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Abstract

The High Value Manufacturing (HVM) sector is vital for developed countries due to the
creation of innovative products with advanced technology that cannot be reproduced at the same
cost and time with traditional technology. The main challenge for HVM is to rapidly increase
production volume from one-off products to low production volume. This requires highly flexible
manufacturing systems that can produce new products at variable production volumes. Current
manufacturing systems, classified as dedicated, flexible and reconfigurable systems, are limited
to produce one type of product(s), within a production volume range and have fixed layouts
of machines. Thus, there is a need for highly flexible systems that can rapidly adjust their
production volume according to the production demand (i.e. main HVM challenge).

Therefore, a novel manufacturing framework, called INTelligent REconfiguration for a raPID
production change (INTREPID), is presented in this thesis. INTREPID consists of a user
interface and communications platform, a job allocation system, a globally distributed network of
Reconfigurable Manufacturing Centres (RMCs), consisting of interconnected factories, and Self-
Reconfigurable Manufacturing Systems (S-RMSs). The highly flexible S-RMS consists of movable
machines and Mobile Manufacturing Robots (MMRs). The novelty of the S-RMS is its capability
of forming layouts bespoke to the current production needs. The vision of INTREPID is to offer
global HVM services through the network of RMCs. The job allocation system determines the
best possible RMCs or factories to perform a job by considering the complexity of the production
requirements and the status of the available S-RMSs at each factory.

The planning of the production with S-RMS is challenging due to its high flexibility. The
main example of this flexibility is the possibility to create layouts bespoke to current production
needs. Yet, this flexibility involves the challenges of determining allocations and schedules of
tasks to robots and machines, positions to manufacture, and routes to reach those positions. In
manufacturing systems with fixed layouts, production plans are determined by solving a sequence
of problems. However, for the S-RMS, it is proposed to determine production plans with a single
problem that covers the scheduling, machine layout and vehicle routing problems simultaneously.
This novel problem is called the Scheduling, positions Assigning and Routing problem (SAR)
problem. In order to determine the best possible production plan(s) for the S-RMS, it is necessary
to use optimisation methods.

Dozens of elements, characteristics and assumptions from the constituent problems might be
included in the formulation of the SAR problem. Elements, characteristics and assumptions can
be considered as decision variables on whether to include or not the elements and characteristics
and under which assumptions in the formulation. There are two types of decision variables.
Fundamental variables are natural to the SAR problem (e.g. manufacturing resources, factory
design and operation), whilst auxiliary variables arise from the aim to simplify the formulation
of the optimisation problem (i.e. time formulated as discrete or continuous). Due to the large
number of decision variables, there might be millions of possible ways to formulate the SAR
problem (i.e. the SAR problem space). Some of these variants are intractable to be solved with
optimisation methods. Hence, before formulating the SAR problem, it is necessary to select a
problem(s) that is realistic to industrial scenarios but solvable with optimisation methods.

Existing selection methods work with pairwise comparisons of alternatives. However, for a
space of millions of SAR problems, pairwise comparisons are intractable. Hence, in this thesis,
a novel Decision Making Methodology (DMM) based on the controlled convergence method is
presented. The DMM helps down-selecting one or a few SAR problems from millions of possible
SAR problems. The DMM is demonstrated with a case study of the SAR problem and the results
show a significant reduction of the reviewed SAR problems and the time to select them.
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Chapter 1

Introduction

The manufacturing sector is of paramount importance to the economy. Due to
globalisation, the manufacturing sector has become very competitive and chal-
lenging. As a result, many companies compete by adding value to their products
instead of reducing their costs. Adding value refers to endowing products and
services with a unique selling point that is very attractive, if not irresistible, to
customers. Examples of added value are customised features and attractive func-
tionalities. Adding value through the use of advanced manufacturing technologies
is known as HVM [1].

The distinguishing factor of HVM over other alternatives to add value is the
difficulty to reproduce products (i.e. High Value (HV) products) at the same cost,
time and quality. The difficulty to reproduce HV products is a consequence of
the many years of research and development required to design and develop HV
products and their manufacturing processes. Moreover, the main contribution of
HVM to society is the creation of intellectual property and patents due to the
development of HV products. Important challenges for HVM are [2]:

• Developing approaches for concurrent engineering in order to boost product
development

• Developing plug and play and modular systems to produce high-volume pro-
duction

• Creating and controlling fragmented global supply chains to manufacture
near customers

• Developing approaches that facilitate increasing the production volume of
new products from one-off products to low production volumes

The last challenge is known as the valley of death [2]. Although, this challenge
refers primarily to increase production volume according to the product demand,

1



1.1. Motivation

a broader definition of the valley of death is to increase or decrease (i.e. adjust)
production volume according to demand whilst keeping production efficiency (i.e.
production cost and time) and quality. For HV products, adjusting production
volume is particularly difficult due to the use of advanced technologies for their
manufacture. Therefore, it is important to research and develop highly flexible and
reconfigurable frameworks and systems that can rapidly adjust their production
volume according to a dynamic production demand (i.e. main HVM challenge).
The focus on this thesis is to address the valley of death challenge for products
manufactured with advanced technology (e.g. aircraft engines) and low production
volume (i.e. 1 to 10 products per hour [3]). The valley of death challenge is
addressed through the proposal of a manufacturing framework to offer global HVM
services and its self-reconfigurable manufacturing system.

The rest of this chapter is organised in the following sections. An overview
of relevant research that focuses on manufacturing in a highly dynamic scenario
is presented in Section 1.1. The aim and objectives of this thesis, that focus on
addressing the main HVM challenge, are presented in Section 1.2. The contribu-
tions of this thesis are presented in Section 1.3, and publications are presented in
Section 1.4. Lastly, an outline of the rest of this thesis is provided in Section 1.5.

1.1 Motivation

Conventional systems such as flexible, reconfigurable and dedicated systems are
capable of manufacturing within a finite range of production volume and product
variants, Figure 1.1 [4],[5]. Dedicated Manufacturing Systems (DMSs) are capable
of producing high production volumes of a single product. In contrast, Flexible
Manufacturing Systems (FMSs) can produce multiple products at low production
volumes. Alternatively, Reconfigurable Manufacturing Systems (RMSs) are capa-
ble of producing more variants of products than DMSs but less than FMSs at a
higher production volume than FMSs but lower than DMSs. These three type
of systems are not capable of rapidly changing production capacity for innovative
products because they are designed to manufacture specific production volumes
and for a limited number of products or product families. Therefore, these type
of systems are not capable of addressing the main HVM challenge (i.e. adjusting
production volume according to production demand of innovative products).

The production layouts of these conventional manufacturing systems are de-
signed and implemented considering the expected number of product variants and
their volume. However, nowadays, companies have to manage unknown and dy-
namic production requirements that require complete change of the production
layout. Hence, dedicated, flexible and reconfigurable manufacturing systems are
not flexible enough to address the main HVM challenge. Approaches focused on
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Chapter 1. Introduction

Figure 1.1: Classification of established manufacturing systems according to the
production volume, product variants they can manufacture and the organisation
of their processes [4],[5]. The flexible, reconfigurable and dedicated manufacturing
systems are classified according to the production volume and the number of prod-
uct variants each system can produce. Flexible Manufacturing Systems (FMSs)
have their processes organised in a disconnected flow and the FMSs are able to
manufacture a high product variety at low production volumes. Dedicated Manu-
facturing Systems (DMSs) have their processes organised in a connected flow, and
the DMSs are able to produce high production volume but for a single product.
Reconfigurable Manufacturing Systems (RMSs) are a hybrid of FMSs and DMSs.
RMSs have their processes organised in a semi-connected flow and the FMSs are
able to produce a high variety of products at low production volumes.
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producing at variable production volumes or for multiple products are:

• Networks of decentralised factories [6],[7]

• Adaptable and cognitive factories [8],[9]

• Adaptable and mobile manufacturing resources such as:

– Mobile robots for manufacturing [10],[11]

– Mobile manufacturing cells [12],[13]

– Manually movable manufacturing equipment (e.g. industrial robots [14]
and manufacturing stations [15])

The use of idle manufacturing equipment in factory networks to offer manu-
facturing services was proposed in the paradigm cloud manufacturing [6]. The
research focused on the technologies for product data transfer and management,
and makes use of off-the-shelf scheduling algorithms such as first come, first serve.
Alternative research on factory networks with a focus on mechanisms for an agile
formation and coordination of temporal factories was proposed in the framework
NetMan [7]. A transformable factory where production layouts can be manually
changed was proposed in [8]. This factory considers traditional equipment such as
DMSs and FMSs, which takes considerable time to change the layouts, and setup
and calibrate equipment. Also, this factory does not make use of autonomous
resources endowed with mobility and high level decision making systems. In con-
trast to this, providing learning, reasoning and planning abilities to the production
resources was proposed to achieve a cognitive factory [9]. The cognitive factory
proposed intelligent and autonomous resources which can change production set-
tings automatically depending on well known products.

In order to address the lack of mobility of the cognitive and tranformable
factory, research on mobile manufacturing resources has been proposed. Mobile
robots such as mobile manipulators were proposed to perform basic assembly and
logistics tasks in [10]. This research focused on developing and building systems
to facilitate an accurate movement of robots in a well structured environment
and the manipulation of parts to transport and assembly. The use of several
robots for manufacturing required research on allocation algorithms. This issue
was researched in [11], where multiple mobile manipulators were used to perform
manufacturing tasks at fixed and known positions. The Hungarian method was
implemented to determine robots to tasks allocations. The use of fixed positions to
manufacture in a well structured environment reduces the flexibility of the previous
two systems and make them prompt to error when the environment is changed.
Also, robots require new training for different products and environments.
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Mobile manufacturing cells to create layouts depending on the products to
manufacture were proposed in [12],[13]. These two approaches focused on devel-
oping path planning and optimization algorithms that result in layouts depending
on the products. There is an implicit allocation of manufacturing cells to the tasks
by the minimisation of travelling distance of manufacturing cells to products. The
use of manufacturing cells instead of individual manufacturing processes reduces
the flexibility of the system to create novel layouts and manufacture complex
products. The use of manually movable resources was proposed in [14],[15]. The
resources consist of industrial robots [14] and production stations [15] with plug
and play capacity. These two approaches focus on rapid deployment, calibration
and change of production settings according to the product to manufacture. The
manual movement of resources and the use of fixed locations to manufacture limit
the flexibility of these approaches.

These approaches on adaptable factories and mobile manufacturing resources
are independent from each other, and they focus on specific problems. These ap-
proaches have focus on factories networks, factories and manufacturing resources,
but none has proposed a comprehensive framework that covers these three ele-
ments all together. There is a lack of comprehensive frameworks and systems
that can manufacture innovative products at variable volumes with the use of ad-
vanced technologies (i.e. main HVM challenge). In order to address this challenge,
highly flexible manufacturing systems that can rapidly and automatically change
production layouts to produce multiple products at variable volumes are required.
Therefore, a novel framework that makes use of networks of reconfigurable factories
and mobile robots as manufacturing resources is presented in this thesis.

Due to the use of reconfigurable factories and mobile robots, it is necessary
to solve a very complex problem for the production planning. Production plan-
ning with mobile robots requires determining allocations and schedules of tasks to
robots, positions to perform the tasks, and routes of movement to reach these po-
sitions. Through the rest of this thesis, the production planning problem is called
the SAR. Representative problem formulations with the use of mobile robots (i.e.
mobile manipulators) for manufacturing focus on path planning for sequences of
tasks [16], trajectory planning of the mobile platform and the arm robot [17],
trajectory optimisation [18], analysis of dynamic motion of a flexible manipulator
with maximum payload [19], multi-robot task allocation [11], large force tasks with
multiple robots [20], optimisation of path planning and torque minimisation for
multiple robots [21] However, there is a lack of problem formulations that consider
the scheduling, positions assigning and path planning to coordinate the production
of multiple products under quality, time and cost constraints. Hence, an important
contribution is to formulate problems with this type of complexity and detail (e.g.
SAR problem).
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1.2. Aim and objectives

Prior to solving the SAR problem, it is necessary to formulate an inclusive SAR
problem that covers elements and characteristics regarding the factory design and
its operation, and mobile robots and their capabilities. Hence, it is necessary to
study operations research problems such as scheduling, allocation, machine layout
and vehicle routing, and robotics problems such as path planning and multi-robot
task allocation. The study of these problems provides a large number of elements
to include in the SAR problem formulation, characteristics of the problem and
assumptions that can be applied over these elements and characteristics. The
combination of these elements, characteristics and their assumptions might result
in a vast number of ways to formulate the SAR problem. For example twenty types
of assumptions where each assumption has two options can result in approximately
one million ways to formulate the SAR problem. Hence, it is necessary to select
a SAR problem to formulate that is realistic enough to industrial scenarios but
feasible enough to be solved with optimisation methods.

The problem to select a SAR problem to formulate can be addressed with
decision making methods focused on selection. The most relevant decision mak-
ing methods belong to concept generation and selection from the field of prod-
uct design and development [22],[23]. Relevant decision making methods for
selection make use of decision matrix, outranking comparisons, and distance-
based comparisons. Decision matrix methods are the Quality Function Deploy-
ment (QFD) method, the Weighted Rating Method (WRM), the Pugh’s eval-
uation matrix and the Analytic Hierarchy Process (AHP) [24],[25]. The most
relevant outranking methods are ELimination and (Et) Choice Translating REal-
ity (ELECTRE) and Preference Ranking Organization METHod for Enrichment
Evaluations (PROMETHEE) [26].

Examples of distance-based methods are Multicriteria Optimisation and Com-
promise Solution (VIKOR) and Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) [27],[28]. These methods are based on pairwise compar-
ison of alternatives against each other at each selection criteria. Although for the
SAR problem there is a single selection criteria (i.e. realism versus solvability),
there are millions of alternatives. Therefore, it is necessary to propose and de-
velop a novel decision making methodology for selection from a very large number
of problems.

1.2 Aim and objectives

The aim of this thesis is to propose, develop and formulate the production planning
problem of a novel approach that is capable of autonomously adjusting production
capacity according to current production requirements (i.e. surpassing the valley
of death for HVM [2]). In order to achieve this aim, the following objectives are
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proposed:

• Analysis of the literature on the following topics:

– Highly flexible frameworks and systems that focus on manufacturing in
a highly dynamic scenarios.

– Problems related to production planning with mobile robots. Related
problems from operations research are: scheduling, machine layout and
vehicle routing, whilst from robotics are: path planning and multi-robot
task allocation.

– Decision making methods focused on selection.

• Propose and develop a novel framework with the aim of offering global HVM
services through a user interface and communications platform, a network of
reconfigurable factories, a job allocation system, and mobile manufacturing
resources (e.g. mobile robots).

• Propose an inclusive production planning problem that considers mobile
robots as manufacturing resources (i.e. the Scheduling, positions Assigning
and Routing problem (SAR) problem). Propose a notation for the elements,
characteristics and assumptions of the SAR problem.

• Propose and develop a decision making methodology to select a SAR prob-
lem from a very large SAR problem space. The selection is based on the
qualitative criteria of being realistic to industrial scenarios but solvable with
optimisation methods.

• Implement the decision making methodology and evaluate a SAR problem
case study.

1.3 Contributions

The completion of the aim and objectives leads to the following contributions:

• The first main contribution is a novel framework to offer global HVM ser-
vices that is described in Chapter 3. The novelty of the framework consists of
covering a wide number of technologies in a single comprehensive framework.
The framework consists of a user interface and communications platform, a
job allocation system, a network of factories and mobile manufacturing re-
sources, Figure 1.2. The framework was proposed and developed through the
analysis of highly flexible frameworks and systems. The framework was syn-
thesised from the best working practices and technologies. Challenges and

7



1.3. Contributions

problems related to the framework were identified. The main challenges are
designing and developing user interface and communications platform, de-
signing and constructing the factories network and mobile manufacturing re-
sources, and designing and developing the job allocation system. INTREPID
was presented in the publication [29].

• The second main contribution is a novel and inclusive production planning
problem presented in Chapters 4 and 5. The problem that considers mobile
manufacturing resources within a single reconfigurable factory. This pro-
duction planning problem is the core problem for the job allocation system,
which can be later scaled to a cluster of connected factories and multiple
distributed factories. The novelty of this production planning is the con-
sideration of mobile robots to perform all the manufacturing tasks. The
problem was synthesised from the analysis of the operations research prob-
lems such as scheduling, allocation, machine layout (i.e. positions assigning),
vehicle routing; and robotics problems such as path planning and multi-robot
task allocation. Also, based on this analysis, a notation for the production
planning problem was proposed. The novel production planning was called
the SAR problem due to the inclusion of the scheduling, positions assigning
(i.e. machine layout) and vehicle routing problems. The SAR problem is
highlighted within the novel framework in Figure 1.2.

• The third main contribution is a novel Decision Making Methodology (DMM)
that is described in Chapter 6. The purpose of the DMM is to select a SAR
problem that is realistic but solvable with optimisation methods. A vast
number of possible SAR problems (i.e. SAR problem space) can be gen-
erated by the combination of all elements, characteristics and assumptions
from operations research (i.e. scheduling, allocation, machine layout, vehicle
routing) and robotics (i.e. path planning and multi-robot task allocation)
problems. The novelty of the methodology is its application to a very large
number of alternatives (i.e. SAR problems). The novel methodology intro-
duced in this thesis is motivated by the controlled convergence method. The
methodology works by aggregating elements, characteristics and assump-
tions to a core SAR problem through multiple stages. Metrics to evaluate
the performance of the methodology were proposed. The methodology was
implemented in LabVIEW and evaluated on an exemplar case study of the
SAR problem in Chapter 7. A partial version of the methodology and its
implementation was introduced in the publication [30].
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Figure 1.2: First and second contributions of this thesis. First, is the INTelligent
REconfiguration for a raPID production change (INTREPID) framework. Second
is the production planning problem with mobile manufacturing resources. The
parts of INTREPID are shown in yellow rectangles. These are: a) User interface
and communications platform; b) Job allocation system; c) Network of Reconfig-
urable Manufacturing Centres (RMCs); and d) Manufacturing resources (movable
machines and Mobile Manufacturing Robots (MMRs)). Bidirectional blue arrows
represent communications between RMCs and bidirectional red arrows represent
communications between RMCs and the job allocation system. Each RMC is com-
posed of interconnected factories. An example of a factory and production layouts
with mobile robots are highlighted. At each factory, the production planning
problem with mobile resources is solved. The production planning with mobile
resources problem is the second contribution of this thesis. This problem is high-
lighted with a red rectangle. This problem refers to planning and simulation in an
optimisation loop until the best possible production plan is determined. Product
and process data from jobs is the input for this optimisation loop, whilst the out-
put are production plans that are executed and monitored in real world. Real-time
problems are managed through replanning and reconfiguration.
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1.4 Publications

The research developed in this thesis has contributed to the following publications:

• V. M. Cedeno-Campos, P. A. Trodden, T. J. Dodd, and J. Heley, Highly
flexible self-reconfigurable systems for rapid layout formation to offer manu-
facturing services, in 2013 IEEE International Conference on Systems, Man,
and Cybernetics, 2013, pp. 4819–4824.

• V. M. Cedeno-Campos, P. A. Trodden, and T. J. Dodd, An interactive
methodology to explore optimization scenarios of a reconfigurable factory,
in 20th IEEE International Conference on Emerging Technologies and Fac-
tory Automation, 2015.

• V. M. Cedeno-Campos, P. A. Trodden and T.J. Dodd, On the fundamen-
tals of the production planning problem selection for mobile manufacturing
robots in a self-reconfigurable factory, Journal of Robotics and Computer-
Integrated Manufacturing (In preparation).

1.5 Outline

The rest of the thesis is organised in the following chapters:
Chapter 2 presents a literature review of manufacturing paradigms, models,

systems and layouts. The paradigms are analysed in order to differentiate high
added value from other types of added value. The types of added value by each
paradigm are identified. The paradigms are classified according to their industrial
age into Industry 1.0 (i.e. use of steam and water energy), Industry 2.0 (i.e.
use of electricity and mass labour), Industry 3.0 (i.e. use of computers), and
Industry 4.0 (i.e. use of wireless communications). The manufacturing models,
systems and layouts are analysed in order to critically appraise their advantages
and disadvantages (i.e. adequateness) to address the main HVM challenge (i.e.
surpassing the valley of death [2]). The models, systems and layouts are classified
according to their stages within the product and process life cycles. This literature
review helps to formulate an approach to address the main HVM challenge in
Chapter 3.

Chapter 3 presents the novel framework to address the main HVM chal-
lenge (i.e. surpassing the valley of death [2]). The name of the framework is
INTREPID. INTREPID’s vision is to offer global HVM services. The man-
ufacturing paradigms and systems that motivated INTREPID are analysed in
this chapter. The paradigms are networked manufacturing, cloud manufacturing,
Industry 4.0, cloud robotics and the type of system are the Self-Reconfigurable
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Manufacturing Systems (S-RMSs). INTREPID’s operation, and its main parts
are thoroughly described. These parts are a user interface and communications
platform, a network of reconfigurable factories, a job allocation system and mobile
manufacturing resources (i.e. S-RMS). The novelty of INTREPID is the inclusion
of these four parts in a single comprehensive framework and the proposal of mobile
robots and movable machines as manufacturing resources. Literature related to
INTREPID’s parts is presented, and desired characteristics are highlighted. These
desired characteristics are included in the INTREPID’ parts and their function-
ality. Challenges and related problems for INTREPID are identified. These are
the design and development of a user interface and communications platform, the
design and construction of the factories network and the mobile manufacturing
resources, and the design and development of the job allocation system. The rest
of the chapters focus on the challenge of developing a job allocation system for
mobile manufacturing resources at a single factory.

Chapter 4 presents an analysis of the related problems for the production
planning with the use of mobile resources. These problems are scheduling, ma-
chine layout or Facilities Layout Problem (FLP), and vehicle routing (i.e. routing).
These problems are from the field of operations research, but analogous problems
from the field of robotics are also analysed. These are the Multi Robot Task Al-
location (MRTA) problem, which corresponds to the scheduling problem, and the
path planning problem, that corresponds to the vehicle routing problem. The use
of mobile resources lead to the proposal of a novel production planning problem
called the Scheduling, positions Assigning and Routing problem (SAR). The nov-
elty of the SAR problem is the inclusion of mobile robots and movable machines
as manufacturing resources. The problems of scheduling, machine layout, FLP,
routing, MRTA and path planning are analysed in order to identify their defin-
ing elements, characteristics and assumptions. The relationship of these elements,
characteristics and assumptions to the SAR problem is emphasised. The basic
variants of each of the analysed problems (i.e. scheduling, machine layout, FLP,
routing, MRTA and path planning) are described and their relevance to the SAR
problem is identified. Notations, taxonomies, and basic optimisation objectives of
each of the analysed problems are identified whenever there exist any.

Chapter 5 presents definitions and general assumptions that define the core
elements of the SAR problem. This chapter also proposes a novel notation for the
elements and characteristics of the SAR problem. The novelty of the notation is
the wide number of elements and characteristics that are covered. These relevant
problems are from operations research (i.e. scheduling, allocation, machine layout,
vehicle routing) and robotics (i.e. path planning and multi-robot task allocation).
In this chapter, it is proposed to select the SAR problem to formulate with decision
making methods in order to select a SAR problem that is realistic to industrial
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scenarios but solvable with optimisation methods. The realism and solvability
of the SAR problem are given by the combination(s) of elements, characteristics
and their assumptions in the formulation of the SAR problem. Elements, charac-
teristics and their assumptions are considered as decision variables in the decision
making problem. The decision variables are classified in three types: factory design
and operation; production requirements; and manufacturing resources variables.
These three types occur naturally due to the purpose of describing the production
planning problem with mobile manufacturing resources. Hence, variables from
these three types are called fundamental, whilst, a type consisting of auxiliary
characteristics and assumptions, with the purpose of formulating the SAR prob-
lem with optimisation methods, is called system variables. The combination of
decision variables (i.e. elements, characteristics and their assumptions) results in
a vast number of SAR problem variants called the SAR problem space. An exam-
ple of one SAR problem variant is presented and represented with the proposed
notation. Then, a group of representative assumptions are applied on this SAR
problem variant in order to demonstrate the effects of these assumptions on the
SAR problem variant. Finally, the simplified SAR problem variant is represented
with the proposed notation.

Chapter 6 presents a decision making methodology that helps select the ap-
propriate SAR problem that is realistic but solvable with optimisation methods.
The main working principle of the methodology is based on Pugh’s controlled con-
vergence method. In brief, the methodology works by aggregating partial groups
of the elements, characteristics and assumptions (i.e. decision variables) to a core
SAR problem through multiple stages. The novelty of this methodology is its
capability of handling a very large number of alternatives by applying the con-
trolled convergence method on subgroups of decision variables through multiple
stages. Decision making methods which focus on selection are reviewed in this
chapter. Specifically, the reviewed selection methods are from the area of con-
cept generation and selection from the field of product design and development.
These concept generation and selection methods have the advantage of promoting
the use of abstract representations instead of detailed designs, models, or problem
formulations. Working principles of the methodology are presented, and the algo-
rithm to apply the methodology is explained based on these working principles.
The algorithm consists of the following steps: (1) Decision variables collection (i.e.
brainstorming or literature review); (2) variables grouping by their relationship,
variables hierarchisation and weighting of the variables’ option;, (3) variables se-
lection to analyse at each stage, (4) variables combination; (5) aggregation into
partial SAR problems; and (6) analysis and selection of the partial SAR problems.
The steps of variable combination, analysis and selection occur iteratively for all
the stages to analyse. Also, metrics to evaluate the performance of the method-
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ology are proposed, and an implementation of the methodology in LabVIEW is
described.

Chapter 7 presents the application of the decision making methodology to a
case study from the SAR problem. This chapter is divided in three parts, where
the first two parts correspond to the application of the DMM on the case study
and the third part refers to the representation and the formulation of selected SAR
problems with the methodology. The first part of this chapter corresponds to the
first three steps of the methodology. The first step is the presentation of decision
variables from the case study. The data collection step is performed with a liter-
ature review from Chapter 4. Step 2 (i.e. variables hierarchisation and grouping,
and weighting of the variables’ options) and step 3 (i.e. variables classification
in stages) of the DMM are performed in the first part of this chapter. The vari-
ables are classified by the type of elements they describe (i.e. factory operation
and design, production requirements and manufacturing resources). Steps 4 and
5 (i.e. variables combination and aggregation), and step 6 (i.e. SAR problem
analysis and selection) are performed in the second part of this chapter. Steps 4
and 5 consist of combining variables’ options and aggregating them to a core SAR
problem to generate more detailed SAR problems at each stage. The results of
these combinatorial and aggregation processes are graphs that help analyse and
select SAR problems at step 6. Representative SAR problems selected at each
stage are described to demonstrate the reasons for their selection (i.e. realism,
feasibility and interest for exploring at next stages). Further analysis between one
stage and its subsequent stage (i.e. intrastage analysis) is performed. Performance
metrics of the methodology shows a reduction of the reviewed SAR problem space
of 99.986% in comparison with the total SAR problem space. The reviewed SAR
problems were 1,664 from a total of 12,582,912 SAR problems. The final selected
SAR problems are 4 from the possible of 12,582,912 SAR problems. Therefore,
these metrics demonstrate the importance and success of applying the methodol-
ogy over very large number of alternatives (SAR problems in this case). The last
part of this chapter presents the representation, with the proposed notation, and
the formulation of selected SAR problems.

Chapter 8 presents a summary of the contributions made in this thesis, and
conclusions about these contributions. These contributions are described in re-
lationship to the objectives presented in Chapter 1. This chapter also presents
future work for these contributions. Finally, within the future work, a strategy to
formulate the four selected SAR problem is presented.
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Chapter 2

Literature review

The importance of the manufacturing sector in the UK was identified in [31],[32].
From 2008 to 2013, the UK has decrease from being the 6th largest manufacturing
countries in the world to being the 11th. Moreover, the manufacturing accounted
for 75% of research and development of business (R&D) up to 69% in 2013. The
R&D in a business is responsible of generating innovative products based on knowl-
edge (i.e. High Value Manufacturing (HVM)). The importance of HVM resides
in the creation of novel products, processes and services that generate jobs and
wealth to society. The main challenge for HVM enterprises is surpassing the valley
of death [2]. The valley of death means increasing production volume from one-off
products to low, medium and large scale volume [2].

Two causes for the valley of death have been identified. The first refers to
whether or not there is enough demand for novel products, processes or services
(i.e. product life cycle), whilst the second is whether or not there is enough pro-
duction capacity to make these novel products (i.e. process life cycle) [33]. The
second cause is in the interest of this thesis, specifically researching approaches
that can help HVM enterprises to surpass the valley of death [2]. The two causes
are interrelated because, on the one side novel technologies can introduce novel
products into the market (i.e. technology-push). On the other side, market de-
mand incentives the development of new technology to produce novel products or
to produce them more efficiently (i.e. demand- or market-pull).

From the academic point of view, on the one hand, there are challenges related
to create innovative products, processes and associated services. On the other
hand, there are challenges related to create systems capable of efficiently producing
high value products (HV products) [2]. Further to this, these systems must be
flexible enough to produce multiple types of products and increase production
volume from one-off products to low, medium and large scale. The last challenge
is the topic of this thesis with scope of increasing production volume from one-
off products to low production volume (i.e. 1 to 10 products per hour [3]). This
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implies researching on novel approaches that can provide HVM services for multiple
products, where the production volume increases from one-off products to low
volume [1].

Recalling a short definition of HVM from Chapter 1; HVM refers to the addition
of value to products, processes or services through expertise and advanced technol-
ogy [1]. However, different paradigms can provide different types of added value
(i.e. shorter delivery time, customised products). Therefore, in this chapter, a re-
view of the evolution of manufacturing paradigms up to the conception of HVM is
presented in Section 2.1. This review highlights the evolution of paradigms by the
type of value they add. This motivates the need for approaches, such as the frame-
work INTelligent REconfiguration for a raPID production change (INTREPID),
to address the main HVM challenge, surpassing the valley of death [2]. A specific
literature on the state of the art of similar approaches to INTREPID is presented
in Chapter 3.

A review of current manufacturing models, systems and layouts classified by
their degree of flexibility is presented in Section 2.2. The manufacturing capabil-
ities of these models, systems and layouts are contrasted, evaluated and desired
characteristics to meet HVM challenges are emphasised. A gap for researching on
highly flexible manufacturing systems is highlighted in this review. Consequently,
there is need to research on systems that can adapt in order to produce multiple
products and to increase production volume from one-off products to low produc-
tion volume. Hence, this section introduces the novel highly flexible system (i.e.
Self-Reconfigurable Manufacturing Systems (S-RMSs)) that primarily focus pro-
ducing multiple products from one-off products to low production volume. S-RMSs
are explained in detail within context of the framework INTREPID in Chapter 3.
Conclusions about HVM and approaches to address their challenges are presented
in Section 2.3.

2.1 Manufacturing paradigms evolution

A manufacturing paradigm is understood as a pattern that distinguishes a specific
type of manufacturing model or system [34]. Well-known examples are mass pro-
duction, lean manufacturing, Toyota production system, and mass customisation
[35]. These paradigms have evolved from the use of rudimentary tools and hard
labour to producing products in workshops (i.e. craft production) up to the use
of computer assisted approaches to create and produce customised products [36].

All these paradigms evolved either from the application of technology (i.e.
technology-push) or the need or desire from customers (i.e. market-pull) [37].
Technology-push paradigms provide desired features, characteristics, advantages
that lure customers into buying them (i.e. added value). The application of one
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or multiple paradigms results in added value such as higher quality, lower cost,
shorter delivery time, better service and more customised products or services [1].
These types of value are indicated in the paradigms description in the following
four subsections.

The paradigms have been classified according to their product complexity, de-
mand forecasting and manufacturing system flexibility in [38]; and according to
date of introduction, production volume, product variety, and flexibility of the
manufacturing system [39]. These classifications focus on enabling technologies or
paradigm characteristics (e.g. flexibility), none of them is classified according to
the value they can add to the products.

Therefore, a proposed classification is based on the industry stages. These
stages are classified by the introduction of four significant technology-push stages.
The four stages plus a pre-industry stage along with manufacturing paradigms
classified by each stage can be observed in Figure 2.1. These stages and the
associated paradigms are reviewed in the next four following subsections. These
stages are characterised by the following technologies [40]:

• Pre-industry: hand tools for craftsmanship products (Subsection 2.1.1)

• Industry 1.0: water- and steam-powered machines start automating some
processes (Subsection 2.1.1)

• Industry 2.0: electrically-powered machines, the introduction of production
lines and the division of labour in specialised processes (Subsection 2.1.2)

• Industry 3.0: computer for production processes and more automated man-
ufacturing systems (Subsection 2.1.3)

• Industry 4.0: wireless connectivity-assisted production processes and au-
tonomous and decentralised automation (Subsection 2.1.4)

Paradigms of the Pre-industry (i.e. craft production) and Industry 1.0 (i.e.
mechanisation) are not in use in industrialised countries. However, paradigms
of Industry 2.0 and Industry 3.0 remain in use in industrialised countries. In
fact, many of these paradigms coexist or complement each other. Paradigms from
Industry 4.0 and forthcoming paradigms are still under development.

2.1.1 Pre-industry and Industry 1.0

The pre-industry stage is commonly known as craft production [36]. It refers to
the use of workshops were workers use hand tools to perform most of the tasks by
hand. It was necessary to commission jobs before their production. The results
were tailored and unique products on the positive side but with large delivery
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Figure 2.1: Classification of manufacturing paradigms by their industry stage over
time and the value added by them. The horizontal axis corresponds to the chrono-
logical evolution of industry stages. The paradigms are approximately classified
by the industry, not by accurate time they were introduced. The industry stages
are divided by the main technological breakthrough in the manufacturing industry.
It is shown a pre-industry stage and four industry stages. The stages and their
main technological breakthrough are: pre-industry with hand tools, Industry 1.0
with steam and water power, Industry 2.0 with electricity, production line, and
division of labor, Industry 3.0 with the use of PCs and Industry 4.0 with the use
of wireless communications. The paradigms provide different types of value other
than reducing cost, after the introduction of mass production and the production
line. Added value based on knowledge (high added value) start its appearance
from Industry 3.0 with the use of PCs and is reaching its full potential in Indus-
try 4.0 with the use of wireless communications. Image modified, under Creative
Commons Licence, from [42]
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(a) (b)

Figure 2.2: Examples of production within the pre-industry and Industry 1.0
stages. (a) English craftsmanship from Deakin and Francis enterprise. This is
an example of a craft manufacturing workshop. Image reproduced, with permis-
sion, from [43]. (b) Reproduction of James Watts steam engine. This is an example
of Industry 1.0 and the use of steam to create machines. Image reproduced, under
the GNU Free Documentation license, from [44].

times and high production costs on the negative side. Therefore, there was a need
for approaches to automate the production. This need was addressed with the use
of steam- and water-powered machines in Industry 1.0. An example of a workshop
dedicated to leather products production can be observed in Figure 2.2a.

Industry 1.0 is known as the first industrial revolution or mechanisation [41]. It
spanned from 1760 to 1840. This industrial stage started in Great Britain with the
use of steam- and water-powered machines. The use of steam and water resulted
in bulky and complex machines and mechanisms. These ones had to be carefully
designed to take advantage of the flow of steam and water. The most relevant
work in Industry 1.0 is the steam engine from James Watt [44]. On the positive
side, these machines and mechanisms reduced the time and human labour required
to make dull, dirty and dangerous tasks. Products were produced faster and in a
cheaper way in comparison to the pre-industry stage. This increased the access to
products to a wider but limited sector of the population due to need for expensive
and complex machines. Also, the power source of these kind of machines required
to have rivers or boilers closely and pipelines to transport water and steam. An
example of a machine working with steam can be observed in Figure 2.2b. These
challenges were addressed with the introduction of electricity and the development
of machines in Industry 2.0.
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Figure 2.3: Example of a production line to produce the Citroen Type A. This is an
example of the Industry 2.0. Image reproduced, under European Union Copyright
law, from [46]

2.1.2 Industry 2.0

Industry 2.0 is known as the second industrial revolution [45]. This stage is charac-
terised by the introduction of electricity, the production lines and division of tasks
in specialised labour. The use of electricity facilitated the construction of smaller
process dedicated machines with internal electric motors (i.e. machine tools, e.g.
lathes, milling machines) [47]. The starting point and the most relevant paradigm
of this stage is mass production [35]. Mass production was enabled by line layouts
that connect the flow of parts and subcomponents. This minimised the time and
cost to transport parts, subcomponents and assembly tools to workstations. The
introduction of mass production resulted in the following three types of added
value: larger volumes, lower costs and faster production times [35]. An example
of the first production lines to Citroen Type A is shown in Figure 2.3.

The production line was inspired on the process industry or chemical industry,
where the flow of materials is continuous [33]. This was similar to the steam- and
water-powered machines of Industry 1.0. The production line evolved to achieve
more efficient but inflexible systems known as dedicated manufacturing systems.
These systems produce a single type of product but they have the greatest efficiency
(i.e. more quantity in less time). Dedicated systems and production line layout
along with other manufacturing systems (i.e. flexible, reconfigurable) and layouts
(i.e. cell, functional) are analysed in Section 2.2.
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The widespread use of production lines increased the competition among enter-
prises. However, this competition was mainly based on reducing production costs.
This practice was unsustainable and eventually led to the surge of paradigms that
added value to products instead of reducing their costs [35]. These paradigms
including mass production are still in practice. These paradigms are:

1. Toyota Production System (TPS) or Lean Manufacturing

2. Group Technology (GT)

3. Mass Customisation (MC)

4. Quick Response Manufacturing (QRM)

5. Agile Manufacturing (AM)

6. Service-Oriented Manufacturing (SOM) or Servitisation

1) Toyota Production System TPS started in Japan, and it reached its best
performance with the automobile enterprise Toyota [48]. Later, it was spread to
the U.S. and it became known as lean manufacturing [49]. TPS focuses on reducing
or eliminating processes that do not add value to final products. The TPS have
a set of enabling approaches that lead Japanese car manufacturing industry to be
number one before 1990 [48]. The most important enabling approaches of TPS
are [50]:

• Just In Time (JIT) and Kanban. JIT is an approach to manage the
supply chain in order to keep a low inventory. JIT refers to request raw
materials or subcomponents only of the nearest scheduled production. Kan-
ban is a signalling system to request only the necessary raw materials or
subcomponents to be processed. These approaches facilitate contracting by
capability of production services and increases responsiveness to dynamic
production orders.

• Single-Minute Exchange of Die refers to minimising the time to exchange
production setups to produce a different product. Consequently, there is an
increment in the product variants that can be manufactured.

These approaches add the following types of value: increased responsiveness
with just in time and more product variety with single-minute exchange of die.
Other approaches within TPS such as 5s, Poka-yoke and Kaizen result in cost
reductions through improving the production efficiency and constant improvement
respectively [50].
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2) Group Technology GT is a paradigm that focuses on improving manu-
facturing efficiency by grouping together similar products in product families and
their respective manufacturing machines [51]. As a result, the layouts are specific
to these product families. This reduces the time of transportation between ma-
chines. The layout associated to this paradigm is known as cell or cellular layout,
whilst a factory space dedicated to a cell layout is known as a manufacturing cell
[52]. A layout can be designed beforehand to produce a specific product family.
Consequently, the added value of this paradigm lies in the wider variety of products
that can be produced compared to mass production.

3) Mass Customisation MC refers to producing customised products at
similar prices than mass production [53]. MC is supported on GT to produce a
product family at low costs with similar efficiency than production lines. MC offers
customisation at superficial and cosmetics levels in contrast to fully personalised
products [35]. MC main strategy is to have core parts or modules in a product and
the user selects cosmetic or superficial parts or modules to customise the product
(i.e. platform-based product [54]). This also facilitates the development of new
products based on previous common platforms. Production strategies based on
platform-based products are delayed differentiation (also known as postponement)
and assembly to order [55],[56]. Delayed differentiation refers to producing a core
product that is fully finished only when a customer makes an order. Similarly,
in assembly to order the product is assembled when an order is placed (e.g. Dell
computers). The value added by this paradigm is customised products.

4) Quick Response Manufacturing QRM focuses on reducing the lead
time (i.e. time from a production order is requested until the time the order is
met) of the production processes [57]. This paradigm is a successor of TPS. Whilst
TPS focuses on reducing or eliminating non-value-added processes to reduce cost,
reduce lead time and improve quality; QRM focuses on reducing lead times in
order to reduce cost, eliminate non-value-added processes and improve quality.
Consequently, enterprises are capable of producing products on demand. The
added value of QRM is short time to manufacture products according to orders
with variable demands for each product.

5) Agile Manufacturing AM is a paradigm that aims at producing mass
customisation products by rapidly changing production capacities between prod-
ucts [58],[59]. Therefore, it is important to previously have implemented TPS
and QRM first. The scope of this paradigm is usually at the organisational level,
whilst at the production level is supported by Reconfigurable Manufacturing Sys-
tems (RMSs) [60]. These are systems capable of changing production settings and
setups to produce different products. The added value of this paradigm is cus-
tomisation of products at a lower level than MC but rapid response to customer’s
desires.
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6) Service-Oriented Manufacturing SOM refers to developing products
and their associated services as a single product (i.e. product-service system -
PSS-) [61]. A representative example is the leasing of power-by-the-hour instead
of transferring ownership of the gas turbine to airlines [62]. This paradigm is also
known as servitisation [61]. Firstly, the servitisation paradigm focused on changing
business model from producing products to offer the associated services for their
products (e.g. maintenance, updates, overhaul, recycling), but later it focused on
the design of PSSs [63]. The added value of SOM is customised service.

In summary, with the paradigms from Industry 2.0, enterprises started compet-
ing by adding value rather than by reducing costs. Also, there is a trend towards
leaner, more responsive and agile enterprises in order to produce customised prod-
ucts at similar efficiency than mass production (i.e. similar production costs and
times). Paradigms from Industry 3.0 further focus on improving the efficiency of
manufacturing systems and improve the automation through the use of computers
and communications networks.

2.1.3 Industry 3.0

In Industry 3.0, the use of computers is predominant to facilitate most of the pro-
duction processes [40]. In general, the use of computer assisted tools and platforms
has the following advantages: increased collaboration of customers in product de-
sign, further automation to produce in more dynamic environments, versions man-
agement of product variants (e.g. drawings) and constant innovation of products.
Industry 3.0 is characterised with the introduction of added value based on knowl-
edge (high added value) for product development. The main paradigms of this
stage are:

1. Digital Manufacturing

2. Virtual Manufacturing

3. Additive Manufacturing

4. Computer Integrated Manufacturing

5. Networked Manufacturing

1) Digital manufacturing refers to the use of PCs to develop (i.e. design
and simulation) products [64]. Designs are created through the use of Computer
Aided Drawing (CAD) [65]. Digital designs can be simulated and analysed with
computer-aided simulation tools such as finite element analysis for static and dy-
namic analysis, multibody analysis for kinematics and dynamic analysis and com-
putational fluid dynamic for fluids and thermal analysis. If the designs are man-
ufactured with machine tools, the production processes can be simulated through
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computer-aided manufacturing software. Computer-aided is applied to a broad
variety of production processes. The most relevant processes are in the area of
production planning are process planning, enterprise resource planning and manu-
facturing resource planning. In general most of these tools are grouped under the
umbrella of Computer Aided Technologies (CAx) [65]. The value added with this
paradigm is to support developing customised products and allowing customer to
visualise final results before production.

2) Virtual manufacturing is a paradigm based on the use of the tools from
digital manufacturing to monitor, simulate and visualise real-time models of pro-
duction processes, systems or a whole factory [66]. A virtual environment of the
physical world allows simulating models and processes prior to their implementa-
tion. This speed up not only the development of products but also their manufac-
turing processes. Virtual manufacturing also allows the visualisation and real-time
monitoring of processes and manufactured products leading to the creation of a
virtual factory [67]. The added value of this paradigm resides on the rapid devel-
opment of products and processes; hence, it can be used for customised products.

3) Additive manufacturing refers to the production of products by deposit-
ing layers of material instead of removing material [68]. Therefore, this paradigm
is also known as layer manufacturing. Other common names for this paradigm
are 3D printing and Rapid Prototyping (RP) [69]. Additive manufacturing is sup-
ported on digital manufacturing for the creation of 3D digital drawings (CAD files)
that later are converted to additive manufacturing format files [68]. The process
consists of slicing the 3D parts in layers according to the material and machine
characteristics. Nowadays, RP machines are used to produce irregular shapes that
are hard or impossible to produce with traditional equipment (i.e. equipment that
removes materials). The use of limited materials (special plastics and metals) is
an important drawback of this paradigm [70]. The added value of this paradigm
is producing customised products with irregular shapes at rapid production rates.

4) Computer integrated manufacturing Computer Integrated Manu-
facturing (CIM) refers to the integration of isolated areas of manufacturing (e.g.
planning, purchasing, inventory control, manufacturing areas, testing) through
the use of communication networks [71],[72]. The most common network stan-
dards are Process field bus (PROFIBUS), Process field net (PROFINET) and
Ethernet [73]. CIM makes use of computer controlled equipment (e.g. robots,
Computer Numerical Control (CNC) machines, machine tools with numeric con-
trol, Automated Guided Vehicle (AGV)) to control and monitor distributed man-
ufacturing resources [74]. Examples of this kind of computers are Programmable
Logic Controllers (PLCs) and programmable automation controllers. The added
value of this paradigm is real-time monitoring of the production progress and in-
crease level of automation and production efficiency.
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5) Networked manufacturing Networked Manufacturing (NM) focuses
on production at a network of distributed factories [75]. The main challenge of
this paradigm resides in the coordination of coupled production and supply chains.
Therefore, real-time and robust communications and data interchange are vital
for production coordination. Additionally, product development within a network
requires support systems for collaboration. Web-based manufacturing systems
facilitate collaboration [76]. This paradigm is basis for INTREPID due to the
need to coordinate factories in a network. The added value with this paradigm
resides in the possibility to produce products tailored to countries or regions.

In summary, in paradigms from Industry 3.0, the use of PCs facilitates many of
the production processes, increases the automation level, improves product data
storage and retrieval and facilitates the creation of new products and processes
based on previous ones. Also, there is a trend towards collaborating at different
production processes through the use of networking tools. This trend towards
collaboration continues in the paradigms from Industry 4.0 but with wireless com-
munications. Further to this, these wireless communications endow manufacturing
resources with the ability to make decentralised and autonomous decisions.

2.1.4 Industry 4.0

Industry 4.0 is the newest proposal for an industry stage. In this paradigm, Cyber
Physical Systems (CPS) (i.e. mechatronic devices with wireless connectivity) com-
municate and coordinate with each other through the Internet of Things (IoT) in
order to manufacture [77]. This occurs in smart factories where conditions about
the factory are shared through the internet [78],[79]. The design principles of
Industry 4.0 are [79]:

• Interoperability: CPS, persons, and companies are connected through
communications networks.

• Decentralisation: CPS are capable of taking autonomous decisions.

• Modularity: CPS are designed to be modular with plug and play charac-
teristics.

• Real-time: monitoring of factory conditions and resources data.

• Virtualisation: factory and resources data are updated in a virtual model
for monitoring and model simulation purposes.

• Service-oriented: CPS, persons and companies offer their services through
the Internet of Services -IoS- in a similar way to cloud manufacturing.
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Industry 4.0 relies on communications networks for collaboration and for shar-
ing and getting data (IoT). In Industry 4.0, the IoT is used to coordinate tasks
between resources, which result in decentralised, autonomous and knowledge-based
decisions (automation). Other paradigms that similarly rely on the use of com-
munications networks for manufacturing are:

1. Telemanufacturing

2. Cloud manufacturing or Cloud Based Design Manufacturing (CBDM)

1) Telemanufacturing proposed the use of telecommunications networks to
transmit product design data and manufacture near the distribution locations
[80]. Telemanufacturing proposes the use of manufacturing dedicated centres with
up to date flexible manufacturing systems and the experts to use them. The
purpose of telemanufacturing is to offer manufacturing services with the use of
these centres. The added values include the selection of provider depending on
the product and market, no investment in infrastructure and the use of the newest
technology and expertise [29]. In paradigms focused on providing services (i.e.
telemanufacturing and cloud manufacturing), the added value makes a difference
to both the customer requesting the manufacturing services and the final customer
that receives the manufactured products.

2) Cloud Based Design Manufacturing (CBDM) or Cloud Manu-
facturing is based on networked manufacturing and it makes use of distributed
manufacturing facilities [81]. CBDM offers a complete model and computing ar-
chitecture to access manufacturing services through the internet [82]. CBDM main
enabling technologies are derived from cloud computing [6]. These ones are In-
ternet of Things, virtualisation, service-oriented technologies (i.e. service oriented
architecture, web service, and semantic web), and advanced computing technolo-
gies (i.e. high-performance computing, ubiquitous computing and cloud computing
itself). The aim of cloud manufacturing is to offer manufacturing services in a sim-
ilar way that cloud computing offers computing services. Therefore, INTREPID is
based on cloud manufacturing and its well established model and supporting tech-
nologies. The values added by this paradigm consist of accessing new technologies
and contracting by capability. Also, more collaboration for product development
is feasible.
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2.2. Manufacturing models, systems and layouts

In summary, the paradigms evolution shows a trend to produce a wider variety
of products (e.g. group technology, mass customisation) through a more respon-
sive and agile adaptation to dynamic changes in the product demand (e.g. quick
response manufacturing, agile manufacturing). Another trend is about offering
manufacturing services supported by communications networks (e.g. networked
manufacturing, telemanufacturing cloud manufacturing). In specific, communica-
tions networks are used for product development in collaboration or to manufacture
in different countries and access new markets and make use of advanced manufac-
turing technology. A summary of types of added value by each paradigm is shown
in Table 2.1.

Considering these trends, one of the contributions of this thesis is the proposal
of a comprehensive framework, INTREPID, that brings together these trends to
address the main acHVM challenge. INTREPID is based on the paradigms of
networked manufacturing and cloud manufacturing, as well as an enhanced version
of the RMS (i.e. the S-RMS). It is also based on the design principles of Industry
4.0 and cloud robotics. In the next section, a review and analysis of how current
manufacturing models, systems and layouts are integrated within these paradigms
is done. Also, the issues and challenges to address HVM are highlighted and the
S-RMS are introduced and contrasted against current manufacturing systems.

2.2 Manufacturing models, systems and layouts

The paradigms described in Section 2.1 demonstrate the variety of added value
that can be offered to customers. According to the broad definition of HVM given
in Chapter 1, HVM refers to achieve any or many of the types of added value
through the use of knowledge (i.e. expertise at using advanced designing and
manufacturing techniques) [1]. The paradigms make use of different approaches
to achieve different types of added value. An example of these approaches is de-
layed differentiation from the mass customisation paradigm [55]. However, other
approaches include the use of manufacturing models, systems and layouts. Ex-
amples of these ones are line and cell layouts that are used in mass production
and group technology paradigms respectively [35],[52]. This section describes and
analyse manufacturing models, systems and layouts.

Recalling that the main challenge for HVM is to survive the valley of death [2].
This requires the production volume and efficiency to increase in order to match
the product demand. Production volume and demand commonly increase from
one-off products to low, medium and large volumes [33]. This means a change
of manufacturing model, from job production to batch production and finally to
mass production. Accordingly, changes in the manufacturing models are reflected
in changes of the associated manufacturing systems and layouts [33]. Therefore,
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in this section, the main models, systems and layouts are presented and analysed.
In Subsection 2.2.1, manufacturing models are described, whilst manufacturing
systems and layouts are described in Subsections 2.2.2 and 2.2.3 respectively. In
Subsection 2.2.2, different types of flexibility in manufacturing systems are sum-
marised. Also, the novel Self-Reconfigurable Manufacturing Systems (S-RMSs) are
introduced and its types of flexibility are described in Subsection 2.2.2. Models,
systems and layouts are associated with each other in Subsection 2.2.4.

