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Abstract 

The aim of this thesis is to provide updated, accurate kinetic (and where possible 

mechanistic) information regarding the oxidation pathways of various volatile organic 

compounds (VOCs) and trace gas species within the troposphere.  

The vast majority of the experiments discussed were conducted using a pulsed laser 

photolysis, photoionization mass spectrometry (PLP-PIMS) set-up, which operated at low 

pressures (p = 2 Torr). PLP-PIMS is a time-resolved technique can be used to directly 

monitor multiple species simultaneously and with time; details of this method are found in 

Chapter II. Initially, one shortcoming of the PLP-PIMS technique was that it could not 

detect OH radicals (due to the ionization potential of OH). However, in Chapter III a 1 + 1’ 

multiphoton ionization (MPI) scheme was implemented, making OH detection possible. 

In Chapter IV, kinetic and mechanistic information regarding the oxidation of acetaldehyde, 

CH3CHO, by OH is reported. From this study a rate coefficient of kOH = (1.6 ± 0.2) × 10-11 

cm3 molecule-1 s-1 was measured, this is in good agreement with other literature values. 

Additionally, it was observed that a small yield of methyl radicals (YCH3 ≈ 15%) was also 

produced. Methyl radicals were an unexpected product from this reaction and it is 

hypothesised that they are formed from the dissociation of nascent, chemically activated 

acetyl radicals. Notably, the yield of methyl radicals observed is significantly lower than 

would be expected from a statistical distribution of the energy between the products. 

Therefore, a post-reaction complex is proposed to allow for the redistribution of energy. 

In Chapters VI, reactions of the C1 and C2 Criegee intermediates (CH2OO and CH3CHOO, 

respectively) with SO2 and NO2 are reported. For the C1 Criegee intermediate (CI), rate 

coefficients of kC1SO2 = (3.8 ± 0.3) 10-11 cm3 molecule-1 s-1 and kC1NO2 = (1.2 ± 0.3)  10-12 

cm3 molecule-1 s-1 are reported for the reactions with SO2 and NO2 respectively. For the C2 

CI, rate coefficients of kC2SO2 = (1.8 ± 0.3) 10-11 cm3 molecule-1 s-1 and kC2NO2 = (7.0 ± 

1.6)  10-13 cm3 molecule-1 s-1 were measured. Moreover, in the C2 CI + SO2 reaction, 

acetaldehyde was positively identified as a product from this reaction at low pressures. 

Finally, in Chapter VII the reactivity of Criegee intermediates towards different organic 

species was investigated. From these experiments it was observed that the C1 CI had 

significant rate coefficients with carboxylic acids, and rate coefficients of kC1FA = (3.7 ± 0.6) 

× 10-11 cm3 molecule-1 s-1 and kC1AA = (7.1±1.1) × 10-11 cm3 molecule-1 s-1 measured for the 

reactions with formic and acetic acid, respectively. However, the reactivity of CIs towards 

alkenes is thought to be considerably slower with upper limits of kC1ethene < 2 × 10-14 cm3 
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molecule-1 s-1 and kC1isoprene < 3 × 10-13 cm3 molecule-1 s-1 measured for the reactions of the 

C1 CI with ethene and isoprene. 
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1. Introduction 

The initial chapter of this thesis gives an introduction to Earth’s atmosphere and highlights 

some of the negative impacts that both anthropogenic and biogenic activities have had. 

Additionally, this chapter aims to give a brief overview of the chemistry that occurs within 

the Earth’s atmosphere, with a particular focus on the oxidation of organic species in the 

atmosphere. Lastly, an introduction to field of reaction kinetics is given, with the emphasis 

on gas-phase kinetics and the theoretical methods relevant to this thesis. 

1.1 Climate Change  

Climate change has become a major threat to prolonged life on Earth (Haines et al., 2006). 

Sadly, up until very recently, climate issues have been largely ignored on both a 

governmental level and by the general public; indeed according to a study conducted in 

2010, under half (~47%) of the American population even believed that climate change was 

occurring (Leiserowitz et al., 2013). This may be partially due to a lack of understanding of 

what climate change actually means: “Climate change refers to a change in the state of the 

climate that can be identified (e.g. by using statistical tests) by changes in the mean and/or 

the variability of its properties, and that persists for an extended period, typically decades or 

longer” (Cubasch et al., 2013). Crucially, and possibly what is misunderstood, climate 

change is based upon observed, quantifiable, changes to climate; it is not merely hypothesis 

– it is known that climate change is occurring. It is also true that to fully appreciate the 

ramifications that human activity has had upon climate change, the intricacies of the Earth’s 

climate, including the role of the atmosphere, must be well understood. 

1.1.1 The Earth’s Climate System 

The atmosphere surrounding Earth is responsible for moderating its climate; the chief input 

of energy to this system is from solar radiation (Figure 1.1). Prior to the industrial 

revolution, the Earth’s surface temperature had remained, relatively constant, since the end 

of the last glacial period, approximately 12,000 years ago (Severinghaus and Brook, 1999); 

suggesting that an equilibrium had been reached between the incoming radiation from the 

Sun and the outgoing radiation from the Earth and its atmosphere. The Earth receives (on 

average) approximately 1.74  1017 Joules of energy per second (i.e. 174 PW) from the Sun 

(Thorpe, 2011); just over a half is absorbed by the Earth’s surface. Of the other half, 

approximately 30% is reflected back out of the Earth’s atmosphere whilst the remaining 

20% is absorbed by gas molecules within the atmosphere. For example, stratospheric ozone 

absorbs much (>97%) of the ultra-violet light at wavelengths between 200 nm > > 315 nm 

(Wayne, 1991).  
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Figure 1.1: A schematic of the Earth’s energy budget, Source: ERBE, Atmospheric Sciences 

Division, NASA LaRC. 

 

The majority of the outgoing energy emitted from the Earth’s surface is in the infra-red (IR) 

part of the electromagnetic spectrum (also known as longwave radiation). Although most of 

the IR emitted is radiated directly into space, some is absorbed by certain molecules within 

the Earth’s atmosphere; water vapour, carbon dioxide, methane to name a few. Upon 

absorption these excited molecules either emit longwave radiation or transfer the surplus 

energy via collisions; a significant proportion of the emitted light is directed back down 

towards Earth, adding to the heat in the lower atmosphere and to the Earth’s surface 

temperature: this phenomenon is commonly known as the greenhouse effect. The 

greenhouse effect is often thought as solely a negative; however, without it the average 

surface temperature of Earth would be -18 C, too cold to sustain water-based life 

(Jacobson, 2002). Indeed the greenhouse effect is integral to the balance of incoming solar 

radiation and the outgoing longwave radiation, which supports life on Earth. Unfortunately, 

problems do arise when there are changes to this system.  

1.1.2 Man's Influence on Climate Change 

Between the years 1750 and 2011, fossil fuel combustion has led to the release of 

(1375 ± 110) Gigatonnes of CO2 directly into the atmosphere (Cubasch et al., 2013). This 

rise in anthropogenic carbon-based emissions has had a marked environmental impact, 

altering the composition of the Earth’s atmosphere and increasing CO2 levels by 45%, from 

just under 280 ppm to 406.5 ppm (as of the 2nd of March 2016), since the industrial 
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revolution (McGee, 2016). This poses serious implications for the climate; the effects of 

global warming are becoming ever more apparent and over the last century the average 

surface temperature on Earth has increased by 0.85-0.20

+0.21 oC (IPCC, 2013). The observed 

increase in CO2 is thought to be key to this warming as CO2 has an associated radiative 

forcing (RF) value of +(1.82±0.19) W m-2 (Figure 1.2). Note: a positive RF value implies 

that respective component is contributing to global warming, whilst a negative RF suggest 

the component is causing a net cooling in the atmosphere. 

 

Figure 1.2: Radiative forcing diagram from the IPCC report 2013. The schematic indicates the 

most significant factors contributing to global warming (Hartmann et al., 2013). 

 

There are many who deny man's influence on climate and insist that the observed increase 

in temperature is due to a combination of natural occurrences (such as El-Niño) and the 

Sun’s solar cycle (Hegerl et al., 2007). However, in the past decade there have been a 

number of studies and reports, which have shown indisputably that anthropogenic sources 

are partially (if not predominantly) responsible for the observed global warming. Possibly 

the best example of the anthropogenic impact of global warming can be seen in Figure 1.3. 

In this study by Meehl et al. (2012) Community Climate System Models (CCSM4) were run 

to simulate the observed changes in the average global temperature. This model included all 

of the major components causing radiative forcing. From these simulations it was observed 

that neither the anthropogenic nor the natural components of the model could accurately 

describe the observed temperature variation; however, when both the anthropogenic and 

natural components were included in the model, the correlation to the temperature variation 

is much improved (Meehl et al., 2012). 
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Figure 1.3: The black curve represents observations. The blue curve represents the result of a 

computer simulation that accounts for natural variations like volcanic eruptions and changes in the 

brightness of the Sun. The red curve includes all the natural variations in the blue curve, but adds 

human emissions like CO2 and sulfate aerosols. The shaded blue/red areas represents the 

uncertainty of the simulations (Meehl et al., 2012). 

 

In addition, due to society’s current dependence on fossil fuels (a finite resource), it is 

almost certain there will be some sort of an energy crisis in the years to come, unless 

serious action is taken. It is currently estimated that the human race utilizes over 470 EJ of 

energy annually, 85% from fossil fuel combustion (Demirbas, 2009, Forinash, 2010). 

Approximately half of the energy is used by the billion people living in the most 

economically developed countries, conversely the one billion poorest account for only 4% 

of the annual primary energy use (Argiri et al., 2006).  If nothing is done to reduce the need 

for fossil fuels it is forecast that over the next twenty years petroleum consumption may 

increase by up to 75%, due to greater demand in developing countries like India and China 

(Semelsberger et al., 2006). This will undoubtedly put considerable stress on what is a 

dwindling supply of energy and lead to larger annual emissions of CO2 into the atmosphere. 

It is clear that action must be taken now if we are to minimise the effects of global warming 

(Cubasch et al., 2013). Fortunately, with the negotiation of the Paris Agreement at the UN’s 

COP 21 meeting in December of last year, it seems that governments around the world are 

starting to take climate change (and particularly man's influence upon it) seriously. 

However, if the reductions in greenhouse gas emissions targeted by the Paris Agreement are 

to be met, it is clear that a complete appreciation of the Earth’s atmosphere, and in 

particular the reactions occurring within it, must be accurately understood; this field of 

research is known as atmospheric chemistry. 
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1.2 The Earth’s Atmosphere  

Although often taken for granted, the atmosphere surrounding our planet is of vital 

importance to sustaining life on Earth as we know it. Held close by gravitational 

interactions with Earth, the atmosphere is constantly changing, due to both dynamic 

processes and chemical reactions. The Earth’s atmosphere is often classified into different 

layers (Figure 1.4); these layers can be described by their characteristic vertical temperature 

gradients (Finlayson-Pitts and Pitts Jr., 1999). The lowest level of the atmosphere is known 

as the troposphere; it contains between 85-90% of the atmosphere’s mass and stretches out 

from the Earth’s surface to an altitude of approximately 7 km at the poles and to 15 km at 

the equator. The main feature of the temperature profile in the troposphere is that the 

temperature decreases with increasing altitude; this is because the primary source of heating 

in the troposphere is due to energy transfer from the Earth’s surface (Park, 1997). This 

negative temperature gradient leads to rapid vertical movement of gases by convection and 

means all species are well mixed in this region. 

 

Figure 1.4: Vertical temperature profile of attitudes from 0-100 km. Taken from Finlayson-Pitts 

and Pitts, (2000). 

 
 

Located directly above the troposphere is the stratosphere; approximately 40 km thick, it 

contains the vast majority of atmospheric ozone which absorbs UV light and causes the 

positive temperature gradient in this region (Hansen et al., 2011). In the mesosphere (~50 – 

90 km in altitude) the temperature cools to less than 200 K and this region also experiences 

rapid mixing. Above the mesosphere comes the thermosphere and exosphere, the upper 
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most regions of the atmosphere. The temperature in the thermosphere is reliant or the solar 

activity and increases with altitude. It should be noted that the majority of the information 

described in the next section will concern the chemistry of the lowest part of the 

troposphere, also known as the boundary layer, as it is in this region of the atmosphere that 

the chemistry described in Chapters IV - VII predominantly occurs. 

1.3 The Chemistry of the Earth’s Atmosphere 

In the following section of this chapter will be divided into three parts, this first being a 

detailed description of the basic gas-phase reactions, which control much of the chemistry 

in clean, remote environments. Next will be a discussion of the ‘extra’ chemistry introduced 

by anthropogenic emissions in polluted environments. Finally, the impact of biogenic 

emissions will be reported. 

1.3.1 Atmospheric Chemistry of Remote Environments 

The composition of the Earth’s atmosphere, reported in Table 1.1, is primarily composed of 

nitrogen (78%), oxygen (21%) and argon (0.9%). However, it is the traces species which 

dictate much of atmospheric chemistry and have major implication for climate change, as 

can be seen in Figure 1.2.  

Table 1.1: Chemical Composition of the Atmosphere, adapted from Brasseur et al., 1999.  

Constituent 
Chemical 

Formula 

Volume Mixing 

Ratio (Dry 

Air†) 

Major Sources 

Nitrogen N2 78.084% Biological 

Oxygen O2 20.948% Biological 

Argon Ar 0.943% Inert 

Carbon Dioxide CO2 360 ppmv * Combustion 

Neon Ne 18.18 ppmv Inert 

Helium He 5.24 ppmv Inert 

Methane CH4 1.7 ppmv Biogenic and anthropogenic 

Nitrous Oxide N2O 0.31 ppmv Biogenic and anthropogenic 

Carbon Monoxide CO 50-200 ppbv 
Photochemical and 

anthropogenic 

Ozone (troposphere) O3 10-500 ppbv Photochemical 

Volatile Organic 

Compounds 
RH 5-20 ppbv Anthropogenic and biogenic 

Ammonia NH3 10 pptv - 1 ppbv Biogenic 

Hydroxyl OH 0.1-10 pptv Photochemical 

Hydroperoxyl HO2 0.1-10 pptv Photochemical 

†Excludes Water Vapour. 

*Note the value quoted in Table 1.1 is from 1999, and is significantly lower than the current 

atmospheric concentration of CO2, which is 406.5 ppmv (as of the 2nd of March 2016). 
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One such trace species is the hydroxyl radical, OH, which, although only present in small 

concentrations in the atmosphere, controls much of its oxidative chemistry (Atkinson, 

2000). The average lifetime of an OH radical is extremely short (τ < 1 s) as it reacts rapidly, 

playing a central role in the chemistry of many of the most environmentally relevant species 

in the atmosphere, including greenhouse gases such as ozone and methane (Smith et al., 

2006). The hydroxyl radical is principally formed in the troposphere from the short wave 

UV photolysis of O3 (λ < 340 nm). 

 O3  +  hv (λ < 340 nm) →  O(1D)  +  O2                                            (R1.1) 

   

 O(1D)  +  H2O  →  2 OH (R1.2) 

   

Such is the oxidizing capacity of the OH radical that the atmospheric lifetimes of many 

trace gas species are entirely dependent on their reactivity towards OH (E1.1). 

 𝜏X =  
1

𝑘OH[OH]
 (E1.1) 

   

In equation E1.1: τX refers to the lifetime of species X; kOH is the bimolecular rate 

coefficient of species X with OH; and [OH] is the atmospheric concentration of hydroxyl 

radicals.  

Given E1.1, it is clearly of the utmost importance that both global and local concentrations 

of OH are accurately known (Stone et al., 2012). It should also be noted that many of the 

rate coefficients, kOH, determined are strongly temperature dependent, meaning that their 

rates will vary greatly throughout the troposphere (Kurylo and Orkin, 2003). A major sink 

for OH in ‘clean’ (i.e. low NOx) environments is reaction with CO; this reaction leads to the 

formation of HO2, another important reactant within the troposphere (Stone et al., 2012). 

 OH  +  CO  →  CO2  +  H (R1.3) 

   

 H  +  O2  +  M  →  HO2  +  M (R1.4) 

   

The hydroperoxyl radical (HO2) is coupled closely to OH and is converted back to it via its 

reaction with ozone (R1.5). 

 HO2  +  O3  →   OH  +  2O2 (R1.5) 

   

From reactions R1.3-1.5, it is clear that OH and HO2 radicals are closely related and are 

commonly referred to as HOx radicals. It should be noted that as these species are so closely 

linked, and that the main OH production pathway is via photolysis, that both these species 

exhibit a diurnal variation in concentration.  
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Together the HOx radicals are responsible for the oxidation of the majority of volatile 

organic compounds (VOCs) present in the troposphere (Jacob, 1999). It is therefore 

unsurprising that the OH radical is key in the tropospheric oxidation of hydrocarbons; 

indeed OH is directly involved in the initiation of methane oxidation (Wayne, 1991). 

 OH  +  CH4  →  CH3  +   H2O                                           (R1.6) 

   

The next step of oxidation process involves reaction with O2 forming the methylperoxy 

radical, CH3O2; this family of radicals are commonly referred to as RO2 species (Finlayson-

Pitts and Pitts Jr., 1999). 

 CH3  +  O2  +  M  →  CH3O2  +  M (R1.7) 

   

It should be noted that this is not the end of the oxidation process for methane and it will 

eventually be converted into CO2 in the atmosphere (the oxidation total process can take 

many years). In R1.7, M is a third body species, which in the atmosphere is typically N2 or 

O2. 

Significantly, both HO2 and RO2 radicals play an important role in the destruction of 

tropospheric HOx radicals in ‘clean’ environments (Whalley et al., 2010). 

 HO2  +  HO2  →  H2O2  +  O2 (R1.8) 

   

 HO2  +  RO2  →  ROOH  +  O2 (R1.9) 

   

Summarized above (R1.1-1.9) are some of the most important reactions in unpolluted 

environments. Notably, this mechanism is simplified and many other reactions and species 

are involved. However, these reactions do seem to control much of the chemistry in clean 

environments and there has generally been good agreement between field measurements 

and atmospheric models in unpolluted regions (Heard and Pilling, 2003). 

1.3.2 Chemistry of Polluted Environments  

In polluted environments, much of the chemistry is surprisingly similar; of course the 

composition of VOCs is different, as the local sources will be anthropogenic, rather than 

from natural sources; however the oxidation paths of these differing VOCs does not cause 

major changes in the generic chemistry of the troposphere (Finlayson-Pitts and Pitts Jr., 

1999). The most notable difference between clean and polluted environments is that the 

concentrations of the nitrogen oxides, NO and NO2 (collectively known as NOx), are 

significantly higher in polluted environments. The major source of NOx is automotive 

emissions, a process that was highlighted last year by the Volkswagen emission scandal, 

where it was observed that several different diesel models were producing NOx levels up to 
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40 times the legislated maximum set by the US Environmental Protection Agency (EPA). It 

was later discovered that Volkswagen were aware of this problem and had falsified the test 

results to meet the required standards (Schiermeier, 2015). NOx is formed when combustion 

takes place in the presence of nitrogen; as a by-product of combustion, NOx levels are 

generally elevated in urban areas, where traffic congestion is higher. Within the atmosphere, 

NO and NO2 rapidly interconvert, significantly this cycle also produces tropospheric ozone 

(Brasseur et al., 1999). 

 NO2  +  hv (λ < 430 nm)  →  NO +  O(3P) (R1.10) 

   

 O(3P) + O2 + M →  O3  +  M (R1.11) 

   

 NO  + O3  →  NO2  +  O2 (R1.12) 

   

As reactions R1.10-1.12 are all fast the following steady state for O3 can be determined: 

 

 [O3] =  
𝐽10[NO2]

𝑘12[NO]
 (E1.2) 

   

In equation E1.2: J10 is the rate coefficient for the photolysis of R1.10; and k12 is the rate 

coefficient for reaction R1.12. The full derivation of this steady state approximation for 

ozone can be found in Appendix A. 

Although stratospheric ozone plays a vital role in protecting life from harmful shortwave 

UV radiation, the formation of tropospheric ozone is largely detrimental. The formation of 

tropospheric ozone is predicted to enhance global warming, as it has a positive radiative 

forcing value of +0.4 W m-2 (Myhre et al., 2013). Furthermore, tropospheric ozone is a 

major component of photochemical smog, a mixture of several pollutants, which include: 

ozone; particulate matter; peroxyacetyl nitrate (PAN); and NOx. Photochemical smog 

typically forms above large conurbations; particularly in areas where traffic congestion is 

high. Additionally, photochemical smog has adverse health effects on human life, causing 

eye irritation and respiratory problems (Elsom, 2013). The formation of tropospheric ozone 

is also important as the reaction between ozone and alkenes is thought to be a key source of 

night-time OH (Emmerson et al., 2005). Specifically, OH is formed from the decomposition 

of Criegee intermediates; note that, Criegee intermediates will be discussed in greater detail 

in the following section.  

Both NO and NO2 are involved are several key reactions within the troposphere; indeed, 

NO is an important reducing agent for both HO2 and RO2 in polluted environments (R1.13-

1.14); both of these reactions are closely linked to the HOx cycle. 
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 HO2  +  NO  →  OH  +  NO2 (R1.13) 

   

 RO2  +  NO  →  RO  +  NO2 (R1.14) 

where RO ≡ R(O∙)H  

 R(O∙)H  +  O2  →  RC=O  +  HO2 (R1.15) 

   

It should be noted that in polluted environments reaction R1.14 dominates over reactions 

R1.9; this amplifies the net ozone production (Hanst, 1971), because R1.14 simultaneously 

increases the formation of NO2 and decrease [NO] (see E1.2). 

NO2 is also involved in other important atmospheric reactions. In particular, NO2 plays a 

crucial role in the formation of the molecule PAN, another major component of 

photochemical smog.  

 CH3CO + O2 + M →  CH3C(O)O2 + M (R1.16) 

   

 CH3C(O)O2 + NO2 ⇌ CH3C(O)O2NO2 (R1.17) 

   

As well as being a component of photochemical smog, PAN is also a known reservoir for 

NOx radicals, as PAN eventually decomposes to form NO2 (R1.17). Moreover, as PAN 

decomposition is a relatively slow process, therefore PAN can travel long distances before 

decomposing; thus PAN facilitates the transport of NOx away from polluted regions to 

remote environments (Fischer et al., 2014).  

However, PAN cannot be formed without acetyl (CH3CO) radicals (R1.16); the main 

pathway to acetyl radical formation in the troposphere is primarily from the hydrogen 

abstraction of acetaldehyde by OH (R1.18).  

 CH3CHO  +  OH  →  CH3CO  +  H2O (R1.18) 

   

From reaction R1.18 it can be seen that acetaldehyde (CH3CHO) is the other key precursor 

to PAN formation; acetaldehyde is both a primary and secondary pollutant in the 

atmosphere. Note that primary pollutants are emitted directly into the atmosphere, whereas 

secondary pollutants are formed within the atmosphere itself. For example, acetaldehyde is 

formed during combustion; in particular, it is a major product of bioethanol combustion and 

enhanced acetaldehyde concentrations have been observed in Sao Paulo, where bioethanol 

is commonly used as fuel (Corrêa et al., 2003). Additionally, acetaldehyde can also be 

formed within the atmosphere and is a product from the oxidation of both ethane and 

ethanol (Singh and Hanst, 1981, Calvert, 2011). 

It should be highlighted that R1.18 is the focal reaction of Chapter IV of this thesis. It is 

clear that in order to fully understand the formation, concentration and overall impact of 
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PAN in the troposphere, an accurate understanding of the precursors to PAN formation 

(such as the chemistry of acetyl radicals) must be appreciated. In particular, the 

investigation in Chapter IV focuses on an additional reaction channel: the chemically 

activated decomposition of acetyl radicals (R1.19). 

 CH3CHO  +  OH  →  CH3CO*  +  H2O (R1.18a) 

   

 CH3CO*  →  CH3  +  CO (R1.19) 

   

1.3.3 Chemistry of Remote Forested Regions 

It is currently estimated that biogenic volatile organic compounds (BVOCs) emissions may 

be responsible for the release of 1150 Tg of carbon per year (Guenther et al., 1995), 

although this value is subject to a considerable uncertainty, dependent on many variables, 

such as; temperature, solar radiation and plant type (Guenther, 2006). Unsurprisingly, this 

leads to significant ambiguity on the total mass of BVOCs released into the atmosphere 

(Laothawornkitkul et al., 2009). These biological emissions are primarily produced by 

plants, and are predominately members of the terpene family. By far the most abundant of 

these emissions is the hemiterpene, isoprene (C5H8), which is thought to be responsible for 

approximately ~45% of all BVOC emissions (Guenther et al., 1995). 

Within the troposphere most BVOCs are oxidised, and hence removed, by the hydroxyl 

radical; these initial products then undergo further oxidation to form RO2 (R1.20-1.21).  

Where R′=R″ is a generic VOC:  

 OH  +  R′=R″ →  R         (R1.20) 

and R arises from OH addition to the double bond  

 R  +  O2  +  M  →  RO2  +  M (R1.21) 

   

In remote forested environments (low NOx), the fate of the RO2 formed is predominately 

dependent on both self-reaction (i.e. RO2 + RO2), or removal by HO2 (Tyndall et al., 2001). 

The oxidation path described should lead to a net loss of both HOx and O3 in such 

environments. However, a number of recent studies have highlighted serious inadequacies 

in the BVOC oxidation process, where the models systematically underestimate the OH 

concentration, leading to the belief of a significant  ‘missing’ source of OH (Lelieveld et al., 

2008, Whalley et al., 2011). Thus far, the most plausible ‘missing’ sources of HOx proposed 

are the RO2 radicals formed from R1.21, which are highly oxygenated, due to the addition 

of OH across the double-bond. These oxygenated peroxy radicals may follow several 

different reaction pathways, some of which may recycle HOx radical; for example the HOx 

recycling pathways in the Leuven Isoprene Mechanism can yield up to a factor of four 
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increase in the modelled [OH], explaining the previous discrepancies between the measured 

and the modelled data (Peeters et al., 2009, Stavrakou et al., 2010). 

Another important sink for unsaturated BVOCs is the reaction with ozone, which attacks 

across the carbon-carbon double bond forming an intermediary ozonide species, which 

rapidly decomposes leading to the formation of both a carbonyl species and a Criegee 

intermediate (CI). In recent years there has been significant interest in CIs as potential 

oxidants in forested areas. Indeed, a recent study from a boreal forest in Hyytiälä, Finland, 

suggests that CIs may have the capacity to oxidize sulphur dioxide, a reaction which has 

significant impact on both local sulphuric acid and sulphate aerosol concentrations 

(Mauldin et al., 2012). Moreover, the kinetics of both the C1 and C2 CIs (CH2OO and 

CH3CHOO respectively) have been directly measured for the first time and have been 

shown to react rapidly with both SO2 and NO2 (Welz et al., 2012, Taatjes, 2013); the results 

from these studies indicate that CIs could have a considerable impact on regional sulphuric 

acid concentrations (Percival et al., 2013). Notably, the reactivity of Criegee Intermediates 

with atmospheric trace gases was the topic of much of the research to be discussed in this 

thesis and further details can be found in Chapters V, VI and VII.  

The impact of the chemistry of BVOCs on the climate is uncertain, largely due to the 

uncertainties in both the emission flux and the oxidation pathways, highlighted above. 

However, there are several ways in which these processes can change radiative forcing in 

remote forested environments. Firstly, like all organic compounds the eventual atmospheric 

fate of species is conversion to CO2; therefore, BVOC emissions have a direct impact on the 

atmospheric CO2 concentrations and hence will contribute to global warming. Additionally, 

some of the initial oxidants of BVOCs have low vapour pressures and hence enter the 

particle phase (solid or aerosol), leading to increased particulate matter and aerosols in these 

regions. Although uncertain, it is suspected that atmospheric aerosols will have a negative 

radiative forcing (Figure 1.2). So far, the potential climate impacts mentioned are 

speculative, however, what is known is that if global warming continues and the Earth’s 

global average temperature continues to rise, the rate of BVOC emission will increase 

which will enhance all the chemistry described above (Peñuelas and Llusià, 2003). Clearly, 

then it is of the utmost importance that the chemistry of these regions is well understood, so 

that the future of these can be more accurately simulated. Note: the emission rate of 

isoprene starts to decrease above 40°C; therefore in tropical environments where 

temperatures are very high, further warming may actually lead to a decrease in BVOC 

emissions (Laothawornkitkul et al., 2009).  
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Having now briefly discussed the fundamental reactions controlling the chemistry of the 

troposphere, the focus of this chapter will be shifted. All of the worked discussed in this 

thesis is based around the field of reaction kinetics; therefore, the remainder of this chapter 

aims to give a brief outline of some of the theory behind reaction kinetics. 

1.4 Theories of Chemical Reactions and Reaction Kinetics 

1.4.1 An Introduction to Reaction Kinetics and the Rate Equation 

Reaction kinetics is a branch of physical chemistry concerning the measurement of rates of 

reaction. Generically, chemistry could be described as the study of chemical reactions; 

therefore understanding the kinetics of a reaction is of fundamental importance in chemistry 

(Pilling and Seakins, 1995). Although, theoretical studies are becoming ever more 

important within the field, reaction kinetics is still driven, primarily, by experimental work. 

Up until the middle of the 20th century, the field of reaction kinetics was limited to the study 

of relatively slow reactions; however, the development of new techniques exploiting faster 

electronics, lasers and more sensitive detection techniques, have enabled the kinetics of 

increasingly reactive species to be probed. Indeed, the timescales upon which reactions can 

be probed has been reduced to the point where the reaction dynamics (i.e. the mechanisms 

by which the reactions take place) may now be probed. Note that, the timescale over which 

dynamics are measured is ~10-15 s; this can be achieved using a femtosecond laser.  

The rate of reaction may be described as the rate of decrease of the reactant concentration 

(i.e. −
𝑑[A]

𝑑𝑡
, R1.22), or the rate of increase in the concentration of products (i.e. 

𝑑[C]

𝑑𝑡
, R1.22). 

 A  +  B  C (R1.22) 

   

For all chemical reactions a generic rate equation can be written. For the reaction shown 

above (R1.22) the rate equation is: 

 −
𝑑[A]

𝑑𝑡
= 𝑘[A]α[B]β (E1.3) 

   

In equation E1.3: −
𝑑[A]

𝑑𝑡
 is the rate of reaction; k is a constant of proportionality, termed the 

rate coefficient/constant (note: not actual constants of proportionality as values of k can 

vary with both temperature and pressure); [A] and [B] are the concentrations of A and B 

respectively; finally, α and β are the orders of the reaction, with respect to [A] and [B]. 

Crucially, the exponents α and β can only be determined experimentally; these exponents 

tell us how the rate of the reaction will vary with concentration of the associated reactant 

(Pilling and Seakins, 1995). Commonly, the orders with respect to the reactants will be; 0, 

1, 2 (and very occasionally 3); furthermore the total order of the reaction is equal to α + β. It 
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should be noted that the rate equation of certain reactions can be predicted provided the 

reaction mechanism is understood. Species involved in (or prior to) the rate determining 

step (RDS) of the reaction will, generally, appear in the rate equation; conversely species 

involved after to the RDS do not appear in the rate equation (i.e. are 0th order). For 

elementary (one-step) reactions, around which this thesis is based, the molecularity (i.e. the 

number of molecules involved in the collision complex) is equivalent to the total order of 

the reaction. Indeed, the majority of the reactions studied for this thesis were bimolecular 

reactions (i.e. 2nd order). Furthermore, the rates of these reactions were all monitored using 

the pseudo first-order kinetics; a concept which will be discussed in detail in Section 1.5.  

Although the field of reaction kinetics still does rely heavily upon experimental 

measurements to give insight into rate of chemical reactions, rate coefficients can also be 

determined theoretically; the theoretical approach has become more common in recent 

years, as advances in technology have made theoretical work quicker, cheaper and more 

accurate than in years past. In the subsequent sections of this chapter some fundamental 

theories used to determine rate coefficients for elementary reactions will be discussed: 

collision theory and transition state theory (TST). 

