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Abstract

Suppose that B is the quotient of a polinomial ring with coefficients in a
field of characteristic p. In the first part of the thesis we suppose that B is
Cohen-Macaulay and, with H, being the local cohomology module Hyp, (B,),
we study the Frobenius action © on H,. In particular we are interested in
computing the smallest integer e > 0 for which ©¢(Nil(H,)) = 0, where
Nil(H,) denotes the set of all elements in H, killed by a power of ©. Such
a number is called the HSL number of H,. We prove that, for every e,
the set of all prime ideals p for which HSL(H,) < e is Zariski open. An
application of this result gives a global test exponent for the calculation of
the Frobenius closure of parameter ideals in Cohen-Macaulay rings. In the
second part of the thesis we drop the assumptions made on B and we let B
be any quotient of a polynomial ring. Using the notation Hg = Hg Bp(Bp)7
we show that every set V;. = {p € Spec(B) | HSL(H]) < e} is Zariski open
and so that {HSL(H]) | p € Spec(B),j > 0} is bounded. Both the methods
from the first and second part of the thesis are implemented as algorithms

in Macaulay2 and are used to give examples.
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1 Introduction

Local cohomology was introduced by Alexander Grothendieck in the 1960s
([8]) and it has since been a powerful tool to approch many geometric and
algebraic problems as it captures several properties of a commutative ring.
For example local cohomology modules can be used to measure the depth of
a module on an ideal (see Property 2.7.2), and as a way to test the Cohen-
Macaulay and Gorenstein properties. In positive characteristic, the Frobe-
nius endomorphism naturally induces Frobenius actions on all the local co-
homology modules (see Section 2.6 for the definition). One of the goals of
this thesis is to understand when the Frobenius action on local cohomology
modules is injective or how far it is from being injective. A way of measuring
this is given by the HSL-numbers (see 2.10.4 for the definition).

In the first part of the thesis we consider a Cohen-Macaulay quotient S of
a polynomial ring R of positive characteristic which is also a domain. For

these rings we prove the following:

Theorem 1.0.1. (Theorem 3.4.5) For every prime ideal p let S, be the local-
isation of S at p and let Hsﬁm S"(Sp) denote the (dim Sy)-th local cohomology
module of S, with respect to p. For every non-negative integer e, the set
defined as

B, = {p € Spec R| HSL (HsimSp(Sp)) < e}

18 Zariski open.

Hence HSL is upper semi-continuous. Note that this result generalises

the openness of the F-injective locus (see Definition 2.10.6). Moreover, an
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application of this result gives a global test exponent for the calculation of
Frobenius closures of parameter ideals in Cohen-Macaulay rings (see Corol-
lary 3.7.3).

In order to prove Theorem 3.4.5 we show the following.

Theorem 1.0.2. Let S = R/ be a quotient of a polynomial ring of positive
characteristic p. Let w be an ideal of S which is isomorphic to a canonical
module for S. If w denotes the preimage of W in R, then the R-module
consting of all e'"-Frobenius maps acting on HiS(S) s of the form

(1P 1) N (Wl w)

7= Jp°]

This result, together with the one previously shown by Lyubeznik in [17,

Example 3.7] which states that if S is S then F¢ is generated by one element
which corresponds to the natural Frobenius map, gives an explicit description
of any Frobenius map acting on H%(S). We will also show with an example
that if the ring is not Sy (Serre’s condition, see Definition 2.2.10) then F°¢ is
not necessarely principal (see Example 3.4.4).
In the second part of the thesis we consider any quotient of a polynomial ring
and, dropping all the assumptions made previously, we consider the Frobenius
action on all the local cohomology modules H;(Sp). Using a different method,
we prove that every set Vi. = {p € Spec(R) | HSL(H}(S,)) < e} is open
and as consequences that the injective locus is Zariski open and that the set
{HSL(Hg) | p € Spec(R),j > 0} is bounded.

Both the methods have been implemented as algorithms using Macaulay2, [7].



The algorithms are included at the end of the thesis in the appendix and have
been used throughout the thesis to compute all the examples. Even though
the results obtained in the second part of the thesis are a generalisation of
the results obtained in the first one, from a computational point of view the

first algorithm is more efficient than the second.

1.1 Outline of Thesis

Chapter 2 consists of preliminary mathematical material which serves the
purpose of setting up the vocabulary and the framework for the rest of the
thesis. We define regular rings (Section 2.2) and Cohen-Macaulay rings (Sec-
tion 2.1), give some examples and state some of their main properties. In
Section 2.3 we define complex chains and give two useful examples: the
Koszul complex and the Cech complex. In Section 2.4 we discuss some ba-
sic facts from Category Theory. In Section 2.5 we define what we mean
by the injective hull of a module, we introduce the Matlis functor and re-
call the Matlis Duality Theorem (Theorem 2.5.9). In Section 2.6 we define
local cohomology modules and give a few different characterisations for it.
Some properties of local cohomology modules will be listed in Section 2.7. In
Section 2.8 we present Gorenstein rings and Section 2.9 canonical modules.
In the sections 2.10 and 2.11 we introduce some characteristic p tools: the
Frobenius endomorphism and the A°- and ¥°-functor.

We will start Chapter 3 by defining the operator I.(—) and showing some of
its properties. In particular we will prove that this operator commutes with

localisation and completion. We will then consider a quotient of a regular lo-



cal ring S of dimension d and describe the action of Frobenius on its top local
cohomology module HSIS(S ). After that we will give an explicit description
of the module consisting of all the e-th Frobenius maps acting on HS ¢(S)
and compute the HSL-numbers in the local case. In Section 3.4 we will
consider a Cohen-Macaulay non-local domain B = A/J and will prove the
main result: the sets B, = {p € Spec B| HSL(HgimS"(Sp)) < e} are Zariski
open. In Section 3.5 we will describe an algorithm used to compute these
sets B, and give some examples. The results of Section 3.7 give a global
test exponent for the calculation of Frobenius closures of parameter ideals in
Cohen-Macaulay rings.

Chapter 4 contains a generalisation of the results presented in Chapter 3 to
the non-Cohen-Macaulay case and is translated into a new algorithm in Sec-
tion 4.5. The purpose of this chapter is to prove that for all e > 0, and for
all j > 0 the sets V. ; = {p € Spec(R) | HSL(H](Ry)) < e} are Zariski open.
In Section 4.1 we generalise I.(—) which we have had previously defined for
ideals to submodules of a free module; we prove that this operator commutes
with localisation and completion. In Section 4.2 we describe the Frobenius
action on the direct sum of « copies of the injective hull E; as every Artinian
module M with a Frobenius action can be embedded into £, it follows that
we can give a description of the Frobenius action on M as a restriction of
the action on E“ to M. In Section 4.3 we will compute the HSL-numbers of
a module over a regular local ring with Frobenius action. And in Section 4.4
we will present a new method for the computation of the HSL loci.

The algorithms that have been used throughout the thesis to compute all the



examples can be found at the end of the thesis in the appendix.

1.2 Notation

In this section we fix the notation and terminology used throughout the the-

sis. For further details see [4] and [1].

We denote by A = Klzy, -, z,] the polynomial ring with coefficients in
a finite field K and variables 1, - - - , z,,. With the notation K[[z1, - , x,]] we
will indicate the ring of formal power series. The module of inverse polyno-
mials will be denoted by K[z!,-- -, x1]; recall that by that we mean the A-
module that is the K-vector space with basis {z{* ---2%" | a; <O Vi=1,--- ,n}
and A-module structure defined as follows; if 21" - - - 25" is a monomial then
o 0 ifg+a; >0, fore=1,---,n

p1 B
xl ...xnn.xl

gL ghrten otherwise.

Let R be a commutative ring. We say that an ideal p C R is a prime ideal if
whenever ab € p then a or b belongs to p. The spectrum of a ring, denoted
Spec(R), is the set of all prime ideals of R with the Zariski topology, which

is the topology where the closed sets are

V(I)={peR|ICp}, with I C R ideals.

The radical of an ideal I, denoted v/1, is the set of all » € R such that v € [
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for some power n. An ideal I is called primary if whenever xy € I then either
z € I or y" € I for some integer n. If p = /T then I is called p-primary. A

primary decomposition of an ideal I is an expression of the form

[:mqi

where the ideals q; are primary; such a decomposition always exists in Noethe-
rian rings (but not in general). A primary decomposition is minimal if \/q;
are all distinct and if (), ; q; £ q:-

We write Anng(M) to indicate the annihilator of an R-module M i.e.
the kernel of the natural map R — Endg(M). If p is a prime ideal of R
we say that p is associated to M if it is the annihilator of an element of M.
The set of all prime ideals associated to M will be denoted by Ass(M). The
associated primes of an ideal I is the set of associated primes of the module
R/I. The minimal associated primes are the prime ideal in Ass(M) which
are minimal with respect to the inclusion. The primes in Ass(M) that are
not minimal are called embedded primes of M.

An element z € R is called a zero-divisor if there exists r # 0 in R such
that zr = 0. It is called non-zero-divisor otherwise. We say that a ring is a
domasin if it has no zero-divisors. A ring is local if it has only one maximal
ideal. If R is local with maximal ideal m then we call K = R/m the residue
class field and we often use the notation (R, m,K).

A multiplicatively closed subset of R is a subset W of R such that 1 € W

and such that if s,t € W then st € W. Define a relation ~ on R x W as

11



follows: (a,s) ~ (b,t) if and only if (at — bs)u = 0 for some u € W. ~
is an equivalence relation and we denote by W~!'R the set of equivalence
classes and call it the localisation of R by W. Denote respectively a/s and
b/t the equivalence classes of the elements (a,s) and (b,t) then define the
two operations % + %’ = % and %%’ = ‘;—i’ that make W~'R into a ring.
In particular we write R, when W = R — p where p is a prime ideal in R.
The localisation of a ring at a prime ideal is a local ring. Analogously, we
can define the localisation W~'M of an R-module M; define a relation ~ on
M x W as follows: (m,s) ~ (n,t) if and only if (mt — ns)u = 0 for some
u € W. We then define W~1M to be the set of equivalent classes and denote
m/s the equivalence class of (m,s). Note that WM is a W~!R-module
once we have defined the usual addition and scalar multiplication. We denote
M, and M,, the localisation of M at the prime ideal p and m respectively.
For an R-module M it is equivalent that M = 0 and that M, = 0 for all
prime ideals p (see Proposition 3.8 from [1]). The support of M is the set of
all prime ideals p such that M, # 0 and it is denoted Supp(M). The support
of a Noetherian module is Zariski closed.

A ring R is Noetherian if it satisfies the ascending chain condition on ideals;
this means that given any chain of inclusions of ideals of R

LCLC---CI,C---

there exists an integer h at which the chain stabilises i.e. I, = I3 = ---.

The polynomial ring K[z, - - - , x,] with coefficients in a field K and n variables

12



X1, , X, is an example of a Notherian ring. If W is a multiplicatively closed
subset of R and R is Noetherian then W~!R is Noetherian as well. If R is
Noetherian then R[xy,--- ,z,]| is Noetherian. Every ideal of a Noetherian
ring has a primary decomposition. Analogously a module is Noetherian if it
satisfies the ascending chain condition on its submodules.
We say that R is Artinian if it satisfies the descending chain condition on
ideals i.e. if I} D Iy O --- then there exists an integer h at which I}, = I, =

. In an Artinian ring every prime ideal is maximal and there is only a
finite number of maximal ideals. Also every Artinian ring is isomorphic to
a finite direct product of Artinian local rings. A module is Artinian if it
satisfies the descending chain condition on its submodules.
An R-module M is finitely generated if there exist x1,--- ,x, € M such that
for every m € M, m = ayxy + - - - + a,x, for some ay,---a, € R.

If I C R is any ideal then we define the completion of R with respect to

I, namely ﬁ, as
lim(R/I') = {( Ty, ) € [ [ R/ | 1i =i € ]z}-
H .

If M is an R-module then we define M = R ® M. Alternatively consider
the natural surjections - -+ — M/I*M — M/I*M — M/IM — 0 and define

the I-adic completion M of M as the inverse limit:
lim(M/I'M) = {( , M3, M, M) € HM/FM | M1 —m; € PM}-
(— .

A fundamental example is the following.

13



Example 1.2.1. The completion of the polynomial ring S[zy,- -+ ,x,] with

respect to the ideal (x1,- - ,x,) is the ring of formal power series S[[x1, - -, z,]].

The completion of a ring (a module) is a ring (a module). The completion
of a Noetherian ring is a Noetherian ring. We say that a ring is I-complete
if R=R.

A sequence of R-modules and R-homomorphisms
—>M1f4MZ+1 fi}l

is exact if Ker(f;11) = Im(f;) for all i, where Ker(f;11) and Im(f;) are the ker-
nel of f;1; and the image of f;, respectively. In particular an exact sequence

of the form

O-)MlgMngg—>O

is called short exact sequence and it follows from the definition that f; is

injective and fs5 surjective.
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2 Background

In this chapter we give a brief introduction to the background and required

Commutative Algebra tools that we will use throughout the thesis.