The manufacturing capabilities of models, systems and layouts are contrasted
and evaluated resulting in the identification of desired characteristics to meet the
main HVM challenge (i.e. surpassing the valley of death [2]). Conclusions of this
review show a gap for researching on highly flexible systems, which can easily and
automatically adapt to produce multiple products and to increase production vol-
ume from one-off products up to large volumes. Therefore, as an intermediate step,
one objective of this thesis is to propose a manufacturing system that is flexible
enough to change from one-off products to low volume. Hence, a highly flexible
system (i.e. Self-Reconfigurable Manufacturing System (S-RMS)) is introduced
and its types of flexibility described in Subsection 2.2.2. The S-RMS is explained
in Chapter 3 together with a complete framework to offer global HVM services
(i.e. INTREPID).

2.2.1 Manufacturing models

Manufacturing models refer to the way a product is produced. A model might
involve other areas different from manufacturing (e.g. raw materials and products
storage, raw materials supply and products distribution management). A man-
ufacturing model determines the production volume that is produced and how
products are produced. The models for discrete manufacturing are classified ac-
cording to production volume and process organisation (i.e. production flow) in
Figure 2.4. The most common models are [33]:

• Job production refers to the production of a single product. This model is
characterised by one-off products or low production volume and a large mix-
ture of products. Products in this model might require repetitive operations
with the same machines in complex sequences. Hence, the production flow is
irregular and it is common to locate machines separated from each other to
increase the flexibility (i.e. disconnected flow). Consequently, it is important
to solve the problems of sequencing, schedule and routing products between
machines to avoid production delays and job overlapping [83],[84],[85]. Ex-
amples of products produced under the job manufacturing model are large
and complex products such as bridges, ships, aircrafts and factories, or spe-
cialist and tailored products such as clothes, individual computer programs
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and satellites [86].

• Batch production is related to the production of products in low or medium
volume groups. Similarly to job production, this type of model can produce
a mixture of different products but in a higher production volume. More-
over, the production demand might be a mix of different products. Common
examples of products produced under this model are furniture, clothing (e.g.
shoes), sports equipment and food (e.g. bread) [86]. The characteristic of
this model is the use of the same resources to produce products that require
similar operations. However, in this type of model some of the machines
are organised in lines that produce a similar sequence of operations for as
many products as possible (i.e. semi-connected flow). As a result, there
is an increase in the efficiency at cost of losing flexibility. Similarly to job
production, challenges for batch production refer to solve the problems of
sequencing and scheduling of jobs to machines to minimise production time
and lot sizing [87],[88].

• Mass production refers to producing a single product in large scale. This
model is the more efficient for large volumes but is incapable of producing
more than one type of product unless there is reconfiguration of the manu-
facturing system [35]. Still, this reconfiguration might take weeks or months
depending on the type of product and the complexity of the manufacturing
system. Examples of products produced under mass production are soap
powder, canned drinks, electronics (e.g. cell phones, computers, printers)
and automobiles [86]. In this model, the machines are organised in a line
that matches the sequence of operations of the single product (i.e. connected
flow). Consequently, this model is the most efficient. The main challenge
to be addressed is the adequate design of manufacturing systems that min-
imises the movement of products between machines and allow a continuous
and non-stoppable flow of products. In case of the assembly of products, the
main challenge is the adequate division of assembly tasks between workers
with the objective either to minimise the number of workers or to minimise
the average production time [89].

These manufacturing models are mainly characterised by two factors, namely
their production flow (process organisation) and the production volume of products
[33]. The production volume is defined by the expected product life cycle (i.e.
introduction, rapid growth, maturation and commodity or decline). This is, a
novel product is introduced to the market, later the product demand grows rapidly
until it reaches maturation. Later, there is a point when a product becomes a
commodity when is widely demanded or the product declines otherwise. This
occurs similarly with the corresponding manufacturing process that changes along
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Figure 2.4: Classification of manufacturing models according to their production
volume (i.e. product life cycle) and process organisation (i.e. process life cycle).
The horizontal axis shows production volume the models can produce whilst the
vertical axis shows different types the production flow can be organised. Three
main models are feasible, whilst the rest of the combination are within the un-
profitable blue area. The three main models are job production, batch production
and mass production. Job production is characterised by one-off products or low
production volume with a disconnected production flow. Batch production can
produce medium production volume with a semi-connected production flow. Mass
production can produce large production volume with a connected production flow.
The desired evolution of high value products (HV products) should increase from
low to medium and large production volume and vice versa for a smooth decline.
Adapted from [33]
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the process life cycle to meet product demand. The process life cycle has the same
stages as the product life cycle. In order for HV products to survive the valley of
death, their manufacturing processes have to evolve accordingly with the product
demand until product and process reach maturity and become a commodity [2].

There are combinations other than job, batch and mass production. However
these ones are not feasible [33]. For example, a high volume can be produced with a
process organisation such as semi-connected or disconnected flow but it will not be
as efficient as a connected flow. Similarly, a variety of products might be produced
with a connected flow, but it requires adjustments to the machines or even the
complete reconfiguration of the machine layout. If an enterprise works within any
of the unprofitable combinations, its operation is not efficient and a change at the
manufacturing systems is required (i.e. reconfiguration). The production flow or
process organisation is in agreement with the type of manufacturing systems and
layouts that are used. Therefore, the next two subsections describe these ones.

2.2.2 Manufacturing systems

The manufacturing models are related to the manufacturing systems and the ar-
rangement of their machines (i.e. layout). Types of manufacturing systems are
a single machine to perform a single task (e.g. machine tools), a single machine
doing several tasks (e.g. Computer Numerical Control (CNC) machines), or a
group of machines doing several tasks (e.g. a job shop) [90]. Examples of man-
ufacturing systems are: Manually controlled machine tools, Computer Numerical
Control (CNC) machine tools, assembly robots, assembly workers or mechanisms
and special machines designed to produce a unique operation (e.g. complex braided
machines [91]). Manufacturing systems are classified by their flexibility in three
main types. These are [4],[5]:

• Dedicated Manufacturing Systems (DMSs) are designed to produce a
single operation. This type of systems are related to the mass production
model. Thus, examples of products produced with DMSs are soap powder,
canned drinks, electronics and automobiles [86].

• Flexible Manufacturing Systems (FMSs) are able to produce wide
range of products. FMS can be designed with one or many types of flexibil-
ity. These types are explained in the following paragraphs. FMSs are related
to the job production model, and therefore, examples of products produced
with FMSs are large and complex products such as ships and aircrafts, or spe-
cialist and tailored products such as clothes, individual computer programs
and satellites [86].
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• Reconfigurable Manufacturing Systems (RMSs) are novel systems
that aim to extend the types of flexibility of the FMSs. RMSs are sys-
tems designed to be easily reconfigurable. Examples of reconfiguration are
interchangeable modules, or the addition, removal, replacement or reorder-
ing of machines in a any layout [92],[60]. As a result a machine is capable of
producing a completely new operation or a new product respectively. Exam-
ples of products produced with RMSs are furniture, sports equipment and
foods (e.g. bread) [86].

The flexibility and efficiency in these three types of systems depends on factors
such as the type of machines used and their layout, as well as the level of automa-
tion of the machines, and the level of automation of the material handling systems
to transport, load and unload products between machines [93]. The arrangement
in line of these machines can facilitate the movement of materials and making
them more efficient at producing a single product. In contrast, an arrangement
with spaces between machines facilitates the transportation of products that re-
quire multiple and repetitive manufacturing operations and when products to be
produced are constantly changing. Different types of flexibility have been identi-
fied in the literature [94]. These types are focused on FMSs, but can be applied
to RMSs. They are summarised in the following paragraphs.

Types of flexibility in FMSs and RMSs

Many authors agree with the definition of the terms flexibility and reconfigura-
bility given by Tolio in [94]. Thus, flexibility is the ability of a system to change
its behavior without changing its configuration whilst reconfigurability is the abil-
ity to change its behavior of a system by changing its configuration. The use
of the terms flexibility and reconfigurability in this thesis are in agreement with
Tolio’s definitions. The following types of flexibility are relevant to this thesis
[94],[95],[96],[97]:

• Machine: Number of operations carried out with the same set-up in a
machine

• Process: Different set of parts that the system can produce with minimal
set-up changes

• Functionality: Refers to the ability of a single machine or a system of
machines to produce a different operation or product respectively

• Product: Easiness to change produced products with the same set of parts

• Material handling: Easiness to move parts among different machines
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• Operation: Number of different operations sequences available to manufac-
ture one part

• Routing: Number of routes (sequences of machines) to produce the same
features in a part or the part itself

• Volume: Number of profitable production volumes with the same manufac-
turing system

• Control system: System’s potential to autonomously and continuously
work for long hours

• Expansion or scalability: Easiness to expand the production capacity or
capability of the system. This type of flexibility is usually obtained through
modularity of resources and systems

• Production: Quantity of part types which can be manufactured with the
same equipment

These types of flexibility are not enough for the current challenges of a global
dynamic demand with challenges for highly customised and high value products
[98]. The flexibility is limited due to the design of machines or a system of ma-
chines. However, the flexibility can be enhanced through the reconfiguration of
machines or the system of machines [60]. For example, the machine flexibility
is increased by adding or changing modules of the machine to perform different
operations [92]. Current manufacturing systems are preselected and predesigned
depending on the expected or estimated production volume and variety of prod-
ucts to produce (i.e. product mix). However, a further step in the evolution of
the RMSs are the Self-Reconfigurable Manufacturing Systems (S-RMSs). The aim
of these systems is an autonomous and rapid reconfiguration of a machine or a
system of machines in contrast to the manual reconfiguration of the RMSs. These
are introduced in the following paragraphs.

Introduction to the self-reconfigurable manufacturing systems (S-
RMSs)

A highly flexible type of manufacturing systems is necessary due to the chal-
lenges of a global and dynamic economy (i.e. dynamic and uncertain demand, aim
for highly customised and high value products). Current manufacturing systems
and layouts cannot manage these challenges [98]. Therefore, it is necessary systems
that can rapidly and automatically change from one-off products to low production
volume (i.e. less than 50 products) for a group of different products. A proposed
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approach to address these challenges and increase manufacturing flexibility is the
use of Self-Reconfigurable Manufacturing Systems (S-RMSs).

S-RMSs consist of logistics robots (AGVs), mobile manipulators with inter-
changeable tools, flexible grippers and fixtures (i.e. fixtureless assembly [99]), and
movable machines for advanced processes (i.e. difficult to compact and embed in
modular tools) [29]. These novel systems can easily be adjusted to manufacture
in different manufacturing models depending on the required production volume
and variety. The S-RMSs are capable of producing layouts bespoke to the current
products to be produced and their demands. These systems can easily change
between layouts to either maximise production efficiency or production variety.

The S-RMS is one of the contributions of this thesis, and it is fully explained in
Chapter 3 along with the novel framework INTREPID to address the main HVM
challenge. The S-RMS and INTREPID are based on the Industry 4.0 principles
[77]. A description of how the S-RMS work under the Industry 4.0 principles is
the following:

• Interoperability: S-RMSs share the principle for connectivity between
manufacturing resources for coordinating an optimal production plan.

• Decentralisation: Due to the use of mobile manipulators the decentralisa-
tion of decisions is guarantee by their embedded decision systems.

• Modularity: S-RMSs works under the same principle to form different
layouts or adjust the production volume according to demand.

• Real-time: The interconnectivity of the S-RMS facilitates the real time
monitoring of the S-RMS.

• Virtualisation: Real-time monitoring of positions and performed tasks of
the S-RMSs allow easy virtualisation. Hence, this information allows deter-
mining a new layout if production requirements change.

• Service-oriented: S-RMSs are designed to work under the cloud manufac-
turing paradigm. Thus, the S-RMSs are embedded within the framework
INTREPID to offer global HVM services.

The types of flexibility of the FMSs do not consider the ability to reconfigure
a machine or a system of machines to perform a different operation or a different
group of operations. Furthermore, an autonomous and rapid reconfiguration can
enhance a system manufacturing abilities [93]. Therefore, in the following para-
graphs, the types of flexibility that are achieved or surpassed through the S-RMSs
are explained.
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Types of flexibility achieved through the S-RMSs

S-RMS can achieve and sometimes surpass all types of flexibility achieved
through the FMSs. This is, due to the use of mobile manufacturing robots and
layout redesign. The use of mobile manipulators (i.e. mobile platforms with arm
robots) results in increased machine flexibility because it is possible to achieve
different axis and orientations. This is contrast to conventional reconfigurable
systems, which require manual reconfiguration [60]. Also, the use of the mobile
manipulators facilitates achieving an enhanced degree of material handling flex-
ibility. Reprogrammation or adaptation of the mobile manipulators facilitates
achieving process and production flexibilities. This has similarity with adaptable
and intelligent CNC machines without a limited space for manufacturing.

The use of flexible grippers facilitates implementing fixtureless assembly [99].
Consequently, flexible grippers facilitate achieving product flexibility. The pos-
sibility of changing the layouts and the operations that each robot can execute
allows achieving higher levels of routing and operation flexibilities than with tra-
ditional manufacturing systems. Traditional systems such as dedicated, flexible
and reconfigurable systems make use of Programmable Logic Controllers (PLCs)
and machine controllers in order to change operations routes (i.e. routing) and
operation type, respectively. The possibility of changing the production layout
according to the required production volume guarantee enhanced levels of volume
flexibility and scalability. Finally, control flexibility can be achieved through the
use of the autonomous robots.

The enhanced types of flexibility allows achieving dynamic layouts where re-
sources are constantly moving and there is no distinguished or fixed layout (i.e.
resources are shared between more than one product layout). An important factor
of the manufacturing systems is the layout in which its machines are arranged.
Hence, current manufacturing layouts, their advantages and disadvantages are
analysed in the next subsection.

2.2.3 Manufacturing layouts

The flexibility of the manufacturing systems depends on their machine layout. A
layout refers to the physical arrangement of machines. The closer the machines
are located, the shorter the transportation time between machines is, but the less
flexible the manufacturing system is. Therefore, the layout selection depends on
the certainty and the prior knowledge of the products to be manufactured and its
frequency. The manufacturing system layouts influence the selection of the type of
material handling system and its design. Examples of material handling systems
are Automated Guided Vehicles (AGVs), conveying lines and industrial robots (i.e.
fixed). The main layouts are [102],[103],[100]:
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• Line: also known as product oriented layout. Line layout refers to arranging
machines in line in the specific sequence a product is produced. The objective
is to minimise the required time to transport products between machines.
Line layout is relevant for assembling products and it has an important
problem known as the assembly line balancing problem [89]. The objective is
to solve a trade off between minimising the number of workers and minimising
the average working time of each worker. Relevant types of line layouts are:
U-type (a U-shape curvature facilitates a worker to rotate and perform two
to three operations), double-sided or two-sided (machine at two sides of a
line).

• Functional: also known as process-oriented layout. In contrast to line lay-
outs, the machines are arranged in groups capable of performing similar
operations. This concentrates the necessary auxiliary equipment and expert
workers. Functional layouts are commonly known as job shops. This layout
facilitates the production of different products at low production volumes.
Therefore, it is usually associated with the job production model. The most
relevant problem is related to scheduling job to job shop types such as one
machine, parallel identical machines, uniformly related machines and unre-
lated machines [84],[85].

• Cell: also known as cellular layout. Cell layouts are hybrids between process-
oriented and product-oriented layouts. This layout combines the flexibility of
process-oriented layout at a similar efficiency than process-oriented layout.
Cell layouts does this by grouping together products in product families
and their manufacturing machines in family-oriented cells [52]. Cell layouts
belongs to the Group Technology (GT) paradigm [51]. This type of layout
is also known as group shop, derived from the term group technology. The
cell layout has line layouts for manufacturing sequences with high volume
and machines located outside the lines for low volume. The design of this
layout has to group correctly products in order to minimise the number of
used machines and maximise the number of produced products.

All these types of layouts have their own limitations, advantages and problems
to be solved. The limitations and advantages were explained in this subsection.
Each type of model, system and layout have their own problems to be solved. Rel-
evant problems to the modelling of the production planning with the use of S-RMS
are reviewed in Chapter 4. In the next subsection, relationships between models,
systems and layouts are discussed and feasible combinations are highlighted.
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2.2.4 Relationships between models, systems and layouts

Layouts, manufacturing systems and models can be combined in different ways, but
only a few combinations are feasible (i.e. profitable for an enterprise). These com-
binations depend on the estimated product demand and variety to be produced.
The feasible combinations are classified by their product volume and variants ca-
pacities in Figure 2.5. These combinations are [29],[33],[100],[101],[102],[103]:

1. Job production model with flexible manufacturing systems in a
functional layout: this combination has the greatest flexibility because
the FMSs can produce different operations or products. This combinations
can produce the widest variety of one-off products or low production volume.

2. Batch production model with reconfigurable manufacturing sys-
tems in a cell layout: this combination can produce shelves of products
that require different operations with the same resources (i.e. reconfigurable
machines). The number of product variants is smaller than the previous
combination due to the use of a cell layout.

3. Mass production model with dedicated manufacturing systems in
a line layout: this combination is the most efficient at manufacturing a
unique type of product. However, there is not flexibility to produce more
than one product. Although there might be reconfiguration to produce a
similar product, the reconfiguration might take weeks or months.

4. Job and batch production models with Self-Reconfigurable Manu-
facturing Systems (S-RMSs) with non-defined layouts: this is a pro-
posed new combination that aims at producing between the job and batch
production models (higher than job production and equal to batch produc-
tion, and higher product variety than batch production and equal to job
production). Moreover, the S-RMSs can change among manufacturing lay-
outs, create hybrid or novel and non-defined layouts. Though it can form
line layouts, it cannot reach the production efficiency of dedicated systems.

Combinations one to three provide specific product volumes and limited ranges
of product variants. In summary, cellular layouts can manufacture higher volumes
than functional layouts in less time; functional layouts can manufacture higher
number of product variants than cellular layouts. In a similar way, reconfigurable
systems can manufacture higher number of product variants than flexible systems.
The novel S-RMS can produce in a wider range of product volume and product
variants than RMS, FMS and DMS. The S-RMS can rapidly increase the produc-
tion volume from one-off products to low production volume and can cover a wider
range of product variants (i.e. from low to high). Although the S-RMS are capable
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of forming line layouts for a single product (i.e. mass production model), these
ones are not capable of reaching the production volume at the similar efficiency
than dedicated systems.

Figure 2.5: Classification of manufacturing models, manufacturing systems and
manufacturing layouts according to the production volume and product variants
they can generate. The horizontal axis shows the production volume whilst the
vertical axis on the left shows the number of product variants that can be produced.
The three main manufacturing models (i.e. job, batch and mass production) are
highlighted within blue boxes. The three main classes of the manufacturing sys-
tems according to their flexibility are highlighted within green boxes. These sys-
tems are dedicated, flexible and reconfigurable manufacturing systems. The three
main types of layouts (i.e. functional, cell and line) are highlighted in gray boxes.
The vertical axis on the right classifies models, systems and layouts according to
their process organisation (i.e. process flow). The combinations of models, systems
and layouts are numbered from one to four, and a novel type of manufacturing
system that is capable of producing the three types of layouts is highlighted in
the red box numbered 4. This system is the Self-Reconfigurable Manufacturing
System (S-RMS). The combinations are: 1. Job production model with Flexible
Manufacturing Systems (FMSs) in a functional layout, 2. Batch production model
with Reconfigurable Manufacturing Systems (RMSs) in a cell layout, 3. Mass pro-
duction model with Dedicated Manufacturing Systems (DMSs) in a line layout, 4.
Self-Reconfigurable Manufacturing Systems (S-RMSs) with no defined nor fixed
layouts. Adapted from [29],[33],[100],[101],[102],[103].
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2.3 Concluding remarks

This chapter presented a thorough review of manufacturing paradigms and the
types of added value. This review demonstrate the evolution of manufacturing
paradigms by the type of value they add. Also, the review demonstrate the con-
ception of added value based on knowledge (i.e. HVM). Key challenges for HVM
were described in Chapter 1. The main challenge for HVM is to survive the valley
of death [2]. This requires the rapid automation and scalability of novel manufac-
turing processes.

Therefore, a review of current manufacturing approaches (i.e. manufacturing
models, systems and layouts) was presented in this chapter. This review shows a
research gap to propose manufacturing systems that can produce under an HVM
environment (i.e. rapid change from one-off products to low production volume, for
multiple novel products and the reuse of the same resources to reduce investment).

The review shows that current manufacturing systems and layouts cannot ad-
just to produce under the HVM environment. Therefore the novel manufacturing
system, Self-Reconfigurable Manufacturing Systems (S-RMSs), were introduced.
This one is capable of rapidly changing its production layout to produce different
products with different production requirements (i.e. demand, deadline). A fur-
ther step to S-RMS is its adaptation to offer global HVM services in order to enter
new markets. This is presented in Chapter 3 with the framework INTelligent RE-
configuration for a raPID production change (INTREPID). INTREPID is based
on cloud manufacturing, Industry 4.0 principles, networked manufacturing, cloud
robotics and the S-RMS. In contrast to cloud manufacturing, the use of advanced
job allocation mechanisms is proposed in INTREPID.

In Chapter 3, it is also presented a full description of the S-RMS along with
some examples. Later this thesis focuses on the production planning for the
S-RMS. In Chapter 4, related problems to model the production planning for
the S-RMS are reviewed.
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INTREPID: A comprehensive
framework for high value
manufacturing

Fierce competition in the manufacturing sector has motivated the change from
the mass production paradigm to alternative paradigms such as lean manufactur-
ing, services-oriented manufacturing or servitisation or mass customisation, and
recently cloud manufacturing and high value manufacturing. There was a change
of pattern, from competing by reducing products cost to competing by adding
value to the products. Added value has proven to be critical in deciding which
product to purchase (e.g. products from Apple Inc). Examples of added value
are higher quality, lower cost, shorter delivery time, better service and more cus-
tomised products or services [1].

High Value Manufacturing (HVM) focuses on adding value through the applica-
tion of leading edge technical knowledge and expertise to the creation of products,
production processes, or associated services [1]. The importance of adding high
value lies in the difficulty for competing enterprises to reach the same novel prod-
uct, process or service. High value might take years of research and development.
However, automating and increasing the production volume from one-off prod-
ucts to low, medium and large scale production for HVM remains an unaddressed
challenge [2].

Therefore, this chapter describes the framework INTelligent REconfiguration
for a raPID production change (INTREPID), which was introduced in [29]. The
big vision of INTREPID is to offer global HVM services built over the following key
paradigms: cloud manufacturing, networked manufacturing, Self-Reconfigurable
Manufacturing Systems (S-RMSs), industry 4.0 and cloud robotics. It proposes to
do this through a globally distributed network of factories, where each factory has
HVM machines and mobile manufacturing resources to reconfigure the production
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layout according to the current production requirements.

In this chapter, HVM challenges and key paradigms to address them are dis-
cussed in Section 3.1. A brief summary of INTREPID’s parts (Subsection 3.2.1),
INTREPID’s operation and its main characteristics (Subsection 3.2.2) as well as
challenges (Subsection 3.2.3) are described in Section 3.2. The parts of INTREPID
are described in detail in Section 3.3. These ones are: a user interface and commu-
nications platform (Subsection 3.3.1), a job allocation system (Subsection 3.3.2),
a network of reconfigurable facilities (Subsection 3.3.3), and a Self-Reconfigurable
Manufacturing System (S-RMS) (Subsection 3.3.4). Concluding remarks are pre-
sented in Section 3.4. These remarks draw attention to the key processes that
need to be considered at addressing the reconfigurable layout problem.

3.1 Key paradigms for INTREPID

The main HVM challenge (i.e. valley of death [2]) can be addressed with INTREPID.
INTREPID is motivated by the following paradigms: networked manufacturing,
cloud manufacturing, Self-Reconfigurable Manufacturing Systems (S-RMSs), In-
dustry 4.0 and cloud robotics. These paradigms were briefly introduced in Section
2.1 and Subsection 2.2.2. In this section, the relationship of these paradigms with
INTREPID is explained.

Networked manufacturing and cloud manufacturing

In order to enter new markets a distributed network is required. This involves chal-
lenges of its own. These challenges are communication and coordination within a
globally distributed manufacturing network. The paradigm known as Networked
Manufacturing (NM) addresses these challenges [75],[7]. In NM, information from
facilities across the network is shared and accessed through the internet. This infor-
mation is mainly used for collaborative product design and manufacturing. Hence,
robust, reliable and real-time communications and mechanisms for collaboration
are fundamental. Therefore, communications through internet must address issues
such as security and scalability for real-time communications [104].

Web-based manufacturing systems are systems that facilitate collaboration
within the networked manufacturing concept. These systems are implemented for
different stages of the product lifecycle (i.e. product design, manufacture, service
and disposal) [76]. Examples of their applications are collaborative design, col-
laborative planning and production control, manage product designs, parts design
libraries, remote control of manufacturing resources, describe parts and features
geometry, dynamic product simulation, model supply chains, manufacturing sys-
tems simulation, etc [105].
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However, a drawback of these systems is their tailored design to a specific
product or industry. Cloud manufacturing or Cloud Based Design Manufactur-
ing (CBDM) is based on networked manufacturing and similarly to web-based
manufacturing systems it focuses on distributed manufacturing facilities. In con-
trast to web-based systems, an unifying computing architecture and model to
access manufacturing services through the internet have been proposed by CBDM
[82].

CBDM main enabling technologies are derived from cloud computing [6]. These
ones are Internet of Things, virtualisation, and service-oriented technologies (i.e.
service oriented architecture, web service, and semantic web), advanced computing
technologies (i.e. high-performance computing, ubiquitous computing and cloud
computing itself). Cloud manufacturing aims to offer manufacturing services in
an analogous way to cloud computing offer computing services.

Most of these technologies focus on information and system issues. However,
research on the production planning in cloud manufacturing environments remain
a challenging research gap. In contrast, studies on web-based Rapid Prototyping
(RP) and manufacturing systems have considered production planning [76]. These
are process selection, machines remote control and monitoring, and job planning
and scheduling.

In RP, process selection refers to sending a job to the most adequate RP
machine. If machines are not available there might be necessary to sequence and
queue the job. Remote control and monitoring refers to real-time operation of
RP machines. Hence, interfacing RP machines to the internet require the use of
system independent technologies (e.g. common object request broker architecture)
[106]. Nowadays, unloading materials from RP machines is a manual job. Hence,
machine and operator schedules have to be considered in order to solve the job
planning and scheduling problem.

Moreover, RP machines only perform a single process. This means that com-
plete products might require a series of machining and assembly operations con-
strained by precedences. Hence, it is necessary to solve a complex planning and
scheduling problem to produce the subcomponents before the assembly. Moreover,
it is necessary to move parts from output of a process to the input of another one
in a precise and timely manner to optimise the production plan. An optimised
production plan facilitates producing more products or larger quantities simulta-
neously at lower cost and time.

Self-reconfigurable manufacturing systems

Different levels of physical changeability (i.e. ability to change) are required in
order to provide HVM services within a distributed network of facilities. These
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levels cover changes in the infrastructure network and their supply chains, and
changes in single machines and their setups. Changes in the production network
results in the creation of temporal supply chains, and partnerships to design and
manufacture products with a shared pool of resources [7],[82]. Different levels of
changeability within a distributed network are classified according to level of prod-
uct change and production level (required degree of production change to achieve
the necessary product change) [94]. This classification is observed in Figure 3.1a,
where changes in products are achieved through changes in the production level
(resources). In Figure 3.1b, the degrees of changeability are achieved through
changes in architectural or tangible objects (spaces). These are the levels:

• Agility: the product portfolio is changed. This includes changes in the
manufacturing capacity and entrance to new markets through production
network changes.

• Transformability: a product family is changed to a new one. This occurs
through changes in production sites(factories), their production and logistics
systems. This is done through changes in the location or the master plan.

• Flexibility: a family of subcomponents or products is changed to a new but
similar one. This is done in production segments changes such as production
processes and material flow changes.

• Reconfigurability: a family of materials or subassemblies is changed in a
production cell/system. This occurs through changes in the working area
(i.e. addition or removal of functional elements).

• Changeover ability: feature of product is changed in a production station
through changes in the working place. This is done by doing a different
operation with the same machine or workstation.

There is no common consensus for these definitions [107]. Many authors agree
with the definition given by Tolio in [94] where flexibility is the ability of a system
to change its behaviour without changing its configuration whilst reconfigurability
is the ability to change its behaviour of a system by changing its configuration.
However, in the classification presented in Figure 3.1a, these terms are synonyms
of change but they are distinguished by their application domains.

The levels of flexibility at a factory depend on its type of manufacturing sys-
tems and machine layout. These were explained in Chapter 2. Briefly, the main
manufacturing systems are dedicated, flexible and reconfigurable, whilst the main
layouts are lines, job shop, functional (workshop), and cells. Combinations of
systems and layouts result in different levels of flexibility. The S-RMS was intro-
duced in Chapter 2. In summary, S-RMS consist of logistics robots (Automated
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(a) (b)

Figure 3.1: Different levels of flexibility and their corresponding architectural ob-
ject. (a) Degrees of changeability in an enterprise, where the necessary changes
in products are referred to changes in production. (b) Production changes are
addressed with changes in architectural objects. (a) and b) images are reproduced
from [94] with permission of Elsevier and Copyright Clearance Center under the
license Number 3897920230512.

Guided Vehicles (AGVs)), mobile manipulators with interchangeable tools, flex-
ible grippers and fixtures (i.e. fixtureless assembly, [99]), and movable machines
for advanced processes that cannot be embedded in modular tools.

Industry 4.0 and cloud robotics

S-RMS belongs within the paradigm Industry 4.0. In this paradigm, Cyber Phys-
ical Systems (CPS) (i.e. mechatronic devices with wireless connectivity) commu-
nicate and coordinate with each other through the Internet of Things (IoT) to
manufacture. This occurs in smart factories where conditions about the factory
are shared through the internet.

Industry 4.0 and cloud robotics heavily rely on connectivity networks for col-
laboration and for sharing and getting data (Internet of Things (IoT)). In Industry
4.0, the IoT is used to coordinate tasks between resources whilst in cloud robotics
is used for skills and data redistribution (i.e. collective robot learning) [108],[109].
Other advantages of cloud robotics include accessing big data (e.g. libraries of
maps), human computation (e.g. human’s skills for analysis) and cloud comput-
ing (i.e. parallel grid computing for path planning).

In summary, High Value Manufacturing (HVM) challenges are addressed by
providing HVM services with a global distributed network of facilities. The net-
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work communications challenges are addressed with networked manufacturing and
cloud manufacturing. The need for highly flexible manufacturing systems to man-
ufacture multiple products is addressed with the S-RMSs. The communication and
coordination challenges to determine an optimal layout according to production
requirements are addressed with industry 4.0. Cloud robotics is proposed for self-
optimisation of manufacturing processes and sharing or requesting manufacturing
skills, procedures, knowledge, etc. INTREPID joins all of these paradigms.

3.2 INTREPID framework

In this section a description of the novel manufacturing framework INTREPID
is provided, and the specific parts are described in the four following sections.
INTREPID stands for INTelligent REconfiguration for raPID production change.
INTREPID is inspired by the following paradigms: cloud manufacturing, net-
worked manufacturing, Self-Reconfigurable Manufacturing Systems (S-RMSs), In-
dustry 4.0 and cloud robotics. INTREPID consists of a globally distributed net-
work of manufacturing facilities to provide cloud based HVM services. INTREPID
addresses the issues of providing global HVM services and rapid scalability of the
production volume.

3.2.1 INTREPID general description

INTREPID differentiates from other cloud manufacturing approaches on the use
of mobile resources (movable machines and mobile manipulators, i.e. S-RMS) that
can arrange themselves in production layouts tailored to the current production
requirements. This facilitates providing services tailored to the user needs (i.e.
contract by capability). This also results in reducing the material handling cost.
The use of S-RMS results in a new research gap due to the possibility of determin-
ing novel layouts to manufacture several products simultaneously. This is because
idle machine times and tool changeover times are reduced by manufacturing prod-
ucts that require similar processes. The main parts of INTREPID and its main
processes are shown in Figure 3.2. A detailed explanation of the parts is given in
Section 3.3. In brief, the main parts are:

• User interface and communication platform: This consists of a web-
based manufacturing system for communications. There are two types of
communications in this system. These are communication between customer
and allocation systems and communications within the infrastructure net-
work (i.e. their allocation systems).
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• Manufacturing infrastructure: This consists of a globally distributed
network of transformable manufacturing facilities. These facilities are called
Reconfigurable Manufacturing Centres (RMCs). The clusters consist of phys-
ically connected factories. At each factory and each cluster the production
layouts are tailored and can change to accommodate the production of sev-
eral different products. The factories are equipped and designed to facilitate
layout change.

• Job allocation system: There are three hierarchical levels of allocation
systems. Firstly, the network allocation system assigns jobs to the clusters
in the network. Secondly, the cluster allocation system operates in factories
of a single cluster. Thirdly, at each factory, the factory allocation system
assigns jobs to the most adequate layout of manufacturing resources.

• Manufacturing resources: These consist of autonomous mobile manipu-
lators (arm robots over mobile platforms) and movable machines capable
of physical self-reconfiguration, self-organisation and capable of changing
production layout. These resources are modular and their name are Self-
Reconfigurable Manufacturing Systems (S-RMSs). There were introduced in
Chapter 1 and examples of them are presented in Subsection 3.3.4.

In Figure 3.2, INTREPID is shown at a global scale, where any institution
(e.g. entrepreneurs, start-ups, SMEs and global companies) can request and access
HVM services through internet from any location to any location in the world [110].
For this purpose, a globally distributed network of reconfigurable manufacturing
clusters (i.e. factories joined together) are proposed as infrastructure. Each factory
is reconfigurable (i.e. the production layout can change over time to produce
different products). Factories can specialise according to the type of products
they can produce and their manufacturing resources (i.e. from low precision to
very high precision).

A key aspect of this network is bidirectional communications between cus-
tomers and job allocation systems across the network, as well as communications
between factories or clusters to coordinate production of complex products. Refer-
ring to the changeability levels listed in Section 3.1 (i.e. Figure 3.1), INTREPID
includes the following:

• Agility through a global network of factories that supports producing at
new markets and changing the product portfolio by changing the production
layouts.

• Transformability, flexibility and reconfigurability of the complete pro-
duction layout through the use of the S-RMS.
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Figure 3.2: INTREPID framework. INTREPID’ parts are shown in yellow squares.
These are: a) User interface and communications platform; b) Central job alloca-
tion system; c) Infrastructure network (network of RMCs); and d) Manufacturing
resources (Self-Reconfigurable Manufacturing Systems (S-RMSs)). Blue arrows
represent communications among RMCs, whilst red arrows represent communica-
tions between the network job allocation system and RMCs. Each RMC is com-
posed of several connected reconfigurable factories. An example of a reconfigurable
factory is highlighted and some production layouts with mobile manipulators are
observed (i.e. line and cell layouts). The main processes of INTREPID are shown
in blue squares. Processes to determine the most adequate layout are planning
and simulation in an optimization loop. Product and process data from jobs is the
input for this optimisation loop, whilst the output are production plans that are
executed and monitored in real world. Real-time problems are managed through
replanning and reconfiguration.
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• Changeover ability is achieved through the variable working range of the
S-RMS. Also, the use of the arm robot allows manufacturing on different
axes and orientations.

The full scope of the framework is to offer global HVM services, but the produc-
tion system (i.e. S-RMS) can be implemented in any factory to boost its flexibility
and responsiveness. The main advantages of INTREPID are:

• High value manufacturing services

• Additional production capacity

• Entrance to new countries and markets

• Production of multiple novel products simultaneously

• Test of new layouts before investment

• Product design and simulation services

3.2.2 INTREPID operation

INTREPID operates through its four main parts, see Figure 3.2. The main pro-
cesses are classified in web-based communication processes (e.g. collaboration and
negotiation for product design, raw material supply securing and manufacturing
processes specification), logistics processes (e.g. raw material supply and final
product delivery), and manufacturing process (e.g. planning, simulation and ex-
ecution). In rough terms, INTREPID’s operation sequence consist of four main
type of processes. Firstly, processes aimed to collect or develop product and pro-
cess data and requirements. Secondly, logistics and supply chain management
processes to secure raw materials and coordinate materials arrivals and product
departures in a Just In Time (JIT) way. Thirdly, processes of job planning and
simulating at each factory or group of factories. Fourthly, jobs are executed and
monitored at the factory or factories. This sequence is explained in detail in the
next paragraphs:

1. Data collection: This includes production requirements (e.g. deadlines,
demands), raw materials data (e.g. type of material and its properties, initial
dimensions), final product data (e.g. bill of materials, drawings, machining
features) and data from compulsory or desirable manufacturing processes
(e.g. tolerances, quality), see Figure 3.3. Also, there might be negotiation
and collaboration processes [80]. For product development, collaboration is
important to agree on the product and process data. Negotiation is done if
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the manufacturing capacity is not enough to handle production requirements.
Through negotiation, the production requirements can be changed based
on resources availability [82]. Hence, negotiation and collaboration create
a feedback loop with the next step (i.e. job allocation). Data collection,
product development collaboration and product requirements negotiation are
performed through the user interface and communications platform. These
processes are firstly done between users and the network allocation system.
Later, when jobs are allocated, the communication is between users and
specific factory or factories.

2. Job allocation: The second process refers to matching product require-
ments to production capacity. The product and process data is sent to all
the available manufacturing factories. Factories propose bids describing pro-
duction plans and schedules. The bid are pre-selected and coordinated by
cluster and factory allocation systems. This coordination occurs through the
user interface and communications platform. These bids are per factory or
per group of factories for complex products. Hence, the factories compete
for jobs, but cooperate for complex products [111]. The network allocation
system selects the most adequate factory or factories based on requirements
fulfilment, cost, and logistics.

3. Planning and simulation: at each available factory, planning and simu-
lation are done in an optimisation cycle until the best feasible production
layout is determined (optimisation), see Figure 3.3. Planning and simula-
tion involve manufacturing resources that are available or are proximate to be
available. Planning refers to developing mathematical models that consider
available resources to determine if they can meet user’s requirements. These
models also consider logistics to supply raw materials and deliver products.
Simulation refers to test the resulting production layouts from the planning
process. This might involve 3D simulation in a virtual factory [40]. The ob-
jective is to address robotics challenges such as path planning and collision
avoidance for both the mobile platform and the arm robot. Planning is a hi-
erarchical process. This means its scope is increased if resources cannot meet
user’s requirements. The planning scope ranges from a single factory, many
factories, an entire cluster or many clusters. Regarding planning, in order to
determine an optimal production layout the following areas are considered:
task to robot allocation, process order, available space for layout formation,
variety of production processes and layouts, and multi mobile robot path
planning, coordination and scheduling (Figure 3.3).

4. Execution, monitoring and replanning: The manufacturing resources
are capable of locating themselves according to the planned layout, calibrate
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Figure 3.3: Types of data required by INTREPID and production planning pro-
cesses within INTREPID. The processes are: design (product and process data),
planning, simulation, execution, (self-)monitoring and replanning.

and autonomously execute the production plan. Real-time (self-)monitoring
of the production schedule and resources performance allows layout replan-
ning. Replanning might range from simple adaptation up to reconfiguring the
complete layout depending on the severity of the problem (e.g. broken tools,
collisions, increments in demand, additional production orders). Predesigned
factories facilitate resources self-organisation and self-reconfiguration with
the use of sensing and communications systems [40]. Algorithms and sys-
tems related to the calibration, movement, commissioning, coordination and
cooperation among robots during process execution are supported by sensing
and communication systems. The following areas are simulated and later ex-
ecuted: Movement and coordination of resources, manufacturing processes,
system and machines calibration and cooperation, sensors data estimation,
and communication signals (Figure 3.3).

Regarding the maintenance process, it is proposed to integrate self-repairing
abilities in the manufacturing resources for simple damages [112]. Otherwise, it
is proposed to schedule predictive and preventive maintenance, and corrective
maintenance if required. The area of quality control is proposed to be done in two
steps. These consist of intermediate inspections at important points during the
manufacturing process with mobile manipulators, and a quality control inspection
before delivery to the customer. Other processes that are important to INTREPID
but that will not be discussed are supply chain management and logistics and
communication networks.
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3.2.3 INTREPID challenges

The main challenges of INTREPID focus on the research, development, implemen-
tation and testing of its constituent parts:

• Development and implementation of a user interface and communications
platform that provide real-time and robust communications

• Design and construction of factories and RMCs that facilitate the movement
of mobile manufacturing resources, including the specification of sensing and
communcations systems

• Design and construction of mobile manufacturing resources (S-RMS) that
can autonomously reconfigure the production layout

• Research, development and implementation of job allocation mechanisms
that consider the design and operation of the infrastructure (RMCs and
factories) and S-RMSs.

Specific challenges to facilitate the reconfiguration of the manufacturing layout
are:

• Mechanisms for self-organisation and self-assembly for a large number of
mobile robots

• Mechanisms for self-calibration of the S-RMS

• Reconfigurable control systems for robots

• Space allocation mechanisms for reconfiguration of resources

• Research and development of automated connection mechanisms of supplying
services such as energy, vacuum and cooling liquid

• Design and construction of automated and intelligent warehouses for the
manufacturing resources, raw materials and products

• Development of robust and real time communications among manufacturing
resources and between central allocation systems and resources

• Negotiation and collaboration mechanisms between user and job allocation
systems, and among the different RMCs and factories within a RMC
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3.3 INTREPID parts

INTREPID consists of a user interface and communications platform, a network of
Reconfigurable Manufacturing Centres (RMCs), a job allocation system and Self-
Reconfigurable Manufacturing Systems (S-RMSs). The aim of INTREPID is to
offer global HVM services through its parts. Therefore, these parts are described
in the following four subsections.

3.3.1 User interface and communication platform

In order to provide global HVM services, the use of global communication net-
works is of paramount importance. Internet is the most widespread and affordable
communication technology in the world. Therefore, the use of internet has been
proposed as the technology to access HVM services and interchange manufacturing
data. Key research on the use of internet and web-based technologies to manufac-
ture in distant locations will be reviewed in this subsection.

Related literature

Offering manufacturing services through the use of information superhighways was
first proposed in telemanufacturing [80]. The infrastructure was dedicated centres
with up-to-date technology and expertise. Many researchers have proposed to send
design data through internet to manufacture in a different location in respect to
the design location (design anywhere, manufacture anywhere) [110]. Examples of
equipment to manufacture through internet include, CNC machines [113] (turning
[114], milling [115] and drilling [116]), rapid prototyping [117] and manufacturing
with robots [118],[119].

The globally dispersed infrastructure network is a very important part is to
guarantee secure, reliable and real-time communications [120],[121]. Communica-
tions between customers and the central system allows collaboration and negotia-
tion for product and process design and simulation. Furthermore, communications
across the manufacturing network allows information sharing for global optimal
job allocations and production coordination of complex jobs [80].

A deep survey on technologies to offer manufacturing services is presented
in [117],[76]. Some of the most common architectures involve intermediary agents
(brokers) that buy and sell manufacturing services between customer and providers.
These agents are also capable of negotiating and collaborating with customer dur-
ing the product design phase. Agents also verify and convert the customer infor-
mation into valid information for manufacturing providers [82]. These agents or
brokers correspond to the job allocation systems proposed in INTREPID.

There are collaboration and negotiation between customers and the job allo-
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cation system to develop products or processes. This is done through the user
interface and communications platform. This loop consists of design, simulation
and redesign of products and processes based on the available type of manufactur-
ing resources. Through negotiation, the production requirements can be adjusted
based on resources availability [75].

The data that defines a job was described in Subsection 3.2.1. This data must
be either collected from users or developed through collaboration. This data is
collected or developed through the user interface and communications platform.
This data consist of production requirements (e.g. deadlines, demands, destina-
tions to distribute), raw materials data (e.g. type of material and its properties,
initial dimensions), final product data (e.g. bill of materials, drawings, machining
features) and compulsory or desirable manufacturing processes (e.g. tolerances,
quality), see Figure 3.3.

The user interface and communications platform is a web-based manufacturing
system. Web-based manufacturing systems are supporting systems to perform di-
verse stages of the product lifecycle (i.e. product design, manufacture, service and
disposal) through the internet [76]. An important disadvantage of these systems
is the numerous instances of them focused on diverse products and industry and
product lifecycle stages. Also, there are multiple technologies to develop these
systems.

A review on technologies to develop web-based manufacturing systems was
done in [76]. The most relevant technologies to address interoperability issues are
common object request broker architecture, distributed component object model,
remote method invocation, service-oriented architecture protocol and web services
[76]. Web-based manufacturing systems focused on simulation were reviewed in
[105]. Here, technologies to enable web-based simulation have evolved from Java
application, web 2.0 and semantic web (web 3.0)

The main issues that need to be addressed in the development of web-based
manufacturing systems are database management (e.g. data storage and retrieval,
data classification, data transfer), real-time and secure communications, results
visualisation, real-time monitoring of processes progress (e.g. simulation or man-
ufacturing), documentation and model repository. The most efficient technologies
to offer web-based manufacturing services have been collected into a single concept
called cloud manufacturing or Cloud Based Design Manufacturing (CBDM) [82].
CBDM is based on networked manufacturing and similarly to web-based manu-
facturing systems it focuses on distributed manufacturing facilities. In contrast to
web-based systems, CBDM offers a standard framework for users to access manu-
facturing services through the internet.
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Proposed approach

It is proposed to base INTREPID on the cloud manufacturing paradigm. CBDM
refers to the use of shared resources to design and manufacture products where de-
sign and production data is agreed through the cloud (i.e. the internet). However,
INTREPID is different from CBDM in the following main changes:

1. Job allocation is performed through specialised systems to handle multiple
products with multiple operations.

2. Manufacturing infrastructure is designed to facilitate the rapid reconfigura-
tion of the production layout.

3. Manufacturing resources consist of the S-RMS.

CBDM is derived from the cloud computing concept [6]. The main elements of
cloud manufacturing are Internet of Things, virtualisation, service-oriented tech-
nologies (i.e. service oriented architecture, web service, and semantic web) and
advanced computing technologies (i.e. high-performance computing, ubiquitous
computing and cloud computing). In contrast to web-based systems, CBDM is
characterised by their agility and scalability and the following key characteristics:
high performance computing, ubiquitous access, self-service, big data, pay-per-use,
resource pooling, virtualisation, multi-tenancy, search engine and crowdsourcing
[122]. Besides the difference in characteristics, CBDM outperform web-based man-
ufacturing systems in the following key areas [122]:

• Computing architecture: multi-tenancy (i.e. single instance of the appli-
cation software to serve multiple tenants), and virtualisation of manufactur-
ing resources and their capabilities.

• Sourcing process: crowdsourcing and search engine (enables users to find
desired service suppliers)

• Information and communication infrastructure: Interconnectivity tools
(e.g. Internet of things, smart sensors, wireless devices) allow real-time mon-
itoring of design and manufacture data.

• Programming model: parallel programming models enable processing
large datasets (big data).

• Design communication: Use of social media (enables multiple commu-
nication channels to reduce distorted information), and real-time communi-
cation (enables cross-disciplinary teams to design and redesign products or
processes to improve productivity)
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These elements provide cloud manufacturing superior characteristics over pre-
vious web-based technologies to provide services through the internet [81]. The
main characteristics are self-service, rapid scalability, on-demand provision and
ubiquitous accessibility.

3.3.2 Infrastructure: Flexible production networks and trans-
formable factories

Highly flexible production networks and logistics are required in order to provide
global HVM services. These ones should be able to supply raw materials and
commission manufacturing resources for a product mix through rapid changes of
the supply chain and production plan respectively. The focus of this thesis is not
on the supply chains, but on production plans for a single factory.

The change in the production plan at a single factory can be done in two ways.
Firstly, the relayout of the production layout (this is called as layout reconfigu-
ration in the rest of this document) or by moving the materials through different
manufacturing machines (this problem is commonly known as routing). For the
reconfiguration of the layout, it is require the rapid deployment of services such
as electricity, pneumatics, and cooling and lubrication liquids. For the routing
challenge, the key problem is to locate the manufacturing resources, so that the
travelling distance of the materials is minimised.

Related literature

The problem of locating manufacturing resources to minimise the distance along
the production flow constitutes the Facilities Layout Problem (FLP) for manufac-
turing resources or as the machine layout problem. This combinatorial problem
is NP-hard. The problem has variants such as location of factories along the sup-
ply chain, location of departments inside a factory, location of machines inside a
department, and even the location of machine and robots inside a manufacturing
cell [103].

Models and solutions for the FLP are presented in [123]. The most relevant
models are mixed integer programming [124], quadratic assignment problem [125]
and graph theory model [126]. Whilst, relevant solution methods are Computerised
Relative Allocation of Facilities Technique (i.e. heuristic approach) [127], branch
and bound (i.e. exact approach), and multi-objective approaches [128]. Meta-
heuristics are used large problems, relevant metaheuristic are ant colony [129],
genetic algorithm [130], tabu search [131] and simulated annealing [132].

The use of transformable factories was proposed in [133]. Transformable facto-
ries were contrasted against traditional factories. Key findings are that traditional
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factories require a slow and complex decision making process because their lifes-
pan is meant to be thirty or more years. Desired characteristics of transformable
factories are [134]:

1. Located near the relevant markets to avoid cost of logistics;

2. On-demand work;

3. Plug and play model to create feasible layout to match the production re-
quirements;

4. Highly-automated and integrated;

5. Self-organisation, self-control and self-optimisation of the production systems
and networks.

A green field project from BMW proposed a transformable factory in order
to achieve modularity [135]. In order to achieve lean operations, the factory was
designed in a collaboration between architectural planners and production process
engineers. The factory is characterised by a modular structure to achieve scalabil-
ity (i.e. lightweight steel with as fewer columns as possible that allows extension
or reduction of the modular building). Also, plug and produce assembly stations
are used to arrange the layout of this factory according to the information and
material flow.

A modular factory was proposed for the Volvo’s factory in Kalmar, Sweden
[136]. The layout of the factory are four hexagonal areas, see Figure 3.4a. Assembly
operations are executed in three of the hexagonal areas, whilst the fourth hexagonal
area is used for preparation and finishing operations. In the middle of the three
hexagons for assembly, a storage area is located. The purpose of this middle area
is to achieve equidistant distances between the hexagonal areas for assembly and
the storage area.

The use of manufacturing cells that are manually moved through an empty
factory in order to minimise the transportation costs of materials was proposed in
[13], see Figure 3.4b. This approach focuses first on machining operations, whilst
assembly operations are executed later. In order to determine locations of the
manufacturing cells, a particle swarm optimisation algorithm is employed. This
proposed factory is limited to a single direction of material flow due to the use of
fixed input and output stations (i.e. warehouses). In contrast to the flexible flow
of materials and products given by movable warehouses considered in this thesis.

In order to offer global HVM services, there is a need for globally distributed
factories that can rapidly change production layouts to manufacture different prod-
ucts. In order to produce complex products that a single factory or RMC is
incapable of producing, the coordination of factories in a global network is of
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(a) (b)

Figure 3.4: Examples of factories designed to increase the production flexibility.
(a) Volvo’s factory in Kalmar, Sweden. A modular layout was implemented in this
factory (Redraw from [136]). (b) An empty factory with input stations on the left
and output stations are on the right was proposed by Yamada in [13]. This image
shows machining cells and transport robots arranged in a layout according to the
product that is manufactured. Redraw from [13].

paramount importance. This coordination is also vital in order to schedule the
transportation of raw materials, subcomponents and products among factories.
The Ericsson Radio Systems factory concept proposed the delegation of tasks
from macro-factories to micro-factories [137]. This Ericsson concepts is similar to
plants-within-a-plant [138]. In both concepts the added value activities are per-
formed in the micro-factories and functions such as maintenance and quality are
performed within macro-factories.