1.4.2 Collision Theory 

Collision theory is the simplest of the theories which can be used to calculate the rate 

coefficient for an elementary chemical reaction. In collision theory it is assumed that the 

species reacting behave as hard spheres, and that a reaction may only occur upon/during a 

collision (i.e. no interacting forces between the species). Using collision theory an 

estimation of the rate coefficient of the species A and B, of radii rA and rB respectively, can 

be made; however, the first step is to calculate the collision rate per unit volume, ZAB 

(Pilling and Seakins, 1995). 

 𝑍AB =  𝜎AB × (
8𝑘B𝑇

𝜋𝜇
)

1
2

× [A][B] (E1.4) 

where:  

 𝜎AB =  𝜋 × (𝑟A + 𝑟B)2 (E1.5) 

In equations E1.4-1.5: σAB is the collision cross sectional area; the term (
8𝑘B𝑇

𝜋𝜇
)

1

2
 refers to the 

Maxwell distribution, which describes the speeds of the individual molecules; kB is the 

Boltzmann constant; T is the temperature (K); μ is the reduced mass of A and B; and of [A] 

and [B] are the concentrations of A and B respectively. 

There is a problem with E1.4 as a model of the reaction between A and B, and that is not all 

collisions lead to a chemical reaction. The primary reason for this is that not all collisions 
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have sufficient energy to exceed the activation barrier to the reaction. Again, if a Maxwell-

Boltzmann distribution of energy is considered the fraction of collision with sufficient 

energy to react, fE can be described by the following equation (E1.6). 

 𝑓E =  𝑒
(−

𝐸A
𝑅𝑇

)
 

(E1.6) 

therefore:  

 𝜌 =   𝜎AB × (
8𝑘B𝑇

𝜋𝜇
)

1
2

× 𝑒
(−

𝐸A
𝑅𝑇

)
× [A][B] (E1.7) 

   

note that if: 𝑘 =
𝜌

[A][B]
 and 𝑍′AB =  𝜎AB × (

8𝑘B𝑇

𝜋𝜇
)

1

2
  

   

 𝑘 =  𝑍′AB × 𝑒
(−

𝐸A
𝑅𝑇

)
 (E1.8) 

   

In equations E1.6-1.8: EA is the minimum energy required to surmount the activation barrier 

(i.e. the activation energy); R is the ideal gas constant; ρ is rate of reaction (taking 

concentrations of A and B into account); and k is the rate coefficient for the reaction 

between A and B.  

One final amendment is needed before the equation for collision theory is complete. 

Notably, a reaction will not occur between species A and B unless they are oriented in the 

correct manner. However, thus far, no steric factor for the reaction has been applied to the 

collision theory model (E1.8). This is rectified in E1.9; where a steric factor, PS, has been 

included: 

 𝑘 =  𝑍′AB × 𝑃S × 𝑒(−
𝐸A
𝑅𝑇

)
 (E1.9) 

   

Although a good starting point for the estimation of reaction rate coefficients, there are 

several major problems when using collision theory to calculate reaction rate coefficients. 

The first is the assumption that the reacting species are equivalent to hard spheres as it 

completely ignores the structure of the molecules/species in general, which can dictate how 

the species react. It should be noted that the steric factor does try to account for this, but it is 

not predictive. The second problem is that collision theory assumes the reaction between A 

and B occurs instantaneously upon impact, this assumption is again inaccurate. Indeed, not 

only do most reactions form a pre-reaction complex, but there are also often long-distance 

interactive forces occurring between the reacting species (i.e. permanent or temporary 

charges); clearly, the assumption that the reaction is instantaneous is a poor one (Pilling and 

Seakins, 1995). 
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To obtain more accurate theoretical estimations of rate coefficients a more sophisticated 

model is necessary, such as transition state theory (TST). 

1.4.3 Transition State Theory  

Unlike collision theory, transition state theory accounts for the formation of an activated 

complex species as an intermediary between the reactants and the products (Figure 1.5). 

Notably, the transition state (‡) is located at the highest energy point along the reaction 

coordinate. For reaction R1.22 the following differential rate equation is given: 

 
𝑑[C]

𝑑𝑡
= 𝑘[A][B] (E1.10) 

   

where 
𝑑[C]

𝑑𝑡
 is the rate of change of the concentration of the products, C, with time; k is the 

rate coefficient for the reaction; and [A] and [B] and the concentrations of A and B. 

 

Figure 1.5: A schematic of a typical reaction profile, where AB‡ is the transition state species (or 

activated complex) and EA is the energy required to surmount the activation barrier. 

 

If we apply transition state theory to reaction R1.22, the following reactions can be used to 

fully describe the system: 

 A  +  B  ⇌ ‡  (R1.23) 

   

  ‡   C   (R1.24) 

   

Note that each of these reactions R1.23-1.24 have the following individual rate coefficients: 

the rate coefficient for the forward reaction of R1.23 is kA+B; the reverse reaction of R1.23 is 

k-A+B; and the rate coefficient for R1.24 is kAB. 

The following differential rate equation for the products of the reaction can be determined: 
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𝑑[C]

𝑑𝑡
= 𝑘AB[AB‡] (E1.11) 

   

Furthermore, transition state theory assumes that a quasi-equilibrium exists between the 

reactant and the intermediary species, ‡:    

 𝐾‡ =
[AB‡]

[A][B]
 (E1.12) 

   

By combining equations E1.10-1.12 the following equations can be derived: 

 𝑘[A][B] =  𝑘AB𝐾‡[A][B] (E1.13) 

therefore:  

 𝑘 = 𝑘AB𝐾‡ (E1.14) 

   

However, before TST can be used to determine the rate coefficient of reaction R1.22, k; the 

rate coefficient, kAB, and the equilibrium constant, K‡, must be defined. K‡ can be expressed 

as a product of an exponential function dependent upon the size of the activation barrier 

(denoted by ΔH‡ in E1.15), and the molecular partition functions of species A, B and the 

activated complex AB‡; where the molecular partition functions are QA, QB and QAB 

respectively. 

 𝐾‡ =  (
𝑄AB

𝑄A𝑄B
) 𝑒

(−
∆𝐻‡

𝑅𝑇 )
 (E1.15) 

   

As the energy required to dissociate AB‡ is minimal, meaning that every time AB‡ stretches 

along the A-B bond, the transition state will fragment to either reactants or products (Engel 

and Reid, 2006). This means that kAB is proportional the vibrational frequency, ν, coaxial to 

the A-B bond (E1.16). Note: kAB is not equal to ν as a fraction of the vibrations along A-B 

also lead to the formation of the reactants A + B, and not the products C.  

 𝑘AB = 𝜅𝜈 (E1.16) 

   

In equation E1.16: ν is the vibrational frequency of the A-B bond; and κ is the 

proportionality constant for the fraction of ν which leads to formation of the product, C. 

Moreover, as this degree of freedom along the A-B bond corresponds to an easily 

dissociated vibrational stretch (leading to product formation), it can be described by a 

vibrational partition function, qAB, where the vibrational frequency, ν, will tend towards zero 

(E1.17-1.18).  
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 𝑞AB =
1

1 −  𝑒
(−

ℎ𝜈
𝑘B𝑇

)
 (E1.17) 

As ν → 0, and hν << kBT:  

 
𝑞AB ≈

1

1 − (1 −
ℎ𝜈

𝑘B𝑇
)

≈
1

 (
ℎ𝜈

𝑘B𝑇
)

≈
𝑘B𝑇

ℎ𝜈
 

(E1.18) 

   

This adjustment to the partition function means that the equilibrium constant must be 

redefined. In equation E1.19: 𝑄AB
∗

 is the molecular partition function for the transitory species, 

AB‡, which excludes the contribution from the stretching mode that leads to dissociation. 

 𝐾‡ =  𝑞AB (
𝑄AB

∗

𝑄A𝑄B
) 𝑒

(−
∆𝐻‡

𝑅𝑇 )
 (E1.19) 

   

When all of these factors are taken into account, the overall rate coefficient, k, can be 

defined (E1.20). 

 𝑘 = 𝜅
𝑘B𝑇

ℎ
(

𝑄AB
∗

𝑄A𝑄B
) 𝑒

(−
∆𝐻‡

𝑅𝑇 )
 (E1.20) 

   

An advantage of TST over collision theory is that it inherently includes molecular 

complexity. However, what is also clear from E1.20 is that rate coefficients often exhibit 

temperature dependence; a dependence which is proportional to the activation barrier of the 

reaction (see Figure 1.5). 

1.4.4 Temperature and Pressure Dependence 

The majority of the experiments reported in this thesis were conducted at room temperature 

and at constant, but low, pressures (i.e. the temperature and pressure dependencies were not 

probed). However, the rate coefficients of many atmospheric (and combustion) reactions 

can vary greatly over quite a narrow range of temperatures and pressures (Seinfeld and 

Pandis, 2012). Moreover, both temperature and pressure within the Earth’s atmosphere vary 

sufficiently to cause significant change to certain rate coefficients (Figure 1.4), it is 

important that the concepts behind temperature and pressure dependencies are understood. 

Indeed, in order to make the results from some of the reactions investigated for this thesis 

more relevant to the atmosphere, where the reactions in question take place, calculations 

(executed by R. Shannon) were employed to test the pressure dependence.  

1.4.4.1 Temperature Dependence 

Within the field of reaction kinetics the generic equation used to describe positive 

temperature dependencies is called the Arrhenius equation, E1.21. Moreover, both 
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equations E1.9 and E1.20 can be considered as variations upon the, aforementioned, 

Arrhenius equation. 

 𝑘(𝑇) =  𝐴 × 𝑒(−
𝐸A
𝑅𝑇

)
 (E1.21) 

   

In equation E.121: k(T) is the rate coefficient as a function of temperature; and A is a 

parameter known as the pre-exponential factor. 

From equation E1.21 it can be seen that as the temperature is increased the exponential 

term, 𝑒(−
𝐸A
𝑅𝑇

)
, increases; therefore, for species which exhibit Arrhenius behaviour, the rate of 

reaction will increase as the temperature increases. This can be explained by returning to the 

potential energy surface in Figure 1.5., a schematic of reaction R1.22, which has an 

activation barrier of EA. As the temperature increases the proportion of reactants with 

sufficient energy to overcome the activation barrier, EA, will be larger; meaning the overall 

reaction rate will increase. Furthermore, at higher temperatures the reactants will also have 

more kinetic energy which will lead to an increase in the collision frequency of the 

interacting molecules (properties of the pre-exponential factor), which will again cause an 

increase in the reaction rate. Notably, by using transition state theory, there is the potential 

to predict the temperature dependencies of reactions which exhibit Arrhenius behaviour.  

However, not all reactions behave in this manner; indeed, some reactions (such as 

barrierless reactions) exhibit negative temperature dependencies, meaning they occur faster 

at lower temperatures. For example, as barrierless reactions have negligible activation 

barriers (Figure 1.6), the exponential term in the Arrhenius equation, 𝑒(−
𝐸A
𝑅𝑇

)
, becomes equal 

to 1 at all temperatures, meaning increasing the temperature will not increase the reaction 

rate. Moreover, as temperature increases the energy of the reactants increases and hence the 

nascent energy of the formed complex (i.e. O3* for the example in Figure 1.6), is also 

higher. This means that the re-dissociation back to reagents is faster as there is more 

vibrational energy stored in the products, O3, hence it is more likely that sufficient energy is 

located in the bond, making dissociation more probable. Additionally as the O3* is higher in 

energy more collisions are required to stabilize it, giving more time for re-dissociation.  
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Figure 1.6: The potential energy surface for the barrierless reaction:  O2 + O + M. 

 

Unfortunately, conventional TST does a poor job at determining the rate coefficients of 

barrierless reactions. Within TST there is a fundamental assumption that during the course 

of a reaction, the apex of the reaction coordinate (i.e. the saddle point) is not crossed more 

than once (Tromp and Miller, 1986). Although this assumption works well for reactions 

where the energy within the system is small in comparison to the activation barrier, it 

proves less accurate for reactions where the barriers to activation are insignificant. 

Moreover, for the second scenario described, rate coefficients tend to be overestimated as 

multiple recrossing over the saddle point can occur (Pritchard, 2005). However, the 

temperature dependence of such reactions (i.e. barrierless reactions) can be determined by 

using variational transition state theory (VTST) to locate the position of the transition state 

(where there is a minimum in the number of ro-vibrational states) on the potential energy 

surface (Truhlar and Garrett, 1984).  

In order to interpolate between determinations of rate coefficients for barrierless processes 

or to extrapolate slightly beyond the measured range, the temperature dependencies can be 

parameterized using empirical descriptions of the reaction in the form: 

 𝑘(𝑇) =  𝐴(
𝑇

298 𝐾
)-n (E1.22) 

   

where A and n are determined through fitting to experimental observations. 

Additionally, recent work at the University of Leeds has shown that even certain reactions 

with activation barriers demonstrate a strong negative temperature dependence at very low 

temperatures due to quantum mechanical tunnelling (QMT) through the activation barrier 

(Shannon et al., 2010, Shannon et al., 2014).  
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1.4.4.2 Pressure Dependence and Chemical Activation 

Bond-forming reactions (such as association reactions) are characteristically exothermic by 

nature; additionally, these reactions can also be pressure dependent (Pilling and Seakins, 

1995). For example, if we return to the association reaction of ozone (R1.25-1.26): 

 O2  +  O  ⇌ O3* (R1.25) 

   

 O3*  +  M   O3 + M (R1.26) 

   

The formation of a chemical bond is always accompanied by an energy release; as the 

newly formed product is more energetically stable than the reactants from which it is 

formed (Figure 1.6). As a consequence of this the nascent product formed has an excess of 

energy (denoted by ‘*’ in R1.25-1.26); indeed, the internal energy stored within product 

(i.e. O3*) is sufficient to cause the nascent molecule to dissociate back to the reactants. 

However, if the excited molecule, O3*, is allowed to collide with a ‘third body’ species, M, 

some of the energy from the excited ozone radical can be transferred to this species, 

meaning the nascent O3 species no longer has sufficient energy for dissociation (Hippler et 

al., 1990). This means at higher pressure where the concentration of M is greater, the 

stabilization reaction (R1.26) is more competitive with the dissociation reaction, and hence 

the rate of reaction is increased at higher pressures.  

It should be noted that the most of the reactions discussed in the results section of this thesis 

are pressure independent; the reactions of the C1 Criegee with SO2 and NO2 have be shown 

to be independent of pressure (Stone et al., 2014). Conversely, the alternative channel for 

the CH3CHO + OH reaction discussed Chapter IV is predicted to exhibit a pressure 

dependence due to the formation of a chemically activated acetyl radicals. However, it 

should be highlighted that the pressure dependence determined by R. Shannon using master 

equation analysis was found to be minimal.  

Notably, chemical activation occurs when a nascent and excited species has more than one 

possible exit channel, for example in the case of the acetaldehyde and OH reaction the 

nascent acetyl radicals can either be collisionally stabilized or they can decompose to 

produce CH3 and CO radicals: 

 CH3CHO  +  OH   CH3CO*  (R1.18a) 

   

 CH3CO*  + M  CH3CO +  M (R1.27a) 

   

 CH3CO*  CH3  +  CO (R1.27b) 

   

The process of chemical activation will be discussed further in Chapter IV. 



Chapter I: Introduction 

 

23 

 

1.5 Determination of Rate Coefficients: Experimental Methods 

In Section 1.4, a brief introduction to the topic of reaction kinetics was given and within this 

the concept of the rate equation was presented. Within this section, Section 1.5, this theory 

will be expanded to include the integrated rate equation, which relates kinetic theory to 

experimental methods.  

1.5.1 Integrated Rate Equations 

From E1.3 it can be seen that the rate equation is a differential equation; therefore, to relate 

the concentration of the reactants directly with time, the rate equation must be integrated. 

Obviously, the generic integrated rate equations determined are dependent on the order of 

the reaction. The determination of the integrated rate equation for a generic (and 

elementary) first-order reaction (R1.29) will be shown below; note, further details for 0th 

and 2nd order processes can be found in Table 1.2 (Mortimer and Taylor, 2002). 

 A   (R1.29) 

R1.29 yields the following rate equation:   

 −
𝑑[A]

𝑑𝑡
= 𝑘[A]1 = 𝑘[A] (E1.23) 

This can be rearranged to:  

 
𝑑[A]

[A]
= −𝑘 𝑑𝑡 (E1.24) 

Then integrated between: [A]0 , [A]t and 0, t  

 ∫
1

[A]

[𝐴]𝑡

[𝐴]0

𝑑[𝐴] = ∫ −𝑘 𝑑𝑡
𝑡

0

 (E1.25) 

   

 ln([A]t) − ln ([𝐴]0) =  ln (
[A]t

[A]0
) = −𝑘𝑡 (E1.26) 

If the exponential of both sides is taken:  

 
[A]t

[A]0
= 𝑒−𝑘𝑡 (E1.27) 

   

 [A]t = [A]0𝑒−𝑘𝑡 (E1.28) 

   

In equations E1.23-1.28: [A]0 is equivalent to the concentration of A at time = 0; similarly, 

[A]t is equal to the concentration of A at time = t. From E1.27 it can be seen that first-order 

decay processes are exponential by nature. Furthermore, by rearranging E1.26, it can be 

seen that the rate coefficient, k, can be determined from a plot of ln([A]) vs. t. 

E1.26 can also be rearranged into the form y = mx + c:  

 ln([A]t) =  −𝑘𝑡 + ln([A]0) (E1.29) 

   

Using E1.29 it can be seen that the gradient of a ln([A]) vs. t plot will be equivalent to –k.  
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Table 1.2: Details of rate equations (Eqn) and integrated rate equations for 0th, 1st and 2nd order 

processes. Note: M is equivalent to mole dm-3 (or more commonly molecule cm-3 in gas kinetics). 

Order Rate Eqn 
Integrated 

Rate Eqn 

Characteristic 

Plot 

Gradient of 

plot 
Units of k 

0th −
𝑑[A]

𝑑𝑡
= 𝑘 [A]t = [A]0 −  𝑘𝑡 [A] vs. t -k M s-1 

1st  −
𝑑[A]

𝑑𝑡
= 𝑘[A] [A]t = [A]0𝑒−𝑘𝑡 ln([A]) vs. t -k s-1 

2nd  −
𝑑[A]

𝑑𝑡
= 𝑘[A]2 

1

[A]t
= 𝑘𝑡 + 

1

[A]0
 1/[A] vs. t k M-1 s-1 

 

Table 1.2 yields vital information about the nature of 0th, 1st and 2nd order reactions 

respectively; crucially, this table provides an insight as to the method by which both the 

reaction order and rate coefficient can be determined experimentally. For example: if a 

reaction is thought to be second-order with respect to A (see R1.30), then a 1/[A] vs. t graph 

can be plotted. If this 1/[A] vs. t plot is linear with a positive gradient, then it is known the 

reaction is second-order with respect to A and the rate coefficient is equal to the gradient of 

the plot (Mortimer and Taylor, 2002). 

 A  +  A   (R1.30) 

   

Although it is important to understand the kinetics of the differing reactions described 

above, the majority of the reactions studied within this thesis were bimolecular processes 

involved two differing species (R1.22). To extract the kinetics from this sort of reaction 

requires a different methodology.    

1.5.2 The Isolation Method: Pseudo First-Order Kinetics 

As might be expected, when more than one reactant is involved in the integrated rate 

equation, understanding the kinetics with respect to the reactants becomes more complex; as 

the concentration of multiple, different species are all changing simultaneously. Commonly, 

the isolation method is used to simplify this type of reaction system. 

The isolation method works by limiting the change in concentration of all the reagents 

involved in the reaction, bar one (the isolated species). This is done by maintaining the 

concentrations of all of the reactants in excess of the isolated species; traditionally the 

concentration of the isolated species should be at least an order of magnitude lower than the 

other reactants (Pilling and Seakins, 1995). Using this methodology the concentrations of 

the non-isolated species remain effectively constant throughout the reaction. Consequently, 

in the rate equation for the reaction the product of rate coefficient, k, and the concentration 

of non-isolated species, [B], also remains constant; this combined term is often referred to 

as the pseudo first-order rate coefficient, k’.  
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For R1.22 the following rate equation is determined:   

 −
𝑑[A]

𝑑𝑡
= 𝑘[A][B] (E1.30) 

If [B] ≈ 10×[A]: 

 𝑘[A][B] = 𝑘′[A] (E1.31) 

where  

 𝑘′ = 𝑘[B] (E1.32) 

   

Notably, these pseudo first-order experiments yield exponential data, from which k’ can be 

determined (E1.33). 

 [A]t = [A]0𝑒−𝑘′𝑡 (E1.33) 
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Figure 1.7: An example of a bimolecular plot of the reaction between the C1 Criegee intermediate 

and SO2 is shown (see Chapter VI for details). This figure also demonstrates how the bimolecular 

rate coefficient, k, is determined.  

 

The bimolecular rate constant for the reaction may then be determined from the plot of k’ 

vs. [B] (provided [B] is known); this type of graph is known as a bimolecular plot (Figure 

1.7). It should be highlighted that this experimental methodology is a fundamental 

technique within the field of gas kinetics; indeed, all of the rate coefficients determined 

within this thesis were done using the isolation method. 

Significantly, certain assumptions are made when using the isolation method; primarily that 

the concentration of the non-isolated species remains constant, which is not true. For 

example: if the initial concentration of the non-isolated species, [B]0, was ten times the 
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initial concentration of the isolated species, [A]0, the concentration of B after the 

completion of the reaction ([B]end) will be 90% of [B]0. Although, in this scenario the 

concentration of B remains almost constant during the course of a reaction ([B]end ≈ 

0.9×[B]0), it does decrease. Moreover, the greater the difference in the initial concentrations 

of the reactants A and B, the smaller the change in the concentration of B during the 

reaction. This is why the concentration of the non-isolated species is usually kept at least 

order of magnitude higher. Note: if [B]0 < 10×[A]0, the average concentration of B ([B]av) 

will be lower than [B]0, this may lead to underestimations of the bimolecular rate 

coefficients as the bimolecular plot analysis assumes the concentration of B remains 

constant (at [B]0) throughout the reaction. Therefore, if [B]av < [B]0 all the points on the x-

axis of the bimolecular should be shifted to the left, which will increase the gradient and 

hence the bimolecular rate coefficient. 

It should be highlighted that at certain points in this thesis the experimental conditions used 

were estimated to by outside of the range optimal for the isolation method (i.e. [B]0 < 

5×[A]0). However, in both the experiments discussed in the Results section, Parts i and ii, 

the exact concentrations of the isolated species were unknown. The estimations given for 

the isolated species ([OH] and [CH2OO]/[CH3CHOO] respectively) were conservative, 

meaning that they likely overestimate the concentration of the isolated species. Therefore, it 

is probable the difference in the concentrations of the isolated and non-isolated species is 

larger than presented. Moreover, for certain experiments, where pseudo first-order 

conditions were questioned, Kintecus models were run to assess the change in concentration 

of the non-isolated species and adjustments were made to account for this (see Chapter VI, 

Section 6.1.3). 

1.6 Overview of Thesis 

The final section of this introductory chapter will attempt to give a concise synopsis of the 

different chapters within this thesis. This thesis will focus principally on the kinetics of 

certain gas-phase reactions which are relevant to the Earth’s atmosphere. Furthermore, the 

detection techniques used to monitor these aforementioned reactions will also be reviewed. 

The majority of the experimental work described within this thesis was completed using 

pulsed laser photolysis – photoionization mass spectrometry (PLP-PIMS). The primary aim 

of Chapter II is to give a detailed explanation of this technique and the specific 

instrumentation used. Additionally, details about the experimental and analytical methods 

used are also given. Lastly, other common methods of monitoring gas phase kinetics are 

discussed.   
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Chapter III discusses some of the different configurations of the PIMS set-up tested during 

this PhD. The majority of the work discussed in this thesis is still in progress and further 

improvements are being made to increase the reliability of these techniques. Specifically, 

this chapter describes two separate reconfigurations of the PIMS system; the first being the 

utilization of multiphoton ionization scheme, which permits the detection of the hydroxyl 

radical, OH, which is an important atmospheric oxidant; the second a high pressure set-up, 

which would allow for experiments to be conducted at more atmospherically relevant 

conditions. 

Chapter IV describes an investigation into the reaction between acetaldehyde (CH3CHO) 

and the OH radical; in particular this chapter discusses the possibility of an alternate 

reaction pathway. Indeed, close investigation suggests that a small, but significant fraction 

of the nascent acetyl radicals (CH3CO) have sufficient energy to decompose, forming CH3 

and CO radicals. Notably, the CH3CHO + OH reaction has always been considered a simple 

abstraction reaction; this evidence suggests that even for reactions that are thought to be 

well understood, there is still much we do not know. 

Chapters V-VII can be grouped together as all are centred on the reactivity of stabilized 

Criegee intermediates with various atmospheric trace gases. The primary objective from 

Chapter V is to give a detailed introduction the elusive Criegee biradicals, highlighting the 

common formation pathways in the lower atmosphere and subsequent reactions of the 

newly formed Criegee intermediates (CIs) within the troposphere. Chapter VI concentrates 

specifically on the reactivity of the stabilised C1 and C2 CIs with both SO2 and NO2 and the 

atmospheric implications of these reactions. Chapter VII discusses the reaction of the C1 CI 

with selected atmospheric non-methane hydrocarbon and volatile organic compounds; 

ethene, isoprene, formic and acetic acid. Again, the atmospheric implications of these 

reactions are considered. 

The final chapter, Chapter VIII, will give a summary of the key findings from the previous 

chapters and outline possible future work.    
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2. Experimental Methods 

This chapter focuses on the pulsed laser photolysis, photoionization mass spectrometry 

technique (PLP-PIMS) used for the majority of the work described in this thesis. An 

introduction to the principles of laser action is given as both photolysis and photoionization 

steps utilize lasers. Following this is an overview of the experimental techniques commonly 

used in gas-phase kinetics and includes an in depth discussion of the time-of-flight mass 

spectrometry, the technique used for the majority of the experimental work reported in this 

thesis. The final section of this chapter provides details of the specific methodology used for 

data collection and analysis during this work.  

2.1 Introduction to Experimental Techniques 

Over recent years there has been significant progress in the measurement of gas-phase 

kinetics, particularly in the identification of product yields from multichannel reactions 

(Cathonnet, 1994, Seakins and Blitz, 2011, Fuentes et al., 2000, Baeza-Romero et al., 

2012). This is of major importance as gas-phase reactions predominantly control both 

atmospheric and combustion processes (Atkinson, 2000, Zádor et al., 2011). A full 

understanding of such systems will shed light on the future of the Earth’s atmosphere and 

the environment to be inhabited by the human race. 

Advances in our understanding have been made possible, partially, by developments in 

computational work, in particular with both chemical modelling and ab initio calculations 

(Frisch et al., 2009, Jenkin et al., 1997). However, chemical models are only as good as the 

data input into them and ab initio calculations still require validation. Therefore, it is still of 

the utmost importance that accurate measurements are collected, from both in situ 

observations and laboratory studies, to support the computational work. Laboratory studies 

are particularly useful in providing information on the temperature and pressure dependence 

simple reactions. Moreover, with the development of laser flash photolysis, and the 

advancement in time-resolved detection techniques, short-lived radical reactions can be 

probed. Notably, radical species often dictate much of the chemistry in these gas-phase 

systems, hence identifying the kinetics of radical reactions is essential to the accuracy of the 

chemical models (Anderson, 1987). Even though the accuracy of simulations is generally 

improving, the systems still have many gas-phase reactions about which little is known. 

This means more experimental work needs to be done, particularly for studies that can yield 

quantitative information about complex reactions with multiple product channels; arguably 

mass spectrometry is the most valuable technique to provide such measurements (Blitz et 

al., 2007, Osborn et al., 2008, Welz et al., 2012). 
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Throughout this thesis, the vast majority of the work conducted has been completed by 

utilizing pulsed laser photolysis photoionization (time-of-flight) mass spectrometry, PLP-

PIMS. Mass spectrometry is, in principle, a universal technique and can be used to detect 

numerous different species during the course of a reaction (Blitz et al., 2007). By using a 

time-of-flight mass spectrometer, it was possible for different species to be monitored 

simultaneously, which allowed both kinetic and mechanistic information to be acquired. 

This technique can often provide vital details about reaction mechanisms, hence improving 

our understanding of atmospheric and combustion systems in general (Baeza-Romero et al., 

2012). An introduction to the PLP-PIMS system used during experimentation can be found 

in subsequent sections of this chapter. 

2.2 An Introduction to Pulsed Laser Photolysis – Photoionization 

Mass Spectrometry  

The pulsed laser photolysis - photoionization mass spectrometry (PLP-PIMS) system was 

designed and built by the University of Leeds in collaboration with Kore technology (Blitz 

et al., 2007). This system utilizes a time of flight mass spectrometer (ToF-MS). The major 

advantage of this technique is that it can theoretically be used to measure any species and 

monitor them simultaneously on a millisecond time scale (Blitz et al., 2007). A schematic 

representation of the PIMS system can be seen below (Figure 2.1). This system has been 

used to study the kinetics and mechanistics of a number of different gas-phase reactions, 

such as the reaction between OH and acetaldehyde and the reactions of Criegee 

intermediates with trace gases.  

 

Figure 2.1: A schematic of the PLP-PIMS instrument at the University of Leeds. 
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The reactant gases were controlled using mass flow controllers and combined in a mixing 

manifold before entering a steel flow-tube (internal diameter of 10.5 mm and ~70 cm in 

length. Experiments were initiated by using a pulsed excimer laser (Lambda Physik, 

Compex 205) to photolyse the sample, generally at 248 nm. Excimer lasers can also 

produce light at other wavelengths, for example in Chapter IV photolysis of N2O, using 

193 nm excimer radiation, proved to be a useful precursor to OH in an oxygen-free 

environment. The irradiated reaction mixture was then sampled by the ToF-MS via a 1 mm 

pinhole located in the reaction tube directly below the mass spectrometer ion collection axis 

(Blitz et al., 2007). Before entering the mass spectrometer the sampled gas was ionized in a 

vacuum chamber using 118 nm (~10.5 eV) vacuum ultraviolet light (VUV). This 

photoionization light was directed orthogonally to the gas flow; this wavelength of light was 

produced by the frequency tripling of 355 nm radiation from a Continuum Nd:YAG laser 

(10-15 mJ/pulse). Xenon gas was utilised for frequency tripling. Turbo (Edwards, EXT 

255H) and diffusion pumps (Varian, VHS-6) were used to keep the pressure low (10-5 Torr) 

in the vacuum chamber / mass spectrometer, to ensure optimal conditions for ToF-MS 

sampling (Baeza-Romero et al., 2012).  

 

 

 

Figure 2.2: A schematic of the PIMS system, highlighting the flow-tube and mass spectrometer. 

Adapted from Blitz et al. (2007). 

 

In comparison to other detection techniques used in experimental gas kinetics, the PLP-

PIMS set-up is less sensitive towards its target species (see Section 2.4). For example, the 

PLP-LIF set-up described in Carr (2009) and Lockhart (2014) has a detection limit of 

approximately 108 molecule cm-3 for OH; notably, the limit of detection is significantly 

higher is the PLP-PIMS set-up and is estimated to be between 1010-1011 molecules cm-3, 

depending on the species.   
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This section aimed to give a brief outline of the basic configuration for the instrumentation 

used throughout this thesis. In the subsequent sections of this chapter a detailed description 

of the PLP-PIMS set up will be given; starting with the laser systems used for both pulsed 

laser photolysis and photoionization (Section 2.3). Following this the principle of mass 

spectrometry, particularly time-of-flight mass spectrometry, will be discussed (Section 2.4).  

2.3 Laser Systems 

The PLP-PIMS system utilises three different lasers: a Lambda Physik Compex 205 

excimer laser, which was used to photolyse the sample and initiate chemistry. Secondly, 

there was a Continuum Powerlite 8010 Nd:YAG laser which produces 355 nm light which 

was frequency-tripled to form 118 nm light and was used to ionize the sample prior to 

detection. Both the excimer and the Nd:YAG lasers are pulsed, by pulsing the lasers it was 

possible to extract temporal information about the reaction on a microsecond timescale; 

pulsing can also be used to increase the laser energy output. It should be noted that a Sirah 

dye laser was also used to excite OH radicals so they can be subsequently ionized by 

118 nm light (details of the technique can be in Chapter III). 

