) and (110) reflections respectively. The experimental 

pattern for MABiI3 also shows a peak at the q = 1.02 Å-1, alongside a shoulder at q 

= 1.01 Å-1. 

 

 
Figure 7-11 The GIWAXS patterns from (a) the simulated ABX3 (tetragonal a = b = 8.67 

Å and c = 12.41 Å), simulated mixture of ABX3, MAI, and BiI3, and the experimentally 

observed pattern from MABiI3(3:1) and (b) the simulated ABX3 (tetragonal a = b = 8.67 Å 

and c = 12.41 Å), simulated mixture of ABX3, MAI, BiCl3 and BiI3, and the experimentally 

observed pattern from MABiI3-xClx. 
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The mixture and the experimental pattern both show several peaks between q = 1.5 

and 2.3 Å-1. Therefore, the relatively intense peaks observed can be modelled using 

a mixture of a generic ABX3 crystal lattice, MAI and BiI3, allowing us to conclude 

that MABiI3 forms a perovskite structure. However, between q = 0.5 and 1 Å-1 

there are several weak features that cannot be readily identified, alongside a peak 

shown at q = 1.21 Å-1 that is present in the GIWAXS data for every bismuth 

containing perovskite. These features are tentatively attributed to the presence of 

unreacted BiCl3 and other impurities. 

 

We also adapted our model to simulate the X-ray scattering pattern for MABiI3-

xClx, based on a generic ABX3 structure, and combined it with data for MAI, BiI3 

and BiCl3. The results are presented in Figure 7-11(b). In order to match the 

experimental data the best fit lattice parameters used in the simulated ABX3 

structure were a = b = 8.29 Å and c = 11.89 Å. Weak X-ray scattering features at q 

= 1.21, 1.64, and 2.04 Å-1 were not well matched by our model suggesting the 

presence of unidentified residual phases that are in addition to the perovskite, MAI, 

BiI3 and BiCl3.  

 

7.3.4. Photovoltaic properties of perovskite PVCs 

 

Our measurements of methylammonium bismuth- and methylammonium mixed 

Pb/Bi-perovskite films have evidenced systems with limited phase purity (relative 

to our control sample for MAPbI3-xClx), in addition to the presence of crystalline 

structures that have incomplete surface coverage and a range of length-scales. To 

determine whether such films exhibit any photovoltaic functionality, we fabricated 

a series of inverted architecture solar cell devices according to the structure 

ITO/PEDOT:PSS/Perovskite/PCBM/Ca/Al. Light J-V curves and tabulated metrics 

for each device are shown in Figure 7-12 and Table 7-3 respectively 
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Figure 7-12 J-V curves for photovoltaic cell devices based on MAPbI3-xClx, 

MA(Pb0.25Bi0.75)I3-xClx, MA(Pb0.5Bi0.5)I3-xClx, MA(Pb0.75Bi0.25)I3-xClx, and MABiI3-xClx. 

 

Here it can be seen that as expected the control devices based on MAPbI3-xClx 

exhibited the best photovoltaic cell performance by a considerable margin, 

recording average efficiencies of 8.25% (JSC = −14.7 mA cm−2, VOC = 0.86 V, FF = 

65.3%). This result is similar to our previous work using the same materials and 

processing routes (Barrows et al., 2014). In comparison, and in agreement with 

Park et al. (Park et al., 2015) PCE values for the Bi-containing devices were very 

low. Mixed Pb/Bi perovskite solar cells exhibited JSC and VOC below 0.03 mA/cm2 

and 0.5 V respectively. For the MABiI3-xClx PVCs (data shown inset graph in the 

Figure 6) a maximum PCE of 0.009% was determined (JSC of -0.03 mA cm-2, VOC 

= 0.78 V, FF = 44.8 %). Although its performance was poor, the J-V curve shows 

the distinctive shape for a photovoltaic device; furthermore a VOC of 0.78 V was 

high compared to the other Bi containing perovskite solar cells. Lastly, for 

MABiI3, a relatively high JSC of 0.08 mA cm-2 was measured when the perovskite 

was prepared from a 1:1 mixture of precursor materials. This was offset however 

by a low VOC value of 0.22 V. MABiI3 prepared from a 3:1 precursor mixture did 

not show any measureable photovoltaic effect. The J-V curves of MABiI3(1:1) and 

MABiI3(3:1) are shown in Figure 7-13. 
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Figure 7-13 J-V curves for photovoltaic cell devices based on MABiI3(1:1) and 

MABiI3(3:1). 

