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Abstract	
	

A	 cancerized	 field	 is	 an	 area	 of	 abnormal	 tissue	 in	 the	 vicinity	 of	 a	 cancer	 but	

appearing	 to	 be	macroscopically	 normal.	 Identification	 of	 these	 has	 important	

clinical	 implications	 as	 abnormal	 tissues	 could	 be	 left	 in	 situ	 following	

polypectomy	or	surgical	resection,	leading	to	neoplastic	recurrence	in	the	same	

area.	 	 Up	 to	 60%	 of	 patients	 develop	 metachronous	 adenomas	 following	

adenoma	excision,	the	observed	high	rate	of	metachronous	adenoma	formation	

could	be	due	to	field	changes	analogous	to	cancerized	fields	around	an	adenoma.		

Keratins	are	important	regulators	of	colonocyte	physiology	and	their	regulatory	

role	 is,	 in	 part,	 influenced	 by	 post-translational	 modifications	 and	 butyrate	

exposure.	 Butyrate	 has	 been	 shown	 to	 have	 a	 protective	 effect	 in	 the	 colon	 to	

prevent	 colorectal	 carcinoma.	 Alterations	 in	 keratin	 levels	 have	 been	 shown	

between	the	cancerized	field	and	normal	tissue.	The	investigation	of	keratins	as	a	

marker	 for	 a	 cancerized	 field	 and	 how	 they	 are	 influenced	 by	 butyrate	 may	

provide	 clues	 in	 the	 prevention	 of	 and	 treatment	 of	 adenomagenesis	 and	 the	

early	stages	of	carcinogenesis.			

	

This	 thesis	 examines	 the	 involvement	 of	 keratins	 in	 adenoma	 fields	 and	 their	

response	 to	butyrate	 exposure;	 the	 available	 evidence	 for	 these	 associations	 is	

reviewed.		
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										SF	 Splenic	flexure	
										D	 Descending	colon	
										S	 Sigmoid	
										RSJ	 Rectosigmoid	junction	
										R	 Rectum	
CPG	 Cytosine	and	guanine	joined	by	phosphodiester	bond	
DNA	 Deoxyribonucleic	acid	
EDTA	 Ethylenediaminetetraacetic	acid	
EMR	 Endoscopic	mucosal	resection	
ESD	 Endoscopic	submucosal	dissection	
FAP	 Familial	adenomatous	polyposis	
Gal-GalNAc	 D	galactose-beta-[1-->3]-N-acetyl-D-galactosamine	
GuHCl	 Guanidine	hydrochloride	
HAD	 High	butyrate	adenoma	
HCO	 High	butyrate	contralateral	
HDACS	 Histone	deacetylases	
HDB	 High	detergent	buffer	
HMS	 High	butyrate	mid-sigmoid	
HN	 High	butyrate	normal	
HNPCC	 Hereditary	non-polyposis	colorectal	cancer	
HPLC	 High	performance	liquid	chromatography	
ICAT	 Isotope	coded	affinity	tag	
IF	 Intermediate	filaments/intermediate	sized	filaments	
IHC	 Immunohistochemistry	
iTRAQ	 Isobaric	tags	for	relative	and	absolute	quantitation	
K18	 Keratin	18	
K19	 Keratin	19	
K8	 Keratin	8	
KRAS	 Kirsten	Ras	oncogene	
LAD	 Low	butyrate	adenoma	
LC-MS/MS	 Liquid	chromatography	coupled	with	tandem	mass	spectrometry	
LCO	 Low	butyrate	contralateral	
LDB	 Low	detergent	buffer	
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LMS	 Low	butyrate	mid-sigmoid	
LN	 Low	butyrate	normal	
MGMT	 O6-methylguanine-DNA	methyltransferase	
MMTS	 Methyl	methanethiosulfonate	
MS	 Mid-sigmoid	
NRP-1	 Neuropilin-1	
PBS	 Phosphate	buffered	saline	
PK	 Proteinase	K	
PKC	 Protein	kinase	C	
PS23	 Phosphorylation	at	serine	residue	23	
PS431	 Phosphorylation	at	serine	residue	431	
PS73	 Phosphorylation	at	serine	residue	73	
PTM	 Post-translational	modification	
R0	 Index	colonoscopy	
R1	 Repeat	colonoscopy	1	
R2	 Repeat	colonoscopy	2	
R3	 Repeat	colonoscopy	3	
R4	 Repeat	colonoscopy	4	
R5	 Repeat	colonoscopy	5	
SC	 Sodium	citrate	
SCFA	 Short	chain	fatty	acid	
SCX	 Strong	cation	exchange	
SD	 Standard	deviation	
SFRP	 Secreted	frizzled-related	proteins	
SILAC	 Stable	isotope	labelling	by	amino	acids	in	cell	culture	
SOP	 Standard	operating	procedure	
SNOMED	 Systematized	Nomenclature	of	Medicine	
STH	 Sheffield	Teaching	Hospitals	
SUMO	 Small	ubiquitin-like	modifier	
TBS	 Tris	buffered	saline	
TBST	 Tris	buffered	saline	with	tween	
TCEP	 Tris-(2-carboxyethyl)phosphine	
TEAB	 Triethylammonium	bicarbonate	buffer	
TNF	 Tumour	necrosis	factor	
VEGF	 Vascular	endothelial	growth	factor	
WHO	 World	health	organisation	
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Chapter	1	Literature	review	
	
This	 literature	 review	 defines	 the	 pathogenesis	 of	 colorectal	 adenomas	 as	 a	

precursor	 to	 colorectal	 cancer	 and	 describes	 the	 current	 evidence	 for	 field	

cancerization.	 This	 thesis	 examines	 the	 involvement	 of	 keratins	 in	 adenoma	

fields	and	their	response	to	butyrate	exposure;	the	available	evidence	for	these	

associations	is	reviewed.		

	

1.1	The	History	of	Adenomatous	polyps	
	
Adenomatous	polyps	are	benign	tumours	widely	recognised	as	the	precursor	to	

colorectal	 cancer	 (Neugut	 et	 al.	 1993),	 evidenced	 by	 pathological,	 clinical	 and	

epidemiological	observations.	Synchronous	 (two	or	more	 tumours	occurring	at	

the	 same	 time)	 adenomatous	 polyps	 are	 found	 in	 27%	 of	 colorectal	 cancer	

resection	specimens	(Carlsson	et	al.,	1987).	Removal	of	adenomas	is	associated	

with	 a	 lowered	 risk	 of	 colorectal	 cancer	 (Winawer	 et	 al.,	 1993).	 Familial	

adenomatous	polyposis	(FAP)	is	an	inherited	disorder	of	the	bowel	characterised	

by	hundreds	of	 adenomatous	 colorectal	polyps.	The	 lifetime	 risk	of	developing	

colon	 cancer	 in	 patients	with	 FAP,	without	 intervention	 is	 100%	 (Hampel	 and	

Peltomaki,	 2000).	 For	 these	 reasons	 treatment	 of	 adenomas	 and	 halting	 their	

progression	 are	 important	 approaches	 in	 the	 prevention	 of	 colorectal	 cancer.	

Despite	 treatment,	 patients	 have	 a	 high	 chance	 of	 forming	 further	 adenomas,	

even	after	removal.	Adenomas	that	form	at	two	different	time	points	in	the	same	

patient	are	 termed	metachronous	adenomas.	Current	data	shows	up	 to	59%	of	

patients	 develop	 metachronous	 adenomatous	 polyps	 following	 removal	 of	 a	

previous	 polyp	 (Nava	 et	 al.,	 1987)	 compared	 to	 16%	 of	 patients	 with	 no	

abnormality	 at	 index	 colonoscopy	 (Neugut	 et	 al.,	 1995).	 	 The	 metachronous	

incidence	rate	suggests	the	presence	of	one	adenoma	can	influence	the	formation	

of	 another.	 This	 theory	 is	 supported	 by	 numerous	 studies	 indicating	 the	

multiplicity	of	adenomas	at	baseline	examination	 to	be	a	powerful	predictor	of	

recurrence	(Martinez	et	al.,	2001,	Bonithon-Kopp	et	al.,	2004,	Noshirwani	et	al.,	

2000).	 Adenoma	 size	 greater	 than	 1cm	 is	 also	 a	 strong	 predictor	 of	 both	

recurrence	(Winawer	et	al.,	1993b)	and	malignant	potential	(Otchy	et	al.,	1996).	
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Other	 studies	 have	 highlighted	 higher	 metachronous	 rates	 where	 index	

adenomas	 were	 proximally	 located	 within	 the	 colon	 (Martinez	 et	 al.,	 2001,	

Bonithon-Kopp	et	al.,	2004).	The	authors	(Martinez	et	al.,	2001,	Bonithon-Kopp	

et	al.,	2004)	define	the	proximal	colon	as	transverse	colon	up	to	the	caecum	and	

the	distal	colon	as	from	the	rectum	to	the	splenic	flexure.	

	

1.1.1	Origins	of	the	Adenoma		
	
	
Lining	 the	 human	 colon	 is	 a	 sheet	 of	 columnar	 epithelial	 cells,	 periodically	

invaginating	 to	 form	 crypts.	 There	 are	millions	 of	 crypts	within	 the	 colon	 and	

within	those	crypts	are	stem	cells,	capable	of	regenerating	all	intestinal	cell	types	

(Humphries	 and	Wright,	 2008).	 Differentiated	 cells	 produced	 by	 the	 stem	 cell	

migrate	towards	the	surface	of	the	crypt	and	are	shed	into	the	lumen.		The	rapid	

replacement	 of	 colonic	 epithelium	 means	 differentiating	 cells	 are	 replenished	

every	few	days	and	do	not	have	time	to	accumulate	the	multiple	genetic	defects	

required	 for	 malignant	 transformation	 during	 their	 short	 lifespan.	 Therefore,	

only	mutations	 acquired	within	 the	 stem	 cell	 population	would	 be	maintained	

(Cairns,	 1975).	 A	 stem	 cell	 that	 has	 acquired	 a	 mutation	 can	 establish	 a	

monocryptal	 clone	 via	 niche	 succession;	 the	 mechanisms	 by	 which	 this	 is	

achieved	 have	 been	 outlined	 by	 Leedham	 and	 Wright	 (Leedham	 and	 Wright,	

2008).	Crypts	composed	of	mutated	cells	expand	by	crypt	fission	(Greaves	et	al.,	

2006)	 may	 lead	 to	 a	 patch	 of	 monoclonal	 related	 mutated	 crypts	 within	 the	

epithelium	(a	cancerized	field)	(Figure	1).		
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1.1.1	Origins	of	the	adenoma	
	

	
	

	

	
Figure	1.	Formation	of	monoclonal	crypts.	

A	monoclonal	field	is	formed	when	a	stem	cell	acquires	a	mutation	(yellow	arrow)	(a),	dysplastic	

cells	 then	 colonise	 a	 crypt	 (b).	 Once	 the	 crypt	 has	 been	 replaced	 by	 dysplastic	 cells	 the	 crypt	

undergoes	 crypt	 fission	 to	 form	 two	 monoclonal	 crypts	 (c).	 The	 fission	 pattern	 continues	 to	

produce	many	monoclonal	crypts	surrounded	by	normal	cells	(d).	
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1.1.1 Origins	of	the	adenoma	

	
If	a	whole	crypt	is	colonised	by	dysplastic	cells,	the	earliest	detectable	precursor	

lesion	of	 tumour:	a	monocryptal	adenoma,	 is	seen	(Nakamura	and	Kino,	1984).	

Monocryptal	adenomas	can	only	be	seen	on	histological	examination,	where	the	

adenoma	cells	of	the	crypt	are	seen	to	be	different	to	normal	cells.	The	manner	in	

which	 a	 monocryptal	 adenoma	 develops	 is	 a	 controversial	 subject.	 Two	

mechanisms	have	been	proposed:		

	

1. where	dysplastic	cells	spill	over	the	top	of	the	crypt	and	colonise	adjacent	

crypts	(the	top-down	theory)	(Shih	et	al.,	2001)	(Figure	2)	

2. fission	of	monocryptal	adenomas	(the	bottom-up	theory)	 to	 form	a	 field	

(Preston	et	al.,	2003).	(Figures	1	and	3)	

	
Figure	2.	‘Top-down’	theory	for	crypt	colonisation.	

A	 normal	 cell	 becomes	 dysplastic	 (yellow	 arrow)	 and	 colonises	 the	 crypt	 from	 a	 ‘top-down’	

fashion.	
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1.1.1	Origins	of	the	adenoma	

	
	
Figure	3.	‘Bottom-up’	theory	for	crypt	colonisation.	

A	 stem	 cell	 becomes	 dysplastic	 (yellow	 arrow)	 the	 mutation	 is	 maintained	 and	 colonises	 the	

crypt	from	the	‘bottom-up’.		

	

An	 expanding	 lesion	 of	 dysplastic	 crypts	 (by	 either	 of	 the	 two	 mechanisms	

described	above)	requires	interaction	with	a	second	lesion	of	dysplastic	crypts	to	

form	a	macroscopic	polyclonal	adenoma.			
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1.1.2	Adenoma-Carcinogenesis	model	
	

A	 genetic	 model	 for	 the	 progression	 of	 cancer	 from	 adenomatous	 polyps	 was	

proposed	in	1988	(Vogelstein	et	al.,	1988).		

	

	
Figure	4.	Genetic	Carcinogenesis	Model	

	

Adenomatous	 polyposis	 coli	 (APC)	 mutation	 is	 an	 early	 event	 in	 colorectal	

adenomagenesis,	sufficient	for	colorectal	adenomas	to	grow	to	1cm	in	diameter	

(Lamlum	 et	 al.,	 2000).	 In	 the	 absence	 of	 functional	 APC,	 beta	 catenin	 (an	

oncoprotein)	 accumulates	 and	 WNT	 signalling	 is	 inappropriately	 activated.	

Aberrant	 WNT	 pathway	 signalling	 is	 an	 early	 progression	 event	 in	 the	

development	 of	 90%	 of	 colorectal	 cancers	 (Fodde	 et	 al.,	 2001).	 It	 has	 been	

proposed	 that	 Kirsten	 Ras	 (KRAS)	 oncogene	 mutation,	 next	 in	 the	 sequence,	

occurs	in	one	cell	of	the	small	adenoma	and	through	clonal	expansion	produces	a	

larger	 and	 more	 dysplastic	 tumour.	 Subsequent	 genetic	 alterations	 produce	

advancing	 dysplasia	 until	 carcinoma	 formation	 (Fearon	 and	 Vogelstein,	 1990).	

Although	a	series	of	sequential	genetic	changes	has	been	suggested,	the	authors	

recognise	 that	 the	 specific	 order	 of	 genetic	 changes	 may	 not	 be	 important	 in	

tumour	 progression.	 For	 these	 reasons	 it	 has	 been	 argued	 that	 the	 multistep	

model	 is	 flawed,	 as	 the	 progression-related	 genetic	 changes	 are	 inconsistent	

(Feinberg	et	 al.,	 2006).	Feinburg	et	 al.,	 (2006)	also	highlight	 that	many	studies	

have	linked	specific	changes	in	gene	expression	but	with	no	underlying	mutation	

to	account	for	the	expression	of	changes.		

	

The	 multistep	 carcinogenesis	 model	 does	 not	 address	 the	 latency	 of	 tumour	

progression.	The	prevalence	of	 adenomatous	polyps	 at	 50	 years	 of	 age	 is	 30%	
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increasing	to	50%	and	65%	at	60	years	and	70	years	respectively	(Bond,	2000).	

If	it	takes	decades	to	acquire	a	mutation	to	form	a	benign	adenoma	then	it	would	

be	 reasonable	 to	 assume	 it	would	 take	 just	 as	 long	 to	 acquire	 the	next	 genetic	

mutation	to	continue	the	sequence.	This	assumption	is	based	on	the	observation	

that	rate	of	point	mutation	does	not	seem	to	be	increased	in	colorectal	cancer	in	

comparison	to	normal	tissue	(Wang	et	al.,	2002).	

	

It	 is	 increasingly	 clear	 that	 genetic	 alterations	 are	 not	 the	 only	mechanism	 by	

which	 adenomas	 arise.	 The	 advancement	 in	 molecular	 technologies,	 more	

recently,	 has	 explored	 the	 concept	 of	 field	 effect	 through	 identification	 of	

molecular	 abnormalities	 in	 tissues	 that	 appear	 histologically	 normal.	 Due	 to	

these	 developments,	 alternative	 pathways	 to	 neoplasia	 that	 include	molecular	

abnormalities	and	modified	epigenetic	changes	have	been	hypothesized	(Polley	

et	al.,	2006).	Identification	of	such	molecular	differences	is	important	since	they	

give	 insight	 into	 the	early	stages	of	carcinogenesis	and	may	act	as	a	biomarker	

for	early	cancer	detection	and	thus	prevention.		
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1.2	Field	effects	–	Theory	and	Definitions		
	
A	 field	 is	 defined	 as	 an	 area	 of	macroscopically	 normal	 tissue,	which	precedes	

and	predisposes	to	the	development	of	a	cancer	(Bernstein	et	al.,	2008).	A	field	

effect	 is	the	persistence	of	an	abnormal	field	following	resection	of	a	cancerous	

lesion.	Since	 the	 field	effects	concept	was	 introduced	 in	1953	 its	 interpretation	

has	 evolved	 into	 the	 growth	 of	 a	 mutant	 clone	 to	 produce	 a	 field	 of	 cells	

predisposed	 to	 subsequent	 tumour	 growth	 (Braakhuis	 et	 al.,	 2003).	 More	

recently,	a	modification	of	the	definition	has	been	proposed	 ‘	a	preconditioning	

of	 an	 area	 of	 epithelium	 to	 tumour	 growth	 either	 as	 a	 result	 of	 a	 clonal	

proliferation	 or	 because	 of	 consistent	 changes	 to	 cells	 in	 the	 stromal	

compartment’	 (Graham	 et	 al.,	 2011).	 What	 remains	 consistent	 is	 that	 the	

histological	appearance	of	 the	pre-neoplastic	 field	may	be	normal,	hyperplastic	

or	dysplastic.	

	

Field	effects	have	important	clinical	implications	as:	

i. they	give	insight	into	the	early	stages	of	cancer	progression		

ii. these	 fields	 may	 remain,	 following	 surgical	 resection	 of	 the	 primary	

tumour,	giving	rise	to	second	primary	tumours	or	local	recurrence.		

	

Recently,	proteomic	techniques	have	demonstrated	that	morphologically	normal	

tissues	 around	 colorectal	 cancers	 and	 adenomas	 have	 acquired	 molecular	

abnormalities,	 particularly	 in	 keratin	 expression	 (Polley	 et	 al.,	 2006).	 The	

histologically	 normal	 looking	 tissue	 surrounding	 pathological	 tissue	 has	 been	

termed	 field	 cancerization,	 field	 defect	 or	 field	 effect	 by	 different	 research	

groups.		

	

The	 study	 of	 cancer	 field	 effects	 is	 well	 established	 in	 head	 and	 neck	 cancer	

(Braakhuis	 et	 al.,	 2003).	 Other	 organ	 systems	 that	 have	 been	 studied	 include	

oesophagus,	 stomach,	 lung,	 skin,	 bladder	 and	 colon.	 These	 organs	 all	 contain	

epithelial	 cells	 whose	 physiological	 role	 is	 to	 protect	 that	 organ	 from	

environmental	 insult.	 It	 is	 thought	 exposure	 of	 carcinogens	 to	 these	 mucosal	
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membranes	causes	damage	to	epithelial	cells	which	proliferate	to	form	a	field	of	

genetically	altered	cells	(Dakubo	et	al.,	2007).	

1.2.1	 Difficulties	 in	 Investigating	 Field	 Effect	 changes	 in	 Colorectal	
Cancer	
	
Colorectal	cancer	is	the	third	most	common	cancer	in	the	United	Kingdom	with	

35000	 new	 cases	 diagnosed	 each	 year	 (Cairns	 et	 al.,	 2010).	 The	 capability	 to	

detect	potential	cancer	risk	and	prevent	progression	would	be	very	valuable	 in	

this	prevalent	disease.	Despite	its	frequency,	there	is	a	paucity	of	information	in	

field	 effects	 surrounding	 colorectal	 cancer	 in	 relation	 to	 other	 organ	 systems.	

There	 are	 a	 number	 of	 reasons	 for	 this	 observation.	 Field	 effects	 were	 first	

reported	in	head	and	neck	cancer	and	have	therefore	undergone	a	longer	period	

of	 recognition	 and	 investigation.	 It	 is	well	 known	 that	wide	 resection	 of	 rectal	

cancers	 is	 required	 to	 reduce	 local	 recurrence	 rates	 (Enker	 et	 al.,	 1979).	 It	 is	

possible	that	routine	wide	excisions	of	colorectal	cancers	have	also	removed	the		

‘field’	and	thus	a	 lower	 local	recurrence	rate	 is	seen.	Anatomical	restrictions	 in	

head	and	neck	cancers	prevent	radical	resections	and	thus	pre-neoplastic	fields	

can	be	left	behind.	

	

Other	 organs	 that	 have	 received	 more	 attention	 in	 field	 effect	 investigation	

include	 the	 oropharynx	 and	 oesophagus.	 A	 possible	 explanation	 of	 this	 is	 the	

recognition	of	their	specific	carcinogens	and	site	of	exposure.	Betel	nut	chewing	

can	 lead	 to	 oral	 cancer	 presenting	 as	 an	 ulceroproliferative	 area.	 The	 site	 of	

cancer	 and	 surrounding	 field	 can	 be	 easily	 recognised.	 A	 similar	 explanation	

applies	 to	 the	 oesophagus	 where	 acid	 reflux	 and	 Barrett’s	 metaplasia	 can	 be	

easily	identified	and	investigated.	Within	the	colon	inherent	difficulties	exist	that	

hamper	 the	 investigation	 of	 field	 effects.	 	 There	 is	 no	 specific	 carcinogen	

exposure	site	and	 the	marker	of	mucosal	 change	 (adenomatous	polyps)	do	not	

always	progress	to	cancer.	 It	has	been	estimated	that	90%	of	adenomas	do	not	

progress	 to	 become	 cancerous	 (Levine	 and	 Ahnen,	 2006).	 Current	 guidance	 is	

that	 all	 polyps	 should	 be	 removed	 unless	 obviously	 non-	 neoplastic	 and	 only	

polyps	that	are	greater	than	1cm	in	size	should	be	tattooed	if	they	are	unable	to	

be	 removed	 endoscopically	 (Zafar	 et	 al.,	 2012).	 As	 most	 polyps	 (potential	
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adenomas)	 are	 removed	 during	 incident	 colonoscopy	 revisiting	 the	 field	

becomes	 impossible	unless	 the	area	was	 tattooed.	The	 tortuosity	and	 length	of	

the	 colon	 coupled	 with	 variation	 in	 anatomy	 makes	 it	 difficult	 for	 the	

endoscopist	 to	 know	 the	 exact	 location	 of	 the	 endoscope,	 which	 adds	 to	 the	

difficulty	in	revisiting	the	field.	

	

The	 field	 effect	 theory	 should	 only	 be	 investigated	 in	 the	 absence	 of	 known	

germline	 mutations	 otherwise	 all	 the	 tissues	 of	 that	 individual	 would	 be	

regarded	as	the	predisposed	field.	In	colorectal	cancer	there	are	several	known	

hereditary	 syndromes,	 the	 two	 commonest	 being	 familial	 adenomatous	

polyposis	(FAP)	which	makes	up	1%	of	colorectal	cancer	presentations	(Kinzler	

and	Vogelstein,	1996)	and	hereditary	non-polyposis	colorectal	 cancer	 (HNPCC)	

which	makes	up	6%	(Vasen	et	al.,	1991).	Due	to	 these	reasons,	more	 focus	has	

been	 placed	 on	 the	 hereditability	 of	 colorectal	 cancer	 and	 known	 genetic	

mutations	 rather	 than	 the	 molecular	 differences	 that	 have	 recently	 been	

discovered.	 The	 acquisition	 of	 such	 genetic	 changes,	 however,	 may	 be	 late	

changes	 in	 the	 disease	 process,	 which	 will	 be	 missed	 when	 studying	 the	

precancerous	field.	

	

Another	 reason	 for	 slow	progression	 in	 colon	 cancer	 field	 investigation	 is	 that	

many	 studies	 have	 been	 comparing	 cancer	 tissue	 and	 using	 the	 surrounding	

normal	looking	tissue	as	a	control,	assuming	that	is	has	no	changes.	As	a	result,	

those	 studies	 have	 been	 unable	 to	 compare	 differences	 and	 draw	 conclusions	

from	them.	

	

	1.2.2	Colorectal	Field	Effects	and	Clinical	Applications	
	

The	 current	 treatment	 for	 adenomatous	 polyps	 is	 endoscopic	 removal	 via	

colonoscopy.	 	 The	 recommendation	 for	 this	 comes	 from	 epidemiological	

observations	 that	 most	 colonic	 cancers	 are	 preceded	 by	 premalignant	

adenomatous	 polyps,	 therefore	 colonoscopic	 detection	 and	 polypectomy	

provides	an	opportunity	for	cancer	prevention	(Atkin	et	al.,	2002).		However	up	

to	 60%	 of	 patients	 develop	 new	 adenomas	 (metachronous	 occurrence)	 after	
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polyp	 removal.	 It	 is	 unknown	 why	 metachronous	 adenomas	 occur	 but	

development	of	further	adenomas	after	polypectomy	suggests	a	field,	from	which	

they	arise,	may	have	been	left	behind.	Addressing	a	polyp	without	treating	a	field	

may	be	inadequate	in	cancer	prevention.	

	

There	 is	 a	paucity	of	 literature	 regarding	 field	effects	 around	colorectal	 polyps	

and	cancer.	This	may	be	due	 to	 the	existence	and	wide	acceptance	of	a	known	

model	 for	 colorectal	 carcinogenesis	 and	 heavy	 reliance	 on	 identification	 of	

genetic	mutations.	However	the	changes	of	field	effects	may	be	more	subtle	than	

the	theories	investigated	so	far.	

	

It	is	also	unknown	where	metachronous	adenomas	occur	in	the	colon,	in	relation	

to	 a	 previously	 removed	 adenoma.	 This	 is,	 however,	 an	 important	 area	 of	

investigation	since	identification	of	locations	of	metachronous	occurrences	could	

help	define	how	and	why	adenomas	arise.	If	metachronous	adenomas	are	found	

to	appear	in	the	same	location	this	would	strongly	support	the	theory	that	pre-

neoplastic	fields	are	left	behind	following	polypectomy.			

	

The	 national	 polyp	 study	 found	 a	 70-90%	 reduction	 in	 expected	 incidence	 of	

colorectal	 cancer	 in	 patients	 undergoing	 colonoscopy	 surveillance	 than	 a	

reference	population	(Winawer	et	al.,	1993a).		This	study	provides	evidence	that	

continued	surveillance	in	patients	who	have	had	adenomas	previously	removed	

is	necessary.	However,	colonoscopy	and	polypectomy	is	not	without	risk	with	up	

to	2.7%	reported	risk	of	major	haemorrhage	(Atkin	et	al.,	2002).	Other	problems	

associated	with	colonoscopy	include	patient	discomfort,	bowel	preparation	and	

the	 potential	 of	 missed	 polyps.	 There	 are	 also	 financial	 implications	 for	

continued	surveillance,	together	with	inconvenience	and	continued	invasive	risk	

to	the	patient.		

	

The	study	and	identification	of	field	effects	can	potentially	prevent	the	need	for	

colonoscopy	and	 its	associated	complications.	 	 If	 field	effects	around	adenomas	

are	 identified	 then	 continued	 colonoscopies	 and	 polypectomies	 alone	may	 not	

prevent	the	 long	term	risk	of	cancer.	This	 is	especially	 important	 in	the	case	of	
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large	 adenomas	 where	 many	 are	 removed	 by	 endoscopic	 mucosal	 resection	

(EMR)	 and	 more	 recently	 endoscopic	 submucosal	 dissection	 (ESD).	 EMR	 and	

ESD	 carry	 risks	 of	 perforation	 (1.3%,	 4.9%)	 (Holt	 and	 Bourke,	 2012)	 and	

bleeding	 (9.5%,	 7%)	 (Basford	 et	 al.,	 2014)	 respectively.	 	 	 The	 reported	 risk	 of	

recurrence	for	EMR	is	(15.4%)	and	for	ESD	(1.2%)	(Tajika	et	al.,	2011),	therefore	

adenomas	 surrounded	 by	 field	 defects	may	 require	wider	 colonic	 resection	 to	

prevent	 recurrence	 and	 subsequent	 cancer.	 The	 authors	 conclude	 that	 strict	

colonic	surveillance	is	required	to	manage	recurrence	after	EMR.	This	approach	

confers	 large	 financial	and	 time	 implications	not	 to	mention	risk	 to	 the	patient	

and	a	risk	of	missed	polyps.	Identification	of	field	effects	can	allow	diagnosis	and	

follow	up	 to	be	 tailored	 to	 a	patient’s	 clinical	 and	pathological	need.	 Identified	

fields	 may	 have	 to	 undergo	 careful	 examination	 or	 radical	 resection.	 Despite	

adequate	 histological	 clearance	 margins	 the	 remaining	 field	 tissue	 has	 an	

increased	 risk	 of	 developing	 multiple	 independent	 (synchronous	 or	

metachronous)	cancers.		

	

Understanding	 field	 effects	 is	 an	 important	 approach	 to	 cancer	 treatment.	 Our	

current	practice	may	be	inadequate	in	the	treatment	and	prevention	of	cancer	if	

precancerous	fields	are	 left	behind.	Research	into	whether	fields	exist	and	how	

they	are	formed	could	allow	the	prevention	of	cancer	in	the	earliest	stages.	
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1.3	Evidence	for	field	cancerization	
	

The	 concept	 of	 field	 effects	 and	 cancerization	 has	 been	 investigated	 in	 many	

approaches;	 current	 studies	 involving	 epigenetics,	 protein	 events,	 clonality	

studies	and	adenoma	progression	will	be	covered	in	this	section.	

	

1.3.1	Epigenetic	evidence	
	
Epigenetic	 inheritance	 is	 defined	 as	 cellular	 information,	 other	 than	 the	 DNA	

sequence	itself,	that	is	heritable	during	cell	division	(Feinberg	and	Tycko,	2004).	

Pathological	 epigenetic	 changes	 can	 lead	 to	 aberrant	 activation	 of	 growth-

promoting	genes	and	aberrant	silencing	of	 tumour	suppressor	genes	 (Feinberg	

and	 Tycko,	 2004).	 Feinburg	 and	 Vogelstein	 (1983)	 report	 global	 epigenetic	

changes	 preceding	 the	 initial	 mutations	 in	 cancer.	 DNA	 methylation	 (a	

recognised	 type	 of	 epigenetic	 alteration	 implicated	 in	 gene	 disruption)	 is	

observed	to	be	altered	in	a	range	of	tumours	examined	(Feinberg	and	Vogelstein,	

1983).	 Feinberg	 et	 al.,	 (2006)	 later	 proposed	 these	 hypomethylation	 changes	

must	precede	 the	earliest	genetic	alterations	as	 they	are	always	 found,	even	 in	

benign	 neoplasms	 (Feinberg	 et	 al.,	 2006).	 Unlike	 genetic	 changes	 such	 as	

mutations	and	chromosomal	rearrangements,	epigenetic	changes	are	reversible.		

Previous	research	efforts	have	been	based	on	DNA	sequencing	which	will	miss	

important	epigenetic	changes.	Examination	of	the	epigenome	at	a	molecular	level	

has	 identified	 similar	 properties	 between	 apparently	 normal	 field	 tissue	 and	

pathological	tissue.	

	

1.3.1.1	DNA	methylation	studies	
	
Ahuja	et	al.,	(1998)	studied	the	association	between	aging	and	DNA	methylation	

of	 promoter	 associated	 CpG	 islands.	 CpG	 islands	 are	 genomic	 regions	 rich	 in	

dinucleotides	(Cytosine	and	Guanine	joined	by	a	phosphodiester	bond)	(Ahuja	et	

al.,	 1998).	 Earlier	 work	 by	 the	 same	 group	 identified	 hypermethylation	 in	

promoter	 CpG	 islands	 in	 all	 colonic	 neoplasms	 that	 were	 studied	 (Issa	 et	 al.,	
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1994).	 The	 authors	 found	 significant	 similarities	 in	 N33	 gene	 methylation	

intensity	between	 field	 and	 cancer	 tissue	 in	 comparison	 to	normal	 tissue	 from	

disease	free	patients.	Macroscopically	normal	field	tissue	and	cancer	tissue	had	

significantly	 higher	N33	methylation	 intensities	 than	 tissue	 from	patients	with	

no	colorectal	cancer	(Ahuja	et	al.,	1998).		

	

The	 DNA	 repair	 gene	 O6-methylguanine-DNA	 methyltransferase	 (MGMT)	 is	

frequently	methylated	in	colorectal	cancer	(Shen	et	al.,	2005).	Shen	et	al.,	(2005)	

found	 similar	 MGMT	 promoter	 methylation	 patterns	 in	 cancer	 tissue	 and	

morphologically	normal	cancer	adjacent	tissue	when	compared	to	normal	tissue.	

Furthermore,	 the	 degree	 of	 methylation	 in	 cancer	 adjacent	 tissue	 was	

proportional	 to	 the	 proximity	 to	 the	 cancer	 and	 was	 not	 associated	 with	 any	

tumour	DNA	or	the	paired	normal	mucosa	(Shen	et	al.,	2005).		

	

1.3.1.2	Epigenetic	inactivation	of	secreted	frizzled-related	proteins	(SFRP)	

	

Secreted	 frizzled-related	proteins	 (SFRPs)	can	 inhibit	WNT	receptor	binding	 to	

prevent	WNT	 pathway	 signalling	 (Finch	 et	 al.,	 1997).	 Aberrant	WNT	 pathway	

signalling	is	an	early	progression	event	in	the	development	of	90%	of	colorectal	

cancers	 (Fodde	 et	 al.,	 2001).	 SFRP	 expression	 is	 silenced	when	 the	 genes	 that	

encode	for	them	are	hypermethylated.	To	link	these	findings	Suzuki	et	al.,	(2004)	

studied	the	consequences	of	epigenetic	inactivation	of	SFRP	genes	(Suzuki	et	al.,	

2004).	 Using	 HCT116	 colorectal	 cancer	 cell	 lines	 in	 which	 the	 DNA	

methyltransferase	genes	are	disrupted	and	the	silencing	of	SFRPs	reversed,	the	

authors	 found	no	methylation	 in	 the	peripheral	blood	 lymphocytes	and	normal	

colon	tissue	of	healthy	individuals	but	in	individuals	with	colorectal	cancer	found	

dense	 hypermethylation	 in	 both	 tumour	 tissue	 and	 apparently	 normal	mucosa	

from	the	same	patients.		The	same	authors	also	reported	SFRP	methylation	in	11	

out	of	15	samples	in	abberrant	crypt	foci	(ACF),	an	early	mucosal	change	which	

usually	lack	APC	mutations,	thus	emphasizing	the	presence	of	epigenetic	changes	

in	 fields	 during	 very	 early	 carcinogenesis	 and	demonstrating	 that	 it	may	 often	

precede	genetic	changes.		
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1.3.2	Protein	expression	and	early	tissue	events	
	

Beyond	 the	 histological	 and	 molecular	 levels,	 fields	 around	 colorectal	 cancer	

have	 been	 found	 to	 express	 altered	 proteins	 when	 compared	 with	 non-

pathological	 tissue	and	display	more	comparable	 tissue	properties	with	 cancer	

than	normal	and	distant	mucosa.		

	

1.3.2.1	Expression	of	carcinoembryonic	antigen	(CEA)	

	

Carcinoembryonic	 antigen	 (CEA)	 is	 a	 glycoprotein	 that	 is	 used	 as	 a	 serological	

tumour	 marker	 for	 colorectal	 cancer	 and	 is	 also	 found	 in	 colon	 cancer	 tissue	

extracts	 (Gold	 and	 Freedman,	 1965).	 One	 study	 evaluated	 the	 use	 of	 CEA	

expression	as	a	marker	of	 field	defect	and	 to	map	 its	 topography	 in	relation	 to	

colorectal	carcinoma	(Jothy	et	al.,	1996).	Jothy	et	al.,	(1996)	studied	14	patients	

with	colorectal	adenocarcinoma	by	sampling	5	biopsies	from	each	patient:	one	of	

the	carcinoma	and	then	four	other	morphologically	normal	biopsies	at	increasing	

distances	 from	 the	 tumour	 (adjacent,	 1cm,	 5cm	 and	 7-10cm).	 	 Using	

immunohistochemistry	 (IHC)	 to	 detect	 expression	 of	 CEA	 protein,	 the	 authors	

demonstrated	 statistically	 significant	 reduction	 of	 staining	 intensities	 at	

increasing	 distances	 from	 the	 tumour.	 These	 results	 demonstrate	 a	 field	 effect	

but	do	not	 answer	why	CEA	 is	 expressed	at	high	 levels	 around	 the	 field	of	 the	

tumour.		

	

1.3.2.2	Bcl-XL	anti-apoptotic	protein	expression	
	

Bcl-XL	is	an	anti-apoptotic	protein	that	 inhibits	apoptosis	by	blocking	release	of	

cytochrome	c	from	mitochondria.	Normally,	the	release	of	cytochrome	c	leads	to	

the	activation	of	caspases,	which	cause	cell	death	through	cleavage	of	DNA	and	

cytoskeletal	proteins.	Since	the	survival	of	neoplastic	cells	depends	on	both	cell	

proliferation	and	reduced	cell	death,	 the	role	of	Bcl-XL	and	any	associated	 field	

change	 in	apoptosis	has	been	examined	(Badvie	et	al.,	2006).	The	authors	used	

immunohistochemistry	 to	 identify	 Bcl-XL	 staining	 intensity	 (measured	 as	 a	
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labelling	 index).	 	 Using	 colorectal	 specimens	 following	 surgical	 resection	 they	

took	 tissue	 samples	 from	 the	 cancer,	 1cm	 proximal	 to	 the	 cancer	 and	 10cm	

proximal	 to	 the	 cancer.	 Tissues	 from	 patients	 without	 cancer	 were	 used	 as	

controls.	 They	 noted	 proportional	 and	 significant	 increases	 in	 Bcl-XL	 labelling	

indices	in	mucosa	situated	at	1cm	and	10cm	away	from	the	cancer	compared	to	

patients	without	cancer,	suggesting	that	a	field	of	characteristically	similar	tissue	

to	cancer	surrounds	the	cancer	itself.		

	

1.3.2.3	Altered	mucin	

	

Mucosa	from	adenoma	and	carcinoma	tissue	and	their	adjacent	tissue	have	been	

found	 to	 secrete	 histochemically	 altered	 mucin	 in	 contrast	 to	 normal	 mucosa	

(Lanza	 et	 al.,	 1985,	 Filipe	 and	 Branfoot,	 1974,	 Owen	 and	 Reid,	 1995).	 It	 is	

unknown	whether	the	altered	mucin	initiates	adenoma	formation	as	a	result	of	

the	 presence	 of	 neoplasia.	 It	 has	 been	 shown	 that	 D	 galactose-beta-[1-->3]-N-

acetyl-D-galactosamine	 (Gal-GalNAc)	 is	 present	 in	 mucin	 obtained	 from	

neoplastic	colon	cells	and	normal	colon	cells	within	a	colon	harbouring	neoplasia	

but	 not	 in	 normal	 cells	 of	 normal	 colons.	 (Xu	 et	 al.,	 1992).	 Vucenik	 et	 al.,	

developed	 a	 test	 (GO-Schiff	 test)	 to	 detect	 Gal-GalNAc	 from	 mucin	 samples	

obtained	via	the	rectum	(Vucenik	et	al.,	2001).	The	authors	detected	Gal-GalNAc	

in	 mucin	 from	 patients	 with	 cancer	 and	 no	 Gal-GalNAc	 in	 mucin	 from	 those	

without	cancer	with	100%	sensitivity	and	97%	specificity.	Interestingly,	60%	of	

patients	 tested	 positive	 for	 Gal-GalNAc	 after	 tumour	 resection	 implying	 the	

persistence	of	a	field	effect	after	tumour	removal.		

	

1.3.2.4	Protein	kinase	C	

	

Protein	kinase	C	(PKC)	is	a	mediator	of	trans-membrane	signal	transduction,	

with	roles	in	cell	growth	and	differentiation.	McGarritty	et	al.,	(1994)	found	PKC	

activity	was	significantly	greater	in	normal	tissue	adjacent	to	cancer	and	

adenomas	in	comparison	to	normal	colonic	tissue	from	control	patients	without	

pathology.	Although	PKC	activity	was	more	similar	between	field	tissue	and	
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adenoma	tissue	than	normal	tissue,	the	authors	noted	a	large	variability	in	PKC	

activity	thereby	limiting	its	use	as	a	marker	for	colorectal	cancer	(McGarrity	and	

Peiffer,	1994).	

	

1.3.2.5	Neuropilin-1	expression	

	

Overexpression	 of	 the	 trans-membrane	 glycoprotein	 neuropilin-1	 (NRP-1),	 a	

receptor	 for	 vascular	 endothelial	 growth	 factor	 (VEGF),	 is	 thought	 to	 enhance	

cancer	 cell	 survival	 (Parikh	 et	 al.,	 2004).	 Yu	 et	 al.,	 (2011)	 found	differences	 in	

NRP-1	 expression	between	distant	 bowel	mucosa	 and	 field	mucosa	 of	 patients	

with	adenoma	(Yu	et	al.,	2011).	NRP-1	expression	in	mucosa	distant	to	adenoma	

mucosa	 was	 inversely	 related	 to	 butyrate	 (a	 short	 chain	 fatty	 acid)	

concentration.	 In	 addition,	 NRP-1	 levels	 decreased	 with	 increasing	 butyrate	

concentrations.	 NRP-1	 expression	 in	 the	 field	 was	 lower	 and	 not	 related	 to	

butyrate	 concentrations.	 Adenoma	 samples	 showed	 similar	 lowered	 NRP-1	

expression	 as	 the	 field	 but	 the	 correlation	 to	 butyrate	 became	 positive,	 with	

higher	 NRP-1	 expression	 at	 higher	 butyrate	 concentrations.	 This	 study	

demonstrates	a	progressive	field	change	in	both	NRP-1	expression	and	butyrate	

correlation	with	proximity	to	the	adenoma.	