2.1 Regular Rings

Definition 2.1.1 (Regular sequences). Let R be a ring and M an R-module.
A regular sequence (or M-sequence) in an ideal I C R on M is a sequence
of elements T = xy,--- ,x, € I such that (x1, -+ ,x,)M # M and for every
i=1,-+-,n, x; is a nonzerodivisor on M/(xy,- -, x;1)M.

Proposition 2.1.2 (Prop. 1.1.6 [2]). Let R be a Noetherian local ring and

let M be a finitely generated R-module. If T is an M-sequence then every

permutation of T 1s an M -sequence.

In general a permutation of an M-sequence is not an M-sequence.

Assume that R is Noetherian and let M be an R-module.

Definition 2.1.3 (Maximal Regular Sequence). An M -sequence T=mx1, -, x,
15 said to be maximal if for any x,1 the sequence x1,--- , Xy, Tpi1 1S N0t an

M -sequence.

Let = = x1,--- , x, be a regular sequence; since R is Noetherian then the
ascending chain (z7) C (x1,25) C --- stabilises and Z can be extended to a

maximal regular sequence.

Proposition 2.1.4 (Rees Theorem; Theorem 1.2.5 [2]). Let R be Noetherian
and M finitely generated over R. Let I be an ideal such that IM # M. Then

all maximal M -sequences in I have the same length.

15



Definition 2.1.5 (Depth). Let (R,m) be a Noetherian local ring and let
M be a finitely generated R-module. The common length of the mazimal

M -sequences in m is called the depth of M.

Definition 2.1.6 (Height). The height of a prime ideal p, denoted htp, is
the supremum of integers t such that there exists a chain of prime ideals

p=1poDp1 D Dp; wherep; € Spec(R).

Definition 2.1.7. The Krull dimension for a ring R is
dim R = sup{htp | p € Spec(R)}.

Example 2.1.8. [/, Corollary 9.1] If R is Noetherian then dim R = 0 if and
only if R is Artinian in which case R is the direct product of local Artinian

TINgSs.

Example 2.1.9 (Polynomial ring). [4, Chapter 8] The polynomial ring and

the ring of formal power series in n variables have dimension n.

Definition 2.1.10. For an R-module M the Krull dimension is given by the

formula

: : R
dlmRM = dim <m) .

Definition 2.1.11. (Regular ring) A regular local ring is a Noetherian local
ring with the property that the minimal number of generators of its maximal
ideal is equal to its Krull dimension. A ring is regular if every localisation

at every prime ideal is a regqular local ring.
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Example 2.1.12. IfK is a field then K[z, - -+, @p) (2 o 2,) and K[[2z1, -+ 2]

are reqular local rings.
Note the following;

Proposition 2.1.13 (see Proposition 10.16 [4]). If R is a complete regular
local ring with residue class field K and R contains a field then R is isomorphic

to K[|z, -+, x]].

2.2 Cohen-Macaulay Rings

Definition 2.2.1 (Cohen-Macaulay Rings). A local Cohen-Macaulay ring
is defined as a commutative, Noetherian and local ring with Krull dimension
equal to its depth. A non-local ring is Cohen-Macaulay if its localisations
at prime ideals are Cohen-Macaulay. Similarly, a finitely generated module
M # 0 over a Noetherian local is Cohen-Macaulay if depth M = dim M. If
R 1s non-local then M is Cohen-Macaulay if M, is Cohen-Macaulay for every

p € Supp M.
Example 2.2.2. Artinian rings are Cohen-Macaulay.
Example 2.2.3. Regular local rings are Cohen-Macaulay.

Definition 2.2.4 (Complete Intersection). A ring R is a complete intersec-
tion if there is a reqular ring S and a reqular sequence x1,--- ,x, € S such
that R = S/(x1, -+ ,x,). R is locally a complete intersection if this is true

for Ry for every mazimal ideal p € R.

Example 2.2.5 (Prop 18.8 and Prop 18.13 in [4]). Any ring that is locally

a complete intersection is Cohen-Macaulay.

17



Example 2.2.6 (Theorem 18.18 [4]). A ring R is determinantal if it possible
to write R = AJI where A is a Cohen-Macaulay ring and I is the ideal
generated by n X n minors of an r X s matrix of indeterminates for some
integers m,r, s such that the codimension of I in A is (r—n+1)(s—n+1).

Determinantal rings are Cohen-Macaulay.

We recall that a system of parameters for a local ring R with maximal
ideal m and of Krull dimension n is a set of elements x = x1,--- ,x, such

that the ideal (xy,--- ,z,) is m-primary.

Proposition 2.2.7 (Theorem 2.1.2 [2]). Let (R,m) be a Noetherian local

ring and let M # 0 be a Cohen-Macaulay module. Then
1. dim R/p = depth M for all p € Ass M.
2. T=u1, @, 18 an M-sequence if and only if dim M /zM =dimM — n.
3. & is an M -sequence if and only if it is a part of a system of parameters
of M.

Also, some properties hold even when R is not local. We recall first the

following definition.

Definition 2.2.8 (Unmixed Ideal). An ideal I C R is unmixed if it has no

embedded primes.

Proposition 2.2.9 (Theorem 2.1.3 [2], Theorem 2.1.6 [2]). Let R be a

Noetherian ring and let M be a finitely generated R-module. Then:

1. If M is Cohen-Macaulay then W=1M is Cohen-Macaulay for every

multiplicatively closed subset W C R.

18



2. R is Cohen-Macaulay if and only if every ideal I generated by ht [

elements is unmixed.
We now define the Serre’s condition for Noetherian rings as follows.

Definition 2.2.10. A Noetherian ring R has property Sy if depth R, >

inf{k, ht(p)} for all primes p.

Example 2.2.11. Any Noetherian ring of dimension 2 which is not Cohen-

Macaulay is not Ss.

Example 2.2.12. Any Noetherian ring is Cohen-Macaulay if and only if it

s Sy for every k.

2.3 Complexes

In this section we define chain complexes and give two important examples:

the Koszul complex and the Ceck complex.

Definition 2.3.1 (Homological complex). A homological complex is a se-

quence of R-module homomorphisms

8 5 Si
My=-- 2 M, 2 M, | = ...

such that the composition of each consecutive arrows ;0,11 = 0.
Because Im(6;41) C Ker(9;), we can give the following definition;

Definition 2.3.2 (Homology modules). The i** homology module of a com-

plex M, is defined as H;(M,) = Ker(d;)

Im(8s41)

19



Roughly speaking the i** homology module of M, measures how close M,

is to being exact at the i'® position.

Definition 2.3.3 (Cohomological complex). A cohomological complex is a

sequence of R-module homomorphisms

57;71 . 61’ . 6i+1
Ne=...2 3 N s NiHL 2.0

such that the composition of each consecutive arrows 515" = 0.

Definition 2.3.4 (Cohomology modules). The i"* cohomology module of

N* is defined as H'(N®) = Iﬁf;((il))

An example of complex is the Koszul complex. Let us describe such a
complex in a simple situation. Let R be a ring, M an R-module and r € R

an element of R. If M — M is the multiplication by r then its kernel is
Ker(r) ={m e M | rm =0} = Anny,(r)

and the map is injective if and only if r is a non-zero-divisor on M. Since the

image of the map is Im(r) = rM then r: M — M is surjective if and only if

Coker(r) = £M = 0.
T

Consequently the following sequence

0>MS5M-—0

20



is exact, i.e. the map is injective, if and only if r is an M-sequence (see

definition 2.1.1).

T

Definition 2.3.5 (Koszul complex). The sequence Ko(r; M): =0 — M —

M — 0 is called the Koszul complex on the element r.

Suppose now to have an M-sequence of elements 7 = ry,--- ,r, of R. We

want to generalise the construction above and define the Koszul complex
Ko(ri,- o rq; M): 0= K,, —» -+ = Ky — 0.

Set Ky = R, K1 = R"™ and choose the standard basis e, - - - , e, for K;. Then
for every other index i > 2 set K; = A'K; = A'R"™ which is the free R-module
of rank () and basis {e;, A---Aej | 1 < ji < --- < j; < n}. Note that
K, = R and that K; = 0 for i > n. We define the maps ¢,: K; — K,;_1 as

Siles Ao Aeg) = (1) rj e Ao N A Ny,
h=1

where the symbol ¢;, indicates that the term e;, is missing.
In particular ; = 0 when ¢ < 1 and 7 > n; note also that, because the K; are

free modules, the maps d; can be represented as matrices.

Definition 2.3.6 (Homological Koszul complex). The homological complex
K.(7; R) is called the Koszul complex on 7. If M is an R-module and 7 an

M -sequence we can define Ko(7; M) = Ko(T; R) @ M.

The cohomological Koszul complex is the dual of the homological Koszul

complex i.e. K*(ry, -+ ,ry; M) = Hom(Kq(ry,--- ,r0; R), M).
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Another interesting example of complex is the Cech complex. Let z be
an element of R and let R, be the localisation of R at x. Recall that R, is

obtained by inverting the multiplicatively closed set {1, x,z?, ---}.

Definition 2.3.7. The Cech complex on x is the complex
C*(z;R): 0 = R-5 R, -0

where n is the canonical map sending r — [r/1].

Ifx=1x, - 24 is a sequence of elements in R then the Cech complex on x

is C*(z; R) = C*(x1; R) ® - - - ® C*(; R).

In general we define C*(x; R) = Diciy < cipca Baiy i, -

2.4 Some Basics in Category Theory

Definition 2.4.1 (Category). A category € is an algebraic structure consist-
ing of a class O6j(C) of objects, a class Hom(C) of morphisms between any two
objects and a binary operation Hom(A, B) x Hom(B, C') — Hom(A, C) called
composition which sends (f,g) — g o f for any three objects A, B and C' in
06j(C). In a category there exists an identity morphism 14 € Hom(A, A)
with the property that fl1a = 1gf = f for all f: A — B and given three

morphisms f, g and h then fo(goh)=(fog)oh.

Example 2.4.2. If R is a ring, we define Mod(R) to be the category whose
objects are R-modules and morphisms are R-homomorphisms and its compo-

sition is the usual composition.
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Example 2.4.3. We define b to be the category whose objects are abelian
groups, morphisms are group homomorphisms, and composition is the usual

composition.

Example 2.4.4. We define Gets to be the category in which the objects are

sets, morphisms are functions, and compositions are the usual compositions.
Definition 2.4.5 (Monomorphism). A morphism u: B — C' in a category
C is a monomorphism if for all A € 06j(C) and all morphisms f,g: A — B,

A—_ZB—=C

9
we have that uf = ug implies f = g.

Example 2.4.6 (Chaper 5 [24]). Monomorphisms and injections coincide in

Mod(R) and Sets.

Definition 2.4.7 (Zero Object). Let C be a category. An object C € 0bj(C)
is said to be initial (resp. final) if for every object X € @ there exists a
unique morphism C — X (resp. X — C). An object which is both initial

and final is called zero object.

Definition 2.4.8 (Coproduct). If A and B are objects in a category C then
their coproduct is a triple (AU B, «, 3), where AU B is an object in C and
a:A— AUB and : B — AU B are two morphisms such that for every
object X € 06j(C) and every pair of morphisms f: A — X and g: B — X,

there exists a unique morphism 6: AL B — X making the following diagram
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commute:

Example 2.4.9 (Proposition 5.1 [24]). If R is a ring and A and B are two
objects in the category Mod(R), then their coproduct exists and is the direct
sum A® B.

Example 2.4.10. The coproduct of two sets in Sets is their disjoint union.

Analogously, we define the product of two objects in a category as follows;

Definition 2.4.11 (Product). If A and B are objects in C, their product is
a triple (AN B, p,q), where AT B is an object in € and p: AN B — A and
q: AMB — B are two morphisms such that, for every object X in 0bj(C) and
every pair of morphisms f: X — A and g: X — B, there ewists a unique

morphism 0: X — AN B making the following diagram commute:

/\

ATT B <,

\/

Example 2.4.12 (Proposition 5.8 [24]). The (categorical) product in Mod(R)

coincides with the coproduct.
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Example 2.4.13 (Example 5.5[24]). The (categorical) product of two sets A
and B in 0bj(Gets) is given by the triple (A x B,p,q) where A x B is the

cartesian product, p: (a,b) — a and q: (a,b) — b.

Definition 2.4.14 (Additive Category). A category C is additive if the set
of all maps from A to B is an additive abelian group for every A, B € 056j(C),
it has the zero object, it has finite product and coproduct and the distributive

laws hold 1.e. given two morphisms f and g as in

a f b
X—A_—_ZB——Y

g

where X andY are objects in C then b(f+g) = bf+bg and (f+g)a = fa+ga.
Example 2.4.15 (Lemma 2.3 [24]). The category of R-modules is additive.

Definition 2.4.16 (Kernel and cokernel). If u: A — B is a morphism in
an additive category C then its kernel kerw is a morphism i: K — A that
satisfies the following universal mapping property: woi = 0 and for every

g: X — A with ug = 0, there exists a unique 8: X — K withiof = g.

A—>B—>C’

K—>A—>B

There is a dual definition for cokernel (the morphism w in the diagram

above).