Proposed approach

The specification of algorithms for factories location along the network is not part
of this thesis. The focus is on the optimal planning of the location of the manu-
facturing resources along the production floor and the formation of manufacturing
cells. It is proposed to use a globally dispersed network as manufacturing infras-
tructure. The network consists of Reconfigurable Manufacturing Centres (RMCs),
which consist of several connected factories. These factories are reconfigurable be-
cause they are designed to facilitate the reconfiguration and relayout of the man-
ufacturing resources. This is done with the use of communications and sensing
systems. The RMCs can be divided by their functionality and scope of applica-
tion in very high precision, high precision, medium precision and low precision. A
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Figure 3.5: Representation of a Reconfigurable Manufacturing Centre (RMC),
where the RMC consist of connected reconfigurable factories arranged in a dia-
mond pattern (left) and areas of a single reconfigurable factory (right). The areas
of a single factory are: 1. warehouses (i.e. areas to store robots and machines), 2.
manufacturing area (i.e. dedicated area (i.e. unmanned) for formation of manufac-
turing layouts), 3. virtual warehouses (i.e. warehouses to store raw materials and
final products), 4. travelling corridor (i.e. dedicated corridor for the movement of
robots), 5. robot logistics (i.e. entrances and exits for robots and machines), and
6. material logistics (i.e. entrances for raw materials or exits for final products).

RMC and the areas of a single factory are shown in Figure 3.3.2.

Each factory within each RMC is designed to facilitate the reconfiguration
and relayout of the manufacturing resources (i.e. robots and machines). This
is because, the factories do not have fixed equipment and structures. Factories
mainly consist of an empty area with communication and sensing networks that
help robots and machines to self-organise and cooperate. Factories are connected
through shared robot warehouses. This allows robots to travel between factories
and therefore increase the number of resources that can be considered for the job
allocation system (i.e. intra factory resources). A factory consists of the following
areas (see Figure ):

1. Warehouses: are areas to store robots and machines

2. Manufacturing area: is a dedicated area (i.e. unmanned) for formation of
manufacturing layouts
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3. Virtual warehouses: refer to warehouses to store raw materials and final
products

4. Travelling corridor: is a dedicated corridor for the movement of robots

5. Robot logistics: refer to entrances and exits for robots and machines

6. Material logistics: refer to entrances for raw materials or exits for final
products

In order to facilitate the relayout and increase the possible layouts that can
be formed, an octagon shape is proposed for each reconfigurable factory. The
octagon shape facilitates the connection of multiple factories by its corners and
creates warehousing zones to store machines and robots. This shape and the
warehousing zones are similar to the hexagonal shape presented in 3.4. Also, the
octagon shape does not increase the complexity of determining production layouts
from a four-sides factory.

The multiple entrances and exits (i.e. logistics for raw materials and products)
of the factory are inspired by distribution centres and raw materials warehouses.
The proposed reconfigurable factory has multiple doors to facilitate access of raw
materials and products in order to increase the flexibility of manufacturing layouts.
The purpose of having multiple doors (i.e. for entrance or exit) is to achieve Just In
Time (JIT) characteristics and avoid the use of traditional and fixed warehousing
areas. Therefore, the proposed warehouses are virtual (i.e. always in constant
change of their content and positions).

The predesigned factories and clusters include communications and sensing
systems to facilitate the reconfiguration of layouts. Sensing allows monitoring of
resources. This is additional to the self-monitoring of the production performance
done by the resources. Communications tools allow resources to be interconnected
for movement coordination and cooperation at manufacturing tasks. This is based
on the design principles of Industry 4.0, interoperability, real-time sensing and
virtual models of the factory.

3.3.3 Job allocation system: Network, cluster and factory
levels

A job allocation system is needed to determine the best suitable allocation of re-
sources to accomplish incoming manufacturing jobs within a distributed network of
factories. Three hierarchical subsystems can be distinguished for the job allocation
systems. These are:

• Network allocation system: assigns jobs to the clusters in the network
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• Cluster allocation system: assigns jobs to factories in a single cluster

• Factory allocation system: assigns jobs to the most adequate layout of
manufacturing resources

The network allocation system coordinates the production of complex products
or products that require distributed factories. The cluster and factory allocation
systems have similar solution methods but the amount of available resources is
larger in the cluster one. This is because, cluster allocation systems can employ
of all the resources within many factories, whilst the factory allocation systems
can only employ resources at its respective factory. The cluster allocation system
considers the movement of resources across the cluster whilst the factory allocation
system only within a factory.

The cluster and factory allocation systems also coordinate production of com-
plex products with other clusters and factories respectively. At the cluster and
factory levels, the allocation refers to assigning manufacturing resources to per-
form manufacturing tasks. At a network level, the allocation refers to assigning
jobs to be performed at a factory or factories. In the case of multiple factories,
these might be an entire cluster or multiple clusters. The hierarchical allocation
is explained in the following paragraph.

The network system transmits production requirements data to all cluster sys-
tems. The cluster systems do the same to the factory systems. At each factory,
there is planning and simulation to determine the most adequate production lay-
outs. If the resources are not enough at single factories, these ones coordinate with
other factories. This coordination is managed by the cluster system. Similarly,
if the resources are not enough at a single cluster, clusters coordinate with other
clusters. At the network level, the coordination is managed by the network sys-
tem. The focus of this thesis is on the job allocation system for a single factory.
Therefore, relevant literature on the allocation of resources within a single factory
is presented in the following paragraphs.

Related literature

Allocation of resources is commonly known as assignment problem and it is ap-
plied to agents, robots, workers, and even factories. The most relevant method
to solve the assignment problem is the Hungarian method [139]. However, for a
decentralised network it is more complicated [11]. Approaches that have addressed
the assignment problem in a decentralised network with the Hungarian method
require local information of each agent. As a result, the information is collected
and redistributed in a central system.

The assignment problem focused on mobile robots is known as Multi Robot
Task Allocation (MRTA) in the field of robotics [140]. MRTA considers metrics
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to measure the requirements of tasks to execute and the cost of executing tasks
depending on the robot and the task itself. The MRTA problem consists of deter-
mining the most appropiate number of robots to execute each task. The MRTA
problem can be solved with MRTA architectures, which are mechanisms to assign
robots to tasks.

There are decentralised and centralised architectures for the MRTA problem.
In decentralised architectures, costs of performing tasks with a robot or many
robots are calculated by each robot. In contrast, these costs are calculated by the
central system in centralised architectures. Hence, in decentralised architectures,
the time to determine a feasible or optimal allocation is distributed among all the
robots. However, in this type of architectures, the results are sub-optimal due
to the lack of global information. The most relevant MRTA architectures can be
classified by their working principles as follows [141]:

1. Market-based architectures: work by broadcasting the requirements and
corresponding costs of tasks. Next, robots get this information and plan
a bid for the tasks considering cost to perform them. The lowest bid is
selected. Whenever there are equal bids, metrics such as the robot scheduled
maintenance are used to select a bid. Most of market-based architectures
assume that global profit of the allocaation is optimised if local profits are
optimised. The best known market-based architectures are MURDOCH and
TraderBots [142],[143].

2. Motivation-based: The best known motivation-based architecture is AL-
LIANCE [144]. ALLIANCE is characterised by the use of two behavioural
mechanisms to allocate tasks. These mechanisms are:

• Impatience, which produces a robot to undertake a task if no progress
is achieved, and

• Acquiescence, which produces a robot to quit over a task if there is no
progress

3. Team consensus: works with a robot broadcasting help until there are
enough robots for the task. This architecture was implemented in order to
achieve dynamic role assignment for RoboCup teams [145]. The drawback
of this architecture is that the task allocation has to be agreed by the entire
team.

In summary, some advantages and disadvantages of these three architectures
are the following: Market-based approaches do not require high levels of communi-
cations among the robots, but between robots and a central system with informa-
tion about tasks. The parameters of the behavioural mechanisms (i.e. impatience
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and acquiescence) have to be tuned in the motivation-based architectures. Lastly,
in the team consensus architectures, high levels of communication are required
among the robots in order to agreed a task allocation.

A market-based architecture works by decomposing complex tasks in elemental
and core tasks to form task trees. Then, robots cooperate and solve elemental
subtasks until the complex task is achieved [146]. The multiple levels in the task
trees required mechanisms to manage additional tasks. The decomposition of
complex tasks results in multiple innovative task allocations.

Most of the decentralised MRTA architectures make use of the Contract Net
Protocol, a distributed communication protocol, to broadcast tasks [147]. The de-
centralised architectures considers negotiation between nodes with tasks and nodes
with robots. An advantage of market-based architectures is joint bids for complex
tasks [111]. Blackboard systems, where robots can access and interchange data
are recommended for ill-defined problems where solutions results from the sum of
partial solutions [148],[149].

Proposed approach

In industrial applications, it is desirable to obtain optimal, decidable and re-
producible solutions that are based on models rather than random or suboptimal
solutions. Hence, for INTREPID, an hybrid approach is proposed. This hybrid
approach consist of a centralised allocation for each factory whilst a decentralised
allocation for each cluster and the clusters network. The centralised approach con-
sist of the use of exact methods such as mathematical programming. This takes
advantage of the resources and the production plan monitoring to keep updating
virtual models of factory and its resources. This allows solving real-time problems
or plan future reconfigurations with updated information. This approach allow
resources to focus on manufacturing tasks, instead of wasting computing and com-
munication resources in coordinating, and determining production layouts with
local information.

However, for the network and cluster allocation systems, this approach is infea-
sible due to the large number of resources. Therefore, a decentralised approach is
suggested. The decentralised approach consist of the use market-based methods.
The network and cluster systems are based on collecting bids of each factory and
selecting the most profitable one. For complex jobs, joint bids of multiple factories
or clusters are allowed. Cluster and network systems select bids based on raw
material and final product distribution logistics.

At each factory, systems are proposed to monitor and allocate resources to man-
ufacturing tasks in real-time to solve problems. Factory systems have information
about the working conditions of the resources and equipment. This allows moni-
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toring the progress of the manufacturing tasks, and it allows adding more efficient
resources, or layout reconfiguration. The aim is to achieve the centralised pro-
duction planning and optimisation with a distributed execution and performance
feedback. It is proposed to do this through communication between resources and
a factory communication network.

Customers are able to provide information, depending on the requested service,
directly to the factory job allocation systems. The information provided is related
to final product requirements and specification, as well as desired or specific man-
ufacturing processes and raw materials. The functions of the factory job allocation
systems are:

• To transmit necessary global data to every resource,

• To simulate the calculated layouts, and

• To collect real-time data about the working conditions and status of resources
in order to schedule their preventive maintenance

3.3.4 Highly flexible manufacturing resources

INTREPID is a novel framework due to the use of the S-RMS. This type of sys-
tem was introduced in Chapter 2. In brief the systems consist of logistics robots
(AGVs), mobile manipulators with interchangeable tools, flexible grippers and fix-
tures (i.e. fixtureless assembly, [99]), and movable machines for advanced processes
(i.e. processes that cannot be embedded in modular tools). The objective of the
S-RMS is to form production layouts depending on the production requirements.
These robots will perform tasks such as manufacturing (machining and assembly),
logistics, quality testing and handling (i.e. machine loading and unloading).

Related literature

Self-adaptability is an important concept to manage uncertainty and disturbances
during manufacturing. Therefore, mechatronic modules to provide self-adaptability
to traditional manufacturing machines is proposed in the project called Mutable
Systems [150]. The drawback of this approach is the production processes are
limited by their own design. Also, changes of the process plans require trans-
port of raw materials and subcomponents between machines. Another important
concept to improve the current manufacturing systems is cognition [151]. The
purpose of providing cognition is to obtain an autonomous reconfiguration of the
manufacturing processes.

Manually movable arm robots that can change tasks by changing tool, or the
sequence of the manufacturing process by changing positions was described in
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[14]. This approach focuses joining and handling tasks in assembly lines. The
drawback of this approach is the manual movement of the robots, and the limited
locations where robots can manufacture. Manually moved manufacturing cells that
can change the production layout depending on the product are proposed in [13].
Although the cells contain auxiliary production equipment, the cells are limited to
single processes. Similarly to the manufacturing cells, plug and produce modules
require to be moved in order to form different production layouts [152]. The
dimensions of the materials that can be manufactured in the modules is limited by
its volumetric capacity. In contrast to the use of manufacturing cells and plug and
play modules, the use of mobile robots that can perform elemental tasks increases
the flexibility and the ability to form novel layouts. An example of this approach
is called Biological Manufacturing Systems [153].

In Biological Manufacturing Systems, artificial potential fields were proposed
in order to create manufacturing layouts according to the current products. The
potential fields work by attracting or repelling manufacturing robots to material
transport robot that require specific operations. As a consequence, flows of mate-
rials and manufacturing resources emerge based on local interactions between the
resources. Examples of the novel layouts are concentric circles, where the most
frequently used machines are located in the center of the circles, whilst rarely used
machines are located on the outer circles [12].

The limitations of manufacturing cells, movable arm robots and plug and pro-
duce modules are surpassed by mobile manipulators because they can manufacture
on materials of large or small dimensions due to their arm robots and mobile base.
Arm robots are characterised by their redundant degrees of freedom and reachabil-
ity. The advantages of mobile manipulators over plug and play modules or movable
manufacturing cells are their mobility, their reprogrammability, their capability to
manufacture material of different dimensions, their reachability achieved with their
serial kinematics configuration and the large number of available interchangeable
tools. Mobile robots have been used in industrial applications such as transporta-
tion of materials and products with Automated Guided Vehicles (AGVs) [154].
The drawback of AGVs is their limitation to move along guidance lines. The best
known example of mobile robots in logistics applications is the Kiva system that
consist of mobile robots that carry racks of products through warehouses [155].

A review of different industrial applications for mobile manipulators was done
in [156]. The results are that mobile manipulators can be used for logistics tasks
such as transportation and single- or multi-part feeding into conveying lines, as
well as assistive tasks such as machine loading or unloading and pre-assembly.
Moreover, mobile manipulators were applied to feed different types of parts to
specific conveying lines [157]. Another research on mobile manipulators focus on
developing a task allocation methodology based on the Hungarian method [11].
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The drawback of this approach is the use of fixed locations to manufacture.
The use of arm robots and mobile manipulators have been proposed for appli-

cations such as machining and composites placing, respectively [158],[159]. The
use of mobile manipulators to place composites over large components is beneficial
due to the serial kinematics of its arm plus the mobility of its base [158]. This is be-
cause the arm can reach distant parts of the large component. Similarly, the use of
arm robots for machining allows machining parts that require different cutting axis
without changing the setup of the material. Key challenges to address machining
with arm robots were identified in [159]. These challenges are the rebound force
during machining, low pushing and pulling force, and inferior accuracy compared
to machining machines. These challenges are addressed with novel mechanisms
such as laser tracking system and rebound force control compensator. Moreover,
the use arm robots to assembly subcomponents without setups and fixtures was
proposed under the term fixtureless assembly [99]. This is known as cooperative
robotics through the rest of this thesis.

Proposed approach

Mobile manipulators with mecanum wheels are proposed for INTREPID, see Fig-
ure 3.6a for an example. These wheels guarantee forward, backward, diagonal and
sideways movements, as well as rotations in x-y plane (i.e. omnidirectional move-
ment). The most common example of mobile robots for transporting materials is
the Automated Guided Vehicle (AGV). An example of a robot system for logistics
is the Kiva system [155]. An existing conveying robot from FESTO is shown in
Figure 3.6b.

Common manufacturing layouts were reviewed in Subsection 2.2.3. In brief, the
layouts are: 1. functional (the equipment is divided by the tasks they can perform);
2. lines (the equipment are aligned in a line), 3. cell (hybrid of functional and lines,
most repeated processes are in line, but machine not in the line allow for alternative
and complementary tasks similar to the performed tasks), and combinations of the
last three.

Mobile manipulators are proposed as logistics robots (AGVs) that can carry
material in a continuous way (mobile robots moving along the manufacturing line
or conveying robots forming a conveying line) or discrete way (mobile robots mate-
rials or shelves of materials). Examples of S-RMS layouts with AGVs and mobile
manipulators are shown in Figure 3.7. The proposed logistics robots are:

1. Conveying robots: are robots that connect with plug and play capabilities
to create a conveying line, see Figure 3.7a.

2. Mobile gripper robots: move to the manufacturing robots or machines
carrying small size materials, see Figure 3.7b.
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(a) (b)

Figure 3.6: Examples of mobile robots with application to industry and manufac-
turing. (a) Omnidirectional Mobile Manipulator: YouBot from Kuka Robotics.
Image reproduced, with permission, from [160]). (b) FESTO conveying station
(Photo courtesy of Martin Wojtczyk). Image reproduced, with permission, from
[161]). Robots in the figures are not scaled.

3. Fixed gripper robots: are fixed, whilst other robots move and work around
them, see Figure 3.7c. These type of robots are able to manage small or
medium size materials.

4. Mobile fixture robots: move to the manufacturing robots or machines
carrying medium or large size materials, see Figure 3.7d.

5. Shelf-robots: refer to robots that can carry an entire rack of parts or com-
ponents. Hence, shelf-robots can transport large quantities of materials and
products, see Figures 3.7e and 3.7f.

The robots capabilities can be modified or extended with two methods. The
first is to adapt manufacturing processes (e.g. soldering, milling and composites
placing) in interchangeable process dedicated tools. The second method is the
physical change of the hardware of the robot. Consequently, it is needed to simplify
and embed the manufacturing processes related to machining and quality testing
either in form of a modular tool or along the arm robot.

More advantages of using robots for manufacturing were reviewed in Subsection
3.1.3 with the description of the Industry 4.0 and cloud robotics paradigms. These
are decentralisation of decisions, interoperability and connectivity of resources,
real-time monitoring of robots performance, updating virtual models of the factory
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Examples of robotic layouts. The material flow is highlighted with blue
arrows. Names of robots are specified, otherwise, they are MMRs. Line layouts:
(a) With conveying robots. (b) With a mobile gripper robot. Cell layouts: (c)
With a fixed gripper robot. (d) With a mobile fixture robot. Cell layouts with
shelf-robots: (e) With the same material flow. (f) With different material flow. (a)
A line layout formed by conveying robots and manufacturing mobile manipulators
by each side. (b) A line layout formed by manufacturing mobile manipulators at
each side and a mobile gripper (c) A cell layout with two handling robots, one fixed
gripper robot and several MMRs. (d) A cell layout with one mobile fixture robot
and MMRs. (e) and (f) Cell layouts with manufacturing mobile manipulators,
handling mobile manipulators, one input-shelf and one output-shelf. In (e) the
input and output material flow have the same direction, whilst (f) the input and
output material flow have opposite directions.
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Figure 3.8: Example of a reconfigurable factory with examples of production lay-
outs (i.e. examples of line and cell layouts for small size materials, cooperative
tasks between robots and a fixed layout for a large component).

for reconfiguration, and skills sharing and redistribution through the cloud for
developing self-optimisation systems. A 3D image of a proposed design for a
reconfigurable factory along with examples of expected layouts can be observed in
Figure 3.8.

3.4 Concluding remarks

In this chapter, the INTREPID framework, its constituent parts and its operation
were described. The enhanced levels of flexibility obtained with INTREPID and
its manufacturing system, the S-RMS, were analysed and compared to state of the
art approaches. One of the novelties presented in this thesis is the use of S-RMS
to create production layouts tailored to the production requirements. Moreover,
the S-RMS can change functionality by changing tools and its programming. Due
to these types of flexibility, determining production plans for INTREPID is chal-
lenging.

Among the challenges for INTREPID, it is of special concern, determining

69



3.4. Concluding remarks

production plans that involve available manufacturing resources to produce the
current production mix subject to each product requirements. Production plans
for the whole INTREPID network is a challenge that involves millions of elements
(e.g. manufacturing resources, and global logistics and supply chains). Even deter-
mining production plans for a single cluster involves considering the use of MMRs
or machines from other factories, or outsourcing jobs between factories.

Hence, the rest of this thesis focuses on proposing and formulating a novel pro-
duction planning problem that considers mobile manufacturing resources (S-RMS)
within a single factory. This means determining the most adequate positions,
routes to reach positions, and schedules (allocation and sequencing) of manufac-
turing operations to machines. The resulting production plans must be constrained
to predefined sequences of operations (process plans).

Consequently, determining production plans implies solving scheduling, posi-
tions assigning, and routing problems. Hence a novel problem, the SAR problem,
to address these three problems in an inclusive problem is proposed in the next
two chapters. The scheduling, positions assigning and routing problems and their
constraints are analysed in Chapter 4, whilst, a comprehensive notation for the
SAR problem for a single factory is proposed in Chapter 5.
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Chapter 4

The SAR problem: analysis of
constituent problems

The INTelligent REconfiguration for a raPID production change (INTREPID)
framework and its enabling manufacturing system, the Self-Reconfigurable Man-
ufacturing System (S-RMS), were described in the previous chapter. In brief, the
S-RMS increases the flexibility of current manufacturing systems with the use of
Mobile Manufacturing Robots (MMRs) and movable machines that can form lay-
outs according to the current production requirements. The use of MMRs makes
possible to continuously move manufacturing resources towards the most adequate
locations to perform manufacturing tasks.

The use of MMRs enhances production plans with features from the robotics
field. These features include the decentralisation of decisions, the autonomy to per-
form tasks, and access to cloud-based computing. These features are highlighted
as part of the paradigm Industry 4.0, whose aim is to endow more autonomy to
manufacturing resources through wireless communications.

Concluding remarks from last chapter highlight the challenges to determine
production plans with the use of S-RMS. Production plans with the use of S-RMS
consist of determining the most adequate schedules of tasks to machines, positions
of these machines, and routes for the machines to reach these positions. These
production plans are constrained to manufacturing sequences (i.e. process plans)
specific to each product.

In order to determine production plans that consider S-RMS, it is proposed
a novel problem that solves the scheduling, machine layout, and vehicle routing
problems simultaneously. Therefore, the name of the novel proposed problem is
the Scheduling, positions Assigning and Routing problem (SAR) problem. An
introduction to the SAR problem is provided in Section 4.1. The problems that
constitute the SAR problem are analysed in the following sections:
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• The scheduling problem and its analogy in the field of robotics, the Multi
Robot Task Allocation (MRTA) problem, are reviewed in Sections 4.2 and
Subsection 4.2.3, respectively

• The positions assigning problem is reviewed in Section 4.3, whilst its gen-
eral versions, the machine layout and the Facilities Layout Problem (FLP)
problems are reviewed in Subsection 4.3.1

• The vehible routing problem and its analogy in the field of robotics, the
motion planning problem, are reviewed in Section 4.4 and Subsection 4.4.1

Elements, characteristics, assumptions and optimisation objectives that can
be include the formulation of these three problems are analysed in this chapter.
These are studied in order to understand their relevance to the SAR problem and
their integration in a single problem. Also, existing notations to these problems
are studied. A summary of the chapter and concluding remarks are presented in
Section 4.5.

4.1 Defining the SAR problem

For common manufacturing systems with fixed machines (i.e. dedicated, flexible
and reconfigurable) it is common to first design the machine layout and determine
paths between machines. This is done considering an estimation of products to
produce and their expected demands. Once, the layout and paths among machines
are known, the normal operation consists of determining production plans for every
arriving group of products to be manufactured. These plans consist of allocation
and scheduling of tasks to machines, as well as selecting process plans (i.e. routing)
of tasks on the machines. Finally, selection or determination of paths to move
materials and products between machines and warehouses.

If the operation under the current layout is infeasible or unprofitable, a redesign
and relayout is required. This problem is studied in academia and is known as the
dynamic and the reconfigurable layout problems. These problems refer to deter-
mining a layout per each planning period. The dynamic layout problem assumes
known product requirements data of all planning periods whilst the reconfigurable
layout problem only assumes known data of current and next planning period.
These problems are reviewed in detail in Subsection 4.3.2.

In case of the SAR problem, the relayout might occur at each task of the
current planning period. Consequently, the complexity of determining a feasible
or optimal production plan is higher than for the dynamic and reconfigurable
layout problems. Moreover, because product requirements of the current period are
known, it is possible to design the layout considering the most adequate operation.
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As a result, layout design and layout operation problems are addressed together
in the SAR problem, see Figure 4.1.

The SAR problem aims to integrate and solve the problems of scheduling, ma-
chine layout and vehicle routing in order to determine feasible and optimal produc-
tion plans tailored to the current production requirements. It is expected that these
production plans result in novel machines layouts that take advantage of manufac-
turing the product mix simultaneously and with mobile manufacturing resources.
Hence, this might result in reduced manufacturing costs and times. Elements,
characteristics and assumptions from each constituent problem (i.e. scheduling,
machine layout and vehicle routing) are reviewed and analysed in the following
three sections.

Elements and characteristics are referred as pieces of data in [84]. Elements
and characteristics are pieces of data that can be included in a problem or not.
The combinations of elements and characteristics define not only different types of
problems within a field, but also, different fields. Characteristics can influence (i.e.
constraint or relax) elements, and assumptions can influence elements and char-
acteristics. Elements, characteristics and assumptions of each problem influence
different aspects of the SAR problem. The ones from the scheduling problem influ-
ence the allocation of tasks to resources over time, the ones from machine layout
problem influence the design of the machine layouts, and the ones from the vehicle
routing influence the paths or routes of materials and products transportation.

4.2 Scheduling

In general terms, the machine scheduling problem refers to the allocation of man-
ufacturing operations in a machine(s) over time [84]. When, there is a single
machine, the scheduling problem is reduced to a sequencing problem that can be
solved by permutations of the operations. In general, the purpose of the scheduling
problems is to minimise the deviation of production time with respect to products
due dates [84]. The scheduling problems are classified according to three fields
notation proposed by Graham et al. in [85]. The fields are α, β, γ, and they
describe the type of problem (i.e. the machine environment), the characteristics of
the job or task, and objective to optimise, respectively. These fields are separated
by a vertical bar symbol (|). An example of the notation is 1|rj, prmp, prec|Lmax,
where the terms are explained as follows:

• 1: single machine problem (environment).

• rj: homogeneous or unique release date/time for all tasks or jobs.

• prmp: preemptions allowed.
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Figure 4.1: Evolution of the production planning problems. Current approaches
in industry for addressing the production planning problem with constant produc-
tion demands are shown in the upper part of this figure. Also, recent approaches
from academia to deal with production planning problems in dynamic and recon-
figurable layout problems is shown in the lower part of this figure. These problems
focus on determining layouts per each period whilst reducing the cost of changing
layouts between periods. The proposed problem for dynamic production planning
is highlighted as the newest approach from academia [193]. The problem is called
the Scheduling, positions Assigning and Routing problem (SAR) problem. The
SAR problem refers to addressing the scheduling, positions assigning and vehicle
routing simultaneously.
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• prec: sequences (i.e. precedences) between tasks are considered. Common
types for these sequences are a chain or a tree

• Lmax: optimisation objective of minimising maximum lateness. Lateness is
the deviation (negative or positive) of the completion time of operation j
against its due date dj. This is Lj = dj − Cj.

The combination of the elements, characteristics and their assumptions result
in a wide variety of scheduling problems [85]. Elements, characteristics and their
assumptions from the scheduling problem influence the allocation of tasks to re-
sources over time in the SAR problem. Relevant types of problems (i.e. α field) are
described in Subsection 4.2.1, core elements and characteristics (i.e. β field) are
described in Subsection 4.2.2, and common optimisation objectives (i.e. γ field)
are reviewed in Subsection 4.2.5.

4.2.1 Types of scheduling problems

The type of environment where operations take place define the type of problem
that is addressed. The established problems are reviewed and analysed in relation
to the SAR problem in the following paragraphs. Relevant scheduling problems to
the SAR problem are identified.

The single machine problem refers to determining a sequence of tasks to a
single machine in order to reduce the difference between due dates with production
dates of products. The products in this type of problem require a single type
of task. In contrast to the single machine problem, in the parallel identical
machines problem there are multiple machines working in parallel. However, all
machines have the same processing speed. In a similar way to the last problem,
the focus is on products that require a single type of task.

Similarly to the last problem, the parallel uniform machines problem refers
to allocating several jobs to several machines, where each job requires the same
type of task. However, in contrast to the last problem, the machines have different
processing speeds. These speeds are factors of the job and the machine. The par-
allel unrelated machines problem is identical to the parallel uniform machines
problem, but with arbitrary processing speeds for each machine.

In contrast to the previous four problems, in the job shop problem, products
require more than a single task. This problem refers to complex products that
require different sequences of manufacturing tasks (i.e. precedence graphs). The
processing speeds for each task depend on each machine. These characteristics are
similar to manufacturing within High Value Manufacturing (HVM).

The flexible job shop is an enhanced variety of the job shop problem [162].
This problem considers the use of multitask machines. Hence, the flexibility is
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increased but also the complexity to determine a feasible or optimal schedule. The
flexible job shop is addressed in two parts, the tasks to machines allocation. The
first is routing (i.e. machine sequence selection) and the second is scheduling (i.e.
sequencing). The addition of multi tasking machines makes this problem ideal to
partially formulate the SAR problem.

The flow shop problem is a special variety of the job shop, where all products
have the same sequence of tasks, but the processing times are different for each
product. This problem is similar to the single machine problem in the fact that only
sequencing is required. Hence, this problem can be solved through permutations.

The flexible flow shop problem is also known as hybrid flow shop [163],[164].
This problem is a combination of the flow shop and the parallel machine problem.
Similarly to the flow shop, the flexible flow shop processes jobs in the same order
(i.e. same manufacturing sequence), but there are more than one machine working
in parallel at each stage. The jobs do not have to be processed in all the machines,
but they have to follow the same processing order.

The open shop problem deals with complex products that require multiple
tasks at multiple types of machines. The difference resides in the lack of compul-
sory sequence of tasks for products. This problem should not be confused with
the open shop terminology that refers to whether products are produced to stock
or produced to order [165].

The cyclic scheduling problem deals with repetitive schedules with the objec-
tive to produce demands larger than the unit [166]. The cyclic scheduling problem
might apply to the previous scheduling problems that require more than one task
(i.e. flow shop, open shop and job shop).

These problems are limited either to a single type of machine (i.e. single ma-
chine, parallel identical/uniform/unrelated machines), or limited to a unique or
none sequence of tasks (i.e. flow shop, flexible flow shop and open shop respec-
tively). The most relevant problems to produce under the HVM paradigm are the
job shop and flexible job shop problem. This is due to its capability of producing
several different products simultaneously, where each product requires a different
sequence of tasks and machines are multitask. Therefore, the rest of this section
focuses on the job shop and flexible job shop problems. The use of different and
repeated movable machines in INTREPID, make the job shop and flexible job shop
problems the most significant to propose an original problem formulation for the
production planning with S-RMS.

4.2.2 Scheduling elements and characteristics

This subsection focuses on the second field from Graham’s notation (i.e. job or
tasks characteristics). These tasks’ characteristics refer to possible assumptions
for problem formulation. Elements, characteristics and their assumptions from
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the scheduling problem influence the allocation of tasks to resources over time
in the SAR problem. Scheduling characteristics are divided in deterministic and
stochastic. Significant assumptions to the SAR problem that are derived from the
job shop and flexible job shop problems are reviewed in the next paragraphs.

Deterministic elements and characteristics

Deterministic elements and characteristics refer to known values (i.e. do not have
any uncertainty and the values are known at any instant of time)[84],[85],[167].
Approaches to solve the scheduling problem with deterministic elements and char-
acteristics are grouped under the term predictive scheduling. This refers to offline
planning prior to the execution of the manufacturing schedule. The SAR problem
formulation might consider relevant elements and characteristics from the schedul-
ing problem. The most important element to describe a problem are called core
elements. A core element to describe the scheduling problem is the type of envi-
ronment where manufacturing operations occur. This environment refers to the
types of problem (i.e. α field). These types of problems were described in 4.2.1.
However, regarding the second field (i.e. β), core elements and characteristics of
the scheduling problem with their respective notation are:

• Release dates/times (r): refers to the dates or times when raw materials
with which to perform a task are available. This is commonly used as the
earliest starting time to perform an operation [168]. In case of manufacturing
multiple products, the release times can be homogeneous or heterogeneous
for all products. For a long production time the release times can be peri-
odic or non-periodic. This means whether the new products are produced
periodically or not.

• Due dates/times (d): refers to the dates or times when the execution of
jobs (i.e. manufacturing of products) is due. If these dates or times are
enforced they are called deadlines. Similarly to the last characteristic, the
due dates or times can be homogeneous or heterogeneous for all products
and periodic or non-periodic.

• Weights (w): denote priorities that are assigned to each task or products. In
the SAR problem, weights might be homogeneous or heterogeneous. This is
helpful to coordinate the movement of MMRs. At the solution level, weights
facilitate assigning resources to the highest priority jobs and assign the rest
of jobs considering the previously assigned resources.

• Machine-dependent processing time (p): refers to jobs processing times
being dependent on the machine that is performing them. Regarding the
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S-RMS, the processing time is related to the accuracy or performance of
the machine or MMRs or the interchangeable tool. This element might be
considered or neglected. Regarding the SAR problem, this characteristic
might be different for each task in each machine (heterogeneous) or might be
the same (homogeneous) for all tasks in all machines. Consequently, the SAR
problem might be simplified to a multi robot task allocation problem (for
heterogeneous processing times) or the multi robot path planning problems
(for homogeneous processing times.

• Sequence dependent setup times (s): this characteristic refers to the
necessary time to remove tool and material (i.e. products under manufac-
turing process) after a manufacturing task or to the time to setup a new tool
and material in the same machine. These times can be different from each
other or not. Also, any or both of these times can be zero. For the SAR
problem, it is considered to have homogeneous or heterogeneous setup and
removal times for all machines and products. Also, whether the setup and
removal times are equal or unequal for each machine. It is considered that
these times depend on the type of product and machine.

The following characteristics might or not be included in the scheduling prob-
lem (i.e. considered or neglected), and this results in different variants of the
scheduling problem.

• Preemptions (prmp): refers to whether it is possible to stop and resume
a manufacturing task. The total processing time is accomplished through
many manufacturing processes. For the SAR problem this characteristic can
be considered or neglected.

• Precedence constraints (prec): impose restrictions on the sequences that
tasks must follow. A succeeding task cannot precede its preceding task.
A group of precedence constraints is known as a process plans. A graphical
representation of these constraints is known as precedence graph (i.e. acyclic
and directed graph). This can be summarised in an incidence or adjacency
matrix, where 1’s indicate if a task precedes another task; 0’s indicate no
precedence. A list can also be used to directly indicate the tasks that precede
another task. This graph can have the form of a chain (chains), or trees
(tree), namely intree (intree) or outtree (outtree). A chain occurs when tasks
have a single predecessor and successor tasks, whilst an intree when tasks
have at most one successor task and outtree when tasks have at most one
predecessor task. In the SAR problem, this characteristic can be considered
or neglected in the case of single task products.
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• Time-dependent processing time or scheduling with deteriorating
jobs: these are a special kind of processing time where their value depends
on the time when the task is starting [169],[170]. In machine scheduling,
one example is the production of a batch of products has delay penalties.
Another example is the maintenance of a machine, where the longer it takes
to start the maintenance of a machine, the longer the maintenance last [171].
Regarding the SAR problem, this characteristic might be considered or ne-
glected, and if considered, it might be homogeneous or heterogeneous values
of time for all the operations.

• Resource-constrained (res): might limit the available periods of time for
manufacturing. Machines might require auxiliary resources such as tooling,
fixtures, jigs, cooling liquid and cleaning chemicals. The classification of
resources is according to resources constraints in [172]:

– Renewable: resource’s total usage is constrained

– Non-renewable: resource’s total consumption is constrained. This
means, that once resources are assigned to a task, they cannot be used
in another task

– Doubly constrained: resource’s total usage and total consumption
are constrained

Moreover, resources can be classified by their divisibility in:

– Discrete: where resources can only be assigned as positive integer
values

– Continuous: where resources can be assigned as real positive values

Regarding the SAR problem, (auxiliary) resources constrained might be con-
sidered or neglected. This is indicated with the notation (i.e. λ, σ, ρ)
introduced in [167]. The notation λ, σ, ρ represent number of resources, to-
tal amount of each resource, and amount of required resources respectively.
Auxiliary resources might be homogeneous for all machines or heterogeneous
and dependable on tasks and machines.

• Restrictions on machine eligibility (M): denotes a subgroup of machines
that can process a task. This means that although machines are identical
and working in parallel not all machines can perform the task. In case of the
SAR problem this characteristic is represented by the tools that can perform
the task, but they might have different accuracy, that results in different
degrees of quality. This might restrict the machines that can be used.
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• Buffer or storage capacity: refers to the capacity of a machine to store a
limited or unlimited amount of products after performing an operation. In
deterministic scheduling, this characteristic is known as (machine) blocking
because machines with limited capacity can become bottlenecks. In case of
the SAR problem, this characteristic might be considered (limited) or ne-
glected (unlimited). If is considered, it might be heterogeneous or homoge-
neous to all machines. Also, this characteristic might be product dependable
or not. If buffers are considered, it is necessary to allocate area for movable
buffers (shelf robots were explained in Chapter 3).

• No wait (nwt): this characteristic refers to products that require continuous
tasks. Hence, no buffer is allowed. In the SAR problem, this is addressed
with machines in line layout (flow shop).

• Transportation constraints: are specific to the flexible job shop, where
the transport of work-in-process (i.e. raw materials that are in process of be-
coming products) must be considered in the scheduling problem [173],[174].
These constraints are usually neglected in the flow shop scheduling problem
due to the nearness of the machines in the layout and because these con-
straints are difficult to formulate. Regarding the SAR problem, this type of
constraints are compulsory (i.e. core characteristics) in order to address the
path routing problem.

Stochastic characteristics (dynamic scheduling)

Stochastic characteristics influence significantly the formulation of the problem
and its solution methods. Solution methods change from predictive scheduling
approaches to approaches such as reactive scheduling, robust-proactive scheduling
or predictive-reactive scheduling [175],[176]. Although this increases the complex-
ity of formulating a flexible job shop problem, there are examples that integrate
these stochastic events in the flexible job shop problem (e.g. machine breakdown
and unknown processing, release and due times, machine breakdown and alter-
native process plans [177],[178]). The stochastic characteristics can be grouped
in job-related and resource-related [84],[175]. The following characteristics are
self-explanatory, but a short description is provided. In the SAR problem these
characteristics (events) might be considered or not. If they are considered, their
occurrence might be periodic or non-periodic. These are:

Job-related characteristics :

• Random processing time (X), random release date/time (R) and ran-
dom or changing due date/time (D): are the stochastic versions of their
respective deterministic versions. For the SAR problem these characteristics
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can be considered or neglected. If they are considered, the characteristics
have the same options to their deterministic counterparts, but with random
(i.e. stochastic) values.

• Changes in demand: products might update their requirements during or
after the schedule is determined. In the SAR problem, these updates might
be periodic or non-periodic.

• Dynamic priorities (weights) w : tasks or products might get a higher
priority, or rush hour products get higher priority over the current products.
Similarly to its deterministic counterpart, priorities might be homogeneous
or heterogeneous.

• Alternative process plans (processing sequences): Process plans are
precedence constraints among tasks to manufacture a product [177]. A prod-
uct might have alternative sequences of tasks that result in the same prod-
uct with the use of different machines. This results in different production
times and costs. Therefore, alternative process plans can be considered or
neglected. In scheduling, alternative process plans is known as dynamic rout-
ing because routing is understood as determining sequences of machines to
produce a product. In this case, routing should not be confused with the
vehicle routing problem, which refers to selecting the best route or path from
a limited set. In the SAR problem, process plan selection is a core part that
increases the flexibility of the S-RMS.

Resource-related characteristics :

All the following characteristics can be considered or neglected.

• Machine or tool breakdowns (brkdwn): is considered as deterministic in
[84] and as stochastic in [179]. These characteristics might happen in the
middle of a task. This might result in delays and require a new machine
or tool. For the S-RMS, this might require to remove a defective MMR or
machine, and to keep redundant resources.

• Resources (e.g. tools, raw materials) non-availability: for periods of
time, some resources might be unavailable.

• Machine loading limits: a product or group of products might exceed the
machine manufacturing capacity.

• Machine blockings (block): if buffers are full or there is a lack of buffer
machines might become bottlenecks.
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• Product quality rejects: products with low quality might be rejected.
This results in the need to remanufacture or manufacture a complete new
product if possible.

• Machine erratic performance: a non-steady performance of machines
might result in quality variations or processing time variations. It might
lead to machine replacement and remanufacture of a batch of products.

• Defective raw materials: materials that do not meet specifications before
their manufacture might be rejected, and cause delay in tasks starting time.

• Longer machine maintenance time: delays in maintenance might delay
the schedule.

There are many terms that do not have a symbol to describe them, specially the
stochastic characteristics. The scheduling problem is a widespread problem across
different fields. Examples of scheduling applications are for project scheduling
[180], computer processors scheduling [181], and services scheduling (e.g. hos-
pital) [182]. The nature of each problem results in characteristics and different
performance. Moreover, the nature of the scheduling problem influences the type
of solution methods for each type of problem and the characteristics that can be
considered.

Although this section focuses on machine scheduling, scheduling problems share
constraints among them. For the SAR problem, the second most relevant problem
is the multi modal operation (project scheduling) which corresponds to the alter-
native process plans from the machine scheduling problem. Process plan selection
is of paramount importance to the SAR problem. However, process plan selec-
tion can be integrated in the scheduling problem through alternative process plan
constraints. The next section focuses on reviewing the Multi Robot Task Alloca-
tion (MRTA) problem from the robotics field. This is analogous to the scheduling
problem from the operations research field.

4.2.3 Multi robot task allocation, MRTA

The Multi Robot Task Allocation (MRTA) consist of determining task to robot
allocations subject to robot capacities and requirements of tasks [183]. The core
elements of the problem are a group of tasks, a group of robots (where both can be
of one), associated profits to produce each task, and associated costs of producing
a certain tasks with a certain robot. The objective is to maximise the profits of
producing a group of tasks with a group of robots.

In the field of robotics, tasks are usually homogeneous and performed by ho-
mogeneous robots. It does not matter which robot completes which task as long as
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tasks are completed. However, there is a trend to address more realistic scenarios
in robotics. This includes teams of heterogeneous robots that need to complete
tasks in a coordinated and specific sequence [184]. Complex scenarios involve
robots performing several tasks at different locations such as the treasure hunting
problem [185].

MRTA refers to determining the most adequate allocation of tasks to robots
constrained to a limited number of robots capable of performing each task [186].
MRTA considers metrics to measure the efficiency of the performed task and the
cost of performing the task depending on the robot. MRTA can be solved through
a centralised or a decentralised approach. Centralised approaches are capable of
providing an optimal solution but it does not perform very well when the problem
is scaled and is not robust to failures. Decentralised approaches have the opposite
attributes, like scalability, robustness to failures, but it does not provide optimal
solutions.

In centralised approaches the cost for performing a task by the robot is calcu-
lated by the central system instead of by each individual robot as in decentralised
approaches. As a result, the calculation time is distributed, but due to the lack
of global information for the individual cost calculation of each robot, the results
are sub-optimal.

4.2.4 MRTA taxonomies

The best known taxonomy classifies MRTA problems by the robot capacities, the
number of robots performing tasks, and the prior knowledge of the tasks to be
performed over time [140]. These are explained in detail as:

• Robot capacities: refers to the number of tasks that can be performed by a
robot. This characteristic has the following options: single-task robots (ST)
and multi-task robots (MT). Single-task robots refer to robots dedicated to
perform only one task, whilst multi-task robots refer to robots that are able
to perform multiple tasks.

• Task complexity: refers to the number of robots required to perform a task.
The options of this characteristic are single-robot tasks (SR) and multi-robot
tasks (MR). Single-robot tasks can be performed by a single robot whilst
multi-robot tasks need to be performed by several robots in collaboration.

• Data tasks knowledge over time: refers to the prior knowledge of mul-
tiple tasks over a long period of time. This characteristic has the options:
instantaneous assignment (IA) and time-extended assignment (TA). Instan-
taneous assignment considers only the instant or actual data tasks (i.e. sim-
ilarly to the dynamic scheduling problem where online approaches are re-
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quired), whilst time-extended assignment considers actual and future data
tasks to produce a schedule (i.e. similarly to the deterministic scheduling
problem).

The notation for the first taxonomy expresses characteristics separated with
dashes (-) e.g. ST-MR-IA means that single-tasks robots perform tasks that re-
quire a single robot task for a single period of time. This taxonomy neither con-
siders the dependency between tasks nor its complexity. A taxonomy proposed by
Korsah et al. considers the dependency and complexity of the tasks [187]. In this
taxonomy, tasks are divided by their complexity in:

• Complex tasks: are tasks that can be executed in multiple ways. Complex
tasks are decomposed in simple or elemental tasks and each tasks can be
executed by multiple robots.

• Compound tasks: are tasks similar to the complex ones, but there is only
one combination to perform this task. Compound can also be decomposed
in simple or elemental tasks.

• Simple tasks: are tasks more complex than the elemental tasks, but that
still can be performed by a single robot or more. Simple tasks are parts of
compound tasks.

• Elemental tasks: are single actions executed by only one robot.

Korsah’s taxonomy introduced the concept of tasks dependency, which is the
level of dependencies between tasks. Tasks are classified according to the task
dependency in:

• Complex dependencies (CD): are dependencies in which the profit of a
robot for performing a task depends on the performed tasks by all the robots
and the way the tasks were performed.

• Cross-schedule dependencies (XD): refer to dependencies in which the
profit of one robot not only depends on its own scheduled tasks but also
depends on the scheduled tasks of other robots.

• In-schedule dependencies (ID): are dependencies in which the profits of
one robot depends only on the tasks that perform. The profit is independent
of the sequence to perform the tasks.

• No dependencies (ND): refer to tasks in which the profit of executing
task is not affected by past tasks and does not affect future tasks.
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The notation for the second taxonomy involves the notation for the first tax-
onomy (i.e. Robots capacities, tasks complexity and tasks knowledge over time).
However, for the second taxonomy the term describing the dependencies is previous
to the first taxonomy. For example, the problem XD [ST-MR-IA] describes single-
tasks robots perform tasks that require a single-robot tasks for a single period of
time. There are cross-schedule dependencies between the single-robot tasks.

Regarding the SAR problem, the use of multi-tasks robots with interchange-
able tools and single-task machines are considered. As a result the flexibility of
the S-RMS is increased but the complexity of task allocation problem is also in-
creased. In the SAR problem, tasks might require a single robot (i.e. for single
task products) or multiple resources (i.e. products with multiple and complex
processing sequences). Information about products and their manufacturing tasks
considered in advance in the allocation problem (offline planning) but instant in-
formation from incoming products requires dynamic allocation of resources (online
planning).

According to the second taxonomy, mainly task complexity, the four types of
tasks can be considered in the SAR problem. This is as follows: elemental and
simple tasks for single task products; compound tasks for products with process-
ing sequences; and complex tasks due to the multiple combinations to decompose
tasks to manufacture a product (alternative process plans). The dependency be-
tween tasks depends on the similarity of manufacturing tasks that are required
simultaneously. For the SAR problem, this is explained as follows:

• Independent robots can produce single-task products (i.e. no dependencies
between tasks)

• Independent robots can produce a series of single-tasks products, where the
sequence to produce these tasks determine the paths and costs of making
the tasks

• Robots in collaboration can produce sequences of tasks for multiple different
products (i.e. cross schedule dependencies)

• Robots in collaboration produce sequence of tasks for multiple products, but
the efficiency of producing these tasks depend on the processing sequences
that are selected for each product (i.e. complex dependencies)

Reviews on approaches to address the MRTA problem are presented in [188],[189].
The MRTA problem is limited in comparison to the scheduling problem. This is
because the scheduling problem has been studied since approximately the year
1940 [190], compared to the recently proposed multi-robot task allocation prob-
lem (i.e. around the year 1990 [183]). In the next paragraphs, there is a review of
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optimisation objectives from the scheduling and the MRTA problems relevant to
the SAR problem.

4.2.5 Optimisation objectives

This subsection focuses on reviewing optimisation objectives of the scheduling and
the MRTA problems. In the scheduling problem, the objectives to optimise focus
on minimising production time, whilst in the MRTA problem focus on achieving a
higher utility at performing the operations by assigning the most adequate robots
to operations. Basic terminology to describe the optimisation objectives in the
scheduling problem is the following [84]:

• Completion time (Cj): is the time that takes to complete operation j

• Lateness (Lj): is the deviation of the completion time of operation j against
its due date dj. This is Lj = dj − Cj. Lateness can be negative or positive

• Tardiness (Tj): correspond only to the positive values of the lateness Lj.
This is Tj = max(Lj, 0)

• Earliness (Ej): correspond only to the negative values of the lateness Lj.
This is Ej = max(−Lj, 0)

• Late job (Uj): refers to the number of jobs or operations finished after
the due date. This is Uj = 1 if Cj > dj, or 0 otherwise. Whilst tardiness
measures the amount of time that a job is late, late jobs measure the number
of jobs that are late.

Specific objectives to optimise depend on the type of manufacturing systems,
number of machines of each type, and their machine layout (topology). Other
objectives include minimising the idle time of machines, the tardiness (i.e. lateness)
to deliver products with respect to the deadlines or due dates, maximising the
profits of produced products and minimising the discrepancy between processing
times of a group of machines. Relevant objectives to the SAR problem from the
scheduling problem are [84],[168]:

• Maximum completion time or makespan (Cmax): refers to reducing
the maximal completion time in the entire group of operations. This is
Cmax = max(C1, ..., Cn). Minimising the makespan implies maximising the
utilisation of machines

• Maximum lateness (Lmax): minimises the maximal time deviation from
all the due dates. This is Lmax = max(L1, ..., Ln)
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• Flow time or total completion time (
∑
Cj): refers to minimising the

sum of the completion time of all the operations

• Weighted flow time or total weighted completion time (
∑
wjCj):

refers to minimising the sum of the weighted completion time of all the
operations

• Total tardiness (
∑
Tj): is meant to minimise the total tardiness for all the

operations

• Total weighted tardiness (
∑
wjTj): refers to minimising the total weighted

tardiness for all the operations

• Total earliness (
∑
Ej): is meant to minimise the total earliness for all the

operations

• Total number of tardy jobs (
∑
Uj): is about minimising the total number

of tardy jobs or operations

• Total weighted number of tardy jobs (
∑
wjUj): refers to minimising

the total weighted number of tardy jobs

• Total earliness and tardiness (
∑
Ej + Tj): is meant to minimise total

earliness and tardiness at the same time. This is commonly found in Just
In Time (JIT) environments. Hence, for the SAR problem, the formulation
should minimise both values simultaneously

• Total weighted earliness and tardiness (
∑
wjEj + wjTj): refers to min-

imising the total weighted earliness and tardiness at the same time. Similarly
to the previous objective, this is commonly found in Just In Time (JIT) en-
vironments

In contrast to the objectives from the scheduling problem, the objectives from
the MRTA problem focus on maximising the utility at allocating robots to oper-
ations. Each robot determines its own utility to perform an operation. Hence,
this decentralised approach scales for large number of operations and robots. The
concept of utility Urt to produce a task or operation t with a robot r is defined
as the difference between the benefit at certain quality Qrt and the cost Crt of
producing the operation t. This is Urt = Qrt − Crt. Only positive value of utility
are considered in [186] whilst positive and negative values are considered in [140].
The utility URT for a group of m robots R performing a group of n operations T
is given by [186],[140]:
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URT =
m∑
r=1

n∑
t=1

Urt

This concept of utility does not account for interrelated operations or sequence
dependent operations as was described in [140]. It is pointed out that for interre-
lated operations the utility of all the operations is different to the simple sum of
the utilities of each operation t performed by a robot r. There are three cases to
measure the total utility of all operations performed by a robot in contrast to the
sum of all the utilities of each operation performed by a robot. These are:

• Independent utilities:

URT =
m∑
r=1

n∑
t=1

Urt

• Interrelated utilities:

URT 6=
m∑
r=1

n∑
t=1

Urt

• Interrelated utilities with synergistic relationship:

URT >
m∑
r=1

n∑
t=1

Urt

The MRTA problem is recent in comparison to the scheduling problem. The
scheduling problem considers not only the assignation of operations to machines
but also the times to perform the operations. The next problem, the machine
layout problem (also, known as the Facilities Layout Problem (FLP)) is subsequent
to the scheduling problem (i.e. allocation and sequencing of task to resources).