	

1.3.2.6	Proteomic	analysis	

	

Differences	 in	 protein	 expression	 between	 tumour	 mucosa	 and	 normal	

neighbouring	mucosa	have	been	previously	identified	through	two-dimensional	

differential	gel	electrophoresis	(2-D	DIGE)	and	mass	spectrometry	(MS)	(Alfonso	

et	al.,	2005,	Friedman	et	al.,	2004).	These	studies	were	able	to	demonstrate	that	

these	 techniques	 are	 able	 to	 identify	 tumour	 specific	 changes	 in	 the	 proteome	

between	tumour	and	apparently	normal	tissues	from	the	same	individual	i.e.	the	

same	 genetic	 background.	 Polley	 et	 al.,	 (2006)	 used	 these	 techniques	 to	

investigate	 differences	 in	 protein	 expression	 between	 the	 normal	 mucosa	 of	

neoplasia	 free	 patients	 and	 apparently	 normal	 field	 mucosa	 of	 those	 with	

neoplastic	 lesions.	 Changes	 in	 protein	 expression	were	 identified	 through	 two	
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dimensional	gel	electrophoresis	and	mass	spectrometry	(Polley	et	al.,	2006).	The	

significance	 of	 their	 results	 were	 twofold:	 firstly,	 they	 found	 altered	 protein	

expression	 in	 the	 macroscopically	 normal	 field	 tissue	 around	 adenoma	 and	

cancer	 in	comparison	to	macroscopically	normal	colon	tissue	 from	disease-free	

patients;	 secondly,	 among	 the	206	 significantly	 altered	proteins	were	 keratins.	

Polley	et	al.,	 (2006)	 found	keratins	(in	particular	several	 isoforms	of	keratin	8)	

were	under-expressed	in	tumour	tissue	but	overexpressed	in	the	field	tissue	of	

adenoma	and	cancer	patients	when	compared	with	tissue	from	healthy	patients.	

Their	study	provides	evidence	to	support	the	field	effect	theory	and	also	suggests	

that	keratins	may	be	implicated	in	these	field	changes.	
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1.3.3	Clonality	studies		

	

The	polyclonal	structure	of	adenomas	may	be	explained	by	the	presence	of	field	

cancerization.	 Adenomatous	 polyps	 arise	 from	 monoclonal	 crypts	 but	 have	

polyclonal	 structures,	 composed	of	at	 least	 two	somatic	 lineages	 (Novelli	et	al.,	

1996,	 Merritt	 et	 al.,	 1997a,	 Thirlwell	 et	 al.,	 2010).	When	 Novelli	 et	 al.	 (1996)	

examined	 the	 intestinal	 mucosa	 of	 an	 XO/XY	 mosaic	 individual	 with	 familial	

adenomatous	 polyposis	 (FAP)	 they	 found	 the	 normal	 colonic	 crypts	 were	

composed	 exclusively	 of	 either	 XO	 cells	 or	 XY	 cells	 (and	 were	 therefore	

monoclonal)	 but	 at	 least	76%	of	 the	microadenomas	 in	 the	 same	patient	were	

composed	 of	 XO/XY	 mixed	 crypts	 and	 were	 thus	 polyclonal.	 	 Thirlwell	 et	 al.	

(2010)	 verified	 similar	 findings:	 all	 polyp	 tissue	 was	 demonstrated	 to	 be	

polyclonal	in	their	FAP	patients.	

	

The	 mechanism	 of	 how	 clonal	 monocryptal	 adenomas	 become	 polyclonal	

adenomas	is	unknown.	Two	plausible	explanations	have	been	proposed:	

	

i. Random	collision	(Novelli	et	al.,	1996)	

ii. Crypt	interaction	(Thirlwell	et	al.,	2010)	

	

The	 random	 collision	 theory	 suggests	 that	 polyclonality	 results	 from	 chance,	

whereby	 two	 different	 neoplasms	 in	 close	 proximity	 overlap	 to	 form	 a	mixed	

tumour.		This	was	proposed	as	early	experiments	demonstrated	polyclonality	in	

colonic	tumours	from	patients	with	high	numbers	of	polyps	such	as	FAP.	A	high	

density	of	polyps	within	a	small	area	makes	random	collision	theory	conceivable	

as	 crypts	 expand	 into	 each	 other’s	 spaces.	 Using	 models	 with	 lower	 tumour	

burden,	 Thliveris	 et	 al.,	 (2005)	 also	 demonstrated	 polyclonality	 within	 crypts	

(Thliveris	 et	 al.,	 2005).	 However,	 mathematical	 models	 have	 suggested	 that	

random	collision	is	an	unlikely	explanation.(Newton	et	al.,	2006,	Thirlwell	et	al.,	

2010).	
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Crypt	interaction	(where	alterations	in	one	crypt	can	influence	its	neighbours	to	

develop	mutations	through	intercellular	signalling	(Ishiguro	et	al.,	2006))	is	now	

thought	 to	 be	 more	 probable.	 Thliveris	 et	 al.	 (2011)	 expand	 on	 a	 concept	

introduced	by	Beutler	(1984)	whereby	an	initiated	clone	emerges	from	the	crypt	

and	recruits	another	clonal	population	within	a	defined	distance	to	participate	in	

forming	a	polyclonal	tumour	(Beutler,	1984).	This	distance	has	been	estimated	at	

68μm,	roughly	the	distance	between	two	adjacent	crypts	(Thliveris	et	al.,	2011).	

The	 authors	 speculate	 that	 release	 of	 mitogenic	 factors	 from	 cells	 within	 a	

dysplastic	crypt	may	modify	cellular	proliferation	in	the	neighbouring	crypts.	In	

agreement	with	this	 theory	are	the	descriptions	of	Mueller	and	Fusenig	(2004)	

who	 describe	 stromal	 cell	 interactions	 with	 tumour	 epithelial	 cells,	 to	 allow	

influence	of	 cancer	development	and	progression	 (Mueller	and	Fusenig,	2004).	

Intestinal	 tumorigenesis	 can	 be	 instigated	 by	 stromal	 signalling	 in	 human	

polyposis	 syndromes	 (van	 den	 Brink	 and	 Offerhaus,	 2007).	 The	 interaction	

between	stromal	cells	and	epithelial	cells,	known	as	morphostasis,	acts	through	

intercellular	 signalling	 to	 maintain	 tissue	 microarchitecture.	 Disruption	 in	

morphostasis	 through	 epithelial	 adenomatous	 polyposis	 coli	 (APC)	 gene	

mutation	 could	 affect	 the	 local	 microenvironment	 and	 prompt	 neighbouring	

crypts	to	select	for	an	independent	epithelial	mutation	(Thirlwell	et	al.,	2010).		

Thirlwell	 et	 al.,	 (2010)	 suggest	 microadenoma	 formation	 may	 rely	 on	 the	

transformation	of	neighbouring	crypts	to	overcome	morphostatic	control	of	the	

tissue	 microenvironment.	 Graham	 et	 al.	 (2011)	 also	 propose	 that	 an	 altered	

stromal	 field	 permits	 or	 causes	 second	 mutations	 in	 the	 surrounding	 crypts	

(Graham	et	al.,	2011).	The	crypts	would	be	mutually	reliant;	one	single	initiatied	

crypt	would	have	to	wait	for	the	mutation	of	another	crypt	in	close	proximity	to	

allow	 propagation.	 The	 altered	 stromal	 field	 is	 therefore	 equivalent	 to	 the	

cancerized	field	from	which	polyclonal	adenomas	arise.	Crypt	interaction	would	

also	 reinforce	 the	 observation	 that	 the	 presence	 of	 one	 or	 more	 adenomas	

increases	the	likelihood	of	metachronous	adenoma	formation.	
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1.3.4	Metachronous	adenoma		

	

Metachronous	 adenomas	 refer	 to	 adenomas	 that	develop	 at	 two	different	 time	

points.	 The	 high	 incidence	 of	 metachronous	 adenoma	 has	 been	 introduced	

earlier	in	this	review.	Patients	who	have	had	adenomas	excised	have	been	shown	

to	have	up	 to	60%	risk	 for	 a	new,	metachronous	 adenoma	within	4	 years	of	 a	

previous	 polypectomy	 (Neugut	 et	 al.,	 1985)	 (Matek	 et	 al.,	 1985)	 (Waye	 and	

Braunfeld,	 1982).	 	 A	 prospective	 study	 comparing	 the	 rate	 of	 metachronous	

adenomas	(termed	recurrent	in	the	paper)	and	incidence	of	adenomas	found	the	

recurrence	 rate	was	 significantly	 higher	 than	 the	 incident	 rate	 (42%	and	16%	

respectively)	 (Neugut	 et	 al.,	 1995).	 This	 evidence	 suggests	 a	 field	 defect	 or	

cancerized	field	maybe	left	behind	following	polypectomy,	leading	to	a	high	rate	

of	 new	 adenoma	 formation.	 There	 is	 also	 evidence	 to	 show	 the	 field	 may	 be	

influenced	 by	 the	 presence	 of	 adenomas,	 since	 metachronous	 incidence	 is	

increased	 by	 the	 size	 and	 number	 of	 adenomas	 at	 baseline	 (Noshirwani	 et	 al.,	

2000).		

	

One	 consideration	 is	 that	 adenomas	 identified	 to	 be	metachronous	 (developed	

later)	might	actually	be	synchronous	adenomas	(present	at	the	same	time)	that	

were	missed	 at	 the	 original	 endoscopy.	 Same	day	 ‘back-to-back’	 colonoscopies	

have	revealed	the	overall	miss	rate	for	adenomas	is	24%	(Rex	et	al.,	1997).	There	

is	also	variable	use,	in	literature,	of	the	term	‘recurrent’	adenoma	when	authors	

are	 describing	 metachronous	 adenomas.	 	 There	 are	 obvious	 difficulties	 in	

proving	 whether	 an	 adenoma	 really	 recurs	 at	 the	 same	 point,	 whether	 a	

metachronous	adenoma	has	developed	near	the	same	area	or	whether	adenomas	

have	 regrown	due	 to	 inadequate	 resection.	As	 a	 result	 of	 these	difficulties	 and	

inconsistencies,	 understanding	 the	 nature	 of	 adenoma	 growth	 remains	 ill	

defined.		
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1.3.5	Summary	–potential	causes	of	field	cancerization	
	
	
The	 evidence	 for	 field	 cancerization	 is	 summarized	 in	 Figure	 5.	 The	 potential	

causes	 are	 not	 mutually	 exclusive,	 it	 may	 even	 be	 possible	 that	 interactions	

between	mechanisms	support	field	changes.	

	
	
	

	

	

	

Figure	5.	Potential	causes	of	field	cancerization.
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1.4	Dietary	modification	of	colorectal	cancer	risk	
	

Epidemiological	 data	 suggests	 5-10%	of	 colorectal	 cancer	 is	 heritable	 (Burn	 et	

al.,	2013).		The	majority	of	colorectal	cancer	is	therefore	sporadic	in	origin	with	

genetic	and	environmental	factors	playing	a	role.	There	is	an	abundance	of	data	

linking	dietary	 and	 lifestyle	 factors	with	 colorectal	 cancer	 risk	 (Bingham	et	 al.,	

2003).	 Studies	 indicate	DNA	damage	of	 colonocytes	due	 to	 intake	 of	 red	meat,	

casein	 and	 soy	 as	 causative	 factors	 of	 colorectal	 cancer	 (Toden	 et	 al.,	 2007,	

O'Callaghan	et	al.,	2012)	and	other	research	suggests	low	dietary	intake	of	fibre	

as	 a	 contributor	 to	 cancer	 risk	 and	 equally	 a	 diet	 high	 in	 dietary	 fibre	 as	

protective	 (Bingham	et	al.,	 2003).	A	wealth	of	 studies	has	 shown	 that	butyrate	

produced	 from	 fermentation	 of	 fibre	 is	 the	 molecule	 responsible	 for	 the	

chemopreventive	properties	of	a	fibre-rich	diet	(McIntyre	et	al.,	1993,	Perrin	et	

al.,	 2001,	 Bingham	et	 al.,	 2003).	 The	 implication	 that	 colorectal	 cancer	may	be	

preventable	 through	 dietary	 modifications	 is	 important	 to	 understand	 the	

mechanisms	behind	diet-mediated	colonic	epithelial	preservation	or	damage.		

Keratins	 have	 been	 implicated	 in	 the	 strength	 and	 stability	 of	 colonocytes	 in	

intestinal	 epithelium	 (Majumdar	 et	 al.,	 2012b)	 and	 in	 turn	 butyrate	 has	 been	

shown	to	both	influence	the	properties	of	keratins	and	reduce	colon	cancer	risk.	

The	 process	 by	 which	 butyrate	 protects	 the	 colon	 and	 whether	 it	 alters	

colonocyte	 structure	 with	 respect	 to	 keratins	 is	 poorly	 understood.	 The	

association	between	keratin	alteration	in	colonic	neoplasia	and	the	field	around	

them	in	response	to	butyrate	are	explored	in	this	thesis.	Understanding	keratins	

and	 how	 they	 are	 influenced	 by	 butyrate	 would	 allow	 advances	 in	 both	

prevention	 and	 treatment	 for	 neoplasia	 with	 particular	 relevance	 to	 early	

changes	such	as	field	cancerization.			
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1.5	Keratins	and	Butyrate	in	Colonic	Tissue		
1.5.1	Keratins	
	

The	cytoskeleton	of	epithelial	cells	is	often	referred	to	as	‘scaffolding’	for	the	cell	

due	to	its	capacity	to	maintain	cell	shape.	It	affords	the	ability	to	do	this	through	

one	of	its	components,	intermediate	filaments	(Figure	6).	Keratins	are	the	largest	

subgroup	of	intermediate	filament	proteins	(Majumdar	et	al.,	2012b).		

	

	
Figure	6.	Components	of	an	epithelial	cell	

(Source:	Shutterstock®)	
	

Intermediate	 filaments	 are	 formed	 from	 heterodimers	 of	 type1	 and	 type	 2	

keratin.	The	predominant	keratins	in	colonocytes	are	type	2	keratin	8	(K8)	and	

type	1	keratin	18	(K18),	though	keratins	K7,	K19	and	K20	are	also	found	(Moll	et	

al.,	1982).	Keratins	provide	mechanical	strength	to	intestinal	epithelia	and	allow	

colonocytes	 to	 resist	 chemical	 and	 mechanical	 stresses.	 They	 also	 partake	 in	

regulatory	 functions	 of	 a	 cell	 including	 cell	 cycle,	 cell	 differentiation	 and	

apoptosis	(Magin	et	al.,	2007).		
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In	 cancer,	 keratins	 are	 extensively	 used	 as	 immunohistochemical	 markers	 in	

diagnostic	 tumor	 pathology.	 Keratin	 tumour	 markers	 have	 been	 utilised	 for	

bladder,	cervix,	kidney	and	liver	cell	staining	and	specifically	changes	in	K7,	K8,	

K18,	K19	and	K20	are	used	for	the	colon	(Moll	et	al.,	2008).	Other	studies	show	

keratin	changes	as	a	predictor	of	cancer	cell	invasion	and	metastasis	(Knosel	et	

al.,	 2006),	 as	 well	 as	 in	 treatment	 responsiveness	 (Bauman	 et	 al.,	 1994),	

indicating	 a	 role	 of	 keratins	 as	 multifunctional	 regulators	 of	 epithelial	

tumorigenesis.	

The	 importance	of	K8	 in	gastrointestinal	physiology	has	been	demonstrated	 in	

keratin	knock-out	studies.	Baribault	et	al.,	(1994)	generated	K8	knock-out	mice	

and	 found	 those	 surviving	 to	 adulthood	 had	 high	 rates	 of	 intestinal	 mucosal	

inflammation	 and	 hyperplasia	 (Baribault	 et	 al.,	 1994),	 highlighting	 that	 the	

absence	of	K8	causes	intestinal	epithelial	cells	to	become	more	fragile.	Owens	et	

al.,	(2004)	confirmed	this	association	through	identification	of	genetic	mutations	

in	 K8	 and	 K18	 in	 colonocytes	 from	 patients	with	 inflammatory	 bowel	 disease	

(Owens	 et	 al.,	 2004).	 The	 authors	 also	 studied	 the	 effect	 of	 K8	 mutation	 on	

filament	assembly	through	cultured	cells.		Using	electron	microscopy,	they	found	

wild	type	K18	and	K8	formed	smooth,	regular	filaments	of	uniform	diameter.	By	

contrast,	mutant	K8	formed	shorter,	less	straight	filaments	of	varying	diameter.	

If	deficient	intermediate	filaments	are	manufactured	as	a	result	of	K8	mutation,	

the	 ‘scaffolding’	of	 colonocytes	 is	 compromised.	 It	 is	possible	 that	 less	 resilient	

colonocytes	 are	 more	 susceptible	 to	 the	 effects	 of	 carcinogens	 leading	 to	

adenoma-carcinogenesis.		

	

Toivola	 et	 al.,	 (2004)	 examined	 the	 physiological	 importance	 of	 keratin	 8	 in	

electrolyte	transport	 in	the	colon.	Using	1-2	day	old	K8	knock-out	mice	(before	

colonic	hyperproliferation	and	inflammation	presents	in	the	colon)	Toivola	et	al.,	

(2004)	 noted	 decreased	 sodium	 ion	 absorption	 and	 increased	 chloride	 ion	

secretion	in	K8	knock-out	mice	in	comparison	to	wild	type	mice.	They	concluded	

that	colonic	keratins	function	by	regulating	electrolyte	transport,	most	likely	by	

targeting	ion	transporters	to	their	cellular	components	(Toivola	et	al.,	2004).	
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There	is	an	increasing	body	of	evidence	to	show	that	alterations	in	keratins	are	

associated	with	 adenomagenesis	 and	 carcinogenesis	 in	 the	 colon.	 Polley	 et	 al.,	

(2006)	 found	keratins	 [in	particular	 several	 isoforms	of	keratin	8]	were	under	

expressed	in	tumour	tissue	but	overexpressed	in	the	field	tissue	of	adenoma	and	

cancer	 patients	when	 compared	with	 tissue	 from	healthy	 patients.	 Khan	 et	 al.,	

(2011)	 report	 similar	 findings	 where	 keratin	 8	 expression	 was	 shown	 to	

progressively	increase	from	normal	mucosa	to	the	field	around	and	cancer	itself	

(Khan	et	al.,	2011).		
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1.5.2	Butyrate	
	
High	dietary	intake	of	fibre	is	associated	with	a	reduced	risk	of	colorectal	cancer	

(Bingham	et	al.,	2003).	The	mechanism	for	this	observation	could	be	due	to	the	

action	 of	 short	 chain	 fatty	 acids	 (SCFAs),	 a	 fermentation	 product	 of	 fibre.	

Butyrate	 is	 a	 SCFA	 and	 is	 the	 preferred	 source	 of	 nutrition	 for	 colonocytes	

(Roediger,	1982).	 It	 is	known	to	 inhibit	proliferation	 in	colonic	tumor	cells	and	

cell	lines	but	to	stimulate	proliferation	in	healthy	colonic	epithelial	cells.	This	is	

often	referred	to	as	“the	butyrate	paradox”	(Figure	7) (Vanhoutvin	et	al.,	2009).	

	

	
Figure	7.	Butyrate	paradox	

The	 use	 of	 butyrate	 as	 an	 anti-cancer	 agent	 has	 been	 proposed	 due	 to	 its	

apoptotic	effects	on	cancer	cells.	Hague	et	al.,	(1995)	found	the	SCFAs	butyrate,	

proprionate	and	acetate	were	able	 to	 induce	apoptosis	 in	 cancer	and	adenoma	

cell	lines.	Of	the	three,	butyrate	was	the	most	effective	at	inducing	apoptosis	but	

rates	of	apoptosis	were	diminished	against	the	cancer	cell	lines	in	comparison	to	

the	 adenoma	 cell	 lines	 (Hague	 et	 al.,	 1995).	 Little	 is	 known	about	 the	 effect	 of	

butyrate	on	the	cancerized	field.	
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•  Inhibit+prolifera&on+

•  An&8metasta&c+effect+

Butyrate'Paradox'



	 48	

Ex	vivo	studies	have	shown	that	increased	intraluminal	levels	of	butyrate	induce	

a	higher	rate	of	apoptosis	in	colonocytes	following	exposure	to	genotoxic	agents	

(Clarke	et	al.,	2012).	Butyrate	may	allow	sensitization	of	colonic	cells	to	damage	

(Chirakkal	 et	 al.,	 2006)	 in	 addition	 to	 initiating	 apoptosis	 via	 a	 number	 of	

pathways	 including	 TNF-α	 induction	 of	 death	 receptors	 and	 activation	 of	 the	

mitochondrial	 pathway	 through	 up-regulation	 of	 pro-apoptotic	 protein	 BAK	

(Pajak	et	al.,	2009,	Chirakkal	et	al.,	2006).	Tan	et	al.,	 (2008)	described	an	anti-

metastatic	effect	of	butyrate	on	HCT-116	colorectal	cancer	cells	after	36	hours	of	

butyrate	 exposure	 (Tan	 et	 al.,	 2008).	 This	 uncovers	 further	 pharmacological	

potentials	of	butyrate	as	an	anti-neoplastic	agent.	

	

Butyrate	is	commonly	regarded	as	an	inhibitor	of	histone	deacetylases	(HDACs)	

but	has	also	been	theorised	to	be	a	product	inhibitor	of	acetylation	(Corfe,	2012).	

Its	 influence	on	gene	expression	regulation	is	accomplished	through	changes	in	

histone	acetylation,	a	post-translational	modification	(Myzak	et	al.,	2006).		
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1.5.3	Post-translational	modifications	of	keratins	

	

Protein	post-translational	modification	(PTM)	increases	the	functional	diversity	

of	 the	 proteome	 by	 addition	 of	 functional	 groups,	 proteolytic	 cleavage	 of	

regulatory	 subunits	 or	 degradation	 of	 entire	 proteins	 (Farley	 and	 Link,	 2009).	

Keratins	can	be	modified	via	various	PTMs	including	phosphorylation	(Omary	et	

al.,	 1998),	 glycosylation	 (Chou	 et	 al.,	 1992),	 acetylation	 (Leech	 et	 al.,	 2008),	

sumoylation	(Snider	et	al.,	2011)	and	cleavage	(Ditzel	et	al.,	2002).	

	

1.5.3.1 Phosphorylation 
	
Phosphorylation	 is	 the	 most	 researched	 PTM	 and	 its	 influence	 on	 keratins	 is	

residue	 site	 specific.	 Several	 studies	 have	 shown	 that	 K8	 and	 K18	

phosphorylation	 is	 elevated	upon	 cell	 stress	 (Liao	 et	 al.,	 1995,	Ku	 et	 al.,	 1996)	
and	hyperphosphorylation	has	been	associated	with	the	protection	of	K18	from	

degradation	 by	 caspases	 (Ku	 and	Omary,	 2001)	 in	 normal	 tissue	 under	 stress.	

The	keratin	PTM	profile	in	cancer,	however,	is	different.	Tumour	aggressiveness	

has	 been	 linked	 with	 dephosphorylation.	 Mizuuchi	 et	 al.,	 (2009)	 showed	

colorectal	 tumour	progression	related	to	dephosphorylation	of	K8	(Mizuuchi	et	

al.,	 2009).	 Taken	 together	 these	 studies	 suggest	 phosphorylation	 is	

chemoprotective	in	normal	tissue	but	its	role	is	reversed	in	cancer,	where	

hyperphosphorylation	 of	 K8	 leads	 to	 increased	 tumour	 cell	 survival	 and	

inhibition	of	apoptosis	(Arentz	et	al.,	2012,	Ku	and	Omary,	2006).		Although	the	

association	 between	 butyrate	 and	 keratin	 phosphorylation	 is	 incompletely	

understood,	a	putative	mechanism	is	via	butyrate-induced	dephosphorylation	of	

histones	(Sealy	and	Chalkley,	1978).			

	

1.5.3.2 Glycosylation 
	
Glycosylation	is	known	to	occur	at	three	residue	sites	(serine	29,	30	and	48)	on	

K18	 (Ku	 and	 Omary,	 1995).	 Ku	 et	 al.,	 (2010)	 demonstrated	 that	 K18	

glycosylation	 provides	 a	 unique	 protective	 role	 in	 epithelial	 injury	 as	

glycosylation	cannot	occur	in	mice	overexpressing	K18	substitution	mutants.	In	



	 50	

comparison	to	wild	type	mice	(with	glycosylation)	they	found	non-glycosylated	

mice	 were	 more	 susceptible	 to	 apoptosis	 and	 streptozocin-induced	 liver	 and	

pancreatic	 injury	 (Ku	 et	 al.,	 2010).	 	 It	 is	 thought	 glycosylation	 promotes	

phosphorylation	and	activation	of	cell-survival	kinases	(Ku	et	al.,	2010).	

	

1.5.3.3 Acetylation 
	
Keratin	 8	 is	 acetylated	 and	 the	 degree	 of	 acetylation	 is	 butyrate	 responsive	

(Leech	 et	 al.,	 2008).	 Specific	 sites	 of	 acetylation	 of	 keratin	 8	 in	 response	 to	

butyrate	have	also	been	 identified	 (Drake	et	al.,	2009).	Acetylation	of	keratin	8	

decreases	 its	 solubility	 through	 filament	 reorganisation	 and	 the	 formation	 of	

tightly	 associated	 K8	 complexes	 in	 non	 cancer	 cells	 (Snider	 et	 al.,	 2013).		

Increased	 insolubility	 may	 play	 a	 role	 in	 microtubule	 and	 microfilament	

stabilization	 (Janke	 and	 Bulinski,	 2011).	 This	 may	 uncover	 how	 butyrate	may	

protect	 healthy	 colonocytes	 through	 increased	 cytoskeletal	 stability	 following	

acetylation.	 	An	inverse	association	has	been	depicted	in	cancer	cells,	where	K8	

becomes	disorganised	following	acetylation	due	to	butyrate	exposure	(Drake	et	

al.,	 2009),	 thus	 supporting	 the	 butyrate	 paradox	 theory.	 	 Although	

phosphorylation	is	known	to	promote	K8	solubility	(Omary	et	al.,	1998),		in	the	

presence	of	acetylation,	phosphorylation	is	diminished	(Snider	et	al.,	2013).	

	

1.5.3.4 Sumoylation 
	
Sumoylation	 is	 a	 reversible	 PTM	 by	 which	 a	 small	 ubiquitin-like	 modifier	

(SUMO)	 polypeptide	 is	 attached	 or	 removed	 (Bergink	 and	 Jentsch,	 2009).	

Decreased	sumoylation	of	K8	in	colonocytes	leads	to	loss	of	intestinal	stem	cells	

and	 the	 subsequent	 inability	 to	maintain	 architecture,	 stability	 and	 function	 of	

intestinal	 epithelia	 (Demarque	 et	 al.,	 2011).	 Protein	 sumoylation	 increases	 in	

response	 to	 cellular	 stress	 (Wilkinson	 and	 Henley,	 2010).	 Hypersumoylation	

encourages	keratins	to	remain	in	the	insoluble	compartment,	suggesting	greater	

stability	through	insoluble	keratin.	(Demarque	et	al.,	2011).	
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The	interaction	and	influences	of	phosphorylation,	glycosylation,	acetylation	and	

sumoylation	 upon	 each	 other	 are	 not	 fully	 understood.	 There	 is	 evidence	 that	

PTM	 of	 one	 keratin	 influences	 the	 PTM	 of	 another	 as	 hypoglycosylation	 of	

keratin	 18	 leads	 to	 hyperphosphorylation	 of	 keratin	 8	 during	 epithelial	 cell	

injury	(Snider	and	Omary,	2014).	Since	at	least	one	PTM	(keratin	8	acetylation)	

is	butyrate	responsive,	 it	remains	possible	that	butyrate	can	cause	a	cascade	of	

other	PTMs	that	are	yet	to	be	discovered.		

	

	

	

1.6	Summary	
	

As	 the	 evidence	 for	 field	 effects	 grows,	 it	 is	 becoming	 clear	 that	 removal	 of	

colorectal	adenomas	may	not	be	enough	 to	evade	 the	 risk	of	 colorectal	 cancer.	

The	 mechanism	 by	 which	 metachronous	 adenomas	 occur	 is	 unknown	 but	

analysis	 of	 the	 pattern	 of	 occurrence	 may	 provide	 clues	 as	 to	 whether	 field	

cancerization	 is	 involved.	 This	 has	 important	 clinical	 implications	 as	 current	

practices	in	the	removal	of	adenomatous	polyps,	surgical	resection	margins	and	

follow	up	times	after	polypectomy	do	not	take	into	account	the	potential	for	field	

effect	changes.		

Keratins	are	important	regulators	of	colonocyte	physiology	and	their	regulatory	

role	 is,	 in	 part,	 influenced	 by	 post-translational	 modifications	 and	 butyrate	

exposure.	Alterations	in	keratin	levels	have	been	shown	between	the	cancerized	

field	 and	 normal	 tissue.	 The	 investigation	 of	 keratins	 as	 a	 marker	 for	 a	

cancerized	 field	and	how	they	are	 influenced	by	butyrate	may	provide	clues	 in	

the	prevention	of	and	treatment	of	the	early	stages	of	carcinogenesis.			
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Chapter	2	

	

General	Hypotheses	and	Aims	
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Chapter	2	General	Hypothesis	and	Aims	

2	Hypotheses	

	
• If	cancerized	fields	exist,	metachronous	adenomas	will	occur	in	the	region	

of	an	incident	adenoma.		

• Keratin	 alterations	 are	 present	 in	 colonic	 adenoma	 tissue	 and	 the	

morphologically	 normal	 tissue	 surrounding	 it	 when	 compared	 with	

normal	colonic	tissue	of	control	subjects.		

• Butyrate	 exposure	 in	 the	 colonic	 lumen	 alters	 keratin	 function	 in	

colonocytes.		

	

2.1	Aims	and	Objectives	
	
2.1.1	 To	 investigate	 the	 site	 of	 metachronous	 adenomas	 relative	 to	 index	

adenoma.	

	
To	 theorise	 a	 likely	model	 responsible	 for	metachronous	 adenoma	 occurrence	

through	analysis	of	the	pattern	of	metachronous	adenoma	occurrence	within	the	

colon.	Locations	of	metachronous	adenomas	will	be	determined	and	compared	

with	 that	 of	 the	 index	 adenoma	 by	 retrospective	 interrogation	 of	 colonoscopy	

records.	

	

2.1.2	 To	 develop	 a	 reliable	 and	 robust	 protocol	 for	 extraction	 of	 intermediate	

filaments	from	colonic	mucosa.	

	
There	 is	 no	 standard	 protocol	 that	 enables	 isolation	 and	 solubilisation	 of	

intermediate	 filaments	 from	 colonic	 biopsies	 and	 subsequent	 analysis	 by	 gel	

electrophoresis	and	gel	 free	 liquid	chromatography	coupled	with	 tandem	mass	

spectrometry	 (LC-MS/MS).	 A	 workflow	 will	 be	 developed	 for	 fractionation,	

extraction	and	solubilisation	of	intermediate	filaments	from	colorectal	biopsies,	

to	permit	isobaric	tags	for	relative	and	absolute	quantitation	(iTRAQ)	proteomic	

analysis.	
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2.1.3	To	discover	whether	field	changes	in	keratin	levels	exist	between	adenoma,	

field	and	distant	 tissue	samples	 in	comparison	to	normal	controls	and	whether	

these	changes	are	responsive	to	butyrate	exposure.	

	

Normal,	field	and	adenoma	insoluble	proteome	(controlling	for	butyrate)	will	be	

compared	 using	 iTRAQ	 proteomic	 workflow.	 Data	 obtained	 from	 iTRAQ	 work	

will	be	orthogonally	validated	using	Western	blot	and	immunohistochemistry.	
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Chapter	3	

	
Metachronous	Adenomas	Occur	Primarily	at	the	Same	Site	

with	Slight	Proximal	Drift	
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Chapter	3	Metachronous	Adenomas	Occur	Primarily	at	

the	same	site	with	proximal	drift	

3.1	Introduction	

	
Adenomatous	polyps	are	widely	recognised	as	the	precursor	to	colorectal	cancer	

(Neugut	 et	 al.,	 1993).	 Adenoma	 removal	 is	 associated	 with	 a	 lowered	 risk	 of	

colorectal	cancer	(Winawer	et	al.,	1993b).	Despite	 treatment,	adenomas	have	a	

high	 recurrence	 rate.	 Current	 data	 shows	 up	 to	 60%	 of	 patients	 develop	

metachronous	adenomatous	polyps	following	removal	of	a	previous	polyp	(Nava	

et	 al.,	 1987)	 compared	 to	 16%	 of	 patients	 with	 no	 abnormality	 at	 index	

colonoscopy	 (Neugut	 et	 al.,	 1995).	 	 The	 higher	 incidence	 of	 metachronous	

adenomas	suggests	the	presence	of	one	adenoma	can	influence	the	formation	of	

another.	 This	 theory	 is	 supported	 by	 numerous	 studies	 indicating	multiplicity	

and	 size	 of	 adenomas	 at	 baseline	 examination	 are	 powerful	 predictors	 of	

recurrence	(Martinez	et	al.,	2001,	Bonithon-Kopp	et	al.,	2004,	Noshirwani	et	al.,	

2000,	Winawer	 et	 al.,	 1993b).	 	 Adenoma	 histological	 features	 (Martinez	 et	 al.,	

2001)	 and	metabolic	 factors	 including	 age,	 body	mass	 index	 and	 fasting	 blood	

glucose	have	also	been	reported	as	predictors	of	adenoma	recurrence	(Taniguchi	

et	 al.,	 2014).	Other	 studies	 have	 highlighted	 higher	metachronous	 rates	where	

index	adenomas	were	proximally	located	(Martinez	et	al.,	2001,	Bonithon-Kopp	

et	al.,	2004).	The	authors	define	proximal	location	of	adenomas	as	those	found	in	

the	 transverse	 colon,	 hepatic	 flexure,	 ascending	 colon	 and	 caecum.	 The	

mechanism	by	which	index	adenomas	affect	subsequent	adenoma	development	

is	 unknown.	 However,	 examination	 of	 the	 locations	 in	 which	 they	 occur	 may	

provide	insights	into	potential	mechanisms.		

	

This	 study	 therefore	 investigates	 the	 anatomical	 distribution	 of	metachronous	

adenomas	 in	 relation	 to	 the	 site	 of	 index	 adenoma.	 Data	 regarding	 the	 site	 of	

metachronous	adenomas	 formation	has	 important	 implications	 for	surveillance	

endoscopy	 and	 may	 also	 provide	 clues	 to	 the	 aetiology	 of	 metachronous

	adenomas	(Rosser	et	al,	submitted).	
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3.2	Hypothesis	and	Aims		
	

3.2.1	Hypothesis	
	
Investigation	of	metachronous	adenoma	locations	may	provide	evidence	for	field	

effects	 in	 colorectal	 neoplasia.	 I	 hypothesize	metachronous	 adenomas	 arise	 by	

one	or	a	combination	of	the	following	models:	

1. the	interaction	of	two	fields.	

2. micrometastatic	 migration	 of	 adenoma	 cells	 through	 the	

epithelium.	

3. shedding	 and	 subsequent	 seeding	 of	 adenoma	 cells	 through	 the	

lumen.	

4. systemic	release	of	a	sensitizing	molecule.	

5. luminal	release	of	a	sensitizing	molecule.	
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3.2.2	Rationale	
	
Model	1		

	
	

	

Figure	 8.	 Metachronous	 adenoma	 occurs	 as	 a	 result	 of	 two	 fields	 (red	 and	 blue	 fields)	
interacting	

	

Adenomatous	 polyps	 are	 polyclonal	 (Novelli	 et	 al.,	 1996,	 Merritt	 et	 al.,	 1997,	

Thirlwell	 et	 al.,	 2010)	 and	 it	 has	 been	 hypothesized	 that	 they	 arise	 due	 to	

interaction	 between	 two	 crypts	 (Thliveris	 et	 al.,	 2011).	 If	 this	 were	 the	 case,	 we	

would	expect	metachronous	occurrences	to	appear	at	the	same	place,	as	the	field	of	

altered	crypts	would	still	exist	after	polypectomy.	
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Model	2	

	
	

	

	

Figure	9.	Metachronous	adenoma	occurs	as	a	result	of	micrometastatic	migration	through	
the	epithelium	

	

Epithelial-mesenchymal	 transition	 takes	 place	 during	 cancer	 progression	 and	 is	

necessary	 for	 metastasis	 of	 epithelial	 cancers.	 Colorectal	 cancer	 cells	 at	 the	

invasive	margin	acquire	mesenchymal	properties	such	as	poor	differentiation,	high	

migratory	 potential,	 hyperproliferation	 and	 loss	 of	 cell	 to	 cell	 contact	 mediated	

growth	 inhibition	 (Thiery,	 2002).	 Similarly,	 adenoma	 models	 could	 acquire	

mesenchymal	 properties	 to	 allow	 intraepithelial	 migration	 of	 adenoma	 cells	

through	the	colonic	epithelium	to	 form	new	adenomas	elsewhere.	 If	 this	were	the	

case,	we	would	 also	 expect	 recurrences	 to	 be	 in	 a	 similar	 or	 same	 region	 as	 the	

incident	adenoma	and	 to	be	composed	of	 similar	genetic	material	 to	 the	original	

lesion.	
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Model	3	

	
	

	

	

Figure	10.	Metachronous	adenoma	occurs	as	a	result	of	cell	shedding	and	seeding	through	
the	lumen	

	

Exfoliated	 malignant	 cells	 have	 been	 found	 to	 implant	 downstream	 and	 cause	

anastomotic	 recurrence	 following	 colon	 cancer	 surgery	 (Gertsch	 et	 al.,	 1992,	

Umpleby	et	al.,	1984).	Similarly,	exfoliated	adenoma	cells	could	implant	and	cause	

recurrence.	If	this	were	the	case,	we	would	expect	the	site	of	recurrence	to	be	distal	

as	 the	exfoliated	cells	would	be	shed	and	 implanted	downstream,	 in	 line	with	 the	

direction	 of	 the	 faecal	 stream.	 The	 recurrent	 adenoma	 would	 also	 have	 genetic	

similarities	to	the	original	lesion.	
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Model	4	

	
	
	

Figure	 11.	 Metachronous	 adenoma	 occurs	 as	 a	 result	 of	 a	 sensitizing	 molecule	 released	
systemically	

	

Studies	 have	 found	 modifications	 in	 distant	 tissues	 can	 exert	 changes	 to	 the	

gastrointestinal	tract	and	vice	versa.	Cho	et	al.,	(2008)	found	that	implantation	of	

colon-	 26	 (CT-26)	 carcinoma	 cells	 subcutaneously	 in	 mice	 altered	 intestinal	

endocrine	 cell	 counts	 (Cho	 et	 al.,	 2008).	 Alternatively,	 Chen	 et	 al.,	 (2012)	

demonstrated	 oral	 inoculation	 of	 probiotics	 resulted	 in	 significantly	 reduced	

tumour	growth	at	both	the	dorsolateral	flank	and	colon	of	mice	implanted	with	CT-

26	carcinoma	cells	(Chen	et	al.,	2012).	Furthermore,	it	is	already	known	that	colon	

cancer	 cells	 are	 capable	 of	 secreting	 carcinoembryonic	 antigen	 (CEA)	 into	 the	

circulation	(Sack	et	al.,	1988).	It	is	possible,	that	adenoma	cells	are	also	capable	of	

releasing	 a	 sensitizing	 molecule	 systemically,	 to	 encourage	 adenoma	 growth	

elsewhere.	 If	 this	were	the	case,	 the	area	susceptible	to	metachronous	occurrence	

may	 be	 pancolonic,	 affecting	 both	 the	 proximal	 and	 distal	 colon.	 The	 recurrent	

lesion	may	be	genetically	dissimilar	to	the	original	lesion.	
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Model	5	

	

	
	

	

Figure	12.	Metachronous	adenoma	occurs	as	a	result	of	a	sensitizing	molecule	released	into	
the	lumen	

	

Mucosa	 from	 adenoma	 and	 carcinoma	 tissue	 and	 tissue	 adjacent	 to	 them	 are	

known	 to	 secrete	 histochemically	 altered	 mucin,	 in	 contrast	 to	 normal	 mucosa	

(Lanza	et	al.,	1985,	Filipe	and	Branfoot,	1974,	Owen	and	Reid,	1995).	A	sensitizing	

molecule	 (such	 as	 altered	 mucin)	 could	 be	 released	 from	 adenomatous	 tissue	

intraluminally	to	support	or	trigger	adenoma	growth.	If	this	were	the	case	the	sites	

of	 metachronous	 occurrence	 would	 predominantly	 be	 distal	 to	 the	 lesion	 as	 the	

sensitizing	 molecule	 is	 likely	 to	 travel	 downstream,	 with	 the	 proximal	 colon	

unaffected.	The	metachronous	site	may	be	proportional	to	the	site	of	the	 incident	

adenoma	 as	 concentrations	 of	 the	 sensitizing	molecule	would	 be	 highest	 around	

the	original	lesion.	The	recurrent	lesion	would	also	be	genetically	dissimilar	to	the	

original	lesion.	

	
The	models	described	above	are	not	mutually	exclusive.	It	is	possible	that	more	

than	 one	 causative	 mechanism	 exists.	 Study	 of	 the	 locations	 of	 metachronous	

adenoma	occurrence	following	the	removal	of	a	previous	may	give	clues	as	to	the

model	or	models	likely	to	be	involved.	
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3.2.3	Aims	
	
Identification	 of	 metachronous	 adenoma	 occurrence	 positions,	 relative	 to	 the	

index	 adenoma,	 to	 determine	 the	 likely	 mechanism	 or	 mechanisms	 for	

metachronous	adenoma	formation.	