2.3.1 The Principles behind Laser Systems 

There are two criteria which must be met before lasing can commence: population inversion 

in the laser medium (a gas, liquid or solid where stimulated emission may take place) and 

an optical cavity, which allows for amplification in the light emitted (Andrews, 1997). 

However, to understand laser theory, one must first understand the principle of the 

absorption and emission of light. Quantum theory states that molecules, atoms and ions 

(Note: for the duration of this section on lasers these particles shall be collectively referred 

to as molecules) all possess sets of discrete energy levels. Under normal conditions the 

majority of the molecules will exist in the lowest of the electronic energy levels, known as 

the ground state. However, molecules can be excited, and electrons promoted to higher 

energy levels if the molecule receives a specific amount of energy equal in magnitude to the 

difference between two of the electronic states. This excitation most commonly occurs 

when a photon of light (a discrete energy ‘packet’ of light) is absorbed by the molecule. The 

energy of the photons is proportional to the frequency of the light. Max Planck proposed 

this equation in 1901, and in his honour it has been named the Planck’s relation (Planck, 

1901):   

 E = h.ν (E2.1) 

   

Equation E2.1 is commonly referred to as the Planck’s relation, an equation which shows 

the energy (E) of a photon is directly proportional to the frequency of the photon (ν). The 
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constant of proportionality being Planck’s constant, h, which is evaluated at 6.6261 × 10-34 

J s. 

 

Figure 2.3: Diagram to explain the absorption and emission of light in Quantum theory. Adapted 

from a diagram in ‘Lasers in Chemistry: Probing Matter.’ 2008.  

  

Conversely, electrons can also move from an excited state back to the ground state by either 

non-radiative or radiative processes, such as emitting a photon of light equal in energy to 

the difference between the electronic states - fluorescence (Figure 2.3). It should be noted 

that due to the relationship between the energy difference of electronic states and light 

frequency, the different photons of light that can be emitted by a molecule are individual to 

that molecule. Photons can be radiated in one of two ways: spontaneously or the emission 

of light can be stimulated (Andrews, 1997). 

If there are no driving forces behind the radiation then emission will occur spontaneously, 

where the photon may be emitted in any direction; notably, the rate of spontaneous emission 

is proportional to the Einstein coefficient A21 (see Appendix B). However, if a light beam of 

monochromatic photons is directed into a system containing molecules which can absorb 

photons of this wavelength, thus causing excitation, the electron will likely relax back to the 

ground and emit a same wavelength of photon to that absorbed. Additionally, the 

probability of monochromatic emission increases if there are other photons of the same 

wavelength already present in the system – furthermore emission occurs preferentially in 

the direction of the applied light beam, thus increasing the light intensity in this orientation. 

This process is called stimulated emission (Andrews, 1997). Lasing will only commence if 

there is a sufficient net increase in photon density in a single orientation; this can be a 

challenge as the system reaches an equilibrium, where absorption and emission occur at the 

same rate. Equation E2.2 is a derivation of the Beer-Lambert law and can be used to 
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highlight the importance of population inversion to lasing (see Appendix B for more 

details). 

 𝐼𝑡  ∝  𝐼0𝑒−(𝑁1−𝑁2) (E2.2) 

   

In equation E2.2: It represents the intensity of light transmitted through the sample; I0 is the 

incident light intensity; N1 is the population of the lower energy state; and N2 is the 

population of the upper energy state. From E2.2 it can be seen that a net increase in light 

intensity (and hence lasing) will occur if the population in N2 is greater the population in N1. 

This phenomenon is known as population inversion. 

2.3.1.1 Population Inversion 

As alluded to above, population inversion is essential to laser systems. However, there is a 

problem in the two-level system: for lasing to occur the N2 must be greater than N1, but this 

is thermodynamically impossible according to the Boltzmann relation as it requires a 

negative absolute temperature (E2.3). 

 
𝑁2 𝑁1⁄  ∝  𝑒

(𝐸1−𝐸2)
𝑘B𝑇  (E2.3) 

   

In equation E2.5: N2/N1 is the ratio of the number of species in the upper state compared to 

the lower state, E1 is the energy of the lower level, and E2 is the energy of the upper state, kB 

is the Boltzmann constant and T in the absolute temperature in Kelvin. 

As E1 < E2 only in a scenario where the absolute temperature is negative would the N2/N1 

ratio be greater than 1, theoretically this is impossible (for continuous emission). That said, 

there are ways of maintaining population inversion in two-level laser systems, for example, 

by using pulsed excitation (or pumping) laser light; however, the population inversion will 

only be preserved if the rate of pumping is faster the rate of emission.  Note that two-level 

laser systems do exist (i.e. an excimer laser), but, they are very rare and require specific 

conditions. In practise the most common method of maintaining a inverted population is by 

using 3- or 4- level laser systems.  

In a 3-level laser system there is a further higher electronic state, E3, using high energy 

optical pumping it is possible to excite ground state electrons into E3, these excited electrons 

can then relax (non-radiatively) back down to the E2 energy level (Lackner, 2008). 

Crucially, for the 3-level laser system to work the rate to the transition from E3 to E2 must 

be faster than the transition rate from E2 to E1, thus creating an inverted population between 

levels E2 and E1 (Figure 2.4). The E2 energy level is often a metastable state as this allows 

the population of the E2 level to increase so that the majority of electrons are located there. 

One problem with the 3-level laser system is that lasing repopulates the ground state; this 
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makes it difficult to sustain population inversion, this is the major advantage of the 4-level 

system (Andrews, 1997). 

In the 4-level laser system, the lasing energy level (i.e. E3, Figure 2.4 - Right-hand side) 

does not relax into the ground state, but into the E2 level. For the 4-level laser system to 

function there must be a population inversion between the E3 and E2 energy states. Initially 

the intense pumping is required to excite molecules into the highest energy state, E4, 

similarly to the 3-level system this state will relax non-radiatively to the E3 state (note the 

rate that this occurs at must be greater than the rate of laser emission) and the population 

will build in this (metastable) state. In this system laser emission occurs between the E3 and 

E2 states, then relaxation from the E2 state to the ground state by non-radiative methods. To 

maintain the population inversion between these levels the rate of relaxation from E2 to E1 

must be faster than the rate of laser emission. Notably, both the Nd:YAG and dye lasers 

described in Sections 2.3.3 and 2.3.4 respectively operate using some variation of a 4-level 

laser system. 

  

Figure 2.4: Diagram showing examples of a 3 and 4-level laser and the relative population of the 

energy levels. Adapted from Andrew, 1997.(Andrews, 1997) 

2.3.1.2 The Optical Cavity 

Often light amplification by population inversion is limited by kinetic losses of excited 

species or the process of absorption itself. To further increase the light amplification we can 

refer back to the Beer-Lambert law (E2.4) and see that the intensity of transmitted light in a 

laser system decreases exponentially with the path length. Therefore, one technique to 

increase the absorption of light (and hence stimulated emission) within the optical cavity is 

to increase the distance the light travels.  

 𝐼𝑡 = 𝐼0𝑒−𝜎𝑛𝑙 (E2.4) 
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In the Beer-Lambert Law (E2.4): It represents the intensity of light transmitted through the 

sample; I0 is the incident light intensity; σ is the cross section of the target species; n is the 

number density of the target species; and l is the optical path length through the sample.  

The optical cavity is filled with a laser medium - a species which, when excited, will 

undergo stimulated emission as described above. In addition to this an external source of 

energy is also required to excite the laser medium, such as a flash lamp or an electrical 

discharge: note that both the laser medium and excitation source are necessary for lasing.  

The final components of the cavity are two mirrors which are located at either side of the 

cavity; one of the mirrors fully reflective and one is partially transmissive (Figure 2.5). 

These mirrors cause the light to resonate within the cavity, which greatly increases the 

intensity the light with time, whilst simultaneously making the light highly directional. The 

directionality occurs as light will only resonate in one specific orientation efficiently and 

hence only the light in this direction will be amplified. 

 

Figure 2.5: A schematic of the optical cavity, adapted from Andrews, (1997).  
 

In the following sections of this chapter the various techniques within the PIMS set-up 

which utilize laser systems will be discussed, as will the different lasers used. 

2.3.2 Pulsed Laser Photolysis 

2.3.2.1 An Overview of Flash Photolysis 

To initiate chemistry in the PIMS set-up pulsed laser photolysis (PLP), a form of flash 

photolysis, was utilised. Flash photolysis was first pioneered in 1949, and has since 

revolutionized gas-phase kinetics (Porter, 1950). What makes this method so valuable is 

that it has enabled the kinetics of short-lived species such as free radicals to be measured 

directly, this is of particular use in the field of gas kinetics which are predominantly 

controlled by short-lived species (Pilling and Seakins, 1995). 
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Flash photolysis uses a high-energy pulse of light (note that in PLP, the light source is a 

laser) to photolyse the chemical species and initiate chemistry. Photolysis is used to cleave 

covalent bonds and form radical species in situ. However, this statement is only true if a 

suitable reaction precursor is available. For example, in Chapter IV, acetyl chloride was 

utilised as a precursor for both acetyl and chlorine radicals (R2.1). 

 CH3COCl  +  hν  →  CH3CO  +  Cl (R2.1) 

   

Kinetic measurements can only be taken via flash photolysis provided that the length of 

light pulse used is significantly shorter than the lifetime of the reactive species (note a 

typical radical lifetime in the PIMS set-up would be between 1–10 ms). In early flash 

photolysis experiments flash lamps were employed to initiate chemistry (Nelson and 

Ramsay, 1956); however, it is now far more common for a laser to be used. There are 

several reasons for this shift in excitation sources; firstly lasers can be used to produce 

shorter light pulses of higher energy (an excimer laser will typically have a pulse duration 

of 20 ns, providing ~250 mJ pulse-1) and hence can be used for pumping reactions on the 

microsecond timescale. In addition lasers, unlike flash lamps are highly directional, 

monochromatic, and do not suffer much from power degradation, so lower precursor 

concentrations may be used, hence minimising any unwanted reactions (Lackner, 2008). 

2.3.2.2 Excimer Laser – Lambda Physik, Compex 205 

The PLP-PIMS set-up utilises an excimer laser to photolytically initiate chemical reactions. 

Although often referred to as an excimer laser, this is a slight misnomer and the Lambda 

Physik Compex laser is in fact an example of an exciplex laser. Exciplex lasers are named 

after the active laser medium they form following stimulated absorption, excited diatomic 

complexes (Andrews, 1997). A high voltage electrical discharge is passed through a high 

pressure noble gas: halogen: buffer gas mixtures to initially excite the active medium. For 

the majority of the experiments detailed within this thesis a krypton/fluorine/helium gas 

mixture was utilised, which produces 248 nm light; however, there are a number of these 

mixtures which can used to produce various wavelengths of light (Table 2.1).  

 

Table 2.1: A table of  different exciplex laser mediums commonly used (2008).  

Excimer Wavelength Pulse Energy / mJ 

ArF 193 nm 200 

KrCl 222 nm 35 

KrF 248 nm 250 

XeCl 308 nm 150 

XeF 351 nm 80 
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Although highly unusual, excimer lasers use a two-level laser system to create population 

inversion. When the electrical discharge is passed through the active medium excited state 

krypton fluoride complex, KrF*, is formed (R2.2 – R2.4).  

 Kr  +  e-  →  Kr+  +  2e- (R2.2) 

   

 F2  +  e-  →  F-  +  F                                                  (R2.3) 

   

 F-  +  Kr+  + He  →  KrF*  + He                                        (R2.4) 

   

Crucially the KrF* only forms a complex with a fully defined potential well when 

electronically excited, in the ground state no such complex exists (Figure 2.6). Lasing 

occurs between the excited KrF* state and the hypothetical KrF ground state; however, in 

the ground state the krypton and fluorine atoms are not bonded together and so dissociate 

very rapidly (much faster than the rate of stimulated emission). Consequently the ground 

state has only a very small population at any one time and so population inversion is created 

between higher bound state and the lower unbound state (Andrews, 1997). 

 

 

Figure 2.6: A schematic to describe the energetic of a KrF exciplex laser, Andrews (1997). 

2.3.3 Photoionization  

Although there are many different types of mass spectrometers they all share the same four 

basic steps: ionization, acceleration, separation, and detection. There are several different 

ways in way the gas sample could be ionized such as electron impact ionization or chemical 

ionization prior to detection (Harris, 2007). However, in the PIMS set-up a Nd:YAG 

(Continuum, Powerlite 8010) laser is used to photoionize the reaction mixture before they 
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enter the mass spectrometer (see Figure 2.1). Photoionization has a distinct advantage over 

other methods of ionization; the wavelength of light used in photoionization can be adjusted 

- this means that the energy used for ionization is tuneable for different compounds. So if, 

for example, the target molecule fragments severely upon ionization, a longer 

photoionization wavelength could be used to minimise fragmentation and yield a less 

complex spectrum. Conversely, if there are multiple species of the same mass, the input 

energy can be increased to amplify fragmentation: by increasing ion fragmentation it is 

often possible to distinguish between species of the same mass as they will, most likely, 

fragment differently. 

2.3.3.1 Nd:YAG – Continuum, Powerlite 8010 

The Continuum Powerlite 8010 laser utilises a crystalline lattice of neodymium-doped 

yttrium aluminium garnet; Nd:Y3Al5O12 as a lasing medium; it is an example of a solid-state 

laser and is more commonly referred to as a Nd:YAG laser. Approximately 1% of 

the yttrium ions in the host yttrium aluminium garnet (YAG) lattice are replaced by Nd3+ 

ions. This is key as lasing occurs due to stimulated emission from electronically excited 

Nd3+ ions. In this laser a high power xenon flash lamp is used to excite ground state Nd3+ 

ions (4I9/2) into a high energy state which rapidly relaxes to the 4F3/2 electronic state. 

Stimulated emission occurs between the 4F3/2 state and the 4I11/2 state, which rapidly relaxes 

back to the ground state of the Nd3+ ion – this is an example of a four-level laser system 

(Figure 2.4). The primary emission of a Nd:YAG laser is at 1064 nm, although different 

wavelengths of light can be produced from frequency mixing. 

2.3.3.1.1 Q-switching 

The Continuum Powerlite 8010 laser was operated in a pulsed mode. Moreover, in all the 

experiments described in this thesis the Nd:YAG laser was pulsed using Q-switching to 

optimise the output energy from the laser. 

During the excitation (or pumping) of the active medium, the population inversion will 

slowly reach a steady-state; concurrently, the light intensity within the active medium is 

also amplified, but (due to spontaneous emissions) a saturation intensity is reached. In the 

case of the Nd:YAG laser, the time taken to attain the maximum population inversion is 

significantly greater than the time for the saturation intensity to be reached. To gain the 

maximum output from the laser these two events must be synchronised, allowing the active 

medium to reach a maximum level of population inversion before light saturation occurs; 

crucially, Q-switching enables this. 
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The Q-switch employs an electro-optical shutter, which when ‘closed’ limits the light 

intensity within the active medium, until the point of maximum population inversion is 

reached (~250 μs). At this instant, the Q-switch is ‘opened’, releasing the full power of the 

laser into the active medium, which allows stimulated emission to commence. As the active 

medium is already largely excited the intensity of light in the cavity builds up rapidly; this 

leads to the output of a short pulse of high energy photons (Koechner and Bass, 2003).  

2.3.3.1.2 Non-linear Optics and Frequency Mixing 

The fundamental wavelength of light output from the Nd:YAG is 1064 nm, however, as 

discussed above photoionization requires vacuum ultraviolet light (VUV); within this 

section the frequency conversion of the infrared light (λ = 1064 nm) to the VUV light 

(λ = 118 nm) will be reviewed. 

Using non-linear optic techniques it was possible to modify the wavelength of light output. 

Within the Nd:YAG laser frequency-doubling crystals were utilised to produce the second 

(532 nm) and fourth harmonics (266 nm) of the 1064 nm output (Andrews, 1997). 

However, to produce the 355 nm light (which was used for frequency tripling to 118 nm) is 

more complex. This process is comparable to phase-matched frequency doubling; as 

multiple photons of light are combined to produce a single light beam of higher energy. In 

this case, two wavelengths of light (532 nm and 1064 nm) are added to produce 355 nm 

light. Notably, the 532 nm light has double the energy of the 1064 nm, meaning that the 

combined energy of these two waves is 3 times the energy of the original 1064 nm light; as 

the energy of the combined beam is three times the original, the wavelength will be three 

times smaller, i.e. ~355 nm (Andrews, 1997).  

Subsequently, the 355 nm light produced from Nd:YAG laser can be converted to the 

118 nm light required for photoionization by ‘frequency tripling’ 355 nm light in xenon gas 

(Hilbig and Wallenstein, 1981). Although commonly referred to as ‘frequency tripling’, it 

can actually be more accurately described as 4-wave mixing (Abraham et al., 1985). This 

technique allows the conversion of three photons (ω1 + ω2 + ω3) to a single photon (ω0); the 

energy of the resultant photon emitted will be equal to the sum of the individual photons 

absorbed (E2.5):  

 ω1  +  ω2  +  ω3 =  ω0 (E2.5) 

   

For efficient 4-wave mixing to occur, phase-matching is often necessary (Abraham et al., 

1985); note, collinearity of the interacting waves is an important component in phase-

matching. 
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2.3.4 Dye Lasers - Sirah Precision Scan 

Although mass spectrometry is often described as a universal technique sensitive to all 

species, there are certain species which cannot be easily ionized. One such example is the 

hydroxyl radical, OH, which is an important reactant in the atmosphere. However, the OH 

radical can be detected if it is excited prior to detection with 282.5 nm light. The PIMS set-

up utilised a Sirah precision scan laser to produce light of wavelength 282.5 nm. The Sirah 

precision scan is an example of a dye laser and will therefore be described concurrently.  

Dye lasers usually operate as pseudo-four level lasers, using solutions of organic dyes as the 

active medium. For efficient lasing the laser dye must absorb strongly at the excitation 

wavelength of the pump laser and have a broad fluorescence spectrum. The wavelength of 

light emitted is always greater (i.e. lower in energy) than the wavelength of light absorbed. 

Most laser dyes are polyatomic, conjugated molecules with high fluorescence quantum 

yields (Drexhage, 1976). The electrons within polyatomic, conjugated molecules are usually 

highly delocalised and have numerous vibrational modes. Before usage, the laser dye must 

be dissolved into solution (often in either alcohol or water). In solution, the multitude of 

available energy levels is broadened (due to enhanced intermolecular interactions within the 

solution), causing them to overlap and giving the laser dyes emission spectrum its 

characteristic broadness (Nemkovich et al., 1981). It is due to the broad emission spectrum 

that the laser can be tuned to output different wavelengths of light (Figure 2.7); however, in 

order for the laser output to be monochromatic a diffraction grating must be used. For 

simplicity the diffraction grating can be thought of as a mirror within the optical cavity of 

the dye laser (Figure 2.5). However, unlike a mirror, the grating will only resonate light of a 

certain wavelength; this light is directed back into the cavity where it can stimulate further 

emissions, and hence allow the amplification of light at this single wavelength (Loewen and 

Popov, 1997, Hermann and Ducuing, 1972). 

 

Figure 2.7: Simplified Jablonski diagram for a laser dye. S0 is the ground singlet state, whilst S1 is 

the first excited singlet state; T1 ground triplet state. 
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Figure 2.7 shows a 4-level laser system, by which most dye lasers operate. This diagram 

also highlights the added complications caused by intersystem crossing from the singlet to 

triplet states (Andrews, 1997). Although intersystem crossing is slow (spin forbidden), it 

does still compete with fluorescent emissions, and hence detract from the laser output. 

Moreover, it also leads to phosphorescent emissions which interfere with the 

monochronicity of the laser output. 

To generate 282.5 nm light, light from the Nd:YAG laser was pumped into the Sirah 

precision scan, with the dye Rhodamine 6G dissolved in methanol. Rhodamine 6G absorbs 

strongly at the 532 nm (the 2nd harmonic of the Nd:YAG output), the emitted light can be 

tuned to wavelengths of ~565 nm. Rhodamine-6G can be dissolved in a number of different 

solvents; however methanol was used as the wavelength of its peak intensity is closer to the 

desired wavelength for OH excitation (Zehentbauer et al., 2014). Furthermore, it yields the 

largest relative intensity of light at this peak wavelength (Table 2.2). The required 565 nm 

light generated was then passed through a doubling-crystal to generate light of ~282.5 nm in 

wavelength, a suitable wavelength of OH excitation.  

Table 2.2: Solvent properties and emission characteristics of Rhodamine-6G in organic solvents 

(Zehentbauer et al., 2014). Note: peak intensities are all relative in methanol signal. 

Solvent 

Molar 

mass in 

g/mol 

Density / 

g/ml at 

20 °C 

Refractive 

index at 20 °C 

Peak wavelength 

in nm 

Relative 

intensity at 

peak 

Methanol 32.0 0.792 1.328 568 1 

Ethanol 46.1 0.789 1.361 573 0.67 

n-Propanol 60.1 0.803 1.387 570 0.64 

i-Propanol 60.1 0.786 1.378 570 0.77 

n-Butanol 74.1 0.81 1.399 572 0.72 

n-Pentanol 88.2 0.814 1.409 574 0.73 

Acetone 58.1 0.791 1.359 575 0.57 

DMSO 78.1 1.104 1.479 579 0.41 

 

2.4 Radical Detection Techniques 

There are many different experimental techniques that have been utilised to monitor species 

in gas kinetics; within this section of my thesis selected detection techniques, commonly 

used to monitor short-lived radical species will be described. The selected techniques are: 

laser-induced fluorescence (LIF) and absorption detection; these techniques will then be 

compared to mass spectrometry. As the majority of the work described in this thesis was 

done using mass spectrometry this technique will be explained in the most detail. However, 

prior to this a brief summary of the other selected detection techniques will be given. 
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2.4.1.1 Laser Induced Fluorescence – OH Detection 

Within the field of atmospheric chemistry there are few species more important than the 

hydroxyl radical, OH. Therefore, it is of the utmost importance that there are sensitive 

techniques available to detect this species (Creasey et al., 1997). Currently, the most 

common technique used for OH detection is laser induced fluorescence (LIF). During LIF, 

the target species (i.e. OH) is excited from its ground state using a probe laser; dye lasers 

are commonly used for excitation, which means the output from the laser can be tuned to 

match specific transitions. Following excitation, a corresponding fluorescence signal is 

emitted, this signal is then detected using a photomultiplier tube (PMT). Using LIF OH 

radicals can be probed using either on- or off-resonance detection (Figure 2.8). In OH off-

resonance detection the wavelength of fluorescence (308 nm) is different from the 

excitation wavelength (~282.5 nm), due to relaxation of excited state from the v’ = 1 to the 

v’ = 0 energy level. On-resonance detection differs slightly as the wavelength of 

fluorescence emitted is equal to the excitation wavelength.  

 

Figure 2.8: A schematic showing the OH transitions for both off- and on-resonance detection.  

 

In order to optimise the technique, any interference from the probe laser must be minimised. 

It is for this reason that in most LIF configurations OH detection is perpendicular to the 

direction of probe laser propagation; this is of greater importance for on-resonance 

detection as optical filters cannot be utilized to reduce scattered light. 

As previously mentioned LIF is a highly sensitive technique and is of particular use for OH 

detection during field campaigns as atmospheric concentrations of OH are low; [OH] ≈ 106 

molecule cm-3. However, there are certain disadvantages of this technique; for example, LIF 

only provides relative (and not an absolute) measurement of concentration and calibration is 

required before the concentration of species can be determined. Furthermore, most OH 

studies which utilise LIF are generally limited to relatively low pressures (p < 100 Torr), 

due to collisional quenching. However, recent developments in the sampling and detection 
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methods have meant high pressure measurements can be made (Stone et al., 2016). Finally, 

the technique is not universal, meaning that it can only be used to monitor certain species. 

In Chapter IV of this thesis, results from a study investigating the chemically activated 

decomposition of acetyl radicals formed in CH3CHO + OH reaction are discussed. This 

study primarily utilized PLP-PIMS to probe this reaction; however, complementary work 

was done using pulsed laser photolysis laser induced fluorescence (PLP-LIF). Using the 

PLP-LIF instrumentation the hydroxyl radical was monitored in the presence and absence 

of O2 (Figure 2.9); notably in the presence of O2, OH was recycled (details of these 

experiments can be found in Chapter IV, Section 4.4). The OH recycling study described 

was conducted by James Lockhart and Tamas Varga. 

 

Figure 2.9: A schematic of the PLP-LIF system used to probe the CH3CHO + OH reaction 

(Lockhart, 2014). 

 

2.4.1.2  Absorption Spectroscopy 

Absorption spectroscopy is also a commonly used detection technique; this method is of 

considerable use in the monitoring of fast reactions. Theoretically, absorption spectroscopy 

is a universal technique, as all molecules/atoms/radicals absorb light at certain wavelengths 

(specific to the species) in the UV/visible spectra. Typically, during absorption 

spectroscopy a ‘white light’ source, such as a xenon arc lamp, is shone through a sample of 

the reaction mixture. The target species will absorb some light at certain characteristic 

wavelengths; the fraction of light absorbed is proportional to the concentration of the target 

species in the sample, as described by the Beer-Lambert law (E2.4). One of the major 

advantages of absorption spectroscopy highlighted by the Beer-Lambert law, is that 

absolute concentrations of the target species can be determined (provided the cross section 
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of the target species and path length of the sample are known). An example of a typical 

absorption spectroscopy set-up can be seen in Figure 2.10. As with all kinetic techniques 

described, experiments are usually initiated using pulsed laser photolysis (Section 2.3.2); 

furthermore, complete decay traces are collected per laser pulse (high duty-cycle), making it 

an efficient detection technique. 

 

Figure 2.10: A schematic of basic absorption spectroscopy set-up, adapted from Pilling (1995). 

 

Figure 2.10 is a schematic of a basic absorption spectroscopy set-up; however, there are 

several additional measures available to further enhance the technique. As can be seen from 

E2.4, the amount of light absorbed is directly related to the product of concentration of the 

target species and optical path length through the sample. This means that the sensitivity of 

the technique can be improved by the strategic placement of highly reflective mirrors, 

which allow the probe light to pass multiple times through the reactor prior to detection; this 

type of system is commonly known as a multipass cell. The main disadvantage of 

absorption spectroscopy is caused when a number of different species absorb at similar 

wavelengths, causing overlapping spectra. However, these problems can be minimised by 

resolving the time profiles at all wavelengths, so that individual species can be observed at 

single wavelengths, meaning background interferences can be minimised (Lewis et al., 

2015). 

2.4.2 Intercomparison of Detection Techniques 

LIF, absorption and mass spectrometry are all highly sensitive detection techniques, which 

can yield invaluable information on the kinetics and mechanisms of specific gaseous 

reactions (Heard, 2008); yet, all of these techniques both have their strengths and their 

weaknesses. 
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Of the three techniques LIF is the most sensitive. Intuitively, it may be thought that 

absorption spectroscopy is the more sensitive technique as the number of photons being 

detected is much greater. However, at low species concentrations the difference between the 

intensity of light entering and exiting the system is small, making it difficult to measure. 

This is less of a problem for LIF detection as the background level of light is zero, this 

makes it much easier to detect small variations. 

LIF can only be used to detect certain species, i.e. those which have large enough 

fluorescence quantum yields to be detected. Whereas, both mass spectrometry and 

absorption spectroscopy have the advantage of being ‘universal’ techniques and can 

measure many different chemical species. However, in absorption spectroscopy, if more 

than one species absorbs in the same region it can cause interference in the spectrum, as 

differentiating between the species can be complex. Moreover, in differential optical 

absorption spectroscopy (DOAS), measurements are often limited to tri- or diatomic 

molecules, as in larger molecules the absorption spectra get significantly less structured, 

due to overlapping of spectral lines (Heard, 2008); note that it is the lack of structure which 

causes the difficulties in differentiating the species. Conversely, it is relatively easy to 

distinguish between species using time of flight mass spectrometry, making this technique 

particularly useful for yielding mechanistic information about the reaction. However, it 

should be noted that the PLP-PIMS set-up used for the majority of the work presented could 

not be used to distinguish between isobaric species due to certain experimental limitation; 

however, other similar instruments have been able to successfully differentiate isobaric 

species, and even isomers, by measuring the photoionization efficiency spectra of the 

species detected (Osborn et al., 2008). 

The principle advantage of absorption spectroscopy is that it is an absolute technique. 

Unlike both LIF and mass spectrometry, by using absorption spectroscopy absolute values 

of the species concentration are known; provided both the species cross section and path 

length are known. 

2.5 Mass Spectrometry 

The basic principle behind mass spectrometry is that different atoms and molecules can be 

separated due to their differing masses. This idea was first developed in the late 19th century 

/ early 20th century, first by Wien and then by Thompson - who was the first person to 

separate ions using the mass-to-charge ratios, m/z (Thomson, 1910). Since its development, 

mass spectrometry has become an important detection technique used throughout scientific 

research: most notably, a mass spectrometer called a Calutron was developed and used in 

the Manhattan Project to separate uranium isotopes (Frederic P. Miller, 2010).  
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The aim of this section (Section 2.5) is to give specific details regarding the different types 

of mass spectrometers commonly used for gas kinetics (e.g. quadrupole and time-of-flight). 

Following this will be a focussed discussion of the history of mass spectrometry within gas-

phase kinetics; in particular, the previous studies which inspired the design of the PIMS 

system at the University of Leeds are highlighted (Blitz et al., 2007). It must also be 

recognised that there are many other techniques within the field of reaction kinetics and 

dynamics which exploit mass spectrometry. One such example is velocity map imaging, a 

technique used primarily to probe reaction dynamics (Eppink and Parker, 1997); however, 

as the applications and methods of techniques such as this are not directly related to that of 

the Leeds PIMS set-up , they are not included within the history.  

2.5.1 The Principles behind Mass Spectrometry 

Mass spectrometry operates on the principle that a charged species (i.e. ions) in motion can 

be deflected by a magnetic field.  The magnitude of the force induced by the charged 

species is directly proportional to the mass-to-charge of the individual charge species, this 

relationship can be derived from the Lorentz force law (E2.6):  

 𝐹 = 𝑧 × (𝐸 + (𝑣 × 𝐵))                                                   (E2.6) 

   

In the Lorentz force law: F refers to the force experienced by the charged particle, z is the 

charge of the particle, v is the particle's velocity, E is the electric field strength and B is the 

strength of the magnetic field (Dirk Schulze-Makuch, 2008). 

There are four key stages which are coupled together in mass spectrometry: ionization, 

acceleration, separation and detection. As referred to in E2.6 only charged particles can be 

deflected in a mass spectrometer, this means that before entering the spectrometer the target 

species must already be ionized. A caveat to this is that for the mass spectrometer to yield 

quantitative information all atoms/molecules must only be ionized by the same amount (i.e. 

to +1 ions); otherwise the mass-to-charge ratio will not be proportional to the mass of the 

original species. In this work a Nd:YAG laser was used to photoionize the gas sample 

before it enters the mass spectrometer, details of this can be found in Section 2.3.3. After 

ionization the newly formed ions must be accelerated toward the spectrometer; this is done 

by having a large potential difference between the gas sample inlet and the mass 

spectrometer (~3000 V), this process will be discussed in more detail in Section 2.5.1.2.  

It is the mass analyser within the spectrometer that is used to separate the charged particles 

according to their individual mass-to-charge ratios. There are a number of different mass 

analysers that are utilised by mass spectrometry, the two most common being the 

quadrupole detector and the time-of-flight mass spectrometer (Harris, 2007). 
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2.5.1.1 The Quadrupole Mass Analyser 

A quadrupole mass analyser is used, effectively, as a ‘filter’, selecting ions of a specific 

mass. The quadrupole itself is comprised of four parallel metal rods. In the quadrupole the 

transverse rods are coupled together yielding two sets of rods - opposing radio frequency 

voltages being applied on each pair. By applying these voltages to the rods only ions with a 

certain mass-to-charge ratio are able to pass through the quadrupole to the detector. Ions 

which do not have the required m/z ratio will not resonate properly within the quadrupole 

and will therefore not reach the detector (Figure 2.11). It should be noted that the mass-to-

charge ratio range detected can be tuned varying the voltages across the rods.  

 

 Figure 2.11: A schematic of a Quadrupole mass analyser (Gates, 2009). 

 

The quadrupole mass analyser is a popular technique for separating ions and is a low cost 

method for detection; however, this method does have some limitations (see Section 2.5.2).  

