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Abstract

Explosion tests were carried out in four medium-scale test-vessels incorporating closed,
vented, duct vented and interconnected vessels. A systematic investigation into the
influence of homogeneous and stratified mixtures was undertaken by varying mixture

reactivity, ignition position, injection position and mixture composition.

A feature of this work has been the similarities in explosion phenomena between
stratified and homogeneous explosions and between partially filled and fully filled
geometries to the conclusion that the explosion severity recorded in stratified mixtures

towards the lean flammability limit was in many cases much higher than the fuel

concentration would normally suggest.

Stratified mixtures with global equivalence ratio around stoichiometric produced
significantly lower pressures than their homogeneous equivalents. However, stratified

(globally) near-limit mixtures produced overpressures that were several hundred mbar

higher than those of the equivalent homogeneous mixtures. Even beyond the flammable

range (globally) the stratified mixtures produced significant overpressures.

The phenomena discussed in this thesis illustrate the difficulty in designing adequate
protection for such vented, duct vented and interconnected geometries, since even
relatively small pocket of weak fuel-air mixtures produced relatively severe explosions.
This can have implications for the safety design of inter-connected installations which

are not intended to be subject to flammable mixtures.

While it is an important conclusion from the work presented in this chapter that close to
the flammability limits the stratified explosion severity was greater than its global
concentration would normally indicate, it should be stressed that homogeneous
stoichiometric tests still constitute the worst case tests. Therefore, it is not the
suggestion of this work that the design of vented vessels should be modified to represent

the maxima obtained in stratified work. However, the value of this research in the field

of post-explosion investigation is clear.
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Preface

This thesis presents new experimental research conducted into homogeneous and
stratified gas explosions in vented vessels. The Chapters 1 and 2 provide background to
the experimental sections of this document. The primary aim or this research was to
research the effects of stratified propane-air explosions within a duct vented geometry,
which is an area not previously investigated. In order to give this research some basis,
tests were also conducted on isolated and simply vented vessels in addition to the duct
vented. Furthermore, methane and hydrogen tests were gradually introduced through
the configurations. In addition to the stratified tests, homogeneous tests were also
performed where possible to give a base line severity by which to compare the stratified
tests. As a further pilot study, tests were also conducted on partially filled
interconnected vessels which constitutes the next progressive step in this research. A

more detailed breakdown of the content of each chapter is provided below.

Chapter 1 provides a brief introduction into the current problem of explosions and

explosion research.

Chapter 2 provides a more in depth background to research into the field of explosions,

specifically concentrating on stratified gas explosion research conducted to date, and
specifically for methane, propane and hydrogen-air mixtures within the vessel

geometries investigated in the current research. These include isolated, simply vented

and duct vented geometries, along with more complex interconnected geometries.

Finally, research into stratified gas explosions is considered

In Chapter 3, the experimental and design details for the equipment, instrumentation

and methodology used 1n the research conducted in this lab has been discussed in detail.

This chapter also focuses on safety considerations and concerns.

Chapter 4 provides a small study of stratified and homogeneous propane-air explosions

within an 1solated vessel. The tests presented in this chapter give some baseline data

used for assessing the effectiveness of the venting techniques on homogeneous and

stratified explosions.
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Chapter 5 contains primary experimental research into stratified and homogeneous
explosions in a simply vented vessel. The work conducted on this geometry is slightly
more extensive than for the isolated vessel. End ignition of initially quiescent
homogeneous and stratified propane-air mixtures is the primary concern. Although
methane-air mixtures with end ignition are examined briefly. The results presented in
this chapter form the basis of comparison between the closed vessel tests in Chapter 4
and the following chapter on duct vented explosions, which is the main focus of this

thesis.

Chapter 6 details the work done into stratified mixtures in a duct vented vessel using
propane-air mixtures. The reason for the main focus lying with propane is the lack of
published experimental data dealing with stratified mixtures within a duct vented
geometry. This chapter provides the greatest number of experimental test data and
expands variables to include fuel reactivity, overall concentration (including global
concentrations which would be out of the flammable range under homogeneous

conditions), fuel injection position and ignition position.