4.3 Positions assigning problem

The Facilities Layout Problem (FLP) is the general problem of locating manufac-
turing facilities (e.g. factories, departments, machines) to subject to limitations
such as the number of facilities and the available area [191],[192]. The main ob-
jective for the FLP is to minimise the cost of transporting parts or components
between facilities at a known transportation cost depending on the distance and
an expected flow of parts or components. Variants of FLP focus on optimisa-
tion objectives such as minimising the transport of materials between facilities, or
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maximising the number of clients that can be served. Industrially relevant FLP
variants focus on locating factories or distribution centres to supply as many cities
as possible, locating departments within a factory to minimise material handling
costs between departments, or locating machines to optimise material handling
flow. The last problem (i.e. location of machines to optimise material handling
flow) is called the machine layout problem.

In the SAR problem, the positions assigning problem consists of determin-
ing the most adequate locations for machines to perform tasks over the total
production horizon. These locations can change over time due to the use of
mobile manufacturing resources (movable machines and Mobile Manufacturing
Robots (MMRs)). Therefore, the machine layout problem is the most relevant to
the SAR problem. The adequate location of machines requires optimising two ob-
jetives. The first is to locate a machine that can produce as many tasks as possible,
whilst the second is to facilitate the movement of machines and MMRs through
the complete production horizon. In contrast to current machine layout problems
that locate machines within departments and have a limited area and shape, in
the SAR problem the focus is on locating machines and MMRs in a single factory.
The factory has an unmanned area without obstacles or walls, where machines
and MMRs can form layouts according to the current production needs.

Elements, characteristics and their assumptions from machine layout problem
influence the design of machine layouts in the SAR problem. Relevant variants of
the machine layout and the facility layout (FLP) problems are reviewed in Sub-
section 4.3.1, whilst variants of the machine layout problem focused on dynamic
production requirements are reviewed in Subsection 4.3.2. Elements, character-
istics and their assumptions from the machine layout and FLP that are relevant
to the SAR problem are reviewed in Subsection 4.3.3. Optimisation objectives
related to the positions assigning problem are reviewed in Subsection 4.3.4.

4.3.1 Machine layout problem

The machine layout problem is the most relevant to the SAR problem. Therefore,
relevant constraints from the machine layout problem are reviewed in this subsec-
tion. Research on the machine layout problem focus on the line layout. Examples
include the single-row, double-row, multi-row and loop layouts [102].

In the single-row layout, machines are arranged in a line. Variants of the
single-row layout are: a straight line, a semicircular line, or U-shaped line. In the
double-row layout, it is possible to locate machines asides a conveying line (or any
other material handling system that transport material in a straight line). This
facilitates work in parallel of multiple robots and increases the efficiency. The loop
layout allows arranging machines in a circle, where the flow of materials is in one
direction only. Lastly, the multi-row layout allows the possibility of have multiple
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rows in parallel, and to transport materials within the same row and among other
rows.

Another example of machine layout is the open-field layout, which is not con-
strained to form line layouts. This type of problem is similar to the type of machine
arrangements that occur in a job or open shop environment (i.e. from the schedul-
ing problem). Hence, the open-field layout is of paramount importance to the SAR
problem.

4.3.2 Dynamic layout problems

Nowadays, due to a dynamic market economy, the groups of products to manu-
facture (production mix) are in constant change (i.e. dynamic production mix).
Currently, there are three options to manage dynamic production mix, which are
robust layout, dynamic layout and reconfigurable layout problems [193]. It is
common to refer to each production period for a production mix as a produc-
tion horizon [194],[195]. The dynamic and reconfigurable depend on how much
information about the production mix(es) over production horizon(s) is known in
advance. The robust and the dynamic depend on how easy it is to change layouts
for each group of production requirements. The layout problems are [193]:

• Robust layout: consist of determining a single layout for all the production
mix(es) of each production horizon. The objective is to find a layout that in
average minimises the material handling cost for all the production mix(es).
The layout is not optimal for any production mix, but in average minimised
the material handling cost of all the production mix(es).

• Dynamic layout: refers to changing the production layout for each pro-
duction mix [196]. Hence, there is a layout for each production horizon. The
objective is to determine an optimal layout for each production mix whilst
at the same time minimising the cost of rearranging machines for each pro-
duction mix.

• Reconfigurable layout: similarly to the dynamic layout problem, this
problem consists of determining a layout for each production mix. How-
ever, only information on the current and next production mix(es) is known.
Therefore, the objective focuses on minimising material handling cost for
current and next production mix(es) and minimising the cost of rearranging
machines between the current and the next layout [193].

The difference between the SAR problem and this type of problems was de-
scribed in the introduction to the SAR problem (Section 4.1). In brief, the SAR

91



4.3. Positions assigning problem

problem increases the flexibility of the dynamic and reconfigurable layout by al-
lowing the relocation of machines for each manufacturing operation, instead of
relocation of machines at each change of the production mix. Relevant elements,
characteristics and assumptions from the FLP and machine layout problems that
can be considered in the formulation of the SAR problem are reviewed in the
following subsection.

4.3.3 Machine layout elements and characteristics

The following elements, characteristics and assumptions (i.e. constraints) can be
found in the formulation of the FLP and machine layout problems. Elements,
characteristics and their assumptions from machine layout problem influence the
design of the machine layouts in the SAR problem. Relevant elements, character-
istics and assumptions for the SAR problem formulation are [103]:

• Space representation: refers whether the problem is represented as dis-
crete or continuous. A discrete representation might be easier, but it might
not determine feasible layouts, whilst a continuous representation might
found feasible layouts for hard problems but at a higher computational
cost. Discrete representations are not adequate to address constraints such
as clearance between machines, orientation of machines and points to load
or unload raw materials into a machine.

• Constant facilities shape: refers to whether the facilities have a fixed
shape or not [197]. The FLP problem focuses on assigning areas to the
facilities (e.g. factories and departments), whilst the machine layout focuses
on facilities with fixed shape (e.g. machines or robots). Regarding the SAR
problem, warehouses shape can change over time depending on the shelves
that are added to them, whilst machines and robots have constant shapes.

• Facilities shape: is about the possible shapes that facilities might have.
The options are regular or irregular. Regular refer to rectangles or squares,
whilst irregular to polygons with at least an angle of 270◦, see Figure 4.2.
Within the regular shape option, facilities might have equal or unequal area
among them. Departments can be constrained to have fixed shapes. In the
SAR problem, warehouses can have irregular shapes, whilst is expected to
have regular shape machines, but robots can have regular, irregular or even
circular shapes.

• Non-overlapping: make sure facilities have unique locations where facilities
do not overlap with each other.
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• Clearance: refers to a free space (i.e. aisles [123]) among machines. This
factor is considered to allow servicing and maintenance of machines, but
might serve as well as a security factor to avoid unnecessary collisions. Clear-
ance is commonly represented with increased size of the facilities. Clearances
in the SAR problem should consider dimensions of MMRs or AGVs to facil-
itate movement between machines or other MMRs.

• Orientation: is about the orientation of machine in a factory. The orien-
tation of department and factories does not matter as long as they have the
required area. Regarding the SAR problem, machine orientation is important
to know the access points to load and unload of raw materials.

• Zone constraints: refer to constraints that promote or avoid the location of
machines close to each other. These are also known as adjacency constraints
when it is desired to located a machine next to other machine to facilitate the
utilisation of similar resources [198]. In the SAR problem, locating machines
or MMRs next to each other facilitates the interchange of tools.

• Repeated machines: refers to having multiple machines with the same
capacities. This was analysed in an extended version of the FLP, where
equal facilities can be located separately over a long distance [199]. The
conclusions were that repeated facilities improves the accessibility to these
facilities and diminishes the material handling effort. In the SAR problem,
the use of resources with repeated capacities is assumed.

• Budget constraints: are typical to the dynamic FLP, where machines or
departments can change locations during the production horizon. The cost
of changing facilities is restricted by the budget constraints.

• Uncertainty of the material flow: the material flow can be deterministic
or stochastic for the production horizon. The static FLP assumes determin-
istic values of the material flow whilst the dynamic FLP assumes stochastic
values.

Figure 4.2: Example of an irregular facility. This type of facilities contain angles
of 270 degrees.
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The FLP or machine layout address problems that consider production re-
quirements that are fixed for the whole time (static). However, there is a trend
towards production requirements that continuosly change over time (dynamic).
This trend was also observed in the scheduling problem and is addressed with
dynamic scheduling approaches. In a similar way, the FLP has a dynamic coun-
terpart, the Dynamic Facilities Layout Problem (DFLP). Approaches to address
static and dynamic production requirements are reviewed in the next paragraphs.

4.3.4 Optimisation objectives

The objective(s) to optimise depend on the type of Facilities Layout Problem
(FLP) to solve. As was introduced, the FLP have two main variants, the static
and the dynamic FLP. In the next paragraphs, relevant optimisation objectives
to the SAR problems are reviewed according to the FLP variants.

• Static FLP [123].

– Distance and flow between facilities are considered. This objective
function minimises the distances between facilities with the higher flow
costs. This can be applied to discrete and continuous problem formu-
lations.

min
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

fikdjlXijXkl

where:

N : number of facilities in the layout
fik: flow cost from facility i to k
djl: distance from location j to l
Xij: binary variable (0,1) for locating facility i at location j

– Adjacency between facilities is considered. In contrast to the previous
approach, distance between facilities are not know, but the cost be-
tween facilities is known. This can be applied only to discrete problem
formulations.

min
∑
i

∑
j

rijxij

where:

rij: closeness rating between departments i and j
xij: binary variable (0,1) equals 1 if departments i and j are adjacent
and 0 otherwise
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• Dynamic FLP [200],[201]. Minimises the material handling cost (first term)
among facilities and the reconfiguration costs (second term) between facilities
over periods for the complete planning horizon. This can be applied only to
discrete problem formulations.

min
P∑
t=1

N∑
i=1

N∑
j=1

N∑
m=1

FtijkmXtijXtkm +
P∑
t=2

N∑
i=1

N∑
j=1

N∑
m=1

AtijmYtijm

Where:

i, k: departments in the layout
j,m: location in the layout
Ytijm: binary variable for shifting i from j to m in period t
Atijm: fixed cost of shifting i from j to m in period t (where Atijj = 0)
Xtij: binary variable for locating deparment i at j and k located at m in
period t
Ftijkm: cost of material flow between departments i located at j and k lo-
cated at m in period t
P : number of periods in the planning horizon
N : number of departments in the layout

In contrast to the scheduling problem, there is not a common notation for the
FLP. The only distinction is between the static FLP and the Dynamic Facilities
Layout Problem (DFLP). The purpose of analysing the FLP and machine layouts
problems is to identify their relevant elements, characteristics and assumptions
that can be applied to the SAR problem. Therefore, solution approaches are not
analysed. However, reviews of solution approaches for the static problem can
be found in [202], whilst for the dynamic problem in [203] and [204]. The next
section focus on the routing and path planning problem. Similarly to the FLP, in
the path planning problem, it is necessary to represent the environment, machines
and obstacles. The path planning problem allows more variety at representing the
environment, machines and obstacles than the FLP.

4.4 Routing and motion planning problems

These two problems are about determining paths or routes to move vehicles from
an initial position to target one in the minimal time, subject to constraints due to
the type of robot and the available information from the sorrounding environment.
However, whilst the routing problem refers to selecting the most adequate route,
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the motion planning problem refers to determining or designing a route or path.
The routing problem is commonly known as the Vehicle Routing Problem (VRP),
but in the rest of this thesis the name might be shortened to routing problem.
Elements, characteristics and assumptions of each problem influence different as-
pects of the SAR problem. Elements, characteristics and their assumptions from
the vehicle routing influence the paths or routes of materials and products trans-
portation.

The motion planning problem and the routing problems are reviewed in Sub-
sections 4.4.1 and 4.4.3, respectively. From the motion planning problem point of
view, Subsection 4.4.2 covers abstract characteristics such as the representation
of objects and the environment as well as practical characteristics and elements
about robots. Subsection 4.4.4 presents a taxonomy and classes of problems, whilst
4.4.5 covers elements and characteristics of the routing problem. Optimisation
objectives related to the routing and motion planning problems are reviewed in
Subsection 4.4.6.

4.4.1 Motion planning

The motion planning problem consists of two problems, namely the path planning
and the trajectory planning problems. The path planning consist of determining
a path from initial position to target position subject to environment constraints
(e.g. obstacles), robot constraints (e.g. type of wheels, on board sensing and com-
munication capabilities) and external disturbances or stochastic information. In
addition to determining a path, the trajectory planning problem involves deter-
mining times associated with each point along a path. In order to determine times
for each point of the path, it is necessary to consider the maximal velocity and
acceleration of a robot.

This is important to handle moving obstacles, a changing environment or mul-
tiple moving robots. A subproblem of the path planning is the multi-robot coor-
dination problem. This problem refers to coordinating the movement of several
robots to reach their final positions without crashing or blocking each other. In
case of closed formations, a common strategy is to assign (dynamic) priorities to
avoid leaving a robot outside of the formation [205].

There is not formal notation for the motion planning problem. However, a
notation proposed by Latombe in [206] is still under use, but each author make
minor changes and additions depending on the problem and its context. Tax-
onomies about the motion planning problem focus on the different type of motion
problems or the solution methods. A review of characteristics relevant to the SAR
problem is done in the next paragraphs.
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4.4.2 Motion planning elements and characteristics

The core elements of the motion planning problem are: initial and target po-
sitions, environment and obstacles representation, robot representation and its
characteristics (e.g. type of wheels, maximal velocity, maximal acceleration, on
board sensing). Elements, characteristics and their assumptions from the vehicle
routing influence the paths or routes of materials and products transportation in
the SAR problem. Most of the assumptions (i.e. constraints) focus on the charac-
teristics of robots and the environment where robots move. These characteristics
are [207],[208]:

• Dynamic data: is defined by whether the information about the environ-
ment is constant or requires update due to moving obstacles.

• Environment representation: similarly to the machine layout problem,
the motion planning requires to represent the environment. In a similar way,
it can be represented in discrete or continuous way. However, the motion
planning problem has more specialised techniques such as occupancy grid,
topological maps, and metric maps. These are not reviewed because they
are part of the solution and not part of the problem definition.

• Objects representation: unlike the machine layout problem, robots can
be represented as curvilinear figures in addition to polygonal representations.
The motion planning problem has specialised techniques such as polyhedra,
cell tree, grid, boundary representation, and constructive solid geometry.

• Robot’s type of wheels: might be holonomic or non-holonomic types.
Non-holonomic wheels type constraints robots to move in a direct line, whilst
with holonomic wheels type robots have to maneuver to solve complex paths.
Holonomic constraints are common for car-like wheeled robots, whilst non-
holonomic are for robots with omnidirectional wheels. Other common type
of wheels is differential wheeled, which consist of only two wheels at each
side of the robot.

• Robot maximal velocity and acceleration: result in dynamic con-
straints. When the problem involves avoiding static obstacles and controlling
the velocity and acceleration, kinodynamic constraints are necessary.

The next characteristics are related to robots but proposed only for the SAR
problem. These characteristics further describe the problem. All the following
characteristics might be assumed homogeneous or heterogeneous for all robots or
tools respectively. These characteristics might be neglected in order to simplify
the problem at the cost of realism of the problem. The characteristics are:
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• Robot’s type of manipulator: this might result in different manipulator
workspaces.

• Robot’s manipulator payload: is the maximal amount of weight that the
arm in the Mobile Manufacturing Robot (MMR) can carry.

• Tool weight: is related with the manipulator payload. Specialised robots
might be able to carry very heavy tools.

• Robot’s maximal health span: refers to the robots condition and per-
formance to execute an operation or move accurately. This characteristic
indicates when a robot requires maintenance.

• Robot’s maximal tools: refers to the maximal number of tools that a
robot can carry. For the SAR problem, it is assumed robot with multi-
ple interchangeable tools, so that robots can perform several operations by
changing tools. Hence, this characteristic determines the maximal number
of operations a robot can perform without visiting a tool depot.

• Robot’s manipulator accuracy: is the smallest accuracy at which the
manipulator of a MMR is capable of performing operations. This is impor-
tant to match product and its operations quality requirements.

• Robot’s platform accuracy: refers to the smallest accuracy with which
the platform of the MMR can move. The importance of this characteristic
lies in the easiness to move within a cluttered environment. This might result
in a more effective use of the manufacturing area.

These characteristics are focused on the problem of determining a feasible or
optimal path for one or multiple robots. However, characteristics that are specific
to the problem of moving objects between positions from and to one or several
warehouses are described in the following subsection, the routing problem.

4.4.3 Routing

The routing problem is an abbreviation for the vehicle routing problem. This one
should not be confused with the term routing in the scheduling problem, which
refers to selecting a proces plan from a variety of plans. The basic (i.e. core)
problem is called the Capacitated Vehicle Routing Problem (CVRP) or just Vehicle
Routing Problem (VRP) because the vehicles have limited carrying capacity.

The VRP involves a fleet of homogeneous vehicles (i.e. mobile robots) and a
single depot (i.e. warehouse), where robots start and finish their routes (i.e. a
closed loop). Each route has a known travelling time, distance or cost and the
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aim is to visit all desired positions with a minimal sum of routes travelling time,
distance or cost. The objective is to select a subgroup of routes from a possible
network of routes (arcs) that minimises travelled distance, time or cost to deliver
objects to requesting positions (nodes) in the network. The solution might involve
joining together several short routes in order to obtain a larger route. The final
routes must start and finish at depots or warehouses, and for the CVRP the routes
must consider the vehicles’ carrying capacity.

For the SAR problem, the network of limited routes might connect warehouses
to temporally fixed manufacturing positions. However, in order to fully take ad-
vantage of the S-RMS and MMRs, it is desired to constantly determine the most
adequate manufacturing positions for each operation. Therefore, the routes net-
work is in constant change.

4.4.4 Types of vehicle routing problems

Variants of the VRP consider more realistic scenarios. For the SAR problem,
the most relevant VRP variants are described in the following paragraphs. The
assumption of using a homogeneous fleet is removed, so that a heterogeneous
fleet can be used. This is known as the Heterogeneous Fleet Vehicle Rout-
ing Problem (HFVRP) or as the Mixed Fleet Vehicle Routing Prob-
lem (MFVRP) [209],[210]. Another variant results by removing the constraint
of using a single warehouse [211]. This is the Multi Depot Vehicle Routing
Problem (MDVRP), which considers the use of multiple warehouses that are
distributed among the required delivery positions.

The Vehicle Routing Problem with Time Windows (VRPTW) consid-
ers the delivery of objects to be done in determined time intervals [212]. Depending
if these constraints are hard or soft, there are two variants of the problem. If the
window constraints are soft, a penalty cost is added. There are two more variants
if there are time windows, for unloading or loading, at the required positions or
depots.

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) do
not consider a single warehouse [213]. Instead objects are picked up from certain
positions and delivered to other positions with the same vehicle. A subvariant
of this variant is the Vehicle Routing Problem with Simultaneous Pickup
and Delivery (VRPSPD) refers to making pickups and deliveries in the same
position of the route at the same time [214].

In the Split Deliveries Vehicle Routing Problem (SDVRP), requesting
points can be visited several times [215]. This means, that objects can be delivered
in multiple trips. Hence, the requesting point can be visited several times. In this
problem, the requests can exceed the robots capacity because the demand can be
divided (i.e. split) in several trips. A related variant is the Periodic Vehicle

99



4.4. Routing and motion planning problems

Routing Problem (PVRP), which considers repetitive deliveries at a long term
planning [216]. In the PVRP, deliveries can be done over several days. In contrast
to previous problems, robots can visit to the same delivery positions many times,
but at a limited frequency.

In the Open Vehicle Routing Problem (OVRP), vehicles are not con-
strained to return to the warehouse at the end of their route [217]. In practice,
this refer to subcontracted vehicles that pick up objects at the warehouse, deliver
objects along its route and return to their own storing position. The OVRP deals
with two objectives, namely minimising the use of vehicles and minimising their
travelled distance or time. A subvariant of the OVRP, allows returning to the
warehouse but vehicle have to use the same route in reverse order [218].

In the VRP the data on deliveries and pickups has an important role. The
previous problems have assumed deterministic data. However, the data can be
stochastic or unknown. This data refers to demands, request times (i.e. time
when an order was made), service times (i.e. loading or unloading time), and
travel times (i.e. route travelling time).

Stochastic data is data with certain degree of uncertainty represented by prob-
ability distributions. Regarding stochastic data, the most relevant problem is the
Vehicle Routing Problem with Stochastic Demands (VRPSD) [219]. In
contrast, unknown data refer to data that is provided or updated in real time.
This type of data is addressed through the Dynamic Vehicle Routing Prob-
lem (DVRP) [220]. The DVRP is also known as the on-line VRP or the real-time
VRP.

The Time Dependent Vehicle Routing Problem (TDVRP) considers
travel time or service times as dependent on a function of the current time [221].
In practice, this involves considering the rush hour traffic or multiple deliveries at
the same time.

The notation for the VRP is embedded in the names of the problems. This
make it complicated to add more than two characteristics. For example, the split
delivery VRP with time windows is described by the term SDVRPTW [222],[223].
A suggestion for a more readable notation could include separators between the
characteristics and rules about use of prefixes and suffixes such as the scheduling
problem (e.g. SD-VRP-TW). The VRP considers a single warehouse, however the
SAR problem might consider multiple and distributed warehouses, with homoge-
neous or heterogeneous content.

4.4.5 Routing elements and characteristics

A vehicle routing taxonomy was proposed in [224],[225],[226]. Elements and char-
acteristics that describe the VRP are analysed from this taxonomy. Elements,
characteristics and their assumptions from the vehicle routing influence the paths
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or routes of materials and products transportation in the SAR problem. Basic
elements of the VRP can be divided in elements describing the available resources
and elements describing the requirements. These elements along with characteris-
tics that describe the problem are also explained in the following paragraphs.

Elements describing the available resources (assumed deterministic):

• Number of vehicles or robots: is considered fixed for the core problem
(i.e. the capacitated VRP). Other variants constraint the use of robots to
an specific number n, or consider an unlimited number of robots. The SAR
problem considers a number greater than one.

• Robots capacity: refers to how much payload can the robots carry, or
the number of objects independently of their weights. In the SAR problem,
the additional constraint of robot battery capacity might be considered or
neglected. In order to manage this constraint, distributed battery chargers
might be considered, and travelling routes might need to consider passing
through charging points after certain working time.

• Number of warehouses (depots): the core problem considers a single
depot, where robots must start and end their trip (i.e. a closed loop). How-
ever, multiple depots are considered in variants of the problem. The derived
problem of collecting the objects within the warehouse are not considered.
The SAR problem considers warehouse with either homogeneous or heteroge-
neous contents, without closed walls, that make possible for robots to collect
objects from the outer boundaries of the warehouse. However, if the mix of
objects is not uniform robots might be forced to enter inside the warehouse
and consider internal networks of shelves within the warehouses.

• Routes network: is a predefined network of paths that connect positions
to collect or deliver objects. In case of the SAR problem, these objects
might be raw materials or products, and the positions are warehouses and
manufacturing positions where a machine or a MMR is able to perform an
operation. The network might be directed or undirected. The directed refers
to single way routes, whilst the undirected to double way routes.

Elements describing requirements (assumed deterministic, stochastic, unknown
(i.e. to be known on real time) or time-dependent):

• Number of stops on route (nodes in the network): refer to positions
in the network that have requested collections or deliveries. These can be
known or partially known. In the SAR problem, these stops refer to machines
or MMRs that request raw materials or collection of manufactured products.
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• Demands at the stops: are the quantity that each position in the network
is requesting. These can be for deliveries or collections of objects. Demands
can be known or stochastic. In the SAR problem, the delivery of raw mate-
rials or collection of products is requested by machines or MMRs.

• Request times: are the times at which requests for objects are made. In
the core problem, the demands are known in advance. However, in the
dynamic VRP, requests can be made on real-time. In the SAR problem, the
request times depends on the production planning. For a global planning,
request times are known in advance, but for distributed or online planning,
the request times are known in real-time.

• Travelling times, distances or cost of routes: refer to the times or costs
it takes to travel from one point to another within the routes network. This
data might be deterministic, stochastic, unknown (known in real-time) or
time-dependent (e.g. rush hour). For the SAR problem, this data depends
on the location of machines and MMRs in the layout. This data is provided
with the facilities layout problem.

Vehicle Routing Problem (VRP) characteristics (most of them deterministic):

• Load splitting: refers to whether the collections or deliveries can be divided
in several trips, instead of a single trip. In the core problem the assumption
is that each position requesting collections or deliveries can be visited once.
In a similar way, in the SAR problem, the load can be divided and carried
with several robots through several trips.

• Vehicle homogeneity is about the type of robots that can be used. In
the core problem (i.e. capacitated VRP), a homogeneous fleet is considered.
In the SAR problem, robots or machines can be considered homogeneous or
heterogeneous.

• Service time: refers to the waiting time at the positions in the network
to provide on-site services (i.e. collect or deliver objects). This is the only
characteristic that can be stochastic. In the SAR problem this is referred
as loading and unloading times. Moreover, AGVs can be used as handling
robots to collaborate with MMRs in complex manufacturing operations.

• Time windows: are a predefined period where collections or deliveries must
occur. These constraints can be soft, strict (hard), or a mix. There might be
time windows at the positions in the network (machines or MMRs), at the
warehouses, or at the vehicles (AGVs). In the SAR problem, time windows
can occur only at the warehouses. The rest of time windows are subject to
production planning.
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• Type of request: refer to the type of service that can be provided at
positions in the network. The services can be objects delivery, collections or
both at the same position. Regarding the SAR problem, the three types can
occur, although a mix of collections and deliveries at the same position is
highly complicated.

• Time horizon: is the number of periods that are addressed in the problem.
These can address a single or multiple periods. In the SAR problem, it is
expected to address a single period. However, for future work it is expected
a multi period version.

Characteristics tailored to the SAR problem (i.e. consider robot limitations:

The first four characteristics can be assumed homogeneous or heterogeneous and
the rest can be considered or neglected.

• Robot’s maximal battery span: determines the maximal number of hours
a robot can perform operations or move along the factory. This characteristic
might constraint robots to make short operations and keep recharging its
battery.

• Robot’s maximal platform payload: is the maximal weight a robot can
carry. Whilst the volume of objects is not considered, the weight is important
to known the type and number of objects a robot can carry.

• Objects content in warehouses: refer to the type and the number of
objects in warehouses. Assuming multiple and distributed warehouses. This
characteristic might include raw materials from different products per each
warehouse (heterogeneous), a single type of raw material per each warehouse
(homogeneous) or a mixture of both.

• Objects content in shelves: similarly to the last characteristic, and as-
suming an heterogeneous content of objects in the warehouses. Shelves migh
have also homogeneous or heterogeneous content of raw materials. This
might facilitate an AGV to pick up different materials from the same shelf.

• Objects to shelves loading/unloading time: this might be dynamic
or constant. If it is dynamic, it might depend on factors such as the type
of object (raw materials or products), and the type of manipulator robot
(kinematic configuration result in different workspaces).

• Transport time of objects to/from shelves: similarly to the last char-
acteristic, this might be dynamic or constant. For dynamic instances, it
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might depend on factors at which the object is transported. These factors
are time (e.g. rush hour and heavy traffic), location of shelves within the
warehouse, type of object (objects’ special handling requirements) and type
of robot (type of arm configuration).

4.4.6 Optimisation objectives

The VRP is considered as a generalization of the Travelling Salesman Problem
(TSP) [227]. This is because the TSP only considers a single vehicle and the
VRP considers multiple vehicles. Hence, the VRP is analogous to the multiple
Travelling Salesman Problem (mTSP) [228]. The addition of constraints to force
the vehicle to finish at the starting point (i.e. warehouse) was formulated in the
truck dispatching problem [227]. In addition, the multicommodity vehicle routing
problem was also formulated. However, the most common formulation for the core
VRP (i.e. the capacitated VRP) is by Garvin [229],[230]. This is as follows:

min
∑

(i,j)∈A

∑
k∈V

cijzijk

Where:
A = N ×N : is a set of arcs
V : is a set of vehicles
cij: is the travel time from node i to node j
zijk: is a binary variable that is set to 1 if the vehicle k traverses the arc (i, j) or
0 otherwise

The purpose of analysing elements, characteristics, assumptions, notations and
optimisation objectives from the motion planning and vehicle routing problems is
to identify relevant elements, characteristics, assumptions, notations and optimi-
sation objectives for the SAR problem. A review of common solution approaches
for the VRP can be found in [231].

4.5 Concluding remarks

In this chapter the analysis of the constituent problems of the SAR problem was
made. The notation, core elements, characteristics and optimisation objectives of
each problem were analysed. Moreover, additional characteristics that result in
variants of the main problems were reviewed. These characteristics were limited
to the ones relevant to be included in the SAR problem.

The scheduling and the vehicle routing problems are well studied problems.
They both have notations that express their multiple variants. However, the VRP
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notation is complicated due to the addition of prefixes and sufixes without any
dash to distinguish each additional characteristic. The facilities layout problem
has an insufficient notation, where additional characteristics are expressed only in
the problem formulation. The motion planning notation depends on each author,
and the specific characteristics of the problem. There is a lack of a common
notation capable of describing the comprehensive and complex problem that is the
SAR problem. Hence, in the next chapter, Chapter 5, a notation for the SAR
problem is proposed.

Elements and characteristics of each of the problem can be included or not in
the SAR problem. However, this result in a decision making problem about how to
formulate the SAR problem. Moreover, constraints in the formulation can neglect
elements and characteristics or they can be simplified to have the same value.
Therefore, a decision making analysis is done in Chapter 7 with a methodology
presented in Chapter 6.
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Chapter 5

The SAR problem: definitions,
assumptions and notation

Constituent problems of the Scheduling, positions Assigning and Routing prob-
lem (SAR) problem were analysed in the last chapter. Also, its main elements,
characteristics, constraints, optimisation objectives and available notations and
taxonomies were analysed. It was concluded that there is a lack of a common no-
tation and a comprehensive group of elements, constraints, optimisation objectives
and notation to describe the comprehensive SAR problem.

This chapter focuses on presenting a comprehensive and coherent group of
elements and characteristics (i.e. a generic notation) that describe the SAR prob-
lem (i.e. production planning with S-RMS within a single factory). Fundamental
assumptions that characterise the manufacture with Self-Reconfigurable Manufac-
turing System (S-RMS) are provided in Section 5.1. The generic notation consist
of vectors with variables and fields that describe elements of the SAR problem
and characteristics of these elements. This includes symbols referring to set of
elements, variables and fields.

The chapter is divided by the type of elements to consider in the SAR problem
formulation. These are the following:

• Factory (Section 5.2): includes elements such as the factory and its ware-
houses (e.g. factory and warehouses physical dimensions), and the way the
factory operates (e.g. factory frequency to take new orders, frequency to
produce orders)

• Production requirements (Section 5.3): cover the production orders and their
production requirements. These production requirements refer to the type
of product to manufacture and their production requirements (e.g. deadline,
demand, quality, production sequences). The entire set of product to produce
in the same period is called product mix.
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• Manufacturing resources (Section 5.4): include available elements to produce
dynamic production orders. Examples are robots, machines, tools, area to
manufacture. It also includes the way resources operate (e.g. robots maximal
speed, robots kinematic configurations).

Each of these three sections provide definitions of the elements they cover.
Additional elements and characteristics that are unique to the SAR problem are
presented through the last three sections. The complete notation for these elements
and characteristics is presented in Section 5.5. Also, examples of assumptions and
the simplified notation is summarised in this section. The strategy of formulating
of the SAR problem as a decision making problem is introduced in Section 5.6.
Concluding remarks are provided in Section 5.7.

5.1 Assumptions that characterise the SAR prob-

lem for a single factory

The flexibility of the S-RMS is increased with a specially designed factory. The
operation of the S-RMS in a single factory and the complexity of determining
production plans with the use of S-RMS are described in the following paragraphs.
It is considered a factory that can manufacture different products for multiple
customers with a S-RMS. Hence, the aim is to produce different products (i.e.
product mix) with different requirements (e.g. product demands and deadlines).

In existing factories the manufacturing layout is fixed or considerable time is
required to change the current layout. In comparison with traditional factories,
the proposed factory is in constant reconfiguration of its machine layout within a
short time. This is achieved through the use of the S-RMS, namely the Mobile
Manufacturing Robots (MMRs) and movable machines to form layouts tailored
to the current production requirements. Moreover, the manufacturing capabilities
of the resources can be changed through interchangeable tools and programming
different manufacturing operations.

These levels of flexibility result in a factory capable of managing external and
internal changes (e.g. processes and parts’ variability and uncertainty, random
events). Real-time conditions of the factory and its resources are monitored with
the goal to continuously adapt to these random events. The resources can au-
tonomously and intelligently adapt to processes and parts’ variability and uncer-
tainty. Moreover, it is possible to manufacture one-off products, bespoke products,
or batches of low production volume. An abstract factory (i.e. no distinguished
shape and boundaries) that highlights the flexibility (i.e. multiple acesses to fac-
tory and warehouses) is shown in Figure 5.1.

107



5.1. Assumptions that characterise the SAR problem for a single factory

Figure 5.1: Representation of an abstract factory (objects represented as polygons)
is located within a coordinate system (x,y), where the factory is represented by
a polygon and the polygon points are represented in the cartesian system. The
factory has no external or internal walls. This is indicated with the dashed red
line. This facilitates the inwards and outwards accesses of raw materials and prod-
ucts respectively. This is indicated with bidirectional black arrows. Warehouses
are multiple and distributed along the manufacturing zone. Warehouses are rep-
resented by pink polygons. Warehouses do no have exterior or interior walls and
this is indicated with the bidirectional blue arrows. Raw materials are represented
by grey polygons whilst products are represented by green polygons. Robots and
machines are represented by purple polygons. Raw materials, products, robots
and machines in warehouses represent stored objects, whilst in the manufacturing
zone represented manufacturing layouts. There is no clear manufacturing zone,
which means that all the factory can be used except for the warehouses.

In a general way, the SAR problem covers the problems of picking up of raw
materials at warehouses, manufacturing products and delivering of products to
warehouses. The problems of supplying raw materials to warehouses and picking
up products from warehouses are not considered. Assumptions that endow the
characteristics of the SAR problem are described in the next paragraphs. These
assumptions consider the S-RMS and a single factory at their highest level of flex-
ibility. The assumptions are divided by the main three elements they describe,
namely factory environment and operation, available resources and production re-
quirements. These are the following:

General

1. Objects are the factory, warehouses in the factory, robots (MMRs), machines,
Automated Guided Vehicles (AGVs), tools, tool depots, raw materials, and
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products

2. All the objects’ positions are referenced from each of their centroids to an
absolute reference coordinate system. Their locations can be dynamic for
objects such as robots or machines, but locations can be known at each
moment of time with certain degree of uncertainty

Factory environment and operation:

1. The problem considers a single factory. The location of the factory and its
boundaries are constant over time.

2. The walls of the factory have as many doors as possible to facilitate movement
of raw materials and products from and to the exterior.

3. The factory has two predefined zones, i.e. warehousing zone and manufac-
turing zone. The warehousing zone can store mix of raw materials, products
and manufacturing resources whilst the manufacturing zone, an unmanned
area, is only for manufacturing.

4. There are no walls between the warehousing and manufacturing zone. How-
ever, they can only be used for their own purpose.

5. The warehousing zone might include multiple and smaller warehouses that
might have the same type or a mix of raw materials, products or manufac-
turing resources (MMRs and machines).

6. The location and boundaries of warehouses can change over time or they can
be constrained to static positions and shapes.

7. The factory is equipped to facilitate distributed and continuous manufac-
turing. The equipment includes but is not limited to distributed sensors,
wireless communications, battery-charging zones and tool depots.

8. The factory is equipped with systems to promote CO2 reduction, as well as
efficient resources use (i.e. energy, water).

Available resources

Machines and robots :

1. Robots have known and constant arm kinematic, wheels configuration, values
of battery life, accuracy, payload, velocity and acceleration

2. There is a known and constant maximal number of tools that a robot can
carry at the same time. The carried tools can change over time
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3. Robots can carry multiple types of raw materials at the same time with
different quantities and these raw materials can change over time

4. There are limited and known number of robots within the factory. Extra
robots can be used from outside the factory at a known cost and delay time
per each robot

5. Robots can exchange tools on their own, place them and pick them up from
depots and exchange tools with other robots

6. The volume of the transported parts is neglected, but weights are considered.
Robots can carry parts of any volume independently of how many parts are
assembled together. The only limit is given by each robot payload (both, for
mobile platform and arm robot)

Tools :

1. Tools can perform multiple operations (multitasking) or a single operation

2. There is limited and known number of tools with known position and accu-
racy

3. Depots to store tools are distributed along the warehouses. Depots positions
are known but they can change over time. Depots have a group of constant
tools with a maximal storing quota and a delay time to resupply tools

Production requirements

Products and manufacturing operations :

1. Products might require multiple or single manufacturing operations.

2. Products that require multiple operations might have a sequence among the
operations or not, or both (i.e. some operations might have a sequence among
a smaller group and other operations without any sequence)

3. The logistics problem to pick up products from warehouses is not addressed.
It is assumed that this activity do not disturb the activity of unloading
products from robots to warehouses

4. Each product has a constant and known unloading time to warehouses, raw
materials have a known and constant unloading time from warehouses

5. Processing times and required quality of operations are known but might
depend on the MMRs or machines that perform the operations
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Raw materials :

1. Raw material is treated as a single type of object. Raw materials might
require any type of operation (i.e. assembly or machining). Materials might
have single operations or multiple operations

2. The logistics problem to (re)supply raw materials into warehouses is not
addressed. It is assumed that this activity do not disturb the activity of
loading materials from warehouses to robots

3. Each material has a constant and known loading and unloading time

4. It is assumed that the boundaries of the raw materials change over time.
However, it is also assumed that robots can handle any volume and shape.
It is also assumed that the assembled parts are considered as a single part

In the next three sections, definitions and notation to describe elements of the
SAR problem are presented.

5.2 Factory design and operation

In this section, notation to describe the factory design and its operation is pre-
sented. This notation consist of vectors for each constituent element of the SAR
problem. Variables are distinguished from parameters in that the measure of vari-
ables changes over time (e.g. current carried payload by any robot), whilst the
measure by parameters is constant (e.g. maximal robot payload). Variables add
the term (t). Subindexes denote variable elements, and superindex denote constant
elements.

5.2.1 Definitions

General definitions

• Object is defined as any physical element that is described by a closed group
of points. For this approach objects are: robots, raw materials and products

• Shape is defined as a group of points defining the boundaries of an object and
is assumed that these are limited to simple polygons. A shape is expressed
as σ(t) ∈ Rn × R2 = (X(t), Y (t)) where (X(t) = {x1, x2, ..., xNpoints

}, and
Y (t)) = {y1, y2, ..., yNpoints

}

• Location refers to the centroid (shortened to cent) of object’s shape
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Factory and warehouses

• Zone is defined as any non-physical element, which is represented by a
group of points or the union of groups of points defining their boundaries.
Zones are divided into warehousing zone and manufacturing zone, both are
contained within the factory zone, see Figure 5.2. A zone is defined as
z(t) ∈ Rn × R2 = (X(t), Y (t)) where (X(t) = {x1, x2, ..., xNpoints

}, and
Y (t)) = {y1, y2, ..., yNpoints

}

• Manufacturing zone is defined as any zone within the factory to manufacture
parts

• Warehousing zone is defined as any zone within the factory to store parts,
products or robots

• Shelf is a vertical container that can store several products or raw materials
in a vertical way. They are stored in the warehousing zone. A depot is a
special type of shelf just for tools. Depots can be in the warehousing or
manufacturing zones

Figure 5.2: Types of zones within a factory. The factory is divided in two main
zones, the manufacturing zone and the warehousing zone. None of these areas have
walls, but the zones are solely used for their purpose. The warehousing zone can
be divided in multiple independent and distributed warehouses that might store
a mix of parts or products. Warehouses have shelves to store raw materials or
products. Depots (shelves) to store manufacturing tools can be distributed in the
warehousing zone. These depots can have constant or dynamic positions.

5.2.2 Notation

t Instant of time

Where:

t ∈ R+
0

Factory vector
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f = (factory zone-shape-, location, warehouses, products, raw materials, robots,
machines, tools, depots of tools)

f = (zf , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,B,D,Sd)

Where:

zf = (X, Y ): Complete factory zone

(xcent,f , ycent,f ) Factory location

W : total group of warehouses, where each warehouse can store raw materials,
products, tools and robots

P : total group of products to be manufactured, product mix

Sp: total group of shelves of products in the factory

M: total group of raw materials in the warehouses. The total is equal to the
sum of raw materials required by all the products at the current planning horizon

Sm: total group of shelves of materials in the factory

R: total group of robots (Mobile manipulators) available at the factory to
manufacture (MMRs) or transporting (AGVs)

B: total group of machines available at the factory

D: total group of tools (manufacturing devices) available at the factory

Sd: total group of depots (shelves) of tools in the factory

Set of warehouses

W = {w1,w2, ...,wNwarehouses
}

Warehouse vector

wi = (shape, location, set of shelves of products, set of shelves of materials)

113



5.2. Factory design and operation

wi = (Σw(t), (Xcent,w(t), Y cent,w(t)),Sp,Sm)

where:

i ∈ {1, 2, ..., Nwarehouses}

Nwarehouses ∈ N+: total number of warehouses

Sp: total group of products shelves in the factory

Sm: total group of materials shelves in the factory

Variables

Σw(t) = {σw
1 (t), σw

2 (t), ...., σw
Nwarehouses

(t)} Set of shapes from each warehouse

Where each σ(t) ∈ Rn × R2

(Xcent,w(t), Y cent,w(t)) = {(xcent,w1 (t), ycent,w1 (t)), ....

, (xcent,wNwarehouses
(t), ycent,wNwarehouses

(t))} ∈ R2 Locations of each warehouse

Storing shelves for raw materials and products

Set of material shelves

Sm = {sm1 , sm2 , ..., smNshelves material
}

where:

Nshelves material ∈ N+: total number of shelves for materials

Material shelf vector

smi = (type of stored materials, material supplying time, material loading time,
material unloading time, maximal storing quota, current stored quota, location,
shape, orientation)

smi = (ms m
i , ξs m

i (rj)(mi), µ
s m
i (rj)(mi), η

s m
i (rj)(mi), q

s m,max
i , qs m

i (t),

(xcent,s m
i (t), ycent,s m

i (t)), σs m
i (t), αs m

i (t))
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where:

i ∈ {1, 2, ..., Nshelves material}

Parameters

ms m
i ∈M: Type of stored materials. For materials e.g. 1 = metal [measuring

units], 2 = ceramic [measuring units], 3 = wood [measuring units], 4 = composites
[measuring units], 5 = plastic [measuring units])

ξs m
i (rj)(mi) ∈ R+: Material resupplying time depending on the type of robot

rj and the type of material mi

µs m
i (rj)(mi) ∈ R+: Material loading time depending on the type of robot rj

and the type of material mi

ηs m
i (rj)(mi) ∈ R+: Material unloading time depending on the type of robot rj

and the type of material mi

qs m,max
i ∈ R+: Maximum stored quantity of material (in material’ quantity

units)

Variables

qs m
i (t) ∈ R+: Actual stored quantity of material

(xcent,s m
i (t), ycent,s m

i (t)) ∈ R2: Storing shelf actual location

σs m
i (t) ∈ Rn × R2: Variable shape of storing shelf

αs m
i (t) ∈ [−180, 180]: Storing shelf actual orientation

Set of product shelves

Sp = {sp1, s
p
2, ..., s

p
Nshelves product

}
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where:

Nshelves product ∈ N+: total number of shelves for product

Product shelf vector

spi = (type of stored product, product picking up time, product loading time,
product unloading time, maximal storing quota, current stored quota, location,
shape, orientation)

spi = (ps p
i , ιs p

i (rj)(pi), µ
s p
i (rj)(pi), η

s p
i (rj)(pi), q

s p,max
i , qs p

i (t),

(xcent,s p
i (t), ycent,s p

i (t)), σs p
i (t), αs p

i (t))

where:

i ∈ {1, 2, ..., Nshelves product}

Parameters

ps p
i ∈ P : Type of stored product. For products e.g. 1 = piston [measuring

units], 2 = valves [measuring units], 3 = gears [measuring units], 4 = crankshaft
[measuring units]

ιs p
i (rj)(pi) ∈ R+: Product picking up time depending on the type of robot rj

and the type of product pi

Rest of variables µs p
i (rj)(pi), η

s p
i (rj)(pi), q

s p,max
i , qs p

i (t),

(xcent,s p
i (t), ycent,s p

i (t)), σs p
i (t), αs p

i (t) were defined previously

5.2.3 Assumptions on factory design and operation

These characteristics describe the physical design of the factory, zones for ware-
housing and manufacturing. Factory characteristics includes elements such as the
factory and warehouses physical dimensions and the way the factory opetates (e.g.
factory frequency to take new orders, frequency to produce orders). These assump-
tions resulted from the analysis of the constituent problems of the SAR problem
in Chapter 4. Assumptions related to the factory design and its operation are
summarised in Table 5.1.
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Table 5.1: Factory design and operation elements and characteristics represent
physical elements and characteristics in the factory, such as the warehouses and
the factory itself. They also describe the operation of the factory and warehouses.
This table contains a comprehensive group of decision variables and their options
within the factory design and operation type. Each decision variable has two
options.

Factory design and operation
Decision variables Options of variables

1. Product orders acceptance Non-periodic Periodic
2. Layout recalculation Non-periodic Periodic
3. Warehouses shape change Variable Constant
4. Warehouses location change Variable Constant
5. Restrictions on resources Considered Neglected
6. Parts or products content in warehouses Heterogeneous Homogeneous
7. Parts or products redundancy within shelves Multiple Single
8. Transport time of Parts or products
to/from shelves

Dynamic Constant

9. a) Time dependable (e.g. peak hour) Considered Neglected
10. b) Location dependable Considered Neglected
11. c) Part dependable Considered Neglected
12. d) Product dependable Considered Neglected
13. e) Robot dependable Considered Neglected
14. Part/products to shelves
loading/unloading time

Dynamic Constant

15. a) Time dependable (e.g. peak hour) Considered Neglected
16. b) Parts/products dependable Considered Neglected
17. c) Robot dependable Considered Neglected

5.3 Production requirements

This subsection describes products requirements. Production requirements ele-
ments include the entire set of products to be produced in the same period (prod-
uct mix) and each product requirements. These requirements include demands,
deadlines, quality, list of raw materials and the required operations over each raw
material. It also include list of precedence constraints among operations for each
product.
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5.3.1 Definitions

• Product mix refers to a group of products to manufacture, see Figure 5.3.

• Product requirements deadlines, demands, quality, list of raw materials, prece-
dence of operations to manufacture a product.

• Product is a group of raw materials that have been assembled together or a
raw material that was machined.

• Raw materials include subcomponents for assembly and materials to be ma-
chined. This term is abreviate to materials.

• Operation is defined as an specific assembly requirement or machining re-
quirement associated with specific raw materials.

• Precedences between operations arise from the design of the product. The
operations that have no precedences can be done at any order. This provides
another degree of flexibility to the INTREPID framework.

• Precedence graph is a sequence of operations in which the operations must
be performed. Each product might have a different graph.

Figure 5.3: Production requirements hierarchy. The hierarchy of the production
requirements is product mix, then a single product, which consist of several man-
ufactured raw materials. Raw materials include subcomponents for assembly and
materials for machining operations. Raw materials, parts and subcomponents are
called manufacturable objects. In contrast, products, raw materials, parts and
subcomponents can be stored, carried or transported objects.
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5.3.2 Notation

Products set

This subsection states the complete set of products, also known as product mix.
This subsection also describes the requirements of a single product (product re-
quirements vector), which refer to required raw materials and their quantities, the
group of operations with their respective average processing time and the required
quality/accuracy grade (tolerance) and surface quality of each operation

Set of products requirements (i.e. Product mix)

P(t) = {p1,p2, ...,pNproducts
}

where:

Nproducts ∈ N+ is the total number of products

Product requirements vector

pi = (demand, deadline, set of materials and their required quantities by prod-
uct, set of operations, set of precedences constraints between operations)

pi = (ωp
i , δ

p
i , (M

p
i , Q

p
i ), O

p
i ,Π

p
i )

where:

i ∈ {1, 2, ..., Nproducts}

Parameters:

ωp
i ∈ R+: Product demand

δpi ∈ R+: Product deadline

Mp
i ∈M: Subset of required types of raw materials for product pi

Qp
i ∈ R+: Subset of required quantities of each type of raw materials for prod-

uct p

Op
i ∈ O: Subset of required operations for product p. This subset is defined

ahead
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Πp
i : Set of precedences for product pi. This set is defined ahead

Subset of required operations for product pi

This subset refers to the operations for the previously defined subset of raw ma-
terials Mp

i for product pi

Opi = {opi
1 ,o

pi
2 , ...,o

pi
Noperations product pi

} ⊂ O

where:

Noperations product pi ∈ N+: total number of operations required for product pi

Operation vector for product pi

opi
j = (subset of possible manufacturing processes for an operation, quality

grade -tolerance-, surface quality level, set of parts or subcomponents for the op-
eration -raw materials-, average estimated processing time)

opi
j = (Co,pi

j , go,pij , $o,pi
j , (M o,pi

j , Qo,pi
j ), τ o,pij (rk))

Where:

j = {1, 2, ..., Noperations product pi}

Parameters:

Co,pi
j ∈ C: Subset of possible manufacturing processes. Assembly operations

required more than one raw material

go,pij ∈ R+: Operation’s required quality/accuracy grade (tolerance)

$o,pi
j ∈ {1, 2, 3, 4, 5}: Surface quality level (1 = very high, 2 = high, 3 =

medium, 4 = low, 5 = very low)

M o,pi
j : subset of types of raw materials for assembly or machining operations

oj from product pi
Noperations∑

j=1

M
oj ,pi
j = Mp

i (5.1)

Qo,pi
j : Subset of required quantities of raw materials by each operation.

Variables
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τ o,pij (rk) ∈ R+: Processing time of operation oj depending on robot rk

Set of precedences between operations of product pi

The set refers to the precedences of each operation of product pi

Πp
i = πo,pi

1 , ..., πo,pi
Noperations product pi

where:

Noperations product pi : total number of precedences between operations per each
operation oj. Hence, operations and precedences have the same total number
Each precedence defines the set of operations that cannot be done before operation
oj as:

πo,pi
j = Op

i \ oj

up to

πo,pi
Noperations product pi

= Op
i \ oNoperations product pi

Where:

j ∈ {1, 2, ..., Noperations product pi}

5.3.3 Assumptions on production requirements

Production requirements characteristics cover the production orders and their pro-
duction requirements. production requirements refer to the type of product to
manufacture and their production requirements (e.g. deadline, demand, quality,
production sequences). The entire set of product to produce in the same period
is called product mix. These assumptions resulted from the analysis of the con-
stituent problems of the SAR problem in Chapter 4. Assumptions related to the
production requirements are summarised in Table 5.2.

5.4 Manufacturing resources

Manufacturing resources cover elements to produce the current production mix
and its requirements. Examples of these resources are machines, robots, tools.
These resources are classified as active or inactive depending on their availability to
perform any tasks. Also, resources are further classified in unavailable or available
depending on whether they are busy performing an operation or not respectively.
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Table 5.2: Production requirements elements and characteristics refer to require-
ments specific to a group of products (i.e. product mix). These also describe
constraints over operations. This table contains a comprehensive group of deci-
sion variables and their options within the production requirements type. Each
decision variable has two options.

