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Abstract

In the Scrape-Off Layer (SOL) of magnetic confinement devices, cross-field transport of particles
is dominated by the convection of filamentary plasma structures via self-generated E ×B
velocity fields. This thesis investigates the dynamics of such filaments using three dimensional
simulations to further theoretical understanding of SOL transport. A new 3D SOL simulation
code called STORM3D has been developed using the BOUT++ framework to implement an
isothermal drift-reduced fluid model in a slab geometry. Verification and validation exercises
are documented to demonstrate that the code has been implemented correctly and that the
physical model adequately reproduces experimental observations.

A comprehensive characterisation of how a filament’s initial geometry affects its subsequent
dynamics is provided via a series of 3D simulations of isolated filaments. In particular the size
of a filament in the plane perpendicular to the magnetic field, δ⊥, is shown to have a strong
influence on its motions, as it determines which currents balance the filament’s pressure-driven
diamagnetic currents, which in turn determines its E×B velocity. At small δ⊥, this balance is
predominantly provided by polarisation currents and the filament’s radial velocity is observed
to increase with δ⊥. In contrast, at large δ⊥, parallel currents closing through the target are
found to be dominant, and the radial velocity decreases with δ⊥.

Comparisons are made between 3D simulations and 2D simulations using different parallel
closures; namely the sheath dissipation closure, which neglects parallel gradients, and the
vorticity advection closure, which neglects the influence of parallel currents. The vorticity
advection closure is found not to replicate the 3D perpendicular dynamics well and overestimates
the initial radial velocity of all filaments studied. A more satisfactory comparison is obtained
with the sheath dissipation closure, even in the presence of significant parallel gradients, where
the closure is no longer valid. The vorticity advection closure’s poor performance occurs
because in the 3D case parallel currents closing through the sheath play an important role
in reducing the extent to which polarisation currents are driven. In a conduction-limited or
detached SOL regime however, low plasma temperatures and high neutral densities near the
divertor will produce significantly higher resistivity values in the region than that used in the
aforementioned 3D simulations.

Therefore the effect of increasing the normalised plasma resistivity in the last quarter of
the domain nearest the targets is examined using 3D simulations. Whilst small δ⊥ filaments
are observed to be relatively unaffected by this quantity, large δ⊥ filaments exhibit faster radial
velocities at higher resistivity values due to two mechanisms. Firstly, parallel currents are
reduced meaning that polarisation currents are necessarily enhanced and secondly, a potential
difference forms along the parallel direction so that higher potentials are produced in the
region of the filament for the same amount of current to flow into the sheath. This indicates
that broader SOL profiles could be produced at higher values of normalised resistivity, and
hence at larger reference SOL densities and at colder temperatures.
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Chapter 1

Introduction

1.1 Energy Demand

Global energy consumption is expected to continue to rise dramatically over the course of the
next century, with almost a 50% increase from the 2012 level expected by 2040 [1]. As shown
in Figure 1.1, this increase is expected to be predominantly driven by nations outside the
Organisation for Economic Co-operation and Development (OECD), i.e. developing countries,
as their growing populations prosper and attain a standard of living comparable to that found
in the developed world.

Currently 86% of the energy consumed globally originates from fossil fuels (coal, oil and
natural gas) [2], and it is essential that this fraction is reduced in the future as much as possible
for four key reasons.
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Figure 1.1: Historical and predicted world energy consumption to 2040. OECD refers to the
Organisation for Economic Co-operation and Development. Data obtained from Reference [1].
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1. To reduce air pollution.
Burning fossil fuels releases harmful pollutants into the atmosphere, including nitrogen
oxides, sulphur oxides and small particulates. Such air pollution causes a variety of
serious diseases that reduce standards of living and ultimately lead to loss of life. The
World Health Organisation estimates that in 2012 approximately 8 million premature
deaths were caused globally due to air pollution. Over half of these were attributed
to household or indoor air pollution (as opposed to outdoor). This is in particular a
problem in the developing world, where over 3 billion people cook and heat their homes
using open fires and basic stoves which burn biomass or coal [3, 4].

2. To reduce climate change.
Combustion of fossil fuels also releases vast amounts of carbon dioxide into the atmosphere.
The overwhelming consensus of the scientific community is that this leads to global
warming and climate change through the greenhouse effect [5]. This will have severe
consequences for future generations such as land loss due to rising sea levels, drought
and famine.

3. To provide energy security.
Many countries in the world do not possess fossil fuel resources and rely on those who
do. It is advantageous for such countries to reduce this dependency, to prevent war and
political instability.

4. Fossil fuels are finite resources.
Despite the continued discovery of new oil and gas reserves and the introduction of
new techniques such as fracking to harvest previously unextractable deposits, fossil
fuels are not renewable and will eventually become increasingly scarce and prohibitively
expensive. British Petroleum estimates that the global proven reserves of natural gas
and conventional oil will last for around 50 years at current production levels, whilst coal
will last for 110 years [6]. However, these estimates only include known deposits that
can be currently extracted economically using existing technology and so if all known
resources are included, these estimates extend to around 200 years for oil and gas and
2000 years for coal, according to the International Energy Agency [7].

Shifting the world-wide energy market away from fossil fuels and towards technologies that
do not release carbon dioxide into the atmosphere is a difficult global challenge. Indeed, the
International Energy Agency’s ‘New Policies Scenario’, which assumes successful implementa-
tion of all agreed national policies and announced commitments designed to save energy and
reduce the use of fossil fuels, predicts that by 2035 fossil fuel consumption and carbon dioxide
production will have risen by 33% and 20% respectively from 2010 values [8].

A wide range of low carbon technologies are being currently developed and used, but there
exist few with the genuine potential to fill the void left by (or more importantly compete
economically with) fossil fuels. Many renewables such as wind, wave and tidal power are
inherently intermittent, and require fossil fuel backup for when they are not operational.
Furthermore, these technologies can only generate relatively small quantities of electricity
and therefore cannot be used as a base load energy source. Solar power, whilst also suffering
from intermittency, does have the potential to generate a significant fraction of the world’s
energy requirements, but it is currently very expensive and will require drastic technological
advances in energy storage for this to happen [9]. Biofuels may reduce carbon emissions, but
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their cultivation on a mass scale would significantly increase deforestation and reduce the land
available for food production. For reference, the aforementioned energy sources generated only
5.7% of global electricity in 2013 [10]. Nuclear fission is in principle a viable solution, although
it does have an extremely high capital cost and does produce long-lived radioactive waste that
is difficult to manage. Furthermore, concerns over nuclear proliferation and accidents such as
Chernobyl and Fukushima (despite it in reality having an exceptional safety track record [11])
have made it politically unpopular.

It is clear from this brief discussion that there are a number of critical requirements that
an energy source must fulfil for it to significantly reduce fossil fuel use. The source must be
renewable or sufficiently abundant to avoid future depletion issues. It must have the potential
to satisfy a large fraction of global electricity consumption at a price competitive with fossil
fuels. It is preferable for the source not to be dependent on inherently intermittent processes
or have a large geographical footprint. Lastly, it should not produce any long-lived radioactive
or otherwise hazardous waste. Satisfying all these requirements is difficult, but one such energy
source which may be able to meet each of these critera is nuclear fusion.

1.2 Nuclear Fusion

In a nuclear fusion reaction two or more atomic nuclei fuse together upon collision to form
a heavier nucleus and other by-products. The mass of any nucleus is less than that of its
constituent nucleons (protons and neutrons). Through Einstein’s equation, E = mc2, this ‘loss’
of mass can be interpreted as a binding energy, so called because this is the energy required to
disassemble the nucleus into its constituent parts. For certain fusion reactions, the binding
energy of the resulting nucleus is greater than that of the reactants and the excess energy
is released as the kinetic energy of the products. From Figure 1.2, which plots the average
binding energy per nucleon for a wide variety of nuclei, it can be seen that generally energy is
released for fusion reactions involving two nuclei lighter than iron-56 (Fe56)∗. This mechanism
powers the stars and nuclear fusion has enormous potential to be used to generate electricity
without producing long-lived radioactive waste. The technology to release a vast amount of
fusion energy has existed since the Ivy Mike hydrogen bomb test in 1952, but obtaining a net
energy gain from fusion reactions in a controlled (and non-devastating) fashion has yet to be
achieved.

In order for a fusion reaction to occur, the positively charged nuclei must collide together
with sufficient kinetic energy to overcome the Coulomb repulsion and become close enough
for the strong nuclear force (which has a very short range) to fuse the nuclei together. The
magnitude of this energy barrier is prohibitively high (∼1 MeV), but fortunately quantum
tunnelling allows fusion reactions to occur in a small fraction of collisions which have lower
energies. The likelihood of this happening can be parametrised using a reaction cross section,
σ, which has units of m2 and is a function of the relative velocity of the colliding nuclei, v. If
the reacting particles have distributions of velocities (e.g. Maxwellian distributions), then it is
convenient to calculate the average over both distributions of the product σv. This quantity is
termed the reactivity and is denoted by 〈σv〉. The reaction rate per unit volume, R, can then

∗Energy can also be released from nuclei heavier than iron-56, through a fission reaction where a heavier
nuclei splits apart into lighter nuclei. This process is used to generate electricity in conventional nuclear fission
power stations.
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Figure 1.2: Nuclear binding energy curve. Image reproduced from Wikipedia Commons.

be expressed as

R = n1n2 〈σv〉 , (1.1)

where n1 and n2 are the number densities of the two reacting particle species.
Listed below are a number of fusion reactions of interest for electricity generation.

D + D→ T + p + 4.03 MeV

D + D→ He3 + n + 3.27 MeV

D + T→ He4 + n + 17.6 MeV

D + He3 → He4 + p + 18.3 MeV

Here D = H2 and T=H3 stand for deuterium and tritium nuclei, which are two isotopes of
hydrogen, H. He3 and He4 are the nuclei of two isotopes of helium, whist p and n denote
protons and neutrons respectively. It is worth noting that the energy gain from these reactions
is exceptionally high and approximately one million times higher than that released by the
chemical reactions which occur during the combustion of fossil fuels. The reactivity of each of
these reactions is plotted as a function of temperature in Figure 1.3 (a combined reactivity is
shown for the D-D reactions), and it is clear that the D-T is the most promising reaction in
that its reactivity is at least an order of magnitude larger than that of the other reactions
except at impractically high temperatures. In addition, the energy yield from D-T fusion is
comparable to that produced by D-He3, and considerably more than that released by each of
the D-D reactions. For these reasons, the D-T fusion reaction has by far the most potential to
be used for electricity generation.

Whilst deuterium is a stable element and is easily sourced from sea water, tritium has
a half-life of 12.3 years, and only small quantities occur on earth as a result of interactions
between cosmic rays and nitrogen in the atmosphere, or as a by-product from nuclear fission
reactors (in particular CANDU reactors [13]). Fortunately, it can be bred from lithium (Li),
using the following two fission reactions:

Li6 + n→ T + He4 + 4.8 MeV

Li7 + n→ T + He4 + n− 2.5 MeV
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Figure 1.3: Temperature dependence of the reactivity of key fusion reactions. The graph plots
the sum of the two D-D reactivity values. Data obtained from Reference [12].

Thus a self-sustaining system can in principle be formed in which the neutron released from
a D-T fusion reaction is used to breed tritium for further fusion reactions. Lithium can be
obtained from ore deposits in the earth and also from sea water, although the latter option is
less economically viable. Nevertheless Table 1.1 shows that both deuterium and lithium are
sufficiently abundant to supply the world’s electricity needs for thousands, if not millions of
years [14].

In order to provide the conditions required for fusion, the deuterium and tritium species
need to be held at sufficiently high temperatures and densities for long enough to allow the
reactions to occur. In particular, a temperature of the order of 10 keV or 100 million degrees
Kelvin is required, which is approximately 10 times hotter than the centre of the sun, and this
precludes the use of solid materials to confine the fusion reactants. In stars, this confinement
is provided by gravity, but such strong gravitational fields are not achievable on earth. A
number of different schemes are currently being researched with the ultimate aim of electricity
generation in mind, but arguably the most promising makes use of the fact that at such high
temperatures all atoms become ionised (i.e. split into positively charged nuclei and negatively
charged electrons), and thus matter exists in its fourth state, plasma. Therefore in the presence
of a magnetic field, B, and electric field, E, the ionised particles within the plasma are subject
to the Lorentz force:

F = qs [E + (vs ×B)] . (1.2)

Here qs and vs are respectively the charge and the velocity of the particle. This force means
that whilst the ionised particles may move freely parallel to B, they are constricted in the
perpendicular plane to move in orbits about the magnetic field lines, whose radii are inversely
proportional to the magnitude of B. Consequently, strong magnetic fields with an appropriate
topology can be used to confine a fusion plasma. Such a scheme is referred to as Magnetic
Confinement Fusion.
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Table 1.1: Estimated reserves of the fuels required for D-T fusion, in terms of the number of
years that they would be able to supply the global energy demand. Data reproduced from
Reference [14].

Fusion Resource
Years of use to supply global electricity demand

(at 1995 levels)
Deuterium 150 billion years
Lithium (in ore deposits) 3000 years
Lithium (in sea water) 60 million years

1.3 Magnetic Confinement Fusion

Two theorems provide constraints on the possible magnetic configurations for confining a fusion
plasma. The virial theorem [15] provides a relationship between the total kinetic and potential
energies of a system of particles. A consequence of this is that a plasma will always expand
in the absence of external forces. Therefore a confining magnetic field cannot be entirely self
generated through the dynamics of the ionised particles, and must be in some part produced
via external coils. The second theorem, ‘the hairy ball’ theorem of algebraic topology [16],
states that a sphere’s surface cannot have a non-vanishing continuous tangent vector field. In
layman’s terms this means that it is impossible to comb a hairy ball flat without a creating
a cow lick. This means that all magnetic geometries topologically equivalent to a sphere
necessarily have at least one null point through which a plasma would be able to escape and
therefore cannot be used for confinement.

One topology which does not suffer this limitation is a torus (it is possible to comb the
hair flat on a hairy doughnut) and for this reason the majority of magnetic confinement
devices utilise this geometry, with the magnetic field predominantly acting in the toroidal
direction. However, a purely toroidal field provides little better confinement than if there were
no magnetic field at all. This is because a toroidal magnetic field is necessarily curved and
becomes weaker further away from the centre of the torus. These effects cause the centre
about which the charged particles undergo their orbits to slowly drift across the magnetic field
and thus the particles are not confined. Fortunately this problem can be remedied with the
addition of a poloidal magnetic field component. The resultant magnetic field lines follow a
helical path around the torus, such that each field line resides on one of a set of nested flux
surfaces. As the particles transit along these helical field lines, they drift outwards from the
core when they are on the top of the device, but drift inwards when they are on the bottom of
the device, so that their net displacement from the core averages to zero.

Whilst the toroidal component of the magnetic field is generally produced by passing
currents through a number of external coils that wrap around the plasma, the poloidal
component can be generated in two different ways, corresponding to two classes of device. The
first, a stellarator [17], also generates the poloidal magnetic field externally from the plasma,
either through additional poloidal field coils, or as in more recent machines, by producing
both components of the magnetic field from one set of coils. A schematic diagram of the
latest generation Wendelstein 7-X stellarator design is shown in Figure 1.4. It can be seen
that the coils take highly contorted shapes, which make stellarators very difficult to design,
manufacture and maintain. They are therefore less common and their state of development is
less advanced than that of the second class of device, the tokamak.
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Figure 1.4: Schematic diagram of the Wendelstein 7-X stellarator. The magnetic field coils
are shown in blue, whilst the plasma shape is shown in yellow. A green line shows an
example magnetic field line. Image produced by Max Planck Institute for Physics [CC BY 3.0
(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.

1.4 Tokamaks

In a tokamak∗, the poloidal magnetic field component is generated by a toroidal current
driven through the plasma itself via transformer action. A current is ramped up through a
central solenoid located in the middle of the device, which acts as the primary winding of
the transformer. This generates an increasing magnetic flux through the solenoid and in turn
drives the toroidal current in the plasma, which acts as the secondary winding. A schematic
diagram of a tokamak’s magnetic field coil arrangement and resulting magnetic field is shown
in Figure 1.5. It is noted however that the current through the solenoid cannot be increased
indefinitely, and therefore tokamaks are inherently pulsed devices.

1.4.1 Plasma Heating

Despite the confining presence of magnetic fields, collisions and so called anomalous transport
from turbulence ensure that ionised particles and energy will inevitably diffuse outwards
towards the walls of the tokamak vessel. Furthermore, energy is also lost through a number of
radiative processes. The electrons constantly emit Bremsstrahlung radiation through their
collisions with ions and synchrotron radiation as a result of their gyration about magnetic field
lines, whilst impurities (heavy, non-hydrogen-like particles originating from the vessel walls or
purposefully seeded from outside the device) and neutral deuterium and tritium atoms emit
line radiation.

A constant source of heat is thus required to sustain the plasma temperature. This can be
provided in part by the Ohmic heating that occurs as a convenient side effect of driving the
toroidal plasma current. However, the resistivity of the plasma reduces as the temperature

∗The term tokamak originates from the acronym of the Russian phrase ‘тороидальная камера с магнитными
катушками’, which is phonetically pronounced as ‘toroidal’naya kamera s magnitnymi katushkami’ and
translates as ‘toroidal chamber with magnetic coils’

http://creativecommons.org/licenses/by/3.0
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Figure 1.5: Schematic diagram of the arrangement of magnetic coils and the resulting magnetic
field in a tokamak. Image courtesy of Eurofusion.

increases and this means that there is a limit to the temperature that can be achieved through
this effect alone. Other heating mechanisms are therefore needed to reach the temperatures
required for fusion. One method uses microwaves at the resonant frequency of the electron’s
or ion’s gyro-motion to excite the particles and hence heat the plasma (such microwaves are
also used to drive a toroidal current in the device to extend the duration of a pulse). Further
heating can also be achieved by firing a beam of neutral deuterium atoms at high velocities
into the plasma. Through collisions, the neutral deuterium particles rapidly become ionised
themselves and transfer their energy to the rest of the plasma.

Provided that sufficiently high temperatures and densities are reached, a final source of
heating originates from the fusion reactions themselves. Due to conservation of momentum,
the 17.6 MeV of energy released from a D-T reaction is split such that the resultant He4 ion
(or alpha particle) receives 3.5 MeV whilst the neutron receives 14.1 MeV. Neutrons are not
confined by magnetic fields, and so will leave the plasma with minimal further interaction.
The alpha particles on the other hand are confined, and their 3.5 MeV of energy heats up the
plasma through collisions. It is noted that the exit of the 14.1 MeV neutrons is convenient, as
in a future power plant they will collide and heat up blankets surrounding the vessel. These
blankets will contain lithium so the neutral interactions will breed tritium, whilst the energy
deposited in the blanket as heat will be utilised to power a steam turbine to ultimately generate
electricity.

1.4.2 Power Balance

With the aim of electricity generation in mind, it is essential that a future power plant
produces more fusion power, Pfusion than the external heating power put into the plasma,
Pheating (this excludes the alpha particle heating). The ratio between these two quantities,
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Figure 1.6: Relative progress in fusion research (measured using the fusion triple product),
compared against particle accelerators (measured using particle energy) and computer pro-
cessors (measured using transistor count). Image courtesy of J B Lister, CRPP Lausanne
(crppwww.epfl.ch) and M Greenwald, MIT (www.psfc.mit.edu).

Q = Pfusion/Pheating corresponds to the fusion energy gain factor. It is noted that this factor
does not take into account the efficiency of the heating systems themselves, or indeed the
power required to run any of the other auxiliary systems required to run a tokamak, such as
the magnetic coils, cooling systems and diagnostics. Nevertheless Q provides a representative
measure of the efficiency of the plasma physics aspects of a fusion reactor (the quantity is often
referred to as the physics Q, as opposed to the engineering Q), with Q = 1 corresponding to
break even.

As the fusion power output of the plasma increases, the fraction of the heating provided
by the alpha particles also increases until eventually it completely balances all the energy loss
mechanisms of the plasma. This means that plasma can maintain its temperature solely through
nuclear fusion reactions and the external microwave and neutral beam heating mechanisms
can be turned off. The point at which this occurs is called ignition, by analogy to combustion,
and corresponds to Q =∞.

1.4.3 Progress in Tokamak Research

It is recalled that to allow fusion reactions to occur, the plasma has to be held at a high enough
temperature and density for a sufficiently long period of time. Therefore a figure of merit of
the performance of a fusion reactor is given by the fusion triple product, niTiτE . Here ni and
Ti respectively correspond to the peak values of the number density and the temperature of
the ions at the centre of the plasma, whilst τE is the energy confinement time, a representative
measure of the time scale at which energy is lost from the plasma. It can be shown [18] that
to achieve ignition, the triple product must satisfy

niTiτE > 5× 1021 m-3 s keV. (1.3)

crppwww.epfl.ch
www.psfc.mit.edu
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As shown by Figure 1.6, remarkable advancements have been made in tokamak fusion research
over the last five decades, with the world record fusion triple product approximately doubling
every 1.8 years. The rate of progress exceeds that of particle accelerators and the much
vaunted Moore’s law for the development of computer processors. This rapid development has
in part been driven by a move to larger devices, as this effectively increases the confinement
time because the particles and energy have to travel further from the centre of the plasma
to become unconfined. However, break even is yet to be attained∗, and the current world
record fusion energy gain factor is Q ≈ 0.7. This was achieved in 1997 on the Joint European
Torus (JET) [21] in Culham, Oxfordshire and corresponded to 16MW of fusion power being
produced, also a world record [22].

1.4.4 ITER and DEMO

ITER [23, 24] (Latin for ‘the way’†) is the next generation tokamak fusion reactor that is
currently being constructed in Cadarache in the south of France. It will be the largest tokamak
built to date, with a major radius of 6.2 m and a plasma volume of 840 m3 (for comparison, the
current largest tokamak, JET, has a major radius of 2.98 m and a plasma volume of 100 m3).
The project is the result of a vast international collaboration involving China, the European
Union, India, Japan, South Korea, Russia and the United States. It is estimated that its
construction will cost in excess of $14 billion USD, and it is expected to become operational in
2025, with D-T experiments beginning at a later date [25]. The key aim of the ITER project
is to achieve Q = 10, corresponding to 500 MW of fusion power, for a pulse length of more
than 400 seconds. It is also hoped that it will achieve ignition for an albeit shorter period of
time. In addition, the machine will be used to test and develop various auxiliary systems that
will be required in a future power plant, such as the tritium breeding blankets and remote
handling systems [26].

Assuming ITER to be successful, the next stage in fusion research will be to build a
demonstration fusion power plant, called DEMO, although the design, scope and timeline of
such a device are yet to be agreed. Indeed, it is not clear whether DEMO will be one single
machine, or whether each of the major parties involved in ITER will build their own separate
machine. In a report produced by the European Fusion Development Agreement [27], outlining
a path to the realisation of fusion energy, it was suggested that DEMO may be built and
operational by 2050. However this is quite optimistic considering funding would likely have to
be secured before ITER achieves its scientific objectives.

As shall become apparent in the following section, interactions between the edge of the
plasma and materials surfaces of the device are a key issue for future devices such as ITER
and DEMO.

1.5 The Scrape-Off Layer

As previously discussed, collisions and anomalous transport from turbulence ensure that ionised
particles will inevitably diffuse outwards towards the walls of the tokamak vessel, despite the

∗Conditions have been reached in a solely deuterium plasma in the JT-60 tokamak [19] in Japan that would
equate to a Q = 1.2 in a deuterium-tritium plasma [20].

†ITER was originally an acronym of International Thermonuclear Experimental Reactor, but this was
dropped because it was felt that the word ‘thermonuclear’ has negative connotations which may reduce public
support for the project.
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confining presence of magnetic fields. The interactions between the plasma and the vessel walls
result in the erosion of the surface, whose particles (non hydrogen ions from the wall materials
such as carbon, beryllium or tungsten) can then be transported into the core of the plasma,
where they radiate energy strongly. This can reduce the temperature of the plasma, and
hence the performance of the tokamak. Evidently it is desirable to reduce the plasma-surface
interactions as much as possible.

1.5.1 Limiters

One such method of reducing plasma surface interaction is to add a protruding structure to
the wall, called a limiter, to produce a limited plasma. The schematic poloidal cross section in
Figure 1.7 illustrates the distinct regions of plasma created by using a configuration in which
a limiter is extruded in the toroidal direction. The dashed concentric circles represent the
magnetic flux surfaces, on which the helical magnetic field lines lie. In the core plasma region,
the magnetic field lines are termed closed, because they do not come into contact with the
limiter and close back upon themselves. Further radially out from the core plasma, there is a
region in which the magnetic field lines do come into contact with the limiter, and so they are
described as open.

The particle’s motion parallel to the magnetic field is generally collision-less and as such,
particles have very fast parallel velocities of the order of the sound speed along magnetic field
lines. In contrast, their motion perpendicular to the magnetic field relies on collisions and
diffusive action, and is typically many orders of magnitude slower than the parallel velocity.
Therefore, once a particle diffuses across the last closed flux surface, it will hit the limiter
before it reaches the outer wall. Thus, a thin layer of plasma surrounds the core called
the Scrape-Off Layer (SOL) and a rarefied and weakly ionised gas exists further out. This
allows the plasma-surface interaction to be predominantly localised at the limiter, rather
than the entire surface of the vessel, and results in a cleaner plasma, with fewer impurities
(non hydrogen-like ions) from the wall transported to the core. The plasma in the SOL is
typically very turbulent due to the presence of steep gradients and a variety of instabilities.
Ultimately the width of the SOL is determined by the relative magnitudes of plasma transport
perpendicular and parallel to the magnetic field within this turbulence. It is noted that Figure
1.7 shows a toroidal limiter, but a poloidal limiter (consisting of a ring in the poloidal plane)
would produce an equivalent effect.

1.5.2 Divertors

Although the use of limiters does improve the performance of tokamaks to an extent, impurities
from the limiter-plasma interaction are still sufficient to have a significantly adverse effect.
This is because limiters are generally located relatively near to the core of the plasma, and so
impurities can still easily diffuse inwards. A more sophisticated configuration is therefore used
in advanced tokamaks to produce a diverted plasma, in which the plasma surface interaction is
located further way from the core of the plasma, in a divertor region. Figure 1.8 illustrates
how a such a diverted plasma is formed. It is recalled that the plasma carries a toroidal
current, which is used to generate the poloidal magnetic field. By passing a second current
in the same direction as the plasma current through a coil beneath the core plasma, a null
or X-point is formed in the poloidal magnetic field between the two currents. The SOL then
extends below and away from the core plasma, where it is directed onto the remote target
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Figure 1.7: Schematic poloidal cross section of a toroidally limited tokamak plasma.

plates. The magnetic flux surface passing through the X-point is termed the separatrix, whilst
the volume directly below the X-point is referred to as the private flux region. In addition, a
double null configuration can be produced by passing an additional current above the core
plasma to produce a second X-point and hence a divertor region at the top of the plasma.

A divertor results in a substantially cleaner core plasma that is relatively free of impurities.
Furthermore a lower heating power threshold is required in a diverted configuration (compared
to a solely limited tokamak) to achieve a distinct regime of operation in which the confinement
becomes significantly enhanced as strongly sheared flows develop in the edge of the core which
suppress turbulence in the region [28]. Typically the energy confinement time, τE , is increased
by a factor or two or larger in this High confinement mode, or H-mode, compared to the
alternative Low confinement mode or L-mode [29, 30]. This facilitates higher densities and
temperatures to be reached in the core of the plasma and hence allows more fusion power to
be produced. It is therefore planned that ITER will be operated by default in H-mode to
achieve its fusion targets.

1.5.3 SOL Operating Regimes

An important parameter in SOL physics is the SOL electron collisionality,

ν∗ =
`‖
λe
, (1.4)

which is defined as the ratio between the parallel length scale of the SOL (typically the mid-
plane to target connection length), `‖, and the electron mean free path, λe. This parameter
provides an estimate of the number of collisions an electron will experience as it travels from the
outboard mid-plane to the divertor or limiter targets. It has a strong effect on the behaviour
of the SOL, and three broad operating regimes exist depending on its value [31, 32].

Sheath-Limited Regime

At low collisionality values (ν∗ < 10) the SOL is described as being in the sheath-limited
regime. Heat conduction is very efficient parallel to the magnetic field lines and so the average
temperature and density profiles are roughly uniform all along the SOL from target to target.
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Figure 1.8: Schematic poloidal cross section of a diverted tokamak plasma.

Conduction-Limited Regime

At intermediate collisionality values (10 < ν∗ < 85) the SOL lies in the conduction-limited
regime. The collisionality is sufficient to reduce heat conduction and so temperature gradients
form along the SOL, such that the plasma temperature at the target is lower than that further
upstream. Once the temperature at the target drops below ∼ 10 eV, a positive feedback
effect occurs, in that losses from charge exchange processes drastically increase, which acts
to reduce the temperature at the target further. This reduction in temperature from the
mid-plane to the target is compensated by an increase in the density, so that the pressure
remains approximately constant along field lines.

Detached Regime

At high collisionality values (ν∗ > 85), the SOL enters a detached regime [33]. Here, the
collisionality of the SOL is large enough that the plasma temperature at the target drops
below ∼ 5 eV. At such temperatures volume recombination becomes strong and a cloud of
neutrals forms in front of the target surfaces, forming a protective shield from the plasma.
Unlike the other operating regimes, the plasma pressure is not constant along field lines, as
both the plasma temperature and density decrease near to the target. This phenomenon is
referred to as detachment.

1.5.4 The Heat Exhaust Problem

Although a divertor configuration improves the performance of the core plasma by allowing
access to H-mode, it also introduces a new problem in that the thin width of the SOL
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corresponds to extremely high heat and particle fluxes along the magnetic field lines and thus
onto the divertor surfaces. The parallel heat flux onto the divertor is an area of particular
concern for future reactors such as ITER and DEMO because as the fusion power of a device
increases, the power deposited into the SOL also increases, leading to higher parallel heat
fluxes in the SOL. This is exacerbated because the SOL heat flux width, λq, appears to be
invariant to the major radius of the machine and decreases as the toroidal magnetic field
increases [34]. Therefore as these future machines become larger and possess stronger magnetic
fields to produce more fusion power, λq is expected to decrease, which will increase the parallel
heat fluxes even further. For reference, present day machines have a λq between 1 and 10 mm
and steady state parallel heat fluxes at the outboard mid-plane (see Figure 1.8) can reach
500 MWm-2, while pessimistic estimates for these quantities in ITER are λq ≈ 1mm and ∼1
GWm-2 [34, 35]. In addition to this SOL loading, the divertor region will also be subject to a
high energy neutron flux from fusion reactions in the core.

The current heat flux engineering limits on actively cooled structures are approximately
10 MWm-2 perpendicular to the surface in steady state or up to 20 MWm-2 during transient
events [36]. Divertor damage is unacceptable for ITER and future power plants because the
radioactivity within such machines will prevent human access for maintenance, and also simply
because replacing a divertor will prove to be very expensive. Furthermore future power plants
will need to be continuously operational for as long as possible to be economically viable.
Therefore strategies must be employed to reduce the parallel heat flux before it reaches the
divertor surfaces to prevent them from melting. In current devices, the divertor heat fluxes are
lowered by increasing the surface area of the divertor targets onto which the heat is deposited.
This is accomplished by expanding the magnetic flux in the region of the divertor targets and
inclining the divertor surfaces to be at a small angle to the impinging magnetic field. Such
schemes will also be employed in ITER, but will be insufficient on their own to reduce divertor
heat loading to within the engineering limits.

One means to further protect the divertor is to force the SOL to be in the detached regime
by increasing ν∗. Since ν∗ is proportional to the SOL density, this can be achieved in practice
by raising the line-averaged density of the plasma through increased fuelling levels. In addition,
impurities can be seeded into the divertor to enhance radiative cooling and thus lower the
plasma temperature at the divertor target plates such that detachment occurs [31]. Essentially,
divertor detachment reduces the heat fluxes to the divertor surfaces by forcing the plasma to
emit radiation upstream of the target, which deposits the energy over a wider surface area,
whilst also reducing the plasma density, temperature and thus the heat load at the target [18].
Unfortunately, when detachment occurs completely, a large amount of neutrals can reach the
core and ultimately cause violent plasma disruptions. Therefore the operating scenario for
ITER is a partially detached plasma regime, which is expected to provide adequate protection
for the divertor [36] without endangering the overall stability of the plasma.

However, even a fully detached plasma will be insufficient to handle the divertor heat loads
anticipated for DEMO and future power plants, which will be approximately five times larger
than in ITER. As concluded in an EFDA report outlining a path to fusion energy, “A reliable
solution to the problem of heat exhaust is probably the main challenge towards the realisation
of magnetic confinement fusion” [27].
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1.5.5 Other SOL Issues

In addition to the heat exhaust problem, high particle fluxes to plasma-facing components are
another area of concern for future devices. Due to the presence of a very thin electric field
called a sheath at the interface between a plasma and a solid surface, ions are accelerated
into material surfaces at high velocities. The subsequent cascade of collisions can result in
sputtering of the material surface, i.e. the material’s atoms are ejected from the surface into
the plasma. In the presence of high particle fluxes, significant erosion of the plasma-facing
components can occur through this process, whilst the sputtered atoms will act as impurities
and degrade the performance of the core. Furthermore, the incoming ions can also become
embedded within the material surface, which is an issue because ITER will only be licensed to
contain 1 kg of tritium within the vessel for safety reasons [37]. Therefore it is important to
prevent a significant proportion of this allowance being taken up by tritium being retained
within the plasma-facing components.

High particle fluxes are primarily an issue for the divertor, again due to the thin width of
the SOL. However, the SOL’s density width, λn, is generally wider than its heat flux width,
and under certain operating conditions the perpendicular density transport in the SOL can
increase to significantly broaden this width [38, 39]. This means that plasma interactions with
the main vessel wall (also known as the first wall) and any attached antennae may become
a critical issue in future devices. Despite initial concern when such broadening was first
discovered [36], this issue is not expected to limit the operational lifetime of ITER, although
concerns persist for power plant scale devices such as DEMO.

1.5.6 SOL Filaments

As discussed previously, the width of the SOL in terms of density or heat flux is ultimately
determined by the balance between parallel and perpendicular transport in the turbulence
of the SOL. A clear understanding of SOL transport is therefore required to make accurate
predictions of the fluxes to plasma-facing components in future power plant scale reactor
designs.

In recent years, it has become clear that perpendicular transport of particles [40] (and to a
lesser extent, heat [41]) in the SOL is dominated by the radial outwards motion of coherent
plasma structures that are significantly more dense and hot than their surrounding plasma, with
peak fluctuations typically of the order of the background [42]. These structures are aligned to
the equilibrium magnetic field, are strongly localised in the drift-plane perpendicular to it and
hence are referred to as filaments (or blobs due to their appearance in the perpendicular plane).
Filaments are a universal phenomenon of open field line regions of magnetic confinement
devices; aside from tokamaks they have been observed in stellerators, reversed field pinches
and linear devices [43–45]. A 3D visualisation of the field-aligned nature of filaments in the
Mega Ampere Spherical Tokamak (MAST) is provided by Figure 1.9.

Such filaments are the subject of this thesis, with particular emphasis placed on the mech-
anism of their propagation, which has been studied theoretically and using three dimensional
simulations to further the understanding of SOL transport.
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Figure 3. Full view images of the MAST plasma. Shown from left to right are (a) the original,
(b) calculated background and (c) subtracted images. Note that in (c) gamma correction and
amplification are also used for illustration only.

3.2. Light intensity comparison

Similar to L-mode and ELM filaments, inter-ELM filaments are seen to be aligned with the
local magnetic field [8]. As a result, the locations of these filaments can be obtained by
mapping three-dimensional (3D) field lines, generated from the magnetic equilibrium [27]
in 1 cm steps outside the LCFS, onto 2D images taking into account camera focal length
and distortion (see [19] and references therein). Note that tracking is made possible because
changes in the radius of the field lines from the LCFS have an observable effect on the field-
line pitch owing to the spherical tokamak geometry. Due to axisymmetry of the magnetic
field, mapped field lines can be rotated toroidally at any given radius or moved radially for
a fixed toroidal angle. The radial and toroidal positions of individual filaments can then be
manually determined by choosing the best fit between the mapped field line and the observed
filament. Using this technique, toroidal positions can be determined to within±1◦ and the radial
accuracy is ±1 cm.

In addition to the manual tracking described above, a semi-automated mode of analysis is
also adopted in which a radial position is fixed a priori and the toroidal locations are determined.
This method is particularly useful for inter-ELM filaments since measurements of their spatio-
temporal evolution (as shown in section 5) show that the majority of filaments remain near
the LCFS. As a result, the radial position is fixed at the LCFS, and field lines are mapped in
0.5◦ steps over a toroidal range !φ. At each location the average intensity along the field line
(Ī ) is measured and stored. The toroidal locations of the filaments are subsequently obtained
by unfolding the total intensities, Iφ =

∑i=!φ
i=0 Ī (!RLCFS, i), corresponding to all mapped

field lines, and applying suitable peak detection algorithms. The assumption of a fixed radial
position introduces a further uncertainty ∼2◦ in the toroidal angle for each 1 cm deviation in
the radial position.

An example of this technique is illustrated in figure 4: filaments in L-mode, inter-ELM
and ELM phases, covering the toroidal angle !φ ∼ 110◦ on the near side to the camera,
are localized, and their light intensities are measured and compared. Note that light intensity
measurements of field lines, when mapping at half-degree steps, are restricted to the centre
column region only (marked by the dashed white box in figure 4(a)), in order to eliminate any
contributions to the light intensity from either background filaments or gas puffing (from the
centre column midplane feed). Shown are (a)–(c) full view images of inter-ELM, L-mode
and ELM phases from the same discharge, and their corresponding traces of light intensity as
a function of the scanned toroidal angle, and (d) the three intensity traces normalized to the
peak ELM amplitude. As can be seen, despite the initial assumption of a fixed radial position,
filaments of each type are successfully localized using this technique; these have been overlaid

5

Figure 1.9: Visualisation of filaments in MAST by background subtraction of Dα emission
camera data. Shown from left to right are the (a) original Dα emission image, (b) calculated
background and (c) image with the background subtracted. Image reproduced with permission
from Reference [46]. © IOP Publishing. All rights reserved.

1.6 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 provides a thorough review of
experimental measurements of SOL filaments and of existing theoretical and computational
studies into their dynamics. Chapter 3 provides a derivation of the 3D simulation model
utilised in this work and also of a number of 2D models which are commonly used in the
literature. Chapter 4 then documents the numerical implementation of these models in the
STORM simulation code, which has been developed to carry out the research presented in
the subsequent chapters. However, verifying that a simulation code has been implemented
correctly and to the expected order of accuracy is not trivial, whilst validating that the model
itself provides an adequate representation of what is observed in experiments is also challenging.
Chapter 5 thus presents a number of verification and validation exercises which have been
completed to provide confidence in the STORM simulation code and model, with respect
to these issues. In particular the code has been tested using the method of manufactured
solutions and compared against experimental results from TORPEX device. Chapter 6 then
provides a series of 3D STORM simulations using MAST relevant parameters, which provide
a comprehensive characterisation of how a filament’s initial geometry affects its subsequent
motions. In addition, comparisons are also made between 3D and 2D simulations, to clearly
demonstrate the different dynamics produced. As shall be established, currents travelling
parallel to the magnetic field in the SOL play an important role in filament propagation. The
effect of plasma resistivity is therefore examined in Chapter 7. This chapter also investigates the
influence of key input parameters to the simulation model, such as the reference temperature,
density and magnetic field of the SOL. Lastly, Chapter 8 summarises the main conclusions of
this work and identifies opportunities for future research.



Chapter 2

Literature Review

2.1 Introduction

Filaments are coherent plasma structures that are observed in edge turbulence in a wide
variety of magnetic confinement devices, including tokamaks, stellarators, reversed field pinches
and linear plasma devices [43, 44]. A number of recent works have provided reviews of the
experimental evidence for filaments [42] and of the current state of theory and simulation of
their dynamics and contribution to SOL transport [47, 48]. The most comprehensive review on
the subject however is provided by Reference [45], which presents and compares both aspects.
In this thesis, a filament is defined as a coherent plasma structure which satisfies the following
three properties:

1. It has a monopole (single-peaked) density distribution with a peak value much higher
than the surrounding root mean squared fluctuations of the background plasma (typically
greater than 2 times higher).

2. It is aligned parallel to the magnetic field, B, and its variation along B is much weaker
than in the transverse direction.

3. It has a dominant E×B velocity component in the direction of a charge polarising force
and associated electrostatic potential and vorticity fields, which each can be decomposed
to have components which take the form of dipole structures in the direction transverse
to its propagation.

This definition is a slightly relaxed version of that given in Reference [45] and is sufficiently
broad to encompass the objects that are found in experiments, theory and simulations. A
number of alternative terms to filaments have also been used to describe such objects in the
literature, the most common of which being blobs, due to their density structure in the plane
perpendicular to the magnetic field. In this work however, the term filament will be used
throughout. Accompanying the concept of a filament is that of a hole, corresponding to a
coherent field-aligned structure with a lower density than its surrounding background plasma.
A 3D visualisation of the field-aligned nature of filaments in MAST is provided by Figure 1.9,
whilst Figure 2.1 shows the structure of filaments in the plane perpendicular to the magnetic
field in NSTX.

In tokamaks and stellarators, filaments are most likely generated in the edge of the core as
a result of non-linear saturation of turbulence and dominant edge instabilities [42, 45]. This
saturation process is not well understood by the community and as such, a detailed discussion
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Figure 2.1: Filament creation and propagation in NSTX, visualised through a Gas Puff Imaging
(GPI) diagnostic. The images show a 25cm×25cm region near the separatrix (shown using a
yellow line) at the outboard mid-plane. The time between frames is 7.5µs. Image reproduced
with permission from Reference [54]. Copyright (2011), Elsevier.

of which is beyond the scope of this review. Nevertheless it is pertinent to note that filaments
have been found to be produced preferentially at the outboard mid-plane [49, 50], which is
consistent with the theoretical prediction that curvature driven modes are most unstable on
the Low Field Side (LFS) where the curvature is most unfavourable (the locations of the
outboard mid-lane and LFS are shown in Figure 1.8). Once born, filaments are observed to
travel across magnetic field lines radially outwards from the core plasma towards the main
chamber walls.

Whilst evidence of filaments was present in early plasma confinement experiments in that
Langmuir probe measurements of edge turbulence displayed then unexplained intermittent
high-amplitude fluctuations, the first clear experimental observations of filaments as coherent
structures were made over 30 years ago using high speed cameras [51] and a few years later
using 2D probe arrays [52]. However, the important role that filaments play in edge transport
was not realised by the magnetic confinement community for some years, and an incorrect
consensus held that perpendicular particle transport in the edge could be adequately modelled
as a diffusive process, as it is in the core or in many neutral fluid turbulent flows.

A reassessment of this view was prompted just before the turn of the century by the
discovery of the “main chamber recycling regime” [38] in Alcator C-Mod, which occurs when
the line averaged density is sufficiently high. In this regime, it was demonstrated that the
majority of the particles entering the SOL from the core interacted with the main chamber
walls, rather the divertor plates, contradicting the classical SOL picture of parallel transport
to the divertor dominating over radial transport to the main chamber walls. This challenged
the diffusive transport paradigm because an unphysically large effective diffusion coefficient,
Deff , far in excess of that given by Bohm diffusion (which characterises large and violent
magneto-hydrodynamical events) and that strongly increased with radial position, would be
required to overcome the fast parallel transport along field lines. The results also caused
significant concern for the ITER design, which had assumed negligible plasma interactions
with the main chamber wall. In the same publication, it was suggested that filaments may
be the cause of this non-diffusive transport, by hypothesising ‘a rapid transport of unstable
flux tubes towards the wall surfaces’. This idea was more explicitly expressed in a review
article on edge physics issues published in the same year [53], which proposed that ‘plasma
filaments (strips, with extension along magnetic field less than qπR) moving in a vacuum are
not confined at outer side of torus and quickly propagate all the way to the wall’.

The basic mechanism by which filaments move radially outwards was proposed a few years
later by Krasheninnikov [55]. Assuming filaments to be produced in the SOL by turbulent
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processes around the Last Closed Flux Surface (LCFS), it was suggested that curvature and
∇B drifts on the LFS of toroidal machines lead to a polarisation of charge and thus the
formation of an electric field in the bi-normal direction (perpendicular to both the magnetic
field and radial direction), within a filament. Through E × B motions, this electric field
corresponds to the filament possessing a radial velocity that transports it outwards towards
the main chamber walls. An analytical solution was derived using a simplified model of a
filament density perturbation propagating in vacuum, which showed that filaments could
travel as coherent structures with velocities of the order of 100-1000 ms-1 (corresponding to
a Mach number of ∼ 0.02), which was in rough agreement with then available experimental
measurements. A follow-up paper [56] extended the model to include the transport of heat
and vorticity, and explicitly demonstrated that the motions of relatively isolated filaments
travelling in the far SOL could explain experimental measurements of relatively flat SOL
density profiles and increasing Deff with radial position [38, 39, 41].

Considering filaments, propelled as proposed by Krasheninnikov, to be the basic entity
for cross-field particle transport in the SOL, provides an explanation for a number of other
important experimental observations in addition to those outlined above. It naturally incor-
porates the intermittent and non-Gaussian statistical nature of probe measurements of SOL
and edge turbulence, which are described in Section 2.2. It also provides a mechanism for
the transport of impurities towards the core, by considering the propagation of holes, whose
charge polarisation and hence direction of motion will be in the opposite direction to that of
filaments [57]. Furthermore, it offers a possible explanation for the two-scale structure found
in many experimental density SOL profiles, where an exponential decay is found near the
LCFS, followed by an outer shoulder region in which the profiles are relatively flat. Whilst the
flat profiles in the far SOL are caused by the motions of intermittent isolated filaments, the
turbulence around the LCFS is characterised by smaller amplitude fluctuations with respect
to the effective background plasma, which may be the origin of the exponential decay as the
region can be more closely approximated as a diffusive process. [47].

Prompted by the C-Mod results, an extensive body of experimental and theoretical research
has been carried out over the last fifteen years or so to further the understanding of edge
turbulence and transport. Probe diagnostics have clarified and characterised the intermittent
and filament-like structure of turbulence in the SOL and the dominant role that filaments
play in particle transport in the region has been explicitly demonstrated, with measurements
indicating that they can account for significant fractions (35-75%) of the perpendicular particle
flux in the scrape-off layers of a variety of different machines including DIII-D [40, 58],
TEXTOR [59], HL-2A [60] and MAST [61]. In addition the structure and motions of individual
filaments have also been measured using 2D probe arrays and high speed cameras (Figures 1.9
and 2.1). Simultaneously, the theory of propagation of isolated filaments has been developed
by expanding the original Krasheninnikov model with additional physics. 2D and, more
recently, 3D simulations have been used both to verify analytical results and to provide
detailed representations of the evolution of filaments using different models. In addition,
2D turbulence simulations that generate filamentary transport have had much success in
reproducing the statistical behaviour observed in experiments.

This introduction has focused on the role that filaments play in perpendicular particle
transport in the SOL because it is the reason that filaments first became of significant interest
to the fusion community, and the evidence for their large contribution is comprehensive.
Determining the cross-field SOL particle flux is an important issue, as plasma-material
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interactions with main chamber walls and antennae are undesirable in future devices such as
ITER. Such interactions may limit the lifetime of devices due to significant erosion of the first
wall through sputtering, or because tritium retention by the wall may cause the machine to
exceed its tritium inventory limit. However there is also evidence that filaments can transport
heat in addition to particles [40, 58, 62–64], and may to some extent advantageously spread
the heat load on the divertor, which is another concern for future generation fusion devices.
Studies have also indicated that increased convective heat transport near the LCFS may be
correlated with the density limit in some tokamaks [41, 65, 66]. The transfer of momentum by
filaments can also have important consequences, with theory and simulations suggesting it can
affect the edge velocity shear layer and thus core confinement, in that it provides a means by
which the edge plasma can spin up without external influence [67, 68].

A final reason why filament studies may be of interest to the community is that the
saturated non-linear phase of Edge Localised Modes (ELMS) [69] produces filaments which
also travel into the far SOL. Whilst ELM filaments differ from L-mode and inter-ELM H-mode
filaments in that they are hotter, more dense, have a larger perpendicular size and can carry
significantly more parallel current [70, 71], their structure is similar and they share a common
propagation mechanism into the far SOL. Therefore insight into ELMs can be gained from an
increased understanding of filamentary dynamics.

The remainder of this chapter seeks to provide an overview of the advances made in the
understanding of filament physics over recent years, with particular emphasis on theoretical and
computational studies of the propagation of non-ELM filaments, as this is most relevant to the
research presented in this thesis. Section 2.2 begins by presenting experimental measurements
of filaments to provide a detailed characterisation of their properties and behaviours. Next,
Section 2.3 describes in detail the basic mechanism by which filaments propagate, and outlines
the progress that has been made in the theory and simulation of filament dynamics. A
brief review of the comparisons that have been made between theoretical predictions and
experimental measurements is then given in Section 2.4, before Section 2.5 discusses why
further filament studies are necessary and summarises the chapter as a whole.

2.2 Experimental Measurements of Filaments

The ubiquitous nature of filaments within edge and SOL turbulence in magnetic confinement
devices is illustrated by Tables I and II of Reference [45], which list approximately 100
publications from 40 devices on which explicit measurements of filaments have been made.
These references cover key tokamaks such as JET [72–76], D-IIID [40, 58, 62–64, 77], ASDEX-U
[78–81], NSTX [54, 82–87], MAST [46, 61, 70, 88–91], TCV [92–96] and C-Mod [49, 97–102],
stellarators such as LHD [103–105] and W7-AS [106, 107], reversed field pinches such as RFX
[108–111], linear machines such as LAPD [112] and Vineta [113], and basic toroidal devices
such as TORPEX [114–124]. This section will review filament measurement techniques and
the common properties of filaments observed in these experiments, and will provide a thorough
characterisation of their structure and behaviour.
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Figure 1. Schematic view of the Langmuir probe array in the JET
tokamak.

transport has been investigated experimentally in TCV [5] and
JET tokamaks [6]. Recent experimental results from a simple
magnetized torus shed some light on the mechanism of blob
formation [7]. These preliminary observations are generally
supported by the theories and simulations [8–11], although
differing in detail.

In this letter, first experimental evidence from a fusion
device showing the connection between blob/hole formation
and zonal-flow generation is presented. The term zonal flow
used in this paper only refers to the zero-frequency component
of the zonally averaged E × B flows. The high-frequency
branches of the zonal flows, namely the geodesic acoustic
modes (GAMs), are not taken into account in this contribution.
Holes as well as blobs are observed to be born in the edge
shear layer (ESL) where zonal flows [12] shear off meso-
scale coherent structures, leading to disconnection of positive
and negative pressure perturbations. The interchange drive
causes the newly formed coherent objects to move: blobs move
downhill (outwards) and holes move uphill (inwards), so that
accumulated regions of blobs and holes are formed on each
side of the shear layer. Only those big (with radial extent
λr ! δr , where δr is ESL width) and stable (with structure
lifetime τlife ! τshear ≡ λθ/(λr∂rVθ ) [13], where τshear is the
shear decorrelation time, λθ is the structure poloidal size or
wavelength and ∂rVθ is the poloidal-flow shear rate) structures
can stick out of the ESL, be sheared off and become blobs.
Small structures die before escaping from the shear region
because of their short lifetime. Eventually, a blob is peeled off
from the bulk plasma, moves into the SOL and leaves a hole
behind. The newly formed blobs carry azimuthal momentum
up the gradient of the azimuthal flow while moving outwards.
During this process zonal flows are generated through the
tilting mechanism [14] mainly associated with the meso-scale
coherent structures. Energy is inverse cascaded from these
structures to the zonal flows via turbulent Reynolds stress
(&Re ≡ ⟨vrvθ ⟩) [12], resulting in nonlinear saturation of edge
turbulence and suppression of meso-scale fluctuations. In
this way, a spontaneous feedback system is established at the
plasma edge [15]. This system controls blob/hole formation
as well as zonal-flow generation.

Experiments were carried out in the boundary plasma
of the Joint European Torus (JET) tokamak using a fast
reciprocating Langmuir probe array located on the low field
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Figure 2. Raw signals of ion saturation current Is: (a) intermittent
positive pulses are prevailing in the SOL 'r ∼ 28 mm and (b)
intermittent negative pulses are prevailing in the edge
'r ∼ −18 mm.

side upper part of the device. This probe array, as shown in
figure 1, allows the simultaneous measurement of the &Re,
density and electric field fluctuations and turbulent particle
flux [16]. Four pins (B, A, J and H in figure 1), poloidally
separated by ∼5 mm, were used to measure fluctuations of
the poloidal electric field Eθ and radial E × B fluctuating
velocity vr = Eθ/B, as deduced from the difference in the
floating potential signals φf . J and A pins, radially separated
by ∼8 mm, were used to measure the radial component of the
fluctuating electric field Er and poloidal E × B fluctuating
velocity vθ = Er/B. From potential measurements at B
and A positions an estimation of the poloidal component of
electric field Eθ1 can be obtained. Another estimate Eθ2 can
be obtained from J and H measurements. Finally, the poloidal
component of the electric field is computed as the mean value
of these two estimations Eθ = 1

2 (Eθ1 + Eθ2). In this way the
radial and poloidal components of the electric field are both
estimated at the same position. The electrostatic Reynolds
stress ⟨vrvθ ⟩ is calculated from these electric field estimates.
C and G pins were used to measure ion saturation current signal
Is. Radial particle flux is estimated from )r ∝ ⟨Isvr⟩.

Measurements were performed in ohmic deuterium
plasmas in the limiter configuration, with a magnetic field
B ∼ 2.4 T at the axis R0 = 2.95 m, plasma current Ip ∼
2.2 MA and central-line averaged density n̄ ∼ 2 × 1019 m−3.
The electron density, temperature and safety factor at the
last closed flux surface (LCFS, rLCFS = 1.04 m) was n ∼
5 × 1018 m−3, Te ∼ 40 eV and q ∼ 3.95, respectively. The
LCFS was in contact with the high-field-side limiter. The
near SOL (0 < 'r ≡ r − rLCFS < 3 cm) has long parallel
connection length L∥ ∼ πqR0 and moderate collisionality
ν∗

ei ≡ L∥/λei > 10, where λei is the mean free path of electrons.
In far SOL ('r > 3 cm) plasma is in the shadow region of the
ICRF-antenna limiter.

2

Figure 2.2: Example raw Langmuir probe signals of ion saturation current, Is, from JET in
the SOL (top plot) and edge of the core (bottom plot). Positive fluctuations with respect to
the mean predominate in the SOL, whilst negative fluctuations predominate in the edge of the
core. Image reproduced with permission from Reference [75]. Copyright (2009), IAEA.