Chapter 7 is the final experimental chapter. This chapter is a study of partially filled
interconnected geometries using a range of reactivity gases. This chapter deals with
another 1mportant realistic explosion risk scenario, where an explosive mixture is

formed 1n one chamber of a two chamber vessel. The mixtures for this chapter are

homogeneous at this stage.

Finally, Chapter 8 details the main conclusions of the research and outlines several

important research directions for future advancement.
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1.1. Introduction

Current industrial process plants, both onshore and offshore, are designed in order that
any accidental explosion damage should be minimised. Complete elimination of an

explosion risk is almost impossible to achieve. Therefore the structures must be
designed either to withstand an explosion, or be protected in some manner to reduce the

amount of pressure a process vessel needs to withstand. For economic reasons, it 1s

more common to employ pressure reduction or mitigation as methods of explosion

protection.

The knowledge of explosion development in homogeneous and stratified explosions, as
described in this research, is of importance when developing industrial scale explosion
protection measures, such as venting or automatic suppression systems. Indeed,
knowledge of the flame path and explosion development is fundamental to suppression
system design, in order that minimum safe distances between detection monitors and

suppression firing sites are calculated correctly. Experimental research is the most

fundamental method for producing the data required to make such calculations, and

while modelling techniques play a large part in modern research, the need for validation

against experimental data is one that will not soon be replaced.

1.2. The General Explosion Problem

An accidental explosion will take place where the conditions allow, which includes the
presence of a flammable fuel in the correct proportion with an oxidant (usually air) and
some ignition source. It 1s very difficult and often impossible to completely prevent
ignition sources 1n all areas which may contain a flammable mixture - for example, in
structures which are designed to house flammable gas storage facilities, or where a pipe
within a structure fails, thereby creating an unexpected leak. Therefore, it is often
necessary when, for example, designing a process plant, to build into the design certain

measures to protect the plant or limit the destruction caused in the event that a

flammable fuel-oxidant mixture comes into contact with an ignition source. The

techniques currently employed include suppression, isolation, containment and venting.
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1.3. Recent Industrial Scale Explosions

Throughout the 20™ and 21% Centuries, there has been a succession of industrial

explosion accidents of varying size and cost. Some of the highest profile accidents

include Flixborough, Piper Alpha, Texas Oil and, most recently, Buncefield.

The Nypro (UK) Ltd. process plant explosion at Flixborough on 1 June 1974 was the
result of a rupture of a temporary bypass to a process vessel, which allowed a release of
heavy cyclohexane vapour to form a cloud at ground level. Subsequent ignition of this

vapour resulted in the total destruction of the plant, and the loss of 28 lives.

Over a decade later, on 6 July 1988, an explosion and the ensuing fire caused the loss of

167 lives on the Piper Alpha offshore platform, which was completely destroyed in the
incident. Official reports [1, 2] detail that this incident was the result of an accidental
release of condensate (light oil) through a temporary flange fitted during maintenance,
which had not been designed to take the full working pressure to which it was later
subjected. This led to the formation of a combustible condensate cloud, confined by the
obstacles within the platform, which was subsequently ignited to cause an explosion.

Further destruction was caused by the fire which followed the initial explosion.

This century has seen further such accidental explosions, such as the BP oil refinery in

Texas City, USA, where on 25 March 2005 an explosion partially destroyed the plant at

a total cost in excess of £1 billion, in addition to the loss of 15 lives. Later the same
year, an explosion and subsequent long burning fire at the fuel storage depot at
Buncefield (Hemel Hempstead, UK) occurred on 11 December 2005, causing an
estimated loss of at least £1.5 billion. While there was no loss of life in this incident
there was substantial financial loss to the company and disruption to the lives of those
resident in the surrounding areas. Most recently, two persons were killed in the
explosion and ensuing fire which occurred at the Sunrise Propane Industrial Gases plant

in Toronto Canada on 10 August 2008. The investigation into these latest incidents is

still ongoing.

