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Abstract

Suppose that B is the quotient of a polinomial ring with coefficients in a

field of characteristic p. In the first part of the thesis we suppose that B is

Cohen-Macaulay and, with Hp being the local cohomology module HpBp(Bp),

we study the Frobenius action Θ on Hp. In particular we are interested in

computing the smallest integer e ≥ 0 for which Θe(Nil(Hp)) = 0, where

Nil(Hp) denotes the set of all elements in Hp killed by a power of Θ. Such

a number is called the HSL number of Hp. We prove that, for every e,

the set of all prime ideals p for which HSL(Hp) < e is Zariski open. An

application of this result gives a global test exponent for the calculation of

the Frobenius closure of parameter ideals in Cohen-Macaulay rings. In the

second part of the thesis we drop the assumptions made on B and we let B

be any quotient of a polynomial ring. Using the notation Hj
p := Hj

pBp
(Bp),

we show that every set Vj,e =
{
p ∈ Spec(B) | HSL(Hj

p) < e
}

is Zariski open

and so that
{

HSL(Hj
p) | p ∈ Spec(B), j ≥ 0

}
is bounded. Both the methods

from the first and second part of the thesis are implemented as algorithms

in Macaulay2 and are used to give examples.
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1 Introduction

Local cohomology was introduced by Alexander Grothendieck in the 1960s

([8]) and it has since been a powerful tool to approch many geometric and

algebraic problems as it captures several properties of a commutative ring.

For example local cohomology modules can be used to measure the depth of

a module on an ideal (see Property 2.7.2), and as a way to test the Cohen-

Macaulay and Gorenstein properties. In positive characteristic, the Frobe-

nius endomorphism naturally induces Frobenius actions on all the local co-

homology modules (see Section 2.6 for the definition). One of the goals of

this thesis is to understand when the Frobenius action on local cohomology

modules is injective or how far it is from being injective. A way of measuring

this is given by the HSL-numbers (see 2.10.4 for the definition).

In the first part of the thesis we consider a Cohen-Macaulay quotient S of

a polynomial ring R of positive characteristic which is also a domain. For

these rings we prove the following:

Theorem 1.0.1. (Theorem 3.4.5) For every prime ideal p let Sp be the local-

isation of S at p and let H
dimSp
p (Sp) denote the (dimSp)-th local cohomology

module of Sp with respect to p. For every non-negative integer e, the set

defined as

Be =
{
p ∈ SpecR | HSL

(
H

dimSp
p (Sp)

)
< e
}

is Zariski open.

Hence HSL is upper semi-continuous. Note that this result generalises

the openness of the F-injective locus (see Definition 2.10.6). Moreover, an
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application of this result gives a global test exponent for the calculation of

Frobenius closures of parameter ideals in Cohen-Macaulay rings (see Corol-

lary 3.7.3).

In order to prove Theorem 3.4.5 we show the following.

Theorem 1.0.2. Let S = R/I be a quotient of a polynomial ring of positive

characteristic p. Let ω̄ be an ideal of S which is isomorphic to a canonical

module for S. If ω denotes the preimage of ω̄ in R, then the R-module

consting of all eth-Frobenius maps acting on Hd
mS(S) is of the form

Fe =

(
I [pe] : I

)
∩
(
ω[pe] : ω

)
I [pe]

.

This result, together with the one previously shown by Lyubeznik in [17,

Example 3.7] which states that if S is S2 then Fe is generated by one element

which corresponds to the natural Frobenius map, gives an explicit description

of any Frobenius map acting on Hd
mS(S). We will also show with an example

that if the ring is not S2 (Serre’s condition, see Definition 2.2.10) then Fe is

not necessarely principal (see Example 3.4.4).

In the second part of the thesis we consider any quotient of a polynomial ring

and, dropping all the assumptions made previously, we consider the Frobenius

action on all the local cohomology modulesH i
p(Sp). Using a different method,

we prove that every set Vi,e =
{
p ∈ Spec(R) | HSL(H i

p(Sp)) < e
}

is open

and as consequences that the injective locus is Zariski open and that the set{
HSL(Hj

p) | p ∈ Spec(R), j ≥ 0
}

is bounded.

Both the methods have been implemented as algorithms using Macaulay2, [7].
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The algorithms are included at the end of the thesis in the appendix and have

been used throughout the thesis to compute all the examples. Even though

the results obtained in the second part of the thesis are a generalisation of

the results obtained in the first one, from a computational point of view the

first algorithm is more efficient than the second.

1.1 Outline of Thesis

Chapter 2 consists of preliminary mathematical material which serves the

purpose of setting up the vocabulary and the framework for the rest of the

thesis. We define regular rings (Section 2.2) and Cohen-Macaulay rings (Sec-

tion 2.1), give some examples and state some of their main properties. In

Section 2.3 we define complex chains and give two useful examples: the

Koszul complex and the Čech complex. In Section 2.4 we discuss some ba-

sic facts from Category Theory. In Section 2.5 we define what we mean

by the injective hull of a module, we introduce the Matlis functor and re-

call the Matlis Duality Theorem (Theorem 2.5.9). In Section 2.6 we define

local cohomology modules and give a few different characterisations for it.

Some properties of local cohomology modules will be listed in Section 2.7. In

Section 2.8 we present Gorenstein rings and Section 2.9 canonical modules.

In the sections 2.10 and 2.11 we introduce some characteristic p tools: the

Frobenius endomorphism and the ∆e- and Ψe-functor.

We will start Chapter 3 by defining the operator Ie(−) and showing some of

its properties. In particular we will prove that this operator commutes with

localisation and completion. We will then consider a quotient of a regular lo-
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cal ring S of dimension d and describe the action of Frobenius on its top local

cohomology module Hd
mS(S). After that we will give an explicit description

of the module consisting of all the e-th Frobenius maps acting on Hd
mS(S)

and compute the HSL-numbers in the local case. In Section 3.4 we will

consider a Cohen-Macaulay non-local domain B = A/J and will prove the

main result: the sets Be =
{
p ∈ SpecB | HSL(H

dimSp
p (Sp)) < e

}
are Zariski

open. In Section 3.5 we will describe an algorithm used to compute these

sets Be and give some examples. The results of Section 3.7 give a global

test exponent for the calculation of Frobenius closures of parameter ideals in

Cohen-Macaulay rings.

Chapter 4 contains a generalisation of the results presented in Chapter 3 to

the non-Cohen-Macaulay case and is translated into a new algorithm in Sec-

tion 4.5. The purpose of this chapter is to prove that for all e > 0, and for

all j ≥ 0 the sets Ve,j =
{
p ∈ Spec(R) | HSL(Hj

p(Rp)) < e
}

are Zariski open.

In Section 4.1 we generalise Ie(−) which we have had previously defined for

ideals to submodules of a free module; we prove that this operator commutes

with localisation and completion. In Section 4.2 we describe the Frobenius

action on the direct sum of α copies of the injective hull E; as every Artinian

module M with a Frobenius action can be embedded into Eα, it follows that

we can give a description of the Frobenius action on M as a restriction of

the action on Eα to M . In Section 4.3 we will compute the HSL-numbers of

a module over a regular local ring with Frobenius action. And in Section 4.4

we will present a new method for the computation of the HSL loci.

The algorithms that have been used throughout the thesis to compute all the
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examples can be found at the end of the thesis in the appendix.

1.2 Notation

In this section we fix the notation and terminology used throughout the the-

sis. For further details see [4] and [1].

We denote by A = K[x1, · · · , xn] the polynomial ring with coefficients in

a finite field K and variables x1, · · · , xn. With the notation K[[x1, · · · , xn]] we

will indicate the ring of formal power series. The module of inverse polyno-

mials will be denoted by K[x−1
1 , · · · , x−1

n ]; recall that by that we mean the A-

module that is the K-vector space with basis {xα1
1 · · ·xαnn | αi < 0 ∀i = 1, · · · , n}

and A-module structure defined as follows; if xβ1

1 · · ·xβnn is a monomial then

xβ1

1 · · ·xβnn ·x
α1
1 · · ·xαnn =

 0 if βi + αi ≥ 0, for i = 1, · · · , n

xβ1+α1

1 · · ·xβn+αn
n otherwise.

Let R be a commutative ring. We say that an ideal p ⊂ R is a prime ideal if

whenever ab ∈ p then a or b belongs to p. The spectrum of a ring, denoted

Spec(R), is the set of all prime ideals of R with the Zariski topology, which

is the topology where the closed sets are

V (I) = {p ∈ R | I ⊆ p}, with I ⊆ R ideals.

The radical of an ideal I, denoted
√
I, is the set of all r ∈ R such that rn ∈ I
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for some power n. An ideal I is called primary if whenever xy ∈ I then either

x ∈ I or yn ∈ I for some integer n. If p =
√
I then I is called p-primary. A

primary decomposition of an ideal I is an expression of the form

I =
⋂
i

qi

where the ideals qi are primary; such a decomposition always exists in Noethe-

rian rings (but not in general). A primary decomposition is minimal if
√
qi

are all distinct and if
⋂
i 6=j qj * qi.

We write AnnR(M) to indicate the annihilator of an R-module M i.e.

the kernel of the natural map R → EndR(M). If p is a prime ideal of R

we say that p is associated to M if it is the annihilator of an element of M .

The set of all prime ideals associated to M will be denoted by Ass(M). The

associated primes of an ideal I is the set of associated primes of the module

R/I. The minimal associated primes are the prime ideal in Ass(M) which

are minimal with respect to the inclusion. The primes in Ass(M) that are

not minimal are called embedded primes of M .

An element z ∈ R is called a zero-divisor if there exists r 6= 0 in R such

that zr = 0. It is called non-zero-divisor otherwise. We say that a ring is a

domain if it has no zero-divisors. A ring is local if it has only one maximal

ideal. If R is local with maximal ideal m then we call K = R/m the residue

class field and we often use the notation (R,m,K).

A multiplicatively closed subset of R is a subset W of R such that 1 ∈ W

and such that if s, t ∈ W then st ∈ W . Define a relation ∼ on R ×W as

11



follows: (a, s) ∼ (b, t) if and only if (at − bs)u = 0 for some u ∈ W . ∼

is an equivalence relation and we denote by W−1R the set of equivalence

classes and call it the localisation of R by W . Denote respectively a/s and

b/t the equivalence classes of the elements (a, s) and (b, t) then define the

two operations a
s

+ b
t

= at+bs
st

and a
s
b
t

= ab
st

that make W−1R into a ring.

In particular we write Rp when W = R − p where p is a prime ideal in R.

The localisation of a ring at a prime ideal is a local ring. Analogously, we

can define the localisation W−1M of an R-module M ; define a relation ∼ on

M ×W as follows: (m, s) ∼ (n, t) if and only if (mt − ns)u = 0 for some

u ∈ W . We then define W−1M to be the set of equivalent classes and denote

m/s the equivalence class of (m, s). Note that W−1M is a W−1R-module

once we have defined the usual addition and scalar multiplication. We denote

Mp and Mm the localisation of M at the prime ideal p and m respectively.

For an R-module M it is equivalent that M = 0 and that Mp = 0 for all

prime ideals p (see Proposition 3.8 from [1]). The support of M is the set of

all prime ideals p such that Mp 6= 0 and it is denoted Supp(M). The support

of a Noetherian module is Zariski closed.

A ring R is Noetherian if it satisfies the ascending chain condition on ideals ;

this means that given any chain of inclusions of ideals of R

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · ·

there exists an integer h at which the chain stabilises i.e. Ih = Ih+1 = · · · .

The polynomial ring K[x1, · · · , xn] with coefficients in a field K and n variables
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x1, · · · , xn is an example of a Notherian ring. If W is a multiplicatively closed

subset of R and R is Noetherian then W−1R is Noetherian as well. If R is

Noetherian then R[x1, · · · , xn] is Noetherian. Every ideal of a Noetherian

ring has a primary decomposition. Analogously a module is Noetherian if it

satisfies the ascending chain condition on its submodules.

We say that R is Artinian if it satisfies the descending chain condition on

ideals i.e. if I1 ⊇ I2 ⊇ · · · then there exists an integer h at which Ih = Ih+1 =

· · · . In an Artinian ring every prime ideal is maximal and there is only a

finite number of maximal ideals. Also every Artinian ring is isomorphic to

a finite direct product of Artinian local rings. A module is Artinian if it

satisfies the descending chain condition on its submodules.

An R-module M is finitely generated if there exist x1, · · · , xn ∈M such that

for every m ∈M , m = a1x1 + · · ·+ anxn for some a1, · · · an ∈ R.

If I ⊂ R is any ideal then we define the completion of R with respect to

I, namely R̂, as

lim
←−

(R/I i) =

{
(· · · , r̄3, r̄2, r̄1) ∈

∏
i

R/I i | ri+1 − ri ∈ I i
}
.

If M is an R-module then we define M̂ = R̂⊗M . Alternatively consider

the natural surjections · · · →M/I3M →M/I2M →M/IM → 0 and define

the I-adic completion M̂ of M as the inverse limit :

lim
←−

(M/I iM) =

{
(· · · , m̄3, m̄2, m̄1) ∈

∏
i

M/I iM | mi+1 −mi ∈ I iM

}
.

A fundamental example is the following.
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Example 1.2.1. The completion of the polynomial ring S[x1, · · · , xn] with

respect to the ideal (x1, · · · , xn) is the ring of formal power series S[[x1,· · ·, xn]].

The completion of a ring (a module) is a ring (a module). The completion

of a Noetherian ring is a Noetherian ring. We say that a ring is I-complete

if R = R̂.

A sequence of R-modules and R-homomorphisms

· · · →Mi
fi→Mi+1

fi+1→ · · ·

is exact if Ker(fi+1) = Im(fi) for all i, where Ker(fi+1) and Im(fi) are the ker-

nel of fi+1 and the image of fi, respectively. In particular an exact sequence

of the form

0→M1
f1→M2

f2→M3 → 0

is called short exact sequence and it follows from the definition that f1 is

injective and f2 surjective.
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2 Background

In this chapter we give a brief introduction to the background and required

Commutative Algebra tools that we will use throughout the thesis.

2.1 Regular Rings

Definition 2.1.1 (Regular sequences). Let R be a ring and M an R-module.

A regular sequence (or M-sequence) in an ideal I ⊆ R on M is a sequence

of elements x̄ = x1, · · · , xn ∈ I such that (x1, · · · , xn)M 6= M and for every

i = 1, · · · , n, xi is a nonzerodivisor on M/(x1, · · · , xi−1)M .

Proposition 2.1.2 (Prop. 1.1.6 [2]). Let R be a Noetherian local ring and

let M be a finitely generated R-module. If x̄ is an M-sequence then every

permutation of x̄ is an M-sequence.

In general a permutation of an M -sequence is not an M -sequence.

Assume that R is Noetherian and let M be an R-module.