Definition 2.4.17 (Abelian Category). An abelian category is an additive
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category in which every morphism has kernel and cokernel; moreover every

injective morphism is a kernel and every surjective morphism is a cokernel.

Definition 2.4.18 (Covariant Functor). Let C and D be two categories.

Then we define a covariant functor F': € — D to be such that:
1. if A € 06j(C) then F(A) € 06i(D);
2.4f f+ A— B € Hom(C) then F(f): F(A) — F(B) € Hom(D);

3. ifAL B S e then F(A) ™ PB) ™Y F(C) inD and F(gof) =
F(g)o F(f);

4. F(14) = 1pay for every A € 06j(C).

Definition 2.4.19 (Contravariant functor). Let € and D be two categories.

Then we define a contravariant functor F': € — D to be a function such that:
1. if A € 06j(C) then F(A) € 06j(D);
2. if f: A— B € Hom(C) then F(f): F(B) — F(A) € Hom(D);
3. ifAL B Cineithen F(O)™Y F(BY ™ F(A) inD and F(gof) =
F(g) o F(f);
4. F(1a) = Lpa for every A € 06j(C).

Example 2.4.20. Let C be a category and let E € 06j(C), then Hom(—, E): € —
Gets is a contravariant functor defined for all C € 06i(C) by sending C' +—
Hom(C, E) and if f: C'— D in C then Hom(f): Hom(D, E) — Hom(C, E)

is given by h — hf.
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Definition 2.4.21 (Additive Functor). Let F': 9od — 2Ab be a functor. F

is additive if for any f,g € Hom(C) then F(f 4+ g) = F(f) + F(g).

Definition 2.4.22 (Exact functor). Let C and D be two abelian categories
and let F': C — D be a covariant additive functor. We say that F' is exact if
for every short exact sequence 0 - A — B — C — 0 in C then 0 — F(A) —

F(B) = F(C) — 0 is exact in D.

Definition 2.4.23 (Injective object). In an abelian category C an object E
15 1njective if for every monomorphism i: C — X and every f: C' — E there

exvists h: X — E such that f = ha.

Definition 2.4.24 (Injective Resolution). Let € be an abelian category and

C € 06j(C). An injective resolution for C' is an eract sequence

0CE S prd .

where each E' is injective.

Definition 2.4.25 (Injective dimension). If an R-module M admits a finite
injective resolution, the minimal length among all finite injective resolutions

of M is called its injective dimension.

Definition 2.4.26 (Right Derived Functor). Let F': B — C be an additive
covariant functor between abelian categories and for every B € 0bj(B) fix an

injective resolusion

0B St s
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then consider the exact sequence EP
0 E* S gt
and finally take homology

(P(E) =

H'(F(E?)), that we will denote as (R'F)B s called right derived functor.

Definition 2.4.27 (Ext). Let A be an R-module. We define Ext’y (A, —) =
R'F where
F = Hompg(A, —): Mod — Nod.

More precisely, using the notation above

Extiy(A, B) = (R'F)B = H(F(E®)) = %

where

Homp(A, EY) _n Hompg (A, E7)
fi arf

Property 2.4.28. If B is injective then Exty(A, B) = 0.

We give now another description of the Ext-functor in terms of projective
resolutions. One could prove that the two descriptions are equivalent (see
Theorem 6.67 [24]). We will use the second definition in Section 2.6 when

we define local cohomology modules.
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Definition 2.4.29 (Epimorphism). A morphism f: B — C' in a category C
s an epimorphism if for all objects D and all morphisms h,k: C — D we

have that hv = kv implies h = k.

Example 2.4.30. [2/, page 321] In the categories Sets and Mod(R) epi-

morphisms and surjections are the same thing.

Definition 2.4.31 (Projective object). In an abelian category € an object P
is projective if for every epimorphism g: B — C and every f: P — C there

exists h: P — B such that f = gh.

Definition 2.4.32 (Projective resolution). Let C be an abelian category and

C' € 06j(C). A projective resolution for C' is an exact sequence
BB PSS C50

where each P; is projective.

Definition 2.4.33. Let T': A — B be an additive covariant functor between

abelian categories and for every C € 0Obj(A) fix a projective resolusion

then consider the deleted sequence Pgp: - -- % P a Py — 0, apply the

functor and finally take homology

(RT)C = H(T(Pn)) = %
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With this notation we have that Exth(—,C) = (R‘T)C where T =
Homp(—, C): Mod — Nod.

; ; ker (d**
Ext(B,C) = H (Homg(Pg, B)) = Im(;—“_i)

where

Homp(A, EY) 4 Homp(A, E™).
f d"f

Suppose € = Mod(R) then we have the following.

Property 2.4.34 (Theorem 3.25[12]). Consider an exact sequence of R-
modules

0—-M —-M-— M —0.

For each R-module N, the following sequences are exact:

(1) -+ — Exth(M,N) — Exth(M', N) = ExtiH (M, N) —
Exte (M, N) — --- .
(2) -+ = Extih(N, M) = Exty (N, M") = Exti'(N, M) —

Ext (N, M) — -+

2.5 Injective Hulls and Matlis Duality

Proposition 2.5.1. [2, Theorem 3.1.8] Any R-module M can be embedded

mn an 1njective R-module E.

Definition 2.5.2. The injective hull of an R-module M, namely Er(M)
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or Er, if M is obvious from the context, is the smallest injective R-module

which contains M .

A different way to define the injective hull is the following. Let M be
an R-module and N an R-submodule of M. M is called essential extension
of N if for every R-submodule L of M then L N N = {0} implies L = {0}.
By Zorn’s Lemma there exists an essential extension which is maximal (with

respect to the inclusion); such an extension is the injective hull.

Example 2.5.3. Let R be the ring of formal series K[[z1, -+, z,]] and let m

be its maximal ideal. We will see more in detail in Example 2.8.5 that the

injective hull of R/m is the module of inverse polynomials K[z1*, -+ ;1]

rn

Property 2.5.4. [12, Theorem A20] Let (R, m,K) be a local ring and R its

m-adic completion. Then Er(K) = Ex(K).

Property 2.5.5. [12, Theorem A21] Let R be a Noetherian ring and E be

an injective R-module. Then

1. E = @ cspec g Er(R/P)"® and the numbers p, do not depend on the

decomposition;
2. Er(R/p) = Eg,(Ry/pR,) for every prime ideal p C R.

Therefore understanding the injective modules over a Noetherian ring R

comes down to understanding the injective hulls Er(R/p) = Eg,(Ry/pRy).

Property 2.5.6. [12, Theorem A25] Let (R,m,K) — (S,n,L) be a homo-
morphism between two local rings and let S be finitely generated over the

image of R. Then Hompg(S, Er(K)) = Es(L).

31



In particular if S is of the form R/I for some ideal I, since Homg(R/I, ER)
= Anng, (I), then Anng, (/) = Eg (cf [9, Corollary 3.3]).

A special case of Example 2.4.20 is the following;

Definition 2.5.7. Let (R, m,K) be a local ring.
The functor Hompg(—, Eg): Mod(R) — IMod(R) which will be denoted by

(—)Y is called the Matlis dual functor.

Example 2.5.8. Let (R,m) be a local ring and let I C R be any ideal. Then

AnnER([)V = Hompg(Anng, (1), Er) = Homg(Homg(R/I, Eg), Er) = ?

Theorem 2.5.9 (Matlis Duality Theorem). Let (R, m,K) be a complete local
ring and E be the injective hull of K. Then (=) = Homg(—, E) is a functor

such that:
1. Homg(E,FE) = R;
2. Homgr(R, E) = E;
3. if M is Noetherian then (M)" is Artinian and (M)V)Y = M;
4. if N is Artinian then N is Noetherian and (N)¥)¥ = N.

Corollary 2.5.10. If R is local then Eg(K) is Artinian.

2.6 Definitions of Local Cohomology

In this section we give three equivalent definitions for a local cohomology

module.
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1. Let R be a Noetherian ring and M an R-module. Suppose [ is an ideal
of R and consider the decreasing sequence of ideals I D [2 D --- D [t D
- of R; every surjection £ — £ induces a map Ext'(R/I', M) —
Ext'(R/I+, M).
The i*"-local cohomology module of M with support in I is defined to
be
Hy (M) = liLnExti(R/It, M).
t

2. Since Hompg(R/I, M) = Anny (1), if I DO J is any inclusion of ideals of
R then the map Hompg(R/I, M) — Hompg(R/J, M) can be identified
with the inclusion Anny (/) € Anny(J). In particular consider the

inclusions I D 12 D --- D I* D --- and define
HY(M) = @AnnM(It) = {x € M| zI' =0 for some t}.
t

The other cohomology modules H(M) are defined to be the i right
derived functor of H)(M). More precisely, let 0 — Ey — -+ E; — -+

be an injective resolution of M, where M = Ker(FEy — F}), then

Hj (M) = lim (Homp(R/I', Ey) — --- — Hompg(R/I", E;) = ---) .
t

3. Another characterisation for a local cohomology module can be given
in terms of Koszul cohomology. For further details on the construction

see [12, Chapter 7, Section 3|
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Let 7 = ry,--- , 7, be asequence of elements in R, consider the sequence
o= KO M) = Ko (P M) — -

and set

K*(7°; M) := lim K*(7*; M).

—

Let I be the ideal generated by the elements rq,--- ,r, then H}(M) is

the same as the Koszul cohomology H®(7>°; M) where

H*(7°°; M) == lim(-- - — H*(7"; M) — H* (7T, M) — -+ +).
—_—

2.7 Properties of Local Cohomology Modules

In this section we recall some of the properties of local cohomology modules.

We start with a consequence of Property 2.4.28.
Property 2.7.1. If M is injective then Hy(M) =0 for all i > 0 .

The next property provides a relation between the depth of a module on

an ideal and the local cohomology modules.

Property 2.7.2. [9, Theorem 6.9] Let M be a finitely generated module over

a Noetherian ring R and let I be an ideal of R. Then

IM =M <= H,(M)=0 Vi.
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Otherwise if IM # M then

depth; (M) = min{i | Hi(M) # 0}.

Property 2.7.3. [23, Chapter 3, page 474/, [9] Let I and J be two ideals of
a Noetherian ring R. If they have the same radical, then H\(M) = H'(M)

for all i and all R-modules M.

Property 2.7.4. [18, section 1.1, page 42] Given any short exact sequence

0= A— B— C — 0 of R-modules there is a long exact sequence

0 — HY(A) — HYB) — HYC) — H}(A) — ---
<= H7YO) — HY(A) — HY(B) — HY(C) — - -

and Hy(—) is a covariant additive functor. This follows from the fact that
Ext’(R/It, M) is a covariant additive functor of M that is exact and pre-

serves the direct limit.

Property 2.7.5. [Proposition 7.4 [9]] If R — S is a homomorphism between
two Noetherian rings, I C R is an ideal of R and M is an S-module then
Hy (M) = H.o(M) as S-modules.

Consider the case in which / = m C R is a maximal ideal. Let M be an
R-module and set R to be the completion of R with respect to m. Then the
study of local cohomology modules with support in a maximal ideal reduces

to the case in which R is local and complete. To be more precise we have:
Property 2.7.6. With the above notation the followings hold:
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1. H (M) = H!

mRn

(M)-

~

2. If R is local then H. (M) = H' ~(R ® M) as R-modules (and R-

modules).
The next property is particularly useful.

Property 2.7.7. Let (R,m) be a complete, Cohen-Macaulay local ring of
dimension d. Then H. (R) = 0 if and only if i # d.

2.8 Gorenstein Rings

Definition 2.8.1 (Gorenstein ring). A Noetherian local ring R is Goren-
stein if its injective dimension as an R-module is finite. A non local ring
is generically Gorenstein if each localisation at a minimal prime ideal is a

Gorenstein local ring.

Definition 2.8.2. A Noetherian local ring such that its completion is the
quotient of a reqular local ring by an ideal generated by a regqular sequence is

called local complete intersection ring.

Example 2.8.3. [12, Proposition 11.19] Complete intersections are Goren-

stein.

For a Noetherian ring there is the following chain of inclusions: Cohen-
Macaulay rings D Gorenstein rings O complete intersections rings D regular

local rings, [2, Proposition 3.1.20].
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Property 2.8.4. [9, Theorem 11.5] If (R,m,K) is a complete, local and

Gorenstein ring of dimension d then
Eg(K) = HL(R).

Example 2.8.5. [3, Example 12.4.1] Let R be the ring of formal power se-
ries K{[x1, - -+, z,]] with n variables and with coefficients in a field K.

R is a Gorenstein, complete and local ring with mazimal idealm = (z1, -+ , x,)
and canonical module R. Its injective hull Er(K) is isomorphic to Hy (R) and
can be computed using Cech complex as follows; let P be the set of monomials
in which at least one exponent is non-negative and N the set of monomials

with negative exponents then

Er(K) = Coker (@ Ray. o — R) =

i=1
Reyow,
Spany (P)

= Spang(N) =

= K[Z‘f, to 7x7:]7

the module of inverse polynomials.