In each of the above cases the incident was caused by accidental ignition of the vapours

given off by a liquid fuel leak, which resulted in the formation of a flammable gas cloud

possessing some concentration gradient, located within a congested geometry. Despite



Introduction 5

the fact that the majority of accidental explosions involve some concentration gradient

or ‘stratification’ of the fuel in air, the research, literature and guidance available on this

topic so far is relatively sparse.

1.4. Explosion Protection Techniques

Explosion protective measures involve either preventative or responsive techniques.

Preventative techniques involve the removal of one of the three elements necessary for

an explosion to occur; i.e. the control of flammable fuel concentration, prevention of all

ignition sources or control of oxidant.

Where preventative measures, such as inerting, are impractical or impossible to achieve,

protection or mitigation techniques are employed. Mitigation techniques can be split

into four broad categories; isolation, suppression, containment and venting.

1.4.1. Isolation

Where a vessel is connected to other equipment through piping or ducts, an explosion

can easily be transmitted to the connected geometry. In many cases the consequences of

an explosion in a second or third vessel can be much more severe than the explosion in
the original chamber [3-5]. Therefore, in order to prevent transmission of an explosion,
fast-action isolation mechanisms such as knife gate valves or flame arrestors can be

used to prevent flame/explosion transmission into any connected chambers or

equipment.

The use of flame arrestors 1s based upon the principle of quenching, which works by

heat loss through thermal conduction to the walls. This can be aided by diluent gases,

which will increase the quenching distance required dependent on the flammable

mixture and the concentrations involved. Quenching distance decreases with increasing
temperature, pressure and oxygen concentration. HSE guidelines (158) state that flame

arrestors may fail if the operating pressure or temperature is higher than that specified

by the supplier. For example, failure may occur if an arrestor is placed too close to a

burner flame or hot surface, causing overheating, or if bends and obstructions
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downstream of the arrestor cause pressure increases. Therefore the introduction and

placement of a flame arrestor in many industrial installations can be difficult.

With isolation techniques, it is inevitable that some exploston will still occur, therefore
isolation techniques should always be used in conjunction with another method of

protection, such as containment or venting.

1.4.2, Suppression Systems

Suppression systems work by reducing the speed of the combustion process, and thereby
reducing the maximum explosion pressure a vessel must contain. Inert gases or their
equivalents — such as CO,, N, and H,O (vapour) — work by acting as a coolant to the
flame, reducing the flame temperature and reactivity of the mixture. The effectiveness
of such gases depends upon their ability to absorb heat (specific heat capacity, C,),
therefore where sufficient inert gas is added flame propagation ceases and the explosion

1s arrested. This method of inerting also displaces the air in the system, reducing the

available oxygen concentration.

In order for this method to be effective, however, the activation of the injection of the

inerting material (at an injection time, ¢; after ignition, governed by a critical activation

pressure, £,) must be early enough, and at a sufficiently high rate, that the quenching
reduces the explosion quickly enough, and to a level where structural damage to the

confining vessel 1s avoided.

Alternatively, a very effective method of inerting was to use chemical suppressants such
as halogenated hydrocarbons, which worked by decomposing on contact with the flame
zone. This reaction liberated free halogen atoms which acted as free radical scavengers,
combining with the active hydrogen free radicals, effectively terminating the chain
branching reactions necessary for continuing flame propagation. However, the use of

such suppression systems are now prohibited due to environmental impact reasons.

In theory, in an inert atmosphere system, no further explosion protection method is
required, since a flammable mixture can never be attained. However, such a technique

is not infallible and common sense dictates that some other explosion protection device
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be used in conjunction with this technique, increasing the expense. Furthermore, inert
atmospheres can be hazardous to personnel who may be in the vicinity to maintain,

clean or repair such areas, thereby requiring stringent controls.