Definition 2.1.3 (Maximal Regular Sequence). An M-sequence x̄=x1,· · ·, xn

is said to be maximal if for any xn+1 the sequence x1, · · · , xn, xn+1 is not an

M-sequence.

Let x̄ = x1, · · · , xn be a regular sequence; since R is Noetherian then the

ascending chain (x1) ⊂ (x1, x2) ⊂ · · · stabilises and x̄ can be extended to a

maximal regular sequence.

Proposition 2.1.4 (Rees Theorem; Theorem 1.2.5 [2]). Let R be Noetherian

and M finitely generated over R. Let I be an ideal such that IM 6= M . Then

all maximal M-sequences in I have the same length.
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Definition 2.1.5 (Depth). Let (R,m) be a Noetherian local ring and let

M be a finitely generated R-module. The common length of the maximal

M-sequences in m is called the depth of M .

Definition 2.1.6 (Height). The height of a prime ideal p, denoted ht p, is

the supremum of integers t such that there exists a chain of prime ideals

p = p0 ⊃ p1 ⊃ · · · ⊃ pt where pi ∈ Spec(R).

Definition 2.1.7. The Krull dimension for a ring R is

dimR = sup{ht p | p ∈ Spec(R)}.

Example 2.1.8. [4, Corollary 9.1] If R is Noetherian then dimR = 0 if and

only if R is Artinian in which case R is the direct product of local Artinian

rings.

Example 2.1.9 (Polynomial ring). [4, Chapter 8] The polynomial ring and

the ring of formal power series in n variables have dimension n.

Definition 2.1.10. For an R-module M the Krull dimension is given by the

formula

dimRM = dim

(
R

AnnR(M)

)
.

Definition 2.1.11. (Regular ring) A regular local ring is a Noetherian local

ring with the property that the minimal number of generators of its maximal

ideal is equal to its Krull dimension. A ring is regular if every localisation

at every prime ideal is a regular local ring.
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Example 2.1.12. If K is a field then K[x1, · · · , xn](x1,··· ,xn) and K[[x1, · · · , xn]]

are regular local rings.

Note the following;

Proposition 2.1.13 (see Proposition 10.16 [4]). If R is a complete regular

local ring with residue class field K and R contains a field then R is isomorphic

to K[[x1, · · · , xn]].

2.2 Cohen-Macaulay Rings

Definition 2.2.1 (Cohen-Macaulay Rings). A local Cohen-Macaulay ring

is defined as a commutative, Noetherian and local ring with Krull dimension

equal to its depth. A non-local ring is Cohen-Macaulay if its localisations

at prime ideals are Cohen-Macaulay. Similarly, a finitely generated module

M 6= 0 over a Noetherian local is Cohen-Macaulay if depthM = dimM . If

R is non-local then M is Cohen-Macaulay if Mp is Cohen-Macaulay for every

p ∈ SuppM .

Example 2.2.2. Artinian rings are Cohen-Macaulay.

Example 2.2.3. Regular local rings are Cohen-Macaulay.

Definition 2.2.4 (Complete Intersection). A ring R is a complete intersec-

tion if there is a regular ring S and a regular sequence x1, · · · , xn ∈ S such

that R ∼= S/(x1, · · · , xn). R is locally a complete intersection if this is true

for Rp for every maximal ideal p ∈ R.

Example 2.2.5 (Prop 18.8 and Prop 18.13 in [4]). Any ring that is locally

a complete intersection is Cohen-Macaulay.
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Example 2.2.6 (Theorem 18.18 [4]). A ring R is determinantal if it possible

to write R = A/I where A is a Cohen-Macaulay ring and I is the ideal

generated by n × n minors of an r × s matrix of indeterminates for some

integers n, r, s such that the codimension of I in A is (r− n+ 1)(s− n+ 1).

Determinantal rings are Cohen-Macaulay.

We recall that a system of parameters for a local ring R with maximal

ideal m and of Krull dimension n is a set of elements x = x1, · · · , xn such

that the ideal (x1, · · · , xn) is m-primary.

Proposition 2.2.7 (Theorem 2.1.2 [2]). Let (R,m) be a Noetherian local

ring and let M 6= 0 be a Cohen-Macaulay module. Then

1. dimR/p = depthM for all p ∈ AssM .

2. x̄=x1,· · ·,xn is an M-sequence if and only if dimM/x̄M=dimM − n.

3. x̄ is an M-sequence if and only if it is a part of a system of parameters

of M .

Also, some properties hold even when R is not local. We recall first the

following definition.

Definition 2.2.8 (Unmixed Ideal). An ideal I ⊆ R is unmixed if it has no

embedded primes.

Proposition 2.2.9 (Theorem 2.1.3 [2], Theorem 2.1.6 [2]). Let R be a

Noetherian ring and let M be a finitely generated R-module. Then:

1. If M is Cohen-Macaulay then W−1M is Cohen-Macaulay for every

multiplicatively closed subset W ⊆ R.
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2. R is Cohen-Macaulay if and only if every ideal I generated by ht I

elements is unmixed.

We now define the Serre’s condition for Noetherian rings as follows.

Definition 2.2.10. A Noetherian ring R has property Sk if depthRp ≥

inf{k, ht(p)} for all primes p.

Example 2.2.11. Any Noetherian ring of dimension 2 which is not Cohen-

Macaulay is not S2.

Example 2.2.12. Any Noetherian ring is Cohen-Macaulay if and only if it

is Sk for every k.

2.3 Complexes

In this section we define chain complexes and give two important examples:

the Koszul complex and the Čeck complex.

Definition 2.3.1 (Homological complex). A homological complex is a se-

quence of R-module homomorphisms

M• = · · · δi+1−→Mi
δi−→Mi−1

δi−1−→ · · ·

such that the composition of each consecutive arrows δiδi+1 = 0.

Because Im(δi+1) ⊆ Ker(δi), we can give the following definition;

Definition 2.3.2 (Homology modules). The ith homology module of a com-

plex M• is defined as Hi(M•) = Ker(δi)
Im(δi+1)

.
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Roughly speaking the ith homology module of M• measures how close M•

is to being exact at the ith position.

Definition 2.3.3 (Cohomological complex). A cohomological complex is a

sequence of R-module homomorphisms

N• = · · · δ
i−1

−→ N i δi−→ N i+1 δi+1

−→ · · ·

such that the composition of each consecutive arrows δi+1δi = 0.

Definition 2.3.4 (Cohomology modules). The ith cohomology module of

N• is defined as H i(N•) = Ker(δi)
Im(δi−1)

.

An example of complex is the Koszul complex. Let us describe such a

complex in a simple situation. Let R be a ring, M an R-module and r ∈ R

an element of R. If M
r−→M is the multiplication by r then its kernel is

Ker(r) = {m ∈M | rm = 0} = AnnM(r)

and the map is injective if and only if r is a non-zero-divisor on M . Since the

image of the map is Im(r) = rM then r : M →M is surjective if and only if

Coker(r) =
M

rM
= 0.

Consequently the following sequence

0→M
r→M → 0
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is exact, i.e. the map is injective, if and only if r is an M -sequence (see

definition 2.1.1).

Definition 2.3.5 (Koszul complex). The sequence K•(r;M) : = 0→M
r→

M → 0 is called the Koszul complex on the element r.

Suppose now to have an M -sequence of elements r̄ = r1, · · · , rn of R. We

want to generalise the construction above and define the Koszul complex

K•(r1, · · · , rn;M) : 0→ Kn → · · · → K0 → 0.

Set K0 = R, K1 = Rn and choose the standard basis e1, · · · , en for K1. Then

for every other index i ≥ 2 set Ki = ∧iK1 = ∧iRn which is the free R-module

of rank
(
n
i

)
and basis {ej1 ∧ · · · ∧ eji | 1 ≤ j1 < · · · < ji ≤ n}. Note that

Kn = R and that Ki = 0 for i > n. We define the maps δi : Ki → Ki−1 as

δi(ej1 ∧ · · · ∧ eji) =
i∑

h=1

(−1)h+1rjhej1 ∧ · · · ∧ êjh ∧ · · · ∧ eji

where the symbol êjh indicates that the term ejh is missing.

In particular δi = 0 when i < 1 and i > n; note also that, because the Ki are

free modules, the maps δi can be represented as matrices.

Definition 2.3.6 (Homological Koszul complex). The homological complex

K•(r̄;R) is called the Koszul complex on r̄. If M is an R-module and r̄ an

M-sequence we can define K•(r̄;M) = K•(r̄;R)⊗M .

The cohomological Koszul complex is the dual of the homological Koszul

complex i.e. K•(r1, · · · , rn;M) ∼= Hom(K•(r1, · · · , rn;R),M).
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Another interesting example of complex is the Čech complex. Let x be

an element of R and let Rx be the localisation of R at x. Recall that Rx is

obtained by inverting the multiplicatively closed set {1, x, x2, · · · }.

Definition 2.3.7. The Čech complex on x is the complex

Č•(x;R) : 0→ R
η→ Rx → 0

where η is the canonical map sending r 7→ [r/1].

If x = x1, · · · , xd is a sequence of elements in R then the Čech complex on x

is Č•(x;R) = Č•(x1;R)⊗ · · · ⊗ Č•(xn;R).

In general we define Čk(x;R) =
⊕

1≤i1<···<ik≤dRxi1 ···xik .

2.4 Some Basics in Category Theory

Definition 2.4.1 (Category). A category C is an algebraic structure consist-

ing of a class Obj(C) of objects, a class Hom(C) of morphisms between any two

objects and a binary operation Hom(A,B)×Hom(B,C)→ Hom(A,C) called

composition which sends (f, g) 7→ g ◦ f for any three objects A,B and C in

Obj(C). In a category there exists an identity morphism 1A ∈ Hom(A,A)

with the property that f1A = 1Bf = f for all f : A → B and given three

morphisms f , g and h then f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Example 2.4.2. If R is a ring, we define Mod(R) to be the category whose

objects are R-modules and morphisms are R-homomorphisms and its compo-

sition is the usual composition.
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Example 2.4.3. We define Ab to be the category whose objects are abelian

groups, morphisms are group homomorphisms, and composition is the usual

composition.

Example 2.4.4. We define Sets to be the category in which the objects are

sets, morphisms are functions, and compositions are the usual compositions.

Definition 2.4.5 (Monomorphism). A morphism u : B → C in a category

C is a monomorphism if for all A ∈ Obj(C) and all morphisms f, g : A→ B,

A
f //

g
// B

u // C

we have that uf = ug implies f = g.

Example 2.4.6 (Chaper 5 [24]). Monomorphisms and injections coincide in

Mod(R) and Sets.

Definition 2.4.7 (Zero Object). Let C be a category. An object C ∈ Obj(C)

is said to be initial (resp. final) if for every object X ∈ C there exists a

unique morphism C → X (resp. X → C). An object which is both initial

and final is called zero object.

Definition 2.4.8 (Coproduct). If A and B are objects in a category C then

their coproduct is a triple (A t B,α, β), where A t B is an object in C and

α : A → A t B and β : B → A t B are two morphisms such that for every

object X ∈ Obj(C) and every pair of morphisms f : A → X and g : B → X,

there exists a unique morphism θ : AtB → X making the following diagram
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commute:

A
f

  

α

{{
A tB θ // X

B

g

>>

β

cc

Example 2.4.9 (Proposition 5.1 [24]). If R is a ring and A and B are two

objects in the category Mod(R), then their coproduct exists and is the direct

sum A⊕B.

Example 2.4.10. The coproduct of two sets in Sets is their disjoint union.

Analogously, we define the product of two objects in a category as follows;

Definition 2.4.11 (Product). If A and B are objects in C, their product is

a triple (A u B, p, q), where A u B is an object in C and p : A u B → A and

q : AuB → B are two morphisms such that, for every object X in Obj(C) and

every pair of morphisms f : X → A and g : X → B, there exists a unique

morphism θ : X → A uB making the following diagram commute:

A

A uB

p
;;

q
##

Xθoo

f
``

g~~
B

Example 2.4.12 (Proposition 5.8 [24]). The (categorical) product in Mod(R)

coincides with the coproduct.
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Example 2.4.13 (Example 5.5[24]). The (categorical) product of two sets A

and B in Obj(Sets) is given by the triple (A × B, p, q) where A × B is the

cartesian product, p : (a, b) 7→ a and q : (a, b) 7→ b.

Definition 2.4.14 (Additive Category). A category C is additive if the set

of all maps from A to B is an additive abelian group for every A,B ∈ Obj(C),

it has the zero object, it has finite product and coproduct and the distributive

laws hold i.e. given two morphisms f and g as in

X
a // A

f //

g
// B

b // Y

where X and Y are objects in C then b(f+g) = bf+bg and (f+g)a = fa+ga.

Example 2.4.15 (Lemma 2.3 [24]). The category of R-modules is additive.

Definition 2.4.16 (Kernel and cokernel). If u : A → B is a morphism in

an additive category C then its kernel keru is a morphism i : K → A that

satisfies the following universal mapping property: u ◦ i = 0 and for every

g : X → A with ug = 0, there exists a unique θ : X → K with i ◦ θ = g.

X

θ
�� g

  

0

''
K

i
// A u

// B

A
u //

0
''

B
π //

h

  

C

θ
��
Y

There is a dual definition for cokernel (the morphism π in the diagram

above).

Definition 2.4.17 (Abelian Category). An abelian category is an additive
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category in which every morphism has kernel and cokernel; moreover every

injective morphism is a kernel and every surjective morphism is a cokernel.

Definition 2.4.18 (Covariant Functor). Let C and D be two categories.

Then we define a covariant functor F : C→ D to be such that:

1. if A ∈ Obj(C) then F (A) ∈ Obj(D);

2. if f : A→ B ∈ Hom(C) then F (f) : F (A)→ F (B) ∈ Hom(D);

3. if A
f→ B

g→ C in C then F (A)
F (f)→ F (B)

F (g)→ F (C) in D and F (g◦f) =

F (g) ◦ F (f);

4. F (1A) = 1F (A) for every A ∈ Obj(C).

Definition 2.4.19 (Contravariant functor). Let C and D be two categories.

Then we define a contravariant functor F : C→ D to be a function such that:

1. if A ∈ Obj(C) then F (A) ∈ Obj(D);

2. if f : A→ B ∈ Hom(C) then F (f) : F (B)→ F (A) ∈ Hom(D);

3. if A
f→ B

g→ C in C then F (C)
F (g)→ F (B)

F (f)→ F (A) in D and F (g◦f) =

F (g) ◦ F (f);

4. F (1A) = 1F (A) for every A ∈ Obj(C).

Example 2.4.20. Let C be a category and let E ∈ Obj(C), then Hom(−, E) : C→

Sets is a contravariant functor defined for all C ∈ Obj(C) by sending C 7→

Hom(C,E) and if f : C → D in C then Hom(f) : Hom(D,E)→ Hom(C,E)

is given by h 7→ hf .
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Definition 2.4.21 (Additive Functor). Let F : Mod → Ab be a functor. F

is additive if for any f, g ∈ Hom(C) then F (f + g) = F (f) + F (g).