2.9 Canonical Modules

Definition 2.9.1 (Canonical Module). A finitely generated R-module w over
a Cohen-Macaulay local ring (R, m,K) of dimension n is a canonical module

for R if its Matlis dual w" is isomorphic to H},(R). Given a non-local Cohen-

37



Macaulay ring R, a global canonical module 2 for R is an R-module such

that €, is a canonical module for R, for all prime ideal p C R.

Property 2.9.2. [/, Section 21] If R is Gorenstein then a canonical module

for R is R itself.

Property 2.9.3. [12, Theorem 11.44] Let (R, m,K) be a local Cohen-Macaulay
ring of dimension n, wg a canonical module for R and fix an isomorphism

wy = Hy(R) where (=) = Homg(—,E). If M is a finitely generated R-

module then, for every 0 < ¢ < n, there is an isomorphism functorial in

M:

H! (M) = Extly (M, wg)".
Furthermore, we have:

Property 2.9.4. [12, Theorem 11.46 ] If (R, m,K) is a local Cohen-Macaulay
ring then wg s a canonical module for R if and only if Or is a canonical

module for R.

Property 2.9.5. [12, Theorem 11.47] If (R, m,K) is a local Cohen-Macaulay

ring then if wg and ag are two canonical modules for R then wgr = ag.

Definition 2.9.6 (Reduced ring). A reduced ring is a ring that has no non-

zero nilpotent elements.

Every field and every polynomial ring over a field in arbitrarily many
variables is a reduced ring. The following result was proved in [9] and a

proof can also be found in [21, Proposition 2.4].
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Property 2.9.7. Let (R,m) be a complete, local ring of dimension d and
suppose that R is Cohen-Macaulay with canonical module w. If R is a do-
main, or if it is reduced or more in general if the localisation of R at every
minimal prime is Gorenstein then w is isomorphic with an ideal of R that

contains a nonzerodivisor.

We generalised this result to the non-local case. Let us define now canon-

ical modules for non-local rings.

Discussion 2.9.8 (Canonical modules in Macaulay2). Given a ring R as in
Property 2.9.7 we can compute explicitly a canonical ideal for it, i.e an ideal
which is isomorphic to a canonical module for R. We start by computing a
canonical module as a cokernel of a certain matriz A, say R"/V . In order
to find an ideal isomorphic to it, we look for a vector w such V' 1is the kernel
of w: R* — R given by multiplication by w on the left. An ad-hoc way to
find such w is to look among the generators of the module of syzygies of the
rows of V. The algorithm just described has been translated into code using

Macaulay2 and the code can be found in the appendix.

Let A be a polynomial ring and J C A be an ideal of A and let B
be the quotient ring A/J; if B is Cohen-Macaulay of dimension d, then
Q= ExtilfmA*d(B,A) is a global canonical module for B; morover, if B is
generically Gorenstein then () is isomorphic to an ideal of B, [2, Prop. 3.3.18
(b)].

Therefore let B be generically Gorenstein and assume ) C B. Let € be
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the preimage of € in A; then the following B-module is well defined:

(777 1) A (2 - Q)

u(@) = 0] . (1)

Since A is Noetherian, Uy is a finitely generated A-module (and B-module).
For every prime ideal p O J write H, = H;ign Be (Ep) It follows from Theorem

p

3.2.5 that the A-module F3°(H,) consisting of the Frobenius maps on H, is

of the form:

Ste(Hp) = J[PE]A\

(/14,1 74,) n (P14, : 04,) o
p

and consequently F¢(H,) = u(e)ﬁp. Since F¢(H,) is generated by one ele-

ment by Theorem 3.2.1, u(e)/Alp is principal as well.

2.10 The Frobenius Endomorphism

Definition 2.10.1. Let R be a ring and for every positive integer e define
the e"-iterated Frobenius endomorphism T¢: R — R to be the map r +— 17",

Fore=1, R — R is the natural Frobenius map on R.

For any R-module M we define F*M to be the Abelian group M with R-
module structure given by 7 -m = T¢(r)m = r*"m for all * € R and m € M.
We can extend this construction to obtain the Frobenius functor FF§ from
R-modules to R-modules as follows. For any R-module M, we consider the

FfR-module FR ®g M and after identifying the rings R and F,R, we may
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regard FER®p M as an R-module and denote it Ff,(M) or just F'*(M) when
R is understood. The functor Fg(—) is exact when R is regular, see [2,
Corollary 8.2.8], and for any matrix C' with entries in R, Fi5(Coker C) is the
cokernel of the matrix C'?l obtained from C' by raising its entries to the p°th

power, see [10].

Definition 2.10.2. For any R-module M an additive map ¢ : M — M is an
e'"-Frobenius map if it satisfies o(rm) = r*"p(m) for allr € R and m € M.
Note that there is a bijective correspondence between Hompg (M, F.M) and the

Frobenius maps on M.

For every e > 0 let F¢(M) be the set of all Frobenius maps on M. Each
Fe¢(M) is an R-module: for all p € F¢(M) and r € R the map ry defined as
(re)(m) = re(m) is in F¢(M) for all m € M. If p € F(M) we can define
for i > 0 the R-submodules M; = {m € M|y'(m) = 0}. We define the

submodule of nilpotent elements in M as

Theorem 2.10.3 (see Proposition 1.11 in [5] and Proposition 4.4 in [15]). If
(R,m) is a complete reqular ring, M is an Artinian R-module and ¢ € F¢(M)

then the ascending sequence {M;};>o above stabilises, i.e., there exists an

e > 0 such that p*(Nil(M)) = 0.
Note that if M; = M, then M; = M; for every j > i.
Definition 2.10.4. We define the HSL number or index of nilpotency of ¢
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on M, denoted HSL(M), to be the smallest integer e at which ¢°(Nil(M)) =

0, or co if no such e exists.

We can rephrase Theorem 2.10.3 by saying that under the hypothesis of

the theorem, HSL(M) < oo.

Another way of describing a Frobenius map ¢: M — M on an R-module M
is to think of M as a module over a certain skew-commutative ring R[0; f¢]
where the latter is defined as follows. R[f; f¢] is the free R-module @;°, R6'
endowed with the further non-commutative operation s = sP°f for every
s € S. Therefore it is equivalent to say that M is an R-module with a
Frobenius action given by ¢ and that M is an R[f; f¢]-module with module

structure given by fm = p(m).

The action of Frobenius on a local cohomology module is constructed as
follows. Any R-linear map M — N induces an R-linear map H%(M) —
H%(N) for every i. The map R — F,R sending r + F,r? is R-linear because
F.r? = r - F,1 and so it induces for every i a map H}(R) — H'(F.R) =
Hip p(FLR) = HY e (F.R) = Hy (FLR) = F,H}(R) where in the first
equality we used the Independence Theorem for local cohomology [3, Propo-
sition 4.1] and in the third that the ideals I and Pl have same radical see
[3, Proposition 3.1.1]. So we get an R-linear map H}(R) — F, H}(R) which
is the same as a Frobenius map H}(R) — H}(R).

If (R,m) is of dimension d and z,--- , x4 is a system of parameters for
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R then we can write H%(R) as the direct limit

R e R s
(-1:17' o ,fL’d)R (ZL’%, o ,Iz)R

where the maps are the multiplication by zy - - - 24, [10, Theorem 11.5].

Another way to describe the natural Frobenius action on H%(R) is the fol-
lowing. The natural Frobenius map on R induces a natural Frobenius map
on H4(R) in the following way; a map ¢ € F¢(H3(R)) is defined on the direct
limit above by mapping the coset a + (2}, ,25)R in the t-th component

to the coset a” + (z%7°,--- """ )R in the tp°-th component, [13, Section 2].

Definition 2.10.5. A local ring (R, m) is F-injective if the natural Frobenius

map H: (R) — H. (R) is injective for all i.

When the ring is Cohen-Macaulay the only non-zero local cohomology
module is the top local cohomology module (see [Property 2.7.7]) therefore
a Cohen-Macaulay ring is F-injective if the Frobenius map HS(R) — HS (R)
is injective.

Definition 2.10.6. We define the Cohen-Macaulay F-injective (CMFI for

short) locus of a ring R of characteristic p as follows:

CMFI(R) = {p € Spec(R) | R, is CMFI }.

2.11 The A° and V°-functors

Let (R, m) be a complete and local ring and let (—)" denote the Matlis dual,

i.e. the functor Homg(—, Eg), where Er = Eg(K) is the injective hull of the
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residue field K of R. In this section we recall the notions of A°-functor and
We-functor which have been described in more detail in [13, Section 3].

Let €° be the category of Artinian R[f, f]-modules and D¢ the category of R-
linear maps oy M — F5,(M) with M a Noetherian R-module and where a
morphism between M ™% F&(M) and N 28 F§&(N) is a commutative diagram

of R-linear maps:

Y/ g— N
apg aNL

. F&(h) .
FR(M) = FR(N)

We define a functor A° : ¢ — D¢ as follows: given an e'*-Frobenius map 6 of
the Artinian R-module M, we obtain an R-linear map ¢ : Ff(R)Qr M — M
which sends Ffr ® m to rOm. Taking Matlis duals, we obtain the R-linear
map

MY — (FS(R) @ M) = FE(R) @ M"

where the last isomorphism is the functorial isomorphism described in [15,
Lemma 4.1]. This construction can be reversed, yielding a functor W€ : D¢ —
C¢ such that U0 A¢ and A®o W€ can naturally be identified with the identity

functor. See [13, Section 3| for the details of this construction.
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3 On the Upper Semicontinuity of HSL Num-
bers

Let B be a quotient of a polynomial ring with coefficients in a field of char-
acteristic p. Suppose that B is Cohen-Macaulay and for every prime ideal
p C B, let H, denote H;{gr: Br <Z3\p> Each such H, is an Artinian module en-
dowed with a natural Frobenius map © and let Nil(H,) denote the set of all
elements in H, killed by some power of ©. A theorem by Hartshorne-Speiser
and Lyubeznik shows that there exists an e > 0 such that ©°Nil(H,) = 0.
The smallest such e is the HSL-number of H, which we denote HSL(H,,).

In this chapter we show that for all e > 0, the sets
B. = {p € Spec B| HSL(H,) < e}

are Zariski open, hence HSL is upper semi-continuous. This result generalises
the openness of the F-injective locus. An application of this result gives a
global test exponent for the calculation of Frobenius closures of parameter

ideals in Cohen-Macaulay rings.

We will start by defining the operator I.(—) and showing some of its
properties. We will then consider a quotient of a complete, regular local
ring S and describe the action of Frobenius on its top local cohomology
module HY 4 (S). After that we will give an explicit description of the module

consisting of all the e-th Frobenius maps acting on HS ¢(S) and compute the
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HSL-numbers in the local case. In Section 3.4 we will consider a Cohen-
Macaulay non-local domain B = A/J and will prove the main result: the

sets B, defined above are Zariski open.

3.1 The [.(—) Operator

In this section we define the operator I.(—) which has been introduced in
[13], and in [3] with the notation (—)!/7‘l. We will show that this commutes
with localisations and completions.

For any ideal I of a ring R, we shall denote by I"l the e**-Frobenius

power of I, i.e. the ideal generated by {a?"|a € I}.

Definition 3.1.1. If R is a ring and J C R an ideal of R we define I.(J) to
be the smallest ideal L of R such that its e"-Frobenius power L contains

J.

In general, such an ideal may not exist; however it does exist in polyno-

mial rings and power series rings, cf [13, Proposition 5.3].

Let A be a polynomial ring K[xy,...,z,] and W be a multiplicatively

closed subset of A and J C A an ideal.
Lemma 3.1.2. If L C WA is any ideal then LP1N A = (LN AP

Proof. Let %, ... % be a set of generators for L and let G be the ideal of
A generated by g1, ..., gs. Then we can write LPT N A = ZweW(G[pe] A W)

and (LN A)PT =3 (G4 w)Pl. Since A is regular, for any w € W, w?*
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is in W and (G 4 wP) = (G 14 w)PT so (LN AP C LT A Also

(Gl oy w) C(GPT oy wP) so LT A C (LN AP O

Lemma 3.1.3. If J is any ideal of A then I.(W~1J) exists for any integer

e and equals W, (W=1J N A).

Proof. If L C W~'A4 is an ideal such that W~1J C LIP’l, then
WL, (WJnA) CL.

In fact, W'JNA C LPIN A = (LN AP where the equality follows
from Lemma 3.1.2. Thus I, (W 'JNA) CLNAso WL (W-JNA) C
WYL NA)C L. Hence W 'I,(W~1J N A) is contained in all the ideals L
such that W—1J C LIPl. If we show that W—1J C (WL, (W~1J N A))P]
then I, (W~1J) exists and equals W1I,(W=1JNA). But since W=1JNA C
I (W=1J 0 A)lPl then using Lemma 3.1.2 we obtain W—1J = W=Y{(W~1JN
A CWHIWTN AP = (WL, (W=tT N A))PL O

Proposition 3.1.4. Let A denote the completion of A with respect to any

prime ideal and W any multiplicatively closed subset of A. Then the following
hold:

1. I(J @4 A) = I(J) @4 A, for any ideal J C A;
2. W(J) = L(W-1)).

-~

Proof. 1. Write J = J ®4 A. Since I(J)) D J using [17, Lemma 6.6]
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we obtain

~

(L(NHNAPT =L (NHPFINADTNA=J

~

But I.(.J) is the smallest ideal such that I.(J)P1 D J, so I.(J)N A D
1.(J) and hence I(J) D (I.(J) N A) @4 A D I.(J) @4 A.