2.5.1.2 Time-of-Flight Mass Spectrometry 

The second common type of mass analyser is time-of-flight mass spectrometry (ToF-MS), 

and it is this form of detection used in the Leeds PIMS set-up. With the ToF-MS all of the 

fundamental stages of mass spectrometry are done other than ionization; this is done via 

VUV-photoionization (Baeza-Romero et al., 2012). As can be seen from Figure 2.14, ions 

are initially accelerated from the ionization region into the mass spectrometer; high voltages 

of up to 3.5 kV have been used to accelerate the charged species towards the detector. By 

accelerating the ions through a constant electric field, the kinetic energy of all the ions is the 

same; however the speeds at which they accelerate are dependent on the individual masses 

of the ions (E2.7 - E2.9): 

  𝐸P = 𝑧 × 𝑉 (E2.7) 

   

 𝐸K =  
1

2
×𝑚×𝑣2 (E2.8) 
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 𝐸K =  𝐸P  ∴   𝑧 × 𝑉 =  
1

2
×𝑚×𝑣2 (E2.9) 

   

In equations E2.7 – E2.9: EP is the potential energy of the electric field, EK is the kinetic 

energy of the ions, z is the charge on the ions, V is the voltage of the electric field, m is the 

mass of the ions and v is the velocity of the ions. 

As can be seen in E2.9, because the energy of all the ions is constant, their speeds will vary 

depending on the mass of the ion. This means that the lightest ions will accelerate to the 

fastest speeds. Consequently, as speed is equal to distance over time, and the distance is 

approximately (but not quite) constant, the lightest ions will arrive first at the electron 

multiplier - the detector. This is the basic principle behind ToF-MS and the equations below 

confirm this mathematically and shows that the time of flight is proportional to the square 

root of the mass-to-charge ratio (E2.10 to E2.12) (Schlag, 1994).  

 𝑧 × 𝑉 =  
1

2
×𝑚×𝑣2 =  

1

2
×𝑚×(

d

𝑡
)

2

 (E2.10) 

   

 𝑡2 =
d2

2×𝑉
×

𝑚

𝑧
 (E2.11) 

   

 𝑡 =
d

√2×𝑉
×√

𝑚

𝑧
  (E2.12)                                                    

   

E2.10 – E2.12: Where t is the time of flight through the spectrometer, m/z is the mass-to-

charge on the ions, V is the voltage of the electric field, and d is the distance travelled 

through the spectrometer. Note: v=d/t (i.e. speed = distance/time).  

Data can only be collected from a ToF-MS if the extraction of ions into the spectrometer is 

pulsed (where length of the pulse is ~10 µs). If ions were allowed into the mass 

spectrometer at all times then ions of different masses would arrive at the detector 

simultaneously, depending on when they entered the spectrometer. For a meaningful mass 

spectrum to be collected a time zero is needed; this can be achieved by injecting the ions 

into mass spectrometer at specific time intervals. Typically, ions are extracted from the 

photoionization region into the spectrometer at ~50 µs intervals; as the time-of-flight even 

for the larger ions is significantly less than 50 µs. 

The time-of-flight mass spectrometer used in experimentation developed by Kore 

technology in conjunction with the University of Leeds (Blitz et al., 2007). After the ions 

have been initially accelerated into the spectrometer, X and Y plates were used to direct the 

ions towards the reflectron: it should be noted that the lighter (and hence faster) ions will 

induce a larger force (see E2.6). Previously, it was stated that after acceleration all the ions 

possess equivalent kinetic energies – this is an oversimplification of the matter and fails to 
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take into account the initial energy of the ions before acceleration. This means that there is a 

small energy distribution within ions of the same mass-to-charge ratios. For time-of-flight 

mass spectrometry to be a valid method for mass separation, ions of the same mass must 

arrive at the detector at the same time. If there is an energy distribution within the ions this 

will not happen – making the technique ineffective. However, this problem may be rectified 

by using a reflectron, which accounts for the distribution of energies within the ions (Wiley 

and McLaren, 1955, Edmond de Hoffmann, 2007). Reflectrons use an electric field to 

reverse the direction of the ions in the mass spectrometer and direct towards the electron 

multiplier. Ions with low energy have less inertia and their direction can be quickly reversed 

in the reflectron. Although higher energy ions (with the same mass-to-charge ratio) reach 

the reflection faster their greater momentum means it take more energy and hence these 

ions will penetrate deeper into the electric field of the reflection, which increase their flight 

paths. The increased distance the high energy ions travel is proportional to the speed they 

were travelling at; this means that all the ions with the same mass-to-charge ratio will arrive 

simultaneously at the electron multiplier.  

 

Figure 2.12: A schematic of a Time-of-Flight Mass Spectrometer, including reflectron; from Harris 

(2007). 

 

Using a reflectron greatly improves the mass resolution of the time-of-flight mass 

spectrometer, hence making it a more sensitive technique for measuring kinetics and 

product yields. 

In the PLP-PIMS set-up ions were detected using an electron multiplier. When a charged 

species hits the multiplier it initiates the secondary emission of (up to ~3) electrons, creating 

an exponential increase in the number of electrons and hence amplifies the signal. This ion 

signal was passed through a preamplifier to further increase the signal, before it was sent to 

the data acquisition hardware (Blitz et al., 2007). 
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2.5.2 Mass Spectrometry in Gas Kinetics: A brief history 

Flash photolysis initiated mass spectrometry was first used to investigate gas-phase kinetics 

by Kistiakowsky et al. (1957).  In these experiments the samples were ionized by single-

pulse photolysis using a high energy flash lamp. The gas sample was ionized using a 

Bendix ion gun (continuous source) before reaching the spectrometer; the sample was then 

separated using time of flight mass spectrometry, as were most flash photolysis initiated 

mass spectrometry experiments at the time (Kistiakowsky and Mahan, 1957, Meyer, 1967). 

An electron multiplier coupled to an oscilloscope was used to present the data, however due 

to technological limitation it could not be used to store the data electronically; this had to be 

done instead using a Polaroid camera to photograph the screen of the oscilloscope. 

Fluctuations in the number of ions formed were common from pulse to pulse; this was 

accounted for by using neon (an inert substance) as a point of reference. However, even 

with the neon reference the observed fluctuations made it very difficult to collect quality 

data using this method of collection at this time (Carr, 2007).  

It was not until 1970 that quadrupole mass analysers were used in flash photolysis time-

resolved mass spectrometry (FP-TRMS); but following development, using quadrupole 

mass analysers for separation became the most popular method of FP-TRMS, until recent 

years  (Strausz et al., 1970, Strausz et al., 1971, Slagle et al., 1981, Eskola and Timonen, 

2003). At the forefront of this technique were Gutman and his colleagues who were 

amongst the first groups to utilise a pulsed laser for photolytic purposes (Slagle et al., 

1981). In the Gutman set-up the photolysed samples of the reactant gases were continually 

injected into the path of a VUV ionizing resonance lamp through a sampling pinhole 

(~0.5 mm in diameter). The ionized sample was then separated using the quadrupole and 

then finally detected using a Daly scintillation detector (Figure 2.13). The ionization source 

in this set-up was continuous (as were all the ionization sources used in FP-TRMS 

previously).  
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Figure 2.13: A schematic of Gutman’s experimental set-up, presented in Slagle et al. (1981). 

 

In comparison with the earlier work using time-of-flight mass spectrometry, using the 

quadrupole gave better reproducibility (Carr, 2007). However, there were other advantages 

for using quadrupole mass analyser: first of all in comparison to ToF-MS quadrupoles are 

relatively inexpensive and compact. Quadrupoles are also simpler to operate as complete 

time-resolved traces can be taken per laser pulse, unlike in ToF-MS where the delay time 

between the pump and probe pulses is scanned. Additionally, as both the quadrupole mass 

analyser and the resonance ionization lamp are in continuous operation, this system has 

high ion transmission efficiency (Carr, 2007). This means the all of the ions (of a certain 

mass) produced are detected, unlike the Kistiakowsky ToF-MS system described earlier 

which has a low duty cycle, hence better sensitivity could be accomplished using the 

Gutman system. Note that the duty cycle of a system can be defined as: the proportion of 

time a device is active (or on) within the period of a complete on/off cycle; devices with 

higher duty cycles are more efficient  (Graf, 1999). Unlike, the early FP-TRMS systems 

Gutman’s set-up could provide reliable kinetic data, although to gain accurate results the 

data were averaged 103-104 times (Carr, 2007, Slagle et al., 1981). 

Although, initial studies using the PIMS had greater success using quadrupole mass 

analysers, ToF-MS has one major advantage – it can be used to detect many species at once. 

Therefore, theoretically, the decay of the reactants and the growth of the products can be 

measured simultaneously. Also because ToF-MS can detect multiple species at once it was 

possible to measure the different products formed in multichannel reactions and determine 

product yields. However, due to the low sensitivity of the early ToF-MS systems, this 

technique was overlooked until the late nineties.   

As mentioned above the biggest problem with ToF-MS was sensitivity, the low sensitivity 

was partially due to inefficient ion transmission. This was solved by Fockenberg et al. 

(1999) who pioneered pulsed ionization time-of-flight mass spectrometry experiment. By 
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synchronising the ion pulse with ion extraction into the spectrometer the sensitivity of the 

ToF-MS was increased, allowing more reliable kinetics data to be recorded (Fockenberg et 

al., 1999). However, the improvement in the duty cycle in this system was still only 25% 

and to produce good data, long acquisition times were needed. In the PIMS set-up at the 

University of Leeds, the sensitivity was improved by over an order of magnitude by 

changing the ion source from a pulsed VUV resonance lamp to a pulsed laser. Using the 

pulsed laser gave significant improvements to the quality of data and reduced data 

acquisition times (Baeza-Romero et al., 2012).  

In recent years, however, the most notable PIMS system is that used by the Sandia National 

Laboratories (Osborn et al., 2008). This specific set-up has been utilised in multiple high-

impact studies, including: the first direct measurements of the C1 Criegee intermediate 

(Taatjes et al., 2008, Welz et al., 2012); and the first direct observation of the 

hydroperoxyalkyl radical (QOOH), which is thought to be a key intermediary species in low 

temperature combustion (Savee et al., 2015). Notably, the work of Welz et al. (2012) is of 

particular relevance, as it was the inspiration for much of work in this thesis (Chapter VI). 

The generic construction of the gas flow and vacuum systems for this instrument are 

thought to be similar to the PIMS set-up at the University of Leeds (Figure 2.14); that said, 

there are key differences in both the ionization and detection steps.   

 

Figure 2.14: A schematic of the PIMS set-up utilized by the Sandia National Laboratories (Osborn 

et al., 2008). 

 

Possibly the greatest advantage the Sandia National Laboratories PIMS system has over the 

majority of the other PIMS set-ups in use, is its ionization procedure. In the PIMS set-up 

Mass 
Spectrometer 
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pioneered by Osborn et al. (2008) light from the Advanced Light Source (ALS) was used in 

photoionization; the advantage this has over other ionization techniques is that the light 

source is highly tuneable, capable of continuous ionization wavelengths between 50 – 

175 nm. Therefore, by gradually varying the photoionization wavelengths the Sandia PIMS 

set-up can decipher between different isomers because of their varying photoionization 

efficiency, PIE, spectra (i.e. plots of the ion yield versus excitation energy) (Osborn et al., 

2008). It should be noted that the Leeds PIMS set-up relies on dye lasers to tune the 

photoionization wavelength; using this methodology  it is much more difficult to (smoothly) 

vary the photoionization energy (Baeza-Romero et al., 2012). 

The method of detection for the Sandia National Laboratories instrument is also different, 

instead of a time-of-flight mass spectrometer; a multiplexed mass spectrometer (Mattauch–

Herzog geometry) is used. Similarly to Gutman’s set-up, the Sandia National Laboratories 

PIMS system has a 100% duty cycle, meaning that the instrument is highly sensitive. 

However a slight drawback of using the multiplexed mass spectrometer is that not all 

masses can be probed at once. Indeed, using this configuration allows for the detection of 

all mass signals between m/z = 14 – 112 (Osborn et al., 2008). This does limit the Sandia 

National Laboratories instrument somewhat; a simple illustration of this problem can be 

highlighted in the photolysis of methyl iodide: 

 CH3I + hν  →  CH3 + I (R2.5) 

   

Within this simple system there are three species; however, using the PIMS set-up 

pioneered by Osborn et al. (2008) only one of these species, the methyl radical, could be 

detected. Notably, even the methyl radical (m/z = 15) would be right on the limit of masses 

detected. However, in the Leeds PIMS system all three masses could be monitored. This is 

the major advantage of the Leeds PIMS set-up, which utilizes a ToF-MS and can therefore 

monitor all masses (m/z < 300), which ionize below ~10.5 eV.   

2.6 Gas Handling System 

The precursor and reactant gases were stored either in gas bulbs or gas cylinders. The flow 

of gases was controlled using various different sized mass flow controllers (Tylan: 25, 300 

and 3000 sccm) and combined in a manifold before entering the reactor (Figure 2.15).  



Chapter II: Experimental Methods 

 

60 

 

Figure 2.15: A schematic of the gas manifold. 

 

The reactor was comprised of a steel flow-tube (internal diameter of 10.5 mm and ~70 cm 

in length); a 1 mm sampling orifice was located half-way along the flow-tube. Schematic 

representations of the flowtube and ToF-MS can be seen in Figures 2.1-2.2. The pressure in 

the reactor can be varied between 0.25 – 5 Torr, but experiments were typically run at ~2 

Torr; note that the pressure was monitored at several places in the PIMS set-up using 

Edwards and MKS baratrons. The mass flow controllers were calibrated so that the total gas 

flow-rate could be determined. To guarantee that a fresh sample reached the reactive region 

per laser shot (10 Hz) the total velocity of the gases was kept above 400 cm s-1 for all the 

experiments; this ensured that the per laser shot gas mixture travelled a minimum of 40 cm 

(i.e. over half the length of the flowtube). 

As previously discussed, a 1 mm sampling orifice was located half-way along the flow-

tube; gas effuses through the sampling orifice into ToF-MS via the ionization region (see 

Section 2.3.3). The pressure inside the mass spectrometer must be kept extremely low (p ≈ 

5 × 10-6 Torr); so that the mean free path was significantly large enough that the ions do not 

collide on their way to the electron multiplier (as this will interfere with detection). To 

achieve this, an oil diffusion pump (Varian, VHS-6) was utilised to create a high vacuum 

environment in the ionization region (~10-5 Torr). 

The mean free path is defined as the average distance that a moving particle (e.g. an atom, 

an ion, or a molecule) travels between successive collisions (Atkins, 1992); and can be 

calculated using kinetic theory (assuming the velocities of particles have a Maxwell 

distribution): 
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 𝑙 =  
𝑘B × 𝑇

(√2 × 𝜋 × 𝑑2 × 𝑝)
 (E2.13) 

   

In equation E2.13: l represent the mean free path (m); kB is the Boltzmann constant (J K-1); 

T is temperature (K); d is the estimated diameter of the particle (m); and p is the pressure 

(Pa).  

The equation can be used to calculate the mean free path in the University of Leeds PIMS 

system. For the benefit of this calculation the following was assumed: T = 293 K; d = 

3.8 × 10-10 m (note: this is equal to the van der Waal’s diameter of acetaldehyde, a 

compound used frequently during the work discussed in Chapter IV) (El-Sayed and 

Bandosz, 2001); and p = 5 × 10-6 Torr (or 0.00067 Pa). 

 𝑙 =  
(1.3806 × 10−23) × 293

(√2 × 𝜋 × (3.8 × 10−10)2 × (0.00067))
 (E2.14) 

   

 𝑙 ≈ 9.5 m  (E2.15) 

   

Given that the distance the ions travel from the point of photoionization to the point of 

detection was approximately 50 cm, it suggests that the vast majority of the ions will not 

collide inside the PLP-PIMS system. 

Lastly, it should be noted that to maintain the potential difference between the ionization 

region and the mass spectrometer, a 1 inch-squared earthing plate was attached to the flow-

tube directly above the sampling orifice (Figure 2.16). 

 

Figure 2.16: A schematic of the vacuum chamber, adapted from Blitz et al. (2007).  
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2.7 Data Acquisition  

An electron multiplier was used to convert the ion signal of the reactive species into an 

electronic signal which was then sent to an oscilloscope (LeCroy Waverunner-2, LT354) 

via a signal amplifier (Figure 2.17). In the oscilloscope the electronic signal was then 

integrated (using Boxcar averaging) to give the (ion) signal intensity of the individual 

masses being tracked (Baeza-Romero et al., 2012). Note that the time delay observed 

between ionization and detection was proportional to the square-root of mass-to-charge 

ratio of the signal (Section 2.5.1). Crucially, by using ToF-MS several different masses can 

be observed simultaneously using the different channels available on the oscilloscope.  

 

Figure 2.17: Schematic of Data Acquisition and Collection System. 

 

To initiate data collection a pulse from a delay generator  (SRS DG535) was used to fire the 

excimer laser. The same delay generator was then used to fire the Nd:YAG laser to  

photoionize the sampled gas. The temporal evolution of the reaction was monitored by 

increasing the delay time between the photolysis and probe lasers. By varying the delay 

time of the Nd:YAG pulse relative to the excimer pump, it was possible to map the kinetics 

of a reaction system (Blitz et al., 2007). Additionally, the Nd:YAG laser pulse was 

synchronised with the ion extraction pulse of the mass spectrometer to maximise the 

efficiency of the system. Experiments were run using a LabVIEW™ program, designed 
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specifically for data collection and storage for this setup. Note: the LabVIEW™ script was 

written by A. Goddard. Each experiment was run over a specific time range, where the 

delay time (between pump and probe pulses) was altered with each probe laser pulse by a 

preset amount each time. In general, 200 to 500 data points (+ 20 to 50 background points) 

were collected over a timescale of 1-10 ms, the individual scans were repeated 10-20 times 

to improve the quality of the data (Figure 2.18). For detection of a species to be considered 

as valid using the PLP-PIMS set-up, the data must have minimum signal-to-noise ratio 

(SNR) of approximately three. Note: from the data collected the signal-to-noise ratio were 

calculated using the following equation:  

 𝑆𝑁𝑅 =  
𝑆ℎ𝑒𝑖𝑔ℎ𝑡

𝜎𝐵𝐺
  (E2.16) 

   

where Sheight is the maximum height of the signal; and σBG is the standard deviation of the 

background points. 
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Figure 2.18: An example of the data collected using the PIMS set-up, where SCH3CO is the time-

resolved acetyl signal (see Chapter IV). Note that SCH3CO is given in arbitrary units (denoted as arb. 

units). 

 

2.8 Data Analysis 

The majority of the experiments conducted using the PLP-PIMS set-up utilised the isolation 

method (Chapter I, Section 1.5.2). However, thus far the analysis of the raw data is yet to be 

discussed. 
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2.8.1 Analysis of Raw Data, Non-linear Fittings 

All of the raw data acquired from the individual traces were initially analysed using 

OriginPro graphical software. A generic form of the equation used to fit the data can be 

found below (E2.17); an example of a non-linear fitting using E2.17 can be seen in Figure 

2.19 (red line).  

 

𝑆𝑋,   𝑡 =
𝑆height 𝑘g𝑘samp

𝑘l − 𝑘g
[
𝑒−𝑘g𝑡 −  𝑒−𝑘samp𝑡

𝑘eff − 𝑘g
−

𝑒−𝑘l𝑡 − 𝑒−𝑘samp𝑡

𝑘eff − 𝑘l
]

+
𝑆instant 𝑘samp

𝑘samp − 𝑘l
[
𝑒−𝑘l𝑡 − 𝑒−𝑘samp𝑡

𝑘samp − 𝑘l
] + 𝑆0 

(E2.17) 

   

In equation E2.17: S X,t is equivalent to the time-resolved signal of the monitored species X; 

t is time; Sheight represents the maximum height of the signal; kg is the coefficient rate of 

formation of the signal; kl  is rate coefficient for the loss rate; ksamp is the rate of 

transportation for the sampled gas into the mass spectrometer (this was constrained to 

ksamp ≈ 30000 s-1 in the analysis); Sinstant refers to any instantaneous signal observed 

(photolytic); and S0 is the signal at t = 0 s (Baeza-Romero et al., 2007).  

For all of the data collected some variation of equation E2.17 was used to determine the 

pseudo first-order rate coefficient, k’, from the individual experiments conducted. It should 

be noted that the term in E2.17 equivalent to k’ varied depending on whether the monitored 

species was a reactant or a product; if the species targeted was a reactant then the k’ is 

equivalent to the term kl. However, if the monitored species was a product, then it is kg 

which is equals k’. This is a slight oversimplification of the system, which is described more 

accurately below (E2.18). 

In the case where species X (i.e. CH2OO) is a reactant:  

 𝑘l  ≡ 𝑘′ + 𝑘′other (E2.18) 

   

k’other is a combined rate constant, which in E2.18 represents all of the other loss reaction 

from the system, such as secondary chemistry of the target species reaction, any impurities 

in the system, and diffusion to the walls. To obtain accurate values of k’ it is preferable that 

k’ >> k’other and measures were taken to minimise k’other. Figure 2.19 shows some of the 

analysed data collected from an investigation into the reactivity of Criegee intermediates 

(see Chapters VI and VII). In this reaction the pseudo first-order rate coefficient can be 

determined from the loss rate coefficient, kl. 
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Figure 2.19: Depicts some of the data collected and subsequently analysed using the equation E2.17, 

in addition the time periods over which parameters are key is highlighted.   

 

Figure 2.19 highlights the time scales over which some of the parameters operate. In Figure 

2.19 the (rapid) formation and subsequent loss of the C1 Criegee intermediate (CH2OO) can 

be observed. Moreover, the data can be fitted using equation E2.17 (red line). In this system 

the transport times of the sampled gas were fast, meaning ksamp was large; if ksamp then the 

gradient of the plot close to time zero will be large (highlighted in green). During this 

experiment the concentration of oxygen present in the system was kept high ([O2] = 1 

 molecule cm-3). As the bimolecular rate coefficient for CH2OO formation is 

kCH2I+O2 = 1.8 molecule cm-3, the observed rate of Criegee formation should be fast. 

Moreover this was observed experimentally and the growth rate coefficient, kg, was 

evaluated at kg ≈ 18,000 s-1 (highlighted in blue). The final rate coefficient which can be 

extracted from the in the Criegee loss rate coefficient (kl, highlighted in purple). As 

highlighted above, in the Criegee studies kl is of particular importance as it can be used to 

the rate coefficient for the reaction of the Criegee intermediate with a trace species. It is 

therefore essential that equation E2.17 can be used to give accurate values of kl from this 

analysis. The results shown in Table 2.3 indicate how the evaluations of the loss rate, kl, 

vary with different constraints applied. Notably, all of the values of kl determined using 

equation E2.17 are in ~95% agreement with each other. Furthermore, when the errors, σl, 

are taken into account there is no significant difference in any of the evaluations of kl. 

Typically when analysing the experimental data the parameters ksamp and Sbg were fixed and 

ksamp 

kg kl 

Sheight 



Chapter II: Experimental Methods 

 

66 

all other parameters were allowed to vary, although kg parameter constraints of 17,500 < kg 

(s-1) < 22,500. It should that a simplified version of E2.17 was used to fit the data, this 

equation assumes Sinstant = 0. 

Table 2.3: Highlights the sensitivity of equation E2.17 towards kl. 

Constraints Sheight kg ksamp Sbg kl σl 

None 2.96 18447.95 31082.64 -0.05 391.79 21.40 

ksamp, Sbg 2.94 18233.68 30000 0 414.595 10.65 

ksamp, kg, Sbg 2.94 18000 30000 0 414.95 10.06 

 

Clearly, equation E2.17 is a non-linear function, when analysing non-linear expressions an 

iterative approach is used to minimise chi-squared, χ2. It should be highlighted that the 

parameter χ2 can be thought to represent the ‘goodness’ of the fitting to the data (Bevington, 

1969); and the process minimising  χ2, minimises the deviations of the non-linear fitting 

from the experimental points. Notably, the OriginPro software used for the analysis utilises 

the Levenberg-Marquardt algorithm to minimise χ2 (OriginPro). For the non-linear least 

squares analysis, the OriginPro software calculates a standard error between the modelled 

fit and the experimental data. As the kinetic traces contain between 150-400 points, it was 

thought that the sample size was large enough, so that the standard error calculated was a 

good estimation of the variation of the data. 

2.8.2 Linear Fittings, Bimolecular Plots 

Once the raw data was analysed the individual pseudo first-order rate coefficients were then 

used to construct a bimolecular plot (Chapter I, Section 1.5). The pseudo first-order rate 

coefficients determined were plotted with the associated standard error calculated from the 

non-linear least squares fitting. The bimolecular plot itself was then analysed using a linear 

least square fit, which was weighted using ‘instrumental’ weighting; this weights the data so 

that more emphasis is put upon the point with a smaller associated errors. The weighting 

factor used in the instrumental fittings is 1/σ2. The linear fittings utilised in OriginPro also 

calculate standard errors associated with the different parameters, these were calculated 

using the following expression (E2.19):  

 SE𝑥 ̅ =  
𝑠

√𝑛
 (E2.19) 

   

In equation E2.19: SE𝑥 ̅ is the standard error of the mean, s is the sample standard deviation, 

and n is the number of measurements in the sample.  
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It should be noted that when the sample size is small (n < 25), the sample standard deviation 

is not always a good representation of the standard deviation of the population, σ. Due to 

the added level of uncertainty this causes, the errors quoted for small sample sizes should be 

magnified to accommodate for possible differences in σ and s. To take into account the 

smaller sample sizes, the bimolecular plots were fitted with confidence limits (68%, or 1σ 

level); the confidence interval half-width (i.e. a value equal to half the magnitude of the 

difference between the upper and lower limits) was also calculated, which is a good 

alternative estimation of the uncertainty. Unlike the standard error, the confidence intervals 

determined in OriginPro do take the sample size into consideration as they are calculated 

using Student’s t statistics. Student’s t is a commonly used test for small sample sizes, 

which adjusts the total error quoted for the added uncertainty of the limited sample by 

multiplying the standard error by a t value. The magnitudes of the t values are dependent on 

the level of confidence required from the measurement and the sample size; when the 

sample size (and hence the degrees of freedom) is small the t value will be large and vice 

versa. Additionally, the t values also increase as the level of confidence required increases; 

at the 68% confidence level, the t values range from ~2 > t > 1 as the degrees of freedom 

(df) vary from 1 < df < ∞. For the majority of the bimolecular plots in this thesis (if there 

were sufficient degrees of freedom) there were not significant differences between the 

values of the standard error and the 68% confidence interval half-width (calculated using 

the Student’s t). However, on the occasions where there was a significant difference the 

largest value of the error (i.e. confidence interval half-width) was chosen, as it was thought 

to be a better representation of the random errors of the data. 

Table 2.4: Show the variation of the data collected from the reaction between the C1 Criegee 

intermediate and SO2 (see Chapter VI for details). 

CH2OO + SO2 kC1SO2 (10-11 cm3 molecule-1 s-1) Uncertainty 

i 3.6 0.3 

ii 3.7  0.2 

iii 4.0  0.4 

iv 3.8  0.1 

v 3.7  0.2 

Average 3.8  0.1 

Standard deviation 0.2  

 

From Table 2.4 can be clearly be seen that the spread of the data observed experimentally 

(i.e. the standard deviation) is greater than the uncertainty propagated from the random 

errors. The reason for this is that there were other errors associated with the experiments, 

such as systematic errors, which were not taken into account statistically.  
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There were a number of factors which contribute to the systematic errors of the PLP-PIMS 

technique: firstly the Baratron pressure gauges used to measure the pressure may have given 

systematically low or high readings, leading to errors in concentration. However, two 

pressure gauges were used (one before and one after the flow-tube) which typically within 

5% to 10%, when the valve to the exhaust pump was closed. Note: the Baratron located at 

the end of the flow-tube was located right next to the exhaust pump, when the valve to this 

pump was opened the pressure reading from the adjacent Baratron was reduced. The mass 

flow controllers (MFCs) could also lead to systematic errors in the reactant concentration. 

However, the MFCs were calibrated regularly and there was often little change their 

calibration plots. Moreover, when updating the spreadsheets with the new calibration values 

it was common for variation to reactant concentrations to be less than 5%. A final area 

where systematic error may be introduced is the reactant concentrations in the gas bulbs. 

The gas bulbs concentration were thought to be accurate as the amount of the reactant gas in 

comparison to the bulk gas (usually helium) was monitored carefully during the bulb 

preparation procedure, using the Baratron directly attached to the gas line. However, this 

concentration may become inaccurate if there are impurities or decomposition of the sample 

chemicals. Again, a systematic error of ±5% is assumed in the gas bulb concentration. 

All of the systematic errors discussed above were propagated together using E2.20, the 

results of which can be seen in Table 2.5. 

 𝜎total
2 =  √𝜎PG

2 + 𝜎MFC
2 + 𝜎[GB]

2 (E2.20) 

   

In equation E2.20: σtotal is the uncertainty of the propagated errors; σPG is the uncertainty 

associated with the pressure gauge readings; σMFC is the uncertainty associated with the 

MFC calibration; and σ[GB] is the uncertainty associated with the gas bulb concentrations. 

Table 2.5: Highlights possible sources of systematic errors within the PLP-PIMS system. 

Source of Error Associated Uncertainty (%) 

Pressure Gauge Reading 7.5 

MFC calibration 3 

Gas Bulb Concentration 5 

Total Propagated Uncertainty  9.5 

  

Following this analysis it was decided that an additional systematic experimental error of 

10% would be applied to all of the data. This additional random error was propagated with 

the random errors (from OriginPro) to give a total error for the experiments. Unless 

otherwise stated, it is this total error that will be used throughout this thesis to describe the 

uncertainty in the data. 
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3. Development of Alternative Configurations for the PIMS 

Set-up 

A number of adjustments have been made to the PLP-PIMS system used for the 

experimental work described in this thesis. These changes to the PIMS configuration were 

primarily used to either expand the range of conditions used for experimentation, or to 

allow for the detection of specific species. Within this thesis chapter will be an in depth 

account of the development of two different configurations of the PIMS set-up: the first 

being the addition of OH detection (Beames et al., 2011); and the second being a high 

pressure configuration (p ≈ 350 Torr).  It should be noted that for both of the configurations 

described in this chapter, more testing and further development is needed before either 

technique could be used reliably over extended periods of time.  

The first of the configuration changes led to the detection of hydroxyl radicals using a 

multiphoton ionization scheme, however, currently, the simultaneous generation of the 

355 nm and 282.5 nm light required has not yet been optimized. As a result, the intensity of 

the 282.5 nm light from the Sirah dye laser reduces rapidly and constant realignment was 

needed.  

Even greater problems encountered with the high pressure system and significant work is 

still required to achieve time-resolved detection of species. In addition to this, the sensitivity 

of the technique (particularly when using the 6-way cross configuration) was orders of 

magnitude lower than in the basic PIMS set-up, described in Chapter II. 

3.1 OH Detection Technique 

Mass spectrometry is often referred as a universal technique (Heard, 2008); this is 

theoretically a correct description of the method, although is somewhat misleading in the 

context of the PLP-PIMS system reported in Chapter II. In reality, only species which have 

an ionization potential below the threshold of the ionization source can be detected. The 

PLP-PIMS system used utilises 118 nm light (~10.5 eV) to ionize the sample prior to 

detection (Baeza-Romero et al., 2012); this method could be described as ‘soft’ ionization, 

meaning that any photo-fragmentation of the gases sampled will be low. However, a flaw 

with this ionization technique is that not all species will be ionized using 118 nm of light, 

the hydroxyl radical being one. From Chapter I it is clear that OH is an important 

atmospheric oxidant. Additionally, in a number of the reaction systems investigated within 

this body of work, OH was either a reactant or a potential product. Therefore, it would be 

advantageous if OH could be monitored using the PLP-PIMS set-up; unfortunately, the 

hydroxyl radical has an ionization potential of ~13 eV and cannot be monitored using the 
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basic PIMS technique. However, in a recent publication by Beames et al. (2011) a 1 + 1' 

multiphoton ionization (MPI) scheme was used; this technique utilizes the same A2Σ 

X2Π transition, often exploited in off-resonance LIF detection of OH (~282.5 nm).  The 

combined energy of the 282.5 nm (4.39 eV) light and the original photoionization laser 

(118 nm, 10.49 eV) has a total energy of 14.88 eV; notably, this is precisely equivalent to 

the energy of a transition to the nd Rydberg series converging on the A3Π state (Beames et 

al., 2014).  From the A3Π state, auger decay to an autoionized OH+ X3Σ energy level is 

possible (Figure 3.1) (Beames et al., 2014). 