Production requirements
Variable name Options of variables

18. Product deadlines Heterogeneous Homogeneous
19. Product start time Heterogeneous Homogeneous
20. Product deadlines Non-periodic Periodic
21. Product start time Non-periodic Periodic
22. Product release time Non-periodic Periodic
23. Product release time Non-periodic Periodic
24. Operations preemptions Considered Neglected
25. Delay time for auxiliary operations Considered Neglected
26. Processing times between operations Heterogeneous Homogeneous
27. a) Robot dependable Considered Neglected
28. b) Time dependable Considered Neglected
29. Products priorities (weights) Considered Neglected
30. Products priorities (weights) Considered Neglected
Dynamic products priorities Considered Neglected
31. Number of process plan Multiple Single
32. Time variation on different process plan Considered Neglected
33. Cost variation on different process plan Considered Neglected
34. Quality variation on different sequence Considered Neglected

5.4.1 Definitions

• Machines are specialised equipment that produces a single type of operation.
These correspond to the processes that cannot be embedded in a compact
and interchangeable tool to be used by the robots. Machines can be manually
moved with an overhead crane. The process of moving these machines is one
at the time, and do not interfere with the movement of robots.

• Mobile manipulators are the generic term for robots that can perform manu-
facturing and logistics operations. Robots consist of an arm robot mounted
over a mobile robot. The mobile robot has a platform that can be used to
carry raw materials, parts, subcomponents and products, see Figure 5.4.

• Carrying robot (AGV) refers for robots that are currently performing trans-
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portation operations.

• Mobile manufacturing robot MMR refers to robots that are currently per-
forming manufacturing operations.

• Available robot denotes a robot that is ready to perform any task (carrying
or manufacturing).

• Unavailable robot refers to a robot that cannot be used to perform any task,
i.e. robots are charging battery or are in corrective or programmed mainte-
nance.

• Active robot applies to robots that are transporting or manufacturing.

• Inactive robot is used for robots that are not being used neither for carrying
nor for manufacturing.

• Stationary robot applies to robots that are waiting to start manufacturing or
moving. It can also be applied to raw materials or products that are waiting
to be processed or moved. This term is used as a planned state for robots and
carried raw materials, parts or products. The position should not interfere
with the path of MMRs or AGVs.

Figure 5.4: Terminology for the manufacturing resources. Resources are machines
and mobile robots (i.e. mobile manipulators). However, robots can be employed
for manufacturing or transporting operations. When the robots are employed for
manufacturing they are called Mobile Manufacturing Robots (MMRs), and for
transporting they are called Automated Guided Vehicles (AGVs). Terminology
that describe the manufacturing resources are divided in available or unavailable.
Available refer to resources that are ready to work (i.e. no scheduled maintenance,
their battery is charged, group of tools loaded), whilst unavailable to resources that
cannot be used temporally due to maintenance, low battery charge, lack of tools,
breakdown. The term available is subdivided in active or inactive. Active refer to
resources that are currently in use in the manufacturing zone, whilst inactive to
resources that can be used for future plans.
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5.4.2 Notation

Robots

A robot is defined by a vector, that groups together parameters and variables.

Set of robots

R = {r1, r2, ..., rNrobots
}

where:

Nrobots ∈ N+: total number of robots

Robot vector

ri = (wheels, kinematic configuration, shape, mobile positioning accuracy, mo-
bile maximal speed, mobile maximal acceleration, arm positioning accuracy, arm
maximal payload, working status, health, battery, carried tools, location, orienta-
tion, actual velocity, actual acceleration)

ri = (lri , κ
r
i , σ

r
i , a

r
i , v

r,max
i , ψr,max

i , ar,di , γr,armi , γr,platformi , βr
i , ς

r
i (t), ϑr

i (t), β
r
i (t),

Dr
i (t), (x

cent,r
i (t), ycent,ri (t)), αr

i (t), v
r
i (t), ψ

r
i (t))

where:

i ∈ {1, 2, ..., Nrobots}

Parameters

lri ∈ {1, 2, 3, 4}: Wheel configuration (1 = bi-directional (two wheels), 2 =
non-holonomic, holonomic -omnidirectional- (3 = mecanum or 4 = Sweden))

κri ∈ {1, 2, 3, 4, 5}: Arm kinematic configuration and workspace (1 = cartesian,
2 = cylindrical, 3 = spherical, 4 = scara, 5 = articulated)

σr
i ∈ Rn × R2: Constant robot shape

ari ∈ R+: Robot positioning accuracy (minimal repeatable accuracy) given by
mobile robot
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vr,max
i ∈ R+: Maximum robot speed

ψr,max
i ∈ R+: Maximum robot acceleration

ar,di ∈ R+: Tool positioning accuracy (minimal repeatable accuracy) given by
arm robot. Assumed constant for the 3 axes

γr,armi ∈ R+: Maximum arm payload

γr,platformi ∈ R+: Maximum platform payload

βr
i ∈ [0, 100]: Maximal battery duration

Variables

ςri (t) ∈ {1, 2, 3}: Working status (1 = working, 2 = available, 3 = unavailable
(out of order, charging, scheduled maintenance))

ϑr
i (t) ∈ [0, 100]: Robot health monitoring (lifespan = physical status). This

means damage that happens not very often (e.g. wear, tear, robot breakdown)

βr
i (t) ∈ [0, 100]: Actual robot battery

Dr
i (t) = {d1, ..., djtools} ⊂ D: Subset of tools carried by each robot. It can

change over time. Where: jtools ∈ N+ is actual number of tools carried by robot ri

(xcent,ri (t), ycent,ri (t)) ∈ R2: Robot actual location

αr
i (t) ∈ [−180, 180]: Robot actual orientation

vri (t) ∈ R+
0 : Actual robot speed. Constrained to vri (t) < vri

ψr
i (t) ∈ R+

0 : Actual robot acceleration

Machines

A machine is defined by a vector, that groups together parameters and vari-
ables.
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Set of machines

B = {b1,b2, ...,bNmachines
}

where:

Nmachines ∈ N+: Total number of machines

Machine vector

bi = (shape, tool positioning accuracy, maximal payload, working status,
health, location, orientation)

bi = (σb
i , a

b,d
i , γbi , ς

b
i (t), ϑb

i(t), (x
cent,b
i (t), ycent,bi (t)), αb

i(t))

where:

i ∈ {1, 2, ..., Nmachines}

Tools (Manufacturing devices)

Set of tools, where each tool implies a specific manufacturing process

Set of tools

D = {d1,d2, ...,dNtools
}

where:

Ntools ∈ N+: Total number of tools

Tool vector

di = (manufacturing process, tool (tool bit) accuracy, set-up time, removal
time, set of possible tooling materials, surface finishing level, tool condition mon-
itoring)

di = (cdi , a
d
i , χ

d
i , ζ

d
i ,M

d
i , $

d
i , θ

d
i (t))

where:

i ∈ {1, 2, ..., Ntools}
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Parameters

cdi ∈ C: Tool type (manufacturing process type) e.g. 1 = Milling, 2 = Polishing,
3 = Cutting, 4 = Grinding, 5 = Boring, 6 = Turning, 7 = Drilling, 8 = Soldering,
9 = Welding, 10 = Brazing, 11 = Fastening (Mechanical assembly) -Threaded
fasteners-, 12 = Fastening -Rivets-, 13 = Glueing (adhesive bonding)

adi ∈ R+: Accuracy by each tool end effector size e.g. nozzle diameter, drill bit
diameter

χd
i ∈ R+: Tool set-up time

ζdi ∈ R+: Tool removal time

Md
i ∈ M: Feasible tooling’ materials (type of materials where the tool can

manufacture) e.g. 1 = metal, 2 = ceramic, 3 = wood, 4 = composites, 5 = plastic

$d
i ∈ R+: Surface finishing quality level (1 = very high, 2 = high, 3 = medium,

4 = low, 5 = very low)

Variables

θdi (t) ∈ [0, 100]: Tool condition monitoring (tool and tool bit lifespan = physical
status/conditions). This means damage (e.g. wear, tear, breakdown/breakage).
In case of tool bit it may mean the supply of raw material e.g. soldering metal.

Set of tool shelves (depots)

Depots of tools might be located in the warehousing and manufacturing zones.

Bd = {bd
1,b

d
2, ...,b

d
Nshelves tool

}

where:

Nshelves tool ∈ N+: Total number of shelves for tool

Tool depot vector

sdi = (current subset of stored tools, raw materials, parts or subcomponents
resupplying time, maximal storing quota, current stored quota, location, shape,
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orientation)

sdi = (Ds d, ξs d
i , qs d,max

i , qs d
i (t), (xcent,s d

i (t), ycent,s d
i (t)), σs d

i (t), αs d
i (t))

where:

i ∈ {1, 2, ..., Nshelves tool}

Parameters

Ds d ⊂ D: Subset of stored tools

Rest of variables ξs d
i , qs d,max

i , qs d
i (t), (xcent,s d

i (t), ycent,s d
i (t)), σs d

i (t), αs d
i (t)

were defined previously

5.4.3 Assumptions on manufacturing resources

The resources characteristics refer to the available elements to manufacture a group
of products that is in constant change over time. Examples are robots, machines,
tools, area to manufacture. It also includes the way resources operate (e.g. robots
maximal speed, robots kinematic configurations). These assumptions resulted
from the analysis of the constituent problems of the SAR problem in Chapter
4. Assumptions related to the manufacturing resources are summarised in Table
5.3.

5.5 Complete notation

The last three sections presented notation that represents elements and character-
istics that are natural to the SAR problem. Complete notation that represents a
generic SAR problem is summarised in this section, as well as a set of assumptions
to generate a simplified SAR problem as an example.

SAR problem generic notation

The complete notation consist of the following vectors:

Factory vector

f = (zf , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,B,D,Sd)
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Table 5.3: Manufacturing resources elements and characteristics describe all the
manufacturing resources within a single factory. These are classfied in available,
unavailable, active or inactive depending on their actual working condition. Ex-
amples of the resources are machines, robots, tools or manufacturing devices. This
table contains a comprehensive group of decision variables and their options within
the manufacturing resources type. Each decision variable has two options.

Manufacturing resources
Variable name Options of variables

35. Robots health span (maximal) Heterogeneous Homogeneous
36. Robots battery span (maximal) Heterogeneous Homogeneous
37. Robots kinematic (arm) configuration Heterogeneous Homogeneous
38. Maximum carried tools by robots Heterogeneous Homogeneous
39. Robots arm payload (maximal) Heterogeneous Homogeneous
40. Robots arm positioning accuracy Heterogeneous Homogeneous
41. Robots platform payload (maximal) Heterogeneous Homogeneous
42. Robots wheels configuration Heterogeneous Homogeneous
43. Robots maximal velocity Heterogeneous Homogeneous
44. Robots maximal acceleration Heterogeneous Homogeneous
45. Machines maximal payload Heterogeneous Homogeneous
46. Machines type of operation Heterogeneous Homogeneous
47. Machines accuracy Heterogeneous Homogeneous
48. Restrictions on machine eligibility Considered Neglected
49. Buffers or storage capacity Considered Neglected
50. Load splitting Considered Neglected
51. Tools life span Heterogeneous Homogeneous
52. Tools weight Heterogeneous Homogeneous
53. Tools setup time Heterogeneous Homogeneous
54. Tools removal time Heterogeneous Homogeneous
55. Different tools setup and removel time Considered Neglected
56. Tools bit accuracy Heterogeneous Homogeneous
57. Tools surface finishing quality level Heterogeneous Homogeneous

Warehouse vector

wi = (Σw(t), (Xcent,w(t), Y cent,w(t)), Sp, Sm)

Material shelf vector

smi = (ms m
i , ξs m

i (rj)(mi), µ
s m
i (rj)(mi), η

s m
i (rj)(mi), q

s m,max
i , qs m

i (t),
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(xcent,s m
i (t), ycent,s m

i (t)), σs m
i (t), αs m

i (t))

Product shelf vector

spi = (ps p
i , ιs p

i (rj)(pi), µ
s p
i (rj)(pi), η

s p
i (rj)(pi), q

s p,max
i , qs p

i (t),
(xcent,s p

i (t), ycent,s p
i (t)), σs p

i (t), αs p
i (t))

Product requirements vector

pi = (ωp
i , δ

p
i , (M

p
i , Q

p
i ), O

p
i ,Π

p
i )

Operation vector for product pi

opi
j = (Co,pi

j , go,pij , $o,pi
j , (M o,pi

j , Qo,pi
j ), τ o,pij (rk))

Set of precedences between operations of product pi

Πp
i = πo,pi

1 , ..., πo,pi
Noperations product pi

Robot vector

ri = (lri , κ
r
i , σ

r
i , a

r
i , v

r,max
i , ψr,max

i , ar,di , γr,armi , γr,platformi , βr
i , ς

r
i (t), ϑr

i (t), β
r
i (t),

Dr
i (t), (xcent,ri (t), ycent,ri (t)), αr

i (t), v
r
i (t), ψ

r
i (t))

Machine vector

bi = (σb
i , a

b,d
i , γbi , ς

b
i (t), ϑb

i(t), (x
cent,b
i (t), ycent,bi (t)), αb

i(t))

Tool vector

di = (cdi , a
d
i , χ

d
i , ζ

d
i ,M

d
i , $

d
i , θ

d
i (t))

Tool depot vector

sdi = (Ds d, ξs d
i , qs d,max

i , qs d
i (t), (xcent,s d

i (t), ycent,s d
i (t)), σs d

i (t), αs d
i (t))

Set of assumptions

These are examples of assumptions from Tables 5.1, 5.2, and 5.3. These assump-
tions are focused on robots, tools, production requirements and operations.

• Robots:

1. Robots have the same moving capabilities, this means homogeneous
wheel configuration lri , and minimal values of positioning accuracy ari ,
speed vri and acceleration ψr

i . This is represented as lri = (Lr − lri ),
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ari = (aR − ari ), vri = (vR − vri ) and ψr
i = (ψR − ψr

i )

2. Robots performance capabilities are unlimited, this means battery mon-
itoring (ϑr

i (t)) and health monitoring (βr
i (t)) are neglected. This is rep-

resented as��
�HHHϑr

i (t), and��
�H
HHβr
i (t)

3. Robots have the same manufacturing capabilities, this means homo-
geneous parameters of kinematic configuration κri , payload γri , and
arm positioning accuracy ardi . This is represented as κri = (Kr − κri ),
γri = (γR − γri ), and ardi = (aeR − ardi )

• Tools:

1. Tool setup time and removal are equal for the same tool. This is repre-
sented as χd

i = ζdi

2. Tool setup time and removal are equal for all the tools. This is repre-
sented as χD = ζD

• Production requirements and operations

1. New requests for products arrive at known and constant periods of time.
Deadlines of products are at constant and known periods of time. This
is represented as δpi = (δP − δpi )

2. Same type of operation have the same processing time independently
of the robot. This is represented as τi�

��Z
ZZ

(rk)

3. All operations have equal processing times, tolerance and surface fin-
ishing quality independent of the robot and tool. This is represented as
τi = τO, gi = gO, $i = $O

SAR problem simplification

Simplifications to the notation (i.e. vectors) due to the assumptions are repre-
sented by crossing the related variable or parameter as follows:
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• Robot vector

ri = {��SSl
r
i ,��@@κ

r
i ,��@@σ

r
i ,��@@a

r
i ,��

��HHHHvr,max
i ,����XXXXψr,max

i ,
�
�@
@

ar,di ,��
��H
HHHγr,armi ,���

���XXXXXXγr,platformi , βr
i , ς

r
i (t),��

�H
HHϑr
i (t),��

�HHHβr
i (t),

Dr
i (t), (x

cent,r
i (t), ycent,ri (t)), αr

i (t), v
r
i (t), ψ

r
i (t))

• Tool vector

di = (cdi , a
d
i ,��@@χ

d
i ,��SSζ

d
i ,M

d
i , $

d
i , θ

d
i (t))

• Operation vector

opi
j = (C

oj ,pi
j ,

�
�@
@
gpij ,�

�Z
Z

$pi
j , (M

o,pi
j , Qo,pi

j ),
�
�@
@
τ pij )

Simplified SAR problem

The simplified notation vectors are:

• Factory vector

f = (zf , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,B,D,Sd)

• Warehouse vector

wi = (Σw(t), (Xcent,w(t), Y cent,w(t)), Sp, Sm)

• Material shelf vector

smi = (ms m
i , ξs m

i (rj)(mi), µ
s m
i (rj)(mi), η

s m
i (rj)(mi), q

s m,max
i , qs m

i (t),

(xcent,s m
i (t), ycent,s m

i (t)), σs m
i (t), αs m

i (t))

• Product shelf vector

spi = (ps p
i , ιs p

i (rj)(pi), µ
s p
i (rj)(pi), η

s p
i (rj)(pi), q

s p,max
i , qs p

i (t),

(xcent,s p
i (t), ycent,s p

i (t)), σs p
i (t), αs p

i (t))

• Product requirements vector

pi = (ωp
i , δ

p
i , (M

p
i , Q

p
i ), O

p
i ,Π

p
i )
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• Operation vector

opi
j = (Co,pi

j , (M o,pi
j , Qo,pi

j ))

• Set of precedences between operations of product pi

Πp
i = πo,pi

1 , ..., πo,pi
Noperations product pi

• Robot vector

ri = {βr
i , ς

r
i (t), Dr

i (t), x
cent,r
i (t), ycent,ri (t)), αr

i (t), v
r
i (t), ψ

r
i (t))

• Machine vector

bi = (σb
i , a

b,d
i , γbi , ς

b
i (t), ϑb

i(t), (x
cent,b
i (t), ycent,bi (t)), αb

i(t))

• Tool vector

di = (cdi , a
d
i ,M

d
i , $

d
i , θ

d
i (t))

• Tool depot vector

sdi = (Ds d, ξs d
i , qs d,max

i , qs d
i (t), (xcent,s d

i (t), ycent,s d
i (t)), σs d

i (t), αs d
i (t))

The assumptions might affect elements and characteristics of the SAR problem.
The notation presented in the last three sections represents elements and charac-
teristics that are natural to the SAR problem. This notation helps formulating the
SAR problem. However, it is of paramount importance to select a combination of
elements, characteristics and their assumptions that result in a tractable problem.
This challenge of selecting an appropiate SAR problem is addressed in the next
section.

5.6 Problem formulation as a decision making

problem

The formulation of the SAR problem is done through the notation presented in the
last four subsections. This notation represents elements and characteristics that
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5.6. Problem formulation as a decision making problem

are natural to the formulation of the SAR problem. The formulation depends on
which elements, characteristics are included in the formulation and under which
assumptions. Very realistic formulations can be intractable to solve, whilst simple
formulations can be solved but do not represent a practical and real problems.
Appropiate assumptions can result in simplifications of the SAR problem that are
realistic but solvable with optimisation methods. This refers to a balance between
fidelity (i.e. realism) of the problem formulation and feasibility to be solved with
optimisation methods (i.e. solvability). A simplified (i.e. constrained) problem
that can be solved in real-time with well established optimisation methods might
be preferable over a highly realistic problem that might be intractable.

Therefore, in order to avoid intractable problem formulations, it is necessary to
select a combination of elements, characteristic and their assumptions that result in
formulation that is realistic to industrial scenarios but solvable with optimisation
methods. In this section, the formulation of the SAR problem as a decision making
problem is proposed This refers to the use of decision making methods to select a
realistic but solvable SAR problem. Thus, the decision making problem consist of
selecting which combination of elements, characteristics and their assumptions to
include in the SAR problem formulation. Therefore, the elements, characteristics
and assumptions are considered as decision variables on whether to include or not
the elements and characteristics and under which assumptions in the formulation.
Assumptions, obtained from the analysis in Chapter 4, were presented at the
previous sections. These are divided in three types:

• Factory design and its operation, Table 5.1

• Production requirements, Table 5.2

• Manufacturing resources, Table 5.3

These three types of assumptions are natural to the formulation of the SAR
problem, and therefore, they are called fundamental variables. Common options
for these variables are whether to include specific elements, characteristics and
assumptions or not (i.e. neglect them). For example, to consider the time to load
and unload parts, subcomponents or products to and from shelves or to neglect
it. However, more complex and detailed assumptions might include the specific
cost or extra time depending on the specific parts or subcomponents involved
in the manufacturing operation. For example, time to load and unload parts,
subcomponents or products to and from shelves might depend on the type of
parts, subcomponents or products that is loaded and unloaded, the type of robot
that loads and unloads the parts, subcomponents or products, or the time when
the parts, subcomponents or products is loaded and unloaded (i.e. due to rush
hour).
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Chapter 5. The SAR problem: definitions, assumptions and notation

Another type of assumptions, called system variables, facilitate formulating
the SAR problem with optimisation methods. Examples of system variables
are whether the space and time should be formulated as continuous or discrete,
whether the uncertainty of the system should be considered or not, and whether
there is a single or multiple objectives to optimise, see Table 5.4. The system vari-
ables facilitate the simplication of the SAR problem formulation with optimisation
methods. Hence, they are called auxiliary variables.

Table 5.4: System characteristics and assumptions are high level decisions that
facilitate formulating the SAR problem as an optimisation problem. Examples
of system variables are whether the space and time should be formulated as con-
tinuous or discrete, whether the uncertainty of the system should be considered
or not, and whether there is a single or multiple objectives to optimise. This ta-
ble contains a comprehensive group of decision variables and their options within
the system type. Each decision variable has two options except for the shape of
objects, which has three options.

System variables
Variable name Options of variables

58. Formulation over time Continuous Discrete
59. Formulation over space Continuous Discrete
60. Shape representation Polygonal Rectangular Square
61. Changing shape Considered Neglected
62. Objectives to optimise Multiple Single
63. Uncertainty Considered Neglected
64. Environment knowledge Unstructured Structured
65. General control system Decentralised Centralised
66. Number of periods (time horizon) Multiple Single
67. Events input frequency Non-periodic Periodic
68. Data sampling Non-uniform Uniform

5.6.1 SAR Problem space

There is one ternary variable (three options), and 67 binary variables (two options)
presented in Tables 5.1, 5.2, 5.3 and 5.4. When the options of all the variables are
exhaustively combined, approximately 4× 1020 SAR problem variants are gener-
ated (see Eq. 5.2). All these variants of the SAR problems are called the SAR
problem space. A represention of the combinatorial process can be observed in Fig
5.5.
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5.6. Problem formulation as a decision making problem

Figure 5.5: Representation of an exhaustive and systematic combination of all the
options from all the variables. N variables are represented with the letter V, where
each variable has Mi options represented by the letter o options. The combinations
(c) of variables’ options generate T combinations. The generated combinations
with the group of variables and their options is called the combinatorial space. In
this case, due to the creation of SAR problems is called the SAR problem space.
The number of generated combinations depends on the number of options from
each variable. For example, a problem with two binary variables and one ternary
can generate twelve problems (i.e. 2 ∗ 2 ∗ 3). When the number of options is equal
to all variables, the calculation is reduced to oN , where N is the total number of
variables and o is the total number of options to all variables.
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The total number of possible SAR problems (NSAR) depends on the number of
variables and their options to combine. An increase in variables or their options
results in an increase the in size of the SAR problem space. This number is
calculated with the Equation 5.2.

NSAR = ov1 ∗ ov2 ∗ ... ∗ ovi (5.2)

where, ovi are the number of options of variable vi. If all the variables have the
same maximal number of options, Equation 5.2 is simplified to the Equation 5.3.

NSAR = oNv (5.3)

where N is the total number of variables, and ov is the total number of options
to all the variables. The combinations of these assumptions can result in millions
of SAR problem variants. Applying Equation 5.2 in the case study, it results in
more than 4× 1020 possible variants of the SAR problem. It is extremely complex
to review and analysis the vast number of possible variants. However, it is very
important to select a variant SAR problem that is complex enough to be realistic
and feasible enough to be solvable. Therefore, it is of paramount importance to
effectively explore the problem space in a systematic and analytic way. In the next
chapter, Chapter 6, a methodology to deal with this decision making problem is
proposed.

5.7 Concluding remarks

A SAR problem notation was presented in this chapter. This one includes features
from the scheduling, multi robot task allocation, facilities layout planning (i.e.
machine layout), motiong planning and vehicle routing problems. A summary
of the elements and characteristics that describe these elements was presented in
Tables 5.4, 5.1, 5.2 and 5.3. These ones can be constrained to simplify the SAR
problem.

Constraints can vary from neglecting some elements that would make the prob-
lem intractable, up to assuming homogeneous values for some of the characteristics.
The large number of elements and their characteristics make the problem of formu-
lating a problem very hard. This is because the combination of all these elements
and characteristics might results in millions of variants of the SAR problem.

Therefore, in order to formulate the SAR problem, a proposed approach is
to review and analyse the relevant problems and their constraints that can be
considered in the SAR problem. The decision making problem helps to select a
SAR problem that is realistic to industrial scenarios but solvable with optimisation
methods.
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5.7. Concluding remarks

This approach is a Decision Making Methodology (DMM) that is described in
the next chapter, Chapter 6. A software implementation of the DMM is used on
the elements and characteristics of Tables 5.4, 5.1, 5.2 and 5.3. The results are
variants of the SAR problem that have an adequate balance between realism and
feasibility.
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Chapter 6

A methodology for problem space
exploration and selection

The novel Scheduling, positions Assigning and Routing problem (SAR) problem
was proposed in the last two chapters. In brief, the SAR problem refers to the pro-
duction planning problem with the use of mobile resources (i.e. Self-Reconfigurable
Manufacturing System (S-RMS)) within a single factory. The challenge of formu-
lating the SAR problem was introduced in the last chapter (i.e. Section 5.6).
Formulating the SAR problem is a complex task due to the large number of ele-
ments, characteristics and assumptions that can be included in the formulation.
Moreover, solving some of the SAR problem formulations is highly intractable.
Therefore, before formulating the SAR problem, it is important to carefully select
an appropiate combination(s) of elements, characteristics and their assumptions
for formulation. This combination(s) must represent a SAR problem that is real-
istic to industrial scenarios but solvable with optimisation methods. The problem
of selecting an appropiate combination(s) is a decision making problem, where
assumptions over elements and characteristics can be considered as decision vari-
ables.

The SAR problem formulation involves two types of decision variables. These
are fundamental and auxiliary variables. Fundamental variables specify manufac-
turing resources, production requirements, and factory design and its operation.
Auxiliary variables arise from the aim to simplify the formulation of the optimi-
sation problem. The only type of auxiliary variables are called system variables.
The types of variables are:

• Auxiliary:

– System variables: are variables that help formulating the SAR prob-
lem with optimisation methods. These are variables such as whether
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uncertainty should be considered during the problem formulation or
not, or whether the problem should be formulated in a continuous or
discrete space representation.

• Fundamental:

– Factory design and operation variables: refer to the design of the
factory and the way the factory handles the incoming production re-
quirements. These characteristics describe the physical design of the
factory, zones for warehousing and manufacturing and their operation.
Also, auxiliary systems such as communications and sensing are in-
cluded.

– Production requirements variables: are variables that describe
general characteristics about production requirements. production re-
quirements refer to the type of products to manufacture and their pro-
duction requirements (e.g. deadline, demand, quality, production se-
quences).

– Resources variables: refer to all the resources in the factory, their
characteristics and their current status (e.g. available, broken, busy,
in maintenance). Examples of these variables are robots, machines and
tools, and the way resources operate (e.g. robots maximal speed, robots
kinematic configurations).

Current decision making methods for selection rely heavily on pairwise com-
parisons of alternatives against a reference or against a known ideal and non-ideal
alternatives. In case of the SAR problem, there is not a known reference or al-
ternative to compare against and there is a vast number of alternatives. It is
challenging and even intractable to apply current methods for selection to a large
number of alternatives. Therefore, it is necessary to develop a novel methodology
for selection that can be applied to a vast number of alternatives. Thus, a method-
ology, based on the concept generation and selection methods, is presented in this
chapter.

The methodology was implemented and tested with a case study extracted
from the elements, characteristics and assumptions proposed in Chapter 5. This
chapter is organised in the following subsections. A literature review focused on
decision making and problem space exploration is presented in Section 6.1. The
proposed methodology, its working principles, and proposed performance metrics
are presented in Section 6.2. Conclusions on the methodology and the selected
SAR problems are summarised in Section 6.6.
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6.1 Literature review on concept generation and

selection

The challenge of selecting an appropiate SAR problem can be addressed with
conceptual design methods. These methods are widely used in the field of product
design and development. Concept generation and selection are steps from the
conceptual design process. The aim of the conceptual design is identifying the
solution principle [232]. The conceptual design steps are:

1. (Product) requirements list

2. Abstract the requirements to identify the essential problems

3. Establish functional structures (overall function and subfuntions) that ad-
dress the essential problems

4. Search for working principles that fulfill the subfunctions

5. Combine working principles into working structures

6. Select suitable combinations

7. Firm up into solution principles

8. Evaluate variants against technical and economic criteria

9. Select final solution principles (i.e. concepts)

The concept generation process starts by translating requirements to essen-
tial problems through abstraction. Next, functional structures that can address
the essential problems are proposed. Next, working principles that can satisfy
the functional structures are combined together to generate as many concepts as
possible [232].

At the step of concept generation, it is of paramount importance to perform
an exhaustive and systematic concept generation process in order to have an ex-
haustive and comprehensive group of concepts that represent widely all possible
solutions [233]. Once, this group is generated, it is necessary to select the best
possible combinations of working principles that fullfil the requirements list.

Methods for conceptual design take advantage on the use of abstract repre-
sentations of concepts instead of detailed designs approaches such as drawings,
simulations or mathematical models. Abstract representations are lists of words
that describe concepts. The use of abstract representations facilitates compar-
ing dozens of concepts. Abstract representations also facilitate generating new
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concepts by combining parts or group of parts from concepts of the initial group
(i.e. synthesis). The processes of generating, reviewing and selecting concepts are
grouped together under the term concept space exploration, whilst for designs is
known as design space exploration [234],[235].

Design space exploration approaches make use of software tools, which vary
the parameters of designs, drawings and models, to perform an automatic explo-
ration of designs. Design space exploration has been used in the design of circuits,
systems and architectures, and concept space exploration for the aircraft concepts
[234],[235]. However, modern software tools make use of user-interactive support
systems to perform qualitative analysis for designs selection [236],[237]. Similarly,
in concept space exploration, experts in product design and development select
concepts for the next stages of the design process.

The concept and design spaces belong to the solution space. Concepts and
designs focus on satisfying requirements and constraints. Consequently, the solu-
tions (i.e. concepts and designs) for a problem are limited by these requirements
and constraints [238]. Requirements are generated from a previous process, the
problem formulation process. A correct formulation of an optimisation problem
leads to determining feasible or optimal solutions. In contrast, a wrong formulation
leads to intractable and ill-defined optimisation problems. The aim of formulating
an optimisation problem is to represent this problem as realistic as possible whilst
solvable with optimisation methods. This aim must be considered whilst selecting
the best possible SAR problem(s) to formulate.

The space of all the possible ways that a problem can be formulated is the prob-
lem space. The problem space was distinguished from the solution space through
grounded theory development in [239]. A pioneering approach to problem space
exploration refers to using different initial conditions for a local search algorithm
[240]. The results of this search algorithm were solutions for every problem initial
conditions (i.e. problem instance). The problem and solution spaces are part of
the process of solving a problem through detailed designs [239]. The problem and
solution spaces can be observed in Figure 6.1. Selecting the best possible SAR
problem(s) is facilitated with the use of concept space exploration tools such as
the abstract representations and the concept generation and selection methods.
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6.1. Literature review on concept generation and selection

Methods for concept generation and selection are divided in decision ma-
trix methods, outranking methods and distance-based methods [22],[23]. Deci-
sion matrix methods are the Pugh’s evaluation matrix, Quality Function Deploy-
ment (QFD) method, the Weighted Rating Method (WRM) and the Analytic Hi-
erarchy Process (AHP) [24],[25]. The most relevant outranking methods are ELim-
ination and (Et) Choice Translating REality (ELECTRE) and Preference Ranking
Organization METHod for Enrichment Evaluations (PROMETHEE) [26]. Exam-
ples of distance-based methods are Multicriteria Optimisation and Compromise
Solution (VIKOR) (for its acronym in Serbian) and Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS) [27],[28]. TOPSIS and VIKOR have
complex procedures. However, in simple terms, TOPSIS works by minimising the
geometric distance between a known ideal concept and maximising the geomet-
ric distance between a known non-ideal concept and the alternative concepts [27].
VIKOR works by minimising the Manhattan and Chebyshef distances between a
known ideal concept and the alternative concepts [28]. Due to the lack of a known
ideal and non-ideal concepts, the distance-based methods are not further studied.
The search for a SAR problem that is realistic but solvable requires expert-guided
problem space exploration and analysis. Methods that are used for selection and
promote concept generation are the Pugh’s evaluation matrix, the QFD, and the
WRM, whilst methods that only focus on concept selection are AHP, ELECTRE
and PROMETHEE.

6.1.1 Decision matrix methods

A decision matrix is a matrix where each alternative is measured against each
criterion. Methods based on decision matrix focus on comparing each alternative
against a reference alternative referred as datum. The most relevant decision ma-
trix methods are the Quality Function Deployment (QFD) method, the Pugh’s
evaluation matrix, the Weighted Rating Method (WRM) and the Analytic Hier-
archy Process (AHP) [24],[25].

The Pugh’s evaluation matrix consists of pairwise comparison of concepts (i.e.
alternatives) against a reference concept called datum [22],[24]. The comparison
consists of assigning positive or negative signs when the evaluated alternative per-
forms better or worse than the datum respectively. 0’s are assigned for an equal
performance. The alternative that has more positive and less negative signs than
the datum is selected. See Figure 6.2.

An extension of the Pugh’s evaluation matrix is to apply this method multi-
ple times through multiple stages [241],[242]. This extended method is called the
controlled convergence method. Its working principle consists of applying con-
cept generation and selection processes until there are no new generated concepts.
The concept generation process consists of generating new concepts with parts
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Figure 6.2: Example of a Pugh’s evaluation matrix inspired from [22]. There are
five generic alternatives (i.e. A, B, C, D and E) and two criteria (i.e. criterion
1 and criterion 2). The alternative A serves as a reference called datum. The
comparison of alternatives against the datum is with the use of positive signs (+),
negative signs (-) and 0’s for positive, negative and equal performance respectively.
The sum of positive and negative signs, and 0’s is shown in the respective rows.
The net score results from the difference between the total number of positive
signs (+’s) minus the total number of negative signs (-’s). The alternatives with
the best net scores are selected, improved or combined. For this example, the best
alternative is the B (with a net score of 2, ranking at 1). However, alternatives
A,D and E have the same net score (i.e. 0). Hence, these alternatives can be
combined or improved. As an example, A and C can be combined, and alternative
E can be improved. Alternative D is discarded.
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Figure 6.3: Representation of the controlled convergence method applied through
N stages for C1 concepts at the first stage, C2 concepts for the second stage, and
so on, until a final group of CN concepts at the N stage. The yellow cones repre-
sent divergence (i.e. concept generation) processes, whilst the blue cones represent
convergence (i.e. concept selection) processes. The arrows within the blue rect-
angles represent selected concepts at each stage, whilst the arrows within the red
rectangles represent final concepts after the controlled convergence is applied.

of selected concepts from the previous stage. A representation of the controlled
convergence method can be observed in Figure 6.3.

The process of generating new concepts is called concept generation. The
concept selection and concept generation processes are also called concept conver-
gence and concept divergence respectively. The working principle of the controlled
convergence method resembles the working principle of the genetic algorithm due
to the recombination of successfully selected alternatives through multiple stages
[243]. However, the evaluation of new generated concepts or solutions is qualitative
(i.e. by expert personnel) rather than quantitative (i.e. by objective function).

The QFD, the WRM and the AHP methods allow assigning priorities to the
criteria. As a result of this, alternatives with high performance in very important
criteria are selected over alternatives with high performance in less important cri-
teria. The QFD and AHP assign priorities prior to the comparison of alternatives,
whilst the WRM assigns the priorities after the comparisons of alternatives. The
Pugh’ evaluation matrix, QFD and WRM promote the generation of new concepts
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Figure 6.4: Example of the Weighted Rating Method (WRM) inspired from [22].
The WRM incorporates the Pugh’s evaluation matrix in the first part of the WRM.
For this WRM example, the Pugh’s evaluation matrix is used from the Figure 6.2.
Representation of the second part of the WRM. The alternatives to evaluate
are the combination of alternatives A and C (i.e. AC), the improved version of
the alternative E (i.e. E+), and the selected alternative at the first part of the
WRM, the alternative B. The criteria to evaluate against consist of criterion 1 and
criterion 2. Criteria is assigned a priority value that sum to 100% for all criteria.
The alternatives are evaluated against the criteria with weights that range from 1
to 5. This evaluation does not consider the datum. These weights are multiplies
by the priority values of the criteria to obtain the weighted score. The weighted
scores per each alternative are added to obtain the total score. The alternative
with the highest total score is developed in a detailed design. In this example, the
successful alternative is the B.

by combining them or improving selected concepts.

The WRM is used in combination with the Pugh’s evaluation matrix [22],[24].
The Pugh’s evaluation matrix is used first. After this, the most successful alterna-
tives are combined or improved. Later, the criteria are priotised by assigning them
a percentage that must sum to 100%. The improved, combined or best alternatives
from the last process are compared against the criteria without considering the da-
tum anymore. Weights from 1 to 5 are used in this comparison. These weights
are multiplied by the priority of the criteria (in percentanges) and the results of
these multiplications are added together for each alternative. The alternative with
the highest scored (i.e. multiplied by priority percentage) weight is selected, see
Figure 6.4.

In contrast to the WRM, in the QFD method, the criteria is prioritise before
the comparison of alternatives [25]. Another key difference with the WRM is that
weights can only take values of 1, 3 and 9, where these ones mean a poor, medium
and very good, respectively. The absence of weights means that it is not possible
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to compare alternatives on criteria. Similarly to the Pugh’s evaluation matrix, the
QFD allows combining alternatives with good performance. For this, the QFD
allows measuring how good or bad alternatives can combine with each other. A
very strong synergy between two alternatives is expressed with two positive signs
(++), a good synergy is expressed with a positive sign (+) and a lack of synergy
with a negative sign (-). The lack of signs mean that is not possible to know
whether two alternatives have a strong, good or bad synergy. These symbols are
introduced at the upper part of the comparison matrix (i.e. in the triangularised
matrix). See Figure 6.5.

The Pugh’s evaluation matrix, the WRM and the QFD promote generating
new concepts with the successfully evaluated concepts. For the Pugh’s evaluation
matrix, the controlled convergence method promotes generating new concepts; for
the QFD, a triangularised matrix measures how feasible is to combine concepts;
whilst for the WRM, the Pugh’s evaluation matrix is used first to evaluate which
concepts to combine or improve. In contrast to this, the AHP does not promote
generating new concepts.

In the AHP, the prioritization of criteria results from the comparison of each
criterion against each other [244]. Once, the priorities for each criteria are known,
there are comparisons between each alternative against each other for each crite-
rion. The values for comparison range from 1 to 9. The value of 1 means equal
importance between criteria or alternatives. First, pairwise comparisons among
criteria are arranged in a square matrix, which eigenvectors are calculated. Next,
pairwise comparison among the alternatives is done for each criterion and ar-
ranged in a square matrix. The eigenvectors of this matrix are also calculated.
Then, the eigenvectors of the alternatives comparison are arranged in a matrix
where columns represent criteria and rows alternatives. This matrix is multiplied
by the eigenvectors from the criteria matrix. The alternative, resulting from the
matrixes multiplication, with the highest total value is selected.

Decision matrix methods work well when it is possible to measure alterna-
tives against criteria with a limited and common range of numerical values [23].
Alternatively to the decision matrix methods, the outranking methods consist of
comparing alternatives against a reference in order to obtain a preference ranking
of alternatives. The aim is to know the order of the alternatives and which are
better, equal or worst than the reference.

6.1.2 Outranking methods for selection

In contrast to the decision matrix methods, outranking methods compare criteria
against constituent parts of an alternative (i.e. concept) instead of a complete
alternative [26]. These parts are called attributes and each attribute is compared
against a single criteria. The most well-known methods are ELimination and
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Figure 6.5: Example of the Quality Function Deployment (QFD). There are four
alternatives to compare (i.e. A, B, C and D), whilst two criteria to evaluate
against (i.e. criteria 1 and 2). Priority values are assigned to criteria, where these
values do not have to sum to 1 (i.e. 100%). Weights evaluate the performance of
the alternatives at each criterion. The weights can only take values of 1, 3 and
9. A lack of weight reflects that is not possible to evaluate alternatives againts
criteria. The weights of the evaluated alternatives are multiplied per the priority
of criteria and added together in order to obtain a total score per each alternative.
The alternative with the highest total score is developed. The QFD promotes the
combination of alternatives by evaluating which ones have a very strong, good or
bad synergy for combination. This evaluation occurs in a triangularised matrix
above the alternatives. This matrix relates each alternative with the rest of them.
The signs for this evaluation are a double positive sign for a very strong synergy
(++), one positive sign for a good synergy (+) and a negative sign for a bad
synergy (-).
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(Et) Choice Translating REality (ELECTRE) and Preference Ranking Organiza-
tion METHod for Enrichment Evaluations (PROMETHEE) [245],[246],[247]. In
ELECTRE, the comparisons are of the type: an alternative is preferable, incom-
parable or indifferent to the reference. For an alternative to be as good as the
reference the conditions of concordance and discordance must be true. These con-
ditions state that the majority of the evaluated attributes must support that an
alternative is as good as the reference (i.e. concordance) and that the rest of the
attributes, the minority, are not against that the alternative is as good as the ref-
erence in a strong way (i.e. discordance). The discordance condition implies that
the minority should be indifferent or incomparable.

Similar to ELECTRE, the PROMETHEE method applies comparisons of the
type incomparable, indifferent or preferable [248],[249]. However, PROMETHEE
makes use of six types of functions to describe the preference or indifference be-
tween alternatives at each criterion. These functions are called preference functions
and their values can range from 0 to 1, where 1 is preferable and 0 is indifferent. In
PROMETHEE, there are five linear preference functions and one Gaussian pref-
erence function. PROMETHEE does not apply the discordance and concordance
conditions as ELECTRE does. Instead, each criterion is assigned the most ad-
equate type of function to evaluate all the alternatives to create an evaluation
matrix. Later, the evaluation matrix is multiplied by the criteria weights vector to
determine the matrix of global preferences. This matrix represents the comparison
of each alternative against each alternative for each criterion. In this matrix, the
sum of rows represents the good or bad performance of an alternative through all
the criteria (i.e. dominance), whilst the sum of the columns represents how much
an alternative is dominated by others (i.e. subdominance). A ranking between
alternatives is obtained by subtracting the subdominance from the dominance,
where the highest positive value is the most preferable value.

6.1.3 Challenges with large number of alternatives

The SAR problem space is of approximately 4× 1020 problems. Therefore, apply-
ing existing selection methods that required pairwise comparisons between prob-
lems is intractable. The result, of a comparison of four concept selection methods
(i.e. WRM, Pugh’s evaluation matrix, AHP and ELECTRE) in eight cases stud-
ies, is to use either WRM or Pugh’s evaluation matrix due to their simplicity and
efficiency [24]. For problems with more concepts or alternatives, a multi-stage con-
trolled convergence is recommended [241]. Therefore, the most relevant method to
explore large concept and problem spaces is the controlled convergence method.

Hence, a Decision Making Methodology (DMM) for problem generation and
selection was introduced in [30]. The proposed methodology is based on the
controlled convergence method. Instead of applying the controlled convergence
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method over groups of complete concepts, the method is applied over groups of
variables that generate partial concepts. This allows generating more complex
SAR problems at each stage, and experts select the most adequate based on the
qualitative criteria of realism versus feasibility.

This DMM also makes use of abstract representations. The DMM is a hier-
archical, multi-stage and interactive. The DMM exploits experts’ knowledge to
brainstorm decision variables related to the SAR problem. The groups of vari-
ables to be analysed are selected by experts at each stage but the most important
variables are explored at early stages to create a core SAR problem. The results
of the DMM are one or few SAR problems from a very large problem space. The
DMM is explained in detail in the next section.

6.2 Methodology

In the last section, the lack of a decision making method that helps selecting con-
cepts from a very large number of concepts was highlighted. The aim is to apply
methods for concept generation and selection to select SAR problem(s) for formu-
lation. The selected SAR problem(s) must be realistic to industrial scenarios but
solvable with optimisation methods. The proposed Decision Making Methodol-
ogy (DMM) works by taking advantage of experts’ knowledge and experience at
many steps of the DMM. These experts are from fields such as factory design,
optimisation, robotics and operations research.

In general, the DMM works by collecting decision variables that describe ele-
ments, characteristics and their assumptions on how to formulate the SAR prob-
lem. Once, a comprehensive group of variables is proposed, the second step of
the DMM is to select groups of variables to be analysed through multiple stages
(i.e. one group per stage). The process of grouping variables in multiple stages
is also performed by experts. In the third step of the DMM, the options of each
group of variables are exhaustively and systematically combined together to gen-
erate unique SAR problems. In the last step, the SAR problems are analysed and
selected by the experts considering the objective of selecting a SAR problem that
is realistic but solvable.

The selected SAR problems at each stage become the bases for more complex
and more detailed SAR problems at the next stage. This is done through a process
called aggregation, which consist of appending the selected SAR problems at the
previous stage to the generated SAR problems at the current stage. The SAR
problem generation, analysis and selection occurs iteratively until all the groups
of variables, from step 2, have been analysed. The most important variables are
analysed at the early stages.

The DMM’s contribution is to facilitate selecting a few SAR problems from a
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very large number of SAR problems by dividing the number of SAR problems in
multiple stages. See Figure 6.6 for a general representation of the DMM, where
the controlled convergence processes (i.e. generation and selection) and the saved
number of SAR problems are highlighted.

In this section, the working principles of the DMM are explained in Section
6.3. The DMM is formally described in Section 6.4. An implementation of the
DMM is described in Section .

6.3 Working principles

The main working principle of the Decision Making Methodology (DMM) is the
controlled convergence method. In brief, the controlled convergence method con-
sists of the application of concept selection (convergence process) and generation
(divergence process) steps through multiple stages. The key difference between the
classic controlled convergence method and the proposed DMM is its application
over partial groups of decision variables through multiple stages. These partial
groups of variables are a fraction of the total group of variables. Consequently,
these partial groups generate a fraction of the SAR problems compared to the to-
tal number that could be generated with the complete group of variables. Hence,
the number of analysed SAR problems is the sum of the partial groups of SAR
problems generated by the partial groups of variables, instead of the total number
of SAR problems that could be generated with the total number of variables In
the rest of the document partial groups are called groups.

All options of all variables in each group are combined in systematic and ex-
haustive way to generate all possible unique combinations of variables’ options
(i.e. SAR problems). This combination occurs at each stage and adequate com-
binations of variables’ options (i.e. partial SAR problems) are selected at each
stage. Later, variables at the current stage are appended or aggregated to the se-
lected partial SAR problems from the previous stage to create more complex and
detailed SAR problems at each stage. Variables for the DMM can be collected
through brainstorming or a literature review.

In this subsection, the processes of variables collection, combination, aggrega-
tion, and analysis are explained. Also, a process that helps reviewing the SAR
problem space discarded at previous stages is called SAR problem suggestions.
This suggestions process is based on the working principles of recommender sys-
tems [250],[251]. Tools that facilitate the DMM processes are also described in
this subsection. These tools include a tool that shows the combination and aggre-
gation processes, called combinatorial tree, is described in this subsection. Graphs
showing the generated SAR problems are also described.
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6.3.1 Variables collection and weighting

Due to the inclusive nature of the SAR problem it is necessary to collect deci-
sion variables and their options related to the problems of scheduling, machine
and facilities layout and vehicle routing. Two ways are proposed to collect these
variables, the first one is through a comprehensive literature review of the related
problems, whilst the second is to brainstorm the variables with the help from
experts of the fields of optimisation, operations research, robotics and factory de-
sign. In the case of this thesis, a comprehensive literature review was presented
in Chapter 4. The proposed variables were grouped by their type in system, fac-
tory design and operation, production requirements and manufacturing resources
variables. The factory design and operation, production requirements and man-
ufacturing resources variables are called fundamental variables because they are
natural to the problem they describe (i.e. the SAR problem). The system vari-
ables are called auxiliary variables because they facilitate the formulation of the
SAR problem with optimisation methods.

After the variables and options collection, options are assigned weights that
measures how difficult is to solve problems that include specific options. The
range of the weights can be selected according to the user. However, it is rec-
ommended to use a scale that allows a high differentiation between the options.
The recommended scale for the weights range between the possitive values of 0
and 1000. The use of this scale allows differentiating up to three levels (i.e. units,
tenths and hundredths). In order to consider uncertainty of the weighting process,
maximal and minimal weights. This weighting process is with the purpose of se-
lecting a SAR problem that is realistic but solvable. In this process the help of
experts to assign the weights is of paramount importance.

6.3.2 Combination process

The combinatorial process consists of appending together a single option of each
variable from a group of variables, until each possible combination of options is
generated. Each combination of options has only one option from each variable,
and each combination of options is different from each other. These combinations
of options are partial SAR problems, but they are referred simply as SAR problems.
The SAR problems selected at the last stage have options from all the variables
and these problems are referred as complete SAR problems.

The total number of SAR problems generated from the combination process
depends on the number of options of each variable as explained in Subsection 5.6.1.
This number can be calculated with Equation 5.2. However, the application of the
adapted controlled convergence method reduces this number. The total number of
SAR problems generated at each stage with the DMM depends on the two factors.
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These factors are the number of selected SAR problems at the previous stage and
the multiplication of all the number of options of each variable from the group of
variables at the current stage. The total number of SAR problems generated at
each stage (N stage

SAR ) can be calculated with Equation 6.1.

N stage
SAR = oi.1 ∗ oi.2 ∗ ... ∗ oi.j ∗ Si−1 (6.1)

where, o’s denotes the maximal number of options in a variable, the first value
of the subscript denotes the number of stage (i.e. i) and the second value of the
subscript denotes the number of the variable. j is the total number of variables at
the stage i. Si−1 is number of selected SAR problems at the previous stage.

The total number of SAR problems through all the stages (NStages
SAR ) with the

DMM depends results from the summation of total SAR problems generated at
each stage. This number can be calculated with Equation 6.2.

NStages
SAR = (o1.1∗..∗o1.j1)+(o2.j1+1∗..∗o2.j2∗S1)+..+(oN.jN−1+1∗..∗oN.jN∗SN−1) (6.2)

where, o’s denotes the maximal number of options in a variable, the first value
of the subscript denotes the number of stage (i.e. i) and the second value of the
subscript denotes the number of the variable. Equation 6.2 ranges from stage 1
up to stage N. The total number of variables at each stage are j1, j2,..., jN . The
number of selected SAR problems are each stage are S1 up to SN−1.

The combinatorial process is performed in an exhaustive, systematic and hier-
archical way. An exhaustive and systematic combination means that all options
of all variables are combined together in order to create all the possible combi-
nations of options. A hierarchical combination means the combinatorial process
starts with the most important variable’ options until the less important variable’
options are combined. Once, variables’ options are combined together, the maxi-
mal and minimal weights of options from each SAR problem are added together.
These weights’ sums are called maximal and minimal SAR problem weights.

Combinatorial tree

The combinatorial process resembles a decision tree where the options of each vari-
able are hierarchically appended to the options of the next variable [252]. There-
fore, the combinatorial process is represeted with a tool called combinatorial tree,
see Figure 6.7a. Due to the systematic and hierarchical nature of the combinatorial
process, families of problems can be identified by their most hierarchical options
(upper in the combinatorial tree).

It is easy to identify preferred options when SAR problems are being generated
in the combinatorial process. These preferred options are highlight with arrows
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of different colours in Figure 6.7a. Also, preferred options are indicated in the
relationship and weighting graphs, see Figures 6.7b and 6.8.