	

3.3	Method	for	Data	Collection	

	

This	 study	 was	 registered	 with	 Sheffield	 Teaching	 Hospitals	 NHS	 Foundation	

Trust	(STH)	reference	number	4124	as	a	service	evaluation	(Appendix	1).	

A	 prospectively	 maintained	 database	 (Infoflex,	 Chameleon	 Information	

Management	 Services,	 UK)	 was	 interrogated	 to	 identify	 all	 colonoscopies	

performed	between	January	2001	and	August	2011	at	STH.		

15,121	 colonoscopies	 containing	 4759	 polyp	 events	 were	 recorded.	 Patients	

undergoing	more	than	one	colonoscopy	and	polypectomy	were	cross-referenced	

against	 a	 histological	 database	 to	 confirm	 adenoma	 status.	 Histology	 records	

were	 accessed	 via	 two	 systems:	 Integrated	 Clinical	 Environment	 (Sunquest	

Information	 Systems,	 Norwich	 UK)	 and	 iLAB	 (Apex)	 (CSC	 Health,	 Oxfordshire,	

UK).	 	 In	 all	 the	 cases	 recorded,	 patients	 had	 undergone	 a	 colonoscopy	 and	

polypectomy	and	then	a	further	polypectomy	or	repeated	polypectomies	months	

or	years	later.	A	flow	chart	of	data	acquisition	is	shown	in	Figure	14.		

Due	to	patient	confidentiality	regulations	only	event	numbers	could	be	retrieved	

via	 Infoflex.	The	event	number	 for	each	colonoscopy	record	had	to	be	matched	

on	 site	 (at	 STH)	 to	 the	 unique	 patient	 hospital	 number	 in	 order	 to	 access	

histology	records.		To	ensure	patients	were	not	missed	a	SNOMED	(Systematized	

Nomenclature	of	Medicine)	search	was	also	performed	to	 identify	all	colorectal	

adenoma	 samples	 processed	 by	 STH	 between	 January	 2001	 and	 August	 2011.	

This	 identified	a	 further	230	patients	with	repeat	adenoma	records,	not	on	 the	

Infoflex	list.	Colonoscopy	records	for	those	230	patients	were	retrieved.	

The	 information	 was	 collected	 using	 a	 data	 collection	 tool	 (Appendix	 2)	 and	

collated	 on	 an	 Excel	 spread	 sheet.	 Index	 colonoscopy	 was	 recorded	 as	 R0	

colonoscopy,	 repeat	 colonoscopy	 was	 recorded	 as	 R1	 and	 so	 forth	 (Table	 1).	

Positions	 of	 adenomas	 were	 recorded	 according	 to	 the	 colonic	 segment	 they	
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were	 found:	caecum,	ascending	colon,	hepatic	 flexure,	 transverse	colon,	splenic	

flexure,	 descending	 colon,	 sigmoid	 colon,	 rectosigmoid	 junction	 and	 rectum,	

labelled	1	to	9	respectively	(Figure	13).	Exclusion	criteria	were	applied	(Table	2).		

	

	

	
Figure	13.	Nine	segments	of	the	colon	

Positions	of	adenomas	within	 the	nine	segments	of	 the	colon	were	recorded	according	 to	 their	

locations	and	labelled	1-9.	

	
Table	1.	Colonoscopy	numbers	and	abbreviations	

Colonoscopy	 Recorded	as	

abbreviation	

Colonoscopies	in	total	

Index/incident	colonoscopy	 R0	 1	

Repeat	colonoscopy	1	 R1	 2	

Repeat	colonoscopy	2	 R2	 3	

Repeat	colonoscopy	3	 R3	 4	

Repeat	colonoscopy	4	 R4	 5	

Repeat	colonoscopy	5	 R5	 6	

	

1.#Caecum##

2.#Ascending#
#colon#

3.#Hepa6c#flexure#

4.#Transverse#colon#
5.#Splenic#flexure#

6.#Descending#
#colon#

8.#Rectosigmoid#
#junc6on#

7.#Sigmoid#

9.#Rectum#
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3.3	Method	for	Data	Collection	

	

	

	
	
	

Figure	14.	Flowchart	of	the	method	of	data	acquisition.	
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Table	2.	Exclusion	criteria	–pathological	diagnoses	

Diagnosis	

Inflammatory	bowel	disease	(Crohn’s	Disease	and	Ulcerative	Colitis)	

Previous	Cancer	and	Cancer	surgery	

Familial	Adenomatous	Polyposis	Syndrome	

Other	Polyposis	Syndromes	

Hyperplastic	Polyps	

Hereditary	Non-Polyposis	Colon	Cancer	

	

3.3.1 Problems and solutions for statistical analysis 

	

Some	patients	developed	multiple	metachronous	adenomas	 that	occurred	both	

proximally	 and	 distally	 to	 the	 index	 adenoma.	 This	 posed	 a	 problem	 in	

identification	 of	 whether	 metachronous	 adenomas	 were	 more	 likely	 to	 arise	

proximally	or	distally.	Equally,	some	patients	had	synchronous	index	adenomas,	

which	 created	 similar	 analytical	 problems.	 Taking	 these	 problems	 into	

consideration	analyses	were	performed	in	two	ways:	

1. using	the	whole	dataset		

2. using	 only	 patients	 with	 one	 single	 index	 adenoma	 and	 one	 single	

metachronous	adenoma.	
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3.3.2	Whole	dataset	analyses	
	
	
Analysis	1	

To	validate	the	accuracy	of	our	data	the	cancer	distribution	percentages	within	

the	colon	were	compared	with	our	own	adenoma	distribution	percentages.	Data	

taken	 from	 the	 R0	 colonoscopy/incident	 colonoscopy	 (see	 Table	 1)	 whole	

dataset	analysis	1	was	used	to	calculate	the	number	of	adenomas	found	in	each	

segment	of	the	colon.	This	calculation	was	repeated	for	all	the	nine	segments	and	

compared	with	data	from	Cancer	Research	(UK)1.	
	1Data	 from	 Cancer	 Research	 online:	 http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/incidence/uk-bowel-cancer-incidence-statistics.	Last	accessed	on	

18th	April	2015.	

	

Analysis	2	

The	number	of	adenomas	in	each	segment	was	calculated	for	each	colonoscopy	

and	 these	 figures	 were	 compared	 between	 colonoscopies	 to	 establish	 if	 there	

was	an	overall	proximal,	distal	or	same	site	of	metachronous	occurrence.		

	

Analysis	3	

Adenoma	segment	‘movements’	were	considered	for	this	analysis.	For	example:	

if	an	index	adenoma	was	found	at	the	caecum	at	first	colonoscopy	(R0)	and	then	

a	metachronous	 found	 at	 the	 ascending	 colon	 at	 subsequent	 colonoscopy	 (R1)	

this	 was	 given	 a	 value	 of	 -1,	 for	 distal	 movement	 of	 one	 segment.	 Proximal	

movements	 were	 given	 a	 positive	 value.	 Since	 some	 patients	 had	 multiple	

adenomas	at	R0,	 there	are	more	movement	events	than	there	are	adenomas	or	

patients.	For	example:	 if	 index	 (R0)	adenomas	were	 found	at	both	caecum	and	

ascending	 and	 subsequently	 at	R1	 another	 adenoma	was	 found	at	 the	 caecum,	

two	movement	 events	 (0	 and	+1	 respectively)	would	be	 recorded.	 The	 sum	of	

adenoma	movement	events	was	calculated	for	each	movement	category	(from	-8	

to	+8)	between	colonoscopies	R0	and	R1	(where	R0	was	the	index	colonoscopy	

and	 R1	 the	 next	 colonoscopy).	 This	 was	 repeated	 for	 movements	 between	

colonoscopies	R1	and	R2;	R2	and	R3	and	R3	and	R4.		
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3.3.3	Single	adenoma	analyses	

	
Analysis	1	

The	 percentage	 of	 single	 metachronous	 adenomas	 occurring	 in	 the	 same	

segment	 or	 a	 different	 segment	 to	 the	 index	 adenoma	 was	 calculated.	 The	

difference	 between	 adenoma	 sites	 was	 investigated	 with	 the	 one	 way	 Chi-

squared	test.			

	

Analysis	2	

The	percentage	of	single	metachronous	adenomas	occurring	in	either	a	proximal,	

distal	or	the	same	segment	as	the	index	adenoma	was	calculated.	Differences	in	

adenoma	recurrence	direction	were	investigated	with	the	one	way	Chi-squared	

test.	

	

Analysis	3	

How	 far	 a	 metachronous	 adenoma	 occurs	 from	 the	 index	 adenoma	 was	

investigated.	As	a	metachronous	adenoma	following	a	caecal	index	adenoma	has	

more	 potential	 segment	 spaces	 (n=8)	 to	 appear	 distally	 than	 for	 example	 a	

sigmoid	index	adenoma	(maximal	distal	segment	space	n=2),	this	creates	a	bias	

due	 to	 different	 segment	 availability.	 To	 avoid	 this	 bias,	 only	 rectal	 and	 caecal	

index	 adenomas	 (at	 the	 farthest	 ends)	 were	 analysed	 for	 metachronous	

occurrence.	 This	 aims	 to	 prevent	 skew	 as	 there	 is	 no	 possibility	 of	 two	 way	

movement.	

	

Analysis	4	

The	mean	number	of	segments	travelled	for	metachronous	adenoma	appearing	

proximal	to	their	index	adenoma	and	similarly	for	adenomas	appearing	distal	to	

their	 index	 adenoma	were	 calculated.	 	 Differences	 in	 the	 number	 of	 segments	

travelled	was	calculated	using	one	sample	t	test.		

A	 probability	 calculation	 (Appendix	 3)	 was	 performed	 to	 examine	 whether	

proximally	 occurring	 metachronous	 adenomas	 travelled	 more	 segments	 than	

distally	occurring	metachronous	adenomas	according	to	the	segments	available	

to	them.	
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Summary	of	analyses	

	

	

	

	
	
Figure	15.	Summary	of	analyses
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to$them.$
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3.4	Results	
	
15,121	colonoscopies	containing	4759	polyp	events	were	recorded.	452	patients	

(156	 female	 and	 296	 male;	 median	 age	 75	 years	 [range	 32-100])	 underwent	

more	than	one	polypectomy	(all	polyps	histologically	confirmed	as	adenomatous	

polyps).	The	median	time	between	colonoscopies	was	13	years	[range	1	month	-

25	years].	

3.4.1	Whole	dataset	-	analysis	1	
	
The	distribution	of	 adenomas	at	 incident	 colonoscopy	 (R0)	was	 comparable	 to	

cancer	distribution	 figures	published	by	Cancer	Research	UK	 1	 (Figure16).	The	

highest	proportion	of	adenomas	(31.1%)	were	found,	as	expected,	in	the	rectum.	

	

	
Figure	16.	Comparison	of	percentages	of	cancer	and	adenoma	per	colonic	segment.	

Figures	 in	black	are	 the	percentage	of	cancers	 found	 in	each	of	 the	 indicated	colonic	segments.	

The	figures	in	red	are	calculated	from	the	number	of	adenomas	found	at	index	colonoscopy	(R0).	

The	percentages	are	comparable	and	support	the	accuracy	of	the	collected	data.		
1Data	 from	 Cancer	 Research	 online:	 http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/incidence/uk-bowel-cancer-incidence-statistics.	Last	accessed	on	

18th	April	2015.	
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3.4	Results	

3.4.2 Whole dataset  - analysis 2 

	
At	incident	colonoscopy	(R0)	the	majority	of	adenomas	were	found	in	the	rectum	

(n=164)	closely	followed	by	sigmoid	(n=151).	At	the	next	colonoscopy	(R1)	the	

majority	of	adenomas	were	found	again	in	the	sigmoid	and	rectum.	At	the	third	

colonoscopy	 (R2)	 the	 majority	 of	 adenomas	 found	 were	 maintained	 at	 the	

rectum	(n=30)	but	a	secondary	peak	at	the	ascending	colon	(n=29)	was	seen.	In	

the	 subsequent	 colonoscopies	 (R3,	R4	and	R5)	 the	majority	of	 adenomas	were	

found	in	the	rectum	(Figure	17).		This	indicates	metachronous	adenomas	appear	

predominantly	in	the	same	colonic	segment	as	the	original	(index)	adenoma.		

	
Figure	17.	Number	of	adenomas	recorded	in	each	of	the	nine	colonic	segments		

(Caecum–C,	 Ascending	 colon–A,	 Hepatic	 Flexure–HF,	 Transverse	 colon–T,	 Splenic	 flexure–SF,	

Descending	colon-D,	Sigmoid-S,	Rectosigmoid	Junction-RSJ	and	Rectum-R).	

The	 graphs	 (lines	 R0-R5)	 representing	 number	 of	 adenomas	 per	 segment	 from	 index	

colonoscopy	(R0)	and	at	each	repeat	colonoscopy	(R1-R5)	follow	the	same	trend.	The	mirroring	

of	 the	 graphs	 indicates	metachronous	 adenomas	 are	 appearing	 in	 the	 same	 segments	 at	 each	

subsequent	colonoscopy.	
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3.4	Results	

3.4.3 Whole dataset - analysis 3 
	
The	 graphs	 in	 Figure	 18	 all	 show	 a	 peak	 percentage	 of	 adenomas	 in	 the	 0	

movement	category.	This	suggests	that	the	majority	of	metachronous	adenomas	

do	 not	 move	 segments.	 However,	 addition	 of	 the	 sum	 of	 percentages	 in	 the	

proximal	and	distal	movement	categories	reveals	the	majority	of	adenomas	are	

not	 necessarily	 found	 in	 the	 non	 movement	 category	 (see	 Table	 3.)	 The	 total	

number	of	segment	movements	(N)	was	601	for	R0	to	R1;	N	=	502	for	R1	to	R2;	

N=	207	for	R2	to	R3	and	N=	81	for	R3	to	R4.	.	

Comparing	 the	 index	 colonoscopy	 (R0)	 and	 the	 next	 colonoscopy	 (R1)	 it	 was	

evident	that	the	least	number	of	metachronous	adenomas	occurred	proximal	to	

the	index	adenoma	(18.6%).	40.2%	of	metachronous	adenomas	occurred	in	the	

same	segment	as	the	index	adenoma.	The	majority	(41.2%)	occurred	in	a	distal	

segment	to	the	index	adenoma.	A	similar	pattern	was	seen	in	the	metachronous	

adenoma	occurrence	between	colonoscopy	2	(R1)	and	3	(R2).	This	pattern	was	

lost	 between	 colonoscopies	 3	 (R2)	 and	 4	 (R3)	 where	 the	 metachronous	

occurrences	were	evenly	distributed	between	the	three	categories	with	a	slight	

proximal	drift.	 In	 the	 last	 two	colonoscopies	(comparison	between	R3	and	R4),	

the	 majority	 of	 metachronous	 occurrences	 were	 found	 in	 the	 same	 segment	

(51.8%).	 The	 bell	 shaped	 curve	 of	 the	 graphs	 in	 Figure	 18	 suggests	

metachronous	adenomas	were	occurring	in	close	proximity	to	the	index	position	

(0	movements).	
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3.4	Results	
Whole dataset – analysis 3 

	

	

	

	

	
	
Figure	18.	Number	of	adenomas	in	each	movement	category		

The	number	of	adenomas	in	each	movement	category	(-8	to	8)	expressed	as	a	percentage	of	the	

total	 of	 movement	 events	 (N)	 between	 colonoscopies.	 All	 the	 graphs	 revealed	 a	 peak	 at	 0	

segment	movement	 category.	 The	 sums	 of	 proximal	 and	 distal	 percentages	 are	 represented	 in	

Table	3.	
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Table	3.	Comparison	of	the	sum	of	proximal,	distal	and	no	movement	percentages.	

Colonoscopy	
interval	

Proximal	(%)	 No	movement	
(%)	

Distal	(%)	

R0-R1	 18.6	 40.2	 41.2	
R1-R2	 29.1	 35.1	 35.8	
R2-R3	 35.7	 31.4	 32.9	
R3-R4	 18.6	 51.8	 29.6	
	
	
The	 data	 presented	 in	 Table	 3	 is	 extracted	 from	 graphical	 data	 in	 Figure	 18.	

These	 data	 shows	 that	 at	 R1	 and	 R2	 colonoscopies	 the	majority	 of	 adenomas	

moved	 distally	 when	 the	 sums	 of	 percentages	 were	 calculated,	 although	 the	

values	of	both	categories	are	very	similar.	
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3.4	Results	–	Single	adenoma	series	
	
91	patients	 from	the	whole	dataset	were	excluded	 from	the	 following	analyses	

due	to	either	multiple	adenomas	at	index	colonoscopy	or	multiple	metachronous	

adenomas	at	subsequent	colonoscopy.		

	

361	 patients	 (235	 male,	 126	 female,	 median	 age	 [range]	 66	 [32-91]	 years)	

developed	 a	 single	metachronous	 adenoma	 at	 follow-up	 colonoscopy.	 All	 data	

below	are	presented	with	95%	confidence	intervals.	

	

3.4.4 Single adenoma – analysis 1 
	
Metachronous	adenomas	were	more	likely	to	develop	in	a	different	segment	(61	

±	 5%)	 to	 that	 of	 the	 index	 adenoma.	 39	 ±	 5%	 of	 metachronous	 adenomas	

developed	 in	 the	 same	 segment	 as	 the	 index	 adenoma.	 	 P<	 0.01	 one	way	 Chi-

squared	test.	

	

	
Figure	 19.	 Graph	 indicating	 metachronous	 adenomas	 were	 more	 likely	 to	 occur	 in	 a	 different	

segment	than	the	same	segment.	
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3.4	Results	

3.4.5 Single adenoma – analysis 2 
	

Metachronous	 adenomas	 were	 more	 likely	 to	 occur	 at	 a	 site	 proximal	 to	 the	

index	 adenoma	 (41	±	5%)	 than	either	 the	 same	 segment	 (39	±	5%)	of	 a	more	

distal	segment	(20	±	5%).	P<0.01	one	way	Chi-squared	test.	

	

	
	

Figure	 20.	 Graph	 indicating	 metachronous	 adenomas	 were	 more	 likely	 to	 occur	 proximal	 to	 the	

index	adenoma	than	either	the	same	segment	or	distal	to	the	index	adenoma.		

	

3.4.6	Single	adenoma	–	analysis	3	
	
Although	metachronous	adenomas	were	found	to	develop	at	a	different	segment	

(analysis	1),	the	majority	developed	2	segments	away	from	the	index	adenoma.	

72	±	5%	of	metachronous	adenomas	developed	within	two	segments	of	an	index	

rectal	adenoma	and	73	±	5%	of	metachronous	adenomas	developed	within	two	

segments	 of	 an	 index	 caecal	 adenoma	 (Figures	 21	 and	 22).	 This	 calculation	 is	

corrected	for	potential	segment	spaces	as	an	index	rectal	adenoma	cannot	move

distally	and	vice	versa	for	caecal	adenoma.
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3.4	Results	

	

	
	

Figure	 21.	 The	 number	 and	 distribution	 of	 metachronous	 adenomas	 (R1)	 following	 the	

removal	of	an	index	adenoma	(R0)	in	the	rectum.		

72%	of	metachronous	adenomas	were	found	to	occur	within	two	segments	of	the	rectum	(at	the	

sigmoid,	S7	or	rectosigmoid	junction,	RSJ8).	

	
	

	
Figure	 22.	 The	 number	 and	 distribution	 of	 metachronous	 adenomas	 (R1)	 following	 the	

removal	of	an	index	adenoma	(R0)	in	the	caecum.		

73%	of	metachronous	adenomas	were	found	to	occur	within	two	segments	of	the	caecum	(at	the	

ascending	colon,	A2	or	hepatic	flexure,	HF3).	
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3.4	Results	
	

3.4.7 Single adenoma – analysis 4 
	
Proximally-sited	 metachronous	 adenomas	 were	 more	 likely	 to	 occur	 in	 a	

segment	 further	away	(mean	 [SD]	segments	 travelled	3.5	 [2.3])	 from	the	 index	

adenoma	 than	 distally-sited	 metachronous	 adenomas	 (2.6	 [1.8]	 segments	

travelled;	P<0.01	One	sample	t	test).	

Taking	 into	account	 the	available	 segment	movement	 for	each	 index	adenoma:	

metachronous	 adenomas	 that	 were	 able	 to	 move	 proximally	 took	 43%	 of	 the	

available	 travel	 distance	 available	 to	 them	 and	 metachronous	 adenomas	 that	

were	able	to	move	distally	took	30%	of	the	distance	available	to	them.	
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3.5	Discussion	

3.5.1 Whole data set analysis 

	
Analysis	 1	 confirms	 that	 the	 data	 collected	 is	 comparable	 to	 national	 cancer	

statistics;	 indicating	 the	 analyses	 performed	 are	 representative	 of	 the	 general	

population.	

	

The	 results	 from	 analysis	 2	 demonstrate	 metachronous	 adenomas	 occur	 at	

similar	 segments,	 as	 evidenced	 by	 the	 similarity	 in	 graph	 profiles	 between	

colonoscopies.	The	majority	occur	in	the	sigmoid	and	rectum,	as	they	would	be	

expected	to	occur	(Johnson	et	al.,	1988).		

	

The	 results	 from	 analysis	 3	 indicate	 the	 majority	 of	 metachronous	 adenomas	

occur	 in	 the	same	segment,	or	at	 least	 close	 to	 the	 index	adenoma.	The	results	

using	 these	 two	 analytical	 methods	 are	 compatible	 with	 a	 field	 effect,	 since	

adenomas	 frequently	 form	 in	 the	 same	 or	 similar	 region.	 Metachronous	

adenomas	may	arise	due	to	the	influence	of	an	index	adenoma	on	the	field	before	

its	removal	or	alternatively,	the	field	may	be	inherently	predisposed	to	adenoma	

formation	 hence	 the	 occurrence	 of	 two	 adenomas	 at	 different	 time	 points.	

Results	 from	these	analyses	do	not	uncover	whether	 this	observation	 is	due	 to	

cause	or	effect.	

	

3.5.2	Single	adenoma	analysis	
	

The	absolute	figures	from	analysis	1	and	2	show	more	metachronous	adenomas	

develop	 in	 a	 site	 different	 to	 the	 original	 adenoma	 (with	 a	 predominance	 for	

adenomas	to	occur	proximally)	but	analysis	3	demonstrates	up	to	73%	of	caecal	

and	 rectal	 metachronous	 adenomas	 occur	 within	 2	 segments	 of	 the	 original	

adenoma.	 It	 is	 necessary	 to	 interpret	 absolute	 figures	 with	 caution	 since	 the	

interpretation	of	 adenoma	 location	during	 colonoscopy	 is	 not	 exact.	 Even	with	

the	use	of	 a	 colonoscopy	 tracker	 the	 locations	are	 still	 estimated.	 It	 is	possible	

that	 a	 2	 segment	 error	 for	 estimation	 exists	 and	 thus	 many	 adenomas	 were	
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actually	occurring	 in	the	same	segment.	A	colonoscopist	can	be	more	confident	

about	the	location	of	the	scope	at	the	rectum	and	caecum.	The	rectum	is	the	first	

colonic	 segment	 encountered	 during	 scope	 insertion	 and	 the	 caecum	 has	

identifiable	 landmarks	 that	 other	 parts	 of	 the	 colon	 lack	 (although	 it	 is	

recognised	 that	 endoscopists	 can	 still	 misidentify	 the	 caecum)	 (Adam	 et	 al.,	

2001).	 The	 segment	 error	 therefore	may	 be	minimised	 at	 these	 two	 locations	

and	thus	increasing	the	accuracy	of	single	adenoma	analysis	3.		

	

Analysis	 4	 aimed	 to	differentiate	 the	 characteristics	 of	 proximal	metachronous	

adenomas	 and	 distal	 metachronous	 adenomas	 to	 determine	 which	 model	 for	

metachronous	 occurrence	 is	 more	 likely.	 If	 distally	 occurring	 metachronous	

adenomas	were	found	to	occur	close	to	the	index	adenoma	then	model	5	would	

be	more	likely	than	model	3	(see	Figures	10	and	12).		

	

The	 observed	 trend	 is	 that	 of	 proximal	 metachronous	 adenomas	 occurring	

further	away	from	the	index	than	distal	adenomas.	The	significance	of	this	trend	

is	multifaceted:	 if	 right	sided	adenomas	travelled	 further,	 this	suggests	a	wider	

field,	 since	 they	 could	 occur	 more	 proximally	 and	 perhaps	 a	 different	

pathogenesis	mechanism	 to	distal	 adenomas.	 	The	 second	 inference	 is	 that	 the	

intraluminal	 environment	 may	 affect	 a	 field	 as	 exposure	 to	 bowel	 content	 is	

different	between	the	right	and	left	colon	(Birkenkamp-Demtroder	et	al.,	2005).	

An	alternative	argument	is	that	the	observed	further	travel	distance	for	proximal	

metachronous	adenomas	reflects	a	systemic	cause	contributing	to	metachronous	

occurrence	(see	Figure	11).	

	

Data	 from	 both	 data	 sets	 indicate	 that	metachronous	 adenomas	 tend	 to	 occur	

around	 the	 same	area	as	 the	 index	adenoma,	however	a	very	 slight	distal	drift	

was	found	in	multiple	adenoma	analyses,	whereas	a	stronger	proximal	drift	was	

observed	in	single	adenoma	analyses.		

	

It	is	probable	the	multiple	adenoma	analyses	were	not	as	accurate	for	proximal	

and	 distal	 occurrence	 calculation	 as	 the	 single	 adenoma	 analyses	 due	 to	 the	

problems	 mentioned	 in	 3.3.1.	 Taken	 together	 this	 data	 contributes	 to	 the	
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evidence	a	field	effect	may	exist	and	that	model	1	(field	interaction)	is	the	most	

likely	 mechanism	 for	 metachronous	 adenoma	 occurrence.	 Metachronous	

occurrence	as	a	consequence	of	model	2	(micrometastatic	migration)	remains	a	

possibility	 but	 unlikely	 given	 that	 adenomas	 are	 benign	 and	 therefore,	 by	

definition,	 do	 not	 metastasize.	 Although,	 one	 would	 expect	 greater	 distal	

metachronous	 occurrences	 if	models	 3	 and	 5	were	 responsible,	 this	 study	 has	

demonstrated	 the	 reverse.	 	Metachronous	 adenoma	 formation	 due	 to	model	 4	

(systemic	sensitising	molecule)	is	possible	but	we	would	expect	the	results	from	

this	study	to	reveal	a	stronger	pancolonic	representation.	The	proposed	models	

are	 non-mutually	 exclusive	 and	 non-exhaustive;	 given	 the	 controversy	 over	

clonality	 of	 normal	 and	 neoplastic	 lesions	 and	 the	 karyotypic	 variations	 of	

adenomas,	 it	 is	reasonable	to	propose	there	may	be	more	than	one	mechanism	

for	metachronous	adenoma	formation.			

	

There	are	limitations	to	this	study.		The	main	limitation	is	the	subjective	colonic	

location	according	to	the	colonoscopist.	This	study	did	not	document	whether	a	

tracker	was	used	during	the	colonoscopy.	The	study	was	also	retrospective	and	

non-blinded	 therefore	 the	 colonoscopist	 may	 be	 influenced	 by	 reading	 the	

previous	 colonoscopy	 report	 detailing	 where	 previous	 adenomas	 were	 found,	

leading	to	a	higher	‘same	segment’	occurrence	rate.		

	

It	 has	been	 reported	 that	 the	 likelihood	 for	missed	 adenomas	 is	 greater	 in	 the	

proximal	colon	than	distal	colon	(Laiyemo	et	al.,	2011).	The	apparent	increased	

percentage	of	proximal	metachronous	adenomas	could	be	due	to	a	high	miss	rate	

at	 index	 colonoscopy	and	 subsequent	detection	at	 the	next	 colonoscopy	 rather	

than	metachronous	occurrence.	The	miss	rate	of	adenomas	of	any	size	has	been	

reported	as	22%	(van	Rijn	et	al.,	2006)	therefore	up	to	22%	of	our	data	for	index	

and	subsequent	colonoscopy	(R0	and	R1)	may	be	erroneous.	The	high	apparent	

percentage	of	proximal	metachronous	occurrences	can	also	be	explained	due	to	

the	high	number	of	 index	adenomas	 in	the	rectum	(as	expected);	since	there	 is	

no	way	for	a	metachronous	adenoma	to	occur	more	distally	the	only	options	are	

same	 segment	 and	 proximal	 occurrence.	We	 aimed	 to	 reflect	 this	 through	 the	

probability	calculation	and	although	statistical	significance	cannot	be	assigned	to	
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this	 calculation;	 it	does	 support	 the	mean	segment	 calculation	 from	analysis	4,	

which	was	statistically	significant.		

	

The	segment	sizes	of	the	nine	regions	of	the	colon	are	different,	for	example	the	

area	 of	 the	 splenic	 flexure	 is	 much	 smaller	 than	 the	 sigmoid	 and	 is	 therefore	

likely	 to	have	 less	polyps.	This	 limitation	cannot	be	corrected	 for	but	has	been	

noted	and	must	be	considered	during	result	interpretation.	

	

The	 World	 Health	 Organisation	 (WHO)	 classifies	 adenomas	 into	 tubular	 (less	

than	 20%	 villous	 architecture),	 tubulovillous	 and	 villous	 histological	 subtypes	

(Castells	 et	 al.,	 2009). The	 probability	 of	 high	 grade	 dysplasia	 and	 malignant	
transformation	increases	when	polyp	size	exceeds	1cm	or	if	they	have	a	villous	

component	 (Bujanda	 et	 al.,	 2010).	 There	 is	 evidence	 to	 show	 that	 different	

histological	 subtypes	 follow	 different	 carcinogenesis	 pathways	 and	 have	

different	 distributions	 within	 the	 colon	 (Bauer	 and	 Papaconstantinou,	 2008).	

Large	villous	adenomas,	with	a	greater	potential	for	malignant	change	are	more	

likely	to	be	found	in	the	distal	colon	(Shussman	and	Wexner,	2014).	Histological	

subtypes	 and	 size	 of	 the	 adenomas	 were	 not	 available	 for	 every	 record	 and	

therefore	not	included	in	the	analysis.	A	better	understanding	for	the	likely	cause	

of	 metachronous	 occurrence	 may	 be	 attained	 with	 the	 incorporation	 of	

histological	 subtypes	 and	 size	 in	 future	 studies.	 Adenoma	 size	 may	 be	 an	

important	factor	in	relation	to	model	4	and	5	since	adenomas	greater	than	1cm	

in	 size	 have	 been	 shown	 to	 influence	metachronous	 adenoma	 occurrence	 and	

malignant	change.	It	is	possible	that	larger	adenomas	have	the	ability	to	secrete	

greater	 amounts	 of	 sensitizing	 molecule	 into	 the	 lumen	 or	 systemically.	 This	

suggestion	 is	 strengthened	by	 the	 observation	 that	 3	 or	more	 adenomas	 (with	

potentially	greater	sensitizing	molecule	secretion	ability	than	one	adenoma)	are	

also	a	risk	factor	for	recurrence	(Noshirwani	et	al.,	2000,	Saini	et	al.,	2006).		

The	 database	 of	 adenoma	 positions	 and	 characteristics	 generated	 from	 this	

study	 was	 submitted	 for	 mathematical	 modelling.	 Preliminary	 results	 have	

shown	 metachronous	 adenoma	 occurrence	 from	 this	 dataset	 is	 not	 random	

(Yifan	Zhao,	personal	communication,	May	1,	2013).	It	may	be	possible	to	apply	



	 86	

mathematical	models	 to	predict	positions	of	 future	metachronous	occurrences.	

The	mathematical	modelling	has	not	been	performed	as	part	of	 this	MD,	but	 is	

likely	to	provide	an	area	for	fruitful	future	research.		

	

The	 mechanisms	 by	 which	 metachronous	 adenomas	 occur	 is	 still	 unknown,	

although	 adenoma	 characteristics,	 such	 as	 size	 and	 number	 associated	 with	

recurrence	 have	 been	 identified.	 A	 number	 of	 studies	 have	 identified	 a	 higher	

recurrence	 rate	 of	 adenomas	 in	 the	 proximal	 colon	 (Martinez	 et	 al.,	 2001,	

Laiyemo	et	al.,	2011)	however	to	date	there	is	no	published	evidence	regarding	

the	 location	 in	 which	 metachronous	 adenomas	 occur	 in	 relation	 to	 an	 index	

adenoma.	Investigation	of	this	relationship	is	unique	to	this	study,	the	results	of	

which	suggest	a	cancerized	field.		Likely	areas	for	future	metachronous	adenoma	

formation	 can	 be	 targeted	 during	 surveillance	 if	 a	 cancerized	 field	 has	 been	

detected	and	will	determine	subsequent	treatment.		

	

Keratin	 dysregulation	 has	 previously	 been	 described	 in	 fields	 around	

adenomatous	polyps	(Polley	et	al.,	2006).	In	addition,	previous	studies	have	used	

K8	 and	 K18	 immunohistochemical	 staining	 of	 lymph	 nodes	 as	 predictors	 of	

recurrence	 in	 	 ‘node-negative’	colorectal	cancer	(Sasaki	et	al.,	1997).	Utilisation	

of	K8	and	K18	as	predictors	of	recurrence	in	colorectal	neoplasia	is	particularly	

relevant	 to	 this	 thesis.	 	 Investigating	 the	 locations	 for	metachronous	 adenoma	

may	 enable	 prediction	 of	 recurrence	 and,	 equally,	 successful	 identification	 of	

abnormal	 K8	 and	 K18	 in	 the	 pre-adenomatous	 field	 could	 allow	 prediction	 of	

recurrence.		
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3.6	Summary	

 

3.6.1 Conclusion 

	

• Metachronous	adenoma	occurrences	are	likely	to	be	in	a	similar	segment	

to	the	index	adenoma.	

• Development	 of	 adenomas	 in	 the	 same	 area	 suggests	 field	 interaction	

predisposes	 to	 adenoma	 formation,	 as	 fields	 are	 left	 behind	 following	

polypectomy.	

• Slightly	more	proximal	metachronous	adenoma	formation	emphasises	the	

clinical	importance	of	full	colonoscopy	(to	the	caecal	pole).		

	

3.6.2 Limitations 
	

• Colonic	 location	 is	 subjective	 to	 the	 colonoscopist,	 who	 can	 only	 be	

confident	of	scope	location	at	the	rectum	and	caecum.	

• The	 colonoscopist	 was	 not	 blinded	 and	 thus	 subject	 to	 bias	 based	 on	

previous	colonoscopy	findings.	

• A	high	miss	 rate	 at	 index	 colonoscopy	 can	produce	 inaccurate	 and	high	

metachronous	rates.	

• Data	was	not	available	for	histological	subtypes	or	size	of	adenomas	and	

therefore	could	not	be	adjusted	for.	
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Chapter	4	Development	of	an	integrated	workflow	for	

extraction	and	solubilization	of	intermediate	filaments	

from	colorectal	biopsies	for	proteomic	analysis	

4.1	Introduction	
	
Proteomic	analysis	
	
Quantitative	proteomic	methods	 include	 isobaric	 tags	 for	 relative	and	absolute	

quantification	 (iTRAQ),	 stable	 isotope	 labelling	 by	 amino	 acids	 in	 cell	 culture	

(SILAC)	 and	 isotope	 coded	 affinity	 tag	 (ICAT).	 A	 mass	 spectrometry	 based	

proteomic	 technique	 was	 chosen	 to	 investigate	 protein	 differences	 between	

cancerized	field	and	normal	tissue	due	to	the	complexity	of	proteins	in	mucosal	

samples.	The	way	in	which	keratins	differ	in	a	cancerized	field	is	unknown	and	

therefore	 many	 peptides	 were	 analysed	 to	 highlight	 which	 keratins	 deserve	

focused	investigation.		

ITRAQ	is	an	isobaric	labelling	method	used	in	quantitative	proteomics	by	tandem	

mass	spectrometry	to	determine	the	amount	of	peptides	from	different	sources	

in	 a	 single	 experiment.	 It	 uses	 stable	 isotope	 labelled	 molecules	 that	 are	

covalently	bonded	to	the	N-terminus	and	lysine	side	chains	of	peptides	(Evans	et	

al.,	2012).		ITRAQ	was	employed	in	this	study	due	to	its	numerous	advantages.	It	

can	both	identify	and	quantify	thousands	of	peptides	in	a	relatively	short	period	

of	time	in	comparison	to	2D	gel	electrophoresis.	In	comparison	to	SILAC,	where	

samples	have	to	 labelled	 in	vivo	or	 in	cell	culture,	 iTRAQ	allows	 labelling	of	 the	

mucosal	 samples	 ex	 vivo,	 which	 is	 imperative	 for	 endoscopic-biopsy	 obtained	

samples.	 	ITRAQ	also	has	the	advantage	over	SILAC	and	ICAT	in	that	it	can	also	

detect	 post-translational	 modifications,	 which	 are	 especially	 relevant	 in	 the	

study	 of	 keratins.	 The	 principal	 advantage	 over	 ICAT	 and	 SILAC	 is	 that	 many	

samples	 can	 be	 labelled	 and	 analysed	 simultaneously	 thereby	 reducing	 the	

amount	 of	 mass	 spectrometry	 time	 required	 for	 analysis.	 A	 disadvantage	 of	

iTRAQ	 in	 comparison	 to	 SILAC	 is	 that	 samples	 for	 analysis	 must	 be	 prepared	

according	 to	a	strict	multi-step	protocol,	which	 is	 therefore	open	 to	processing	

error.	
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Intermediate	filaments	

	

Intermediate-sized	 filaments	 (IF)	 are	 among	 the	 most	 insoluble	 intracellular	

protein	 polymer	 structures	 (Soellner	 et	 al.,	 1985).	 Keratins	 are	 a	 major	

component	 of	 IF,	 of	which	only	5%	are	 found	 in	 the	 soluble	 form	 (Chou	 et	 al.,	

1993).	Conventionally,	keratins	are	dissolved	in	urea	(Achtstaetter	et	al.,	1986)	

but	 this	 presents	 a	 problem	 in	 isobaric	 tags	 for	 relative	 and	 absolute	

quantification	(iTRAQ)	analysis	as	urea	inhibits	proteolytic	digestion	by	trypsin.		

No	 IF	 solubilisation	 protocols,	 compatible	 with	 iTRAQ	 processing,	 have	 been	

published.	 There	 is	 therefore	 an	 unmet	 need	 for	 a	 standardized	 and	 proven	

protocol	 for	 extraction	of	 insoluble	 intermediate	 filaments	 and	preparation	 for	

iTRAQ	 methodologies.	 	 This	 protocol	 must	 also	 enable	 simultaneous	 trypsin	

digestion	and	preservation	of	post-translational	modifications.		

	

4.2	Aims	and	Objectives	
	

• To	develop	a	 solubilisation	protocol	 for	 intermediate	 filaments	enabling	

the	analysis	of	keratins	using	iTRAQ.			

• To	demonstrate	 that	 the	protocol	devised	produces	a	 final	protein	yield	

and	protein	profiles	similar	to	that	of	a	protocol	using	urea	as	the	solvent.		

	

This	work	was	 undertaken	 collaboratively	 and	 the	work	 described	 above	was	

carried	 out	 with	 equal	 contribution.	 Demonstration	 of	 preservation	 of	 post-

translational	modifications	was	carried	out	by	Debabrata	Majumdar,	a	member	

of	our	group.		

	

This	work	is	now	published:			

Majumdar,	D.,	Rosser,	R.,	Havard,	S.,	Lobo,	A.	J.,	Wright,	P.	C.,	Evans,	C.	A.	&	Corfe,	

B.	M.	2012.	An	integrated	workflow	for	extraction	and	solubilization	of		

intermediate	filaments	from	colorectal	biopsies	for	proteomic	analysis.		

Electrophoresis,	33,	1967-74.	(See	Appendix	4)	
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4.3	Materials	and	Methods	

4.3.1	Materials	

	

Low	detergent	buffer	

Low	detergent	buffer	(LDB)	was	prepared	by	combining	the	following:	

5mL	High	Performance	Liquid	Chromatography	(HPLC)	grade	water;		

500μL	10x	Phosphate	Buffered	Saline	(PBS);		

500μL	1M	pH	7.0	3-(N-morpholino)propansulfonic	acid	(MOPS);		

100μL	1M	(magnesium	chloride)	MgCl2;		

200μL	 100mM	 ethylene	 glycol	 tetra-acetic	 acid (EGTA)	 and	 150μL	 10%	 (v/v)	

Triton	x-100	in	water.	

Further	HPLC	grade	water	was	added	to	make	up	the	total	volume	to	10mL.	

	

Phosphatase	 inhibitor	 composed	 of:	 100μL	 phosphatase	 inhibitor	 cocktail	 2	

(P5726);	 100μL	 2mM	 sodium	 β	 glycerophosphate;	 100μL	 2mN	 sodium	

pyrophosphate	 decahydrate.	 100μL	 10mM	 sodium	 fluoride	 was	 added	 just	

before	use.	

All	chemicals	were	supplied	by	Sigma	Aldrich,	Dorset,	UK.		

	

High	detergent	buffer	

High	 detergent	 buffer	 (HDB)	 was	 prepared	 by	 combining	 the	 following:	 5mL	

HPLC	 grade	water;	 500μL	 10xPBS;	 500μL	 1M	pH	 7.0	MOPS;	 100μL	 1M	MgCl2;	

10μL	 100mM	 Pefabloc	 (Roche	 Diagnostics	 GmbH,	 Mannheim,	 Germany);	 1mL	

10%	(v/v)	Triton	x-100	in	water	and	2mL	5M	NaCl.	Further	HPLC	grade	water	

was	added	to	make	up	the	total	volume	to	10mL.		

	

Phosphatase	inhibitor	and	20μL	Benzonase	Nuclease	(Novagen,	Merck	Chemicals	

Ltd.,	Nottingham,	UK)	were	added	just	before	use.	

All	 chemicals	 (unless	 otherwise	 specified)	 were	 supplied	 by	 Sigma	 Aldrich,	

Dorset,	UK.		
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Wash	buffer	

Wash	 buffer	 was	 prepared	 by	 dissolving	 40μL	 1M	 MgCl2	 and	 10μL	 100mM	

Pefabloc	(Roche	Diagnostics	GmbH,	Mannheim,	Germany)	in	19.95ml	phosphate	

buffered	saline	(PBS).	