2.2.1 Langmuir Probe Measurements

Statistical Evidence

A Langmuir probe is a diagnostic device that can be used to measure the density, temperature
and electrostatic potential of a plasma. It consists of one or more electrodes which are inserted
directly into the plasma. In one operating regime, the probes are biased to a sufficiently
negative potential, such that all electrons (or negative ions) are repelled from the probe. The
current the probe draws from the plasma is then solely due to the ions, and is referred to as
the ion saturation current, Is. It can be shown that

Is ∝ ne
√
Te + Ti, (2.1)

where ne is the electron number density, Te is the electron temperature and Ti is the ion
temperature. The ion saturation current thus acts as a good proxy for density and temperature
fluctuations in the plasma [31]. An example Langmuir probe time trace of Is from the SOL
of JET is shown in the top plot of Figure 2.2. The signal is clearly highly intermittent, with
significantly more positive fluctuations (with respect to the mean) than negative. This is
caused by the presence of filaments in the SOL, which have a significantly higher density
(and in some cases temperature) than the effective background plasma, and so cause positive
perturbations to the signal. In the bottom plot of the same figure, an equivalent time trace
from the edge of the core in JET (∼18 mm inside the separatrix) is shown, which displays
the opposite behaviour in that negative fluctuations dominate, due to the presence of holes
moving inwards towards the core.

A greater understanding of the intermittent nature of filaments can be gained by con-
structing the Probability Distribution Functions (PDFs) of probe signals, as shown in Figure
2.3 for various positions in JET. In the shear layer in which filaments and holes are believed
to be born, the PDF is approximately symmetric about the mean, indicating that positive
and negative fluctuations were equally present in the signal. Furthermore, the distribution
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closely resembles a Gaussian distribution, as shown by the best fit to the data plotted in
red. In the near and far SOL however, the PDFs are clearly non-Gaussian, in that they are
not symmetric and are skewed towards positive values, reflecting the dominance of positive
fluctuations in the SOL, as shown in Figure 2.2. In contrast, the edge PDF is skewed towards
negative fluctuations. Furthermore, in the far SOL it can be seen that the positive tail of the
distribution does not fall away as quickly as in the near SOL or in the Gaussian-distributed
shear layer. This indicates that a greater number of large, extreme fluctuations are present in
the SOL, which is consistent with the picture of filaments of high density moving into the far
SOL which has a relatively low effective background density.

A quantitative description of the shape of a PDF is given by the third and fourth central
moments of the data series, respectively called the skewness, S and kurtosis, K. These
quantities are defined as

S =
1

N

N∑

i=1

(
Xi − X̄

)3

σ3
X

, (2.2)

K =
1

N

N∑

i=1

(
Xi − X̄

)4

σ4
X

, (2.3)

where N is the number of points in the time series of the variable X (here the ion saturation
current, Is), X̄ is the mean of X and σX is its standard deviation. The skewness measures the
asymmetry of the PDF with respect to the mean, whilst the kurtosis measures the “tailedness"
or flatness of the distribution, with a large K corresponding to one or both of the tails being
relatively long and a high prevalence of extreme events. The skewness and kurtosis of each of
the PDFs in Figure 2.3 is given in each plot and for reference, a Gaussian distribution has
S = 0 and K = 3. Positively skewed probe signal PDFs with a large kurtosis compared to
a Gaussian distribution (>3) appear to be a universal feature or SOL turbulence, as they
have been found in a wide range variety of magnetic confinement devices, including tokamaks,
stellarators and linear devices [43, 44, 125]. This commonality is displayed in Figure 2.4, which
plots the PDFs of probe signals from the SOLs of MAST, Tore Supra and C-Mod tokamaks,
as well as from the PISCES linear device.

A number of works have also been dedicated to further characterising the statistical
behaviour of turbulence in the SOL. A Gamma distribution was found to effectively parametrise
the density perturbations in the SOL of TCV during L-mode [92]. However, since a Gamma
distribution does not allow for negative values of skewness, a subsequent work instead found
the Beta distribution to produce a good fit for TORPEX probe data [116]. In both of these
references however, the same approximate parabolic relationship was found between S and K,

K ≈ 1.5S2 + 3. (2.4)

Similar parabolic relationships were also observed across a number of tokamaks operating in
both L-mode and H-mode, as well as reversed field pinches [126], with the fitted quadratic
coefficient remaining close to, but slightly different from 1.5 for each machine and operating
regime. However as discussed in Reference [127], the existence of such a parabolic relationship
can be expected for many systems and is not likely to provide relevant information on the
underlying filament dynamics.

Conditionally Averaged Measurements

Insight can be gained into the density structure of individual filaments by conditionally
averaging Langmuir probe density signals. This involves selecting perturbations greater than
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the shear layer is the generation region of blobs and holes.79

An important feature of turbulence intermittency is the
non-Gaussian probability distribution functions !PDFs" of
plasma density fluctuations.2,3,10 The PDFs of Is fluctuations
measured at four radial locations are plotted in Fig. 2. On the
horizontal axes, the fluctuation amplitudes have been nor-
malized to the root-mean-square !rms" fluctuation levels of
Is. In the SOL the PDFs are positively skewed with a heavy
tail because of the positive bursts. The skewness !S" and
kurtosis !K" of the PDFs, i.e., the deviation of the Is signals
from Gaussian statistics, increases from the near SOL to the
far SOL, see Figs. 2!a" and 2!b", which was speculated to be
due to the reduction in background pressure toward far
SOL.79 The skewness and kurtosis, defined as the third- and
fourth-order moments of the PDF, give a measure of the
degree of “asymmetry” and “peakedness” of a distribution
with respect to its mean value, respectively. For a Gaussian
signal, S=0 and K=3, whereas for others the deviation from
0 and 3 indicates a higher degree of non-Gaussianity. In the
shear layer, the PDF is very close to a Gaussian distribution,
as shown in Fig. 2!c". Slightly inside the shear layer, a nega-
tive tail appears on the PDF and the skewness changes sign,
which can be seen in Fig. 2!d", suggesting the presence of
negative bursts.

When many propagating structures with different sizes
and velocities pass by probe tips, low-frequency high-
amplitude fluctuations, constituted by bursts, are detected.
Figure 3 shows the power spectra ln S!k! , f" of floating po-
tential fluctuations, where k! is the poloidal wavenumber.
The black solid curves show the dispersion relations, which
is defined as k̄!!f"=#k!

$k!S!k! , f" /#k!
S!k! , f"%. Inside the

shear layer the turbulence propagates in the electron diamag-

netic direction as shown in Fig. 3!a", where "r=−2 cm.
Outside the shear layer the turbulence propagates in the ion
diamagnetic direction as shown in Fig. 3!b", where "r
=1 cm. The reversion of propagating direction is mainly due
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Figure 2.3: Probability Distribution Functions (PDFs) of ion saturation current signals, Is,
from JET measured in (a) the far SOL, (b) the near SOL, (c) the shear layer and (d) the
edge of the core. The distance from the LCFS, ∆r, is labelled on each plot, alongside the
Skewness (S) and Kurtosis (K). Image reproduced from Reference [76] with the permission of
AIP Publishing.

slowly. This fact is highlighted statistically after performing
conditional averaging6 and will be discussed hereafter. The
other aspect common to the four time series is the same level
of high frequency fluctuations inside and outside the spikes.
This fact suggests that avaloids do not excite small scale
fluctuations. The same argument was used in Ref. 7, where
the high frequency component of the frequency spectra, re-
flecting turbulence small scales, decayed rapidly with an ex-
ponential law. On the other hand, the low frequency fluctua-
tions, which reflect large turbulent scales, survived the
parallel transport leading to plasma recorded even at 10 cm
from the main plasma column center in PISCES.

Investigating the PDF’s of turbulent fluctuations in gen-
eral was emphasized by the Kolmogorov article, often called

K41,17 in which he assumed that fluctuations are random.
Because the PDF of a random variable is Gaussian, it was
rather straightforward to check this hypothesis by mainly
using the normalized third and forth order moments of the
fluctuating signal. For a signal denoted by x, the skewness
factor is defined as !x3"/!x2"3/2 and is equal to 0 for a Gauss-
ian distribution reflecting its symmetry around the average
value. The flatness factor is defined as !x4"/!x2"2 and it can
be considered as a measure of the weight of the tails of a
distribution; it is equal to 3 for a Gaussian distribution.
Townsend was one of the first to measure the PDF of the
turbulent velocity field in a neutral fluid and obtained for the
flatness factor a number close to 3, a value appropriate to a
normal distribution.18,19 In the SOL of magnetic confinement
devices, it was reported by several authors that the PDF of
the ion saturation current is not Gaussian reflecting the de-
viation from a normal distribution law. Figure 3 shows the
PDF for the four confinement devices Tore Supra, Alcator
C-Mod, MAST, and PISCES. They are normalized so that
the PDF’s integral is equal to 1, and the signals are normal-
ized to their standard deviations. The features that were em-
phasized in Refs. 6 and 7 are reproduced for the four devices,
namely:

#1$ The part of the PDF that reflects negative density fluc-
tuations decreases sharply with increasing intensity. Be-
ing in a semilogarithmic frame, this decrease indicates
that the PDFs are very much close to a Gaussian distri-
bution. Hence, the probability distribution function
quantifies the visual inspection of the four raw signals
where the positive spikes do not seem to have a negative
density fluctuation component.

#2$ The part of the PDF that reflects positive density fluc-
tuations is highly non-Gaussian. The tails in a semiloga-
rithmic frame decrease linearly reflecting an exponential

FIG. 2. The ion saturation current taken in the scrape-off layer of the four
fusion devices MAST #a$, Alcator C-Mod #b$, Tore Supra #c$, and PISCES
#d$. The arrows indicate the signature of avaloids.

FIG. 3. A semilogarithmic plot of the PDF of the ion saturation current in
the Tore Supra #solid line$, Alcator C-Mod #thick solid line$, MAST
#dashed–dotted line$, and PISCES #dots$. The ion saturation current was
normalized to the standard deviation and the integral of the four PDF is set
equal to 1.
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Figure 2.4: Probability Distribution Functions (PDFs) of ion saturation current signals, Is,
from MAST, Tore Supra, C-Mod and PISCES. The ion saturation current is normalised to
its standard deviation and the integral of each PDF is equal to 1. Image reproduced from
Reference [44], with the permission of AIP Publishing.
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Fluctuations and transport in the TCV scrape-off layer
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density fluctuations, the two latter moments defined such as
to vanish for a normal distribution. Close to the separatrix
the fluctuations are nearly normally distributed, as evidenced
by the vanishing skewness and flatness moments for all but
the highest density case. In the far-SOL the fluctuations
are positively skewed and flattened with a relative fluctuation
level of order unity. This simply reflects the abundance of
large-amplitude bursts in the time series as seen in figures 4
and 5. Note that the highest density case is characterized by
a broad profile and large fluctuations across the entire SOL.
Figures 6–8 further show that the relative fluctuation level,

10

8

6

4

2

0
1.251.000.750.500.250.00

F
n(

ρ)

ρ

Figure 8. Radial profile of the flatness of the particle density
fluctuations.

1

10-1

10-2

10-3

10-4

107.55.02.50.0-2.5

n r
m

s
PD

F(
n

)

( n − n− ) / nrms

n−e
19=11

n−e
19=8.4

n−e
19=6.5

n−e
19=4.8

n−e
19=4.4

ESEL

Figure 9. PDF of the particle density fluctuations at the wall radius.

skewness and flatness in the region of broad profiles have
the same values and radial shapes for all n̄e, although for
the highest moment there is large statistical scatter due to
the limited length of the time series. The rescaled PDFs of
the normalized particle density fluctuations at the wall radius,
(n − n̄)/nrms, presented in figure 9, collapse to a common
shape for all values of n̄e. The distributions are clearly
skewed and flattened, with an exponential tail towards large
fluctuations. This universality suggests that the mechanism
underlying plasma fluctuations in the far-SOL is the same for
all values of n̄e.

Treating the turbulence simulation time series in exactly
the same way as the experimental time traces yields excellent
agreement with regard to the above described statistical
parameters. The broad time-averaged radial particle density
profile from the simulation agrees with that from the highest
density TCV discharges presented in figure 3. Figures 6–8
demonstrate how the profiles of relative fluctuation level,
skewness and flatness in the SOL are all well described by the
numerical simulation. Moreover, the conditionally averaged
wave form and the rescaled PDF of the normalized particle
density fluctuations presented in figures 5 and 9 are in excellent
agreement with the experimental measurements. This
favourable comparison strongly indicates that the commonly
observed broad plasma profiles, large relative fluctuation
levels, asymmetric fluctuation waveforms, and skewed and
flattened PDFs in the far-SOL are due to radial interchange
motions of plasma filaments.
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Figure 2.5: Conditional averages of filament density pulse shapes in time at the wall radius
in TCV, for different line averaged densities n̄e, which are given in 1019 m-3. An amplitude
threshold of n− n̄ > 2.5nrms was been applied to select fluctuations for the averages, where
n̄ and nrms are respectively the mean and root mean squared values of the density signal
at the wall. An equivalent data series from the 2D simulation code ESEL is also shown for
comparison. Image reproduced with permission from Reference [94]. Copyright (2009), IAEA.

a certain threshold, synchronising the peaks of the perturbation time traces to a common
time and ensemble averaging. This process removes much of the noise from the raw data, and
results in an average filament pulse shape in time. Example filament density pulse shapes
from TCV obtained using such a technique are shown in Figure 2.5. The pulse shape, which
displays a steep rise followed by a more gentle decay, is typical of filament perturbations
in most machines. In MAST however, more symmetric conditional averages are observed,
possibly due to greater collisional dissipation [128].

Equivalent conditional averages can also be used to yield information on the radial velocity
of filaments, by assessing the filament’s local poloidal electric field from the floating potentials
of two nearby probe heads and calculating the radial velocity as vr = Epol ×B/B2 (here
the poloidal direction is assumed to be approximately normal to both the magnetic field and
the radial direction). This measurement technique relies on the assumption that electron
temperature fluctuations do not significantly alter the filament’s motion and that the probes
themselves do not have a perturbing effect. Combined with probe density measurements, the
radial velocities obtained in this way have been used to estimate that filaments can account
for around 50% of the radial particle flux in the SOLs of a number of different machines [40,
58–61].

An alternative conditional averaging technique to obtain filament profiles and velocities
uses one probe in ion saturation current mode in a fixed position to detect the presence of
a filament and then measures the signal on another probe for varying delay times after the
detection by the first probe. If the second probe can be moved, 1D or 2D profiles perpendicular
to the magnetic field of filament quantities can be mapped out versus time through appropriate
cross-averages. Example density and floating potential profiles of propagating filaments and
holes obtained through this procedure are shown in 2.6. The filaments and holes can be seen
to have a broadly monopolar density structure, whilst their potential structures are dipolar,
which through E×B motions correspond to a pair of counter-rotating vortices. These features
are typical of SOL filaments and holes and have been observed in multiple machines including
DIII-D [58], TEXTOR [59], JET [75], C-Mod [99], and TORPEX [123].
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tence of holes and blobs produces tails in the PDF at nega-
tive and positive normalized amplitudes, respectively.
The PDF at the location of peak fluctuation amplitude
!x=−0.7 cm" is more symmetric, although still distinctly
non-Gaussian. The amplitude PDF as a function of position
is shown as a contour plot in Fig. 2!c". From this figure it is
evident that the holes are observed only in a narrow region of
space on the high-density side of the gradient !where the
negative tail is present, 2.8!x!0". However, the blobs are
observed everywhere to the right of the density-gradient re-
gion !x"−0.5", as shown by the presence of a tail in the
PDF at positive amplitude. For x"−3 cm, the PDF is blob
dominated and nearly independent of position, suggesting
that the blob structures are long-lived as they propagate into
the shadow of the limiter !intermittent signals have been ob-
served up to 20 cm beyond the limiter edge". It should be
noted that the PDF displayed in Fig. 2!c" exhibits trends
which are very similar to those observed using beam-
emission spectroscopy in the DIII-D tokamak !see Fig. 3 of
Ref. 9". The nature of the intermittency and turbulent struc-
tures in these experiments is therefore quite similar to that
observed in toroidal confinement devices, even in the ab-
sence of magnetic curvature or rotation.

Figure 3!a" shows the conditional average24 of many
!N=16 059" blob events using Isat signals from one tip on the
linear Langmuir array !solid black line marked “CA”". The
amplitude threshold for triggering event selection in this case
was set to twice the root-mean-square fluctuation amplitude.
The conditional average blob event is asymmetric in time,

with a fast rise and slow decay. This time asymmetry is con-
sistent with observations in the edge of many other magnetic
confinement devices2 and with simulations.23 Along with
the conditional average, Fig. 3!a" shows the cross-
conditional average blob event as measured by other tips in
the Langmuir array !separations shown are in the −x̂ direc-
tion". The rightmost tip !farthest away from the gradient re-
gion in the blob case" is used for event triggering. The aver-
age blob appears to travel across the probe array out into the
low-density region with a speed of #942 m/s, which is
#Cs /10. Figure 3!b" shows the same conditional and cross-
conditional averaging for hole events. The average hole de-
cays quickly in space, but appears to propagate back into the
core plasma. The interpretation of the Langmuir array con-
ditional averages as being caused by propagation of struc-
tures in and out of the core plasma cannot be conclusive
without knowledge of the two-dimensional structure of the
objects. For example, the observations could also be ex-
plained by the vertical !ŷ" propagation of structures which
are tilted in the xy plane.

In order to conclusively determine the structure and di-
rection of propagation of the holes and blobs, two-
dimensional cross-conditional averaging was performed us-
ing two triple Langmuir probes separated along the magnetic
field by 60 cm. The first probe, which was the reference or
trigger probe, was left fixed in space while the second probe
was moved to 441 positions in a 10#10 cm2 cross-field !xy"
plane centered on the position of the reference probe. Figures
3!c" and 3!e" show the 2D cross-conditional average of Isat
and Vf, respectively, for blob events !the fixed probe was
located at x=−3 cm". The blob is clearly an isolated, de-
tached structure, with similar extent in the two cross-field
directions. The Vf measurement clearly shows a dipole struc-
ture of the potential associated with the blob !the peak
potential value is #1.3V, while the minimum value is
#−1.5 V, here Te#5 eV". The potential structure is consis-
tent with E#B propagation almost entirely in the −x̂ direc-
tion with an average speed of #985m/s. This value is com-
parable to the speed measured by the linear probe array.
Because the blob velocity is dominantly in the −x̂ direction,
the decay of the cross-conditional average in Fig. 3!a" can be
attributed to a finite spread in the blob velocity. Figures 3!d"
and 3!f" show 2D cross-conditional averages for hole events
!fixed probe at x=1.5 cm". The hole does not appear to be an
isolated structure, but is instead associated with a turbulent
structure that is extended in the vertical !ŷ" direction. The
potential structure does show a tendency for E#B propaga-
tion back into the core plasma, consistent with the linear
array measurements.

Figure 4!a" shows the measured dependence of the time
width of blob events versus magnetic field. The inset figure
shows the conditional average Isat signal for a blob event for
three field values. As the field is decreased, the time width of
the event increases. The main figure shows the PDF of the
time width $full width at half maximum !FWHM"% of blob
events for the same three magnetic-field values. To calculate
the PDF of the blob time width, events are selected from the
Isat signals and the time width !$tFWHM" of each individual
event is measured. As the magnetic field is decreased, the

FIG. 3. !Color online". Cross-conditional average of Isat on the linear probe
array for !a" blob and !b" hole events showing apparent propagation of blobs
out of the plasma and holes back into the plasma. Two-dimensional cross-
conditional averages of blob $!c" Isat and !e" Vf% and hole $!d" Isat and !e" Vf%.
All 2D conditional averages are normalized to the maximum of the absolute
value of the average, and the color bar in !c" applies to all images.
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Figure 2.6: 2D cross-conditional average profiles in the perpendicular plane of the ion saturation
current, Is, and floating potential, Vf , associated with filaments (left column) and holes (right
column) in LAPD. All cross-conditional averages are normalised to the maximum of the
absolute value of the average and the colour bar in (c) applies to all plots. Image reproduced
from Reference [112], with the permission of AIP Publishing.

2D Probe Arrays

A limitation of averaged measurements is that they assume that filaments reliably take similar
trajectories in space and time. By using a 2D array of probes, instantaneous filament profile
measurements have been taken on devices such as TORPEX [115, 122–124] and VTF [129].
Example measurements from the latter device are shown in Figure 2.7, and the mushroomed
density shape is significant because this is predicted by theory and simulations. However,
such 2D probe arrays can only be used in relatively simple plasma devices, as the probes are
typically suspended by thin wire frames to minimise the perturbing effect the diagnostic has
on the plasma. In more fusion-relevant plasma devices, these frames would be destroyed by
the high heat and particle fluxes, and moreover, less space is available for edge diagnostics.

2.2.2 Optical Imaging

Filament profiles and velocities can be obtained in tokamaks and stellarators by recording the
light emission (typically Lithium, Helium, or Dα wavelengths) associated with filaments as
they interact with any neutrals using fast optical cameras. These measurements inherently
provide instantaneous 2D profile representations, but it can be difficult to interpret the light
intensities in terms of relevant quantities such as density or temperature, as the emissivity is a
complex function of local plasma conditions, whose measurements from other diagnostics will
have large uncertainties.

Optical imaging of filaments can be achieved either passively by relying on the naturally
occurring background neutrals in the SOL, or by Gas Puff Imaging (GPI) in which a localised
puff of neutral gas is injected into a specific area to enhance light emission. Passive imaging
yields information about the global structure of filaments along field lines and has been used
in MAST [46, 70, 88, 89, 130, 131] and NSTX [87]. In particular, the MAST imaging results
used a novel background subtraction technique, as shown in Figure 1.9, and demonstrated
that filaments exist both in L-mode and inter-ELM H-mode [46, 88]. On the other hand
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chamber filled with argon gas at 10!5–10!4 torr. Since the
plasma density is typically 2" 1016 m!3, the ionization
fraction is only about 1%, and there is a constant back-
ground of neutrals even after breakdown.

The plasma is tracked by an array of 200 Langmuir
probes. The tip spacing is 7 cm horizontally and 7 cm
vertically, with triple resolution (horizontally) near the
center. The main Langmuir probe array is located at a
single toroidal angle, but other Langmuir probes are used
to verify the azimuthal symmetry of the blobs. The other
probes (not shown in Fig. 1) include 3 vertical lines of
stainless-steel cylinders and a horizontal line of cylindri-
cally shaped, heated tungsten filaments. These filaments
are used to measure the full I-V characteristic (analyzed by
taking into account finite sheath size, i.e., using ABR
theory [15]), and hence the electron temperature and
plasma potential. Heating the filaments between discharges
eliminates important surface contamination effects, and
prevents overestimation of the electron temperature (see,
e.g., [16,17]).

We observe experimentally for the first time the mush-
room blob shape, which has been seen in many simulations
(e.g., [13,18]). This shape is displayed in Fig. 2, which
shows the propagation of a typical blob in poloidal cross
section. The time step between adjacent density plots is
100 !s, and the first plot occurs 25 !s after the micro-

waves are turned off. The blob shape exhibits ‘‘wings,’’
which develop about a blob length away from the creation
region. The right-hand part of Fig. 2 shows the floating
potential with some overlaid density contours. The poten-
tial is obtained by combining data from a vertical array and
a horizontal array.

The propagation seen in Fig. 2 can be quantified and it is
found to depend on the neutral pressure in the chamber.
This dependence is explored in separate plasma discharges
covering a range of neutral pressures. As Fig. 3 shows, we
find that the blob’s center-of-mass speed is inversely pro-
portional to the neutral pressure. The speed measurement is
based on a time-of-flight calculation using density traces at
multiple probes. Also plotted is a line indicating that the
sound speed (cs #

!!!!!!!!!!!!!
Te=mi

p
$ 2" 103 m=s assuming 2 eV

electrons) is an upper bound on the blob velocity. However,
the three low-pressure points that give evidence for this
bound are from blobs with different shape and very low
density.

To describe the blob propagation, we use the standard
vorticity equation [19] derived from MHD, with the addi-
tion of a neutral-collision term,

 r %min
B2

Dr?"
Dt

&rkJk'
2

B
b"! %rp!r %min

B2 #r?";
(1)

where ? and k are defined with respect to the magnetic
field, D=Dt & @=@t' v % r, b & B=B, $ & b % rb is the
magnetic curvature, # is the ion-neutral collision fre-
quency, and we have assumed v( cs and jB=rBj)
jn=rnj* jv=rvj. The vorticity is given by r" v $
r2"=B (where v & !r"" B=B2). Equation (1) may be
simplified for our experimental geometry. We have purely
toroidal magnetic field B & Be" / 1=R, so that b & e"
and $ & !eR=R. We then neglect rkJk, since the toroi-

FIG. 2 (color). Poloidal cross section of typical blob at 3
different times (!t & 100 !s), showing characteristic mush-
room shape. The density is calculated from ion saturation cur-
rent; its decrease is consistent with the expansion of the blob.
The blob propagation is consistent with the vertical electric field,
which is reflected in the potential structure at right. The overlaid
E"B velocity arrows show the velocity field of a vortex pair.
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FIG. 3. Blob center-of-mass speed versus neutral pressure
(Pn). The speed scales inversely with the pressure, but this
scaling appears to break down at low pressure. The error in
speed is approximated by the standard deviation of the inferred
blob speed as it fluctuates in time.
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Figure 2.7: Instantaneous density and floating potential measurements of a filament propagating
in the basic toroidal device VTF, from a 2D probe array. In the floating potential plot, the
corresponding E ×B velocity is overlaid using arrows. Image reproduced with permission
from Reference [129]. Copyright (2008) by the American Physical Society.

GPI can give highly resolved images of a filament’s perpendicular structure and motions, and
such measurements have been taken on NSTX [54, 82–84, 86, 87] and C-Mod [49, 83, 97,
99, 101, 102]. Example GPI imaging of the propagation of a filament in NSTX is shown in
Figure 2.1. One of the most important conclusions from optical imaging measurements is that
they have confirmed that filaments are highly aligned to the magnetic field [46, 82, 88, 99].
Furthermore, they have shown that whilst filaments at the mid-plane are broadly circular in
shape perpendicular to the magnetic field, in the divertor region of tokamaks they are much
more elongated and stretched due to the magnetic shear and flux expansion present around
the X-point [87, 101, 130], as predicted by Reference [132].

2.2.3 Characterisation of Filaments

To provide a characterisation of SOL filaments, it is useful to differentiate between L-mode
filaments, inter-ELM H-mode filaments and ELM filaments, as whilst they all have much in
common, they each have distinguishing behaviours and properties.

A key feature of all types of filaments in tokamaks is that they generally have a higher
ion temperature, Ti, than electron temperature, Te [133–135]. This property is largely true of
the SOL in general because the conduction of heat to the targets is far greater for electrons
[31], although it is noted that the difference between Te and Ti becomes less pronounced at
high collisionalities. This is of particular importance because, as will be discussed later, the
majority of theoretical non-ELM filament models unjustifiably assume cold ions for simplicity.

As mentioned previously, ELM filaments exhibit significant differences from L-mode and
inter-ELM H-mode filaments. They typically have a larger perpendicular size, can carry greater
parallel currents to the target, and are significantly hotter and more dense [70, 71]. Non-ELM
filaments thus have a much lower plasma beta (β = neTe/(B

2/2µ0), where µ0 is the magnetic
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Table 2.1: Key filament parameters across different tokamaks.

Machine
Perpendicular
Size (cm)

Density
fluctuation,
δn/nbg

Radial
Velocity
(km s-1)

Lifetime
(µs)

References

MAST 0.5-10 0.1-4 0.5-2.0 40-60 [89, 137]
NSTX 3-5 n/a 0.2-1.4 60-70 [84, 85]

ASDEX-U 0.2-10 n/a 0.1-3.5 n/a [81]
C-Mod 0.65-1.5 n/a 0.15-1.5 1-50 [97, 99, 100, 102]
DIII-D 0.5-3.9 0.05 - 1 0.33-2.6 15-20 [58, 77]
JET 0.5-2 0.3-1.5 0.2-1.5 20-130 [74, 75]

TORPEX 1.3-2.5 0.6-0.85 0.2-1.85 n/a [120, 124]

permeability in a classical vacuum) than ELM filaments and it is typically low enough for
electro-static models to be justified. Electro-magnetic effects should be maintained for ELM
models however.

Comparing L-mode and inter-ELM H-mode filaments, it is well established that the latter
are less frequent (consistent with the suppression of edge turbulence in H-mode). A study in
MAST found that inter-ELM H-mode filaments tend to have a lower density than L-mode
filaments, but that L-mode filaments tend to have shorter lifetimes than both inter-ELM
H-mode and ELM filaments. Similar radial velocities were found for L-mode and H-mode
filaments and crucially, neither type were observed to accelerate in the radial direction, unlike
ELM filaments [46].

Table 2.1 provides a comparison of the perpendicular size, density fluctuation amplitude
(δn/nbg), radial velocity and lifetime of non-ELM filaments in different tokamaks as measured
via different diagnostics. These parameters are of particular interest because they each have
an influence on the resultant radial particle flux associated with filaments, and, as discussed
later, they are relevant parameters from a theoretical perspective. The majority of the data
in the table were originally compiled in Reference [136], and have been supplemented with
additional measurements here. Whilst there is clearly some variation in these measurements,
they do show that filaments across a variety of machines and operating conditions have a
perpendicular size of 0.5-10 centimetres (around 1-100 ion Larmor radii), have fluctuation
amplitudes of the order of or greater than the effective background density, exist for tens of µs
and travel in the radial direction at velocities of up to a few kilometres per second or around 1
to 10% of the sound speed, cs. In particular, larger fluctuation amplitudes are found in the
far SOL compared to the near SOL, as the effective background density is lower further away
from the core.

2.3 Theory and Simulation

2.3.1 Propagation Mechanism

The fundamental mechanism by which filaments propagate can be understood by examining
the effect of a net species-summed force per unit volume, F , on a filament density perturbation
that is broadly circular in the perpendicular plane. The F ×B fluid drifts cause electrons and
ions to travel in opposite directions in the perpendicular plane. A current density thus flows
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perpendicular to the magnetic field, given (in SI units) by

jF =
F × b̂
B

, (2.5)

where B = |B| and b̂ = B/B. Examples of forces which can lead to such perpendicular
currents include the pressure force, which produces the diamagnetic current density,

jdia =
b̂×∇p
B

, (2.6)

and the ‘fictitious’ inertial force, which yields the ion polarisation current density,

jpol =
d

dt

(nemi

B2
∇⊥ϕ

)
. (2.7)

Here p is the plasma pressure, mi is the ion mass, ϕ is the electrostatic potential, and d/dt is
the total derivative of the ions given by

d

dt
=

∂

∂t
+ vi · ∇, (2.8)

where vi is the ion velocity. A detailed derivation of jdia and jpol is provided in Chapter 3. For
explanatory purposes, in the following discussion jF will be used to represent all perpendicular
currents except for jpol. The total current density can thus be written as j = jpol + jF + b̂j‖,
where j‖ is the magnitude of the parallel current density, j‖. Consideration of current continuity,
∇ · j = 0, then yields

∇⊥ ·
d

dt

(nemi

B2
∇⊥ϕ

)
= ∇‖j‖ +∇⊥ ·

(
F × b̂
B

)
. (2.9)

Therefore it can be seen that if jF is compressible (meaning that the currents do not all close
back on themselves, i.e. ∇ · jF 6= 0), then some combination of polarisation currents in the
perpendicular plane and parallel currents that close elsewhere along the field line must flow to
ensure current continuity. The polarisation currents forced in this way lead to the filament
perturbation developing a broadly dipolar electrostatic potential field, which through E ×B
motions correspond to a pair of counter-rotating vortices that propel the filament across field
lines in the direction perpendicular to the alignment of the potential poles.

In tokamaks and other toroidal machines, the dominant effective force that drives the
filament motion is in fact that which arises from pressure gradients (which filaments possess
by definition) because magnetic curvature and ∇B effects mean that jdia is compressible.
However other effects can also cause filaments to propagate, such as divertor plate tilt [138],
parallel shear of the E ×B velocity [139, 140] and perpendicular temperature gradients at the
plasma sheath [139–141]. In linear machines, the drive can be provided by a “neutral wind”
frictional force [142], or through the centrifugal force if the plasma column is spinning on its
axis [47].

Whilst it was Krashennikov who first proposed this mechanism for filamentary motion
[55], the process shares many similarities with the dynamics of plasma clouds formed after
the ablation of injected fuel pellets into confinement devices [143]. Furthermore, it also has
much in common with the Rosenbluth-Longmire description of the interchange instability
[144]. It is for this reason that in much of the literature on filament theory, the force which
drives the polarisation is written in the form F = nmig where g is an effective single particle
gravitational acceleration.
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Specifically, it is common to simplify realistic geometries by approximating them as a
simplified local slab geometry with a uniform magnetic field, B = Bẑ. In such a geometry the
magnetic curvature and ∇B effects of a toroidal device disappear, but can be reintroduced
by using a g acting in the effective radial direction, with magnitude g = 2c2

s/R, where
cs =

√
Te/mi, Te is the electron temperature and R is the major radius of the machine. If x

and y are respectively the local radial and poloidal coordinates, Equation (2.9) can then be
simplified as

mi

B2
∇⊥ ·

(
ne
d

dt
∇⊥ϕ

)
= ∇‖j‖ −

eg

Ωi

∂ne
∂y

, (2.10)

where Ωi = eB/mi is the ion gyro-frequency and e is the elementary charge. A negligible ion
temperature, Ti � Te and an isothermal electron temperature∗ have been assumed to derive
this equation, which are common assumptions used in filament theory and simulation. It is
noted the cold ion assumption in particular is poorly justified at low collisionality in the SOL,
as Ti & Te is predicted theoretically [31] and has been observed in experiments [133–135]. The
influence of this assumption is addressed later in Section 2.3.5. With alternative definitions of g,
Equation (2.10) can also describe all the mechanisms listed above except for the parallel shear
of the E ×B velocity and perpendicular temperature gradients at the plasma sheath, whose
dynamics are different and more complicated [47]. Nevertheless, since magnetic geometry
effects dominate the drive of filaments in toroidal devices, the subsequent review of filament
theory and simulation will focus on this equation, and the final term on its Right Hand Side
(RHS) will be referred to as the diamagnetic current drive.

For computational and analytical ease, the majority of filament models used to date make
the Boussinesq approximation to simplify the ion polarisation current term in Equation (2.10)
as

mi

B2
∇⊥ ·

(
ne
d

dt
∇⊥ϕ

)
≈ nemi

B2

d

dt
∇2
⊥ϕ. (2.11)

This approximation is commonly used in studies of neutral fluid turbulence† and is valid
for small density perturbations, δne/ne � 1. Since order unity filament perturbations are
commonplace in the SOL, its use is not rigorously justified, but qualitative insight into filament
dynamics can still be gained from models employing it. Having made the above approximation,
Equation (2.10) can then be written as an evolution equation for the vorticity ω = (∇2

⊥ϕ)/B:

mi

B

(
∂

∂t
+ vE · ∇+ v‖i∇‖

) ∇2
⊥ϕ
B

=
1

ne
∇‖j‖ −

eg

neΩi

∂ne
∂y

. (2.12)

In obtaining the above equation, the gyro-viscous cancellation [145–148] has been employed to
write the ion velocity as vi = vE + v‖i where vE is the E ×B drift velocity and v‖i = b̂v‖i is
the parallel ion velocity. A detailed discussion of the influence of the Boussinesq simplification
on the detailed motions of filaments is also provided later in Section 2.3.5, but in general,
solving the full polarisation current term leads to more coherent filament propagation and
hence greater net cross-field transport [149–152].

Thus far, the discussion has neglected the influence of parallel currents, but they play an
important role because if the diamagnetic currents in a perpendicular drift-plane drive parallel

∗The isothermal electron temperature assumption is not essential and can be easily relaxed by replacing ne

with neTe in the last term on the RHS of Equation (2.10).
†In neutral fluid dynamics, the Boussinesq approximation removes the acoustic wave from the system. In

a magnetised plasma (such as the SOL), the analogous ion acoustic wave can only propagate parallel to the
magnetic field. Such waves are not removed from the system by making the Boussinesq approximation given
by Equation (2.11), because it only neglects perpendicular density gradients.



30 CHAPTER 2. LITERATURE REVIEW

3

Krasheninnikov S. et al., Large Plasma Pressure Perturbations and Radial Convective Transport in a Tokamak

where ηpolar ~ νiN/Ωi is the plasma polarization factor and νiN

is the ion-neutral collision frequency. Notice that with
replacement ηpolar ~ νiN/Ωi on ηpolar = 2ρs/R the eqs. (4) and
(8) are virtually the same. It explains the similarities of blobs
in tokamak SOL and shadows in linear devices seen in exper-
iments.

Study of blob dynamics governed by eqs. (8) and (5)
shows [18] that the blobs with crossfield scale

(we assume here that δb ≡ δy ~ δy) are very stable structurally
and propagate radially on large distance keeping its shape
intact. Blobs bigger than δ* are the subjects of the RT insta-
bility, which splits them in a few smaller ones. Blobs smaller
than δ* are quickly transformed into mushroom shape with
thin front like structures [8] and their further evolution is sen-
sitive even to weak plasma diffusion.

3. Blob dynamics in the vicinity of separa-
trix
In previous section we analyzed blob dynamics in toka-

mak far SOL where magnetic field lines have a very simple
geometry. However, blobs are peeled off from bulk plasma in
the vicinity of the separatrix (in diverted tokamaks). To
describe blob dynamics there we need to account for geomet-
rical effects of a strong shear of the magnetic field near the
X-point. In [20] it was shown that magnetic shear in the
vicinity of X-point results in dramatic squeezing of magnetic
flux tubes. Figure 2 shows this schematically. The shadowed
regions represent the same flux tube when it passes near the
X-point, from the position 1 in the main SOL, to position 3 in

the divertor leg. Due to a very strong squeezing of the tube in
the vicinity of X-point, its minimal width for standard toka-
mak conditions decreases from ~1 cm around the mid-plane
to less than the ion gyro-radius close to X-point [20]. As a
result, the effects of finite cross-field resistivity, otherwise
small, are strongly magnified [19,22] and play an important
role.

In order to incorporate these effects into our simplified
physical picture of blob dynamics we will use a heuristic
model developed in [19]. The essence of this model is the
substitution of exact solution of penetration of the electrostat-
ic potential into X-point region by an effective boundary con-
dition relating parallel current and potential at the entrance to
the X-point region. To derive this relation, we take into
account squeezing of the flux tube we introduce: a) squeez-
ing function S(r) ≈ exp(−r/LX), wherer is the length along
the magnetic field line and LX is the effective squeezing
length (usually in current large tokamaks LX ~ 103 cm), and
b) the effective wave number of the potential perturbation
K(r) = k/S(r), where k is the wave number at the entrance
into the X-point region. Then, we balance perpendicular, j⊥ =
−iσ⊥K(r)ϕ, and parallel, j|| = −σ||(∂ϕ/∂r), currents via the ∇·j
= 0 equation, ∂ 2ϕ/r2 = −(σ⊥/σ ||)K 2(r)ϕ, where σ⊥ = ω pe

2

νei/(4πΩe
2) and σ⊥ = ω pe

2 /(4πνei) (notation is standard). As a
result, we find a relation between parallel current and electro-
static potential at the entrance to the X-point region [19]

where σeff = Gωpe
2 /(4πΩe), and G is order unity phenomeno-

logical coefficient. Notice that the squeezing of the magnetic
flux tube occurs near the separatrix in both open and closed
flux surfaces and, therefore, the expression (10) can be
applied at both sides from the separatrix.

We can use the relation (10) to close eq. (1) after the
integration along the magnetic field like as we did in Sec. 2,
where magnetic field lines were going through the wall and
we used relation (3) to close eq. (2). For simplicity, we con-
sider only a symmetric double-null divertor, so that eq. (10)
should be applied at both ends of the flux tube (with the obvi-
ous change of the sign). Then, approximating wave number
of the blob at the entrance into the X-point region as k ~ 1/δb

we find

where Lb is the parallel length of the blob. From eq. (11) we
estimate radial velocity of the blob

Thus we find that strong squeezing of magnetic flux tube in
the vicinity of X-point do not prohibit the blob radial motion.
By taking into account effective X-point resistivity [19] we
describe blob motion in the vicinity of the separatrix in both
closed and open magnetic flux surfaces. Moreover, compar-

Fig. 2 Evolution of the cross-section of magnetic flux tube in
the vicinity of separatrix
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Figure 2.8: Schematic diagram of the elliptical distortion of a flux tube that is circular at the
mid-plane as it passes close to an X-point. The numbered points each correspond to different
toroidal locations. Image reproduced from Reference [153], with permission from the Japan
Society of Plasma Science and Nuclear Fusion Research (JSPF).

currents, this necessarily means that the polarisation currents in the same drift-plane will
be smaller in magnitude than if no parallel currents are driven at all. The parallel currents
therefore can be said to limit the polarisation currents and thus the motion of the filament.
However, parallel currents can only flow if they form a closed circuit in the perpendicular
direction somewhere else along the field line. As proposed in Krasheninnikov’s original paper,
one way in which this can happen is for parallel currents to travel all the way through the
plasma and sheath to close through the target material itself.

Alternatively, parallel currents can close in a different drift-plane to that from which they
originated if polarisation currents can flow more easily in a different drift-plane due to the
magnetic geometry of the SOL. One location in particular where this can happen is in the
vicinity of an X-point, where the local magnetic shear is large and the poloidal magnetic field
becomes small. This means that a magnetic flux tube (and hence filament) that is circular
in the perpendicular plane at the outboard mid-plane (as filaments are observed to be in
experiments), is a thin elliptical fan at the X-point [132], as shown in Figure 2.8. Intuitively,
polarisation currents can flow more easily across the thin fan in this region than across the
circular cross-section further upstream. Furthermore, if filaments are sufficiently stretched
at the X-point, then the electrostatic potential field in the region will vary on a scale much
smaller than the ion Larmor radius. In this case, the ions’ E ×B velocity will not be equal to
that of the electrons and this provides an additional current path in the region [47, 153, 154].

The exact balance of currents that close the compressible diamagnetic currents can be
modelled to be dependent on the effective resistivity-length∗ of each current path. This is
illustrated by Figure 2.9, which shows a schematic circuit diagram of the currents paths
discussed. The repeated sub-circuits between the top and bottom rails represent the continuum
of individual drift-planes. Only half the SOL is shown, with the left sub-circuit representing
the drift-plane located midway between the two targets. In each drift-plane, the compressible

∗The relationship between a resistivity-length and a current density is analogous to that between a resistance
and a current. A full discussion of this quantity is discussed in Section 7.1.
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Figure 2.9: Schematic diagram of the current paths in a filament. The pressure driven
diamagnetic current density jdia is represented as an ideal current source, whilst each of the
other current paths have an effective resistivity-length.

component of the diamagnetic current is modelled as an ideal current source, whilst the
polarisation current density has an associated resistivity-length Γpol

∗. It is noted that the
possible E×B current path near to an X-point region is not shown. Along the top and bottom
rails parallel currents can flow between different drift-planes, with the resistivity length of the
path between two adjacent drift-planes separated by a distance ∆z given by ∆Γ‖. Finally, the
resistivity-length of the path that currents take through the sheath to the target is denoted
Γsheath.

In addition to the evolution of currents, a description of density evolution is also required
to construct a model of filamentary motions. Such a description is provided by the electron
density continuity equation:

∂ne
∂t

+∇ · (neve) = sn. (2.13)

Here sn is a source or sink of particles through ionisation or recombination processes, whilst ve
is the electron velocity which can be written as the sum of its parallel component v‖e = b̂v‖e,
and its E ×B and diamagnetic drift velocities, vE and vD:

ve = vE + vD + v‖e. (2.14)

The electron polarisation drift velocity has been neglected through drift ordering considerations
[145]. Equations (2.9) and (2.13) thus form the starting basis for any fluid model of filamentary
motion. In principle, to make the continuity equation compatible with Equation (2.10) and
specifically its slab geometry, the influence of magnetic curvature and gradients in a toroidal
device on the divergences of particle fluxes must be included appropriately by writing

∇ · (nevE) = vE · ∇ne −
gne
c2
sB

∂ϕ

∂y
(2.15)

∗It is remarked that Γpol best represents the advective component (vi · ∇) of the polarisation current, whilst
the ∂/∂t component may be better represented by a capacitor. Nevertheless, the advective component is found
to be dominant in all but the earliest stages of filament simulations.
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and
∇ · (nevD) =

g

Ωi

∂ne
∂y

, (2.16)

so that Equation (2.13) becomes
(
∂

∂t
+ vE · ∇

)
ne = −∇‖

(
nev‖e

)
+
gne
c2
sB

∂ϕ

∂y
− g

Ωi

∂ne
∂y

+ sn. (2.17)

The terms proportional to g in Equation (2.17) are often neglected in many theoretical and
numerical filament studies, because they are not as important to the filament’s motion as the
diamagnetic drive in Equation (2.10). However such simplifications do mean that particle
conservation is no longer ensured.

Before discussing individual models in detail, it is helpful to highlight that theoretical and
computational studies of filaments tend to consider either isolated filaments or fully saturated
turbulence containing many filaments. Turbulence studies naturally provide a more complete
description of filamentary transport, in that they can provide insight into the formation of
filaments, as well as their subsequent propagation. However, they are computationally more
expensive and offer no direct control is over the size or amplitude of filaments generated.
Isolated filament studies on the other hand are considered to be more valid for filaments in the
far SOL than in the near SOL because interactions between multiple filaments are likely to be
more common nearer to the separatrix. Nevertheless, such simulations are valuable as they
allow for the propagation mechanism to be studied in detail. Filaments are typically initialised
as Gaussian density perturbations in the perpendicular plane onto a uniform background,
meaning that the effect of filament geometry (size, amplitude) can be directly investigated. For
these reasons, and because the research presented in the later chapters of this thesis uses such
an approach, the review of existing 2D and 3D models in Sections 2.3.3 and 2.3.4 will focus on
isolated filament studies, although some relevant turbulence studies will also be discussed.

2.3.2 Filament Formation

In contrast to the process of filament propagation, little understanding has been gained
analytically into filament generation [45]. Nevertheless analysis of turbulence simulations
suggests that the formation of filaments is strongly influenced by the presence of mean sheared
flows that satisfy ∂vy/∂r 6= 0, where r is the minor radial direction, and vy is the velocity in
the direction perpendicular to both B and r (hereafter referred to as the bi-normal direction)
[45]. In the absence of such shear flows, coherent plasma structures form which are extended
in the radial direction, rather than being blob-like or a mono-polar in the perpendicular plane
[155]. When relatively weak sheared flows are present, these streamers are broken apart
into filament structures that are more blob-like in the perpendicular plane [156]. However, a
sufficiently strong sheared flow will suppress turbulence locally by reducing the linear growth
rate of instabilities and tearing apart coherent structures, so that fewer filaments are formed
[157]. These simulation based results are consistent with experimental observations of strong
shear flows in the edge region of H-mode plasma [28] and the corresponding suppression of
turbulence and number of filaments in the SOL compared to L-mode plasmas, which have
weaker shear flows.

2.3.3 2D Models

The fact that filaments are observed to be field-aligned means that to some extent the filaments
motions are similar between different drift-planes. Therefore insight can be gained using 2D
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models that represent dynamics in the perpendicular plane, which are easier to analyse and to
solve numerically. To construct such models however, closures are required to describe the
parallel dynamics of the system. This sub-section will discuss common closures used in the
literature, with particular focus on how they affect the dynamics of filaments.

Sheath Dissipation Closure

One of the most commonly used 2D closures is obtained by assuming that negligible gradients
of density and potential exist along the parallel direction of a filament. Then by using the
standard sheath boundary conditions for the parallel ion and electron velocities [31, 158],

v‖i
∣∣
z=±`‖

= ±cs, (2.18a)

v‖e
∣∣
z=±`‖

= ±cs exp

(
−eϕ
Te

)
, (2.18b)

Equations (2.17) and (2.12) can be integrated and averaged along the field line between the
targets located at z = ±`‖ to produce

(
∂

∂t
+ vE · ∇

)
ne = −ne

`‖
exp

(
−eϕ
Te

)
+
gne
c2
sB

∂ϕ

∂y
− g

Ωi

∂ne
∂y

, (2.19)

mi

B

(
∂

∂t
+ vE · ∇

) ∇2
⊥ϕ
B

=
ecs
`‖

(
1− exp

(
−eϕ
Te

))
− eg

neΩi

∂ne
∂y

. (2.20)

It is noted that Equation (2.18b) has been derived by defining the potential of the target wall
to be

ϕw = −Te
e

ln

[(
mi

2πme

)1/2
]
, (2.21)

where me is the mass of an electron, and that sn was neglected in deriving Equation (2.19).
The first term on the RHS of Equation (2.20), which arises from the ∇‖j‖ term in Equation
(2.12), is of particular importance. It essentially models all parallel currents to close through
the target and to only experience resistance when travelling through the sheath. The sheath
therefore determines the magnitude of the parallel currents in the system. Such a model for
the parallel currents is often described as a sheath dissipation closure, as the sheath currents
ultimately act to reduce the polarisation currents and hence the radial velocity of the filament,
whilst more generally the term can be shown to dissipate the kinetic energy in a system [159].
In many works the term is linearised so that Equation (2.20) becomes

mi

B

(
∂

∂t
+ vE · ∇

) ∇2
⊥ϕ
B

=
ecs
`‖

(
eϕ

Te

)
− eg

nΩi

∂ne
∂y

. (2.22)

The first instance of the sheath dissipation model in the literature was in Krashenninikov’s
seminal paper [55]. In this work, the entire RHS of Equation (2.19) and Left Hand Side
(LHS) of Equation (2.22) were neglected, and the filament was assumed to be in a vacuum.
Whilst neglecting the influence of polarisation currents was not strictly self-consistent and in
experiments filaments are observed to propagate on a background plasma, these simplifications
allowed for an analytical solution in which the filament propagated stably at a velocity in
agreement with experimental measurements.

A number of subsequent works have thoroughly investigated the dynamics of isolated
filaments under sheath dissipation using analytic theory and simulations [56, 57, 122, 149–151,
159–169]. Importantly, the use of simulations has allowed filament propagation solutions to
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be obtained with the effects of polarisation currents and finite plasma backgrounds included.
Across these works, it has been demonstrated that the perpendicular length scale of the
filament’s pressure perturbation, δ⊥, plays a large role in determining the radial velocity
of a filament and the stability of its propagation [57, 160, 161, 166]. Following the scaling
arguments in References [122] and [168], it can be shown that for an order unity filament
perturbation with respect to the background, the polarisation current and sheath dissipation
terms in Equation (2.22) will be approximately the same order when δ⊥ ∼ δ∗. In which case
the filament will have a radial velocity, vr, of the order v∗, where

δ∗ = ρs

(
g`2‖

2ρsc2
s

)1/5

(2.23)

and

v∗ = cs

(
ρ2
sg

3`‖
c6
s

)1/5

. (2.24)

Here, ρs = cs/Ωi is the combined species Larmor radius, and it is emphasised that these are
only order of magnitude estimates. For δ⊥ � δ∗, the polarisation current is dominant in
closing the diamagnetic current drive, and the radial velocity of the filament is predicted to
scale like vr ∝

√
δ⊥ , whilst for δ⊥ � δ∗, the sheath dissipation term dominates and vr ∝ δ−2

⊥
is predicted. In the literature, the δ⊥ � δ∗ case is often described as the inertial or resistive
ballooning regime, whilst the δ⊥ � δ∗ case is referred to as the sheath current limited or sheath
connected interchange regime. These analytical scaling predictions have been confirmed by
2D simulations [167]. Recently, more general scaling estimates which include the effects of
filament ellipticity (i.e. the filament having a different size in the local radial and poloidal
directions) and filament amplitude with respect to the background have been derived and have
again been confirmed through simulations [169].

Simulations have also allowed the extent to which filaments propagate coherently using a
sheath dissipation model to be investigated [57, 160–162, 166, 168]. It has been found that at
low collisional dissipation, filaments in the inertial regime quickly evolve into mushroom-like
structures through the Rayleigh-Taylor-like interchange instability, and subsequently develop
Kelvin-Helmholtz instabilities, with both stages causing the filament to lose its coherence.
In the sheath current limited regime on the other hand, the interchange instability causes
the filaments to develop finger-like structures and so again the filaments do not retain their
monopolar structure. In between these two regimes however, at filament sizes around δ∗,
these two effects to some extent cancel out and filaments are observed to propagate relatively
coherently. These contrasting behaviours are illustrated in Figure 2.10.

The sheath dissipation closure has also been utilised in simulations in which the electron
temperature was evolved in addition to density and vorticity. It was found that hot filaments
(i.e. those which have a broadly mono-polar temperature perturbation, in addition to their
density perturbation) are found to spin in the perpendicular plane. This occurs because
the sheath boundary condition induces the higher temperature filament to float at a greater
potential with respect to the wall than the lower temperature surrounding background plasma,
which corresponds, through the E×B velocity, to a rotation of the filament. This spinning was
found to increase filaments’ coherence and suppress the growth of finger-like structures [165],
although it can also lead to rotational instabilities [164]. 2D simulations of saturated SOL
turbulence have also used sheath dissipation, where filaments were generated self-consistently
[68, 170–176]. Where comparisons have been made, reasonable agreement has been found with
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parameter D is evident when the governing equations are cast
into their nondimensional form. The inertial dissipation of
charge dominates the sheath dissipation when D < 1, and the
blob develops a mushroom front as it initially convects radi-
ally outward at the flute mode rate xg, but quickly becomes
unstable to Kelvin-Helmoltz (KH). Physically, this is a result
of the strong rotation at the poles as the plasma tries to cancel
the charge created from the polarizing forces. On the other
hand, the inertial dissipation is negligible when D > 1 and the
potential is set by the balance of the sheath dissipation with
the gravitational forces. The normalized convective rate is
longer than the small wavelength flute mode instability by a
factor of D5=2 and the blob breaks apart into fingers. The most
interesting case is when D is order unity. In this situation, the
KH modes at the poles are balanced by the radial E! B
advection and the blob can propagate relatively large distan-
ces as a coherent structure.

The physics described above is demonstrated with 2D
seeded blob simulations of Eqs. (12) and (13) using the code
BOUTþþ in Fig. 4. The background density n0 in the simu-
lations is taken to be homogeneous, and the blob density nB

is seeded on top of this background with twice the amplitude
of the background and a Gaussian profile in the drift plane
with Gaussian width d and Gaussian center x¼ 0, y¼ 0. The
initial profile of the total density in nondimensional form is
n̂ ¼ 1þ 2exp½%x̂2 % ŷ2&. It should be mentioned that even
though the hats have been left off of the quantities in Fig. 4,
the quantities in Fig. 4 are normalized as discussed in the
text.