On the other hand, (I.(J) ®a4 /Al)[f”e} = L()H)PFl @, ADJ R4 A and so
[(J®4 A) C L(J)®a4 A

. Since J C WUINA, I.(J) C I.(W'Jn A), and so WI(J) C
W1L(W-17 A A). By Lemma 3.1.3, W='L(W='J 1 R) = L(W~1J)
hence WI.(J) C I.(W~1J).

For the reverse inclusion it is enough to show that
W=lg C (WL (J))P)

because from this it follows that I.(W~'J) C W1 (J). Since J C
L ()P then W=1J € WL (J)P]) = (WLI.(J))P where in the

latter equality we have used Lemma 3.1.2.

3.2 The Frobenius Action on H¢(S)

Let (R,m) be a complete, regular and local ring, I an ideal of R and write

S = R/I. Let d be the dimension of S and suppose S is Cohen-Macaulay

with canonical module @w. Assume that S is generically Gorenstein so that
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w C S is an ideal of S, (see [20, Proposition 2.4]) and consider the following

short exact sequence:

0—>w—S—S/w—0.

This induces the long exact sequence

S H&EI(S) — Higl(S/@) — Hyg(@) = Hyg(S) — 0.

Since S is Cohen-Macaulay, the above reduces to

0 — HiG'(S/@) — Hig(w) — Hig(S) — 0. (3)

A natural Frobenius map acting on S induces a natural Frobenius map
acting on HY 4(S). The following theorem gives a description of the natural

Frobenius (up to a unit) which we will later use in Theorem 3.2.5.

Theorem 3.2.1 (see [17] Example 3.7). Let F¢ := F,(H24(S)) be the R-
module consisting of all e™-Frobenius maps acting on Hi4(S). If S is Sy
then F¢ 1s generated by one element which corresponds, up to unit, to the

natural Frobenius map.

We aim to give an explicit description of the R-module F¢ and conse-
quently of the natural Frobenius map that generates it.
We will see in Example 3.4.4 that if the ring is not S, then F¢ is not neces-

sarely principal.
Remark 3.2.2. The inclusion & — S is R0, f¢]-linear where 0s = s*
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acts on @ by restriction. This induces an R[0; f¢]-linear map HSg(@0) =
H4(S) — 0 where the structure of R[0, f¢]-module on HS (@) is obtained
from the one on @ C S and where H3 4(S) has a natural structure of R[f; f¢]-
module as we have seen in the introduction.

Since any kernel of an R[0; f¢]-map is an R[0; f¢]-module, ker(a) =
HeS(S/w) is an R[O; f€]-module as well. Hence the sequence 0— H g (S/w) —

HY (@) — H34(S) — 0 is an exact sequence of R[0; f¢]-modules.

Identifying H (@) with Es = Anng, (I) we get the inclusion Hi ' (S/@) C
Anng,,(I) therefore H% ! (S/@) must be of the form Anng,(J) for a certain

ideal J C R. More precisely we have the following:
Lemma 3.2.3. HiS'(S/®) and Anng, (@) are isomorphic.

Proof. Identify Hg(@) & Eg = Anng,(I) then HiG'(S/@) C Es is a
submodule. All submodules of Eg are of the form Anng,(J) for some J D I.
So HiG'(S/@) = Anng,(J) for some J D I. Note that (0 :z Anng,(J)) =
(0 :r (R/J)Y) = (0 :g R/J) = J. On the other hand, Corollary 3.3.18
in [2] proves that S/w is Gorenstein and Hlg'(S/@) is the injective hull of
T = S/w. The injective hull of 7' has no T-torsion so (0 : HiG'(S/@)) = w.

Therefore J = w. O

Remark 3.2.4 (Frobenius action on Eg). All R[0; f¢]-module structures on
Anng,(I) = Eg have the form uF where F is the natural Frobenius map on
Er andw € (IP): I). The identification HS 4(©0) with Eg endows Es with a
Frobenius map which then has to be of the form uF with u € (1P : 1), [18,

see Proposition 4.1].
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In general if we start with an R[0; f]-module M, we can consider M as an
R[0., f¢]-module where f¢: R — R, f¢(a) = a*", 0.(m) = 0°(m). In our case,

for M = Eg the action of 0, on Eg 1is:

fe=00---00=(uF)"=u"F°
N——

e times

where Ve = 1 +p -+ -+ +pt when e > 0 and vy = 0. Therefore when we

apply the A¢-functor to Es € C° we obtain the map
R/TYS R/TP).

Theorem 3.2.5. Let w be the preimage of @ in R. The R-module consisting
of all e-Frobenius maps acting on HiS(S) 18 1somorphic to

(1P 1) N (Wl w)

It = Jp¢]

where the isomorphism is given by u + IP7 — uF.

Proof. By Lemma 3.2.3 we can rewrite (3) as
0 — Anng, (@) — Anng, (I) — Hig(S) — 0. (4)

Apply the Ac-functor to the latter short exact sequence. When we ap-
ply it to Es = Anng,(I) and Anng,(w) we obtain respectively A°(Eg) =
R/T S R/IP) and A°(Anng,(w)) = R/w — R/wP?. Thus the inclusion
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Anng,(w) — Eg yields the diagram

00— (Hd4(S))Y R/I R/w—=0

T

0— F(HY4(S)) —= R/TP) — Rjuwb —0.

Now, we can identify (H%¢(S))Y with w/I and Fg(Hg(S))Y with w1/ 17,
Therefore when we apply A€ to the sequence (4) we obtain the short exact

sequence in De:

0 w/1 R/I R/w 0

0 _>@[pe]/[[pe] - R/[[pe] - R/w[pe] —0

where the central vertical map is the multiplication by u”*. The only way
to make the diagram above commutative is that the other two vertical maps
are also the multiplication by u"¢. It follows that u € (I Pl T ) N (w[pe}: w).
Finally consider the surjection ¢: (IP7: 1) N (wP: w) — Fe(HL4(S)); u €
Ker ¢ if and only if u: % — ‘}”[[Tpe]] is the zero map which happens if and only
if uwo c I C Iie. ww = 0. @ contains a non-zero-divisor and since

U Ass(1) = |JAss(IP)) then © contains a non-zero-divisor modulo 1) say

x. So uzx € I implies u € IP]. Therefore Ker p = I, O

3.3 HSL Numbers in the Local Case

In this section we give an explicit formula for the HSL-numbers.
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Theorem 3.3.1. HSL(HY(S)) is the smallest integer e for which

I.(u"w)
Ioiq(uvetiw)

=0

where w is the preimage of @ in R and ve =1 +p+---+p*~ ! when e > 0,

and vy = 0 and where we set Io(J) = J for all ideals J.

Proof. For all e > 0 define M, = {2 € Hj4(5)|¢°z = 0} and note that
{M,}¢>0 form an ascending sequence of R[f; f¢]-submodules of H%¢(S) that
stabilises by Theorem 2.10.3. Consider the short exact sequence of R|[0; f€]-
modules 0 — Hig'(S/@) — Hig(@) — HIg(S) — 0 where the action of ¢
on Eg = He¢(w) is given by u”F where F is the natural Frobenius on Ej.

We have seen we can write this sequence as
0 — Anng, (@) — Anng, (I) — Hig(S) — 0.

It follows that
~ Anng, (1)
~ Anng, (@)

Has(S)

Since each M, is a submodule of Hl¢(S) then it is of the form IXI;ETS&L;)) for
S

some ideals L, C R contained in I. Apply the A¢-functor to the inclusion

M, — H34(S) to obtain

W/l ——=w/L.

A

WP /TP s w[p‘j]/L[epe}

33



where the map w/I — wPl /TP is the multiplication by u¢ by Remark 3.2.4.
It follows that the map w/L. — w[pe]/L[epe] must be the multiplication by u"*
because of the surjectivity of the horizontal maps; note that such a map is
well defined because uew C w[pe], and then L, C w. Moreover w/L, —
w[”e]/L[epe] must be a zero-map by construction of A¢. Hence, u"w C L[epe]

and for every L, with u”ew C LL” I the action of # on M., is zero. We want

the largest M, C HY4(S) for which ¢ acts as zero. The largest module

AHHES (Le)
Anngg (@)

ie. L. = I.(u"w). O

killed by 6° corresponds to the smallest L. such that u”ew C L)

Corollary 3.3.2. S is F-injective if and only if w = I (uw).

Proof. S is F-injective if and only if the index of nilpotency is zero i.e. if

and only if w = [} (uw). O

3.4 HSL Loci

Let A be a polynomial ring K[xy, -, x,] with coefficients in a perfect field
K of positive characteristic p and let M be a finitely generated A-module
generated by ¢q,---,9s. Let ey,--- e, be the canonical basis for A° and
define the map

A M

€ ——>g;.
¢ is surjective and extends naturally to an A-linear map J: A® — A® with
kerp = Im J. Let J; be the matrix obtained from J € Matg(A) by erasing

the i*-row. With this notation we have the following:
Lemma 3.4.1. M is generated by g; if and only if Im J; = A5 1.

o4



Proof. Firstly suppose Im.J; = A5~!. We can add to .J, columns of Im J

without changing its image so we can assume that J contains the elementary

vectors e, -+ ,€;_1,€i41, " ,Cs!
a1 ar o - arn 1 0O --- 0
as1 g2 - agn 0 1 ... 0
J = ;1 ;2 Q5 n bl b2 bs
Am—-1,1 Am—1,2 Am—1,n 0 1 0
Am,1 Am,2 Amn 0 0 1

In this way for every j # ¢ we have g; — bjg; = 0 i.e. g; generates M.
Viceversa if M is generated by g; then for all j # ¢ we can write g; = 7,g; i.e.
g; —1;9; = 0 and the relation g; —r;g; gives a relation e; — r;e; in the image
of J, so ej —rje; € Kerp = ImJ. Hence we can assume that J contains a
column whose entries are all zeros but in the i-th and j-th positions where
there is 1 and r; respectively. Consequently J; contains the (s — 1) x (s — 1)

identity matrix. O]

Let W be a multiplicatively closed subset of A. Localise the exact se-
quence A' — A% — M — 0 with respect to W obtaining the exact sequence

WAt 5> W—1A5 - WM — 0. With this notation we have:

Proposition 3.4.2. W™'M s generated by % if and only if W'J; =

(WflA)sfl

95



Proof. Apply Lemma 3.4.1 to the localised sequence W—tA! — W-1A5 —

WM — 0. [l

Proposition 3.4.2 is equivalent to saying that W~1M is generated by %
if and only if the intersection of W with the ideal of (s — 1) x (s — 1) minors

of J; is not trivial. So we have the following;

Corollary 3.4.3. Let M be a finitely generated A-module and let gy, -+ , gs
be a set of generators for M. If M is locally principal, then for each 1 =

1,8
G; = {p € Spec(A) \Mgp is generated by the image of g;}

is a Zariski open set and U;G; = Spec(A). Moreover, §; = V (J;)¢ for every

i=1-- s
Proof. p € G; if and only if p 2 J;. O

Note that Corollary 3.4.3 gives a description of G; in terms of minors of
the matrix J;. This description will be used to implement the algorithm in
Section 3.5.

In the rest of this section let J C A be an ideal of A and let B be the
quotient ring A/J; we saw that if B is Cohen-Macaulay of dimension d, then
0= Exti‘imA_d(B ,A) is a global canonical module for B. If B is generically
Gorenstein then we can assume € C B. Let € be the preimage of 2 in A;
then the following B-module is well defined:

(JPT ) N (QF Q)

u(e) - J[pe] . (5)
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Since A is Noetherian, Uy is a finitely generated A-module (and B-module).

~

dim By (By). It follows from Theorem

For every prime ideal p C A write H, =

pbp

3.2.5 that the A-module F3°(H,) consisting of the Frobenius maps on H, is

of the form:

F°(H,) = (6)

(14, : 74,) n (P14, : 04,)
J[pel,zfp

and consequently F¢(H,) = u(e)ﬁp. Since F¢(H,) is generated by one ele-

ment by Theorem 3.2.1, U(E)ZXP is principal as well.

From Corollary 3.4.3 with M = Uy it follows that for every prime ideal
p € Spec(A) = J; G; there exists an i such that p € G, and the A-module

u(e)ﬁp is generated by one element which is precisely the image of g;.

We saw in Theorem 3.2.1 that if a ring S is S5 then the module of Frobe-
nius maps acting on HﬁS(S ) is principal. The following example given by
Karl Schwede shows that if a ring S is not Sy then the module of Frobenius
maps acting on H%S(S) is not necessarily generated by one element. All

assertions in this example are based on calculations carried out with [7].