All	 chemicals	 (unless	 otherwise	 specified)	 were	 supplied	 by	 Sigma	 Aldrich,	

Dorset,	UK.		

	

MCF7	growth	media	

1640	 RPMI	 media	 (GIBCO,	 Invitrogen	 Paisley,	 UK)	 supplemented	 with	 heat-

deactivated	 foetal	 calf	 serum	 (Biosera,	 Sussex,	 U.K.)	 and	 5%	 (v/v)	 Penicillin	

(10000	units/mL)	and	streptomycin	(10000	μg/mL).		

10M	Urea	

10M	urea	was	prepared	by	dissolving	6g	of	urea	(Sigma	Aldrich,	Dorset,	UK)	in	

10ml	of	distilled	water,	pipetted	into	1mL	aliquots	and	stored	at	-20°C.	

	

4M	Guanidine	Hydrochloride	

4M	guanidine	hydrochloride	(GuHCl)	was	prepared	by	dissolving	0.38g	of	GuHCl	

(Sigma	Aldrich,	Dorset,	UK)	in	triethylammonium	bicarbonate	buffer	(TEAB)	at	a	

pH	of	8.5	(Sigma	Aldrich,	Dorset,	UK).		

	

4.3.2	Maintenance	of	MCF7	cells	
	
MCF7	cells	(a	human	breast	adenocarcinoma	cell	line)	were	used	as	a	source	of	

biological	 material	 in	 method	 development.	 MCF7	 cells,	 maintained	 in-house	

(originally	 purchased	 from	 ATCC,	 Middlesex,	 UK)	 were	 cultured	 in	 T75	 flasks	

using	RPMI	 growth	media.	 The	 cells	were	passaged	 twice	weekly	by	 removing	

growth	 medium	 from	 the	 flask	 and	 following	 an	 in-house	 protocol	 for	 cell	

culture.	 Cells	 were	 washed	 in	 the	 T75	 flask	 using	 10mL	 phosphate	 buffered	

saline	 (Sigma-Aldrich,	 Dorset	 UK)	 and	 then	 incubated	 with	 2.5ml	 of	 0.25%	

trypsin-	 0.53mM	 EDTA	 solution	 (Invitrogen,	 Paisley,	 UK)	 for	 two	 minutes	 at	

37°C.	 The	 cells	were	 dislodged	 from	 the	 flask	 and	 suspended	 in	 RPMI	 growth	
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media.	 The	 cell	 suspension	 was	 centrifuged	 at	 400g	 (Sanyo,	 Harrier	 18/80	

centrifuge).	The	supernatant	was	decanted	and	the	remaining	cells	re-suspended	

in	RPMI	 growth	medium.	The	 suspension	was	divided	 into	 five	T75	 flasks	 and	

the	total	volume	made	up	to	10mL	with	RPMI	growth	medium	and	returned	to	

the	incubator.	

4.3.3	Isolation	of	intermediate	filaments	from	MCF7	cells	
	
Intermediate	 filaments	were	 isolated	 from	 cells	which	were	 established	 at	 70-

80%	confluence.	A	modified	version	of	the	technique	used	by	Achtstaetter	et	al.,	

was	used	(Achtstaetter	et	al.,	1986).	Growth	media	was	removed	 from	the	T75	

flask	and	cells	rinsed	three	times	with	3mls	wash	buffer.	1mL	of	LDB	was	added	

to	each	flask	and	swilled	for	90	seconds;	the	buffer	was	then	removed	and	stored	

in	LoBind	Eppendorfs	(Eppendorf	AG,	Hamburg,	Germany)	to	minimise	protein	

loss	via	binding	to	the	Eppendorf	tube.	The	T75	flasks	were	incubated	on	ice	for	

10	minutes	with	1mL	of	HDB.	After	10	minutes	250μL	of	ice	cold	sodium	chloride	

(5M)	was	added	 to	 the	 flask.	The	 resultant	wash	mixture	was	pipetted	against	

the	 flask	 to	 detach	 the	monolayer	 of	 cells.	 The	 cell	mixture	was	 aspirated	 and	

transferred	 to	 Eppendorfs.	 Eppendorfs	 were	 centrifuged	 at	 100000	 RCF	 for	

10mins	at	4°C.	The	supernatant	(high	salt	soluble	fraction)	was	pipetted	off	and	

aliquoted	 in	 Eppendorfs.	 The	 remaining	 pellet	 of	 cytoskeletal-intermediate	

filament	 within	 the	 Eppendorf	 was	 labelled	 and	 stored	 for	 later	 analysis.	 All	

fractions	were	stored	at	-80°C	until	analysis.		

4.3.4	Removal	of	guanidine	hydrochloride	
	
When	 MCF7	 intermediate	 filaments	 dissolved	 in	 4M	 GuHCl	 were	 mixed	 with	

Laemmli	 buffer	 (prior	 to	 running	 SDS-PAGE	 gel)	 a	 precipitate	was	 seen.	 	 This	

precipitate	was	 found	 to	 interfere	with	 SDS-PAGE	 gel	 and	 Coomassie	 staining.	

Efforts	to	prevent	precipitate	formation	were	made	by	removing	GuHCl	from	the	

sample	 once	 the	 intermediate	 filaments	were	 in	 solution.	 GuHCl	was	 removed	

from	 the	 dissolved	 samples	 using	 a	 commercial	 preparation	 kit	 (Pierce®	 SDS-	
PAGE	 Sample	 Prep	Kit	 (Pierce	Biotechnology,	 Rockford,	 IL,	 USA))	 according	 to	

the	manufacturer’s	protocol.	

Guanidine	 hydrochloride	 was	 also	 removed	 from	 colonic	 samples,	 once	 the	
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intermediate	 filaments	were	 in	solution,	using	Pierce®	SDS-PAGE	Sample	Prep	

Kit	(Pierce	Biotechnology,	Rockford,	IL,	USA)	prior	to	running	SDS-PAGE	gel	and	

Coomassie	stain.	

4.3.5	MCF7	–	intermediate	filament	solubility	comparison	
	
Coomassie	stains	were	performed	to	assess	whether	the	protein	concentration	of	

intermediate	filaments	dissolved	in	GuHCl	was	comparable	to	the	concentration	

dissolved	 in	 urea.	 Intermediate	 filament	 proteins	 dissolved	 in	 GuHCl	 were	

processed	using	 the	Pierce®SDS-PAGE	Sample	Prep	Kit.	Protein	samples	eluted	

in	 the	 last	 step	were	heated	 at	 95°C	 for	 5	min	with	non-reducing	 lane	marker	

(provided	with	the	kit)	and	loaded	onto	12%	SDS	gels	and	analysed	as	previously	

described	by	Laemmli	 (1970).	 Coomassie	 stains	were	performed	on	 SDS-PAGE	

gels	using	Instant	Blue	(Expedeon,	Harston,	UK).	 	Coomassie	band	intensities	of	

MCF7	intermediate	filaments	dissolved	in	varying	concentrations	and	volumes	of	

urea	and	GuHCl	were	compared.		

4.3.6	Isolation	of	intermediate	filaments	from	colonic	biopsies	
	
A	 similar	protocol	 for	 isolation	of	 intermediate	 filaments	 from	colonic	biopsies	

was	 devised	 based	 on	 the	 protocol	 for	 isolating	 intermediate	 filaments	 from	

MCF7	cells.	

Colonic	 biopsies	 were	 homogenised	 with	 LDB	 using	 Precellys™	 24	 (Bertin	

Technologies,	Villeurbanne,	France)	at	6000	rpm,	30sec,	2	cycles	(20sec	rest	 in	

between	 cycles).	 The	 resulting	 lysate	 was	 removed	 and	 centrifuged.	 The	

supernatant	 was	 stored	 as	 fraction	 1	 (the	 soluble	 and	 extractable	 membrane	

protein	fraction).		The	isolation	and	analysis	of	fraction	1	was	carried	out	by	Lisa	

Croucher,	a	member	of	our	group	as	part	of	another	research	project.		

The	 remaining	pellet	 following	 centrifugation	was	washed	with	more	LDB	and	

re-suspended	in	HDB	(with	Benzonase®	Nuclease,	(Novagen®,	Merck	Chemicals	

Ltd.,	 Nottingham,	 UK)	 added	 at	 this	 stage	 to	 remove	 viscous	 nucleic	 acids)	

followed	 by	 incubation	 on	 ice	 for	 10	minutes.	 The	 pellet	 in	 HDB	 solution	was	

centrifuged	to	yield	a	supernatant	-	the	high	salt	soluble	protein	(fraction	2).	The	

residual	pellet	was	stored	as	the	 insoluble	cytoskeleton	fraction	–	 intermediate	
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filaments	 (fraction	 3).	 All	 fractions	 were	 stored	 in	 LoBind	 Eppendorfs	

(Eppendorf	AG,	Hamburg,	Germany)	at	-80°C	until	analysis.	Prior	to	analysis	the	

residual	pellet	was	dissolved	in	4M	GuHCl.	

4.3.7	Colonic	biopsy	intermediate	filament	solubility	comparison	
	
Protein	(from	colonic	samples)	eluted	in	the	last	step	of	Pierce	sample	prep	kit	

was	heated	at	95°C	 for	5	min	with	non-reducing	 lane	marker	 and	analyzed	on	

12%	 SDS-PAGE	 gels,	 as	 previously	 described	 in	 4.3.5.	 Coomassie	 stains	 were	

performed	 using	 Instant	 Blue	 (Expedeon,	 Harston,	 UK)	 for	 protein	 detection;	

band	 intensity	 was	 used	 as	 an	 indicator	 of	 protein	 quantity.	 Coomassie	 band	

intensities	 of	 colonic	 intermediate	 filaments	 in	 varying	 concentrations	 and	

volumes	 of	 urea	 and	 GuHCl	 were	 compared.	 A	 proportion	 of	 intermediate	

filament	 samples	 were	 also	 sonicated	 (Bioruptor	 Sonicator,	 Diagenode,	

Cambridge,	 UK)	 in	 iced	 water	 for	 30	 seconds	 for	 five	 cycles.	 Band	 intensities	

between	 sonicated	 and	 non-sonicated	 samples	 were	 compared	 to	 ascertain	

whether	 protein	 solubilisation	 and	 hence	 yield	 could	 be	 improved	 following	

sonication.		
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4.4	Results	
	
Protein	bands	were	 identified	 around	 the	 set	molecular	weight	markers	of	 the	

manufacturer’s	lane	marker.	These	proteins	were	found	above	37kDa	and	above	

the	 50kDa	marker.	 The	molecular	 weight	 of	 keratin	 8	 is	 55kDa;	 keratin	 18	 is	

45kDa	and	keratin	19	is	40kDa.	

The	band	intensity	of	Coomassie	stains	were	interpreted	as	a	marker	of	protein	

yield	 (the	 stronger	 the	 band	 the	 more	 protein	 present).	 Coomassie	 stains	

performed	 without	 removal	 of	 GuHCl	 resulted	 in	 a	 precipitate	 that	 interfered	

with	 SDS-PAGE	 and	 reduced	 band	 intensities	 (Figure	 23).	 Removal	 of	 GuHCl	

from	 solubilized	 intermediate	 filaments,	 using	 Pierce® prep	 kit,	 successfully	
prevented	formation	of	the	visible	precipitate	and	allowed	SDS-PAGE	gels	to	be	

run	 on	 both	 the	 MCF7	 and	 colonic	 tissue	 samples.	 Band	 intensities	 for	 MCF7	

intermediate	 filaments	dissolved	 in	4M	GuHCl	were	comparable	 to	 that	of	10M	

urea	 (Figure	 24).	 These	 results	 enabled	 a	 similar	 protocol	 to	 be	 applied	 to	

colonic	 samples.	 Coomassie	 band	 intensities	 of	 colonic	 intermediate	 filaments	

solubilized	 in	 4M	 GuHCl	 were	 stronger	 than	 those	 solubilized	 in	 6M	 GuHCl	

(Figure	25).	Colonic	intermediate	filaments	dissolved	in	4M	GuHCl	also	produced	

similar	 band	 intensities	 as	 those	 dissolved	 in	 10M	urea	 (Figure	 25).	 Efforts	 to	

increase	 protein	 yield	 by	 sonicating	 samples	 did	 not	 result	 in	 stronger	 band	

intensities	(Figure.	26).	
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4.4	Results	

4.4.1 MCF7 intermediate filament solubility comparison 
	

	
Figure	23.	Coomassie	stain	of	MCF7	dissolved	in	10M	urea	and	4M	guanidine	hydrochloride.		

Lane	1	=	lane	marker	indicating	molecular	weights	of	proteins		
Lane	2		=	5μL	of	MCF7	sample	dissolved	in	10M	urea.	

Lane	3		=	10μL	of	MCF7	sample	dissolved	in	10M	urea		

Lane	4		=	5μL	of	MCF7	sample	dissolved	in	4M	GuHCl		

Lane	5		=	10μL	of	MCF7	sample	dissolved	in	4M	GuHCl.			

The	 strongest-	 staining	bands	 seen	 in	 lanes	2-5	are	around	molecular	weight	markers	

37kDa	and	50	kDa	where	keratins	8,	18	and	19	(55kDa,	45kDa	and	40kDa	respectively)	

would	be	expected.	The	band	intensities	of	lanes	2	and	3	are	stronger	than	lanes	4	and	5	

indicating	 urea	 is	 a	 better	 solvent	 than	 GuHCl	 for	 protein	 identification.	 	 The	 band	

intensity	of	lane	3	(10μL	of	dissolved	sample	loaded)	is	stronger	than	lane	2	indicating	

more	 than	5μL	 of	 dissolved	 sample	 should	 be	 loaded	 for	 better	 protein	 identification.	

The	reduced	band	intensities	in	GuHCl	samples	(lanes	4	and	5)	are	thought	to	be	due	to	

interference	from	precipitate	formation	without	Pierce	kit	clean	up.		
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4.4	Results	

4.4.2 MCF7 removal of guanidine hydrochloride 
	

Figure	 24.	 Coomassie	 stain	 of	MCF7	 dissolved	 in	 10M	urea	 and	 4M	 guanidine	 hydrochloride	with	
Pierce	kit	clean	up.	

Lane	1	=	lane	marker	

Lane	2	=	20μL	of	MCF7	sample	dissolved	in	4M	GuHCl	

Lane	3	=	20μL	of	MCF7	sample	dissolved	in	10M	urea	

Lane	4	=	20μL	of	MCF7	sample	dissolved	in	10M	urea	

Lane	5	=	20μL	of	MCF7	sample	dissolved	in	10M	urea	

Lane	6	=	20μL	of	MCF7	sample	dissolved	in	10M	urea	

Lane	7	=	20μL	of	MCF7	sample	dissolved	in	4m	GuHCl	

The	 same	 sample	 was	 loaded	 into	 lanes	 3-6	 to	 ensure	 reproducibility;	 there	 were	

abundant	amounts	of	sample	to	allow	this.	

The	band	intensities	of	samples	dissolved	in	GuHCl	(lanes	2	and	7)	are	now	comparable	

to	the	band	intensities	of	samples	dissolved	in	urea	(lanes	3-6).	Again,	as	per	Figure	23	

proteins	with	the	molecular	weights	where	keratin	8,	18	and	19	would	be	expected	are	

seen.	These	results	indicate	removal	of	GuHCl	prevented	precipitate	formation	and	thus	

comparable	 band	 intensities	 to	 urea	were	 achievable	when	 using	 GuHCl	 as	 a	 solvent.	

These	results	enabled	the	isolation	protocol	to	be	applied	to	colonic	biopsy	tissue.	
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&
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& &&&&&&&&&&&4M&&&&&&&&&&&&&&&&&&&&&&10M&&&&&&&&&&&&&&&&&&&&&&&10M&&&&&&&&&&&&&&&&&10M&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&10M&&&&&&&&&&&&&&&&&&&&&4M&
Lane&Marker&&&&&&&&GuHCl&&&&&&&&&&&&&Urea&&&&&&&&&&&&&&&&&&Urea&&&&&&&&&&&&&&Urea&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&Urea&&&&&&&&&&&&&&&&GuHCl&
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4.4	Results	

4.4.3 Colonic biopsy solubility comparison 
	
	
	

	
Figure	25.	Coomassie	stain	of	colonic	biopsies	in	6M	guanidine	hydrochloride.	

Coomassie	stain	of	colonic	biopsies	dissolved	in	urea	and	GuHCl	revealed	similar	band	

intensities	 to	 MCF7	 cells	 particularly	 in	 the	 molecular	 weight	 region	 37-50kDa.	 Band	

intensity	was	not	increased	by	increasing	molar	concentration	of	6M	GuHCl.	

Lane	1		=	lane	marker	to	indicate	molecular	weights	

Lane	2	=	colonic	biopsy	sample	dissolved	in	10M	urea	

Lane	3	=	colonic	biopsy	sample	dissolved	in	4M	GuHCl	

Lane	4	=	colonic	biopsy	sample	dissolved	in	6M	GuHCl	

The	 strongest	 band	 intensity	 for	 that	 molecular	 weight	 region	 was	 seen	 in	 lane	 3	

(sample	 dissolved	 in	 4M	 GuHCl)	 indicating	 the	 higher	molar	 concentrations	 of	 GuHCl	

used	in	lane	4	are	not	required	for	enhanced	protein	detection.	More	proteins	outside	of	

the	 molecular	 weight	 region	 of	 interest	 were	 identified	 in	 samples	 dissolved	 in	 urea	

(lane	2)	as	evidenced	by	bands	seen	above	and	below	55kDa	and	37kDa.	The	proteins	of	

interest	(keratins)	are	thus	well	represented	in	4M	GuHCl	dissolved	samples.	
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4.4	Results	

4.4.4 Colonic biopsy sonication 

	
Figure	26.	Coomassie	stain	of	colonic	biopsies	in	4M	guanidine	hydrochloride	with	Pierce	clean	up	
and	sonication.			

MCF7	 control	 sample	 and	 colonic	 biopsies	 were	 all	 dissolved	 in	 200μL	 of	 4M	 GuHCl,	

labelled	MCF7	and	samples	1-3,	respectively.	A	further	200μL	of	4M	GuHCl	was	added	to	

any	undissolved	sample	material	and	sonicated,	these	samples	were	loaded	onto	the	gel	

as	1B,	2B	and	3B.	The	band	 intensity	pattern	reveals	sonication	did	not	 improve	band	

intensity.	

Lane	1			=	lane	maker	

Lane	2	=	MCF7	dissolved	in	200μL	of	4M	GuHCl	

Lane	3	=	colonic	biopsy	sample	1	dissolved	in	200μL	of	4M	GuHCl	

Lane	4	=	colonic	biopsy	sample	1	sonicated	and	dissolved	in	200μL	of	4M	GuHCl	

Lane	5	=	colonic	biopsy	sample	2	dissolved	in	200μL	of	4M	GuHCl	

Lane	6	=	colonic	biopsy	sample	2	sonicated	and	dissolved	in	200μL	of	4M	GuHCl	

Lane	7	=	colonic	biopsy	sample	3	dissolved	in	200μL	of	4M	GuHCl	

Lane	8	=	colonic	biopsy	sample	3	sonicated	and	dissolved	in	200μL	of	4M	GuHCl	
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4.5	Discussion	
	

A	 successful	 protocol	 was	 developed	 for	 the	 solubilisation	 of	 IF,	 using	 4M	

Guanidine	 hydrochloride	 as	 the	 solvent.	 As	 previously	 discussed	 urea	 is	 not	

iTRAQ	 compatible	 as	 it	 interferes	 with	 trypsin	 digestion.	 Guanidine	

hydrochloride	 permits	 trypsin	 digestion	 but	 forms	 an	 insoluble	 precipitate	

(guanidine	dodecylsulphate)	by	reacting	with	SDS	in	Laemmli	buffer.	Removal	of	

guanidine	 hydrochloride	 following	 solubilisation	 using	 a	 clean	 up	 kit	 enables	

both	 SDS	 page	 gels	 and	 iTRAQ	 to	 be	 performed.	 Sonication	 of	 solubilized	 and	

Pierce	 cleaned	 colonic	 biopsy	 samples	 did	 not	 increase	 protein	 yield.	 These	

experiments	were	performed	in	collaboration	with	Dr	Debrabata	Majumdar,	up	

to	 this	point	our	contribution	was	equally	divided.	Dr	Majumdar	continued	 the	

experiments	 to	 successfully	 demonstrate	 that	 post-translational	 modifications	

were	preserved	using	this	protocol	by	using	western	immunoblot.	The	proteins	

from	 the	 colonic	biopsy	 samples	dissolved	 in	GuHCl	 seen	at	37	and	50	kDa	on	

Coomassie	 stain	 were	 also	 demonstrated	 to	 be	 immunoreactive	 to	 keratin	 8	

antibody.		This	work	is	now	published	(Majumdar	et	al.,	2012a),	(Appendix	4).	

	

4.6	Summary	
	

1. A	 protocol	 was	 successfully	 devised	 to	 allow	 solubilisation	 of	 colonic	

biopsies.	

	

2. The	protocol	devised:	

• uses	an	iTRAQ	compatible	solvent		-	Guanidine	hydrochloride		

• requires	‘cleaning	up’	of	precipitate	guanidine	dodecylsulphate	

• produces	a	similar	protein	yield	and	protein	profile	to	that	of	urea	

• enables	the	preservation	of	post-translational	modifications	
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Chapter	5	

	

	

Application	of	isobaric	Tags	for	Relative	and	Absolute	

Quantification	(iTRAQ)	proteomics	for	the	detection	

of	molecular	changes	underlying	field	effects.		
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Chapter	5	Application	of	ITRAQ	proteomics	for	the	detection	of	

molecular	changes	underlying	field	effects	

5.1	Introduction	
	
Previous	 research	 into	 colorectal	 neoplasia	 has	 compared	 tumour	 tissue	 to	

normal	 tissue	 from	 the	 same	 patient,	 with	 the	 assumption	 that	 the	

macroscopically	normal	tissue	is	equivalent	to	that	of	healthy	tissue	from	disease	

free	 patients.	 Recent	 investigations	 in	 field	 effects	 indicate	 this	 may	 be	 a	

misguided	approach.	 	Numerous	studies	have	shown	that	 the	characteristics	of	

tumour	 tissue	 are	 more	 similar	 to	 the	 field	 tissue	 around	 it	 than	 tissue	 from	

pathology-free	 patients.	 Badvie	 et	 al.,	 found	 anti-apoptotic	 protein	 levels	were	

raised	in	cancer	adjacent	to	normal	colonic	mucosa	and	cancer	in	comparison	to	

mucosa	 from	 disease-free	 colons	 (p<0.001)	 (Badvie	 et	 al.,	 2006,	 Jothy	 et	 al.,	

1996,	Shen	et	al.,	2005).	Particularly	relevant	to	this	study	is	the	overexpression	

of	 keratins	 found	 in	 adenoma	 and	 field	 tissue	 when	 compared	 with	 normal	

disease-free	tissue	(Polley	et	al.,	2006).	

In	addition,	work	from	our	group	has	found	an	association	between	butyrate	and	

keratin	expression	in	colorectal	cancer	(Khan	et	al.,	2011).			

	

To	 investigate	 further	 the	 association	 between	 keratins,	 butyrate	 and	 the	

cancerized	field	a	proteomic	approach	was	used.	8	plex	isobaric	tags	for	relative	

and	 absolute	 quantification	 (iTRAQ)	 is	 a	 gel	 free	 approach	 that	 allows	

simultaneous	 protein	 identification	 and	 relative	 quantification	 of	 up	 to	 eight	

sample	 groups.	 2-D	 Gel	 electrophoresis	 (2DGE)	 is	 a	 proteomic	 approach	 that	

separates	 proteins	 by	mass	 and	 charge	 and	 could	 have	 been	 employed	 in	 this	

study	but	co-migration	of	similar	proteins	may	not	identify	keratin	changes	and	

this	 creates	 difficulties	 in	 reproducing	 results	 through	 2DGE.	 	 Furthermore,	

iTRAQ	 is	 superior	 to	 2-D	 Gel	 Electrophoresis	 (2DGE)	 for	 identification	 of	

significantly	 larger	 protein	 quantities	 and	 is	 also	 able	 to	 distinguish	 between	

proteins	with	similar	biophysical	properties	(Wu	et	al.,	2006).	ITRAQ	also	has	the	

advantage	 of	 allowing	 cell	 labelling	 ex	 vivo	 and	 identification	 of	 post-

translational	modifications.	The	insoluble	fraction	of	a	colonocyte	after	cell	lysis	

is	enriched	in	intermediate	filaments	and	in	particular	keratins;	this	fraction	has	
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not	 been	 previously	 examined	 in	 isolation	 in	 the	 context	 of	 a	 cancerized	 field.	

ITRAQ	 is	 particularly	 useful	 for	 identification	 of	 peptide	 differences	 between	

tissues	when	the	change	is	unknown,	since	iTRAQ	has	the	ability	to	identify	and	

quantify	 thousands	 of	 peptides	 simultaneously.	 In	 this	 study	 the	 insoluble	

fraction	 differences	 between	 the	 cancerized	 field,	 adenoma	 and	 normal	 tissue	

are	unknown	therefore	iTRAQ	is	especially	valuable.	The	apparent	advantage	of	

identifying	 thousands	 of	 peptides	 also	 highlights	 the	 need	 for	 validation	

experiments	after	iTRAQ	to	ensure	the	changes	are	not	a	chance	occurrence.	
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5.2	Hypothesis	and	Aims	
	
5.2.1	Hypotheses	
	

• Keratins	 in	 adenoma	 tissue	 and	 the	 field	 around	 it	 are	 overexpressed	

when	compared	to	normal	tissue.	

• Levels	of	keratin	expression	are	butyrate	dependent.	

	

	

5.2.2	Aims	
	

• To	identify	protein,	particularly	keratin	and	other	intermediate	filament-

related	changes	in	relation	to	adenoma	proximity.	

• To	 explore	 the	 relationship	 between	 colonic	 keratin	 expression	 and	

luminal	butyrate	concentration.	
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5.3	Materials	and	Methods	 	

	

5.3.1	Materials		
	

Colonic	biopsy	material	

Archived	colonic	biopsy	material	from	a	previous	study	(FACT)	in	our	group	was	

used	(Corfe	et	al.,	2009).	Briefly,	endoscopic	colorectal	mucosal	biopsies	(≈5mg)	

were	 obtained	 during	 colonoscopy	 lists	 at	 Sheffield	 Teaching	 Hospitals	 NHS	

Trust.	 Ethics	 committee	 approval	 was	 obtained	 from	 the	 North	 Sheffield	

Research	Ethics	Committee	(Reference	number:	06/Q2308/93).	

A	biopsy	strategy	was	followed	for	each	patient	(Table	4).	
	

Table	4.	Biopsy	strategy	

Diagnosis	 Biopsy	position	

(abbreviation)	

Other	samples	

Normal	 2	x	mid-sigmoid	(N)	 Stool	for	Butyrate	

Biopsy	for	IHC	

Adenoma	 2	x	mid-sigmoid	(MS)	 Stool	for	Butyrate	

Biopsy	for	IHC	

	 2	x	contralateral	wall	

(CO)	

Biopsy	for	IHC	

	 2	x	adenoma	(AD)	 Biopsy	for	IHC	
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16	 subjects	 in	 total	were	 included	 in	 this	 study.	 Biopsies	 from	8	 patients	with	

histologically	 confirmed	 adenomatous	 polyps	 were	 used.	 In	 patients	 with	

adenomas	 two	 biopsies	 were	 taken	 from	 the	 adenoma	 itself	 (AD);	 from	 the	

macroscopically	normal	mucosa	on	 the	contralateral	wall	 to	 the	adenoma	(CO)	

and	 from	the	mid	sigmoid	colon	(MS).	Biopsy	material	 from	8	patients	with	no	

lesions	or	other	pathology	within	the	colon	was	also	included.	For	these	subjects	

a	single	biopsy	from	the	mid	sigmoid	colon	was	taken.	For	biopsy	locations	see	

Figure	27.		

	

Faecal	butyrate	levels	

The	 subjects,	 from	which	biopsies	were	 taken,	 also	provided	a	 stool	 sample	as	

part	 of	 the	 FACT	 study	 for	 assessment	 of	 faecal	 short	 chain	 fatty	 acid	 (SCFA)	

levels.	 Faecal	 butyrate	 levels	 were	 determined	 from	 the	 stool	 sample.	 Biopsy	

positions	and	the	mean	faceal	butyrate	level	from	which	the	biopsies	were	taken	

are	 shown	 in	 Table	 5.	 The	 faecal	 butyrate	 levels	 recorded	 by	 the	 FACT	 study	

were	 used	 in	 this	 study	 to	 determine	 how	 patient	 samples	 were	 pooled	 (see	

5.3.2.2.)		

	
	

Figure	27.	Biopsy	locations	in	the	colon	

HAD	=	high	butyrate	adenoma,	HCO	=	high	butyrate	contralateral	and	HMS	=	high	butyrate	mid-

sigmoid.	LAD	=	 low	butyrate	adenoma,	LCO	low	butyrate	contralateral	and	LMS	=	 low	butyrate	

mid-sigmoid.	
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Table	5.	Biopsy	positions	and	butyrate	levels	

Diagnosis	 Biopsy	position	 Butyrate	

Status	

Mean	faecal	Butyrate	

concentration	mM	

Normal	 Mid-sigmoid	

Mid-sigmoid	

Mid-sigmoid	

Mid-sigmoid	

High	 20.5	

14.5	

13.9	

13.7	

Adenoma	 Adenoma,	contralateral	wall	

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

High	 16.0	

	

13.2	

	

9.5	

	

8.8	

Normal	 Mid-sigmoid	

Mid-sigmoid	

Mid-sigmoid	

Mid-sigmoid	

Low	 1.3	

1.0	

0.9	

0.7	

Adenoma	 Adenoma,	contralateral	wall		

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

Adenoma,	contralateral	wall		

and	mid-sigmoid	

Low	 1.4	

	

1.0	

	

0.8	

	

0.6	

	

Biopsy	positions	and	the	mean	faecal	butyrate	(mM)	environment	from	which	the	biopsies	were	

taken.		Faecal	butyrate	concentration	was	considered	low	at	below	8mM	and	considered	high	at	

above	8mM.	

	

All	colonic	biopsies	had	previously	undergone	homogenisation	in	low	detergent	

buffer	 (LDB)	 using	 Precellys™24	 at	 6000rpm,	 30	 sec,	 2	 cycles,	 followed	 by	

removal	of	soluble	and	extractable	membrane	proteins	(work	performed	by	Lisa	

Croucher).	 Samples	 were	 processed	 from	 this	 pellet	 form	 according	 to	 the	

protocol	described	in	section	4.3.6.		
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Intermediate	filament	isolation	buffers	

High	 detergent	 buffer	 (HDB),	 low	 detergent	 buffer	 (LDB)	 and	 4M	 guanidine	

hydrochloride	(GuHCl)	were	prepared	as	described	in	Chapter	4.		

	

ITRAQ	sample	preparation	solutions:	

Tris-(2-carboxyethyl)phosphine(reducing	 agent	 –	 to	 break	 protein	 disulphide	

bonds)	

Tris-(2-carboxyethyl)phosphine	 (TCEP)	 (Thermo	Fisher	Scientific,	Rockford,	 IL,	

USA).		

	

Methyl	methanethiosulfonate(	alklylating	agent	–	to	block	cysteine)	

Methyl	 methanethiosulfonate	 (MMTS)	 (Thermo	 Fisher	 Scientific,	 Rockford,	 IL,	

USA).	

	

Trypsin	(enzyme	for	protein	digestion	into	peptides)	

Trypsin	Proteomics	Grade	(Sigma	Aldrich,	Dorset,	UK)	

	

iTRAQ	buffers	

Volumes	as	described	in	methods	-	all	HPLC	grade	and	purchased	from	Thermo	

Fisher	Scientific,	Rockford,	IL,	USA.	
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5.3.2	Workflow	prior	to	iTRAQ	

	
Figure	28.	Workflow	undertaken	prior	to	iTRAQ	analysis	

5.3.2.1	Isolation	and	solubilisation	protocol	and	Pierce	clean	up.	
	
Samples	were	processed	individually	from	pellet	form	according	to	the	protocol	

described	 in	 Chapter	 4.3.6.	 Following	 the	 isolation	 protocol	 samples	 were	

dissolved	 in	 10μL	 4M	 GuHCl	 and	 cleaned	 using	 a	 commercial	 preparation	 kit	

Pierce®	SDS-	 PAGE	Sample	Prep	Kit	 (Pierce	Biotechnology,	Rockford,	 IL,	USA)	
according	to	the	manufacturer’s	protocol.	

5.3.2.2	Sample	pooling	
	
Following	 Pierce	 clean	 up	 the	 eluted	 protein	 samples	 were	 pooled	 together	

according	 to	 biopsy	 site	 and	 butyrate	 concentration.	 For	 example,	 4	 adenoma	

samples	 from	 the	 highest	 butyrate	 environment	 (highest	 butyrate	

concentration)	were	 pooled	 together	 and	 4	 adenoma	 samples	 from	 the	 lowest	

butyrate	environment	were	pooled	together.		Samples	from	the	lowest	butyrate	

environment	 in	 the	 whole	 archive	 were	 selected	 as	 ‘low	 butyrate’.	 The	 mean	

faecal	 concentration	 of	 butyrate	 of	 the	 low	 butyrate	 group	 was	 below	 2mM.	

Accordingly,	samples	with	the	highest	mean	butyrate	levels	in	the	whole	archive	

were	selected	as	‘high	butyrate’.	The	mean	faecal	butyrate	concentration	for	the	

high	butyrate	 group	was	 above	8mM.	This	was	 repeated	 for	 biopsies	 from	 the	

contralateral	 wall,	 mid-sigmoid	 and	 normal	 samples	 (Table	 6).	 The	 pools	

Isola&on	and	
Solubilisa&on	

Protocol	

Pierce	clean	up	
kit	removal	of	

GuHCl	
precipitate	

Pool	Samples	

Coomassie	
stain	for	
protein	

quan4fica4on.		

Silver	stain	to	
iden4fy	low	
protein	

abundance.		

Protein	assay	
for	protein	

concentra4on	
determina4on	
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represent	biopsy	samples	from	highest	and	lowest	butyrate	concentrations	and	

have	 been	 assigned	 to	 either	 high	 butyrate	 or	 low	 butyrate	 status.	 	 Half	 the	

volume	 of	 each	 pool	 was	 kept	 for	 validation	 experiments	 using	 western	

immunoblot.	

Table	6.	Pooled	sample	abbreviations	and	iTRAQ	label	

	
	 High	

Butyrate	

	 Low	

Butyrate	

	

Biopsy	site	 Abbreviation	 iTRAQ	

label	

Abbreviation	 iTRAQ	

label	

Adenoma	 HAD	 121	 LAD	 116	

Contralateral	 HCO	 117	 LCO	 113	

Mid-sigmoid	 HMS	 119	 LMS	 115	

Normal	 HN	 118	 LN	 114	

	

5.3.2.3	SDS	PAGE	and	coomassie	stain	

	

Coomassie	staining	was	performed	to	ensure	adequate	protein	quantities	were	

available	for	iTRAQ	analysis.	Results	from	Coomassie	stains	obtained	in	Chapter	

4	were	used	as	the	standard	to	replicate.	

2	 μL	 of	 pooled	 protein	 samples	 were	 heated	 at	 95°C	 for	 5	 min	 with	 a	 non-

reducing	buffer	 (provided	with	 the	Pierce	kit)	and	 loaded	onto	12%	SDS-PAGE	

non-reducing	 gels	with	 4%	 acrylamide	 stacker	made	 and	 ran	 according	 to	 the	

protocol	 described	by	 Laemmli	 (1970)	 (Laemmli,	 1970).	 	 Coomassie	 stain	was	

performed	 using	 Instant	 Blue	 (Expedeon,	 Harston,	 UK).



	 116	

5.3.2.4	SDS	PAGE	and	silver	stain	
	
SDS	PAGE	gel	was	run	as	described	in	5.3.2.3.	Silver	stain	was	performed	using	

Bio-Rad	 Silver	 Stain	 Kit	 (Hemel	 Hempsted,	 UK)	 using	 a	 modified	 protocol	 for	

1.5mm	polyacrylamide	gel	described	by	Chevallet	et	al.,	(2006)	(Chevallet	et	al.,	

2006).	The	gel	was	immersed	in	reagents	as	described	below	(the	volumes	listed	

are	suitable	for	performing	Silver	Stain	in	a	21cm	x	21	cm	x	5cm	receptacle).		

	

Reagent	 	 Volume	 Time	 	

Fixative	 40%	

methanol/10%	

acetic	acid	

400ml	 60min	 	

Fixative	 10%	ethanol/5%	

acetic	acid	

400ml	 30min	 	

Fixative	 10%	ethanol/5%	

acetic	acid	

400ml	 30min	 	

Oxidizer	 Provided	with	kit	 200ml	 10min	 	

Deionized	

water	

	 400ml	 10min	 	

Deionized	

water	

	 400ml	 10min	 	

Deionized	

water	

	 400ml	 10min	 	

Silver	Reagent	 Provided	with	kit	 200ml	 30min	 	

Deionized	

Water	

	 400ml	 2min	 	

Developer	 Provided	with	kit	 200ml	 Develop	until	
solution	turns	
yellow	

	

Developer	 Provided	with	kit	 200ml	 5min	 	

Developer	 Provided	with	kit	 200ml	 5min	 	

Stop	 5%	acetic	acid	 400ml	 5min	 	

	

Figure	29.	Modified	protocol	for	Silver	stain	for	1.5	mm	polyacrylamide	gel.		
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5.3.2.5	Protein	assay	of	colonic	tissue	samples	

	

To	 determine	 exact	 protein	 concentrations	 protein	 assays	 were	 performed	 in	

triplicate	on	a	32	well	plate	using	FLx	800™	multi	detection	micro	plate	reader;	

wavelength	setting	595,	450		(Biotek,	Bedfordshire,	UK).	Bovine	serum	albumin	

(BSA)	stock	solution	was	prepared	by	dissolving	15μg	of	BSA	in	1ml	of	distilled	

water.	Concentration	standards	(0,	0.3,	0.6,	1.2,	1.5,	1.8	and	2.1)	were	made	by	

diluting	BSA	stock	solution.	80μL	of	each	standard	and	20μL	of	Bio-Rad	solution	

(Bio-Rad	 protein	 assay,	 Hemel	 Hempsted	 UK)	was	 pipetted	 into	 each	well.	 To	

avoid	sample	depletion	samples	were	diluted	to	1	in	10	prior	to	assay:	1.5μL	of	

each	 colonic	 sample	was	diluted	 in	13.5μL	of	TEAB	 to	make	a	15μL	volume	of	

sample.	 5μL	 of	 diluted	 sample	was	 pipetted	 into	 individual	wells,	 and	 20μL	 of	

Bio-Rad	solution	and	75μL	of	distilled	water	were	added	to	each	well	to	make	up	

the	total	volume	to	100μL.	

To	 account	 for	 the	 1	 in	 10	 dilution,	 prior	 to	 assay,	 protein	 concentration	

calculations	were	multiplied	by	a	factor	of	10.		

	



	 118	

5.3.3	ITRAQ	

	

Sample	preparation	and	peptide	labelling	

	

Sample	 volumes	 were	 calculated	 to	 standardise	 each	 sample	 to	 60μg.	 Due	 to	

varying	protein	concentrations,	the	total	volumes	for	each	sample	were	variable.	

Samples	were	diluted	to	the	equivalent	of	2M	GuHCl	by	adding	the	same	volume	

of	TEAB	as	the	sample	itself.	Samples	were	reduced	using	TCEP	(used	at	1μL	for	

every	10μL	of	sample)	heated	for	1	hour	at	60°C	and	alkylated	using	MMTS	(used	

at	1μL	for	every	20μL	of	sample).	Samples	were	then	trypsin	digested	at	1	in	20	

ratio	 (3μg	 trypsin	 to	 60μg	 sample)	 at	 37°C	 overnight.	 Peptides	 were	 labelled	

according	 to	 the	 protocol	 outlined	 by	 Applied	 Biosystems	 (Framingham,	 MA,	

USA)	and	combined	into	a	LoBind	Eppendorf.	

	

iTRAQ	 was	 performed	 using	 a	 standard	 operating	 procedure	 (S.O.P)	 see	

Appendix	5.	An	illustrated	workflow	of	the	iTRAQ	process	is	shown	in	Figure	30.	
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Figure	30.	Illustrated	iTRAQ	proteomic	workflow		  
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5.3.4 Statistical analysis 
	
Analysis	 of	 the	 relative	 abundance	 ratio	 between	 phenotypes	 was	 carried	 out	

using	 the	 significance	 testing	 algorithm,	 Signifiquant	 (S.	 Y.	 Ow	 et	 al.,	 2009).	

Quantification	was	obtained	at	a	95%	confidence	 level	 from	proteins	 identified	

by	two	or	more	peptides.	An	increased	abundance	of	protein	is	signified	by	fold	

changes	 above	 a	 factor	 of	 1	 and	 a	 decrease	 in	 the	 abundance	 of	 proteins	 is	

indicated	by	fold	changes	below	a	factor	of	1.	

	
Hierarchical	 clustering	 and	 Principal	 Component	 Analysis	 was	 performed	 by	

Josselin	Noirel	 (a	member	 of	 our	 group)	 using	Mathematic	 7.0.0	 for	Mac.	Data	

was	grouped	based	on	the	degree	of	similarity	between	the	samples.		

5.3.5 Venn diagram plots 
	
Identification	of	protein	changes	mediated	by	lesion	proximity	controlling	for	

butyrate	

	
Protein	fold	changes	between	macroscopically	normal	(MS,	CO	or	N)	and	lesional	

(AD)	 samples	 were	 calculated	 individually	 (within	 their	 butyrate	 groups)	 and	

plotted	on	a	Venn	diagram	using	GeneVenn	(2006)1.	Thus	protein	 fold	changes	

between	HAD	and	HCO;	HAD	and	HMS;	HAD	and	HN	were	identified	and	plotted	

on	 GeneVenn	 (2006)	 and	 a	 separate	 Venn	 diagram	 was	 plotted	 for	 the	 low	

butyrate	group.	