 

Figure 3.1: Depicts a model potential energy curves for the neutral, ionic, and Rydberg states 

relevant to the 1 + 1' OH MPI detection scheme (Varandas and Voronin, 1995). The dashed 

horizontal lines represent the combined total energy (UV + VUV) after initial excitation to A2Σ, v = 

0, 1, and 2. The OH+ X3Π state is usually inaccessible from the A2Σ state.  

 

For hydroxyl radical detection, changes to the basic PLP-PIMS set-up were necessary. In 

order to generate the ~282.5 nm light, the Sirah Precision Scan dye laser was used (see 

Chapter II, Section 2.3.4). Green light from the Nd:YAG laser (532 nm, ~150 mJ pulse-1) 

was directed into the Sirah precision scan, here it was converted to approximately 565 nm 

using the laser dye Rhodamine 6G (in methanol). The 565 nm radiation was then frequency 

doubled to approximately 282.5 nm (~2.5 mJ pulse-1), and then was focussed into the 

vacuum chamber; the 118 nm and 282.5 nm light were overlapped directly above the 

sampling orifice (1 mm pinhole). In order to ensure the two laser beams were synchronized 

at the point of photoionization, the 355 nm light (~30 mJ pulse-1) was relayed the length of 
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the laser bench, to accommodate for the extra distance taken by the light travelling through 

dye laser. The path length of the 355 nm radiation was increased by 2.5 m, equating to a 

delay time of approximately 8 ns. A schematic of the adaptations to the PIMS set-up can be 

seen in Figure 3.2.   

 
 

Figure 3.2: A schematic of the PLP-PIMS system with OH detection. 

 

After the reconfiguration of the system was completed, OH detection was tested by utilising 

the O3 / H2 system to produce large quantities of hydroxyl radicals (R3.1-3.3). 

 O3  +  hv (λ=248 nm)  →  O(1D) + O2 (R3.1) 

   

 O(1D) + H2  →  OH + H (R3.2) 

   

 O3  +  H  →  OH  +  O2 (R3.3) 

   

 Then using the Sirah control 2.6 software (LabViewTM, 2008), the wavelength of light 

output from the dye laser was varied until the maximum OH signal was achieved. During 

the experiments described the optimal wavelength from the dye laser was λ(vacuum) = 566.04 

nm, which was doubled to give an initial OH excitation wavelength of 283.02 nm; this 

corresponds to the OH A-X (ν = 1), P1(3.5) transition (Luque and Crosley, 1999). An 

example of the data collected from these tests can be seen in Figure 3.3. 
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Figure 3.3: A sample of the OH signal, SOH, collected reconfigured PLP-PIMS set-up. p = 0.5 Torr; 

[H2] = 1×1016 molecule cm-3; [O3] = 5×1015 molecule cm-3. The concentration of hydroxyl radicals is 

estimated at [OH] ≈ 5 ×1013 molecule cm-3. The red line shows the fit to the data using a first order 

exponential decay.  

 

From Figure 3.3, a signal-to-noise ratio of SNR ≈ 150 was determined for the OH detection 

technique; the minimum signal-to-noise ratio of a species which can be reliably detected in 

the PIMS system is SNR ≈ 3. Moreover, from this plot an estimation of the minimum [OH], 

which can be detected from this technique can be determined. The loss of OH observed in 

Figure 3.3 cannot be fit by a first order exponential decay (red line, Figure 3.3); therefore it 

was suggested that the loss was second order, implying that the dominant sink for the OH 

radicals was through self-reaction: 

 OH  +  OH  →  H2O2 (R3.3) 

   

As the rate coefficient of the OH self-reaction, kOHSR, is well known, kOHSR = 2.6 × 10-11 cm3 

molecule-1 s-1 (Atkinson et al., 2004). The initial hydroxyl radical concentration, [OH]0, can 

be extracted from the second order analysis, [OH]-1 vs. time (see Chapter I, Table 1.2). In 

Figure 3.4 the OH signal, which was given in arbitrary units, was scaled to give the initial 

[OH] / molecules cm-3. The scaling factor was thought to be correct when the gradient of 

the [OH]-1 vs. time plot was equal to literature evaluation, 2.6 × 10-11 molecule-1 cm3 s-1 

(Atkinson et al., 2004). 
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Figure 3.4: A second order plot of 1/[OH] vs. time, where values of 1/[OH] were scaled until the 

gradient of the plots yields the correct rate coefficient, kOHSR. 

 

Using Figure 3.4 an OH concentration of [OH] ≈ 3.5 × 1013 molecule cm-3 was calculated at 

100 μs. From Figure 3.3 it was estimated that after 100 μs has passed the quality of OH 

signal was 50 times larger than the minimum SNR required for detection. Therefore it was 

estimated that the OH detection technique described above will be able to measure 

[OH] ≈ 7 × 1011 molecule cm-3. It should be noted that although this may seem high for a 

limit of detection, it is a conservative estimate. In fact, although not quantitative, the most 

sensitive method for detecting species using the PLP-PIMS set-up bypasses the 

LabVIEW™ data collection system, and instead averages the data from the mass 

spectrometer on the oscilloscope (Figure 3.5). Using the oscilloscope the whole mass 

spectrum can be averaged (up to 1000 times) at a specific point in time (where high [OH] 

are expected, 200 μs) in under two minutes. In comparison, when collecting data using the 

LabVIEW™ program, where each individual trace is typically comprised of 250 points 

(+25 background points), only 4 traces will be collected in two minutes. Therefore, for a 

specific point in time (i.e. 200μs) the LabVIEW™ program has averaged 4 data points (at t 

= 200 μs) whilst the oscilloscope has averaged 1000 data points; meaning that for a given 

length of time, the signal-to-noise ratios from the oscilloscope are much greater, hence 

smaller mass signals can be reliably detected. As an estimate, when using the oscilloscope 

method, the signal-to-noise ratios observed were at least an order of magnitude higher than 

using the LabVIEW™ for data collection. 
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Figure 3.5: A photograph showing the display of the oscilloscope. An example of the OH signal can 

be shown, circled in red, at t =200 μs; whilst circled in green is the number of times the spectrum 

has been averaged. 

 

It should be noted that, when using the LabVIEW™ for data collection, the sensitivity of 

OH detection technique was still sufficient to be of use in PLP-PIMS system, where the 

initial radical concentration of the reactants was typically ~1012 molecule cm-3 (Figure 3.6).   
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Figure 3.6: A example of the OH data collected from a study investigating the reaction between 

CH3CHO + OH. [CH3CHO] = 1×1014 molecule cm-3; [H2O] = 1×1015 molecule cm-3; [O3] = 1×1015 

molecule cm-3; [O2] = 1×1015 molecule cm-3 

 

3.1.1 Conclusions 

The section above details the changes to the PIMS configuration to incorporate OH 

detection, and progress made with the technique thus far. It was currently estimated that the 

technique should be able to measure [OH] < 7×1011 molecule cm-3; however using the 

oscilloscope method it is possible that concentrations as low as [OH] ≈ 1011 molecule cm-3 

could be measured. It was thought the sensitivity of the technique could be further improved 

if the simultaneous output of the 355 nm and 532 nm light was optimised properly. In order 

for the Nd:YAG to generate the 532 nm and the 355 nm at the required laser powers, the 

532 nm radiation was tuned on edge of the doubling crystal to reduce its power. A 
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consequence of using this method to detune the 532 nm light was the laser output decreased 

relatively rapidly, as any slight change to the alignment would have a large effect on the 

radiation transmitted through the doubling crystal, and meant constant retuning was 

necessary. It may be possible to overcome this problem with a careful retuning of the laser, 

or possibly using a filter to reduce the light intensity, rather than detuning the laser. 

Alternatively, the problem would be eliminated if two different Nd:YAG lasers were used 

simultaneously. 

3.2 High Pressure PIMS System 

3.2.1 High Pressure System: Injector Set-up  

Thus far all of the previous experiments conducted using the PLP-PIMS at the University of 

Leeds were done so at low pressures (p < 5 Torr). Clearly, the results from experiments 

conducted at low pressures were not always relevant to either atmospheric or combustion 

reactions, which predominantly occur at much higher pressure than can be reached using 

the PLP-PIMS system (Brasseur et al., 1999, Griffiths, 1995). To increase the application of 

the PIMS set-up, the ability to conduct experiments at higher pressures would be 

advantageous. 

3.2.1.1 Experimental 

To accommodate high pressures in the reactor tube several changes were made. Firstly, the 

method of gas sampling was changed significantly; previously, the gas was sampled 

halfway along the flowtube via a 1 mm orifice. Using the basic set-up the sampled gas was 

allowed to effuse through the pinhole, which was directed towards the mass spectrometer. 

However, in order to obtain higher pressures inside the reactor tube, but maintain the same 

low pressure within the flight tube, a more efficient exhaust system was needed inside the 

vacuum chamber. To keep the pressure inside the vacuum chamber low (p ≈ 2 ×10-5 Torr) a 

second Turbo pump (Leybold, 600 l s-1) was utilized. However, the only position (i.e. 

flange) which the new turbo pump could be attached was directly opposite the flowtube. 

Therefore, unlike most conventional flowtube set-ups, where the gas enters the instrument 

at one side and exits from the opposite side, in the high pressure system the gas enters, was 

sampled, and was then pumped all via the same flange, i.e. an injector-type system (see 

Figure 3.7). The new design of the flow reactor was comprised of an inner and an outer 

tube; the inner tube was a quartz tube approximately 0.75 m long with a 12.5 mm diameter. 

The outer tube was a stainless steel tube ~0.6 m long with a diameter of 25 mm; notably, 

the outer tube (or injector tube) was moveable, meaning that the distance between the 

pinhole and the point of photoionization (dH) could be varied. 
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Figure 3.7: Cross section of the high pressure PIMS configuration, Injector system.  

 

Additionally, in the high pressure set-up the gas was sampled coaxially to the direction of 

gas flow. A disadvantage of using this method of gas sampling was that after 

photoionization, the ions formed were not directed toward the mass spectrometer, but 

instead were moving perpendicularly to it; this was thought to be a less efficient method of 

ion extraction into the mass spectrometer. 

There were other changes made to the configuration to allow higher pressures within the 

reactor tube. First of all, the size of the pinhole was reduced; by reducing the pinhole size 

the flow of gas out of the reactor was reduced, meaning the pressure could build-up within 

the reactor tube. Various sizes of pinholes were used during the development of the 

configuration; however, most commonly a silica pinhole of 0.1 mm was used. Using the 

0.1 mm pinhole pressures of p > 350 Torr were attainable.  

3.2.1.2 Preliminary Test of the High Pressure System 

It should be noted that, due to the large pressure drop either side of the (small) pinhole, the 

sampled gas on the low pressure side forms a gaseous jet of molecules (Morse, 1996). The 

distance over which the gas jets (commonly referred to as the Mach disk location within the 

field of molecular dynamics) can be determined simply for a free jet expansion using the 

following equation (Pauly, 2000): 

 

𝑥𝑀 = 0.67 × 𝑑 × √
𝑝𝑏

𝑝𝑎
 (E3.1) 

   

In equation E3.1: xM refers to the Mach disk location; d is the diameter of the 

pinhole/orifice; pb is the pressure before the pinhole (i.e. the high pressure side); and pa is 

the pressure after the pinhole (low pressure side).  
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𝑥𝑀 = 0.67 × (1 × 10−4 ) × √
250

2.5 × 10−5
 (E3.2) 

   

 𝑥𝑀 =  0.21 m (E3.3) 

   

When using equation E3.1 to determine the Mach disk location (xM) for the conditions 

inside high pressure set-up (pb = 250 Torr, pa = 2.5×10-5 Torr, d =1×10-4 m) a value of 

xM = 0.21 m was calculated. The nature of gas jet was then probed experimentally through a 

simple study where the signal height of acetone was measured as a function of dH, the 

horizontal distance between the pinhole and the point of photoionization. 
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Figure 3.8: A plot showing the relationship between the acetone signal and the distance between the 

injector and the detector, dH. 

 

From Figure 3.8 there are a number of interesting conclusions to be made: Firstly, it can be 

seen that when dH = 0 there was no acetone signal seen. It was thought that the lack of 

signal was due to the induced voltage from the inlet of the mass spectrometer to the injector 

(and subsequently the earthing plate). Consequently, the potential difference between the 

earthing plate and mass spectrometer was lowered, so the ions are not extracted from the 

vacuum chamber correctly, and hence will not be detected.  

As dH was increased, the acetone signal increases sharply to a maximum at ~1 cm. After 

reaching this apex the signal height starts to decrease rapidly between 1 < dH < 3; notably, if 

no jetting was occurring, the acetone signal would be expected to decrease proportionally to 

dH
2. However, the signal plateaus at ~3 cm and stays relatively constant (±20%) until 

approximately 15 cm; as the intensity of the signal does not follow the inverse square law, it 

suggests that jetting was occurring.  
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At distances dH > 15 cm there was a second spike in the acetone signal, peaking between 

17-18 cm. It is thought that this spike indicates the Mach disc location (xM) as the higher 

pressures associated with xM would lead to an increase in number density of acetone, and 

hence a larger acetone signal. 

From Figure 3.8 it can also be seen that acetone signal measurements were taken as the 

injector was pulled out (increasing dH) and then pushed back in (decreasing dH). Notably, 

consistently larger measurements were taken with decreasing dH, there were two possible 

reasons for this: firstly it was significantly easier / smoother pushing the reactor tube back 

in, which could mean the alignment remained more constant during this part of the 

experiment. Secondly, the pressure within the reactor tube increased gradually (~5%) 

during the course of the whole experiment. As the injector was first pulled out, then pushed 

back in, the acetone concentration would have been higher for the during the decreasing dH 

experiments; this would in turn lead to the larger acetone signal measured. 

However, the key finding from this experiment was that the observed acetone signal 

remained constant at distance between 5 cm < dH < 15 cm; the implication of this being that 

the gas was jetting over this distance. It addition to this, it was observed that the magnitude 

of the acetone signal measured was highly sensitive to the directionality of the injector tube. 

The injector tube was sealed to the vacuum chamber using an O-ring, which allowed for the 

orientation of the injector tube to be varied. As the magnitude of the acetone signal was 

sensitive towards the position of the injector tube it, again, suggests that the sampled gas 

was jetting inside the vacuum chamber.  

To successfully obtain time-resolved data it was essential that the sampled gas was jetting, 

particularly when the horizontal distance between the pinhole and the detector, dH, was 

significant (dH > 5 cm). In an effusive gas beam the velocity of the molecules can be 

described by a Maxwell-Boltzmann distribution (Campargue, 2001); within this distribution 

there is a large range of molecular velocities. During the expansion of the gas through the 

pinhole all of the molecular flow velocities are orientated to the same direction (note prior 

to the pinhole the molecules move at random); this leads to an increase in total flow 

velocity of the gas and a larger root mean square velocity (Smalley et al., 1977). The 

ordering of the direction of flow velocity also leads to a rapid decrease in temperature, 

which in turn leads to a narrowing of the velocity distribution (Figure 3.9). 
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Figure 3.9: Velocity distributions of in an effusive molecular beam (dashed curve) and in a free jet / 

supersonic molecular beam (solid curve). Schematic sourced from Smalley et al. (1977).  

 

Therefore, if the distance between the pinhole and the detector is large and a supersonic 

molecular beam has not been formed, the time resolution of the gas sample can be called 

into question as there would be a huge range in molecular velocities, with the molecules 

with larger velocities will take less time to travel the distance dH (Stone et al., 2016). 

However, in the case of the free jet all of the molecules move at similar velocities, meaning 

that even when dH is large the time resolution of the sampled gas should remain. 

From the high pressure experiments it was evident that the sensitivity of the mass 

spectrometer was much worse under these conditions. However, this was expected as the 

pressure within the flight tube must remain constant (~ 5 × 10-6 Torr); to maintain this 

pressure within the flight tube at higher pressures the fraction of the gas sampled from the 

reactor tube will be proportionally lowered. For example, the probability of a given gas 

molecule being detected by the mass spectrometer at p = 100 Torr is one hundred times less 

than the same molecule being detected at p = 1 Torr. Therefore, to attain the same signal 

height at high pressures, larger acetone number densities must be present in the system; as 

more molecules of acetone are required to yield the same signal it implies the system must 

be less sensitive at higher pressures. 

3.2.1.3 Testing Time-resolution of the High Pressure System 

Following this investigation, the time-resolved nature of the system was probed; in 

particular, the photolysis of methyl iodide (MeI) was studied (R3.3). 

 CH3I  +  hν (λ = 248 nm) CH3  +  I (R3.3) 

   

When studying this reaction, the iodine atom signal was followed (m/z =127); from the 

preliminary experiments, a time-resolved photolytic signal was evident, however, the I atom 
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signal (SI atom) had a sharp spike in signal intensity, which then decayed away very rapidly 

(Figure 3.10).  
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Figure 3.10: A plot of the time-resolved data collected using the high pressure PIMS set-up 

(Injector system). 

    

This type of decay had been previously observed during other photolytic experiments and 

was found to be a consequence of poor alignment of the photolysis laser. Indeed, it was 

understood that at the 248 nm excimer light used in photolysis exceeds work function of the 

metal tubing (and pinholes) used within the PLP-PIMS set-up; consequently, electrons were 

produced via the photoelectric effect (Einstein, 1905). It was thought that the plume of 

electrons formed during photolysis interferes with the mass spectrometers extraction 

voltages leading to the sharp spike observed in the data. Therefore, it was decided 

realignment of the excimer laser was necessary. It should be noted that the realignment was 

known to be accurate as the excimer light (irised down to a minimum diameter) could be 

seen to be hitting the pinhole via the viewing port in the vacuum chamber.  

Upon the realignment of the system the observed photolytic signal was reduced by an order 

of magnitude. This was the expected result as the observed ‘spike’ in I atom signal was 

thought to be caused by electron formation at the pinhole during the photolysis laser pulse, 

and not a real acetone signal. However, although the ‘spike’ in the acetone signal was much 

less apparent after the laser realignment, it was still there, which suggests that some 

electrons are still being formed at the pinhole. To rectify this problem, a gated-voltage was 

applied to the earthing plate very close after t = 0 s; by briefly applying a voltage across the 

earthing plate it was hoped that any charged particles formed at the pinhole would be 

removed from the system prior to photoionization (see Figure 3.11). 
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Figure 3.11: (Upper) A plot demonstrating the synchronization of the gating-voltage and the I atom 

signal. (Lower) A plot showing the variation of the I atom signal with varying lengths of gating-

voltage. 

 

As can be seen from Figure 3.11, the applied voltage gate was overlapped in time with 

photolysis laser pulse (i.e. t = 0 s); moreover the voltage applied to the earthing plate was 

switched off marginally after the excimer pulse, so as to ensure any charged particles 

formed were removed from the system. However, what was also apparent from Figure 3.11 

was that gating the earthing plate does not change the I atom signal measured 

experimentally, unless the gate was too wide (i.e. the voltage was applied for too long), 

which resulted in a further decrease in the I atom signal. Assuming that the voltage-gate 

functioned as described, this result suggests that the observed decay in Figure 3.10 was not 

a consequence of the formation of charged particles at the pinhole.  

However, no matter how the photolysis laser was aligned, no sensible photolytic data of the 

I atoms could be measured (i.e. a step change, with minimal decay losses). In addition, the 

photolytic signal observed was minimal, even though the concentration of methyl iodide 

was high ([MeI] > 1×1015 molecule cm-3) and it was decided that an alternative method of 

photolysis may be necessary. It should be noted that the transmission of light through the 

length of the flowtube was calculated to be > 90%, so this was not the cause of the poor 

photolytic signal. 

3.2.2 The 6-way Cross Set-up 

As no sensible time-resolved data could be collected using a coaxial approach to gas flow, 

gas sampling and photolysis pulse, it was clear that the configuration of the high pressure 
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system needed to be changed and the method of photolysis rethought. Therefore, it was 

decided that the orientation of the photolysis beam should be at right-angles to the direction 

of gas flow (Figure 3.12 & Figure 3.13). Initially, the 6-way cross set-up was constructed 

with a 0.1 mm pinhole; however, shortly after construction the pinhole was damaged and 

replaced with a 0.7 mm pinhole, which limited the maximum pressure of the system (pmax > 

10 Torr). Additionally, in the 6-way cross set-up the distance between the pinhole and the 

detector, dH, was fixed at 15 cm. However, according to equation (E3.1), and under the 

experimental conditions used, this should still be within the Mach disk of the gas jet. 

 

𝑥𝑀 = 0.67 × 𝑑 × √
𝑝𝑏

𝑝𝑎
 (E3.1) 

   

 

𝑥𝑀 = 0.67 × (7 × 10−4 ) × √
3.5

2.5 × 10−5
 (E3.4) 

   

 𝑥𝑀 =  0.18 m (E3.5) 

   

For the Mach disk location calculation shown (E3.5) the following conditions were 

assumed; pb = 3.5 Torr; pa = 2.5 × 10-5 Torr; d = 0.7 mm.  

 

 

Figure 3.12: Cross section of the high pressure PIMS set-up, 6-way cross configuration.  
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Figure 3.13: A photograph of the 6-way cross configuration. 

 

Using the 6-way cross set-up methyl iodide photolysis experiments were conducted; 

however, whilst using this methodology no photolytic signal was observed. Indeed, as can 

be seen from Figure 3.14 no instantaneous was evident; moreover, the peak I atom signal 

was not observed until ~8 ms.  
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Figure 3.14: A plot of the data collected from the methyl iodide photolysis. 

 

There are two possible reasons for the observed signal: firstly, the delay in the signal may 

be due to the time it takes for the photolysed gas sample to diffuse to the pinhole on the 

high pressure side. However, it should be noted that the photolysis laser was irised down to 

approximately 1 cm in diameter and photolysis beam was aligned so that the gas was 
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photolysed approximately ~1 mm in front of the pinhole, minimising the distance the gas 

must travel prior to the pinhole. The second, and more likely, possibility was that the gas on 

the low pressure side was not jetting across the entire distance between the pinhole and 

detection region (i.e. xM < 0.15 m). It should be noted that if a free jet has formed the 

molecular velocity will be large, vRMS > 1000 m s-1, at this velocity the time for the gas to 

travel dH should be ~150 s. 

To establish whether the gas in the low pressure region was jetting, a metal barrier was 

placed between the pinhole and the ionization region (Figure 3.15). The barrier 

approximately 5 cm in height and was the same width as the earthing plate (~4 cm). If the 

gas forms a jet (with xM > 15 cm) then sensitivity of the instrument should be severely 

compromised by the placement of the barrier between the pinhole and the detector; 

however, if the gas was not jetting, then the impact on the instrument sensitivity will not be 

significant. 

 

Figure 3.15: A schematic focused on the barrier used to block the ‘gas jet’.  

 

Data collected from the experiment with the barrier was then compared to data from 

experiments performed directly before the barrier was positioned, and directly after it was 

removed; the results from which can be seen in Figure 3.16. 
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Figure 3.16: A plot comparing the maximum MeI signal (SMeI) observed (at [MeI] ≈ 1.5 × 1014 

molecule cm-3) with and without the barrier blocking the gas jet. 

 

From Figure 3.16 it can be seen that the maximum signal height measured was lower when 

the barrier was used to block the sampled gas; that said, the proportional decrease in signal 

height was relatively small. If the sampled gas had formed a free jet (xM > 0.15 m), it would 

be expected that the observed signal height with the barrier in place would be orders of 

magnitude lower as the concentration of MeI within the gas jet should remain undiluted, 

therefore any disruption to the jet (i.e. the barrier) should lead to a large decrease in the MeI 

signal detected. Conversely, if the sampled gas has not formed a supersonic beam (or xM < 

0.15 m) the dilution will be significantly greater by the time the sampled gas has travelled 

the length dH. Consequently, this means that the difference between the observed MeI 

signal, with and without the barrier in place, will be much less. The results shown in 

Figure 3.16 seem to the mimic the second scenario described, thus suggesting the sampled 

gas was not jetting properly. The most likely explanation for this was that the pressure 

inside the vacuum chamber was not as low as was measured (pa = 2.5 × 10-5 Torr). Indeed, 

if pa = 5 × 10-5 Torr, then the xM = 0.12 m; critically under these conditions xM < dH, 

meaning that the gas jet will not reach the ionization region. It should be noted that no time-

resolved data was recorded during the barrier experiment. However, if the sampled gas was 

jetting properly, this would explain why no instantaneous signal was observed whilst the 6-

way cross set-up was used.  

3.2.3 Conclusions 

From the experimental testing done using the 6-way cross configuration an important 

observation was made, which as of yet has not been fully discussed; the sensitivity of the 6-
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way cross set-up was significantly worse than was seen using the basic PIMS set-up 

(described in Chapter II). To quantify this, the original PIMS set-up was reconstructed, it 

was immediately apparent that the sensitivity of the system was at least two orders of 

magnitude lower than the original set-up. It is known that mass spectrometer sensitivity is 

dependent upon the mean free path inside the flight tube, and hence the sensitivity is 

expected to be lower at higher pressures (see Chapter II, Section 2.6). However, most of the 

experiments using the 6-way cross were performed at relatively low pressure (pb < 5 Torr); 

meaning that even when the difference in pressure is taken into account, the sensitivity of 

the 6-way cross configuration was approximately 50 times worse than the original set-up. It 

is certain that the reduction in sensitivity was due to the problems with the gas jet under this 

configuration; however, it does highlight a significant problem with both of the high 

pressure configurations.  

For many of the low pressure (p = 1 Torr) experiments conducted, the sensitivity of the 

radicals measured on the oscilloscope were close to the limit of detection. Therefore, if the 

same experiments were conducted at 100 Torr, to attain the same signal heights for these 

radical species, the number density of the initial reaction would need to be approximately 

100 times greater. Crucially, the experiments performed using the PIMS set-up are typically 

conducted on the millisecond timescale; however, if number densities of the reactants used 

were 100 times larger, the reactions will take place on a nano/microsecond timescale; 

notably, this is not within the scope of the PIMS set-up. A further problem associated with 

this method is that the transport times from the pinhole to the photoionization region are 

hugely dependent upon the nature of the gas jet. If the gas jet is not properly formed the 

molecular velocities within the ‘jet’ will be lower and more variable; this means that the 

time resolution of the sampled species will be compromised (Stone et al., 2016). 

From the results from this chapter it is clear that the development of the high pressure PIMS 

set-up is not facile, explaining why there has been very limited work done using high 

pressure mass spectrometry, previously documented in the literature (Biordi, 1977). It is 

also evident that major reconstruction is still needed before it could be used as a legitimate 

technique to monitor gas-phase kinetics.  
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4. An alternative channel in the reaction of Acetaldehyde with 

the OH radical 

This chapter aims to provide a detailed kinetic and mechanistic study of the reaction 

between acetaldehyde (ethanal, CH3CHO) and OH. Using the PLP-PIMS set-up described 

in Chapter II, a rate coefficient of kOH = (1.6 ± 0.2) × 10-11 cm3 molecule-1 s-1 was measured 

for the reaction. Furthermore, in addition to the expected reaction products (see R4.7), 

methyl radicals (CH3) were also detected as primary products from the OH + acetaldehyde 

reaction, and a yield of ~15% was determined at 1-2 Torr of helium bath gas. Subsequently, 

complementary measurements have been done using laser induced fluorescence to measure 

the OH recycling from a OH/CH3CHO/O2 system. Notably, the results from the LIF study 

are consistent with the PIMS experiments and suggest the reaction must have an alternative 

mechanism, leading to methyl radical formation. Indeed, it is proposed that the source of the 

methyl radicals is from the dissociation of nascent, chemically activated acetyl radicals 

(D'Anna et al., 2003). Significantly, this result is consistent with previous studies which 

have shown that the OH + acetaldehyde reaction proceeds via an abstraction mechanism, 

rather than addition/elimination reaction. 

4.1 Introduction 

Acetaldehyde (ethanal, CH3CHO), a potential carcinogen (EPA, 1987), is an important 

primary and secondary atmospheric pollutant. The predominant source of acetaldehyde in 

the atmosphere is through hydrocarbon oxidation (Calvert and Madronich, 1987) producing 

128 Tg of acetaldehyde each year (Millet et al., 2010); it is also a significant by-product 

from ethanol combustion. Concentrations of acetaldehyde are typically thought to be 

< 1 ppbv in remote areas (Read et al., 2012) but can be > 10 ppbv in major cities (Fortner et 

al., 2009).  

Unsurprisingly, due to large consumption of bioethanol in Brazil, some of the highest 

atmospheric acetaldehyde measurements have been recorded in downtown Rio De Janeiro 

where the maximum concentration of CH3CHO exceeded 30 ppbv (Corrêa et al., 2010). In 

light of this, the Department for Environment, Food and Rural Affairs (DEFRA) has 

become increasingly interested in the possible effects of increased acetaldehyde levels in 

the atmosphere (Air Quality Expert Group, 2011). It is therefore of great importance to have 

a clear understanding of the lifetime, reactivity and reaction mechanisms of acetaldehyde; 

this was the motivation for this body of work.  
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4.1.1 Atmospheric Sources of Acetaldehyde 

As mentioned above the chief source of acetaldehyde in the atmosphere is from the 

oxidation of hydrocarbons, a prime example being the oxidation of ethane: 

 C2H6  +  OH  →  CH3CH2  + H2O (R4.1) 

   

 CH3CH2  +  O2  →  CH3CH2O2 (R4.2) 

   

As with many oxidation processes in the lower atmosphere the initial step is an abstraction 

by an oxidising species, most commonly an OH radical (R4.1); following this the newly 

formed alkyl radical reacts with an O2 molecule forming a peroxy radical (e.g. CH3CH2O2) 

(Calvert, 2011). In urban environments these ethyl peroxy radicals are rapidly reduced by 

NO, producing an ethoxy radical and NO2 (R4.3). It should be noted that the conversion of 

NO to NO2 is the key step driving tropospheric ozone formation (Atkinson, 2000). The final 

step leading to acetaldehyde formation is an abstraction reaction involving O2 (R4.4). 

 CH3CH2O2  +  NO  →  CH3CH2O  +  NO2 (R4.3) 

   

 CH3CH2O  +  O2  →  CH3CHO  +  HO2 (R4.4) 

   

Another minor, but important, source of acetaldehyde is from ethanol combustion. Over 

recent years the UK has looked more towards using ethanol-containing fuel blends in an 

attempt to reduce fossil fuel emissions. Crucially, a likely consequence of increased 

bioethanol burning is a significant increase in acetaldehyde emissions (Niven, 2005). 

Indeed, experiments have demonstrated CH3CHO emissions are three orders of magnitude 

greater from E85 (a high strength 85:15 ethanol:fuel blend) than from conventional fuels in 

current use (Karavalakis et al., 2012). As well as being a principal primary emission from 

ethanol combustion, acetaldehyde is also a secondary emission (Poulopoulos et al., 2001). 

The reason being is that ethanol, itself, is also a major emission from bioethanol combustion 

and promptly (τ = 4 days) converts to acetaldehyde in the troposphere (Norton and Dryer, 

1992, Calvert, 2011): 

 CH3CH2OH  +  OH  →  CH3CHOH  +  H2O (R4.5) 

   

 CH3CHOH  +  O2  →  CH3CHO  +  HO2 (R4.6) 

   

 

4.1.2 Acetaldehyde in the Atmosphere 

As with many atmospheric species the main destruction pathways of CH3CHO vary 

diurnally. At night the main loss channel of acetaldehyde is caused by reaction with NO3. 

This reaction has a rate coefficient of  k = 3 × 10-15 cm3 molecule-1 s-1 and occurs very 
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slowly during the day, particularly in high [NO] environments where any nitrate radicals 

formed are rapidly converted to NO2 (Wayne et al., 1991).  