Definition 2.4.22 (Exact functor). Let C and D be two abelian categories

and let F : C→ D be a covariant additive functor. We say that F is exact if

for every short exact sequence 0→ A→ B → C → 0 in C then 0→ F (A)→

F (B)→ F (C)→ 0 is exact in D.

Definition 2.4.23 (Injective object). In an abelian category C an object E

is injective if for every monomorphism i : C → X and every f : C → E there

exists h : X → E such that f = hi.

Definition 2.4.24 (Injective Resolution). Let C be an abelian category and

C ∈ Obj(C). An injective resolution for C is an exact sequence

0→ C
γ→ E0 d0

→ E1 d1

→ · · ·

where each Ei is injective.

Definition 2.4.25 (Injective dimension). If an R-module M admits a finite

injective resolution, the minimal length among all finite injective resolutions

of M is called its injective dimension.

Definition 2.4.26 (Right Derived Functor). Let F : B → C be an additive

covariant functor between abelian categories and for every B ∈ Obj(B) fix an

injective resolusion

0→ B
α→ E0 d0

→ E1 d1

→ · · ·
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then consider the exact sequence EB

0→ E0 d0

→ E1 d1

→ · · ·

and finally take homology

Hi(F (EB)) =
ker(Fdi)

Im(Fdi−1)
.

Hi(F (EB)), that we will denote as (RiF )B is called right derived functor.

Definition 2.4.27 (Ext). Let A be an R-module. We define ExtiR(A,−) =

RiF where

F = HomR(A,−) : Mod→Mod.

More precisely, using the notation above

ExtiR(A,B) = (RiF )B = Hi(F (EB)) =
ker(di?)

Im(di−1
? )

where

HomR(A,Ei)
di? // HomR(A,Ei+1)

f � // dnf

Property 2.4.28. If B is injective then ExtiR(A,B) = 0.

We give now another description of the Ext-functor in terms of projective

resolutions. One could prove that the two descriptions are equivalent (see

Theorem 6.67 [24]). We will use the second definition in Section 2.6 when

we define local cohomology modules.
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Definition 2.4.29 (Epimorphism). A morphism f : B → C in a category C

is an epimorphism if for all objects D and all morphisms h, k : C → D we

have that hv = kv implies h = k.

Example 2.4.30. [24, page 321] In the categories Sets and Mod(R) epi-

morphisms and surjections are the same thing.

Definition 2.4.31 (Projective object). In an abelian category C an object P

is projective if for every epimorphism g : B → C and every f : P → C there

exists h : P → B such that f = gh.

Definition 2.4.32 (Projective resolution). Let C be an abelian category and

C ∈ Obj(C). A projective resolution for C is an exact sequence

· · · d2→ P1
d1→ P0

ε→ C → 0

where each Pi is projective.

Definition 2.4.33. Let T : A→ B be an additive covariant functor between

abelian categories and for every C ∈ Obj(A) fix a projective resolusion

· · · d2→ P1
d1→ P0

ε→ C → 0

then consider the deleted sequence PC : · · · d2→ P1
d1→ P0 → 0, apply the

functor and finally take homology

(RiT )C = Hi(T (PC)) =
ker(Tdi+1)

Im(Tdi)
.
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With this notation we have that ExtiR(−, C) = (RiT )C where T =

HomR(−, C) : Mod→Mod.

ExtiR(B,C) = Hi(HomR(PC , B)) =
ker(d?,i)

Im(d?,i−1)

where

HomR(A,Ei) d?,i // HomR(A,Ei+1).

f � // dnf

Suppose C = Mod(R) then we have the following.

Property 2.4.34 (Theorem 3.25[12]). Consider an exact sequence of R-

modules

0→M ′ →M →M ′′ → 0.

For each R-module N , the following sequences are exact:

(1) · · · → ExtiR(M,N)→ ExtiR(M ′, N)→Exti+1
R (M ′′, N)→

Exti+1
R (M,N)→ · · · .

(2) · · · → ExtiR(N,M)→ ExtiR(N,M ′′)→Exti+1
R (N,M ′)→

Exti+1
R (N,M)→ · · ·

2.5 Injective Hulls and Matlis Duality

Proposition 2.5.1. [2, Theorem 3.1.8] Any R-module M can be embedded

in an injective R-module E.

Definition 2.5.2. The injective hull of an R-module M , namely ER(M)
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or ER, if M is obvious from the context, is the smallest injective R-module

which contains M .

A different way to define the injective hull is the following. Let M be

an R-module and N an R-submodule of M . M is called essential extension

of N if for every R-submodule L of M then L ∩ N = {0} implies L = {0}.

By Zorn’s Lemma there exists an essential extension which is maximal (with

respect to the inclusion); such an extension is the injective hull.

Example 2.5.3. Let R be the ring of formal series K[[x1, · · · , xn]] and let m

be its maximal ideal. We will see more in detail in Example 2.8.5 that the

injective hull of R/m is the module of inverse polynomials K[x−1
1 , · · · , x−1

n ].

Property 2.5.4. [12, Theorem A20] Let (R,m,K) be a local ring and R̂ its

m-adic completion. Then ER(K) ∼= ER̂(K).

Property 2.5.5. [12, Theorem A21] Let R be a Noetherian ring and E be

an injective R-module. Then

1. E ∼=
⊕

p∈SpecRER(R/p)µp and the numbers µp do not depend on the

decomposition;

2. ER(R/p) ∼= ERp(Rp/pRp) for every prime ideal p ⊂ R.

Therefore understanding the injective modules over a Noetherian ring R

comes down to understanding the injective hulls ER(R/p) ∼= ERp(Rp/pRp).

Property 2.5.6. [12, Theorem A25] Let (R,m,K) → (S, n,L) be a homo-

morphism between two local rings and let S be finitely generated over the

image of R. Then HomR(S,ER(K)) = ES(L).
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In particular if S is of the formR/I for some ideal I, since HomR(R/I,ER)

∼= AnnER(I), then AnnER(I) ∼= ES (cf [9, Corollary 3.3]).

A special case of Example 2.4.20 is the following;

Definition 2.5.7. Let (R,m,K) be a local ring.

The functor HomR(−, ER) : Mod(R) → Mod(R) which will be denoted by

(−)∨ is called the Matlis dual functor.

Example 2.5.8. Let (R,m) be a local ring and let I ⊂ R be any ideal. Then

AnnER(I)∨ = HomR(AnnER(I), ER) = HomR(HomR(R/I,ER), ER) =
R

I
.

Theorem 2.5.9 (Matlis Duality Theorem). Let (R,m,K) be a complete local

ring and E be the injective hull of K. Then (−)∨ = HomR(−, E) is a functor

such that:

1. HomR(E,E) ∼= R;

2. HomR(R,E) ∼= E;

3. if M is Noetherian then (M)∨ is Artinian and ((M)∨)∨ ∼= M ;

4. if N is Artinian then N∨ is Noetherian and ((N)∨)∨ ∼= N .

Corollary 2.5.10. If R is local then ER(K) is Artinian.

2.6 Definitions of Local Cohomology

In this section we give three equivalent definitions for a local cohomology

module.
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1. Let R be a Noetherian ring and M an R-module. Suppose I is an ideal

of R and consider the decreasing sequence of ideals I ⊇ I2 ⊇ · · · ⊇ I t ⊇

· · · of R; every surjection R
It+1 → R

It
induces a map Exti(R/I t,M) →

Exti(R/I t+1,M).

The ith-local cohomology module of M with support in I is defined to

be

Hi
I(M) = lim

−→
t

Exti(R/I t,M).

2. Since HomR(R/I,M) ∼= AnnM(I), if I ⊇ J is any inclusion of ideals of

R then the map HomR(R/I,M) → HomR(R/J,M) can be identified

with the inclusion AnnM(I) ⊆ AnnM(J). In particular consider the

inclusions I ⊇ I2 ⊇ · · · ⊇ I t ⊇ · · · and define

H0
I(M) ∼=

⊕
t

AnnM(I t) = {x ∈M | xI t = 0 for some t}.

The other cohomology modules Hi
I(M) are defined to be the ith right

derived functor of H0
I(M). More precisely, let 0 → E0 → · · ·Ei → · · ·

be an injective resolution of M , where M = Ker(E0 → E1), then

Hi
I(M) = lim

−→
t

(
HomR(R/I t, E0)→ · · · → HomR(R/I t, Ei)→ · · ·

)
.

3. Another characterisation for a local cohomology module can be given

in terms of Koszul cohomology. For further details on the construction

see [12, Chapter 7, Section 3]
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Let r̄ = r1, · · · , rn be a sequence of elements in R, consider the sequence

· · · → K•(r̄t;M)→ K•(r̄t+1;M)→ · · ·

and set

K•(r̄∞;M) := lim
t−→
K•(r̄t;M).

Let I be the ideal generated by the elements r1, · · · , rn then H•I(M) is

the same as the Koszul cohomology H•(r̄∞;M) where

H•(r̄∞;M) := lim
t−→

(· · · → H•(r̄t;M)→ H•(r̄t+1;M)→ · · · ).

2.7 Properties of Local Cohomology Modules

In this section we recall some of the properties of local cohomology modules.

We start with a consequence of Property 2.4.28.

Property 2.7.1. If M is injective then Hi
I(M) = 0 for all i > 0 .

The next property provides a relation between the depth of a module on

an ideal and the local cohomology modules.

Property 2.7.2. [9, Theorem 6.9] Let M be a finitely generated module over

a Noetherian ring R and let I be an ideal of R. Then

IM = M ⇐⇒ H i
I(M) = 0 ∀i.
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Otherwise if IM 6= M then

depthI(M) = min{i | H i
I(M) 6= 0}.

Property 2.7.3. [23, Chapter 3, page 474], [9] Let I and J be two ideals of

a Noetherian ring R. If they have the same radical, then Hi
I(M) ∼= Hi

J(M)

for all i and all R-modules M .

Property 2.7.4. [18, section 1.1, page 42] Given any short exact sequence

0→ A→ B → C → 0 of R-modules there is a long exact sequence

0→ H0
I(A)→ H0

I(B)→ H0
I(C)→ H1

I(A)→ · · ·

· · · → Hi−1
I (C)→ Hi

I(A)→ Hi
I(B)→ Hi

I(C)→ · · ·

and Hi
I(−) is a covariant additive functor. This follows from the fact that

ExtiR(R/I t,M) is a covariant additive functor of M that is exact and pre-

serves the direct limit.

Property 2.7.5. [Proposition 7.4 [9]] If R→ S is a homomorphism between

two Noetherian rings, I ⊂ R is an ideal of R and M is an S-module then

Hi
I(M) ∼= Hi

IS(M) as S-modules.

Consider the case in which I = m ⊂ R is a maximal ideal. Let M be an

R-module and set R̂ to be the completion of R with respect to m. Then the

study of local cohomology modules with support in a maximal ideal reduces

to the case in which R is local and complete. To be more precise we have:

Property 2.7.6. With the above notation the followings hold:
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1. Hi
m(M) ∼= Hi

mRm
(Mm).

2. If R is local then Hi
m(M) ∼= Hi

mR̂
(R̂ ⊗ M) as R̂-modules (and R-

modules).

The next property is particularly useful.

Property 2.7.7. Let (R,m) be a complete, Cohen-Macaulay local ring of

dimension d. Then Hi
m(R) = 0 if and only if i 6= d.

2.8 Gorenstein Rings

Definition 2.8.1 (Gorenstein ring). A Noetherian local ring R is Goren-

stein if its injective dimension as an R-module is finite. A non local ring

is generically Gorenstein if each localisation at a minimal prime ideal is a

Gorenstein local ring.

Definition 2.8.2. A Noetherian local ring such that its completion is the

quotient of a regular local ring by an ideal generated by a regular sequence is

called local complete intersection ring.

Example 2.8.3. [12, Proposition 11.19] Complete intersections are Goren-

stein.

For a Noetherian ring there is the following chain of inclusions: Cohen-

Macaulay rings ⊃ Gorenstein rings ⊃ complete intersections rings ⊃ regular

local rings, [2, Proposition 3.1.20].
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Property 2.8.4. [9, Theorem 11.5] If (R,m,K) is a complete, local and

Gorenstein ring of dimension d then

ER(K) ∼= Hd
m(R).

Example 2.8.5. [3, Example 12.4.1] Let R be the ring of formal power se-

ries K[[x1, · · · , xn]] with n variables and with coefficients in a field K.

R is a Gorenstein, complete and local ring with maximal ideal m = (x1, · · · , xn)

and canonical module R. Its injective hull ER(K) is isomorphic to Hn
m(R) and

can be computed using Čech complex as follows; let P be the set of monomials

in which at least one exponent is non-negative and N the set of monomials

with negative exponents then

ER(K) = Coker

(
n⊕
i=1

Rx1...x̂i...xn → Rx1...xn

)
=

=
Rx1···xn

SpanK(P)
=

= SpanK(N) =

= K[x−1 , · · · , x−n ],

the module of inverse polynomials.

2.9 Canonical Modules

Definition 2.9.1 (Canonical Module). A finitely generated R-module ω over

a Cohen-Macaulay local ring (R,m,K) of dimension n is a canonical module

for R if its Matlis dual ω∨ is isomorphic to Hn
m(R). Given a non-local Cohen-
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Macaulay ring R, a global canonical module Ω for R is an R-module such

that Ωp is a canonical module for Rp for all prime ideal p ⊂ R.

Property 2.9.2. [4, Section 21] If R is Gorenstein then a canonical module

for R is R itself.

Property 2.9.3. [12, Theorem 11.44] Let (R,m,K) be a local Cohen-Macaulay

ring of dimension n, ωR a canonical module for R and fix an isomorphism

ω∨R
∼= Hn

m(R) where (−)∨ = HomR(−,E). If M is a finitely generated R-

module then, for every 0 ≤ i ≤ n, there is an isomorphism functorial in

M :

Hi
m(M) ∼= Extn−iR (M,ωR)∨.

Furthermore, we have:

Property 2.9.4. [12, Theorem 11.46 ] If (R,m,K) is a local Cohen-Macaulay

ring then ωR is a canonical module for R if and only if ω̂R is a canonical

module for R̂.

Property 2.9.5. [12, Theorem 11.47] If (R,m,K) is a local Cohen-Macaulay

ring then if ωR and αR are two canonical modules for R then ωR ∼= αR.

Definition 2.9.6 (Reduced ring). A reduced ring is a ring that has no non-

zero nilpotent elements.