	

Identification	of	protein	changes	mediated	by	butyrate	controlling	for	lesion	

proximity	

Protein	 fold	 changes	 between	high	 butyrate	 normal	 (HN)	 and	 adenoma	 (HAD)	

samples	 were	 plotted	 against	 low	 butyrate	 normal	 (LN)	 and	 adenoma	 (LAD)	

samples	using	GeneVenn	(2006)	to	relate	protein	 fold	changes	of	LN	and	HN	in	

comparison	to	their	adenoma	equivalents.	Further	plots	were	made	for	HMS	and	

HAD	compared	with	LMS	and	LAD	and	HCO	and	HAD	compared	with	LCO	and	

LAD.	

	
1	http://simbioinf.com/mcbc/applications/genevenn/genevenn.htm
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5.4	Results		

5.4.1 Coomassie stain - quality control 
	
	
2	μL	of	pooled	samples	were	loaded	in	each	lane.		Coomassie	stain	of	the	pooled	

samples	(Figure	31)	revealed	faint	band	intensities	in	comparison	to	the	results	

achieved	 in	 Chapter	 4.	 No	 identifiable	 protein	 bands	 were	 seen	 where	 the	

proteins	 of	 interest	 (around	 37	 and	 55kDa)	 would	 normally	 be	 expected.	 No	

conclusions	regarding	protein	differences	between	pooled	samples	can	be	drawn	

from	this	experiment	due	to	the	lack	of	identifiable	bands.	Therefore,	to	ensure	

the	presence	of	protein	within	 the	pooled	samples	Silver	stain	was	used	 for	 its	

increased	sensitivity	as	a	colorimetric	method	for	detection	of	total	protein.		

	
	
Figure	31.	Coomassie	stain	of	pooled	samples		

Coomassie	stain	revealed	faint	band	intensities,	suggesting	inadequate	protein.		

HAD	 –	 high	 butyrate	 adenoma,	 HCO	 -	 high	 butyrate	 contralateral	 wall,	 HMS	 –	 high	

butyrate	mid-sigmoid,	HN	–	high	butyrate	normal,	LAD	–	low	butyrate	adenoma,	LCO	–	

low	 butyrate	 contralateral,	 LMS	 –	 low	 butyrate	 mid-sigmoid	 and	 LN	 –	 low	 butyrate	

normal.	

53kDa&
&
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&Marker&&&&&&&&&&&&&&&HAD&&&&&&&&&&&&&&HCO&&&&&&&&&&&&&&&HMS&&&&&&&&&&&&&&&&HN&&&&&&&&&&&&&&&&&&LAD&&&&&&&&&&&&&&&LCO&&&&&&&&&&&&&&&&&&LMS&&&&&&&&&&&&&&&&&LN&
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5.4	Results		

5.4.2 Silver stain – quality control 
	
	
Silver	 stain	 revealed	 negative	 staining	 (note	 very	 dark	 image	 on	 Figure	 32).	

According	 to	 the	 manufacturers	 guide,	 this	 was	 due	 to	 overload	 of	 protein,	

suggesting	adequate	amounts	of	protein	were	loaded	on	to	the	gel.		Results	from	

this	experiment	imply	protein	quantities	may	be	sufficient	to	proceed	to	iTRAQ	

analysis.	Due	to	the	poor	quality	staining,	protein	assay	was	performed	to	verify	

if	protein	quantities	were	sufficient.		

	

	
Figure	32.	Silver	stain	of	pooled	samples		

Silver	stain	revealed	negative	staining,	possibly	due	to	protein	overload.	

HAD	 –	 high	 butyrate	 adenoma,	 HCO	 -	 high	 butyrate	 contralateral	 wall,	 HMS	 –	 high	

butyrate	mid-sigmoid,	HN	–	high	butyrate	normal,	LAD	–	low	butyrate	adenoma,	LCO	–	

low	 butyrate	 contralateral,	 LMS	 –	 low	 butyrate	 mid-sigmoid	 and	 LN	 –	 low	 butyrate	

normal.	
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5.4	Results	

5.4.3 Protein assay – quality control 
	
Protein	 assay	 of	 pooled	 samples	 revealed	 protein	 concentrations	 between	

2.9μg/μL	and	8.6μg/μL	(Table	7).	25μg	protein	 for	each	sample	 is	 required	 for	

iTRAQ	analysis;	these	results	show	sufficient	protein	quantities	are	available	for	

iTRAQ	processing.	

	
Table	7.	Protein	concentration	and	total	protein	of	pooled	samples.	
Pooled	sample	 Protein	concentration	μg/μL	 Total	protein	in	24μL	

HAD	 2.9	 69.6	

HCO	 4.8	 115.2	

HMS	 3.8	 91.2	

HN	 8.0	 192.4	

LAD	 3.0	 72.0	

LCO	 8.6	 206.4	

LMS	 5.8	 139.2	

LN	 4.2	 100.8	
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5.4	Results		

5.4.4 iTRAQ fold change with respect to adenoma proximity 
	
It	 is	 possible	 to	 make	 numerous	 iTRAQ	 comaparisons	 from	 simple	 individual	

pooled	 samples	 such	 as	 HAD	 compared	 with	 HCO	 (HAD	 vs	 HCO)	 or	 more	

complicated	multiple	 comparisons	 such	 as	 differences	 between	 HAD	 and	 HCO	

compared	 with	 HN,	 LN,	 LCO	 (HAD	 &	 HCO	 vs	 HN,	 LN,	 LCO).	 	 For	 this	 study	

comparisons	 were	 kept	 simple	 such	 that	 meaningful	 differences	 in	 proteins	

could	be	identified.	

	

Tissue	 from	patients	with	adenoma	pathology	 (HAD,	HCO,	HMS)	demonstrated	

higher	keratin	8	levels	in	comparison	to	normal	tissue	(HN)	from	pathology-free	

patients,	 irrespective	 of	 butyrate	 status	 (Table	 8).	 	 The	 fold	 change	 of	 K8	

progressively	decreased	with	distance	away	from	the	adenoma.	A	similar	trend	

was	seen	in	keratin	18	samples.	A	statistically	non-significant	lower	fold	change	

was	noted	 in	 the	 low	butyrate	mid-sigmoid	sample	 for	K18	(Table	9).	K18	 fold	

change	 also	 decreased	with	 distance	 away	 from	 the	 adenoma.	 No	 fold	 change	

trend	was	seen	 for	keratin	19.	Pathological	samples	(HAD,	HMS,	HCO	and	LAD,	

LMS,	 LCO)	 all	 had	 higher	 keratin	 8	 and	 18	 levels	 in	 comparison	 to	 their	

respective	normal	samples	(HN	and	LN)	(Figure	33).	

	
Table	8.	Fold	change	in	comparison	to	high	butyrate	normal	sample.	

High	Butyrate	 Adenoma	 Contralateral	 Mid-sigmoid	
Keratin	8	 1.22	 1.12	 1.10	
Keratin	18	 2.87	 1.30	 1.00*	
Keratin	19	 0.84*	 0.88	 0.45*	
P<	0.01	
*	not	significant	
	
	
Table	9.	Fold	change	in	comparison	to	low	butyrate	normal	sample.	

Low	Butyrate	 Adenoma	 Contralateral	 Mid-sigmoid	
Keratin	8	 1.25	 1.85	 1.31	
Keratin	18	 1.46	 1.42	 0.71*	
Keratin	19	 0.82*	 1.40	 1.86*	
P<0.01	
*	not	significant	
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5.4	Results	–iTRAQ	
	
	
	
	
	

	
	
	
	
	
	
	
Figure	33.	Graph	of	fold	changes	in	keratin	8	and	18	levels	

	
All	samples	were	compared	to	high	adenoma	sample.	Keratin	19	not	shown	since	4	of	6	

results	were	not	significant.	
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5.4	Results	

5.4.5 iTRAQ fold change with respect to butyrate status 
	
Fold	 change	 comparisons	 of	 all	 samples	 compared	 to	 high	 butyrate	 adenoma	

sample	 revealed	 higher	 keratin	 levels	 for	 both	 K8	 and	 K18	 in	 high	 butyrate	

samples	in	comparison	to	low	butyrate	samples	(Figure	33).	When	samples	were	

matched	individually	to	compare	butyrate	status	all	samples	from	high	butyrate	

environments	were	 found	to	have	higher	keratin	8,	18	and	19	 levels	 than	their	

low	butyrate	equivalents	(Table	10).	

	
Table	10.	ITRAQ	fold	change	between	samples	matched	for	biopsy	site	

Keratin	 HAD	vs	LAD	 HCO	vs	LCO	 HMS	vs	LMS	 HN	vs	LN	

K8	 2.06	fold	higher	in	

HAD	

1.49	fold	higher	in	

HCO	

1.80	fold	higher	in	

HMS	

2.53	fold	higher	in	

HN	

K18	 2.48	fold	higher	in	

HAD	

1.36	fold	higher	in	

HCO*	

1.81	fold	higher	in	

HMS	

1.51	fold	higher	in	

HN	

K19	 1.64	fold	higher	in	

HAD	

1.17	fold	higher	in	

HCO*	

1.37	fold	higher	in	

HMS*	

1.94	fold	higher	in	

HN	

	

iTRAQ	 fold	 change	 between	 samples	 matched	 for	 biopsy	 site	 indicates	 the	 effect	 of	

butyrate	on	keratins.	

	
P	value	<	0.01	for	all	fold	changes	except	fold	changes	indicated	with	*	were	not	significant	
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5.4	Results-iTRAQ	
	

5.4.6 Hierarchical Cluster Analysis 
	
Hierarchical	cluster	analyses	were	performed	(Figures	34	and	35)	using	proteins	

identified	 by	 four	 or	 more	 peptides.	 Samples	 were	 clustered	 based	 on	 the	

similarity	 of	 the	 protein	 expression	 profiles	 in	 log2	 of	 the	 iTRAQ	 ratios.	 The	

dendogram	(Figure	34)	indicates	the	relationship	between	samples;	the	shorter	

the	 branch	 length	 the	 greater	 the	 degree	 of	 similarity.	 It	 is	 apparent	 from	 this	

dendogram	that	samples	 from	a	high	butyrate	status	cluster	 together,	 implying	

global	 levels	 of	 butyrate	 may	 exert	 stronger	 influences	 on	 the	 similarity	 of	

proteins	than	that	of	field	effects.	

	

	

	
	

	

	
Figure	34.	Dendogram	of	cluster	analysis	of	biopsy	samples		

Clustering	is	based	on	branch	points	and	branch	lengths.	iTRAQ	labels	were	directly	entered	as	

data	was	 to	 create	 the	dendogram	 sample.	The	numerical	 labels	 correspond	 to	 the	 samples	 as	

follows:	113=LCO,	114=LN,	116=LAD,	119=HMS,	117=HCO,	118-HN,	121=HAD	and	115=LMS.	

Samples	LCO,	LN	and	LAD	form	a	co-cluster	with	LCO	and	LN	forming	a	sub-cluster	away	form	

LAD.	Samples	HMS,	HCO,	HN	and	HAD	form	a	co-cluster	with	HMS,	HCO	and	HN	forming	a	sub-

cluster	away	from	HAD.		

	

LCO					LN					LAD				HMS		HCO				HN			HAD				LMS	
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5.4	Results-	iTRAQ	

5.4.7 Principal Component Analysis 

Cluster	 analysis	 revealed	 the	 biopsies	 grouping	 together	 according	 to	 butyrate	

status.	 	 High	 butyrate	 samples	 gathered	 away	 from	 the	 low	 butyrate	 samples	

suggesting	 that	 butyrate	 status	 exerts	 a	 stronger	 influence	 over	 the	

characteristics	of	the	biopsy	than	field	effects.	

	
Figure	35.	Cluster	analysis	of	biopsy	samples		

Samples	are	seen	clustering	according	to	butyrate	status.		

Low	 butyrate	 samples:	 116	 LAD;	 114	 LN;	 113	 LCO	 and	 115	 LMS	 clustered	 away	 from	 high	

butyrate	 samples:	 118	HN;	 119	HMS;	 117	HCO	 and	 121	HAD,	 these	 results	 suggest	 the	 global	

influence	of	butyrate	exerts	a	stronger	influence	over	protein	expression	than	field	effects.	
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5.4.8 Identification of keratins and other proteins using iTRAQ 
	
Since	 iTRAQ	 is	 capable	 of	 identifying	 and	 quantifying	 thousands	 of	 peptides	

simultaneously,	proteins	other	than	keratins	were	identified	during	analysis.		

This	study	specifies	keratins	as	the	proteins	of	 interest	but	acknowledgment	of	

the	other	proteins	identified	must	be	declared	to	further	other	studies	and	future	

directions	 for	 investigation.	 	 Exploring	 the	 protein	 profiles	 between	 samples	

allows	them	to	be	categorised	according	to	similarities	and	may	demonstrate	a	

field	 effect.	 Detailed	 analysis	 of	 the	 proteins	 identified	 and	 their	 relationships	

were	not	carried	out	as	part	of	this	study.	The	full	index	of	peptides	identified	is	

listed	in	Appendix	6.	

	

5.4.9 Identification of protein changes mediated by lesion proximity 

controlling for butyrate 

	
High	butyrate	

A	 Venn	 diagram	 of	 the	 high	 butyrate	 samples	 (Figure	 36)	 illustrates	 the	 fold	

changes	 in	 proteins	 between	HAD	and	macroscopically	 normal	HN,	HMS,	HCO.	

Protein	 fold	 changes	 that	 are	 common	 to	 either	 HN,	 HMS	 and	 HCO	 compared	

with	adenoma	appear	in	overlapped	circles.	Protein	fold	changes	that	are	unique	

to	HN,	HMS	or	HCO	when	compared	with	HAD	appear	in	non	overlapped	circles.		

For	 example:	 the	 green	 circle	 illustrates	 22	 (5	 +6	 +9+	 2)	 total	 protein	 fold	

changes	 between	 HCO	 and	 HAD.	 Five	 protein	 fold	 changes	 between	 HAD	 and	

HCO	 are	 unique	 to	 HCO.	 Six	 protein	 fold	 changes	 between	 HAD	 and	 HCO	 are	

common	 with	 the	 protein	 fold	 changes	 found	 between	 HAD	 with	 HN.	 Nine	

protein	 fold	changes	are	common	to	all	histologically	normal	sample	sites	(HN,	

HMS	 and	HCO)	when	 compared	with	HAD.	 Two	 protein	 fold	 changes	 between	

HAD	and	HCO	are	common	to	the	fold	changes	identified	between	HAD	and	HMS.	

The	 highest	 number	 of	 unique	 protein	 fold	 changes	 (non	 overlapped	 circles)	

were	 found	 between	 HCO	 and	 HAD	 (N=5)	 and	 suggests	 decrease	 in	 sample	

similarity	with	lesion	distance	HMS	and	HAD	(N=2)	and	HN	and	HAD	(N=2).	

The	protein	profiles	indicate	HCO	samples	are	more	similar	to	HAD	samples	than	

either	HMS	or	HN	samples.	
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Low	butyrate	

A	Venn	diagram	of	the	low	butyrate	samples	(Figure	37)	illustrates	protein	fold	

changes	 between	 LN,	 LMS,	 LCO	 compared	 with	 LAD.	 As	 before,	 the	 non-

overlapped	areas	denote	protein	fold	changes	compared	with	adenoma	site	that	

are	unique	to	that	biopsy	site	(LN,	LMS	or	LCO).		

	

The	greatest	number	of	unique	protein	fold	changes	was	between	LAD	and	LMS	

(N=5).	The	number	of	unique	protein	fold	changes	was	equal	between	LAD	and	

LCO	and	LAD	and	LN	(N=2).	 	 In	 the	 low	butyrate	environment	protein	profiles	

appear	to	have	the	greatest	similarity	between	LAD	and	LMS.	If	field	effects	are	

exerted	by	lesion	proximity	we	would	expect	LAD	and	LCO	to	share	the	greatest	

number	of	 shared	protein	 fold	changes	with	numbers	progressively	decreasing	

from	LMS	 to	 LN	 as	 per	 the	 high	 butyrate	 group.	 The	 results	 reveal	 field	 effect	

protein	 changes	 are	 not	 influenced	 by	 lesion	 proximity	 in	 the	 low	 butyrate	

environment.			
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5.4	Results	-	Identification	of	protein	changes	controlling	for	butyrate	

	

	
Figure	36.	Venn	diagram	of	protein	fold	changes	in	comparison	to	adenoma	in	high	
butyrate.	

HCO,	HN	and	HMS	is	compared	to	HAD.	Up-regulated	proteins	are	expressed	in	bold/green	and	
down	regulated	proteins	are	expressed	in	red.	

• 22	protein	fold	changes	found	in	total	between	HAD	and	HCO	(green	circle)		
• 18	protein	fold	changes	found	in	total	between	HAD	and	HN	(red	circle)	
• 14	protein	fold	changes	found	in	total	between	HAD	and	HMS	(yellow	circle)	
• 5	protein	fold	changes	unique	to	HAD	and	HCO	only	and	not	found	in	other	samples	(non	

overlapped	green)	
• 2	protein	fold	changes	unique	to	HAD	and	HN	only	and	not	found	in	other	samples	(non	

overlapped	red)	
• 2	protein	fold	changes	unique	HAD	and	HMS	only	and	not	found	in	other	samples	(non	

overlapped	yellow)	
• 9	protein	fold	changes	are	common	to	all	samples	
• other	overlapping	areas	indicate	protein	fold	changes	common	to	those	samples.	
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5.4	Results	-	Identification	of	protein	changes	controlling	for	butyrate	

	
Figure	37.	Venn	diagram	of	protein	fold	changes	in	comparison	to	adenoma	in	low	butyrate.		

LCO,	LN	and	LMS	are	compared	to	LAD.	Up-regulated	proteins	are	expressed	in	bold/green	and	
down	regulated	proteins	are	expressed	in	red.	

• 2	protein	fold	changes	found	in	total	between	LAD	and	LCO	only	and	not	found	in	other	
samples	(non	overlapped	green)	

• 2	protein	fold	changes	found	in	total	between	LAD	and	LN	only	and	not	found	in	other	
samples	(non	overlapped	red)	

• 5	protein	fold	changes	found	in	total	between	LAD	and	LMS	only	and	not	found	in	other	
samples	(non	overlapped	yellow)	

• 10	protein	fold	changes	are	common	to	all	samples	
• Other	overlapped	areas	indicate	protein	fold	changes	common	to	those	samples.	
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5.4.10 Identification of protein changes mediated by butyrate controlling 
for lesion proximity  
	
Venn	 diagrams	 comparing	 protein	 fold	 changes	 of	HAD-HN	 to	 LAD-LN	 (Figure	

38);	HAD-HMS	 to	LAD-LMS	 (Figure	39)	 and	HAD-HCO	 to	LAD-LCO	 (Figure	40)	

are	shown.			

	

In	normal	samples	compared	with	adenoma	(Figure	38)	normal	samples	 in	the	

high	butyrate	environment	 (HN)	were	 found	 to	have	more	unique	protein	 fold	

changes	 (N=7)	 in	 common	 with	 the	 adenoma	 sample	 (HAD)	 than	 in	 the	 low	

butyrate	samples	(N=5).	

	

In	 mid-sigmoid	 samples	 (Figure	 39)	 the	 reverse	 association	 was	 found,	 there	

were	more	unique	protein	fold	changes	in	the	low	butyrate	samples	(LAD-LMS)	

(N=11)	than	in	the	high	butyrate	samples	(N=7).	

	

In	 contralateral	 samples	 (Figure	 40)	 more	 unique	 protein	 fold	 changes	 were	

found	between	in	the	high	butyrate	samples	(N=11)	than	low	butyrate	samples	

(N=4).	

	

When	the	three	figures	(38	to	40)	are	interpreted	together	it	can	be	shown	that	a	

progressive	 increase	 in	common	protein	 fold	changes	occurs	with	proximity	 to	

the	 adenoma	 samples	 (Table	 11)	 in	 the	 high	 butyrate	 samples.	 A	 progressive	

configuration	could	not	be	demonstrated	in	the	low	butyrate	samples	(Table	12).	

In	general	keratins	were	up-regulated	in	high	butyrate	environments	–	the	only	

anomaly	was	K19	(fold	changes	of	which	were	demonstrated	to	be	insignificant).		

Vimentin	 was	 the	 only	 protein	 universally	 up-regulated	 across	 high	 butyrate	

groups.		Atlastin-3	was	found	to	be	up-regulated	in	high	butyrate	environments	

but	only	in	pathological	sites	(contralateral	and	mid-sigmoid).		

	

The	full	list	of	proteins	identified	is	listed	in	Appendix	6.	
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5.4	Results	–	Protein	fold	changes	controlling	for	lesion	proximity	
	

	
	

	
	

Figure	38.	Venn	diagrams	of	protein	fold	changes	between	adenoma	and	normal	samples.	

	

Normal	 =	 HAD-HN	 (red	 circle)	 compared	 with	 LAD-LN	 (yellow	 circle),	 protein	 fold	 changes	

common	to	both	groups	indicated	by	orange	circle.	

Up-regulated	proteins	in	bold/green;	down-regulated	in	red	and	differentially	regulated	in	black.	
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5.4	Results	

	
	

Figure	 39.	 Venn	 diagrams	 of	 protein	 fold	 changes	 between	 adenoma	 and	 mid-sigmoid	
samples.		

	
Mid-sigmoid	 =	 HAD-HMS	 (red	 circle)	 compared	 with	 LAD-LMS	 (yellow	 circle),	 protein	 fold	

changes	common	to	both	groups	indicated	by	orange	circle.	

Up-regulated	proteins	in	bold/green;	down-regulated	in	red	and	differentially	regulated	in	black.	
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5.4	Results	

	
	
	
	

	

Figure	40.	Venn	diagram	of	protein	fold	changes	between	adenoma	and	contralateral	
samples.		

	

Contralateral	 =	 HAD-HCO	 (red	 circle)	 compared	 with	 LAD-LCO	 (yellow	 circle),	 protein	 fold	

changes	common	to	both	groups	indicated	by	orange	circle.	

Up-regulated	proteins	in	bold/green;	down-regulated	in	red	and	differentially	regulated	in	black.	
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5.4	Results	

	
Table	11.	Numbers	of	protein	fold	changes	identified	using	Venn	diagram	in	high	butyrate	
samples	

Fold	change	

comparison	

groups	

Number	of	

total	protein	

fold	changes		

Number	of	unique	

protein	fold	changes	

Number	of	protein	fold	

change	shared	with	low	

butyrate	equivalent	

HAD-HN	 18	 7	 11	

HAD-HMS	 14	 7	 7	

HAD-HCO	 22	 11	 11	

	

Numbers	 of	 protein	 fold	 changes	 identified	 using	 Venn	 diagram	 in	 high	 butyrate	 samples	

demonstrating	 a	 progressive	 increase	 in	 protein	 fold	 changes	 similarities	 from	 HN	 to	 HCO	

(second	column).	

	
	
Table	12.	Numbers	of	protein	fold	changes	identified	using	Venn	diagram	in	low	butyrate	
samples	

Fold	change	

comparison	

groups	

Number	of	

total	protein	

fold	changes		

Number	of	unique	

protein	fold	changes	

Number	of	protein	fold	

change	shared	with	high	

butyrate	equivalent	

LAD-LN	 16	 5	 11	

LAD-LMS	 18	 11	 7	

LAD-LCO	 15	 4	 11	

	
Numbers	 of	 protein	 fold	 changes	 identified	 using	 Venn	 diagram	 in	 low	 butyrate	 samples.	 A	

progressive	pattern	to	adenoma	proximity	was	not	demonstrated.		
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5.5	Discussion	
	
Workflow	

A	workflow	was	developed	to	enable	extraction	of	 intermediate	 filaments	 from	

colonic	 mucosal	 biopsies	 for	 analysis	 using	 iTRAQ.	 Several	 experimental	

methods	were	applied	(coomassie	stain,	silver	stain	and	protein	assay)	to	ensure	

the	 Pierce	 clean	 up	 process	 preserved	 sufficient	 amounts	 of	 protein	 to	 enable	

iTRAQ	anaylsis.	

	

Keratin	changes	in	relation	to	adenoma	proximity	

Using	 iTRAQ,	 higher	 K8	 and	 K18	 levels	 were	 identified	 in	 adenoma	 and	 field	

samples	 than	 in	normal	 samples	 from	pathology-free	 colons.	This	 is	 consistent	

with	 the	 current	 literature	 since	 Polley	 et	 al.,	 found	 increased	 K8	 level	 in	

adenoma	 tissue	 in	 comparison	 to	 normal	 mucosa	 but	 reduced	 level	 of	 K8	 in	

cancer	 tissue	 in	 comparison	 to	 normal	 mucosa	 (Polley	 et	 al.,	 2006).	 These	

observations	may	be	due	to	efforts	to	stabilise	colonocytes	via	keratins	as	the	cell	

architecture	 is	 damaged	 during	 adenomagenesis,	 however	 the	 efforts	 are	

overcome	 and	K8	 drops	 as	 the	 normal	 colonocyte	 architecture	 is	 destroyed	 in	

malignant	transformation.		

	

This	 study	 demonstrated	 a	 field	 effect	 in	 both	 keratin	 expression	 and	 protein	

fold	 change	 profiles	 with	 proximity	 to	 the	 adenoma,	 in	 the	 high	 butyrate	

environment.	K8	and	K18	levels	progressively	increased	from	HMS,	HCO	to	HAD	

according	 to	 closeness	 to	 the	 adenoma.	This	 fits	with	 other	 studies	 identifying	

progressive	 tissue	 likenesses	 as	 samples	 approach	 an	 adenoma	 (Polley	 et	 al.,	

2006,	McGarrity	and	Peiffer,	1994,	Yu	et	al.,	2011).	A	progressive	field	effect	was	

not	exhibited	in	the	low	butyrate	environment.	The	observed	incongruity	in	high	

and	low	butyrate	sample	behaviour	could	be	due	to	variations	in	the	extension	of	

a	field;	it	is	possible	that	a	cancerized	field	extends	beyond	the	mid-sigmoid	area	

sampled	 in	 the	 low	 butyrate	 environment.	 It	 is	 also	 possible	 that	 fields	 are	

influenced	 by	 butyrate,	 which	 this	 study	 demonstrates	 is	 associated	 with	 up-

regulation	of	K8	and	K18.		
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A	progressive	field	effect	 in	fold	change	was	demonstrated	in	the	high	butyrate	

environment	but	not	the	low	butyrate	environment.	HAD	and	HCO	samples	had	

more	protein	fold	changes	unique	to	them	than	when	HAD	was	compared	with	

HMS	and	HN.	 Five	protein	 fold	 changes	were	 identified	 to	 be	 common	 to	HAD	

and	 HCO	 only	 and	 not	 identified	 in	 any	 other	 samples,	 suggesting	 the	 protein	

profiles	from	HAD	and	HCO	sites	are	more	similar	than	HN	and	HMS.			

	

The	 number	 of	 unique	 protein	 fold	 changes	 (used	 as	 a	 proxy	 marker	 of	

similarity)	was	found	to	reduce	with	distance	away	from	the	adenoma.	

This	 supports	 field	 changes	mediated	by	 lesion	proximity,	 as	HCO	 is	 closest	 in	

proximity	to	HAD	and	therefore	should	be	most	similar	 in	protein	profile.	Nine	

protein	 fold	 changes	 were	 found	 to	 be	 common	 to	 all	 samples,	 within	 these	

proteins	were	K8	and	K18	suggesting	 identification	of	K8	and	K18	alone	 is	 too	

subtle	 to	 identify	 field	 effects.	 Quantifying	 K8	 and	 K18	 expression	 is	 a	 more	

useful	marker	of	field	cancerization.	Taken	together	these	results	suggests	field	

cancerization	 is	 at	 play	 since	 macroscopically	 normal	 tissues	 close	 to	 the	

adenoma	are	more	similar	in	their	protein	profile	than	tissues	further	away.	

	

Many	of	 the	K19	 fold	change	comparisons	against	normal	were	not	 significant,	

however,	 it	was	evident	 the	association	was	reversed	 in	comparison	 to	K8	and	

K18.	In	the	high	butyrate	environment	K19	was	reduced	in	pathological	samples	

(HAD,	 HCO	 and	 HMS)	 as	 compared	 to	 normal	 (HN).	 It	 has	 been	 shown	 that	

cellular	 proliferation	 of	 neoplastic	 tissue	 is	 related	 to	 low	 expression	 of	 K19	

(Stammberger	 and	 Baczako,	 1999).	 This	 finding	 is	 relevant	 as	 adenoma	 tissue	

from	 the	 low	 butyrate	 group	 also	 contained	 less	 K19	 in	 comparison	 to	 other	

tissues	in	its	group.	K19	may	not	follow	the	same	pattern	of	co–expressed	K8	and	

K18	 because	 different	 keratins	 are	 altered	 at	 different	 stages	 of	

adenomcarcinogenesis	and	particularly	via	PTMs	(discussed	in	Chapter	6).		
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Relationship	between	keratin	expression	and	butyrate	concentration	

This	study	demonstrated	that	K8,	K18	and	K19	expression	is	greater	in	samples	

from	 high	 butyrate	 environments	 than	 low	 butyrate	 equivalents.	 Previous	

studies	 have	 shown	 K8	 expression	 is	 reduced	 in	 cancer	 tissue	 (Polley	 et	 al.,	

2006)	 and	 the	 reduction	 in	 K8	 expression	 is	more	 prominent	 in	 cancer	 tissue	

from	high	butyrate	environments	 (Khan	et	al.,	 2011);	 taken	with	 the	 results	of	

this	study,	 it	 suggests	 that	butyrate	encourages	K8	expression	 in	normal	 tissue	

up	to	adenomagenesis	but	does	not	exert	the	same	influence	over	cancer	tissue.	

Once	malignant	change	takes	over	K8	becomes	altered,	as	demonstrated	by	the	

isoforms	 in	 this	 study	 (Figure	 41)	 and	 reported	 by	 others	 (Ditzel	 et	 al.,	 2002)	

(Polley	et	al.,	2006).		Butyrate	may	stimulate	K8	expression	in	order	to	enhance	

cytoskeletal	 stability	 to	 prevent	 malignant	 change	 in	 a	 cancerized	 field.	

Alternatively,	 butyrate	may	 stimulate	 cells	 to	 express	K8	 following	 chemotoxic	

challenges	 in	 order	 to	 enhance	 cytoskeletal	 stability.	 Evidence	 from	 K8-/-	mice	

studies	demonstrates	that	K8	is	essential	for	apoptosis	in	colonocytes	(Habtezion	

et	 al.,	 2011).	 Butyrate	 is	 also	 recognised	 to	 influence	 the	 rate	 of	 apoptosis	 in	

genotoxically	 challenged	 cells	 (Clarke	 et	 al.,	 2012).	 	 This	 implies	 butyrate	may	

exert	its	chemoprotective	properties	through	the	modification	or	sensitization	of	

K8	 to	 influence	 faulty	 colonocytes	 to	 undergo	 apoptosis.	 An	 area	 for	 further	

investigation	is	the	relationship	of	K8	levels	on	rates	of	apoptosis.	

My	 demonstration	 of	 the	 influence	 of	 butyrate	 concentration	 on	 K18	 and	 K19	

also	correlates	with	the	current	literature	(Couchie	et	al.,	2002,	Wakabayashi	et	

al.,	2005).		

	

In	 addition,	 butyrate	 was	 also	 seen	 to	 influence	 proteins	 other	 than	 keratins.	

Exclusively	 seen	 in	 the	 high	 butyrate	 group	 was	 up-regulation	 of	 tumour	

necrosis	 factor	 (TNF)	 and	 down-regulation	 of	 annexin	 A2	 in	 HN	 and	 HCO	

samples	compared	with	HAD.	High	levels	of	TNF	are	known	to	have	anti-cancer	

properties	 (Balkwill,	 2002)	 and	 annexin	 A2	 has	 important	 roles	 in	 cancer	 cell	

migration,	 invasion,	 adhesion	 and	 angiogenesis	 processes,	 which	 are	 essential	

for	 cancer	 metastasis	 (Lokman	 et	 al.,	 2011).	 Vimentin	 is	 known	 to	 maintain 
cellular	integrity	and	provide	resistance	against	stress,	although	over-expression	

and	methylation	 is	 associated	with	 cancer	 (Satelli	 and	Li,	 2011).	Universal	 up-
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regulation	 of	 vimentin	 in	 the	 high	 butyrate	 environment	 (Figures	 38	 to	 40)	

suggests	butyrate	may	also	 exert	 cell	 stability	 in	non-cancerous	 tissue	 through	

vimentin.	The	evidence	presented	suggests	the	frequently	cited	protective	effect	

of	 butyrate	 is	 multifaceted	 and	 calls	 for	 further	 investigation	 of	 butyrate’s	

influence	on	other	proteins	and	its	role	on	the	modification	of	PTMs	of	keratins.	

A	 limitation	 of	 the	 iTRAQ	 methodology	 is	 the	 pooling	 of	 the	 samples	 before	

protein	 assay.	 	 Bias	may	 have	 arisen	 due	 to	 greater	 protein	 quantities	 of	 one	

sample	over	another.		

	

	

	

5.6	Summary	

	
• An	 iTRAQ	 work	 flow	 was	 successfully	 developed	 for	 analysis	 of	 the	

insoluble	fraction	of	colonic	mucosal	biopsies.	

• Pathological	 samples:	 adenoma,	 contralateral	 and	 mid-sigmoid	 tissue	

have	 increased	K8	and	K18	 in	comparison	to	normal	 tissue	 in	both	high	

and	low	butyrate	environments.	

• K8	 and	 K18	 fold	 changes	 increased	with	 proximity	 to	 adenoma	 in	 high	

butyrate	environments.	

• K8,	K18	and	K19	fold	changes	were	universally	greater	 in	biopsies	 from	

high	 butyrate	 environments	 when	 compared	 to	 their	 low	 butyrate	

counterparts.		

• HCA	and	PCA	analysis	 show	butyrate	may	exert	 a	 stronger	 global	 effect	

over	protein	similarities	between	biopsies	than	proximity	to	adenoma.		

• Protein	 fold	 change	profiles	 suggest	 field	 cancerization	 in	 high	 butyrate	

environments	but	not	low	butyrate	environments.	
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Chapter	6	Field	Effects		-	Orthogonal	Validation:	Western	

Immunblot	and	Post-Translational	Modifications	
	

6.1	Introduction	

	

Data	 from	 chapter	 5	 demonstrated	 significant	 differences	 in	 keratin	 levels	

between	 biopsy	 sites	 and	 between	 butyrate	 environments.	 Independent	

orthogonal	validation	of	these	results	using	western	blot	will	be	explored	in	this	

chapter.	

	

Post-translational	modifications	 (PTMs)	modulate	 the	 function	of	 proteins	 that	

are	not	directly	coded	for	by	genes	(Cho,	2007).	Phosphorylation	of	K8	and	K18	

results	in	increased	solubilisation	and	cellular	distribution	(Ku	et	al.,	1998,	Liao	

et	 al.,	 1995)	 and	 can	 be	 mediated	 by	 cell	 stress	 (Liao	 et	 al.,	 1995).	

Hyperphosphorylation	in	K8	has	also	been	shown	to	reduce	apoptosis	(Arentz	et	

al.,	2012)	and	enhance	migration	of	epithelial	tumour	cells	(Busch	et	al.,	2012).	

Conversely,	 dephosphorylation	 of	 K8	 in	 colorectal	 cancer	 has	 been	 associated	

with	tumour	progression	(Mizuuchi	et	al.,	2009).	The	role	of	phosphorylation	is	

complex	 with	 evidence	 to	 show	 it	 is	 site-specific	 to	 the	 keratin	 (Omary	 et	 al.,	

1998).	

	

K8	has	been	 identified	as	 acetylated	and	 the	degree	of	 acetylation	 is	 increased	

with	 butyrate	 exposure	 (Leech	 et	 al.,	 2008)	 and	 during	 mitosis	 (Khan	 et	 al.,	

2011).	 In	 contrast	 to	 phosphorylation,	 acetylation	 is	 shown	 to	 decrease	 K8	

solubility	 by	 forming	 tightly	 associated	 K8	 complexes	 (Snider	 et	 al.,	 2013).	

Alterations	in	solubility	and	structure	may	indicate	acetylation	extends	its	role	in	

stabilization	of	other	cytoskeletal	proteins	(Janke	and	Bulinski,	2011)	in	addition	

to	intermediate	filaments.		
	

Furthermore,	 acetylation	 of	 K8	 results	 in	 a	 reciprocal	 reduction	 of	

phosphorylation	 (Snider	 et	 al.,	 2013).	 This	 finding	 suggests	 a	 possible	

mechanism	by	which	butyrate	exerts	 its	cancer	prevention	properties;	 through	
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increasing	 acetylation	 resulting	 in	 decreased	 phosphorylation	 and	 increased	

apoptosis.	The	function	of	acetylation	on	K8	is	not	fully	understood	but	evidence	

indicates	its	role	may	be	as	significant	as	phosphorylation.		

Ditzel	 et	 al.,	 found	 N	 terminally	 truncated	 forms	 of	 K8	 and	 K18	 in	 cancerous	

colonic	mucosa	(Ditzel	et	al.,	2002).	This	could	demonstrate	a	pathological	PTM	

that	has	not	yet	been	demonstrated	in	adenoma	tissue.	

	

Vimentin	 is	 a	 type	 3	 intermediate	 filament	 protein	 expressed	 in	 epithelial	

cancers	 and	 associated	 with	 poor	 prognosis	 and	 invasiveness	 (McInroy	 and	

Maatta,	2007).	Since	vimentin	was	identified	(using	iTRAQ)	as	a	protein	common	

to	all	the	high	butyrate	colonic	biopsy	samples,	it	would	be	valuable	to	determine	

whether	its	presence	and	quantity	is	dependent	on	colonic	tissue	samples	using	

western	immunoblot.		
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6.2	Hypothesis	and	Aims	
	

Hypotheses:	

• Vimentin	could	be	a	useful	marker	of	field	cancerization.	

• Pathological	 samples	 exhibit	 different	 PTMs	 in	 comparison	 to	 normal	

samples	and	the	PTMs	are	butyrate-responsive.	

	

Aims:	

• To	validate,	by	a	second	independent	method,	results	obtained	by	iTRAQ.	

• To	 identify	 and	 quantify	 K8,	 K18,	 K19	 and	 vimentin	 using	western	 blot	

and	 densitometry	 in	 association	 with	 adenoma	 proximity	 and	 butyrate	

exposure.	

• To	 identify	 K8	 PTMs	 (phosphorylation,	 acetylation	 and	 N	 terminus	

cleavage)	in	association	to	adenoma	proximity	and	butyrate	exposure.	
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6.3	Materials	and	Methods	

6.3.1	Materials	

	

12%	SDS-PAGE	gel	

12	 %	 polyacrylamide	 gels	 were	 made	 according	 to	 protocol	 described	 by	

Laemmli	(Laemmli,	1970).	

Resolve:	2.6mL	distilled	water,	1.8mL	1M	Tris	pH	8.8,	2.8mL	Acrylamide,	37.5μL	

10%	APS,	75μL	10%	SDS,	9μL	TEMED.	

Stacker:	3mL	distilled	water,	1.25mL	0.5M	Tris	pH	6.8,	0.6mL	Acrylamide,	100μL	

10%	APS,	100μL	10%	SDS,	20μL	TEMED.	

	

Tris	Glycine	SDS-PAGE	run	buffer	(x10)	

Run	 buffer	 was	 made	 according	 to	 the	 manufacturers	 instructions	 (National	

Diagnostics,	Hessle,	UK.)	

	

Tris	Glycine	electroblotting	buffer	(x10)	

Transfer	buffer	was	made	according	to	the	manufacturer’s	instructions	(National	

diagnostics,	Hessle,	UK.)	

	

Primary	antibodies	

1. Keratin	8	(ab9023,	Abcam,	Cambridge,	UK)	used	at	dilution	1:1000	(5μL	

in	5mL	5%	milk).	

2. Keratin	 8	 PS431	 (ab59434,	 Abcam,	 Cambridge,	 UK))	 -	 detects	 keratin	 8	

phosphorylated	at	Serine	431	dilution	used	at	1:	10000	(1μL	in	10mL		1%	

BSA).	

3. Keratin	 8	 PS73	 (ab32579,	 Abcam,	 Cambridge,	 UK)	 detects	 keratin	 8	

phosphorylated	at	Serine	73	dilution	used	at	1:	10000	(1μL	in	10mL	1%	

BSA).	

4. Keratin	 8	 PS23	 (ab76584,	 Abcam,	 Cambridge,	 UK)	 detects	 keratin	 8	

phosphorylated	at	Serine	23	dilution	used	at	1:	10000	(1μL	in	10mL	1%	

BSA).	
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5. Keratin	 8	N	 terminus	 –	 (raised	 in-house)	 detects	 keratin	 8	 truncated	 at	

the	N	terminus	used	at	dilution	1:	1000	(5μL	in	5mL	5%	milk).	

6. Keratin	8	Acetyl	Lysine	10	–	(raised	in-house)	detects	keratin	8	acetylated	

at	lysine	10	used	at	1:	1000	(5μL	in	5mL	5%	milk).	

7. Keratin	 8	 Acetyl	 Lysine	 482	 	 -	 (raised	 in-house)	 detects	 keratin	 8	

acetylated	at	lysine	482	used	at	1:	500	(10μL	in	5mL	5%	milk).	

8. Keratin	18	(ab668,	Abcam,	Cambridge,	UK)	used	at	1:	1000	(5μL	in	5mL	

5%	milk).		

9. Keratin	19	(ab7754,	Abcam,	Cambridge,	UK)	used	at	1:	1000	(5μL	in	5mL	

5%	milk).	

10. Vimentin	(MAB3400,	Millipore	Corporation,	USA)	used	at	1:	500	(10μL	in	

5mL	5%	milk).	

	

Antibodies	 raised	 in-house	 were	 done	 so	 with	 the	 help	 of	 Eurogentec,	

Southampton,	UK.	