During the day there are several competing processes removing acetaldehyde from the 

atmosphere; photolysis or reaction by chlorine radicals (Cl) being examples. However, the 

most dominant sink for atmospheric acetaldehyde is the OH radical (the focal reaction of 

this study), see Figure 4.1: 

ΔrH = -123 kJ mol-1 CH3CHO  +  OH   → CH3CO  +  H2O   (R4.7a) 

    

It is understood that the H atom is abstracted from the acyl group (H-C=O) as there is no 

significant change observed in reactivity as the length of the alkyl chain is increased 

(Semmes et al., 1985). This suggests that the alkyl substituent has only a minimal effect on 

the reaction rate and therefore implies abstraction occurs on the acyl carbon.  

As the major source of acetyl radicals, the reaction between OH and acetaldehyde is of 

significant importance as it is key to the production of peroxyacetyl nitrate (PAN) in the 

lower atmosphere (Jenkin and Clemitshaw, 2000): 

    CH3CO + O2 + M → CH3C(O)O2 + M (R4.8) 

   

 CH3C(O)O2 + NO2 + M ⇌ CH3C(O)O2NO2 + M (R4.9) 

   

 

Figure 4.1: A schematic showing the relative magnitudes of the removal pathways for acetaldehyde 

in the atmosphere (midday). The rate coefficients, atmospheric concentrations and lifetimes used 

for this calculation were obtained from Calvert (2011) and Winer et al. (1984). Note: there are 

other minor reaction channels; however, their contributions to CH3CHO loss are thought to be 

negligible. (Winer et al., 1984) 

 

PAN is a central component of photochemical smog. PAN also functions as a long range 

transporter for nitrogen oxides (NOx) into rural regions, via R4.9, and causes ozone 

formation in the global troposphere. Due to this direct link between acetaldehyde oxidation 
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and peroxyacetylnitrate formation, the kinetics of reaction R4.7 have been comprehensively 

studied for over 40 years and therefore considered to be well understood (Morris et al., 

1971, Tyndall et al., 1995). The rate coefficients measured for this reaction range from 

kOH = (12.2 – 16.9) ×10-12 cm3 molecule-1 s-1 at 298 K and the reaction has a recommended 

value of (1.5 ± 0.2) × 10-11 cm3 molecule-1 s-1 (Calvert, 2011). The reaction between 

acetaldehyde + OH has been characterised between 200 – 400 K and exhibits a negative 

temperature dependence described by the following Arrhenius expression (Atkinson et al., 

2006): 

 𝑘OH  =  4.4 ×  10−12e(365 T⁄ )  cm3 molecule−1 s−1 (E4.1) 

   

4.1.3 Acetaldehyde + OH Reaction Mechanism 

There was renewed interest in this reaction when Wollenhaupt et al. (2000) discovered the 

non-Arrhenius behaviour of the OH + acetone reaction below ~200 K.  This observation 

was rationalised as a temperature dependent change in the reaction mechanism 

(Wollenhaupt et al., 2000, Vasvari et al., 2001).  Earlier work by Taylor et al. (1996) had 

also observed a similar non-Arrhenius temperature dependence for the acetaldehyde + OH 

reaction (T = 295 - 900 K); leading to the proposal that OH + carbonyl reactions may have 

more complex mechanisms than previously thought. Wollenhaupt et al. (2000) went on to 

suggest that the non-Arrhenius behaviour was due to an alternative addition-elimination 

pathway competing with H atom abstraction at low temperatures. The possible reaction 

channels  for the addition/elimination mechanisms are seen in R4.7b-R4.7c (Sander, 2011). 

ΔrH = -103 kJ mol-1 CH3CHO +  OH  → CH3 + HCOOH  (R4.7b) 

    

ΔrH = -86 kJ mol-1 CH3CHO  +  OH  → CH3C(O)OH + H  (R4.7c) 

    

Yet, following the hypothesis of these alternative channels multiple different product 

studies were completed all of which heavily implied that the dominant reaction channel for 

OH with acetaldehyde was R4.7a. One such study quantitatively measured water formation 

from the acetaldehyde + OH reaction reporting a yield of 0.89 ± 0.06 (Vandenberk and 

Peeters, 2003). Furthermore, other supporting work reported an acyl H atom abstraction 

yield of ~95% for the reaction (Butkovskaya et al., 2004). Cameron et al. (2002) took a 

different approach and attempted to observe the expected products from the 

addition/elimination reaction channels (R4.7b and R4.7c). This study UV transient 

absorption spectroscopy was used to monitor both the formation of acetyl (R4.7a) and 

methyl radicals (R4.7b) simultaneously. The results concluded that the primary reaction 

channel was R4.7a and an acetyl yield of 0.93 ± 0.18 was determined and, significantly, a 

small yield of methyl radicals was also observed. However, the formation of the methyl 
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radicals was on a considerably longer timescale than acetyl production, so Cameron et al. 

(2002) postulated a radical-radical type mechanism for CH3 production as a feasible source 

of methyl radicals.  

However, UV transient absorption spectroscopy may not be the best method for observing a 

small CH3 yield as there is significant overlap of acetyl and methyl signals. Therefore it is 

possible that the broad, featureless acetyl spectrum may mask the signal of more distinct 

CH3 spectrum (a weaker signal due to the lower concentration of CH3 radicals), thus 

making it difficult to separate the spectrums and obtain quantitative values of the methyl 

yields (Howes et al., 2016). In Cameron et al. (2002) upper limits of 3% and 2% on 

reactions R4.7b and R4.7c respectively; these results were corroborated by a 

complementary study that placed similar upper limit of 5% for both reaction channels 

(Wang et al., 2003). 

All of this work suggests that H atom abstraction from the acyl carbon is indeed the 

exclusive mechanism for the acetaldehyde + OH reaction. In addition to this, work done at 

the University of Leeds proposed that the increased rate coefficients observed at low 

temperatures for carbonyl + OH reactions were due to quantum mechanical tunnelling 

(Shannon et al., 2013, Shannon et al., 2010).  This body of work makes a very compelling 

argument about the origin of the non-Arrhenius behaviour observed in many carbonyl + OH 

reactions and hence dismisses the possibility of addition/elimination pathways. 

The study by Shannon et al. (2010) suggests that the only possible minor product would be 

the vinoxyl radical, CH2CHO:  

ΔrH = -103 kJ mol-1 CH3CHO +  OH  → CH2CHO + H2O  (R4.7d) 

    

This raises questions about some of the previous literature, such as origin of the methyl 

radicals observed in the work of Cameron et al. (2002) and Wang et al. (2003). However, 

another alternative reaction channel has been hypothesised; this channel accounts for the 

formation of methyl radicals, but is also is consistent with a 100% yield of water (D'Anna et 

al., 2003): 

ΔrH = -77 kJ mol-1 CH3CHO + OH  → CH3CO*  → CH3 + CO + H2O  (R4.7e) 

    

Note: the ‘*’ signifies that the acetyl radical is chemically activated. 

 

As part of the study by D’Anna et al. (2003), long-path FTIR was used to monitor the 

products of the CH3CHO + OH reaction (in a high NOx environment). In addition to PAN, 

small yields of HCHO, the stable product of methyl oxidation in high NOx conditions, and 

CO were observed. From the study it was concluded that the acetaldehyde + OH reaction 

occurred via two pathways (R4.7a and R4.7e) with a branching ratio of approximately 9:1. 
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The interpretation of this observation is that the activation energy required for acetyl 

decomposition (R4.7e) is only ~71 kJ mol-1 (Baeza-Romero et al., 2007): there is therefore 

sufficient exothermicity from R4.7a (-123 kJ mol-1) to permit some acetyl fragmentation to 

occur in a chemically activated process (Figure 4.2). However, this would require a non-

dynamical distribution of energy amongst the products and therefore a greater proportion of 

the excess energy in the acetyl fragment (Polanyi, 1987). The ab initio calculations reported 

by D’Anna et al. (2003) indicate that a post-reaction complex would allow for a more 

statistical distribution of the reaction exothermicity between the final products: henceforth 

making acetyl decomposition possible. 

 

Figure 4.2: A simplified version of the potential energy surface described in D’Anna et al. (2003). 

 

Previous work done at the University of Leeds has also observed this type of non-dynamical 

energy partition in the reactions of methylglyoxal and glyoxal with OH radicals (Baeza-

Romero et al., 2007, Lockhart et al., 2013). In the experiments by Lockhart et al. (2013) OH 

recycling was measured for the glyoxal + OH reaction in the presence of O2. This implied 

that the following reaction sequence was taking place: 

 HC(O)C(O)H  +  OH  →  HC(O)CO*  +  H2O (R4.8) 

   

 HC(O)CO  +  O2  →  OH  +  CO2  + CO (R4.9) 

   

From the subsequent Stern-Volmer analysis (1/ΦOH vs. [M] plot) an intercept of >1 was 

calculated: where 1/ΦOH is the reciprocal of the yield of hydroxyl radicals recycled and [M] 

is the number density of the bulk gas present, typically nitrogen (Lockhart et al., 2013). The 

intercept of the Stern-Volmer plot (1/ΦOH at [M] = 0) should be equal to unity if all the OH 
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is fully recycled (i.e. 100% of the HC(O)CO reacts with O2 to form OH once more). 

However, this clearly is not what was observed, which suggests alternate removal channel 

for the HC(O)CO* radical species:   

 HC(O)CO*  →  HCO  +  CO (R4.10) 

   

Lockhart et al. (2013) proposed the reaction above (R4.10) as one such feasible removal 

channel. This reaction pathway is an example of the decomposition of a chemically 

activated species, in this case HC(O)CO, and is very similar to channel proposed by 

D’Anna et al. (2003) (see R4.7e). 

In this study the acetaldehyde + OH reaction has been investigated using two 

complementary methodologies: PLP-PIMS and a laser induced fluorescence (LIF)/OH 

recycling technique described in Baeaza-Romero et al. (2007), the PIMS technique was 

employed to simultaneously identify CH3CO and CH3 as primary products from the reaction 

(R4.7). The OH recycling technique was then used to confirm the results by demonstrating 

that there is less than 100% acetyl production. Finally, the Master Equation Solver for 

Multi-Energy Well Reactions (MESMER) package was used to determine if chemically 

activated acetyl fragmentation is even possible (Glowacki et al., 2012a). It should be noted 

that the OH recycling experiments were conducted primarily by Dr. James Lockhart and the 

MESMER calculations by Dr. Robin Shannon; therefore this chapter will concentrate 

predominantly on the results obtained using the PLP-PIMS set-up. 

4.2 Experimental 

4.2.1 PLP-PIMS Experiments 

The OH and CH3CHO reaction was investigated using time-resolved mass spectrometry to 

directly monitor acetyl radical (m/z = 43) and methyl radicals (m/z = 15) simultaneously, 

see Chapter II for details on PIMS technique. In these experiments 2 – 5% samples of 

CH3CHO (Sigma-Aldrich: 99.5%) were prepared in He and stored in a glass bulbs. Other 

reactants used throughout this study such as: Acetone (99.9% VWR), Oxalyl Chloride (98% 

Alfa Aesar), Acetyl Chloride (98% Sigma-Aldrich), were prepared and stored in a similar 

fashion.  

For the initial data sets ozone was used as a precursor for the OH radical (R4.11 – R4.12). 

Gas bulbs of O3 were made using an ozone generator coupled to a silica trap to concentrate 

the ozone. This technique commonly yielded ~ 25 Torr of ozone, producing a 2 – 3% bulb 

when the sample was diluted in helium. During these experiments gas flows were set using 

calibrated mass flow controllers of varying size (2 – 500 sccm). The CH3CHO/He/O3/H2O 

gaseous mixture was combined in a manifold and then flowed into the reactor: note, these 
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experiments were all performed at low pressures (1.0 - 2.5 Torr). The concentrations of 

acetaldehyde (0.2-1.5) × 1014 molecule cm-3 were also kept high (in comparison with 

[OH] = 5 × 1012 molecule cm-3) to ensure pseudo-first-order conditions. The concentration 

of water was also high ([H2O] = 2 × 1015 molecule cm-3) to ensure all the O(1D) radical 

were captured to form OH and to help quench vibrationally excited OH. Chemistry was 

initiated using an excimer laser pulse (248 nm, ~75 mJ cm-2); the gas mixture was sampled, 

ionized and delivered to the mass spectrometer to detect the products. 

 O3  +  hν (λ = 248 nm)  →  O(1D) + O2                                    (R4.11) 

   

 O(1D)  +  H2O  →  2 OH                                               (R4.12) 

   

Later, experiments were run using 193 nm excimer light as some problems were 

encountered when working at 248 nm. It was observed that there was a small photolytic 

signal interfering with the methyl ion signal at high excimer energies. At 193 nm the cross 

section of acetaldehyde is smaller and it was thought that the photolytic methyl signal 

would be negligible. Furthermore, ozone decomposes to O2 (τ = 3-5 days), which caused 

secondary reactions to interfere with the methyl ion signal. At 193 nm nitrous oxide (N2O) 

was used as an OH precursor instead of O3, creating an oxygen-free system, hence avoiding 

any O2 based interference. Again, pseudo-first order conditions were maintained by keeping 

acetaldehyde concentrations high in relation to [OH]. 

 N2O  +  hν (λ = 193 nm)  →  O(1D) + N2                                    (R4.13) 

   

  O(1D)  +  H2O  →  2 OH                                               (R4.12) 

   

Only minor methyl radical interference was observed when using 193 nm photolysis. It 

should be noticed that the energy of the excimer was lower at 193 nm, typically 

~ 50 mJ cm-2. The experiments were controlled using LabVIEW™ software; note, specific 

details of the data acquisition and collection can be found in Chapter II, Section 2.7. 

The kinetic traces were then analysed using OriginPro graphical software to describe the 

rate of formation of the acetyl signal (SAc), the signal from the mass spectrometry was fitted 

using the following equation (E4.2); an example of the quality of data fitted using E4.2 can 

be seen in Figure 4.3. The corresponding equation used to fit the methyl signal (SMe) can be 

seen in E4.3; note that this equation has an additional term, which takes into account any 

instantaneous methyl signal formed during photolysis (Sinstant). 

 𝑆Ac =
𝑆Acheight 𝑘g𝑘samp

𝑘l − 𝑘g
[
𝑒−𝑘g𝑡 −  𝑒−𝑘samp𝑡

𝑘samp − 𝑘g
−

𝑒−𝑘l𝑡 − 𝑒−𝑘samp𝑡

𝑘samp − 𝑘l
] + 𝑆0 (E4.2) 
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𝑆Me =
𝑆Meheight 𝑘g𝑘samp

𝑘l − 𝑘g
[
𝑒−𝑘g𝑡 −  𝑒−𝑘samp𝑡

𝑘eff − 𝑘g
−

𝑒−𝑘l𝑡 − 𝑒−𝑘samp𝑡

𝑘eff − 𝑘l
]

+
𝑆instant 𝑘samp

𝑘samp − 𝑘l
[
𝑒−𝑘l𝑡 −  𝑒−𝑘samp𝑡

𝑘samp − 𝑘l
] + 𝑆0 

(E4.3) 

   

In equations E4.2 & E4.3: SAc and SMe are equivalent to the time-resolved signal observed 

for acetyl and methyl radicals respectively; SAcheight is proportional to the maximum height 

of the acetyl signal; similarly, SMeheight is proportional to the maximum height of the methyl 

signal; kg is the coefficient rate of growth of the signal (note: kg ≡ k’OH or k’Cl depending on 

the reactants used); kl  is rate coefficient for the loss rate; ksamp is the rate the gas is sampled 

into the mass spectrometer (this was constrained to ksamp ≈ 30000 s-1); Sinstant refers to any 

instantaneous signal observed (photolytic); S0 is the signal at time zero, and t is time. 

Adapted from Baeza-Romero et al. (2007).  
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Figure 4.3: An example of the data collected from the experiment, where SCH3CO is the time-resolved 

acetyl signal. In addition, the red line is the fit to the data given by E4.2.  

 

4.2.2 Laser induced fluorescence / OH recycling Experiments 

This part of the study was performed by J. Lockhart and T. Varga; a more detailed account 

of these experiments can be found in the thesis of J. Lockhart (2014).  

This work was completed using a pulsed laser photolysis, laser induced fluorescence (PLP-

LIF) system that have been used in several previous publications (Carr et al., 2007, 

Glowacki et al., 2012b, Lockhart et al., 2013). Similarly to the PIMS apparatus, the gas 

flow was regulated using mass flow controllers, mixed and flowed into the reactor (in this 

case a stainless steel 6-way cross). Temperature variations were made possible through 

customisation of the experiment. Low temperature measurements at 212 K were performed 

using a bath of dry ice/chloroform and positioning this around the reactor. High 
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temperatures were achieved by using a slightly different reaction cell, with a ceramic heater 

attached (Lockhart, 2014).  For all PLP-LIF experiments the reactions were also carried out 

at relatively low pressure (p < 60 Torr), the reaction pressure was measured using a 

capacitance manometer. 

OH radicals were generated from the laser photolysis of t-butyl hydroperoxide at 248 nm 

(Baasandorj et al., 2010); photolysis energies were typically 25 - 75 mJ cm-1.  

 t-C4H9OOH + hν → OH + co-products (R4.14) 

   

 Off-resonance laser induced fluorescence (excitation at ~282 nm, detection at ~308 nm) 

was used to detect the OH radicals. The OH fluorescence signal was obtained using a 

photomultiplier tube perpendicular to the probe beam. The photomultiplier signal was 

integrated using a boxcar average (SRS) and digitized before being sent to a personal 

computer for data analysis. The time delay between the photolysis and probe lasers was 

controlled by Labview software and was varied to build up a record of the OH signal 

following photolysis. Kinetic traces were typically 200 – 400 data points each averaged 2 - 

10 times until the data were of sufficient quality.  

4.3 Results from the PIMS Experiment 

4.3.1 Kinetics of the CH3CHO + OH Reaction 

The first objective of this study was to investigate the kinetics of the OH and acetaldehyde 

reaction using the PIMS technique. Numerous studies have investigated this reaction and 

the kinetics are thought to be well understood (Calvert, 2011, Atkinson et al., 2006). The 

reaction has an IUPAC recommended rate coefficient of kOH = (1.5 ± 0.2) × 10-11 cm3 

molecule-1 s-1; it therefore seemed prudent see if these results could be replicated using the 

PIMS set-up. 

 Initially, there were concerns with the data collected as the observed y-intercept was very 

high (> 5000 s-1). This limited the range of the data that could be accurately collected; this 

was because the equation used to fit the data was problematic when fitting coefficients 

greater than 10000 s-1. It was thought that the large intercepts observed were due to a high 

OH wall-loss rate. The flow-tube was recoated with halocarbon wax, which seemed to help 

lower the intercept and meant a greater range of data could be reliably measured.  

Pseudo first-order data sets were collected by varying the concentration of acetaldehyde. It 

was observed that the y-intercept differed slightly from day-to-day, presumably due to slight 

changes in flow-tube conditions. Consequently, it was decided that each data set should be 

collected in one session and not averaged over the course of several days / weeks. It should 

also be noted that the concentration of hydroxyl radicals was calculated as approximately 
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[OH] = 5 × 1012 molecule cm-3, this meant that some of the experiments conducted at low 

acetaldehyde concentrations ([CH3CHO] < 5 × 1013 molecule cm-3) were not strictly under 

pseudo first-order conditions. However, in all of the experiments performed the inclusion of 

the pseudo first-order rate coefficients, k’, determined from the low [CH3CHO] did not 

significantly change the bimolecular rate constant for the reaction, kOH. Furthermore, the 

pseudo-first order rate coefficients from the low [CH3CHO] traces usually corresponded 

well to the high [CH3CHO] data and so were generally included in the bimolecular plots (k’ 

vs. [CH3CHO], Figure 4.4). Notably, from the bimolecular plots the rate coefficient for the 

acetaldehyde + OH reaction could be determined (see Chapter I, Section 1.5) 
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Figure 4.4: An example of an OH + CH3CHO bimolecular plot collected using the PIMS technique. 

Error quoted are propagated from random errors of bimolecular plot and a 10% systematic 

experimental error. Confidence limits at 1σ level. 

 

The kinetic data collected were in good agreement with the literature, with a rate coefficient 

of kOH = (1.6±0.2) × 10-11 cm3 molecule-1 s-1 recorded (Atkinson et al., 2006). The precision 

of these measurements is somewhat lower than those found in literature (see Table 4.1). 

However, this is to be expected as reaction products were being monitored, not the reactants 

and accurately fitting an exponential growths correctly using E4.2 is more difficult than 

fitting a decay. These measurements, however, are in good agreement with the literature, 

verifying that the set-up can be used to accurately determine kinetic data. 

As part of this study the reaction of acetaldehyde with Cl radicals (using oxalyl chloride as 

a precursor) was also probed. Like the OH reaction this process is thought to be well 

understood. The reaction has a recommended rate coefficient of kCl = (7.8 ± 1.3) 10-11 cm3 
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molecule-1 s-1 (Tyndall et al., 1999); the kinetic data collected from the PIMS system were, 

again, in reasonable agreement with the literature (Table 4.1). 

 

Table 4.1: Kinetic data of the OH and Cl reactions with Acetaldehyde (Howes et al., 2016). 

CH3CHO + OH CH3CHO + Cl 

Set-up Date 1011 kOH / cm3 s-1 Set-up Date 1011 kCl / cm3 s-1 

248 nma,O

Db 
22/10/2012 2.0 ± 0.3d 

248 nm, 

OD 
Oct. 2012 6.7 ± 2.2  

248 nm, 

OD 
23/10/2012 1.6 ± 0.3 

248 nm, 

OD 
Nov. 2012 8.8 ± 1.3 

248 nm, 

OD 
12/11/2012 1.5 ± 0.7 

193 nm, 

ND 
Nov. 2013 8.2 ± 2.2 

248 nm, 

OD 
13/11/2012 1.6 ± 0.3 

193 nm, 

ND 
May 2014 7.7 ± 1.0 

193 nma,c, 

OD 
Oct. 2013c 1.2 ± 0.2    

193 nm, 

NDb 
Nov. 2013 1.4 ± 0.3    

Average 1.6 ± 0.2 Average 7.9 ± 0.9 

a – 248 nm, O3 photolysis in the presence of water. 193 nm, N2O photolysis in the presence of water. 

b – OD, old detector, ND – new detector. Although both detectors are of the same type, their 

differing sensitivities mean that different ion extraction potentials will have been used, and a 

possibility of different fragmentation patterns. 

c – When no specific date is given, the bimolecular rate coefficients have been collected over a 

period of several days where the main focus has been yield determinations. 

d – The error for the individual evaluations of kOH and kCl are propagated using the random errors 

associated with the bimolecular plot (±1σ) and a systematic experimental error of 10%. 

 

From Table 4.1 it can be seen that the precision of the initial acetaldehyde + Cl experiments 

is low (Oct. 2012 and Nov. 2012), this was because many of the pseudo first-order rate 

coefficients, kg ≡ k’Cl, determined were very large (k’Cl > 10000 s-1). This was problematic 

when it came to fitting the data (E4.2). The reason for this being that, even though each 

trace is made up of ~200 time-resolved data points, if the growth rate coefficient is too 

large, only the first ~10 points contain the important kinetic information. Secondly, due to 

the nature of E4.2, it becomes increasingly difficult distinguish between ksamp and kg, when 

kg is large (kg > 10,000 s-1). To minimise corrections needed to be made for these transport 

effects, the experiments were repeated at lower concentrations of CH3CHO; these changes 

yielded better, more precise, results (Figure 4.5).  
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Figure 4.5: An example of an OH + CH3CHO bimolecular plot collected using the PIMS technique. 

Confidence limits given to 1σ.  

 

It should be noted that, as both rate coefficients correspond well to those previously 

reported in literature, it suggests that the target reactions have been isolated and are well 

characterised (Calvert, 2011).  

4.3.2 Preliminary Evidence for Acetyl Fragmentation and the Subsequent Methyl 

Yields 

Unlike most previous studies which have investigated acetaldehyde + OH product 

formation (R4.7), the PIMS technique can give high quality time-resolved data for multiple 

species concurrently; note that the technique can also provide accurate kinetic information 

(Section 4.3.1.1). Using the PLP-PIMS set-up it was possible to monitor both the acetyl 

(m/z = 43) and methyl (m/z = 15) signals simultaneously, allowing temporal correlation 

between these two species to be observed. When these signals are overlaid it is obvious that 

there is a direct link between these two species (Figure 4.6).  
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Figure 4.6: Superimposed plots of acetyl and methyl signal from the same experiment (1.5 Torr He, 

N2O/H2O as the OH source, [CH3CHO] = 4 × 1013 molecule cm-3) showing that they are produced 

on the same timescale. 

 

The similarity of the time-resolved profiles for CH3CO and CH3 strongly implies that these 

species must have originated from the same source. This behaviour is most easily explained 

by R4.7e.  

However, before assigning R4.7e as the production channel for the methyl radicals, we 

must first rule out the other possible sources of the observed CH3 signal. For example it was 

suggested that the methyl radical may be produced during photoionization. To investigate 

whether or not this was true, the reaction of acetaldehyde and Cl was explored: 

∆rH= -57.8 kJ mol-1 CH3CHO  +  Cl  →  CH3CO +  HCl  (R4.15) 

    

This reaction was chosen for comparison because its exothermicity is significantly smaller 

than that of the OH reaction (Sander, 2011). Therefore, unlike in the OH reaction, none of 

the nascent acetyl radicals formed will have sufficient energy to surmount the activation 

barrier leading to methyl production (∆rH = -57.8 kJ mol-1 and Ea = 71 kJ mol-1) (Atkinson 

et al., 2006, D’Anna et al., 2003). This means that any CH3 radical signal observed in the Cl 

reaction is due photo-fragmentation by the ionization laser pulse and not from acetyl 

decomposition. The relative signal ratios of CH3:CH3CO radicals for the OH and Cl 

reactions are shown below (Figure 4.7). 
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Figure 4.7: An example of some of CH3:CH3CO signal ratios obtained from the reaction of OH with 

acetaldehyde and Cl with acetaldehyde. The dashed lines are the average values in these 

experiments. 

 

The results from Figure 4.7 show that the CH3:CH3CO signal ratio was larger for OH 

reaction than the Cl reaction. This result fits well with our hypothesis: the OH reaction 

gives a larger CH3:CH3CO signal ratio as a small fraction of the acetyl radical formed have 

sufficient energy (> 71 kJ mol-1) to fragment further producing methyl radicals and CO. The 

acetaldehyde + Cl reaction does yield a very small CH3 signal and it was assumed that this 

was due to photo-fragmentation of acetyl radicals by the probe laser. 

In addition to the acetaldehyde + OH / chlorine inter-comparison study, other experiments 

were run that, again, suggest the methyl signal it not from fragmentation by 

photoionization. These experiments were initially considered redundant as there was a leak 

on the line, causing small amount of O2 (~25 mTorr) to be added to the gas mixture. 

However, the results from this experiment provide conclusive proof that the methyl 

formation was not caused during photoionization (Figure 4.8). 
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Figure 4.8: Time-resolved signals of acetyl, methyl and lactone species in an OH/CH3CHO/O2 

system. The solid points are the experimental data and the lines are a numerical simulation based 

on a kinetic model. Note: the experimental data were scaled to match the numerical simulation. 

 

The experiments carried out in the presence of O2 are essentially examples of an OH-

recycling experiment (note: this methodology is discussed in detail in Section 4.4). As can 

be seen in R4.16a, the presence of O2 in the reaction system leads to the recycling of OH; in 

addition, R4.16 is also responsible for the observed loss of CH3CO from the system, a 

process that does not rapidly occur in the absence of O2 (see Figure 4.8).  

 CH3CO  +  O2  →  CH3C(O)O2*  →  OH + cyclo-CH2C(O)O (R4.16a) 

   

                                 →   CH3C(O)O2*  +  M  →   CH3C(O)O2 (R4.16b) 

   

From Figure 4.8 it can be seen that the loss methyl signal from these experiments does not 

mirror the observed acetyl loss. If the methyl signal was formed during photoionization of 

the acetyl signal, it would be expected that the methyl signal would have the same time 

evolution as the acetyl species (as photoionization occurs after all chemistry). However, as 

methyl radicals have a different time evolution to the acetyl radicals (in the presence of O2), 

it indicates that the methyl radicals must be formed through chemical reaction and not 

photoionization. Of all the possible reactions that could be responsible for CH3 formation, 

the only mechanism which also accounts for ~100% yield of water is R4.7e (D'Anna et al., 

2003). 

4.3.3 Quantitative Evaluation of Methyl Radical Yields 

Figures 4.6-4.8 give strong qualitative evidence for the chemically activated decomposition 

of acetyl radicals. However, the acetaldehyde + OH data alone cannot reveal any 



Chapter IV: OH + Acetaldehyde  

 

112 

quantitative information about the methyl radical yields. This is because the ionization 

efficiencies of the CH3
+ and CH3CO+ radicals are not the same, meaning the relative heights 

of the methyl and acetyl signals measured from the acetaldehyde + OH reaction are not 

directly proportional to the fraction of CH3CO decomposition. To quantify the signals the 

CH3:CH3CO signal ratio determined from the ethanal + OH reaction experimentally must 

be scaled to the concentration i.e. [CH3]:[CH3CO], this can be done using calibration 

factors. By calibrating the system it was possible to quantify the methyl radical yield for the 

chemically activated decomposition of acetyl radicals from the acetaldehyde + OH reaction. 

As the CH3:CH3CO signal ratio is independent of the ionization efficiencies, it was used 

instead of the signal heights to accurately quantify the methyl radical yield, YCH3. 

The minimum value of the CH3:CH3CO signal ratio was calculated from the acetaldehyde + 

Cl reaction. This reaction was ideal as methyl radicals will only be formed from acetyl 

fragmentation during photoionization (i.e. no chemistry should lead to the production of 

methyl radicals). However, calculating a maximum value for the CH3:CH3CO signal ratio 

(i.e. the observed ratio if there are equal numbers of CH3 and CH3CHO radicals present in 

the detector) was more difficult. It should be noted that different calibration methods were 

necessary for the experiments done using 248 nm and 193 nm excimer light. 

4.3.3.1 CH3 and CH3CO Calibration at 248 nm 

The aim of the calibration process is to determine a quantitative value for the yield of CH3, 

YCH3, from the reaction between CH3CHO and OH: 

 

 
𝑌CH3 =  

[CH3]OH

[CH3CO]OH + [CH3]OH 
= 1 + 

[CH3]OH

[CH3CO]OH 
 (E4.4) 

   

However, to determine this [CH3]:[CH3CO] ratio from the experiments is difficult; firstly 

the heights of the CH3 signal, (SCH3)OH, and CH3CO signal, (SCH3CO)OH, are not directly 

proportional to [CH3] and [CH3CO] respectively (due to differing ionization efficiencies). 

Secondly, it is also known that a small proportion of CH3CO fragment during 

photoionization to produce CH3. 

 (𝑆CH3)OH =  𝛼[CH3]OH  + β[CH3CO]OH (E4.5) 

   

 (𝑆CH3CO)OH =  γ[CH3CO]OH  (E4.6) 

   

where (Sx)OH is the long-time signal of CH3 or CH3CO and α, β, γ are coefficients that link 

the signal to the concentration. Note: that the term α[CH3]OH refers to the signal of methyl 

radicals produced from R4.7e; the term β[CH3CO]OH refers to the CH3 signal caused by 

CH3CO photoionization; finally γ[CH3CO]OH refers to the acetyl signal measured during the 

experiments. 
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The YCH3 can be quantified from the CH3:CH3CO signal ratio determined experimentally 

using the following equations: 

 (𝑆CH3)OH

(𝑆CH3CO)OH
=  

𝛼[CH3]OH  + β[CH3CO]OH

γ[CH3CO]OH 
 (E4.7) 

   

 (𝑆CH3)OH

(𝑆CH3CO)OH
=  

𝛼

𝛾

[CH3]OH 

[CH3CO]OH 
+

𝛽

𝛾
 (E4.8) 

   

However, before a quantitative value for YCH3 can be calculated, evaluations of both α/γ and 

β/γ must be found; this can be done by using other reactions to calibrate the system and 

determine α/γ and β/γ. 