It is worth mentioning here that the dynamics of blobs
predicted by Eqs. (12) and (13) is also dependent on the ratio
of the background density to the blob density nB=n0. This is
because the background density n0 only enters in the denom-
inator of n%1@n=@y ' nB=ðn0 þ nBÞ. An exact solution of

Eqs. (12) and (13) can be found in the limit where nB * n0,
and the poloidal profile of nB is Gaussian. This limit corre-
sponds to a blob in a vacuum, and the solution, first demon-
strated in Ref. 1, shows that the blob will retain its original
form in the frame moving with a constant E! B velocity
and is independent of the profile of the blob in the x direc-
tion. A blob in a vacuum is not a realistic situation, but this
solution provides an upper bound for the advection rate of
sheath limited plasma blobs. However, this solution does not
really apply to large blobs (D > 1) since it relies on the over-
all stability of the blob on time scales short compared to the
E! B advection time.

With respect to the simulation of large blobs (D > 1), it
should be mentioned that the onset of the flute mode instabil-
ity is delayed due to the symmetry of the initial density pro-
files. The perturbations are not seeded but instead are
allowed to develop naturally during the simulation and most
likely arise due to numerical error. This means that different
numerical schemes could produce different perturbations and
therefore different simulation results. Furthermore, since
smaller wavelengths have larger growth rates, the coarseness
of the grid can also influence the modes seen in the simula-
tion. Different grid refinements and numerical schemes were
performed, and the details of the simulation for large blobs
were indeed different. However, the observation that the
blob breaks apart via small wavelength interchange modes
on a time scale short compared to the advection time scale
remains the same.

IV. EFFECTS OF PARALLEL ELECTRON DYNAMICS

To build upon the 2D model and extend it to 3D, we
only consider the important physics that can have time scales
comparable to or less than the fundamental 2D time scale

FIG. 4. Time slices of density contours from 2D
Simulations for a small blob with D ¼ 0:3 (top), me-
dium blob with D ¼ 1:0 (middle), and large blob with
D ¼ 3:0 (bottom).
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Figure 2.10: Comparison of the dynamics of isolated filaments with different perpendicular sizes,
δ⊥ in 2D sheath dissipation simulations. Here ∆ = δ⊥/δ∗, whilst the spatial coordinates and
time have been normalised to δ⊥ and

√
δ⊥/g respectively. Image reproduced from Reference

[168], with the permission of AIP Publishing.

experimental measurements of SOL profiles and radial fluxes, as well as PDFs of filament sizes
and velocities.

The sheath dissipation closure has two principle limitations. The first comes directly from
the assumptions used to derive it; that density and potential are constant along field lines.
These assumptions are not generally true for toroidal devices, as experimental measurements
indicate that filaments are localised around the outboard mid-plane, meaning that parallel
gradients in density may exist [49]. Furthermore, if high electron collisionalities are present in
the SOL, this can lead to variations of parameters such as potential along the field line and
prevent parallel currents from flowing to the sheath. For example, in a conduction-limited
regime, much lower temperatures and higher densities are found in the divertor region than
further upstream near the mid-plane, which will mean that a high electron-ion collisionality is
present near to the target. The second limitation is that the model does not account for the
possibility that diamagnetic currents in one drift-plane can be closed through a combination of
parallel currents and polarisation currents in a different drift-plane, for example, in the region
of an X-point.

Vorticity Advection Closure

One alternative model, which seeks to address the first limitation of sheath dissipation closure,
assumes that the plasma in the SOL has a high enough resistivity to prevent parallel currents
from reaching the target, and so neglects these currents instead of parallel gradients. Rather
than averaging along the field line, it considers only the drift-plane at the outboard mid-plane,
estimating the parallel velocities to be approximately half the sound speed for the majority of
the domain (in line with experimental measurements [177]), and the parallel length scale of
variation of quantities along the field line to be of order `‖. This allows the parallel advection
terms to be approximated as

v‖i∇‖ ≈ v‖e∇‖ ≈
cs
2`‖

. (2.25)
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Under these assumptions, Equations (2.17) and (2.12) reduce to
(
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+ vE · ∇

)
ne = −csne
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, (2.26)
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The first term on the RHS of Equation (2.27) models the parallel advection of vorticity in the
system, and so hereafter, the above equations will be described as using the vorticity advection
closure. This term is approximately smaller than the sheath dissipation closure term by an
factor of ρs/δ⊥ (typically δ⊥ is of the order of 10ρs) [47] and so potential is dissipated much
less rapidly in this model. It does however act on all scale lengths of potential equally, whereas
the sheath dissipation closure term preferentially damps larger scale lengths [178]. Whilst no
explicit study of isolated filaments using this closure has been published, the above equations
have been used (alongside an additional equation for the electron temperature evolution)
in SOL turbulence simulations using the ESEL (Edge-SOL ELectrostatic) code [93–95, 128,
177–182], and good agreement has been found with experimental profiles, SOL decay lengths,
fluxes and turbulence statistics from a variety of machines [93–95, 128, 177]. For example
a conditionally averaged density pulse shape from a TCV simulation is plotted alongside
experimental results in Figure 2.5. However, the fact that both the sheath dissipation and
vorticity advection closures have had success in replicating experimental measurements makes
it unclear which is most appropriate. It can be argued that since agreement is found with
two different models, the experimental features such as the profiles and fluxes are dependent
more on the common features between the two models rather than the different terms that are
found in their respective vorticity equations.

X-Point Closure

The effect of parallel currents closing through enhanced cross-field currents in an X-point
region rather than at the sheath has been investigated heuristically by considering a Wentzel-
Kramers-Brillouin (WKB) limit and approximating

∇‖j‖ ≈
(
σ‖σ⊥

)1/2

`‖δ⊥
ϕ, (2.28)

where σ‖ = 1/η‖ is the parallel conductivity and σ⊥ is the perpendicular conductivity [153,
154]. By estimating the remaining terms in Equation (2.12) similarly to how they were for
the sheath dissipation velocity scaling predictions and approximating the σ⊥ associated with
polarisation currents to be σ⊥ ∝ ϕ/δ2

⊥, the velocities of filaments whose diamagnetic currents
are ultimately closed in the X point region can be estimated scale like vr ∼ g2/3/δ

1/3
⊥ for the

polarisation current path [47, 183] and like vr ∼ g/δ⊥ for the unbalanced electron E ×B
current path [47, 153].

Whilst this estimate allows insight into how filament velocities will scale if parallel currents
close through the X-point, isolated filament simulations have not been performed using
Equation (2.28) as it is an order of magnitude estimate of the term, rather than a rigorous
closure (for example, it involves δ⊥ directly). Furthermore, this estimate gives no information
as to under what circumstances parallel currents will transition from closing through the target
to closing through the X-point.
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Two Region Model

This last issue motivated the development of a two region model [184], which is a pseudo-3D
model in that reduced forms of the the density and vorticity equations are evolved in two 2D
domains, which each represent the average dynamics along a portion of the field line. These
domains correspond to the outboard mid-plane and X-point regions, and parallel currents are
allowed to flow between them. The diamagnetic current drive term is included only in the
mid-plane region for convenience, with the justification being that this is where the curvature
and ∇B effects are strongest (although not by a significant amount). By using the postulated
blob correspondence principle, which proposes that filament velocity scalings can be obtained
from the linear instability growth rates of a system, four different filament propagation regimes
were identified. The regimes are dependent on three normalised parameters. The first,

Λ =
νei`‖
Ωeρs

=
ν∗√
me/mi

, (2.29)

is a measure of the SOL electron collisionality, ν∗ = `‖/λe. In these definitions νei is the
electron-ion collision frequency, Ωe is the electron gyro-frequency and λe is the electron mean
free path. The second parameter,

Θ = δ̂5/2 =

(
δ⊥
δ∗

)5/2

(2.30)

represents the size of the filament, whilst the final parameter εx describes the elliptical
distortion of flux tubes between the mid-plane and X-point regions. No distortion corresponds
to εx = 1 and εx goes to zero as the distortion is increased. In these definitions νei is the
electron-ion collision frequency and Ωe is the electron gyro-frequency. In addition, the work
also expresses the filament velocity scalings in terms of a normalised velocity, v̂ = vr/v∗, and
normalised filament size, δ̂ = δ⊥/δ∗. The four regimes are:

i Sheath Connected Interchange Regime (Cs)
This regime is the equivalent to the sheath current limited regime discussed for the sheath
dissipation model and occurs for large filaments at low collisionality. The diamagnetic
current drive at the mid-plane is closed through parallel currents closing at the target,
producing velocities scaling like v̂ ∝ δ̂−2.

ii Ideal Interchange Regime (Ci)
At low collisionality and for sufficiently small filaments, the compressible diamagnetic
currents at the mid-plane are predominantly closed through enhanced polarisation currents
in the X-point region, producing a velocity scaling like v̂ ∝ εxδ̂1/2.

iii Resistive X-point Regime (RX)
In this regime the relatively high collisionality and large filament size are such that the
compressible diamagnetic currents are predominantly closed by parallel currents closing
through the sheath. The resistivity causes a potential difference to form between the
mid-plane and X-point such that the velocity of filaments scales like v̂ ∝ Λδ̂−2.

iv Resistive Ballooning Regime (RB)
This regime corresponds to the inertial regime and occurs at small δ⊥ and at high colli-
sionality. The compressible diamagnetic currents are closed through polarisation currents
at the mid-plane region and filament velocities scaling like v̂ ∝ δ̂1/2 are predicted.
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Figure 17. Regime diagram for the electrostatic two-region model in the space of normalized
collisionality Λ and scale size Θ as defined in (21) and (22). The dimensionless blob speed v
and size δ are defined in (28). (Figure reproduced from [47].)

labels ‘RX-ES’ and ‘RX-EM’ indicate the electrostatic and electromagnetic (high-
beta) branches of the resistive X-point modes, respectively, in which the midplane
curvature drive is balanced by the parallel current term in the X-point region,
which either leads to evanescence or outgoing Alfvén waves. These regimes corres-
pond to (20) and (24), respectively, using the σ⊥pol forms. Note that the scalings
for the growth rates in each regime connect smoothly across the boundaries. More
details on the physics of these regimes is contained in the original reference [46]. The
diagram shows, not surprisingly, that electromagnetic effects become increasingly
important for large γmhd/ωa (large driving force) while resistive effects dominate
at large ωη/ωa (small scale sizes and/or large η∥). Sheath-connected blobs (modes),
labeled ‘C’ in the figure, are favored in the opposite limit, i.e. small γmhd/ωa and
ωη/ωa.
Scalings inside the sheath-connected regime ‘C’ in Fig. 16 cannot be properly

described by WKB closures, and are not uniquely represented in the ‘(X,Y )’ para-
meter space. However, a different parameter space describing the connected and
disconnected modes in the electrostatic limit is available using the two-region
model. Results adapted from [47] are shown in Fig. 17. The normalized velocity
employed in Fig. 17 is defined by

v̂ = vx/v∗,

v∗ = cs

(
δ∗
R

)1/2

.
(28)

Figure 2.11: Two region model regime diagram in the space of normalised collisionality Λ, and
perpendicular scale size, Θ = δ̂5/2. The dependence of the normalised velocity, v̂ on normalised
size, δ̂ is given for each regime. Image reproduced from Reference [184], with permission from
AIP Publishing.

A diagram illustrating the extent of these regimes in Θ − Λ space is shown in Figure 2.11,
in which the transition boundaries between each regime are also given. The key predictions
from this model therefore, are that increased collisionality will lead to an increase in filament
velocities and hence turbulence transport, whilst increased magnetic field line fanning and
shear has the opposite effect. These predictions have been confirmed through simulations of
isolated filaments [184] and of saturated turbulence [155] using the two region model equations.

Other Closures

In addition to those described in detail above, a number of alternative parallel closures have
been used in the literature to study SOL filaments. A model for filamentary motion in a dusty
plasma is derived and simulated in Reference [185], whilst a variation on the sheath dissipation
closure is used in [186]. Furthermore, the vorticity equation, Equation (2.12), should in principle
have an additional term +µi∇4

⊥ϕ on its RHS to include the effect of viscosity, where µi is the
kinematic viscosity of the ion fluid. The influence of this term balancing the compressible
diamagnetic currents, in addition to the inclusion of particle diffusion in the density continuity
equation has been investigated numerically [159, 187]. A final closure concerns the limit
where filaments have a sufficiently high plasma beta such that electromagnetic effects become
important. In particular, field line bending can occur and filament dynamics at the mid-plane
can become independent of conditions further downstream. This case is relevant for ELM
filaments and has also been investigated using the blob correspondence principle [183] and
through 2D simulations [149].
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2.3.4 3D Models

Advances in computational power and methods over the last decade has meant that 3D
simulations of SOL filaments, whilst still expensive compared to 2D, are routinely possible.
The original BOUT turbulence code [188] was used to conduct the earliest 3D simulations
of filaments [57, 89, 189, 190]. These studies were of saturated turbulence, rather than of
isolated structures and included a vast array of effects including full magnetic geometry and
electromagnetic terms in addition to the parallel dynamics of ions and electrons. Whilst such
a comprehensive description is desirable in the long term, no rigorous interpretation of the
underlying dynamics of the filaments was provided as it was difficult to disentangle the various
effects. Furthermore, the community now views these simulations with caution because the
BOUT code was not rigorously verified and it is suspected that the results may have been
under-resolved.

A few years after these works, the first rigorous 3D studies of isolated filaments were
conducted in a slab geometry [168, 191, 192] using the newly developed BOUT++ framework
[193, 194]. These works essentially solved Equations (2.10) and (2.17) by assuming the parallel
ion velocity to be negligible and using collisional Ohm’s law to model the parallel current as

j‖ = σ‖

(
Te
ene
∇‖n−∇‖ϕ

)
(2.31)

where σ‖ = ne2νei/0.51me is the parallel conductivity and νei is the electron-ion collision
frequency.

A simplified local linear analysis of the equations identified that filaments may develop
unstable resistive drift waves. Such waves are an inherently 3D phenomena and do not
exist in 2D filament models because they involve parallel electron dynamics. The physical
mechanism of a drift wave can be understood by considering a magnetised plasma with a
perpendicular density gradient, which undergoes a small sinusoidal density perturbation, δn,
that has structure in the directions perpendicular and parallel to B. The perpendicular plane
of such a situation is shown in Figure 2.12. Through Equation (2.31) the density perturbation
drives electrons to move along the field line to align the electrostatic potential perturbation,
δϕ, with δn so that a parallel electric field forms to establishes force balance with the parallel
pressure gradient. The alignment between n and ϕ also corresponds to the formation of a
perpendicular electric field and thus an E ×B velocity perturbation that is a quarter of a
period out of phase with the density perturbation. The perturbations therefore collectively
constitute a wave, which propagates perpendicular to ∇n and B. The wave remains stable, so
long as the density and E×B velocity perturbations remain a quarter of a period out of phase.
However, if the electrons cannot provide force balance along the field line instantaneously, due
to say non-zero resistivity or Landau damping, then a phase shift will develop between the
density and E ×B velocity perturbations and the amplitude of the perturbations will grow,
i.e. the wave becomes unstable.

Such instabilities were indeed found in the simulations, and led to filaments breaking
down into turbulence and losing their coherence much faster than equivalent 2D filaments,
as illustrated by Figure 2.13. The inclusion of parallel electron dynamics thus was found to
reduce cross-field transport. The linear analysis predicted the maximum growth rate of the
instability to scale like ∼ 1/δ⊥. In agreement with this, smaller filaments were found to be
most unstable in the simulations

In addition, References [168] and [192] investigated the effect of filaments possessing
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Figure 2.12: Schematic diagram of a drift wave.

macroscopic (i.e with a scale length ∼ `‖) parallel density gradients, which may arise in
experiments due to sheath losses or because turbulence in the SOL has been observed to
be localised about the outboard mid-plane [49]. It was again found that parallel gradients
in density drove the potential to also have parallel gradients through Equation (2.31). This
alignment of ϕ and ne, referred to as a Boltzmann potential response, induced the filaments
to spin in the perpendicular plane through E ×B motions. This Boltzmann spinning was
observed to enhance the coherence of the filament to some extent, in that the onset of drift-
waves turbulence was delayed, and fingering effects were reduced in large δ⊥ filaments. It also
reduced the radial velocity of the filament slightly and induced the filament to move in the
poloidal direction.

Using effectively the same 3D model as in References [168, 191] and [192], filament studies
were independently carried out using a realistic MAST SOL flux tube geometry, in which
the collisionality of the SOL was varied through the input (isothermal) electron temperature
[195]. It was found that at both high and low collisionality, the high magnetic flux expansion
and local magnetic shear around the X-point induced filaments to develop parallel density
gradients. One mechanism for this across all collisionalities was that the strong shearing of the
filament in the divertor region caused the filament’s density profile to be dissipated through
diffusion more rapidly than further upstream. In addition, at high collisionalities the filaments
exhibited strong ballooning motions and hence parallel gradients, because compared to at
the mid-plane, the polarisation currents at the X-point could flow more easily, producing
a weaker potential dipole and hence slower radial velocity. This latter mechanism was not
present at low collisionalities because parallel currents allowed for the mid-plane’s diamagnetic
currents to be closed through the X-point as well. Unstable resistive drift waves were also
found in these simulations, although the filaments were observed to propagate for longer and
further before they took effect than in the previously discussed 3D simulations [168, 191, 192].
Boltzmann spinning effects were also reproduced at low collisionality. The filaments dynamics
at the mid-plane were found to be independent of the sheath boundary condition regardless of
collisionality and thus the high and low collisionality cases can be interpreted as analogous to
the resistive ballooning and ideal interchange regimes respectively in the two region model
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Ĵk ¼ rr̂k
qffiffiffiffiffiffiffiffiffiffi
a3D3
p lnðn̂Þ $ /̂
" #

; (27)

where d=dt̂ ¼ @=@ t̂ þ ẑ & r̂/̂ ' r̂, q ( gqs=c2
s ; r ( n̂6rk=

r6 ¼ n̂ke

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi=me

p
=ðL=2Þ, and a ( gd)=c2

s . The sheath
boundary conditions in the dimensionless representation are
Ĵkðẑ ¼ 61Þ ¼ 6n̂6/̂6. The 2D operator r̂kĴk ¼ n̂/̂ is
used in Eqs. (25) and (26) for the 2D simulations. The only
difference between the 2D simulations presented here and
those presented earlier in the paper is that we are now includ-
ing the ion polarization drift in the density evolution (which
should not affect the 2D simulations much) in order to have
a one-to-one correspondence to the results from the 3D simu-
lations. The initial density profiles for the 3D simulations are
uniform along the field line with the 2D profiles the same as
was used for the 2D simulations presented previously.

It should be mentioned that the hats used here to repre-
sent the dimensionless variables have been dropped from the
terms in the figures for simplicity. The results from 2D and
3D seeded blob simulations for a D ¼ 1 blob using the pa-
rameter set given previously that may be characteristic of
current tokamaks are shown in Fig. 6. The 2D density pro-
files from the 3D simulations represent the density averaged
along the field line. Notice that the averaged density along
the field line from the 3D simulation (bottom) matches well
with the 2D simulation (top) at early stages in the 2D con-
vection, but the onset of drift waves can be seen by looking
at the individual slices along the field line shown in Fig. 7.
At later times, the 3D simulation yields a blob that is much
more diffuse with a greatly reduced radial velocity.

The results of 2D and 3D seeded blob simulations for a
D ¼ 0:3 blob and a D ¼ 3:0 blob using parameters typical
of current devices are shown in Figs. 8 and 9, respectively.
The D ¼ 0:3 blob is seen to be affected by the drift waves at
a relatively earlier time than the D ¼ 1 blob, whereas the
D ¼ 3:0 blob is relatively unaffected by the drift wave insta-
bility. Both of these results agree qualitatively well with the
linear analysis given in Fig. 5.

The results from the standard local linear analysis gives
a qualitatively good description of how drift waves affect
plasma blobs, but to gain a better understanding of the modes

that affect plasma blobs and the limitations of using the
standard local linear analysis to describe these modes, it is
useful to analyze the development of the drift wave modes in
more detail. The mode structure of the dominant unstable
drift wave mode corresponding to the 3D simulation in Fig.
6 is shown in Fig. 10 where we see the development of a
wave with parallel mode number six and normalized perpen-
dicular wavelength such that v * 0:5. Both of these values
agree qualitatively well with that predicted by the local lin-
ear theory. The results of the linear analysis shown in Fig. 5
also suggest that the parallel mode number corresponding to
the maximum growth rate for a D ¼ 1 blob using the param-
eters characteristic of future tokamaks should be about twice
as large as that for parameters typical of current devices.
This result is also found in the seeded blob simulations of a
D ¼ 1 blob with future-like parameters shown in Fig. 11
where a parallel mode number of 12 is seen. The dominant
perpendicular wavelength shown in Fig. 11 is such that
v * 0:7.

The linear analysis also predicts that the growth rate for
a D ¼ 1 blob with the future-like parameters should be larger
than that for a D ¼ 1 blob with the current-like parameters.
A 3D background density is required in order to extract the
growth rates from the simulations. This background is
obtained by first recognizing that the drift wave instability is

FIG. 6. Time slices of density contours from 2D simula-
tion (top) and 3D simulation (bottom) for D ¼ 1:0 blob
using parameters typical of current tokamaks:
q ¼ 2:87& 10$4; r ¼ 32:3, and a ¼ 3:68& 10$3. The
2D contours from the 3D simulation are the averaged
values along the field line. Reprinted with permission
from J. Angus, M. Umansky, and S. Krasheninnikov,
Phys. Rev. Lett. 108, 215002 (2012). Copyright #
2012 American Physical Society (enhanced online)
[URL: http://dx.doi.org/10.1063/1.4747619.1].

FIG. 7. 2D density contours from 3D simulation taken at different slices
along the magnetic field line corresponding to the averaged density contour
shown at t¼ 5.5 in Fig. 6. Reprinted with permission from J. Angus, M.
Umansky, and S. Krasheninnikov, Phys. Rev. Lett. 108, 215002 (2012).
Copyright 2012, American Physical Society.
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Figure 2.13: Comparison of the density evolution of a filament using 2D and 3D models.
Unstable drift-waves can be observed to destroy the coherence of the filament in 3D. The
initial perpendicular size of both filaments was δ⊥ = δ∗, whilst the spatial coordinates and
time have been normalised to δ⊥ and

√
δ⊥/g respectively. Image reproduced with permission

from Reference [191]. Copyright (2012) by the American Physical Society.

discussed previously [184]. This classification was further demonstrated in a follow-up paper
[196] that used the same model to investigate the dependence of filament velocities at the
mid-plane on δ⊥ and input Te. The poloidal velocity was found to scale linearly with Te, whilst
the radial velocity was found to increase with both temperature and δ⊥. These results are
also discussed in more detail in Reference [136].

3D simulations of isolated filaments have also been carried out using the GBS (Global
Braginskii Solver) code [197], which unlike previous models includes the evolution of the
parallel ion velocity and electron temperature, although the influence of Te was not discussed.
Furthermore, in this study all fields were separated into their background and fluctuating
components, with only the latter evolved. Filaments were simulated using the magnetic
geometry of TORPEX (TORoidal Plasma EXperiment), which is a simple magnetic torus,
and the dependence of the filament velocity on its perpendicular size was investigated. The
simulations in general found good agreement with the 2D sheath dissipation model in that the
predicted inertial and sheath current limited regime velocity scalings were obtained for small
and large δ⊥. Whilst no direct comparison between 2D and 3D simulations was shown, it was
commented that faster radial velocities were produced compared to previous 2D works. This
was attributed to the fact that the sheath dissipation term in Equation (2.22) overestimates the
strength of sheath currents as it does not account for the density drop between the mid-plane
and the target that was found to develop in the 3D simulations due to sheath losses. It is
noted that the resistive X point and ideal interchange regimes of the two region model are
not present in Torpex as it does not have an X-point and because it has a relatively short
parallel connection length and low plasma density, respectively. Boltzmann spinning effects
were again observed in the presence of density gradients, but the filaments appeared to be
stable to drift-waves, possibly due to the presence of additional perpendicular diffusion terms
that were included for numerical stability.

A very recent study has also investigated electromagnetic effects using 3D simulations
[198]. It was demonstrated that for high beta filaments, the sheath boundary condition has
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a reduced influence at the mid-plane due to the reduced Alfvén speed and so faster radial
velocities were produced. Furthermore, in the presence of varying diamagnetic drive along
the field line (for example peaked at the mid-plane), the high beta filaments were observed to
exhibit both ballooning and field line bending. Finally, high beta filaments were found to be
more stable to resistive drift-waves.

2.3.5 Limitations

In the majority of models considered so far, cold ions have been assumed and the Boussinesq
approximation has been employed. Since typically in experiments Ti & Te [133–135] and
filaments have order unity density perturbations, neither of these simplifications are generally
justified. A number of works have specifically addressed the influence of these assumptions, to
understand the limitations they have on results obtained using them. This subsection will
discuss these studies, before addressing more general limitations of fluid based modelling in
the SOL. Finally, the limitations of existing 3D models will be discussed to highlight areas for
improvements in the field and to motivate some of the results presented in later chapters.

The Boussinesq Approximation

A number of works have conducted 2D simulations using the sheath dissipation model,
both with and without the Boussinesq approximation to assess the impact of the ill-justified
simplification on the dynamics of isolated filaments [149–151]. Those with a small perpendicular
size (δ⊥ < δ∗) have been found to be more stable when the full polarisation current term is
solved, in that mushrooming motions are suppressed so that they remain coherent for longer.
This means that net cross-field transport is increased for these filaments. In contrast, for very
large filaments (δ⊥ � δ∗) the approximation makes little difference because the polarisation
current term is negligibly small. The most stable filament size was found be slightly smaller
when the approximation was not made (but still ∼ δ∗), as fingering effects were observed to
occur at comparatively smaller filament sizes. It has been supposed that this was due to the
suppression of mushrooming motions, which are thought to cancel out the finger-like motions
to produce coherent filament propagation for sizes around δ∗ [149].

It has also been shown that the approximation leads to an incorrect filament velocity scaling
with perturbation amplitude [151], and for this reason Reference [169] used the full polarisation
current term when investigating the effect of amplitude. Furthermore, it is noted that these
conclusions on the influence of the Boussinesq assumption on isolated filaments in a drift fluid
model are in agreement with a study into the effect of the corresponding simplification in a
2D gyro-fluid model [152]. Reference [150] also investigated this issue using 3D simulations,
and concluded that destruction of the filament structure due to unstable drift-waves meant
that the net cross-field transport of filaments was virtually the same regardless of whether the
approximation was employed.

More generally, the Boussinesq approximation breaks energy conservation within a model
[199, 200] and therefore limits its applicability for turbulence studies.

The Cold Ion Assumption

The effect of hot ions on isolated filaments has been investigated numerically using a 2D
isothermal gyro-fluid models [152, 201], because they naturally incorporate Finite Larmor
Radius (FLR) effects whilst maintaining a simple form compared to drift-fluid models that
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include FLR corrections [152]. It was found that relinquishing the assumption of cold ions
caused the poloidal up-down symmetry of the particle density to break, in that a filament
would develop a velocity with a non-negligible component in the effective poloidal direction.
Furthermore, the FLR effects were found to reduce mixing, stretching and generation of small
spatial scales in the density field, resulting in more coherent and stable filament motion. These
two effects are illustrated by Figure 2.14 from Reference [201], which compares the density
evolution of filaments with Ti = 0 (top row) and Ti = 3Te (bottom row). Both cases undergo
mushrooming motions, but in the hot ions case the filament’s density is preferentially swept
up into the lower lobe of the mushroom. The rotation of this lobe in the perpendicular plane
causes the density to remain significantly more coherent than in the cold ions case, which
mushrooms symmetrically.

The influence of hot ions has also been studied using 2D drift-fluid simulations [131,
186], which corroborated the poloidal symmetry breaking observed in gyro-fluid simulations
but found similar levels of coherence and stability with and without hot ions. However,
there are mitigating factors in each study which are attributed here to explain this apparent
inconsistency with the gyro-fluid simulations. In Reference [186], instabilities were found
regardless of whether or not hot ions were included due to the use of a non-standard closure
for the parallel current, whilst the relatively high diffusion and viscosity parameters used
in Reference [131] acted to suppress the mushrooming motions that would have otherwise
occurred in the cold ions case. Since these parameters were MAST relevant, these results
indicate that the influence of hot ions on the stability of filaments in MAST may be negligible,
though it is noted that their radial velocities were 60-100% faster in the hot ions case due to
the enhanced pressure drive. In a different work, also utilising a drift-fluid model, it was shown
that evolving the ion temperature (but maintaining an isothermal electron temperature) leads
to an elongation of filaments in the poloidal direction and slower radial velocities [202].

Radial filament velocity scaling estimates have also been derived for the case of hot ions
using a drift-interchange-Alfvén fluid model [203]. The inclusion of hot ions increases the
diamagnetic currents which drive filamentary motion and also provides additional contributions
to the polarisation currents, due to the ion diamagnetic drift. Magnetic geometry effects were
not included, but collisionality effects were considered, and so the results can be compared
directly to the two region model regimes in the reduced case where εx = 1 and the ideal
interchange regime is not present. Each of the remaining regimes was reproduced for the
hot ion case, with identical scalings of the radial velocity with perpendicular size obtained,
although the estimated constants for each scaling contained corrections. In addition a new Ion
pressure dominated Resistive Ballooning regime (iRB) was found for the smallest filaments in
which the filament velocity scales like vr ∼ δ2

⊥. These scalings have been compared against
filaments produced within 3D turbulence simulations in Reference [204].

Fluid Models

All of the drift-fluid models discussed have ultimately been derived using a Braginskii collisional
treatment [205], which amongst other conditions, requires ν∗ � 1. However, low values of
collisionality (ν∗ < 10) are often found in experiments, and under such conditions fluid closures
are not strictly justified. In particular, parallel heat transport is a non-local process in non-
collisional plasmas because it is dominated by fast electrons and therefore it is poorly described
by fluid models. This limitation means that fluid models are unsuitable for the study of ELM
filaments, because the high temperatures within these structures generally always ensures
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At later times, the influence of FLR effects on the non-
linear convection of an isolated blob is in general very com-
plex. However, a few remarks can be made considering the
last two terms in the vorticity Equation (26). The second last
term advects vorticity along contour lines of particle density,
effectively redistributing vorticity generated by the inter-
change drive. In regimes where the FLR effects are not
dominated by other effects, the particle density blob is there-
fore expected to rotate. The rotation in the particle density
field acts as to retain the initial rotational symmetry of the blob
and reduces the generation of fine structure in the particle den-
sity field as we will demonstrate by means of numerical simu-
lations in Sec. IV. The last term in Eq. (26) has a similar
effect, namely setting up flows acting to flatten out n in regions
where n is steepened. In passing it should be mentioned that
other mechanisms are also able to induce rotation, e.g., elec-
tron temperature variation in sheath-connected blobs.40

IV. NUMERICAL RESULTS

In this section, we present numerical solutions of the
gyrofluid equations (1) and (3) with the Padé approximate
gyroaveraging operators (5) using the Gaussian blob struc-
ture [Eq. (21) and (22)] as initial condition. We investigate
how the blob propagation is influenced by FLR effects. In
general terms the impact of FLR effects is governed by the
ratio of the ion gyroradius to the characteristic length scale
k?qi. The ion gyroradius has a simple dependence on ion
temperature q2

i / Ti, but the characteristic length scale k!1
?

depends on the ion temperature in a more complex way. The
characteristic length scale depends on the potential thermal
energy and therefore Ti, but is also, particularly in the initial
phase, determined by the initial blob amplitude and width
kini
? " Dn=r. In other words, the impact of FLR effects on

the blob convection is not necessarily comparable at differ-
ent Rayleigh numbers. Therefore, in order to clarify the
influence of FLR effects on the blob convection, a parameter
scan varying the initial blob width r and the ion temperature
s¼Ti=Te has been carried out, keeping the remaining free
parameters (g, qs0=R, Dn=n0) in the model fixed.

The diffusion is held constant at g ¼ 10!3X0q2
s0. The

blob amplitude is fixed at Dn¼ 0.5ne0 and the major radius is
held constant at R¼ 2$ 103qs0. These free parameters corre-
spond to a plasma with the following characteristic
parameters:

n0 % 1019 m!3 Te % 20 eV; B % 1 T: (27)

The numerical simulations have been carried out using a
standard spectral method. Simulation with the given parame-
ters is a challenging task. Taking a closer look at the polar-
ization equation (1c) shows that the characteristic spatial
length scale of the equation is qs0, a length scale which must
be resolved. Also, in order to minimize finite box size
effects, mainly due to the slow spatial decay of u, the simu-
lation domain must be considerably larger than the blob size.
In all simulations, the ratio of box width L to the initial blob
width r is kept constant at L=r¼ 50. In order to resolve, the
initial gradients test simulations have shown that the runs are

only well converged when r=dx" 40, where dx denotes the
numerical grid resolution. This implies that most runs have
required 20482 grid points in order to be well converged.

A. General blob dynamics

Independent of blob width and ion temperature, the
blobs accelerate and move radially outwards as a conse-
quence of a dipole in the vorticity field generated by the
interchange drive. In Fig. 1, we present particle density con-
tour plots of two blob simulations. The initial blob widths
are r¼ 5qs0. In the top row s¼ 0, whereas s¼ 3.0 in the bot-
tom row. The simulation parameters and initial conditions
are otherwise identical. The magnetic field points out of the
paper. The first column shows the blobs as they were initial-
ized and the second column shows the blobs at
t ¼ 1250 X!1

0 . This figure is shown to illustrate the impact
of FLR effects on the interchange-driven convection of
blobs. In comparison with the cold ion limit, s¼ 0, finite ion
temperature blobs travel further, faster, and are more coher-
ent. Furthermore, the blob center of mass is advected poloi-
dally in the ẑ$rB direction breaking the apparent up-down
symmetry found when s¼ 0. It is interesting to note that the
spatial signature of the particle density field at finite ion tem-
perature resembles that of experimental observations.3,4

In Fig. 1, we see that the finite ion temperature blob,
s¼ 3.0, has moved approximately twice the distance of the
cold ion blob, s¼ 0.0, at t ¼ 1250 X!1

0 . This observation is
more clearly seen in Fig. 2(a), where we show the time evo-
lution of the center of mass position

XC ¼ ðXC; YCÞ ¼
1

M

ð
dx xðn! n0Þ; (28)

where

M ¼
ð

dx ðn! n0Þ (29)

denotes the blob mass. Clearly, blobs travel longer as s is
increased. This is expected because the initial total Helm-
holtz free energy Ue þ Ui / 1þ sð Þ, see Eq. (15), is four

FIG. 1. (Color online) Spatial structure of particle density for two blobs
with initial widths r¼ 5qs0. Length scales are normalized to initial blob
width r. In the top row s¼ 0, in the bottom row s¼ 3. First column t¼ 0,
second column t ¼ 1250 X!1

0 .

112504-6 Madsen et al. Phys. Plasmas 18, 112504 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
194.81.223.66 On: Tue, 04 Aug 2015 14:11:20

Figure 2.14: Density evolution of isolated filaments from 2D gyro-fluid simulations for Ti = 0

(top row) and Ti = 3Te (bottom row). The left column shows the initial filament profiles at
t = 0, whilst the right column corresponds to t = 1250Ω−1

i . The initial width of the filaments
was δ⊥ = 5ρs, and the axes has been normalised to δ⊥. Image reproduced from Reference
[201], with permission from AIP Publishing.

that they are non-collisional and furthermore, because parallel heat transport in ELMs is of
particular interest. It is noted that a basic 3D Particle In Cell (PIC) simulation of a filament
has been completed to investigate kinetic effects such as non-local parallel heat transport [206],
but in general computational cost and memory restraints prevent such simulations being used
for detailed filament or SOL turbulence simulations.

Another limitation on the use of fluid models is that they assume that the characteristic
perpendicular length scale, l⊥, is much larger than the ion Larmor radius (i.e. ρi � l⊥) and
that they only include higher order FLR effects through the gyro-viscous tensor [205]. This is
problematic because the perpendicular length scale of filaments can often approach the ion
Larmor radius, particularly in the highly sheared magnetic field region around an X-point.
To address this issue, gyro-fluid models have been used for SOL plasmas [152, 201, 204, 207,
208], but either assume small perturbations (delta-F models), or neglect some FLR effects
[152]. Furthermore, gyro-fluid models also suffer the same limitations as fluid models regarding
collisionality.

From this brief discussion, it is evident that there are significant limitations in using fluid
models for SOL or filament studies. However, in the absence of any clearly superior alternatives,
they remain a valuable tool for gaining insight into L-mode and inter ELM H-mode filament
dynamics in the SOL.

Gaps in Existing 3D Simulations

With respect to the 3D simulations discussed above, no work to date has investigated filament
dynamics with the parallel ion velocity treated self-consistently, as the GBS simulations [197]
evolved only fluctuating quantities, rather than the full fields. This is an area for future
development and is particularly important with the consideration that ultimately it is desirable
to move from studying isolated filaments to studying saturated SOL turbulence, where the
density profiles produced will be highly dependent on parallel ion dynamics. It is also not clear
how the inclusion of electron temperature dynamics will affect filamentary transport in a 3D
model. Finally, no study has provided a thorough comparison between 3D and 2D simulations
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turbulence, so the parallel correlation length of blobs
remains somewhat uncertain. Passive optical imaging of the
3D structure of blobs has been done in MAST,33,163 but it is
not clear that the observed structures are aligned exactly
along B.

F. Potential and magnetic field

Up to now this experimental overview has focused on
the density perturbation as the defining characteristic of
blobs, but there have also been many measurements of other
plasma properties of blobs. This section reviews those meas-
urements, some of which are important for comparing
experiment with theory in later sections.

The electrostatic potential perturbation and poloidal elec-
tric fields associated with blobs have been measured using the
floating potential of Langmuir probes in DIII-D,18 C-Mod,138

JET,144 TEXTOR,125 JT-60,150 CASTOR,167 RFX-
mod,188,189,192,193 T2R188 and TPE-RX.197 Both positive and
negative blob potentials have been observed, corresponding to
positive and negative vortices, along with both monopolar and
dipolar potential structures. Two dimensional spatial maps of
the vortexlike potential structure of blobs have been made in
W7-AS,119 ADITYA,172 SINP,174 TORPEX,132,204 TJ-K,184

the Riso Q machine,226 and THORELLO.215 The relationship
between the observed monopole and/or dipole potential struc-
tures and the theory of blobs is discussed in Sec. IV A.

Magnetic field perturbations were correlated with the
blob size in the reversed-field pinch RFX-mod,191 and a
direct measurement of the magnetic field and parallel current
density associated with blobs was recently made in that de-
vice.192,193 The pressure peak of the blob was associated
with a current filament aligned along B and moving with the
E! B flow. Somewhat similar results were obtained on the
MST field-reversed pinch.241

G. Scalings

The comparisons between experiment and theory in
Sec. V focus on the scaling of various blob properties with
plasma parameters such as the collisionality or relative size
of the gyroradius to plasma size. Ideally these scalings would
be consistent across all devices, but such universal trends are
not yet clear from the existing experimental database.

Perhaps the most studied property of blobs is their radial
velocity, which is an important parameter in analytic theory
and blob-induced radial transport. Figure 12 shows published
data on blob size versus speed for nine tokamaks from
Table II. This plot gives an overview of the existing tokamak
data without any attempt to distinguish between different
definitions of a blob or different analysis procedures. It is
clear from Fig. 12 that there is a wide variation in blob size
versus radial speed and that there is no simple relationship
between these two quantities. Part of this variation is due to
differing definitions of a blob and different analysis techni-
ques; for example, the initial analysis of NSTX GPI data

FIG. 12. (Color online) Outward radial blob speed v in km/s vs blob size d
in cm for tokamaks, as reported in the literature from Table II. No attempt
has been made to make the definitions and analysis of blobs the same for all
experiments. The blob data was taken from the following references: DIII-D
(see Ref. 18), NSTX (see Ref 135), Alcator C-Mod (see Ref. 138), JET (see
Ref. 144), T-10 (see Ref. 160), MAST (see Ref. 163), CASTOR (see Ref.
167), SINP (see Ref. 175), and HL-2A (see Ref. 126).

FIG. 13. (Color online) Radial profiles of the density, electron temperature
and radial velocity of blobs in the DIII-D SOL, inferred from a conditional
averaging analysis of reciprocating probe data. Four values of Greenwald
fraction and two values of the plasma current are compared. (Ip¼ 0.8 MA
for the red triangles and Ip¼ 1.0 MA for the other data.) Reprinted with per-
mission from D. L. Rudakov et al., Nucl. Fusion 45, 1589 (2005). Copyright
2005, International Atomic Energy Agency.
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Returning to the main theme of this sub-section, it is
necessary to explain an apparent contradiction in the previ-
ous two figures, viz. why do the data points lie between the
two theoretical curves in Fig. 25 but lie below both curves in
Fig. 26? This is a subtle point which requires some discus-
sion. An analysis shows that the difference lies in the two
factors: the existence of electrical disconnection parallel to
the magnetic field, and the role of electron-ion collisionality
K (or equivalently, resistivity), which can play an important
role in NSTX but is negligible in TORPEX for the parame-
ters used in Ref. 208.

In a toroidal device with X-points, increasing K causes
the blobs to disconnect the midplane region (where the cur-
vature drive is strongest) from the X-point and divertor
regions.29,51 From the theory (Fig. 23) we see that finite col-
lisionality leads to the scaling v̂ ¼ K=d̂2, which lies between
the two limiting cases, v̂1 ¼ 1=d̂2 (sheath-connected) and
v̂2 ¼ d̂1=2(disconnected). Thus, finite collisionality of the
blobs in NSTX leads to data points between the two curves,
v̂1 < v̂ < v̂2, and represents the physics of resistive balloon-
ing, which localizes perturbations to the region of strongest
curvature drive. On the other hand, in TORPEX the colli-
sionality is low, the instability and blob velocity drive is uni-
form along the field line, and the physics involves a local
competition between the two current paths corresponding to
v̂1 and v̂2. This situation can be described analytically by
considering the vorticity equation in a single region model
(interchange limit), keeping the inertial, curvature and sheath
terms. It can be shown that the solution of the blob disper-
sion relation has the property that v̂ < Minðv̂1; v̂2Þ in agree-
ment with the TORPEX measurements in Fig. 26. An
approximate blob dispersion relation (valid in the two as-
ymptotic limiting cases of small and large d̂) is
1=v̂ ¼ 1=v̂1 þ 1=v̂2, which gives

v̂ ¼ v̂1v̂2

v̂1 þ v̂2
¼ ðdn=nÞ d̂1=2

ðdn=nÞ1=2 þ d̂5=2
; (9)

In Eq. (9) we have restored the background density depend-
ence for future use.

Thus, in comparing the NSTX and TORPEX blob data,
the differences in how the theoretical blob scalings bound
the data appear to be due to their respective geometries and
parameters, and in both cases the data are consistent with the
theoretical expectations.

2. ELM filaments
Recently, there has been a great deal of interest in study-

ing the formation and propagation of ELM filaments. A
detailed discussion of the ELM literature is outside the scope
of the present review, and the reader is referred to earlier
review articles6,255–257 for general background. Although we
will not discuss the formation of ELMs, we point out that the
nonlinear saturation of electromagnetic ballooning and/or
peeling-ballooning modes near the pedestal can form ELM
filaments (see Fig. 8 of Ref. 256) just as the nonlinear satura-
tion of electrostatic edge turbulence near the separatrix forms
blob filaments. In each case, the initial density and tempera-
ture of the filaments is characteristic of their birth location,

so that ELM filaments (born at the top of the pedestal) have
higher density and temperature than blobs (born near the
separatrix).

It has been noted in many experiments that the radial
propagation of ELMs is similar to that of blobs.19,24,32–36

Here, we would like to mention one example that is very rel-
evant to the present discussion of velocity scaling: an experi-
mental study of the scaling of the radial velocity of ELM
filaments with filament size and filament density was carried
out on ASDEX-U.258 The radial velocity was measured with
a filament probe consisting of four radially separated pins
located near the separatrix; the filament size was obtained by
time delay measurements, and the filament density was
inferred from the maximum ion saturation current for each
filament. The main conclusion was that large or dense fila-
ments move faster than smaller or lower density ones. The
database of filaments was analyzed to obtain the scaling
vx / n1=2

f d1=2
x , where nf is the peak filament density and dx is

the radial filament size (not the poloidal scale length, which
enters the theory). If one assumes that dy / dx, the experi-
mental scaling agrees with the RB/inertial scaling rather than
the sheath-connected one.258 However, one must be careful
in comparing ELMs with electrostatic theory regimes. ELMs
are electromagnetic (EM) in nature, at least at times near
their creation, and should be compared with EM blob
regimes (see Sec. VII D). In the limit of strong ballooning,
an EM treatment48 yields the observed scaling vx / d1=2, but
there are also other relevant EM regimes.39,48 Further analy-
sis is needed to determine if this experiment is consistent
with theory.

3. Inter-machine comparison

To summarize this section, in comparing analytic blob
models with experiments, it is important to realize that there
are several regimes with different blob velocity scalings.
While there is some experimental and simulation support for

FIG. 27. (Color online) Inter-machine comparison in the dimensionless
blob parameter space defined in Eqs. (7) and (8): normalized blob velocity v̂
vs normalized blob size d̂. Theory predicts that the blobs will lie between
the two black lines, corresponding to the sheath-connected and inertial scal-
ings, which is in reasonable agreement with the experimental data. This fig-
ure uses the same blob database as Fig. 12 but scales the velocity and blob
size by v% and d%, respectively. The references for the blob data are listed in
the figure caption of Fig. 12.
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Figure 2.15: Radial velocity plotted against perpendicular size for filaments across a number
of different devices. The left hand plot is in dimensional units, whilst the right hand plot is in
terms of the normalised quantities. Images reproduced from Reference [45], with permission
from AIP Publishing.

of isolated filaments using different parallel closures. Indeed, the dynamics of isolated filaments
using the vorticity advection closure have not been explicitly investigated in the literature.

2.4 Comparison between Theory and Experiment

Inspired by the theoretical results discussed in the preceding section, experimental studies
have investigated the relationship between the perpendicular size of filaments and their radial
velocities. Measurements from a number of different machines were collated in Reference [45]
and are plotted in Figure 2.15 in both dimensional and normalised form. There does not
appear to be a clear relationship between the filament size and radial velocity, although this
may be due to the different diagnostics, filament definitions and analysis techniques that were
used in each machine, or indeed because a third parameter, such as the fluctuation amplitude
of the filaments, has had an effect on the results.

Specific studies into this issue have also been carried out using GPI on NSTX [67] and
Langmuir probes on TORPEX [122], with the distributions of observed filaments in the
parameter space of normalised perpendicular size and radial velocity shown in Figure 2.16.
With respect to the notation used in the TORPEX plot, ã = δ̂ and ṽblob = v̂ to within constant
factors of order unity. Also plotted on both figures are the theoretical scaling predictions of
the inertial (v̂ ∝ δ̂1/2) and sheath current limited regimes (v̂ ∝ δ̂−2). In the NSTX case, the
filament velocities appear to be bounded between these two scalings, whereas in TORPEX,
the scalings predictions appear to be an upper bound. This seeming discrepancy between the
two devices has been attributed to the relatively high collisionality found in NSTX, meaning
that the filaments are predicted to lie in the Resistive X-point regime of the two region model.
This regime is in-between the inertial and sheath current regimes and estimates velocities to
scale like v̂ ∝ Λδ̂−2, where Λ is a normalised collisionality parameter. It can be understood
therefore that the results from these two machines are consistent with each other, and that
reasonable agreement is found with theoretical scaling predictions, which act as bounds on the
experimental results. A further study [204] tested the hot ion scaling predictions [203] against
experimental measurements from ASDEX-U, finding similar levels of agreement.

A recent work has also claimed to have experimentally validated the two-region model’s
prediction that large δ̂ filaments change from having velocities scaling like v̂ ∼ δ̂−2 to v̂ ∼ δ̂1/2

as the collisionality is increased [81]. Whilst the model may yet be appropriate, this validation
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regime, which balances curvature drive with inertia in the
midplane region. Thus, the model incorporates all of the cur-
rent loops sketched in Fig. 22 which are electrostatic in
origin.

In each parameter regime, the blob velocity has the scal-
ing with poloidal blob size indicated in Fig. 23, and these sol-
utions are continuous across the boundaries between regimes.
An important feature of this model is that it retains the
nonlinearity of the ion polarization drift convective term
[v !rðr2vÞ] and allows one to study the transition between
blobs which are electrically connected and disconnected to the
sheaths. (For example, see the discussion of the effect of colli-
sionality in Sec. V C.) Finally, note that the terminology has
been chosen to emphasize the close connection between the
blob physics and the underlying linear instability physics.

Some results from seeded blob simulations using the
two-region model equations are shown in Fig. 24. The meas-
ured blob velocities in the simulation (dots) agree reasonably
well with the analytic blob dispersion relation (solid curves)
obtained using the correspondence principle. (The analytic
and numerical results for vx agree to within a factor of 2.)
These results support the validity of the correspondence prin-
ciple and the velocity scalings obtained from it. In Fig. 24,
for a given blob size, the analytic curve for vx is approxi-
mately independent of K at both low and high collisionality
and is proportional to K for intermediate collisionality. Not-
ing that H > 1 for both curves, this figure illustrates the tran-
sition between the Cs, RX and RB regimes in Fig. 23 as K
increases. The observed increase in the convection velocity
with collisionality is due to electrical disconnection from the
sheaths.

Also, note the dependence on blob size in Fig. 24. For
large blobs, the parallel current to the sheaths dominates
over the inertial (vorticity) term and there is a large increase
in blob velocity with collisionality K. For small blobs, the in-
ertial term is dominant, and the path of least resistance uses
predominantly cross-field currents. There is a weak depend-

ence of the small-blob case on the parallel current (and thus
collisionality) for the parameters used in this figure.

The sheath-connected (Cs) and resistive ballooning (RB)
regimes provide theoretical bounds on the scaling of vx as a
function of blob scale size. Both the WKB analysis of Ref.
48 and the electrostatic two-region model analysis in Ref. 51
predict that for a diverted tokamak geometry

1

d̂2
< v̂ < d̂1=2; (7)

where

v̂ ¼ vx=v%; v% ¼ cs d%=Rð Þ1=2;

d̂ ¼ db=d%; d% ¼ q4=5
s L2=5

jj =R1=5 : (8)

It is important to emphasize that the inequality in Eq. (7)
results from varying the collisionality parameter K, with the
Cs regime applying at low collisionality and the RB regime
at large collisionality. Another derivation of these two
regimes and a discussion of seeded blob simulations in both
regimes is given in Ref. 49.

A number of additional closures are possible by includ-
ing other physical effects in the vorticity equation. A com-
prehensive discussion of the closures is given in Ref. 3 and
some other examples are discussed in subsequent sections of
this review.

B. Experimental tests of theoretical scalings
with blob size

1. Blobs

The velocity bounds obtained from the blob regime
analysis are useful for comparison with experiment. In Refs.
30 and 135, gas puff imaging (GPI) data from an L-mode
shot on NSTX was used to construct a blob database. The
data was compared with the theoretical blob models, as
shown in Fig. 25. Here, the He I 587.6 nm emission SI was

FIG. 25. Observed radial blob velocities on NSTX (filled circles) in the
dimensionless parameter space of velocity and blob scale size. The data is
approximately bounded by a theoretically predicted minimum and maximum
(solid lines). Reprinted with permission from J. R. Myra, J. Boedo, B. Coppi,
D. A. D’Ippolito, S. I. Krasheninnikov, B. P. LeBlanc, M. Lontano, R.
Maqueda, D. A. Russell, D. P. Stotler, M. C. Varischetti, S. J. Zweben, and
the NSTX Team, in Fusion Energy 2006, Proc. 21st Int. Conf. Chengdu,
2006 (IAEA, Vienna). Copyright 2006, International Atomic Energy
Agency.

FIG. 24. (Color online) Plot of normalized radial blob velocity as a function
of collisionality parameter K for blobs of two different sizes: H¼ 2
(d̂ ¼ 1:3, small dots) and H¼ 316 (d̂ ¼ 10, large dots). The dots were
obtained by measuring the blob velocities in the numerical simulation. The
solid curves are from the analytic blob dispersion relation. Reprinted with
permission from J. R. Myra, D. A. Russell, and D. A. D’Ippolito, Phys. Plas-
mas 13, 112502 (2006). Copyright 2006, American Institute of Physics.
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!n=n ¼ 0 (white curve) and !n=n ¼ 0:73 (thick black
curve). The dashed line is the expected blob velocity in
the absence of parallel currents [7,8] and the dash-dotted
line the scaling where sheath currents are dominant [6]. We
find ~a of the order of 1. By varying the ion mass, both
regimes ~a < 1 and ~a > 1 are obtained. For ~a < 1, the
parallel currents play a minor role and the dashed line
approaches the experimental results. However, we observe
strong deviations from this scaling for ~a > 1, interpreted as
due to the growing importance of parallel currents. Only in
this range does the 1=~a2 scaling show quantitative agree-
ment with experimental findings.

Thus far we have assumed "in ¼ 0. We provide now an
estimate of an upper bound of ~# in Eq. (4). With the
measured neutral background pressures pn " 0:017, 0.02,
0.014, and 0.0085 Pa forH2, He, Ne, and Ar, respectively, a
momentum transfer cross section of $mt & 2# 10$18 m2

[25], an ambient temperature Tamb of 0.025 eV, and an
upper bound for the ion temperature Ti & 1 eV, we obtain
from "in ¼ pn

Tamb
$mtvth;i values of ~# " 0:5–0:6 for all four

gases. By setting ~# ¼ 0:6 in Eq. (4), a relatively small
difference (%25%) is obtained compared to the case ~# ¼
0, as shown in Fig. 4. This indicates that blob velocity is
only weakly reduced by ion-neutral collisions.

In conclusion, cross-field blob velocity and size have
been investigated experimentally in TORPEX in an open
magnetic field line configuration. This features constant
curvature along the field lines, nearly constant connection
length, and almost perpendicular incidence of the magnetic
field on the wall. Large blob statistics over a wide parame-
ter range allowed a quantitative comparison with a blob
velocity scaling, also derived here, which agrees well with
the whole experimental data set. In the absence of ion-
neutral collisions, it recovers the commonly used SOL

scalings ~vblob / 1=~a2 [6] and ~vblob /
ffiffiffi
~a

p
[7,8] for ~a & 1

and ~a ' 1, respectively, where ~a is the normalized vertical
blob scale. Ion-neutral collisions become the dominant
damping term for blob velocity when the adimensional
parameter ~# satisfies ~# & 1=

ffiffiffi
~a

p
, ~a2. In this limit we

retrieve the scaling presented in [4]. We have obtained
two regimes of blob motion in the experiment. In the
regime ~a < 1, blob velocity is mainly damped by cross-
field ion polarization currents. For ~a > 1, it is limited by
parallel currents to the sheath. The damping due to ion-
neutral collisions is found to be weak (%25%).
This work is partly supported by the Fonds National

Suisse de la Recherche Scientifique. The authors thank
B. P. Duval and F.M. Poli for the careful reading of the
manuscript.
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FIG. 4 (color online). Joint probability of ~vblob versus ~a. For
better visibility, the distribution for H2 (h) and He (e) are
normalized to 1, the ones of Ne (+) and Ar (() to 0.5. The
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Figure 2.16: Radial velocity, v̂, plotted against perpendicular size, δ̂, for filaments from NSTX
(left) and TORPEX (right), in normalised units. In the TORPEX plot, ã = δ̂ and ṽblob = v̂

to within constant factors of order unity. The analytic scaling predictions of the inertial
and sheath current limited regimes are plotted for comparison, with a dot-dash line used for
the TORPEX plot. The additional solid lines in the TORPEX are analytical results for the
filament velocity for no background density (white), order unity background (thick black) and
neutral damping effects. Left hand figure reproduced with permission from Reference [67].
Copyright (2007) by IAEA. Right hand figure reproduced with permission from Reference
[122]. Copyright (2009) by the American Physical Society.

is not entirely convincing, as there are very few data points in the low collisionality regime and
more importantly the results appear to indicate a trend towards filament velocities decreasing
with enhanced collisionality, which actually contradicts the model’s predictions.