1.4.3. Containment

Containment of an explosion requires designing a compartment geometry to such a
standard that it will easily contain the worst case explosion which could occur from the
stoichiometric mixture of the fuel it may contain. This method also requires an element
of isolation in order that the explosion may not be transmitted into any connected
equipment, and its implementation is often very costly due to the high design pressures
required for the total containment of an explosion. In many cases an explosion within
such a geometry will often cause permanent deformation to the structure which may
require replacement. This method can therefore be very expensive, but necessary where

other methods such as venting are unsuitable, for example where toxic products may be

released to the surroundings.

1.4.4. Venting

Venting is a widely used explosion protection technique, achieved simply by the

addition of a vent onto the geometry requiring protection, thereby releasing explosion

products to an external location. Venting involves the prompt opening of a defined
aperture on detection of pressure evolution from an explosion. Depending upon the size
of the vessel to be protected, several vent openings may be required to alleviate the
pressure to an acceptable level. Often used in conjunction with isolation valves where
transmission to other pieces of equipment is likely, this method is used to reduce the
cost of explosion containment — with respect to total containment — by reducing the
amount of pressure the vessel must withstand. Correlations and standards are available
for the design of vent size for a given stoichiometric worst case mixture within a

specific geometry, as given by NFPA 68 [6] and the European Standard [7]. These
standards will be discussed further in Chapter 2.
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Similarly to all other methods of explosion mitigation, venting is not applicable for all
types of enclosure, for example, venting may not work adequately at larger scales,

particularly where there are obstacles present within the enclosure.

Where venting is the chosen protection method for a particular vessel, it 1s often
necessary to direct the explosion products and hot gases to an area which is away from
sensitive equipment or personnel, so that cost and hazard to human life is minimised as
far as possible. Where an explosion must be directed in this manner there is often the
need to add a duct to the vent. However, such manipulation of the geometry can

provide further drawbacks, as described in section 1.4.4.1 below.

1.4.4.1. Explosion Venting Through a Duct

It is well documented that while adding a vent to a vessel can significantly reduce the
pressure within a vessel, the addition of a duct onto an open vent can increase the
severity of the reduced pressure of an explosion (as illustrated in Figure 1-1). This

difference can be as much as ten-fold [8] depending upon the parameters involved.

All of the work currently available investigating the effect of a duct on a vented
geometry deals with a worst case, stoichiometric, homogeneous mixtures, when in
reality, the type of mixture which is more likely to form is a stratified mixture. This
area of investigation requires further study in order that safety data can be collated and

used to form predictions of realistic worse case scenarios.
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Figure 1-1: Comparison of unvented to vented gas explosions with small and large vent
opening. Reproduced from Lunn [9].

1.5. The Stratified Explosion Hazard

A ‘real-world’ release of gas fuel within an enclosure can occur through either

instantaneous, finite duration or continuous release. An instantaneous release may occur

where a vessel ruptures completely and all of the fuel contained within it is released

almost instantaneously as a vapour ‘cloud’. A leak of finite duration may occur where a
vessel, pipe or flange has a small crack or fault which releases the fuel contained within

at a release rate dependent upon the pressure within the vessel, and where the leak

comes from a closed or isolated vessel this will create a ‘cloud-like’ release.

Finally, a continuous leak is similar to the finite release case, but which continues due to

a constant replenishment of the fuel. Such a ‘jet’ outflow release often occurs in a

cracked or poorly sealed/maintained pipe-line with a constant flow of fuel to continue
the leak.
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The method of release employed within this research is a continuous jet outflow with a

consistent pressure and momentum flow into the vessel, which will form a cloud with a

concentration gradient inside the test vessel before 1gnition.

Currently available literature on the research of gas explosions has predominantly
focussed on fully premixed/homogeneous fuel-air mixtures, where the concentration of
the fuel is evenly distributed in the compartment. In reality, it is more likely that the

distribution of fuel within a chamber will be stratified — i.e. having some concentration

gradient — being either richer at the top or bottom of the chamber dependent on whether
the fuel has a high or low molecular weight. Indeed, many recent explosions (as
discussed in Section 1.3) have involved the formation of a concentration gradient in a

confined area, usually with a heavier-than-air vapour which accumulates along the
ground or lower level of the geometry. In most industrial scale accidents there has been

no confinement at the top of the geometry, and explosion severity has been enhanced by

obstacles at ground level, increasing turbulence.