 
Table 7-3 Photovoltaic performance parameters of the devices produced for this study 

Materials 
JSC 

(mA/cm2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 

MAPbI3-xClx -14.7 0.86 65.3 8.25 

MA(Pb0.75Bi0.25)I3-xClx -0.01 0.06 31.1 0 

MA(Pb0.5Bi0.5)I3-xClx -0.02 0.47 35.9 0.003 

MA(Pb0.25Bi0.75)I3-xClx -0.02 0.39 39.4 0.003 

MABiI3-xClx -0.03 0.78 44.9 0.009 

MABiI3(1:1) -0.08 0.22 29.3 0.005 

MABiI3(3:1) N/A N/A N/A N/A 

 

Despite the disappointing device efficiencies reported for the Bi perovskite solar 

cells it is still noteworthy that these materials can produce a measurable 

photovoltaic effect. From our SEM, EDS and GIWAXS data some of the reasons 

why the performances of these devices are poor can be understood. The material 

characterisation data suggests that both the mixed Pb/Bi and the 100% bismuth 

based perovskite films contain a significant amount of impurity phases from 
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compounds including BiI3 and MAI. It is assumed that these are responsible for the 

dramatically reduced JSC, VOC and FF values relative to our control device as they 

may act to increase the internal resistance of the devices. In addition, the 

inhomogeneous surface coverage of these perovskites will also limit photocurrent 

efficiency due a reduced effective active area. Given the promising VOC value for 

MABiI3-xClx, we believe sufficient incentive exists to continue our studies into this 

material with a focus on the optimization of the semiconductor phase purity and 

microstructure. By eliminating impurities from the material as well as maximizing 

its coverage on a substrate layer (potentially via a refined precursor conversion 

process), it should be possible to realize hybrid perovskite solar cells with 

improved quantum efficiencies and PCEs, thereby providing a potential low-

toxicity alternative to lead-based perovskites for solar cell applications. 

 

 

7.4. Conclusions 
 

In this work, we studied bismuth as a substitute metal cation for lead in hybrid 

perovskite semiconductors. We show that significant halide ion exchange takes 

place during sample processing and conclude that MABiI3 and MABiI3-xClx adopt a 

tetragonal perovskite structure with unit cell parameters a = b = 8.67 Å and c = 

12.41 Å and a = b = 8.29 Å and c = 11.89 Å respectively. Composition and 

structural analysis of these perovskites evidence the presence of large (> 20 µm 

lateral size) crystallites, alongside regions of smaller crystallites and apparently 

amorphous material. GIWAXS measurements confirm the inhomogeneous phase 

composition of these samples, which in combination with their poor surface 

coverage, large band gap and presence of residual precursor materials as 

impurities provide a clear explanation for their inefficient photovoltaic behaviour 

in a photovoltaic cell device. The inhomogeneous composition implies that the film 

composition is not optimal. The low surface coverage means that a significant 

fraction of the incident light will not be captured. The large band gap means that 

only the high energy photons will be captured. Finally, the presence of impurities 

will introduce loss mechanisms within the devices whereby excited carriers can 

relax without passing through the external circuit. The promising VOC for MABiI3-

xClx solar cells (0.78 V) however suggests that efficient solar cells can be realised, 

with optimisation of the perovskite precursor conversion process being an obvious 

focus for future studies. 
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8. Conclusions and further work 
 

 

8.1. Conclusions 

 

Photovoltaic cells are one of the most remarkable technologies for renewable 

energy in a future. The research aim was the development of improved 

photovoltaic abilities and improved sustainability for device fabrication, by 

reducing the use of harmful materials in their processing. There is still much work 

needed in order to produce more sustainable, less toxic organic and inorganic 

materials for photovoltaic cells. In order to reduce the usage of toxic organic 

solvents and toxic materials, water-soluble conjugated polymer and less toxic 

bismuth based perovskite have been studied. 