2.5 Discussion and Summary

A critically important feature of transport caused by filaments is that it is highly intermittent,
as this prevents simplified models providing an adequate description. For example, like the
diffusive characterisation, attempts made to capture the convective nature of filaments by
parametrising the experimental measurements of turbulent particle fluxes using an effective
convective velocity, Veff again yielded the unphysical situation of transport coefficients increasing
with radial position [209–211]. It is worth emphasising here that whilst the instantaneous
transport by filaments is by definition convective, convective models of turbulent transport
operate using mean profiles, and therefore do not provide an adequate description. Nevertheless
it remains commonplace today to describe the particle flux simply as the linear combination
of effective diffusion and convection terms for analytical and transport code modelling of SOL
plasmas [212–214]. Such an approach has been shown to be ill-founded by an analysis of probe
measurements from TCV [95] and by an equivalent analysis of 2D SOL turbulence simulations
[215]. As reference [215] states, ‘Formally it remains possible to calculate effective diffusion
coefficients or convective velocities, at every time or on average. These numbers have little
meaning beyond stating the average gradient and average flux of the system’. Therefore, whilst
models or simulations that use such a diffusive-convective description of the perpendicular
transport have utility for applications such as post hoc analysis of experimental shots or in
engineering simulations for divertor design, the perpendicular transport should be an input,
rather than an output of these models or simulations. In particular, such a description does
not have the ability to predict perpendicular transport in future machines such as ITER or
DEMO. This lack of predictive capability strongly motivates further investigations of SOL
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transport based on first principles physics and in particular, of filamentary dynamics.
To conclude, in this chapter the concept of SOL filaments has been introduced and their

importance to SOL transport has been demonstrated. Experimental techniques used to
measure filament quantities have been described, and measurements of key parameters have
been collated from a number of different machines. From this characterisation, it has been
shown that filaments typically have density perturbations of the order of the background
plasma, have a perpendicular size in the range of 0.5-10 centimetres (or 1-100 ρs), propagate
in the radial direction of toroidal machines at speeds of up to 3.5 kilometres a second (or up to
10 % of the sound speed). It has been explained that filament propagation arises in toroidal
machines due to the presence of magnetic curvature and gradients, which drive compressible
diamagnetic currents and in turn polarisation currents. These cause the filament to possess a
broadly dipolar potential field, which through the E ×B velocity, propagates the filament
radially. A review of the existing literature on the theory and simulation of filaments has
been made, with particular emphasis on studies of the propagation of isolated filaments, and
limitations of existing 3D models and simulations have been discussed. In addition it has been
shown that the theoretical predictions for the relationship between perpendicular filament size
and radial velocity are in reasonable agreement with experimental measurements. Finally, it
has been emphasised that simple turbulence models do not adequately describe SOL transport,
and that this motivates further theoretical and computational studies of filaments to aid the
development of predictive models and simulations.



Chapter 3

Physical Model

3.1 Introduction

In this chapter the governing equations of the physical models that are used within the
simulations presented in this thesis are derived from the Braginskii equations. In particular,
3D drift-fluid equations will be derived and appropriate parallel boundary conditions for the
plasma sheath at the targets will be stated. Following this, the Bohm normalisation used
within the simulation code and throughout the rest of this thesis is introduced. Finally the
sheath dissipation and vorticity advection closures will be applied to obtain 2D models also
used for simulations in later chapters.

3.2 3D Model

3.2.1 Magnetic Curvature and Gradients in Slab Geometry

For simplicity, in this work the SOL is modelled using a local slab (Cartesian) geometry, where
x and y represent the effective radial and bi-normal (perpendicular to both the magnetic field
and radial direction) coordinate directions and a uniform magnetic field, B = Bẑ, is assumed.
However, as discussed in Section 2.3.1, magnetic curvature and gradients in toroidal machines
lead to the propagation of filaments, and so this influence must be retained. In deriving the
final evolution equations of the model, a number of terms of the form

∇ ·
(
b̂×∇f
B

)
(3.1)

will arise, where f is an arbitrary field. Using standard vector calculus identities, this can be
expressed as

∇ ·
(
b̂×∇f
B

)
= ∇

(
1

B

)
·
(
b̂×∇f

)
+

1

B

(
∇× b̂

)
· ∇f. (3.2)

The first term on the right hand side represents the contribution of magnetic gradients, whilst
the second term can be understood to primarily represent the influence of magnetic curvature,
κ = (b̂ · ∇)b̂, since

∇× b̂ = b̂× κ+
((
∇× b̂

)
· b̂
)
b̂. (3.3)

In a toroidal device, the magnetic field strength, B, is roughly proportional to 1/R, where
R is the major radius. Therefore in local slab geometry, where x corresponds to the radial

48
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direction, the magnetic field can be written as

B ≈ B0

(
1 +

x

R0

)−1

ẑ (3.4)

where x = R−R0, R0 is the reference major radius location at which the geometry system
is defined about, and B0 is the magnetic field strength at R0. Inserting this expression into
Equation (3.2) leads to

∇ ·
(
b̂×∇f
B

)
≈ − 1

R0B0

∂f

∂y
. (3.5)

However, this expression arises solely due to the magnetic gradients, and does not include the
effect of magnetic curvature. However if instead a cylindrical coordinate system, (R,Φ, Z), is
considered, where Φ is the azimuthal coordinate, Z is the vertical coordinate and

B =
B0R0

R
Φ̂, (3.6)

the magnetic gradient and curvature terms both contribute equally to produce

∇ ·
(
b̂×∇f
B

)
≈ − 2

R0B0

∂f

∂Z
, (3.7)

and so the magnitude of the term is doubled. Therefore, to artificially include the influence of
both magnetic curvature and magnetic gradients in the slab geometry, the following relation
will be used throughout the following derivations.

∇ ·
(
b̂×∇f
B

)
= − 2

R0B0

∂f

∂y
. (3.8)

The influence of magnetic gradients and curvature in any other terms that are not in the form
of the LHS of Equation (3.8) will be neglected. This approach is equivalent to assuming B
to be straight and uniform self-consistently in all terms, but including additional force terms
within the momentum equations.

3.2.2 Isothermal Braginskii Equations

The model used in this thesis is derived directly from the Braginskii fluid equations [205],
which describe collisional magnetised plasmas. Whilst in principle the Braginskii model can
describe plasmas consisting of multiple ion species and neutrals, in this work only the reduced
case of a fully ionised plasma consisting of electrons and singly charged ions will be considered.
Introducing l‖, l⊥ and ωc as the characteristic parallel length scale, perpendicular length scale
and frequency of the system respectively, the Braginskii closure is valid for such plasmas that
satisfy

νei
Ωe
� 1,

νii
Ωi
� 1, ωc � νei, ωc � νii,

l‖ � λe, l‖ � λi, l⊥ � ρi, l⊥ �
√
λeρe, l⊥ �

√
λiρi.

(3.9)

Here the subscripts e and i correspond to electron and ion quantities, and for a species j,
ρj = vth,j/Ωj is the gyro-radius, vth,j =

√
Tj/mj is the thermal velocity, Ωj = eB/mj is the

gyro-frequency, λj = vth,j/νji is the mean free path, e is the elementary charge, Tj is the
temperature and mj is the mass of a single particle. In addition

νei =
neZ

2
i e

4 ln Λ

3ε2
0m

1/2
e (2πTe)

3/2
(3.10)
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is the electron-ion collision frequency and

νii =
neZ

4
i e

4 ln Λ

12ε2
0m

1/2
i (πTi)

3/2
(3.11)

is the ion-ion collision frequency, where ε0 is the permittivity of free space, ne is the electron
density, and Zi is the charge state of the ions. Finally ln Λ is the Coulomb logarithm, which
can be approximated in tokamak relevant conditions to be

ln Λ ≈ 18.0− ln

[( ne
1019

)1/2
(
Te

103e

)−3/2
]
, (3.12)

where ne is in m-3 and Te is in Joules [216]. Whilst most of the relations in Equation (3.9) are
generally true for SOL plasmas, it is acknowledged that the l‖ � λe condition may not be
satisfied in all cases.

Throughout the work contained in this thesis, an isothermal plasma is assumed. In this
limit, the Braginskii equations can be written in the form

∂ne
∂t

+∇ · (neve) = sn, (3.13)

∂ni
∂t

+∇ · (nivi) = sn, (3.14)

me

(
∂

∂t
+ (ve · ∇)

)
(neve) +∇pe +∇ · πe + ene (E + ve ×B) = F ei, (3.15)

mi

(
∂

∂t
+ (vi · ∇)

)
(nivi) +∇pi +∇ · πi − eni (E + vi ×B) = −F ei. (3.16)

Here for a species j, nj is the particle density, vj is the fluid velocity, pj is the isotropic
pressure and πj is the viscous stress tensor. Furthermore sn is a source or sink of particles
from ionisation or recombination processes and E is the electric field. In addition F ei is the
effective frictional force between electrons and ions due to collisions, given by

Fei = ene

(
j‖
σ‖

+
j⊥
σ⊥

)
, (3.17)

where j‖ and σ‖ are respectively the current density and conductivity in the parallel direction,
whilst j⊥ and σ⊥ are the corresponding quantities in the perpendicular direction. The
conductivities are defined as

σ‖ =
nee

2

0.51meνei
(3.18)

and
σ⊥ = 0.51σ‖. (3.19)

Definitions of the Braginskii electron and ion viscosity tensors can be found in Reference [205]
directly. It is noted that since the plasma is by definition quasi-neutral, ne = ni, and so
hereafter ne will be used in place of ni.

In deriving the model used within this thesis from these isothermal Braginskii equations,
the first reduction made is to assume cold ions. This is a common simplification in existing
filament models, despite it not being generally justified as often Ti & Te in the SOL [31,
133–135]. A discussion of existing studies into the influence of this assumption can be found
in Section 2.3.5. Using Ti = 0 greatly simplifies the equations, as it removes the complicated
gyro-viscous components of the ion viscous stress tensor and the pressure gradient term in the
ion momentum equation (which otherwise would lead to an ion diamagnetic drift velocity),
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since pi = niTi. Strictly, under the Braginskii closure, the perpendicular components of the
ion viscous stress tensor become infinite at Ti = 0, and so finite Ti is retained within these
terms to allow the model to include viscous effects. In this cold ion limit, Equations (3.15)
and (3.16) in non-conservative form become:

mene

(
∂

∂t
+ ve · ∇

)
ve + Te∇ne +∇ · πe + ene (E + ve ×B) = F ei −mesnve, (3.20)

mine

(
∂

∂t
+ vi · ∇

)
vi +∇ · πi − ene (E + vi ×B) = −F ei −misnvi. (3.21)

3.2.3 Drift-Fluid Reduction

The velocity of a species j in the perpendicular direction is defined as

v⊥j =
b̂× (vj ×B)

B
. (3.22)

Therefore by manipulation of Equations (3.20) and (3.21), expressions for the electron and ion
perpendicular velocities can be obtained:

v⊥e = vE + vD + vPe + vπe + vF + vSe, (3.23)

v⊥i = vE + vPi + vπi + vF + vSi. (3.24)

Here

vE =
E × b̂
B

=
b̂×∇ϕ
B

(3.25)

is the E ×B velocity,

vD = − b̂×∇pe
eneB

(3.26)

is the electron diamagnetic velocity,

vPe = −me

eB
b̂×

(
∂

∂t
+ ve · ∇

)
ve (3.27)

and
vPi =

mi

eB
b̂×

(
∂

∂t
+ vi · ∇

)
vi (3.28)

are the electron and ion polarisation velocities,

vπe = − b̂×∇ · πe
eneB

(3.29)

and

vπi =
b̂×∇ · πi
eneB

(3.30)

are the electron and ion drift velocities due to viscous forces,

vF =
b̂× F ei

eneB
(3.31)

is the drift velocity induced due to friction between electrons and ions and

vSe =
mesn
eneB

b̂× ve (3.32)

and
vSi = −misn

eneB
b̂× vi (3.33)
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are the electron and ion drift velocities due to the sources or sinks of particles in the system.
It is noted that in other works the drifts due to viscous forces are often included within the
polarisation drifts, but have been kept separate here to highlight the effect of viscosity.

Following the drift-ordering arguments in References [217] and [218], the parameters
δe = ρe/l⊥ and δi = ρi/l⊥ are introduced, which given the Braginskii assumption of a
collisional magnetised plasma, are both small:

δe � 1, δi � 1. (3.34)

In addition, the characteristic inverse time scale of interest in the plasma, ωc, is assumed to
be of order

ωc ∼ δ2
i Ωi. (3.35)

The magnitudes of each of the constituent perpendicular velocities can then be approximated
as follows

vE ∼ vD ∼
Te
eBl⊥

(3.36)

vPi ∼ vπi ∼ vF ∼ vSi ∼ δ2
i

Te
eBl⊥

(3.37)

vPe ∼ vπe ∼ vSe ∼
me

mi
δ2
i

Te
eBl⊥

. (3.38)

It can be seen therefore that the E ×B and electron diamagnetic velocities are the leading
order perpendicular velocities. To reduce the complexity of the model, the remaining consistent
velocities can be neglected with the exception of vPi, which is required to determine the
perpendicular electric field, and vπi, which is kept to retain the effect of viscous terms. Under
this drift-reduction, Equations (3.23) and (3.24) become

v⊥e = vE + vDe, (3.39)

v⊥i = vE + vPi + vπi. (3.40)

where vPi is now defined as

vPi =
mi

eB
b̂×

(
∂

∂t
+ vE · ∇

)
vE (3.41)

Furthermore, in the following the influence of ion viscosity is simplified by writing ∇ · πi =

−mineνi∇2
⊥vE , where νi is the effective cross field kinematic viscosity of the ions. This

simplification essentially neglects parallel viscosity and all viscous terms involving cross-
derivatives with the parallel direction (the gyro-viscous components have already been neglected
through the cold ion assumption). It is noted that strictly the Braginskii closure specifies the
parallel terms of the viscous tensor to be larger than the perpendicular terms. However the
parallel viscosity terms can be shown to be small compared to the isotropic pressure terms
(which are of the same form) for a sufficiently collisional plasma, whilst the justification for
ignoring terms involving cross-derivatives with the parallel direction is that the gradients in
the parallel direction are negligible compared to those in the perpendicular direction (l‖ � l⊥).
Under this simplification, vπi becomes

vπi =
miνi∇⊥∇2

⊥ϕ
eB2.

(3.42)
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3.2.4 Model Equations

The total current density in the drift-reduced system, j can be conveniently expressed as

j = jpol + jdia + jvisc + b̂j‖, (3.43)

where jpol = enevPi is the ion polarisation current density, jdia = −enevD is the electron
diamagnetic current density, jvisc = enevπi is the perpendicular current density arising due to
ion viscosity, and j‖ is the parallel current density. In the local slab geometry described in
Section 3.2.1, consideration of current continuity, ∇ · j = 0, leads to

mi

B2
∇⊥ ·

(
ne
d

dt
∇⊥ϕ

)
= ∇‖j‖ + Te∇ ·

(
b̂×∇ne

B

)
+∇⊥ ·

(
nemiνi∇⊥∇2

⊥ϕ
B2

)
, (3.44)

where d/dt = ∂/∂t+ vE · ∇⊥ + v‖i∇‖ is the total derivative of the ion fluid. By employing
the Boussinesq approximation,

∇⊥ ·
(
ne
d

dt
∇⊥ϕ

)
≈ ne

d

dt
∇2
⊥ϕ, (3.45)

to simplify the polarisation current term, and Equation (3.8) to express the diamagnetic
current term, Equation (3.44) can be written as

mine
B

dω

dt
= ∇‖j‖ −

eg

Ωi

∂ne
∂y

+
mineνi
B

∇2
⊥ω. (3.46)

Here ω = ∇2
⊥ϕ/B can be understood to be the plasma vorticity based upon the E × B

velocity, g = 2c2
s/R is an effective gravitational acceleration that captures the influence of

magnetic gradients and curvature and R is the characteristic major radius location of the
SOL, typically taken at the outboard mid-plane. The Boussinesq approximation is valid for
small density perturbations with respect to the effective background, δne/ne,bg � 1, and so is
not strictly valid in the SOL where order unity perturbations are commonplace. A discussion
of the influence of this approximation on filament simulations is provided in Section 2.3.5.
In addition, in handling the viscous current term, gradients in the quantity neνi have been
neglected. The electrostatic potential field can therefore be obtained by integrating (inverting)
the vorticity field, whose evolution is given by Equation (3.46).

The density evolution in this drift reduced system is found by using Equations (3.39) and
(3.8) within Equation (3.13) to produce

∂ne
∂t

+ vE · ∇⊥ne +∇‖
(
nev‖e

)
=
gne
Bc2

s

∂ϕ

∂y
− g

Ωi

∂ne
∂y

+D∇2
⊥ne + sn. (3.47)

It can be seen that the diamagnetic velocity does not contribute to particle advection. Similar
cancellations occur within the momentum equations and other higher order moments of the
kinetic equations [145–148] which are known collectively in some works as the diamagnetic
cancellation. In addition, a collisional particle diffusion term, D∇2

⊥ne, has also been included
on the LHS, where D is the effective particle diffusivity. In principle a term of this form can
be derived from the vF drift velocity [219].

The final equations of the closed system are obtained by isolating the parallel components
of Equations (3.20) and (3.21), which produces

mene

(
∂

∂t
+ vE · ∇⊥ + v‖e∇‖

)
v‖e = ene∇‖ϕ− Te∇‖ne + eneη‖j‖ −mesnv‖e, (3.48)

mine

(
∂

∂t
+ vE · ∇⊥ + v‖i∇‖

)
v‖i = −ene∇‖ϕ− eneη‖j‖ −misnv‖i, (3.49)
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where by definition j‖ = ene
(
v‖i − v‖e

)
and η‖ = 1/σ‖ is the parallel resistivity of the

plasma. In these equations the diamagnetic cancellation has occurred between the diamagnetic
velocity advection terms and the gyro-viscous components of the viscous tensors [145–148].
The remaining viscous terms have been neglected. Equations (3.46) to (3.49), alongside
ω = ∇2

⊥ϕ/B thus constitute the physical model used for all 3D simulations in this thesis.

3.2.5 Dissipative Parameter Definitions

In this work, the dissipative parameters are defined as

D =
(
1 + 1.3q2

95

)(
1 +

Ti
Te

)
ρ2
eνei, (3.50)

νi =
3

4

(
1 + 1.6q2

95

)
ρ2
i νii. (3.51)

Here q95 is the value of the safety factor, q, at the flux surface that encloses 95% of the toroidal
magnetic flux. For circular large aspect ratio tokamaks, q is given by

q =
rBΦ

RBθ
, (3.52)

where r is the minor radius and BΦ and Bθ are the strength of the toroidal and poloidal
components of the magnetic field. These expressions for D and νi are derived in Reference
[177]. They seek to include neoclassical corrections to the classical Braginskii [205] definitions
for these quantities, which in turn can be recovered by setting q95 = 0. It is noted that under
the above definition, νii →∞ and ρi → 0 as Ti → 0. Therefore, whilst cold ions are assumed
elsewhere in the model equations, non-zero values of Ti will be used within these dissipative
parameters. Typically Ti will be set such that Ti = Te.

3.2.6 Sheath Boundary Conditions

In the slab geometry used in this work, the sheath boundaries are defined to be located at
z = ±`‖. From standard sheath theory [31, 158], the velocities at the entrances to the sheaths
must satisfy

v‖i
∣∣
z=+`‖

≥ +cs, (3.53)

v‖i
∣∣
z=−`‖

≤ −cs, (3.54)

v‖e
∣∣
z=+`‖

= +

(
Te

2πme

)1/2

exp

(
e

Te

(
ϕw − ϕ|z=+`‖

))
, (3.55)

v‖e
∣∣
z=−`‖

= −
(

Te
2πme

)1/2

exp

(
e

Te

(
ϕw − ϕ|z=−`‖

))
, (3.56)

where ϕw is the electrostatic potential of the walls of the target. However, as shown in
Appendix A, in a steady state system that is uniform in the perpendicular directions and
assuming sn ≥ 0 throughout, a solution to the governing equations of the model, Equations
(3.46) to (3.49), does not exist unless

v‖i ≤
√

Te
mi +me

. (3.57)

Recalling that cs is defined here to be
√
Te/mi, the quantity

√
Te/(mi +me) can be understood

to be the sound speed of the plasma corrected to include the effect of electron inertia. It can
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be seen therefore that this specific condition (3.57) is incompatible with Equations (3.53) and
(3.54). This discrepancy occurs because electron inertia is neglected in various aspects of the
derivation of Equations (3.53) to (3.56), but has been retained in Equations (3.46) to (3.49).
Whilst no derivation of the sheath boundary conditions that includes electron inertia could
be found, numerical studies have shown that such an effect will act to lower the minimum
speed at which ions must enter the sheath [220]. Therefore in this work the following modified
boundary conditions will be enforced at the sheath instead of Equations (3.53) to (3.56) to
ensure Equation (3.57) is satisfied:

v‖i
∣∣
z=+`‖

≥ +

√
Te

mi +me
, (3.58)

v‖i
∣∣
z=−`‖

≤ −
√

Te
mi +me

, (3.59)

v‖e
∣∣
z=+`‖

= +

(
Te

2πme (1 +me/mi)

)1/2

exp

(
e

Te

(
ϕw − ϕ|z=+`‖

))
, (3.60)

v‖e
∣∣
z=−`‖

= −
(

Te
2πme (1 +me/mi)

)1/2

exp

(
e

Te

(
ϕw − ϕ|z=−`‖

))
. (3.61)

In Equations (3.58) and (3.59), the relations ≥ and ≤ are used instead of simple equalities
to allow for the possibility of supersonic flows in systems in which any of the conditions
on Equation (3.57) are relaxed (i.e. non-steady state, variation in perpendicular direction,
Sn < 0), as in such cases supersonic flow remains possible [221]. A description of how the ≥
and ≤ operators are implemented within the simulations presented in this work is provided in
Section 4.3.5.

It is convenient to specify the potential of the target walls to be equal to

ϕw = −Te
e

ln

[(
mi

2πme

)1/2
]
, (3.62)

so that Equations (3.60) and (3.61) simplify to

v‖e
∣∣
z=+`‖

= +

√
Te

mi +me
exp

(−e ϕ|z=+`‖

Te

)
, (3.63)

v‖e
∣∣
z=−`‖

= −
√

Te
mi +me

exp

(−e ϕ|z=−`‖
Te

)
. (3.64)

It can be seen therefore that by specifying the wall potential to be given by Equation (3.62),
zero net current will enter the sheath when the potential at the entrance to the sheath is zero.

To prevent the system from being over-constrained, no boundary condition is enforced
on any of the remaining fields at the sheath boundaries, which hereafter will be described as
having free boundary conditions. The conditions specified on the perpendicular boundaries of
the domain are given in Section 4.3.5.

3.3 Normalisation

The Buckingham π theorem [222] states that the number of parameters of a system of
equations is necessarily reduced by normalisation. Furthermore when performing simulations
it is convenient for all of the evolving fields to have approximately the same magnitude so that
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the the same error tolerances can be used for each field. In this work therefore the following
Bohm normalisation is used:

x

ρs
→ x, Ωit→ t,

ne
ne,0

= n,
eϕ

Te
= φ,

v‖e
cs

= V,
v‖i
cs

= U,
ω

Ωi
= Ω,

sn
ne,0Ωi

= Sn,
j‖

ene,0cs
= J‖,

0.51νei
Ωi

= ν‖,
mi

me
= µ,

`‖
ρs

= L‖

g

ρsΩ2
i

= ĝ =
2ρs
R

η‖
B/ (ene,0)

= η̂‖ =
ν‖
µn

,
D

DBohm
= Dn,

νi
DBohm

= DΩ.

(3.65)

Here ne,0 is a characteristic particle density of the SOL, and DBohm = ρ2
sΩi is the Bohm

diffusion coefficient. Under this normalisation, Equations (3.46) to (3.49) can be written as

∂Ω

∂t
= −

(
b̂×∇φ

)
· ∇Ω− U∇‖Ω +

1

n
∇‖J‖ −

ĝ

n

∂n

∂y
+DΩ∇2

⊥Ω, (3.66)

∂n

∂t
= −

(
b̂×∇φ

)
· ∇n−∇‖ (nV ) + nĝ

∂φ

∂y
− ĝ ∂n

∂y
+Dn∇2

⊥n+ Sn, (3.67)

dV

dt
= −

(
b̂×∇φ

)
· ∇V − V∇‖V + µ

(
∇‖φ−

1

n
∇‖n+ η̂‖J‖

)
− SnV

n
, (3.68)

∂U

∂t
= −

(
b̂×∇φ

)
· ∇U − U∇‖U −∇‖φ−

η̂‖
µ
J‖ −

SnU

n
, (3.69)

whilst the sheath boundary conditions, Equations (3.58), (3.59), (3.63), and (3.64) become

U |z=+L‖
≥ 1√

1 + 1/µ
, (3.70)

U |z=−L‖
≤ −1√

1 + 1/µ
. (3.71)

V |z=+L‖
=

1√
1 + 1/µ

exp
(
− φ|z=+L‖

)
, (3.72)

V |z=−L‖
=

−1√
1 + 1/µ

exp
(
− φ|z=−L‖

)
. (3.73)

3.4 2D Closures

In this work, 2D simulations utilising the sheath dissipation and vorticity advection closures
described in Sections 2.3.3 will also be performed in Chapter 6 so that direct comparisons can
be made between 2D and 3D models.

3.4.1 Sheath Dissipation Closure

The sheath dissipation closure assumes the density and electrostatic potential to be uniform
along the parallel direction so that the equations can be analytically integrated and averaged
along field lines. Applying this closure to Equations (3.66) and (3.67) and linearising the terms
which arise from the application of the sheath boundary conditions (given by Equations (3.53)
to (3.56)) yields

∂Ω

∂t
= −

(
b̂×∇φ

)
· ∇Ω +

φ

L‖
− ĝ

n

∂n

∂y
+DΩ∇2

⊥Ω, (3.74)

∂n

∂t
= −

(
b̂×∇φ

)
· ∇n+

nφ

L‖
− (n− n0)

L‖
+ nĝ

∂φ

∂y
− ĝ ∂n

∂y
+Dn∇2

⊥n. (3.75)

Here n0 is the background density value and it has been assumed that
∫ L‖

−L‖
Sn dz = 2n0. (3.76)
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3.4.2 Vorticity Advection Closure

The vorticity advection closure considers only the drift-plane at the outboard mid-plane,
neglects parallel currents and approximates the the parallel advection terms as

U∇‖ ≈ V∇‖ ≈
1

2L‖
. (3.77)

Applying this closure to Equations (3.66) and (3.67) produces

∂Ω

∂t
= −

(
b̂×∇φ

)
· ∇Ω− Ω

2L‖
− ĝ

n

∂n

∂y
+DΩ∇2

⊥Ω, (3.78)

∂n

∂t
= −

(
b̂×∇φ

)
· ∇n− (n− n0)

2L‖
+ nĝ

∂φ

∂y
− ĝ ∂n

∂y
+Dn∇2

⊥n. (3.79)



Chapter 4

Numerical Implementation

4.1 Introduction

To simulate the physical models outlined in Chapter 3, a collection of simulation codes called
STORM has been developed using the BOUT++ framework. In this chapter, this numerical
implementation is outlined, beginning first with a brief outline of BOUT++. A description
of the numerics of the STORM codes is then provided, before finally the initialisation of the
filament simulations presented in the latter chapters of this thesis is detailed.

4.2 BOUT++

BOUT++ (BOUndary Turbulence) [193, 194] is a framework for highly parallel non-linear
plasma fluid simulations using finite difference methods. It is primarily developed by Dr
Ben Dudson at the University of York and is publicly available at https://github.com/

boutproject/BOUT-dev. The simulation code itself is written entirely in C++, but there
are also a large number of pre and post processing tools written in a variety of higher level
languages such as Python, IDL, Matlab and Mathematica. Its foremost application is for
studies of the edge region of tokamak plasmas, and for this reason is utilises a general curvilinear
geometry system. This can be used to produce a wide range of magnetic configurations such
as simple slab, linear device, simple magnetised torus, limited tokamak and diverted tokamak.

To explain what BOUT++ actually consists of, it is first emphasised that there is no
such thing as the BOUT++ model and instead the user must specify which equations to
solve. What BOUT++ provides is a collection of routines, solvers and interfaces to libraries
that allow for simulation codes to be written much more quickly, easily and robustly. For
example, if a new fluid simulation code is developed from scratch, it will require routines for
memory management, communication between processors, spatial differentiation and time
integration, amongst many others. Writing and debugging these new routines will be very time
consuming and will only be a duplication of what lies in existing codes. By providing a flexible
framework that includes all these fundamental components, BOUT++ spares this effort and
the development time can be drastically decreased. Since BOUT++ has a relatively wide user
base of over one hundred users, the routines have been well tested and are considerably less
likely to contain errors than a newly written code. Furthermore, BOUT++ provides a variety
of different numerical methods for time integration, spatial differentiation and solving elliptic
differential equations, which can be easily selected through an input file or at the command
line. This means that the best numerical methods for a given problem can be investigated
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quickly and with no change to the source code of the simulation. Finally, it is exceptionally
simple to implement evolution equations using BOUT++ as functions have been written for
all common terms that arise in fluid plasma models. For example, the normalised density
continuity equation, Equation (3.67) can be implemented in BOUT++ as follows

ddt (n) = − bracket ( phi , n ) − n∗Grad_par (V) − Vpar_Grad_par (V, n) + D_n∗
Delp2 (n) − g∗n∗DDZ( phi ) + g∗DDZ(n)+ S ;

Here the E ×B term is implemented through the bracket() operator (as the term can be
written in the form of a Poisson bracket), whilst the substitution y → −z has been used to
implement the Equations in BOUT++’s coordinate system (See Section 4.2.4). As can be
seen, the resulting code is very readable and it is trivial to add new physics through additional
terms or equations.

In the remainder of this section, no attempt is made to outline the structure of the
BOUT++ code as this topic is thoroughly covered either in References [193] and [194], or in
the BOUT++ Developer and User Manuals [223, 224]. To aid the reader’s understanding
of how BOUT++ operates however, an example is provided of a BOUT++ Physics Module,
which is the collection of files in which the user’s simulation model is coded. This is followed
by a concise review of how BOUT++ evolves fluid equations in time and of the various
time solvers supported. The implementations of standard boundary conditions in BOUT++
are then outlined, as the author has made some contribution to this aspect. Lastly a brief
description of the constraints of the BOUT++ coordinate system is provided.

4.2.1 Structure of a Physics Module

A minimal working example of a BOUT++ physics module will consist of three files. The
first is a C++ file, which in the example below is called wave.cxx. This file must contain
a physics_init function, in which the initialisation of the simulation is prescribed, and a
physics_run function that calculates the time derivatives of the evolving variables and is
called with every iteration of the time solver. The second file is an input file, that by default is
called BOUT.inp and is located in a directory called /data, where incidentally the simulation
output data and log files are saved. In this input file, the parameters of the simulation can
be specified, such as the output time-step and number of outputs, the spatial mesh, input
parameters specific to the model, initial conditions and boundary conditions of evolving fields,
the numerical methods used for spatial differentiation and the choice of time solver. The final
file is a makefile, which specifies how the physics module is to be compiled. As an example,
the simple 1D system

∂f

∂t
=
∂g

∂x
,

∂g

∂t
=
∂f

∂x
, (4.1)

is implemented in Listings 4.1 and 4.2 below. These listings consist of less than 50 lines of code
and illustrate how easy it is to develop simulations using BOUT++. For reference, a typical
physics module consists of 100-1000 lines of code, whilst the core BOUT++ code contains
approximately 30000 lines of code.

Listing 4.1: wave.cxx

#inc lude <boutmain . hxx>
#inc lude <de r i v s . hxx>
#inc lude <i n t e r p o l a t i o n . hxx>
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// Dec lare evo lv ing f i e l d v a r i a b l e s
Field3D f , g ;
i n t phys i c s_ in i t ( bool r e s t a r t ) {

// Stagger g r e l a t i v e to f
g . s e tLoca t i on (CELL_XLOW) ;
// Spec i f y evo lv ing f i e l d s to time s o l v e r
SOLVE_FOR2( f , g ) ;
r e turn 0 ;

}

i n t physics_run ( BoutReal time ) {
// Evaluate ddx ( g ) on an un−s taggered g r id
ddt ( f ) = DDX(g , CELL_CENTRE) ;
// Evaluate ddx ( g ) on a s taggered g r id
ddt ( g ) = DDX( f , CELL_XLOW) ;
re turn 0 ;

}

Listing 4.2: BOUT.inp

nout = 20 # Number o f output t imes teps
t imestep = 0 .1 # Time between outputs
MZ = 1 # Number o f po in t s in z
MYG = 0 # Number o f x guard c e l l s
MXG = 2 # Number o f y guard c e l l s
StaggerGr ids = true # Enable s taggered g r i d s

[ mesh ]
nx = 68 # Number o f x points , i n c l ud ing 4 guard c e l l s
dx = 0 .1 # x spac ing
ny = 1 # Number o f y po in t s

[ ddx ]
f i r s t = C2 # Use second order c en t r a l d i f f e r e n c i n g

[ f ]
s c a l e = 1 .0
func t i on = s i n (3∗ (2∗ pi ∗x ) ) # Spec i f y f i n i t i a l c ond i t i on
bndry_xin = d i r i ch l e t_o3 (0 ) # Spec i f y f boundary cond i t i on s
bndry_xout = d i r i ch l e t_o3 (0 )

[ g ]
s c a l e = 1 .0
func t i on = cos (2∗ (2∗ pi ∗x ) )
bndry_xin = neumann_o2 (0)
bndry_xout = neumann_o2 (0)
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4.2.2 Time Integration

The Method of Lines

Fluid-like models typically consist of a system of Partial Differential Equations (PDEs) of the
form

∂f

∂t
= F

(
x, y, z, t,f ,

∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂2f

∂x2
,
∂2f

∂y2
,
∂2f

∂z2
,
∂2f

∂x∂y
,
∂2f

∂x∂z
,
∂2f

∂y∂z
, ...

)
(4.2)

where f is a vector containing each of the fields which are evolved by the model and F is a
general non-linear function. For example, in STORM3D, f = (n,Ω, U, V ), whilst F would
correspond to the RHS of Equations (3.66) to (3.69). To solve such a system numerically,
BOUT++ uses the Method of Lines [225], which consists of discretising the spatial domain and
replacing all spatial derivatives with finite difference approximations. This allows the system
of PDEs given by Equation (4.2) to be approximated as a system of Ordinary Differential
Equations (ODEs) that can be written as

∂g

∂t
= G (g) . (4.3)

Here g is a vector whose elements correspond to the values of each of the fields in f at each
grid point in the spatial domain. In the case of the STORM3D equations solved on a spatial
domain of Nx×Ny ×Nz (where Nj is the number of grid points in the j coordinate direction),
g would be a vector of length 4NxNyNz. The advantage of the Method of Lines is that it
allows PDEs to be solved using one of the many well established numerical methods for ODEs.

Explicit Methods

One method of numerically solving Equation (4.3), is to discretise the time domain and to use
the following first order forward finite difference approximation for the time derivative

∂gn
∂t
≈ gn+1 − gn

∆t
. (4.4)

Here ∆t is the time step, whilst gn and gn+1 are the values of g at t = tn and t = tn + ∆t

respectively. Equation (4.3) can then be rearranged to produce

gn+1 = gn + ∆tG (gn) . (4.5)

This method is known as the Forward Euler method. It is referred to as an explicit method,
as gn+1 is obtained using only values of g from previous time steps. Explicit methods
are generally easy to implement, but the size of the time step used is constrained by the
Courant–Friedrichs–Lewy (CFL) condition [226], which states that the method will not be
stable (i.e the solution will not converge) if

∆t >
hxhyhz

Uxhyhz + Uyhxhz + Uzhxhy
. (4.6)

The condition given here is for a system with three spatial dimensions, with hj and Uj
corresponding to the mesh spacing and the velocity of the system’s fastest wave along the
j coordinate direction. This condition means that explicit methods are unsuitable for stiff
systems, i.e. those which contain time scales much faster than those of interest, because
small time steps are required. Thus solving a stiff system with explicit methods can be
computationally expensive. Unfortunately, plasma physics models are typically stiff [194].
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Implicit methods

The alternative class of numerical integration methods to explicit methods are implicit methods.
These methods provide an expression for the state of the system at a future time-step that
implicitly depends on its state at that future time-step. Whilst implicit methods are generally
much more complicated to implement and require more calculations for each time-step, they are
not subject to the CFL condition and thus are more stable than explicit methods∗. Therefore
for stiff systems, an implicit method will be able to take significantly larger time steps than an
explicit method and thus can be computationally less expensive overall, despite performing
more calculations on each time step.

An example of an implicit method can be obtained by approximating the time derivative
in Equation (4.3) with the following first order backwards finite difference approximation (as
opposed to the forwards difference approximation used in Equation (4.4)):

∂gn
∂t
≈ gn − gn−1

∆t
. (4.7)

Substituting this expression into Equation (4.3) and making the replacements n → n + 1,
n− 1→ n, yields

gn+1 = gn + ∆tG
(
gn+1

)
. (4.8)

This is referred to as the Backwards Euler method, and it can be seen that the expression for
gn+1 is implicit because of the term G(gn+1). This non-linear problem can be solved via a
Newton iteration process by first writing

H
(
gn+1

)
= gn+1 − gn −∆tG

(
gn+1

)
= 0. (4.9)

An initial guess, gmn+1, is then made for gn+1. A Taylor series expansion of H
(
gn+1

)
about

this point gives

H
(
gn+1

)
≈H

(
gmn+1

)
+

∂H

∂gn+1

∣∣∣∣
gn+1=gm

n+1

(
gn+1 − gmn+1

)
. (4.10)

The term ∂H/∂gn+1 can be calculated to be

∂H

∂gn+1

= I−∆tJ, (4.11)

where I is the identity matrix and J is the Jacobian matrix, given by

J =




∂G1
∂g1

∂G1
∂g2

· · ·
∂G2
∂g1

∂G2
∂g2

· · ·
...

...
. . .


 . (4.12)

An improved guess, gm+1
n+1 , for the value of gn+1 that satisfies H

(
gn+1

)
= 0 can then be found

by setting the LHS of (4.10) to zero, making the replacement gn+1 → gm+1
n+1 and rearranging:

gm+1
n+1 = gmn+1 −

(
I−∆tJ

∣∣
gn+1=gm

n+1

)−1
H
(
gmn+1

)
. (4.13)

This expression can then be iterated until H
(
gmn+1

)
= 0 to within a specified tolerance.

By comparing this implicit Backwards Euler method with the explicit Forward Euler
method of Equation (4.5), the increased computational cost of implicit schemes is apparent in

∗Many implicit schemes are in fact unconditionally stable
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that the implicit scheme requires a Jacobian matrix to be calculated and stored, and a matrix
inversion problem to be solved at every iteration of every time step. It is emphasised that the
size of these matrices scale linearly with the total number of spatial grid points in the domain
and so these calculations can become prohibitively expensive.

One way to reduce this computational cost is to construct the method such that the
Jacobian is only ever used as a matrix-vector product of the form Ju. This can then be
approximated as

Ju ≈ G
(
gn+1 + εu

)
−G

(
gn+1

)

ε
, (4.14)

where ε is a small perturbation [227]. By using this approximation, or an equivalent one of
higher order, there is no need to compute and store the Jacobian at every iteration of every
time step. A review of such Jacobian-free methods can be found in Reference [227]. It is noted
however that these methods remain relatively computationally costly as they still require a
matrix inversion problem to be solved every iteration.

Time Solvers in BOUT++

BOUT++ has a variety of time integration methods that can be selected at runtime. The
explicit methods include the Forwards Euler method, the Karniadakis method [228], the 4th
order Runge-Kutta method [229] and the 3rd order Runge-Kutta Strong Stability Preserving
method [230].

The default implicit method is provided through the PVODE solver [231], which is
distributed as part of BOUT++. PVODE implements a Backwards Difference Formula
(BDF), which is conceptually similar to the Backwards Euler Method described previously,
but using more previous time points to achieve higher accuracy. The order and time step
of the integration is dynamically varied to attempt to obtain a solution with the minimum
number of steps but that also meets the specified error tolerances [231]. As in the Backwards
Euler method, a Newton iteration is required on each time step, in which a problem similar
to the form of Equation (4.13) is solved, but with ∆t multiplied by a constant that depends
on the order being used. PVODE formulates this problem in a Jacobian-free form and then
obtains the solution iteratively via the Scaled Preconditioned GMRES method [232], which is
a Krylov subspace method [227].

BOUT++ is also compatible with a number of other external implicit solvers. These
include CVODE and IDA from the SUNDIALS suite [233], as well as the time solvers provided
in the PETSc suite [234].

4.2.3 Implementation of Boundary Conditions

In BOUT++, boundary conditions are enforced in the x and y boundaries through additional
guard or ghost points on either side of the domain, as shown in Figure 4.1. It can be seen that
for un-staggered grids, the boundary is defined to be located half-way between grid points,
whilst for staggered grids, the boundaries is located on grid points exactly. The three standard
boundary conditions used in this work are:

i Dirichlet
This boundary condition type specifies that a field, f , must have the specified values g on
the boundary, i.e.

f |b = g,



64 CHAPTER 4. NUMERICAL IMPLEMENTATION

−2 −1 0 1 2 N − 3 N − 2 N − 1 N N + 1

. . .

. . .

−2 −1 0 1 2 N − 3 N − 2 N − 1 N N + 1

Un-staggered grid:

Staggered grid:

Lower Boundary Upper Boundary

h

Figure 4.1: Structure of un-staggered and staggered grids at the x and y boundaries in
BOUT++.

where |b denotes the boundary value.

ii Neumann
This boundary condition type specifies the gradient of the field f to have specific values
on the boundary, i.e for an x boundary, this condition enforces

∂f

∂x

∣∣∣∣
b

= g.

iii Free
This boundary condition sets no constraint on the field at the boundary at all.

The grid points through which the boundary conditions are implemented (following Figure
4.1’s notation, on an un-staggered grid these are indices -2, -1, N and N + 1, whilst on a
staggered grid, these are indices -2, -1, 0, N and N + 1) are only used when evaluating spatial
derivatives near to the boundary, which involve division by h for first derivatives and by h2 for
second derivatives. Therefore to implement an O

(
h2
)
boundary condition (i.e. one that allows

global O
(
h2
)
convergence to be obtained), the boundary grid points must be specified to

O
(
h3
)
if first order spatial derivatives are present. It has been observed that O

(
h3
)
boundary

grid points are also sufficient if second derivatives are present and it is speculated that this is
because the diffusive nature of second derivatives act to dissipate the expected O (h) error.
This is fortunate because specifying the boundary grid points to O

(
h4
)
has been found to

cause numerical stability issues.
In BOUT++, Dirichlet, Neumann and Free boundary conditions can be specified to a

variety of orders of accuracy in terms of the mesh spacing, h, up to 4th order, O
(
h4
)
. The

implementations used by the STORM physics modules are documented in Tables 4.1 to 4.3.
These are all O

(
h2
)
implementations and are selected in the input file using the descriptions

dirichlet_o3(g), neumann_o2(g) and free_o3, where g is the value or expression to which
boundary conditions are set to∗.

4.2.4 A Note on the BOUT++ Coordinate System

The differential operators in BOUT++ have all been written with the implicit assumption
that the magnetic field is aligned to the y coordinate, whilst the z direction is always periodic.

∗The meaning of the numbers in each of these descriptions are not consistent. It is emphasised that all
three boundary conditions are O

(
h2

)
boundary conditions. In dirichlet_o3(g) and free_o3, the 3 refers to

the order to which the boundary grid points have been specified to, whilst in neumann_o2(g) the 2 refers to
the order of the boundary condition itself.
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Table 4.1: Implementation of the Dirichlet boundary condition, f |b = g to order O
(
h3
)
in

BOUT++. Here the subscripts refer to the grid point index as labelled in Figure 4.1.

Boundary Grid Implementation

Lower Un-staggered
f−1 = (8g − 6f0 + f1) /3

f−2 = 3f−1 − 3f0 + f1

Lower Staggered

f0 = g

f−1 = 3f0 − 3f1 + f2

f−2 = 3f−1 − 3f0 + f1

Upper Un-staggered
fN = (8g − 6fN−1 + fN−2) /3

fN+1 = 3fN − 3fN−1 + fN−2

Upper Staggered
fN = g

fN+1 = 3fN − 3fN−1 + fN−2

Table 4.2: Implementation of the Neumann boundary condition, (∂f/∂x)|b = g to order
O
(
h3
)
in BOUT++. Here the subscripts refer to the grid point index as labelled in Figure

4.1.

Boundary Grid Implementation

Lower Un-staggered
f−1 = f0 − gh
f−2 = f1 − 3gh

Lower Staggered

f0 = (4f1 − f2 − 2gh) /3

f−1 = f1 − 2gh

f−2 = f2 − 4gh

Upper Un-staggered
fN = fN−1 + gh

fN+1 = fN−2 + 3gh

Upper Staggered
fN = (4fN−1 − fN−2 + 2gh) /3

fN+1 = fN−1 + 2gh

Table 4.3: Implementation of the free boundary condition, to order O
(
h3
)
in BOUT++. Here

the subscripts refer to the grid point index as labelled in Figure 4.1.

Boundary Grid Implementation

Lower Un-staggered
f−1 = 3f0 − 3f1 + f2

f−2 = 3f−1 − 3f0 + f1

Lower Staggered

f0 = 3f1 − 3f2 + f3

f−1 = 3f0 − 3f1 + f2

f−2 = 3f−1 − 3f0 + f1

Upper Un-staggered
fN = 3fN−1 − 3fN−2 + fN−3

fN+1 = 3fN − 3fN−1 + fN−2

Upper Staggered
fN = 3fN−1 − 3fN−2 + fN−3

fN+1 = 3fN − 3fN−1 + fN−2
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However, the governing equations in Chapter 3 have all been written with the magnetic field
aligned to z, as is standard in the literature. Therefore, to implement these equations in
BOUT++, the following transformations were made

y → z, z → −y. (4.15)

Throughout the remainder of this chapter and thesis however, the notation used will be
consistent with the coordinate system used in Chapter 3 (i.e. the magnetic field will be
described as being in the z direction and the simulation domain will be described as periodic
in the y direction).

4.3 STORM Physics Modules

Both the 3D and 2D models presented in Chapter 3 have been implemented in a pair of
BOUT++ physics modules, which have been collectively named STORM (Scrape-off layer
TuRbulence Models). In particular, the 3D model comprising of Equations (3.66) to (3.69)
have been implemented in the STORM3D physics module, whilst the sheath dissipation model
and vorticity advection models both have been implemented in the STORM2D physics module,
with input options controlling which parallel closure is used. In this section the specific details
of these implementations are provided. Only the default configuration will be considered and
where alternative numerical methods have been used in Chapters 5 to 7, this will noted as
appropriate.

4.3.1 Time Integration

Time integration in the STORM physics modules is carried out using the PVODE solver. It has
been noted that the 4th order Runge-Kutta method often produces a reduced computational
cost for STORM3D simulations if the largest stable time step is used. However, since this
time-step size is simulation dependent and generally unknown, the implicit PVODE solver is
preferred because the increased computational cost is not significant and the simulations are
more robustly stable.

4.3.2 Spatial Differentiation

All of the spatial derivatives are calculated using second order accurate schemes and thus
the STORM codes themselves are second order accurate. This accuracy has been verified for
STORM3D in Section 5.4. More specifically, parallel advection terms (i.e. U∇‖, V∇‖) are
calculated using an upwind scheme, an Arakawa scheme [235] is used for the perpendicular
E × B advection terms and all other derivatives are calculated using central difference
formulations.

4.3.3 Laplacian Inversion

To obtain the electrostatic potential, a Laplacian Inversion must be performed on the vorticity,
since

Ω = ∇2
⊥φ. (4.16)

In the STORM simulations, this inversion problem is effectively a series of Nz decoupled
problems, where Nz is the number of grid points along the parallel direction. The inversion
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procedure is carried out using Fourier transforms as follows. Since the y direction is periodic,
Equation (4.16) can be Fourier transformed in this direction to produce

∂2φ̂ky
∂x2

+ ky
2φ̂ky = Ω̂ky , (4.17)

where f̂ky denotes the kth
y Fourier mode of field f . This Fourier transform further decomposes

the system into NyNz/2 decoupled sub-problems, where Ny is the number of grid points in
y. The second derivative in Equation (4.17) is then written using a central difference scheme,
meaning that each sub problem becomes a tri-diagonal matrix inversion problem of size Nx,
where Nx is the number of grid points in x. These individual tri-diagonal matrix problems
are then easily solved using a Thomas-like algorithm [236], before the solutions are Fourier
transformed back to real space. This Fourier method is used because it is significantly less
computationally expensive than inverting Nz fully populated matrices of size NxNy. To be
precise, the FFT algorithm on an array of length N has a number of operations of order
O (N lnN), whilst the Thomas algorithm to invert a tri-diagonal matrix of size N requires
O (N) operations. In contrast, the most efficient algorithm for inverting a fully populated
matrix scales like O

(
N2.37

)
[237]. Therefore, the Fourier Laplacian inversion method has a

complexity of O (NxNzNy lnNy), compared to a complexity of O
(
Ny (NxNz)

2.37
)
that would

otherwise be required.

It is noted that this Fourier method can only be used by virtue of having made the
Boussinesq approximation, which is the primary reason why non-Boussinesq simulations are
so much more computationally expensive to perform, and therefore why the approximation
has been made here∗.

4.3.4 Staggered Grids

For numerical stability, the parallel velocity fields, U and V , are staggered in the parallel
direction relative to the other fields in STORM3D, as shown in Figure 4.1. Without this
staggered approach, a chequerboard-like instability[239] arises due to the ∇‖n and ∇‖φ terms
in Equations (3.68) and (3.69). The parallel velocities were chosen to be staggered rather than
the other fields because it is more convenient to enforce their Dirchlet-type parallel boundary
conditions on a staggered grid as their boundaries then lie exactly on grid points.

4.3.5 Boundary Conditions

In all of the 3D filament simulations presented in this work, the parallel direction of the SOL is
assumed to be symmetric about z = 0, where a stagnation point in the parallel velocities occurs.
Therefore for computational efficiency only half the parallel length of the SOL is simulated
from z = 0 to z = L‖. To implement this, the following symmetry boundary conditions were
enforced at z = 0, which hereafter will be referred to as the mid-plane position:

∂Ω

∂z

∣∣∣∣
z=0

= 0,
∂n

∂z

∣∣∣∣
z=0

= 0,
∂φ

∂z

∣∣∣∣
z=0

= 0, U |z=0 = 0, V |z=0 = 0. (4.18)

∗By using multi-grid methods, the additional computational cost associated with non-Boussinesq simulations
can be significantly reduced[238].
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At z = L‖, the boundary conditions given by Equations (3.70) and (3.72) are enforced:

U |z=L‖
≥ 1√

1 + 1/µ
, (4.19)

V |z=L‖
=

1√
1 + 1/µ

exp
(
− φ|z=L‖

)
. (4.20)

Since both of these boundary conditions are non-standard Dirichlet conditions, they are
implemented within the STORM3D physics module. In particular, the ≥ operator in Equation
(3.70) is implemented by first calculating the value of U |z=L‖

that would be produced by
extrapolating it from the inner domain grid points (as in a free boundary condition). If
it is ≥ 1/

√
1 + 1/µ, the boundary grid point is set to this extrapolated value, otherwise

the boundary grid point is set to 1/
√

1 + 1/µ. Free boundary conditions were used for the
remaining fields at z = L‖ so that the system was not over constrained. It is noted that
STORM3D also offers the option to represent the entire length of the SOL from z = −L‖ to
z = L‖ by enforcing Equations (3.71) and (3.73) at the lower z boundaries, although such
functionality was not used in this work.

Regarding the perpendicular boundaries, the y direction was periodic as necessitated by
the use of the BOUT++ framework, whilst at the x boundaries of the domain located at
x = 0 and x = Lx, conditions were enforced such that steady state and perpendicularly
uniform equilibrium fields with variation only in the parallel direction could be obtained.
These specified zero gradients in the x direction at both boundaries for all fields but φ, which
was set to its equilibrium profile φeq (z):

∂Ω

∂x

∣∣∣∣
x=0,Lx

= 0,
∂n

∂x

∣∣∣∣
x=0,Lx

= 0,
∂V

∂x

∣∣∣∣
x=0,Lx

= 0,
∂U

∂x

∣∣∣∣
x=0,Lx

= 0, φ|x=0,Lx
= φeq. (4.21)

However, since φeq cannot be determined a priori, it had to be obtained using the iterative
procedure described in Section 4.4.1. It is noted that zero gradient Neumann conditions could
not be used on the x boundaries of φ because this would mean that the Laplacian inversion
problem of Equation (4.16) would not have a unique solution for φ.

In STORM2D, identical boundary conditions were set on the perpendicular boundaries of
n, and Ω, whilst the x boundaries of φ were fixed to zero:

φ|x=0,Lx
= 0. (4.22)

4.3.6 1D Potential Solver

As shown in Appendix A, in a system with no variation in the perpendicular directions, the
parallel current is necessarily zero, J‖ = 0, and the electrostatic potential exhibits an exact
Boltzmann response, meaning that the the parallel gradient of the electrostatic potential can
be expressed as

∇‖φ =
µ

µ+ 1
∇‖ lnn. (4.23)

Parallel potential gradient terms are only present in Equations (3.68) and (3.69). As discussed
previously, the V and U fields are staggered in the parallel direction relative to φ and a second
order accurate central differencing scheme is used for ∇‖ terms. This means that ∇‖φ is always
evaluated in the STORM3D code as

(
∇‖φ

)
i

=
φi − φi−1

hy
. (4.24)
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Here
(
∇‖φ

)
i
is located on a staggered grid, hy is the grid spacing in the parallel direction and

the subscripts denote the grid point index as labelled in Figure 4.1. Therefore, if the density
field is known in a 1D system, the electrostatic potential can be numerically integrated using

φi+1 = φi +
µ

µ+ 1

(
∇‖ lnn

)
i+1

hy (4.25)

and the boundary condition
φ|y=±L‖

= 0, (4.26)

which ensures that no current enters the sheath, consistent with J‖ = 0. This method for
obtaining φ, hereafter referred to as the 1D Potential Solver, is very useful as it allows the
STORM3D physics module to operate effectively as a 1D code that describes the dynamics
only along the field line. In particular this solver has been used to reduce the computational
cost of obtaining 1D equilibrium fields as outlined in 4.4.1. Furthermore it has also been used
in the verification of parallel dynamics detailed in Section 5.3.