Stratified gas explosions of buoyant gases such as methane or hydrogen are also a

problem, more so with the rising ‘hydrogen economy’, therefore some experimental data

using hydrogen will also be presented.

Whilst a small amount of data dealing with stratified gas explosions does exist in
literature, as discussed in Chapter 2, it would be useful for the design and

implementation of standards to have further data where the concentration of the fuel-air

mixture is realistic in nature, rather than the homogeneous concentration that is

primarily addressed in current literature.

1.6. Significance of the Current Research

Stratified gas explosions are commonplace in a wide variety of real-world situations, as

well as providing an interesting subject for scientific academic study. The research

presented in this thesis is intended to be of interest not only to the scientific academic

community as an extension of research conducted previously on different scales and

geometries, but is also intended to be of practical use to the explosion investigation
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community by providing some data on realistic explosions which can be referred back to

when investigating similar events on industrial scale accidents.

The data presented will hopefully be a valuable source of information to help the
investigator work backwards to the amount of fuel released based upon the damage

encountered, and not merely have to assume homogeneous gas volumes which, as will

be shown later, may actually lead to overestimation of the fuel released, as the stratified

explosion produces a more severe event.

The fuels in this research have been chosen for their relevance in the current climate, be

that energy or safety. Hydrocarbons are the fuel of the present and therefore research

has been undertaken using methane and propane, which have very different properties as
hydrocarbon fuels, and also hydrogen as the potential fuel of the future. Much is still

not known about the dangers associated with the use of hydrogen, and at least some of

these will be addressed 1n the present research.

By gaining empirical evidence relating to stratified explosions under the relatively

simple conditions outlined in this research, a greater understanding of real-world

accidental release explosions can be achieved.

1.7. Aims and Objectives of the Current Research

1.7.1. Aims

The aim of this research is to investigate the explosion hazards created by stratified gas
layers ~ including partially filled volumes — in enclosed, vented and interconnected

vessels. Through doing this, it is proposed that a better knowledge and understanding of

stratified gas hazards can be gained, and this should be a step towards being able to

relate experimental data back to real world gas leak situations occurring within enclosed

arcas.
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1.7.2. Primary Objectives
The primary objective of this work is to investigate and produce new experimental data
on the hazards of stratified explosions in a medium scale geometry.

The areas of focus within this research are to be:

e The stratified explosion hazard across a range of variable reactivity gases;
e The effect of spark position in relation to leak position of the gas;

e The propensity for stratified gas mixtures to ignite outside of the homogenous
flammable limits of the relevant gas;

e The difference in effects from premixed and stratified explosions for the same
conditions;

e The effect of time delay from release to ignition in stratified explosions.
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2.1. Introduction

This chapter is intended provide an overview of the fundamental parameters involved in
combustion research to date, associated with homogeneous and stratified gas-air
mixtures. Data and theory relating to vented, duct vented and interconnected vessel

explosions will be discussed.

Due to the abundance of research published on homogeneous gas explosions within the

geometry types included in this thesis it is not practical to present all available, so rather
a brief overview of key text will be discussed. In each section, a brief summary will be

presented, and further information is available from the relevant references.

The presentation and discussion here of some of the works investigating homogeneous
mixtures is of importance to the current research, and serves to provide a baseline by
which the effective severity of stratified gas explosions can be assessed. Detailing the

important literature also serves to demonstrate the validity of this current research as a

new contribution to the field of combustion engineering.

2.2. General Explosion Theory

Before discussing the nature of development of explosions within the complex

geometries discussed in this research, it is necessary to define and explain some detail of

fundamental parameters often used in combustion research.