Relationship graph

Weights are assigned to each variables’ option that measure the influence of
each option in the difficulty of solving specific SAR problems. In the combinatorial
process, the options’ weights from each combination of options (i.e. SAR problems)
are added together to obtain SAR problem weights that measure the solvability of
the SAR problems. Whenever, there is uncertainty at weighting, a maximal and
minimal SAR problem weights can be used. A graph showing the SAR problem
weights is called the relationship graph, see Figure 6.7b. This graph shows the SAR
problem weights in the hierarchical order on which the options were appended in
the combinatorial tree, fig. 6.7a. Preferred options are indicated in this graph
with circles of different colours, where each colour represents a different preferred
option.

The SAR problem weights are not unique. This means, that many SAR prob-
lems can have the same weight due to the combination and addition of variables’
options with similar weights. Hence, in the relationship graph, the SAR problems
exploration is based on their constituent options rather than on the SAR problem
weights Moreover, the relationship graph allows comparing SAR problems by spe-
cific preferred combinations of options. These combinations of options can be from
the group of variables currently analysed or from the complete group of variables.

Weighting graph

The SAR problem weights measure how difficult is to solve a SAR problem. Mul-
tiple SAR problems can have an equal weight because variables’ options can have
similar weights when they are combined and added together. It is difficul to iden-
tify SAR problems by their weights in the relationship graph. Therefore, a graph
where SAR problems weights, from the relationship graph, are ordered increas-
ingly by their weights was proposed. This graph was called the weighting graph,
see Figure 6.8. In this graph, the SAR problems are assigned a new position that
correspond to new increasing order. The SAR problem positions are different from
the SAR problem number of the relationship graph.

The weighting graph facilitates comparing SAR problems by their weight rather
than by their constituent options. The SAR problems at the farther left are eas-
ier to solve, whilst at the farther right are most difficult to solve. The weighting
graph shows the SAR problem weights in an increasing order, from the minimal
to the maximal weight. Hence, it is possible to locate SAR problems based on
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(a)

(b)

Figure 6.7: Representation of the combinatorial process for one stage with five
binary variables. (a) Representation of a combinatorial tree. Blue circles repre-
sent variables, arrows represent options and coloured arrows represent preferred
options. Variables are denoted with letter V followed by the subscript of the stage
number, a dot, and the variable number. Options are denoted with letter O fol-
lowed by the subscript of the stage number, variable number and option number
separated by dots. (b) Representation of a relationship graph. Weights of options
are added together to generate SAR problem weights. A single weigth is used in
this representation. This graph shows the SAR problems weights as generated
during the combinatorial process. The horizontal axis shows the SAR problem
number, whilst the vertical axis shows the SAR problems weights. In this graph
serves to identify SAR problems that have the same group of upper options (i.e.
SAR problem family, e.g. SAR problem families of options 1 and 2 from variable
1). Colored circles highlight SAR problems with preferred options (e.g. orange
circles refer to a preferred option for variable 2, green circles for variable 3 and red
circles for variable 4). SAR problems can be selected above an inferior indicator
(Cinf, i.e. inferior combination), below a superior indicator (Csup, i.e. superior
combination) or between an inferior and superior indicators (Cinf and Csup).
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Figure 6.8: Representation of the DMM’s weighting graph. The horizontal axis
shows the positions of the ordered SAR problem numbers, whilst the vertical axis
the weights of the SAR problems. This graph shows the weights of the SAR prob-
lems ordered by increasing weights, starting at the farthest left with the minimal
weight and ending at the farthest right with the maximal weight. A single weigth
is used in this representation. This graph helps comparing SAR problems by their
weights instead of the SAR problems constituent options. The easier to solve SAR
problems are at the farther left, whilst the most difficult to solve are at the farther
right of the graph. SAR problems can be reviewed and compared between two per-
centages (e.g. an inferior percentage Pinf and a superior percentage Psup), within
a range above an inferior percentage (Pinf) or within a range below a superior
percentage (Psup).

specific percentages of SAR problem weights between the minimal and the max-
imal weights. Preferred options from the relationship graph are indicated in its
corresponding SAR problem position in the weighting graph.

6.3.3 Aggregation process

After the first stage, the selected SAR problems at the previous stage are aggre-
gated to the SAR problems generated by combining the group of variables’ options
from the current stage. This aggregation process results in more complex and de-
tailed SAR problems with options from the current stage and all the previous
stages. In this process the variables options are appended to generate more com-
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plex and detailed SAR problems. Also, the SAR problem weights from the SAR
problems selected at the previous stage are added to the SAR problem weights
from the SAR problems generated at the current stage. The aggregation process
is represented in Figure 6.9a. The aggregation process also involves adding the
weigths of the generated SAR problems in the current stage and the weigths of the
selected SAR problems in the previous stage. These added SAR problem weights
are represented in a relationship graph, see Figure 6.9b.

6.3.4 Problem space

The generated SAR problems at each stage, except for the first stage, are a subto-
tal of the total number that could be generated. The subtotal SAR problem space
corresponds to all the SAR problems generated with the group of variables of the
current stage and the selected SAR problems at the previous stage. In the first
stage, the subtotal SAR problem space corresponds only to the SAR problems
generated with the group of variables of the current stage. The total SAR prob-
lem space refers to all SAR problems generated with the accumulated group of
variables up to the current stage. The subtotal and the total SAR problem spaces
are the same for the first stage, but for any other stage the subtotal and total
spaces are different. These spaces can be represented with a graph showing the
weights of the SAR problems versus the number of SAR problems with the same
weight. This graph is called the problem space graph, see Figure 6.10. This graph
is called just space graph through the rest of the document. The number of SAR
problems with the same weight is referred as the number of repeated SAR problem
weigths, or just a number of SAR problems, within the context of the space graph.
Although maximal and minimal weights are allowed, the space graph makes use
of the minimal weights.

Problem space evolution

The total and subtotal SAR problem spaces change through the stages. This
is due to the addition of options at each stage. As a result, the generated SAR
problems have increased weights. For the total problem space, the range of SAR
problems weights and the maximal number of SAR problems with the same weight
increase at the next stage. However, for the subtotal space there is no clear trend
for the changes of the range of SAR problems weights and the maximal number
of SAR problems with the same weight. This mean that changes in the range of
SAR problems weights and the maximal number of SAR problems with the same
weight depend on the number of selected SAR problems at the previous stage and
their weights. Total and subtotal space graphs per each stage show the change
of the total and subtotal spaces (i.e. problem space evolution). A representation
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(a)

(b)

Figure 6.9: Representation of the DMM’s aggregation process for two stages. (a)
Representation of the combinatorial tree for the aggregation process for stages 1
and 2. The tree shows four selected SAR problems (i.e. S1, S2, S5 and S8) at the
previous stage. The SAR problems from stage 1 has three variables (V1.1, V1.2

and V1.3). Variables are represented by blue circles, options with black arrows
and SAR problems are represented by ovals enclosing the variables and options.
Combinatorial trees for stage 2 are represented below the selected SAR problems
of stage 1. These trees are aggregated to selected SAR problems from stage 1.
SAR problem families from the selected SAR problems (i.e. S1, S2, S5 and S8) are
highlighted. In this example, the trees have three variables (i.e. V2.1, V2.2 and
V2.3), and two options per each variable. (b) Representation of the relationship
graph for the aggregation process of two stages. The vertical axis shows the weight
of the SAR problems and the horizontal graph shows the number of the SAR prob-
lem. Although maximal and minimal weights are allowed, in this representation a
single weigth is used.
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Figure 6.10: Representation of the DMM’s problem space graph. The problem
space graph shows the total and subtotal SAR problem spaces of one stage. The
SAR problems generated with the accumulated group of variables up to the current
stage are grouped in the total SAR problem space. Whilst, the SAR problems
generated with the group of variables of the current stage and the selected SAR
problems at the previous stage are grouped in the subtotal SAR problem space.
The subtotal and total SAR problem spaces are equal in the first stage. The
blue graph represents the total SAR problem space whilst the white graph the
subtotal SAR problem space. The horizontal axis indicates the weights of the
SAR problems (i.e. weights w1, w2, ..., wN), whilst the vertical axis indicates the
number of combinations (i.e. SAR problems) with the same weight (i.e. 1, 2,...,
N). The SAR problems that could be suggested by a recommendation system from
the total space are highlighted by the substraction of the blue region minus the
white region.
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of the space graph showing the evolution of the total space through four stages is
shown in Figure 6.11.

Suggested SAR problems

The analysis of SAR problems is enhanced by reviewing and comparing selected
SAR problems at the current stage against SAR problems from the total problem
space of the current stage. These suggestions are based on recommender systems
[250],[251]. The suggestions system is adapted to search for SAR problems from the
total SAR problem space that have the same SAR problem weight than the selected
SAR problems of the current stage. The aim is to reintegrate SAR problems from
the total SAR problem space. A representation of the subtotal and total SAR
problem spaces is shown in Figure 6.10. In this figure the difference between the
total and subtotal SAR problem spaces is highlighted. The difference between
these two spaces is used to search suggestions of SAR problems.

6.3.5 Interactive analysis and selection

The analysis consists of reviewing and comparing SAR problems against each
other, i.e. exploring the problem space, in order to determine which SAR problems
are selected to the next stage. The analysis is interactive because it is performed by
experts with the purpose of selecting SAR problems that are realistic but solvable
with optimisation methods. The analysis is performed through the combinatorial
tree, and the relationship, weighting and space graphs. In the relationship graph
it is possible to review SAR problems by the preferred combination of options,
whilst in the weighting graph by a specific percentage or a range of percentages.
The SAR problem weights serves as a guide to distinguish how difficult to solve
is a problem given the variables’ options that contain. The variables’ options are
the elements, characteristics and their assumptions that can be included in the
SAR problem formulation. Whilst the difficulty to solve a SAR problem with
optimisation methods is measured by the SAR problem weight, the realism of the
SAR problem is identified by experts through the SAR problem space exploration
tools. The tools (i.e. combinatorial tree, and the relationship, weighting and
space graphs) are used to review the constituent options of each SAR problem and
compare them against each other.

The number of generated SAR problems at each stage can be calculated with
Equation 6.2. This number depends on two factors. First is the multiplication of
all the number of options of each variable from the group of variables at the current
stage and con second is the number of selected SAR problems at the previous stage.
It would be intractable to explore and analyse a SAR problem space with a large
number of SAR problems. Hence, it is important to consider the expected size of
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Figure 6.11: Representation of the DMM’s problem space evolution. In this exam-
ple, four total SAR problem spaces corresponding to four stages are represented.
The total SAR problem space per stage refers to all the SAR problems that can
be generated with the accumulated group of variables up to the current stage.
Hence, the total SAR problem space increases in size per each new stage due to
the addition of more variables at each new stage. The increments of the total
SAR problem space are reflected in the range of SAR problems weights and the
maximal number of SAR problems with the same weight. The total space from
stage 1 is shown in orange, total space from stage 2 in red, total space from stage
3 in green and total space from stage 4 in blue. The horizontal axis indicates the
weights of the SAR problems (i.e. weights W1, W2,..., WN), whilst the vertical
axis indicates the number of SAR problems with the same weight (i.e. 1, 2,..., N).
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the SAR problem space whilst selecting the variables to analyse at each stage, and
the selected SAR problems to succeed at each stage. Based on experience on the
DMM application on a SAR problem case study, a feasible space to review is less
than 200 SAR problems. However, if the user is willing to spend time exploring a
problem space of more than 200 SAR problems, it is possible to select many SAR
problems at each stage.

6.4 Methodology algorithm

The working principles described in the last subsection are used in the methodology
algorithm. Principles that are executed only once are the data collection (i.e.
brainstormed by experts or with literature review). In contrast to this one-off
execution, there are principles that are executed in an iterative way. These are the
combination, aggregation and analysis principles. In addition, one principle which
might or might not be executed in the methodology is the search for suggested
SAR problems. Tools that help exploring and analysing the problem space were
described also in the subsection. These tools are the combinatorial tree and the
relationship, weighting and space graphs. The algorithm of the DMM is shown in
Figure 6.12. Formally speaking, the DMM consists of the following steps:

1. Data collection. Decision variables and their options related to the SAR
problem is brainstormed by experts or collected through a comprehensive liter-
ature review. These experts are from the fields of factory design, optimisation,
robotics and operations research.

2. Grouping by their relationship, hierarchisation and weighting. Vari-
ables are ordered by their importance and classified into groups according to
the relationship between them. Later, the variables are weighted. Weighting
is easier after the hierarchisation because the variables are already arranged in
order of importance. The classification in groups facilitates selecting the most
important variables of each group to constitute the basic problem at the first
stage.

3. Variable selection for each stage. Variables are pre-arranged in the stages
for analysis. This arrangement can be modified at each stage, prior to the
combination of variables options. Changes of the arrangement are influenced
by the selected SAR problems at the previous stage. Also, these selected SAR
problems might influence the weight of the options. Hence, it is important
to consider reweighting after selection. Consequently, the new weights are in
agreement with the selected SAR problems.
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Figure 6.12: Algorithm of the proposed decision making methodology (DMM).
The steps of the DMM are: 1. Data collection (in orange rectangles); 2. Hierar-
chization, grouping by relation and weighting (in yellow rectangles); 3. Variables
arrangement in stages (in red rectangles); 4. Data combination (in blue rectan-
gles); 5. Combinations aggregation (in grey rectangles); 6. Analysis and selection
(in green rectangles). Steps 3 to 6 are repeated until all the groups of variables
have been analysed and the complete SAR problems are selected. The algorithm
is represented for V variables in N stages. Variables are arranged in G groups.
The variables are rearranged in stages, where stages have at most j1, j2 up to jN
variables. The variables’ options are combined (i.e. SAR problem generation) in
groups that have at most k1, k2 up to kN SAR problems. Selected SAR problems
at the previous stage are aggregated to the combined SAR problems of the cur-
rent stage, after the first stage, on groups that have at most l1, l2 up to lN SAR
problems. The groups of combined and aggregated SAR problems are analysed,
where these groups have at most m1, m2 up to mN SAR problems. One or few
SAR problems are selected at each stage. The selected SAR problems in stage N
are the complete SAR problems.

165



6.4. Methodology algorithm

4. Data combination (combinations generation). The options of the current
group of variables are combined with each other in a systematic, hierarchical
and exhaustive way to generate unique combinations of options. Combinations
through the stages are called SAR problems, whilst at the last stage, containing
options of all the variables, are called complete SAR problems.

5. Selected combinations aggregation. The selected SAR problems at the
previous stage are aggregated to the new combinations from step 3. The only
omission is at the first stage.

6. Combinations analysis and selection. The combinations are reviewed and
compared against each other by comparing their specific SAR problem weights
in the weighting graph, or the relationship of their options in the relationship
graph or both. The selection process should consider the variables from the
next stages and the possible generated combinations. Tools for analysis were
explained in Section 6.3, but a summary is presented in the next paragraphs.

7. Steps 3 to 6 are repeated until all the variables have been analysed. When all
the variables have been analysed, the selected SAR problems at the last stage
are called complete SAR problems.

Summary of tools for interactive analysis and selection

The tools for analysis and selection are:

a) Space graph (fig. 6.10). Graph showing the total and subtotal SAR problem
spaces. The total space is generated with the group of variables at the current
stage and the selected SAR problems from previous stages, whilst the subtotal
is generated with the group variables at the current stage.

b) Combinatorial tree (fig. 6.7). A graph showing the systematic and hierar-
chical combination process.

c) Relationship graph (fig. 6.7). A graph showing the combinations arranged
by how they were generated in the combination process. The combinations
are not ordered by their added options’ weights. Combinations with preferred
options are highlighted in this graph.

d) Weighting graph (fig. 6.8). A graph showing the combinations weights
ordered by the added options’ weights. Percentages of the maximal weight
and combinations with preferred options are highlighted in this graph.

e) Suggested SAR problems. Discarded SAR problems from previous stages
are suggested when they match the weights of selected SAR problems.
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6.4.1 Metrics of success

In order to assess the performance of the proposed DMM some metrics are pro-
posed. These metrics are mainly based on the relationship between the total and
subtotal generated SAR problems, and the selected SAR problems. These metrics
are divided in metrics per stage and metrics between the current and next stages
or all the stages (i.e. intrastage) as follows:

• Stage metrics:

1. Saved space per stage: Percentage between the subtotal generated
SAR problems and total number of SAR problems at each stage.

2. Most repeated SAR problem weight: refers to the SAR problem
weight that is the most repeated in the space graph of the current stage.

3. Range of generated weights: For the subtotal and total spaces, the
range of weights for the generated SAR problems refers to the maxi-
mal minus minimal weights of the respective subtotal and total SAR
problem spaces.

4. Selected SAR problem weights by percentage ranges: refers to
the selected SAR problems in the weighting graph that occur between
the following percentage ranges: 0-25%, 25%-50%, 50%-75%, and 75%-
100%.

• Intrastage metrics:

1. Total saved space: Percentage between the sum of all the generated
SAR problems in the stages and the total SAR problems that could be
generated.

2. Calculation effort waste: Percentage between the sum of all the
generated SAR problems at each stage and the sum of selected SAR
problems at each stage.

3. Generation effort waste: Percentage between the selected SAR prob-
lems at the last stage (i.e. complete SAR problems) and the sum of
generated SAR problems through all the stages.

6.5 Methodology implementation

The DMM can be executed in any platform that can append strings, have basic
mathematical tools, and visualisation of numerical graphs. Executing the DMM
manually is tedious. Moreover, the fact that other processes (i.e. brainstorming,
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grouping variables in stages, analysis and selection of SAR problems) require hu-
man input makes executing the DMM less ammenable. Therefore, the DMM was
implemented as a Decision Making Support System (DMSS) in LabVIEW. Four
stages have been implemented in the DMSS, but more can be implemented. How-
ever, four stages are enough to evaluate a case study of the SAR problem. The
DMSS automates the generation of SAR problems and the creation of visualisa-
tion graphs. All the described working principles, graphs and tools for visualisation
and the methodology steps were implemented. The DMSS consist of the following
windows:

• Raw data entry window, Fig. 6.13: is used to provide raw variables
and options. The DMM’s steps that occur in this window are variables
brainstorming, variables hierarchisation and grouping by their relationship
and variables’ options weighting. This window consist of four subwindows,
where variables and options data are provided in sequence. In the first part
(i.e. Variables’ data), the variables’ names, codenames (i.e. short names),
number of options of each variable, type of variable and difficulty of the
variable are provided. Also, the types of variables are named (e.g. factory
design and operation, production requirements). In the second part (i.e.
Variables weighting), the options of the variables and their weights are pro-
vided. A maximal and a minimal weights are provided. In order to facilitate
the weighting process, the variables are shown in decreasing order, from the
most difficult type of variables to the less difficult type of variables. In the
third part (i.e. variables assignment to stages), the variables are ordered by
their type (i.e. the relationship between them, e.g. factory design and opera-
tion, production requirements). In this part, the variables are assigned to the
stage where they will be analysed. Finally, in the fourth part (i.e. assigned
variables), the variables are grouped in the stages they will be analysed and
ordered by their type and difficulty.

• Main window, Fig. 6.14: is where most of the DMM steps occur, and
where most of the graphs for visualisation are included. The main window is
divided in two parts, the data selection (i.e. part A) and the SAR problems
analysis and selection (i.e. part B). The data selection part is fixed during all
the DMSS execution, whilst the SAR problems analysis and selection part
changes by each stage through the use of a tab for each stage. The DMM’s
steps that occur in this window are the variables selection, combination and
aggregation (i.e. SAR problems generation), and the analysis and selection
processes. Although, the variables are grouped in stages in the raw data
entry window, it is possible to change this selection, and it is also possible
to change weights of options (if necessary). This window has the following
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graphs and tools: the combinatorial tree, the relationship, weighting and
space graphs. This window also shows the subtotal and total number of
SAR problems, and it is possible to visualise the SAR problem that is cur-
rently highlighted in either of the relationship and weighting graphs. In the
main window, it is possible to select preferred options, and select weights
percentages that appear in the relationship and weighting graphs. The com-
bination and aggregation processes occur in the background of the DMSS.
However, these processes are activated with the button ”RUN” in the main
window. Also, these are buttons that activate the raw data entry, comparison
and suggestions windows are in the main window. The analysis and selec-
tion processes are facilitated with the combinatorial tree, the relationship,
weighting and space graphs. The DMSS allows to simultaneously observe
the SAR problem that is highlighted in either of the combinatorial tree, the
weighting and relationship graphs. Other tools that help the analysis and
selection processes are the comparison and suggestions windows and visual-
ising the current SAR problem. Lastly, in the main window, it is possible to
save and load variables and options data.

• Comparison window, Fig. 6.15: shows the selected SAR problems at the
current stage. It also shows the all the subtotal SAR problem space (i.e.
generated SAR problems with the group of variables at the current stage).

• Suggestions window, Fig. 6.16: is where the suggestions of SAR problems
are shown. These suggested SAR problems have the same weight than the
selected SAR problems at the current stage.

These four windows facilitate the executing the DMM. Moreover, the windows
reduce the number of processes that experts have to do, and allows experts to focus
on the processes that require their experience and expertise for evaluation. The
operation of the DMSS is as follows: first the raw data entry window is executed
only once, then the main window is executed, and this main window is used to
activate the comparisons and suggestions windows. The main windows is executed
in an iterative process. This process consist of selecting variables and reweighting,
if necessary, in the part A and executing the combination, aggregation, analysis
and selection processes at the part B. The comparison and suggestions windows
can be used as many times as necessary or not used at all. The operation of the
DMSS can be observed in Figure 6.17.
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Figure 6.17: Representation of the decision making methodology implementation’s
operation. The implementation consist of four windows called raw data entry,
main, the comparison and suggestions windows. The main window is divided in
two parts, the data selection and the data analysis parts. The execution flow of the
operation is as follows: first the raw data entry window is executed only once, then
the data selection part of the main window is executed, later the data analysis part
of the main window is executed. In order to facilitate the analysis, two windows
can be activated at any moment or not activated at all. These windows are the
comparison and suggestions windows. There windows are sorrounded by a dashed
line to represent them as optional. The processes of data selection and analysis
are performed in an iterative way until all the variables have been analysed (i.e.
multi stage). The SAR problems selected in the final stage are the complete SAR
problems that have variables from all the previous stages.
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6.6 Concluding remarks

A decision making methodology was presented in this chapter. The aim of the
DMM is to select the best possible SAR problem(s) that are realistic but solvable.
The problem of selecting one or few SAR problem consist of selecting elements,
characteristics and their assumptions that must be included in the SAR problem
formulation. The main working principle of the DMM is the controlled conver-
gence, a method from concept generation and selection field. The controlled con-
vergence method was adapted to manage a very large number of variables. Other
working principles, graphs and tools that facilitate the selection of one or few SAR
problems were explained in detail in this chapter. The main contribution of the
proposed DMM is generating and comparing a significant smaller amount of SAR
problems (i.e. subtotal space) compared to the total possible number of SAR
problems (i.e. total space). The DMM was implemented in LabVIEW and the
implementation windows were explained and associated with the corresponding
steps of the DMM’s algorithm.
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Chapter 7

A SAR problem case study

The inclusive nature of the Scheduling, positions Assigning and Routing prob-
lem (SAR) problem yields a vast number of elements, characteristics, and their
assumptions that can be included in the SAR problem formulation. These el-
ements, characteristics and their assumptions were reviewed and analysed in a
comprehensive literature review of the scheduling, machine layout and vehicle
routing problems (see Chapter 4). Due to the 68 elements, characteristics, and
their assumptions collected through Chapter 4, the SAR problem can be formu-
lated as approximately 4× 1020 problems (i.e. SAR problem space). As a result
is intractable to explore the SAR problem space and select one or few SAR prob-
lems to formulate with current selection methods. Therefore, a Decision Making
Methodology (DMM), for the purpose of selecting from a large problem space,
was presented in the last chapter. The purpose of this DMM is to select a SAR
problem that is realistic but solvable with optimisation methods for formulation.

This chapter presents a case study of the SAR problem, from decision variables
from Chapter 4, and the DMM is applied on this case study. The SAR problem
case study and its assumptions are presented in Section 7.1. The variables hierar-
chisation and weighting steps of the DMM are presented in Section . The grouping
of variables in stages is presented in Section . Results of the case study and their
analysis are presented in Section 7.4. The selected SAR problems are represented
with the proposed notation and formulated in Section 7.5. Conclusions about the
application of the DMM in the SAR problem case study and about the selected
SAR problems are summarised in Section 7.6.

7.1 DMM step 1: Data collection

The first step of the Decision Making Methodology (DMM) consist of collecting
variables and their options through brainstorming or a literature review. A case
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study is presented in this section and the DMM is applied on it. The data collection
step is the first one in the proposed DMM. In this case, the data collection
step is performed through a literature review the problems scheduling, positions
assigning (i.e. machine layout) and vehicle routing problems For each of these
problems, relevant elements, characteristics, and their assumptions were reviewed
and analysed in Chapter 4. These elements, characteristics, and their assumptions
are considered as decision variables to include in the SAR problem formulation.

There are four types of decision variables in the SAR problem. These four types
are: factory design and operation, manufacturing resources, production require-
ments and system variables. The factory design and operation, manufacturing
resources and production requirements variables are called fundamental variables
because their occurrence is natural to the problem they describe. Instead, system
variables are called auxiliary variables because they facilitate the formulation of
the SAR problem with optimisation methods.

A coherent partial group of variables from Chapter 4 was selected to represent
case study of the SAR problem. The variables of the case study are presented in
Tables 7.1 and 7.2. Codenames are added to the variables in order to simplify
their use through the application of the DMM.

Variables for the case study were selected based on their importance and with
the aim of representing the SAR problem. This particular case study focuses on
Mobile Manufacturing Robots (MMRs) rather than machines. This means there
are variables from the four group of variables described in the last paragraphs, and
variables representing the three constituent problems (i.e. scheduling, positions
assigning (i.e. machine layout), and routing) of the SAR problem. The following
assumptions on the SAR problem case study are applied, whenever possible the
assumptions are writen with notation from Chapter 5:

• General: multiple products and robots are considered

• General: products have different demands from each other

• General: tool depots are not considered (i.e. neglected)

• Factory: machines (B) are neglected

• Material shelf: maximal storing quota (qs m,max
i ) and current stored quota

(qs m
i ) are neglected

• Product shelf: maximal storing quota (qp m,max
i ) and current stored quota

(qp m
i ) are neglected

• Product requirements: products can have different demands (ωp
i ) and prod-

ucts might have multiple operations (Op
i )
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• Operation vector for product: operations are made with a single manufactur-
ing process (coi ), operations require a unique quality grade (goj ) and a unique
surface quality level ($o

j )

• Robot: Mobile positioning accuracy (ari ), arm positioning accuracy (ar,di ),
health (ϑr

i (t)) are neglected. There is a homogeneous maximal velocity
(vr,max), acceleration (ψr,max) and mobile platform payload (γr,platform) for
all robots.

• Tool: Tool (tool bit) accuracy (adi ) and surface finishing level ($d
i ) are ne-

glected. Tool condition monitoring (θdi (t)) is neglected because tools do not
wear during operations. The group of tools (Dr

i ) that robots carry do not
changes over time.

• Objects’ shapes: shapes of objects such as warehouses, robots, raw materials,
parts and products are constant over time. Thus: σ(t) is simplified to σ

Options of all the decision variables are exhaustively and systematically com-
bined to generate unique SAR problems (i.e. each SAR problem has one option
of each variable). This results in the SAR problem space (i.e. space of all the
SAR problems). Depending on the number of variables and their options, this
combinatorial process can result in a huge problem space. The case study has one
ternary variable (three options), and twenty two binary variables (two options).

The number of SAR problems increases by increasing the variables or their
options. This is calculated with Equation 5.2.

ov1 ∗ ov2 ∗ ... ∗ ovi = 223 ∗ 31 = 12, 582, 912 (7.1)

When applying Equation 5.2 in the case study, more than 12× 106 problems
can be generated. It is extremely complex to review and analyse the vast number
of possible SAR problems. However, it is very important to select a SAR problem
that is complex enough to be realistic and feasible enough to be solvable in order to
solve a realistic problem with optimisation methods. Therefore, it is of paramount
importance to effectively explore the problems space with the novel DMM. The
application of the DMM over the case study is performed in the next sections and
the results are presented and discussed in Section 7.4.

7.2 DMM step 2: Variables grouping, hierarchi-

sation and weighting

The second step of the methodology consists of grouping the variables by their
relationship, prioritising the variables or group of variables in a hierarchy, and as-
signing weights to the options of the variables. Variables from the case study were
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Table 7.1: System and factory design and operation variables from the SAR prob-
lem case study. The selected system variables are: whether space and time can
be formulated as discrete or continuous, the control of the system is centralised
or decentralised, the number of objectives to optimise is single or multiple, the
uncertainty of the system is considered (i.e considered) or neglected (i.e. certain),
the factory environment is known (i.e. structured) or not (i.e. unstructured), and
whether the objects shape is polygonal, rectangular or square. The selected factory
design and operation variables are: whether the parts and products loading and
unloading time depends on the type of parts, products and robots or not, the parts
and products transport time depends on the type of parts, products and robots
or not, the number of warehouses is multiple or single, their content is mixed or
unique and whether the location of the warehouses is dynamic or constant.

System variables
Variable Codename Option 1 Option 2 Option 3
Space formulation Space Continuous Discrete
Time formulation Time Continuous Discrete
System control S.Control Decentralised Centralised
Objectives to optimise Objectives Multiple Single
System accuracy S.Accuracy Uncertain Certain
Environment knowledge Environment Unstructured Structured
Objects shape Shape Polygonal Rectangular Square

Factory design and operation variables
Variable Codename Option 1 Option 2 Option 3
Parts loading and
unloading time
dependent on part
and robot

PL/UTDPR Dependent Independent

Parts transport time
dependable on part
and robot

PTTDPR Dependent Independent

Warehouse number W.Number Multiple Single
Warehouse content W.Content Mixed Unique
Warehouse location W.Locations Dynamic Constant
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Table 7.2: Production requirements variables and resources variables from the SAR
problem case study. The selected production requirements variables are: whether
products have multiple or single start times and deadlines, processing time of op-
erations depends on the type of robot, and whether the number of process plans
is multiple or single. The selected resources variables focus on Mobile Manufac-
turing Robots (MMRs) rather than machines. These are: whether robots have
an equal or unequal 2D area size, robots manufacturing accuracy is heterogeneous
or homogeneous, robots type of wheels is mixed or unique, robots maximal num-
ber of carried tools is mixed or unique, robots maximal payload is heterogeneous
or homogeneous, robots battery duration is heterogeneous or homogeneous and
whether tools setup and removal times are equal or not for all the robots.

Production requirements variables
Variable Codename Option 1 Option 2
Products deadlines P.Deadlines Multiple Single
Products start times P.StartTimes Multiple Single
Operations processing time
dependable on robot

O.PTR Dependent Independent

Number of process plans Plans Multiple Single
Resources variables

Variable Codename Option 1 Option 2
Robot’s 2D area size R.Area Unequal Equal
Robots accuracy R.Accuracy Heterogeneous Homogeneous
Robots type of wheels R.Wheels Mixed Unique
Robots maximal
carried tools

R.CarriedTools Mixed Unique

Robots maximal payload R.Payload Heterogeneous Homogeneous
Robots battery duration R.Battery Heterogeneous Homogeneous
Tools setup and
removal times

T.SRT Unequal Equal
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grouped by their nature in factory design and operation, manufacturing resources,
production requirements and system variables. These variables were classified ac-
cording to their importance in eight categories. Prior classification of the variables
facilitates the hierarchisation and weighting. The weights range from 0 to 1000,
where 0 correspond to the easiest to solve and 1000 to the hardest to solve. More-
over, the classification helps managing the different nature of the variables from
the scheduling, positions assigning, and routing problems. The eight categories
were determined as follows:

1. Variables that affect all the other variables and data.

• Space formulation

• Time formulation

• System control

• Number of objectives to optimise

• System accuracy

2. Variables that required special formulations.

• Environment knowledge

• Objects shape

• Number of process plans

• Robots area

3. Variables that affect production plans given the layout.

• Warehouses locations

4. Variables where the choice of resources affect the production plan.

• Parts loading and unloading time dependent on the types of part and
robot

• Parts transport time dependent on the types of part and robot

• Operations processing time dependent on the type of robot

5. Variables that affect the plan given the product that is manufactured.

• Products start times

• Products deadlines
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6. Variables that increase the number of options and make it necessary to select
a specific resource.

• Number of warehouses

• Content products or raw materials at warehouses

• Robots accuracy

• Robots type of wheels

7. Variables that differentiate robots and require to solve a trade off between
moving a robot or exchanging a tool.

• Tools setup and removal times

8. Variables that limit the capacity to make an operation.

• Robots number of carried tools

• Robots payload

• Robots maximal battery duration

Variables’ options of the eight categories were weighted in the 0-1000 scale
with a single value in Tables 7.3 and 7.4. These weights are assigned according
to the eight categories. Once the variables are grouped and hierarchised, and the
variables’ options have weigths, it is necessary to determine on which stage to
analyse the variables. This step corresponds to the third step of the DMM and is
done in the next section.

7.3 DMM step 3: Variables selection

The third step of the methodology consists of assigning variables to the stages
where they can be analysed. The variables were distributed into four stages with
the aim to have a division of hard and complex variables, and easy variables (i.e.
this is according to their weights). Consequently, there a good mixture of variables
with respect to their importance at each stage. Also, there a good mixture of types
of variables (i.e. system, factory, requirements and resources).

The variables for stage 1 represent the core problem, whilst the rest of the
variables provide more details to the problems. Variables to analyse at each stage
are arranged as follows:

• Stage 1: space formulation, time formulation, objects’ shape, operations
processing time dependent on type of robot (O.PTR), parts transportation
time depends on type of part and robot (PTTDPR), number of warehouses
and the accuracy of robots.
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Table 7.3: Part 1 of the variables’ options weighting. A single weight is provided,
instead of a minimal and maximal (i.e. there is no uncertainty at weigthing).
Variables are classified in eight hierarchical categories. The variables’ options
are weighted according to these eight categories. This table presents the first
four categories. These are: variables that affect all the other variables and data
with a hard weight of 350 and easy weight of 175; variables that required special
formulations with hard weight of 300, medium weight of 150 and easy weight of
75; variables that affect production plans given the layout with hard weight of
275 and easy weight of 125; and variables where the choice of resources affect the
production plan with hard weight of 250 and easy weight of 125

Variables that affect all the other
variables and data

Options and weights
Variable Option 1 (175) Option 2 (350)
Space Discrete Continuous
Time Discrete Continuous
S.Control Centralised Decentralised
Objectives Single Multiple
S.Accuracy Certain Uncertain

Variables that required special formulations
Options and weights

Variable Option 1 (75) Option 2 (150) Option 3 (300)
Environment Structured Unstructured
Shape Square Rectangular Polygonal
Plans Single Multiple
R.Area Equal Unequal

Variables that affect production
plans given the layout
Options and weights

Variable Option 1 (125) Option 2 (275)
W.Location Constant Dynamic

Variables where the choice of resources
affect the production plan

Options and weights
Variable Option 1 (125) Option 2 (250)
PL/UTDPR Independent Dependent
PTTDPR Independent Dependent
O.PTR Independent Dependent
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Table 7.4: Part 2 of the variables’ options weighting. Uncertain at weighting is
neglected. Variables are classified in eight hierarchical categories. The variables’
options are weighted according to these eight categories. This table presents the
remaining four categories. These are: variables that affect the plan given the
product that is manufactured with hard weight of 200 and easy weight of 100;
variables that increase the number of options and make it necessary to select a
specific resource with a hard weight of 175 and easy weight of 75; variables that
differentiate robots and require to solve a trade off between moving a robot or
exchanging a tool with hard weight of 150 and easy weight of 75; and variables
that limit the capacity to make an operation with hard weight of 100 and easy
weight of 50.

Variables that affect the plan given the
product that is manufactured

Options and weights
Variable Option 1 (100) Option 2 (200)
P.Deadlines Single Multiple
P.StartTimes Single Multiple
Variables that increase the number of options

and make it necessary to select a specific
resource

Options and weights
Variable Option 1 (75) Option 2 (175)
W.Number Single Multiple
W.Content Unique Mixed
R.Accuracy Homogeneous Heterogeneous
R.Wheels Unique Mixed
Variables that differentiate robots and require
to solve a trade off between moving a robot

or exchanging a tool
Options and weights

Variable Option 1 (75) Option 2 (150)
T.SRT Equal Unequal

Variables that limit the capacity to make an
operation

Options and weights
Variable Option 1 (50) Option 2 (100)
R.CarriedTools Unique Mixed
R.Payload Homogeneous Heterogeneous
R.Battery Homogeneous Heterogeneous
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• Stage 2: system control, number of objectives to optimise, robots’ area size,
products start times, products deadlines, and content of warehouses.

• Stage 3: knowledge about environment, number of process plans, robots’
type of wheels, parts loading or unloading time dependent on the type of
part and robot (PL/UTDPR) and robots battery duration.

• Stage 4: system accuracy, locations of warehouses, equality of tool setup and
removal times for all robots, robots’ maximal payload, and robots number
of carried tools.

Applying Equation 5.2 in the variables’ options of each stage, the number of
combinations per stage are 192 combinations for stage 1 (i.e. six binary variables
and one ternay), 64 combinations for stage 2 (i.e. 6 binary variables), 32 combina-
tions for stage 3 and 4 (i.e. five binary variables). The most important variables
are analysed at early stages. This is demonstrated by the sum of the options’
weights at each stage. These total sums are for the hardest options: stage 1 with
1,850, stage 2 with 1,575, stage 3 with 1,125, and stage 4 with 975; and for the
easiest options: stage 1 with 825, stage 2 with 775, stage 3 with 550, and stage 4
with 475. The average of these sum per the number of variables in each stage is
for the hardest options: stage 1 with 264.28, stage 2 with 262.5, stage 3 with 225,
and stage 4 with 195; and for the easiest options, stage 1 with 117.85, stage 2 with
129.16, stage 3 with 110, and stage 4 with 95. This data is summarised at Table
7.5.

The total sums and the average sum per the number of variable through the
stages show a decreasing rate, demonstrating the importance of the variables at
early stages. For the case study, the average weight in the easiest option for stage
2 is bigger than for stage 1. This is because the weight of the option square (i.e.
75) was used in the calculation, instead of the weight of the option rectangular
(i.e. 150). Otherwise, the result would have been 128.57, which is closer to 129.16.
The assignation of variables at each stage, the sum of variables weights and their
average sum per number of variables demonstrate a good balance at assigning the
variables in the four stages. Once the variables are assigned to stage for their
analysis. The combination and aggregation (i.e. steps 4 and 5 of DMM) of the
variables’ options generate SAR problems to analyse and select (i.e. step 6 of
DMM) at each stage. These three steps are done in the next section.
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Table 7.5: The variables selection step results in groups of variables in four
stages. These are as follows: stage 1 with variables Space, Time, Shape, O.PTR,
PTTDPR, W.Number, and R.Accuracy; stage 2 with variables S.Control, Objec-
tives, R.Area, P.StartTimes, P.Deadlines, and W.Content; stage 3 with variables
Environment, Plans, PL/UTDPR, R.Wheels, and R.Battery; and stage 4 with
variables S.Accuracy, W.Locations, T.SRT, R.Payload, and R.CarriedTools. The
sum of the hard and easy weights of the variables’ options and the average sum
per the number of variables at each stage shows a decrease indicating the priority
given to more important variables at early stages.

Variable Easiest option Hardest option

S
ta

g
e

1

Space 175 350
Time 175 350
Shape 75 300
O.PTR 125 250
PTTDPR 125 250
W.Number 75 175
R.Accuracy 75 175
Sum 825 1,850
Average per variable 117.85 264.28

S
ta

g
e

2

S.Control 175 350
Objectives 175 350
R.Area 150 300
P.StartTimes 100 200
P.Deadlines 100 200
W.Content 75 175
Sum 775 1,575
Average per variable 129.16 262.5

S
ta

g
e

3

Environment 150 300
Plans 150 300
PL/UTDPR 125 250
R.Wheels 75 175
R.Battery 50 100
Sum 550 1,125
Average per variable 110 225

S
ta

g
e

4

S.Accuracy 175 350
W.Locations 125 275
T.SRT 75 150
R.Payload 50 100
R.CarriedTools 50 100
Sum 475 975
Average per variable 95 195
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7.4 DMM steps 4, 5 and 6: Variables’ options

combination and aggregation, and SAR prob-

lems analysis and selection

The fourth and fifth steps of the methodology consist of combining and aggregat-
ing variables’ options to generate the SAR problems. In the first stage, there is
not SAR problems to aggregate, and therefore, only the combination is performed.
The sixth step of the methodology consists of analysing and selecting SAR prob-
lems to pass to the next stage. The analysis focuses on carefully reviewing SAR
problems and comparing them against each other. There are two type of results
when applying the DMM. The first type are graphs summarising all the gener-
ated SAR problems (from combination and aggregation processes). The second
type are a group of selected SAR problems for the next stage (from analysis and
selection processes). These selected SAR problems result from the analysis of the
summarising graphs.

The variables selected in stage 1 are the core SAR problem that are the basis for
most complex SAR problems at the following stages. Therefore, the importance of
selecting SAR problems with a variety of options and tractability (i.e. a balance of
hard and easy variable’s options). These selections should consider variables from
the upcoming stages. The summarising graphs and the selected SAR problems
per each stage are presented in the following subsections.

7.4.1 Stage 1

The variables from stage 1 represents the core problem. Variables and variables’
options, with variables’ codenames and options’ weigths in brackets, from stage 1
are:

• Space formulation (Space): Discrete (175), Continuous (350)

• Time formulation (Time): Discrete (175), Continuous (350)

• Objects’ shape (Shape): Square (75), Rectangular (150), Polygonal (300)

• Operations processing time dependent on type of robot (O.PTR): Indepen-
dent (125), Dependent (250)

• Parts transportation time depends on type of part and robot (PTTDPR):
Independent (125), Dependent (250)

• Number of warehouses: Single (75), Multiple (150)
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• Accuracy of robots: Homogeneous (75), Heterogeneous (150)

DMM’s step 4: Variables’ options combination

At the first stage, variables’ options are only combined among themselves. The
aggregation process is not performed because there are not SAR problems selected
at previous stage (i.e. there is no previous stage). Hence, the SAR problems
generated in stage 1 depends only on variables’ options. This means, that one
ternary variable and six binary variables result in 192 generated SAR problems
(see Eq. 5.2). In stage 1, the subtotal and the total SAR problem space are equal.
A representation of the combinatorial process for stage 1 can be observed in Figure
7.1.

Graphs generated from the combinatorial process in stage 1 are shown in Figure
7.2. The space graph is shown in Figure 7.2a. The following metrics can be
determined from the space graph.

• The number of generated SAR problems is 192

• The range of generated SAR problems weights is from 825 to 1,850

• The most repeated SAR problem weight is 1,225 with 12 SAR problems

The relationship graph is shown in Figure 7.2b. From this figure, it can be
observed that there are four main families of SAR problems resulting from the
combinations of the variables space and time with the same options for both (i.e.
discrete and continuous). The following families can be distinguished:

• Space: discrete. Time: discrete

• Space: discrete. Time: continuous

• Space: continuous. Time: discrete

• Space: continuous. Time: continuous

DMM’s steps 6: SAR problems analysis and selection

In stage 1, fourteen SAR problems were selected. The selected SAR problems
are summarised in Tables A.1 and A.2 from the Appendix A. These ones have
a good variety and balance of hard and easy variables’ options. The reasons
to select SAR problems are threefold. Firstly, feasibility of the problems to be
solved; secondly, the realism of the problems to industrial scenarios; and thirdly,
the interest of combining problems with variables of the next stage. The reasons
for selecting these problems are classified as follows (problem positions according
to the weighting graph are indicated in brackets):
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Figure 7.1: Representation of the combinatorial process for stage 1. The variables
combined in stage 1 are shown in light orange rectangles, and their options in
blue rectangles. The ternary variable and the six binary variables result in a total
of 192 SAR problems. The combinatorial process is exhaustive and systematic,
starting with the combination of the easiest options at the farthest left and the
most difficult options at the farthest right.
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(a)

(b) (c)

Figure 7.2: Graphs showing results from the combinatorial step in stage 1. (a)
Total space graph. The weights span from 825 to 1,850. The most repeated
weight is 1,225 with 12 SAR problems. (b) Relationship graph. There are four
main families classified by the first two variables’ options in space: discrete, time:
discrete; space: discrete, time: continuous; space: continuous, time: discrete; and
space: continuous, time: continuous. Four of the selected problems are in the
discrete/discrete family, eight are in the continuous/discrete, whilst two are in
the continuous/continuous family. (c) Weighting graph. Six of the selected SAR
problems are below 25% (i.e. positions 1, 3, 19, 40, 41, and 48), four between 25%
and 50% (i.e. positions 55, 73, 81, 93), one between 50% and 75% (i.e. position
133), and three above 75% (i.e. positions 164, 173, and 185).
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• Feasibility to be solved (problem positions 1, 3, 19, 40, 41, 48, 73 and 81)

• Realism to industrial scenarios (problem positions 55, 73, 93, 133, 164, 173
and 185)

• Interest to explore in combination with options of the next stage (problem
positions 55, 73, 93, 173 and 185)

The range of the weights of selected partial SAR problems is from 825 to 1,675,
whilst the range of weights of the generated SAR problems is from 825 to 1,850.
In comparison, the selected SAR problems is representative of the generated SAR
problems, with the minimal selected SAR problems at a 100% and the maximal
selected SAR problem being at a 89.18% of the maximal generated SAR problem.
In the weighting graph (Figure 7.2c), the selected SAR problems are classified by
their percentage of difficulty (i.e. feasibility to be solved) within the following
ranges:

• Six of the selected SAR problems are below the 25% difficulty (i.e. positions
1, 3, 19, 40, 41, and 48)

• Four of the selected SAR problems are between 25% and 50% difficulty (i.e.
positions 55, 73, 81 and 93)

• One of the selected SAR problems is between 50% and 75% difficulty (i.e.
position 133)

• Three of the selected SAR problems are above 75% difficulty (i.e. positions
164, 173, and 185)

According to the relationship graph, Figure 7.2b, the fourteen SAR problems
are classified in the following families:

• Four from the discrete/discrete/square family

• Eight from the continuous/discrete family, where four have a rectangular
representation of objects and four have a polygonal representation

• Two from the continuous/continuous/square family

Representation of selected SAR problems

The selected SAR problems can be represented with the combination of two groups
of options. The first group is called roots and the second is called branches. Roots
are fixed and are combined with several branches to generate distinct SAR prob-
lems. The method to select roots and branches is to find groups of options that

193



7.4. DMM steps 4, 5 and 6: Variables’ options combination and aggregation,
and SAR problems analysis and selection

represent the most common options at the upper and lower part of selected SAR
problems.

The nomenclature for roots and branches is the following: number of stage and
type of root or branch. These two values are separated by a dot. The first letters
of the alphabet are used to denote roots, whilst the last letters of alphabet are
used to denote branches. For example, the root 1.a refers to the first root from
stage 1, whilst 1.z refers to the last branch from stage 1.

Roots in this stage are composed by the first three variables’ options, whilst
branches are composed by the last four variables’ options. There are four roots and
four branches. Roots and branches are expressed with the variables’ codenames
and their respective option. Root from stage 1 are:

• Root 1.a: space as discrete, time as discrete and shape as square

• Root 1.b: space as continuous, time as discrete, and shape as rectangular

• Root 1.c: space as continuous, time as discrete, and shape as polygonal

• Root 1.d: space as continuous, time as continuous, and shape as square

The branches from stage 1 have the following options:

• Branch 1.w: O.PTR as independent, PTTDPR as independent, W.Number
as single, and R.Accuracy as homogeneous

• Branch 1.x: O.PTR as independent, PTTDPR as independent, W.Number
as multiple, and R.Accuracy as homogeneous

• Branch 1.y: O.PTR as dependent, PTTDPR as dependent, W.Number as
single, and R.Accuracy as heterogeneous

• Branch 1.z: O.PTR as dependent, PTTDPR as dependent, W.Number as
multiple, and R.Accuracy as heterogeneous

The roots and branches have a mixture of hard and easy options. In stage 1,
with the exception of root 1.d that is only combined with branches 1.w and 1.x,
the rest of the roots are combined with all the branches. Roots, branches and their
combinations can be observed in Figure 7.3. Roots and branches are combined to
represent the selected SAR problems. The problems are presented according to
their selection on the weighting graph and their positions on this graph are shown
in brackets:

• Root 1.a with branches 1.w, 1.x, 1.y and 1.z correspond to the first, second,
sixth and ninth selected SAR problems (positions 1, 3, 48 and 81) respectively
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• Root 1.b with branches 1.w, 1.x, 1.y and 1.z correspond to the third, fifth,
eleventh and twelveth selected SAR problems (positions 19, 41, 133 and 164)
respectively

• Root 1.c with branches 1.w, 1.x, 1.y and 1.z correspond to the seventh,
tenth, thirteen and fourteenth selected SAR problems (positions 55, 93, 173
and 185) respectively

• Root 1.d with branches 1.w and 1.x correspond to the fourth and eighth
selected SAR problems (positions 40 and 73) respectively

Analysis of selected SAR problems

Roots and branches for stage 1 where enumerated in previous paragraphs. An
analysis of representative SAR problems selected in stage 1 is provided in the
following paragraphs. The first SAR problem from stage 1 (position 1)
corresponds to the combination of root 1.a and branch 1.w. This SAR problem is
the easiest to solve because the root 1.a and branch 1.w are the easiest to solve. The
root 1.a considers the formulation of the problem with a discrete grid of squares,
where objects can be represented as squares that either fit in a single square
(e.g. robots) or cover several squares but are shaped as squares (e.g. warehouses,
shelves). The root 1.a considers the time formulation as discrete, where time is
represented as integer numbers in a finite set. The branch 1.w considers operations
processing times (O.PTR) as independent of the robot that performs the operation.
Consequently, any robot can perform any operation. The only consideration for
the allocation of robots to operations is the current location of robots and the
locations where the operations occur.

In the branch 1.w, parts transport time (PTTDPR) is considered as indepen-
dent of the robot and the part that is transported. Similarly to the O.PTR assump-
tion, the PTTDPR assumption allows selecting any robot for part transportation,
and the only consideration is the current location of the robot, the location of the
part to transport and its final location. In the branch 1.w, a single warehouse is
considered. As a consequence, the paths of the robots need to consider a unique
warehouse. Hence, resulting paths might require to be in circles, where robots
collect raw materials perform a series of operations and return to the warehouse to
deliver products and collect more materials. The use of a unique warehouse might
lead to traffic congestion. The branch 1.w considers a homogeneous accuracy for
all robots. As a result any robot can perform any manufacturing operation with
the same quality.

The second SAR problem from stage 1 (position 3) is similar to the
first SAR problem due to the use of the root 1.a. However, the branch is the 1.x,
where multiple warehouses are considered. The formulation of a SAR problem
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Figure 7.3: Representation of the selected SAR problems in stage 1. The repre-
sentation is with the use of fixed roots and variable branches, where roots and
branches are combinations of variables’ options. There are four roots and four
branches. The selected SAR problems are classified by their feasibility to be
solved, their realism to industrial scenarios and interest of combining problems
with variables of the next stage. The classified problems, with positions indicated
in brackets, are: feasibility to be solved (1, 3, 19, 40, 41, 48, 73 and 81), realism
to industrial scenarios (55, 73, 93, 133, 164, 173 and 185) and interest to explore
in combination with options of the next stage (55, 73, 93, 173 and 185). The
selected SAR problems from stage 1 can be represented as the combinations of
all roots with all branches with the exception of root 1.d, which is only combined
with branches 1.w and 1.x. Positions for the SAR problems are indicated below
each combination.
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that considers multiple warehouses requires to express fixed or variables locations
for this warehouses, their dimensions and raw materials and products content. As
a result of using multiple warehouses, there might be more feasible solutions for
the second SAR problem, due to the multiple options to collect raw materials and
deliver products. Also, the trafic congestion at each warehouse might be reduced,
if not avoided. The second SAR problem might be more difficult to formulate and
solve than the first one, but there is a chance to find more feasible solutions due
to the use of multiple warehouses.