	

	

Secondary	Antibodies	

1. Polyclonal	 goat	 anti-mouse	 -	 P0447	 (Dako,	 Cambridge,	 UK)	 used	 at	

1:2000	(5μL	in	10mL	5%	milk).	

2. Polyclonal	 goat	 anti-rabbit	 -	 P0448	 (Dako,	 Cambridge,	 UK)	 used	 at	 1:	

2000	(5μL	in	10mL	5%	milk	or	1%	BSA	according	to	primary	antibody).	
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6.3.2	Methods	
	
Pooled	 samples	 reserved	 as	 described	 Chapter	 5	 were	 thawed	 and	 used	 for	

western	immunoblot	validation.	These	samples	were	identical	to	those	analyzed	

in	the	iTRAQ	process.		

	

12%	 polyacrylamide	 gels	 were	 prepared	 and	 run	 using	 a	 modified	 protocol	

described	 by	 Laemmli	 (1970).	 Briefly,	 volumes	 equivalent	 to	 30μg	 protein	

(MCF7,	HAD,	HCO,	HMS,	HN,	LAD,	LCO,	LMS	and	LN)	were	heated	to	95°C	for	5	

minutes	with	5x	sample	buffer	(Pierce,	Thermo	Scientific,	USA)	and	loaded	onto	

10	well	gels.	SDS	PAGE	gels	were	run	at	100mV	 for	90	minutes.	Proteins	were	

transferred	 to	polyvinylidene	 fluoride	membrane	 (Millipore	Corporation,	USA),	

blocked	in	5%	non-fat	dried	milk	or	1%	BSA,	washed	in	tris	buffered	saline	(TBS)	

with	5%	tween	(Sigma,	USA)	(TBST)	and	incubated	in	primary	antibody	at	room	

temperature	for	one	hour	(Table	13).	Membranes	were	washed	3	times	in	TBST	

and	 incubated	 in	 secondary	 antibody	 (Table	 13)	 for	 one	 hour	 at	 room	

temperature	followed	by	further	washes	in	TBST.	Membranes	were	treated	with	

ECL	 solutions	 (Immunoblon™	Western	 Chemiluminescent	 HRP	 substrate:	 HRP	

substrate	 peroxide	 solution	 and	 HRP	 substrate	 Luminol	 Reagent,	 Millipore	

Corporation,	 USA)	 for	 chemiluminescence	 detection	 of	 protein	 bands.	

Membranes	 were	 imaged	 using	 Chemigenius	 Bio-Imaging	 System	 (Syngene,	

Cambridge,	UK).	

	

Due	 to	 sample	 volume	 constraints,	 not	 enough	 SDS-PAGE	 gels	 and	 hence	

membranes	 could	 be	 produced	 for	 each	 antibody	 to	 be	 applied	 to	 separate	

membranes.	Membranes	had	to	be	stripped	using	western	blot	stripping	buffer	

(Thermo	 scientific,	 Rockford,	 IL,	 USA),	 re-imaged	 (following	 ECL)	 to	 ensure	

adequate	 stripping	 and	 re-probed	 (Table	 14).	 If	 negative	 results	 for	 post-	

translational	 modifications	 occurred	 following	 western	 blot,	 membranes	 were	

stripped	 and	 re-probed	 for	 keratin	 8	 to	 ensure	 keratin	 8	 proteins	 were	 still	

present	on	the	membrane.	

Densitometry	 (to	 quantify	 western	 immunoblot	 results)	 was	 performed	 using	

GeneTools	software	(Syngene,	Cambridge,	UK).	
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Table	13.	Primary	antibodies	and	corresponding	secondary	antibody	used	for	western	
immunoblot.	

	
Primary	antibody	 Secondary	antibody	

Keratin	8	 Anti	mouse	in	milk	

Keratin	8	PS431	 Anti	rabbit	in	BSA	

Keratin	8	PS73	 Anti	rabbit	in	BSA	

Keratin	8	PS23	 Anti	rabbit	in	BSA	

Keratin	8	N	terminus	 Anti	mouse	in	milk	

Keratin	8	Acetyl	lysine	10	 Anti	rabbit	in	milk	

Keratin	8	Acetyl	lysine	482	 Anti	rabbit	in	milk	

Keratin	18	 Anti	mouse	in	milk	

Keratin	19	 Anti	mouse	in	milk	

Vimentin	 Anti	mouse	in	milk	

	

	

	
Table	14.	Antibodies	used	in	first	western	immunoblot	and	after	stripping.	

	
Membrane	number	 Primary	antibody	 Primary	antibody		

(after	stripping)	

Reprobe	for	K8	

1	 Keratin	8	 K19	 	

2	 Keratin	18	 Vimentin	 	

3	 Keratin	8	N	terminus	 Acetyl	Lysine	10	 Keratin	8	

4	 Keratin	8	Acetyl	Lysine	10	 Acetyl	Lysine	482	 Keratin	8	

5	 Keratin	8	PS73	 Keratin	8	PS431	 	

6	 Keratin	8	PS23	 Keratin	8	 	
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6.4	Results	

6.4.1 Western blot K8 and K18 

	

Western	immunoblot	for	K8	and	K18	are	shown	in	Figure	41	and	densitometry	

values	 of	 the	 immunoblots	 are	 shown	 in	 Table	 15.	 Densitometry	 values	 were	

greater	 in	 the	 high	 butyrate	 samples	 for	 both	 K8	 and	 K18.	 Lower	 molecular	

weight	forms	of	both	K8	and	K18	were	seen	in	the	MCF7	control	sample	and	in	

the	HAD	and	LAD	samples.		

Figure	41.	Western	immunoblot	showing	immunoreactive	bands	for	K8	and	K18		

Note	lower	molecular	weight	isoforms	of	K8	and	K18	in	HAD	and	LAD	samples.	
	
	

	

Table	15.	K8	and	18	densitometry	values	using	HAD	as	the	relative	comparison.	

Antibody	 HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	

8	 1	 1.19	 1.16	 1	 0.65	 0.89	 0.8	 0.49	

18	 1	 0.87	 0.93	 0.99	 1	 0.76	 0.62	 0.23	
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6.4	Results	

6.4.2 K8 comparison to iTRAQ results 
	
Keratin	8	

The	 findings	 of	 the	 iTRAQ	 data	 set	 and	 densitometry	 for	 K8	 correlate	 as	

indicated	by	the	line	graphs	(Fig.	42).	The	pathological	samples	(AD,	CO	and	MS)	

exhibited	 greater	 fold	 changes	 and	 densitometry	when	 compared	with	 normal	

controls	(N)	within	their	butyrate	groups.	

	

	
	
Figure	42.	Graph	comparing	iTRAQ	fold	change	with	densitometry	for	K8	

Both	 densitometry	 and	 iTRAQ	 fold	 changes	 calculated	 using	HAD	 as	 the	 reference	 sample.	 An	

anomaly	was	 seen	 at	 HCO	where	 densitometry	 values	 increased	 from	HAD	whereas	 HCO	 fold	

changes	 decreased	 from	HAD,	 however,	 overall	mirroring	 of	 the	 graphs	 indicate	 densitometry	

values	validate	iTRAQ	fold	changes.		

	

	

	

	

	

HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	
Densitometry	 1	 1.19	 1.16	 1.01	 0.65	 0.89	 0.8	 0.49	
iTRAQ	 1	 0.87	 0.87	 0.82	 0.48	 0.55	 0.45	 0.3	
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6.4	Results	

6.4.3 K18 comparison to iTRAQ results 
	
Keratin	18	

Selected	densitometry	 readings	 from	western	blot	 followed	 the	 findings	 of	 the	

iTRAQ	data	set	 for	K18	(Figure	43)	but	not	all.	 	As	per	 the	 iTRAQ	data	set	non	

adenoma	 samples	 exhibited	 lower	 densitometry	 readings	 than	 the	 adenoma	

samples	 for	 both	 high	 and	 low	 butyrate.	 A	 field	 effect	 (decrease	 in	 keratin	 18	

densitometry	with	distance	from	adenoma)	was	not	demonstrated,	however,	the	

general	trend	of	densitometry	follows	iTRAQ	as	shown	by	the	mimicking	of	the	

graphs.		

	

	

	
Figure	43.	Graph	comparing	of	iTRAQ	fold	change	with	densitometry	for	K18	

Using	HAD	as	the	reference	sample;	 there	 is	a	decrease	 in	K18	expression	from	HAD	to	HCO	in	

both	iTRAQ	fold	change	and	densitometry.	There	is	a	further	decrease	in	K18	with	distance	from	

adenoma	in	HMS	and	HN	in	iTRAQ	fold	changes	but	this	pattern	is	not	replicated	in	densitometry.	

In	LAD	the	same	decrease	in	iTRAQ	fold	change	and	densitometry	of	K18	is	seen	from	LAD	to	LCO	

this	 pattern	 continues	 in	 densitometry	 with	 distance	 from	 adenoma	 but	 is	 lost	 in	 iTRAQ	 fold

change	beyond	LCO.

HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	
Densitometry	 1	 0.87	 0.93	 0.99	 1	 0.76	 0.62	 0.23	
iTRAQ	 1	 0.44	 0.34	 0.35	 0.4	 0.3	 0.17	 0.21	
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6.4	Results	

6.4.4 Western blot K19 and vimentin 
	
Keratin	19	
	
Immunoreactive	 bands	 were	 demonstrated	 for	 keratin	 19	 in	 HAD	 and	 LAD	

samples	 only	 (Figure	 44).	 For	 densitometry	 HAD	 was	 used	 as	 the	 reference	

sample,	 however,	 other	 than	 LAD,	 readings	 could	 not	 be	 obtained	 for	 the	

remaining	sample	types	(Table	16).		

	

Immunoreactive	bands	could	not	be	identified	for	vimentin	in	HAD	and	LN.	The	

band	imprint	of	LCO	suggests	a	transfer	problem	(possible	air	bubble)	from	gel	

to	 membrane.	 In	 the	 vimentin	 membrane	 HCO	 was	 used	 as	 the	 reference	 for	

densitometry	and	no	readings	were	obtained	for	HAD	and	LN	(Figure	44).	
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6.4	Results	

6.4.4 Western blot K19 and Vimentin 

	
Figure	44.	Western	immunoblot	showing	immunoreactive	bands	for	K19	and	vimentin.		

Immunoreactive	 bands	 could	 not	 be	 identified	 in	 K19	 for	 HCO,	 HMS,	 HN,	 LCO,	 LMS	 or	 LN	

therefore	densitometry	readings	could	not	be	obtained.		Immunoreactive	bands	for	HAD	and	LN	

were	not	demonstrated	for	Vimentin	therefore	densitometry	readings	could	not	be	obtained	for	

those	samples.	

	
Table	16.	K19	densitometry	values	using	HAD	as	the	relative	comparison.	

Antibody	 HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	

19	 1	 -	 -	 -	 1.19	 -	 -	 -	

Vimetin	 -	 1	 0.86	 0.87	 0.80	 0.83	 0.88	 -	
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6.4.	Results	

6.4.5 K19 comparison to iTRAQ results 
	
Keratin	19	

Immunoreactive	bands	for	K19	were	very	weak	and	densitometry	readings	were	

not	 sufficient	 to	 compare	 with	 iTRAQ	 findings	 (Figure	 45).	 Densitometry	 was	

performed	to	standardise	all	the	comparisons	but	in	the	case	of	K19	it	is	of	little	

value	since	immunoreactive	bands	are	only	visible	in	the	HAD	and	LAD	samples	

(Figure	44).			

	

	

	

	
Figure	45.	Graph	of	iTRAQ	fold	change	for	K19	

Densitometry	readings	were	not	sufficient	to	compare	with	iTRAQ	findings.		
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6.4	Results	

6.4.6 Vimentin comparison to iTRAQ results 
	
Vimentin	

Western	 blotting	 was	 suboptimal	 for	 vimentin	 and	 is	 reflected	 in	 the	

immunoreactive	 bands	 (Figure	 44)	 readings	 for	 HAD	 and	 LN	 could	 not	 be	

obtained.	 A	 number	 of	 densitometry	 readings	 followed	 the	 iTRAQ	 findings	

(Figure	 46)	 both	 densitometry	 and	 iTRAQ	 fold	 changes	 revealed	 a	 decrease	 in	

vimentin	from	HCO	and	HMS	and	an	increase	in	vimentin	from	LAD	to	LCO.	

	

	
	

Figure	46.	Comparison	of	iTRAQ	fold	change	and	densitometry	for	vimentin.		

Densitometry	 readings	 could	not	be	obtained	 for	all	 samples	but	 there	are	areas	 in	 the	graphs	

that	mirror	each	other	showing	relative	validation	of	the	iTRAQ	findings.	
	

	

	

	

HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	
Densitometry	 1	 0.86	 0.87	 0.8	 0.83	 0.88	
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6.4	Results	

6.4.7 Western blot of K8 phosphorylation 
	
Keratin	8	Phosphorylation	

All	 samples	 demonstrated	phosphorylation	 at	 serine	 residues:	 23,	 73	 and	431,	

however	some	immunoreactive	bands	were	weak	(Figure	47).		

Densitometry	of	PS23	immunoreactive	bands	indicate	adenoma	samples	(of	both	

high	 and	 low	butyrate	 environments)	have	 reduced	phosphorylation	on	 serine	

23	compared	to	other	sample	groups	(Table	17).	

Weak	immunoreactive	bands	were	seen	for	PS73.	In	this	case,	the	densitometry	

values	did	not	 indicate	 a	 reduction	 in	phosphorylation	of	 adenoma	 samples	 as	

seen	with	PS23	and	PS431.	

The	reverse	serine	phosphorylation	pattern	of	PS23	was	seen	for	PS431,	where	

immunoreactive	bands	for	adenoma	samples	were	similar	or	stronger	than	other	

sample	groups.	

	
	

Figure	47.	Western	immunoblot	showing	immunoreactive	bands	for	K8	phosphorylated	at	

serine	residues:	23	(PS23);	73	(PS73);	431	(PS431)	

Lane%Marker%%%%%%MCF7%%%%%%%%%%HAD%%%%%%%%%%%%%%HCO%%%%%%%%%%%HMS%%%%%%%%%%%%%%HN%%%%%%%%%%%%%%LAD%%%%%%%%%%%%LCO%%%%%%%%%%%%%%LMS%%%%%%%%%%%%%LN%

54kDa%

K8%PS23%

%%%MCF7%%%%%%%%%%%%%%%%%%HAD%%%%%%%%%%%%%%HCO%%%%%%%%%%%%%%%HMS%%%%%%%%%%%%%%%%HN%%%%%%%%%%%%%%LAD%%%%%%%%%%%%%%%%LCO%%%%%%%%%%%%%%%%%LMS%%%%%%%%%%%%%%%LN%
K8%PS73%

55%kDa%

Lane%Marker%%%%MCF7%%%%%%%%%%HAD%%%%%%%%%%%%HCO%%%%%%%%%%%%%HMS%%%%%%%%%%%%%%HN%%%%%%%%%%%%%%LAD%%%%%%%%%%%%%%LCO%%%%%%%%%%%%%%LMS%%%%%%%%%%%%%LN%K8%PS431%

54kDa%
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Table	17.	Phosphorylation	densitometry	values	using	HAD	as	the	relative	comparison	
Antibody	 HAD	 HCO	 HMS	 HN	 LAD	 LCO	 LMS	 LN	

PS23	 1	 1.45	 1.38	 1.38	 1.15	 1.43	 1.55	 1.58	

PS73	 1	 1.07	 1.02	 0.64	 0.93	 1.02	 0.85	 1.04	

PS431	 1	 1.01	 0.96	 0.45	 0.97	 0.81	 0.64	 0.99	
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6.4	Results	

6.4.8 Western blot K8 N terminus and acetylation 
	
An	 immunoreactive	 band	 representing	 K8	 truncated	 at	 the	 N	 terminus	 was	

visible	for	the	MCF7	sample	but	conclusive	immunoreactive	bands	could	not	be	

demonstrated	 for	our	sample	set	 (Figure	48).	 Immunoreactive	bands	could	not	

be	demonstrated	for	acetyl	lysine	10	and	acetyl	lysing	482.	To	ensure	adequate	

K8	 was	 transferred	 onto	 the	 membranes,	 the	 membranes	 were	 stripped	 and	

incubated	with	K8	antibody.	Both	stripped	and	re-probed	membranes	confirmed	

the	presence	of	K8.	

	

	
	

	

Figure	48.	Western	immunoblot	using	K8	N	terminus	antibody,	Acetyl	lysine	10	and	Acetyl	

lysine	482		and	K8	for	comparison	

No	 immnuoreactive	 bands	 could	 be	 demonstrated.	 To	 demonstrate	 the	 presence	 of	 K8,	

membranes	were	stripped	and	re-probed	with	K8	antibody,	which	confirmed	the	presence	of	K8.

Lane%Marker%%MCF7%%%%%%%HAD%%%%%%%HCO%%%%%%%%%%HMS%%%%%%%%%%%%%HN%%%%%%%%%LAD%%%%%%%%%%LCO%%%%%%%%%LMS%%%%%%%%%%%%%%LN%

K8%N%Terminus%

N%Terminus%stripped%
re<probed%for%K8%

Acetyl%Lysine%10%

Acetyl%Lysine%482%

Acetyl%Lysine%
stripped%re<probed%
for%K8%

55%kDa%
%
37%kDa%

KeraIn%8%
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6.5	Discussion	
	
Keratins	and	Vimentin	
	
Western	blot	 analysis	was	able	 to	validate	 the	 iTRAQ	 findings	 for	both	K8	and	

K18.	Stronger	immunoreactive	bands	for	K8	and	K18	were	confirmed	in	the	high	

butyrate	 samples	 as	 compared	 to	 the	 low	 butyrate	 samples	 and	 also	 in	 the	

pathological	 tissue	 when	 compared	 to	 the	 normal.	 If	 densitometry	 values	 are	

used	as	a	proxy	for	expression	these	results	support	the	iTRAQ	expression	data	

for	K8	and	K18.		

	

K19	 and	 vimentin	 western	 blots	 did	 not	 follow	 iTRAQ	 findings;	 suboptimal	

protein	levels	following	membrane	stripping	may	be	partly	responsible	for	this.	

Due	to	shortages	 in	sample	availability	some	membranes	had	to	be	reused	and	

experiments	could	not	be	repeated.	Some	iTRAQ	fold	changes	for	K19	were	not	

significant	 therefore	 comparisons	 with	 densitometry	 were	 of	 limited	 value.	

Investigation	of	vimentin	was	a	deviation	from	the	original	aim	but	it	was	chosen	

for	validation	as	 the	 results	 from	chapter	5	 indicate	vimentin	as	a	protein	 that	

was	 consistently	 up-regulated	 in	 the	 high	 butyrate	 environment.	 This	

observation	was	 not	 seen	 in	western	 blot	 since	 high	 butyrate	 samples	 did	 not	

exhibit	stronger	immunoreactive	bands.	If	larger	sample	volumes	were	available	

this	 would	 have	 obviated	 the	 need	 for	 membrane	 stripping	 and	 may	 have	

produced	better	results.	 iTRAQ	fold	changes	of	vimentin	were	only	matched	by	

one	peptide	 therefore	 the	 significance	 of	 vimentin	 to	 this	 study	may	not	 be	 as	

great	as	originally	thought.	However,	there	is	evidence	of	increased	vimentin	in	

the	cancerized	 field	of	breast	 tissue	(Trujillo	et	al.,	2011),	suggesting	this	as	an	

area	of	future	investigation	in	the	colon.		
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Post-translational	modifications	
	
Keratin	8	appeared	to	be	less	phosphorylated	at	serine	23	in	adenoma	samples	

than	 other	 samples.	 On	 the	 contrary,	 Arentz	 et	 al.,	 found	 increased	

phosphorylation	 at	 serine	 23,	 73	 and	 431	 in	 cancer	 samples	 compared	 with	

matched	normal	 controls	 (Arentz	 et	 al.,	 2012).	 The	 reason	 for	 the	 discrepancy	

could	 be	 two	 fold:	 our	 results	 were	 derived	 from	 adenoma	 tissue	 rather	 than	

cancer;	secondly	we	concentrated	wholly	on	 the	 insoluble	 form	of	K8,	whereas	

Arentz	et	al.	 investigated	both	forms	together.	Increased	phosphorylation	of	K8	

is	associated	with	reduced	apoptosis	(Arentz	et	al.,	2012),	which	would	correlate	

with	 the	 behaviour	 of	 malignant	 cells	 rather	 than	 adenoma	 cells.	 There	 is	

evidence	to	show	the	soluble	form	of	K8	protects	damaged	cells	from	apoptosis	

by	 acting	 as	 a	 phosphate	 ‘sponge’	 to	 inhibit	 phosphokinase	 activation	 of	 pro-

apoptotic	 substrates	 (Ku	 and	 Omary,	 2006).	 It	 is	 unknown	 if	 the	 insoluble	

fraction	 behaves	 in	 a	 similar	 manner.	 There	 is	 also	 evidence	 that	

phosphorylation	 of	 K8	 results	 in	 increased	 K8	 solubility	 and	 intracellular	

distribution	(Omary	et	al.,	1998).	Therefore,	one	explanation	 for	my	 findings	 is	

that	 there	 are	 reduced	 amounts	 of	 insoluble	 K8	 due	 to	 redistribution	 into	 the	

soluble	 compartment.	 The	 protective	 mechanism	may	 have	 been	 overcome	 in	

adenoma	tissue	as	decreased	phosphorylation	of	K8	leads	to	insolubility	and	less	

intracellular	 distribution.	 Alternatively,	 this	 may	 not	 be	 a	 mechanism	 of	

protection	but	a	feature	of	malignancy	that	does	not	apply	to	adenoma	tissue.	In	

cancer	 tissue	 phosphorylation	 of	 K8	 rises	 again	 to	 prevent	 apoptosis,	

demonstrating	 phosphorylation	 interactions	 are	 complex	 and	 perhaps	 should	

not	be	examined	in	isolation.	The	relationship	between	K8	phosphorylation	and	

butyrate	 and	 how	 K8	 phosphorylation	 varies	 in	 solubility	 compartments	 with	

respect	to	the	cancerized	field	should	be	examined	in	future	research.	
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Acetylation		
	
Keratin	8	is	known	to	be	acetylated	in	colon	cancer	cell	lines	(Leech	et	al.,	2008)	

and	the	degree	of	acetylation	increases	in	response	to	butyrate	levels	(Drake	et	

al.,	 2009).	 Unfortunately,	 immunoreactive	 bands	 for	 acetylation	 could	 not	 be	

demonstrated.	It	is	possible	that	this	is	due	to	a	defective	in-house	antibody	since	

K8	 presence	 was	 subsequently	 demonstrated	 on	 the	 membrane	 and	 K8	 is	

recognised	 as	 being	 highly	 acetylated	 (Leech	 et	 al.,	 2008).	 The	 alternative	

explanation	is	that	the	process	of	dissolving	the	insoluble	K8	(protocol	described	

in	 Chapter	 4)	 has	 removed	 some	 post-translational	 modifications	 namely	

acetylation	but	preserved	phosphorylation.	

	

Keratin	8	isoforms	
	
Ditzel	et	al.,	showed	that	K8	in	cancer	cells	is	N	terminally	truncated	(Ditzel	et	al.,	

2002).	 I	sought	to	 investigate	whether	the	 lower	molecular	weight	 forms	of	K8	

seen	in	adenoma	samples	(Figure	41)	were	N	terminally	truncated	forms	of	K8.	

However,	 I	was	unable	 to	demonstrate	 this.	The	 lower	molecular	weight	 forms	

could	represent	K8	cleaved	at	alternative	sites	secondary	to	adenomagenesis	and	

N	 terminus	 cleavage	 remains	 an	 exclusive	 feature	 of	 malignancy.	 The	 lack	 of	

immunoreactive	 bands	 for	 K8	 N	 terminus	 is	 unlikely	 to	 be	 due	 to	 a	 defective	

antibody	 since	 bands	 were	 seen,	 as	 expected,	 in	 the	 MCF7	 sample.	 The	 weak	

visible	bands	are	likely	due	to	contamination	of	MCF7	into	other	wells	during	gel	

loading	as	 the	bands	were	observed	 to	get	progressively	weaker	with	distance	

from	the	MCF7	well.			

	

Although	I	was	unable	to	demonstrate	the	 lower	molecular	weight	 forms	of	K8	

were	N	terminally	truncated	forms	of	K8,	the	western	blots	clearly	 indicate	the	

presence	of	K8	 in	 the	adenoma	samples	and	not	 in	 the	non-pathological	 tissue.	

This	 is	 consistent	 with	 the	 current	 literature	 (Arentz	 et	 al.,	 2012),	 where	

phosphorylated	isoforms	of	K8	were	up-regulated	in	cancer	cells	in	comparison	

to	 matched	 normal.	 It	 could	 be	 that	 the	 isoforms	 identified	 in	 my	 adenoma	

samples	were	post-translationally	altered	isoforms,	either	by	phosphorylation	or	

another	PTM	that	was	not	investigated	in	this	study.		



	 165	

6.6	Summary	
	
	
Validation:	
	

• Keratin	 8	 iTRAQ	 fold	 changes	 were	 validated	 by	 western	 immunoblot	

densitometry.	

• Keratin	 18	 iTRAQ	 fold	 changes	 were	 only	 partly	 validated	 by	 western	

imunoblot	 densitometry,	 however	 discrepancies	 in	 the	 differing	 results	

were	marginal.		

• Keratin	 19	 and	 vimentin	 iTRAQ	 fold	 changes	 could	 not	 be	 reliably	

validated.		

	

	

Phosphorylation:	

• Phosphorylation	was	reduced	in	adenoma	samples	compared	with	other	

samples	in	both	butyrate	groups.	

• Phosphorylation	did	not	appear	to	be	influenced	by	butyrate	status.	

	

	

Acetylation:	

• Immunoreactive	bands	 for	acetylation	were	not	demonstrated;	 this	may	

be	due	to	accidental	removal	of	acetylation	during	sample	processing	or	

faulty	antibody.	
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Chapter	7	

	

	

	

Field	Effects	–	Orthogonal	Validation:	

Immunohistochemistry	for	Keratin	18	and	19	

Expression		
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Chapter	7	Field	Effects	–	Orthogonal	Validation:	

Immunohistochemistry	for	Keratin	18	and	19	

Expression	Immunohistochemistry		

7.1	Introduction	
	
Data	 from	 chapter	 5	 demonstrated	 significant	 differences	 in	 keratin	 between	

biopsy	 sites	 and	 between	 butyrate	 environments.	 Independent	 orthogonal	

validation	of	these	results	using	immunohistochemistry	(IHC)	will	be	explored	in	

this	 chapter.	 Fujisaki	 and	 Shimoda	 defined	 K8,	 K18	 and	 K19	 expression	

differences	 between	 normal	 colonic	 mucosa	 and	 neoplastic	 mucosa	 using	 IHC	

(Fujisaki	 and	 Shimoda,	 1993).	 Since	 then,	 few	 studies	 have	 investigated	 the	

distribution	 of	 keratins	 within	 the	 colonic	 crypt	 especially	 in	 relation	 to	 the	

cancerized	field	and	butyrate	exposure.	

Immunohistochemistry	for	K8	was	not	performed	in	this	study	as	a	member	of	

our	group	previously	performed	K8	IHC	as	part	of	their	MD	project.	This	work	is	

now	 published	 (Khan	 et	 al.,	 2011).	 Khan	 et	 al.,	 (2011)	 found	 an	 inverse	

relationship	between	K8	expression	and	butyrate	in	cancer	tissue	but	a	positive	

relationship	between	butyrate	and	K8	in	adenoma	tissue.	K8	was	also	 found	to	

decrease	with	adenoma	proximity	but	 increase	with	cancer	proximity	(Khan	et	

al.,	 2011).	 Increased	 K8	 expression	 in	 colonic	 crypts	 from	 low	 butyrate	

environments	was	also	reported	(Khan	et	al.,	2011).	The	same	group	also	found	

patchy	distribution	of	K8	in	cancer	tissue,	where	K8	expression	was	stronger	at	

the	 mucosal	 surface	 than	 deeper	 cells	 within	 the	 colonic	 crypt	 (Khan	 et	 al.,	

2011).	There	are	no	studies	examining	the	crypt	distribution	of	K18	and	K19	in	

relation	to	adenoma	proximity	and	butyrate	exposure.		

Post-translational	 studies	 of	 keratins	 have	 demonstrated	 altered	 solubility	

thereby	affecting	cellular	stability	(Ku	and	Omary,	2006).	It	is	possible	that	crypt	

distribution	of	keratins	is	equally	as	important	for	tissue	stability	and	may	help

define	pathological	processes.
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7.2	Hypotheses	and	Aims	
	

	

Hypotheses:	

• Keratin	 18	 and	 19	 expression	 or	 levels	 are	 altered	 in	 adenoma	 and	

field	samples	in	comparison	to	normal	samples	

• If	 K18	 and	 K19	 expression	 levels	 are	 not	 representative	 of	 iTRAQ	

results	 then	 solubility	 of	 K18	 and	 K19	 could	 be	 altered	 in	 different	

stages	of	adenoma-carcinogenesis.		

• Keratin	 distribution	within	 the	 colonic	 crypt	 is	 affected	 by	 adenoma	

proximity	and	butyrate	status.	

	

	

Aims:	

• To	 determine	 K18	 and	 K19	 expression	 levels	 in	 colonic	 adenoma,	 field	

and	normal	tissue	in	using	immunohistochemistry		

• To	 identify	 distribution	 differences	 between	 the	 sample	 groups	 and	 in	

relation	to	butyrate.	
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7.3	Materials	and	Methods	

7.3.1	Materials	
	
Hydrogen	and	methanol	

30	mL	of	hydrogen	peroxide	was	added	to	270mL	100%	methanol.	

	

Phosphate	Buffered	Saline	(PBS)	

10	mM	PBS	was	prepared	by	dissolving	1	PBS	tablet	in	200mL	of	distilled	water	

(79382-50TAB,	Sigma	Aldrich,	Dorset,	UK).	

	

Tris	EDTA	

Tris	EDTA	was	prepared	by	dissolving	1.21g	of	Tris	(Sigma	Aldrich,	Dorset,	UK)	

and	0.37g	EDTA	 (Sigma	Aldrich,	Dorset,	 UK)	 to	 1000mL	of	 distilled	water	 and	

adjusted	for	use	at	pH	9.0.	

	

Sodium	Citrate	

0.01M	 Sodium	 citrate	 was	 prepared	 by	 dissolving	 2.94g	 of	 sodium	 citrate	 to	

1000mL	of	distilled	water	and	adjusted	for	use	at	pH	6.0.	

	

Proteinase	K	

Proteinase	K	(Chemicon)	200μg/mL	was	diluted	1	in	10	using	50mM	tris	buffer	

and	0.15M	NaCl.	

	

10%	Goat	serum	block	

400μL	of	10%	goat	serum	(Vector	Laboratories,	Peterborough,	UK)	was	diluted	

in	 4mL	 of	 PBS	 with	 the	 addition	 of	 40μL	 of	 x10	 Casein	 (Vector	 Laboratories,	

Peterborough,	UK).		

2%	goat	serum	solution	was	prepared	from	this	solution	by	taking	1mL	of	10%	

goat	serum	solution	and	diluted	in	4mL	PBS.	

	

Primary	antibody	

Keratin	18	(raised	in-house)	used	at	a	dilution	of	1:	2000	in	PBS.	

Keratin	19	(ab7754,	Abcam,	Cambridge,	UK)	used	at	a	dilution	of	1:	1500	in	PBS.	
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Secondary	antibody	

Biotinylated	goat	anti-mouse	IgG	(Vector	Laboratories,	Peterborough,	UK)	used	

at	a	dilution	of	1:	200,	5μL	in	1mL	of	2%	goat	serum	solution.	

	

ABC	reagent	kit		

ABC	 Vectastain	 Universal	 elite	 (Vector	 Laboratories,	 Peterborough,	 UK)	 was	

prepared	by	adding	2	drops	of	solution	A	and	2	drops	of	solution	B	to	5mL	PBS.	

	

DAB	peroxidase	substrate	kit	(DAB)	

DAB	(Vector	Laboratories,	Peterborough,	UK)	was	prepared	by	adding	2	drops	of	

buffer,	4	drops	DAB	and	2	drops	hydrogen	peroxide	to	5mL	of	distilled	water.	

	

Imaging	

Slides	were	viewed	using	a	Nikon	Eclipse	TS100	microscope	(Nikon,	Surrey,	UK)	

and	 captured	 using	 a	 Nikon	 DS-2MBWc	 camera	 (Nikon,	 Surrey,	 UK)	 at	 a	

resolution	of	2560	x	1920	pixels.	Images	were	stored	and	analysed	using	Nikon	

NIS	Elements	D	(v2.30)	software.	
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7.3.2	Methods	
	
Protocol	development	

Prior	to	staining	the	entire	slide	series,	a	protocol	was	devised	to	determine	the	

best	antigen	retrieval	method	and	optimum	primary	antibody	dilution	 for	both	

K18	 and	 K19.	 Briefly,	 sodium	 citrate	 0.01M	 (Sigma	 Aldrich,	 Dorset,	 UK)	 and	

proteinase	 K	 (Millipore,	 Oxfordshire,	 UK)	 were	 used	 for	 antigen	 retrieval	 but	

found	to	be	less	effective	compared	with	Tris	EDTA.	A	negative	control	(omission	

of	primary	antibody)	was	used	 for	each	staining	experiment	 to	ensure	staining	

had	 not	 occurred	 due	 to	 factors	 other	 than	 antibody.	 During	 protocol	

development	Keratin	18	was	tested	at	dilutions	1:	500,	1:	1000,	1:	1500,	1:	2000	

and	 1:	 2500	 to	 determine	 the	 optimum	 dilution	 for	 staining.	 Keratin	 19	 was	

tested	at	dilutions	1:	250,	1:	500,	1:	1000,	1:	1500	and	1:	2000	to	determine	the	

optimum	dilution	for	staining	(Figures	50	and	51).	

Once	the	optimum	antigen	retrieval	method	and	dilution	was	determined,	slide	

staining	for	K18	and	K19	were	performed	using	the	same	protocol.	

	

Biopsy	sample	characteristics	

Colonic	 pinch	 biopsies	 (taken	 as	 previously	 described	 in	 Chapter	 5),	 were	

sectioned,	formalin	fixed	and	paraffin	mounted	on	slides.	

A	larger	archive	of	tissue	was	available	for	IHC,	 in	comparison	to	that	available	

for	iTRAQ	and	western	immunoblot.	To	provide	a	more	accurate	representation	

of	the	population,	all	available	tissue	samples	of	the	FACT	series	were	analysed	

(Corfe	et	al.,	2009).	Biopsies	were	obtained	from	20	adenoma	patients:	from	the	

adenoma	 itself	 (AD);	 the	 contralateral	wall	 of	 the	 adenoma	 (CO)	 and	 the	mid-

sigmoid	 (MS)	 (Table	 18).	 Biopsies	 were	 obtained	 from	 the	mid-sigmoid	 of	 32	

patients	with	no	pathology	(N)	(Table	19).		

Two	 slides	 containing	 three	biopsies	 each	 (at	10	 sections	 apart)	were	 selected	

from	 each	 patient	 sample	 therefore	 each	 sample	 number	 was	 stained	 in	

duplicate.	
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Table	18.	Slide	sample	numbers	for	pathological	samples	

Sample	

number	

Biopsy	sites	 Butyrate	level	

mmol/L	

Sample	

number	

Biopsy	sites	 Butyrate	level	

mmol/L	

186	 AD,	CO	and	MS	 16	 105	 AD,	CO	and	MS	 5	

125	 AD,	CO	and	MS	 13	 111	 AD,	CO	and	MS	 3	

108	 AD,	CO	and	MS	 9	 188	 AD,	CO	and	MS	 2	

214	 AD,	CO	and	MS	 8	 167	 AD,	CO	and	MS	 1.6	

168	 AD,	CO	and	MS	 8	 139	 AD,	CO	and	MS	 1.5	

164	 AD,	CO	and	MS	 8	 179	 AD,	CO	and	MS	 1.3	

170	 AD,	CO	and	MS	 8	 148	 AD,	CO	and	MS	 1.3	

210	 AD,	CO	and	MS	 8	 123	 AD,	CO	and	MS	 1	

181	 AD,	CO	and	MS	 7	 163	 AD,	CO	and	MS	 0.7	

136	 AD,	CO	and	MS	 5	 174	 AD,	CO	and	MS	 0.6	

	(AD	–	adenoma,	CO	–	contralateral	and	MS	–	mid-sigmoid)	and	corresponding	butyrate	level	

(obtained	from	faecal	sampling).	

	

	
Table	19.	Slide	sample	numbers	for	normal	samples	

Sample	

number	

Biopsy	site	 Butyrate	level	

mmol/L	

Sample	

number	

Biopsy	site	 Butyrate	level	

mmol/L	

113	 N	 20	 142	 N	 4.6	

172	 N	 14	 109	 N	 4	

101	 N	 13	 149	 N	 4	

221	 N	 13	 112	 N	 4	

219	 N	 12	 114	 N	 4	

213	 N	 10	 161	 N	 3.6	

159	 N	 8	 140	 N	 2.9	

193	 N	 8	 182	 N	 2.7	

160	 N	 7	 110	 N	 2.5	

116	 N	 7	 165	 N	 2.11	

118	 N	 6	 141	 N	 1.9	

216	 N	 6	 135	 N	 1.4	

150	 N	 6	 133	 N	 1.2	

106	 N	 5	 157	 N	 1	

162	 N	 5	 153	 N	 1	

117	 N	 4.7	 156	 N	 0.7	

Normal	samples	–	N	and	corresponding	butyrate	level	(obtained	from	faecal	sampling).		
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Removal	of	paraffin	and	rehydration	of	sections	

25	 slides	 were	 processed	 at	 a	 time	 by	 placing	 in	 a	 rack	 and	 performing	 the	

following	washes:	

Xylene:	2	x	5	minutes	

100%	ethanol:	2	x	3	minutes	

95%	ethanol:	3	minutes	

90%	ethanol:	3	minutes	

	

Blocking	of	endogenous	enzymes	

The	 slides	were	 immersed	 in	 hydrogen	 and	methanol	 solution	 for	 20	minutes	

before	rinsing	in	distilled	water	and	then	in	PBS.	

	

Antigen	retrieval	

Slides	 were	 placed	 on	 stain	 trays	 and	 tissue	 samples	 encircled	 using	 ImEdge	

hydrophobic	barrier	pen.	The	slides	were	placed	 in	Tris	EDTA	pH9,	covered	 in	

cling	film	and	microwaved	at	high	setting	for	9	minutes.	The	slides	were	left	to	

cool	 in	Tris	EDTA	for	10	minutes	before	rinsing	in	PBS:	1	x	1	minute	and	2	x	5	

minute	washes.	

	

Immunohistochemical	staining	

Slides	 (on	 stain	 trays)	 were	 blocked	 using	 10%	 goat	 serum	 for	 30	 minutes.	

Following	the	block	stage,	the	serum	was	tipped	off	and	primary	antibody	(K18	

at	1:	2000	[0.5μL/mL]	or	K19	at	1:	1500	[1μL/1.5mL])	pipetted	onto	the	tissue	

sections	and	incubated	at	4°C	overnight.		

Slides	were	 transferred	back	 into	 racks	 following	primary	 antibody	 incubation	

and	washed	with	PBS:	1	x	1	minute	and	2	x	5	minute	washes.	Slides	were	placed	

back	 into	 stain	 trays	and	covered	with	biotinylated	 secondary	goat	anti-mouse	

antibody	at	room	temperature	for	30	minutes.	During	the	30	minute	period	ABC	

was	prepared	as	described	above	and	allowed	to	develop	before	use.	Slides	were	

washed	with	PBS	(1	x	1	minute	and	2	x	5	minute)	and	then	covered	with	ABC	for	

30	minutes.	Slides	were	washed	again	with	PBS	(1	x	1	minute	and	2	x	5	minute).	

DAB	was	prepared	as	described	above	and	pipetted	onto	the	slides.		Slides	were	

incubated	with	DAB	 for	 9	minutes	 before	washing	 in	 tap	water	 for	 5	minutes.	
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Slides	were	immersed	in	Gills	haematoxylin	for	2	minutes	before	a	further	wash	

in	running	tap	water	until	the	water	ran	clear.	

	

Dehydration	and	slide	mounting	

Slides	 were	 dehydrated	 by	 progressively	 immersing	 in	 ethanol	 at	

concentrations:	 70%,	 90%,	 95%,	 100%	 and	 100%	 for	 3	 minutes	 each.	 Slides	

were	then	immersed	in	xylene	until	 the	ImEdge	wax	was	removed.	Slides	were	

mounted	 in	 DPX	mountant	 (Sigma	 Aldrich,	 Dorset,	 UK)	 and	 left	 to	 dry	 for	 24	

hours	before	imaging.	

	

Semi-quantitative	image	scoring	

The	entire	slide	series	was	scored	by	a	single	observer	and	then	validated	by	an	

independent	 second	 scorer.	 6	 well-orientated	 crypts	 per	 biopsy,	 showing	 the	

entire	 length	of	the	crypt,	were	scored.	A	scoring	system	was	devised	based	on	

previous	descriptions	in	the	literature	(Fujisaki	and	Shimoda,	1993,	Khan	et	al.,	

2011)	and	general	observations	of	the	appearance	of	the	whole	slide	series.	The	

general	(most	widespread	pattern)	staining	intensity	for	the	series	was	used	as	

the	 standard	 for	 comparison.	 Scores	 for	 staining	 intensity	 were	 awarded	 in	

comparison	to	the	standard.	

	

Both	K18	and	K19	slides	were	scored	based	on	three	parameters:	

1. Intensity	of	surface	staining	

2. Intensity	of	crypt	base	staining	

3. Extent	of	crypt	staining	

	

Scores	were	awarded	as	follows:	

0	-	no	staining	

1	-	weaker	staining	than	standard	

2	-	same	staining	as	standard	

3	–	stronger	staining	than	standard	
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The	 same	 staining	 criteria	 were	 applied	 to	 both	 normal	 tissue	 and	 adenoma	

tissue.	 	 The	 magnitude	 of	 staining	 intensity	 was	 interpreted	 as	 the	 degree	 of	

keratin	expression.	