Example 3.4.4. Let R be the polynomial ring Zsla,b,c,d] and let I be the
ideal generated by ac + bd, b3 + ¢, ab® + cd and a*b + d*>. The quotient ring
S = R/I has dimension 2 and is a domain as I is a prime ideal. Because
S 1s not Cohen-Macaulay then S is not Sy. A canonical module for S is

isomorphic to the ideal w = (d, a,b*+c*) of S. The R-module of the Frobenius
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maps on H34(S) defined in (5) as

(Q2: Q) n (12 : 1)

Uay = 2

is given by the cokernel of the matrix

d a 0 ab d 0 b+
X = c b ab 0 0 d 0
00 d ¢ b a 0

X s generated by the i-th row if and only if the ideal of the matrix X;
(obtained from X by removing the i-th row) is the unit ideal. It turns out
that

X, = (cd, bd, ?, d* be, b*, ac, ab)
Xy = (d?, cd, bd, ac,ab, a® bc + 3, b* 4 bc?)
X3 = (d, b+ c,bc + c,ac, ab?, a*b).
Therefore the R-module of Frobenius maps acting on HflS(S) 15 not principal.

With the notation above, we prove our main result.

Theorem 3.4.5. For every e > 0, the set B, = {p € Spec(A)| HSL(H,) < e}

18 Zariski open.
Proof. Letuy,--- ,u, beaset of generators for U and writefori =1,--- s
G = {p € Spec(A) |u(e)2p is generated by %}
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Define
L (ui* ()

]

Qie = — /oy
T L (v ()

then it follows from Proposition 3.1.4 that

[6('&;/6(9%3)) _ (@ )
—Vet1 AN - z,e/p
Lo (3 (€))
for every prime ideal p. Note that for every i = 1,- - - , s the set Supp(Q;.)¢ =

{p | (Qic)p =0} is open.
If p is such that HSL(H,) < e then p € G, for some ¢; we can then use @; to

compute €2; . and (§i7e)p =0i.e. p € Supp(Qy.)°; therefore

p e (Supp(Qie)?NG).

i=1

Viceversa, let p € |J,(Supp(2;¢)¢ N G;) then p € Supp(2,;.)° N'G; for some
j. Compute HSL(H,) using u;. Since p € Supp(£2;.)¢ then (ﬁj,e),g = 0 and

so HSL(H,) < e. In conclusion

{p € Spec(A)|HSL(H,) < e} = | (Supp(:)” N G:)

i=1
and therefore B, is Zariski open. O
Corollary 3.4.6. sup{HSL(H,) | p € Spec(5)} < oc.
For e = 1 we have the following.

Corollary 3.4.7. The F'-injective locus is open.
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3.5 The Computation of the HSL Loci

In the case where a ring S = R/I of positive characteristic p is a Cohen-
Macaulay domain we have an explicit algorithm to compute the F-injective
locus B, of S for every positive integer e.

With the same notation as in Theorem 3.4.5 we have that B, =J;_,Supp(2; )N
Gi). Because Supp(£2;.) = V(Anng(€;.)) and the sets G; are of the form

V(K;)© for some ideals Ki,--- , K, C R, we can then write B, as
U V(Anng(Q:.0) NV (K" =
UV (Anng(Q0) UV(K)))© =

U V(Anng(Q)K;)° =

(NV (Anng(@)K0)" =

V (Z AnnR(Q@e)Ki) ] )

Therefore, given a positive integer e and a Cohen-Macaulay domain S, an

algorithm to find the locus B, can be described as follows.

1. Compute a canonical module for S, then find an ideal 2 C S which is

isomorphic to it.
2. Find the R-module of the Frobenius maps on H%¢(S) defined in (5) as

(Q[pe} : Q) N (I[pe} : [)
Jpe]

Uy =
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as the cokernel of a matrix X € Mat(R).
3. Find the generators uy,--- ,u, of Ug.
4. Compute the ideals K;’s of the (s — 1) x (s — 1)-minors of X.
5. For every generator u;, compute the ideal Q; . = L (u}*Q)/lo1(u;""' Q).
6. Compute B, as [V(>, Annp(;.)K;)]".

We now make use of the algorithm above to compute the loci in an example.

The algorithm has been implemented in Macaulay2 [7].

Example 3.5.1. Let R be the polynomial ring Zs[zy, - -+ , x5] and let I be the
ideal I = (2341173, 110923+ 2305, 2203+ 790375). The quotient ring S = R/I
is a domain because I is prime and it is Cohen-Macaulay of type 2 so it is
not Gorenstein. A canonical module for S is given by Extimf-dmS (g p)

and can be produced as the cokernel of the matrix

Ty T T3TH

T3 T2 IL‘l.l’Z

which s isomorphic to an ideal ) which is the image in S of the ideal
(22, x1, T375) in R.
The R-module Uy of the Frobenius maps on HSIS(S) turns out to be given

by the cokernel of the one-row matrix

X = ( T3+ 1w T2 + 23xs 1wt + wozius >
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whose generator is u = x3x323 +a3wswi+w3rivsta vy, Since X has only
one row then the computation of B, reduces to B, = [V(AnnR(Qe)}C. It turns
out that I (u"* Q) = (124, Tox3, T123, ¥axs, ¥3), Ir(u2Q) = ((v124, T2T3, T1 T3+
13, 13w5)) = I3(uQ). Consequently, being Q = m and ) = %,
we have By = V (x1, Ta, 23)°UV (21, 29, T5) UV (23, 23, 14)¢, By = V (22, T3, 14)°
and B, = V(1) for every e > 1. In other words, the HSL-number can be
at the most 2. More precisely, if we localise S at a prime that does not
contain the prime ideal (1, z9,3) N (21, 29, T5) N (23, 23, 74) then we get an
F-injective module. Qutside (x2,x3,z4) the HSL-number is less or equal to

1; On V(xq,x3,x4) the HSL number is exactly 2.

3.6 An Application: F-injectivity and F-purity

Definition 3.6.1 (F-pure). Let (R,m) be a Noetherian local ring of equal
characteristic p > 0. A map of R-modules N — N is pure if for every R-
module M the map N @r M — N Qg M is injective. A local ring (R,m) is

called F-pure if the Frobenius endomorphism F: R — R is pure.

We note that F-pure implies F-injective [11] and the converse holds if R
is Gorenstein [6, Lemma 3.3]. The following is an example constructed by
Fedder in [6, Example 4.8] that is an example of ring which is F-injective

but not F-pure.

Example 3.6.2. Let R be the local ring K[xy, - -+, T5|m, where m is the (maz-

imal) ideal generated by the variables xq,--- x5 and K is a field of charac-
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teristic p. Let I be the ideal of two by two minors of the matriz

Ty T3 s

n
T4 T3z T

If p <n then R/I is F-injective but not F-pure.

We now revisit Theorem 1.1 from [25] which gives some other examples
of rings which are not F-pure. Our algorithm shows that for some p and n

these rings are F-injective.

Example 3.6.3. Let R be the polynomial ring K[z, - -, 5] and Jgp 0 my the

ideal generated by the size two minors of the matrix

2 m
]+ 2T5 X2 Ty

T3 2 2l —ay

where m and n are positive integers satisfying m — m/n > 2 and p is the
characteristic of the field K; Singh proved in [25, Theorem 1.1] that if p and m
are coprime integers then Sgp pmy = R/ Jpnmy is not F-pure. Our algorithm
implemented in Macaulay? [7] shows that in the following cases Sy, my are

F-injective.
ep=3,n=2 m=7,---,1000;
ep=5n=2 m=6,---,100;
ep=7,n=2 m=6,---,100,

e p=11,n=2, m=6,---,100;
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ep=3n=3 m=2_8.

3.7 An Application: Test Exponents for Frobenius Clo-

sures and HSL. Numbers
Let S be a ring of characteristic p and J C S an ideal.

Definition 3.7.1. The Frobenius closure of J is the ideal
J'={aeS|a" € JP for some e > 0}.

Note that if a?” € JP7 then a** € J¥I for every e > é.
Let g1, - - - gn be a set of generators for J¥. For each generator g; let e; be the
integer such that ¢** € JP“. If we then choose € = max{ey,--- ,e,} then
(JF)[pé] C JIP’l. We say that @ is a test exponent for the Frobenius closure of
J.

With the notation introduced in Section 2.2, we have the following.

Theorem 3.7.2. [14, Theorem 2.5] Let (S,m) be a local, Cohen-Macaulay
ring and let x = x1,--- , x4 be a system of parameters. Then the test exponent

for the ideal (z) is € = HSL(H%4(S)).

Proof.

S z1an orezn O @iean
HiS(S):hm(——>---—> _t_>)
Sx -

has a natural Frobenius action T" which we can define on a typical element
of the direct limit as

Tla+x'] =a” +x".
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Therefore a?* € xP° if and only if T¢[a + x'] = 0 i.e. [a + x'] is nilpotent and

we can take € = HSL(H%4(S9)). O

Corollary 3.7.3. Let S be the quotient of a polynomial ring and let € be the
bound for {HSL(HZ™S(S)) | m is mazimal}y. If J C S is locally a parameter

ideal (i.e. for every maximal ideal m O J, Jy is a parameter ideal) then

(JE)Pl = g,
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4 The non Cohen-Macaulay Case

In this chapter we generalise the results proved in Chapter 3 to any complete

ring by proving that for all e > 0, and for all 7 > 0 the sets
V.; = {p € Spec(R) | HSL(H](R,)) < e}

are Zariski open. Given any local ring (R, m) (not necessarely Cohen-Macaulay)
of dimension d, we define w to be a canonical module for R if w is an R-module
such that w¥ = H%(R) (as in the Cohen-Macaulay case).

We will tackle the problem starting by generalising the operator I.(—)
which we have defined in Section 3.1. We will then find a different method
to describe the Frobenius action on H! (R) making use of the following result

proved by G. Lyubeznik.

Proposition 4.0.4 (see Section 2 [19]). Let (R, m) be a local ring and I C R
an ideal and write S = R/I. Consider H.(S) as an R[T; f¢]-module where
T is the natural Frobenius map. Write 6 = dim R.

Then A°(H: (S)) is isomorphic to the map
Ext};7(R/I,R) — Ext};/(R/IP R)

induced by the surjection R/IP — R/I.

Finally we will give an algorithm to compute the HSL-loci in the general
case and give some examples.

Although this new method works for every complete ring, the new algorithm
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is computationally much slower than the one described in Section 3.5.

4.1 Generalisation of the Operator /.(—)

In this section we generalise the I.(—) operator, which we have previously
defined on ideals, to submodules of free modules. Also, we prove that it
commutes with completion and localisation as in Proposition 3.1.4.

We recall that if R is a ring and A is a matrix with entries in R then AP‘]

indicates the matrix obtained from A by raising its entries to the p°-th power.

Definition 4.1.1. Let M C R* be an R-submodule. We define MPT o be

the R-submodule of R® generated by {mPl | m € M}.

Definition 4.1.2. A ring R is intersection-flat if for all e > 0 and for any

family { My} of R-modules,
FR@p( My =()FSR®g M,.
A A

Note that polynomial rings or power series rings with coefficients in an
F-finite ring, and complete regular rings are intersection-flat, see [13, Propo-
sition 5.3]. We will assume in this section that R is a regular ring intersection

flat for all e > 0.

Definition 4.1.3. Let M be a submodule of R*. We define I.(M) to be the

smallest submodule L of R* with the property that M C LIP).

Theorem 4.1.4. Let R be reqular and intersection-flat, then I.(M) exists

for every submodule M C R* .
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Proof. We want to prove that there exists a submodule L of R* with the
property that L is the smallest submodule with the property that M C LP,
Let L be the intersection of all the submodules L, of R* such that their
Frobenius p®-th power contains M. Since R is regular, we can identify F(L)
and L and from the intersection-flatness it follows that L7 = (), L7,
Because M is contained in each L&pe] then M C LIPl and L is minimal with

this property. ]
Lemma 4.1.5. Let M be a submodule of R*. Then MPINR* = (MNR*)¥"].

Proof. G. Lyubeznik and K. E. Smith proved in [17, Lemma 6.6] that this
is true for local rings. For a non-local ring R, M1 N Ry = (MnN Rg)[pe] for

every prime ideal p. Intersecting with R we get:

MPIARY = (M NRHPINR* = (M N Ry N R = (M 0 R)P,

We generalise Lemma 3.1.3 with the following:

Lemma 4.1.6. Let W be a multiplicatively closed subset of R. For any

submodule M of R* the following identity holds:
I,W™IM) =W I (WM N R%).

Proof. Let L € W~'R® be a submodule such that WM C LP. Then

LPFIN RY = (L N R*)P. Since WM N R* C LI N R™ then I (WM N
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Ry C LN R* and so W (WM N R*) C W~LnNR*) C L. Moreover,

WM C WY (WM N RY)
C WL (WM N R

= (WLIL(W™'M N R*))P']

so WL (W=M N R®) is the smallest submodule K C W~1R* for which
WM C KPPl Hence I, (W™'M) = W I(W~'M N R%). O

Theorem 4.1.7. [.(—) commutes with localisation and completion.