2.2.1. Flammability Limits

The flammability limits for a given combustible material are physical measurable

parameters which define the concentration of the fuel, when mixed with an oxidant,
outside of which a sustained flame cannot propagate. The lower flammability limit
(LFL) and upper flammability limit (UFL) are measures of these concentrations,
expressed as a volume ratio (%) or equivalence ratio (®). Often in literature, the upper
and lower flammability limits may be referred to as explosive limits (UEL and LEL

respectively), these terms are interchangeable and have no difference in meaning [10].
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Flammability i1s dependent upon a number of variables, including initial conditions
(specifically pressure and temperature), and ignition energy. In simple terms, the higher
the temperature or pressure at the time of ignition, the easier the reaction will propagate
[11]. Furthermore, the properties of the individual gases particularly, the relative

diffusivity of the fuel and an oxidant close to the flammability limits can influence those
limits [12].

Knowledge of flammability limits is important to industries which deal with
combustible materials, within which a potentially flammable or explosive mixture may

form, in order that quantitative risk analyses can be carried out effectively.

There has been a significant amount of research into the determination of the LFL and
UFL for most flammable fuel-air mixtures. Consequently, there is slight variation in
literature as to the exact values of these limits. The overall trend with time has seen a
gradual widening of the flammability limits [10, 12-18]. This widening may be
attributed to differences in measurement criterion, or to an increased sophistication

measurement techniques and equipment. For the purposes of the current research, the

limits which will be followed are those of Zabetakis [19], shown in Table 2-1, which
match those most widely used. It is, however, acknowledged that variability is

probable, dependent upon the equipment and measurement guidelines.

Table 2-1: Flammability limits for homogeneous methane, propane and hydrogen-air
mixtures at standard ambient initial conditions [19]

Methane 5.0
Propane 2.1

Hydrogen 4.0

From a safety perspective, the lower flammability limit is of greater importance. This is

because the concern in an accident situation is for a flammable fuel to leak and form a
flammable mixture approaching and exceeding the lean limit as it mixes with air. The

rich limit may also be of importance where air or oxygen may leak into a storage vessel,
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vapour extraction system or vacuum extraction lines, where the UEL can be approached.

However, this is less common in accident scenarios.

2.2.2. Equivalence Ratio

The equivalence ratio (@) is defined as the ratio between the actual amount of fuel
present in a system and the theoretical stoichiometric fuel concentration for that tuel.

This relationship can be expressed in simple terms by:

b= KA y Fuel )Smichfamemc ]/ KA Y Fuel )Acrual -l Eq' 2-1

where @ <1 is lean, @ =1 is stoichiometric and @ >1 is a fuel rich mixture. A
stoichiometric mixture can be defined as the balanced combustion of a fuel and an
oxidiser, such that none of either remains at the end of combustion [6]. The
stoichiometric value is often taken to be the worst case scenario in terms of explosion
protection calculations, when in actuality, for most gases, the most severe explosion for

a given gas will typically occur to the rich side of stoichiometric where an excess of fuel

is available for participation in the combustion reaction.

Following ignition of a flammable mixture, the flame, providing it is not extinguished,
will propagate away from the ignition source in one of two regimes; either subsonic

(deflagration), or supersonic (detonation), relative to the unburned gas. The theory of

propagation in these two regimes is discussed briefly below.

2.2.3. Deflagration

In accident scenarios, deflagrations are the most common type of explosion.
A deflagration will propagate at subsonic speeds, that is, the burning velocity of the
unburned gas in the system is slower than the speed of sound [20]. The pressure of a
deflagration may be as low as a few mbar up to several bar, dependent upon the
confining nature of the surroundings. As a general rule, for most combustible materials
the ratio of initial pressure to peak pressure within an enclosure will not exceed a ratio

of approximately 8:1 [19]. However, in some cases, the explosion may accelerate to
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detonation where the ratio can exceed 40:1 [19]. Some details of unconfined explosion
development are given in the following sections, followed by details of explosion
development specific to closed, vented, duct-vented and interconnected vessels in

Sections 2.3, 2.4, 2.5 and 2.6 respectively.

2.2.3.1. Flame Speed and Burning Velocity

Flame speed, S; and burning velo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>