The calibration to find needed to find β/γ is straightforward and was done using by 

investigating the reaction between acetaldehyde and chlorine (R4.15). As previously stated 

the exothermicity of chlorine reaction (∆HCl = -57.8 kJ mol-1) is significantly lower than the 

OH reaction (∆HOH = -123 kJ mol-1); this means that, unlike in the OH reactions, there will 

no methyl radicals formed from R4.15 (i.e. no CH3 formed from α[CH3]OH). This simplifies 

equation (E4.5) to: 

 (𝑆CH3)Cl =  β[CH3CO]Cl 

 

(E4.9) 

Therefore:  

 (𝑆CH3)Cl

(𝑆CH3CO)Cl
=  

β[CH3CO]Cl

γ[CH3CO]Cl 
=  

β

γ
 

 

(E4.10) 

   

To reiterate, the methyl radical signal, (SCH3)Cl, observed in the acetaldehyde + Cl reaction 

is solely formed from acetyl fragmentation during photoionization (and not R4.15). To 

determine α/γ was more convoluted, although it was made possible by using acetyl chloride 

(CH3COCl) as a precursor to investigate the reaction CH3CHO + Cl (R4.17). Note: in 

previous acetaldehyde + Cl experiments oxalyl chloride was used as a Cl precursor.  

         CH3C(O)Cl + hν (λ=248 nm) → CH3CO + Cl (φP1 ≈ 0.45) (R4.17a) 

    

                                               → CH3 + CO + Cl    (φP2 ≈ 0.55) (R4.17b) 

    

  CH3CHO + Cl → CH3CO + HCl (R4.14) 

  

The reason for using acetyl chloride (AcCl) as a precursor is that it is known to fragment in 

a characteristic manner, producing both CH3 and CH3CO during photolysis (M.T. Baeza-

Romero, 2016). The chlorine radicals produced subsequently react with acetaldehyde 

producing solely acetyl (R4.15), meaning that any long-time methyl signal observed arises 

from fragmentation in the ionization process. In Figure 4.9 both the prompt acetyl signal, 
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(SCH3CO)instant, corresponding to the photolysis channel R4.17a, and the longer time signal, 

(SCH3CO)growth, corresponding to acetyl production from the acetaldehyde + Cl reaction, are 

seen. It should be noted that the chlorine radicals are formed from both the photolysis 

channels φP1 + φP2 (hence: [Cl]total = [Cl]φP1 + [Cl]φP2). 
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Figure 4.9: An example of the CH3CO signal, in particular the contributions of the from the 

photolysis channel R4.17. 

 

Furthermore, from Figure 4.9 it is possible to determine a precise ratio of CH3/CH3CO from 

the photolysis of acetyl chloride (i.e. φP2/φP1). If it is assumed that φP1 = 1 and 

(φP1 + φP2) = φtotal, equations E4.11-4.12 hold true. 

 
𝜑total = (1 + 𝜑P2)       (E4.11) 

  
 

  𝜑P2

𝜑P1
= 𝜑total − 1   (E4.12) 

   

From the analysis of these experiments an average value of φP2/φP1 ≈ 1.25 was determined. 

This evaluation of φP2/φP1 can then be used in combination with the CH3:CH3CO signal 

ratios measured to determine the α/γ (E4.13-4.17): 

 
[CH

3
] = (

𝜑P2

𝜑P1

) × [CH3CO] = 1.25×[CH3CO] (E4.13) 

   

 (𝑆CH3)AcCl =  𝛼[CH3]AcCl +  β[CH3CO]AcCl (E4.14) 

   

 (𝑆CH3)AcCl =  1.25 × (𝛼[CH3CO]AcCl) +  β[CH3CO]AcCl (E4.15) 
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Therefore:   

 (𝑆CH3)AcCl

(𝑆CH3CO)AcCl
=  

1.25 × (𝛼[CH3CO]AcCl) +  β[CH3CO]AcCl

γ[CH3CO]AcCl 
 (E4.16) 

   

 (𝑆CH3)AcCl

(𝑆CH3CO)AcCl
=  

1.25 × α

γ 
 +   

β

γ
 (E4.17) 

   

As β/γ has been previously calculated (from the CH3CHO + Cl reaction data) using E4.10, 

hence α/γ can be calculated; it should be noted that (SCH3)AcCl/(SCH3CO)AcCl is equivalent to a 

CH3:CH3CO signal ratio where there are equal numbers of CH3 and CH3CHO radicals 

present in the system. 

Utilising the values of α/γ and β/γ calculated above a quantitative evaluation of YCH3 for the 

acetaldehyde + OH experiments could be made using equations E4.4 and E4.8; this analysis 

led to an evaluation of YCH3 = (15.5 ± 6.0) %. 

4.3.3.2 An Alternative Methodology to Determine YCH3 at 193 nm 

For the experiments done using 193 nm light to initiate the reaction a different methodology 

was used to calculate YCH3 from acetyl decomposition. Here, the photolytic behaviour of 

acetone at 193 nm, which is thought to be well understood (Lightfoot et al., 1988), was used 

to help determine the yield of methyl radicals. As with the experiments done at 248 nm, the 

acetaldehyde + OH and acetaldehyde + Cl reactions were both investigated. However, at 

193 nm these experiments were done back-to-back with some acetone photolysis 

experiments. Analogous to the OH production channel used which yields two hydroxyl 

radicals (R4.12), the predominant photolytic channel for acetone (R4.18) is known to 

produce two methyl radicals: 

 CH3C(O)CH3 + hν (λ=193 nm) → 2 CH3 + CO (φ  ≥ 0.95) (R4.18) 

    

The raw methyl radical data collected from the acetone photolysis experiments were 

calibrated so that it was equivalent to the N2O environment used in the acetaldehyde + OH 

reactions. The photolytic acetone signal was tuned to [N2O] so that the CH3 signal observed 

could be equated to the CH3 signal measured the acetaldehyde + OH experiments: 

 
𝑀A1 =  𝑀A0 ×

[N2O] × 𝜎N2O × 𝑛C

[CH3COCH3] × 𝜎acetone
 

(E4.18) 

   

where MA1 is the adjusted methyl signal from photolytic acetone, MA0 is the raw methyl 

radical signal from acetone experiments and σ represent the relevant cross-sections of the 

two species (N2O and acetone respectively). Finally nc is a factor used to balance the 

equation based on the conversion of O(1D) to OH (R4.12-4.13); this was estimated from the 

NO signal monitored during the experiments, a product from a competing reaction.  
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 O(1D)  + N2O  →  2 NO (R4.19) 

   

The adjusted methyl signal from acetone photolysis was then compared with methyl signal 

obtained from the acetaldehyde + OH experiments. This parameter, fMOH/MA1, can be thought 

of the fraction of CH3 formed from the reaction with OH in comparison to the maximum 

CH3 signal. This component was then multiplied by the parameter analogous to the 

proportional difference in CH3:CH3CO signal ratios obtained from OH and Cl experiments, 

f𝑆𝑅𝑂𝐻−𝑆𝑅𝐶𝑙
𝑆𝑅𝑂𝐻

. This calculation gives evaluation of the yield of methyl radicals: 

 𝑌𝐶𝐻3 (%) = f𝑀𝑂𝐻
𝑀𝐴1

 × f𝑆𝑅𝑂𝐻−𝑆𝑅𝐶𝑙
𝑆𝑅𝑂𝐻

× 100% (E4.19) 

   

From the experiments that were conducted using 193 nm light, an average yield of methyl 

radicals of YCH3 = (15.7 ± 4.1)% was determined. The calculated yield is in excellent 

agreement with the methyl radical yield determined at 248 nm; this suggests that both 

methodologies are viable. A full list of all the experiments done using the PIMS system can 

be seen in Table 4.2. 

Table 4.2: Yield of Methyl Radicals from the OH + CH3CHO Reaction. Experiments were 

conducted between 1-2 Torr He; OD = Old Detector, ND = New Detector.  

Experiment Year YCH3 (%) 

193 nm N2O/H2O OH generation (OD) 2007 19.9 ± 4.6a 

248 nm O3/H2O OH generation (OD) 2012 15.5 ± 6.0 

193 nm N2O/H2O OH generation (OD) 2013 17.1 ± 2.4 

193 nm N2O/H2O OH generation (ND) 2013 14.2 ± 2.3 

Average, λ = 193 nm (±2σ) = 15.7 ± 4.1 

Total Average (±2σ) = 16.7 ± 4.9  

a – This experiment was performed by Dr. Mark Blitz using the same instrumentation. 

 

The experiments at 193 nm produced a consistent yield, even when the electron multiplier 

used to detect the radicals was changed; this consistency suggests that the methodology 

used was reliable. However, initially there was some concern with these experiments, 

particularly with the monitored NO signal.  

When water was bubbled into the system the monitored NO signal did not completely 

disappear, this means that not all of the O(1D) reacted with water to OH. The best 

explanation for this is that the concentration of water was lower than was expected. Using 

the NO signal data, the water concentration was extrapolated and evaluated at 

approximately 8 × 1014 molecule cm-3. This is significantly lower than the concentration 
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previously estimated, which suggested [H2O] ≈ 2 × 1015 molecule cm-3. This result suggests 

a sizable portion of the water was lost to the walls. 

In addition to removing O(1D) from the reaction system, water is also plays an important 

role in quenching vibrationally excited hydroxyl radicals, OH(v).   

 O(1D)  + H2O  →  2 OH(v) (R4.20) 

   

 

 

OH(v=1)  +  H2O  →  OH(v=0)  + H2O  (R4.21) 

   

If there is a significant proportion of the OH(v) radicals formed are left unquenched it could 

interfere with the observed methyl radical yield. For example, it may be that the reaction 

between OH(v=1) and CH3CHO has a YCH3 = 1 (worst-case scenario): 

 CH3CHO +  OH(v=1)  → CH3 + CO + H2O YCH3 = 1 (R4.22) 

    

If this were true, it would lead an amplification in the methyl radical yield making the 

results in Table 4.2 invalid. To test the validity of these experiments a Kintecus model was 

run (Ianni, 2002); the initial conditions (in Table 4.3) and the reaction scheme (Table 4.4) 

are listed below. In this reaction system under these experimental conditions much depends 

on the rate coefficient for OH(v=1) quenching by H2O, kq. However, there appears to be a 

considerable discrepancy between the literature values. Most early work seems to suggest a 

quenching rate coefficient between 2.5 -7.5 × 10-10 cm3 molecule-1 s-1 (Lee, 1980), but more 

recent work indicates a lower rate of kq ≈ 1× 10-11 cm3 molecule-1 s-1 (McCabe et al., 2006). 

Clearly, if the quenching rate coefficient is smaller then there will be more OH(v=1) present 

in the system and therefore R4.15 will have greater importance. In the model a lower limit 

of kq was used to explore the influence of this channel.  

 

Table 4.3: Shows the initial conditions assumed. T= 298 K for all modelling. 

Reactants Concentrations / molecule cm-3 

O 5×1012 

N2O 1×1015 

H2O 8 ×1014 

CH3CHO 2 - 10 ×1013 
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Table 4.4: Kintecus model of reaction scheme + rate coefficients, k.  

Modelled Reaction Scheme k / cm3 molecule-1 s-1 Reference† 

O + N2O → NO + NO 1.5×10-10 (Dillon et al., 2008) 

O + H2O → OH(v) + OH(v) 2.0×10-10 
(Dunlea and 

Ravishankara, 2004) 

OH(v) + H2O → OH + H2O 1.25×10-11 (McCabe et al., 2006) 

OH + CH3CHO →  CH3CO + H2O* 1.3×10-11 
(Atkinson et al., 2001) 

OH + CH3CHO → CH3+ CO + H2O* 2×10-12 

OH(v) + CH3CHO → CH3(v) + CO + H2O 1.5×10-11 (Atkinson et al., 2001) 

†It should be noted that the value of rate coefficients are not exactly quoted from the references 

given, however, these were the sources used to give the approximate values of k used in the model. 

*Note the sum of the rate coefficient highlighted is equal to the total rate coefficient for the reaction 

between CH3CHO and OH, i.e. 1.5×10-11(Atkinson et al., 2001). 

 

 

Figure 4.10 shows two sets of graphs with varying initial concentrations of acetaldehyde 

used: for graphs a) [CH3CHO] = 3 × 1013 molecule cm-3 and in graphs b)  [CH3CHO] = 1 × 

1014 molecule cm-3. In graphs ai) and bi) the concentrations of CH3 radical formed from 

acetaldehyde + OH(v=1)(red) and acetaldehyde + OH (blue) are shown, named CH3(v) and 

CH3 respectively. Both plots show a significant CH3 radical component from the OH(v=1) 

channel, unsurprisingly this effect is greater at larger acetaldehyde concentrations. If indeed 

modelled behaviour is real, it indicates that a large fraction of the YCH3 measured is actually 

due to the reaction between acetaldehyde + OH(v=1) and not because of the chemically 

activated fragmentation of acetyl radicals. In graphs aii) and bii) the relationship between 

the total concentrations of CH3 radicals (i.e. CH3(v) + CH3, orange) and CH3CO radicals 

(green) is shown for different acetaldehyde concentrations. From these graphs it is shown 

that the model predicts larger methyl radical yields at higher acetaldehyde concentration. 

Crucially, this was not observed experimentally (see Figure 4.11). 
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Figure 4.10: graphs ai) and bi) the concentrations of CH3 radical formed from acetaldehyde + 

OH(v=1)(red) and acetaldehyde + OH (blue) are shown. In graph aii) and bii) the relationship 

between the concentrations of CH3 radicals (orange) and CH3CO radicals (green) for differing 

acetaldehyde concentrations. In plots ai) + aii) [CH3CHO] = 3 × 1013 molecule cm-3; and in plots bi) 

+ bii) [CH3CHO] = 1 × 1014 molecule cm-3. 
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Figure 4.11: a plot to show the measured and modeled CH3 yield dependency on acetaldehyde 

concentration. 

 

In Figure 4.11 the CH3 yields measured experimentally are plotted against the concentration 

of acetaldehyde (red line). Theoretically, the yield of methyl radicals formed should not 
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vary with concentration if the source of the methyl radicals is from chemically activated 

decomposition of acetyl radicals (Figure 4.11, pink dashed line). However, in Figure 4.11 

indicates there is a small dependency on acetaldehyde concentration (red line), with slightly 

larger CH3 yield predicted at higher acetaldehyde concentrations (YCH3 = 12.8% at 

[CH3CHO] = 3 × 1013 molecule cm-3 and YCH3 = 14.2% at [CH3CHO] = 1× 1014 molecule 

cm-3). However, if a significant fraction of the methyl radical yield was caused by the 

reaction between acetaldehyde + OH(v=1) reaction then the increase in YCH3 at high 

acetaldehyde concentrations would be much greater than was observed experimentally 

(Figure 4.11, blue dashed line) (YCH3 = 12.8% at [CH3CHO] = 2.5 × 1013 cm-3 and 

YCH3 = 22.0% at [CH3CHO] = 1× 1014 cm-3). It should be noted that interference from the 

reaction between O(1D) + CH3CHO was also modelled (green dashed line,  Figure 4.11), 

like the OH(v) channel this reaction suggests a dependency on acetaldehyde concentration. 

As there was only a slight dependency on [CH3CHO] observed this too suggests that the 

dominant process for methyl radical formation is R4.7e. 

There are two possible reasons for the discrepancy between the experimental and modelled 

data. It may be because the NO data measured did not give an accurate evaluation of the 

concentration of water. However, multiple experiments were conducted over several days 

and were fairly consistent (± 10%). A second and possibly more likely explanation is the 

rate of OH(v=1) quenching by H2O is larger than was used for modelling. If a quenching 

rate coefficient of kq = 2× 10-10 cm3 molecule-1 s-1 is used in the model then the YCH3 is 

nearly independent of acetaldehyde concentration. In Figure 4.12 it can be seen in plots ai) 

and bi) that there is still a small contribution to the YCH3 from the acetaldehyde + OH(v=1) 

channel (5% < R4.21 < 15%).  
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Figure 4.12: Simulations done using kq = 2 × 10-10 cm3 molecule-1 s-1. In graphs ai) and bi) the 

concentrations of CH3 radical formed from acetaldehyde + OH(v=1)(red) and acetaldehyde + 

OH (blue) are shown. In graph aii) and bii) the relationship between the total concentrations of CH3 

radicals (orange) and CH3CO radicals (green) for differing acetaldehyde concentrations. In plot ai) 

+ bi) [CH3CHO] = 3 × 1013 molecule cm-3; and in plot aii) + bii) [CH3CHO] = 1 × 1014 molecule cm-3 

 

However, this does mean that the CH3 radical yields predicted from these experiments may 

slightly over predict the chemically activated acetyl fragmentation channel. The analysis 

was redone to take the minor OH(v=1) and O(1D) contributions into account. A 

concentration dependent parameter was use to adjust the methyl yields. This analysis 

lowered the methyl radical yield for the chemically activated acetyl fragmentation, giving a 

new YCH3 ≈ 14% (see Table 4.5). 

 

Table 4.5: Updated yields of Methyl Radicals from the OH + CH3CHO Reaction. Experiments were 

conducted between 1-2 Torr He; OD = Old Detector, ND = New Detector. *The errors associated 

with the average values are quoted at the 95% Student’s t Confidence interval half-width. 

Experiment Year Corrected YCH3 (%) 

193 nm N2O/H2O OH generation (OD) 2007 17.3 ± 3.1 

248 nm O3/H2O OH generation (OD) 2012 14.2 ± 5.8 

193 nm N2O/H2O OH generation (OD) 2013 14.5 ± 2.0 

193 nm N2O/H2O OH generation (ND) 2013 11.8 ± 1.6 

 
Unweighted Average* = 14.5 ± 3.7 

Weighted Average* = 13.5 ± 3.6 
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The actual contributions from the acetaldehyde + OH(v=1)/O(1D) channels to the methyl 

radical yield may not be this large. However, by including these possible channels in our 

evaluation we can confidently predict a methyl radical yield in the range of 11.8% > YCH3 > 

17.3%, with a preferred (and conservative) evaluation of YCH3 = (13.5 ± 3.6) %. Note that 

both an unweighted and a weighted average were calculated for the data; however, the 

weighted average is preferred as it yields a slightly more conservative evaluation of YCH3. 

The corrected methyl radical yields listed in Table 4.5 are solely caused by CH3 production 

from the chemically activated decomposition of acetyl radicals. 

4.4 Complementary Work 

4.4.1 OH recycling of the CH3CHO+ OH reaction with and without O2 

A kinetics study of the CH3CHO + OH reaction (with and without additional oxygen) was 

carried out under pseudo first-order conditions such that the concentration of acetaldehyde 

(and oxygen if used) was always in excess over the OH. Under these conditions, hydroxyl 

radicals are removed by reaction with acetaldehyde and loss to the walls. However, when 

molecular oxygen is present acetyl radicals will react with O2, regenerating a fraction of 

OH, though this channel is pressure dependent: 

 CH3CO  +  O2  →  CH3C(O)O2*  →  OH + products (R4.16a) 

   

 CH3C(O)O2*  +  M  →  CH3C(O)O2  +  M (R4.16b) 

   

As mentioned in Section 4.2.2 this technique uses off-resonance laser induced fluorescence 

to detect OH radicals at ~ 308 nm. The rate coefficients for these experiments were 

determined from the time resolved change in OH signal (inset graph in Figure 4.13). Due to 

OH recycling from R4.16 the bimolecular rate coefficient for OH loss in the presence of 

oxygen, kO2, will be reduced compared to nitrogen, kN2, (see lower traces in Figure 4.13); 

with the yield of OH, ΦOH, is given by: 

 

N2

O2

OH 1
k

k


 

(E4.20) 
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Figure 4.13: Bimolecular plots at 298 K. (■) no oxygen, (♦) O2 present, p = 10 Torr; (▼) O2 present, 

p = 5 Torr; (▲) O2 present, p = 2 Torr; (●) O2 present, p = 1 Torr. 

 

The OH yield from the CH3CHO/OH/O2 system was determined as a function of pressure at 

212, 298 and 385 K. At low pressure the greatest reduction in the rate coefficient, kO2, is 

observed. This is because channel R4.16b is less prominent, meaning collisional quenching 

is slower, and OH recycling is more favourable.  

Figure 4.14 shows the Stern Volmer plots for the three different temperatures studied and 

the results are tabulated in Table 4.6. If all of the OH was fully recycled the intercept of 

these Stern-Volmer plots can be extrapolated to give a ΦOH of 1 at zero pressure (no 

collisional stabilisation occurring and kO2/kN2 = 0). However, this result was not seen and an 

intercept significantly greater than 1 was measured from all the experiments. This suggests 

that a fraction of the acetaldehyde + OH is generating a product which does not regenerate 

OH in the presence of O2 at low total pressures. One explanation for this would be 

chemically activated decomposition of acetyl (R4.7e).   
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Figure 4.14: Stern Volmer plots of the reciprocal of the OH yield vs total pressure of nitrogen. (▲) 

= 212 K, (■) = 298 K, (●) = 385 K. 

 

Table 4.6: Results from the kinetic studies of OH recycling from R4.7 

Temperature / K 1011k1/ cm3 s-1 a 
Intercept of Stern 

Volmer plot 

Intercept 

Range 

SV Gradient/ 

10-18 cm3 

212 2.07 ± 0.31b 1.20 
1.33 

9.09 ± 0.67c 

1.06 

298 1.35 ± 0.13 1.18 
1.23 

7.57 ± 0.16 
1.13 

385 1.27 ± 0.24 1.20 
1.36 

4.53 ± 0.26 
1.04 

a – Bimolecular rate coefficient for reaction in N2 in the absence of oxygen. 

b – Error is 95% confidence interval. 

c – Error at 68% confidence interval. 

 

All the results from this study are shown in Table 4.6, the bimolecular rate coefficients 

measured for R4.7 are in good agreement with the previous work in literature (Sander et al., 

2011). As previously stated, the y-intercept of the Stern-Volmer plots are equal to the 

reciprocal of the OH yield (1/ΦOH). Therefore, the results from these experiments suggest 

that ~84% of the OH is recycled, implying a methyl radical yield of YCH3 ≈ (16 ± 3) %, this 

is within error of the value determined from the PIMS technique. 

4.4.2 Master Equation Calculations 

To complement the experimental results, Master equation calculations were performed (by 

R. Shannon), these also give a significant methyl radical yield. Initially these calculations 

were done using a purely statistical distribution of energy (i.e. the energy distributed 

according to the number of energy states in of both the products respectively). When the 
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master equation calculations were performed in this manner the dissociation of the activated 

CH3CO radical was over predicted because most of the exothermicity is distributed into the 

acetyl species (12 modes vs. 3 modes). These calculations lead to a methyl radical yield of 

83%. To model the experimental data, it was found that the amount of energy deposited in 

the CH3CO needed to be reduced. A prior distribution of the vibrational energy was used 

alter allocation of exothermicity until a dissociation yield of ~18% was obtained (YCH3 

comparable to experimental value). The prior energy distributions used for the calculation at 

low pressures (p = 1.5 Torr) can be seen in Figure 4.15.  

 
Figure 4.15: Energy distributions in acetyl (black line), H2O (red line) and in translational motion 

of the fragments (blue line) calculated using a prior distribution calculation modified to give ~18% 

acetyl fragmentation at 1.5 Torr He and 298 K. The pink line indicates 52% of the total reaction 

exothermicity (124.9 kJ mol-1) which is the proportion of the energy measured to be apportioned 

into the H2O (Butkovskaya and Setser, 2000). Figure from Howes et al. (2016), work of R. Shannon.  

 

The pressure dependence of acetyl decomposition was also probed using MESMER (R. 

Shannon). Notably, the calculated pressure dependence of the reaction was not large and a 

YCH3 ≈ 14% at 760 Torr was estimated, assuming a YCH3 = 18% (p ≈ 0 Torr), Figure 4.16. 

Admittedly, this may be a slight overestimation of the methyl yield at low pressures; 

however, it is thought that YCH3 at 760 Torr would still be > 10%, if a zero pressure methyl 

yield of 15% was used. 
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Figure 4.16: Calculated CO yields using MESMER as a function of pressure with three bath gases, 

He (black), N2 (red) and air (blue). The dotted lines indicate the uncertainty of these calculations. 

Figure from Howes et al., (2016), work of R. Shannon.  

 

4.5 Concluding Remarks  

Both the PIMS study and the OH recycling technique generate consistent results giving zero 

pressure yields of 10% < YCH3 < 20%. In addition to this pressure dependent Master 

equation calculations have been performed which predict significant methyl radical yields at 

760 Torr. These results are in agreement with a majority of previous product studies and 

suggest that an abstraction reaction is the dominant mechanism. However, these results also 

conflict with the classical model of an abstraction process by predicting the formation of 

methyl radicals from a chemically activated channel. In addition to this the methyl yield 

determined do not agree with the majority of those previously in literature, which put an 

upper limit of YCH3 = 5% (Wang et al., 2003, Cameron et al., 2002). Owing to these 

discrepancies in methyl radical yields we have tried to ensure that our PIMS results are not 

subject to systematic errors by using a variety of OH precursors and repeating the 

experiments under a range of different conditions (e.g. coated or uncoated walls, different 

detectors, wide range of acetaldehyde concentrations and OH precursors). Literature values 

for OH and Cl rate coefficients with acetaldehyde were reproducible using the PIMS 

apparatus. In addition a complementary LIF study has also been completed; the results from 

this study also suggest similar methyl radical yields. The thorough nature of the work 

presented provides strong evidence for the chemically activated channel hypothesised. 

The qualitative data on the PIMS methyl yields clearly shows an enhanced CH3:CH3CO 

signal ratio for the acetaldehyde + OH reaction. This does not prove the methyl radicals are 
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exclusively generated from acetyl fragmentation. However, the time-resolved correlation 

between the kinetics of the methyl and acetyl radicals does suggest that these radicals are 

being generated from the same source, this is predicted by R4.7e. 

There are other possible origins of methyl radicals, for example if insufficient water was 

added, then acetaldehyde can compete with water for the O(1D) produced from photolysis: 

 O(1D) + CH3CHO → CH3 + co-products (R4.23) 

   

However, the fast timescale of O(1D) chemistry means that methyl radicals produced in this 

way will appear as an ‘instant’ growth rather than on the same time scale as acetyl radicals. 

In addition to this, the yield of methyl radicals determined would be dependent on 

acetaldehyde concentration and this was not observed experimentally.  

Interference from vibrationally ‘hot’ OH was also investigated; the reaction also suggests an 

[acetaldehyde] dependency which was not observed experimentally. The results from the 

modelling of these reaction channels implies that the dominant source of methyl radicals is 

the chemically activated decomposition of acetyl radicals.  

To complement this work an indirect kinetic study to measure OH recycling was also 

performed. For these experiments the intercept measured on the Stern Volmer plot was 

greater than 1. This suggests that the reaction does not fully recycle OH radicals. There are 

two reaction channels that lead to only partial OH recycling R4.7d and R4.7e. However, the 

work done by Butkovskaya et al. (2004) puts an upper limit of 7.5% on the yield of 

CH2CHO radical formation; as the fraction of OH not recycled is ~16% the reaction channel 

R4.7d cannot fully account for the increased intercept on the Stern-Volmer plots 

(Butkovskaya et al., 2004). This suggests that R4.7e must contribute to non-recycling of OH 

radicals observed in the PLP-LIF experiments. It should be noted that R4.7d may actually 

lead to OH recycling, R4.24, meaning R4.7d may contribute to the fraction of OH recycled. 

 CH2CHO + O2 → OH + HCHO + CO (R4.24) 

   

This channel (R4.24) could account for the results of D’Anna et al. who observed a 10% 

yield of HCHO and CO in a chamber study at 760 Torr. However, the observed yield of 

HCHO and CO is greater than the initial vinoxy yield measured (~5%) from study by 

Butkovskaya et al. (2004), again, suggesting the presence of an additional reaction channel.  

Two studies probing the CH3CHO + OH reaction previously looked for methyl radicals. 

Wang et al. used IR absorption to monitor the production of ground vibrational state methyl 

radicals from reaction and observed a prompt methyl signal was observed attributed to 

reaction to the reaction of O(1D) + acetaldehyde (Wang et al., 2003). The work done by 

Cameron et al. used UV transient absorption spectroscopy to monitor both the formation of 
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acetyl (R4.7a) and methyl radicals (R4.7b) simultaneously. The study concluded that the 

primary reaction channel was R4.7a and acetyl yield of 0.93 ± 0.18 was determined 

(Cameron et al., 2002). A small yield of methyl radicals was also observed. However, the 

formation of the methyl radicals was on a considerably longer timescale than acetyl 

production, so Cameron et al. (2002) postulated a radical-radical type mechanism for CH3 

production as a feasible source of methyl radicals. Both these studies put an upper limit of 

5% on the yield of methyl radicals. However, UV transient absorption spectroscopy is not 

an ideal method for observing small yields of methyl as there is significant overlap of acetyl 

and methyl signals. The PIMS technique allows for a more accurate time-resolved yield of 

methyl radical to be calculated. 

In recent years there has been a lot of work done to try and identify the reaction mechanism 

of R4.7a. The general consensus is that H atom abstraction from the acyl carbon is the 

exclusive mechanism for the acetaldehyde + OH reaction. The work presented in this 

chapter does not disagree with these studies and gives an alternative pathway for methyl 

radical formation which complements this mechanism. However, although mechanistically 

R4.7e rationalizes the experimental observations well, the dynamics of the reaction suggest 

that acetyl decomposition should not be energetically favourable. Indeed, the transition state 

species of R4.7 is depicted in Figure 4.17.  

 

Figure 4.17: A schematic of the potential energy surface of the CH3CHO + OH reaction, including a 

hypothesized post-reaction complex. 

 

From Figure 4.17 it can be seen that newly formed OH bond is hypothesised to be stretched 

at the transition state; which suggests that, dynamically, more of the energy should be 

stored in the nascent H2O molecule. If this were the case, it is unlikely that any of the 

nascent acetyl radicals formed would have sufficient energy to decompose to CH3 and CO 
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radicals (R4.7e). However, D’Anna et al. (2003) resolve this issue by postulating the 

formation of a post-reaction complex, which would allow for a more statistical 

redistribution of the energy; this in turn would means that (some of) the nascent acetyl 

radicals formed would have sufficient energy to undergo the activated decomposition, 

yielding CH3. 

The observation of methyl radicals from the acetaldehyde + OH reaction does indicate some 

unusual features in the mechanism of this reaction, although, as R4.7e is only a minor 

channel its atmospheric implications will likely be minimal. However, MESMER 

calculations do suggest that the yield of methyl radicals at 760 Torr may still be significant, 

YCH3 = 14%, if a zero pressure methyl yield of 18% is used (Figure 4.16). However, if 

reaction R4.7e does occur within the troposphere it could affect the composition of the 

atmosphere in several ways. Firstly, higher concentrations of methyl radicals would lead to 

an increase in formaldehyde in polluted environments (R4.25-4.27). Secondly, the 

concentration of peroxyacetyl radicals will be smaller, and hence a lower concentration of 

PAN would be expected; this will impact upon the transportation of NOx into remote 

environments. 

 CH3 + O2 → CH3O2 (R4.25) 

   

 CH3O2 + NO → CH3O + NO2 (R4.26) 

   

 CH3O + O2 → HCHO + HO2 (R4.27) 

   

 The implications of this study could be important in low temperature combustion, as 

aldehydes are known to be important intermediates in oxyfuel combustion regimes 

(Marinov, 1999). Moreover, acetyl radical oxidation is hypothesised to be significant 

channel in low temperature combustion (T < 600 K) of oxyfuels (Lee et al., 2002). 

However, the work from this study suggests that acetyl decomposition (R4.7e) may be 

amplified under low temperature combustion conditions and will therefore reduce the yield 

of CH3C(O)O2 radicals formed. It should be noted that acetyl peroxy radicals are thought to 

be key intermediates which lead to chain branching and chain branching steps drive all low 

temperature combustion processes (R4.8,R2.28-4.29).  