Proof. Let W be a multiplicatively closed subset of R. For any submodule
M of R* we have M C WM N R* so W I,(M) C W I, (WM N R%)
and the latter term is the same as I.(W~'M) for lemma 4.1.6. So we only
need to prove the inclusion I,(W~'M) C W~ (M). Since M C I,(M)P’]
then WM c W (M)PT and W I,(M)PT = (W1, (M))P because
of 4.1.5; since I.(W~'M) is the smallest such that its p-th Frobenius power
contains W' M then we have I.(W M) C W' (M) i.e. I.(—) commutes
with localisation.

Using Lemma 4.1.5, the same argument proves that I.(—) commutes with

completion. O

4.2 The Frobenius Action on E%(K)

We have seen in Example 1.2.1 and Example 2.8.5 that if R is a regular local
ring then R is isomorphic to a power series ring K[z, - - - , z,]] for some field

K of characteristic p and that the injective hull Fr is then isomorphic to
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the module of inverse polynomials K[z, - - ,z, | which has a Frobenius map
given by FAz{" .- adn = NPz ... 2P for all oy, -+, a, < 0.
Let F' be the natural Frobenius map on Eg; for any o X a-matrix U we can

define a Frobenius map Oy, on Eg given by

Z1 Fezl

Zg Fez,

Theorem 4.2.1. Let M be an Artinian R[©; f¢|-module. Then M can be
embedded into £ for some a > 1 and the Frobenius action on M s given by
O, for some a x a-matriz U. Furthermore, M is isomorphic to Annge (A")
for some B x a-matriz A and the Frobenius action on Annge(A') is the

restriction of the action on Ef to Annga (A").

Proof. Let M be an Artinian R[©; f¢]-module, then M can be embedded
into £} for some o > 1. An application of the Matlis dual to the inclusion
M C E% gives the map R* — MY = Coker A and if we apply the A®-
functor to M we obtain the map Coker A — Coker AP and this must be
given by the multiplication by some o x a-matrix U. If we make E% into an
R[O; f¢]-module by taking © = Oy, then we get the following commutative

diagram

R* —— Coker A

Pk

R* — Coker AP,
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Note that U must satisfy ImUA C Im AP,

Apply now the We-functor to the latter diagram to get the inclusion of
R[O; f¢]-modules M C E¢ where the action of © on E% is given by Op.. As
a submodule of E%, M = Annga(A*) and the action on Annge (A") is given

by the restriction of the action of © on E* to Annga (A"). O

4.3 HSL Numbers

In this section let R be a regular local ring and M be an R[O©; f¢]-module.
Using the same notation as in the previous section write A' (M) = Coker A LA
Coker APl where A is an o x f-matrix with coefficients in R and U is an
a X a-matrix with coefficients in R. Note that M is an R[©¢; f¢]-module and
A°(M) = Coker A M) Coker AP,

For all e > 0 define M, = {m € M | ©°(m) = 0} and note that {M.}.>o
form an ascending sequence of R[©¢, f¢]-submodules of M that stabilises by
Theorem 2.10.3.

Apply now the A°-functor to the inclusion M, C M obtaining the following

commutative diagram:

Coker A

Coker B,

U[p“].,.U[pJUL ly[pHJ..,Ulp]U
Coker AP) —~ Coker BP.

for some a x y-matrix B,.

Since A¢(M,.) = 0 then the map Coker B, v U, Goker B must be

zero too. Since for every e > 0 M, is the biggest submodule of M which
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is killed by ©¢, then B, must be the matrix with the smallest image which
contains the image of A making the latter diagram commute. This means
that

e—l] .

ImB, =Im A+ I (Im(UP" ... UPIy))

and the descending chain {B.}.>o stabilises (when the chain {M.}.>o sta-

bilises too) if and only if 2= = 0.

Be+1 o

We have proved the following.

Theorem 4.3.1. Let R be a regular local ring and M be an R[O; f]-module.
If AY(M) = Coker A Y Coker APl then, the HSL-number of M is the smallest

e such that
Im A + I(Im(UP'1. .. gy
Im A+ I (Im(UP] - - URIT))

4.4 A New Method for the Computation of the HSL

Loci

In this section let R be a polynomial ring over a field of prime characteristic
p, let I C R be an ideal of R and write S = R/I. Note that we are not
requiring any further assumptions on the quotient S.

For every ideal p C R consider the local cohomology module ng?§p(§p)

which we will denote for short H,. Each H, is an Artinian R[©; f]-module.

Using 2.9.3 write d, ; = dim R, — j; we have:

A°(H])=Ext3?(R/I,R) ® R % F(Ext2’(R/I,R) ® R)



and F(Ext?’(R/I, R) ® R)~Ext®(R/I? R)® R. Note that the map ¢,

is induced by the surjection ¢: R/IP) — R/I by Proposition 4.0.4.

Theorem 4.4.1. For all j > 0 fir a presentation Coker(RPi A RY) =
Ext%(R/I,R) and a matriz U;: Coker A; — CokerAg.p] which is isomor-
phic to the map Ext’(R/I,R) — Ext’(R/IV) R) induced by the surjection

¢: R/IVP) — R/I. For all j >0 and e > 0 write
Bj.=ImA; + [e(Im(Ujﬂp%l] ... U][P] U,).

Then HSL(Hg) < e if and only if p is not in the support of Bj._1/Bj..

Proof. Note that A'(H}) is the completion at p of the map U;: Coker A; —

Coker AED ) so from Theorem 4.3.1 it follows that HSL(H,) < e if and only if

Ry ®Im A; + L(Im(U ... Ul

Ry @ Im A; + Loy (Im(UP7 - 0P )

=0.

By Proposition 4.1.7, the latter equality can be written as ]/%\,J@(Bj,e,l/Bj,e) =

0 i.e HSL(H]) < e if and only if p ¢ Supp(Bj._1/Bj.)- O
Corollary 4.4.2. The F-injective locus of S, i.e. N;V1 ;, is open.

Proof. The Frobenius map is injective on Hg if and only if
Im Aj + Il(Im U]) = Im Aj + Raj

for some ;. Set B,y =Im A; + R% then the F-injective locus of S is given

by the intersection on j of the complements of the supports of Bj/B; 1,
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Baim 5,0/ Baim 5.1 therefore it is open. O

Since every set V; .= {p € Spec(R)| HSL(H]) < e} is open and Spec(R) =

U050 Vie then we also have:

Corollary 4.4.3. The set {HSL(Hg) | p € Spec(R),j > 0} is bounded.

4.5 A New Algorithm

Let R be a polynomial ring over a field of prime characteristic p, let I C R
be an ideal of R and let S = R/I be a quotient ring which is not necessarely
Cohen-Macaulay. Write A°(H]) as Coker(A;) % Coker(AEp ") for some ma-
trices A; and U; as we did in Section 4.3. Then we can compute such matrices
explicitly as follows.

Ajn A; A A A .
Let --- 2% F;, 2 ... 3 3 Fy 2% R/T — 0 be a free resolution of R/I

and apply the Frobenius functor to it obtaining

I I Fy R/I 0
A A A
7j | Uy Up | LPT
| AP Izl 1 gl
F; I F—s Fp—° R/I[p]—>0

where the maps U;’s are constructed in this way; knowing ¢ and Ay, we
construct the map Uy in the commutative diagram above in such a way to
make
Ao
Fop——R/I——0
A

U | soT
| AlP]

Fy—> R/IP ——.
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commutative. Once we know Uy we can construct U; and so on. In general the

computation of U; requires that we know the previous maps ¢, Uy, - -, U;_1.

Therefore, given a positive integer e, an algorithm to find the HSL-loci

Vie of S is the following;

1. Find U; and [lj as explained above.

2. Find the induced maps U; and A; by applying Hom(—, R) to the di-
agram above (the matrices get transposed and the arrows reversed),
then take the cohomology.

e—1

3. Compute B;. = Im A; + LAmU" - UPU,));

4. Compute

()Supp(Bj-1.e/Bje)" =

J

(\V(Anng(Bj_1./Bj.))"-
J
The fact that to compute each U; we have to calculate ¢ Ext’s makes the
algorithm just described significantly slower than the one in Section 3.5. On
the other hand, this algorithm always succedes in the computation of the

HSL-loci as it does not require assumptions on S.

We compute now the HSL-loci of the ring from Example 3.4.4 where the
algorithm described in Section 3.5 could not be used as the ring was not

Cohen-Macaulay. The algorithm has been implemented in Macaulay2 [7].
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Example 4.5.1. Let S be as in Example 3.4.4, i.e. let S be the quotient
R/I with R = Zy[a,b,c,d] and I =< ac+ bd,b> + ¢2, ab® + cd, a®b + d* >.
We saw that S is a domain which is not Sy and the R-module of Frobenius
maps acting on HY (S) is not principal.

Compute a free resolution for S then apply the Frobenius functor to it ob-

taining the following commutative diagram;

R A2 gt Mg N g M pp 0
A A A A
Us | Uy | U, | Uo | ‘pT
| Alp) | Alpl | Alpl | Alpl
R' 2> R 2RV IS RS R/TP

ac+bd a*d  bd+ cd 0
0, 0 ad + d? v 0 |
0 a’ 0 0
0 0 ad+d* b +bc+c?
a’b*+abd-+bd> b b2d? b2c?
0, a?d+ad? ab®*+abctac®+bed a*cd+abd? b?cd+c*d
0 0 acd+cd? 0
0 ab*+abc+b*d  ddc+a’bd+ad*+d®  ab’c+bPd+bed
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Us = ( abed + bed? ) :

04:(0).

We then compute the generating maps U;: Coker A; — Coker Ag.p] induced

by U;; it turns out that HS 18 zero for every p.

U3=<abcd+bcd2) Agz(dcba>

therefore Im A3 + [,(ImUsz) = (d ¢ b a 1) =Im A3+ R, i.e. the Frobenius
map s injective on le for all p. .
ab*+ab+ac+bd+cd  ab+ac+bd a+d b+c a b

U2: 2=

ab3+bed abc+b2d+cd ab ¥ d c
therefore

a+d b+c a b 1 0
Im Ay + I (Im Uy) = =Im A, + R?
ab > d ¢ 01

i.e. the Frobenius map is injective on Hp2 for all p;
finally U, = 0 so the Frobenius action on Hg’ 15 1njective as well. It follows
that S is F-injective.

In the next example we consider a quotient of a ring of characteristic
p. For p = 2 such a ring is not Cohen-Macaulay and we compute its HSL-

loci by using the algorithm described in this section. Then we change the
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characteristic of the ring to p = 3 and what we get is a Cohen-Macaulay ring

so we use the algorithm described in Section 3.5 instead.

Example 4.5.2. Let R = K[z -+, z5], with K a field of positive character-
istic p, let [ =< xoxy + 1125, 5 + T3TE, 11735 + ToT3T5, Tax3 + iy >C R be

an ideal and write S = R/I.

o I[f p =2 then S is a 3-dimensional not Cohen-Macaulay ring whose
non-Cohen-Macaulay locus consists of p =< 1, X9, Ty, T5 >.
A free resolution for S has length 3. Since pd(R/I)=dimR—depth(R/I),
depth(R/I) cannot be 0 or 1 otherwise pd(R/I) would be greater than
the length of the free resolution. Hence H) =0 and Hy =0 for all p.
Consider the local cohomology module H?; with the usual notation we

have

Us = ( TAT3T4T5 + T ToT3T2 ) and Az = ( Ts Ty Ty Ty )

therefore ImA3+[1(Im Ug) = < Ts T4 To T1 Ty Lo ) # IH] A3+R

It follows that HSL(H) < 1 (i.e. the Frobenius action is injective) if

and only if p ¢ Supp <Mm%> = V(< xo, x5 >).

ImAg—l—Ig(ImU?Ep]Ug) = ( Ts T4 To T1 Ty o ) = ImA3+[1(Im U3)

consequently Supp (;Zﬁgﬁg;ﬂ%@) = V(1) i.e. HSL(H}) < 2 for
3

all p. In conclusion if we localise at a prime q that does not contain
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the prime v =< x9, x5 > then the action of Frobenius on Sy is injective

and in particular the HSL(HZ2(S,)) = 1.

Finally consider the Frobenius action on Hg’.

T3y + T1T3T5

Uy = T1T4T5
Tox?
and

Ty
Ay = | x5
0

so we have
T4 T
ImAy + L(ImUs) = | 25 a4
0 0

T1T3T4

ToX3Ts

X1

)

0

Ty

Ts

T4

L5

T3
0

Ly

ToX 4Ly + xlxg

xs

T4

0

T

X2

0
ToX3Ty + T1T3T5

xgxi + x12425

Z1

T2

therefore the Frobenius action is injective on Hg’ for every prime ideal

p.