7.3.3	Statistics	
	
SPSS	(IBM	SPSS	Statistics	for	Windows,	Version	20.0.	Armonk,	NY)	was	used	for	

statistical	analysis.	The	same	tests	were	performed	for	both	K18	and	K19	slide	

series:	

1. Spearman’s	rank	correlation	coefficient	was	performed	to	relate	butyrate	

level	 and	 keratin	 expression	 (a	 p	 value	 of	 <0.01	 was	 considered	

significant).	 Spearman’s	 rank	 was	 chosen	 since	 the	 dataset	 is	 non	
parametric	 (not	 normally	 distributed).	 Graphs	 were	 plotted	 to	 reveal	

correlation	and	R2	coefficient	(a	determination	of	how	well	the	regression	

line	approximates	the	real	data	points).	Only	graphs	demonstrating	good	

correlation,	statistical	significance	or	good	R2	coefficient	are	shown	in	the	

main	body	of	the	thesis	but	the	remainder	are	available	in	Appendix	7.	

	

2. Comparison	 of	 keratin	 expression	 between	 normal,	 mid-sigmoid	 and	

contralateral	 sites	 was	 performed	 using	 confidence	 intervals	 and	

unpaired	t	test.	A	p	value	of	<0.01	was	considered	significant.	
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7.4	Results	

7.4.1	Optimum	antigen	retrieval	method		

	
Sodium	citrate	and	proteinase	K	were	found	to	be	suboptimal	in	comparison	to	

Tris	EDTA	for	antigen	retrieval	(Figure	49).		

	

	

	
Figure	49.	Immunohisochemistry	slides	for	optimum	retrieval	method	

A	 selection	 of	 slides	 showing	 IHC	 using	 sodium	 citrate	 (SC)	 and	 proteinase	 K	 (PK)	 and	 K18	

antibody	 used	 at	 optimum	 dilution	 of	 1:2000	 and	 K19	 antibody	 used	 at	 optimum	 dilution	 of	

1:1500.	In	comparison	to	figures	50	and	51	poor	staining	of	the	crypts	is	indicated	in	the	figure	

above	signifying	suboptimum	antigen	retrieval	using	sodium	citrate	and	proteinase	K.	

	
	
	
	
	
	
	
	
	
	

SC#K18#1:2000# PK#K18#1:2000#

SC#K19##1:1500# PK#K19#1:1500#
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7.4	Results	

7.4.2	Optimum	dilutions	of	K18	antibody	for	staining	

	

Optimum	 staining	 was	 found	 at	 1:2000	 dilution	 of	 primary	 K18	 antibody	

following	 antigen	 retrieval	 with	 Tris	 EDTA.	 Stronger	 dilutions	 (1:1000	 and	

1:1500)	 resulted	 in	 indiscriminate	heavy	 staining	of	 all	 cells	within	 the	 crypts.	

Weaker	 dilutions	 revealed	 patching	 staining	 of	 cells,	 which	 was	 not	

representative	of	the	staining	characteristics	of	the	entire	crypt.	

	
	

Figure	50.	Immunohistochemistry	slides	for	optimum	K18	dilution	

K18	stained	IHC	slides	taken	at	x	20	magnification.	Antigen	retrieval	was	performed	using	Tris	

EDTA.	 	 Dilutions	 1:1000,	 1:1500,	 1:2000	 and	 1:2500	 as	 indicted	 on	 the	 figure.	 Slides	 at	 K18	

dilution	1:1000	were	too	heavily	stained.	Slides	at	1:1500	were	slightly	better	but	dark	staining	

was	 seen	 at	 the	 mucosal	 border.	 The	 optimum	 staining	 was	 seen	 at	 dilution	 1:2000;	 further	

dilution	of	K18	to	1:2500	revealed	deficient	staining	of	crypts.	

	

	
	

1:500%

1:1500%

1:2000% 1:2500%

1:1000%
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7.4	Results	

7.4.3	Optimum	dilutions	of	K19	antibody	for	staining	

	
Optimum	 staining	 was	 found	 at	 1:1500	 dilution	 of	 primary	 K19	 antibody	

following	 antigen	 retrieval	 with	 Tris	 EDTA.	 Stronger	 dilutions	 (1:500	 and	

1:1000)	 resulted	 in	 indiscriminate	heavy	 staining	of	 all	 cells	within	 the	 crypts.	

Weaker	dilutions	revealed	insufficient	staining	of	cells,	which	would	not	be	able	

to	demonstrate	characteristics	of	the	crypt.	

	
	

	
	

Figure	51.	Immunohistochemistry	slides	for	optimum	K19	dilution	

K19	stained	IHC	slides	taken	at	x	20	magnification.	Dilutions	1:500,	1:1000,	1:1500	and	1:2000	as	

indicted	on	the	figure.	Slides	at	K19	dilution	1:500	showed	uniform	strong	staining	of	the	crypts.	

Slides	at	1:1000	were	slightly	better	but	dark	staining	was	evident	in	some	cells	of	the	crypt.	The	

optimum	 staining	 was	 seen	 at	 dilution	 1:1500,	 further	 dilution	 of	 K19	 to	 1:2000	 revealed	

deficient	staining	of	crypts.	

	
	
	

1:500% 1:1000%

1:1500% 1:2000%
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7.4	Results	

7.4.4	Keratin	18	and	19	expression	in	relation	to	butyrate	
	
Normal	crypts	

Figure	52	illustrate	normal	crypts	and	cells	that	were	considered	to	have	strong	

or	 weak	 staining	 in	 different	 areas	 of	 the	 crypt.	 There	 were	 no	 significant	

correlations	between	K18	or	K19	expression	in	relation	to	butyrate	level	in	any	

of	the	histologically	normal	(CO,	MS	or	N)	samples	(Tables	20	and	21).	

	

	
Figure	52.	Normal	crypt	samples	demonstrating	the	contrast	between	strong	and	weak	K18	

and	K19	

Staining	at	extent,	base	and	surface	indicated	by	grey	arrows.	

	

	

Extent& Base& Surface&

K18$

K19$

Weak&

Strong&

Strong&

Weak&



	 182	

7.4	Results	

Keratin	18	and	19	expression	in	relation	to	butyrate	

Adenoma	samples	

Figure	53	illustrate	adenomatous	crypts	with	cells	that	were	considered	to	have	

strong	 or	 weak	 staining	 in	 different	 areas	 of	 the	 crypt.	 	 Although	 histological	

appearance	 is	not	directly	 investigated	 in	 this	study	of	note	 is	 the	 loss	of	crypt	

architecture	 in	 comparison	 to	 slides	 in	 Figure	 52.	 There	 were	 no	 significant	

correlations	 between	 K18	 or	 K19	 in	 relation	 to	 butyrate	 level	 in	 adenoma	

samples	(Tables	20	and	21).	

	

	
Figure	53.	Adenoma	samples	demonstrating	the	contrast	between	strong	and	weak	K18	
and	K19		

Staining	at	extent,	base	and	surface	indicated	by	grey	arrows.

Extent& Base& Surface&
K18&&

K19%

Weak&

Strong&

Weak&

Strong&
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7.4	Results	

Keratin	18	expression	in	relation	to	butyrate	

	
There	 were	 no	 significant	 associations	 (all	 p	 values	 >	 0.01)	 between	 butyrate	

level	and	K18	expression.	

	

Keratin	18	
Table	20.	Spearman’s	rank	–	correlation	between	K18	expression	and	butyrate	level	

Biopsy	site	 Crypt	site	 Spearman’s	

rho	

Correlation	

strength*	

P	value	 R2	

Adenoma		 Surface	 -0.044	 Weak	 0.852	 0.012	

	 Base	 0.130	 Weak	 0.585	 0.002	

	 Extent	 0.070	 Weak	 0.769	 0.006	

Contralateral		 Surface	 0.022	 Weak	 0.927	 0.004	

	 Base	 -0.193	 Weak	 0.416	 0.013	

	 Extent	 -0.159	 Weak	 0.503	 0.002	

Mid-sigmoid		 Surface	 -0.347	 Moderate	 0.146	 0.104	

	 Base	 -0.308	 Moderate	 0.200	 0.107	

	 Extent	 -0.187	 Weak	 0.444	 0.020	

Normal		 Surface	 0.102	 Weak	 0.577	 0.001	

	 Base	 -0.090	 Weak	 0.624	 0.007	

	 Extent	 -0.040	 Weak	 0.828	 0.001	

*Correlation	 strength	 derived	 from	 Cohen	 J	 (1998)	 Statistical	 Power	 Analysis	 for	 Behavioural	

Sciences.	 Lawrence	 Erlbaum.	 R2	 is	 the	 determination	 of	 how	 well	 the	 regression	 line	

approximates	the	real	data	points.	

There	 were	 no	 significant	 associations	 (all	 p	 values	 >	 0.01)	 between	 butyrate	 level	 and	 K18	

expression.	

See	appendix	7	for	the	graphs	from	which	the	data	in	table	20	are	derived.	
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7.4	Results	

Keratin	19	expression	in	relation	to	butyrate	

	
No	association	was	found	between	K19	expression	and	butyrate	level.		
	

Keratin	19	
Table	21.	Spearman’s	rank	–	correlation	between	K19	expression	and	butyrate	level	

Biopsy	site	 Crypt	site	 Spearman’s	

rho	

Correlation	

strength*	

P	value	 R2	

Adenoma		 Surface	 0.287	 moderate	 0.219	 0.077	

	 Base	 0.321	 moderate	 0.168	 0.059	

	 Extent	 0.237	 weak	 0.314	 0.023	

Contralateral		 Surface	 -0.279	 weak	 0.234	 0.113	

	 Base	 0.095	 weak	 0.692	 0.009	

	 Extent	 0.128	 weak	 0.591	 0.002	

Mid-sigmoid		 Surface	 0.015	 weak	 0.948	 0.001	

	 Base	 0.107	 weak	 0.673	 0.001	

	 Extent	 -0.088	 weak	 0.728	 0.042	

Normal		 Surface	 0.062	 weak	 0.737	 <0.001	

	 Base	 0.016	 weak	 0.929	 0.050	

	 Extent	 0.090	 weak	 0.625	 0.020	

*Correlation	 strength	 derived	 from	 Cohen	 J	 (1998)	 Statistical	 Power	 Analysis	 for	 Behavioural	

Sciences.	 Lawrence	 Erlbaum.	 R2	 is	 the	 determination	 of	 how	 well	 the	 regression	 line	

approximates	 the	 real	 data	 points.	 There	were	no	 significant	 associations	 (all	 p	 values	>	0.01)	

between	butyrate	level	and	K19	expression.	

See	appendix	7	for	the	graphs	from	which	the	data	in	table	21	are	derived.	
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7.4	Results	

7.4.5	Comparison	of	keratin	18	expression	between	sites	
	
Surface	

K18	 expression	 at	 the	 surface	 of	 the	 crypt	 was	 seen	 to	 be	 lower	 in	 adenoma	

samples	 in	 comparison	 to	 the	macroscopically	normal	 samples	 (Figure	54A).	 If	

the	samples	from	pathological	colons	were	considered	separately	a	progressive	

decrease	in	K18	expression	can	be	seen	with	adenoma	proximity.	The	decrease	

in	K18	expression	with	adenoma	proximity	contrasts	with	iTRAQ	findings.	Only	

surface	staining	analyses	 for	adenoma	samples	were	performed.	Analysis	using	

base	expression	and	extent	of	expression	in	adenoma	samples	was	not	possible	

since	 tissue	 architecture	 in	 the	majority	 of	 adenoma	 samples	was	 lost	 (Figure	

53).		

	

Base	

K18	expression	at	the	base	of	crypts	from	tissue	of	pathological	colons	(CO	and	

MS)	 was	 significantly	 lower	 than	 tissue	 from	 disease	 free	 colons	 (N)	 (Figure	

54B).	This	contrast	with	the	results	 from	iTRAQ	where	normal	tissue	exhibited	

lower	K18	levels.	No	significant	difference	between	the	CO	and	MS	sample	could	

be	demonstrated	to	suggest	a	progressive	field	change	with	adenoma	proximity.		

	

Extent	

K18	 extent	 expression	 from	 tissue	 of	 pathological	 colons	 (CO	 and	 MS)	 was	

significantly	lower	than	tissue	from	disease	free	colons	(N)	(Figure	54C).	Again,	

no	 significant	 difference	 could	 be	 demonstrated	 for	 extent	 of	 crypt	 staining	

between	 CO	 and	 MS	 to	 demonstrate	 a	 progressive	 field	 change	 for	 adenoma	

proximity.	These	results	also	contrast	with	iTRAQ	findings	where	normal	tissue	

exhibited	lower	K18	levels.	
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7.4	Results	

7.4.6	Comparison	of	keratin	19	expression	between	sites	
	
Surface	

At	the	surface,	a	progressive	decrease	in	K19	expression	was	seen	with	adenoma	

proximity,	 if	 the	 pathological	 samples	 are	 considered	 independently	 (Figure	

54D).	This	result	is	in	accordance	to	iTRAQ	findings	from	the	low	butyrate	group	

only.	 Only	 surface	 staining	 in	 adenoma	 samples	 were	 possible	 due	 to	 loss	 of	

crypt	architecture.		

	
Base	

At	 the	 crypt	 base,	 a	 progressive	 decrease	 in	 K19	 expression	 was	 seen	 with	

distance	 from	 the	 adenoma	 (Figure	 54E).	 Significant	 differences	 between	 the	

field	(CO)	and	mid-sigmoid	and	normal	tissue	were	identified,	this	is	in	line	with	

iTRAQ	results	from	the	high	butyrate	group,	however,	the	iTRAQ	findings	were	

non	significant.	

	

Extent	

The	extent	of	expression	mirrors	the	expression	pattern	at	the	base	where	K19	

expression	 decreases	 with	 distance	 away	 from	 the	 adenoma	 (Figure	 54F).		

Significant	 K19	 expression	 differences	 were	 seen	 between	 the	 field	 (CO)	 and	

mid-sigmoid	and	normal.	This	relationship	was	also	seen	in	iTRAQ	results	of	the	

high	 butyrate	 group	 as	K19	 levels	 decreased	with	 distance	 from	 the	 adenoma,	

however	 the	 iTRAQ	 results	 were	 non	 significant.
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7.4	Results	

Comparison	of	K18	and	K19	expression	between	sites	

	

	
	

Figure	54.	Comparison	of	mean	K18	and	K19	staining	scores	across	biopsy	sites	

Figures	 A-C	 Comparison	 of	 mean	 K18	 expression	 scores	 at	 the	 surface,	 base	 and	 extent	
between	biopsy	sites	using	unpaired	t	test.	Values	are	expressed	as	mean	score	±	standard	error.		

At	the	surface	AD	=	1.84,	CO	=	2.04,	MS	=	2.25,	N	=	2.12.	

At	the	base	CO	=	1.36,	MS	=	1.38,	N	=	1.54.	

In	crypt	extent	CO	=	1.63,	MS	=	1.57,	N	=	1.71.	

Figures	 D-F	 Comparison	 of	 mean	 K19	 expression	 scores	 at	 the	 surface,	 base	 and	 extent	

between	biopsy	sites	using	unpaired	t	test.	

At	the	surface	AD	=	2.33,	CO	=	2.50,	MS	=	2.52,	N	=	2.29.	

At	the	base	CO	=	1.47,	MS	=	1.41,	N	=	1.37.	

In	crypt	extent	CO	=	1.81,	MS	=	1.76,	N	=	1.61.	

*		=	significant	difference	P	value	=	<0.01.		
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7.4	Results	

Comparison	of	total	keratin	18	expression	between	sites	

The	 values	 for	 surface,	 base	 and	 extent	 were	 added	 together	 to	 investigate	 if	

total	 K18	 expression	 level	 within	 a	 crypt	 reveals	 a	 relationship	 between	 K18	

expression	and	adenoma	proximity.	A	relationship	between	K18	expression	and	

adenoma	proximity	was	not	demonstrated	to	support	field	cancerization.	A	non-

significant	 increase	 in	K18	expression	was	noted	with	 increasing	distance	from	

adenoma	(Figure	55).	This	is	contrary	to	the	iTRAQ	findings	where	higher	levels	

of	K18	were	found	with	proximity	to	adenoma.		

	

	
	
Figure	55.	Total	K18	expression	at	biopsy	sites		

Total	 K18	 expression	 at	 biopsy	 sites	 contralateral	 (CO),	mid-sigmoid	 (MS)	 and	 normal	 (N)	 for	

surface,	base	and	extent	of	crypt.	Values	are	expressed	as	mean	±	standard	error.	 	Additions	of	

the	 surface,	base	and	extent	values	 reveal	 the	 total	K18	expression	difference	between	 sample	

sites	were	not	significant	(P	=	0.87	between	CO	and	MS;	P	=	0.87	between	MS	and	N	and	P=	0.68	

between	 CO	 and	 N).	 Suggesting	 distribution	 of	 K18	 may	 be	 more	 important	 in	 identifying	

differences	between	sites.		
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7.4	Results	

Comparison	of	total	keratin	19	expression	between	sites	

	

The	 values	 for	 surface,	 base	 and	 extent	 were	 added	 together	 to	 investigate	

whether	total	K19	expression	within	a	crypt	reveals	a	relationship	between	K19	

and	adenoma	proximity.	Total	K19	expression	appears	to	decrease	with	distance	

away	from	adenoma	suggesting	a	field	of	lower	K19	around	the	adenoma	(Figure	

56).	 This	 association	 varies	 according	 to	 butyrate	 level:	 in	 a	 high	 butyrate	

environment	 iTRAQ	 demonstrated	 a	 higher	 level	 of	 K19	 with	 proximity	 to	

adenoma	(contrary	to	IHC	results)	and	in	low	butyrate	samples	K19	expression	

levels	decrease	with	proximity	to	the	adenoma	(supported	by	IHC	results).		

	

	

	
Figure	56.	Total	K19	expression	at	biopsy	sites	

Total	 K19	 expression	 at	 biopsy	 sites	 contralateral	 (CO),	mid-sigmoid	 (MS)	 and	 normal	 (N)	 for	

surface,	base	and	extent	of	crypt.	Values	are	expressed	as	mean	±	standard	error.		Addition	of	the	

surface,	base	and	extent	values	indicate	that	K19	expression	increases	with	adenoma	proximity.	

Comparisons	 between	 the	 sites	 using	unpaired	 t	 test	 did	not	 reveal	 any	 significant	 differences	

(P=0.91	between	CO	and	MS;	P=0.76	between	MS	and	N	and	P=0.70	between	CO	and	N).	
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7.4	Results	

7.4.7	IHC	results	compared	with	iTRAQ	results	

 
iTRAQ	fold	change	and	mean	IHC	scores	according	to	high	and	low	butyrate	for	

K18	and	K19	do	not	seem	to	follow	the	same	trend.	

IHC	 and	 iTRAQ	 results	 for	K18	 again	demonstrate	 samples	 from	high	butyrate	

environments	have	greater	K18	fold	changes	and	greater	K18	expression	levels	

than	samples	from	low	butyrate	environments	(Figure	57).	

	
Figure	57.	K18	iTRAQ	results	compared	with	IHC	scores		

iTRAQ	fold	change	values	have	been	multiplied	by	a	factor	of	10	so	that	the	graphs	can	be	represented	on	

the	same	figure.	

A	trend	could	not	be	demonstrated	in	K19	samples.	iTRAQ	fold	changes	and	IHC	

scores	seemed	to	behave	in	a	contrasting	manner	(Figure	58).	

	
Figure	58.	K19	iTRAQ	results	compared	with	IHC	scores	

iTRAQ	fold	change	values	have	been	multiplied	by	a	factor	of	10	so	that	the	graphs	can	be	represented	on	

the	same	figure.	
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7.4	Results	

7.4.8	Summary	–	Comparison	of	K18	and	K19	expression	between	sites	
	
	
Keratin	18	
	

• Significant	 expression	 differences	 were	 only	 seen	 at	 the	 surface	 of	 the	

crypt,	where	K18	 increased	with	 distance	 from	 the	 adenoma.	 This	 is	 in	

contrast	to	the	results	from	iTRAQ.	

• There	were	no	significant	differences	between	expression	of	K18	between	

sites	in	either	the	base	or	the	extent	of	the	crypt.	

• A	non-significant	trend	of	increased	total	K18	expression	with	increasing	

distance	from	the	adenoma	was	seen.		The	findings	are	opposite	to	iTRAQ	

results.	

	

	

Keratin	19	

• K19	expression	decreased	with	adenoma	proximity	at	 the	surface	of	 the	

crypt,	this	correlation	was	significant	and	was	consistent	with	the	iTRAQ	

findings	in	a	low	butyrate	environment.	

• Total	K19	expression	increased	with	adenoma	proximity,	this	association	

was	 also	 demonstrated	 in	 the	 base	 and	 extent	 of	 the	 crypt.	 	 This	

correlation	was	 significant	 and	 also	 consistent	with	 iTRAQ	 findings	 in	 a	

high	butyrate	environment.		
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7.5	Discussion	

7.5.1	Keratin	18	

Influence	of	butyrate	
	
Significant	 trends	 between	 K18	 expression	 and	 butyrate	 levels	 could	 not	 be	

demonstrated.	 Results	 from	 IHC	 studies	 could	 not	 validate	 the	 iTRAQ	 findings	

where	 samples	 from	 high	 butyrate	 environments	 were	 found	 to	 have	 higher	

levels	 of	K18.	 It	 is	 likely	 that	 the	 findings	 from	 immunohistochemistry	 are	not	

representative	of	 the	 true	K18	 level	pattern.	The	reasons	 for	 this	assertion	are	

three	 fold:	 the	 R2	 coefficient	 for	 pathological	 samples	 and	 normal	 samples	

indicate	the	linear	correlation	only	pass	through	2%	and	0.1%	(respectively)	of	

the	 total	data	points;	both	Spearman’s	 coefficients	were	weak	correlations	and	

furthermore,	 did	 not	 reach	 statistical	 significance.	 The	 technique	 of	 IHC	 itself	

also	 has	 inherent	 weaknesses	 such	 as	 difficulties	 in	 standardising	 antigen	

retrieval	 will	 result	 in	 variable	 staining	 intensities.	 Quantification	 of	 staining	

intensities	is	both	difficult	and	subjective	and	therefore	‘expression’	of	K18	and	

K19	should	be	interpreted	with	caution.	The	main	use	of	IHC	is	for	localisation	of	

proteins	 and	 is	 relatively	 weak	 at	 measuring	 keratin	 expression	 levels.	 As	 a	

result,	there	are	many	methodological	and	interpretation	limitations	in	this	part	

of	the	study.		

Commercially	 available	 equipment	 could	 be	 used	 in	 future	 studies	 in	 order	 to	

standardise	 antigen	 retrieval,	 especially	 when	 large	 numbers	 of	 slides	 are	

processed.	 Although,	 positive	 and	 negative	 controls	 were	 used	 during	 the	

experiments	for	optimum	staining	and	retrieval	they	were	not	used	during	when	

staining	for	K18	or	K19.	This	was	an	oversight	and	 limitation	to	this	study	and	

should	 not	 be	 repeated	 for	 future	 experiments.	 Although	 two	 independent	

observers	scored	the	slide	series,	 the	 final	score	 is	still	open	to	subjective	bias.	

For	future	studies,	perhaps	an	automated	system	for	scoring	could	be	employed,	

in	addition	to	the	observers,	to	ensure	reproducibility.		
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Influence	of	biopsy	site	
	

Comparison	 of	 K18	 expression	 between	 biopsy	 sites	 was	 inconsistent	 with	

iTRAQ	results.	K18	expression	at	cryptal	surface	of	adenoma	samples	was	found	

to	 be	 lower	 than	 other	 pathological	 sites	 and	 normal	 tissue,	 the	 opposite	 of	

iTRAQ	findings.	The	method	for	K18	expression	quantification	can	be	criticised	

since	 cellular	 atypia	 for	 adenoma	 samples	 was	 not	 taken	 into	 consideration	

during	 scoring.	 The	 IHC	 scoring	 was	 carried	 out	 by	 two	 non	 pathologically	

trained	 scorers.	 Other	 authors	 have	 found	 differing	 scores	 for	 crypts	 with	

different	 degrees	 of	 atypia	 (Fujisaki	 and	 Shimoda,	 1993).	 If	 samples	 were	

classified	 into	 different	 degrees	 of	 atypia	 the	 results	 may	 be	 more	 consistent	

with	 the	 iTRAQ	 findings.	 The	 results	 from	 this	 study	 confirm	 the	 findings	 of	

Fujisaki	and	Shimoda	(1993),	where	distributions	for	K18	were	similar	between	

cancer,	adenoma	and	normal	samples.	

	

When	K18	expression	 levels	 for	surface,	base	and	extent	were	plotted	together	

(Figure	55)	 total	K18	expression	 levels	between	biopsy	sites	were	very	similar	

and	 not	 reflective	 of	 iTRAQ	 findings,	 where	 adenoma	 samples	 demonstrated	

greater	expression	than	normal	samples.	These	findings	suggest	the	distribution	

of	 K18	may	 be	more	 important	 in	 defining	 the	 pathology	 of	 different	 samples	

than	total	expression	levels.	The	surface,	base	and	extent	expression	is	similar	in	

the	 adenoma	 group	 but	 as	 proximity	 from	 adenoma	 increases	 the	 surface	

expression	 increases	 with	 a	 reciprocal	 decrease	 in	 extent	 expression.	 It	 is	

possible,	 that	 during	 the	 transformation	 from	 normal	 mucosa	 to	 adenoma	

surface	K18	is	redistributed	to	the	rest	of	the	crypt	(base	and	extent).	This	may	

represent	an	effort	to	stabilise	the	whole	crypt	prior	to	malignant	transformation	

or	 characterise	 malignancy	 once	 transformation	 has	 taken	 place.	 The	 former	

hypothesis	 is	 more	 likely,	 since	 other	 studies	 have	 identified	 less	 staining	 for	

other	keratins	in	deep	cells	of	cancer	tissue	(Khan	et	al.,	2011).	It	is	possible	the	

process	of	migration	can	alter	keratin	properties	and	as	a	result	lower	molecular	

weight	forms	of	K18	were	identified	on	western	blot	(Figure	41).		
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Results	 from	 this	 study	 are	 comparable	 to	 a	 similar	 study	 where	 adenoma,	

contralateral	 and	mid-sigmoid	 samples	were	 stained	 for	 keratin	 8.	 Khan	 et	 al.,	

(2011)	also	found	decreased	surface	and	base	expression	of	K8	with	proximity	to	

the	adenoma	(Khan	et	al.,	2011).		

	

7.5.2	Keratin	19	

Influence	of	butyrate	

	
A	significant	association	between	K19	expression	and	butyrate	 levels	could	not	

be	 demonstrated.	 According	 to	 iTRAQ	 findings	 (Table	 10)	 samples	 from	 high	

butyrate	 environments	 were	 found	 to	 have	 higher	 levels	 of	 K19,	 this	 was	 the	

trend	 seen	 in	 IHC	but	 the	 results	 should	be	 interpreted	with	 caution	 since	 the	

correlation	was	weak	and	did	not	reach	statistical	significance.	The	influence	of	

butyrate	on	normal	samples	attained	a	strong	correlation	but	unfortunately,	did	

not	reach	significance.		

	

Influence	of	biopsy	site	
	
Surface	expression	of	K19	followed	the	pattern	of	K18	where	adenoma	samples	

exhibited	 lower	 K19	 expression.	 A	 progressive	 field	 change	 was	 apparent	 as	

surface	K19	was	 lowest	at	adenoma	sites	and	 increased	 from	adenoma	to	 field	

and	distant	tissue.	With	respect	to	base	and	extent,	the	opposite	trend	was	seen	

but	a	progressive	 field	effect	was	demonstrated	as	K19	expression	at	base	and	

extent	decreased	with	distance	from	the	pathological	tissue,	this	equates	to	the	

trend	 seen	 in	 iTRAQ	 for	 the	 high	 butyrate	 group.	 The	 fluctuation	 of	 keratin	

distribution	 demonstrated	 in	 Figure	 56	 resembles	 that	 seen	 with	 K18	 and	

reiterates	 the	 potential	 impact	 of	 keratin	 distribution	 on	 crypt	 pathology.	 This	

pattern	of	 distribution	 could	 either	 reflect	 a	 resistance	 to	malignant	 change	or	

indicate	 the	process	 of	malignant	 change	 forces	K18	and	K19	migration	 to	 the	

base	and	general	extent	of	the	crypt.		
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These	 results	mimic	 some	of	 the	K19	 fold	 changes	 revealed	 in	 iTRAQ;	 all	 high	

butyrate	pathological	 samples	 (AD,	CO	and	MS)	were	 found	 to	have	 lower	 fold	

changes	of	K19	when	compared	to	normal.		

	

Keratin	18	and	keratin	19	appear	 to	behave	differently	as	evidenced	by	 iTRAQ	

and	 IHC	 findings.	 It	 is	 possible	 that	 different	 keratins	 are	 affected	 in	 different	

stages	of	adenoma-carcinomagenesis.	A	previous	study	has	shown	decreased	K8	

expression	 in	adenoma	and	 the	 field	around	 it	but	when	 tissue	has	progressed	

into	cancer	K8	expression	increases	in	the	cancer	itself	and	field	around	(Khan	et	

al.,	2011).	It	could	be	that	K19	behaves	in	a	similar	manner	to	K8	but	is	an	earlier	

marker	 for	 carcinogenesis;	K19	expression	begins	 to	 fall	 before	progression	 to	

cancer.	 There	 is	 evidence	 to	 show	 decreased	 K19	 expression	 is	 related	 to	

increased	cell	proliferation	 in	colonic	adenomas	and	carcinomas	(Stammberger	

and	 Baczako,	 1999).	 The	 mechanism	 for	 progression	 from	 adenoma	 to	

carcinoma	could	involve	an	initial	decrease	in	K19	expression	to	allow	increased	

cellular	proliferation	necessary	for	carcinoma	growth.		

	

Results	 from	 iTRAQ	were	observed	 to	vary	greatly	 to	 IHC	 results.	This	may	be	

explained	as	keratins	from	the	insoluble	part	of	the	proteome	were	investigated	

using	iTRAQ	but	keratins	in	the	whole	cell	and	crypt	were	investigate	using	IHC.	

As	 discussed	 in	 chapter	 6,	 it	 is	 possible	 that	 at	 different	 stages	 of	 adenoma-

carcinogenesis	keratins	vary	in	solubility	and	are	their	intracellular	distribution	

is	altered.		

	

The	 sample	 set	 used	 for	 IHC	was	much	 larger	 in	 comparison	 to	 that	 used	 for	

iTRAQ,	however	the	results	from	IHC	are	open	to	observer	bias,	whereas	iTRAQ	

quantifications	are	more	precise.		Efforts	were	made	to	reduce	observer	bias	by	

employing	 a	 second	 scorer.	 A	 further	 criticism	 is	 that	 butyrate	 levels	 were	

determined	via	faecal	sampling	at	one	time	point	and	may	not	be	representative	

of	the	habitual	butyrate	environment	from	which	the	biopsies	were	obtained.	
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7.6	Summary	
	

Keratin	18	

	

• There	 was	 no	 significant	 trend	 between	 K18	 expression	 and	 butyrate	

level	-	iTRAQ	results	could	not	be	validated.	

	

• Differences	 in	 total	 K18	 expression	 between	 sample	 sites	 were	 not	

significant	–	iTRAQ	results	could	not	be	validated.	

	

• Significant	 differences	 between	 surface	 expression	were	 found	 between	

pathological	 sites	 and	 normal	 suggesting	 crypt	 distribution	 of	 K18	 is	 a	

marker	of	pathology.		

	

Keratin	19	

	

• A	positive	correlation	between	K19	and	butyrate	level	was	identified	but	

this	was	not	significant	–	iTRAQ	results	could	not	be	validated.	

	

• Differences	 in	 total	 K19	 expression	 between	 sample	 sites	 were	 not	

significant	–	iTRAQ	results	could	not	be	validated.	

	

• Significant	 differences	 between	 surface	 expression	were	 found	 between	

adenoma	 and	 normal	 sites	 suggesting	 crypt	 distribution	 of	 K19	 is	 a	

marker	of	pathology.		
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Chapter	8	Summary	
8	Summary	
	
Field	Effects	

Results	 from	 the	 adenoma	 recurrence	data	 suggest	 field	 effects	may	 exist.	 The	

absolute	 figures	 indicate	 more	 metachronous	 adenomas	 occur	 proximal	 to	 an	

index	 adenoma.	 Sub-analyses	 indicate	 up	 to	 73%	 of	 metachronous	 adenomas	

occur	within	two	segments	of	the	removed	index	adenoma.	This	would	support	

the	theory	of	a	predisposed	field	from	which	the	index	adenoma	arose	and	which	

remains	 following	 polypectomy,	 influencing	 the	 development	 of	 further	

adenomas.	 Further	 literature	 to	 support	 this	 comes	 from	 clonality	 studies	

(Novelli	et	al.,	1996,	Merritt	et	al.,	1997).		Formation	of	polyclonal	adenomas	may	

be	due	to	interactions	with	neighbouring	crypts	(Thirlwell	et	al.,	2010).	If	this	is	

indeed	the	case,	the	altered	stromal	field	around	neighbouring	crypts	would	be	

left	 in	 situ	 following	 removal	 of	 an	 adenoma	 leaving	 a	 predisposed	 cancerized	

field.	 This	 might	 explain	 why	 metachronous	 adenomas	 continue	 to	 appear	 in	

similar	areas	to	which	an	index	adenoma	has	been	removed.	 	However,	 it	must	

taken	 into	 consideration	 that	 this	 observation	 could	 be	 due	 to	 incomplete	

resection	or	an	initially	missed	lesion.	

One	 expectation	 is	 that	 the	 characteristics	 of	 a	 field	 should	 bear	 more	

resemblance	to	adenoma	tissue	than	normal	tissue	of	pathology	free	colons.	This	

expectation	was	fulfilled	as	iTRAQ	demonstrated	K8	and	K18	levels	to	be	higher	

in	 adenoma,	 contralateral	 and	 mid-sigmoid	 samples	 when	 compared	 with	

normal	tissue.	K8	and	K18	were	found	to	increase	progressively	with	proximity	

to	 the	adenoma.	There	are	numerous	studies	 investigating	differences	between	

cancer,	 field	 and	 normal	 tissue	 such	 as	 methylation,	 CEA	 and	 Bcl-XL	 anti-

apoptotic	protein	expression	(Ahuja	et	al.,	1998,	Jothy	et	al.,	1996,	Badvie	et	al.,	

2006),	 theses	 studies	 demonstrate	 quantitative	 changes	 between	 normal	 and	

cancer	 tissue	 to	 increase	 progressively	 with	 proximity	 to	 cancer	 tissue,	

indicating	 a	 field	 of	 characteristically	 similar	 tissue	 around	 cancers.	 These	

findings,	 together	with	 results	 from	my	 iTRAQ	data,	not	only	demonstrate	 that	

fields	 around	 cancer	 and	 adenomas	 exist	 but	 also	 that	 fields	 display	 similar	

properties	 to	neoplastic	 tissue	 and	 these	properties	 become	more	pronounced	
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with	 proximity	 to	 the	 pathological	 tissue.	 	 	 Western	 blot	 validated	 iTRAQ	

findings,	by	demonstrating	a	progressive	increase	in	densitometry	of	K8	and	K18	

with	 proximity	 to	 adenoma	 samples.	 However,	 IHC	 validation	 of	 K18	 and	K19	

only	partially	 supports	 the	 iTRAQ	 findings.	The	value	of	 IHC	over	 iTRAQ	 is	 the	

ability	 to	characterize	keratin	distribution	within	a	crypt	but	unlike	 iTRAQ	it	 is	

subject	 to	 observer	 bias,	 especially	 when	 variable	 cryptal	 architecture	 is	

involved.	 Nevertheless,	 results	 from	 this	 study	 suggest	 distribution	 of	 keratin	

within	the	crypt	is	important	and	may	be	related	to	keratin	solubility.	This	study	

of	 K18	 and	 K19	 and	 a	 study	 of	 K8	 by	 Khan	 et	 al.,	 2011	 found	 associations	

between	surface	expression	of	keratins	and	proximity	to	lesions	but	not	in	extent	

or	base	 (Khan	et	 al.,	 2011).	Khan	et	 al.,	 (2011)	 found	 increased	 staining	at	 the	

surface	of	K8	during	progression	towards	cancer	tissue	(Khan	et	al.,	2011).	This	

study	demonstrated	an	inverse	relationship;	in	adenoma	tissue	surface	staining	

decreased	as	neoplastic	tissue	progressed	towards	the	adenoma.	There	are	some	

explanations	for	these	contrasting	observations:	the	distributions	of	keratins	 in	

adenoma	 and	 cancer	 tissue	 are	 dissimilar	 as	 demonstrated	 by	 Fujisaki	 and	

Shimoda	 (1993)(Fujisaki	 and	 Shimoda,	 1993).	One	 explanation	 for	 this	 is	 that,	

the	 process	 of	 carcinogenesis	 drives	 keratins	 toward	 the	 surface	 of	 the	 crypt.	

Alternatively,	a	mechanism	to	resist	transition	from	adenoma	to	carcinoma	may	

involve	redistributing	keratins	away	from	the	surface.	If	keratins	are	reallocated	

to	 the	base,	 adenomas	may	benefit	 from	keratins	 stabilising	 colonocytes	at	 the	

base,	and	following	the	‘bottom	up’	theory	for	histogenesis	of	adenomas	(Preston	

et	 al.,	 2003),	 this	 would	 confer	 the	 most	 advantage.	 Further	 study	 of	 the	

expression	 of	 K18	 and	 K19	 variations	 within	 the	 crypt	 in	 cancer	 tissue	 in	

comparison	to	the	adenoma	findings	from	this	study	might	allude	to	the	role	of	

keratins	 in	 adenoma-carcinogenesis.	 Samples	 were	 scored	 in	 relationship	 to	

other	samples	in	the	study:	for	this	study	it	was	adenoma	and	field	tissue	and	for	

Khan	et	al.	2011	 it	was	cancer	and	 field	 tissue.	 In	order	 to	compare	accurately	

the	 correlation	 between	 cancer,	 adenoma,	 field	 and	 pathology	 free	 tissue,	 IHC	

should	 be	 performed	 together	 and	 staining	 intensities	 should	 be	 analysed	

simultaneously.	

An	encouraging	 finding	 is	 that	all	 the	 investigation	modalities	(iTRAQ,	Western	

blot	 and	 IHC)	 show	 the	paired	keratins	K8	and	K18	behaving	 in	 a	 coordinated	
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manner.	 	K19	was	observed	to	behave	differently	to	K8	and	K18;	generally	K19	

expression	 in	 this	 study	 has	 decreased	with	 proximity	 to	 adenomas.	 	 There	 is	

evidence	to	show	that	K19	may	be	involved	in	an	alternate	pathological	process	

(Stammberger	and	Baczako,	1999).	Stammberger	and	Baczako	 found	 increased	

K19	 to	 be	 associated	with	 a	 decrease	 in	 proliferative	 activity	 and	 greater	 K19	

immunoreactivity	 in	 adenoma	 than	 carcinomas	 of	 the	 colon,	 suggesting	

pathology	 free	 tissue	 produces	 a	 greater	 expression	 of	 K19	 than	 neoplastic	

tissue.	

	

	
Figure	59.	Illustration	of	how	keratins	vary	according	to	adenoma	proximity	
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Butyrate	

In	this	study	iTRAQ	demonstrated	high	butyrate	environments	were	associated	

with	 increased	 keratin	 (K8,	 18	 and	 19)	 expression	 in	 all	 tissues	 regardless	 of	

pathology.	iTRAQ	findings	for	butyrate	were	appropriately	validated	by	Western	

blot	for	K8	and	K18	and	by	IHC	for	K19.	Butyrate,	a	fermentation	product	of	fibre	

is	 thought	 to	 protect	 against	 colorectal	 cancer	 by	 encouraging	 apoptosis	 of	

cancer	 and	 adenoma	 cells	 (Hague	 et	 al.,	 1995).	 The	 influence	 of	 butyrate	 on	

keratins	 is	 different	 between	 cancer	 and	 benign	 tissue.	 In	 this	 study	 high	

butyrate	 was	 associated	 with	 increased	 K8,	 K18	 and	 K19	 expression	 but	 the	

inverse	association	was	found	in	a	previous	study	by	Khan	et	al.,	(2011)	where	

high	butyrate	exposure	resulted	in	decreased	K8	expression	in	cancer	tissue.	In	

cancer,	 high	 butyrate	 results	 in	 less	 keratin	 and	 also	 structurally	 more	

disorganised	 keratin.	 It	 is	 possible	 that	 butyrate	 impedes	 cancer	 cells	 through	

interference	with	their	cellular	structure.		

	

Since	butyrate,	in	this	study,	was	associated	with	a	universal	increase	in	keratin	

expression	it	is	possible	that	the	anti-carcinogenic	effect	is	influenced,	in	part,	by	

keratins.	 	The	mechanisms	could	be	two	fold:	through	augmentation	of	stability	

or	the	regulatory	function	of	non-malignant	colonocytes.	It	 is	possible	that	high	

butyrate	 exposure	 in	 benign	 tissue	 (adenoma,	 field	 and	 normal)	 increases	

keratins	 to	 protect	 against	 malignant	 change	 but	 once	 malignant	 change	 has	

taken	 place	 the	 protective	 function	 alters	 to	 become	 pro-apoptotic.	 	 The	

‘butyrate	 paradox’	 is	 well	 reported	 in	 the	 literature;	 butyrate	 inhibits	 cell	

proliferation	and	increases	apoptosis	in	cancer	cell	lines	(Comalada	et	al.,	2006)	

but	is	also	the	main	source	of	nutrition	for	normal	colonocytes	(Roediger,	1982).	