Every field and every polynomial ring over a field in arbitrarily many

variables is a reduced ring. The following result was proved in [9] and a

proof can also be found in [21, Proposition 2.4].
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Property 2.9.7. Let (R,m) be a complete, local ring of dimension d and

suppose that R is Cohen-Macaulay with canonical module ω. If R is a do-

main, or if it is reduced or more in general if the localisation of R at every

minimal prime is Gorenstein then ω is isomorphic with an ideal of R that

contains a nonzerodivisor.

We generalised this result to the non-local case. Let us define now canon-

ical modules for non-local rings.

Discussion 2.9.8 (Canonical modules in Macaulay2). Given a ring R as in

Property 2.9.7 we can compute explicitly a canonical ideal for it, i.e an ideal

which is isomorphic to a canonical module for R. We start by computing a

canonical module as a cokernel of a certain matrix A, say Rn/V . In order

to find an ideal isomorphic to it, we look for a vector w such V is the kernel

of w : Rn → R given by multiplication by w on the left. An ad-hoc way to

find such w is to look among the generators of the module of syzygies of the

rows of V . The algorithm just described has been translated into code using

Macaulay2 and the code can be found in the appendix.

Let A be a polynomial ring and J ⊂ A be an ideal of A and let B

be the quotient ring A/J ; if B is Cohen-Macaulay of dimension d, then

Ω̄ = ExtdimA−d
A (B,A) is a global canonical module for B; morover, if B is

generically Gorenstein then Ω̄ is isomorphic to an ideal of B, [2, Prop. 3.3.18

(b)].

Therefore let B be generically Gorenstein and assume Ω̄ ⊆ B. Let Ω be
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the preimage of Ω̄ in A; then the following B-module is well defined:

U(e) =

(
J [pe] : J

)
∩
(
Ω[pe] : Ω

)
J [pe]

. (1)

Since A is Noetherian, U(e) is a finitely generated A-module (and B-module).

For every prime ideal p ⊇ J write Hp = H
dim B̂p

pB̂p
(B̂p). It follows from Theorem

3.2.5 that the A-module Fe(Hp) consisting of the Frobenius maps on Hp is

of the form:

Fe(Hp) =

(
J [pe]Âp : JÂp

)
∩
(

Ω[pe]Âp : ΩÂp

)
J [pe]Âp

(2)

and consequently Fe(Hp) ∼= U(e)Âp. Since Fe(Hp) is generated by one ele-

ment by Theorem 3.2.1, U(e)Âp is principal as well.

2.10 The Frobenius Endomorphism

Definition 2.10.1. Let R be a ring and for every positive integer e define

the eth-iterated Frobenius endomorphism T e : R→ R to be the map r 7→ rp
e
.

For e = 1, R→ R is the natural Frobenius map on R.

For any R-module M we define F e
∗M to be the Abelian group M with R-

module structure given by r ·m = T e(r)m = rp
e
m for all r ∈ R and m ∈M .

We can extend this construction to obtain the Frobenius functor F e
R from

R-modules to R-modules as follows. For any R-module M , we consider the

F e
∗R-module F e

∗R⊗RM and after identifying the rings R and F∗R, we may

40



regard F e
∗R⊗RM as an R-module and denote it F e

R(M) or just F e(M) when

R is understood. The functor F e
R(−) is exact when R is regular, see [2,

Corollary 8.2.8], and for any matrix C with entries in R, F e
R(CokerC) is the

cokernel of the matrix C [pe] obtained from C by raising its entries to the peth

power, see [10].

Definition 2.10.2. For any R-module M an additive map ϕ : M →M is an

eth-Frobenius map if it satisfies ϕ(rm) = rp
e
ϕ(m) for all r ∈ R and m ∈M .

Note that there is a bijective correspondence between HomR(M,F∗M) and the

Frobenius maps on M .

For every e ≥ 0 let Fe(M) be the set of all Frobenius maps on M . Each

Fe(M) is an R-module: for all ϕ ∈ Fe(M) and r ∈ R the map rϕ defined as

(rϕ)(m) = rϕ(m) is in Fe(M) for all m ∈ M . If ϕ ∈ Fe(M) we can define

for i ≥ 0 the R-submodules Mi = {m ∈ M |ϕi(m) = 0}. We define the

submodule of nilpotent elements in M as

Nil(M) = ∪i≥0Mi.

Theorem 2.10.3 (see Proposition 1.11 in [5] and Proposition 4.4 in [15]). If

(R,m) is a complete regular ring, M is an Artinian R-module and ϕ ∈ Fe(M)

then the ascending sequence {Mi}i≥0 above stabilises, i.e., there exists an

e ≥ 0 such that ϕe(Nil(M)) = 0.

Note that if Mi = Mi+1 then Mi = Mj for every j ≥ i.

Definition 2.10.4. We define the HSL number or index of nilpotency of ϕ
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on M , denoted HSL(M), to be the smallest integer e at which ϕe(Nil(M)) =

0, or ∞ if no such e exists.

We can rephrase Theorem 2.10.3 by saying that under the hypothesis of

the theorem, HSL(M) <∞.

Another way of describing a Frobenius map ϕ : M →M on an R-module M

is to think of M as a module over a certain skew-commutative ring R[θ; f e]

where the latter is defined as follows. R[θ; f e] is the free R-module
⊕∞

i=0Rθ
i

endowed with the further non-commutative operation θs = sp
e
θ for every

s ∈ S. Therefore it is equivalent to say that M is an R-module with a

Frobenius action given by ϕ and that M is an R[θ; f e]-module with module

structure given by θm = ϕ(m).

The action of Frobenius on a local cohomology module is constructed as

follows. Any R-linear map M → N induces an R-linear map Hi
I(M) →

Hi
I(N) for every i. The map R→ F∗R sending r 7→ F∗r

p is R-linear because

F∗r
p = r · F∗1 and so it induces for every i a map Hi

I(R) → Hi
I(F∗R) =

Hi
IF∗R(F∗R) = Hi

F∗I[pe](F∗R) = Hi
F∗I(F∗R) = F∗Hi

I(R) where in the first

equality we used the Independence Theorem for local cohomology [3, Propo-

sition 4.1] and in the third that the ideals I and I [pe] have same radical see

[3, Proposition 3.1.1]. So we get an R-linear map Hi
I(R) → F∗Hi

I(R) which

is the same as a Frobenius map Hi
I(R)→ Hi

I(R).

If (R,m) is of dimension d and x1, · · · , xd is a system of parameters for
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R then we can write Hd
m(R) as the direct limit

R

(x1, · · · , xd)R
x1···xd−→ R

(x2
1, · · · , x2

d)R

x1···xd−→ · · ·

where the maps are the multiplication by x1 · · ·xd, [10, Theorem 11.5].

Another way to describe the natural Frobenius action on Hd
m(R) is the fol-

lowing. The natural Frobenius map on R induces a natural Frobenius map

on Hd
m(R) in the following way; a map φ ∈ Fe(Hd

m(R)) is defined on the direct

limit above by mapping the coset a + (xt1, · · · , xtd)R in the t-th component

to the coset ap
e

+ (xtp
e

1 , · · · , xtp
e

d )R in the tpe-th component, [13, Section 2].

Definition 2.10.5. A local ring (R,m) is F -injective if the natural Frobenius

map Hi
m(R)→ Hi

m(R) is injective for all i.

When the ring is Cohen-Macaulay the only non-zero local cohomology

module is the top local cohomology module (see [Property 2.7.7]) therefore

a Cohen-Macaulay ring is F -injective if the Frobenius map Hd
m(R)→ Hd

m(R)

is injective.

Definition 2.10.6. We define the Cohen-Macaulay F-injective (CMFI for

short) locus of a ring R of characteristic p as follows:

CMFI(R) = {p ∈ Spec(R) | Rp is CMFI }.

2.11 The ∆e- and Ψe-functors

Let (R,m) be a complete and local ring and let (−)∨ denote the Matlis dual,

i.e. the functor HomR(−, ER), where ER = ER(K) is the injective hull of the
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residue field K of R. In this section we recall the notions of ∆e-functor and

Ψe-functor which have been described in more detail in [13, Section 3].

Let Ce be the category of Artinian R[θ, f ]-modules and De the category of R-

linear maps αM : M → F e
R(M) with M a Noetherian R-module and where a

morphism between M
αM→ F e

R(M) and N
αN→ F e

R(N) is a commutative diagram

of R-linear maps:

M
h //

αM
��

N

αN
��

F e
R(M)

F eR(h)
// F e
R(N).

We define a functor ∆e : Ce → De as follows: given an eth-Frobenius map θ of

the Artinian R-module M , we obtain an R-linear map φ : F e
∗ (R)⊗RM →M

which sends F e
∗ r ⊗m to rθm. Taking Matlis duals, we obtain the R-linear

map

M∨ → (F e
∗ (R)⊗RM)∨ ∼= F e

∗ (R)⊗RM∨

where the last isomorphism is the functorial isomorphism described in [15,

Lemma 4.1]. This construction can be reversed, yielding a functor Ψe : De →

Ce such that Ψe ◦∆e and ∆e ◦Ψe can naturally be identified with the identity

functor. See [13, Section 3] for the details of this construction.
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3 On the Upper Semicontinuity of HSL Num-

bers

Let B be a quotient of a polynomial ring with coefficients in a field of char-

acteristic p. Suppose that B is Cohen-Macaulay and for every prime ideal

p ⊂ B, let Hp denote H
dimBp

pBp

(
B̂p

)
. Each such Hp is an Artinian module en-

dowed with a natural Frobenius map Θ and let Nil(Hp) denote the set of all

elements in Hp killed by some power of Θ. A theorem by Hartshorne-Speiser

and Lyubeznik shows that there exists an e ≥ 0 such that Θe Nil(Hp) = 0.

The smallest such e is the HSL-number of Hp which we denote HSL(Hp).

In this chapter we show that for all e > 0, the sets

Be = {p ∈ SpecB | HSL(Hp) < e}

are Zariski open, hence HSL is upper semi-continuous. This result generalises

the openness of the F -injective locus. An application of this result gives a

global test exponent for the calculation of Frobenius closures of parameter

ideals in Cohen-Macaulay rings.

We will start by defining the operator Ie(−) and showing some of its

properties. We will then consider a quotient of a complete, regular local

ring S and describe the action of Frobenius on its top local cohomology

module Hd
mS(S). After that we will give an explicit description of the module

consisting of all the e-th Frobenius maps acting on Hd
mS(S) and compute the
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HSL-numbers in the local case. In Section 3.4 we will consider a Cohen-

Macaulay non-local domain B = A/J and will prove the main result: the

sets Be defined above are Zariski open.

3.1 The Ie(−) Operator

In this section we define the operator Ie(−) which has been introduced in

[13], and in [3] with the notation (−)[1/pe]. We will show that this commutes

with localisations and completions.

For any ideal I of a ring R, we shall denote by I [pe] the eth-Frobenius

power of I, i.e. the ideal generated by {ape |a ∈ I}.

Definition 3.1.1. If R is a ring and J ⊆ R an ideal of R we define Ie(J) to

be the smallest ideal L of R such that its eth-Frobenius power L[pe] contains

J .

In general, such an ideal may not exist; however it does exist in polyno-

mial rings and power series rings, cf [13, Proposition 5.3].

Let A be a polynomial ring K[x1, . . . , xn] and W be a multiplicatively

closed subset of A and J ⊂ A an ideal.

Lemma 3.1.2. If L ⊆ W−1A is any ideal then L[pe] ∩ A = (L ∩ A)[pe].

Proof. Let g1

1
, . . . , gs

1
be a set of generators for L and let G be the ideal of

A generated by g1, . . . , gs. Then we can write L[pe] ∩ A =
∑

w∈W (G[pe] :A w)

and (L ∩A)[pe] =
∑

w∈W (G :A w)[pe]. Since A is regular, for any w ∈ W , wp
e
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is in W and (G[pe] :A wp
e
) = (G :A w)[pe] so (L ∩ A)[pe] ⊆ L[pe] ∩ A. Also

(G[pe] :A w) ⊆ (G[pe] :A w
pe) so L[pe] ∩ A ⊆ (L ∩ A)[pe].

Lemma 3.1.3. If J is any ideal of A then Ie(W
−1J) exists for any integer

e and equals W−1Ie(W
−1J ∩ A).

Proof. If L ⊆ W−1A is an ideal such that W−1J ⊆ L[pe], then

W−1Ie(W
−1J ∩ A) ⊆ L.

In fact, W−1J ∩ A ⊆ L[pe] ∩ A = (L ∩ A)[pe] where the equality follows

from Lemma 3.1.2. Thus Ie(W
−1J ∩ A) ⊆ L ∩ A so W−1Ie(W

−1J ∩ A) ⊆

W−1(L ∩ A) ⊆ L. Hence W−1Ie(W
−1J ∩ A) is contained in all the ideals L

such that W−1J ⊆ L[pe]. If we show that W−1J ⊆ (W−1Ie(W
−1J ∩ A))[pe]

then Ie(W
−1J) exists and equals W−1Ie(W

−1J ∩A). But since W−1J ∩A ⊆

Ie(W
−1J ∩ A)[pe] then using Lemma 3.1.2 we obtain W−1J = W−1(W−1J ∩

A) ⊆ W−1(Ie(W
−1J ∩ A)[pe]) = (W−1Ie(W

−1J ∩ A))[pe].

Proposition 3.1.4. Let Â denote the completion of A with respect to any

prime ideal and W any multiplicatively closed subset of A. Then the following

hold:

1. Ie(J ⊗A Â) = Ie(J)⊗A Â, for any ideal J ⊆ A;

2. W−1Ie(J) = Ie(W
−1J).

Proof. 1. Write Ĵ = J ⊗A Â. Since Ie(Ĵ)[pe] ⊇ Ĵ using [17, Lemma 6.6]

47



we obtain

(Ie(Ĵ) ∩ A)[pe] = Ie(Ĵ)[pe] ∩ A ⊇ Ĵ ∩ A = J.

But Ie(J) is the smallest ideal such that Ie(J)[pe] ⊇ J , so Ie(Ĵ) ∩ A ⊇

Ie(J) and hence Ie(Ĵ) ⊇ (Ie(Ĵ) ∩ A)⊗A Â ⊇ Ie(J)⊗A Â.

On the other hand, (Ie(J)⊗A Â)[pe] = Ie(J)[pe] ⊗A Â ⊇ J ⊗A Â and so

Ie(J ⊗A Â) ⊆ Ie(J)⊗A Â.

2. Since J ⊆ W−1J ∩ A, Ie(J) ⊆ Ie(W
−1J ∩ A), and so W−1Ie(J) ⊆

W−1Ie(W
−1J ∩ A). By Lemma 3.1.3, W−1Ie(W

−1J ∩ R) = Ie(W
−1J)

hence W−1Ie(J) ⊆ Ie(W
−1J).