4.4 Filament Simulation Initialisation

4.4.1 Generating Equilibria

To investigate the dynamics of individual filaments, steady state equilibrium fields with
variation only in the parallel direction were required onto which filament perturbations could
be seeded. Furthermore, it was preferable to have minimal parallel velocities and gradients in
the parallel direction for as much of the domain as possible so that the equilibrium did not
drastically influence the dynamics of filaments. This was achieved by using the density source
of the form

Sn = α
10 exp

(
10z/L‖

)

L‖ (exp (10)− 1)
. (4.27)

This source is primarily localised in the last 10% of the domain nearest the target and, as
documented in Section 5.2, produces an equilibrium of the desired form. The parameter α
linearly scales the resulting equilibrium density field. Physically, this represents a localised
ionisation source in the proximity of the target, given for example by recycling from the targets.

To obtain the equilibrium fields, an iterative procedure was required because, as described
in Section 4.3.5, the x boundaries of φ must be set to φeq (z) to obtain uniform fields in the
perpendicular direction. This iterative procedure consisted of evolving a simulation for a
considerable time, to say t = 1000Ωi, with an initial guess for φeq. The x boundaries of φ
were then updated to the parallel profile of the steady state φ profile at x = Lx/2, and the
simulation was then restarted and evolved again. This procedure was then repeated until
steady state equilibrium fields were obtained which were uniform in the perpendicular direction.
This procedure can be sped up by utilising only 1 grid point in the x and y directions and
employing the 1D potential solver described in Section 4.3.6. The equilibria produced via this
method have been verified against analytic results in Section 5.2.

4.4.2 Filament Initialisation

Defining the density perturbation associated with a filament to be nf = n − neq, the 3D
filament simulations in this work were initialised such that

nf |t=0 =
A neq|z=0

2
exp

(
−(x− x0)2 + (y − y0)2

δ̂2
⊥

)(
1− tanh

(
z − Lf
δ̂‖

))
. (4.28)
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Figure 4.2: Schematic diagram of the geometry of the initialised filament density perturbation.
The peak density in the figure is A neq|z=0.

Hence the filaments were seeded with Gaussian profiles in the perpendicular plane centred at
(x0, y0), with normalised perpendicular length scale δ̂⊥ = δ⊥/ρs and peak amplitude A neq|z=0.
In the parallel direction, they are initialised to extend broadly from z = 0 to z = Lf , where
Lf = `f/ρs. The steepness of the filament front in the parallel direction is controlled through
the normalised parameter δ̂‖ = δ‖/ρs, with δ̂‖ = 0 corresponding to a step function, and
δ̂‖ = ∞ corresponding to the filament being uniform perturbation in the parallel direction
with peak amplitude of A neq|z=0 /2. A schematic diagram of this filament geometry is shown
in Figure 4.2.

In the STORM2D simulations, the equilibrium fields were simply specified to be neq = 0,
Ωeq = 0 and φeq = 0, whilst the filaments were initialised as

nf |t=0 = A exp

(
−(x− x0)2 + (y − y0)2

δ̂2
⊥

)
. (4.29)



Chapter 5

Code Verification and Validation

5.1 Introduction

In the context of computational physics, code verification and validation is the procedure
of ensuring that a code reliably simulates the particular physical processes it is designed
to represent. This process can be split into two key tasks. The first is to ensure that the
model equations are being solved correctly, consistently and to the order of accuracy that is
expected. This is code verification, and essentially it is the process of ascertaining that there
are no errors or bugs in the code. The second task, code validation, is to check that the model
equations being used are valid and represent physical reality. The process of code verification
and validation can be thus be summarised as two questions:

1. Are the model equations being solved correctly? (Verification)

2. Do the model equations represent physical reality? (Validation)

The difficulty of code verification lies in finding something against which the code’s results
can be compared, because unless obviously spurious or unphysical results are produced, it is
difficult to tell that there is a problem. Benchmarks can be made against other simulation
codes, but there is no guarantee that the comparison codes are error free. Moreover, there
are a large number of potential differences between two codes that could cause disagreements.
For example, discrepancies could be caused by differences in the equations being solved, the
numerical methods utilised or the discretisation used. Therefore it is difficult to determine
whether a disagreement is caused by one of these legitimate differences or due to an error
in one of the codes. Furthermore, if the legitimate differences can be ruled out, determining
which code contains the error can also be quite a challenge (especially if both codes contain
errors!).

The use of analytical results for purposes for verification is therefore preferable where
possible, as this allows for convergence to be reliably tested and the order of accuracy of
the numerical methods to be assessed. Unfortunately simulation codes are typically used for
problems that do not have analytical solutions (if a problem has an analytic solution, why
bother solving it numerically?). Therefore analytical results can generally only be used to test
simplified cases and hence cannot fully verify all aspects of a simulation code. This limitation
can be overcome by using the Method of Manufactured Solutions [240] (MMS), which is a
methodology that has been used previously within the field of computational fluid dynamics
and has more recently been used to verify the SOL simulation code GBS [241].

71
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For code validation, obtaining experimental measurements to compare against is also
a challenge. This is particularly the case in plasma physics, where error bars to within a
factor of two are commonplace. For the specific case of SOL filaments, which are the subject
of this thesis, there are few devices in which key properties of the filaments, such as their
perpendicular size and velocities, can be measured at all. One machine that is able to provide
such measurements and thus has been used to validate the STORM physics modules is the
TORPEX device, which is a Simple Magnetised Torus (SMT).

This chapter details the verification and validation that has been completed for the STORM
physics modules. In Section 5.2, the equilibrium fields used throughout this thesis are verified
against both analytic results and against other existing SOL codes. Section 5.3 describes the
verification of the shock tube problem, which consists of the propagation of a shock wave and an
expansion wave along the parallel direction, again by comparison against analytic theory and
other SOL codes. The last and most rigorous verification carried out uses the MMS to test the
convergence and order of accuracy of the code. Section 5.4 provides a description of the method
and the various issues that were encountered in testing, before presenting the verification
results. Finally, the results of a validation exercise against experimental measurements from
the TORPEX device are presented in Section 5.5.

5.2 Verification of Equilibrium

In this section the equilibrium fields used throughout this thesis are verified against analytical
solutions. These equilibrium fields, which are uniform in both perpendicular directions, were
obtained using a particle source which varied only in the parallel direction, i.e. Sn = Sn (z). A
description of how these equilibrium fields were obtained in the simulations and in particular
how the appropriate Dirichlet boundary condition on the x boundary of the φ field was
determined, is provided in Section 4.4.1.

5.2.1 Analytical Solution

Assuming uniformity in the perpendicular direction and given that Sn = Sn (z), it is shown
analytically in Appendix A that the steady state equilibrium solution to the governing equations
of the 3D model, Equations (3.66) to (3.69) is given by:

Ωeq = 0, (5.1)

neq =

√
1 +

1

µ

∫ z

0
Sn
(
z′
)

dz′

α−
√
α2 − 1

, (5.2)

Ueq = Veq =
α−
√
α2 − 1√

1 + 1/µ
, (5.3)

φeq = − µ

1 + µ
ln
(
α2 − α

√
α2 − 1.

)
, (5.4)

where the subscript eq denotes the equilibrium of the quantity and

α =

∫ L‖

0
Sn
(
z′
)

dz′

∫ z

0
Sn
(
z′
)

dz′
. (5.5)



5.2. VERIFICATION OF EQUILIBRIUM 73

5.2.2 Error Measurements

In order to verify the equilibriums produced by the simulation code against the preceding
analytical solutions, a quantitative measure of the error produced by the code is required.
One useful measure of the error on a field, f , is given by the norm or root-mean-square of the
difference between the numerical solution and the analytical solution, fa. This is defined as

εrms = ‖f − fa‖, (5.6)

where

‖f‖ =

√√√√ 1

N

N∑

i=1

fi
2, (5.7)

the subscript denotes the index of the grid point and N is the total number of grid points
in the variable f . Another useful measure is given by the maximum absolute value of the
difference between the numerical solution and analytical solution.

εmax = max (|f − fa|) (5.8)

Both error measures should converge at the order to which the numerical schemes have
been implemented. In STORM3D this is second order, unless a first order upwinding scheme is
used. All simulation points within the domain of interest (including points on, but not beyond
the boundary) should be included in these measures.

5.2.3 Calculation of the Convergence Order

The error produced by a numerical method can be written as:

ε = ChP +O(hP+1), (5.9)

where C is a constant, h is the (temporal or spatial) mesh spacing and P is the convergence
order of the method. Assuming simulations are performed with sufficient resolution such that
the asymptotic limit is reached, the O(hP+1) term will tend to zero and ε will be dominated
by the ChP term. Taking the logarithm of Equation (5.9) in this regime produces:

log(ε) = log(C) + P log(h) (5.10)

Therefore by performing two simulations in this asymptotic limit with different mesh spacings
h1 and h2 which produce errors ε1 and ε2 respectively, the convergence order exhibited by the
code can be evaluated as:

P =
log (ε1/ε2)

log (h1/h2)
. (5.11)

Typically in practice convergence is assessed by plotting log(h) against log(ε) for successively
smaller mesh resolutions until straight lines are produced, indicating that the asymptotic
regime has been found.

5.2.4 Results

The verification of the equilibrium fields has been completed on a parallel domain of length
L‖ = 5500 with µ = 3646. These parameters are representative of the values used in the
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Figure 5.1: Equilibrium fields produced using various parallel resolutions, Nz, alongside
analytical solutions.

filament dynamics simulations presented in Chapters 6 and 7, and are relevant to MAST. In
addition, the same particle source, given by

Sn =
exp

(
10z/L‖

)

L‖ (exp (10)− 1)
, (5.12)

has been used here as in the later filament simulation results. The remaining parameters of
the model, such as η̂‖, ĝ and the perpendicular domain size have not been listed here, as they
do not have any influence on the equilibrium fields produced. The exact method by which
the equilibrium fields were generated, and in particular how the boundary condition on the x
boundaries of the φ field was obtained, is described in Section 4.4.1. A second order upwind
scheme was used for advective derivatives of the form U∇‖, V∇‖, whilst second order central
differences were used for all other derivatives.

Figure 5.1 plots the equilibrium fields for n, U , V and φ produced using parallel resolutions
ranging from Nz = 8 to Nz = 256, increasing by factors of two. In addition, the analytical
solutions given by Equations (5.2) to (5.4) are also plotted in black. It is clear that as the
resolution is increased, the numerical equilibrium fields converge to their analytic solutions.
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Figure 5.2: Magnitude of the root mean square error (left), εrms, and maximum error (right),
εmax, of the equilibrium solution plotted against the parallel mesh spacing, hz. By comparison
with the black dashed lines demonstrating O
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)
convergence, it can be seen that no field

obtains second order convergence.

This convergence towards the analytic solution is explicitly demonstrated in Figure 5.2,
which plots εmax and εrms against the grid spacing along the parallel direction, hz = L‖/Nz for
values of Nz up to 512. It is evident that as the grid spacing is reduced, both error measures
for all fields become smaller and thus the results are converging to the analytical solution.
Also plotted for comparison in each sub-plot of the figure is a dashed black line displaying
O
(
h2
z

)
scaling, which is the order to which the numerical schemes used have been implemented.

Neither error measure of any of the fields converges at second order, which on first glance
could be interpreted as an indication that there is a problem in the implementation of the
code.

However, it is shown analytically in Appendix A that ∇‖U will diverge when U =

1/
√

1 + 1/µ and that U must satisfy U < 1/
√

1 + 1/µ everywhere in the domain for the
gradient to remain finite. Since U = 1/

√
1 + 1/µ is actually imposed as a sheath boundary

condition, this means that the analytical solution of U has an infinite gradient at that boundary,
as can be seen in Figure 5.1. It is believed that this singularity in the gradient of U prevents
the finite difference approximations used (to calculate the parallel derivatives) from converging
at their theoretical order of accuracy. This hypothesis is supported by a convergence study
carried out in which the boundary conditions

U |z=L‖
=

1

2
, (5.13a)

V |z=L‖
=

1

2
exp

(
− φ|z=L‖

)
, (5.13b)

were imposed instead of Equations (3.70) and (3.72), so that ∇‖U remained finite within the
simulation domain. In this case the expected second order convergence was recovered for each
of the equilibrium fields, as demonstrated in Figure 5.3.

Additional simulations have been performed with O
(
h3
)
boundary conditions enforced

at the sheath, which produced effectively the same convergence as that shown in Figure 5.2
(which was obtained using O

(
h2
)
boundary conditions). The problem therefore cannot be

solved by using higher order boundary conditions.
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Figure 5.3: Magnitude of the root mean square error (left), εrms, and maximum error (right),
εmax, of the equilibrium solution plotted against the parallel mesh spacing, hz, for the case in
which the boundary conditions given by Equation (5.13) were imposed. By comparison with
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convergence, it can be seen that second order

convergence is obtained by all fields.

It is concluded that whilst the simulation code does converge to the analytic equilibrium
solution, it does not do so at the order to which the numerical methods have been implemented.
Whilst this is clearly not ideal, it is not a disastrous result. As demonstrated in Figure 5.1, the
key features of the analytical equilibrium fields are reproduced by the code; namely that they
are all uniform throughout the majority of the domain except for in the locality of the sheath
boundary where steep gradients exist. Without a solution to this convergence problem, which
appears to be inherent to the physics of the SOL, the equilibriums produced by the code are
considered sufficient to be used for the filament simulations presented in Chapters 6 and 7.

5.3 Verification of Parallel Dynamics

In the absence of perpendicular dynamics, the governing equations of the model, Equations
(3.66) to (3.69), reduce to become identical in form to the 1D Navier Stokes equations for a
neutral gas. In this section therefore, a verification problem commonly used in neutral fluid
codes, known as the shock tube problem, is used to ensure that STORM3D’s parallel dynamics
terms have been correctly implemented. The results from the code are verified against an
analytical solution to the problem, and also against other SOL simulation codes.

5.3.1 The Shock Tube Problem

A shock tube is a long tube in which a thin diaphragm separates two gases which are uniform
and at rest. One of the gases is pumped up to a higher pressure, and then the diaphragm is
burst. This produces both a shock wave and an expansion wave moving in opposite directions
down the tube. From a SOL plasma perspective, this situation can be considered equivalent to
the parallel propagation of an idealised filament perturbation (consisting of a top hat function
in the parallel direction) that suddenly appears on top of a uniform SOL background, in the
absence of perpendicular dynamics.
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Figure 5.4: Schematic diagrams of the density profile of the analytical solution to the shock
tube problem, with distinct regions labelled. Top: The initial density profile, showing two
distinct regions. Bottom: The density profile at a later time t = τ .

The top plot of Figure 5.4 schematically shows the shock tube set up at t = 0, just as the
diaphragm is burst. The interface between two uniform plasma regions is located at z = z0,
where the diaphragm was present and is plotted using a dashed blue line. To the left of the
interface is region 4, where the density level is n = n4, whilst to the right is region 1, where
the density level is n = n1. In both regions the plasma is at rest. An analytical solution to the
governing equations of the STORM3D plasma model for this shock tube problem is derived in
Appendix B, following the derivation for the neutral fluid case given in Reference [242]. This
solution is given by

U =





0
z − z0

at
≤ −1

a+
z − z0

t
− 1 ≤ z − z0

at
≤
√
n2

n1
−
√
n1

n2
− 1

a

√
n2

n1
− a
√
n1

n2

√
n2

n1
−
√
n1

n2
− 1 ≤ z − z0

at
≤
√
n2

n1

0

√
n2

n1
≤ z − z0

at

, (5.14a)

n =





n4
z − z0

at
≤ −1

n4 exp

(
−z − z0

at
− 1

)
− 1 ≤ z − z0

at
≤
√
n2

n1
−
√
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√
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−
√
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≤
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√
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at

, (5.14b)
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where n2 can be obtained by numerically solving the following implicit equation

lnn4 − lnn2 =

√
n2

n1
−
√
n1

n2
. (5.15)

A schematic diagram of each of the different regions present in this solution after the diaphragm
is burst is provided in the bottom plot of 5.4. The interface between the two plasmas has
moved in the positive z direction, producing a shock wave moving into the low density side,
and an expansion wave moving into the high density side which is region 3. In between each
of these waves a uniform region is formed, region 2, which has a density level n = n2.

5.3.2 Results

The analytic solution given by Equation (5.14) has been used to verify that the code provides
a satisfactory representation of parallel dynamics and in particular of expansion waves and
shock waves. The shock tube problem has been implemented in the code using a parallel
domain length of L‖ = 100. As this is a 1D problem, only one grid point was used in the x and
y directions and Ω was set to zero throughout. A value of µ = 3650 was used, corresponding
to deuterium, alongside η̂‖ = 6.88 × 10−6, although the resistivity had no impact on the
results. Instead of the standard STORM3D boundary conditions at the parallel boundaries,
z = 0, z = L‖, Dirichlet boundary conditions were enforced on each of the parallel velocities U
and V , fixing them to zero. This meant that no density source was required to maintain a
background, so Sn was set to zero. Neumann boundary conditions enforcing zero gradients
were used at z = 0 for both n and φ, whilst free boundary conditions were utilised on these
fields at z = L‖. The φ field was obtained using the method described in Section 4.3.6. The
system was initialised with U = V = 0, and

n =





3 z ≤ 50

1 z > 50
, (5.16)

so that with reference to Equation (5.14) n1 = 1, n4 = 3 and z0 = 50. Thus by numerically
solving Equation (5.15), n2 = 1.72 to 3 significant figures.

Simulations were performed using three different numerical schemes for the parallel up-
winding derivative terms (terms of the form U∇‖f and V∇‖f). These schemes were first order
upwinding, second order upwinding, and second order central difference. Figure 5.5 plots the
profiles of n and U produced using each of these schemes using 256 points in the parallel
direction as well as the analytical solution, at the example time of t = 25.

It is clear from this figure that the central differencing scheme produces unphysical behaviour
around the shock front, and therefore should not be used if discontinuities are present. On
the other hand both the upwinding schemes broadly agree well with the analytical solution,
reproducing both the shock and expansion wave dynamics and also the intermediate density
level n2. Comparing the two upwinding schemes directly, the first order scheme, being more
dissipative, smooths out the discontinuities in the parallel gradients of the expansion wave part
of the solution more than the second order scheme. However, the second order scheme does
produce an unphysical wiggle in the solution just to the right of the expansion wave. Moreover,
it has been observed that numerical instabilities can develop when using the second order
scheme when simulating 3D filaments that have steep parallel gradients. Therefore it has been
concluded that the first order scheme provides the most accurate and robust representation of
parallel dynamics when shock fronts are present.



5.3. VERIFICATION OF PARALLEL DYNAMICS 79

z

0 10 20 30 40 50 60 70 80 90 100

U

0

0.2

0.4

0.6

0.8

1

z

0 10 20 30 40 50 60 70 80 90 100

n

0

0.5

1

1.5

2

2.5

3

3.5

First Order Upwinding

Second Order Upwinding

Second Order Central

Theory

Figure 5.5: Comparison of n and U profiles produced for the shock tube problem using different
discretisation schemes for the parallel advective derivatives, at the example output time of
t = 25. The analytical solution is also plotted for comparison.
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Figure 5.6 displays the convergence of the first order upwinding simulation with increasing
parallel resolution. At low resolutions, the discontinuities and sharp corners of the analytic
solution are very much smoothed out, but are better represented as the resolution is increased.
However, the simulation code converges to produce a value of n2 = 1.75 at Nz = 256, which
is slightly larger than the analytical value. The value of U that the code converges to in the
same region is correspondingly lower than that specified by the analytical solution. Moreover,
the location of the shock front in the code is somewhat behind that of the analytic solution,
as it has propagated more slowly. This is explicitly demonstrated in Figure 5.7, which plots
on an x − t diagram the locations of the interfaces between each of the regions labelled in
Figure 5.4, for the analytic solution and for the Nz = 256, first order upwinding simulation.
The simulation’s interface between regions 1 and 2, corresponding to the shock front, can
be seen to consistently travel more slowly than that of the analytic solution. In addition,
the simulation’s interface between regions 2 and 3 can be observed to travel more quickly in
the negative z direction than the analytic solution’s interface. It is emphasised however that
these discrepancies are relatively minor, and that overall good agreement is found between the
simulation and analytic solution.

The shock tube problem has also been used to conduct a cross-code benchmark between
the STORM3D code and two other fluid codes commonly used for SOL problems; TOKAM-3X
[243, 244] and SOLF1D [245]. TOKAM-3X is a 3D code, whose model is discussed later
in Section 5.5, whilst SOLF1D is a 1D code that models only parallel dynamics. For this
cross-code benchmark, the standard sheath boundary conditions given by Equations (3.70)
and (3.72) were enforced at z = L‖ on U and V , which meant that a density source was
required to produce a constant equilibrium. The source given by Equation (5.12) was therefore
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Figure 5.8: Comparison of the n and U parallel profiles produced by the STORM3D, TOKAM-
3X and SOLF-1D codes for the shock tube problem using a source driven background, at the
example output time of t = 800.

used, as this produces an equilibrium consisting of a relatively uniform plasma that is at rest
throughout the majority of the domain, as shown in Figure 5.1. Moreover, since the source
is effectively zero throughout the domain, except for approximately the last 10% nearest the
sheath, the analytical shock tube solution should be comparable in the first 90% of the domain.
A density perturbation nf , given by

nf =





3 neq|z=0 z < L‖/2

0 z > L‖/2
(5.17)

was then seeded on top of the equilibrium density field. All the other fields were initialised to
their equilibrium values. The perturbation was scaled by neq|z=0 because each code produces
an equilibrium with a slightly different density level in the uniform region, due to their use
of different numerical schemes and grid resolutions. Since Equation (5.15) can be written in
terms of n2/n1 and n4/n2, the dynamics of the shock tube problem is determined by the ratio
n4/n1. Therefore by scaling the perturbation by neq|z=0, n4/n1 = 3 across all three codes.
A longer parallel domain of L‖ = 5500 was employed for this cross-code comparison, and as
before parameters of µ = 3650 and η̂‖ = 6.88× 10−6 were used. Moreover, in the STORM3D
code, the φ field was again obtained using the method described in Section 4.3.6. Both the
STORM3D and TOKAM-3X results were produced using a parallel resolution of Nz = 128,
whilst 100 points were used in the parallel direction in SOLF1D.

A comparison of the n and U profiles produced by each of these codes at the example
output time of t = 800 is provided by Figure 5.8, with the density fields for each code divided
by neq|z=0 to allow for direct comparison. Generally, excellent agreement is found between
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the three codes. It is noted however that the TOKAM-3X results do not exhibit the minor
overshoots that are found just behind the shock fronts of the other two codes and furthermore
that the TOKAM-3X shock front also propagates faster. These observations are attributed to
the use of a Total Variation Diminishing (TVD) scheme [246] that is used in TOKAM-3X,
which is a scheme that is designed to capture sharp shock features without oscillations or
overshoots. Whilst the STORM3D code does provide a satisfactory representation of the
parallel dynamics for present purposes, it is clear that the implementation of such a TVD
scheme would be a desirable future development.

5.4 Verification using the Method of Manufactured Solutions

As discussed in the introduction of this chapter, verification against simplified analytic results
only tests that certain aspects of the simulation code are error free, and does not truly verify
a code in its entirety. For example, the verification of the equilibrium fields and of the shock
tube problem in Sections 5.2 and 5.3 demonstrate that the parallel dynamics of the code work
correctly, but do not provide any verification of the perpendicular dynamics at all. On first
glance, an analytic solution to the full set of equations being solved would be required to
rigorously verify all aspects of the simulation code.

5.4.1 The Method of Manufactured Solutions

One testing procedure commonly used in the field of computational fluid dynamics to fully
verify a simulation code that solves a problem without an analytic solution is the Method of
Manufactured Solutions [240]. In this method, solutions are prescribed or manufactured to
the equations being solved and additional source terms are included within the equations to
ensure that they remain satisfied. For example, a set of partial differential equations can be
written in the form

∂f

∂t
= F (f). (5.18)

For the equations being solved in the STORM3D physics module, f = (n,U, V,Ω, φ). For a
manufactured solution fM , the source terms required to satisfy the equation can be calculated
analytically:

S =
∂fM

∂t
− F (fM ). (5.19)

The code must then be adjusted to add these source terms so that the equations solved are:

∂f

∂t
= F (f) + S. (5.20)

The simulation is initialised at t = 0 such that f (t = 0) = fM (t = 0) and evolved to a
later time t = ∆t. At this point, various measures of the error between the numerical and
manufactured solutions ε, can be calculated as described in Section 5.2.2. Since S is specified
analytically, it can be evaluated to numerical precision within the code and so therefore
does not impact upon ε, which will be dominated by errors from coding mistakes or from
discretisation errors. The error should converge to zero (or at least to machine precision) as
the spatial and temporal resolution is increased.

More importantly, the error should reduce at the rate expected for the methods being used.
For example, if a method is second order accurate, then the error should reduce by a factor of
four if the mesh spacing is halved. Temporally and spatially dependent partial differential
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equations require both the time step and grid spacing to be refined to achieve convergence at
the correct order.

In order to enable MMS testing to be carried out as routinely as possible and to minimise
the possibility of introducing additional errors through an incorrect implementation of the
method itself, BOUT++ has a number of MMS features that automate as much of the method
as possible. A description of how to use these features is provided in Appendix C. A number of
core components of BOUT++, such as commonly used boundary conditions, time solvers and
spatial derivative terms have been already tested [247], and a number of MMS test cases can
be found in the directory BOUT-dev/examples/MMS/. However, it is important to also test
complete physics modules, as not every combination of individual components may have been
tested. Moreover, physics modules may use non-standard numerical methods or boundary
conditions which are coded within the physics module itself.

5.4.2 Guidelines for Constructing Manufactured Solutions

A number of guidelines for the construction of manufactured solutions can be found in Reference
[240]. Those relevant for manufacturing solutions to verify the STORM3D physics module are
listed below.

1. Manufactured solutions should consist of smooth analytic functions such as polynomial,
trigonometric, or exponential functions. This allows for the source terms to be easily
calculated, and for both the solution and the source to be computed easily within the
code. The solution is required to be smooth to ensure that the theoretical order of
accuracy can be obtained.

2. The solutions should exercise or stress every term in the equations being solved.

3. The solutions should have a sufficient number of non-trivial derivatives for the equations
being solved such that none of the derivatives in the equations become zero throughout
the whole simulation.

4. Solutions should not vary strongly as a function of space or time to ensure that the
asymptotic order of accuracy convergence can be attained using practical mesh sizes.

5. The solution should not stop the code from running to completion. For example, if the
code is written in such a way that the solution is assumed to be positive, or throws
errors if the solution is negative, ensure that the manufactured solution is positive.

5.4.3 Testing Coupled Boundary Conditions

Many physical models use boundary conditions that specify the behaviour of one variable, as
a function of another:

f1|b = g (f2) . (5.21)

Here, f1 and f2 are independent variables in the physical model, g is an arbitrary function
and |b denotes the boundary location. In the case of the STORM3D module, Equations (3.72)
and (3.73) are examples of such a condition. Reproduced here for convenience it enforces

V |z=±L‖
= ± 1√

1 + 1/µ
exp

(
− φ|z=±L‖

)
. (5.22)
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In order to verify the parts of the code which implement such a boundary condition an
additional source term must be added on the RHS of the boundary condition itself:

f1|b = g (f2) + SBC (5.23)

where
SBC = fM1

∣∣
b
− g

(
fM2
)
. (5.24)

Returning to the example of the electron parallel velocity sheath boundary condition, to verify
its implementation using MMS, it must be adjusted in the code so that the boundary is set to:

V |z=±L‖
=
± exp

(
− φ|z=±L‖

)
∓ exp

(
− φM

∣∣
z=±L‖

)

√
1 + 1/µ

+ VM
∣∣
z=±L‖

. (5.25)

5.4.4 Results

The STORM3D physics module has been verified to ensure that the equations have been
correctly implemented so that the code displays second order convergence when using second
order accurate discretisation schemes for all spatial derivatives. The results presented here
were obtained using a second order Arakawa scheme for the perpendicular E ×B advection
terms, a second order upwind scheme for the parallel advection derivatives, and second order
central finite difference schemes for all other spatial derivatives. The time integration was
carried out using a variable time-step, variable order, fully implicit Newton-Krylov backwards
difference formula solver from the PVODE library, which is assumed to converge correctly.
The time solver tolerances were therefore set sufficiently small (absolute tolerance = 10−12,
relative tolerance = 10−8) so that the errors in the simulation were dominated by spatial,
rather than temporal, discretisation errors. These tolerances were specified under the section
[SOLVER] in the input file as follows:

[ s o l v e r ]
. . .

ATOL = 1.0 e−12
RTOL = 1.0 e−8

The simulations were conducted on a domain consisting of Lx × Ly × Lz = 1× 2π × 2π,
whilst the parameters µ, η̂‖, Dn, DΩ and ĝ were each set to unity. The manufactured solutions
used were

nM = [3.5 + sin (y) + cos (2y) cos (t) + sin (x) sin (3z + t)] /4, (5.26a)

ΩM = sin (y) + cos (2y + t) + cos (x) sin (z + t) , (5.26b)

UM = sin (y) + cos (y + t) + cos (2x+ z + 3t) , (5.26c)

VM = cos (y) cos (t) + sin (y + t) + cos (z + x− t) , (5.26d)

φM = cos (y) cos (2t) + sin (2z) + cos (2x+ 2t) . (5.26e)

This combination of manufactured solutions and parameters was designed such that each term
in each of the equations was of approximately equal magnitude, so that the error associated
with any particular term did not dominate the others.

The boundary conditions were set such that the types of boundary conditions used by the
model (described in Section 4.3.5) were imposed on each field and boundary as appropriate.
The equations were evolved to t = 0.15, which produced a sufficient number of RHS iterations
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Figure 5.9: Demonstration of STORM3D’s convergence order obtained using the method of
manufactured solutions.

Table 5.1: STORM3D error convergence orders, obtained using the method of manufactured
solutions between the Nx ×Ny ×Nz = 128× 128× 128 and Nx ×Ny ×Nz = 256× 256× 256

simulations at t = 0.15.

Field εrms order εmax order
n 2.001 1.979
Ω 1.999 1.999
U 1.996 2.000
V 1.993 2.004
φ 1.999 1.998

for any errors to propagate throughout the entire domain (> 6000), but without running
so long such that the errors from the time solver accumulate to dominate over the spatial
discretisation errors. Convergence was tested by repeatedly doubling the spatial mesh resolution,
Nx ×Ny ×Nz, from 16× 16× 16 to 256× 256× 256.

The error measures, εrms and εmax are plotted against a characteristic mesh spacing, h, at
t = 0.15 in Figure 5.9. Here h has been defined such that h = dx = dy/2π = dz/2π. It is clear
from these figures that the simulations are in the asymptotic regime, and that the errors in the
simulations are correctly converging at second order. The dependence of the convergence orders
as measured between the Nx×Ny×Nz = 128×128×128 and Nx×Ny×Nz = 256×256×256

simulations on the time that the simulations were evolved to, t, is shown in Figure 5.10. The
εrms convergence order can be seen to remain very close to 2 for the duration of the simulations.
The εmax convergence orders display more variation, as may be expected, but also remain close
to 2 throughout. This demonstrates that the convergence is not dependent on the duration
of the simulation. For reference, the calculated convergence orders for each field between
Nx ×Ny ×Nz = 128× 128× 128 and Nx ×Ny ×Nz = 256× 256× 256 at t = 0.15 are listed
in Table 5.1.

During the MMS verification process, it was found that if the errors on the φ field were
significantly larger than the errors on the V field (by say, an order of magnitude), then this
would cause the εmax convergence orders for n and Ω to reduce to ∼ 1.5, even if the errors
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Figure 5.10: Demonstration that the convergence order obtained using the method of manufac-
tured solutions between the two highest resolution simulations (Nx×Ny×Nz = 128×128×128

and Nx ×Ny ×Nz = 256× 256× 256) is not dependent on evolution time of the simulation.

on φ and V were converging correctly at second order. This problem was identified to be
related to the V sheath boundary condition, because if it was replaced with simply V = VM

at the sheath boundary, correct convergence was recovered. The problem appeared in the n
and Ω fields as their evolution equations contain parallel gradient terms which uses V sheath
boundary points. It is supposed that this problem was the result of the fact that a large
O
(
h2
)
error from φ was transmitted to the V field’s sheath boundary every time the RHS of

the time solver was evaluated, and that the magnitude of this error remained large compared
to the other spatial discretisation errors throughout the simulation. Ultimately, this problem
was addressed by reducing the perpendicular size of the domain, which reduced the magnitude
of the φ error field so that it was small compared to the magnitude of the V error field. This
issue has been outlined here in case the reader encounters a similar problem, as it was not
trivial to diagnose.

5.5 Validation against TORPEX Experiment

This section presents the validation exercise carried out in which filament simulations performed
using STORM2D and STORM3D were compared against experimental measurements from
the TORPEX device and other SOL simulation codes which each represent different physics in
their respective models. A more detailed description of this exercise can be found in Reference
[248].

5.5.1 The TORPEX Device

TORPEX (TORoidal Plasma EXperiment) is a toroidal machine with major radius R = 1m
and minor radius a = 0.2m. It is a Simple Magnetised Torus (SMT), meaning that its magnetic
field consists of a dominant toroidal component (BΦ = 76mT on axis) and a smaller vertical
magnetic field (BZ = 1.6mT), which results in helical field lines that wind around the device.
A schematic diagram of TORPEX is shown in Figure 5.11, which also illustrates the coordinate
system used. The coordinate x denotes the radial direction, z is the parallel direction, whilst
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Figure 5.11: Schematic representation of the TORPEX experiment, showing the limiter located
in the low field region and the probes used to perform the conditional filament sampling.

y is the bi-normal direction, which is approximately the vertical direction. The coordinates
are defined such that x = 0, y = 0 corresponds to the axis in the middle of the poloidal plane.
A poloidal steel limiter is located at one toroidal position that covers the entire low field side
(x > 0) of the cross-section. Field lines in the low field side of the device therefore intercept
this limiter with a near perpendicular incidence, and have a nearly constant connection length
`‖ = 2πR. The field lines on the high field side (x < 0) on the other hand intercept the top
and inner walls of the device. Plasma is produced and sustained in the device by microwaves
in the electron cyclotron range of frequencies. Turbulence is driven in the high field side of
the device by ideal interchange modes, which results in filaments that dominate the radial
transport in the low field side. Typical plasma parameters in TORPEX are ne ∼ 1016m-3 and
Te ∼ 5 eV.

5.5.2 Experimental Filament Measurements

The experimental measurements used for this validation exercise were obtained using two
diagnostics. The first is a vertically oriented linear array of Langmuir probes with 1.8 cm
distance between tips, which hereafter will be referred to as the SLP (Slow Langmuir Probes).
This diagnostic was located at x = 7 cm and was toroidally positioned 180° from the limiter.
The second diagnostic was a single sided Langmuir probe, which was located approximately
3 cm away from the limiter plate, with its collecting plate orientated perpendicular to the
magnetic field lines. The time-averaged (hereafter referred to as background) profiles of the
density, ne,bg, and the electron temperature, Te,bg, measured using this diagnostic are shown
in Figure 5.12.

Time-dependent measurements of the filament profiles in the perpendicular drift-plane
were also obtained using a conditional sampling technique. The SLP probe array, located in a
fixed position in the low field region, was biased at −40 V, and operated in ion saturation
current mode. The probes of the SLP array were used as reference probes, with a positive
burst in a probe signal interpreted as a filament moving past the probe. The single sided probe
was operated in swept mode. When a signal within a certain interval was detected by one
of the reference probes, a voltage V was applied to the swept probe and the corresponding
current I was measured. The ensemble average over many filament detection events produced
an I − V characteristic, from which the plasma parameters associated with a conditionally
averaged filament event could be obtained. The plasma was assumed to be uniform in the
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Figure 5.12: Time averaged experimental profiles of plasma density ne,bg and electron tem-
perature, Te,bg, in TORPEX, measured in poloidal plane located 3 cm away from the limiter.
Data reproduced from Reference [248].

vertical direction, such that the signals measured by each of the reference probes had the same
statistical properties. The measurements were repeated using different time lags between the
detection of the filament and the application of the voltage on the swept probe, as well as for
different radial positions of the swept probe (which was moved in between discharges). This
allowed time-dependent profiles of plasma parameters in the perpendicular drift-plane of the
conditionally averaged filament to be determined. In particular, the perturbation profiles were
obtained by subtraction of the time averaged profiles shown in Figure 5.12. A more detailed
explanation of the technique can be found in References [119] and [124].

Conditionally averaged filaments with three different peak density values were obtained by
conditionally selecting filaments from different intervals of the probe signals. These intervals
were [2σ, 2.75σ], [2.75σ, 3.5σ] and [3.5σ, 4.25σ], where σ is the standard deviation of the
reference signal. Hereafter, the conditionally averaged filaments corresponding to each of these
intervals are referred to as Case 1, Case 2, and Case 3 respectively. The two dimensional
profiles of the filaments’ density perturbation, ne,f , electron temperature perturbation Te,f ,
and floating potential ϕfl,f are plotted for each case at their detection time, t = 0, in Figure
5.13.

5.5.3 Other Simulation Codes

In addition to the STORM2D and STORM3D codes, three other fluid SOL simulation codes
were used to simulate the conditionally averaged filaments from the TORPEX experiment.
Since all the codes are reduced forms of the Braginskii equations [205], in the following
discussion, only differences from the STORM3D and STORM2D models will be discussed.
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GBS

GBS (Global Braginskii Solver) [249] is a 3D code whose principle difference with respect to
STORM3D is that it also evolves the electron temperature. Whilst it retains the influence of
electron inertia in its parallel electron velocity equation, it neglects the effect in the parallel
ion velocity equation. In each of these equations it also includes the effects of collisions with
neutrals. In the present work, the evolution fields were split into equilibrium and perturbation
components, with only the latter component evolved. Moreover, it includes arbitrary dissipative
parameters in each evolution equation for numerical reasons.

TOKAM-3X

TOKAM-3X [243, 244] is another 3D code which neglects electron inertia completely, and
does not make the infinite aspect ratio approximation in that it retains ∇ · b̂ terms. It uses
a linearised version of the sheath boundary conditions given by Equations (3.72) and (3.72),
and like GBS, it also includes arbitrary dissipative parameters for numerical reasons.

HESEL

HESEL (Hot ion Edge-SOL ELectrostatic) [250] is a 2D code which evolves both electron
and ion temperatures. Its model was reduced to two dimensions by approximating u‖i∇‖ ≈
u‖e∇‖ ≈ cs/`‖. For the parallel currents, it uses a sheath dissipation closure similar to that
used in STORM2D, but different in that the closure term is averaged over the y direction.
In effect, this negates the influence of parallel currents closing through the sheath and thus
implicitly assumes that polarisation currents rather than sheath currents are the dominant
path through which diamagnetic currents are closed. Its perpendicular dissipative terms seek
to model the effect of electron and ion collisions with neutrals, in contrast to the STORM
models, which are based upon electron-ion and ion-ion collisions. Finally, its curvature strength
g is modelled to be half the value that is used in the other codes.

5.5.4 Simulation Initialisation

The filament simulations were initialised largely as described in Section 4.4. Whilst measure-
ments of the parallel structure of the background or filament density perturbation were not
available for the series of experiments from which the conditionally averaged filament data
were obtained, it has been observed in previous TORPEX experiments that the background
density profile is approximately flat except for a drop in the proximity of the limiter. Since
the density profile produced by Equation (5.12) matches this behaviour, as shown in Figure
5.2, the density source in the STORM3D and TOKAM-3X simulations was prescribed to be of
the form

Sn ∝
exp

(
10z/L‖

)

L‖ (exp(10)− 1)
. (5.27)

From Figure 5.12, the background profiles can be seen to exhibit only a very weak y dependence.
These profiles were therefore approximated as

ne,bg = 2.5× 1015 − 4.2× 1017x2.9 (5.28)

and

Te,bg = 2.8 exp (−5.9x) . (5.29)
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Table 5.2: TORPEX simulation parameters.

Input Parameters Normalisation Parameters Dimensionless Parameters

Te = 2.80 eV

B = 0.076 T

ne,0 = 2.5× 1015m-3

R = 1.0 m

`‖ = 2π m

mi = 1.66× 10−27 kg

ln Λ = 10

q = 0

ρs = 2.24× 10−3 m

cs = 1.64× 104 ms−1

Ωi = 7.33× 106 s−1

ĝ = 4.48× 10−3

η̂‖ = 5.81× 10−7

Dn = 2.32× 10−6

DΩ = 3.71× 10−5

µ = 1823

L‖ = 1402

Here, ne,bg, Te,bg and x are written in m-3, eV and m respectively, and therefore Equation (5.28)
cannot be used directly in Equation (5.27), which is dimensionless. Written in normalised
form, Equation (5.28) is

nbg = 1−
(
1.91× 10−6

)
x2.9. (5.30)

The input quantities used for normalisation and the resulting non-dimensional parameters are
listed in Table 5.2. Returning the specification of the density source, Sn was therefore set to be

Sn =
(
1−

(
1.91× 10−6

)
x2.9

) exp
(
10z/L‖

)

L‖ (exp(10)− 1)
. (5.31)

It is noted that since the source has no y variation, this meant that a steady state equilibrium
was obtained in which the E × B advection terms and curvature terms in the governing
equations (Equations (3.66) to (3.69)) were zero. This equilibrium was two dimensional, in
that is varied in both the parallel and x directions. Since the particle diffusion and viscosity
parameters (given in Table 5.2) were small, the equilibrium produced can be approximated
to be a series of independent parallel profiles, with one for each x position. Therefore from
the analytical equilibrium density solution given by Equation (5.2), the equilibrium density
solution produced at the target closely approximated the experimental background profile, as
desired. For consistency between codes, the density equilibrium profile produced by STORM3D
was used as the prescribed density background in the GBS simulations.

In the non-isothermal codes, GBS and HESEL, the background electron temperature was
set to Equation (5.29). The background profile of ϕ in these codes was obtained by assuming
zero background current and enforcing the sheath boundary conditions given by Equations
(3.53) to (3.56), which resulted in a radially varying background electrostatic field, and hence a
vertical E ×B velocity. In addition, the background ion temperature in HESEL was assumed
to be the same as the ambient temperature of the neutrals in TORPEX, and was therefore
imposed uniformly to be Ti = 0.025 eV.

To allow the experimental filament perturbations to be initialised in the simulations, the
experimental profiles of nf , Te,f and ϕfl,f at t = 0, shown in Figure 5.13, were fitted to the
following analytic expressions which impose a monopolar structure in the poloidal plane for
ne,f and Te,f , and a dipolar structure for ϕfl,f :

ne,f = ne,f,0 exp

(
−
(
x− x0

σn,x

)2

−
(

y

σn,y

)2
)
, (5.32)
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Table 5.3: Parameters used to initialise the TORPEX filament profiles

Parameter Case 1 Case 2 Case 3

ne,f,0
(
×1015 m−3

)
1.975± 0.135 2.335± 0.325 4.395± 0.855

σn,x (cm) 2.20± 0.20 2.40± 0.30 1.65± 0.45

σn,y (cm) 2.40± 0.20 2.10± 0.20 1.75± 0.25

Te,f,0 (eV) 0.345± 0.065 0.96± 0.25 1.73± 0.28

σT,x (cm) 1.05± 0.15 1.05± 0.25 0.80± 0.20

σT,y (cm) 3.65± 1.05 1.45± 0.25 2.85± 0.95

ϕ1 (V) 2.33± 0.17 4.60± 0.74 4.72± 0.405

σϕ,x,1 (cm) 3.55± 0.25 3.25± 0.25 4.95± 0.35

y1 (cm) 2.55± 0.25 2.60± 0.20 1.15± 0.35

σϕ,y,1 (cm) 2.95± 0.05 3.10± 0.20 4.90± 0.60

ϕ2 (V) −1.54± 0.14 −2.35± 0.55 −6.155± 0.965

σϕ,x,2 (cm) 3.10± 0.20 2.75± 0.35 2.95± 0.45

y2 (cm) −2.10± 0.40 −0.50± 0.80 −2.45± 0.15

σϕ,y,2 (cm) 4.00± 0.30 4.75± 0.45 2.50± 0.30

Te,f = Te,f,0 exp

(
−
(
x− x0

σT,x

)2

−
(

y

σT,y

)2
)
, (5.33)

ϕf,fl = ϕ1 exp

(
−
(
x− x0

σϕ,x,1

)2

−
(
y − y1

σϕ,y,1

)2
)

+ϕ2 exp

(
−
(
x− x0

σϕ,x,2

)2

−
(
y − y2

σϕ,y,2

)2
)
.

(5.34)

It is noted from Figure 5.13 that fitting a such Gaussian profile to the electron temperature
perturbation is somewhat questionable. The value of x0 was specified to be 0.07m, whilst
the values of the remaining unknown parameters in Equations (5.32) to (5.34) were obtained
through fitting procedures and are listed in Table 5.3 for each of the three filament cases. The
filaments were initialised to these expressions assuming that the filament perturbation profiles
were uniform along the parallel direction and then seeded on top of the equilibrium profiles to
give the initial state of the system. Specifically, Ω was initialised to ∇2

⊥ϕfl,f , whilst the Te,f
profile was not used in the STORM2D, STORM3D or TOKAM-3X simulations as they are all
isothermal, but was used within GBS and HESEL.

5.5.5 Observable Quantities

As ultimately filaments are of interest because of their contribution to cross-field transport,
the radial and vertical positions and velocities of the filaments were used to compare between
the experiment and simulations.

Since the experimental results were relatively noisy, the position of the filament was
determined from the ion saturation current measurements of the single sided Langmuir probe,
Isat, as follows. The experimental current density associated with the filament was calculated
as

jsat,f =
Isat − Ĭsat

Aprobe
(5.35)

where Ĭsat denotes the median Isat value in time, whilst Aprobe is the projected area of the
Langmuir probe. This quantity was then averaged in the perpendicular drift-plane over the
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area that measurements were taken, A:

〈jsat,f 〉A =

∫∫

A
jsat,f dx dy

∫∫

A
dx dy

. (5.36)

A surface, Sf (t), in the perpendicular drift plane was then defined which satisfied

〈jsat,f 〉Sf
= 0.2 〈jsat,f 〉A (5.37)

where

〈jsat,f 〉Sf
=

∫∫

Sf

jsat,f dx dy

∫∫

Sf

dx dy

. (5.38)

The position of the filament in the drift plane was then identified as the geometrical centre of
the surface Sf (t):

xc(t) =

∫∫

Sf

x dx dy, (5.39)

yc(t) =

∫∫

Sf

y dx dy . (5.40)

By defining the xc and yc in this way, the observed position of the filament is dependent on
integral values and is thus less sensitive to local fluctuations or noise. In the simulations, the
same procedure was used to calculate xc and yc, except for the fact that the ion saturation
current associated with the filament could be calculated explicitly from the evolution quantities
as

jsat,f = ene

√
Te
mi
− ene,bg

√
Te,bg
mi

. (5.41)

The radial and vertical velocities, vx and vy, were calculated for both the experiment and the
simulations by simply taking the derivatives with respect to time of xc and yc:

vx =
dxc
dt
, (5.42)

vy =
dyc
dt
. (5.43)

5.5.6 Sensitivity Study

Before directly comparing the simulation results with the experimental measurements, a study
was carried out to determine the sensitivity of the simulation codes to the initial conditions
and input parameters of the codes.

The sensitivity to the uncertainties of the initial conditions given in Table 5.3 was invest-
igated by performing five simulations for each filament case. The first simulation, hereafter
referred to as the standard simulation, was initialised with the central value of each of the
parameters. Two simulations were initialised using the maximum and minimum values of the
size of the filaments (i.e. of σn,x, σn,y, σT,x, σT,y, σϕ,x,1, σϕ,y,1, σϕ,x,2 and σϕ,y,2). A further
two simulations were conducted using the values of ϕ1 and ϕ2 which gave the maximum and
minimum values of the quantity ϕ1 − ϕ2. The maximum difference in the observables between
the standard simulation and the other four simulations was then used as a measure of the
uncertainty affecting the numerical results. Figure 5.14 plots the results of this study for the



94 CHAPTER 5. CODE VERIFICATION AND VALIDATION

t (s) ×10−5

0 1 2 3 4

x
c
(m

)

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

STORM3D

STORM2D

GBS

TOKAM-3X

HESEL

t (s) ×10−5

0 1 2 3 4

y
c
(m

)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 5.14: Radial (left, xc) and vertical (right, yc) positions of the TORPEX Case 1 filament
as a function of time, t, as predicted by each simulation code. The solid lines correspond to
the central values of each of the initialisation parameters in Table 5.3, whilst the error bars
represent the sensitivity of the simulation results to the uncertainties of these parameters.

Case 1 filament, using xc and yc as the observable quantities. For each code, the standard
simulation is plotted using a solid line, whilst the numerical uncertainty is plotted using
error bars. It can be seen that the uncertainties are relatively small in that the overall trend
displayed by each code is approximately the same within the extent of the error bars. Similar
results were also obtained for the other two filament cases, and so it is concluded that the
position of the filament is relatively insensitive to the uncertainties in the input parameters.

Next, the sensitivity of the isothermal codes to the input electron temperature Te was
investigated. A value of Te = 2.8 eV has been selected as the default value for all the isothermal
simulations presented in this validation exercise, which corresponds to the highest value of
Te,bg in the domain. To test the dependence of the results on this choice, additional simulations
were performed using STORM2D and STORM3D of the Case 1 filament using Te = 1.85 eV.
This corresponds approximately to the value of Te,bg at x = 0.07 cm, which is the centre of
the filament in the x direction at t = 0. Figure 5.15 provides a comparison of the position of
the filaments simulated with each code and Te value. It is evident that for both STORM2D
and STORM3D, a greater radial displacement is found using 2.8 eV than 1.85 eV, with the
hotter filament having travelled approximately 15% further by the end of the simulation. A
similar trend is shown for the vertical motion. It is therefore concluded that the simulations
are relatively sensitive to the choice of Te. The mechanism for this dependence is discussed
and investigated in detail in Section 7.3.

Finally, sensitivity studies were carried out using GBS and TOKAM-3X to ensure that the
arbitrary dissipative terms that they use for numerical stability did not significantly affect the
simulation results, whilst the choice of the initial ion temperature in HESEL was found to
have a negligible influence.

5.5.7 Results

The simulations were evolved to approximately t = 50 µs using each code because this was
approximately the experimental filament correlation time for all three filament cases. Beginning



5.5. VALIDATION AGAINST TORPEX EXPERIMENT 95

t (s) ×10−5

0 1 2 3 4 5

x
c
(m

)

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

STORM3D, Te = 2.8 eV

STORM3D, Te = 1.85 eV

STORM2D, Te = 2.8 eV

STORM2D, Te = 1.85 eV

t (s) ×10−5

0 1 2 3 4 5

y
c
(m

)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 5.15: Equilibrium electron temperature sensitivity study results. The radial (left, xc)
and vertical (right, yc) positions of the Case 1 filament are plotted as a function of time, t, as
predicted by the STORM2D and STORM3D simulation codes using values of Te = 2.8 eV and
Te = 1.85 eV.
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Figure 5.16: Cross-code comparison of the evolved density structure, ne,f (in m-3) of TORPEX
filaments. The profiles are shown at t = 48 µs, and are taken at the limiter drift-plane in the
3D codes.
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first with a qualitative comparison of the evolved filament structures produced by each of the
codes, Figures 5.16 and 5.17 display the perpendicular profiles of the density perturbation,
ne,f = ne − ne,bg, and the potential ϕf , associated with the filament perturbation for each
of the three cases at t = 48 µs, from each of the simulation codes. Specifically, the profiles
from each of the 3D codes are taken at the target. The following differences can be observed
between the codes:

i The HESEL filaments exhibit a significantly different structure compared to all the other
codes, in that the HESEL filaments’ density profiles are more mushroomed and their
potential fields are larger in both magnitude and size. These discrepancies are attributed
to the fact that the HESEL sheath dissipation closure term for the parallel currents is
averaged over the y direction. Since the potential is approximately an odd function in y
with respect to the centre of the filament, this means that negligible dissipation of the
electrostatic potential is present in HESEL.

ii The TOKAM-3X Case 1 and 2 filaments display slightly different dynamics to those from
the STORM and GBS codes, in that filaments’ density profiles are less coherent, and has
more structure in the perpendicular plane, especially around the leading front. The cause
of this discrepancy is not known.

iii The STORM2D filaments display larger peak density values than the 3D codes. This
however, is consistent with the fact that a density drop in ne,f occurs near the target due
to sheath losses and that the 3D codes’ profiles are shown at the target, whilst STORM2D
evolves quantities averaged along the parallel direction.

iv The STORM2D Case 3 filament remains significantly more coherent than any of the 3D
codes, which is attributed to the presence of drift wave turbulence that develops in the
3D simulations, and which cannot be represented by the STORM2D model. This effect
is apparent only for the Case 3 filament due to the larger density gradients in the initial
filament.

v The STORM3D filament profiles are more round than those from GBS. Further tests have
identified this is related to the plasma-neutral collisions which are modelled in GBS but
not in STORM3D.

vi The GBS filaments each display an upward motion and are spinning counter-clockwise.
This upward motion occurs due to the background vertical E ×B velocity that is present
due to the radial dependence of the electron temperature background, as discussed in
Section 5.5.4.

A more quantitative comparison between each of the simulation codes and experiment
is provided by Figures 5.18 and 5.19, which respectively plot the time evolution of vx and
vy for each filament case. The grey shaded region surrounding the experimental data series
represents the uncertainty due to the finite spatial resolution of the probes. The experimental
measurements of the radial velocity for all three cases show the filament decelerating as time
evolves. With the exception of HESEL, the codes each found a relatively constant radial
velocity for Case 1 and deceleration in Case 2, although the deceleration is weaker than in the
experiment and the initial velocity is not well represented. The radial velocities obtained in
these codes for these cases are in reasonable agreement with the experiment, although they
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Figure 5.17: Cross-code comparison of the evolved electrostatic potential structure, ϕf , (in
V) of TORPEX filaments. The profiles are shown at t = 48 µs, and are taken at the limiter
drift-plane in the 3D codes.
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Figure 5.18: Comparison of the radial filament velocity, vx, between experiment and the
simulation codes for each TORPEX filament case.
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Figure 5.19: Comparison of the vertical filament velocity, vy, between experiment and the
simulation codes for each TORPEX filament case.

underestimate the radial velocity early in the simulation and overestimate the velocity towards
the end. HESEL on the other hand displays a strong acceleration in each of these two cases,
and clearly does not compare well to the experiment. This acceleration is again attributed to
the HESEL sheath dissipation closure term, as discussed above. For Case 3, better agreement
with the experiment is shown by all codes, including HESEL.