 

In Chapter 4, a general overview of photovoltaic cells was studied to understand 

structure, fabrication methods, characterisation, and principle of photovoltaic cells. 

PEDOT:PSS was investigated to understand how it performs as a HTL in devices, 

conductivity and UV-vis absorption were measured. The conductivity 

measurements were performed on samples processed at various annealing 

temperatures. From the experiment it was evident PEDOT is a highly resistive 

material, so sheet conductivity was very low. It was hard to measure accurately 

conductivity of PEDOT:PSS thin films and they did not show repeatable results 

due to it being highly sensitive to moisture and temperature. Therefore, moisture 

and temperature need to be well controlled during the fabrication of devices. The 

UV-vis absorption measurement was performed for different spin speeds and a 

150 °C annealing temperature. However, UV-vis absorption spectra showed very 

small differences in absorption ability with different spin speed, so the thickness 

has insignificant impact on their transparency. PEDOT:PSS showed some 

absorption ability around 300 nm and but this is not thought likely to interrupt the 

active layer’s ability to absorb incident light. P3HT based PVCs were investigated 

to understand their fabrication methods, and the principles of device processing. 

All the devices were fabricated as ITO/PEDOT:PSS/P3HT:PCBM/(Ca)/Al. P3HT 

showed absorption ability from 500 to 600 nm due to extended conjugation length 

and pi-pi stacking of polymer. The PL peak of P3HT appeared around 720 nm and 

it was quenched by PCBM. The PL intensity of P3HT was reduced as PCBM 

concentration increased. Therefore, electrons and holes are being dissociated by 
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intermolecular charge transfer. The devices showed good performance with 1:0.6 

and 1:0.8 blend ratios of P3HT:PCBM and they showed PCEs over 3%. When a 

cathode layer including Ca was used the performance of devices was reduced 

because Ca is sensitive to oxygen. So if oxygen is not well controlled, Ca is not 

good for the cathode layer. From this experiment, fabrication processes, structures 

and the principles of organic photovoltaic cells were understood. 

 

In Chapter 5 and 6, water-soluble conjugated polyelectrolyte PSFP-DTBTP 

containing sulfonyl-fluorene and dithienyl-benzothiadiazole was synthesised using 

Suzuki cross coupling. The polyelectrolyte had a strong absorption peak at 370 nm, 

but it showed emission at 645 nm due to exciton migration. Although, this 

conjugated polyelectrolyte did not show any photovoltaic abilities as an active 

layer in a device, it improved the PCE of PCDTBT photovoltaic cell when it was 

used as an additive in the HTL because the work function of the HTL was changed. 

When PSFP-DTBTP was mixed with PEDOT:PSS, the work function was lower 

than pristine PEDOT:PSS. Therefore, the improved PCE of the devices is 

attributed to improved charge transfer to anode through the HTL with CPE added. 

In addition, the HTL with CPE added showed lower conductivity but improved 

absorption ability. Because intermolecular charge transfer was occurring from the 

CPE to the PCDTBT in the active layer and the hole transfer into the HTL was 

improved the presence of CPE increased the amount of energy transfer and 

increased device PCE. The HTL with added CPE resulted in a PCE improvement 

of 13% relative to the PCE of the PCDTBT reference device without any CPE. 