For the reverse inclusion it is enough to show that

W−1J ⊆ (W−1Ie(J))[pe]

because from this it follows that Ie(W
−1J) ⊆ W−1Ie(J). Since J ⊆

Ie(J)[pe] then W−1J ⊆ W−1(Ie(J)[pe]) = (W−1Ie(J))[pe] where in the

latter equality we have used Lemma 3.1.2.

3.2 The Frobenius Action on Hd
mS(S)

Let (R,m) be a complete, regular and local ring, I an ideal of R and write

S = R/I. Let d be the dimension of S and suppose S is Cohen-Macaulay

with canonical module ω̄. Assume that S is generically Gorenstein so that
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ω̄ ⊆ S is an ideal of S, (see [20, Proposition 2.4]) and consider the following

short exact sequence:

0→ ω̄ → S → S/ω̄ → 0.

This induces the long exact sequence

· · · → Hd−1
mS (S)→ Hd−1

mS (S/ω̄)→ Hd
mS(ω̄)→ Hd

mS(S)→ 0.

Since S is Cohen-Macaulay, the above reduces to

0→ Hd−1
mS (S/ω̄)→ Hd

mS(ω̄)→ Hd
mS(S)→ 0. (3)

A natural Frobenius map acting on S induces a natural Frobenius map

acting on Hd
mS(S). The following theorem gives a description of the natural

Frobenius (up to a unit) which we will later use in Theorem 3.2.5.

Theorem 3.2.1 (see [17] Example 3.7). Let Fe := Fe(H
d
mS(S)) be the R-

module consisting of all eth-Frobenius maps acting on Hd
mS(S). If S is S2

then Fe is generated by one element which corresponds, up to unit, to the

natural Frobenius map.

We aim to give an explicit description of the R-module Fe and conse-

quently of the natural Frobenius map that generates it.

We will see in Example 3.4.4 that if the ring is not S2 then Fe is not neces-

sarely principal.

Remark 3.2.2. The inclusion ω̄ → S is R[θ, f e]-linear where θs = sp
e
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acts on ω̄ by restriction. This induces an R[θ; f e]-linear map Hd
mS(ω̄)

α→

Hd
mS(S) → 0 where the structure of R[θ, f e]-module on Hd

mS(ω̄) is obtained

from the one on ω̄ ⊆ S and where Hd
mS(S) has a natural structure of R[θ; f e]-

module as we have seen in the introduction.

Since any kernel of an R[θ; f e]-map is an R[θ; f e]-module, ker(α) =

Hd−1
mS (S/ω̄) is an R[θ; f e]-module as well. Hence the sequence 0→Hd−1

mS (S/ω̄)→

Hd
mS(ω̄)→ Hd

mS(S)→ 0 is an exact sequence of R[θ; f e]-modules.

Identifying Hd
mS(ω̄) withES = AnnER(I) we get the inclusion Hd−1

mS (S/ω̄) ⊆

AnnER(I) therefore Hd−1
mS (S/ω̄) must be of the form AnnES(J) for a certain

ideal J ⊆ R. More precisely we have the following:

Lemma 3.2.3. Hd−1
mS (S/ω̄) and AnnES(ω̄) are isomorphic.

Proof. Identify Hd
mS(ω̄) ∼= ES ∼= AnnER(I) then Hd−1

mS (S/ω̄) ⊆ ES is a

submodule. All submodules of ES are of the form AnnER(J) for some J ⊇ I.

So Hd−1
mS (S/ω̄) ∼= AnnER(J) for some J ⊇ I. Note that (0 :R AnnER(J)) =

(0 :R (R/J)∨) = (0 :R R/J) = J . On the other hand, Corollary 3.3.18

in [2] proves that S/ω is Gorenstein and Hd−1
mS (S/ω̄) is the injective hull of

T = S/ω. The injective hull of T has no T -torsion so (0 : Hd−1
mS (S/ω̄)) = ω.

Therefore J = ω.

Remark 3.2.4 (Frobenius action on ES). All R[θ; f e]-module structures on

AnnER(I) = ES have the form uF where F is the natural Frobenius map on

ER and u ∈ (I [pe] : I). The identification Hd
mS(ω̄) with ES endows ES with a

Frobenius map which then has to be of the form uF with u ∈ (I [pe] : I), [13,

see Proposition 4.1].
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In general if we start with an R[θ; f ]-module M , we can consider M as an

R[θe, f
e]-module where f e : R→ R, f e(a) = ap

e
, θe(m) = θe(m). In our case,

for M = ES the action of θe on ES is:

θe = θ ◦ · · · ◦ θ︸ ︷︷ ︸
e times

= (uF )e = uνeF e

where νe = 1 + p + · · · + pe−1 when e > 0 and ν0 = 0. Therefore when we

apply the ∆e-functor to ES ∈ Ce we obtain the map

R/I
uνe→ R/I [pe].

Theorem 3.2.5. Let ω be the preimage of ω̄ in R. The R-module consisting

of all eth-Frobenius maps acting on Hd
mS(S) is isomorphic to

Fe =

(
I [pe] : I

)
∩
(
ω[pe] : ω

)
I [pe]

where the isomorphism is given by u+ I [pe] 7→ uF .

Proof. By Lemma 3.2.3 we can rewrite (3) as

0→ AnnES(ω̄)→ AnnER(I)→ Hd
mS(S)→ 0. (4)

Apply the ∆e-functor to the latter short exact sequence. When we ap-

ply it to ES = AnnER(I) and AnnES(ω) we obtain respectively ∆e(ES) =

R/I
uνe→ R/I [pe] and ∆e(AnnES(ω)) = R/ω → R/ω[pe]. Thus the inclusion
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AnnES(ω)→ ES yields the diagram

0 // (Hd
mS(S))∨ //

��

R/I //

uνe

��

R/ω //

��

0

0 // F e
R(Hd

mS(S))∨ // R/I [pe] // R/ω[pe] // 0.

Now, we can identify (Hd
mS(S))∨ with ω/I and F e

R(Hd
mS(S))∨ with ω[pe]/I [pe].

Therefore when we apply ∆e to the sequence (4) we obtain the short exact

sequence in De:

0 // ω̄/I //

��

R/I //

uνe

��

R/ω //

��

0

0 // ω̄[pe]/I [pe] // R/I [pe] // R/ω[pe] // 0

where the central vertical map is the multiplication by uνe . The only way

to make the diagram above commutative is that the other two vertical maps

are also the multiplication by uνe . It follows that u ∈
(
I [pe] : I

)
∩
(
ω[pe] : ω

)
.

Finally consider the surjection ϕ :
(
I [pe] : I

)
∩
(
ω[pe] : ω

)
→ Fe(Hd

mS(S)); u ∈

Kerϕ if and only if u : ω̄
I
→ ω̄[pe]

I[pe] is the zero map which happens if and only

if uω̄ ⊂ I [pe] ⊆ I i.e. uω = 0. ω̄ contains a non-zero-divisor and since⋃
Ass(I) =

⋃
Ass(I [pe]) then ω̄ contains a non-zero-divisor modulo I [pe], say

x. So ux ∈ I [pe] implies u ∈ I [pe]. Therefore Kerϕ = I [pe].

3.3 HSL Numbers in the Local Case

In this section we give an explicit formula for the HSL-numbers.

52



Theorem 3.3.1. HSL(Hd
mS(S)) is the smallest integer e for which

Ie(u
νeω)

Ie+1(uνe+1ω)
= 0

where ω is the preimage of ω̄ in R and νe = 1 + p + · · · + pe−1 when e > 0,

and ν0 = 0 and where we set I0(J) = J for all ideals J .

Proof. For all e ≥ 0 define Me =
{
x ∈ Hd

mS(S)|θex = 0
}

and note that

{Me}e≥0 form an ascending sequence of R[θ; f e]-submodules of Hd
mS(S) that

stabilises by Theorem 2.10.3. Consider the short exact sequence of R[θ; f e]-

modules 0 → Hd−1
mS (S/ω̄) → Hd

mS(ω̄) → Hd
mS(S) → 0 where the action of θ

on ES = Hd
mS(ω̄) is given by uνeF where F is the natural Frobenius on ER.

We have seen we can write this sequence as

0→ AnnES(ω̄)→ AnnER(I)→ Hd
mS(S)→ 0.

It follows that

Hd
mS(S) ∼=

AnnER(I)

AnnES(ω̄)
.

Since each Me is a submodule of Hd
mS(S) then it is of the form

AnnES (Le)

AnnES (ω̄)
for

some ideals Le ⊆ R contained in I. Apply the ∆e-functor to the inclusion

Me ↪→ Hd
mS(S) to obtain

ω/I // //

uνe

��

ω/Le

��

ω[pe]/I [pe] // // ω[pe]/L
[pe]
e
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where the map ω/I → ω[pe]/I [pe] is the multiplication by uνe by Remark 3.2.4.

It follows that the map ω/Le → ω[pe]/L
[pe]
e must be the multiplication by uνe

because of the surjectivity of the horizontal maps; note that such a map is

well defined because uνeω ⊆ ω[pe], and then Le ⊆ ω. Moreover ω/Le →

ω[pe]/L
[pe]
e must be a zero-map by construction of ∆e. Hence, uνeω ⊆ L

[pe]
e

and for every Le with uνeω ⊆ L
[pe]
e the action of θ on Me is zero. We want

the largest Me ⊂ Hd
mS(S) for which θe acts as zero. The largest module

AnnES (Le)

AnnES (ω̄)
killed by θe corresponds to the smallest Le such that uνeω ⊆ L

[pe]
e

i.e. Le = Ie(u
νeω).

Corollary 3.3.2. S is F -injective if and only if ω = I1(uω).

Proof. S is F -injective if and only if the index of nilpotency is zero i.e. if

and only if ω = I1(uω).

3.4 HSL Loci

Let A be a polynomial ring K[x1, · · · , xn] with coefficients in a perfect field

K of positive characteristic p and let M be a finitely generated A-module

generated by g1, · · · , gs. Let e1, · · · , es be the canonical basis for As and

define the map

As
ϕ //M

ei
� // gi.

ϕ is surjective and extends naturally to an A-linear map J : At → As with

kerϕ = Im J . Let Ji be the matrix obtained from J ∈ Mats,t(A) by erasing

the ith-row. With this notation we have the following:

Lemma 3.4.1. M is generated by gi if and only if Im Ji = As−1.
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Proof. Firstly suppose Im Ji = As−1. We can add to J , columns of Im J

without changing its image so we can assume that J contains the elementary

vectors e1, · · · , ei−1, ei+1, · · · , es:

J =



a1,1 a1,2 · · · a1,n 1 0 · · · 0

a2,1 a2,2 · · · a2,n 0 1 · · · 0

...
...

...
...

...
...

...

ai,1 ai,2 · · · ai,n b1 b2 · · · bs
...

...
...

...
...

...
...

am−1,1 am−1,2 · · · am−1,n 0 · · · 1 0

am,1 am,2 · · · am,n 0 · · · 0 1



.

In this way for every j 6= i we have gj − bjgi = 0 i.e. gi generates M .

Viceversa if M is generated by gi then for all j 6= i we can write gj = rjgi i.e.

gj − rjgi = 0 and the relation gj − rjgi gives a relation ej − rjei in the image

of J , so ej − rjei ∈ Kerϕ = Im J . Hence we can assume that J contains a

column whose entries are all zeros but in the i-th and j-th positions where

there is 1 and rj respectively. Consequently Ji contains the (s− 1)× (s− 1)

identity matrix.

Let W be a multiplicatively closed subset of A. Localise the exact se-

quence At → As → M → 0 with respect to W obtaining the exact sequence

W−1At → W−1As → W−1M → 0. With this notation we have:

Proposition 3.4.2. W−1M is generated by gi
1

if and only if W−1Ji =

(W−1A)s−1
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Proof. Apply Lemma 3.4.1 to the localised sequence W−1At → W−1As →

W−1M → 0.

Proposition 3.4.2 is equivalent to saying that W−1M is generated by gi
1

if and only if the intersection of W with the ideal of (s− 1)× (s− 1) minors

of Ji is not trivial. So we have the following;

Corollary 3.4.3. Let M be a finitely generated A-module and let g1, · · · , gs

be a set of generators for M . If M is locally principal, then for each i =

1, · · · , s

Gi = {p ∈ Spec(A) |MÂp is generated by the image of gi}

is a Zariski open set and ∪iGi = Spec(A). Moreover, Gi = V (Ji)
c for every

i = 1, · · · , s.

Proof. p ∈ Gi if and only if p 6⊇ Ji.

Note that Corollary 3.4.3 gives a description of Gi in terms of minors of

the matrix Ji. This description will be used to implement the algorithm in

Section 3.5.

In the rest of this section let J ⊂ A be an ideal of A and let B be the

quotient ring A/J ; we saw that if B is Cohen-Macaulay of dimension d, then

Ω̄ = ExtdimA−d
A (B,A) is a global canonical module for B. If B is generically

Gorenstein then we can assume Ω̄ ⊆ B. Let Ω be the preimage of Ω̄ in A;

then the following B-module is well defined:

U(e) =

(
J [pe] : J

)
∩
(
Ω[pe] : Ω

)
J [pe]

. (5)
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Since A is Noetherian, U(e) is a finitely generated A-module (and B-module).

For every prime ideal p ⊂ A write Hp = H
dim B̂p

pB̂p
(B̂p). It follows from Theorem

3.2.5 that the A-module Fe(Hp) consisting of the Frobenius maps on Hp is

of the form:

Fe(Hp) =

(
J [pe]Âp : JÂp

)
∩
(

Ω[pe]Âp : ΩÂp

)
J [pe]Âp

(6)

and consequently Fe(Hp) ∼= U(e)Âp. Since Fe(Hp) is generated by one ele-

ment by Theorem 3.2.1, U(e)Âp is principal as well.

From Corollary 3.4.3 with M = U(e) it follows that for every prime ideal

p ∈ Spec(A) =
⋃
i Gi there exists an i such that p ∈ Gi and the A-module

U(e)Âp is generated by one element which is precisely the image of gi.

We saw in Theorem 3.2.1 that if a ring S is S2 then the module of Frobe-

nius maps acting on Hd
mS(S) is principal. The following example given by

Karl Schwede shows that if a ring S is not S2 then the module of Frobenius

maps acting on Hd
mS(S) is not necessarily generated by one element. All

assertions in this example are based on calculations carried out with [7].

Example 3.4.4. Let R be the polynomial ring Z2[a, b, c, d] and let I be the

ideal generated by ac+ bd, b3 + c2, ab2 + cd and a2b+ d2. The quotient ring

S = R/I has dimension 2 and is a domain as I is a prime ideal. Because

S is not Cohen-Macaulay then S is not S2. A canonical module for S is

isomorphic to the ideal ω = (d, a, b3+c2) of S. The R-module of the Frobenius
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maps on Hd
mS(S) defined in (5) as

U(1) =

(
Ω[2] : Ω

)
∩ (I [2] : I)

I [2]

is given by the cokernel of the matrix

X =


d a 0 ab d 0 b3 + c2

c b ab 0 0 d 0

0 0 d c b a 0

 .