The third SAR problem from stage 1 (position 19) is similar to the
first SAR problem in the use of the branch 1.w. However, the root for the SAR
problem is the 1.b, where the space is represented as continuous, and objects are
represented as rectangles. Consequently, the problem is more realistic because
robots and warehouse can be considered as rectangles. However, a representation
of the space as continuous might increase the number of feasible solutions but
increase also the difficulty to determine these solutions. This difficulty results from
the need to represent objects by their current x,y position and angle of orientation
at every discrete time unit. The considerations for the branch 1.w are similar
to the ones described for the first SAR problem. However, the warehouse is not
limited to have square shape.

The fourth SAR problem from stage 1 (position 40) is similar to the
first and third SAR problems in the use of the branch 1.w. However, a new root
is introduced. This root is the 1.d, where the space is formulated as continuous,
but objects are formulated as squares. Moreover, the time is formulated in a
continuous way. The considerations of formulating the space in a continuous way
were explained previously. However, the use of squares instead of rectangles avoid
the need to represent the angle of orientation of the objects per each moment of
time. As a consequence, a less realistic problem, but easier to solve is obtained.
The representation of time as continuous increases the number of possible solutions
and their realism. However, formulating the problem in continuous time require
to consider robots positions at each instant of time instead of at discrete instants
of time, resulting in a more difficult problem to solve.

The fifth SAR problem from stage 1 (position 41) is similar to the third
problem (position 19). These two problems have the root 1.b, but the branch is
different in the number of warehouses considered. The fifth SAR problem has the
branch 1.w, which considers the use of multiple warehouses, whilst the third only
considers a single warehouse. The combination of the root 1.b and the branch 1.w is
more realistic than the previous described SAR problems due to the consideration
of objects as rectangles, the space formulated in a continuous way and multiple
number of warehouses. The last assumption might increase the number of feasible
solutions over the third problem, but due to the use of rectangles the difficulty
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to solve is increased in comparison with problems formulated with squares (i.e.
fourth).

The sixth SAR problem from stage 1 (position 48) makes use of the
root 1.a, which is the easiest to solve due to the formulation of time and space
as discrete, and the representation of objects as squares. However, the sixth SAR
problem introduces a new branch which is the second most difficult to solve among
the selected ones. This branch is the 1.y, which considers the operations processing
time (O.PTR) dependent on the robot that executes the operation. Therefore, the
allocation of robots to operations depends on their time to execute the operations
and on the current location of the robot and the operation.

In order to formulate of O.PTR as dependent on the robot requires to know
the processing times of each operation per each robot. In the branch 1.y, parts
transport time (PTTDPR) depends on the robot and the part that is transported.
The PTTDPR assumption requires to consider the robot and part that is trans-
ported. Hence, the transportation time does not depends only on the current
location of the robot, the location of the part to transport and its final location.
The PTTDPR assumption requires to known factors that affect the transportation
time depending on the robot and part (e.g. robots’ inertia control, parts’ weights).

The branch 1.y considers a single warehouse. The consequences of this as-
sumption were explained previously in the first, third and fourth SAR problems.
In brief, robots paths might be circles to collect raw materials, perform a series
of operations and return to the warehouse to deliver products and collect more
materials. This might lead to traffic congestion at the warehouse entrance. In
the branch 1.y, the accuracy of robots to perform an operation is considered as
heterogeneous. Therefore, the quality of the operation depends on the robot that
executes the operation. Similar to the PTTDPR assumption, it is necessary to
know factors that affect the quality of executing a determined operation with a
given robot (e.g. operation required quality, arm robot minimal precision). As
a whole, the sixth SAR problem is as difficult to solve than the first SAR prob-
lem. However, the need for additional data regarding the O.PTR, PTTDPR and
R.Accuracy increase the complexity of formulating the problem.

The seventh SAR problem from stage 1 (position 55) is similar to the
first, third and fourth SAR problems due to the use of the branch 1.w. However,
the seventh problem considers a more difficult root. This is the 1.c, which considers
the space as continuous, the time as discrete and objects as polygons. The root
1.c is similar to the 1.b, with the exception that objects’ shape is considered as
polygons. Hence, the seventh problem is more realistic than any previous problem
at the representation of objects, and the formulation of space as continuous also
increases the realism of the problem. However, this also increased the difficulty
to formulate the problem due to the need to describe all objects as polygons and
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to check if their boundaries overlap to avoid collisions. The fact that the time is
formulated as discrete and the branch is the easiest one increases the solvability
of the problem. Therefore, it is interesting to review this problem with variables’
options from more complex stages.

The eighth SAR problem from stage 1 (position 73) is very similar to the
fourth SAR problem. The eighth problem considers the root 1.d and the branch
1.x, whilst the fourth considers the branch 1.w. The branch of the eighth problem
is the easiest to solve, but the root is the most difficult to solve. Both problems
consider the space and time formulation as continuous, the shape of objects as
squares, the operations processing time (O.PTR) as independent of the robot that
executes the operation, the parts transport time (PTTDPR) as independent of the
robot and the part that is transported and the accuracy of robots to perform an
operation is considered as homogeneous. However, the eighth problem considers
multiple warehouses instead of one. As a whole, the eighth SAR problem seems to
be more feasible to be solved than the fourth SAR problem due to the consideration
of multiple warehouses. The eighth problem is realistic due to the formulation of
space and time as continuous and the use of multiple warehouses. However, the
problem is limited to representation of objects as squares and it has limitations on
the times and accuracy that requires to perform a manufacturing operation and
transportation of parts.

The fourteenth SAR problem from stage 1 (position 185) is the most
difficult of the selected SAR problems. The only option that is easy is the formu-
lation of time as continuous, the rest of the options are formulated as the most
difficult ones. This problem considers the root 1.c and the branch 1.z, which is
the hardest in stage 1. The root 1.c was analysed for the seventh problem. How-
ever, the branch 1.z has not been analysed. This branch is similar to the branch
1.y, which was analysed for the sixth problem. The only difference between the
branches 1.y and 1.z is the use of multiple warehouses for the branch 1.z, instead
of a single warehouse for branch 1.y. This increases the options for the robots to
reach warehouses and avoids circle paths to a single warehouse. As a whole, the
fourteenth problem is difficult to formulate and to solve due mainly due to the root,
namely, considering objects as polygons and the space formulation as continuous.
The realism attained by a polygonal representation is not worthy, and therefore,
is better to represents polygons as rectangles and keep the space formulated as
continuous. The fourteen SAR problems selected in stage 1 are aggregated to the
combinations of variables’ options from stage 2 in the following subsection.

7.4.2 Stage 2

Combinations of variables’ options from stage 2 are aggregated to the selected SAR
problems from stage 1. Variables and variables’ options, with variables’ codenames
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and options’ weigths in brackets, from stage 2 are:

• System control (S.Control): Decentralised (175), Centralised (350)

• Number of objectives to optimise (Objectives): Single (175), Multiple (350)

• Robots’ 2D area (R.Area): Unequal (150), Equal (300)

• Products’ start times (P.StartTimes): Single (100), Multiple (200)

• Products’ deadlines (P.Deadlines): Single (100), Multiple (200)

• Warehouses content (W.Content): Unique (75), Mixed (150)

DMM’s steps 4 and 5: Variables’ options combination and aggregation

Combinations of variables’ options from stage 2 are aggregated to the selected
SAR problems from stage 1. A representation of the combinatorial and aggregation
processes can be observed in Figure 7.4. The combinatorial process is identical to
the process for stage 1 (see Figure 7.1), but with the post combination of the
selected SAR problems in stage 1 (i.e. aggregation process).

Graphs generated from the combinatorial and aggregation processes in stage
2 are shown in Figure 7.5. The SAR problems generated in stage 2 depends of
the selected SAR problems in stage 1 (i.e. fourteen) and the total combinations
with the variables’ options in stage 2 (i.e. 64). These SAR problems correspond
to the subtotal SAR problem space. In contrast, the total SAR problem space is
the total combination with the variables’ options in stage 1 and 2 (i.e. 192 and 64,
resulting in 12,288). The subtotal and total SAR problem space graphs are shown
in Figures 7.5a and 7.5b respectively. The following metrics can be determined
with the total and subtotal space graphs:

• The number of generated SAR problems in the subtotal space is 896, whilst in
the total space is 12,288. Hence, the saved space is 92.70%. This percentage
is determined from the subtotal and the total number of generated SAR
problems.

• The range of generated SAR problems weights from the subtotal space is
from 1,600 to 3,250, whilst for the total space is from 1,600 to 3,425. In
comparison, the subtotal space is 94.89% of the total space.

• The most repeated SAR problem weight in the subtotal space is 2,425 with
48, whilst for the total space is 2,500 with 485. The maximal number of
repeated SAR problems in the subtotal with respect to the total space rep-
resents the 9.8%.
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Figure 7.4: Representation of the combinatorial and aggregation processes for stage
2. The variables combined in stage are shown in light orange rectangles, and their
options in blue rectangles. The six binary variables result in 64 SAR problems.
These 64 SAR problems are aggregated to the fourteen SAR problems selected
in stage 1 to generate 896 SAR problems. The combinatorial and aggregation
processes are exhaustive and systematic, starting with the combination of the
easiest options at the farthest left and the most difficult options at the farthest
right.
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(a) (b)

(c) (d)

Figure 7.5: Graphs showing results from the aggregation and combination steps
in stage 2. (a) Subtotal space graph. The weights from the subtotal graph span
from 1,600 to 3,250. The most repeated weight is 2,425 with 48 SAR problems.
(b) Total space graph. The weights from the total graph span from 1,600 to 3,425.
The most repeated weight is 2,500 with 485 SAR problems. This graph shows
the subtotal and total spaces. (c) Relationship graph. There are fourteen families
resulting from the selected SAR problems in stage 1. Selected SAR problems at
current stage are: two (red dots) from the first family, three (blue dots) from the
second family. The rest are individual selections from the third (grey dot), fifth
(orange dot), sixth (black dot), ninth (aquamarine dot), eleventh (purple dot), and
twelveth (green dot) families. (d) Weighting graph. Seven of the selected SAR
problems are below 25% (i.e. positions 1, 15, 20, 21, 43, 86 and 116), one between
25% and 50% (i.e. position 239), two between 50% and 75% (i.e. positions 527
and 559), and one above 75% (i.e. position 791).
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DMM’s steps 6: SAR problems analysis and selection

In stage 2, eleven SAR problems were selected. The selected SAR problems
are summarised in Tables A.3 and A.4 from Appendix A. The reasons to select
SAR problems are: feasibility to be solved; the realism to industrial scenarios and
interest of combining problems with variables of the next stage. The reasons for
selecting these problems are classified as follows (problem positions are indicated
in brackets):

• Feasibility to be solved (problem positions 1, 15, 20 and 21)

• Realism to industrial scenarios (problem positions 43, 86, 116, 239, 527, 559
and 791)

• Interest to explore in combination with options of the next stage (problem
positions 15, 20, 43, 86, 116, 527 and 791)

The range of the weights of selected partial SAR problems is from 1,600 to
2,775, whilst the range of weights of the generated SAR problems is from 1,600
to 3,250. In comparison, the selected SAR problems is representative of the gen-
erated SAR problems, with the minimal selected SAR problems at a 100% and
the maximal selected SAR problem being at a 85,38% of the maximal generated
SAR problem. The weighting graph can be observed in Figure 7.5d. The selected
SAR problems are classified by their percentage of difficulty (i.e. feasibility to be
solved) in the following ranges:

• Seven of the selected SAR problems are below the 25% difficulty (i.e. posi-
tions 1, 15, 20, 21, 43, 86 and 116)

• One of the selected SAR problems is between 25% and 50% difficulty (i.e.
position 239)

• Two of the selected SAR problems are between 50% and 75% difficulty (i.e.
positions 527 and 559)

• One of the selected SAR problems is above 75% difficulty (i.e. position 791)

The relationship graph is shown in Figure 7.5c. From this figure, it can be
observed that there are fourteen main families of SAR problems resulting from
fourteen selected SAR problems in stage 1. According to the relationship graph,
the eleven SAR problems are classified in the following families:

• Two from the first family. This is discrete/discrete/square/independent/
independing/single/homogeneous.
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• Three from the second family. This is discrete/discrete/square/independent/
independing/multiple/homogeneous.

The rest of the selections are from individual families. These are at the third, fifth,
sixth, ninth, eleventh, and twelveth families. These are highlighted with different
colours in Figures 7.5c and 7.5d.

Representation of selected SAR problems

The selected SAR problems are represented with the combination of two groups
of options called roots and branches. The terms roots and branches were intro-
duced in Subsection 7.4.1. A method to select roots and branches, and the notation
of roots and branches was also described in Subsection 7.4.1. Roots are fixed and
can be combined with several branches to represent the SAR problems. Roots in
this stage are composed by the first seven variables’ options (described in Subsec-
tion 7.4.1), whilst branches are composed by the last six variables’ options. There
are eight roots and six branches in stage 2. Roots and branches are expressed with
the variables’ codenames and their respective options. Roots from stage 2 can be
represented with roots and branches from stage 1. These are:

• Root 2.a: 1.b + 1.w. This is space as continuous, time as discrete, shape as
rectangular, O.PTR as independent, PTTDPR as independent, W.Number
as single, and R.Accuracy as homogeneous

• Root 2.b: 1.a + 1.w. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number as
single, and R.Accuracy as homogeneous

• Root 2.c: 1.a + 1.x. This is space as discrete, time as discrete, shape as
square, O.PTR as independent, PTTDPR as independent, W.Number as
multiple, and R.Accuracy as homogeneous

• Root 2.d: 1.b + 1.x. This is space as continuous, time as discrete, shape as
rectangular, O.PTR as independent, PTTDPR as independent, W.Number
as multiple, and R.Accuracy as homogeneous

• Root 2.e: 1.b + 1.y. This is space as continuous, time as discrete, shape as
rectangular, O.PTR as dependent, PTTDPR as dependent, W.Number as
single, and R.Accuracy as heterogeneous

• Root 2.f : 1.b + 1.z. This is space as continuous, time as discrete, shape as
rectangular, O.PTR as dependent, PTTDPR as dependent, W.Number as
multiple, and R.Accuracy as heterogeneous
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• Root 2.g: 1.a + 1.y. This is space as discrete, time as discrete, shape as
square, O.PTR as dependent, PTTDPR as dependent, W.Number as single,
and R.Accuracy as heterogeneous

• Root 2.h: 1.a + 1.z. This is space as discrete, time as discrete, shape
as square, O.PTR as dependent, PTTDPR as dependent, W.Number as
multiple, and R.Accuracy as heterogeneous

The branches from stage 2 have the following variables’ options:

• Branch 2.u: S.Control as centralised, Objectives as single, R.Area as equal,
P.StartTimes as single, P.Deadlines as single, and W.Content as unique

• Branch 2.v: S.Control as decentralised, Objectives as multiple, R.Area
as equal, P.StartTimes as single, P.Deadlines as single, and W.Content as
unique

• Branch 2.w: S.Control as decentralised, Objectives as single, R.Area as
equal, P.StartTimes as single, P.Deadlines as single, and W.Content as unique

• Branch 2.x: S.Control as centralised, Objectives as multiple, R.Area as
equal, P.StartTimes as single, P.Deadlines as single, and W.Content as unique

• Branch 2.y: S.Control as centralised, Objectives as single, R.Area as equal,
P.StartTimes as multiple, P.Deadlines as multiple, and W.Content as mixed

• Branch 2.z: S.Control as centralised, Objectives as multiple, R.Area as
equal, P.StartTimes as multiple, P.Deadlines as multiple, and W.Content as
mixed

The roots and branches have a mixture of hard and easy options. It can be
noted that roots 1.c and 1.d from stage 1 were discarded through the analysis in
stage 2. Roots, branches and their combinations can be observed in Figure 7.6.
Roots and branches are combined to represent the selected SAR problems. The
problems are presented according to their selection on the weighting graph and
their positions on this graph are shown in brackets:

• Root 2.a with branch 2.u correspond to the second selected SAR problem
(position 15)

• Root 2.b with branches 2.u and 2.v correspond to the first and fifth selected
SAR problems (positions 1 and 43) respectively

• Root 2.c with branches 2.v, 2.w and 2.x correspond to the sixth, third and
fourth selected SAR problems (positions 86, 20 and 21) respectively
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• Root 2.d with branch 2.x correspond to the seventh selected SAR problem
(position 116)

• Roots 2.e and 2.f with branch 2.y correspond to the ninth and eighth selected
SAR problems (positions 527 and 239) respectively

• Roots 2.g and 2.h with branch 2.z correspond to the eleventh and tenth
selected SAR problems (positions 791 and 559) respectively

Analysis of selected SAR problems

Roots and branches for stage 2 where enumerated in previous paragraphs.
Roots 1.c and 1.d from stage 1 are not selected to stage 2. The reasons are for
root 1.c and 1.d due to the aggregation of polygonal objects and the combination
of a continuous time formulation with options from stage 2, respectively. The
aggregation of roots 1.c and 1.d increases the difficulty to solve SAR problems
drastically. It was decided to discard problems containing these roots and focus
on the other more solvable roots. An analysis of representative SAR problems
selected in stage 2 is provided in the following paragraphs.

The first selected SAR problem (position 1) of stage 2 considers the root
2.b and branch 2.u, which are the easiest ones for stage 2. The root 2.b corresponds
to the first SAR problem of stage 1 (i.e. combination of root 1.a and branch 1.w).
Root 2.b was already analysed. Branch 2.u considers a centralised system control,
a single objective to optimise, robots with equal 2D area and products with single
start times and deadlines. Also, a single warehouse with unique content due to the
root 2.b which considers a unique warehouse. The problem as a whole is the easiest
to formulate from stage 2. The unique warehouse might result in complicated paths
in the solution but it is feasible to find solutions with off-the-shelf methods.

The second selected SAR problem (position 15) of stage 2 considers
the root 2.a, which is the combination of the root 1.b and branch 1.w from stage 1.
Therefore, this root was explained as the third SAR problem from stage 1. In brief,
the third SAR problem of stage 1 is more realistic because robots and warehouse
are considered as rectangles. Also, a representation of the space as continuous
might increase the difficulty to determine the solutions, but increase the number
of feasible solutions. Objects have to be represented by their current x,y position
and angle of orientation at every discrete time unit.

The branch for the second SAR problem of stage 2 is the 2.u, which considers
the system control as centralised, a single objective to optimise, the area of the
robots as equal, a single start times and deadlines for all products, and the content
of the warehouse as unique. A centralised control system increases the possibilities
of finding optimal solutions. However, it requires to have current information
at each discrete instant of time of every object in the factory, and the current
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Figure 7.6: Representation of the selected SAR problems in stage 2. The repre-
sentation is with the use of fixed roots and variable branches, where roots and
branches are combinations of variables’ options. There are eight roots and six
branches. Roots from stage 2 are described through the combination of roots and
branches from stage 1. Roots are as follows root 2.a: 1.b + 1.w, root 2.b: 1.a +
1.w, root 2.c: 1.a + 1.x, root 2.d: 1.b + 1.x, root 2.e: 1.b + 1.y, root 2.f: 1.b + 1.z,
root 2.g: 1.a + 1.y, and root 2.h: 1.a + 1.z. Roots 1.c and 1.d are discarded in stage
2. The selected SAR problems are classified by their feasibility to be solved, their
realism to industrial scenarios and interest of combining problems with variables
of the next stage. The classified problems, with positions indicated in brackets,
are: feasibility to be solved (1, 15, 20 and 21), realism to industrial scenarios (43,
86, 116, 239, 527, 559 and 791) and interest to explore in combination with options
of the next stage (15, 20, 43, 86, 116, 527 and 791) The selected SAR problems
from stage 2 can be represented as the combinations of roots with branches as
indicated with the arrows. Positions for the SAR problems are indicated below
each combination.
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status of the manufacturing operations. Branch 2.u considers a single objetive for
optimisation, which makes the problem more amenable and solvable. In branch
2.u, the 2D area of the robots is considered as equal. Adding to this, the space
formulation is considered as continuous and the shape of objects as rectangles.
There might be robots with equal 2D areas but different lateral sizes. However,
the total 2D area that a robot can occupy is limited to a single value. Hence, the
representation of robots is reduced to the single 2D area value and a lateral side
value per each robot.

Branch 2.u considers a single start time and deadline for all the products.
These two assumptions facilitate the formulation but constraint the production
time for all robots. The second selected SAR problem of stage 2 considers a single
warehouse due to the use of root 2.a and branch 2.u considers the content of this
warehouse as unique. This is not very realistic to most of the factories, but it
is not impossible, for example, to find a factory dedicated to assembly a single
subcomponent or part to multiple products. As a whole this branch is the easiest
to solve. However, when the branch and the root are analysed as a whole, the
problem is still solvable. The only assumptions that might result problematic for
solving the problem are the formulation of objects as rectangles, whilst robots have
equal 2D areas.

The third selected SAR problem (position 20) of stage 2 corresponds
to the combination of 2.c and branch 2.w. Root 2.c corresponds to the second
SAR problem from stage 1, which is the combination of root 1.a and branch
1.x. The root 2.c is more feasible to be solved than the root 2.b. However, the
branch 2.w also considers the control system as decentralised, which requires a
drastically different type of formulation. This branch considers the system control
as decentralised, which requires the robots to determine their own production
plans. The rest of the options for branch 2.v are a single objective to optimise,
robots with equal 2D area, products have a single start time and deadline, and the
content of the warehouse is unique. This means that different products require the
same type of raw material to be assembled or machined. Because the only, option
which is hard is the decentralised control system, this problem is very interesting
to be researched. Moreover, with a decentralised control system it is feasible to
research on scalability of the problem.

The fifth selected SAR problem (position 43) of stage 2 considers the
root 2.b and branch 2.v. The root 2.b corresponds to the first SAR problem of stage
1 (i.e. combination of root 1.a and branch 1.w), which is the easiest one. However,
the branch is not the easiest one. The branch 2.v is similar to the branch 2.w. The
only difference is the consideration of multiple objectives to optimise. Thi branch
2.v considers the system control as decentralised, thus problem formulation is
changed drastically in comparison to centralised central system. Also, the branch

208



Chapter 7. A SAR problem case study

2.v considers multiple objectives to optimise, which added to the decentralised
control, requires to formulate the problem and use solution methods drastically
different to a centralised control. As a whole the problem is difficult to formulate
and solve due to the decentralised system control in addition to multiple objectives.

The tenth selected SAR problem (position 559) of stage 2 considers the
root 2.h and the branch 2.z. The root 2.h corresponds to the ninth SAR problem
from stage 1 (root 1.a and branch 1.z). The ninth SAR problem from stage 1
considers the easiest root but the most difficult root from stage 1. Moreover, the
branch 2.z is one of the most difficult from stage 2. The only two easy options
for the branch 2.z is a centralised control system and robots with equal 2D area,
but the rest of the options are hard. These hard options are: multiple objectives
to optimise, there are multiple start times and deadlines per product and ware-
houses have mixed content. Hence, the problem as a whole is feasible due to the
formulation of time and space as discrete, objects represented as squares, where
robots have equal 2D area. The problem is very realistic due to consideration of
roots 1.z, where operations processing time depend on the robot that execute the
operation, the transportation time of a part depends on the type of part and robot,
and robots have heterogeneous minimal values of accuracy. Also, for the root 2.z,
where multiple objectives, muliple start times and deadlines for products, multi-
ple warehouses with mixed content are considered. This problem is both, realistic
and solvable. The eleven SAR problems selected in stage 2 are aggregated to the
combinations of variables’ options from stage 3 in the following subsection.

7.4.3 Stage 3

Combinations of variables’ options from stage 3 are aggregated to the selected SAR
problems from stage 2. Variables and variables’ options, with variables’ codenames
and options’ weigths in brackets, from stage 3 are:

• Knowledge of the environment (Environment): Unstructured (150), Struc-
tured (300)

• Number of process plans (Plans): Single (150), Multiple (300)

• Parts loading and unloading time depends on the type of part and robot
(PL/UTDPR): Independent (125), Dependent (250)

• Robots’ types of wheels (R.Wheels): Unique (75), Mixed (175)

• Robots’ battery duration (R.Battery): Homogeneous (50), Heterogeneous
(100)
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DMM’s steps 4 and 5: Variables’ options combination and aggregation

Combinations of variables’ options from stage 3 are aggregated to the selected
SAR problems from stage 2. A representation of the combinatorial and aggregation
processes can be observed in Figure B.1 from Appendix B. The combination and
aggregation processes are identical to the processes for stage 2 (see Figure 7.4),
but with the use of variables, options and options’ weights from stage 3.

Graphs generated from the combinatorial and aggregation processes in stage
3 shown in Figure 7.7. The SAR problems generated in stage 3 depends of the
selected SAR problems in stage 2 (i.e. eleven) and the total combinations with
the variables’ options in stage 3 (i.e. 32). These SAR problems correspond to the
subtotal SAR problem space. In contrast, the total SAR problem space is the total
combination with the variables’ options in stage 1, 2 and 3 (i.e. 192, 64 and 32
result in 393,216). The subtotal and total SAR problem spaces graph are shown
in Figures 7.7a and 7.7b respectively. The following metrics can be determined
with the total and subtotal space graphs:

• The number of generated SAR problems in the subtotal space is 352, whilst in
the total space is 393,216. Hence, the saved space is 99.91%. This percentage
is determined from the subtotal and the total number of generated SAR
problems.

• The range of generated SAR problems weights from the subtotal space is
from 2,150 to 3,900, whilst for the total space is from 2,150 to 4,550. In
comparison, the subtotal space is 85.71% of the total space.

• The most repeated SAR problem weight in the subtotal space is 2,700, 2,725,
2,800 and 2,850 with 12 SAR problems, whilst for the total space is 3,350
with 13,470 SAR problems. The maximal number of repeated SAR problems
in the subtotal with respect to the total space represents the 0.089%.

DMM’s steps 6: SAR problems analysis and selection

In stage 3, seven SAR problems were selected. The selected SAR problems are
summarised in Table A.5 from Appendix A. The reasons to select SAR problems
are: feasibility to be solved; the realism to industrial scenarios and interest of com-
bining problems with variables of the next stage. The reasons for selecting these
problems are classified as follows (problem positions are indicated in brackets):

• Feasibility to be solved (problem positions 6, 15 and 47)

• Realism to industrial scenarios (problem positions 47, 266 and 288)
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(a) (b)

(c) (d)

Figure 7.7: Graphs showing results from the aggregation and combination steps
in stage 3. (a) Subtotal space graph. The weights from the subtotal graph span
from 2,150 to 3,900. The most repeated weight is 2,700 with 12 SAR problems.
(b) Total space graph. The weights from the total graph span from 2,150 to 4,550.
The most repeated weight is 3,350 with 13,470 SAR problems. This graph shows
the subtotal and total spaces. (c) Relationship graph. There are eleven families
resulting from the selected SAR problems in stage 2. Selected SAR problems
at current stage are individual selections from the following families: first (black
dot), third (orange dot), fourth (blue dot), fifth (red dot), sixth (purple dot),
eighth (green dot) and tenth (grey dot). (d) Weighting graph. Five of the selected
SAR problems are below 25% (i.e. positions 6, 15, 28, 47, and 85), and two above
75% (i.e. positions 266 and 288).
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• Interest to explore in combination with options of the next stage (problem
positions 28, 47 and 85)

The range of the weights of selected partial SAR problems is from 2,300 to
3,350, whilst the range of weights of the generated SAR problems is from 2,150 to
3,900. In comparison, the selected SAR problems is representative of the gener-
ated SAR problems, with the minimal selected SAR problems at a 93.47% of the
minimal generated SAR problems and the maximal selected SAR problem being
at a 85.89% of the maximal generated SAR problems. According to the weighting
graph (Figure 7.7d), the selected SAR problems are classified by their percentage
of difficulty (i.e. feasibility to be solved) within the following ranges:

• Five of the selected SAR problems are below the 25% difficulty (i.e. positions
6, 15, 28, 47, and 85)

• Two of the selected SAR problems are above 75% difficulty (i.e. positions
266 and 288)

The relationship graph is shown in Figure 7.7c. From this figure, it can be ob-
served that there are eleven main families of SAR problems resulting from eleven
selected SAR problems in stage 2. Seven SAR problems are selected in stage 3.
These problems are distributed in individual families. These are at the first, third,
fourth, fifth, sixth, eighth, and tenth families. These are highlighted with different
colours in Figures 7.7c and 7.7d.

Representation of selected SAR problems

The selected SAR problems are represented with the combination of two groups
of options called roots and branches. The terms roots and branches were intro-
duced in Subsection 7.4.1. A method to select roots and branches, and the notation
of roots and branches was also described in Subsection 7.4.1. Roots are fixed and
can be combined with several branches to represent the SAR problems. Roots
in this stage are composed by the first thirteen variables’ options (described in
Subsection 7.4.2), whilst branches are composed by the last five variables’ options.
There are seven roots and five branches which are combined together. Roots and
branches are expressed with the variables’ codenames and their respective options.
Roots from stage 3 can be represented with roots and branches from stage 2. These
are:

• Root 3.a: 2.b + 2.u. This is space as discrete, time as discrete, shape as
square, O.PTR as independent, PTTDPR as independent, W.Number as
single, R.Accuracy as homogeneous, S.Control as centralised, Objectives as
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single, R.Area as equal, P.StartTimes as single, P.Deadlines as single, and
W.Content as unique

• Root 3.b: 2.b + 2.v. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number as
single, R.Accuracy as homogeneous, S.Control as decentralised, Objectives
as multiple, R.Area as equal, P.StartTimes as single, P.Deadlines as single,
and W.Content as unique

• Root 3.c: 2.c + 2.w. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number as
multiple, R.Accuracy as homogeneous, S.Control as decentralised, Objectives
as single, R.Area as equal, P.StartTimes as single, P.Deadlines as single, and
W.Content as unique

• Root 3.d: 2.c + 2.x. This is space as discrete, time as discrete, shape as
square, O.PTR as independent, PTTDPR as independent, W.Number as
multiple, R.Accuracy as homogeneous, S.Control as centralised, Objectives
as multiple, R.Area as equal, P.StartTimes as single, P.Deadlines as single,
and W.Content as unique

• Root 3.e: 2.c + 2.v. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number as
multiple, R.Accuracy as homogeneous, S.Control as decentralised, Objectives
as multiple, R.Area as equal, P.StartTimes as single, P.Deadlines as single,
and W.Content as unique

• Root 3.f : 2.f + 2.y. This is space as discrete, time as discrete, shape as
square, O.PTR as dependent, PTTDPR as dependent, W.Number as single,
R.Accuracy as heterogeneous, S.Control as centralised, Objectives as single,
R.Area as equal, P.StartTimes as multiple, P.Deadlines as multiple, and
W.Content as mixed

• Root 3.g: 2.h + 2.z. This is space as discrete, time as discrete, shape as
square, O.PTR as dependent, PTTDPR as dependent, W.Number as mul-
tiple, R.Accuracy as heterogeneous, S.Control as centralised, Objectives as
multiple, R.Area as equal, P.StartTimes as multiple, P.Deadlines as multiple,
and W.Content as mixed

The branches from stage 3 have the following variables’ options:

• Branch 3.v: Environment as structured, Plans as multiple, PL/UTDPR as
independent, R.Wheels as unique and R.Battery as homogeneous
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• Branch 3.w: Environment as structured, Plans as single, PL/UTDPR as
independent, R.Wheels as unique and R.Battery as homogeneous

• Branch 3.x: Environment as structured, Plans as single, PL/UTDPR as
independent, R.Wheels as mixed and R.Battery as homogeneous

• Branch 3.y: Environment as structured, Plans as multiple, PL/UTDPR as
dependent, R.Wheels as mixed and R.Battery as heterogeneous

• Branch 3.z: Environment as structured, Plans as single, PL/UTDPR as
dependent, R.Wheels as mixed and R.Battery as heterogeneous

The roots and branches have a mixture of hard and easy options. Roots 2.a,
2.d and 2.e from stage 2 were discarded through the analysis in stage 3. Roots,
branches and their combinations can be observed in Figure 7.8. Roots and branches
are combined to represent the selected SAR problems. The problems are presented
according to their selection on the weighting graph and their positions on this graph
are shown in brackets:

• Roots 3.a and 3.c with branch 3.v correspond to the first and third selected
SAR problems (positions 6 and 28) respectively

• Roots 3.b and 3.d with branch 3.w correspond to the second and fourth
selected SAR problems (positions 47 and 15) respectively

• Root 3.e with branch 3.x correspond to the fifth selected SAR problem (po-
sition 85)

• Root 3.f with branch 3.y correspond to the sixth selected SAR problem
(position 266)

• Root 3.g with branch 3.z correspond to the seventh selected SAR problem
(position 288)

Analysis of selected SAR problems

Roots and branches for stage 3 where enumerated in previous paragraphs.
Roots 2.a, 2.d, 2.e and 2.f from stage 2 are not selected to stage 3 because of the
formulation of the space as continuous and objects as rectangles. The aggregation
of roots 2.a, 2.d, 2.e and 2.f increases the difficulty to solve the SAR problems.
Therefore, problems containing these roots were discarded in order to focus on
more solvable roots. Representative SAR problems selected in stage 3 are analysed
in the following paragraphs.
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Figure 7.8: Representation of the selected SAR problems in stage 3. The rep-
resentation uses fixed roots and variable branches, where roots and branches are
combinations of variables’ options. There are seven roots and five branches. Roots
from stage 3 are described through the combination of roots and branches from
stage 2. Roots are as follows root 3.a: 2.b + 2.u, root 3.b: 2.b + 2.v, root 3.c: 2.c
+ 2.w, root 3.d: 2.c + 2.x, root 3.e: 2.c + 2.v, root 3.f: 2.f + 2.y, and root 3.g: 2.h
+ 2.z Roots 2.a, 2.d and 2.e are discarded in stage 3. The selected SAR problems
are classified by their feasibility to be solved, their realism to industrial scenarios
and interest of combining problems with variables of the next stage. The classi-
fied problems, with positions indicated in brackets, are: feasibility to be solved
(6, 15 and 47), realism to industrial scenarios (47, 266 and 288) and interest to
explore in combination with options of the next stage (28, 47 and 85). The se-
lected SAR problems from stage 3 can be represented as the combinations of roots
with branches as indicated with the arrows. Positions for the SAR problems are
indicated below each combination.
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The first selected SAR problem (position 6) of stage 3 considers the
root 3.a and branch 3.v, which are the second easiest one for stage 3. The root
3.a corresponds to the first SAR problem of stage 2 (i.e. combination of root 2.a
and branch 2.u). The root 3.a was already analysed. The branch 3.v considers the
environment as structured, multiple production plans for the products, the load-
ing and unloading time of parts is independent of part and robot (PL/UTDPR), a
unique type of wheels for all robots, maximal duration of battery is homogeneous
to all robots. The only hard option for this branch is the consideration of multi-
ple production plans for the products. The consideration of multiple production
plans and a single start time and deadline for all products, make it necessary to
determine the production plans for all products that start and finish at the same.
In the first selected SAR problem of stage 3 problem, the assumption PL/UTDPR
is considered as independent. In this case, the PL/UTDPR assumption affect the
problem in the same way than the PTTDPR assumption. In both, the manufac-
turing and transportation tasks are independent of the robots that executes them.
Also, the consideration of unique type of robot wheels, and homogeneous maximal
battery duration allows selecting any robot to perform any task. Although, the
first selected SAR problem of stage 3 has the second easiest branch, this problem
has a very easy root that has the easiest options from stage 1 and 2. Therefore,
the problem as a whole is the easiest to formulate and feasible to solve from stage
3.

The second selected SAR problem (position 15) of stage 3 considers the
root 3.d and branch 3.w. The root 3.d corresponds to the fourth SAR problem of
stage 2 (i.e. root 2.c and branch 2.x). This root is feasible to formulate due to the
formulation of space and time as discrete, the representation of objects as squares,
robot with equal 2D area and a centralised system control. Moreover, the opera-
tions processing time is independent of the robot that executes the task, the parts
transport time is independent of part and robot type, robots have homogeneous
minimal accuracy, and products have a single start time and deadline. However,
the root is not realistic, except for the consideration of multiple warehouses with
unique content and multiple objectives to optimise. The branch 3.w is similar to
the branch 3.v, but instead of multiple production plans, it consider a single plan
for each product. Therefore, as a whole the second selected SAR problem of stage
3 is feasible to formulate and solve, but not very realistic.

The sixth selected SAR problem (position 266) of stage 3 corresponds
to the combination of root 3.f and branch 3.y. The root 3.f corresponds to the
eleventh SAR problem from stage 1, which is the combination of root 2.f and branch
2.y. The root 3.f is the second most hardest. Although the space and time are
formulated as discrete, the objects are represented as squares and there is a single
objective to optimise, the rest of the options are the hardest ones. The fact that
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a single warehouse is considered is easy to formulate but might lead to intractable
problem formulations and a lack of feasible solutions. Moreover the branch 3.y is
the most difficult from this stage due to the consideration of multiple production
plans for each product, parts loading and unloading time dependent on part and
robot type, a mix of type of robot wheels, and heterogeneous battery duration for
robots. The consideration of multiple production plans and multiple start times
and deadlines for the products increases substantially the difficulty of formulating
and solving the problem. Also, the consideration of the assumptions O.PTR as
dependent, PTTDPR as dependent, R.Accuracy as heterogeneous, PL/UTDPR as
dependent, R.Wheels as mixed and R.Battery as heterogeneous makes necessary
to determine a specific robot per each task. Hence, the problem is realistic to
industry and feasible to formulate, but substantially more difficult to solve. The
seven SAR problems selected in stage 3 are aggregated to the combinations of
variables’ options from stage 4 in the following subsection.

7.4.4 Stage 4

Combinations of variables’ options from stage 4 are aggregated to the selected SAR
problems from stage 3. Variables and variables’ options, with variables’ codenames
and options’ weigths in brackets, from stage 4 are:

• System accuracy (S.Accuracy): Certain (175), Uncertain (350)

• Warehouses locations (W.Locations): Single (125), Multiple (275)

• Tools setup and removal times are equal for all robots (T.SRT): Equal (75),
Unequal (150)

• Robots’ payload (R.Payload): Homogeneous (50), Dependent (100)

• Robots’ number of carried tools (R.CarriedTools): Unique (50), Mixed (100)

DMM’s steps 4 and 5: Variables’ options combination and aggregation

Combinations of variables’ options from stage 4 are aggregated to the selected
SAR problems from stage 3. A representation of the combinatorial and aggregation
processes can be observed in Figure B.2 from Appendix B. The combination and
aggregation processes are identical to the process for stage 2 (see Figure 7.4), but
with the use of variables, options and options’ weights from stage 4.

Graphs generated from the combinatorial and aggregation processes in stage
4 are shown in Figure 7.9. The SAR problems generated in stage 4 depends of
the selected SAR problems in stage 3 (i.e. seven) and the total combinations with
the variables’ options in stage 4 (i.e. 32). These SAR problems correspond to

217



7.4. DMM steps 4, 5 and 6: Variables’ options combination and aggregation,
and SAR problems analysis and selection

the subtotal SAR problem space. In contrast, the total SAR problem space is the
total combination with the variables’ options in stage 1, 2 and 3 (i.e. 192, 64, 32
and 32 result in 12,582,912). The subtotal and total SAR problem spaces graph
are shown in Figures 7.9a and 7.9b respectively. The following metrics can be
determined with the total and subtotal space graphs:

• The number of generated SAR problems in the subtotal space is 224, whilst
in the total space is 12,582,912. Hence, the saved space is 99.998%. This
percentage is determined from the subtotal and the total number of generated
SAR problems.

• The range of generated SAR problems weights from the subtotal space is
from 2,625 to 4,275, whilst for the total space is from 2,625 to 5,500. In
comparison, the subtotal space is 77.72% of the total space.

• The most repeated SAR problem weight in the subtotal space is 3,175 and
3,225 with 12 SAR problems, whilst for the total space is 4,050 with 400,000
SAR problems. The maximal number of repeated SAR problems in the
subtotal with respect to the total space represents the 0.003%.

DMM’s steps 6: SAR problems analysis and selection

In stage 4, four SAR problems were selected. The selected SAR problems are
summarised in Table A.6 from Appendix A. The reasons to select SAR problems
of stage 4 only two. These are their feasibility to be solved and the realism to
industrial scenarios. The reasons for selecting these problems are classified as
follows (problem positions are indicated in brackets):

• Feasibility to be solved (problem positions 1 and 8)

• Realism to industrial scenarios (problem positions 194 and 216)

The range of the weights of selected partial SAR problems is from 2,750 to
4,125, whilst the range of weights of the generated SAR problems is from 2,625
to 4,275 In comparison, the selected SAR problems is representative of the gener-
ated SAR problems, with the minimal selected SAR problems at a 95.45% of the
minimal generated SAR problems and the maximal selected SAR problem being
at a 96.49% of the maximal generated SAR problems. According to the weighting
graph (Figure 7.9d), the selected SAR problems are classified by their percentage
of difficulty (i.e. feasibility to be solved) within the following ranges:

• Two of the selected SAR problems are below the 25% difficulty (i.e. positions
1 and 8)

218



Chapter 7. A SAR problem case study

(a) (b)

(c) (d)

Figure 7.9: Graphs showing results from the aggregation and combination steps
in stage 4. (a) Subtotal space graph. The weights from the subtotal graph span
from 2,625 to 4,275. The most repeated weights are 3,175 and 3,225 with 12 SAR
problems. (b) Total space graph. The weights from the total graph span from
2,625 to 5,500. The most repeated weight is 4,050 with 400,000 SAR problems.
This graph shows the subtotal and total spaces. (c) Relationship graph. There are
seven main families resulting from the selected SAR problems in stage 3. Selected
SAR problems at current stage are individual selections from the following families:
first (blue dot), second (black dot), sixth (red dot), and seventh (green dot). (d)
Weighting graph. Two of the selected SAR problems are below 25% (i.e. positions
1 and 8), and two above 75% (i.e. positions 194 and 216).
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• Two of the selected SAR problems are above 75% difficulty (i.e. positions
194 and 216)

The relationship graph is shown in Figure 7.9c. From this figure, it can be
observed that there are seven main families of SAR problems resulting from seven
selected SAR problems in stage 3. Four SAR problems are selected in stage 4 and
they are distributed in individual families. These are at the first, second, sixth,
and seventh families. These are highlighted with different colours in Figures 7.9c
and 7.9d.

Representation of selected SAR problems

The selected SAR problems are represented with the combination of two groups
of options called roots and branches. The terms roots and branches were intro-
duced in Subsection 7.4.1. A method to select roots and branches, and the notation
of roots and branches was also described in Subsection 7.4.1. Roots are fixed and
can be combined with several branches to represent the SAR problems. Roots
in this stage are composed by the first eighteen variables’ options (described in
Subsection 7.4.3), whilst branches are composed by the last five variables’ options.
There are four roots and two branches which are combined together. Roots and
branches are expressed with the variables’ codenames and their respective options.
Roots from stage 4 can be represented with roots and branches from stage 3. These
are:

• Root 4.a: 3.a + 3.v. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number
as single, R.Accuracy as homogeneous, S.Control as centralised, Objectives
as single, R.Area as equal, P.StartTimes as single, P.Deadlines as single,
W.Content as unique, Environment as structured, Plans as multiple, R.Wheels
as unique, PL/UTDPR as independent and R.Battery as homogeneous

• Root 4.b: 3.d + 3.w. This is space as discrete, time as discrete, shape
as square, O.PTR as independent, PTTDPR as independent, W.Number as
multiple, R.Accuracy as homogeneous, S.Control as centralised, Objectives
as multiple, R.Area as equal, P.StartTimes as single, P.Deadlines as single,
W.Content as unique, Environment as structured, Plans as single, R.Wheels
as unique, PL/UTDPR as independent and R.Battery as homogeneous

• Root 4.c: 3.f + 3.y. This is space as discrete, time as discrete, shape
as square, O.PTR as dependent, PTTDPR as dependent, W.Number as
single, R.Accuracy as heterogeneous, S.Control as centralised, Objectives
as single, R.Area as equal, P.StartTimes as multiple, P.Deadlines as mul-
tiple, W.Content as mixed, Environment as structured, Plans as multiple,
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R.Wheels as mixed, PL/UTDPR as dependent and R.Battery as heteroge-
neous

• Root 4.d: 3.g + 3.z. This is space as discrete, time as discrete, shape as
square, O.PTR as dependent, PTTDPR as dependent, W.Number as mul-
tiple, R.Accuracy as heterogeneous, S.Control as centralised, Objectives as
multiple, R.Area as equal, P.StartTimes as multiple, P.Deadlines as multiple,
W.Content as mixed, Environment as structured, Plans as single, R.Wheels
as mixed, PL/UTDPR as dependent and R.Battery as heterogeneous

The branches from stage 4 have the following variables’ options:

• Branch 4.y: S.Accuracy as certain, W.Locations as constant, T.SRT as
equal, R.Payload as homogeneous and R.CarriedTools as unique

• Branch 4.z: S.Accuracy as certain, W.Locations as dynamic, T.SRT as
unequal, R.Payload as heterogeneous and R.CarriedTools as multiple

The roots and branches have a mixture of hard and easy options. It can be
noted that roots 3.b, 3.c and 3.e from stage 3 were discarded through the analysis
in stage 4. Roots, branches and their combinations can be observed in Figure 7.10.
Roots and branches are combined to represent the selected SAR problems. The
problems are presented according to their selection on the weighting graph and
their positions on this graph are shown in brackets:

• Roots 4.a and 4.b with branch 4.y correspond to the first and second selected
SAR problems (positions 1 and 8) respectively

• Roots 4.c and 4.d with branch 4.z correspond to the third and fourth selected
SAR problems (positions 194 and 216) respectively

Analysis of selected SAR problems

Roots and branches for stage 4 where enumerated in previous paragraphs.
The roots 3.b, 3.c and 3.e from stage 3 are not selected to stage 4 because of
the consideration of a decentralised control system. Aggregating roots 3.b, 3.c
and 3.e would increase the drastically difficulty to solve the SAR problems with
additional variables’ options from stage 4. An analysis of representative SAR
problems selected in stage 2 is provided in the following paragraphs.

The first selected SAR problem (position 1) of stage 4 considers the
root 4.a and branch 4.y, where both are the easiest ones in this stage. The root
4.a corresponds to the first SAR problem of stage 3 (i.e. combination of root 3.a
and branch 3.v). The root 4.a was already analysed in stage 3. The branch 4.y
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Figure 7.10: Representation of the selected SAR problems in stage 4. The repre-
sentation of uses fixed roots and variable branches, where roots and branches are
combinations of variables’ options. There are four roots and two branches. Roots
from stage 4 are described through the combination of roots and branches from
stage 3. Roots are as follows root 4.a: 3.a + 3.v, root 4.b: 3.d + 3.w, root 4.c:
3.f + 3.y, root 4.d: 3.g + 3.z. Roots 3.b, 3.c and 3.e are discarded in stage 4.
The selected SAR problems are classified by their feasibility to be solved, their
realism to industrial scenarios and interest of combining problems with variables
of the next stage. The classified problems, with positions indicated in brackets,
are: feasibility to be solved (1 and 8) and realism to industrial scenarios (194 and
216). The selected SAR problems from stage 3 can be represented as the combina-
tions of roots with branches as indicated with the arrows. Positions for the SAR
problems are indicated below each combination.
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considers the system accuracy as certain, the locations of warehouses as constant
during all the production, the tools setup and removal times as equal for all robots
but different between them, the maximal carrying payload as homogeneous for all
robots and a unique number of maximal carried tools for all robots. The branch
effect on the root are not drastical because the new variables’ options are similar
to the variables’ options from root 4.a.

The assumptions T.SRT as equal, R.Payload as homogeneous, R.CarriedTools
as unique have a similar effect to the assumptions PL/UTDPR, O.PTR, and
PTTDPR as independent, R.Wheels as unique and R.Battery as homogeneous.
Assuming a warehouse that does not change position during production is realistic
and facilitates the problem formulation. The consideration of the system accuracy
as certain represents that all sensing measures of the whole system do not have
any type of uncertainty. The only challenge for the first selected SAR problem of
stage 4 is the consideration of multiple production plans with single start times
and deadlines for all products. However, because manufacturing and transporta-
tion tasks can be executed by any robot, it is very feasible to solve the problem.
The problem as a whole is the easiest to formulate from stage 4. However, the
large number of considerations (i.e. twenty three variables) increase the difficulty.

The fourth selected SAR problem (position 216) of stage 4 considers
the root 4.d and the branch 4.z, which are the most difficult ones in stage 4. The
root 4.d is the combination of the root 3.g and branch 3.z from stage 3. The
fourth selected SAR problem of stage 4 is almost completely the opposite to the
first selected SAR problem. The only variables’ options that are equal are the
formulation of time and space as discrete, objects as squares, centralised system
control, robot with equal 2D area, structured environment and system accuracy
as certain. The branch 4.z considers the system accuracy as certain, the locations
of warehouses as dynamic during all the production, the tools setup and removal
times as unequal for all robots but different between them, the maximal carrying
payload as heterogeneous for all robots and a mixed number of maximal carried
tools for all robots.

The effects of branch 4.z on root 4.d are not drastical because the new vari-
ables’ options are similar to the variables’ options from root 4.d. The assumptions
T.SRT as unequal, R.Payload as heterogeneous, R.CarriedTools as mixed have a
similar effect to the assumptions O.PTR, PTTDPR and PL/UTDPR as depen-
dent, R.Wheels as mixed and R.Battery as heterogeneous. The manufacturing
and transportation tasks cannot be executed by any robot. The only assumption
that reduced the difficulty of the problem is considering a single production plan
per each product. The problem as a whole is the most difficult to formulate and
solve from stage 4 due to the large number of considerations (i.e. twenty three
variables) and the most difficult assumption for fifteen of them.
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The other two selected SAR problems have combinations of options explained
in the previous two analysis. Their level of difficulty is between the previous
two. The first and second selected SAR problems in stage 4 are highly solvable
and they describe realistic scenarios for the production with Self-Reconfigurable
Manufacturing Systems (S-RMSs). The third and fourth problems are highly
real, and they correspond to relaxations of variables from the first two problems.
Therefore, it is recommended to start the problem formulation in the order of
appearance in Table A.6. The four selected SAR problems in stage 4 are complete
SAR problems that have variables from the four stages.

7.4.5 Intrastage analysis

The analysis between stages refers to the evolution of the subtotal and total SAR
problem space through the four stages. The subtotal and total spaces change at
each stage due to the increase in the number of generated SAR problems and their
weights.

The evolution of the subtotal SAR problem space shows an increase through
the stages, see Figure 7.11. The SAR problem weights for stage 1 range from 825
to 1,850, for stage 2 range from 1,600 to 3,250, for stage 3 range from 2,150 to
3,900, and for stage 4 range from 2,625 to 4,275. There is a similar trend with the
maximal SAR problem weight at each stage. The maximal SAR problem weights
are 1,225 for stage 1, 2,425 for stage 2, 2,700 for stage 3, and 3,175 for stage 4.
The number of generated SAR problems in the subtotal space increases from 192
to 896 from stage 1 to stage 2, decreases from 896 to 352 from stage 2 to stage 3,
and decreases from 352 to 224 from stage 3 to stage 4.