Concerning the vertical velocities, the best agreement between experiment and simulation
is produced by GBS. HESEL displays good agreement in the first half of the Case 1 and Case
2 simulations, but then drastically over-estimates the velocity in the latter half. This better
agreement between the non-isothermal codes and the experiment arises from the background
vertical E×B velocity that is present due to the radial dependence of the electron temperature
background, as discussed in Section 5.5.4.

The isothermal codes STORM2D, STORM3D and TOKAM-3X all show reasonable
agreement amongst themselves in predicting negligible vertical motion for Cases 1 and 2, and
a relatively small negative vertical velocity for much of Case 3. This negative velocity arose in
these isothermal codes due to the initial condition on φ for Case 3, whereas in HESEL and
GBS the positive background E ×B velocity dominated.

The ion temperature dynamics present in HESEL were not found to significantly influence
the results. Is it supposed that this may be due to the fact that in using a uniform Ti = 0.025

eV as an initial condition, Ti � Te, and thus the cold ion approximation is valid.

Lastly, it is noted that no significant difference in the computational cost of performing
the simulations was observed between STORM3D, GBS and TOKAM-3X.
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5.6 Conclusions

This chapter has detailed three systematic verification exercises and one validation exercise
which have been completed on STORM3D to ensure that its physical model has been imple-
mented correctly in the code and furthermore that the model itself adequately represents the
physics of SOL filaments.

Firstly, in Section 5.2 the equilibrium fields (onto which filaments are initialised in the
subsequent chapters) have been verified against analytical results. The results did not converge
at the theoretical order of accuracy for the numerical methods used due to the presence
of infinite gradients at the sheath, which are inherent to the physics of the SOL. However,
the simulations’ equilibrium fields did still converge towards their analytic solutions and
represented their key features well. Next, in Section 5.3, an analytical solution was derived to
a shock tube-like problem, which was then used to carry out a more challenging verification of
the code’s representation of parallel dynamics. The most rigorous verification exercise of the
three completed is presented in Section 5.4, where the Method of Manufactured Solutions was
used to verify that every term and boundary condition of the STORM3D physical model has
been implemented correctly in the simulation code and to the expected order of accuracy. The
code was therefore demonstrated to be O(h2) accurate unless first order upwinding is selected
for an advection derivative term.

The validation exercise presented in Section 5.5 compared the motions of conditionally
averaged filaments from the TORPEX experiment with seeded filament simulations completed
using STORM2D and STORM3D, and also other SOL codes which each represented different
physics. It was found that STORM3D was as good as any of the other SOL codes in that
it provided a reasonable, although not perfect representation of the radial velocities of the
filaments in the experiment, especially considering the experimental uncertainties. However,
the non-isothermal code GBS was better at capturing the vertical motion of the filaments in
the experiment than STORM3D, and so clearly the inclusion of electron temperature dynamics
is a desirable future development.

By carrying out these verification and validation exercises, confidence has been gained that
the STORM3D physical model has been successfully implemented in code without errors, and
that the model itself captures the most important physics of radial filament motion to provide
an adequate comparison with the physical reality of an experiment. This therefore justifies the
use of STORM3D in subsequent chapters, where it is used to carry out detailed investigations
of filamentary dynamics.



Chapter 6

3D Filament Dynamics and
Comparison with 2D Models

6.1 Introduction

This chapter seeks to address two issues. Firstly, it will provide a thorough characterisation of
the dynamics of filaments simulated using the STORM3D physics module, with particular
emphasis on how the filament’s initial geometry influences its motions. Secondly, comparisons
will be made against STORM2D filament simulations using both the sheath dissipation and
vorticity advection parallel closures to investigate which closure provides the best description
of the 3D simulations.

6.1.1 Default Simulation Implementation

Unless specified otherwise, the results presented in this and the subsequent chapter were
implemented as follows. The input parameters used are listed in Table 6.1 and are broadly
relevant for the MAST tokamak. Each simulation was initialised by seeding filaments onto
equilibria as described in Section 4.4, with the parameter α in Equation (4.27) specified such
that neq|z=0 = 1 (in normalised units). The structure of the equilibrium fields used can be
inferred from Figure 5.1. A default perpendicular domain of Lx × Ly = 15δ̂⊥ × 10δ̂⊥ and a
spatial mesh consisting of Nx×Ny×Nz = 192×128×16 was employed, where δ̂⊥ is the initial
perpendicular length scale of the filament perturbation according to Equation (4.28). Thus the
perpendicular resolution of the simulations was scaled according to the initial perpendicular
size of filament. Simulations have been performed at double this resolution to confirm that
the results presented are sufficiently converged. Finally, the filaments were initialised using
x0 = Lx/4 and y0 = Ly/2 in Equation (4.28), so that the filament had sufficient room to
propagate radially to larger values of x.

6.2 Example Simulation

To begin, the dynamics of a filament initialised with A = 2, Lf = L‖, δ̂⊥ = 16, and δ̂‖ = 0 are
examined. The evolution of the filament’s density, nf , and potential, φf , at the mid-plane
(z = 0) is shown in Figure 6.1. Here nf = n−neq, φf = φ−φeq and as in all equivalent figures
in the following two chapters, nf is shown using filled contours, whilst φf is plotted using black
contour lines, with dotted and dashed lines indicating positive and negative values respectively.

100



6.2. EXAMPLE SIMULATION 101

Table 6.1: Default parameters used for the simulations presented in this chapter. These
parameters are broadly relevant to MAST.

Input Parameters Normalisation Parameters Dimensionless Parameters

Te = 40 eV

Ti = 40 eV

B = 0.5 T

ne,0 = 8× 1018 m-3

R = 1.5 m

`‖ = 10 m

mi = 3.32× 10−27 kg

ln Λ = 13.28

q = 7

ρs = 1.82× 10−3 m

cs = 4.39× 104 ms−1

Ωi = 2.41× 107 s−1

DBohm = 7.98× 101 m2s−1

ĝ = 2.43× 10−3

η̂‖ = 7.08× 10−6

Dn = 1.80× 10−3

DΩ = 5.00× 10−2

µ = 3646

L‖ = 5490

t = 1200 Ω−1
i
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Figure 6.1: Evolution of a A = 2, Lf = L‖, δ̂⊥ = 16, δ̂‖ = 0 filament’s density, nf , (filled
contours) and potential, φf (contour lines) profiles at the mid-plane (z = 0). Values of nf
below 0.1 are not plotted. Dotted and dashed contour lines respectively indicate positive and
negative values of φf .

The mid-plane evolution is representative of the entire filament as it remains highly field
aligned throughout the simulation, as illustrated by the 3D visualisation of nf at an example
output time in Figure 6.2. Returning to Figure 6.1, it can be seen that as the simulation
evolves, the filament develops a dipolar potential structure in the perpendicular plane, which
through E ×B advection correspond to a pair of counter-rotating vortices that transport the
filament radially outwards. As the filament propagates, the filament’s perpendicular structure
is transformed from its initial Gaussian profile to have a steep density front at its leading
edge and a more gentle decay in its trailing wake. It is noted also that the magnitude of the
filament’s positive potential lobe develops to become larger than that of its negative lobe and
that the filament moves slightly in the negative y direction. The driving mechanism for this
aspect of the filament’s dynamics will be discussed later in Section 6.3.1.
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Figure 6.2: 3D visualisation of the A = 2, Lf = L‖, δ̂⊥ = 16, δ̂‖ = 0 filament’s density profile,
nf , at t = 1200Ω−1

i . Values of nf below 0.2 are not plotted.

6.2.1 Quantifying Filaments’ Motions

To quantify the motion of the filament, a number of different definitions for the filament’s
position, xf = (xf , yf , zf ), are considered. The first is the Centre of Mass (CoM) of nf ,
defined as

xCoM
f =

∫ Lx

0

∫ Ly

0

∫ L‖

0
xnf dx dy dz

∫ Lx

0

∫ Ly

0

∫ L‖

0
nf dx dy dz

, (6.1)

where x = (x, y, z). It is noted that since the integral in the parallel direction is between 0

and L‖, this allows zCoM
f to take non zero values, and thus provides a measure of how far the

filament has travelled towards the sheath. If instead the integral were between −L‖ and L‖,
then zCoM

f = 0 by definition due to the symmetry of the system.
The second definition of the filament’s position considered is the centre of mass of nf above

a certain threshold, γ:

xCoM,γ
f =

∫ Lx

0

∫ Ly

0

∫ L‖

0
xnγf dx dy dz

∫ Lx

0

∫ Ly

0

∫ L‖

0
nγf dx dy dz

, (6.2)

where

nγf =





0 if nf < γ

nf if nf ≥ γ
. (6.3)

The final definition considered is the location at which the filament’s peak density occurs:

xmax
f = arg max (nf ) . (6.4)

It is noted that xCoM
f and xmax

f are in fact specific cases of xCoM,γ
f , using γ = −∞ and

γ = max (nf ) respectively.
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Figure 6.3: Evolution of the A = 2, Lf = L‖, δ̂⊥ = 16 filament’s perpendicular displacement,
(x′f , y

′
f ), and parallel position, zf , using the definitions given by Equations (6.1) to (6.4)

Introducing the notation x′f = xf − x0, and y′f = yf − y0, the time evolution of the
perpendicular displacement of the above filament from its original starting position and its
position along the parallel direction is plotted in Figure 6.3, for each of the aforementioned
definitions of xf . In particular a threshold of γ = 0.2 was used for xCoM,γ

f . Each definition
produces a broadly similar trend for the perpendicular components, with the filament described
to have moved significantly in the positive x direction and slightly downwards in y. Throughout
the evolution, it can be seen that xCoM

f ≤ xCoM,0.2
f ≤ xmax

f . The reason for this behaviour can
be inferred from Figure 6.4, which plots both nf and each definition of the filament’s position
at an example time of t = 1700 Ω−1

i . It can be seen that xCoM
f lags somewhat behind the

other two measures because the filament leaves a trailing wake of slightly enhanced density
with respect to neq. This trailing wake is effectively ignored by xCoM,0.2

f , which thus defines
the filament’s position to be at a larger value of x, and closer to where intuitively one may
consider the filament’s centre to be. Furthermore xmax

f is always larger than the other two
definitions because the peak value of density is invariably located on the filament’s leading
front. Returning to the parallel position in Figure 6.3, zmax

f shows disagreement with the other
two definitions, remaining close to zero throughout. This is because the filament’s density at
the sheath is drained to the sheath, meaning that the peak density value always is found near
to the mid-plane and therefore zmax

f is clearly not a good measure of the filament’s position
along the parallel direction.

Since filaments are primarily of interest because of their contribution to density transport,
throughout the following analysis xCoM

f will used as the definition of xf because it measures
the average displacement of all of the initial density perturbation and also because it provides
a better description of the filament’s parallel position than xmax

f . It is noted however, that
if comparisons were to be made with measurements in the perpendicular plane from light
emission diagnostics in experiments, then xmax

f may be an appropriate definition.
Measures of the filament’s velocity, v̂f = (v̂f,x, v̂f,y, v̂f,z), can be obtained by numerically

calculating the time derivative of xf :

v̂f =
dxf
dt

, (6.5)

However, since this velocity can only be calculated as a post-processing routine using finite
differences, the calculated velocity of the filament at a given time will not be an instantaneous
velocity, but an average velocity filament between its two adjacent time outputs. Instead
therefore the instantaneous perpendicular velocity components are approximated using the
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Figure 6.4: Demonstration of where each definition of the filament’s position, given by Equations
(6.1) to (6.4) locate the A = 2, Lf = L‖, δ̂⊥ = 16 filament to be in the perpendicular plane
at the example time t = 1700 Ω−1

i , in relation to the filament’s density profile, nf , which is
plotted using filled contours. Values of nf below 0.1 are not plotted.

E ×B velocity as follows:

v̂f,x =

∫ Lx

0

∫ Ly

0

∫ L‖

0
nf
∂φ

∂y
dx dy dz

∫ Lx

0

∫ Ly

0

∫ L‖

0
nf dx dy dz

, (6.6)

v̂f,y =

∫ Lx

0

∫ Ly

0

∫ L‖

0
−nf

∂φ

∂x
dx dy dz

∫ Lx

0

∫ Ly

0

∫ L‖

0
nf dx dy dz

. (6.7)

It is noted that these definitions neglect the lower order perpendicular velocities arising due to
the diamagnetic velocity or through diffusive effects. The evolution of the example filament’s
perpendicular velocities calculated in this manner are plotted in Figure 6.5.

6.3 Effect of Filament Geometry

6.3.1 Parallel Extent, Lf

The influence of the parallel extent of a filament on its motions can be observed by comparing
Figure 6.6, which plots the mid-plane dynamics of nf and φf of a filament initialised as in
the example simulation, but with Lf = L‖/2 rather than Lf = L‖. By cross comparison with
Figure 6.1, it can be seen that when the filament does not extend all the way to the target
(and hence parallel gradients are present), the potential field that develops is altered such that
the positive lobe becomes significantly stronger and larger than the negative lobe. This effect
has been observed in previous works [168, 192, 195, 197] and occurs due the presence of the
term

µ
(
∇‖φ−∇‖ lnn

)

in the parallel electron velocity equation, Equation (3.68). This term drives the filament’s
potential field to exhibit a Boltzmann response, in that it becomes aligned with lnn. This
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Figure 6.5: Evolution of the A = 2, Lf = L‖, δ̂⊥ = 16 filament’s perpendicular velocity
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Figure 6.6: Evolution of the A = 2, Lf = L‖/2, δ̂⊥ = 16, δ̂‖ = 0 filament’s density (filled
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nf below 0.1 are not plotted. Dotted and dashed contour lines respectively indicate positive
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and δ̂‖ = 0, and all fields are plotted at z = 0, t = 300 Ω−1
i .

alignment can be demonstrated by isolating the components of φf which have even and odd
parity in y with respect to the centre of the filament in the bi-normal direction, yf . These
components can be calculated for an arbitrary quantity, f , according to

f even =
f (y − yf ) + f (yf − y)

2
. (6.8)

fodd =
f (y − yf )− f (yf − y)

2
. (6.9)

Figure 6.7 therefore plots φf and its constituent components, φeven
f and φodd

f , for both the
Lf = L‖ and Lf = L‖/2 filaments at z = 0 and t = 300 Ω−1

i . The filament’s density profile,
nf , which broadly has even parity is also plotted using black dotted contour lines for reference.
It can be seen that the Lf = L‖/2 filament has a much stronger φeven

f component that is
highly aligned to the density field and which when superposed with the φodd

f field, produces a
φf whose positive lobe is stronger than its negative lobe. In contrast, the Lf = L‖ filament
has a much weaker φeven

f component because only very weak parallel density gradients exist
within the filament, and therefore φf ≈ φodd

f . It is noted that it has been shown analytically
that if φeven

f is initialised to zero, as it is here, it can only grow within this model through the
∇‖n term in Equation (3.68) [136, 196].

Returning to Figure 6.6, the broadly monopolar potential field corresponds to the filament
spinning clockwise in the perpendicular plane through E ×B motions, when viewed with the
magnetic field directed out of the page. These Boltzmann spinning motions combine with
the radial E ×B velocity to produce a net displacement in the negative y direction. This
can be observed in Figure 6.8, which compares the perpendicular displacements and velocities
between the Lf = L‖ and Lf = L‖/2 filaments, in that the Lf = L‖/2 filament exhibits a
larger displacement in the negative y direction than the Lf = L‖ case. Incidentally the reason
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Figure 6.8: Comparison of the perpendicular displacements and velocities of filaments with
Lf = L‖ and Lf = L‖. Both simulations were otherwise initialised with A = 2, δ̂⊥ = 16, and
δ̂‖ = 0.

that the Lf = L‖ filament exhibits a negative displacement at all, particularly in the later
stages of the simulation, is that the draining of the filament’s density to the sheath generates
parallel gradients.

From Figure 6.8, it can also be seen that reducing the parallel extent of the filament reduces
its radial velocity as the Lf = L‖/2 filament moves more slowly in the radial direction. To
explain this, it is first noted that the resistivity in the system is sufficiently small such that φodd

f ,
which is predominantly responsible for the radial velocity, is largely uniform along the field
line. This potential is thus effectively determined by the parallel integral of the diamagnetic
current drive throughout the domain. Since the Lf = L‖/2 filament has approximately half
the diamagnetic current drive that is present in the Lf = L‖ case, it has a weaker φodd

f (as
can be observed in Figure 6.7) which corresponds directly to a slower radial velocity.

6.3.2 Perpendicular size, δ̂⊥

Theoretical Predictions

Before presenting simulations of filaments initialised with varying δ̂⊥, it is useful to first
derive the theoretical radial velocity scaling predictions from prior works [122, 160, 168], as
comparisons will be made with these. Using the parameters given in Table 6.1, the resistivity
of the plasma being simulated is small, in the sense that the resistance to currents travelling
from the mid-plane to the sheath entrance is negligible compared to the resistance to currents
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travelling through the sheath to the target,

η̂‖L‖ �
1

ns
.

Here ns denotes the normalised density at the sheath entrance, which is of order unity. In this
low resistivity limit, the sheath dissipation closure (Equations (3.74) and (3.75)) is justified,
and therefore the 3D model can be approximated by this closure (this is confirmed in Section
6.4). The sheath dissipation closure’s vorticity equation will thus be used here to gain insight.
Considering a filament of perpendicular length scale δ̂ that extends all the way to the target,
and assuming that ∂Ω/∂t = 0, the magnitude of each of the terms in Equation (3.74) on the
bottom half of the filament in the perpendicular plane can be be estimated as follows:

∂Ω

∂t
= −

(
b̂×∇φ

)
· ∇Ω +

φ

L‖
− ĝ

n

∂n

∂y
+DΩ∇2

⊥Ω (6.10)

ĝ

δ̂
∼
φ2

peak

δ̂4
+
φpeak

L‖
+
DΩφpeak

δ̂4
. (6.11)

In Equation (6.11), φpeak refers to the peak value of the positive potential lobe that is located
on the bottom half of the filament. The ĝ/δ̂ term represents the diamagnetic current drive,
whilst the three terms on the RHS respectively correspond to the polarisation current (inertial)
term, the parallel sheath current term and the viscosity term.

From this expression, it can be seen that up to three different regimes will exist depending
on the size of the filament, δ̂, the parallel connection length, L‖, and the viscosity of the
system, DΩ. At the very smallest and largest filament sizes, the diamagnetic current will
predominantly be balanced by the viscous and sheath current terms respectively. Assuming
the viscosity to not be too large, there will also be a regime at intermediate sizes, where the
polarisation current will instead dominate. These regimes will hereafter be referred to as the
viscous regime, the inertial regime, and the sheath current regime. The approximate transition
from the inertial regime to the sheath current regime will occur when the two respective terms
are of equal magnitude, i.e. when φ = δ̂4/L‖. By substituting this value of φ into Equation
(6.11), and neglecting the viscous term, the filament size at which this transition occurs is
estimated to be:

δ̂∗ =

(
ĝL2
‖

2

)1/5

. (6.12)

It is noted from Reference [169] that δ̂∗ should also include an order unity correction to account
for the magnitude of the filament’s density perturbation, but since this can only be determined
numerically via an amplitude scan, it has been neglected here. By applying an equivalent
procedure, the filament size at which the transition from the viscous to the inertial regime
occurs can also be approximated as:

δ̂† =

(
2D2

Ω

ĝ

)1/3

. (6.13)

It is noted however that if δ̂† > δ̂∗, or equivalently if

DΩ >

(
ĝ4L3

‖
2

)1/5

,

then the inertial regime will not exist, and instead a transition from the viscous regime to the
sheath current regime will occur at

δ̂4 =

(
DΩ

L‖

)1/4

(6.14)
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An estimate of the value of φpeak, and hence the radial velocity of the filament, v̂f,x ∼ φpeak/δ̂,
in each regime can be obtained by balancing the diamagnetic term with the respective dominant
terms on the RHS in (6.11), yielding the following predictions for how the velocity of the
filament will scale with its perpendicular size in each regime.

v̂f,x ∼





δ̂2 for δ̂ � δ̂† (Viscous regime)

δ̂1/2 for δ̂† � δ̂ � δ̂∗ (Inertial regime)

δ̂−2 for δ̂ � δ̂∗ (Sheath current regime)

. (6.15)

In the above, it is implicitly assumed that δ̂† < δ̂∗. If instead, δ̂† > δ̂∗, the scaling predictions
reduce to

v̂f,x ∼




δ̂2 for δ̂ � δ̂4 (Viscous regime)

δ̂−2 for δ̂ � δ̂4 (Sheath current regime)
. (6.16)

It is noted that the viscous regime is absent from previous works, as unless the viscosity is
very high, δ̂† will typically be less than or of the order of the ion gyro-radius, and at such
small scales, fluid models are not appropriate.

Simulations

To illustrate the different dynamics that are produced in the simulations depending on the
perpendicular size of the filament, Figures 6.9 and 6.10 plot the mid-plane evolution of nf and
φf for filaments initialised as in the δ̂⊥ = 16 example simulation in Section 6.2 but with δ̂⊥ = 5

and δ̂⊥ = 40. Given that for the simulation parameters (listed in Table 6.1), δ̂∗ = 8.18 and
δ̂† = 1.27, these two filaments are predicted to lie in the inertial and sheath current limited
regimes respectively.

It is clear from these figures that neither filament displays the coherent propagation that
was produced by the δ̂⊥ = 16 filament, shown in Figure 6.1. The δ̂⊥ = 5 filament rapidly
develops a potential field that extends in the perpendicular plane beyond the extent of the
density perturbation. The associated counter rotating vortices therefore act to stretch the
leading front of the filament, and cause it to form a mushroom-like structure through Rayleigh-
Taylor-like motions. This, combined with collisional diffusion causes the filament to rapidly
lose its coherence. In contrast, the δ̂⊥ = 40 filament develops a potential field during the early
stages of its motion that lies almost entirely within the initial density perturbation. In this
case the vortices cause the filament to expel a finger or jet of density, which then propagates
radially outwards. Returning to the δ̂⊥ = 16 simulation, it is now clear that this filament was
able to propagate relatively coherently because the spatial extent of its potential field was
approximately the same as its density perturbation, meaning that neither mushrooming nor
fingering motions occurred.

A quantitative comparison of the perpendicular displacements and velocities of these three
filaments is provided in Figure 6.11. It can be seen that whilst the δ̂⊥ = 5 developed a faster
radial velocity during the early stages of its motion than the other two filaments, this velocity
dramatically reduced around t = 300 Ω−1

i , which from Figure 6.9, can be seen to correspond
to when filament developed a mushroom structure. The δ̂⊥ = 16 filament also reached a peak
radial velocity in the early stages of the simulation, which then gradually decayed with time,
but exhibits the greatest net radial displacement at the end of the simulation. Finally the
δ̂⊥ = 40 filament’s radial velocity was significantly less than that of the two smaller filaments
throughout because effectively only its finger structure propagated, whilst the remainder of
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Figure 6.9: Evolution of a A = 2, Lf = L‖, δ̂⊥ = 5, δ̂‖ = 0 filament’s density (filled contours),
nf , and potential (contour lines), φf , profiles at the mid-plane (z = 0). Values of nf below 0.1
are not plotted. Dotted and dashed contour lines respectively indicate positive and negative
values of φf .
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Figure 6.11: Comparison of the perpendicular displacements and velocities of filaments with
δ̂⊥ = 5, 16 and 40. All simulations were otherwise initialised with A = 2, Lf = L‖, and δ̂‖ = 0.

the initial filament was motionless. Furthermore this velocity remained relatively constant
throughout the simulation because the finger structure’s front maintained its coherence by
being continually replenished by density travelling along the filament’s column.

The contrasting current balances found in each of these three filaments, plus an additional
δ̂⊥ = 5 simulation performed with zero viscosity and particle diffusion (DΩ = 0, Dn = 0) is
shown in Figure 6.12. This figure plots for each filament the divergences of each of the current
densities in the system, divided by density. These quantities correspond directly to the terms
in the vorticity equation, Equation (3.66). The fields are plotted at z = 0 and at a time close
to the peak velocity for each filament, and the dynamics shown are representative of the entire
simulation. This figure shows that broadly, the current balance in each filament is as predicted
by the scaling arguments discussed above. In the δ̂⊥ = 40 filament, which satisfies δ̂⊥ > δ̂∗,
the compressible diamagnetic currents are almost entirely balanced by parallel currents. To
demonstrate that these parallel currents form a closed circuit through the target, Figure 6.13,
plots J‖ in a y − z plane through the middle of the filament again at a time close to the
filament’s peak velocity. An equivalent plot is shown for a Lf = L‖/2 but otherwise identically
initialised filament, to demonstrate that electrical connection to the target still occurs through
the background plasma in this case, even if the filament perturbation itself does not reach the
sheath.

Returning to Figure 6.12, parallel currents are almost negligible in the smaller δ̂⊥ = 5

filament, which satisfy δ̂⊥ < δ̂∗, and instead a combination of viscous currents and polarisation
currents act to balance the diamagnetic currents, with the viscous currents playing a more
dominant role. This is slightly surprising, since for this filament δ̂⊥ > δ̂†, and thus the above
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scaling arguments predict the polarisation currents to be more important than viscous currents.
It is emphasised however that firstly the theoretical predictions are only very rough estimates,
and secondly for the simulation parameters, the regimes predictions become very congested at
small δ̂⊥, with little separation between 0, δ̂† and δ̂∗. This means that the idealised viscous and
inertial regimes do not truly exist and instead both effects play a role at small δ̂⊥. Nevertheless,
the δ̂⊥ = 5, DΩ = 0 filament case does show that in the absence of viscosity, the filament can
be described as in the inertial regime, as the polarisation currents almost exclusively ensure
current continuity. It is pertinent to note that both polarisation and parallel currents are
important for the δ̂⊥ = 16 filament, which displays the most coherent propagation.

The mechanism for the observed difference in the relative spatial extent of a filament’s
potential field with respect to its density field, depending on δ̂⊥, becomes apparent by Fourier
transforming Equation (6.10) in the perpendicular plane to produce [159]

∂φ̂k
∂t

= − 1

L‖k2
⊥
φ̂k +

ikyn̂k
nbgk

2
⊥
−DΩk

2
⊥φ̂k. (6.17)

Here f̂k denotes the Fourier mode of a quantity f corresponding to a perpendicular wave vector
k = (kx, ky), k⊥ = |k| and nbg is the normalised value of the effective background number
density. This equation shows that the sheath dissipation term, which is dominant for large
δ̂⊥ filaments, acts to preferentially damp large spatial length scales of potential. Therefore
filaments with δ̂⊥ > δ̂∗ develop potential fields that are localised within the density profile of
the filament, whilst those with δ̂⊥ < δ̂∗ develop potential fields extending beyond the filament’s
density.

Next, attention is turned to the functional dependence of the filament’s radial velocity on
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δ̂⊥. To measure this, a characteristic radial velocity, v̂?f,x, is defined as the first maximum of
v̂f,x (t) that occurs in time. This is obtained more accurately from the discrete time outputs
by using a cubic spline interpolation. The first maximum is selected in an attempt to avoid
the influence of Boltzmann spinning motions, which can lead to a secondary, larger maximum
in very small δ̂⊥ filaments that possess parallel gradients. A series of extensive scans in δ̂⊥
have been performed, with values ranging from 0.5 to 60. Four different datasets have been
obtained, corresponding to filaments initialised with Lf = L‖ or Lf = L‖/2, with or without
the dissipative parameters, DΩ and Dn. The dependence of v̂?f,x for each of these cases is
shown in Figures 6.14, with the results plotted on both linear and log-log axes as the latter
allow the scaling with δ̂⊥ to be assessed clearly. For reference, the analytical velocity scaling
predictions for the viscous, inertial and sheath current limited regimes are marked on the
log-log axes, alongside the predicted transition boundaries between the regimes, δ̂∗ and δ̂†. A
number of features are evident from these plots:

– All four cases produce peak characteristic velocities at a δ̂⊥ close to, but always smaller
than δ̂∗. It is noted however that this peak does not correspond to the most coherent
filamentary motion or furthest radial distance travelled, which occurs for δ̂⊥ slightly
larger than δ̂∗ (See Figures 6.1, 6.9, 6.10 and 6.11.)

– All four cases produce characteristic radial velocities scaling like v̂?f,x ∝ δ̂−2
⊥ for δ̂⊥ � δ̂∗,

as predicted for the sheath current limited regime.

– The Lf = L‖ and non-zero dissipative parameters case produces velocities scaling like
v̂?f,x ∝ δ̂2

⊥ for δ̂⊥ � δ̂†, in agreement with the viscous regime prediction.

– In the absence of viscosity and dissipation, the L‖ filament velocities scale like v̂?f,x ∝ δ̂
1/2
⊥

for δ̂⊥ � δ̂∗, in line with the inertial regime prediction.

– The Lf = L‖/2 cases do not agree so well with the analytical predictions at small values
of δ̂⊥. This discrepancy is attributed to the Boltzmann spinning dynamics produced in
these filaments, which depending on the size of the filament, can alter the peak velocity.

– Reducing the parallel extent of the filament reduces the radial velocity across all δ̂⊥,
although this reduction becomes negligible at larger δ̂⊥.

In general therefore, the analytical scaling predictions are well reproduced by the simulations,
particularly for the Lf = L‖ cases. Perhaps more important than the exact δ̂⊥ dependence of
the radial velocities, is the fact that for all four cases, the radial velocity increases with δ̂⊥ for
δ̂⊥ � δ̂∗, whilst it decreases with δ̂⊥ for δ̂⊥ � δ̂∗. This analysis has also been performed using
an alternative definition of a characteristic radial velocity as the average radial velocity over a
specified time period, and produced equivalent velocity scaling results.

Thus far, consideration has only been given to the effect of δ̂⊥ on the perpendicular
motions of the filaments. However, when δ̂⊥ becomes very small, the parallel propagation is
also affected. To illustrate this, a series of simulations have been performed with filaments
initialised with A = 2, Lf = L‖/2, δ̂‖ = 0 and values of δ̂⊥ ranging from 1 to 5. In addition,
to isolate the parallel dynamics, both the curvature drive and dissipative parameters were set
to zero; g = 0, Dn = 0, DΩ = 0. The left hand plot of Figure 6.15 shows the evolution of
the centre of mass of the filaments from each of these simulations, whilst the right hand plot
shows example profiles of nf along the centre of the filaments at t = 80 Ω−1

i . It is clear that
decreasing δ̂⊥ leads to an increase in the parallel propagation of the filament for δ̂⊥ . 5. At
values above this value, the propagation remains roughly constant.
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Figure 6.16: Schematic diagram of the mechanism that leads to enhanced parallel propagation
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The mechanism for this behaviour, shown schematically in Figure 6.16, is that as the
filament size reduces, the gradients in the perpendicular direction increase, meaning that the
ion polarisation currents are enhanced. These enhanced polarisation currents are then able to
balance large parallel currents driven by the parallel density gradient of the filament front.
These parallel currents effectively correspond to the motion of electrons only, as the ions’
parallel velocity is approximately zero (because they are significantly heavier and therefore
have a slower dynamical response). Therefore a situation develops in which the filament’s
electrons move along the parallel direction at a speed faster than the ion sound speed, and
quasi-neutrality is ensured inside and downstream of the filaments by ions moving outwards
and inwards in the perpendicular direction respectively through polarisation currents. Finally,
to maintain current continuity throughout the entire domain, a return parallel current flows
around the outside of the filament. This also corresponds to the density surrounding the
filament in the perpendicular plane increasing slightly, similar to that caused by particle
diffusion, as shown in Figure 6.17. Since Dn = 0, this spreading can be solely attributed to
the above process∗. For filaments above a certain perpendicular size, δ̂⊥ ≈ 5, this mechanism
no longer occurs because the polarisation currents are reduced and can no longer facilitate
the parallel electron currents. Such filaments exhibit ambipolar propagation in the parallel
direction, which thus occurs on the slower ion time-scale.

These results indicate that filaments with a smaller perpendicular size will reach the target
quicker and also spread out in the perpendicular plane more quickly than larger filaments.
These effects, combined with the facts that they contain less density and will be more affected
by particle diffusion, imply that smaller filaments may have shorter lifetimes than larger
filaments. It is however highlighted that these effects only become significant for very small
values of δ̂⊥, for which the fluid model used may no longer be appropriate as finite Larmor
radius effects will be important.

∗It is noted that this spreading is not an artefact of numerical diffusion because it does not occur in filaments
that are uniform in the parallel direction.
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Figure 6.17: Demonstration of the enhanced perpendicular spreading of filaments that occurs
at small δ̂⊥. The profiles of the filament density, nf , are plotted from a δ̂⊥ = 2, A = 2,
Lf = L‖/2, δ̂‖ = 0 filament, at y = y0, z = 0. Both the initial profile (t = 0) and a later,
evolved profile (t = 100 Ω−1

i ) are shown. The simulation was performed using g = 0, Dn = 0

and DΩ = 0, so the spreading in the perpendicular direction can be solely attributed to the
mechanism shown in Figure 6.16.

6.3.3 Parallel density gradient, δ̂‖

Next the effect of varying the gradient of the filament’s density front is considered, which
is controlled through the parameter δ̂‖. A series of simulations have been performed using
filaments initalised with A = 2, Lf = L‖ and δ̂‖ ranging from 0 to ∞. The parallel density
profiles of the filaments simulated are plotted in Figure 6.18. From this figure it can be inferred
that the integral value of nf along the parallel direction is the same in each case. The δ̂‖
scans were performed for two perpendicular filament sizes, δ̂⊥ = 5 and δ̂⊥ = 16. The evolution
of the filament position and velocity for these two cases are plotted respectively in Figures
6.19 and 6.20 using the same colour scheme as in Figure 6.18. It can be seen that the radial
motion of the δ̂⊥ = 16 case is invariant to δ̂‖, but that a greater negative velocity in the y
direction develops as δ̂‖ decreases. This happens due to the enhanced Boltzmann spinning
motions (described in Section 6.3.1) that develop in the presence of stronger parallel density
gradients. In contrast, the radial motion of the δ̂⊥ = 5 filaments are affected by δ̂‖, with
larger δ̂‖ filaments moving faster. This behaviour has also been attributed to the Boltzmann
spinning motions, which are stronger for smaller δ̂⊥ filaments, acting to reduce the radial
velocity. Nevertheless, the effect that δ̂‖ has on the radial motion in this case is very small;
approximately a 10% reduction in the final xf position between δ̂‖ = ∞ and δ̂‖ = 0. From
these results therefore it can be inferred that for a given δ̂⊥, the parallel integral value of nf
predominantly determines the filament’s radial displacement and velocity, rather than δ‖.

6.3.4 Amplitude, A

The final property of the filaments’ geometry to be investigated is the peak amplitude of the
filament, A. To investigate the influence of this parameter, two additional simulations have been
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Figure 6.20: Evolution of the position and velocity of δ̂⊥ = 5, A = 2, Lf = L‖/2 filaments
with varying δ̂‖. The colour scheme is the same as in Figure 6.18.

performed using the same filament parameters as in the example simulation (A = 2, Lf = L‖,
δ̂⊥ = 16 and δ̂‖ = 0) but with A = 4 and A = 6. To resolve the increased perpendicular
gradients, the perpendicular resolution was doubled for these two higher amplitude simulations
such that Nx ×Ny ×Nz = 384× 256× 16.

A comparison of all three cases is provided by both Figure 6.21, which shows the evolution
of nf and φf , and Figure 6.22, which plots the evolution of the filaments’ perpendicular
displacement and velocities. It can be seen that in the early stages (t < 500 Ω−1

i ), increasing
the amplitude of the filament leads to faster radial velocities, as might be expected because
the diamagnetic drive is enhanced. However, at around t = 600 Ω−1

i , the A = 6 filament
begins to exhibit perturbations in its density and potential structure along the leading front.
As described in References [168] and [191], such perturbations are characteristic of the onset
of unstable drift-waves. As the A = 6 filament evolves beyond this point, the drift-waves
grow and develop into turbulent motions which act to tear the filament apart, destroying
its coherence and spreading its density further in the bi-normal direction compared to the
two smaller amplitude cases. From Figure 6.22, these drift wave dynamics can be seen to
significantly reduce the filament’s radial velocity, and by the end of simulation the A = 4 case
exhibits a greater radial displacement. However it is emphasised that the A = 6 filament’s
net radial transport is not entirely halted by the development of drift-waves, as a number
of smaller amplitude child filaments emerge from the turbulence which subsequently advect
radially outwards themselves.

It is noted that whilst a comparison between radial velocities between filaments of different
amplitudes is shown in Figure 6.22, the exact functional dependence or scaling of v̂f,x with A has
not been investigated because, as described in References [151] and [169], an incorrect scaling
will be produced when the Boussinesq approximation is employed as it is here. Nevertheless,
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Figure 6.22: Evolution of the position and velocity of δ̂⊥ = 16, Lf = L‖/2, δ̂‖ = 16 filaments
with varying δ̂‖.

it is expected that the result that increasing A leads to increased radial transport up until a
critical point at which unstable drift-waves develop, will be unaffected by this simplification.

Figure 6.22 also displays the trend that higher amplitude filaments move faster (and hence
further) in the bi-normal direction. This occurs because the higher amplitude filaments drive
a larger even component of potential through the Boltzmann potential response described in
Section 6.3.1. This therefore induces the filament to spin faster in the perpendicular plane,
which combined with the faster radial velocities in the early stages of the simulations, acts to
produce a faster bi-normal velocity.

6.4 Comparison with 2D Closures

In this section direct comparisons are made between 3D filament simulations and 2D simulations
using the sheath dissipation and vorticity advection parallel closures described in Section 2.3.3.

To begin, the contrasting density and potential evolution of the example filament case
(A = 2, δ̂⊥ = 16, Lf = L‖, δ̂‖ = 0) using each model is shown in Figure 6.23, with the 3D
fields taken at z = 0. It is recalled that the vorticity advection model seeks to represent
the dynamics at this location but assumes Lf = L‖/2, whilst the sheath dissipation model
technically represents field line averaged quantities and assumes Lf = L‖. From this plot, it is
evident that the vorticity advection model produces drastically different dynamics compared
to the other two models, in that its filament becomes strongly mushroomed. This occurs
due to it developing a potential field that is much stronger and that extends further in the
perpendicular plane those of the other two models. On the other hand, the sheath dissipation
model produces broadly similar dynamics to the 3D model, particularly in terms of radial
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Figure 6.24: Comparison of the perpendicular displacements and velocities produced the 3D
model and the 2D sheath dissipation (SD) and vorticity advection (VA) models for filaments
initialised with A = 2, Lf = L‖, δ̂‖ = 0 and varying δ̂⊥.

displacement and overall structure. However, it does not reproduce the Boltzmann spinning
motions and subsequent downwards displacement of the 3D simulation because there is no
drive by which φ can become aligned with n (the same is true of the vorticity advection
model). This δ̂⊥ = 16 comparison is representative of both smaller and larger δ̂⊥. The vorticity
advection model always produces strong mushrooming motions, even for δ̂⊥ � δ̂∗, where the
3D model and sheath dissipation models produce fingering motions. Furthermore, for δ̂⊥ � δ̂∗,
where the 3D model and sheath dissipation models also produce mushrooming motions, the
vorticity advection model mushrooms the filament more quickly and to a greater extent.

Quantitative comparisons of the perpendicular displacements and velocities produced
by each model for various values of δ̂⊥ are provided in Figure 6.24, with the 3D results
shown for both Lf = L‖ and Lf = L‖/2. Regardless of the value of δ̂⊥ or Lf , the vorticity
advection closure produces a significantly larger radial displacement than the 3D model,
with the discrepancy worse for larger δ̂⊥. In contrast, the sheath dissipation model’s radial
displacements and velocities show good agreement for the 3D Lf = L‖ case although they
are consistently smaller across all δ̂⊥. Whilst it does not provide quite such a satisfactory
agreement for the Lf = L‖/2 case, the agreement is still reasonable considering it is not strictly
valid, and certainly it reproduces the 3D motions better than the vorticity advection closure.
This in particular is a surprising result given that the vorticity advection closure was developed
to better represent the dynamics of ballooned filaments, i.e. those that possess parallel density
gradients. It is noted however that the agreement between the sheath dissipation closure and
the 3D model becomes significantly reduced for sufficiently high amplitude filaments, as 2D
models cannot represent the unstable drift wave dynamics that develop in the 3D simulations.
This means that the sheath dissipation model leads to greater radial transport for such cases, as
shown in Figure 6.25. Returning to Figure 6.24, neither 2D closure reproduces the downwards



124 CHAPTER 6. FILAMENT DYNAMICS

t (Ω−1
i )

0 500 1000 1500 2000

x
′ f
(ρ

s
)

0

20

40

60

80

100

3D

2D SD

t (Ω−1
i )

0 500 1000 1500 2000

v̂
f
,x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.25: Comparison of the perpendicular displacements and velocities of a A = 6,
Lf = L‖/2, δ̂‖ = 0 filament using the 3D model and the 2D sheath dissipation (SD) model.

motion of the filament found using the 3D model for the reason discussed previously.
Perhaps the clearest demonstration that the vorticity advection closure produces drastically

different results, particularly for δ̂⊥ > δ̂∗, is provided by Figure 6.26, which shows the δ̂⊥
dependence of filaments’ characteristic radial velocity, v̂?f,x, for each model. Whilst agreement
is found between all three models for the very smallest δ̂⊥, the vorticity advection produces
a monotonically increasing v̂f for all physically relevant δ̂⊥, and does not exhibit the roll
over from the inertial regime to the sheath current limited regime that occurs for the 3D and
sheath dissipation models. This means that effectively that the vorticity advection closure only
represents the viscous and inertial regimes, although there is some deviation from the inertial
regime’s v̂f,x ∝ δ̂−2

⊥ scaling at large δ̂⊥ as the vorticity advection term (−Ω/2L‖) becomes
more important in Equation (3.78).

Additional simulations have been performed with the magnitude of this term increased, to
determine whether a slight adjustment in the approximation U∇‖ ≈ 1/2L‖ would allow the
vorticity advection model to better represent the 3D simulations. However it was found that
the term had to be increased by approximately 3 orders of magnitude to bring the net radial
velocities at large δ̂⊥ down to the 3D model’s values, and even then the filament’s structure
does not exhibit the fingering motions of the 3D simulations. This indicates that the functional
form of the vorticity advection closure is unable to represent the 3D results.

This can be further understood by estimating each of the terms in the vorticity equation
of the vorticity advection model, Equation (3.78), to scale like

ĝ

δ̂⊥
∼ φ2

δ̂4
⊥

+
φ

2L‖δ̂2
⊥

+
DΩφ

δ̂4
⊥
, (6.18)

which at large δ̂⊥ reduces to
ĝ

δ̂⊥
∼ φ

2L‖δ̂2
⊥
. (6.19)

Therefore the radial velocity of large δ̂⊥ filaments can be estimated to scale like φ/δ̂⊥ ∼ 2ĝL‖
and thus are expected to be invariant to δ̂⊥, which is in contrast to the behaviour of the 3D
model.

Ultimately, the reason why the vorticity advection closure produces such different dynamics
to the 3D model is that it neglects parallel currents entirely. In the 3D simulations parallel
currents closing through the target were observed to play an important role in all but the very
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Figure 6.26: Comparison of the dependence of the characteristic radial velocity, v̂?f,x, on the
perpendicular size of the filament, δ̂⊥, between filaments simulated using the 3D model and
the 2D Sheath Dissipation (SD) and Vorticity Advection (VA) closures. All simulations were
filaments were initialised where appropriate with initialised with Lf = L‖, A = 2 and δ̂‖ = 0.

smallest δ̂⊥ filaments, in that they reduced the magnitude of the polarisation currents and
hence the strength of the filament’s potential field. As shown in Figure 6.13, this is true even
for the Lf = L‖/2 filaments that were physically disconnected from the target, as the currents
were able to travel through the background plasma so that the filaments remained electrically
connected to the target.

Whilst these results are fairly critical of the vorticity advection closure, it is emphasised that
the 3D model used here is not likely to be universally valid, as physically relevant situations
may exist where the divertor region may have a sufficiently increased resistivity to prevent
parallel currents from closing through the sheath. This may occur due to increased particle
densities and lower temperatures in the region that can occur in a conduction-limited divertor
regime, or if the target temperature is sufficiently low, due to divertor detachment. The effect
of increasing the resistivity of the plasma in the 3D model is thus investigated in detail in the
following chapter. However, another effect neglected in the 3D model is that of magnetic shear,
which will be particularly strong around the X-point region. This means that parallel currents
may be able to close more easily in this location than through the target. The two region
model [184] predicts radial velocities scaling like v̂f,x ∝ δ̂1/2

⊥ if such a current balance occurs
(as in the inertial regime discussed in this chapter), but crucially also that the magnitude of
the velocities to be reduced compared to a slab magnetic geometry case. Therefore although
the δ̂⊥ dependence of the vorticity advection closure would then be appropriate for this case,
the radial transport would continue to be significantly overestimated across all filament sizes.

6.5 Conclusions

The first part of this chapter has presented a series of 3D isolated filament simulations
performed using the STORM3D physics module and MAST relevant parameters to illustrate
the effect of a filament’s initial geometry on its subsequent motions.
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The perpendicular size of the filament, δ̂⊥, was demonstrated to have a strong influence.
For filaments smaller than an approximate critical size, δ̂∗, the compressible diamagnetic
currents are predominantly closed by a combination of viscous and polarisation currents, and
the filaments develop a mushroom-like structure in the perpendicular plane as they evolve.
In contrast, parallel currents closing through the target become dominant in balancing the
diamagnetic currents in filaments much larger than δ̂∗, which do not move initially as a whole,
but instead expel a finger-like structure. The most coherent motion, in which the filament
largely retains its initial monopole density structure in the perpendicular plane as it evolves,
is exhibited by filaments with intermediate sizes, slightly larger than δ̂∗, where both parallel
currents and polarisation currents play an important role. Depending on which current path
is dominant, the filament’s radial velocity exhibits a different scaling with δ̂⊥, in agreement
with theoretical predictions. Specifically the radial velocity increases with δ̂⊥ for δ̂⊥ � δ̂∗ but
decreases with δ̂⊥ for δ̂⊥ � δ̂∗. Finally, for very small δ̂⊥ filaments, a mechanism has been
identified by which polarisation currents and parallel currents balance each other to allow for
enhanced parallel propagation of the filament towards the targets.

Reducing the parallel extent of the filament, Lf , such that the filaments no longer extend
from target to target has two effects. Firstly it reduces the filament’s radial velocity and hence
displacement. Secondly the potential field exhibits a Boltzmann response to parallel density
gradients, leading to the filament spinning in the perpendicular plane, which combined with
the radial motions, makes the filament move also in the bi-normal direction. Whilst the first
effect was found to be largely invariant to changes to the initial gradient of the filament’s
density front, δ̂‖, the second effect was enhanced as the gradient increased, (δ̂‖ → 0).

Increasing the starting peak amplitude of the filament, A, initially enhances its radial
velocity, but eventually the gradients become sufficient that unstable drift-waves develop. The
subsequent turbulent motions destroy the coherence of these high amplitude filaments and
ultimately reduce its net radial displacement compared to lower amplitudes, where drift-waves
are stabilised by viscosity and particle diffusion. Since the dissipative parameters used are
believed to be physically justified, this indicates some filaments in MAST may exist which are
stable to drift-waves.

Although the majority of these effects have been identified in previous filament studies,
these simulations have been carried out using a more advanced physical model that includes
parallel ion dynamics and evolves global fields, rather than evolving a filament perturbation
on a fixed background. These results show therefore that these additions make little difference
to the perpendicular dynamics of filaments, and justify prior approaches for filament studies.
Nevertheless, the additions made in the STORM3D model compared to prior works are an
important step forward towards 3D SOL turbulence simulations, where parallel ion dynamics
will be required to allow for parallel draining of density to the targets to be represented, which
is necessary in order to predict SOL profiles.

The second part of the chapter has compared the 3D results against 2D simulations
employing either the sheath dissipation or vorticity advection parallel closures. The vorticity
advection closure was found to not represent the 3D model’s filament dynamics well, in that
filaments of all δ̂⊥ were observed to develop mushroom structures and produce radial velocities
in the early stages far in excess of the 3D results. Furthermore, the radial velocity was found
to increase monotonically with δ̂⊥ for all filaments of a physically relevant size, which is
again, in contrast to what was found in 3D. The sheath dissipation closure on the other hand
provided a good comparison with the 3D model for smaller amplitude filaments. In particular
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it reproduced the contrasting radial velocities and evolved structures of large and small δ̂⊥
filaments found in 3D. For larger amplitude filaments, this comparison became less satisfactory
as the 2D model could not represent the unstable drift wave dynamics that occur in the 3D
simulations. In addition, neither 2D closure represented the Boltzmann spinning motions and
subsequent displacement in the bi-normal direction that was observed in 3D.

The failure of the vorticity advection closure to replicate the 3D dynamics has been
attributed to its assumption that parallel currents are negligible. It has been demonstrated
that parallel currents closing through the sheath play an important role in the 3D simulations,
even in cases where the filament perturbation does not extend to the target, as currents
continue to flow through the background plasma. However, the 3D model is likely not to be
universally valid, and there are a number of mechanisms by which the plasma’s resistance to
parallel currents may become increased, particularly in the divertor region. This motivates
the following chapter, which investigates the effect of increasing the resistivity of the plasma.



Chapter 7

Effect of Plasma Resistivity

7.1 Introduction

In the previous chapter, it was demonstrated that parallel currents closing through the target
played an important role in determining the dynamics of filaments simulated using the 3D
model. In this chapter, the influence of plasma resistivity, η‖, on filamentary dynamics is
studied, as this quantity directly affects the extent to which these parallel currents can flow,
and hence the behaviour of the filaments.

For explanatory purposes, it is first helpful to recall that resistivity is an intrinsic property
of a medium which measures how strongly the medium opposes the flow of electric currents
and is measured in SI units of Ohm-metres. Resistance on the other hand, is a property of
a specific object that quantifies the difficulty of passing an electric current through it and
is measured in units of Ohms. The resistance is dependent on both the resistivity and the
geometry of the object. For example, the resistance of a simple wire can be calculated as η`/A,
where ` is the length of the wire, A is its cross section, and η is the resistivity of the wire’s
material.

In plasma physics, it is convenient to quantify the flow of charge in terms of current
densities (which have units of Amperes per square metre), instead of currents (which have
units of Amperes), because a plasma is a continuous medium and because the resistivity of a
plasma and the current densities which flow within it are not generally uniform (see Figure
6.13). Furthermore in the specific context of filament dynamics, the concept of resistance is not
particularlyD meaningful, because it would be dependent on an arbitrarily chosen cross-section
area. Instead, to quantify how difficult it is for a current density to travel along a specific
path, one can integrate the resistivity along the path of interest. The resultant quantity, Γ,
can be described as a resistivity-length, and has units of Ohm-metres2. Using this definition,
the basic electrostatic form of Ohm’s law can be written as

∆ϕ = jΓ, (7.1)

where j is the current density that flows between two points which have a potential difference
of ∆ϕ.

Applying this concept to filament dynamics, the total resistivity-length of the path by
which parallel currents generated within a filament form a closed circuit through the target is
given by 2(Γ‖ + Γsheath). Here Γ‖ is the resistivity-length of the path through the plasma from
the filament to the sheath entrance and Γsheath is the resistivity-length of the path through
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Figure 7.1: Schematic diagram of the current travelling through the sheath and target between
two points at the sheath entrance with potentials of equal magnitude and opposite sign.

the sheath to the target. It is emphasised that in the simulation model, the target is assumed
to have infinite conductivity (this can be inferred as it has a uniform potential).

Whilst strictly Γ‖ is dependent on the position along the field line from which the path
is defined, is it convenient to define a representative value for the entire filament for use
throughout this chapter. It is recalled that the simulation model assumes a symmetric SOL,
and hence enforces zero parallel current at z = 0. This means that the parallel currents driven
in the region z > 0 close through the target at z = `‖, whilst those driven in the region z < 0

close through the target at z = −`‖. Considering only the positive z side of the domain,
a representative value of Γ‖ can be obtained by defining the current path to begin at the
centre of mass position of the positive z half of the filament. For a filament that extends
symmetrically from the mid-plane (z = 0) for a length of `f towards the targets and which
has a steep parallel front, this centre of mass is approximately located at `f/2 and so the
representative value of Γ‖ is given by

Γ‖ =

∫ `‖

`f/2
η‖ dz . (7.2)

This representative value thus corresponds to the path from z = `f/2 to the sheath entrance.
The resistivity-length of the path through the sheath is harder to define exactly, but an

approximate value can be obtained by considering the sheath boundary conditions given by
Equations (3.58) to (3.61). By assuming the potential at the sheath entrance to be small,
these boundary conditions can be linearised to estimate the current density entering the sheath
to be

j‖s = ene,scs
eϕs
Te

, (7.3)

where the subscript s denotes the value of a field at the entrance to the sheath. Therefore
two points at the sheath entrance which have a potential difference with equal magnitude but
opposite sign correspond to the parallel current density at the first point travelling through
the sheath, closing through the target and emerging at the second point. A schematic circuit
diagram for this situation is provided in Figure 7.1. The potential difference between the two
points at the sheath entrance is thus

2ϕs = j‖s
2Te

e2ne,scs
. (7.4)

By comparing this expression to Equation (7.1), the term 2Te/e
2ne,scs can be understood to

be the resistivity-length of the path through the sheath to the target and back again. Since this
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path involves travelling through the sheath twice, the resistivity-length of travelling through
the sheath just once is given by

Γsheath =
Te

e2ne,scs
. (7.5)

It is noted that Γsheath ∝ T 1/2
e /ne,0, whilst Γ‖ ∝ T−3/2

e because of its dependence on η‖ and is
invariant to ne,0.

The normalised equivalents of Γ‖ and Γsheath are obtained by dividing the dimensional
quantities by ρsB/ene,0 to produce

Γ̂‖ =

∫ L‖

Lf/2
η̂‖ dz, (7.6)

and
Γ̂sheath =

1

ns
, (7.7)

where z is itself normalised in Equation (7.6). It is highlighted that these normalised quantities
display different dependencies on Te and ne,0 to their dimensional counterparts in that Γ̂sheath

is invariant to both Te and ne,0, whilst Γ̂‖ ∝ ne,0T
−2
e . In addition to being a normalised

resistivity-length, Γ̂‖ can be interpreted as a measure of the SOL electron collisionality,
ν∗ = `‖/λe, since Γ̂‖ ≈ ν∗/

√
mi/me.