The	paradox	is	incompletely	understood	but	the	capacity	of	butyrate	to	regulate	

gene	expression	by	inhibition	of	histone	deacetylases	has	been	proposed	(Gibson	

et	 al.,	 1999).	 The	process	 by	which	 butyrate	 distinguishes	 how	 to	 treat	 cancer	

cells	differently	 is	not	known.	Polley	et	 al.,	 identified	 several	 isoforms	of	K8	 in	

cancer	 tissue	 and	 this	 study	 also	 found	 K8	 of	 different	 molecular	 weights	 in	

adenoma	 samples,	 exposing	 a	 difference	 between	 pathological	 and	 non	

pathological	tissues.	Since	acetylatyion	of	K8	is	butyrate	responsive	(Leech	et	al.,	

2008)	and	 the	various	 isoforms	of	K8	are	differentially	 acetylated	 (Khan	et	 al.,	
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2011),	this	association	could	be	the	mechanism	by	which	butyrate	differentially	

affects	cancer	cells.	Acetylation	of	K8	at	different	sites	(in	different	tissues)	could	

affect	 the	 cells	 predisposition	 to	 become	 more	 stable,	 proliferate	 or	 undergo	

apoptosis.		

	

	An	alternative	mode	in	which	tissue	can	be	selectively	treated	is	due	to	mitosis.	

Cancer	cells	undergo	mitosis	at	an	increased	rate	in	comparison	to	benign	tissue.	

Khan	 et	 al.,	 found	 mitotic	 cells	 have	 a	 fivefold	 increase	 in	 acetylation	 in	

comparison	 to	 a	non-mitotic	 cell	 (Khan	et	 al.,	 2011).	The	 increased	acetylation	

could	 be	 due	 to	 increased	 uptake	 of	 butyrate	 as	 an	 energy	 source	 for	 cell	

division.	However,	there	is	some	evidence	that	during	colorectal	carcinogenesis	

colonocytes	 switch	 from	 aerobic	 to	 anaerobic	 metabolism	 (Jass,	 1985)	 and	

therefore	 become	 less	 dependent	 on	 butyrate	 as	 a	 fuel	 source.	 The	 resulting	

unused	butyrate	could	accumulate	within	the	cell	and	this	could	further	explain	

why	malignant	cells	are	susceptible	to	the	distinguishing	effects	of	butyrate.		

Results	from	the	principal	component	analysis	revealed	clustering	of	high	and	

low	butyrate	samples	independently	suggesting	the	effects	of	butyrate	exposure	

assert	a	stronger	influence	on	the	characteristics	of	tissues	samples	than	the	

location	from	which	the	samples	were	obtained.	

	

	

Post-translational	modifications	

With	 respect	 to	 keratin	 acetylation	 via	 western	 blot,	 analysis	 did	 not	

demonstrate	any	significant	results.	 	Keratin	phosphorylation	was	decreased	in	

adenoma	 samples	 and	 increased	 in	 contralateral	 and	 mid-sigmoid.	 Again	

adenoma	samples	were	found	not	to	behave	like	cancer	samples.	K8	appeared	to	

be	less	phosphorylated		at	serine	23	in	adenoma	samples	but	the	converse	was	

found	 by	 Arentz	 et	 al.,	 (2012)	 where	 K8	 phosphorylation	 	 was	 significantly	

increased	in	tumour	tissue	in	comparison	to	matched	normal.	

Liao	et	al.,	(1995)	found	stress	associated	hyperphosphorylation	of	K8	and	K18	

in	colon	cancer	cells	when	they	were	exposed	to	heat	or	rotavirus	infection	(Liao	

et	al.,	1995).	Liao	et	al.,	 (1995)	and	other	studies	have	demonstrated	 increased	

solubility	of	K8	following	hyperphosphorylation	(Liao	et	al.,	1995)	and	(Omary	et	
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al.,	1998)	The	stress	response	of	cancer	tissue	to	increase	K8	solubility	could	be	

an	effort	 to	 sustain	 the	cell	 through	cellular	 redistribution	of	K8	 to	 the	 soluble	

compartment.	 In	 this	 study,	 the	 insoluble	 part	 of	 the	proteome	was	 examined;	

perhaps	 K8	 from	 the	 adenoma	 sample	 was	 hyperphosphorylated	 and	

redistributed	 into	 the	 soluble	 part	 of	 the	 proteome	 prior	 to	 our	 analysis	 and	

hence	seemingly	lower	phosphorylation	of	K8	when	it	came	to	our	analysis.	It	is	

possible	 that	 adenoma	 tissues	 disperse	 more	 phosphorylated	 keratins	 to	 the	

soluble	 part	 of	 the	 colonocyte,	 so	 as	 to	 defend	 the	 cell	 from	 the	 stress	 of	

carcinogenic	 insult,	 leading	 to	 malignant	 change	 or	 the	 stress	 of	 malignant	

change	itself.		

	

Although	adenoma	samples	in	this	study	were	not	purposely	submitted	to	stress	

we	 consistently	 found	 decreased	 phosphorylation	 in	 comparison	 to	 normal	

tissue.	 	 Perhaps	 the	 carcinogenic	 insult	 initiating	 adenomagenesis	 was	 a	

sufficient	 stressor	 to	 cause	phosphorylation.	When	 the	adenoma	biopsies	were	

sampled	 hyperphosphorylated	 K8	 had	 already	 been	 distributed	 to	 the	 soluble	

part.	 This	 was	 not	 part	 of	 my	 analysis	 but	 the	 stable	 histologically	 normal	

contralateral	 and	 mid-sigmoid	 tissue	 had	 no	 reason	 to	 redistribute	 K8	 to	 the	

soluble	 part	 of	 the	 proteome	 and	 hence	 display	 seemingly	 greater	 amounts	 of	

phosphorylated	K8.	Collective	results	 from	this	study	 indicate	 the	behaviour	of	

adenoma	 tissue	 is	 different	 to	 cancer	 tissue.	 There	was	 consistent	 evidence	 of	

adenoma	 tissue	 behaving	 in	 the	 exact	 opposite	 manner	 of	 cancer	 and	

surprisingly	 their	characteristics	are	sometimes	more	dissimilar	 to	cancer	 than	

normal	tissue.	This	may	be	due	to	the	type	of	studies	in	which	comparisons	have	

been	made.		The	majority	of	them	have	used	cancer	cells	without	separating	the	

soluble	 and	 insoluble	 compartments,	 whereas	 in	 this	 study	 only	 the	 insoluble	

component	was	studied.	Another	explanation	is	that	adenoma	cells	are	actively	

resisting	 malignant	 change,	 instigating	 changes	 including	 PTMs	 almost	

paradoxical	 to	 that	 of	 cancer.	 In	 adenoma	 tissue	 there	 is	 a	 general	 increase	 in	

keratins	which	is	opposite	to	that	of	cancer	(Khan	et	al.,	2011),	and	a	decrease	in	

phosphorylation	which	is	also	opposite	to	findings	in	cancer	(Arentz	et	al.,	2012).	

This	 tremendous	 effort	 of	 resistance	 could	 explain	 why	 a	 large	 proportion	 of	

adenomas	do	not	progress	to	cancer.	
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Figure	60.	K8	phosphorylation	differences	between	tissue	types	

	

	

This	 study	 has	 demonstrated	 a	 field	 of	 characteristically	 similar	 tissue	 exists	

around	 adenomas	 but	 has	 also	 demonstrated	 adenomas	 do	 not	 necessarily	

mimic	cancer	tissue.	Reasons	for	this	could	be	due	to	unmatched	comparisons	or	

active	resistance	to	malignant	change.	A	recurring	theme	that	has	emerged	from	

this	study,	revealed	through	IHC	and	PTMs,	is	that	the	distribution	of	keratins	is	

important	 in	defining	 tissue	pathology	and	 its	behaviour.	This	area	of	 research	

should	 be	 expanded	 to	 compare	 cancer,	 adenoma,	 field	 and	 non-pathological	

tissue	under	matched	conditions.		

	 	

!carcinogenic!insult/stress!induced!
hyperphosphoryla3on!

Adenoma!

Contralateral!
Mid8sigmoid!

Normal!

Cancer!

Soluble!
K8!

Insoluble!
K8!

Equal!distribu3on!of!K8!in!
soluble!and!insoluble!
compartments!

carcinogenic!insult/stress!induced!
hyperphosphoryla3on! Compartment!distribu3on!

of!K8!unknown!
Increased!K8!

phosphoryla3on!

histologically!normal!3ssue!no!
carcinogenic!insult!applied!

Phosphoryla3on!
drives!K8!into!the!
soluble!
compartment!

Insoluble!!
K8!

Soluble!K8!



	 206	

8.1	Conclusion	
	

• Altered	 fields	 exist	 in	 the	 macroscopically	 normal	 tissue	 around	

adenomatous	polyps.	

• Keratins	 changes	 are	 identified	 as	 one	of	 the	 alteration	 in	 fields	 around	

adenomas.	

	

	

8.2	Future	work	
	

• Future	 work	 to	 strengthen	 results	 from	 this	 study	 should	 include	

performing	a	larger	study	with	greater	numbers	of	patients	and	samples.	

• Future	 research	 studies	 could	 use	 colorectal	 cancer	 specimens	 with	

synchronous	 adenomas	 in	 situ	 to	 investigate	 relationships	 between	 thei	

fields		but	from	one	genetic	background..	

• Further	K8	 isoform	analysis	 of	 adenoma	 tissue	 and	 the	 tissue	 around	 it	

may	identify	further	field	effects.		
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Appendix	1	Service	evaluation	approval	form	
	
	
	
	
	

	
	
	
	

Investigator	Site	File	
	
	
Principal	Investigator:	Ria	Rosser	

	
Service	Evaluation	Title:	
	
Incidence	of	Adenoma	Recurrence	Following	Endoscopic	Removal	

Service	Evaluation	
Reference	No:	

	
4124	

	 	
Service	Evaluation	Manager:	Janet	Turner	
	
Date	approved:	 15/08/2011	

	
	 	

	
	
	
	
	

Clinical	Effectiveness	Unit	
Sheffield	Teaching	Hospitals	NHS	Foundation	Trust	

Northern	General	Hospital	
Sheffield	S5	7AU	
0114	27	15115	
CAEU@sth.nhs.uk	
October	2010	
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Appendix	2	Data	collection	tool	
	Adenoma	Recurrence	Data	Collection	Tool	

	
Patient	number:	 	 	 	 	 DOB/Age:	
	 	 	
Initial	colonoscopy	date:	 	 	 	 Adenoma-	
	 	 	 	 	 	 	 	 Date	removed:	
	
	 	 	 	 	 	 	 	 Number	of	adenomas:	
	 	
Site:	 R	 S	 RSJ	 D	 SF	 T	 HF	 A	 C	 ICV	 TI	
No:	 	 	 	 	 	 	 	 	 	 	 	
Size:	 	 	 	 	 	 	 	 	 	 	 	
Adequacy	
of	
excision:	

	 	 	 	 	 	 	 	 	 	 	

Histology:	 	 	 	 	 	 	 	 	 	 	 	
	
Follow	up	colonoscopy	date:	
	
Adenoma	recurrence-	
	
	 Date	identified:	
	 	
Number	of	adenomas:	
	 	
Site:	 R	 S	 RSJ	 D	 SF	 T	 HF	 A	 C	 ICV	 TI	
No:	 	 	 	 	 	 	 	 	 	 	 	
Size:	 	 	 	 	 	 	 	 	 	 	 	
Adequacy	
of	
excision:	

	 	 	 	 	 	 	 	 	 	 	

Histology:	 	 	 	 	 	 	 	 	 	 	 	
Key:	 	
Colon	site	 	 	 	 	 	 Excision	
R-	rectum	 	 	 	 	 	 EF	–	excised	fully	
S	–	sigmoid	 	 	 	 	 	 UnC	–	unable	to	comment	
RSJ	–	rectosigmoid	junction		 	 	 I	-	incomplete	
D	–	descending	
SF	–	splenic	flexure	
T	–	transverse	
HF	–	hepatic	flexure	
A	–	ascending	
C	–	caecum	
ICV	–	ileocaecal	valve	
TI	–	terminal	ileum	
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Appendix	3	Probability	calculation	
	
	

Calculation	for	proximal	movements		
	

	
Caecum	
Number	of	index	polyps	at	caecum	=	77	
Maximum	number	of	possible	proximal	segments	(caecum	to	caecum)	=	0	
Number	of	proximal	polyp	movements	77	x	0	=	0	
	
Ascending	
Number	of	index	polyps	at	ascending	colon	=	85	
Maximum	number	of	possible	proximal	segments	(ascending	to	caecum)	=	1	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	85	x	1	=	85	
Number	of	proximal	polyp	movements	taken:	

	14	polyps	moved	from	ascending	to	caecum	–	14	x	1	=	14	
Number	of	polyps	occurring	in	same	segment	=	71	
	
Hepatic	Flexure	
Number	of	index	polyps	at	hepatic	flexure	=	33	
Maximum	number	of	possible	proximal	segments	(hepatic	flexure	to	caecum)	=	2	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	33	x	2	=	66	
Number	of	proximal	polyp	movements	taken:	
	 4	polyps	moved	from	hepatic	flexure	to	caecum	–	4	x	2	=	8	
	 4	polyps	moved	from	hepatic	flexure	to	ascending	–	4	x	1	=	4	
	 	 	 	 	 	 	 	 	 sum	=	12	
Number	of	polyps	occurring	in	the	same	segment	=	25	
	
Transverse	
Number	of	index	polyps	at	transverse	=	79	
Maximum	number	of	possible	proximal	segments	(transverse	to	caecum)	=	3	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	79	x	3	=	237	
Number	of	proximal	polyp	movements	taken:	
	 12	polyps	moved	from	transverse	to	caecum	–	12	x	3	=	36	
	 9	polyps	moved	from	transverse	to	ascending	–	9	x	2	=	18	

10	polyps	moved	from	transverse	to	hepatic	flexure	–	10	x	1	=	10	
	 	 	 	 	 	 	 	 	 sum	=	64	
Number	of	polyps	occurring	in	the	same	segment	=	31	
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Appendix	3	Probability	calculation	
	
	
Splenic	flexure	
Number	of	index	polyps	at	splenic	flexure	=	17	
Maximum	number	of	possible	proximal	segments	(splenic	flexure	to	caecum)	=	4	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	17	x	4	=	68	
Number	of	proximal	polyp	movements	taken:	
	 2	polyps	moved	from	splenic	flexure	to	caecum	–	2	x	4	=	8	
	 5	polyps	moved	from	splenic	flexure	to	ascending	–	5	x	3	=	15	

1	polyps	moved	from	splenic	flexure	to	hepatic	flexure	–	1	x	2	=	2	
3	polyps	moved	from	splenic	flexure	to	transverse	–	3	x	1	=	3	

	 	 	 	 	 	 	 	 	 sum	=	28	
Number	of	polyps	occurring	in	the	same	segment	=	6	
	
	
Descending	
Number	of	index	polyps	at	descending	=	57	
Maximum	number	of	possible	proximal	segments	(descending	to	caecum)	=	5	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	57	x	5	=	285	
Number	of	proximal	polyp	movements	taken:	
	 7	polyps	moved	from	descending	to	caecum	–	7	x	5	=	35	
	 10	polyps	moved	from	descending	to	ascending	–	10	x	4	=	40	

2	polyps	moved	from	descending	to	hepatic	flexure	–	2	x	3	=	6	
16	polyps	moved	from	descending	to	transverse	–	16	x	2	=	32	
0	polyps	moved	from	descending	to	splenic	flexure	–	0	x	1	=	0	

	 	 	 	 	 	 	 	 sum	=	113	
Number	of	polyps	occurring	in	the	same	segment	=	22	
	
	
	
Sigmoid	
Number	of	index	polyps	at	sigmoid	=	194	
Maximum	number	of	possible	proximal	segments	(sigmoid	to	caecum)	=	6	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	194	x	6	=	1164	
Number	of	proximal	polyp	movements	taken:		
	 22	polyps	moved	from	sigmoid	to	caecum	–	22	x	6	=	132	
	 12	polyps	moved	from	sigmoid	to	ascending	–	12	x	5	=	60	

8	polyps	moved	from	sigmoid	to	hepatic	flexure	–	8	x	4	=	36	
24	polyps	moved	from	sigmoid	to	transverse	–	24	x	3	=	72	
5	polyps	moved	from	sigmoid	to	splenic	flexure	–	5	x	2	=	10	
17	polyps	moved	from	sigmoid	to	descending	–	17x	1		=	17	

	 	 	 	 	 	 	 	 sum	=	327	
Number	of	polyps	occurring	in	the	same	segment	=	106	
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Appendix	3	Probability	calculation	
	
	
Rectosigmoid	junction	
Number	of	index	polyps	at	rectosigmoid	junction	=	29	
Maximum	number	of	possible	proximal	segments	(rectosigmoid	to	caecum)	=	7	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	29	x	7	=	203	
Number	of	proximal	polyp	movements	taken:		
	 4	polyps	moved	from	rectosigmoid	to	caecum	–	4	x	7	=	28	
	 2	polyps	moved	from	rectosigmoid	to	ascending	–	2	x	6	=	12	
	 0	polyps	moved	from	rectosigmoid	to	hepatic	flexure	–	0	x	5	=	0	

4	polyps	moved	from	rectosigmoid	to	transverse	–	4	x	4	=	16	
0	polyps	moved	from	rectosigmoid	to	splenic	flexure	–	0	x	3	=	3	
0	polyps	moved	from	rectosigmoid	to	descending	–	0	x	2	=	0	
15	polyps	moved	from	rectosigmoid	to	sigmoid	–	15	x	1		=	15	

	 	 	 	 	 	 	 	 	 sum	=	71	
Number	of	polyps	occurring	in	the	same	segment	=	4	
	
	
	
Rectum	
Number	of	index	polyps	at	rectum	=	63	
Maximum	number	of	possible	proximal	segments	(rectum	to	caecum)	=	8	
Number	of	polyps	multiplied	by	possible	proximal	movements	=	63	x	8	=	504	
Number	of	proximal	polyp	movements	taken:		
	 19	polyps	moved	from	rectum	to	caecum	–	19	x	8	=	152	
	 18	polyps	moved	from	rectum	to	ascending	–	18	x	7=	126	
	 5	polyps	moved	from	rectum	to	hepatic	flexure	–	5	x	6	=	30	

11	polyps	moved	from	rectum	to	transverse–	11	x	5	=	55	
3	polyps	moved	from	rectum	to	splenic	flexure	–	3	x	4	=	12	
11	polyps	moved	from	rectum	to	descending	–	11	x	3	=	33	
32	polyps	moved	from	rectum	to	sigmoid	–	32	x	2	=	64	
12	polyps	moved	from	rectum	to	rectosigmoid	–	12	x	1	=	12	

	 	 	 	 	 	 	 	 sum	=	484	
Number	of	polyps	occurring	in	the	same	segment	=	48	
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Index	adenoma	
segment	

Proximal	segment	
movements	taken	

Proximal	segment	
movements	possible	

Caecum	 0	 0	
Ascending		 14	 85	
Splenic	flexure	 12	 66	
Transverse	 64	 237	
Hepatic	flexure	 28	 68	
Descending	 113	 285	
Sigmoid	 327	 1164	
Rectosigmoid	
junction	

71	 203	

Rectum	 484	 504	
Total	movements	 1113	 2612	
	
	
Percentage	of	total	segments	taken	out	of	segments	available:	
	

1113/2612	x	100	=	43%
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Appendix	3	Probability	calculation	
	

Calculation	for	distal	movements	
	
	
Rectum	
Number	of	index	polyps	at	rectum	=	63	
Maximum	number	of	possible	distal	segments	(rectum	to	rectum)	=	0	
Number	of	rectum	polyp	movements	63	x	0	=	0	
	
	
Rectosigmoid	junction	
Number	of	index	polyps	at	rectosigmoid	=	29	
Maximum	number	of	possible	distal	segments	(rectosigmoid	to	rectum)	=	1	
Number	of	polyps	multiplied	by	possible	distal	movements	=	29	x	1	=	29	
Number	of	distal	polyp	movements:	

	1	polyp	moved	from	rectosigmoid	to	rectum	–	1	x	1	=	1	
Number	of	polyps	occurring	in	same	segment	=	28	
	
	
Sigmoid		
Number	of	index	polyps	at	sigmoid	=	194	
Maximum	number	of	possible	distal	segments	(sigmoid	to	rectum)	=	2	
Number	of	polyps	multiplied	by	possible	distal	movements	=	194	x	2	=	388	
Number	of	distal	polyp	movements:	

	36	polyps	moved	from	sigmoid	to	rectum	–	36	x	2	=	72	
5	polyps	moved	from	sigmoid	to	rectosigmoid	-	5	x	1	=	5	

sum	=	77	
Number	of	polyps	occurring	in	same	segment	=	153	
	
	
Descending	
Number	of	index	polyps	at	descending	=	57	
Maximum	number	of	possible	distal	segments	(descending	to	rectum)	=	3	
Number	of	polyps	multiplied	by	possible	distal	movements	=	57	x	3	=	171	
Number	of	distal	polyp	movements:	
	 4	polyps	moved	from	descending	to	rectum	–	4	x	3	=	12	

	0	polyps	moved	from	descending	to	rectosigmoid–0	x	2	=	0	
11	polyps	moved	from	descending	to	sigmoid	-	11	x	1	=	11	

sum	=	23	
Number	of	polyps	occurring	in	same	segment	=	42	
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Appendix	3	Probability	calculation	
	
	
Splenic	Flexure	
Number	of	index	polyps	at	splenic	flexure	=	17	
Maximum	 number	 of	 possible	 distal	 segments	 (splenic	 flexure	 to	 rectum)	 =	 4	
Number	of	polyps	multiplied	by	possible	distal	movements	=	17	x	4	=	68	
Number	of	distal	polyp	movements:	
	 0	polyps	moved	from	splenic	flexure	to	rectum	–	0	x	4	=	0	

1	polyp	moved	from	splenic	flexure	to	rectosigmoid–	1	x	3	=	3	
0	polyps	moved	from	splenic	flexure	to	sigmoid	–	0	x	2	=	0	
3	polyps	moved	from	splenic	flexure	to	descending		-	3	x	1	=	3	

sum	=	6	
Number	of	polyps	occurring	in	same	segment	=	9	
	
	
Transverse	
Number	of	index	polyps	at	transverse	flexure	=	79	
Maximum	 number	 of	 possible	 distal	 segments	 (transverse	 to	 rectum)	 =	 5	
Number	of	polyps	multiplied	by	possible	distal	movements	=	79	x	5	=	395	
Number	of	distal	polyp	movements:	
	 6	polyps	moved	from	transverse	to	rectum	–	6	x	5	=	30	

3	polyp	moved	from	transverse	to	rectosigmoid–	3	x	4	=	12	
13	polyps	moved	from	transverse	to	sigmoid	–	13	x	3	=	39	
6	polyps	moved	from	transverse	to	descending		-	6	x	4	=	24	
4	polyps	moved	from	transverse	to	splenic	flexure	–	4	x	1	=	4	

sum	=	109	
Number	of	polyps	occurring	in	same	segment	=	47	
	
	
Hepatic	flexure	
Number	of	index	polyps	at	hepatic	flexure	=	33	
Maximum	 number	 of	 possible	 distal	 segments	 (hepatic	 flexure	 to	 rectum)	 =	 6	
Number	of	polyps	multiplied	by	possible	distal	movements	=	33	x	6	=	198	
Number	of	distal	polyp	movements:	
	 1	polyp	moved	from	hepatic	flexure	to	rectum	–	1	x	6	=	6	

0	polyp	moved	from	hepatic	flexure	to	rectosigmoid–	0	x	5	=	0	
4	polyps	moved	from	hepatic	flexure	to	sigmoid	–	4	x	4	=	16	
5	polyps	moved	from	hepatic	flexure	to	descending		-	5	x	3	=	15	
2	polyps	moved	from	hepatic	flexure	to	splenic	flexure	–	2	x	2	=	4	
8	polyps	moved	from	hepatic	flexure	to	transverse	–	8	x	1		=	8	

sum	=	49	
Number	of	polyps	occurring	in	same	segment	=	13	
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Appendix	3	Probability	calculation	
	
	
Ascending		
Number	of	index	polyps	at	ascending	=	85	
Maximum	number	of	possible	distal	segments	(ascending	to	rectum)	=	7	
Number	of	polyps	multiplied	by	possible	distal	movements	=	85	x	7	=	385	
Number	of	distal	polyp	movements:	
	 7	polyps	moved	from	ascending	to	rectum	–	7	x	7	=	49	

2	polyps	moved	from	ascending	to	rectosigmoid–	2	x	6	=	12	
11	polyps	moved	from	ascending	to	sigmoid	–	11	x	5	=	55	
9	polyps	moved	from	ascending	to	descending		-	9	x	4	=	36	
3	polyps	moved	from	ascending	to	splenic	flexure	–	3	x	3	=	9	
14	polyps	moved	from	ascending	to	transverse	–	14	x	2		=	28	
3	polyps	moved	from	ascending	to	hepatic	flexure	-3	x	1	=	3	

sum	=	192	
Number	of	polyps	occurring	in	same	segment	=	35	
	
	
	
Caecum	
Number	of	index	polyps	at	caecum	=	77	
Maximum	number	of	possible	distal	segments	(caecum	to	rectum)	=	8	
Number	of	polyps	multiplied	by	possible	distal	movements	=	77	x	8	=	616	
Number	of	distal	polyp	movements:	
	 7	polyps	moved	from	caecum	to	rectum	–	7	x	8	=	56	

2	polyps	moved	from	caecum	to	rectosigmoid–	2	x	7	=	14	
8	polyps	moved	from	caecum	to	sigmoid	–	8	x	6	=	48	
5	polyps	moved	from	caecum	to	descending		-	5	x	5	=	25	
5	polyps	moved	from	caecum	to	splenic	flexure	–	5	x	4	=	20	
11	polyps	moved	from	caecum	to	transverse	–	11	x	3		=	33	
3	polyps	moved	from	caecum	to	hepatic	flexure	-	3	x	2	=	6	
15	polyps	moved	from	caecum	to	ascending	–	15x	1	=	15	

sum	=	217	
Number	of	polyps	occurring	in	same	segment	=	21	
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Appendix	3	Probability	calculation	
	
	
Index	adenoma	
segment	

Proximal	segment	
movements	taken	

Proximal	segment	
movements	possible	

Rectum	 0	 0	
Rectosigmoid	
junction	

1	 29	

Sigmoid		 77	 388	
Descending	 23	 171	
Splenic	flexure	 6	 68	
Transverse	 109	 395	
Hepatic	flexure	 49	 198	
Ascending	 192	 385	
Caecum	 217	 616	
Total	movements	 674	 2250	
	
Percentage	of	total	segments	taken	out	of	segments	available:	
	

674/2250	x	100	=	30%	
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Appendix	4	Published	protocol	
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Appendix	5	iTRAQ	Standard	operating	procedure	S.O.P	
	
Peptide	fractionation	

Strong	cation	exchange	(SCX)	was	achieved	using	a	PolySULFOETHYL	A	Pre-

Packed	Column	(PolyLC,	Columbia,	MD)	with	a	5	μm	particle	size	and	a	column	

dimension	of	100	mm.4.6	mm	i.d.,	200	Å	pore	size,	on	a	BioLC	HPLC	(Dionex,	

Surrey,	U.K.).	Sample	was	loaded	onto	the	column	and	washed	for	at	least	60	

minutes	at	a	flow	rate	of	400	μL	/min	with	100	%	SCX	Buffer	A	(20	%	

acetonitrile,	0.1	%	Formic	Acid)	to	remove	salts,	TCEP	and	unincorporated	

iTRAQ	reagent.	Peptides	were	then	separated	using	a	gradient	of	SCX	Buffer	B	

(20%	acetonitrile,	0.1%	formic	acid,	0.5	M	KCl)	at	the	same	flow	rate	of	400	μL	

/min.	Buffer	B	levels	increased	from	0%	to	25%	from	5	minutes	to	30	minutes	

then	from	25%	to	100%	over	5	minutes,	followed	by	an	increase	from	26%	to	

100%	over	the	next	15	min.	Buffer	B	was	held	for	another	5	min	for	isocratic	

washing	prior	to	column	re-equilibration	with	buffer	A.	The	sample	injection	

volume	was	100	μL,	and	the	liquid	flow	rate	was	400	μL/min.	The	SCX	

chromatogram	was	monitored	using	UVD170U	ultraviolet	detector	and	

Chromeleon	software	v.	6.50	(Dionex,	LC	Packings,	The	Netherlands).	Fractions	

were	collected	using	a	Foxy	Jr.	(Dionex)	fraction	collector	in	1	min	intervals.		

	

	

	

Sample	desalting	

Fractions	were	desalted	using	buffers:	A	(97%	H2O,	0.1%	formic	acid);	B	(97%	

acetonitrile,	0.1%	formic	acid)	and	C	(3%	acetonitrile,	0.1%	trifluoroacetic	acid)	

and	MiniSpin™	columns	according	to	the	protocol	outlined	by	The	Nest	Group	

(The	Nest	Group,	MA,	USA).	Fractions	were	vacuum-concentration	prior	to	LC-

MS/MS	analysis.	

	

	
LC-MS/MS	analysis		

Fractions	collected	from	offline	separation	techniques	were	eluted	through	the	

Famos-Ultimate	3000	nano-LC	system	(Dionex,	LC	Packings,	The	Netherlands)	

interfaced	with	a	QSTAR®	XL	(Applied	Biosystems;	MDS-Sciex)	tandem	ESI-
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QUAD-TOF	MS.	Vacuum	dried	fractions	were	resuspended	in	loading	buffer	(3%	

acetonitrile,	0.1%	trifluoroacetic	acid),	injected	and	captured	into	a	0.3.5	mm	

trap	column	(3	μm	C18	Dionex-LC	Packings).	Trapped	samples	were	then	eluted	

onto	a	0.075.150	mm	analytical	column	(3	μm	C18	Dionex-LC	Packings)	using	an	

automated	binary	gradient	with	a	flow	of	300	nL/min	from	95%	buffer	A	(3%	

acetonitrile,	0.1%	formic	acid),	to	35%	buffer	B	(97%	acetonitrile,	0.1%	formic	

acid)	over	90	min,	followed	by	a	5	min	ramp	to	95%	buffer	II	(with	isocratic	

washing	for	10	min).	Predefined	1	s	350−1600	m/z	MS	survey	scans	were	

acquired	with	up	to	two	dynamically	excluded	precursors	selected	for	a	3	s	

MS/MS	(m/z	65−2000)	scan.	The	collision	energy	range	was	increased	by	20%	

as	compared	to	the	unlabeled	peptides	in	order	to	overcome	the	stabilizing	effect	

of	the	basic	N-terminal	derivatives,	and	to	achieve	equivalent	fragmentation	as	

recommended	by	Applied	Biosystems.	

	

Protein	identification	and	relative	quantification	

The	mass-spectrometric	data	was	collected	and	analysed	as	previously	described	

(Pham	et	al.,	2010).	Briefly,	MS/MS	data	generated	from	the	QSTAR®	XL	was	

converted	to	generic	MGF	peaklists	using	the	mascot.dll	embedded	script	

(version	1.6	release	no.	25)	in	Analyst	QS	v.	1.1	(Applied	Biosystems,	Sciex;	

Matrix	Science).	Further	processing	of	the	data	was	undertaken	using	an	in-

house	Phenyx	algorithm	cluster	(binary	version	2.6;	Geneva	Bioinformatics	SA)	

at	the	ChELSI	Institute,	University	of	Sheffield,	against	the	Homo	sapiens	UniProt	

protein	knowledgebase	(SwissProt	and	Trembl	(41070	and	71449	entries	

respectively	downloaded	5th	November	2010)	to	derive	peptide	sequence	and	

hence	protein	identification.	These	data	were	then	searched	within	the	reversed	

Homo	sapiens	database	to	estimate	the	false-positive	rate.	Peptides	

identifications	at	1%	false	discovery	rate	were	accepted.	The	iTRAQ	reporter	ion	

intensities	were	exported.	Protein	quantifications	were	obtained	by	computing	

the	geometric	means	of	the	reporters'	intensities.	Median	correction	was	

subsequently	applied	to	every	reporter	in	order	to	compensate	for	systematic	

errors,	e.g.	if	a	sample	happened	to	have	been	loaded	at	a	largely	different	total	

concentration.	The	reporters'	intensities,	in	each	individual	MS/MS	scan,	were	

also	median	corrected	using	the	same	factors,	with	the	rationale	that	if	the	total	
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concentration	of	a	sample	A	was	half	that	of	another	sample	B,	the	intensities	of	

sample	A's	reporter	have	to	be	doubled	to	allow	for	a	fair	comparison.	t-tests	

applied	to	determine	alterations	in	protein	level	between	samples	use	these	

corrected	intensities	since	these	were	carried	out	for	every	protein	and	because	

of	the	multiple	times	each	test	was	performed,	the	threshold	(α=5%)	used	for	

significance	was	corrected	for	data	mining.	The	standard	Bonferroni	correction	

(α/P,	where	P	is	the	number	of	proteins)	was	used	to	minimise	false	positive	

results.	This	workflow	was	developed	in-house	(Pham	et	al.,	2010).	
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Appendix	6	Protein	list	for	insoluble	fraction	
	

Protein	list	for	insoluble	fraction	
	

Ascension	number	

Number	
of	
peptides	
matched	 Protein	name	

A2NUT2_CHAIN_0	 1	 Lambda	chain	
A4D1Z4	 1	 KIA00415	gene	product	
A6NN01	 1	 histone	A2A	
B0YJC4	 1	 vimentin	

B3KSN3	 1	
C	DNA	(highly similar to ATP-binding cassette sub-
family B member 8, mitochondrial)	

B4DGF3	 1	 C	DNA	(highly similar to Talin-2)	
B4DIK9	 1	 C	DNA	

B4DRV1	 1	
C	DNA	(highly similar to Protein-glutamine gamma-
glutamyltransferase K)	

B4DRX3	 1	 60S	ribosomal	protein	

B4DU60	 1	
Citrate	lyase	subunit	beta-like	protein,	
mitochondrial	

B4DUI9	 1	 C	DNA	(highly similar to Troponin C, skeletal muscle)	
B5MEB8	 1	 obsolete	
B7Z1I0	 1	 integrin	linked	protein	kinase	
B7Z2X4	 1	 C	DNA	(highly similar to Gelsolin)	
B8ZZ37	 1	 obsolete	
D2CFK5	 1	 somatostatin	receptor	5C	
D3YTB1	 1	 60S	ribosomal	protein	
P05141_CHAIN_0	 1	 ADP/ATP	translocase	2	
P06733_CHAIN_0	 1	 Alphaenolase	
P26599	 1	 Polypyrimidine	tract	binding	protein	
P35268_CHAIN_0	 1	 60S	ribosomal	protein	
P50914_CHAIN_0	 1	 60S	ribosomal	protein	
P51884_CHAIN_0	 1	 Lumican	
P62269_CHAIN_0	 1	 40s	ribosomal	protein	
P98160_CHAIN_0	 1	 basement	membrane	
Q15746_ISOFORM_3B	 1	 myosin	light	chain	
Q3B7J3	 1	 ZCCHC3	protein	
Q53S60	 1	 putatative	uncharacterised	protein	
Q6IBG5	 1	 MYL6	protein	
Q6NUK4_ISOFORM_2	 1	 Receptor	expression-enhancing	protein	3	
Q71S07	 1	 Non-erythrocytic	beta-spectrin	4		

Q765P7_ISOFORM_2	 1	
Actin-bundling	with	BAIAP2	homology	
protein	1	

Q8N7L7	 1	 C	DNA	(FLJ40893	fis,	clone	UTERU200160)	
Q8WXQ3	 1	 putatative	uncharacterised	protein	
Q96S66_ISOFORM_4	 1	 Chloride	channel	CLIC-like	protein	1	
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Q9BYE0	 1	 Transcrition	factor	HES-7	
Q9H0N0	 1	 Ras-related	protein	Rab-6C	
Q9H6H4_ISOFORM_2	 1	 Receptor	expression-enhancing	protein	4	
Q9NYP9	 1	 RER1	Protein	
Q9UED0	 1	 amyloid	like	protein	2	
A8K230	 2	 zinc	finger	protein	

B4DJ98	 2	
C	DNA	(highly similar to Protein disulfide-isomerase 
A3)	

B4DJC3	 2	 Histone	H2A	
B4DPR2	 2	 C	DNA	(highly similar to Serum albumin)	
B4DRD6	 2	 Histone	H1	
B7Z3F2	 2	 C	DNA	
B7Z3U6	 2	 sodium	pump	subunit	alpha	1	
C9JA88	 2	 obsolete	
C9JRX8	 2	 LYR	motif	containing	protein	4	
D3DP13	 2	 fibrinogen	beta	chain	
P07355_CHAIN_0	 2	 Annexin	A2	
P07585_CHAIN_0	 2	 Decorin	
P08727	 2	 K19	
P11021_CHAIN_0	 2	 78	kDA	glucose	related	protein	
P15924	 2	 Desmoplakin	
P54707	 2	 potassium	transporting	ATPase	alpha	2	
Q01082_ISOFORM_2	 2	 Spectrin	beta	chain	
Q3MIV8	 2	 myosin	heavy	chain	11	

Q59GW6	 2	
Acetyl-CoA	acetyltransferase,	cytosolic	
variant	

Q6DD88	 2	 atlastin-3	
Q9P0H9	 2	 Ribosome	binding	protein1	
Q9P2E9_ISOFORM_1	 2	 Ribosome	binding	protein1	
Q9Y4F5_ISOFORM_3	 2	 Protein	KIAA0284	

Q9Y6C2_CHAIN_0	 2	
Elastin	microfibril	interface-located	
protein	1	

A6NKY3	 3	 obsolete	
A8K092	 3	 ATP	synthase	subunit	alpha	
B2R4U6	 3	 C	DNA	
P02545_ISOFORM_ADelta10	 3	 Prelamin	
P08572	 3	 collagen	alpha	2	chain	
P16401_CHAIN_0	 3	 Histone	H1.5	
P46782_CHAIN_1	 3	 40s	ribosomal	protein	
P62851	 3	 40s	ribosomal	protein	
B4E335	 4	 Actin	
P62277_CHAIN_0	 4	 40s	ribosomal	protein	
Q12959_ISOFORM_5	 4	 disks	large	homolg	
P01857	 5	 Ig	gamma	chain	region	1C	
P05783_CHAIN_0	 5	 K18	
P12111_ISOFORM_2	 5	 collagen	alpha	3	chain	
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P35579_ISOFORM_2	 5	 Myosin	9	
B7Z9B0	 7	 C	DNA	growth	arrest	specific	protein	8	
P02461_CHAIN_0	 8	 collagen	alpha	1	chain	
Q53SW3	 8	 putatative	uncharacterised	protein	
Q5HY54	 8	 filamin	A	
P05787_CHAIN_0	 10	 K8	

Q702N8_ISOFORM_B	 10	
Xin	actin-binding	repeat-containing	
protein	1	

Q9HAM5	 10	
C	DNA	(moderately	similar	to	HYPOXIA-INDUCIBLE	FACTOR	
1	ALPHA)	

Q9NRC6	 10	 Spectrin	beta	chain	
P12109_CHAIN_0	 11	 collagen	alpha	1	chain	
Q14222	 12	 EEF1A	
P58876_CHAIN_0	 14	 Histone	H2B	
P68431_CHAIN_0	 18	 histone	H3.1	
P50591	 27	 TNF	superfamily	lignd	10	
P02452_CHAIN_0	 37	 collagen	alpha	1	chain	
P08123_CHAIN_0	 60	 collagen	alpha	2	chain	
P62805_CHAIN_0	 119	 histone	
	
Uniprot	accessed:	12th	June	2013.
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Appendix	7	Graphs	
	
Spearman’s	correlation	of	faecal	butyrate	and	keratin	18	expression	of	adenoma	

tissue.	

		
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	adenoma	colonic	crypts	(surface	=	-0.044	[p=0.852],	base	=	0.130	[p=0.585]	and	

extent		=	0.070	[p=0.769]).															

	

Spearman’s	correlation	of	faecal	butyrate	and	keratin	18	expression	of	

contralateral	tissue.	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	contralateral	colonic	crypts	(surface	=	0.022	[p=0.927],	base	=	-0.193	[p=0.416]	and	

extent	=		-0.159	[p=0.503]).															
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Appendix	7	Graphs	

Spearman’s	correlation	of	faecal	butyrate	and	keratin	18	expression	of	mid-

sigmoid	tissue.	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	mid-sigmoid	colonic	crypts	(surface	=	-0.0347	[p=0.146],	base	=	-0.308	[p=0.200]	

and	extent	=		-0.187	[p=0.444]).						

		Spearman’s	correlation	of	faecal	butyrate	and	keratin	18	expression	of	normal	

tissue.	
	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	normal	colonic	crypts	(surface	=	0.102	[p=0.577],	base	=	-0.090	[p=0.624]	and	

extent	=	-0.040	[p=0.828]).															
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Appendix	7	Graphs	

Spearman’s	correlation	of	faecal	butyrate	and	keratin	19	expression	of	adenoma	

tissue.	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	adenoma	colonic	crypts	(surface	=	0.287	[p=0.219],	base	=	0.321	[p=0.168]	and	

extent	=	0.237	[p=0.314]).															

Spearman’s	correlation	of	faecal	butyrate	and	keratin	19	expression	of	

contralateral	tissue.	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	contralateral	colonic	crypts	(surface	=	-0.279	[p=0.234],	base	=	0.095	[p=0.692]	and	

extent	=	0.128	[p=0.591]).															
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Appendix	7	Graphs	

Spearman’s	correlation	of	faecal	butyrate	and	keratin	19	expression	of	mid-

sigmoid	tissue.	
	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	mid-sigmoid	colonic	crypts	(surface	=	0.015	[p=0.948],	base	=	0.107	[p=0.673]	and	

extent	=	-0.088	[p=0.728]).											

Spearman’s	correlation	of	faecal	butyrate	and	keratin	19	expression	of	normal	

tissue.	

	

	
Spearman’s	correlation	coefficient	of	faecal	butyrate	level	and	keratin	expression	at	surface,	base	

and	extent	of	mid-sigmoid	colonic	crypts	(surface	=	0.062	[p=0.737],	base	=	0.016	[p=0.929]	and	

extent	=	0.090	[p=0.625]).											
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