The evolution of the total SAR problem space also shows an increase through
the stages, see Figure 7.12. The SAR problem weights for stage 1 range from 825
to 1,850, for stage 2 range from 1,600 to 3,425, for stage 3 range from 2,150 to
4,550, and for stage 4 range from 2,625 to 5,500. In a similar way, the maximal
SAR problem weight per stage shows an increasing trend. This is demonstrated by
the following maximal weights per stage: 1,225 in stage 1, 2,500 in stage 2, 3,350 in
stage 3, and 4,050 in stage 4. There is also an increment of the number of generated
SAR problems from the total space. The number of total SAR problems in stage
1 is 196, in stage 2 is 12,288, in stage 3 is 393,216, and in stage 4 is 12,582,912.
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Figure 7.11: Evolution of the subtotal SAR problem space, where there is a de-
crease of the maximal weight per stage as follows: stage 1 with 1,225, stage 2 with
2,425, stage 3 with 2,700, and stage 4 with 3,175. There is an increase in the
number of generated SAR problems from stage 1 to stage 2 but decreases from
stages 2 to 3 and 3 to 4. These are as follows: stage 1 with 192, stage 2 with
896, stage 3 with 352, and stage 4 with 224. There are increments in the range
of weights generated at each stage. These are: stage 1 from 825 to 1,850, stage 2
from 1,600 to 3,250, stage 3 from 2,150 to 3,900, and stage 4 from 2,625 to 4,275.

225



7.4. DMM steps 4, 5 and 6: Variables’ options combination and aggregation,
and SAR problems analysis and selection

Figure 7.12: Evolution of the total SAR problem space. In contrast to the subtotal
space, there is an increase in the maximal weight per stage as follows: stage 1 with
1,225, stage 2 with 2,500, stage 3 with 3,350, and stage 4 with 4,050 SAR problems.
The possible generated shows also an increase through the stages as follows: stage
1 with 196, stage 2 with 12,288, stage 3 with 393,216, and stage 4 with 12,582,912
SAR problems. The range of weights shows the same increasing trend as stage 1
from 825 to 1,850, stage 2 from 1,600 to 3,425, stage 3 from 2,150 to 4,550, and
stage 4 from 2,625 to 5,500 SAR problem weights.
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The increases and decreases of the generated SAR problems in the subtotal
space are due to the number of selected SAR problems and variables to analyse
at each stage. Seven variables were selected in stage 1. There were six binary and
one ternary resulting in 192 generated SAR problems. In stage 2, there are six
binary variables to analyse and fourteen SAR problems were selected in stage 1.
Hence, the combination and aggregation processes resulted in 896 generated SAR
problems. The large number of 896 in stage 2 is due to the large number of SAR
problem selected in stage 1 (i.e. 14). However, this resulted in a wide variety of
variables’ options through the analysis. In stage 3, there are five binary variables to
analyse and eleven SAR problems were selected in stage 2. Hence, the combination
and aggregation processes resulted in 352 generated SAR problems. Because the
number of selected SAR problems and variables to analyse is smaller than in the
stage 2, the number is comparatively smaller. In a similar way, the generated SAR
problems for stage 4 keep the decreasing trend. In stage 4, there are five binary
variables to analyse and eleven SAR problems were selected in stage 3. Hence, the
combination and aggregation processes resulted in 224 generated SAR problems.

The total number of generated SAR problems can be calculated by adding
together the number of generated SAR problems at each stage. These numbers
are determined by the number of selected SAR problems at the previous stage and
the multiplication of all the number of options of each variable from the group of
variables at the current stage. The total number of generated SAR problems at
each stage can be calculated with Equation 6.1 at each stage as follows:

• Stage 1: o1.1 ∗ o1.2 ∗ o1.3 ∗ o1.4 ∗ o1.5 ∗ o1.6 ∗ o1.7 = 2 ∗ 2 ∗ 3 ∗ 2 ∗ 2 ∗ 2 ∗ 2 = 192

• Stage 2: o2.1 ∗ o2.2 ∗ o2.3 ∗ o2.4 ∗ o2.5 ∗ o2.6 ∗ S1 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 14 = 896

• Stage 3: o3.1 ∗ o3.2 ∗ o3.3 ∗ o3.4 ∗ o3.5 ∗ S2 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 11 = 352

• Stage 4: o4.1 ∗ o4.2 ∗ o4.3 ∗ o4.4 ∗ o4.5 ∗ S3 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 7 = 224

By adding these numbers the total number of generated SAR problems through
all the stages result in 1,664. The subtotal and total SAR problem spaces from the
stages 1 and 2 can be observed in 7.13a and 7.13b, respectively; from the stages 2
and 3 can be observed in 7.14a and 7.14b, respectively; and from the stages 3 and
4 can be observed in 7.15a and 7.15b, respectively. The evolution of the subtotal
SAR problem space between all the stages (i.e. current and next stages) can be
observed through Figures 7.13a, 7.14a and 7.15a. Whilst the evolution of the total
SAR problem space between all the stages can be observed through Figures 7.13b,
7.14b and 7.15b. The following metrics can be determined from the intrastage
analysis:
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• The total saved space: the total number of generated SAR problems is
1,664 and the total possible SAR problems is 12,582,912. Hence, the total
saved space is 99.986%.

• The calculation effort waste: is the ratio between the 1,664 generated
SAR problems and the 36 selected SAR problems at the four stages. Thus
the calculation effort waste is a 2.16% of the generated SAR problems.

• The generation effort waste: is the ratio between the 1,664 generated
SAR problems and the 4 complete SAR problems. Therefore, the generation
effort waste is a 0.024% of the generated SAR problems.

7.5 Formulation of complete SAR problems se-

lected with the DMM

The four selected SAR problems in stage 4 of the DMM are summarised in Sec-
tion 7.4.4. These four problems are complete SAR problems that contain variables’
options from the four stages (i.e. variables from the complete SAR problem case
study). The decision variables considered in the SAR problem case study were pre-
sented in Tables 7.1 and 7.2. Also, assumptions for this case study were presented
in Section 7.1. The SAR problem case study simplified by these assumptions is
represented with the proposed notation in Appendix C.

In this section, the four problems selected at the last stage are formulated,
which brings this thesis to a sucessful conclusion. The first and second selected
SAR problems are very similar, as well as the third and fourth selected SAR prob-
lems. Therefore, the formulations are presented in two subsections. First subsec-
tion presents formulation for first and second, whilst second subsection presents
the formulation for the third and fourth SAR problems. The formulation make
use of notation that was presented in Chapter 5. Moreover, the four selected SAR
problems are represented with the notation in Appendix C.

7.5.1 SAR problem types 1 and 2

Formulation

The SAR problem type 1 is formulated as follows: It is considered a square fac-
tory defined by its shape σf with a centroid at the location (xcent,f , ycent,f ). The
problem is formulated in discrete space by squares of the same size. The problem
is formulated in time in positive discrete values. Hence, the angle of orientation of
all objects (i.e. robots, shelves and warehouses) in the factory are neglected.
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The uncertainty of values of the system is neglected. The problem is consid-
ered as a central system that determines tasks to robots allocations, scheduling
of the tasks, and positions to manufacture and paths for robots to reach these
positions. The environment is considered as fully known (i.e. structured). The
problem considers a single objective to optimise. This might be the minimisation
of production time or the maximisation of profits if products get assigned at profit
and production costs are known.

A single warehouse w1 is considered, which has unique raw material m. There
are Sm

Nshelves
shelves at the warehouse, which contain the same raw material. This

means that all products require the same type of raw material, but in different
quantities qi per each product pi. The warehouse can cover several squares but
their final shape must be a square. The warehouse is defined by its shape σw.
The location of the warehouse within the factory is represented by its center point
(xcent,w, ycent,w) and this location does not change during production.

Raw materials loading (µs m
h ) and unloading times (ηs m

h ) to any shelf (smh )
in the warehouse do not depend on the type of raw material mi or the robot k
that executes the loading and unloading operation. Products loading (µs p

h ) and
unloading times (ηs p

h ) to any shelf (sph) in the warehouse do not depend on the type
of product pi or the robot k that executes the loading and unloading operation.
Materials supplying time (ξs m

h ) and products picking up time (ιs p
h ) to any shelf

(h) are independent of the robot rk and the type of raw material mi and product
pi that is supplied or picked up respectively. The raw material mi corresponds to
the product pi. Raw materials and products shelves do not have a limit. Thus, it
is not necessary to monitor the current raw materials and products amount.

Multiple products Nproducts that have different demands (ωp
i ) are considered.

Also, products have a single start time (δstart p) and deadline (δend p) for all the
products. Each product can be manufactured through multiple production plans
(Π), and the processing time of each operation oj required by each product are
independent of the robot rk that executes the operation (τ o,pij ). The required
quality degree (goj ) and the surface quality degree ($o

j ) of all operations of all
products is homogeneous.

Multiple robots (Nrobots) are considered to execute all the manufacturing op-
erations. Machines are not considered. Robots have the same area size defined
by their shape (σr). The current position of any robot rk is given by its centroid
(xcent,rk (t), ycent,rk (t)). Robots have a unique configuration of wheels (lr), have a
homogeneous value of maximal battery duration (βr) and a homogeneous value
of maximal arm robot payload (γr,arm). Robots have a homogeneous maximal
velocity (vr,max), acceleration (ψr,max) and mobile platform payload (γr,platform).
Robots have heterogeneous arm robot kinematic configurations (κrk). Current ve-
locity (vrk(t)), acceleration (ψr

k(t)), status (ςrk(t)) and battery charge (βr
k(t)) of all
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robots R are considered for the central system to solve the SAR problem.
Each robot has a group of tools (Dr

k = d1,d2, ...,dNtools
), and each group

is different. These groups have the same maximal number of interchangeable
tools (dNtools

). Robots can interchange the tools on their own, but they cannot
interchange tools among them or within a tool depot. Hence, tools are not wearable
(i.e. they can be used as long as required, without requiring replacement). Tool
setup times (χd) and removal times (ζd) are equal for all robots but different
between each other.

The formulation for the SAR problem type 2 is identical to SAR problem type 1
except for three assumptions on the number of warehouses, the number of process
plans to produce each product and the number of objectives to optimise. For the
SAR problem type 2 multiple optimisation objectives are considered. These are the
production time, and the profits of all products. A single process plan (Πp

1) is con-
sidered for each product pi. Multiple warehouses (W = {w1,w2, ...,wNwarehouses

})
are considered.

7.5.2 SAR problem types 3 and 4

The SAR problems types 3 and 4 are similar to each other, but disimilar with
the SAR problems types 1 and 2. These two SAR problems are formulated in the
following paragraphs.

Formulation

The SAR problem type 3 is formulated as follows: A square factory is consid-
ered that is defined by its shape σf with a centroid at the location (xcent,f , ycent,f ).
The problem is formulated in discrete space by squares of the same size. The
problem is formulated in time in positive discrete values. Hence, the angle of
orientation of all objects (i.e. robots, shelves and warehouses) in the factory are
neglected.

The uncertainty of values of the system is neglected. The problem is consid-
ered as a central system that determines tasks to robots allocations, scheduling
of the tasks, and positions to manufacture and paths for robots to reach these
positions. The environment is considered as fully known (i.e. structured). The
problem considers a single objective to optimise. This might be the minimisation
of production time or the maximisation of production profits.

A single warehouse w1 is considered. There are Sm
Nshelves

shelves at the ware-
house, which contain mixed raw materials ms m

h for any shelf (smh ) in the warehouse.
Products require different types of raw materials in different quantities (qi) per each
product pi. The warehouse can cover several squares but their final shape must
be a square. The warehouse shape is defined by its shape σw. The location of the
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warehouse within the factory can change during production and is represented by
its center point (xcent,w(t), ycent,w(t)).

Raw materials loading (µs m
h (rj)(mi)) and unloading times (ηs m

h (rj)(mi)) to
any shelf (smh ) in the warehouse depend on the type of raw material mi or the
robot rk that executes the loading and unloading operation. The raw material
mi corresponds to the product pi. Products loading (µs p

h (rj)(pi)) and unloading
times (ηs p

h (rj)(pi)) to any shelf (smp ) in the warehouse do not depend on the type
of product pi or the robot rk that executes the loading and unloading operation.
Materials supplying time (ξs m

h (rj)(mi)) and products picking up time (ιs p
h (rj)(pi))

to any shelf (h) are independent of the robot k and the type of raw material mi and
product pi that is supplied or picked up respectively. Raw materials and products
shelves do not have a limit. Thus, it is not necessary to monitor the current raw
materials and products amount.

Multiple products Nproducts that have different demands (ωp
i ) are considered.

Also, there is a start time (δstart p
i ) and deadline (δend p

i ) per each product. Each
product can be manufactured through multiple production plans (Π), and the
processing times of each operation oj depend on the robot rk that executes the
operation (τ o,pij (rk)). The required quality degree (goj ) and the surface quality
degree ($o

j ) of all operations of all products is homogeneous.

Multiple robots (Nrobots) are considered to execute all the manufacturing op-
erations. Machines are not considered. Robots have the same area size de-
fined by their shape σr. The current position of robots is given by its centroid
(xcent,rk (t), ycent,rk (t)). Robots have mixed configurations of wheels (lrk), have a het-
erogeneous value of maximal battery duration (βr

k) and a heterogeneous value
of maximal arm robot payload (γr,armk ). Robots have a homogeneous maximal
velocity (vr,max), acceleration (ψr,max) and mobile platform payload (γr,platform).
Robots have heterogeneous arm robot kinematic configurations (κrk). Current ve-
locity (vrk(t)), acceleration (ψr

k(t)), status (ςrk(t)) and battery level (βr
k(t)) of all

robots R are considered for the central system to solve the SAR problem.

Each robot has a group of tools (Dr
k = d1,d2, ...,dNtools

), and each group is
different. These groups have a mixed maximal number of interchangeable tools
(dNtools

). Robots can interchange the tools on their own, but they cannot inter-
change tools among them or within a tool depot. Hence, tools are not wearable
(i.e. they can be used as long as required, without requiring replacement). Tool
setup times (χd

ktool
) and removal times (ζdktool) for any tool ktool are unequal for any

robots k and different between each other.

The formulation for the SAR problem type 4 is identical to SAR problem type 3
except for three assumptions on the number of warehouses, the number of process
plans to produce each product and the number of objectives to optimise. For the
SAR problem type 4 multiple optimisation objectives are considered. These are the
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production time, and the profits of all products. A single process plan (Πp
1) is con-

sidered for each product p. Multiple warehouses (W = {w1,w2, ...,wNwarehouses
})

are considered.

7.6 Concluding remarks

Decision Making Methodology (DMM) was applied over a representative case study
of the SAR problem. The DMM proved to be effective at reducing the number of
reviewed SAR problems. Four problems were selected at the final stage.

The four selected SAR problems were represented with the notation proposed
in Chapter 4 and formulated. The first two problems are highly solvable and
they describe realistic scenarios for the production with Self-Reconfigurable Man-
ufacturing Systems (S-RMSs). The last two problems are highly real, and they
correspond to relaxations of variables from the first two problems.

Therefore, work for future generations of PhDs should focus on solving the
first two problems first, and then start relaxing either individual or groups of
variables to increase the realism of the problem. It is noteworthy that this will
increase the complexity of the problem. The increase of complexity of the problems
will require more detailed input data (e.g. production requirements, available
resources, factory design and its operation) for the complex SAR problems.
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Chapter 8

Conclusions and future work

8.1 Summary and conclusions

Novel contributions of this thesis were made in the fields of manufacturing, robotics
and operations research. This thesis has three main contributions that link the
three fields. These contributions are:

• The novel framework INTelligent REconfiguration for a raPID production
change (INTREPID), which aim is to offer global High Value Manufac-
turing (HVM) services, was proposed in Chapter 3. INTREPID consists
of a user interface and communications platform, a network of reconfig-
urable facilities (i.e. Reconfigurable Manufacturing Centres (RMCs)), Self-
Reconfigurable Manufacturing Systems (S-RMSs) and a job allocation sys-
tem. The novelty of INTREPID is the wide number of technologies in a single
comprehensive framework. Within INTREPID, the novel contribution is the
proposal of highly flexible and autonomous manufacturing system that em-
ploys mobile robots such as mobile manipulators to perform manufacturing
and transportation tasks (i.e. S-RMSs). This contribution addresses the
second objective of this thesis, see Chapter 1. INTREPID was presented in
the publication [29].

• The proposal of an inclusive production planning problem that considers
mobile manufacturing resources within a single reconfigurable factory, was
proposed through Chapters 4 and 5. Due to the inclusion of the schedul-
ing, positions assigning (i.e. machine layout) and vehicle routing problems,
the novel production planning was called the Scheduling, positions Assigning
and Routing problem (SAR) problem. The SAR problem refers to the job
allocation system considering the S-RMS within a single reconfigurable fac-
tory. The novelty of the SAR problem is the consideration of mobile robots
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such as mobile manipulators (i.e. S-RMS) to perform all the manufacturing
and transportation tasks. A notation for the SAR problem was proposed.
This contribution addresses the third objective of this thesis, see Chapter 1.

• A novel Decision Making Methodology (DMM) to select a SAR problem that
is realistic but solvable with optimisation methods was proposed in Chapter
6. The novel DMM helps to select one or a few alternatives from very
large number of alternatives (i.e. millions). The DMM was implemented in
LabVIEW and evaluated with a case study of the SAR problem in Chapter
7. This contribution addresses the fourth and fifth objectives of this thesis,
see Chapter 1. A partial version of the methodology and its implementation
was introduced in the publication [30].

A summary and conclusions is presented in the following paragraphs. High
Value Manufacturing (HVM) refers to the creation of innovative products with
cutting-edge technology (i.e. added value through the use of knowledge). The
main challenge for HVM refers to the rapid adjustment of the production capacity
to produce the required demand of innovative products (i.e. high value products,
HV products). This means, increasing or decreasing production volume from one-
off products to low production volume for HV products. The focus of this thesis
is the main HVM challenge. An analysis of manufacturing paradigms and their
different types of added value was performed in Chapter 2 in order to identify the
capacity of these paradigms to address the main HVM challenge. An analysis of
current manufacturing systems and layouts identified the lack of approaches to
manage rapid changes in the demand of HV products (i.e. main HVM challenge).
Traditional manufacturing systems are classified in dedicated, flexible and recon-
figurable systems. These type of systems focus on a finite range of production
volume, and are only capable of producing a limited number of products or group
of products. Also, these manufacturing systems have fixed and static manufac-
turing layouts, such as product-oriented, process-oriented and manufacturing cells
(hybrid of product- and process-oriented). As conclusions of these analyses, tradi-
tional manufacturing systems and layouts cannot change rapidly according to the
changes in the demand of HV products.

Therefore, in order to manage rapid changes in production demands of HV
products (i.e. main HVM challenge), the novel framework INTelligent REconfig-
uration for a raPID production change (INTREPID) was proposed in Chapter 3.
INTREPID consists of a user interface and communications platform, a network of
globally distributed Reconfigurable Manufacturing Centres (RMCs) (where each
cluster consists of several connected factories), a job allocation system, and Self-
Reconfigurable Manufacturing Systems (S-RMSs) in each RMC. INTREPID was
motivated by largely accepted and proved paradigms and concepts, such as cloud
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manufacturing, networked manufacturing, industry 4.0, reconfigurable manufac-
turing systems, and cloud robotics. These paradigms and concepts make use of
cutting-edge technology to manage dynamic demands of HV products. State of
the art literature on approaches to manage rapid changes in products demand was
analysed, and the best practices and desired characteristics of these approaches
were identified. In order to address the HVM challenge, the desired characteristics
and best practices were included in INTREPID and its parts. Existing frameworks
to manage highly dynamic demands such as cloud manufacturing and NetMan fo-
cus on technologies for data transfer and management, and mechanisms for an
agile formation and coordination of factories respectively. Despite these efforts,
there is a lack of a comprehensive framework to manage highly dynamic demands.

The novelty of INTREPID is in the proposal of a single comprehensive frame-
work and its four parts, which together are capable of managing highly dynamic
demands for HV products. A novel contribution made in INTREPID is its highly
flexible and autonomous manufacturing system (i.e. S-RMSs), which operate in
an unmanned area that facilitates the reconfiguration and movement of resources
(i.e. RMCs and reconfigurable factories). In contrast to traditional manufacturing
systems with fixed and static machines, S-RMSs make use of mobile manufac-
turing resources such as mobile robots and movable machines. Consequently, the
flexibility of the S-RMS is greater than traditional systems such as dedicated, flex-
ible and reconfigurable manufacturing systems. The aim of INTREPID is to offer
global HVM services. For this aim, the user interface and communication platform
serves to collect product data, and also to negotiate and to collaborate during the
product design stage. Once the product design is known, the job allocation system
determines the best possible factories or RMCs to perform a job by considering
the complexity of the production requirements and the status of the available
S-RMSs at each factory. In summary, a comprehensive framework to offer global
HVM services was proposed and its parts and operation were described in Chapter
3. As conclusions from this chapter, rapid changes in the demand of HV prod-
ucts can be managed with Self-Reconfigurable Manufacturing Systems (S-RMSs),
reconfigurable factories and job allocation systems that use real-time data and
optimisation methods.

Several challenges for INTREPID’s implementation were identified. However,
the main challenges were: 1. development and implementation of a user interface
and communications platform; 2. design and construction of factories and RMCs
that facilitate the movement of mobile manufacturing resources; 3. Design and
construction of mobile manufacturing resources (S-RMS); 4. Research, develop-
ment and implementation of job allocation mechanisms that consider the design
and operation of RMCs, factories and S-RMSs. The job allocation challenge was
the focus of the rest of the thesis. The job allocation system has three levels of
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scope: 1. Network type, which involves multiples S-RMSs and coordinating sup-
ply chains; 2. A single RMC, which involves multiples S-RMSs and the network;
and 3. A single factory, which involves a S-RMS. A job allocation system for a
single factory refers to the production planning problem. This problem consists of
determining production plans with the available resources in order to address the
incomming production orders and their requirements. The production planning
problem considering a single factory is the minimal problem.

For traditional manufacturing systems (i.e. with static machines), the produc-
tion planning problem involves three main independent problems that are solved
in sequence. These are: 1) the scheduling; 2) the machine layout; and 3) the
vehicle routing problems. However, the use of S-RMS (i.e. mobile resources) in-
creases the flexibility by allowing changing of the layout for each manufacturing
task of each product from the current production orders. Due to this increased
flexibility, a new problem to simultaneously solve these problems was proposed.
This novel problem was called the Scheduling, positions Assigning and Routing
problem (SAR). In brief, the SAR problem consists of determining allocations and
schedules of tasks to machines or robots, the positions in the factory to perform
these operations and the routes for machines or robots to reach their positions
in the layout. In order to find the best possible solutions to the SAR problem,
it is necessary to use optimisation methods. The novelty of the SAR problem is
the consideration of mobile resources for manufacturing, in contrast to existing
approaches to determine production planning with static and fixed manufacturing
resources.

The constituent problems of the SAR problem (i.e. scheduling, machine layout
and vehicle routing) and related problems from the field of robotics (i.e. multi
robot task allocation and motion planning) were analysed in Chapter 4. Ele-
ments, characteristics and assumptions that characterised each of these problems
were identified and analysed. Existing optimisation objectives, taxonomies and
notations were identified for each of the five problems. Elements, characteristics,
assumptions, optimization objectives, taxonomies and notations were analysed in
order to understand their application to the SAR problem. The lack of an com-
prehensive notation for the scheduling, machine layout and vehicle routing was
identified in Chapter 4. Therefore, a novel notation for the SAR problem was
proposed in Chapter 5. Also in Chapter 5, the core elements and characteristics of
the SAR problem were defined, and general assumptions on these elements were
provided.

In Chapter 5, the notation for elements, characteristics, and assumptions were
classified by the types of aspects of the SAR problem. These types are 1. the
factory design and its operation (e.g. warehousing and manufacturing zones); 2.
the production requirements (e.g. products, operations); and 3. the manufac-
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turing resources (e.g. robots, machines, tools). These three types are natural to
the formulation of the SAR problem, and therefore, they are called fundamental.
An additional type of characteristics and assumptions with the purpose of formu-
lating the SAR problem with optimisation methods was called systems variables.
Examples of system variables are whether the problem should be formulated in con-
tinuous or discrete space and time, or whether the environment should be treated
as structured or unstructured. In contrast to the fundamental variables (e.g. pro-
duction requirements), the system variables are auxiliary to the formulation of the
SAR problem with optimisation methods. As conclusions from Chapters 4 and 5,
the proposed SAR problem and its notation are able to represent the production
planning problem with the use of S-RMS for a single factory.

With the purpose of solving a realistic SAR problem variant, it is necessary to
formulate a problem that is realistic to industrial scenarios (i.e. realism) but that
can be solved with optimisation methods (i.e. solvability). However, the com-
bination of SAR problem elements, characteristics and assumptions can result in
millions of possible SAR problem variants (i.e. SAR problem space). Due to the
large number of possible SAR problem variants, it was complex to decide which
combinations of elements, characteristics and assumptions to formulate and solve
with optimisation methods. Therefore, it was proposed to select a realistic but
solvable SAR problem with decision making methods from the field of concept
generation and selection. For this purpose, elements, characteristics and assump-
tions of the SAR problem were considered as decision variables on whether to
include or not the elements and characteristics and under which assumptions.

A review of relevant concept generation and selection methods as well as de-
cision making methods was made in Chapter 6. These methods rely heavily on
pairwise comparisons between the alternatives and a reference or among the al-
ternatives per each criterion. For a vast number of alternatives, such as in the
SAR problem space (i.e. millions of variants), it was intractable to apply exist-
ing decision making methods to select an appropiate SAR problem. Therefore,
a novel decision making methodology (DMM) was proposed in Chapter 6. The
DMM is based on the controlled convergence method. Instead of analysing the
complete group of variables, the DMM works by analysing subgroups of decision
variables (i.e. elements, characteristics and assumptions) through multiple stages.
Partial SAR problems, generated with the subgroups of variables, are analysed
and selected by expert personnel from fields such as robotics and optimisation.
The selected partial SAR problems are aggregated to the generated partial SAR
problems from the next stage and so on. The generation of partial SAR prob-
lems and their analysis continues iteratively until all the subgroups of variables
are analysed. The first group of partial SAR problem represent the core SAR
problem, and groups of variables at the following stages add level of detail and
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complexity to these core problems. The DMM steps and auxiliary graphs for SAR
problem space exploration and selection were described thoroughly in Chapter
6. The novelty of the DMM is its capability of handling millions of alternatives.
In the proposed DMM, there is not direct comparison of all the alternatives, in
contrast to existing selection methods such as decision matrix methods, outrank-
ing methods and distance-based methods [23],[24],[25],[26]. Instead subgroups of
partial alternatives are compared and aggregated through multiple stages in the
DMM.

The methodology was implemented and tested with an exemplar case study in
Chapter 7. The implemented methodology was called a Decision Making Support
System (DMSS). The case study was analysed in four stages. In the first stage,
fourteen partial SAR problems were selected, in the second stage there were eleven
selections, in the third stage, seven selections and finally, four complete SAR prob-
lems were selected. These complete SAR problems contain variables from the four
stages. The generated partial SAR problems at each stage were analysed and a
few SAR problems were selected for the next stage. The selection of the SAR
problems was based on their realism to industrial scenarios, their feasibility to be
solved with optimisation methods, and the interest to explore the SAR problems in
combination with variables of the next stage. Some of the selected SAR problems
and their implications to be formulated and solved with optimisation methods
were discussed. The application of the methodology result in 1,664 generated and
reviewed SAR problems and 36 selected SAR problems selected through the four
stages. Four complete SAR problems selected at the last stage from a total SAR
problem space of millions (i.e. 12,582,912 SAR problems). Finally, these four
complete SAR problems were represented with the notation proposed in 5 and for-
mulated in order to successfully conclude this thesis. As conclusions from Chapter
6 and 7, the DMM proved to yield a good performance and facilitate exploring
the SAR problem space and selecting a few SAR problems that are realistic but
solvable.

8.2 Future work

The work presented in this thesis consists of: the framework INTREPID and
its associated Self-Reconfigurable Manufacturing Systems (S-RMSs), a production
planning problem with the use of a S-RMS (SAR problem), and a methodology
that helps select a SAR problem. Although, INTREPID is based on a thorough
analysis of the most recent literature, new innovations and research proposals can
be included in the framework. Also, new challenges for the implementation of
INTREPID can be managed with the use of these new innovations and research
proposals. The proposed SAR problem is comprehensive and inclusive of variables
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from problems such as scheduling, machine layout, vehicle routing, multi-robot
task allocation and path planning. However, it is possible to extend the literature
research to more related problems and therefore, improve the detail of the SAR
problem. The methodology is a tool that helps to select a SAR problem that is
realistic to industrial scenarios but solvable with optimisation methods. However,
because the methodology is novel, additional steps or functionalities might be re-
quired to use on applications such as product and system design. The proposed
future work is divided into three main works developed in this thesis.

INTREPID

Future work for INTREPID should focus on implementation of INTREPID’
parts and the application of INTREPID in industrial case studies. Recommenda-
tions for future work are:

• The research and development of the user interface and communications plat-
form must guarantee real-time and robust communications. The use of cloud
manufacturing communication technologies was proposed in INTREPID, but
other approaches are encouraged to be developed and implemented.

• It is recommended to research on and implement algorithms to locate RMCs
based on analyses of RMCs’ access to resources, expected types of products
to manufacture and expected clients to distribute these products.

• Although an octagon design for the reconfigurable factories and diamond
patterns for the RMCs was proposed in INTREPID, other designs should be
investigated. However, it is recommended to design any RMC and factory
with the objective to facilitate the movement of resources (i.e. robots and
machines) across factories and even RMCs. Also, factories’ design should be
modular to facilitate the addition of more factories (i.e. scalability).

• It is recommended to design and implement auxiliary systems such as com-
munications and sensing in order to facilitate the autonomous movement of
mobile robots and movable machines across the factories and RMCs. In addi-
tion, it is recommended to design, simulate and implement control systems
for the mobile robots and movable machines that take advantage of these
communications and sensing systems. Thus, robots, machines and auxiliary
systems should be designed concurrently. Also, the design of robots and ma-
chines should guarantee an autonomous, rapid and accurate calibration at
the arrival to a manufacturing position.

• The job allocation system considers the design and operation of factories and
the S-RMS in order to determine feasible and a optimal solutions. Factories
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and S-RMS should be designed and operated in order to facilitate obtaining
feasible and a optimal solutions for the job allocation problem, whilst still
considering a realistic operation of the factories (i.e. dynamic and uncertain
production demand).

• Sustainability challenges within a cloud manufacturing and industry 4.0 en-
vironment should be considered and addressed. Examples of these challenges
are CO2 emissions generated from transporting raw materials and products
around the world, scaling of the production capacity for seasonal and large
products, etc.

The SAR problem

INTREPID’s job allocation system focused on a single factory correspond to
the SAR problem. Recommendations for future work on the SAR problem are
provided in the next paragraphs.

• The combination of decentralised and centralised allocation systems for the
job allocation system was proposed in INTREPID. Each factory has a cen-
tralised system, but the network of RMCs work as a decentralised systems.
This approach should be implemented, but other approaches should be in-
vestigated and implemented for comparison.

• Once adequate SAR problems were selected and formulated, it is necessary
to model and solve these problems with optimisation methods. It is recom-
mended to initially model and solve the simplest two problems (i.e. SAR
problems type 1 and 2), and then relax the constraints of the decision vari-
ables until the two complex problems (i.e. SAR problems type 3 and 4) are
modelled and solved. The relaxation of constraints can occur either one by
one or in groups that facilitates the problem modelling and solving.

• For the purpose of solving the selected SAR problems, instances of input data
are required. Consequently, it is necessary to propose input data to evaluate
the four variants of the selected SAR problems. Also, it is recommended to
perform sensitivity analysis of the initial conditions (e.g. initial locations of
robots and their carrying tools) of data instances. It is expected a significant
influence of the initial conditions on the solutions.

• Practical future work should focus on real world implementation and test-
ing of the four selected SAR problems with mobile robots such as mobile
manipulators and movable machines in industrial environments and with re-
alistic production demand. It is recommended to evaluate different types of
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products (e.g. large components, aircrafts, ships) with different production
requirements (i.e. deadlines and demands).

• The SAR problem corresponds to the job allocation problem considering a
S-RMS within a single factory. However, the SAR problem should be ex-
tended to several factories (i.e. a complete RMC), and several RMCs (i.e.
the complete RMCs network). These novel problems should consider differ-
ent factory and RMC designs and different combinations of communications
and sensing devices between factories and S-RMSs.

• The proposed notation is also specific to the SAR problem (i.e. a S-RMS
within a single factory). Consequently, the notation should be extended to
multiple factories and multiple RMCs.

Methodology and its implementation

Future work for the decision making methodology and its implementation (De-
cision Making Support System (DMSS)) should focus on:

• Developing and implementing more mechanisms to explore and graphs to
visualise the problem space. These mechanisms and graphs should specially
focus on reducing user fatigue.

• The methodology should be adapted to manage multiple criteria. For this
purpose, additional mechanisms should be investigated and implemented
Also, the data visualisation mechanisms for multi criteria should be imple-
mented in the DMSS.

• Research on outranking methods, which result in an order of preferences
rather than a single selection should be investigated. Relevant characteristics
or functionalities from the outranking methods should be implemented in the
DMSS. For example, the current methodology uses an aggregation function
(i.e. sum of options’ weights), which make it easy to implement and under-
stand, but limits its application to a single criterion. However, more func-
tions such as the six functions proposed in the method Preference Ranking
Organization METHod for Enrichment Evaluations (PROMETHEE) [248]
should be investigated.

• The methodology should be tested on more applications such as the design
of complex products and systems (e.g. aircrafts, nuclear plants, ships) with
experts and experienced engineers from relevant industrial sectors. From
the application of the methodology, experts and engineers should propose
new processes, functionalities or graphs to improve the methodology and
facilitate its application on complex problems.

244



Appendices

245



246



Appendix A

Selected SAR problems in each
stage

This appendix presents results of the evaluation of the proposed decision making
methodology on a SAR problem case study in Chapter 7. In specific, the SAR
problem case study was presented in Section 7.1. The selected SAR problems in
the four stages are summarised in the following tables:

• Stage 1 in Tables A.1 and A.2

• Stage 2 in Tables A.3 and A.4

• Stage 3 in Table A.5

• Stage 4 in Table A.6
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Appendix A. Selected SAR problems in each stage

Table A.6: Selected SAR problems from stage 4. The variables analysed in stage
4 are system accuracy (S.Accuracy), locations of warehouses (W.Locations), tools
setup and removal times (T.SRT), robots maximal payload (R.Payload), maximal
number of carried tools by robot (R.CarriedTools). The reasons for selecting the
SAR problems are feasibility to be solved the realism to industrial scenarios and
interest of combining problems with variables of the next stage. This table shows
two SAR problems selected for their feasibility to be solved (positions 1 and 8)
and two for their realism to industrial scenarios (positions 194 and 216).

SAR problems selected in stage 4
Variables Options of variables
Space Disc. Disc. Disc. Disc.
Time Disc. Disc. Disc. Disc.
Shape Squa. Squa. Squa. Squa.
O.PTR Indep. Indep. Dep. Dep.
PTTDPR Indep. Indep. Dep. Dep.
W.Number Sing. Mult. Sing. Mult.

S
ta

ge
1

R.Accuracy Homog. Homog. Hetero. Hetero.
S.Control Cent. Cent. Cent. Cent.
Objectives Sing. Mult. Sing. Mult.
R.Area Equ. Equ. Equ. Equ.
P.StartTimes Sing. Sing. Mult. Mult.
P.Deadlines Sing. Sing. Mult. Mult.

S
ta

ge
2

W.Content Uniq. Uniq. Mix. Mix.
Environment Struct. Struct. Struct. Struct.
Plans Mult. Sing. Mult. Sing.
PL/UTDPR Indep. Indep. Dep. Dep.
R.Wheels Uniq. Uniq. Mix. Mix.S

ta
ge

3

R.Battery Homog. Homog. Hetero. Hetero.
S.Accuracy Cert. Cert. Cert. Cert.
W.Locations Cons. Cons. Dyn. Dyn.
T.SRT Equ. Equ. Uneq. Uneq.
R.Payload Homog. Homog. Hetero. Hetero.S

ta
ge

4

R.CarriedTools Uniq. Uniq. Mix. Mix.

Weight 2,750 2,875 4,000 4,125
Position 1 8 194 216
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Appendix B

Representation of combinatorial
process

This appendix presents a representation of the combinatorial process from the ap-
plication of the proposed decision making methodology on a SAR problem case
study in Chapter 7. Variables of the SAR problem case study were presented in
Section 7.1. The combinatorial process refers to the combination and the aggre-
gation process for the stage 3 and 4. The representation of stage 1 only refers to
the combination process, and it was presented in Figure 7.1. The representation of
the combination and aggregation processes for stage 2 can be observed in Figure
7.4, for stage 3 in Figure B.1, and for stage 4 in Figure B.2.

Combinations of variables’ options from stage 2 are aggregated to the selected
SAR problems from stage 1. A representation of the combinatorial and aggregation
processes can be observed in Figure 7.4 from Appendix B. The combinatorial
process is identical to the process for stage 1 (see Figure 7.1), but with the post
combination of the selected SAR problems in stage 1 (i.e. aggregation process).
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Appendix C

Representation of selected SAR
problems

This appendix presents representations of the SAR problems selected with the
proposed decision making methodology on a SAR problem case study in Chapter
7. Four complete SAR problems were selected at the final stage (i.e. stage 4),
see Section 7.4.4. These complete SAR problems contain variables from all the
stages (stage 1, 2, 3 and 4). The complete SAR problems are represented with the
notation presented in Chapter 5.

Variables of the SAR problem case study were presented in Section 7.1. In
specific, in Tables 7.1 and 7.2. Also, assumptions for this case study were presented
in Section 7.1 The SAR problem case study simplified by these assumptions is
represented with the following notation:

Factory vector

f = (zf , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,D,Sd)

Set of warehouses vector

W = {w1,w2, ...,wNwarehouses
}

Warehouse vector

wi = (σw, (xcent,w(t), ycent,w(t)),Sp,Sm)

Material shelf vector

smh = (ms m
h , ξs m

h (rk)(mi), µ
s m
h (rk)(mi), η

s m
h (rk)(mi),���

��XXXXXqs m,max
h ,���

�XXXXqs m
h (t),

(xcent,s m
h (t), ycent,s m

h (t)), σs m
h , αs m

h (t))
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C.1. SAR Problem types 1 and 2

Product shelf vector

sph = (ps p
h , ιs p

h (rk)(pi), µ
s p
h (rk)(pi), η

s p
h (rk)(pi),���

�XXXXqs p,max
h ,����XXXXqs p

i (t),
(xcent,s p

h (t), ycent,s p
h (t)), σs p

h , αs p
h (t))

Product requirements vector

pi = (ωp
i , δ

p
i , (M

p
i , Q

p
i ), O

p
i ,Π

p
i )

Operation vector for product pi

opi
j = (��

�HHHCo,pi
j ,
�
��Z
ZZ

go,pij ,��
�H
HH$o,pi
j , (M o,pi

j , Qo,pi
j ), τ o,pij (rk))

Robot vector

rk = (lrk, κ
r
k, σ

r
k,��@@a

r
k, v

r,max, ψr,max,
�
�@
@

ar,dk , γr,armk , γr,platform, βr
k, ς

r
k(t),��

�HHHϑr
k(t), βr

k(t), Dr
k,

(xcent,rk (t), ycent,rk (t)), αr
k(t), vrk(t), ψr

k(t))

Tool vector

dktools = (cdktools ,��
�H
HHadktools , χ

d
ktools

, ζdktools ,M
d
ktools

,
��

��H
HHH

$d
ktools

,���
��XXXXXθdktools(t))

This simplified SAR problem is detailed with assumptions presented in the case
study of Section 7.1. In this appendix, this case study is further defined to represent
selected SAR problems from the application of the DMM (i.e. Chapter 7). There
were four selected SAR problems, and these are represented and formulated in the
following two sections.

C.1 SAR Problem types 1 and 2

The SAR problems types 1 and 2 are similar to each other. Hence, they are
represented in the notation as a group. There are only three differences between
the SAR problems types 1 and 2. These are the number of warehouses in the
factory (W.Number), the number of objectives to optimise (Objectives) and the
number of production plans per each product (P.Plans).

For the SAR problem type 1 there is a single warehouse, and single objective to
optimise, and multiple production plans; whilst for the SAR problem type 2 there
are multiple warehouses, multiple objectives to optimise, and single production
plans per product. The SAR problem assumptions and notation are distinguished
per each type of SAR problem by their type (i.e. Type 1 and Type 2).
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Appendix C. Representation of selected SAR problems

Notation

Assumptions for system variables:

• Space formulation as discrete results in shape of objects as squares. Thus,
zones (zobject) and shapes (σobject) are simplified to a single value measuring
the side of square objects eobject. Orientation of objects are neglected (αobject).

• Time formulation as discrete. Thus: t ∈ Z+
0 .

• Uncertainty of the system is neglected.

• System control is centralised.

• Environment is fully known (i.e. structured).

• Type 1 There is a single objective to optimise

• Type 2 There are multiple objectives to optimise

Assumptions for factory design and operation:

• Type 1 There is a single warehouse in the factory

(W = {w1,��HHw2, ...,((((
((hhhhhhwNwarehouses
}). Thus, the set of warehouses is simplified to

a single warehouse w1.

• Type 2 There are multiple warehouse in the factory

(W = {w1,w2, ...,wNwarehouses
}). Thus, the set of warehouses remains.

• The warehouse location ((xcent,w��@@(t), y
cent,w

�
�@
@(t))) is constant over time. Thus,

the warehouse location is simplified to (xcent,w, ycent,w).

• There is a unique type of material (ms m
i ) in the warehouse(s). Thus, the

type of material variable is simplified to ms m
i = material X for any shelf h.

• Materials loading (µs m
h �

��Z
ZZ(rj)��

�HHH(mi)) and unloading times (ηs m
h �

��Z
ZZ(rj)��

�HHH(mi)) and
products loading (µs p

h �
��Z
ZZ(rj)�
��Z
ZZ(pi)) and unloading times (ηs p

h �
��Z
ZZ(rj)�
��Z
ZZ(pi)) are inde-

pendent of the type of robot k and the type of product pi and the type of
material mi related to any product pi. Thus, the materials loading and un-
loading times are simplifed to µs m

h and ηs m
h respectively, and the products

loading and unloading times are simplified to µs p
h and ηs p

h respectively.
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• The materials supplying time (ξs m
h �

��Z
ZZ(rj)��

�HHH(mi)) and products picking up time
(ιs p

h �
��Z
ZZ(rj)�
��Z
ZZ(pi)) are independent of the type of robot k and the type of product

pi and type of material mi related to any product pi. Thus, the materials
supplying time and products picking up time are simplified to ξs m

h and ιs p
h

respectively.

Factory vector

f = (ef , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,D,Sd))

Type 1 Set of warehouses vector

W = {w1}

Type 2 Set of warehouses vector

W = {w1,w2, ...,wNwarehouses
}

Warehouse vector

w1 = (ew, (xcent,w, ycent,w), Sp, Sm)

Material shelf vector

smh = (ms m
h , ξs m

h , µs m
h , ηs m

h , (xcent,s m
h , ycent,s m

h ), es m
h )

Product shelf vector

sph = (ps p
h , ιs p

h , µs p
h , ηs p

h , (xcent,s p
h , ycent,s p

h ), es p
h )

Assumptions for production requirements:

• Products have a single start time (δstart p
i ). Thus, there is a start time δstart p

for all products.

• Products have a single deadline (δend p
i ). Thus, there is a deadline time δend p

for all products.

• Type 1 There are multiple process plans (i.e. precedences between op-
erations, Π) for each product. Thus, the set of process plans is Πp =
Πo,pi

1 , ...,Πo,pi
Noperations product pi

.

• Type 2 There is a single process plan (Π) for each product. Thus, the set
of process plans is Πp = {πo,pi

1 }.

• Operations processing times (τ o,pij �
��Z
ZZ

(rk)) are independent of the robot k. Thus,
the processing time variable is simplified to τ o,pij , where i is the type of
product and j is the required operation.
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Product requirements vector

pi = (ωp
i , δ

start p, δend p, (Mp
i , Q

p
i ), O

p
i ,Π

p
i )

Operation vector for product pi

opi
j = (co,pij , (So,pi

j , Q
sj
j , τ

o,pi
j )

Type 1 Multiple sets of precedences between operations of each product pi

Πp = Πo,pi
1 , ...,Πo,pi

Noperations product pi

Type 2 Single set of precedences between operations of product pi

Πp
1 = πo,pi

1 , ..., πo,pi
Noperations product pi

Assumptions for manufacturing resources:

• Maximal number of carried tools Dr
k is equal for all robots, where Dr

k =
{d1, d2, ..., djtools}. Thus, the maximal number of carried tools djtools is equal
for all sets of tools Dr

k of all robots.

• Type of wheels configuration (lrk) is unique for all robots. Thus, the wheels
configuration variable is simplified to lr.

• Maximal battery duration (βr
k(t)) is homogeneous for all robots. Thus, the

maximal battery duration is simplified to βr(t).

• Maximal arm robot payload (γr,armk ) is homogeneous for all robots. Thus,
the maximal arm robot payload is simplified to γr,arm.

• Robots have equal area size (erk). Thus, the side size is simplified to er.

• Tool setup times (χd
ktools

) and removal times (ζdktools) are equal for all robots.
These assumptions change the setup and removal times variables into the
parameters χd and ζd.

Robot vector

rk = (lr, κrk, e
r, vr,max, ψr,max, γr,arm, γr,platform, βr, ςrk(t), βr

k(t), Dr
k,

(xcent,rk (t), ycent,rk (t)), vrk(t), ψr
k(t))

Tool vector

dktools = (cdktools , χ
d, ζd,Md

ktools
)
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C.2. SAR problem types 3 and 4

C.2 SAR problem types 3 and 4

The SAR problems types 3 and 4 are similar to each other, but disimilar with the
SAR problems types 1 and 2. Hence, they are represented in the notation as a
group. There are only three differences between the SAR problems types 3 and 4.
These are the number of warehouses in the factory (W.Number), the number of
objectives to optimise (Objectives) and the number of production plans per each
product (P.Plans).

For the SAR problem type 3 there is a single warehouse, and single objective to
optimise, and multiple production plans; whilst for the SAR problem type 4 there
are multiple warehouses, multiple objectives to optimise, and single production
plans per product. The rest of the variables for the SAR problem 3 and 4 are the
opposite of the SAR problems types 1 and 2. The SAR problem assumptions and
notation are distinguished per each type of SAR problem by their type (i.e. Type
1 and Type 2).

Notation

Assumptions for system variables:

• Space formulation as discrete, shape of objects as square. Thus, zones
(zobject) and shapes (σobject) are simplified to a single value measuring the
side of square objects eobject. Orientation of objects are neglected (αobject).

• Time formulation as discrete. Thus: t ∈ Z+
0 .

• Uncertainty of the system is neglected.

• System control is centralised.

• Environment is fully known (i.e. structured).

• Type 3 There is a single objective to optimise.

• Type 4 There are multiple objectives to optimise.

Assumptions for factory design and operation:

• Type 3 There is a single warehouse in the factory

(W = {w1,��HHw2, ...,((((
((hhhhhhwNwarehouses
}). Thus, the set of warehouses is simplified to

a single warehouse w1.

• Type 4 There are multiple warehouse in the factory

(W = {w1,w2, ...,wNwarehouses
}). Thus, the set of warehouses remains.
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Appendix C. Representation of selected SAR problems

• The warehouse location ((xcent,w(t), ycent,w(t))) changes over time. Thus, the
warehouse location remains as (xcent,w(t), ycent,w(t)).

• There are multiple types of material (ms m
i ) for each shelf h in the warehouses.

Thus, the type of material variable for each shelf remains as ms m
i = mi for

any shelf h.

• Materials loading (µs m
h (rj)(mi)) and unloading times (ηs m

h (rj)(mi)) and
products loading (µs p

h (rk)(ph)) and unloading times (ηs p
h (rj)(pi)) are de-

pendent on the type of robot k and the type of product pi and any type of
material mi related to any product pi. Thus, the materials loading and un-
loading times remain as µs m

h (rk)(mi) and ηs m
h (rk)(mi) respectively, and the

products loading and unloading times remain as µs p
h (rk)(pi) and ηs p

h (rk)(pi)
respectively.

• The materials supplying time (ξs m
h (rk)(mi)) and products picking up time

(ιs p
h (rk)(pi)) depends on the type of robot k and the type of product pi and

type of material mi related to any product pi. Thus, the materials supplying
time and products picking up time remain as ξs m

h (rk)(mi) and ιs p
h (rk)(pi)

respectively.

Factory vector

f = (ef , (xcent,f , ycent,f ),W ,P ,Sp,M,Sm,R,D,Sd))

Type 3 Set of warehouses vector

W = {w1}

Type 4 Set of warehouses vector

W = {w1,w2, ...,wNwarehouses
}

Warehouse vector

w1 = (ew, (xcent,w(t), ycent,w(t)), Sp, Sm)

Material shelf vector

smh = (ms m
h , ξs m

h (rj)(mh), µs m
h (rj)(mh), ηs m

h (rj)(mh), (xcent,s m
h , ycent,s m

h ), es m
h )

Product shelf vector

sph = (ps p
h , ιs p

h (rj)(ph), µs p
h (rj)(ph), ηs p

h (rj)(ph), (xcent,s p
h , ycent,s p

h ), es p
h )
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C.2. SAR problem types 3 and 4

Assumptions for production requirements:

• Products have multiple start times (δstart p
i ). Thus, there is a start time

δstart p
i for each product i.

• Products have multiple deadlines times (δend p
i ). Thus, there is a deadline

time δend p
i for each product i.

• Type 3 There are multiple process plans (i.e. precedences between op-
erations, Π) for each product. Thus, the set of process plans is Πp =
Πo,pi

1 , ...,Πo,pi
Noperations product pi

.

• Type 4 There is a single process plan (Π) for each product. Thus, the set
of process plans is Πp = {πo,pi

1 }.

• Operations processing times (τ o,pij (rk)) depend on the robot k. Thus, the
processing time variable remains τ o,pij (rk) where i is the type of product and
j is the required operation.

Product requirements vector

pi = (ωp
i , δ

start p
i , δend p

i , (Mp
i , Q

p
i ), O

p
i ,Π

p
i )

Operation vector for product pi

opi
j = (co,pij , (So,pi

j , Qo,pi
j ), τ o,pij (rk)

Type 3 Multiple sets of precedences between operations of each product pi

Πp = Πo,pi
1 , ...,Πo,pi

Noperations product pi

Type 4 Single set of precedences between operations of product pi

Πp
1 = πo,pi

1 , ..., πo,pi
Noperations product pi

Assumptions for manufacturing resources:

• Maximal number of carried tools Dr
k is unequal for all robots, where Dr

k =
{d1, d2, ..., djtools}. Thus, the maximal number of carried tools djtools is un-
equal for all set of tools Dr

k(t) of all robots.

• Type of wheels configuration (lrk) is mixed for all robots. Thus, the wheels
configuration variable remains as lrk.
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• Maximal battery duration (βr
k(t)) is heterogeneous for all robots. Thus, the

maximal battery duration remains as βr
k(t).

• Maximal arm robot payload (γr,armk ) is heterogeneous for all robots. Thus,
the maximal arm robot payload remains as γr,armk .

• Robots have equal area size (erk). Thus, the side size is simplified to er

• Tool setup times (χd
ktools

) and removal times (ζdktools) are unequal for all robots.
Thus, the two variables remain as follows: χd

ktools
and ζdktools .

Robot vector

rk = (lrk, κ
r
k, e

r, vr,max, ψr,max, γr,armk , γr,platform, βr
k, ς

r
k(t), βr

k(t), Dr
k,

(xcent,rk (t), ycent,rk (t)), vrk(t), ψr
k(t))

Tool vector

dktools = (cdktools , χ
d
ktools

, ζdktools ,M
d
ktools

)
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