By calculating Γ̂sheath and Γ̂‖ for the parameters used in the previous chapter, it can
be seen that it corresponds to a low resistivity case, in that Γ̂‖ � Γ̂sheath. However, there
exist a number of mechanisms by which Γ̂‖ may significantly increase, such that Γ̂‖ becomes
comparable to or greater than Γ̂sheath, which in turn may lead to a suppression of parallel
currents. One such mechanism is an increased parallel connection length, `‖ [184], which
can be achieved in a larger device or by use of a Super-X divertor [251]. Moreover, since
Γ̂‖ ∝ ne,0T−2

e , enhanced densities and decreased temperatures within the SOL will also increase
Γ̂‖. In a conduction-limited SOL [31], these effects can become very strong particularly in
the divertor region, as colder temperatures and higher densities are found downstream at the
target compared to upstream at the mid-plane. A similar mechanism has been observed in
3D turbulence simulations that used a realistic magnetic geometry [189]. In this work, the
plasma was fuelled by neutral particle injection around the X-point, which led to a strong
neutral cooling in the divertor. This enhanced the resistivity in the region and thus electrical
disconnection of filaments from the sheath occurred. In addition to these effects, if the
temperature at the target becomes sufficiently low (Te < 1 eV), volume recombination becomes
strong and divertor detachment will occur [31], meaning that a cloud of neutrals forms between
the plasma and the target. If the ionisation fraction is sufficiently small, electron-neutral
collisions become comparable to electron-ion collisions [252]. In such conditions, η‖ must
be redefined to include a component proportional to the ratio between neutral and electron
densities [253] (see Section 7.2.1), which in turn will drastically increase Γ̂‖. In the limit of
zero ionisation, the resistance of the neutral gas in front of the targets is effectively infinite.

The influence of parallel resistivity on the dynamics of filaments has previously been
considered theoretically by Reference [184] using a two region model. The parameter Λ, defined
in Equation (2.29), was used throughout this reference as a measure of the collisionality of
the SOL and is approximately equal to Γ̂‖. In the absence of magnetic geometry effects that
were also considered, the work predicts for Γ̂sheath � Γ̂‖ the existence of the inertial and
sheath current regimes that were identified at small and large δ̂⊥ in the previous chapter
(although they are referred to as the resistive ballooning and sheath connected interchange
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regimes respectively). For Γ̂‖ ≥ Γ̂sheath on the other hand, the inertial regime is expected
to continue for the smallest δ̂⊥, as the regime does not involve parallel currents. For larger
δ̂⊥ filaments, what is described throughout this thesis as the resistive sheath current regime
is predicted (Reference [184] uses the term resistive X-point regime). In this regime the
diamagnetic currents are expected to be balanced by parallel currents closing through the
target, but the parallel resistance of the plasma, rather than that of the sheath is expected to
determine the filament’s potential field. The radial velocity in this regime, which is directly
determined by the potential, is predicted to scale like ∼ Γ̂‖δ̂

−2
⊥ . Furthermore, the reference

predicts that the critical filament size at which filaments transition from the inertial regime,
δ̂∗, increases with parallel resistivity as follows:

δ̂∗ ∼




δ̂∗0 for Γ̂‖ � Γ̂sheath

δ̂∗0Γ̂
2/5
‖ for Γ̂‖ � Γ̂sheath

. (7.8)

Here

δ̂∗0 =

(
ĝL2
‖

2

)1/5

, (7.9)

is the value of δ̂∗ given in Equation (6.12). The estimate δ̂∗ ∼ δ̂∗0 thus corresponds to the
transition between the inertial and sheath current regimes, whilst δ̂∗ ∼ δ̂∗0Γ̂

2/5
‖ corresponds to

the anticipated transition from the inertial regime to the resistive sheath current regime. A
diagram identifying the extent of each of these regimes in the space of normalised collisionality
and filament size is reproduced from Reference [184] in Figure 2.11. It is noted that this
diagram includes an additional regime which arises when magnetic geometry effects are included
within the two region model. By setting the parameter εx = 1, such effects are neglected and
the regime disappears. The broad prediction that increasing the resistivity leads to faster
radial filament velocities for larger filaments has been confirmed by simulations of isolated
filaments [184] and saturated turbulence [155] conducted using the quasi-3D two region model
equations.

In this chapter, the effect of resistivity on filament dynamics will be investigated using fully
three-dimensional simulations. This can be viewed both as an extension of the work already
conducted using the two region model, and also a validation exercise to determine whether the
two region model sufficiently represents the full 3D dynamics. The investigation will consist of
two parts. Firstly, the normalised resistivity, η̂‖ will be increased in isolation, to illustrate the
influence that this parameter has. Since it is anticipated that the divertor region may have a
particularly high resistivity, the effect of increasing this parameter in a region localised to the
target will be studied first, and then compared against simulations in which the resistivity is
increased uniformly throughout the domain. The second part of the investigation will directly
vary the input parameters to the simulations upon which Γ̂‖ is dependent; namely ne,0 and Te.
This will clarify the net effect that these parameters have on filamentary motion, as aspects of
the simulations other than Γ̂‖ are also affected by these parameters, such as the strength of
the diamagnetic current drive and the normalisation of lengths.
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Figure 7.2: Dependence of a filament’s characteristic radial velocity, v̂?f,x, on its initial
perpendicular length scale, δ̂⊥, for each of the values of η̂‖div used in the target-localised
resistivity scan.

7.2 Enhanced Normalised Resistivity, η̂‖

7.2.1 Target Localised Resistivity

Simulation Implementation

The effect of an enhanced plasma resistivity in the divertor region is demonstrated in this
section by presenting simulations in which η̂‖ has been increased from the default value, η̂‖0,
in the last 25% of the domain nearest the target, as follows

η̂‖ ∼




η̂‖0 for z ≤ 3L‖/4

η̂‖div for z > 3L‖/4
. (7.10)

For this study, the majority of parameters used are the same as the MAST relevant set used
in Chapter 6 (see Table 6.1) to allow for a direct comparison. In particular, η̂‖0 = 7.08× 10−6,
which is the value of η̂‖ used previously. The exceptions to this are the dissipative parameters,
which are set to Dn = 1.8× 10−5 and DΩ = 5.0× 10−4. These are two orders of magnitude
smaller than Chapter 6’s default values and have been chosen to ensure that viscous currents
play a negligible role and thus to essentially remove the viscous regime from the simulations.

A series of isolated filament simulations have been performed in which both δ̂⊥ and η̂‖div

have been systematically varied. The remaining filament initialisation parameters were held
fixed at A = 2, Lf = L‖/2 and δ̂‖ = L‖/10. Values of η̂‖div were varied from η̂‖0 (which will
hereafter be referred to as the reference case) to 10000η̂‖0. These values correspond to values of
Γ̂‖ ranging from 0.029 to 97 and span five orders of magnitude. Since the results presented in
this section are taken before the filaments reach the target, the density at the sheath entrance
remains largely constant at its equilibrium value, ns ≈ 0.65, and so Γ̂sheath ≈ 1.53 for all
simulations. For reference Γ̂‖ ≈ Γ̂sheath at η̂‖div = 100η̂‖0.
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Figure 7.3: Structure of J‖ in a y− z plane through the middle of A = 2, Lf = L‖/2, δ̂⊥ = 28,
δ̂‖ = L‖/10 filaments at t = 250 Ω−1

i . The left, centre and right plots respectively correspond
to the reference η̂‖ = η̂‖ case, the target-localised enhanced resistivity η̂‖div = 10000η̂‖0 case
and the uniformly enhanced resistivity η̂‖ = 3334η̂‖0 case. Dotted contour lines of the filaments’
density perturbation nf are also plotted for reference.

Results

The dependence of v̂?f,x on δ̂⊥ for increasing values of η̂‖div can be seen in Figure 7.2 and it
is clear to see that increasing η̂‖div leads to enhanced radial velocities across all δ̂⊥, with the
smallest δ̂⊥ experiencing a relatively modest increase in v̂?f,x, compared to larger δ̂⊥. This is
to be expected because the smallest filaments are in the inertial regime for the reference case,
meaning that parallel currents play a sub-dominant role in closing the diamagnetic currents.
On the other hand, the largest filaments are in the sheath current regime in the reference
case, meaning that parallel currents are dominant in maintaining current continuity and so
increasing the resistivity has a greater influence on these filaments.

One of the mechanisms by which faster velocities are produced can be understood by
observing that as η̂‖div is increased, v̂?f,x scales like δ̂1/2

⊥ up until larger values of δ̂⊥ and so
the inertial regime is clearly extended or equivalently, δ̂∗ is increased. This occurs because
increasing the resistivity suppresses the parallel currents and thus necessarily leads to an
enhancement of the polarisation currents, given the same diamagnetic current source. The
drastic reduction of J‖ in a δ̂⊥ = 28 filament is evident upon comparison of the left and middle
plots of Figure 7.3, which plot this quantity in a y− z plane through the centre of the filament
for the reference case η̂‖div = η̂‖0 and η̂‖div = 10000η̂‖0 simulations respectively.

To demonstrate that this suppression of J‖ affects the current balance upstream, Figures
7.4 and 7.5 show the balance of currents at various positions along the field line for these
two cases, by plotting the divergences of each of the various current densities in the system,
divided by particle density. The viscous current density is not plotted as it is negligible. In
the reference case, the compressible diamagnetic currents can be seen to be almost entirely
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Figure 7.4: Example current balance found along the field line in a δ̂⊥ = 28, Lf = L‖/2

filament in the reference case (η̂‖div = η̂‖0). The quantities are plotted at the time of the
filament’s peak radial velocity, v̂?f,x, and the filament was otherwise initialised using A = 2

and δ̂‖ = L‖/10.
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Figure 7.5: Example current balance found along the field line in a δ̂⊥ = 28, Lf = L‖/2

filament in the target-localised enhanced resistivity η̂‖div = 10000η̂‖0 case. The quantities are
plotted at the time of the filament’s peak radial velocity, v̂?f,x, and the filament was otherwise
initialised using A = 2 and δ̂‖ = L‖/10.
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Figure 7.6: Comparison of the odd parity mid-plane to sheath potential difference, φodd
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, in δ̂⊥ = 100 filaments between the reference η̂‖ = η̂‖0 case (left) and the enhanced
target-localised resistivity η̂‖div = 1000η̂‖0 case (right). The filaments were otherwise initialised
with A = 2, Lf = L‖/2 and δ̂‖ = L‖/10.

balanced by the parallel currents and polarisation currents are largely absent. In the enhanced
resistivity case on the other hand, the suppression of parallel currents has necessitated an
enhancement of the polarisation currents, which now take the dominant role in balancing the
diamagnetic currents. However some parallel currents do continue to be driven in the region of
the filament (z < L‖/2) and form a closed circuit with the polarisation currents in the region
between the filament front and the start of the enhanced resistivity region (L‖/2 < z < 3L‖/4).
This allows the polarisation currents and thus φ and the filament’s perpendicular velocity, to
remain approximately constant all along the field line up until the enhanced resistivity region.

Through a different mechanism to the one described above, greater radial velocities are
also produced at higher values of resistivity by the very largest δ̂⊥ filaments, in which parallel
currents closing at the target are still the main way in which the compressible diamagnetic
currents are closed. These filaments attain greater velocities because the resistance of the
plasma is sufficient to introduce a potential difference between the downstream at the sheath
entrance and further upstream in the region of the filament density perturbation. Therefore
for the same amount of current to flow into or out of the sheath, larger potentials are formed
upstream at higher values of resistivity, which in turn correspond to faster radial velocities.
Such filaments are described to be in the resistive sheath current regime.

To isolate the potential difference formed along the parallel direction at high values of
resistivity, it is necessary to separate it from the potential difference that is produced by the
Boltzmann potential response to the parallel density gradients in the filament discussed in
Section 6.3.1. This can be achieved by isolating the component of φodd according to Equation
(6.9). The right hand plot of Figure 7.6 thus plots the difference of φodd between the mid-plane
and the sheath for a δ̂⊥ = 100, η̂‖ = 1000η̂‖0 filament at the time of its peak radial velocity.
For comparison, the equivalent potential difference found in a filament of the same δ̂⊥ using
the reference case resistivity is illustrated in the left hand plot and is clearly negligible. In an
experiment, this effect may manifest itself as larger potential fluctuations at the mid-plane
than at the target, and could possibly be measured by comparison of the variance of potential
measurements from probes in each location.

Despite different physical mechanisms being dominant in determining the radial velocity
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of the filaments in the sheath current and resistive sheath current regimes (namely sheath
resistivity and plasma resistivity respectively), the two regimes are unified in that the radial
velocities produced across both regimes are proportional to (Γ̂sheath + Γ̂‖)δ̂

−2
⊥ , which is the

total normalised resistivity-length of the path that parallel currents take to close through the
target. This linear dependence is demonstrated in Figure 7.7 for δ̂⊥ = 100 filaments. The
largest (Γ̂sheath + Γ̂‖) data point deviates from this scaling because polarisation currents are
not negligible for this filament and thus it is not strictly in the resistive sheath current regime.
The transition between the two regimes therefore occurs at the point at which Γ̂‖ ≈ Γ̂sheath, as
this reflects the approximate point at which the sheath resistivity and plasma resistivity play
an equal role in determining the filament’s velocity. This is reflected in Figure 7.2, in that
the filaments’ radial velocities only noticeably deviate from their reference case values in the
η̂‖div = 100η̂‖0 data series, in which Γ̂‖ ≈ Γ̂sheath ∼ 1. This transition point and the observed
velocity scaling across the two regimes are consistent with the predictions of Reference [184].

Next, the perpendicular size at which filaments transition from the inertial regime to
the sheath current or resistive sheath current regime, δ̂∗, is considered. In Section 6.3.2,
this quantity was estimated analytically as the value of δ̂⊥ at which the sheath current and
polarisation current terms are equal in Equation (6.11), but this definition cannot be applied
to simulation data. It is emphasised that in practice there is a relatively wide range of δ̂⊥ over
which both polarisation currents and parallel currents play a significant role, and that there
is no distinct transition point. However, the δ̂⊥ at which the maximum value of v̂?f,x occurs
does provide a reliable approximate location of this region. Therefore this definition is used
throughout this chapter to quantitatively measure δ̂∗ from the simulations, with a cubic spline
interpolation used to determine its value as accurately as possible.

The measured locations of δ̂∗ for each η̂‖div simulated are plotted as blue crosses on the δ̂⊥
- Γ̂‖ diagram in Figure 7.8 to show the location of the boundary of the inertial regime. For
comparison, the analytical estimates for δ̂∗ from References [160] and [184], which are stated
in Equation (7.8), are plotted using solid black lines, whilst a dotted black line shows the
predicted location of the transition between the sheath current and resistive sheath current
regimes. For Γ̂‖ ≤ 1, the simulations’ δ̂∗ remains constant around δ̂∗0 and is insensitive to Γ̂‖
and thus good agreement is found with the analytical predictions. For Γ̂‖ > 1, qualitative
agreement is found with Reference [184]’s prediction in that δ̂∗ increases as Γ̂‖ rises. More
quantitatively however, the observed power law dependence in this region, δ̂∗ ∼ Γ̂

1/3.4
‖ ≈ Γ̂0.3

‖ ,
obtained from the two highest Γ̂‖ data points and plotted using a blue dash-dot line, can be
seen to have a weaker scaling than the δ̂∗ ∼ Γ̂

2/5
‖ scaling predicted in Reference [184]. Using

the relation ν∗ ≈ Γ̂‖
√
mi/me, the right hand vertical axis allows these results to also be

interpreted in terms of the SOL collisionality. The approximate ν∗ ranges of the SOL operating
regimes described in Section 1.5.3 are indicated to the right of this plot and it can be seen that
the transition from the sheath current regime to the resistive sheath current regime coincides
with onset of detachment.

Estimate of η̂‖div at Low Divertor Temperatures

In an attempt to relate the preceding results to experiments, this section provides an order
of magnitude estimate of the electron temperature of the divertor region, T div

e , that may be
required to produce the values of η̂‖div used in the preceding results. The definition of η̂‖ given
in Chapter 3 is based upon electron-ion collisions, and is such that η̂‖ ∝ T−3/2

e . However, at
very low temperatures, collisions between electrons and neutrals may become important in the
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Table 7.1: Estimated divertor temperature required to produce the values of η̂‖div used.

η̂‖div Γ̂‖
T div
e required excluding
neutral effects (eV)

T div
e required including
neutral effects (eV)

η̂‖0 0.029 40 40
10η̂‖0 0.12 8.6 8.6
100η̂‖0 0.99 1.9 1.9
1000η̂‖0 9.7 0.40 0.45
10000η̂‖0 97 0.086 0.37
100000η̂‖0 970 0.019 0.32

divertor region, and so more generally, the dimensional resistivity can be redefined as [253]:

η‖ =
0.51me (νei + νen)

nee2
. (7.11)

Here νen = nn 〈σv〉 is the electron-neutral collision frequency, where nn is the number density
of neutral atoms, v is the velocity of an electron and σ is the cross section for collisions
between electrons and neutrals (which is in principle a function of v). Furthermore 〈·〉 denotes
an average over all velocities in the (assumed) Maxwellian distribution function. Using this
definition, the normalised resistivity, η̂‖ = η‖/ (B/ (ene,0)), becomes

η̂‖ = η̂ei‖ + η̂en‖ , (7.12)

where η̂ei‖ and η̂en‖ are the normalised resistivity components due to electron-ion and electron-
neutral collisions respectively. It is noted that elsewhere in this work, η̂‖ = η̂ei‖ .

For this estimate, the densities of neutral deuterium atoms and electrons (or deuterium
ions) at a given temperature were estimated using the Saha equation [254], alongside the
assumption that ne + nn = ne,0. It is noted that the Saha equation assumes the plasma and
neutral gas to be in thermal equilibrium, which is not a valid assumption for edge plasmas.
Moreover, its use implies an equilibrium between ionisation and recombination processes, which
may not occur because recombination is a relatively slow process compared to the typical
time scales of fluctuations in the divertor. Values of σ for elastic collisions between electrons
and hydrogen atoms, obtained from Reference [255], were used. These calculations arguably
provide a conservative estimate of the resistivity in the divertor region, as collisions with
neutral particles other than deuterium that may be present due to sputtering or impurity
seeding, have not been included. Furthermore, anomalous resistivity effects have also been
neglected.

Figure 7.9 thus shows the estimated relative increase of the normalised resistivity in the
divertor region, η̂‖div, (and each of its constituent terms, η̂ei‖div and η̂en‖div) compared to η̂‖0
as T div

e is decreased. For reference, the corresponding values of T div
e estimated to produce

the values of η̂‖div, including and excluding neutral collisions, are given in Table 7.1. These
calculations indicate that at temperatures below around 0.5 eV, electron collisions with neutrals
may dominate over electron collisions with ions.

It is emphasised however, that these calculations are based upon a number of assumptions
that may not be well justified in the SOL near the sheath, and so should only be used to give
an order of magnitude indication of how the resistivity in the divertor region may depend on
Te. It is stressed that η̂en‖ dominates at low temperatures because the ratio nn/ne becomes
very large (> 1000) and so the plasma is estimated to be very weakly ionised. It is unclear
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Figure 7.9: Estimate of relative magnitude of the normalised resistivity in the divertor region,
η̂‖div, (and each of its constituent terms, η̂ei‖div and η̂en‖div) compared to η̂‖0 as a function of
temperature in the divertor, T div

e .

whether such a weakly ionised plasma is achieved experimentally in the divertor region when
detachment occurs. Furthermore, it is unlikely that such a weakly ionised plasma would extend
in the parallel direction for 25% of the domain, which is the extent of the enhanced resistivity
region in the simulations.

7.2.2 Uniform Resistivity

The effect of increasing the resistivity of the plasma uniformly along the field line, rather than
just in the region nearest to the targets, has also been examined to compare and contrast
against the results in the preceding section. To enable a direct comparison, simulations have
been performed in which η̂‖ was increased from η̂‖0 by factors such that the Γ̂‖ values are
equal to those used in the target-localised resistivity simulations. For reference, these values
are listed in Table 7.2. In addition, all filaments were initialised as in the previous section.

The dependence of v̂?f,x on δ̂⊥ for each value of η̂‖ used is shown in Figure 7.10. By
cross comparison with Figure 7.2, it can be seen that identical trends are exhibited as in

Table 7.2: Values of the uniformly enhanced resistivity used in this section. These values
correspond to same values of Γ̂‖ that were used in the target-localised resistivity case.

Γ̂‖
Target localised enhanced

resistivity, η̂‖div

Uniformly enhanced
resistivity, η̂‖

0.029 η̂‖0 η̂‖0
0.12 10η̂‖0 4η̂‖0
0.99 100η̂‖0 34η̂‖0
9.7 1000η̂‖0 334η̂‖0
97 10000η̂‖0 3334η̂‖0
970 100000η̂‖0 33334η̂‖0
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Figure 7.10: Dependence of a filament’s characteristic radial velocity, v̂?f,x, on its initial
perpendicular length scale, δ̂⊥, for each of the values of η̂‖ used in the uniformly enhanced
resistivity scan.

the target-localised resistivity case, although the uniformly increased resistivity does produce
slightly faster radial velocities for the same value of Γ̂‖ in the inertial regime. For example, the
η̂‖ = 3334η̂‖0 data series consistently attains higher radial velocities than the η̂‖div = 10000η̂‖0
data series in Figure 7.2 for δ̂⊥ . 30.

However, the actual balance of currents produced throughout the filament is subtly different
between the two cases for the same value of Γ̂‖ (for high values of resistivity). This can be
seen by cross comparison between Figure 7.11, which plots the divergence of current densities
divided by n from the δ̂⊥ = 28, η̂‖ = 3334η̂‖0 filament, to Figure 7.5, which corresponds
to a target-localised resistivity filament of the same δ̂⊥ and Γ̂‖. Whilst in both cases the
polarisation current path is dominant in closing the diamagnetic current drive, the parallel
currents can be seen to play less of a role in the uniform resistivity case compared to the
target-localised resistivity case.

This has two key effects, the first being that, as noted above, slightly faster radial velocities
are produced in the inertial regime of the uniform resistivity case because the polarisation
currents are necessarily more intense. The second effect is that the radial velocity exhibits a
gradient along the parallel direction, in that the filament moves faster at z = 0 than it does at
z = L‖/2. This behaviour is demonstrated by the left hand plot of Figure 7.12, which plots
nf in a x− z plane through the middle of the δ̂⊥ = 12, η̂‖ = 3334η̂‖0 filament at an example
time t = 250 Ω−1

i . For comparison the same quantity from the target-localised resistivity,
η̂‖div = 10000η̂‖0, δ̂⊥ = 12 simulation is plotted in the right hand plot of the same figure. By
introducing the drift-plane filament radial velocity,

v̂drift-plane
f,x (z) =

∞∫

−∞

∞∫

−∞

nf
∂φ

∂y
dx dy

∞∫

−∞

∞∫

−∞

nf dx dy

, (7.13)

the extent to which the radial velocity varies along the field line can be quantitatively assessed.
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Figure 7.11: Example current balance found along the field line in a δ̂⊥ = 28, Lf = L‖/2

filament in the uniformly enhanced resistivity η̂‖ = 3334η̂‖0 case. The quantities are plotted at
the time of the filament’s peak radial velocity, v̂f,x, and the filament was otherwise initialised
using A = 2 and δ̂‖ = L‖/10.

Figure 7.13 plots this quantity against time at various positions along the field line (in the
region of density perturbation) for the δ̂⊥ = 12 simulations shown in Figure 7.12, as well as the
reference case δ̂⊥ = 12 simulation. It can be seen that in the uniformly enhanced resistivity
case, the radial velocity at z = L‖/2 is approximately a third slower than that at z = 0 for
most of the duration of simulation.

The gradient in the radial velocity along the field line occurs in the enhanced uniform
resistivity case because the parallel currents, which are suppressed throughout the domain,
are not able to balance the polarisation currents in the region L‖/2 < z < 3L‖/4, where the
diamagnetic currents are reduced or negligible. The polarisation currents therefore can only
develop to match the local diamagnetic current drive, meaning that they are not constant
along z. Consequently φ and v̂drift-plane

f,x develop larger values at z = 0 than at z = L‖/2,
where the density gradients are smaller. If the resistivity is high enough, φ is determined
independently on each drift-plane and the dynamics of the filament are effectively decoupled
along the field line. In contrast, in the enhanced target-localised resistivity case, the parallel
currents are able to fulfil the role of balancing the polarisation currents in the region where
the diamagnetic currents are absent, and so Jpol, φ and v̂f,x are approximately constant from
z = 0 to z = 3L‖/4.

Regarding the behaviour of δ̂∗ under uniformly increased resistivity, a very similar trend was
displayed to what was found using an enhanced target-localised resistivity. This can be observed
in Figure 7.8, which plots using red circles the measured locations of δ̂∗ from this uniform
resistivity series of simulations. The measured power law dependence, δ̂∗ ∼ Γ̂

1/3.2
‖ ≈ Γ̂0.3

‖ in
the region Γ̂‖ > 1 is approximately the same as in the target-localised resistivity case and is
again weaker than Reference [184]’s prediction.
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7.3 Effect of Input Parameters

In this section, the dependence of filaments’ radial velocities on the reference plasma density,
ne,0, electron temperature, Te, and magnetic field strength, B, is investigated. Since the latter
two parameters affect the normalisation quantities ρs and cs, some comparisons will be made
in SI units. Therefore in this section a number of dimensional counterparts of previously
defined normalised quantities are introduced and are identifiable by the absence of a hat. For
example, δ⊥ and vf,x are the dimensional equivalents of δ̂⊥ and v̂f,x.

7.3.1 Theoretical Predictions

Insight into the effect of these parameters can be gained through analytical estimates, which
can then be used to compare against the simulation results. In Section 6.3.2, similar estimates
were obtained using the sheath dissipations closure’s vorticity equation, Equation (2.20).
However, this closure inherently assumes Γsheath � Γ‖ and therefore does not describe the
dynamics of filaments when Γsheath � Γ‖, which can occur depending on the input parameters.
Here, both limits are modelled heuristically using the following 2D equation:

mi

B

(
∂

∂t
+ vE · ∇

) ∇2
⊥ϕ
B

=
ϕ

ne`‖
(
Γsheath + Γ‖

) − eg

neΩi

∂ne
∂y

. (7.14)

It is noted that by setting Γ‖ = 0 in the above expression, the standard sheath dissipation
vorticity equation is recovered. In the following, two distinct cases will be considered cor-
responding to Γsheath � Γ‖ and Γsheath � Γ‖, as different predictions are obtained in each
limit.

Γsheath � Γ‖

In this case, the resistance to parallel currents travelling from the filament to the sheath
is negligible compared to the resistance to currents travelling through the sheath itself.
Since Γsheath ∝ T

1/2
e /ne and Γ‖ ∝ T

−3/2
e , this situation occurs at low densities and at high

temperatures, i.e. at low SOL collisionality. When this condition is satisfied, the magnitude of
each term of Equation (7.14) in the region of a filament with perpendicular length scale δ⊥
can be estimated as

miϕ
2

B3δ4
⊥
∼ e2csϕ

`‖Te
− eg

Ωiδ⊥
, (7.15)

whilst vf,x can be approximated as
vf,x ∼

ϕ

Bδ⊥
. (7.16)

In the inertial regime, where the polarisation current term predominantly balances the dia-
magnetic drive, vf,x can be estimated as

vf,x ∼
√
gδ⊥, (7.17)

vf,x ∼
T

1/2
e δ

1/2
⊥

R
−1/2
c

. (7.18)

On the other hand, in the sheath current limited regime, where the diamagnetic drive term is
balanced mainly by the sheath current term, vf,x can be estimated as

vf,x ∼
csg`‖
Ω2
i δ

2
⊥
, (7.19)

vf,x ∼
T

3/2
e `‖

RcB2δ2
⊥
. (7.20)
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In both these regimes, the velocity of a filament is predicted to increase with Te. This arises
due to the increased diamagnetic current drive, which is proportional to Te, and also in the
sheath current limited regime due to the effective resistivity-length of the sheath, Γsheath,
which is proportional to T 1/2

e . Furthermore the radial velocity of a filament in the sheath
current regime is expected to decrease with B, whilst it is anticipated that both regimes will
be invariant to ne,0.

The estimated critical δ⊥ at which filaments transition between the inertial and sheath
current regimes, in dimensional units, is estimated to be

δ∗ = δ∗0, (7.21)

where

δ∗0 =

(
g`2‖c

2
s

2Ω4
i

)1/5

. (7.22)

This means that δ∗ is predicted to scale like

δ∗ ∼
T

2/5
e `

2/5
‖

R
1/5
c B4/5

. (7.23)

Therefore as Te increases or as B decreases, the transition from the inertial regime to the
sheath current regime is predicted to occur at larger δ⊥, providing another mechanism by
which faster radial velocities may occur at hotter temperatures or at weaker magnetic fields.

Γsheath � Γ‖

In this case, the resistance to parallel currents travelling from the filament to the sheath is
greater than the resistance to currents travelling through the sheath and the sheath current
regime is effectively replaced with the resistive sheath current regime. This occurs at high
densities and at low temperatures, i.e. at high SOL collisionality. In this limit, the magnitudes
of each of the terms in Equation (7.14) can be estimated as

miϕ
2

B3δ4
⊥
∼ e2ϕ

0.51`2‖meνei
− eg

Ωiδ⊥
. (7.24)

The radial velocity scaling prediction for the inertial regime remains the same as in the
Γsheath � Γ‖ case, whilst the resistive sheath current regime scaling can be estimated as

vf,x ∼
0.51νeig`

2
‖

Ω2
i δ

2
⊥

me

mi
, (7.25)

vf,x ∼
`2‖ne,0

RcT
1/2
e B2δ2

⊥
. (7.26)

The radial velocity is thus expected to decrease with temperature, which is the opposite trend
to that which is predicted for the sheath current regime. Furthermore, a linear dependence
on ne,0 is anticipated, which arises because the polarisation and diamagnetic current terms
in Equation (7.14) are proportional to ne,0, whilst the parallel current term is not. As in the
sheath current regime, the radial velocity is predicted to decrease with B.

The perpendicular size at which filaments transition between the inertial and resistive
sheath current regime can be estimated to be

δ∗ = δ∗0

(
`‖νeime

2csmi

)2/5

(7.27)
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Table 7.3: Theoretical predictions for the scaling of vf,x and δ∗ with input parameters.

Inertial regime
vf,x scaling

Sheath current
regime/Resistive sheath

current regime vf,x scaling
δ∗ scaling

Γsheath � Γ‖
∼ T

1/2
e δ

1/2
⊥

R
−1/2
c

∼
T

3/2
e `‖

RcB2δ2
⊥

∼
T

2/5
e `

2/5
‖

R
1/5
c B4/5

Γsheath � Γ‖ ∼
`2‖ne,0

RcT
1/2
e B2δ2

⊥
∼

`
4/5
‖ n

2/5
e,0

R
1/5
c T

2/5
e B4/5

and therefore is predicted to scale like

δ∗ ∼
`
4/5
‖ n

2/5
e,0

R
1/5
c T

2/5
e B4/5

. (7.28)

Equation (7.27) can be written in terms of normalised quantities as

δ̂∗ = δ̂∗0
(
nΓ̂‖

)2/5
, (7.29)

which is identical to Reference [184]’s prediction, reproduced in Equation (7.8). It is highlighted
that in this Γsheath � Γ‖ case, δ∗ is predicted to increase as Te decreases, which is the opposite
trend to that expected for Γsheath � Γ‖. Moreover, δ∗ is also expected to increase with ne,0
for Γsheath � Γ‖, whilst no dependence is anticipated for Γsheath � Γ‖. In both cases, δ∗ is
predicted to decrease with B.

Summary of Scaling Predictions

A summary of the theoretical predictions for the scaling of vf,x and δ∗ with input parameters
is provided in Table 7.3. It is remarked that the B dependence of δ∗ in both resistivity limits
and of vf,x in both the sheath current and resistive sheath current regimes, indicates that
slower radial filament velocities will occur at stronger magnetic fields. This is consistent with
the Eich scaling prediction (obtained from using a regression analysis of existing experimental
measurements) that the SOL heat flux width, λq, decreases with both the toroidal and the
poloidal components of the magnetic field [34].

7.3.2 Results

To investigate the effect of the input parameters Te, ne,0 and B numerically, a series of
filament simulations have been performed in which each of these parameters has been varied
independently alongside δ⊥. In particular, the input parameters have been varied about the
reference case given in Table 6.1 (Te = 40 eV, ne,0 = 8× 1018 m−3 and B = 0.5 T), with the
Coulomb logarithm held fixed at ln Λ = 13.28.

ne,0 Scan

Since ne,0 only affects η̂‖ in the normalised system of equations, the results presented in
Section 7.2.2 in which η̂‖ was uniformly increased can be interpreted consistently as a scan in
ne,0. Nevertheless, additional simulations have been performed in which ne,0 was increased by
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Figure 7.14: Dependence of a filament’s normalised characteristic radial velocity, v̂?f,x, on its
normalised perpendicular size, δ̂⊥ for increasing values of the reference plasma density, ne,0.
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factors of ten from 8× 1018 m-3 to 8× 1023 m-3 ∗, with the filaments initialised as in Section
7.2 (A = 2, Lf = L‖/2 and δ̂‖ = L‖/10). For reference, Γsheath ≈ Γ‖ at ne,0 ≈ 4× 1020 m−3.

The dependence of the normalised characteristic radial velocity, v̂?f,x, on δ̂⊥ is plotted in
Figure 7.14 for each value of ne,0 simulated. As ne,0 increases, the filaments’ radial velocities
scale like δ̂1/2

⊥ up until larger values of δ̂⊥, producing faster radial velocities. Physically, this
enhancement in radial motion occurs because the polarisation and diamagnetic currents are
proportional to ne,0, and therefore the inertial regime is extended to larger filament sizes as
ne,0 increases. Figure 7.15 illustrates this effect, by plotting δ̂∗ (obtained from the simulation
data as in Section 7.2) against ne,0. For ne,0 . 4× 1020 m−3, where Γsheath > Γ‖, δ̂∗ remains
constant around δ̂∗0, whilst for ne,0 & 0.4× 1021 m−3, where Γsheath < Γ‖, δ̂∗ increases with
ne,0. Both of these trends are as expected, although for the latter a weaker scaling of δ∗ ∝ n0.31

e,0

is exhibited than the δ∗ ∝ n0.4
e,0 scaling predicted by Equation (7.28). It has been verified

through an additional series of simulations using Lf = L‖ that this discrepancy is not due to
Boltzmann spinning motions.

The contrasting functional dependence of v̂f,x on ne,0, between filaments that satisfy
δ̂⊥ � δ̂∗ and δ̂⊥ � δ̂∗, is illustrated in Figure 7.16. The small δ̂⊥ = 1 filament shows a slight
increase in v̂f,x as ne,0 is increased until ne,0 ≈ 1020 m−3. Albeit weak, this dependence is not
predicted by Equation (7.18) and occurs at the lowest densities because whilst the compressible
diamagnetic currents are predominantly balanced by polarisation currents, parallel currents
closing through the sheath also play a small role. As the density increases, these parallel
currents are suppressed and the filament becomes more strictly inertially limited. The velocity
of this smaller filament then saturates at a constant value above ne,0 ≈ 1020 m−3, as the
parallel currents have been entirely suppressed.

The larger δ̂⊥ = 100 filament on the other hand, is in the sheath current limited regime
at low densities, and thus its velocity shows little increase as ne,0 increases until ne,0 ≈ 1020

∗It is noted that ne,0 > 1021 m-3 is unrealistic for both current and future devices.
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Figure 7.17: Dependence of a filament’s characteristic radial velocity, v?f,x, on its perpendicular
size, δ⊥, for increasing values of electron temperature, Te.

m−3. At this point Γ‖ ≈ Γsheath and the filament transitions to the resistive sheath current
regime. Therefore for densities ne,0 > 1020 m−3, its velocity scales broadly like v̂f,x ∝ ne,0, as
predicted by Equation (7.26). The highest density data points drop away from this scaling
because the resistivity in these cases is sufficiently large that polarisation currents begin to
play a role and the filament is therefore not strictly in the resistive sheath current regime.
It is noted that the δ̂ = 100 filaments’ radial velocities also exhibit a linear dependence on
Γ̂sheath + Γ̂‖ for all but the largest values of Γ̂‖ (or equivalently, ne,0), as shown in Figure 7.7.

Te Scan

To investigate the effect of electron temperature, simulations have been performed using values
of Te ranging from 0.1 eV to 120 eV. For reference, Γsheath ≈ Γ‖ at Te = 5.5 eV. In contrast to
the simulations presented elsewhere in this chapter, the filaments were seeded without parallel
density gradients to suppress Boltzmann spinning dynamics and allow for a more satisfactory
comparison of the scaling of the filament’s radial velocity with δ⊥ and Te. Specifically, the
filaments were initialised using A = 2, Lf = L‖, and δ‖ = 0.

Figure 7.17 plots the filament’s characteristic radial velocity against its perpendicular size
for each value of Te simulated. Broadly speaking, decreasing Te leads to slower radial velocities
due to the reduced diamagnetic drive and sheath resistance. An exception to this is provided
by the very coldest Te = 0.1 eV data series, which has faster velocities than the Te = 1 and
Te = 10 eV data series for δ⊥ & 4 cm. This occurs because the parallel resistivity of the
plasma is sufficiently increased in the Te = 0.1 eV case to increase δ∗ and therefore extend the
inertial regime. This effect is explicitly shown by Figure 7.18, which plots δ∗ against Te. A
non-monotonic relationship between these two quantities is exhibited, which is in line with the
theoretical predictions made in Section 7.3.1. For Te & 5 eV, where Γsheath > Γ‖, δ∗ increases
with Te, whilst for Te . 5 eV, where Γsheath < Γ‖, δ∗ decreases with Te. Furthermore, good
agreement is found in each case with the specific Te scaling predictions of Equations (7.23)
and (7.28), which are plotted using dashed lines.

The exact dependence of the characteristic radial velocity on Te is shown explicitly in Figure
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Figure 7.19: Dependence of the characteristic radial velocity, v?f,x, on the input electron
temperature, Te, for filaments of perpendicular size δ⊥ = 0.2 cm (left) and δ⊥ = 10 cm (right).
The scaling predictions of Equations (7.18), (7.20) and (7.26) are plotted for comparison using
dashed lines. A dotted line marks the value of Te at which Γsheath ≈ Γ‖ in the δ⊥ = 0.1 m
plot.
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Figure 7.20: Dependence of a filament’s characteristic radial velocity, v?f,x, on its perpendicular
size, δ⊥, for increasing values of magnetic field strength, B.

7.19, for filaments of size δ⊥ = 0.2 cm and δ⊥ = 10 cm, which satisfy δ⊥ � δ∗ and δ⊥ � δ∗
respectively. The former case shows excellent agreement with Equation (7.18), with v?f,x scaling

like ∼ T
1/2
e . The latter case is also in good agreement with the theoretical predictions of

Equation (7.23) and (7.28), with v?f,x scaling like ∼ T
−1/2
e for Γsheath � Γ‖ and like ∼ T

3/2
e

for Γsheath � Γ‖.

B Scan

To conclude the input parameters investigation, the effect of increasing the magnetic field
strength, B, has been studied by performing scans of simulations at B = 0.1 T and B = 1

T, in addition to the reference B = 0.5 T case. As in the Te scan simulations, the filaments
were initialised with Lf = L‖. It is noted that the magnetic field strength does not affect the
plasma resistivity, so all simulations here satisfy Γsheath � Γ‖. Nevertheless these results are
presented here for completeness.

Figure 7.20 illustrates how the characteristic radial velocity of the filaments is affected
by the magnetic field strength at different perpendicular filament sizes. In agreement with
Equation (7.18), the smallest filaments in the inertial regime are invariant to B, but increasing
B causes the transition to the sheath current limited regime to occur at smaller δ⊥. By plotting
δ∗ against B in Figure 7.21, it can be seen that this transition point scales like ∼ B−4/5,
as predicted by Equation (7.23). To examine the dependence of filament velocities on B in
sheath current regime, Figure 7.22 shows the dependence of v?f,x on B for the δ⊥ = 20 cm
filament. Whilst such a filament size is unrealistic (in experiments filaments typically have a
perpendicular size of less than 5 cm), it is considered here because it is in the sheath current
regime across all values of B. The velocity of this filament can be observed to scale like ∼ B−2,
in line with Equation (7.20).
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7.4 Conclusions

This chapter has investigated the effect of plasma resistivity on the dynamics of SOL filaments
using STORM3D simulations. Motivated by the expectation of lower temperatures, high
neutral densities and the possibility of detachment in the divertor region, the normalised
resistivity, η̂‖, was first increased only in the last quarter of the domain nearest the targets.
This led to a suppression of parallel currents, a corresponding enhancement of polarisation
currents to maintain balance with the compressible diamagnetic currents, and the development
of a potential difference along the field line. These intrinsically 3D effects meant that filaments
attained faster radial velocities at higher values of resistivity. In particular, filaments with a
large normalised perpendicular size, δ̂⊥ = δ⊥/ρs, experienced the greatest increase in radial
velocity, because at low resistivity these filaments were sheath current limited, meaning
that their diamagnetic currents were predominantly closed via parallel currents. In contrast,
polarisation currents were dominant in ensuring current continuity for the smallest δ̂⊥ filaments
at low resistivity values and so these filaments only experienced a modest increase in their
radial velocities at higher values.

More specifically, one mechanism by which greater radial velocities were produced at higher
resistivity is that filaments that were in the sheath current regime transitioned into the inertial
regime and so velocities scaled like δ̂1/2

⊥ up until larger values of δ̂⊥. The critical normalised
size at which this transition occurs, δ̂∗, thus increased with resistivity and its dependence on
the normalised resistivity-length of the path that parallel currents take from the filament to
the sheath entrance, Γ̂‖, was measured to be approximately δ∗ ∝ Γ̂0.3

‖ , which is marginally
weaker than that predicted by Reference [184]. Enhanced radial velocities were also observed
in filaments that were sufficiently large (δ̂⊥ � δ̂∗), such that the parallel current path remained
dominant over the polarisation current path even for high resistivity values. The mechanism
for these resistive sheath current regime filaments was that the resistance of the plasma was
sufficient to introduce a potential difference between downstream at the sheath entrance and
further upstream in the region of the filament density perturbation, such that for the same
amount of current to flow into the sheath, larger potentials were formed upstream at higher
resistivity, corresponding to faster radial velocities.

However it is noted that quite drastic enhancements of the resistivity were required to
see significant increases in the filament’s radial velocity. For example, in the target-localised
resistivity case, η̂‖ had to be increased by approximately three orders of magnitude relative
to the reference MAST value to double the filament velocity across a large range of δ̂⊥. It
has been estimated that electron temperatures below 1 eV would be required to provide such
an enhancement and the plasma in the divertor region would have to be very weakly ionised
(nn/ne > 1000) to produce higher resistivity values still. Furthermore, the region in which the
resistivity was enhanced spanned 25% of the parallel domain. It is unlikely that such a cold
and weakly ionised plasma could extend so far upstream from the divertor region and thus the
conditions described are extreme for experimental fusion devices.

For a theoretical comparison, investigations were next carried out in which η̂‖ was increased
uniformly throughout the domain. The results were broadly the same as in the target-localised
resistivity case, but some differences did arise. For the same value of Γ̂‖, marginally faster
radial velocities were produced in the uniform resistivity case, as the parallel currents were more
effectively suppressed. The biggest difference with respect to the target-localised resistivity
simulations however was that the filaments’ radial velocities exhibited gradients along the
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field line, moving faster at the mid-plane than further downstream. This demonstrated that
enhanced resistivity can decouple the dynamics of filaments along the parallel direction. Since
η̂‖ is directly proportional to the reference plasma density, ne,0, these uniformly enhanced
resistivity results can be interpreted directly in terms of this quantity and therefore it can be
concluded that increasing ne,0 leads to faster radial filament velocities. It is noted that the
dimensional plasma resistivity is invariant to ne,0 and that this trend arises because both the
polarisation and diamagnetic currents are directly proportional to the quantity.

Whilst η̂‖ is also proportional to T−3/2
e , it is not possible to self consistently interpret the

uniformly enhanced normalised resistivity scans in terms of a change of electron temperature.
This is because Te also affects the strength of the diamagnetic currents and the normalisation
of lengths. Therefore in the final part of the chapter, a series of simulations were performed in
which the electron temperature was varied self consistently and non-monotonic trends were
observed. For the majority of the range of Te considered, increasing Te led to faster radial
velocities, despite the reduced resistivity, because of enhancements to the diamagnetic drive and
sheath resistance. The exception to this occurred at the lowest temperature simulated, Te = 0.1

eV, which produced faster radial velocities than both the Te = 1 eV and Te = 10 eV cases for
δ⊥ > 4 cm. This occurred because the increase in resistivity sufficiently extended the inertial
regime (by increasing δ∗) to overcome the aforementioned effects. Although these results
generally indicate that faster filament radial velocities are produced at higher temperatures, it
is emphasised that if the temperature of a filament were reduced in a region localised to the
target (i.e, away from the bulk of the filament’s density perturbation and hence diamagnetic
drive), the increase in plasma resistivity in this region could dominate over the reduction in
the sheath resistance to produce a faster velocity. It is this situation that the target-localised
enhanced η̂‖ simulations sought to represent.

A clear limitation of these results is that whilst the low electron temperatures and high
neutral densities have been used to justify the increased target-localised resistivity, the model
used assumes isothermal electrons and neglects neutral physics. Moreover, the simulations have
neglected the influence of enhanced magnetic shear around the X-point region, which could
provide alternative current paths for the diamagnetic currents to be closed. Therefore, the
inclusion of electron temperature dynamics, neutral physics and magnetic geometry effects to
this model would be useful additions for future research, alongside more general improvements
such as including hot ion effects and removing the Boussinesq assumption. Nevertheless, this
chapter has demonstrated the physical mechanisms by which an enhanced collisionality in the
divertor region may produce faster radial filament velocities, and provided an indication of how
filamentary dynamics may be influenced by the SOL plasma density and electron temperature.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

One of the biggest challenges to overcome to achieve a commercially viable fusion power-plant
is controlling the excessive heat and particle fluxes to the divertor and first wall of the reactor to
within sustainable limits. The fluxes to these plasma-facing components are largely determined
by the width of the turbulent Scrape-Off Layer (SOL), which in turn is set by the competition
between transport perpendicular and parallel to the magnetic field in the region. Experimental
measurements suggest that cross-field transport of particles (and to a lesser extent, heat) in the
SOL is predominantly due to the motion of coherent field-aligned filamentary structures, whose
dynamics are determined by the currents that flow within them. Pressure gradients within
these filaments drive diamagnetic currents, which due to the presence of magnetic curvature
and gradients have a compressible component, and thus necessitate additional currents in
the system to prevent charge accumulation. Amongst others, these can take the form of
polarisation currents in the perpendicular plane, or parallel currents that yield a closed circuit
via the divertor target or elsewhere along the field line. The former current path leads to the
formation of an electrostatic potential with a dipole component in the perpendicular plane,
which through E ×B motions, corresponds to the filament moving radially outwards from
the core plasma. This work has studied this propagation mechanism using three dimensional
simulations of isolated filaments, which are amongst the first of their kind, to further theoretical
understanding of SOL transport and thus facilitate future development of predictive models
for SOL profiles in power-plant scale devices.

Verification and Validation

To enable this research, a new SOL simulation code called STORM3D has been written
using the BOUT++ framework to implement an isothermal drift-reduced fluid model in a
slab geometry. As part of the development process, a number of verification exercises have
been performed, the most rigorous of which utilised the method of manufactured solutions to
ensure that the model has been implemented correctly and that numerical errors converge at
second order as desired. In addition, a validation exercise has been carried out to check that
the model represents experimental observations. In this, STORM3D simulations of isolated
filaments were compared against experimental measurements from the TORPEX device, and
also against three other SOL codes which each included different physics. The performance of
STORM3D was equal to that of any of the other codes in that it reproduced the experimental

154
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filaments’ radial velocities to within a factor of two. However, a non-isothermal code did more
effectively capture the vertical motion of the filaments and so clearly the inclusion of electron
temperature dynamics is a desirable future development. These verification and validation
exercises have provided sufficient confidence in the STORM3D code and model to justify its
use in the theoretical studies of filamentary dynamics presented in this thesis.

Effect of Filament Geometry

The first theoretical study investigated the influence of a filament’s initial geometry on its
subsequent motions using parameters relevant to MAST. In particular, the size of a filament
in the perpendicular plane, δ⊥, was confirmed to have a strong influence. At low values of
collisional dissipation, filaments much smaller than a critical size, δ∗, lie in an inertial regime,
where the compressible diamagnetic currents are predominantly closed by polarisation currents
and the filaments develop a mushroom-like structure in the perpendicular plane as they evolve.
In contrast, filaments much larger than δ∗ lie in a sheath current limited regime, in which
parallel currents closing through the target become dominant and filaments expel a finger-like
structure, rather than moving initially as a whole. The most coherent motion, in which the
filament largely retains its initial monopole density structure in the perpendicular plane as it
evolves, is exhibited by filaments with intermediate sizes, slightly larger than δ∗, where parallel
and polarisation currents are of the same order. In agreement with theoretical expectations,
the filament’s radial velocity increases like ∼ δ

1/2
⊥ for δ⊥ � δ∗ but decreases like ∼ δ−2

⊥ for
δ⊥ � δ∗.

The introduction of parallel density gradients in a filament, such that it does not extend
uniformly along magnetic field lines from target to target, was also studied, and was found to
produce two key effects. Firstly, the filament’s potential field exhibits a Boltzmann response
to the parallel density gradients, which causes the filament to spin in the perpendicular plane
and also move in the effective poloidal direction. Secondly, the filament’s radial velocity is
reduced, as the total diamagnetic current drive within the filament is decreased.

In addition, the influence of the initial peak amplitude of the filament was investigated.
Whilst for small amplitudes (δn/nbg < 6), increasing this parameter led to faster radial
velocities, at higher amplitudes the perpendicular gradients become severe enough for unstable
drift-waves to develop. The subsequent turbulent motions destroyed the filament’s coherence
and ultimately yielded a slower net velocity than that found at lower amplitudes, where
drift-waves were stabilised by viscosity and particle diffusion. Since it is believed that the
dissipative parameters used are physically justified, this suggests most filaments in MAST are
not significantly fragmented by drift-waves, as observed experimentally.

Although the majority of these filament geometry effects have been identified in previous
studies, the simulations in this work utilised a more advanced physical model that included
parallel ion dynamics and evolved global fields, rather than evolving a filament perturbation
on a fixed background. These results show therefore that these additions make little difference
to the perpendicular dynamics of isolated filaments and justify prior approaches for filament
studies. Nevertheless, the additions made in the STORM3D model are an important step
towards 3D SOL turbulence simulations, where parallel ion dynamics will be required to
produce physically realistic SOL profiles.
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Comparisons between 3D and 2D Models

Direct comparisons have been made between STORM3D and two dimensional simulations
utilising models for the parallel terms that are commonly found in the literature; the sheath
dissipation and vorticity advection closures. The vorticity advection closure provided a poor
representation of the 3D model’s results, in that filaments of all δ⊥ were observed to develop
mushroom structures and attained radial velocities in the early stages of their motion that
were too fast. Furthermore, the radial velocity was found to increase monotonically with δ⊥ for
all filaments of a physically relevant size, which is again in contrast to what was found in 3D.
The sheath dissipation closure on the other hand compared quite favourably to the 3D model
for small amplitude filaments. Specifically, it reproduced the δ⊥ dependence of the filament’s
radial velocity and evolved structure. However, since the sheath dissipation closure does not
represent drift-wave dynamics (nor does the vorticity advection closure), this comparison was
less satisfactory at higher amplitude filaments. In addition, neither 2D closure represented the
Boltzmann spinning motions and subsequent displacement in the effective poloidal direction
that was observed in 3D.

The poor performance of the vorticity advection closure is due to its assumption that
parallel currents are negligible. Indeed, in the aforementioned STORM3D simulations, parallel
currents closing through the sheath played an important role in reducing the extent to which
polarisation currents were driven, even for filaments which did not extend to the target, as
parallel currents could still pass through the background plasma. However, there are a number
of mechanisms by which the resistivity of the plasma in an experiment may significantly
increase beyond the reference MAST value used in these simulations. In particular, if the SOL
is in a conduction limited or detached regime, the divertor region will have low temperatures
and high neutral densities, which will enhance the resistivity in the region.

Effect of Plasma Resistivity

The effect of increasing the normalised resistivity in the last quarter of the domain nearest
the targets, η̂‖div, has been studied. Intuitively, it was found that increasing η̂‖div led to a
suppression of parallel currents and a corresponding enhancement of polarization currents, so
that the inertial regime extended to larger values of δ⊥. Thus faster radial velocities were
produced at higher η̂‖div, as the velocities scaled like ∼ δ1/2

⊥ up until larger values of δ⊥. The
dependence of the critical size at which the transition from the inertial regime occurred, δ∗, on
the total resistance to parallel currents travelling through the plasma, Γ‖, was measured to be
δ∗ ∝ Γ0.3

‖ , which is slightly weaker than that predicted theoretically by Reference [184].
Faster radial velocities at higher η̂‖div were also found for filaments that were sufficiently

large (δ⊥ � δ∗), such that parallel currents remained dominant over the polarisation currents
even at high η̂‖div. For these resistive sheath current regime filaments, the increase in velocity
occurred because the resistance of the plasma was sufficient to introduce a potential difference
between downstream at the sheath entrance and further upstream in the region of the filament
density perturbation, so that for the same amount of current to flow into the sheath, larger
potentials were formed upstream at higher resistivity, corresponding to faster radial velocities.

For a theoretical comparison, investigations were also carried out in which the normalised
resistivity, η̂‖, was increased uniformly throughout the domain. Whilst broadly similar results
were produced as in the target-localised enhanced resistivity study, the filaments’ radial
velocities did exhibit gradients along the parallel direction at high η̂‖, meaning that the
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filaments moved faster at the mid-plane than further downstream towards the target. This
demonstrated that enhanced resistivity can decouple the dynamics of the filaments along the
parallel direction.

However, a clear limitation of these resistivity studies is that severe enhancements of
η̂‖ were required to yield significant increases in the filament’s radial velocity. For example
the target-localised η̂‖ was increased by approximately three orders of magnitude relative
to the reference MAST value in a region spanning 25% of the parallel domain to produce
approximately a factor two increase in the filament velocity across a wide range of δ⊥. It has
been estimated that electron temperatures below 1 eV would be required to provide such an
enhancement and the plasma in the divertor region would have to be very weakly ionised
(nn/ne > 1000) to produce higher resistivity values still. It is unlikely that such a cold and
weakly ionised plasma could extend so far upstream from the divertor region and thus the
conditions described are extreme for experimental fusion devices.

Effect of Input Parameters

A final series of simulations studied the influence of the reference plasma density, ne,0, electron
temperature, Te, and magnetic field strength, B, on the filament’s radial velocity. Since
η̂‖ ∝ ne,0, the uniformly enhanced resistivity simulations can be interpreted directly in terms
of ne,0 and therefore it can be concluded that increasing this quantity leads to faster radial
filament velocities. It is emphasised however that the dimensional plasma resistivity, η‖, is in
fact invariant to ne,0 and that this trend arises because both the polarisation and diamagnetic
currents are directly proportional to the quantity. Similarly, the magnetic field strength
does not affect the dimensional resistivity of the plasma, but δ∗ does increase as B reduces.
Therefore faster radial velocities were also found at lower B, as the inertial regime was again
extended to larger δ⊥.