In conclusion we have the following HSL-loci: By = V(< x9, x5 >)°

and By =V (1).

e Let now p = 3. Then S is Cohen-Macaulay of dimension 2 and a

canonical ideal for S is the image in S of the ideal

2 3 2
Q) =< x375 + 14, Ty + 1+ X2 — X5, T1X5, ToXy, 124, T2T3, Ty + T35 >

79



in R. A generator for the R-module of the Frobenius maps on HS ¢(S)

8
_ 2,2,.2.6,2, 22334 2246 2.2 7 2,22 4 3
U = — TITHX3T4T5+T]TT3LyTs — T]THT3 T+ T]THL3T 4 T5 — L] XT3L, T+
2,23, 5 2,2 .8 4,22 2 2 3,.3,.2.2 2 2,422 2
TITRX3L4 Xy — TILHL, — T{TRL3L Xy + TITHL3L Ty — T]LoX3X 5 T5+
2.2, 5.2 2,322 3 2,222 4

and it turns out that

2 2
Il(UQ) =< T1X5,Ty + T1 + To — T, Taly, L1y, ToX3, T3T5 + Ty4Ts,

3 2 4
T3TyTs — T — T + Ts, Ty + 325 >= [o(u"Q)

so that Bg = Supp (%) =V (21,29, 24, 25)¢ and By = V(1)°.
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5 Conclusions

In this thesis we computed the HSL-loci of quotients of polynomial rings. We
approached the problem at first in a purely theoretical way and then we trans-
lated the results into an algorithm that allowed us to do our computations
explicitly on concrete rings. We first treated the case of Cohen-Macaulay do-
mains for which the algorithm was quite fast and then we described another
strategy that works for any ring. As we noted previously, the only disadvan-
tage of the second method is that the algorithm for it is much slower than
the algorithm for the Cohen-Macaulay case. The common ingredient used
in both the Cohen-Macaulay case and the non-Cohen-Macaulay case is that
they make use of an operation (more specifically the I.(—) operator) that
commutes with localisation and completion.

We gave a constructive description of loci and invariants defined by various
properties of a Frobenius action on some modules. There may be other loci
and invariants defined by properties of Frobenius maps that could be de-

scribed using similar methods.

Karen Smith gave the following characterization of F-rational rings using

the Frobenius action F on HZ(R):

Theorem 5.0.3. [26] Let (R, m) be a d-dimensional excellent local ring of
characteristic p > 0. Then R is F-rational if and only if R is Cohen-
Macaulay and HE(R) has no proper nontrivial submodules stable under the

Frobenius action F'.
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One could consider a non-local ring S = R/I and find an explicit de-
scription for the F-rational locus in terms of the simplicity of the top local
cohomology module i.e find an object G; such that G; = 0 if and only if

H{(S) is simple.
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6 Appendix: Code Used

This appendix includes the code used throughout the thesis. For complete-
ness all the code is included but only the code marked by a * was written by
myself, the rest was written by Moty Katzman. The algorithms have been

implemented in Macaulay2, [7].

1*) The next two functions tell you whether a certain ring is Cohen-Macaulay

and compute the Cohen-Macaulay type respectively.

CMR= (M) ->(
R:=ring(M);
cc:=res coker M;
pd:=length(cc);
isCM:=((dim(R) -pd)==dim(coker M));
return isCM;

TypeR=(M)->(
R:=ring(M);
pd:=pdim (coker M);
depth0fRmodI:=dim(R)-pd;
B:=res coker M;
type:=rank (B_pd);
return type;

2*%) The function OMEGA computes a canonical ideal for a ring R/I where

I is defined from the matrix M.
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Allnumbers=(n)->(
L:=0; local i;
for i from 1 to (n-1) do(
L=flatten toList(L,i););
return L;

Allzeros=(n)->(
L:=0; 1local i;
for i from 1 to (n-1) do(
L=flatten tolList(L,0););
return L;

OMEGA= (M) ->(
R:=ring(M) ;p:=char(R) ;answer:=0;T:=TypeR(M);
if (T==1) then(
if (CMR(M)) then return R;);
delta:=dim(R)-dim(coker M) ;
Omegal:=relations prune Ext~delta(coker M, R"1);
S:=R/ideal (M) ;
sl:=syz transpose substitute(Omega0,S);
s2:=entries transpose si;
s=#s2_1;
L:=rank source si;
ALL:=Allnumbers(p);
ALL=set ALL;
Comb :=ALL"*x*L;
n:=#Comb;
ListComb:=elements Comb;
for i from 0 to (n-1) do(
c:=ListComb_i;
App:=Allzeros(s);
for j from 0 to (L-1) do (
App=c_j*(s2)_j +App;
j=j+1;);
s3:=App;
s3=syz gens ideal(s3);
s3=gens substitute(image(s3),R);
news3=matrix entries s3;
newOmegaO=matrix entries OmegaO;
z:=(news3%newlOmegal) ;
if ((z)==0) then A
answer=substitute(mingens ideal (App),R);
break;}
else print"error";
i=i+1;);
substitute(answer,R);
answer=ideal (answer)+ideal (M) ;
answer=gens answer;
return answer;
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3*) The following function takes an ideal I = ideal(M) (where M is a
matrix) and a canonical ideal Om for a ring R/ideal(M) and computes

the generators of a matrix X whose cokernel is isomorphic to the R-

(J[p] ;J)Q(Q[P] ;Q)

N0 defined in Section 3.4.

module Uy =

FindGeneratorsX=(M,0m)->(
R:=ring(M);
8:=char R;

enTop:=ideal O_R;

01:=first entries M;

02:=apply (01, u->u’p);

03:=ideal(02) :ideal(01);

Omegal:=first entries Om;
Omega?2:=apply(Omegal, t->t"p);
Omega3:=ideal (Omega?2) :ideal (Omegal) ;

if (isRing Om) then GenTop=generators(03)
else GenTop=generators intersect(Omega3,03);
I4:=generators(ideal (apply(first entries M, u->u"p)));
X:=relations prune subquotient(GenTop,I4);
v:=(coker X).cache.pruningMap;
vl:=matrix entries v;
ListGen:=first entries(GenTop *v1);
return ListGen;

4*) The following function takes an ideal I and produces I'7°.

FrobeniusPower= (I,e) —>(
R:=ring I;
:=char R;
ocal u;
local answer;
G:=first entries gens I;
if (#G==0) then answer=ideal(O_R)
else answer=ideal (apply(G, u->u~(p~e)));
answer

I

5%) The following takes a matrix M, an integer e and produces MP7 i.e.
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the matrix obtained by raising to p° the entries of the matrix M.

FrobeniusPowerMatrix= (M,e) ->(

R:=ring M;
8:=char R;

:=entries M;
local i;
local j;
L:={};

apply (G, i->{ L=append(L,apply(i, j—>j"(p~e)));});
substitute(matrix L, ring(M))
)

6 Given two ideals A and B and an intereger e, the following function

gives the ideal I.(A) + B as output.

ethRoot = (A,B,e) —>(
R:=ring(A);
pp:=char(R);
F:=coefficientRing(R);
n:=rank source vars(R);
vv:=first entries vars(R);
R1:=F[v, Y_1..Y_n, MonomialOrder=>
ProductOrder{n,n},MonomialSize=>16];
JO:=apply(1l..n, i->Y_i-substitute(v#(i-1)"(pp~e),R1));
S:=toList apply(l..n, i->Y_i=>substitute(v#(i-1),R1));
GG:=(gens substitute(A,R1))%gens(ideal(J0))
G:=first entries compress(GG);
L:=ideal O_R1;
apply (G, t->
{ L=L+ideal((coefficients(t,Variables=>v))#1);});
L1:=L+substitute(B,R1);
L2:=mingens L1;
L3:=first entries L2;
L4:=apply(L3, t->substitute(t,S));
use(R);
§ubstitute(idea1 L4,R)

7*) The following function calculates v,;
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nu=(e,8)—>(

if e==0 then return 0 else
return sum(0 .. e-1, i -> p~i)
)

8*) Given a canonical module w (Om in the function) and a generator u
(computed using the function FindGeneratorsX as in 6), the following

computes I (u"w).

Li=(e,u,0m,M)->(

if e==0 then return ideal Om else (

if isRing Om then (

q:=char (Om) ;

return ethRoot( ideal(u”(nu(e,q))), ideal(0_0Om),e);)
else (

R:=ring(0m) ;

p:=char(R);

J:=ideal(u~ (nu(e,p)))*ideal Om;

§eturn ethRoot (J,ideal (0_R),e)+ideal(M);););

9*) Given a matrix X and a positive integer j, it returns the ideal of the

minors of the matrix obtained from X by erasing the j*-row.

mathcalGj=(j,X)->(
rows:=(rank target X)-1;
return minors(rows,submatrix’ (X,{j},));

)

10*) The following computes the HSL-loci of R/ideal(M). In particular for

e = 0 we have the F-injective locus.
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Loci= (M,0m,e) ->(

j:=0;

R:=ring(M) ;
FG:=FindGeneratorsX(M,0m) ;

L:= #FG-1,;

D:=ideal O_R;

App:=ideal O_R;
X:=ComputeX(M,Om) ;

for g from 0 to L do(

u:=FG_j;

Wi:=Li(e,u,0m,M);
W2:=Li(e+1,u,0m,M);
J:=mathcalGj(j,X);

ANNIH:= W2:W1;

D=ANNIH*J;

D=radical ideal mingens D;
App=D+App;) ;

App=radical ideal mingens App;
<< IILocus( ll<<e <<I|)=Il<< App << "\n";print"";
return App;

11)'Thefbﬂowdngfuncﬁonwxnnputasagenenﬂjnglnorphknnfbrlemanﬂﬁ?)
in Chapter 4. The output is (A, U) where U: Coker(A)— > F(Coker A)

is the generating morphism.

%eneratingMorphism= (I,i) —>(
ocal F1; local K; local C;

local Flp; local Kp; local Cp;
R:=ring(I);

Ip:=frobeniusPower(I,1);

M:=coker gens I,

Mp:=coker gens Ip;

resM:=res M;

resMp:=res Mp;

f:=inducedMap (M, Mp) ;

resf:=res f;

G:=resf#i; G=transpose(G);
FO:=(resM.dd)#(i); FO=transpose(FO0);
if (resM.dd)#7(i+1) then(
Fl=(resM.dd)#(i+1); Fl=transpose(F1);
K=ker F1;)else(K=target(FO0););
templ:=substitute(gens K,R);
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if (templ==0) then C=coker(F0) else
C=subquotient (substitute(gens K,R),F0);
C=subquotient (substitute(gens K,R),F0);
Cl:=prune(C);

h:=C1.cache.pruningMap;
generatingMorphismO:=G*gens (K) *matrix(entries h);
FOp:=(resMp.dd)#(i); FOp=transpose(FOp);

if (resMp.dd)#7(i+1) then
(Fip=(resMp.dd)#(i+1); Flp=transpose(Flp);
Kp=ker Flp;)else(Kp=target(FOp););
templ=substitute(gens Kp,R);

if (templ==0) then Cp=coker(FOp) else
Cp=subquotient (substitute(gens Kp,R),FOp);
Cp=subquotient (gens Kp,FOp);
Clp:=prune(Cp);

hp:=Clp.cache.pruningMap;
A0:=gens(Kp)*matrix(entries hp); A=AO| FOp;
gbA:=gb(A, ChangeMatrix => true) ;
B:=generatingMorphismO// A;

--- Now generatingMorphismO=A*B

k:=rank source AO;

§relations(Cl), submatrix(B,toList(0..(k-1)),))

12) The function mEthRoot computes I.(—) of submodules of free modules

as defined in Section 4.1.

getExponents=(f)->(
answer:={};
t:=terms(f);
apply(t, i->

{

exps:=first exponents(i);
c:=(coefficients(i))#1;

c=first first entries c;
answer=append (answer, (c,exps)) ;

B

answer
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mEthRoot0fOneElement= (v,e) —>(
local i; local j;

local d;

local w;

local m;

local answer;

R:=ring(v); p:=char R; q:=p~e;
F:=coefficientRing(R);

n:=rank source vars(R);
V:=ideal vars(R);

vv:=first entries vars(R);
T:=new MutableHashTable;
alpha:=rank target matrix(v);
B:={};

for i from 1 to alpha do

vii=v_(i-1);
C:=getExponents (vi) ;
apply(C, c—>

{

lambda:=c#0;

beta:=c#1;

gamma:=apply (beta, j—> (j%q));

B=append (B, gamma) ;

key:=(i,gamma) ;

data:=apply(l.. (#beta), j—> vv_(j-1)" ((beta#(j-1))//q));
data=lambda*product(tolList data);

if (T#7key) then

{
T#key=(T#key)+data;
}

else

T#key=data;
1
19K
B=unique (B);
TT:=new MutableHashTable;
apply(B, b—>

ww:={};

for i from 1 to alpha do if T#7(i,b) then
ww=append (ww,T#(i,b)) else ww=append(ww,0_R);
ww=transpose matrix {ww};

TT#b=ww;

1D

KEYS:=keys (TT) ;

answer=TT# (KEYS#0) ;

for i from 1 to (#KEYS)-1 do answer=answer | TT#(KEYS#i);
answer

90




mEthRoot = (A,e) —>(

local i;

local answer;
answerl:=apply(1l..(rank source A),

i->mEthRootO0f0OneElement (A_(i-1),e));
if (#answer1==0) then
answer=A;

else

answer=answer1#0;
apply(2.. (#answerl), i->answer=answer | answerl#(i-1));

I
mingens( image answer )

)
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