X is generated by the i-th row if and only if the ideal of the matrix Xi

(obtained from X by removing the i-th row) is the unit ideal. It turns out

that

X1 = (cd, bd, c2, d2, bc, b2, ac, ab)

X2 = (d2, cd, bd, ac, ab, a2, b3c+ c3, b4 + bc2)

X3 = (d, b+ c, bc+ c, ac, ab2, a2b).

Therefore the R-module of Frobenius maps acting on Hd
mS(S) is not principal.

With the notation above, we prove our main result.

Theorem 3.4.5. For every e > 0, the set Be = {p ∈ Spec(A)|HSL(Hp) < e}

is Zariski open.

Proof. Let u1, · · · , us be a set of generators for U(e) and write for i = 1, · · · , s

Gi =
{
p ∈ Spec(A) |U(e)Âp is generated by

ui
1

}
.
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Define

Ωi,e =
Ie(u

νe
i (Ω))

Ie+1(u
νe+1

i (Ω))

then it follows from Proposition 3.1.4 that

Ie(ū
νe
i (Ω̂p))

Ie+1(ū
νe+1

i (Ω̂p))
= (Ω̂i,e)p

for every prime ideal p. Note that for every i = 1, · · · , s the set Supp(Ωi,e)
C =

{p | (Ω̂i,e)p = 0} is open.

If p is such that HSL(Hp) < e then p ∈ Gi for some i; we can then use ūi to

compute Ωi,e and (Ω̂i,e)p = 0 i.e. p ∈ Supp(Ωi,e)
C ; therefore

p ∈
s⋃
i=1

(
Supp(Ωi,e)

C ∩ Gi
)
.

Viceversa, let p ∈
⋃
i(Supp(Ωi,e)

C ∩ Gi) then p ∈ Supp(Ωj,e)
C ∩ Gj for some

j. Compute HSL(Hp) using uj. Since p ∈ Supp(Ωj,e)
C then (Ω̂j,e)p = 0 and

so HSL(Hp) < e. In conclusion

{p ∈ Spec(A)|HSL(Hp) < e} =
s⋃
i=1

(
Supp(Ωi,e)

C ∩ Gi
)

and therefore Be is Zariski open.

Corollary 3.4.6. sup{HSL(Hp) | p ∈ Spec(S)} <∞.

For e = 1 we have the following.

Corollary 3.4.7. The F -injective locus is open.
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3.5 The Computation of the HSL Loci

In the case where a ring S = R/I of positive characteristic p is a Cohen-

Macaulay domain we have an explicit algorithm to compute the F-injective

locus Be of S for every positive integer e.

With the same notation as in Theorem 3.4.5 we have that Be=
⋃s
i=1(Supp(Ωi,e)

C∩

Gi). Because Supp(Ωi,e) = V (AnnR(Ωi,e)) and the sets Gi are of the form

V (Ki)
c for some ideals K1, · · · , Ks ⊂ R, we can then write Be as

⋃
i

V (AnnR(Ωi,e))
c ∩ V (Ki)

c =

⋃
i

(V (AnnR(Ωi,e)) ∪ V (Ki))
c =

⋃
i

V (AnnR(Ωi,e)Ki)
c =

(⋂
i

V (AnnR(Ωi,e)Ki)
)c

=[
V

(∑
i

AnnR(Ωi,e)Ki

)]c
.

Therefore, given a positive integer e and a Cohen-Macaulay domain S, an

algorithm to find the locus Be can be described as follows.

1. Compute a canonical module for S, then find an ideal Ω ⊆ S which is

isomorphic to it.

2. Find the R-module of the Frobenius maps on Hd
mS(S) defined in (5) as

U(e) =

(
Ω[pe] : Ω

)
∩
(
I [pe] : I

)
I [pe]
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as the cokernel of a matrix X ∈ Mats,t(R).

3. Find the generators u1, · · · , us of U(e).

4. Compute the ideals Ki’s of the (s− 1)× (s− 1)-minors of X.

5. For every generator ui, compute the ideal Ωi,e = Ie(u
νe
i Ω)/Ie+1(u

νe+1

i Ω).

6. Compute Be as
[
V (
∑

i AnnR(Ωi,e)Ki)
]c

.

We now make use of the algorithm above to compute the loci in an example.

The algorithm has been implemented in Macaulay2 [7].

Example 3.5.1. Let R be the polynomial ring Z2[x1, · · · , x5] and let I be the

ideal I = (x2
2+x1x3, x1x2x

2
4+x3

3x5, x
2
1x

2
4+x2x

2
3x5). The quotient ring S = R/I

is a domain because I is prime and it is Cohen-Macaulay of type 2 so it is

not Gorenstein. A canonical module for S is given by ExtdimR−dimS(S,R)

and can be produced as the cokernel of the matrix

 x2 x1 x2
3x5

x3 x2 x1x
2
4


which is isomorphic to an ideal Ω which is the image in S of the ideal

(x2, x1, x
3
3x5) in R.

The R-module U(e) of the Frobenius maps on Hd
mS(S) turns out to be given

by the cokernel of the one-row matrix

X =

(
x2

2 + x1x3 x1x2x
2
4 + x3

3x5 x2
1x

2
4 + x2x

2
3x5

)
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whose generator is u = x2
1x

2
2x

2
4+x3

1x3x
2
4+x3

2x
2
3x5+x1x2x

3
3x5. Since X has only

one row then the computation of Be reduces to Be =
[
V (AnnR(Ωe)

]c
. It turns

out that I1(uν1Ω)=(x1x4, x2x3, x1x3, x
3
3x5, x

2
2), I2(uν2Ω)=((x1x4, x2x3, x1x3+

x2
2, x

3
3x5)) = I3(uν3Ω). Consequently, being Ω0 = Ω

I1(uν1 (Ω))
and Ω1 = I1(uν1 (Ω))

I2(uν2 (Ω))
,

we have B0 = V (x1, x2, x
2
3)c∪V (x1, x2, x5)c∪V (x2

2, x3, x4)c, B1 = V (x2, x3, x4)c

and Be = V (1)c for every e > 1. In other words, the HSL-number can be

at the most 2. More precisely, if we localise S at a prime that does not

contain the prime ideal (x1, x2, x
2
3) ∩ (x1, x2, x5) ∩ (x2

2, x3, x4) then we get an

F -injective module. Outside (x2, x3, x4) the HSL-number is less or equal to

1; On V (x2, x3, x4) the HSL number is exactly 2.

3.6 An Application: F -injectivity and F -purity

Definition 3.6.1 (F -pure). Let (R,m) be a Noetherian local ring of equal

characteristic p > 0. A map of R-modules N → Ñ is pure if for every R-

module M the map N ⊗R M → Ñ ⊗R M is injective. A local ring (R,m) is

called F -pure if the Frobenius endomorphism F : R→ R is pure.

We note that F -pure implies F -injective [11] and the converse holds if R

is Gorenstein [6, Lemma 3.3]. The following is an example constructed by

Fedder in [6, Example 4.8] that is an example of ring which is F -injective

but not F -pure.

Example 3.6.2. Let R be the local ring K[x1, · · · , x5]m, where m is the (max-

imal) ideal generated by the variables x1, · · · , x5 and K is a field of charac-
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teristic p. Let I be the ideal of two by two minors of the matrix

 xn1 x3 x5

x4 x3 xn2

 .

If p ≤ n then R/I is F -injective but not F -pure.

We now revisit Theorem 1.1 from [25] which gives some other examples

of rings which are not F -pure. Our algorithm shows that for some p and n

these rings are F -injective.

Example 3.6.3. Let R be the polynomial ring K[x1, · · · , x5] and J{p,n,m} the

ideal generated by the size two minors of the matrix

 x2
1 + xm5 x2 x4

x3 x2
1 xn2 − x4


where m and n are positive integers satisfying m − m/n > 2 and p is the

characteristic of the field K; Singh proved in [25, Theorem 1.1] that if p and m

are coprime integers then S{p,n,m} := R/J{p,n,m} is not F -pure. Our algorithm

implemented in Macaulay2 [7] shows that in the following cases S{p,n,m} are

F -injective.

• p = 3, n = 2, m = 7, · · · , 1000;

• p = 5, n = 2, m = 6, · · · , 100;

• p = 7, n = 2, m = 6, · · · , 100;

• p = 11, n = 2, m = 6, · · · , 100;
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• p = 3, n = 3, m = 8.

3.7 An Application: Test Exponents for Frobenius Clo-

sures and HSL Numbers

Let S be a ring of characteristic p and J ⊆ S an ideal.

Definition 3.7.1. The Frobenius closure of J is the ideal

JF =
{
a ∈ S | ape ∈ J [pe] for some e > 0

}
.

Note that if ap
ē ∈ J [pē] then ap

e ∈ J [pe] for every e ≥ ē.

Let g1, · · · gn be a set of generators for JF . For each generator gi let ei be the

integer such that gp
ei

i ∈ Jp
ei . If we then choose ē = max{e1, · · · , en} then

(JF )[pē] ⊆ J [pē]. We say that ē is a test exponent for the Frobenius closure of

J .

With the notation introduced in Section 2.2, we have the following.

Theorem 3.7.2. [14, Theorem 2.5] Let (S,m) be a local, Cohen-Macaulay

ring and let x = x1, · · · , xd be a system of parameters. Then the test exponent

for the ideal (x) is ē = HSL(Hd
mS(S)).

Proof.

Hd
mS(S) = lim

−→
t

(
S

x

x1···xn−→ · · · x1···xn−→ S

xt
x1···xn−→ · · ·

)
has a natural Frobenius action T which we can define on a typical element

of the direct limit as

T [a+ xt] = ap + xpt.
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Therefore ap
e ∈ xp

e
if and only if T e[a+ xt] = 0 i.e. [a+ xt] is nilpotent and

we can take ē = HSL(Hd
mS(S)).

Corollary 3.7.3. Let S be the quotient of a polynomial ring and let ε be the

bound for {HSL(HdimS
m (S)) | m is maximal}. If J ⊆ S is locally a parameter

ideal (i.e. for every maximal ideal m ⊇ J , Jm is a parameter ideal) then

(JF )[pε] = Jp
ε
.
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4 The non Cohen-Macaulay Case

In this chapter we generalise the results proved in Chapter 3 to any complete

ring by proving that for all e > 0, and for all j ≥ 0 the sets

Ve,j =
{
p ∈ Spec(R) | HSL(Hj

p(Rp)) < e
}

are Zariski open. Given any local ring (R,m) (not necessarely Cohen-Macaulay)

of dimension d, we define ω to be a canonical module for R if ω is an R-module

such that ω∨ ∼= Hd
m(R) (as in the Cohen-Macaulay case).

We will tackle the problem starting by generalising the operator Ie(−)

which we have defined in Section 3.1. We will then find a different method

to describe the Frobenius action on Hi
m(R) making use of the following result

proved by G. Lyubeznik.

Proposition 4.0.4 (see Section 2 [19]). Let (R,m) be a local ring and I ⊂ R

an ideal and write S = R/I. Consider Hi
m(S) as an R[T ; f e]-module where

T is the natural Frobenius map. Write δ = dimR.

Then ∆e(Hi
m(S)) is isomorphic to the map

Extδ−jR (R/I,R)→ Extδ−jR (R/I [p], R)

induced by the surjection R/I [p] → R/I.

Finally we will give an algorithm to compute the HSL-loci in the general

case and give some examples.

Although this new method works for every complete ring, the new algorithm
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is computationally much slower than the one described in Section 3.5.

4.1 Generalisation of the Operator Ie(−)

In this section we generalise the Ie(−) operator, which we have previously

defined on ideals, to submodules of free modules. Also, we prove that it

commutes with completion and localisation as in Proposition 3.1.4.

We recall that if R is a ring and A is a matrix with entries in R then A[pe]

indicates the matrix obtained from A by raising its entries to the pe-th power.

Definition 4.1.1. Let M ⊆ Rα be an R-submodule. We define M [pe] to be

the R-submodule of Rα generated by {m[pe] | m ∈M}.

Definition 4.1.2. A ring R is intersection-flat if for all e ≥ 0 and for any

family {Mλ} of R-modules,

F e
∗R⊗R

⋂
λ

Mλ =
⋂
λ

F e
∗R⊗RMλ.

Note that polynomial rings or power series rings with coefficients in an

F -finite ring, and complete regular rings are intersection-flat, see [13, Propo-

sition 5.3]. We will assume in this section that R is a regular ring intersection

flat for all e ≥ 0.

Definition 4.1.3. Let M be a submodule of Rα. We define Ie(M) to be the

smallest submodule L of Rα with the property that M ⊆ L[pe].

Theorem 4.1.4. Let R be regular and intersection-flat, then Ie(M) exists

for every submodule M ⊆ Rα .
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Proof. We want to prove that there exists a submodule L of Rα with the

property that L is the smallest submodule with the property that M ⊆ L[pe].

Let L be the intersection of all the submodules Lλ of Rα such that their

Frobenius pe-th power contains M . Since R is regular, we can identify F e
∗ (L)

and L[pe] and from the intersection-flatness it follows that L[pe] =
⋂
λ L

[pe]
λ .

Because M is contained in each L
[pe]
λ then M ⊆ L[pe] and L is minimal with

this property.

Lemma 4.1.5. Let M be a submodule of R̂α. Then M [pe]∩Rα = (M∩Rα)[pe].

Proof. G. Lyubeznik and K. E. Smith proved in [17, Lemma 6.6] that this

is true for local rings. For a non-local ring R, M [pe] ∩ Rα
p = (M ∩ Rα

p )[pe] for

every prime ideal p. Intersecting with Rα we get:

M [pe] ∩Rα = (M ∩Rα
p )[pe] ∩Rα = (M ∩Rα

p ∩Rα)[pe] = (M ∩Rα)[pe].

We generalise Lemma 3.1.3 with the following:

Lemma 4.1.6. Let W be a multiplicatively closed subset of R. For any

submodule M of Rα the following identity holds:

Ie(W
−1M) = W−1Ie(W

−1M ∩Rα).

Proof. Let L ⊆ W−1Rα be a submodule such that W−1M ⊆ L[pe]. Then

L[pe] ∩ Rα = (L ∩ Rα)[pe]. Since W−1M ∩ Rα ⊆ L[pe] ∩ Rα then Ie(W
−1M ∩
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Rα) ⊆ L ∩Rα and so W−1Ie(W
−1M ∩Rα) ⊆ W−1(L ∩Rα) ⊆ L. Moreover,

W−1M ⊆ W−1(W−1M ∩Rα)

⊆ W−1Ie(W
−1M ∩Rα)[pe]

= (W−1Ie(W
−1M ∩Rα))[pe]

so W−1Ie(W
−1M ∩ Rα) is the smallest submodule K ⊆ W−1Rα for which

W−1M ⊆ K [pe]. Hence Ie(W
−1M) = W−1Ie(W

−1M ∩Rα).