The influence of Te is more complicated than that of the other two input parameters
investigated, in that non-monotonic trends were observed. Generally, increasing Te led to
faster radial velocities, because this enhanced both the diamagnetic currents and the resistance
of the sheath. However, at very low temperatures (Te < 1 eV) reducing the temperature
produced faster radial velocities for δ⊥ > 3 cm. This occurred because η̂‖ ∝ T

−3/2
e and

the enhancement in resistivity sufficiently extended the inertial regime (by increasing δ∗) to
overcome the aforementioned effects. Although these results generally indicate that faster
filament radial velocities are produced at higher temperatures, it is emphasised that if the
temperature of a filament were reduced in a region localised to the target (i.e, away from
the bulk of the filament’s density perturbation and hence diamagnetic drive), the increase in
plasma resistivity in this region could dominate over the reduction in the sheath resistance to
produce a faster velocity. It is this situation that the target-localised enhanced η̂‖ simulations
sought to represent.

Contribution to the Fusion Research Program

This research outlined in this thesis has made a number of important contributions to the
overall fusion research program. A powerful and versatile 3D SOL simulation code has been
developed, which will allow future studies into SOL physics to be carried out relatively easily
and with minimal further development. This code has been used to provide a comprehensive
characterisation of 3D filamentary dynamics, which will aid future understanding of how SOL
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profiles are determined. In particular, it has been suggested in the literature that electrical
disconnection of filaments from the target is a possible mechanism by which broader SOL
profiles are produced at high values of SOL collisionality [80]. Whilst such a disconnection
has been demonstrated, it is unlikely that the extreme conditions required to produce this
phenomenon are found in experiments. Lastly, the effect of key input parameters on filaments’
radial velocities has been established, which will aid comparison of experimental measurements
between different machines and allows for extrapolation to future devices such as ITER.

8.2 Future Work

There are a number of limitations of the work presented in this thesis. Firstly, cold ions
have been assumed and the Boussinesq assumption has been employed, despite both of these
simplifications being poorly justified in the SOL. Furthermore, low electron temperatures
and high neutral densities in the divertor have been used as justification for using enhanced
resistivity values near to the target, but the physical model assumes isothermal electron
temperatures and neglects neutral physics entirely. Moreover, magnetic geometry effects are
entirely absent in the current version of STORM3D, which is significant because enhanced
polarisation currents due to the magnetic shear around the X-point region could allow parallel
currents to form a closed circuit there, rather than at the target. Finally, electromagnetic
effects have also been neglected.

Whilst this list of simplifications is quite long, it is emphasised that these neglected effects
are not expected to significantly change the dynamics of filaments and hence invalidate the
results presented in this thesis. For example, it was shown in the TORPEX comparison exercise
that whilst a filament’s poloidal displacement is affected if electron temperature dynamics
are included, its radial velocity was changed by less than a factor of two. A similar order of
magnitude change in the radial velocity has been found when the Boussinesq approximation
was removed in recent 2D filament simulations [256].

Nevertheless, each of these limitations does provide an opportunity to expand and improve
the physical model of STORM3D. With the exception of the cold ion assumption, it should
be relatively easy to address each issue due to the flexibility of the BOUT++ framework.
Indeed, electron temperature dynamics have already been included in the latest version of
STORM3D and studies have been carried out to illustrate how this addition affects filamentary
dynamics [131, 199]. With respect to utilising more complicated magnetic geometries, it may
be enlightening to first simulate filaments using a sheared slab, before employing a realistic
tokamak magnetic geometry, as this will allow the influence of magnetic shear to be isolated
from other effects that would also be included in a realistic geometry, such as a varying
curvature strength.

Aside from improvements to the model, a valuable contribution to the understanding of
SOL transport could be made by using the STORM3D code to simulate multiple filaments
at once, to investigate how a filament’s dynamics can be affected by nearby filaments. In
particular it would allow an assessment of how separated filaments have to be from one another
for isolated filament simulations to be justified. Following this, simulations of saturated SOL
turbulence should be carried out. Such turbulence can be generated by introducing a radial
gradient in background density and temperature profiles, which could in turn be achieved
through the structure of the particle and energy sources. Whilst such turbulence simulations
would be significantly more computationally expensive than seeded filament simulations, they
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should be considered the ultimate application of a SOL code such as STORM3D, as they
would allow average SOL profiles to be calculated.
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Appendix A

Equilibrium Solution

This Appendix provides a derivation of the equilibrium solution to the evolution equations of
the model, Equations (3.66) to (3.69), which are reproduced below for convenience.

∂Ω

∂t
= −

(
b̂×∇φ

)
· ∇Ω− U∇‖Ω +

1

n
∇‖J‖ −

ĝ

n

∂n

∂y
+DΩ∇2

⊥Ω, (A.1)

∂n

∂t
= −

(
b̂×∇φ

)
· ∇n−∇‖ (nV ) + nĝ

∂φ

∂y
− ĝ ∂n

∂y
+Dn∇2

⊥n+ Sn, (A.2)

dV

dt
= −

(
b̂×∇φ

)
· ∇V − V∇‖V + µ

(
∇‖φ−

1

n
∇‖n+ η̂‖J‖

)
− SnV

n
, (A.3)

∂U

∂t
= −

(
b̂×∇φ

)
· ∇U − U∇‖U −∇‖φ−

η̂‖
µ
J‖ −

SnU

n
. (A.4)

The case for which Sn = Sn(z) is considered, which means that all fields must be uniform in
the perpendicular direction. Accompanying this condition with the assumption of steady state
equilibrium fields reduce Equations (A.1) to (A.4) to

0 =
1

n
∇‖J‖, (A.5)

0 = −∇‖ (nV ) + Sn, (A.6)

0 = −V∇‖V + µ

(
∇‖φ−

1

n
∇‖n+ η̂‖J‖

)
− SnV

n
, (A.7)

0 = −U∇‖U −∇‖φ−
ν‖
µ
J‖ −

SnU

n
. (A.8)

A solution to Equations (A.5) to (A.8) is sought on the simulation domain, that is 0 ≥ y ≥ L‖,
which satisfies the stagnation point boundary conditions at y = 0:

U |z=0 = 0, (A.9a)

V |z=0 = 0. (A.9b)

The boundary conditions at z = L‖ are examined in detail later in this derivation. By
integrating Equation (A.5) along the parallel direction and imposing Equation (A.9), the result
J‖ = 0 is obtained. Assuming a non-zero density throughout the domain, this necessitates

U = V. (A.10)

Combining Equations (A.7) and (A.8) to remove the ∇‖φ terms yields
(

1 +
1

µ

)(
n∇‖U + SnU

)
= −∇‖n. (A.11)
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Another expression for ∇‖n is obtained by rewriting Equation (A.6):

∇‖n =
Sn − n∇‖U

U
. (A.12)

Moreover, integrating Equation (A.6) along the parallel direction allows n to be expressed as:

n =
S′n
U
, (A.13)

where
S′n =

∫ z

0
Sn
(
z′
)

dz′. (A.14)

Equations (A.12) and (A.13) can thus be used to write Equation (A.11) in terms of only Sn
and U : (

1 +
1

µ

)(
S′n∇‖U + SnU

)
+
Sn
U
−
S′n∇‖U
U2

= 0. (A.15)

By noting that
∇‖
(
S′nU

)
= S′n∇‖U + SnU

and that

∇‖
(
S′n
U

)
=
Sn
U
−
S′n∇‖U
U2

,

Equation (A.15) can be written as

∇‖
[((

1 +
1

µ

)
U +

1

U

)
S′n

]
= 0. (A.16)

Equation (A.16) can then be easily integrated to produce
((

1 +
1

µ

)
U +

1

U

)
S′n = C (A.17)

where C is a constant that can be determined by application of boundary conditions. However,
the boundary condition given by Equation (A.9) cannot be used to determine C, since both
U and S′n are zero at the boundary, and the quantity S′n/U cannot be evaluated. Therefore
the boundary condition on U at the entrance to the sheath, z = L‖, must be used instead.
Letting this boundary condition be given by

U |z=L‖
= Us, (A.18)

and applying this condition to Equation (A.17) yields
((

1 +
1

µ

)
U +

1

U

)
= α

((
1 +

1

µ

)
Us +

1

Us

)
(A.19)

where

α =

∫ L‖

0
Sn
(
z′
)

dz′

∫ z

0
Sn
(
z′
)

dz′
. (A.20)

Solving Equation (A.19) for U gives

U =

α

((
1 +

1

µ

)
Us +

1

Us

)
±
√
α2

((
1 +

1

µ

)
Us +

1

Us

)2

− 4

(
1 +

1

µ

)

2

(
1 +

1

µ

) . (A.21)
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This solution has two branches, corresponding to whether the positive or negative square
root is selected. The appropriate branch can be selected by ensuring it is consistent with the
boundary conditions. Given that α→∞ as z → 0, taking the same limit of Equation (A.21)
produces

lim
z→0

U = lim
α→∞

α

((
1 +

1

µ

)
Us +

1

Us

)
±
√
α2

((
1 +

1

µ

)
Us +

1

Us

)2

− 4

(
1 +

1

µ

)

2

(
1 +

1

µ

)

lim
z→0

U = lim
α→∞

α

((
1 +

1

µ

)
Us +

1

Us

)
(1± 1)

2

(
1 +

1

µ

) . (A.22)

Therefore, as only the negative root is consistent with the stagnation point boundary condition
on U at z = 0 given by Equation (A.9a), the final solution for U is given by:

U =

α

((
1 +

1

µ

)
Us +

1

Us

)
−
√
α2

((
1 +

1

µ

)
Us +

1

Us

)2

− 4

(
1 +

1

µ

)

2

(
1 +

1

µ

) . (A.23)

By checking that this solution also satisfies the boundary condition at the sheath boundary
given by Equation (A.18), an important condition on range the values that Us can take is
found. At this location (z = L‖), α = 1 and so Equation (A.23) reduces to

U |z=L‖
=

((
1 +

1

µ

)
Us +

1

Us

)
−
√(

1 +
1

µ

)2

Us
2 − 2

(
1 +

1

µ

)
+

1

Us
2

2

(
1 +

1

µ

) . (A.24)

In simplifying the square root in Equation (A.24), it is important to ensure that the square
root term remains positive to be consistent with the earlier selection of the negative branch of
the solution. In isolation, the square root can be simplified to

√(
1 +

1

µ

)2

Us
2 − 2

(
1 +

1

µ

)
+

1

Us
2 = ±

((
1 +

1

µ

)
Us −

1

Us

)
. (A.25)

Whether the positive or negative root of Equation (A.25) actually corresponds to a positive
quantity is dependent on the value of Us. It is trivial to show that the solution to

(
1 +

1

µ

)
Us −

1

Us
= 0

is
Us = ± 1√

1 + 1/µ
,

and considering only positive values of Us (as negative values would correspond to an inflow,
rather than an outflow, of plasma at the sheath edge), that

(
1 +

1

µ

)
Us −

1

Us
≤ 0 for 0 < Us ≤

1√
1 + 1/µ

,

(
1 +

1

µ

)
Us −

1

Us
≥ 0 for Us ≥

1√
1 + 1/µ

.
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Considering first the case Us ≥ 1/
√

1 + 1/µ, Equation (A.24) can be simplified as follows.

U |z=L‖
=

((
1 +

1

µ

)
Us +

1

Us

)
−
((

1 +
1

µ

)
Us −

1

Us

)

2

(
1 +

1

µ

)

U |z=L‖
=

1

Us (1 + 1/µ)

This means that for the case Us ≥ 1/
√

1 + 1/µ, the solution can only satisfy the boundary
condition imposed at the sheath only if in fact

Us =
1√

1 + 1/µ
. (A.27)

Therefore the solution cannot satisfy the boundary conditions imposed at the sheath if
Us > 1/

√
1 + 1/µ. For the case Us ≤ 1/

√
1 + 1/µ on the other hand, Equation (A.24) reduces

to be consistent with the sheath boundary condition, as demonstrated below.

U |z=L‖
=

((
1 +

1

µ

)
Us +

1

Us

)
−
(

1

Us
−
(

1 +
1

µ

)
Us

)

2

(
1 +

1

µ

) ,

U |z=L‖
= Us.

This analysis shows that a solution only exists for Us ≤ 1/
√

1 + 1/µ. Moreover, whilst this
derivation has specified Us to be the value of U at the entrance to the sheath, the result can
be generalised to show U ≤ 1/

√
1 + 1/µ anywhere in the domain, by replacing L‖ with z in

Equation (A.18) and the subsequent workings. Alternatively this more general result can be
obtained by rearranging Equation (A.15) as

∇‖U =
Sn
n

(
1 + (1 + 1/µ)U2

1− (1 + 1/µ)U2

)
. (A.28)

Since when U = 1/
√

1 + 1/µ the denominator of the fraction inside the bracket equals zero,
this expression states that ∇‖U → ∞ as U → 1/

√
1 + 1/µ and therefore that assuming

Sn ≥ 0, physical solutions cannot occur if U > 1/
√

1 + 1/µ.
Recalling that U is the parallel ion velocity normalised to the sound speed of the plasma

neglecting electron inertia, cs =
√
Te/mi, this condition therefore states that

u‖i ≤
√

Te
mi +me

(A.29)

in a steady state system that is uniform in the perpendicular direction if Sn ≥ 0. The quantity√
Te/ (mi +me) is the sound speed of the plasma, corrected to account for the inertia of the

electrons. This specific condition is incompatible with the standard sheath boundary condition
that states that Us ≥ 1 or equivalently that u‖ ≥ cs [31, 158]. This discrepancy arises because
the aspects of the derivation of this Bohm boundary condition neglect the influence of electron
inertia in the sheath, whilst the governing equations of the plasma model retain the effect.
Whilst no exact relation has been derived, it has been demonstrated that inclusion of electron
inertia will act to reduce the minimum speed that the ions must have at the entrance to the
sheath from cs [220]. Therefore the STORM module utilises the adjusted boundary condition

U |z=L‖
≥ 1/

√
1 + 1/µ. (A.30)
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The ≥ relation is retained here to allow for possibility of supersonic flows in systems in which
any of the conditions on Equation (A.29) are relaxed (i.e. non steady state, variation in
perpendicular direction, Sn < 0) [221]. To be consistent with this change from the standard
definition, the corresponding boundary condition on V is also altered to be

V |z=L‖
=

1√
1 + 1/µ

exp
(
− φ|z=L‖

)
. (A.31)

In practical terms, this assumed correction to the boundary conditions makes little difference
to the results of the code except at very high resolutions, because the effective error introduced
by not using the electron inertia corrected boundary conditions is negligible compared to the
discretisation errors present. Moreover, the code has been tested to ensure it does robustly
produce effectively the same results with the standard boundary conditions.

Using these boundary conditions, Equation (A.23) simplifies to

U =
α−
√
α2 − 1√

1 + 1/µ
. (A.32)

Substituting Equation (A.32) into Equation (A.13), gives an expression for n in terms of only
Sn:

n =
S′n
√

1 + 1/µ

α−
√
α2 − 1

. (A.33)

All that remains to complete the solution is to obtain an expression for φ. Subtracting Equation
(A.3) from (A.4) and recalling that U = V , yields

∇‖φ =
µ

1 + µ
∇‖ lnn.

Integrating this expression along the parallel direction and determining the constant of
integration using the values of n and φ at the sheath entrance (z = L‖) produces

φ =
µ

1 + µ
ln

(
n

n|z=L‖

)
+ φ|z=L‖

(A.34)

Given that U = V in this equilibrium solution, φ|z=L‖
can be determined from Equations

(A.30) and (A.31) to be zero. From Equation (A.33), the value of n at the sheath entrance is

n|z=L‖
=

√
1 +

1

µ

∫ L‖

0
Sn
(
z′
)

dz′. (A.35)

Therefore, Equation (A.34) becomes

φ = − µ

1 + µ
ln
(
α2 − α

√
α2 − 1

)
. (A.36)

In summary, the analytical equilibrium solution is given by

Ωeq = 0, (A.37)

neq =

√
1 +

1

µ

∫ z

0
Sn
(
z′
)

dz′

α−
√
α2 − 1

, (A.38)

Ueq = Veq =
α−
√
α2 − 1√

1 + 1/µ
, (A.39)

φeq = − µ

1 + µ
ln
(
α2 − α

√
α2 − 1.

)
, (A.40)
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where the subscript eq denotes the equilibrium of the quantity and

α =

∫ L‖

0
Sn
(
z′
)

dz′

∫ z

0
Sn
(
z′
)

dz′
. (A.41)



Appendix B

Shock Tube Problem

In this appendix analytical solutions for well studied problems in fluid dynamics will be derived
for the Storm3D plasma fluid model, following the derivations given for a neutral fluid in
Reference [242]. In particular, solutions are derived for expansion waves and shock waves
produced by moving a piston in the end of a long tube. These solutions are then combined
to provide a solution to the shock tube problem, which is commonly used for testing and
verification of neutral fluid dynamics codes.

B.1 Method of Characteristics

By assuming variation only in the parallel direction, the perpendicular terms in Equations
(3.66) to (3.69) can be dropped to produce

1

n
∇‖J‖ = 0, (B.1)

∂n

∂t
+∇‖ (nV ) = Sn, (B.2)

dV

dt
+ V∇‖V − µ

(
∇‖φ−

1

n
∇‖n+ η̂‖J‖

)
+
SnV

n
= 0, (B.3)

∂U

∂t
+ U∇‖U +∇‖φ+ η̂‖J‖ +

SnU

n
= 0. (B.4)

As in the analytical equilibrium solution derived in Section A, integrating Equation (B.1)
along the parallel direction and imposing the stagnation point boundary conditions given by
Equation (A.9) gives J‖ = 0. Again assuming non-zero densities throughout, this necessitates
U = V . This allows Equations (B.3) and (B.4) to be combined to eliminate the ∇‖φ terms as
follows

∂U

∂t
+ U∇‖U +

1

(1 + 1/µ)n
∇‖n+

SnU

n
= 0. (B.5)

B.1.1 Characteristic Form

The system of equations comprising of Equations (B.2) and (B.5) can be written using the
Einstein summation convention as

∂ui
∂t

+ αij
∂uj
∂z

+ βi = 0, (B.6)

where

u =

(
n

U

)
, α =

(
U n

1/ (n+ n/µ) U

)
, β =

(
−Sn
SnU/n

)
. (B.7)
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It is desirable find a linear combination of Equations (B.2) and (B.5), of the form written
below,

li
∂ui
∂t

+ liαij
∂uj
∂z

+ liβi = 0, (B.8)

such that the combination takes the characteristic form

li
dui
dt

+ liβi = 0. (B.9)

Here the total derivative is given by

d

dt
=

∂

∂t
+ c

∂

∂z
. (B.10)

where c = dz/dt. This is achieved provided that

liαij
∂uj
∂z

= lic
∂ui
∂z

. (B.11)

Writing the right hand side of this equation as ljc∂uj/∂z, we have the refined requirement
that

liαij = ljc. (B.12)

This is an eigenvalue problem and in order for there to be a non trivial solution (i.e. l 6= 0), c
must satisfy

|α− cI| = 0, (B.13)

where I is the identity matrix. The eigenvalues are therefore given by

c± = U ± a (B.14)

where a = 1/
√

1 + 1/µ is the speed of sound in this system of normalised equations. The
corresponding eigenvectors are

l± =

(
a

±n

)
, for c± = U ± a. (B.15)

The resulting characteristic equations are thus given by

a
dn

dt
± ndU

dt
− Sn (a± U) = 0 on c± =

dz

dt
= U ± a. (B.16)

B.1.2 Riemann Variables and Invariants

Next, it is required to write the characteristic equations in the further simplified form

dr±
dt

+ f± (x, t,u) = 0 (B.17)

Equation (B.16) can be written in the form above when

λa
dn

dt
± λndU

dt
=
dr±
dt

(B.18)

An integration factor λ has been included here to aid the subsequent derivation. Writing,
r± = P± (n) +Q± (U), the preceding equation becomes

λa
dn

dt
± λndU

dt
=
dP±
dn

dn

dt
+
dQ±
dU

dU

dt
, (B.19)
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which implies that

dP±
dn

= λa (B.20)

dQ±
dU

= ±λn (B.21)

Letting λ = 1/n, Equations (B.20) and (B.21) can be integrated (neglecting constants of
integration) to give P± = a lnn and Q± = ±U , so that

r± = a lnn± U. (B.22)

Equation (B.16) can thus be written as

dr±
dt
− Sn

n
(a± U) = 0 on c± =

dz

dt
= U ± a, (B.23)

which is the form of Equation (B.17), with f± = −Sn (a± U) /n. The quantities r+ and r−
are in general known as Riemann variables. Equation (B.23) can then be integrated along
characteristic lines which satisfy c+ and c−. The original system of partial differential equations,
Equations (B.2) and (B.5), has been reduced to two independent ordinary differential equations,
that can be integrated easily along their corresponding characteristic lines c. In the specific
case that Sn = 0, the integration becomes trivial as the Riemann variables remain constant on
their respective characteristic lines. Thus the Riemann variables can be described as Riemann
invariants for Sn = 0.

B.2 Expansion Wave Produced by a Piston

Consider the case of the expansion wave produced in a plasma by a piston moving at the
end of a long tube. The influence of plasma-surface interactions, such as the formation of the
sheath, are neglected so that Bohm boundary conditions are not included; in effect the plasma
is modelled as a neutral gas. In addition, Sn = 0 is assumed. At t = 0, the piston is located at
z = 0, and the plasma is at rest and uniform, with n = n0 and U = 0 for z ≤ 0. For t > 0, the
piston moves with a constant velocity of vP , with boundary condition on U at the piston face
is that the plasma moves at the velocity of the piston, U = vP .

This situation is represented schematically on a z − t diagram in Figure B.1. An example
line from the family of lines C+, which satisfy = dz/dt = U + a, is plotted using a dashed
line. Assuming that U ≥ 0 everywhere in the plasma, it can be deduced that every member of
this family will intercept the z axis in the uniform region, z < 0. Since Sn = 0, the quantity
a lnn + U is a Riemann invariant along each C+ line and so is equal to a constant. This
constant can be assessed from the boundary conditions at the z axis, U = 0, n = n0. Therefore
the relation

a lnn+ U = a lnn0 (B.24)

holds throughout the entire domain. Also shown in the diagram is the family of lines C−,
which each satisfy dz/dt = U − a. These lines have been split into three sub-families. Those
which intercept the z axis are labelled Cz− and are drawn in red, those which intercept the
piston are labelled as CP− and are drawn in blue, whilst those which intercept the origin are
labelled CF− and are drawn in green. Along each C− line, the Riemann invariant U − a lnn

remains constant. For the Cz− family this constant can again be determined using the z axis
boundary conditions so that the relation

a lnn− U = a lnn0 (B.25)
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holds. Combining this with (B.24) yields U = 0 and n = n0 along each Cz− line. The
characteristic line which marks the boundary of the Cz− region is therefore given by z = −at,
as this intersects the origin. Considering next the CP− family, the relationship

a lnn− U = D (B.26)

exists, where D is some undetermined constant. By subtracting Equation (B.26) from (B.24)
U , and therefore n can be determined to remain constant along each CP+ line. Using the
piston boundary condition and Equation (B.24), U = vP and n = n0 exp(−vP /a) inside the
CP− region. The boundary of this region is given by z = (vP − a) t. All that remains is to
determine the solution in the region containing the CF− family of lines, −at < z < (vP − a) t.
This CF− family consists of a centred fan of characteristics meeting at the origin, given by the
expression

z = (U − a) t, 0 < U < vP . (B.27)

Each member of the fan corresponds to taking a different value of U between 0 and vP at the
origin. Since the condition that U and n remain constant along C+ lines also holds here, the
solution for U in this region can be obtained by rearranging Equation (B.27) to give

U = a+
z

t
. (B.28)

Then using Equation (B.24), the solution to n in this region is

n = n0 exp
(
− z

at
− 1
)

(B.29)

The full solution is thus

U =





0
z

at
≤ −1

a+
z

t
− 1 ≤ z

at
≤ vP

a
− 1

vP
vP
a
− 1 ≤ z

at
≤ vP

a

(B.30a)

n =





n0
z

at
≤ −1

n0 exp
(
− z

at
− 1
)

− 1 ≤ z

at
≤ vP

a
− 1

n0 exp
(
−vP
a

) vP
a
− 1 ≤ z

at
≤ vP

a

(B.30b)

The fan region can be understood to be an expansion fan, in which the density decreases from
n0 to n0 exp (−vP /a).

B.3 Shock Wave Relations

Equation (B.31) is a prototypic conservation equation written in integral form

∂

∂t

∫ x1

x2

ρ dx+ [q]x1x2 +

∫ x1

x2

h dx = 0. (B.31)

Here ρ(x, t) is the density of some quantity, q(x, t) is the flux per unit time of the quantity, and
h(x, t) is a source (or sink) of the quantity. Assuming h remains continuous, a discontinuity or
shock can be sustained in ρ and q if the relationship

q1 − q2 = vshock (ρ2 − ρ1) (B.32)
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z

t z = vP t
z = (vP − a) t

z = −at

Cz
−

CP
−

C+

CF
−

Figure B.1: Schematic diagram of different families of characteristic lines satisfying Equation
(B.14) for a 1D expansion wave produced by a moving piston.

is satisfied [242]. Here the subscripts 1 and 2 denote the values of the quantities just ahead
and behind of the shock itself. Equations (B.2) and (B.5) in the form of Equation (B.31) are

∂

∂t

∫ z1

z2

ndz + [nU ]z1z2 +

∫ z1

z2

Sn dz = 0, (B.33)

∂

∂t

∫ z1

z2

nU dz +
[
nU2 + a2n

]z1
z2

= 0. (B.34)

Therefore the following shock relations apply:

n1U1 − n2U2 = vshock (n2 − n1) , (B.35)

n1U
2
1 + n1 − n2U

2
2 − n2 = vshock (n2U2 − n1U1) . (B.36)

Letting V = vshock − U , these relations become

n2V2 = n1V1, (B.37)

a2n2 + n2V2
2 = a2n1 + n1V2

1 . (B.38)

Defining M = V1/a to be the Mach number of the shock relative to the flow ahead, and after
some manipulation of Equations (B.37) and (B.38), the following relations can be obtained
which are more convenient to use

U2 − U1

a
=
M2 − 1

M
, (B.39)

n2

n1
= M2 (B.40)

U2 − U1

a
=

√
n2

n1
−
√
n1

n2
. (B.41)

B.4 Shock Wave Produced by a Piston

Consider again the plasma flow produced by a piston moving at the end of a long tube. This
time the plasma is located in the region z > 0 at t = 0, and it again begins uniform and at rest;
n = n0, U = 0. The piston, located at x = 0 at t = 0 is again suddenly moved at constant
velocity vP , so that this time, the plasma is compressed, rather than expanded. Again, the
boundary condition on U at the piston is U = vP . This situation is schematically drawn on a
z − t diagram in Figure B.2. It is assumed that this situation leads to a shock, travelling at
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z

t z = vP t

z = vshockt

1

2

Figure B.2: Schematic diagram of the distinct regions in (z, t) space that exist for a 1D planar
shock wave produced by a piston moving at constant velocity.

velocity vshock in the plasma. Ahead of the shock is labelled region 1, and behind the shock is
labelled region 2.

It is important to note that whilst the Riemann invariants given by Equation (B.22) do
remain constant on their appropriate characteristic lines within each region, they will each
exhibit a discontinuity across the shock. This means that a complete solution cannot be
obtained using only equivalent arguments regarding families of characteristic lines that were
used for the expansion wave case. These arguments however can be used to determine that
U and n remain constant in each region. From the boundary conditions along the z axis, it
is determined that n1 = n0 and that U1 = 0, whilst the piston boundary condition yields
U2 = vP . The shock relations given by Equations (B.40) and (B.41) then can be reduced to

vshock = a

√
n2

n1
(B.42)

and
vP
a

=

√
n2

n1
−
√
n1

n2
. (B.43)

After some manipulation of Equations (B.42) and (B.43), the following explicit expressions for
vshock and n2 as a function of the known variables vP and n1 can be obtained:

vshock =
vP +

√
v2
P + 4a2

2
, (B.44)

n2 = n1

v2
P + 2a2 + vp

√
v2
P + 4a2

2
. (B.45)

In obtaining these relations, the positive square root was selected when solving the quadratic
that arises by enforcing that the shock moves in the positive z direction, vshock > 0. The
overall solution is therefore

U =





vP
vP
a
≤ z

at
≤
√
n2

n1

0

√
n2

n1
≤ z

at

(B.46a)

n =





n2
vP
a
≤ z

at
≤
√
n2

n1

n1

√
n2

n1
≤ z

at

(B.46b)

where n2 is given by Equation (B.45).
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Figure B.3: Schematic diagrams of the density profile of the analytical solution to the shock
tube problem, with distinct regions labelled. Top: The initial density profile, showing two
distinct regions. Bottom: The density profile at a later time t = τ .

B.5 Shock Tube Problem Solution

Next, the shock tube problem is examined. A shock tube is long tube in which there is a thin
diaphragm separating two gases which are uniform and at rest. One of the gases is pumped up
to a higher pressure, and then the diaphragm is burst. This produces both a shock wave and
an expansion wave moving in opposite directions down the tube. Assuming that the viscous
effects of the side walls are negligible, an analytical solution can be obtained relatively easily
and therefore this problem is commonly used for verification of fluid dynamics codes. From
a SOL plasma perspective, this situation can be considered to be equivalent to the parallel
propagation of an idealised filament perturbation (consisting of a top hat function in the
parallel direction) that suddenly appears on top of a uniform SOL background, in the absence
of perpendicular dynamics.

The top plot of Figure B.3 schematically shows the shock tube set up at t = 0, just as the
diaphragm is burst. The interface between two uniform plasma regions is located at z = z0,
where the diaphragm was present. This interface is plotted using a dashed blue line. To the
left of the interface is region 4, where the density level is n = n4, whilst to the right is region
1, where the density level is n = n1. In both regions the plasma is at rest.

The state of the plasma at a later time, t = τ , is shown in the bottom plot of the same
figure. The interface between the two plasmas, has moved in the positive z direction, producing
a shock moving into the low density side, and an expansion wave moving into the high density
side. The values of U on either side of the interface must be the same as the velocity of the
interface itself, and so the interface is like a solid wall as far as the flow on either side is
concerned. The interface can therefore be treated as an effective piston moving at a constant
velocity vp, which is to be determined. The shock tube can thus be considered to be a
combination of the piston expansion wave and shock wave problems considered previously.



176 APPENDIX B. SHOCK TUBE PROBLEM

On the expansion wave side, the solution is given by Equation (B.30) with n0 = n4, and
thus there are 3 distinct regions. Firstly, next to the interface is a new uniform region, labelled
region 2a, which has velocity U = vP and density n = n2a, where

n2a = n4 exp
(
−vP
a

)
. (B.47)

Next, there is an expansion wave region, called region 3 in which the density rises from n2a to
n4. Finally, Region 4 contains the undisturbed plasma with density n = n4.

On the shock wave side, the solution is given by Equation (B.46). Two uniform regions are
produced, between which a shock wave exists moving at a velocity vshock given by Equation
(B.44). Immediately to the right of the interface is region 2, which has density n = n2, where
n2 is given by Equation (B.45) and velocity U = vp, whilst to right of the shock is region 1
containing the undisturbed plasma with n = n1.

In order to completely solve this problem, the values of n2a, n2 and vP must be determined.
First, since the interface itself has no mass, it cannot sustain a net force, and so the pressure
on either side must be equal. In this isothermal plasma model therefore the density on each
side must be equal, n2a = n2 (It is noted in a non-isothermal model, discontinuities will exist
in the density and the temperature fields at the interface). To obtain the exact value of n2,
Equation (B.47) can be rearranged to isolate the quantity vP /a. This can then be combined
with Equation (B.43) to give

lnn4 − lnn2 =

√
n2

n1
−
√
n1

n2
. (B.48)

This is an implicit expression for n2 in terms of the known values n1 and n4, which can be solved
numerically to give n2. The value of vP , whilst relatively unimportant, can then be determined
from Equation (B.43). Thus by combining Equations (B.30) and (B.46) appropriately, the
overall shock tube solution in terms of the values n1, n2 and n4, which are all now known is

U =





0
z − z0

at
≤ −1

a+
z − z0

t
− 1 ≤ z − z0

at
≤
√
n2

n1
−
√
n1

n2
− 1

a

√
n2

n1
− a
√
n1

n2

√
n2

n1
−
√
n1

n2
− 1 ≤ z − z0

at
≤
√
n2

n1

0

√
n2

n1
≤ z − z0

at

, (B.49a)

n =





n4
z − z0

at
≤ −1

n4 exp

(
−z − z0

at
− 1

)
− 1 ≤ z − z0

at
≤
√
n2

n1
−
√
n1

n2
− 1

n2

√
n2

n1
−
√
n1

n2
− 1 ≤ z − z0

at
≤
√
n2

n1

n1

√
n2

n1
≤ z − z0

at

. (B.49b)



Appendix C

MMS in BOUT++

This appendix provides a brief description of how to use the MMS testing features that have
been implemented in BOUT++.

C.1 Activating MMS Testing Mode

In order to enable MMS testing to be carried out as routinely as possible and to minimise
the possibility of introducing additional errors through an incorrect implementation of the
method itself, BOUT++ has a MMS testing mode which automates as much of the method as
possible. This mode can be activated through the BOUT.inp input file by setting the ’mms’
flag in the solver settings:

[ s o l v e r ]
. . .
mms = true

When MMS testing is activated, BOUT++ initialises each evolving variable to its man-
ufactured solution at t = 0, and modifies the time derivatives before they are passed to the
time integration code by adding the additional source terms. Moreover, at every output time
step, the difference between the evolved fields and the manufactured solution is calculated at
each output time step and saved to file. In order to do all this, the source and manufactured
solution for each variable must be specified in the BOUT.inp file under a section with the
name of the variable, as in the example below for the variable n.

[ n ]
s o l u t i o n = . . .
source = . . .

It is very easy to make a mistake either in the calculation of the source terms or in inputting
the expressions into the input file. Therefore it is recommended to use a symbolic package such
as Mathematica or Sympy to produce the expressions which can then be copied and pasted
directly into the input file. A library has been written for the Sympy to translate the expressions
for the PDES used within the physics module so that they can used directly with the package
and can be found at BOUT-dev/tools/pylib/boutdata/mms. Example python scripts utilising
this library can be found alongside the MMS examples in BOUT-dev/examples/MMS.
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C.2 Specifying Boundary Conditions

Manufactured solutions can (and, to test all aspects of the code, should) vary in space and time
at the boundaries and the boundary conditions must reflect this. The boundary conditions
in BOUT++ have therefore been developed to allow for the value (Dirichlet) or gradient
(Neumann) of a field at a boundary to be set to that of an analytical function of time and
space. The choice of boundary condition and the analytical function must again be specified in
the BOUT.inp file under a section with the name of the variable. For example, the following
code sets a variety of Dirichlet and Neumann boundary conditions on x and y boundaries
respectively of the variable n :

[ n ]
s o l u t i o n = . . .
source = . . .
ddx = . . .
ddy = . . .

bndry_xin = d i r i ch l e t_o4 (n : s o l u t i o n )
bndry_xout = neumann_o2(n : ddx )
bndry_yup = d i r i ch l e t_o3 (n : s o l u t i o n )
bndry_ydown = neumann_o2(n : ddy )

The suffix _o2 denotes the order accuracy the boundary condition is implemented to. So
for example, dirichlet_o3 is a Dirichlet boundary condition implemented to third order
accuracy in space. Confusingly neumann_o2 actually has an an O(h3) error. Implementations
are available up to fourth order (_o4).

There also exist implementations of ‘free’ boundary conditions; free_o2, free_o3 and
free_o4, which aim to impose no constraint on the solution at the boundary by extrapolation
into the boundary points. No additional arguments are necessary when specifying these
boundary conditions in the input file.

C.3 Convergence of Boundary Conditions

Where the boundary points are used by the gradient operators, they are divided through by
h or h2 for first and second derivatives respectively. This means that it is necessary to set
the boundary condition to a higher order than what is desired for the global convergence of
the code. For example, if global O(h2) convergence is desired, and only first derivatives are
used, then O(h3) boundary conditions are necessary. It has been observed that when second
derivatives are used, then third order remains sufficient to achieve global O(h2) convergence.
This has been attributed to the fact that second order derivatives are dissipative in nature, and
therefore any errors that develop at the boundary as a result of the boundary conditions will
be damped away. This is fortunate, as fourth order boundary conditions have been observed
to produce numerical instabilities and so it is advised not to use them. It is emphasised here
that neumann_o2 confusingly has a O(h3) error and so can be used to obtain global O(h2)

convergence.
Instabilities have also been encountered using the dirichlet_o3 boundary condition on

un-staggered grids under some specific circumstances. If such instabilities are encountered,
dirichlet_o2 must be used at the expense of global convergence. Such instabilities were not
encountered using the Storm3D physics module.
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Nomenclature

A peak density amplitude of initialised filament with respect to the background/equilib-
rium plasma

Aprobe projected area of a Langmuir probe

B magnetic field

B0 magnetic field strength at R0

Bθ poloidal magnetic field strength

D particle diffusivity (see Equation (3.50))

DBohm Bohm diffusion coefficient (ρ2
sΩi)

DΩ normalised ion kinematic viscosity (νi/ρ2
sΩi)

Deff effective diffusion coefficient

Dn normalised particle diffusivity (D/ρ2
sΩi)

E electric field

Epol poloidal electric field

F ei effective frictional force between electrons and ions (see Equation (3.17))

Is Langmuir probe ion saturation current

Isat Langmuir probe ion saturation current

Ĭsat median value of Isat

Jdia normalised diamagnetic current density (jdia/(ne,0ecs))

Jpol normalised polarisation current density (jpol/(ne,0ecs))

Jvisc normalised viscous current density (jvisc/(ne,0ecs))

J‖ normalised parallel current density (j‖/(ne,0ecs))

K kurtosis (see Equation (2.3))

Lf normalised approximate parallel length that filaments extend from the mid-plane
towards the targets (`f/ρs, see Equation (4.28))

Lx normalised length of domain in x direction
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Ly normalised length of domain in y direction

L‖ normalised mid-plane to sheath parallel connection length (`‖/ρs)

Nx number of grid points in the x direction

Ny number of grid points in the y direction

Nz number of grid points in the z direction

P convergence order of a numerical method

Pfusion fusion power produced by the plasma

Pheating external heating power put into the plasma

Q fusion energy gain factor (Pfusion/Pheating)

R major radius

R0 reference major radius location

R reaction rate per unit volume (see Equation (1.1))

S skewness (see Equation (2.2))

Sn normalised particle source (sn/(ne,0Ωi))

Te electron temperature

Te,bg background electron temperature

Te,f filament electron temperature profile

T div
e electron temperature of the divertor region

Ti ion temperature

U normalised parallel ion velocity (v‖i/cs )

UM Manufactured solution for U for use in the method of manufactured solutions

Ueq normalised parallel ion velocity

V normalised parallel electron velocity (v‖e/cs )

VM Manufactured solution for V for use in the method of manufactured solutions

Veq normalised parallel electron velocity

X̄ mean value of the variable X

Z vertical coordinate in a toroidal coordinate system

Zi ion charge state

b̂ B/B

cs cold ion sound speed (
√
Te/me)
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e elementary charge

g magnetic curvature strength (2cs/R0)

ĝ normalised magnetic curvature strength (2ρs/R0)

h mesh spacing

j current density

jdia diamagnetic current density (−enevD)

jpol polarisation current density (enevPi)

jsat,f ion saturation current density associated with a filament (see Equations (5.35) and
(5.41))

jvisc viscous current density (enevπi)

j‖ parallel current density (ene(v‖i − v‖e))

j‖s parallel current density at the entrance to the sheath

k perpendicular wave number ((kx, ky))

kx wave number in the x direction

kx wave number in the x direction

ln Λ Coulomb logarithm

l‖ characteristic parallel length scale of a plasma

l⊥ characteristic perpendicular length scale of a plasma

`f approximate parallel length that filaments extend from the mid-plane towards the
targets (see Equation (4.28))

`‖ parallel SOL connection length (typically mid-plane to target)

me electron mass

mi ion mass

n normalised electron number density (ne/ne,0)

nM Manufactured solution for n for use in the method of manufactured solutions

nbg normalised background electron number density

ne electron number density

ne,bg background electron number density

ne,eq equilibrium electron number density

ne,f filament number density (ne − ne,eq)

ne,s electron number density at the entrance to the sheath



C.3. CONVERGENCE OF BOUNDARY CONDITIONS 183

ne,0 reference SOL electron number density

neq normalised equilibrium number density (ne,eq/ne,0)

nf normalised filament number density (n− neq)

ni ion number density

n̂k Fourier mode of n corresponding to the perpendicular wave number k

nn neutral particle number density

ns normalised electron number density at the entrance to the sheath

p plasma pressure (niTi + neTe)

pe electron pressure (niTi)

pi ion pressure (niTi)

q safety factor (rBΦ/RBθ)

q95 value of q at the flux surface that contains 95% of the toroidal magnetic flux

qs charge of a particle species s

r minor radius

sn particle source

t time

v particle velocity

v particle collision velocity

v̂ radial filament velocity normalised to v∗ (vr/v∗)

v∗ estimate of the radial filament velocity of a filament with δ⊥ = δ∗0 in the low collisionality
limit, Γsheath � Γ‖ (see Equation (2.24))

vD electron diamagnetic fluid velocity (see Equation (3.26))

vE E ×B fluid velocity (see Equation (3.25))

vF perpendicular fluid velocity owing to collisions between electrons and ions (see Equation
(3.31))

vPe electron polarisation fluid velocity (see Equation (3.27))

vPi ion polarisation fluid velocity (see Equation (3.28))

vSe perpendicular electron fluid velocity owing to particle sources/sinks (see Equation
(3.32))

vSi perpendicular electron fluid velocity owing to particle sources/sinks (see Equation
(3.33))

ve electron fluid velocity
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v̂f filament velocity (dxf/dt)

v̂f,x radial filament velocity (See Equation (6.6))

v̂drift-plane
f,x drift-plane radial filament velocity (see Equation (7.13))

v̂?f,x characteristic radial filament velocity, defined as the first maximum of v̂f,x that occurs
in time

v̂f,y binormal filament velocity (See Equation (6.7))

vi ion fluid velocity

vπe perpendicular electron fluid velocity owing to viscous forces (see Equation (3.29))

vπi perpendicular ion fluid velocity owing to viscous forces (see Equation (3.30))

vr radial filament velocity vector

vr radial filament velocity, equivalent to vf,x

vs velocity of a particle species s

vth,e ion thermal velocity (
√
Ti/mi)

vth,i ion thermal velocity (
√
Ti/mi)

vx filament velocity in the x direction, as defined for the TORPEX validation exercise in
Section 5.5 (dxc/dt)

vy filament velocity in the y direction, as defined for the TORPEX validation exercise in
Section 5.5 (dxc/dt)

v‖e parallel electron velocity

v‖i parallel ion velocity

v⊥e perpendicular electron fluid velocity

v⊥i perpendicular ion fluid velocity

x (x, y, z)

x effective radial coordinate

x0 initial position of filament in x

xc filament position in x, as defined for the TORPEX validation exercise in Section 5.5
(see Equation (5.39))

xf filament position ((xf , yf , zf ))

xf filament position in x

xCoM
f filament position defined as the centre of mass of nf (see Equation (6.1))

xCoM,γ
f filament position defined as the centre of mass of nf above a threshold γ (see Equation

(6.2))
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xmax
f filament position defined as the location at which the maximum value of nf occurs

(arg max(nf ))

y bi-normal coordinate

y0 initial position of filament in y

yc filament position in y, as defined for the TORPEX validation exercise in Section 5.5
(see Equation (5.40))

yf filament position in y

z coordinate parallel to the magnetic field

zf filament position in z

Γsheath effective resistivity length of the path through the sheath to the target (Te/e2ne,scs)

Γ̂sheath normalised effective resistivity length of the path through the sheath to the target
(1/ns)

Γ‖ resistivity-length of the path that parallel currents take from the filament to the sheath
entrance (see Equation (7.2))

Γ̂‖ normalised resistivity-length of the path that parallel currents take from the filament
to the sheath entrance (see Equation (7.6))

Γpol resistivity length of the polarisation current path

Ω normalised vorticity (ω/Ωi)

ΩM Manufactured solution for Ω for use in the method of manufactured solutions

Ωe electron gyro-frequency (eB/me)

Ωeq normalised equilibrium vorticity

Ωi ion gyro-frequency (eB/mi)

Ω̂ky Fourier mode of φ corresponding to the wave number ky

Φ azimuthal coordinate in a toroidal coordinate system

β plasma beta (8πTe/B2)

δ̂ perpendicular filament size normalised to δ∗0 (δ⊥/δ∗)

δe ρe/l⊥

δi ρi/l⊥

δ∗ δ⊥ at which filaments transition from the inertial regime to either the sheath current
or resistive sheath current regime

δ∗0 estimated value of δ⊥ at which filaments transition from the inertial regime to the
sheath current regime ((g`2‖/2ρsc

2
s)

1/5)
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δ̂∗0 estimated value of δ̂⊥ at which filaments transition from the inertial regime to the
sheath current regime ((gL2

‖/2)1/5)

δ̂† estimated value of δ̂⊥ at which filaments transition from the viscous regime to the
inertial regime ((2D2

Ω/ĝ)1/3)

δ̂4 estimated value of δ̂⊥ at which filaments transition from the viscous regime to the
sheath current regime ((DΩ/L‖)1/4)

δ‖ parallel length scale of filament front in the parallel direction (see Equation (4.28))

δ̂‖ normalised parallel length scale of filament front in the parallel direction (δ‖/ρs, see
Equation (4.28))

δ⊥ perpendicular size of a filament

δ̂⊥ normalised perpendicular size of a filament (δ⊥/ρs)

ε0 permittivity of free space

ε simulation error

εmax maximum simulation error (see Equation (5.7))

εrms root means square simulation error (see Equation (5.6))

η‖ parallel plasma resistivity (1/σ‖)

η̂‖ normalised parallel plasma resistivity (ene,0η‖/B)

η̂ei‖ normalised parallel plasma resistivity due to electron-ion collisions (see Equations (7.11)
and (7.12))

η̂en‖ normalised parallel plasma resistivity due to electron-neutral collisions (see Equations
(7.11) and (7.12))

η‖0 reference case parallel plasma resistivity used in Chapter 7

η̂‖0 normalised reference case parallel plasma resistivity used in Chapter 7 (ene,0η‖0/B)

η‖div parallel plasma resistivity in the last 25% of the domain nearest to the target

η̂‖div normalised parallel plasma resistivity in the last 25% of the domain nearest to the
target (ene,0η‖div/B)

κ magnetic curvature ((b̂ · ∇)b̂)

λe electron mean free path (vth,e/νei)

λi ion mean free path (vth,i/νii)

λn SOL density width

λq SOL heat flux width

µ mass ratio (mi/me)

µ0 magnetic permeability in a classical vacuum
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ν∗ SOL collisionality (`‖/λe)

νei electron-ion collision frequency (see Equation (3.10))

νen electron-neutral collision frequency (nn 〈σv〉)

νi ion cross-field kinematic viscosity (see Equation (3.51))

νii ion-ion collision frequency (see Equation (3.11))

ν‖ normalised electron-ion collisionality (0.51νei/Ωi)

ω vorticity (∇2
⊥ϕ/B)

ωc characteristic inverse time-scale of a plasma

φ normalised electrostatic potential (eϕ/Te)

φM Manufactured solution for φ for use in the method of manufactured solutions

φeq normalised equilibrium electrostatic potential

φf normalised filament potential profile (φ− φeq)

φeven
f component of φf which has even parity in the y direction with respect to the centre of

the filament (see Equation (6.8))

φodd
f component of φf which has odd parity in the y direction with respect to the centre of

the filament (see Equation (6.9))

φ̂k Fourier mode of φ corresponding to the perpendicular wave number k

φ̂ky Fourier mode of φ corresponding to the wave number ky

φw normalised electrostatic potential of the wall of a limiter or divertor (eϕw/Te)

ϕ electrostatic potential

ϕfl floating electrostatic potential

ϕfl,f filament floating electrostatic potential

ϕs electrostatic potential of the entrance to the sheath

ϕw electrostatic potential of the wall of a limiter or divertor

πe electron viscous stress tensor

πi ion viscous stress tensor

ρe electron Larmor radius (vth,e/Ωe)

ρi ion Larmor radius (vth,i/Ωi)

ρs combined species Larmor radius (cs/Ωi)

σ collision cross-section

σX standard deviation of the variable X
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σ‖ parallel plasma conductivity (see Equation (3.18))

σ⊥ perpendicular plasma conductivity (0.51σ‖)

τE energy confinement time
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[245] E. Havĺıčková, W. Fundamenski, V. Naulin et al. ‘Steady-state and time-dependent
modelling of parallel transport in the scrape-off layer’. Plasma Physics and Controlled
Fusion 53.6 (2011), p. 065004. doi: 10.1088/0741-3335/53/6/065004.

[246] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics.
The Finite Volume Method. Pearson Education, 2007. isbn: 9780131274983.

[247] B. D. Dudson, J. Madsen, J. T. Omotani et al. ‘Verification of BOUT++ by the
method of manufactured solutions’. Physics of Plasmas 23.6 (2016), pp. 062303–13.
doi: 10.1063/1.4953429.

[248] F. Riva, C. Colin, J. Denis et al. ‘Blob dynamics in the TORPEX experiment: a
multi-code validation’. Plasma Physics and Controlled Fusion 58.4 (2016), pp. 1–16.
doi: 10.1088/0741-3335/58/4/044005.

[249] P. Ricci, F. D. Halpern, S. Jolliet et al. ‘Simulation of plasma turbulence in scrape-off
layer conditions: the GBS code, simulation results and code validation’. Plasma Physics
and Controlled Fusion 54.12 (2012), p. 124047. doi: 10.1088/0741-3335/54/12/
124047.

[250] A. H. Nielsen, G. S. Xu, J. Madsen et al. ‘Simulation of transition dynamics to high
confinement in fusion plasmas’. Physics Letters A 379.47-48 (2015), pp. 3097–3101.
doi: 10.1016/j.physleta.2015.10.004.

[251] I. Katramados, G. Fishpool, M. Fursdon et al. ‘MAST upgrade closed pumped divertor
design and analysis’. Fusion Engineering and Design 86.9-11 (2011), pp. 1595–1598.
doi: 10.1016/j.fusengdes.2011.02.060.

[252] R. J. Goldston and P. H. Rutherford. Introduction to Plasma Physics. CRC Press, 1995.
isbn: 9781439822074.

[253] U. S. Inan and M. Go lkowski. Principles of Plasma Physics for Engineers and Scientists.
Cambridge University Press, 2010. isbn: 1139492241.

[254] F. F. Chen. Introduction to Plasma Physics and Controlled Fusion: Volume 1: Plasma
Physics. Springer US, 2013. isbn: 9781475755954.

[255] R. Janev. Atomic and Molecular Processes in Fusion Edge Plasmas. Springer US, 2013.
isbn: 9781475793192.

http://dx.doi.org/10.1063/1.4879778
http://dx.doi.org/10.1016/j.jcp.2009.09.031
http://dx.doi.org/10.1002/ctpp.201410017
http://dx.doi.org/10.1088/0741-3335/53/6/065004
http://dx.doi.org/10.1063/1.4953429
http://dx.doi.org/10.1088/0741-3335/58/4/044005
http://dx.doi.org/10.1088/0741-3335/54/12/124047
http://dx.doi.org/10.1088/0741-3335/54/12/124047
http://dx.doi.org/10.1016/j.physleta.2015.10.004
http://dx.doi.org/10.1016/j.fusengdes.2011.02.060


206 BIBLIOGRAPHY

[256] F. Militello. Private communication. 2016.


	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Author's Declaration
	Introduction
	Energy Demand
	Nuclear Fusion
	Magnetic Confinement Fusion
	Tokamaks
	Plasma Heating
	Power Balance
	Progress in Tokamak Research
	ITER and DEMO

	The Scrape-Off Layer
	Limiters
	Divertors
	SOL Operating Regimes
	The Heat Exhaust Problem
	Other SOL Issues
	SOL Filaments

	Thesis Outline

	Literature Review
	Introduction
	Experimental Measurements of Filaments
	Langmuir Probe Measurements
	Optical Imaging
	Characterisation of Filaments

	Theory and Simulation
	Propagation Mechanism
	Filament Formation
	2D Models
	3D Models
	Limitations

	Comparison between Theory and Experiment
	Discussion and Summary

	Physical Model
	Introduction
	3D Model
	Magnetic Curvature and Gradients in Slab Geometry
	Isothermal Braginskii Equations
	Drift-Fluid Reduction
	Model Equations
	Dissipative Parameter Definitions
	Sheath Boundary Conditions

	Normalisation
	2D Closures
	Sheath Dissipation Closure
	Vorticity Advection Closure


	Numerical Implementation
	Introduction
	BOUT++
	Structure of a Physics Module
	Time Integration
	Implementation of Boundary Conditions
	A Note on the BOUT++ Coordinate System

	STORM Physics Modules
	Time Integration
	Spatial Differentiation
	Laplacian Inversion
	Staggered Grids
	Boundary Conditions
	1D Potential Solver

	Filament Simulation Initialisation
	Generating Equilibria
	Filament Initialisation


	Code Verification and Validation
	Introduction
	Verification of Equilibrium
	Analytical Solution
	Error Measurements
	Calculation of the Convergence Order
	Results

	Verification of Parallel Dynamics
	The Shock Tube Problem
	Results

	Verification using MMS
	The Method of Manufactured Solutions
	Guidelines for Constructing Manufactured Solutions
	Testing Coupled Boundary Conditions
	Results

	Validation against TORPEX Experiment
	The TORPEX Device
	Experimental Filament Measurements
	Other Simulation Codes
	Simulation Initialisation
	Observable Quantities
	Sensitivity Study
	Results

	Conclusions

	Filament Dynamics
	Introduction
	Default Simulation Implementation

	Example Simulation
	Quantifying Filaments' Motions

	Effect of Filament Geometry
	Parallel Extent, Lf
	Perpendicular size, deltaperp
	Parallel density gradient, dpar
	Amplitude, A

	Comparison with 2D Closures
	Conclusions

	Effect of Plasma Resistivity
	Introduction
	Enhanced Normalised Resistivity, etapar
	Target Localised Resistivity
	Uniform Resistivity

	Effect of Input Parameters
	Theoretical Predictions
	Results

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Equilibrium Solution
	Shock Tube Problem
	Method of Characteristics
	Characteristic Form
	Riemann Variables and Invariants

	Expansion Wave Produced by a Piston
	Shock Wave Relations
	Shock Wave Produced by a Piston
	Shock Tube Problem Solution

	MMS in BOUT++
	Activating MMS Testing Mode
	Specifying Boundary Conditions
	Convergence of Boundary Conditions

	Nomenclature
	Bibliography