 

In Chapter 7, bismuth was introduced to perovskite instead of lead due to its lower 

toxicity. The lattice structure of bismuth perovskite was successfully modelled 

using an ABX3 structure. Bismuth perovskite MABiI3 and MABiI3-xClx showed a 

tetragonal perovskite structure with unit cell parameters a = b = 8.67 Å and c = 

12.41 Å and a = b = 8.29 Å and c = 11.89 Å respectively. However, unreacted MAI 

and bismuth halide were left within the perovskite films due to imperfectly 

matched stoichiometric oxidation states of bismiuth. Bismuth perovskite 

photovoltaic cells showed very low PCE, as seen in other reports published during 

this project. This is because the active layer was not fully covered and many 

unreacted impurities were included on the surface. 

 

New materials such as conjugated polyelectrolyte and bismuth were introduced 

into photovoltaic cell processing in order to improve the sustainability of PVC 
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fabrication. Although the PVCs based on these materials did not always improve 

the PCE of the PVCs in this PhD research, the research demonstrated the 

significant challenge in producing PVCs that do not require materials damaging to 

the environment and human health. It was shown that the sustainability of 

PCDTBT devices can be improved by increasing their PCE by using conjugated 

polyelectrolytes as additives within the hole transport layer. 

 

 

8.2. Further work 

 

In order to further the improvement of the CPE-based devices, different negative 

charged C60 could be applied to avoid aggregation of the CPE and C60. If these 

materials dissolve well together in water, it would be possible to coat them on the 

surface uniformly. Another improvement to the methods reported here is an 

increase in the concentration of acceptor groups (e.g. benzothiadiazole in PSFP-

DTBTP) within the CPE polymer backbone. If the concentration of acceptor 

groups is increased, UV-vis absorption ability of polymer around 600 nm might be 

increased and it would be possible to then apply it as an active layer. In order to 

increase the acceptor groups within the polymer, water-soluble functional side 

groups should be attached to the acceptor groups. 

 

In addition, the CPE additive in the HTL could be easily applied to different active 

layer devices such as PTB7 to compare to PCDTBT. The development of the work 

in Chapter 5 and 6 would undertake an investigation of composition and 

nanostructure of the HTL with added CPE. For example, it is not fully understood 

where exactly the CPE is within the HTL. If it is known where the CPE is in the 

HTL when they are mixed with PEDOT:PSS, it would allow easy control of the 

concentrations of PEDOT, PSS, and CPE to be blended and it would be known 

how exactly the CPE plays a role within the HTL in the devices. Finally, the 

introduction of various functional materials to the polymer backbone and side 

groups of the CPE would facilitate the use of that polymer as a either a HTL, ETL, 

or active layer and also it would be possible to use it with alcohol solvents such as 

methanol and ethanol. 

 

In order to extend the study of the bismuth perovskite precursor in photovoltaic 

cells in Chapter 7, the precursor solution of MAI and bismuth halide could be 

undertaken by investigating suitable blend ratios in order to reduce the amount of 
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unreacted MAI and bismuth halide. In the Chapter 7, DMF was used as solvent for 

the perovskite precursor. However, to improve the surface coverage, changing the 

solvent, changing the annealing time and the temperature, and using different 

coating methods could be investigated. Different solvents such as DMSO would be 

applied as the solvent and it would show different behaviours. In addition 

application of various annealing temperatures and annealing durations for the 

bismuth perovskite films after spin-casting would be helpful to help improve 

absorption ability. An alternative approach to improving surface coverage would 

be to grind the Bi perovskite crystals after mixing the MAI and bismuth halide and 

then coating it on the surface. Finally, further investigation of the effect of 

adjusting the lattice parameters of the perovskite crystals could be interesting 

because it is still novel challenge. Formamidinium iodide (FAI) might be able to 

use instead of MAI. The lattice parameters of bismuth perovksite would be 

changed and it would influence performance of devices. 

 

In order to improve the PCE of bismuth perovskite devices, transition to inverted 

architecture and changing the interface layer from PEDOT:PSS to TiO2 and from 

PCBM to Spiro-MeOTAD might increase the PCE of devices. 
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