Theorem 4.1.7. Ie(−) commutes with localisation and completion.

Proof. Let W be a multiplicatively closed subset of R. For any submodule

M of Rα we have M ⊆ W−1M ∩ Rα so W−1Ie(M) ⊆ W−1Ie(W
−1M ∩ Rα)

and the latter term is the same as Ie(W
−1M) for lemma 4.1.6. So we only

need to prove the inclusion Ie(W
−1M) ⊆ W−1Ie(M). Since M ⊂ Ie(M)[pe]

then W−1M ⊂ W−1Ie(M)[pe] and W−1Ie(M)[pe] = (W−1Ie(M))[pe] because

of 4.1.5; since Ie(W
−1M) is the smallest such that its pe-th Frobenius power

contains W−1M then we have Ie(W
−1M) ⊆ W−1Ie(M) i.e. Ie(−) commutes

with localisation.

Using Lemma 4.1.5, the same argument proves that Ie(−) commutes with

completion.

4.2 The Frobenius Action on Eα
R(K)

We have seen in Example 1.2.1 and Example 2.8.5 that if R is a regular local

ring then R is isomorphic to a power series ring K[[x1, · · · , xn]] for some field

K of characteristic p and that the injective hull ER is then isomorphic to
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the module of inverse polynomials K[x−1 , · · · , x−n ] which has a Frobenius map

given by Fλxα1
1 · · ·xαnn = λpxpα1

1 · · ·xpαnn for all α1, · · · , αn < 0.

Let F be the natural Frobenius map on ER; for any α× α-matrix U we can

define a Frobenius map ΘU,e on ER given by

ΘU,e


z1

...

zα

 = U t


F ez1

...

F ezα

 .

Theorem 4.2.1. Let M be an Artinian R[Θ; f e]-module. Then M can be

embedded into Eα
R for some α > 1 and the Frobenius action on M is given by

ΘU,e for some α×α-matrix U . Furthermore, M is isomorphic to AnnEαR(At)

for some β × α-matrix A and the Frobenius action on AnnEαR(At) is the

restriction of the action on Eα
R to AnnEαR(At).

Proof. Let M be an Artinian R[Θ; f e]-module, then M can be embedded

into Eα
R for some α ≥ 1. An application of the Matlis dual to the inclusion

M ⊆ Eα
R gives the map Rα → M∨ = CokerA and if we apply the ∆e-

functor to M we obtain the map CokerA → CokerA[pe] and this must be

given by the multiplication by some α×α-matrix U . If we make Eα
R into an

R[Θ; f e]-module by taking Θ = ΘU,e then we get the following commutative

diagram

Rα

U
��

// CokerA

U
��

Rα // CokerA[pe].

70



Note that U must satisfy ImUA ⊆ ImA[pe].

Apply now the Ψe-functor to the latter diagram to get the inclusion of

R[Θ; f e]-modules M ⊆ Eα
R where the action of Θ on Eα

R is given by ΘU,e. As

a submodule of Eα
R, M ∼= AnnEαR(At) and the action on AnnEαR(At) is given

by the restriction of the action of Θ on Eα to AnnEαR(At).

4.3 HSL Numbers

In this section let R be a regular local ring and M be an R[Θ; f e]-module.

Using the same notation as in the previous section write ∆1(M) = CokerA
U→

CokerA[p] where A is an α × β-matrix with coefficients in R and U is an

α×α-matrix with coefficients in R. Note that M is an R[Θe; f e]-module and

∆e(M) = CokerA
U [pe−1]···U [p]U−−−−−−−−→ CokerA[pe].

For all e ≥ 0 define Me = {m ∈ M | Θe(m) = 0} and note that {Me}e≥0

form an ascending sequence of R[Θe, f e]-submodules of M that stabilises by

Theorem 2.10.3.

Apply now the ∆e-functor to the inclusion Me ⊆ M obtaining the following

commutative diagram:

CokerA

U [pe−1]···U [p]U
��

// CokerBe

U [pe−1]···U [p]U��

CokerA[pe] // CokerB
[pe]
e .

for some α× γ-matrix Be.

Since ∆e(Me) = 0 then the map CokerBe
U [pe−1]···U [p]U−−−−−−−−→ CokerB

[pe]
e must be

zero too. Since for every e ≥ 0 Me is the biggest submodule of M which
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is killed by Θe, then Be must be the matrix with the smallest image which

contains the image of A making the latter diagram commute. This means

that

ImBe = ImA+ Ie(Im(U [pe−1] · · ·U [p]U))

and the descending chain {Be}e≥0 stabilises (when the chain {Me}e≥0 sta-

bilises too) if and only if Be
Be+1

= 0.

We have proved the following.

Theorem 4.3.1. Let R be a regular local ring and M be an R[Θ; f ]-module.

If ∆1(M) = CokerA
U→ CokerA[p] then the HSL-number of M is the smallest

e such that

ImA+ Ie(Im(U [pe−1] · · ·U [p]U))

ImA+ Ie+1(Im(U [pe] · · ·U [p]U))
= 0.

4.4 A New Method for the Computation of the HSL

Loci

In this section let R be a polynomial ring over a field of prime characteristic

p, let I ⊂ R be an ideal of R and write S = R/I. Note that we are not

requiring any further assumptions on the quotient S.

For every ideal p ⊂ R consider the local cohomology module H
dim Ŝp

pŜp
(Ŝp)

which we will denote for short Hp. Each Hp is an Artinian R̂[Θ; f ]-module.

Using 2.9.3 write δp,j = dimRp − j; we have:

∆e(Hj
p)= Ext

δp,j
R (R/I,R)⊗ R̂ ϕp,j→ F (Ext

δp,j
R (R/I,R)⊗ R̂)
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and F (Ext
δp,j
R (R/I,R)⊗ R̂)∼= Ext

δp,j
R (R/I [p], R)⊗ R̂. Note that the map ϕp,j

is induced by the surjection ϕ : R/I [p] → R/I by Proposition 4.0.4.

Theorem 4.4.1. For all j ≥ 0 fix a presentation Coker(Rβj
Aj→ Rαj) =

ExtjR(R/I,R) and a matrix Uj : CokerAj → CokerA
[p]
j which is isomor-

phic to the map Extj(R/I,R) → Extj(R/I [p], R) induced by the surjection

ϕ : R/I [p] → R/I. For all j ≥ 0 and e > 0 write

Bj,e = ImAj + Ie(Im(U
[pe−1]
j · · ·U [p]

j Uj).

Then HSL(Hj
p) < e if and only if p is not in the support of Bj,e−1/Bj,e.

Proof. Note that ∆1(Hj
p) is the completion at p of the map Uj : CokerAj →

CokerA
[p]
j so from Theorem 4.3.1 it follows that HSL(Hp) < e if and only if

R̂p ⊗ ImAj + Ie(Im(U
[pe−1]
j · · ·U [p]

j Uj)

R̂p ⊗ ImAj + Ie+1(Im(U
[pe]
j · · ·U [p]

j Uj)
= 0.

By Proposition 4.1.7, the latter equality can be written as R̂p⊗(Bj,e−1/Bj,e) =

0 i.e HSL(Hj
p) < e if and only if p /∈ Supp(Bj,e−1/Bj,e).

Corollary 4.4.2. The F -injective locus of S, i.e. ∩jV1,j, is open.

Proof. The Frobenius map is injective on Hj
p if and only if

ImAj + I1(ImUj) = ImAj +Rαj

for some αj. Set Bj,0 = ImAj +Rαj then the F -injective locus of S is given

by the intersection on j of the complements of the supports of Bj,0/Bj,1, · · · ,
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BdimS,0/BdimS,1 therefore it is open.

Since every set Vj,e=
{
p ∈ Spec(R)|HSL(Hj

p) < e
}

is open and Spec(R) =⋃
j≥0,e>0 Vj,e then we also have:

Corollary 4.4.3. The set
{

HSL(Hj
p) | p ∈ Spec(R), j ≥ 0

}
is bounded.

4.5 A New Algorithm

Let R be a polynomial ring over a field of prime characteristic p, let I ⊂ R

be an ideal of R and let S = R/I be a quotient ring which is not necessarely

Cohen-Macaulay. Write ∆e(H i
p) as Coker(Ai)

Ui→ Coker(A
[pe]
i ) for some ma-

trices Ai and Ui as we did in Section 4.3. Then we can compute such matrices

explicitly as follows.

Let · · · Āj+1→ Fj
Āj→ · · · Ā2→ F1

Ā1→ F0
Ā0→ R/I → 0 be a free resolution of R/I

and apply the Frobenius functor to it obtaining

· · · // Fj
Āj // · · · // F1

Ā1 // F0
Ā0 // R/I // 0

· · · // Fj
Ā

[p]
j //

Ūj

OO

· · · // F1

Ā
[p]
1 //

Ū1

OO

F0

Ā
[p]
0 //

Ū0

OO

R/I [p] //

ϕ

OOOO

0

where the maps Ūi’s are constructed in this way; knowing ϕ and Ā0, we

construct the map Ū0 in the commutative diagram above in such a way to

make

F0
Ā0 // R/I // 0

F0

Ā
[p]
0 //

Ū0

OO

R/I [p] //

ϕ

OOOO

0.
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commutative. Once we know Ū0 we can construct Ū1 and so on. In general the

computation of Ūi requires that we know the previous maps ϕ, Ū0, · · · , Ūi−1.

Therefore, given a positive integer e, an algorithm to find the HSL-loci

Vi,e of S is the following;

1. Find Ūi and Āj as explained above.

2. Find the induced maps Ui and Ai by applying Hom(−, R) to the di-

agram above (the matrices get transposed and the arrows reversed),

then take the cohomology.

3. Compute Bi,e = ImAi + Ie(Im(U
[pe−1]
i · · ·U [p]

i Ui));

4. Compute

⋂
j

Supp(Bj−1,e/Bj,e)
c =

⋂
j

V (AnnR(Bj−1,e/Bj,e))
c.

The fact that to compute each Ui we have to calculate i Ext’s makes the

algorithm just described significantly slower than the one in Section 3.5. On

the other hand, this algorithm always succedes in the computation of the

HSL-loci as it does not require assumptions on S.

We compute now the HSL-loci of the ring from Example 3.4.4 where the

algorithm described in Section 3.5 could not be used as the ring was not

Cohen-Macaulay. The algorithm has been implemented in Macaulay2 [7].
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Example 4.5.1. Let S be as in Example 3.4.4, i.e. let S be the quotient

R/I with R = Z2[a, b, c, d] and I =< ac+ bd, b3 + c2, ab2 + cd, a2b+ d2 >.

We saw that S is a domain which is not S2 and the R-module of Frobenius

maps acting on Hd
mS(S) is not principal.

Compute a free resolution for S then apply the Frobenius functor to it ob-

taining the following commutative diagram;

R1 Ā2 // R4 //Ā3 //// R4 Ā1 // R1 Ā0 // R/I // 0

R1
Ā

[p]
3 //

Ū3

OO

R4
Ā

[p]
2 //

Ū2

OO

R4
Ā

[p]
1 //

Ū1

OO

R1
Ā

[p]
0 //

Ū0

OO

R/I [p] //

ϕ

OOOO

0.

where the maps Ūi’s are:

Ū0 =

(
1

)
,

Ū1 =



ac+ bd a2d bd+ cd 0

0 ad+ d2 b3 0

0 a3 0 0

0 0 ad+ d2 b3 + bc+ c2


,

Ū2=



a2b2+abd+bd2 b4 b2d2 b2c2

a2d+ad2 ab3+abc+ac2+bcd a2cd+abd2 b2cd+c2d

0 0 acd+cd2 0

0 ab2+abc+b2d a3c+a2bd+ad2+d3 ab2c+b3d+bcd


,

76



Ū3 =

(
abcd+ bcd2

)
,

Ū4 =

(
0

)
.

We then compute the generating maps Uj : CokerAj → CokerA
[p]
j induced

by Ūj; it turns out that H0
p is zero for every p.

U3 =

(
abcd+ bcd2

)
A3 =

(
d c b a

)

therefore ImA3 + I1(ImU3) = (d c b a 1) = ImA3 +R, i.e. the Frobenius

map is injective on H1
p for all p.

U2=

 ab2+ab+ac+bd+cd ab+ac+bd

ab3+bcd abc+b2d+cd

 A2=

 a+d b+c a b

ab b2 d c


therefore

ImA2 + I1(ImU2) =

 a+ d b+ c a b 1 0

ab b2 d c 0 1

 = ImA2 +R2

i.e. the Frobenius map is injective on H2
p for all p;

finally Ū1 = 0 so the Frobenius action on H3
p is injective as well. It follows

that S is F -injective.

In the next example we consider a quotient of a ring of characteristic

p. For p = 2 such a ring is not Cohen-Macaulay and we compute its HSL-

loci by using the algorithm described in this section. Then we change the
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characteristic of the ring to p = 3 and what we get is a Cohen-Macaulay ring

so we use the algorithm described in Section 3.5 instead.

Example 4.5.2. Let R = K[x1 · · · , x5], with K a field of positive character-

istic p, let I =< x2x4 + x1x5, x
3
4 + x3x

2
5, x1x

2
4 + x2x3x5, x

2
2x3 + x2

1x4 >⊂ R be

an ideal and write S = R/I.

• If p = 2 then S is a 3-dimensional not Cohen-Macaulay ring whose

non-Cohen-Macaulay locus consists of p =< x1, x2, x4, x5 >.

A free resolution for S has length 3. Since pd(R/I)=dimR−depth(R/I),

depth(R/I) cannot be 0 or 1 otherwise pd(R/I) would be greater than

the length of the free resolution. Hence H0
p = 0 and H1

p = 0 for all p.

Consider the local cohomology module H2
p ; with the usual notation we

have

U3 =

(
x2

2x3x4x5 + x1x2x3x
2
5

)
and A3 =

(
x5 x4 x2 x1

)

therefore ImA3+I1(ImU3) =

(
x5 x4 x2 x1 x5 x2

)
6= ImA3+R.

It follows that HSL(H2
p ) < 1 (i.e. the Frobenius action is injective) if

and only if p /∈ Supp
(

ImA2+R
ImA3+I1(ImU3)

)
= V (< x2, x5 >).

ImA3+I2(ImU
[p]
3 U3) =

(
x5 x4 x2 x1 x5 x2

)
= ImA3+I1(ImU3)

consequently Supp

(
ImA3+I1(ImU3)

ImA3+I2(ImU
[p]
3 U3)

)
= V (1)c i.e. HSL(H2

p ) < 2 for

all p. In conclusion if we localise at a prime q that does not contain
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the prime r =< x2, x5 > then the action of Frobenius on Sq is injective

and in particular the HSL(H2
r (Sr)) = 1.

Finally consider the Frobenius action on H3
p .

U2 =


x2x3x4 + x1x3x5 x1x3x4 0

x1x4x5 x2x3x5 x2x3x4 + x1x3x5

x2x
2
5 x2x4x5 + x1x

2
5 x2x

2
4 + x1x4x5


and

A2 =


x4 x1 0 x3 0

x5 x2 x4 0 x1

0 0 x5 x4 x2


so we have

ImA2 + I1(ImU2) =


x4 x1 0 x3 0 0 1 0

x5 x2 x4 0 x1 0 0 1

0 0 x5 x4 x2 1 0 0

 = ImA2 +R3

therefore the Frobenius action is injective on H3
p for every prime ideal

p.

In conclusion we have the following HSL-loci: B0 = V (< x2, x5 >)c

and B1 = V (1)c.

• Let now p = 3. Then S is Cohen-Macaulay of dimension 2 and a

canonical ideal for S is the image in S of the ideal

Ω =< x3x5 + x4, x
2
4 + x1 + x2 − x5, x1x5, x2x4, x1x4, x2x3, x

3
4 + x3x

2
5 >
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in R. A generator for the R-module of the Frobenius maps on Hd
mS(S)

is

u =− x2
1x

2
2x

2
3x

6
4x

2
5+x2

1x
2
2x

3
3x

3
4x

4
5−x2

1x
2
2x

4
3x

6
5+x2

1x
2
2x3x

7
4x5−x2

1x
2
2x

2
3x

4
4x

3
5+

x2
1x

2
2x

3
3x4x

5
5 − x2

1x
2
2x

8
4 − x4

1x
2
2x

2
3x

2
4x

2
5 + x3

1x
3
2x

2
3x

2
4x

2
5 − x2

1x
4
2x

2
3x

2
4x

2
5+

x2
1x

2
2x3x

5
4x

2
5 − x2

1x
3
2x

2
3x

2
4x

3
5 − x2

1x
2
2x

2
3x

2
4x

4
5

and it turns out that

I1(uΩ) = < x1x5, x
2
4 + x1 + x2 − x5, x2x4, x1x4, x2x3, x3x

2
5 + x4x5,

x3x4x5 − x1 − x2 + x5, x
3
4 + x3x

2
5 >= I2(u4Ω)

so that B0 = Supp
(

Ω
I1(uΩ)

)
= V (x1, x2, x4, x5)c and B1 = V (1)c.
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5 Conclusions

In this thesis we computed the HSL-loci of quotients of polynomial rings. We

approached the problem at first in a purely theoretical way and then we trans-

lated the results into an algorithm that allowed us to do our computations

explicitly on concrete rings. We first treated the case of Cohen-Macaulay do-

mains for which the algorithm was quite fast and then we described another

strategy that works for any ring. As we noted previously, the only disadvan-

tage of the second method is that the algorithm for it is much slower than

the algorithm for the Cohen-Macaulay case. The common ingredient used

in both the Cohen-Macaulay case and the non-Cohen-Macaulay case is that

they make use of an operation (more specifically the Ie(−) operator) that

commutes with localisation and completion.

We gave a constructive description of loci and invariants defined by various

properties of a Frobenius action on some modules. There may be other loci

and invariants defined by properties of Frobenius maps that could be de-

scribed using similar methods.

Karen Smith gave the following characterization of F -rational rings using

the Frobenius action F on Hd
m(R):

Theorem 5.0.3. [26] Let (R,m) be a d-dimensional excellent local ring of

characteristic p > 0. Then R is F -rational if and only if R is Cohen-

Macaulay and Hd
m(R) has no proper nontrivial submodules stable under the

Frobenius action F .
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One could consider a non-local ring S = R/I and find an explicit de-

scription for the F -rational locus in terms of the simplicity of the top local

cohomology module i.e find an object Gi such that Gi = 0 if and only if

H i
m(S) is simple.
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6 Appendix: Code Used

This appendix includes the code used throughout the thesis. For complete-

ness all the code is included but only the code marked by a * was written by

myself, the rest was written by Moty Katzman. The algorithms have been

implemented in Macaulay2, [7].

1*) The next two functions tell you whether a certain ring is Cohen-Macaulay

and compute the Cohen-Macaulay type respectively.

CMR=(M)->(
R:=ring(M);
cc:=res coker M;
pd:=length(cc);
isCM:=((dim(R)-pd)==dim(coker M));
return isCM;

)

TypeR=(M)->(
R:=ring(M);
pd:=pdim (coker M);
depthOfRmodI:=dim(R)-pd;
B:=res coker M;
type:=rank (B_pd);
return type;

)

2*) The function OMEGA computes a canonical ideal for a ring R/I where

I is defined from the matrix M .
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Allnumbers=(n)->(
L:=0; local i;
for i from 1 to (n-1) do(
L=flatten toList(L,i););

return L;
)

Allzeros=(n)->(
L:=0; local i;
for i from 1 to (n-1) do(

L=flatten toList(L,0););
return L;
)

OMEGA=(M)->(
R:=ring(M);p:=char(R);answer:=0;T:=TypeR(M);
if (T==1) then(
if (CMR(M)) then return R;);
delta:=dim(R)-dim(coker M);

Omega0:=relations prune Ext^delta(coker M, R^1);
S:=R/ideal(M);
s1:=syz transpose substitute(Omega0,S);
s2:=entries transpose s1;
s=#s2_1;
L:=rank source s1;
ALL:=Allnumbers(p);
ALL=set ALL;
Comb:=ALL^**L;
n:=#Comb;
ListComb:=elements Comb;
for i from 0 to (n-1) do(

c:=ListComb_i;
App:=Allzeros(s);
for j from 0 to (L-1) do (
App=c_j*(s2)_j +App;
j=j+1;);
s3:=App;
s3=syz gens ideal(s3);
s3=gens substitute(image(s3),R);
news3=matrix entries s3;
newOmega0=matrix entries Omega0;
z:=(news3%newOmega0);
if ((z)==0) then {
answer=substitute(mingens ideal (App),R);

break;}
else print"error";
i=i+1;);

substitute(answer,R);
answer=ideal(answer)+ideal(M);
answer=gens answer;
return answer;

)
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3*) The following function takes an ideal I = ideal(M) (where M is a

matrix) and a canonical ideal Om for a ring R/ideal(M) and computes

the generators of a matrix X whose cokernel is isomorphic to the R-

module U(1) =
(J [p]:J)∩(Ω[p]:Ω)

J [p] defined in Section 3.4.

FindGeneratorsX=(M,Om)->(
R:=ring(M);
p:=char R;
GenTop:=ideal 0_R;
O1:=first entries M;
O2:=apply(O1, u->u^p);
O3:=ideal(O2):ideal(O1);
Omega1:=first entries Om;
Omega2:=apply(Omega1, t->t^p);
Omega3:=ideal(Omega2):ideal(Omega1);
if (isRing Om) then GenTop=generators(O3)
else GenTop=generators intersect(Omega3,O3);
I4:=generators(ideal(apply(first entries M, u->u^p)));
X:=relations prune subquotient(GenTop,I4);
v:=(coker X).cache.pruningMap;
v1:=matrix entries v;
ListGen:=first entries(GenTop *v1);
return ListGen;
)

4*) The following function takes an ideal I and produces I [pe].

FrobeniusPower= (I,e) ->(
R:=ring I;
p:=char R;
local u;
local answer;
G:=first entries gens I;
if (#G==0) then answer=ideal(0_R)
else answer=ideal(apply(G, u->u^(p^e)));
answer
);

5*) The following takes a matrix M , an integer e and produces M [pe] i.e.
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the matrix obtained by raising to pe the entries of the matrix M .

FrobeniusPowerMatrix= (M,e) ->(
R:=ring M;
p:=char R;
G:=entries M;
local i;
local j;
L:={};
apply(G, i->{ L=append(L,apply(i, j->j^(p^e)));});
substitute(matrix L, ring(M))
)

6 Given two ideals A and B and an intereger e, the following function

gives the ideal Ie(A) +B as output.

ethRoot = (A,B,e) ->(
R:=ring(A);
pp:=char(R);
F:=coefficientRing(R);
n:=rank source vars(R);
vv:=first entries vars(R);
R1:=F[v, Y_1..Y_n, MonomialOrder=>
ProductOrder{n,n},MonomialSize=>16];
J0:=apply(1..n, i->Y_i-substitute(v#(i-1)^(pp^e),R1));
S:=toList apply(1..n, i->Y_i=>substitute(v#(i-1),R1));
GG:=(gens substitute(A,R1))%gens(ideal(J0))
G:=first entries compress(GG);
L:=ideal 0_R1;
apply(G, t->

{ L=L+ideal((coefficients(t,Variables=>v))#1);});
L1:=L+substitute(B,R1);
L2:=mingens L1;
L3:=first entries L2;
L4:=apply(L3, t->substitute(t,S));
use(R);
substitute(ideal L4,R)
)

7*) The following function calculates νe;
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nu=(e,p)->(
if e==0 then return 0 else
return sum(0 .. e-1, i -> p^i)
)

8*) Given a canonical module ω (Om in the function) and a generator u

(computed using the function FindGeneratorsX as in 6), the following

computes Ie(u
νeω).

Li=(e,u,Om,M)->(
if e==0 then return ideal Om else (
if isRing Om then (
q:=char(Om);
return ethRoot( ideal(u^(nu(e,q))), ideal(0_Om),e);)
else (
R:=ring(Om);
p:=char(R);
J:=ideal(u^(nu(e,p)))*ideal Om;
return ethRoot(J,ideal(0_R),e)+ideal(M);););
)

9*) Given a matrix X and a positive integer j, it returns the ideal of the

minors of the matrix obtained from X by erasing the jth-row.

mathcalGj=(j,X)->(
rows:=(rank target X)-1;
return minors(rows,submatrix’(X,{j},));
)

10*) The following computes the HSL-loci of R/ideal(M). In particular for

e = 0 we have the F -injective locus.
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Loci= (M,Om,e) ->(
j:=0;
R:=ring(M);
FG:=FindGeneratorsX(M,Om);
L:= #FG-1;
D:=ideal 0_R;
App:=ideal 0_R;
X:=ComputeX(M,Om);
for j from 0 to L do(
u:=FG_j;
W1:=Li(e,u,Om,M);
W2:=Li(e+1,u,Om,M);
J:=mathcalGj(j,X);
ANNIH:= W2:W1;
D=ANNIH*J;
D=radical ideal mingens D;
App=D+App;);
App=radical ideal mingens App;
<< "Locus( "<<e <<")="<< App << "\n";print"";
return App;
)

11) The following function computes a generating morphism forH
(dimR−i)
I (R)

in Chapter 4. The output is (A,U) where U : Coker(A)− > F (CokerA)

is the generating morphism.

generatingMorphism= (I,i) ->(
local F1; local K; local C;
local F1p; local Kp; local Cp;
R:=ring(I);
Ip:=frobeniusPower(I,1);
M:=coker gens I;
Mp:=coker gens Ip;
resM:=res M;
resMp:=res Mp;
f:=inducedMap(M,Mp);
resf:=res f;
G:=resf#i; G=transpose(G);
F0:=(resM.dd)#(i); F0=transpose(F0);
if (resM.dd)#?(i+1) then(
F1=(resM.dd)#(i+1); F1=transpose(F1);
K=ker F1;)else(K=target(F0););
temp1:=substitute(gens K,R);
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if (temp1==0) then C=coker(F0) else
C=subquotient(substitute(gens K,R),F0);
C=subquotient(substitute(gens K,R),F0);
C1:=prune(C);
h:=C1.cache.pruningMap;
generatingMorphism0:=G*gens(K)*matrix(entries h);
F0p:=(resMp.dd)#(i); F0p=transpose(F0p);
if (resMp.dd)#?(i+1) then
(F1p=(resMp.dd)#(i+1); F1p=transpose(F1p);
Kp=ker F1p;)else(Kp=target(F0p););
temp1=substitute(gens Kp,R);
if (temp1==0) then Cp=coker(F0p) else
Cp=subquotient(substitute(gens Kp,R),F0p);
Cp=subquotient(gens Kp,F0p);
C1p:=prune(Cp);
hp:=C1p.cache.pruningMap;
A0:=gens(Kp)*matrix(entries hp); A=A0| F0p;
gbA:=gb(A, ChangeMatrix => true) ;
B:=generatingMorphism0// A;
--- Now generatingMorphism0=A*B
k:=rank source A0;
(relations(C1), submatrix(B,toList(0..(k-1)),))
)

12) The function mEthRoot computes Ie(−) of submodules of free modules

as defined in Section 4.1.

getExponents=(f)->(
answer:={};
t:=terms(f);
apply(t, i->
{
exps:=first exponents(i);
c:=(coefficients(i))#1;
c=first first entries c;
answer=append(answer,(c,exps));
});
answer
)
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mEthRootOfOneElement= (v,e) ->(
local i; local j;
local d;
local w;
local m;
local answer;
R:=ring(v); p:=char R; q:=p^e;
F:=coefficientRing(R);
n:=rank source vars(R);
V:=ideal vars(R);
vv:=first entries vars(R);
T:=new MutableHashTable;
alpha:=rank target matrix(v);
B:={};
for i from 1 to alpha do
{
vi:=v_(i-1);
C:=getExponents(vi);
apply(C, c->
{
lambda:=c#0;
beta:=c#1;
gamma:=apply(beta, j-> (j%q));
B=append(B,gamma);
key:=(i,gamma);
data:=apply(1..(#beta), j-> vv_(j-1)^((beta#(j-1))//q));
data=lambda*product(toList data);
if (T#?key) then
{
T#key=(T#key)+data;
}
else
{
T#key=data;
};
});
};
B=unique(B);
TT:=new MutableHashTable;
apply(B, b->
{
ww:={};
for i from 1 to alpha do if T#?(i,b) then
ww=append(ww,T#(i,b)) else ww=append(ww,0_R);
ww=transpose matrix {ww};
TT#b=ww;
});
KEYS:=keys(TT);
answer=TT#(KEYS#0);
for i from 1 to (#KEYS)-1 do answer=answer | TT#(KEYS#i);
answer
)

90



mEthRoot = (A,e) ->(
local i;
local answer;
answer1:=apply(1..(rank source A),
i->mEthRootOfOneElement (A_(i-1),e));
if (#answer1==0) then
{
answer=A;
}
else
{
answer=answer1#0;
apply(2..(#answer1), i->answer=answer | answer1#(i-1));
};
mingens( image answer )
)
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