 CH3CO + O2 → CH3C(O)O2 (R4.8) 

   

 CH3C(O)O2 + CH3CHO → CH3C(O)O2H + CH3CO (R4.28) 

   

 CH3C(O)O2H → CH3 + CO2 + OH (R4.29) 
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5. An Introduction to Criegee Intermediates 

Since the first direct observation of C1 Criegee intermediate (CI) reactivity with the trace 

gas species SO2 and NO2 was reported by Welz et al. (2012), there has been an increased 

interest in understanding both the characteristics of these elusive species, and their 

reactivity within the atmosphere. The subsequent chapters of this thesis (Chapters VI and 

VII) are concerned about the reactivity of both the C1 and C2 Criegee intermediates with 

various atmospheric trace gases, however prior to discussing these results, some 

background information about these species is necessary. Therefore, the aim of this chapter 

is to give a detailed overview of CI production (via alkene ozonolysis) and to discuss what 

is currently understood about the nature of the C1 and C2 Criegee intermediates. 

5.1 Alkene Ozonolysis and Criegee Intermediates 

5.1.1 Formation and Properties of Criegee Intermediates  

Criegee intermediates (CIs) are carbonyl oxide biradicals and have the generic formula 

∙CR2OO∙. CIs were first hypothesised as long ago as 1949 by their namesake Rudolph 

Criegee, however, the first direct observation of a CI (confirming their existence) was only 

made as recently as 2008 (Taatjes et al., 2008).  

Criegee biradicals are primarily produced in the atmosphere via alkene ozonolysis, with the 

proposed mechanism being a [3+2] cycloaddition across the double bond of the alkene 

forming a cyclic 1,2,3-trioxolane intermediate, known as a primary ozonide (Criegee and 

Wenner, 1975). This bond-forming reaction is highly exothermic (~250 kJ mol-1) leaving 

the ozonide with a large excess of internal energy, causing it to rapidly decompose by one 

of two different channels; both reaction pathways involve the homolytic cleavage of an O – 

O bond and the remaining C – C bond, leading to the formation of two pairs of products; a 

carbonyl molecule and a Criegee intermediate (Figure 5.1). Criegee intermediates are all 

biradicals, meaning they contain two unpaired electrons and it has been hypothesised that 

this may give them zwitterionic characteristics (Su et al., 2013).  
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Figure 5.1: Alkene ozonolysis: formation of a primary ozonide via addition of ozone to the alkene 

double bond, decomposition to form a CI and Primary Carbonyl species and subsequent 

decomposition / stabilization of the excited CI. Adapted from Malkin (2010). 

 

All CIs can either be described as unsubstituted or substituted. The former describes only 

the simplest CI possible, ∙CH2OO∙, also commonly known as the C1 Criegee intermediate. 

The C1 Criegee is produced during the ozonolysis of ethene and terminal alkenes (i.e. 1-

alkenes). Larger (substituted) Criegee intermediates, which contain more than one carbon 

atom can be described as being either monosubstituted (R∙CHOO∙) or disubstituted 

(RR′∙COO∙). In monosubstituted CIs, like CH3CHOO (known as the C2 Criegee 

intermediate), there are two different Criegee conformations formed; syn- and anti-

 conformers (Figure 5.2). Interestingly, the zwitterionic nature of the Criegee intermediates 

hinders rotation around the central carbon atom causing the conformers exhibit distinct 

chemical properties. In fact, calculations predict that the barrier to interconversion between 

the conformers is ~160 kJ mol-1 (Kuwata et al., 2010). The final class of CIs are known as 

disubstituted Criegee intermediates, they differ from monosubstituted CIs as both end group 

are carbon-based chains (Johnson and Marston, 2008). However, as the results described in 

the subsequent chapters concern only the C1 and C2 Cis, so the focus of this chapter will be 

on the unsubstituted and monosubstituted CIs. 

javascript:popupOBO('CMO:0001669','B704260B')
http://www.chemspider.com/Chemical-Structure.6085.html
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Figure 5.2: A schematic to highlight the difference between syn- and anti- Criegee conformers. 

 

Once formed, Criegee intermediates can undergo two different types of reactions in the 

atmosphere: the first is decomposition and comes as a result of the excited nature of the 

nascent Criegee intermediate, which has sufficient energy to break up the CI (though not 

enough to fragment stable carbonyl species). Their alternative atmospheric fate is 

stabilisation via collisional quenching, forming stabilised Criegee intermediates (SCIs); the 

SCIs formed are thought to react readily with a number of trace gases in the atmosphere 

(Taatjes et al., 2012).  

For a long time the Criegee intermediate eluded detection, it is now thought that this was 

because CIs are formed slowly but react quickly, meaning low steady state concentrations 

are yielded from alkene ozonolysis experiments. The first direct measurement of the 

Criegee intermediate was made in 2008 at the Advanced Light Source (ALS) in Berkley, 

California. In this study, the C1 Criegee was generated from the chlorine-initiated, gas-

phase oxidation of dimethyl sulphoxide (DMSO, R5.1-5.2) and was monitored using 

synchrotron photoionization mass spectrometry.  

 (CH3)2SO + Cl  →  CH3SOCH2 +HCl (R5.1) 
   

 CH3SOCH2 + O2  →  CH3SO + CH2OO (R5.2) 

   
 

However, one problem with this method of Criegee production is that there is interference 

in the detection of the C1 Criegee from CH2S, as both have a mass of m/z = 46. To 

differentiate between these two species and to irrefutably prove the existence of CIs, the 

photoionization wavelength (supplied by the ALS synchrotron) was varied as these two 

species were known to have different ionization potentials. Figure 5.3 shows difference 

between the m/z = 46 photoionization efficiency spectrum from DMSO oxidation and the 

reference CH2S spectrum (Ruscic and Berkowitz, 1993). It is clear to see that at photon 
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energies above ~10 eV there is an extra species being ionized and contributing to the signal 

at m/z = 46 in DMSO oxidation, this signal is attributed to the ionization of CH2OO (Taatjes 

et al., 2008). This was (and still is) considered a major breakthrough within the field of 

atmospheric chemistry.  

 

Figure 5.3: Photoionization efficiency (PIE) spectrum of the m/z = 46 signal observed in the Cl-

initiated oxidation of DMSO, compared to the PIE spectrum of CH2S. The difference between the 

two spectra is thought to be ionization of the C1Criegee intermediate (Taatjes et al., 2008). 

 

Although this study allowed for the detection of the Criegee intermediates, it still did not 

yield large enough concentrations of the CH2OO, and hence a high enough signal-to-noise 

ratio, for the kinetic measurements to be made (Taatjes et al., 2008). In fact, it was not until 

a different CH2OO precursor was discovered that any further (direct) measurements were 

made. However, an alternative route to CH2OO formation has since been developed using 

diiodomethane photolysis in the presence of oxygen: 

 CH2I2 + hν (λ = 248 nm) →  CH2I + I (R5.3) 

   

 CH2I + O2  +  M → ICH2OO +  M (R5.4a) 

   

 CH2I + O2  →  CH2O + IO (R5.4b) 

   

 CH2I + O2  →  CH2OO + I (R5.4c) 

   

Similar reaction schemes using diiodomethane photolysis had previously been used in 

studies exploring the importance of halogen chemistry at the marine boundary layer (Enami 

et al., 2004, Eskola et al., 2006, Gravestock et al., 2010); however, at this time the products 

of this reaction scheme were not fully understood and its potential as a precursor for 

CH2OO was not appreciated.  
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This method was first exploited for CI production by Welz et al. (2012) using the same 

PIMS detection pioneered by Taatjes et al. (2008), critically this method of Criegee 

intermediate generation forms significant concentrations of CH2OO, and hence allowed for 

kinetics of CIs with various atmospherically relevant species to be probed (Welz et al., 

2012). This was a vital discovery as it gave an insight as to the atmospheric fates of these 

elusive biradical species. Note: the atmospheric reactions of CIs are discussed in more 

detail in the subsequent section of this chapter (Section 5.2). 

Following this discovery there have been a number different studies which have utilised this 

method of CI production to develop a variety of techniques to directly monitor CH2OO 

(Beames et al., 2012, Sheps, 2013, Lee, 2015, Su et al., 2013). The work by Beames et al. 

(2012) probed the B ← X transition of CH2OO species with UV absorption coupled to a jet-

cooled photoionization mass spectrometry (λ = 118 nm). Using this technique an absorption 

spectrum was determined by measuring the UV-induced depletion at m/z = 46 (CH2OO was 

the only possible isomer present at photoionization wavelength, 10.5 eV, for m/z = 46). 

From these experiments a broad absorption between 280-420 nm was observed, with a 

maximum measured at 335 nm. Furthermore, work by Lehman et al. (2013) observed that 

the dissociation energy for the CH2OO → HCHO reaction was greater than typically 

required for O-O single bonds (e.g. CH3OOH); however this can be explained by the 

conjugated (zwitterionic) nature of the Criegee intermediate. Sheps (2013) used time-

resolved cavity-enhanced absorption spectroscopy to produce a UV spectrum of the C1 

Criegee intermediate; in addition, the time-resolved capabilities of this set-up used made it 

possible for the kinetics of reaction between CH2OO + SO2 to be measured (Sheps, 2013). 

Both these studies yielded similar UV spectra for CH2OO, however, under the thermal 

conditions of Sheps work the maxima is shifted longer wavelengths (Figure 5.4). (Lehman et al., 2013) 
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Figure 5.4: UV absorption spectrum of CH2OO. Blue symbols and the dotted line are the action 

spectrum of Beames et al., scaled by 0.5 to match the absorption spectrum on the high-energy side 

(Sheps, 2013). 

 

In other work, via the same production scheme, Su et al. (2013) used FTIR to map the infra-

red spectrum of CH2OO. Using this technique some interesting observations about the C1 

Criegee intermediate were made; it was noted that O-O stretching mode of CH2OO was 

~200 cm-1 weaker than the corresponding mode in CH3OO. Conversely, the C-O stretching 

mode is significantly larger than its counter-part in CH3OO. The weakening of the O-O 

bond and the strengthened C-O are a distinct indicator of zwitterionic nature of Criegee 

intermediates. 

5.2 Criegee Intermediates in the Atmosphere 

Having a full appreciation of alkene ozonolysis and the subsequent Criegee intermediates 

formed is thought to be crucial to our understanding of, not only, tropospheric ozone 

budgets, but also tropospheric levels of volatile organic compounds, organic acids and even 

secondary organic aerosols (Marston, 2012). Therefore, even though Criegee intermediates 

have only a low atmospheric concentration ([CI] ≈ 103 – 105 molecule cm-3 (Percival et al., 

2013, Newland et al., 2015)), it is still imperative that we have a thorough understanding of 

the reactions of CIs. 

It is understood that nascent activated CIs can undergo several different reactions upon 

formation; these reactions can be separated into two categories: unimolecular reactions and 

collisional stabilisation. It should be noted that both these reaction channels can yield OH, 

but do so on different timescales (Liu et al., 2014).  
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5.2.1 Unimolecular Reactions 

All nascent Criegee intermediates are hypothesised to undergo similar unimolecular 

reactions, where it is postulated that dissociation of the CI will yield radical fragments that 

include OH (Figure 5.5) (Vereecken et al., 2012, Donahue et al., 2011). This makes 

understanding the chemistry of the Criegee intermediate of fundamental importance as the 

OH radical is known to largely control the oxidising capacity of the lower atmosphere (see 

Chapter I, Section 1.3).  

 

Figure 5.5: A simplified reaction mechanism showing formation of Criegee intermediates and their 

subsequent reactions. Adapted from Vereecken et al., 2012. 

 

In fact, alkene ozonolysis is thought to be an important source of night-time OH, expected 

to be responsible for approximately 65% of OH formed at night (Geyer et al., 2003). 

Furthermore, modelled data from the PUMA campaign has indicated that in an urban 

setting (Birmingham, UK) alkene ozonolysis will contribute significantly to the formation 

of HOx radicals. This is particularly apparent in winter as solar photolysis rates are low and 

it was calculated that the majority of OH (~95 %) is produced via the ozonolysis of alkenes 

(Harrison et al., 2006, Heard et al., 2004).  

Figure 5.5 shows the two primary channels for unimolecular reactions of the Criegee. The 

first of these reactions channel is caused by tautomerisation of the Criegee intermediate to 

an excited vinyl hydroperoxide (VHP) species which decomposes readily form a vinyloxyl 

radical and OH. This channel was first postulated by Niki et al. (1987) and is proposed to be 

the major reaction channel for syn-substituted CIs as it has a lower energy barrier than the 

dioxirane channel. However, it is only a minor channel for the C1 Criegee as the 

isomerisation to the VHP species occurs favourably via a five-membered transition state, 
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but not a four-membered one (Figure 5.6). It should be noted that the C1 Criegee 

intermediate does not actually form the vinyl hydroperoxide species shown in Figure 5.6b, 

but instead form a single carbon dioxirane species (Kroll et al., 2002).  

 

Figure 5.6: a) highlights CI and the subsequent VHP readily tautomerise via a 5-membered cyclic 

transition state; b) indicates the same mechanism cannot occur for the C1 Criegee. 

 

Alternatively, Criegee decomposition can go via a dioxirane channel which eventually 

reacts to form an energetically stable ester, RC(O)ORꞌ or a carboxylic acid. Indirect 

evidence has been documented which suggests that this decomposition channel is 

significant for the C1 Criegee species. Work done by Horie and Moortgat (1998) identified a 

number of the products from this reaction pathway using Fourier transform infrared 

spectroscopy (FTIR) including CO2, CO and formic acid, the simplest of the organic acids. 

More interestingly, the intermediate dioxirane species has also been observed for ethene 

ozonolysis using microwave spectroscopy at low temperatures (Lovas and Suenram, 1977). 

This work included an isotopic labelling study (13C and 2H) to distinguish the dioxirane 

species from other possible products (such as performic acid). 

A number of studies have independently identified OH as a product of C1 Criegee 

dissociation using both direct (Kroll et al., 2001) and indirect (Atkinson et al., 1992) 

monitoring techniques. The direct measurements were done using an off-resonance laser 

induced fluorescence (LIF) technique to detect the hydroxyl radicals at 

approximately 308 nm (Wennberg et al., 1994). It should be noted that the production of 

OH was an unexpected result as the C1 Criegee cannot tautomerise to a vinyl hydroperoxide 

and so was expected to have an OH yield (YOH) of zero. To establish the mechanism of OH 

production a series of experiments were done using monosubstituted anti-Criegee 

intermediates, which were also assumed to have small OH yields (Kroll et al., 2002). For 

this study the CIs were selectively deuterated in the anti-position to investigate how this 

affected the YOH, and give insight to the reaction mechanism (Figure 5.7). 
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Figure 5.7: A schematic to show the possible mechanisms of OD formation. From Kroll et al., 

(2002). 

 

The results of these experiments showed that the total YOH/OD was unchanged upon 

deuteration of the Criegee. This result suggests that the second reaction pathway is the most 

likely as the rate determining processes in reactions (1) and (3) involve a 

hydrogen/deuterium transfer, and therefore should be altered by the deuteration of the CI. 

However, for reaction (2) the rate determining step involves a ring-closure and should 

independent of any kinetic isotope effects (Kroll et al., 2002).  

One final interesting trend of the unimolecular reactions of the Criegee intermediates is the 

observed dependence of OH yields upon alkene size. As can be seen in Table 5.1, for the 

smaller CIs the IUPAC (2005) recommended OH yields are relatively small (for CH2OO, 

YOH = 0.16); however, for the larger Criegee intermediates the YOH is close to unity (Johnson 

and Marston, 2008, Liu et al., 2014). Notably, this is that it is in accordance with the 

postulated mechanism for Criegee dissociation. For the C1 Criegee, OH is only expected to 

be a minor product due to the high stability of formic acid; hence a low YOH would be 

predicted. Conversely, for the larger CIs, OH is expected to be a major product because the 

isomerism to the excited vinyl hydroperoxide is favoured, a species which will readily 

decompose generating an OH radical. It should be noted that this is only a general trend and 

there are anomalies and certain aspects have been overlooked, for example, the varying YOH 

of Z- and E- conformers of 2-butene.  

Table 5.1: IUPAC-recommended OH yields for the alkene ozonolysis reactions (2005). 

Alkene OH yields 

Ethene 0.16 ± 0.03 

Propene 0.34 ± 0.02 

Isoprene 0.26 ± 0.03* 

Z-2-butene 0.33 ± 0.04 

E-2-butene 0.64 ± 0.09 

2-Methylpropene 0.62 ± 0.07 

2-Methyl-2-butene 0.88 ± 0.07 

2,3-Dimethyl-2-butene 0.90 ± 0.13 

*Result made since the publication of the IUPAC-recommended OH yields (Malkin et al., 2010a). 
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5.2.2 Stabilised Criegee Intermediates 

The alternative atmospheric fate of a Criegee intermediate formed from alkene ozonolysis is 

collisional quenching to form a stabilised Criegee intermediate (SCI). Experimental 

observations suggest that approximately 15 – 60 % of CIs formed are stabilised (Rickard et 

al., 1999, Hasson et al., 2001a, Drozd and Donahue, 2011, Berndt et al., 2012); the work 

done by Donahue and co-workers confirmed, unsurprisingly, that the yield of stabilised 

Criegee intermediates (YSCI) is pressure dependent. In addition to this, two of the studies 

noted a correlation between the YSCI and the size / complexity of the respective CI: 

typically, the simpler CIs appear to be more readily stabilised (Rickard et al., 1999, Hasson 

et al., 2001a). This result is somewhat counterintuitive as it might be expected that smaller 

CIs which have fewer bonds to distribute the nascent energy between would decompose 

more readily and hence have a lower YSCI. However, this result can be justified if the 

stabilised Criegee intermediate yields are compared to the OH yields from unimolecular CI 

reaction (Hasson et al., 2001a); upon comparison there is a clear anti-correlation between 

YSCI and YOH. Unsurprisingly, the same logic used to account for Criegee intermediate OH 

yields can be extended to rationalise YSCI.   

Figure 5.5 highlights that Criegee intermediates can tautomerise to form a vinyl 

hydroperoxide (VHP) via the mechanism shown in Figure 5.5. From the ozonolysis of 

propene a pair of syn- and anti- monosubstituted Criegee intermediates are formed. As 

shown in Figure 5.6a tautomerisation of the syn-C2 Criegee occurs passing through a five-

membered cyclic transition state, form a VHP, giving the C2 Criegee a moderate YOH of 

0.34 ± 0.02. However, the formation of this vinyl hydroperoxide directly reduces the yield 

of stabilised Criegee intermediates (YSCI ≈ 0.2) (Alam, 2011). This is further highlighted in 

Figure 5.6b, for the C1 Criegee tautomerisation is far less favourable as four-membered 

cyclic transition state is more strained and the VHP is unstable. Therefore, giving the C1 

Criegee only a small yield of hydroxyl radicals (YOH = 0.16 ± 0.03), but a significant yield 

of stabilised CIs (YSCI = 0.39 ± 0.08) (Hasson et al., 2001b).  

5.2.2.1 SCI Reactivity 

Measurements of stabilised CI reactions have been made over a number of years (Johnson 

et al., 2001, Fenske et al., 2000). However, until recently (Welz et al., 2012) these 

measurements were all indirect as the Criegee biradical itself was not being monitored. 

From the work of Johnson et al. (2001) it was assumed that the reactions of SCI with trace 

species were generally very slow and therefore, due to its high atmospheric concentration, 

H2O would be the sole sink for the SCIs in the troposphere. However, recent work has 

demonstrated an enhanced reactivity for both the C1 and C2 Criegee intermediates towards 
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certain atmospheric trace gases (Welz et al., 2012, Taatjes, 2013, Welz et al., 2014). It is 

clear that more work is needed to understand the significance of these more minor 

atmospheric channels and in the following chapters selected SCI reactions have been 

investigated. In Chapter VI the reactivity of C1 and C2 SCIs with SO2 and NO2 is probed 

and in Chapter VII the reactivity of CH2OO with formic and acetic acid is examined. In 

both of these subsequent chapters the experiments were performed using the PLP-PIMS 

technique described in Chapter II.  

Lastly, the subsequent chapters of this thesis when discussing the reactivity of the 

‘stabilised Criegee intermediates’, they are often referred to as simply ‘Criegee 

intermediates’. It should be noted that this is just an abbreviation and all of the kinetics and 

mechanistics discussed actually describe the reactivity of C1 and C2 stabilised Criegee 

intermediates. 
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6. Kinetic Studies of Criegee Intermediates with SO2 and NO2 

Recent, direct studies have shown that the reactivity of Criegee intermediates (CIs) with the 

trace gas species SO2 and NO2 are several orders of magnitude greater than earlier 

evaluations (Welz et al., 2012, Johnson et al., 2001). Within this thesis chapter is a detailed 

investigation of the reactivity of both the C1 and C2 Criegee intermediates with both SO2 

and NO2. The results of this study also indicate an enhanced Criegee reactivity with CI + 

SO2 rate coefficients of kC1SO2 = (3.8 ± 0.2) 10-11 cm3 molecule-1 s-1 and 

kC2SO2 = (1.8 ± 0.3) × 10-11 cm3 molecule-1 s-1 obtained for the C1 and syn-C2 Criegee 

intermediates respectively; these measurements are in good agreement with other recent 

measurements (Welz et al., 2012, Taatjes, 2013). Furthermore, some information about the 

products of the C2 CI reaction are also reported, as by using the PIMS technique it was 

possible to observe a species at m/z = 44 forming on the same time-scale as the CI decay. 

The products observed are suspected to be acetaldehyde; notably, the co-products of this 

reaction is SO3 and suggests that the reaction could lead to the oxidation of sulphur from the 

S(IV) state to the S(VI) state in the atmosphere.  

Additionally, enhanced rate coefficients of kC1NO2 = (1.2 ± 0.3)  10-12 cm3 molecule-1 s-1 and 

kC2NO2 = (7.0 ± 1.5) × 10-13 cm3 molecule-1 s-1 for the C1 and syn-C2 Criegee intermediates 

were determined. Significantly, these evaluations are approximately half an order of 

magnitude lower than the rate coefficients measured in Welz et al. (2012) and Taatjes et al. 

(2013); however, the value of kC1NO2 does compare well to the work of Stone et al. (2014) 

measured using an indirect laser induced fluorescence technique. 

6.1 CH2OO Reactivity  

6.1.1 Atmosphere reactions of the C1 Criegee intermediate 

Despite their low tropospheric concentration ([CI] ≈ 103-105 molecule cm-3) (Percival et al., 

2013, Newland et al., 2015), stabilized Criegee intermediates have been proposed as 

potential atmospheric oxidants (Mauldin et al., 2012). Prior to the work of Welz et al. 

(2012), it was understood that the C1 Criegee exhibited limited reactivity towards other 

trace gases in the atmosphere. Therefore, it was assumed that the dominant sink of CH2OO 

in the troposphere would be its removal by H2O (due to the abundance of H2O in the 

atmosphere). However, recent work has measured enhanced reactivity for both the C1 + C2 

Criegee intermediates towards certain atmospheric trace gases. In the work of Welz et al. 

(2012), the kinetics of the C1 Criegee intermediate was directly probed using 

photoionization mass spectroscopy (PIMS) at low pressure (p = 4 Torr). During these 
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experiments, the Criegee intermediates were generated by the photolysis of CH2I2 in the 

presence of O2 (R6.1-6.2).  

 CH2I2 + hν  →  CH2I + I (R6.1) 

   

 CH2I + O2  →  CH2OO + I (R6.2) 

   

In addition to verifying the existence of the C1 Criegee intermediate, this study also 

demonstrated that CH2OO reacts much more readily with certain trace gases (NO2 and SO2) 

than previously thought (Welz et al., 2012). In fact, the rate coefficient of CH2OO with SO2, 

kC1SO2, was found to be approximately four orders of magnitude larger than those previously 

documented in the literature (see Table 6.1). This result not only highlighted the potential 

importance of SCI reactions in the atmosphere, but also that there is much still unknown 

about the chemistry of these biradicals.  

Table 6.1: A selection of bimolecular rate coefficients for the reaction of CH2OO + SO2 as a 

function of pressure. Errors are ±1σ for Welz et al. (2012), Liu et al. (2014) and Stone et al. (2014) 

and 25% for work by Johnson et al. (2001). 

Pressure  / Torr kC1SO2  / 10-14 cm3 molecule-1 s-1 Reference 

760 0.4 ± 0.1 (Johnson et al., 2001) 

4 3900 ± 700 (Welz et al., 2012) 

1.5a 3600 ± 500 (Stone et al., 2014) 

50 3620 ± 100 (Liu et al., 2014) 

250 3680 ± 200 (Stone et al., 2014) 
a Measurements taken using PIMS in Leeds; the impetus for this body of work. 

 

The enhanced reactivity of the C1 Criegee intermediate has since been verified by a number 

of different studies, including work done at the University of Leeds (Stone et al., 2014). In 

this study, the kinetics of the C1 CI were measured using two different methods: laser-

induced fluorescence (LIF) spectroscopy of HCHO; and pulsed laser photolysis – 

photoionization mass spectrometry (as described in Chapter II), where the Criegee 

intermediate was directly monitored. In Stone et al. (2014), it was demonstrated that the 

Criegee reactivity was independent of pressure for the reactions of NO2 and SO2. There was 

also no significant change in the yield of HCHO as a function of pressure; this is in keeping 

with the observed independence of the kinetics as a function of pressure. This result 

indicates that there is no collisional stabilisation of the secondary ozonide intermediates 

(SOZ) for the SO2 and NO2 reaction with the C1 Criegee intermediate (Figure 6.1). As a 

100% yield of HCHO was measured for these reactions, 100% yields of SO3 and NO3 are 

also implied  (Stone et al., 2014). Furthermore, the result from  the C1 CI + SO2 study 

agrees with the theoretical calculations of Vereecken et al. (2012) and indicate that this 

reaction could therefore play a small, but significant, role in the oxidation of SO2 to SO3 

and may lead to H2SO4 production in forested areas (Figure 6.1) (Mauldin et al., 2012).  
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NO3 has previously been identified as a product from the CH2OO + NO2 reaction (Ouyang 

et al., 2013); this reaction is also of particular interest given the importance of the NO2 in 

the troposphere (see Chapter I, Section 1.3.2) and the importance of nitrate radical as a 

night time oxidant (Brown and Stutz, 2012). 

 

Figure 6.1: Proposed atmospheric oxidation mechanism for Criegee intermediates, adapted from 

Mauldin et al. (2012). The reaction highlighted in red is the reaction investigated in this chapter, 

the blue reaction is highlights the pathway leading to H2SO4 formation.   

 

To fully comprehend the atmospheric importance of the trace gases on Criegee chemistry, 

the reactivity of the C1 Criegee intermediate towards water and its dimer must be 

understood. Previously it was assumed that any thermalised Criegee intermediates would 

react with water, or its dimer, (H2O)2. However, the enhanced reactivity of SCIs with trace 

gas species could potentially be important as minor sinks for SCIs in the atmosphere. From 

previous studies it was understood that the CI + H2O reaction was extremely slow, 

kC1H2O ≤ 1 × 10-16 cm3 molecule-1 s-1 (Johnson et al., 2001). However, in light of the work 

done by Welz et al. (2012) this reaction has, again, been the focus of many studies in recent 

years; amongst these is a series of experiments completed using the EUPHORE reaction 

chamber (Newland et al., 2015). In this study alkene ozonolysis was used to investigate 

Criegee reactivity and a relative rate approach was employed to probe the CI + H2O 

reaction by comparing O3 loss rates at different relative humidities (at a constant [SO2]). 

This study estimates a CH2OO + H2O rate coefficient of (1.3 ± 0.4) × 10-15 cm3 molecule-1   

s-1, and (5.5 ± 7.0) × 10-13 cm3 molecule-1 s-1 for the reaction between CH2OO and the water 

dimer, (H2O)2 (Newland et al., 2015). These rate coefficients are significant larger than 

those previously measured and suggest that the removal by water is the main sink for CIs in 

the atmosphere. Work by Lewis et al. (2015) directly monitored the C1 Criegee biradicals 

using a time-resolved UV absorption (TRUVA) at T = 295 K. In this study a quadratic 
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dependence on [H2O] was observed, which suggests that the sole sink for C1 CIs is the 

reaction with the water dimer (Lewis et al., 2015); a rate coefficient of  kC1+(H2O)2 = 

(4.0 ± 1.2) × 10−12 cm3 molecule−1 s−1 was measured for this reaction (Figure 6.2). In 

addition to this, a strong negative temperature dependence has been observed for the 

CH2OO + (H2O)2  reaction, which implies that the rate coefficient will be even larger in 

many regions of the atmosphere, where temperatures are typically colder than 295 K (Smith 

et al., 2015). It should be noted that Smith et al. (2015) also report a large rate coefficient 

for the C1 CI and water dimer reaction of kC1+(H2O)2 = (7.4 ± 0.6) × 10−12 cm3 molecule−1 s−1 

at 295 K. These results are all indicative that the reaction with the water dimer is the major 

atmospheric sink for CH2OO (Lewis et al., 2015).  

 

Figure 6.2: A bimolecular plot shows the quadratic dependence on [H2O], implying that the C1 CI reacts 

with the water dimer, (H2O)2.  

 

Not all of the literature is in complete agreement; a study by Stone et al. (2014) using LIF 

spectroscopy measured a much smaller rate coefficient for the reaction CH2OO and water, 

kC1H2O < 9 × 10-17 cm3 molecule-1 s-1 (Stone et al., 2014). Although it is possible that there 

were other reactions removing HCHO from the system, hence interfering with the CH2OO 

+ H2O reaction. However, if this evaluation of the rate coefficient is correct, trace gases 

such as SO2 and NO2 could be small sinks for Criegee intermediates in arid environments. 

Moreover, in the certain environments CIs may also prove to be significant sinks for SO2 

and NO2. 

Clearly, more work is still necessary to understand the significance of some of the more 

minor atmospheric channels; in the following sections of this thesis the reactivity for the 

reactions of the C1 (and C2) Criegee intermediates with SO2 and NO2 will be reported and 
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the atmospheric implications of these finding will be discussed. However, before 

proceeding with the specific results from this study, the experimental conditions used for 

the individual experiments will be considered. 

6.1.2 Experimental  

The kinetics of the C1 Criegee intermediate with SO2 and NO2 was studied by directly 

monitoring the C1 CI (m/z = 46) using laser flash photolysis coupled to time-resolved mass 

spectrometry; in depth details of the PIMS technique can be found in Chapter II.   

For the C1 studies a CH2I2/O2/He/trace gas mixture was flowed through the reactor via 

calibrated mass flow controllers (MFCs); note that the trace gas added was kept in excess of 

[CH2OO] to ensure pseudo-first-order conditions ([trace gas] = 1013-1014 molecule cm-3). 

Moreover, all the experiments were done using the PIMS technique and were conducted at 

low pressures (1.0-2.5 Torr). Initially, there were problems introducing the diiodomethane 

(Sigma-Aldrich, 99%) into the reactor through the MFC. To ensure a reproducible amount 

of CH2I2 was added a bubbler, placed after the MFC, was used (Figure 6.3). The flow of 

helium (BOC 99.999%) from the MFC and the flow of gases (He and CH2I2) out of the 

bubbler were balanced using a needle valve to ensure that only small amounts of the 

diiodomethane ([CH2I2] < 1-10 × 1013 molecule cm-3) were added during the experiments. 

This ensured that the majority of the gas exiting the bubbler was helium, with only the 

diluted vapours of the diiodo-species being introduced into the reactor. However, initially it 

was difficult to consistently control concentrations with this technique and it is thought that 

during some preliminary experiments the [CH2I2] was significantly higher than 

1  1014 molecule cm-3. Neat O2 (BOC 99.999%) was also added to generate the CH2OO 

biradicals (R6.1-6.3). There are other possible reactions which the CH2I radicals can 

undergo, however, these are pressure dependent and it is predicted that at the low pressures 

used in this study, R6.2 is the dominant channel (Gravestock et al., 2010, Stone et al., 

2013). Moreover, As the experiments were conducted at low pressure the concentration of 

ICH2OO in the system was predicted to be negligible (Stone et al., 2013).  

 CH2I2 + hν  →  CH2I + I (R6.1) 

   

 CH2I + O2  ⇌  ICH2O2* →  CH2OO + I (R6.2) 

   

 CH2I + O2  ⇌  ICH2O2*  + M  →  ICH2O2 +  M (R6.3) 
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Figure 6.3: A schematic representation of the bubbling apparatus used to introduce diiodo-

compounds into the reactor.  

 

In the experiments the C1 Criegee intermediates formed were then reacted with either SO2 

or NO2. Typically 2 - 4% samples of SO2 and NO2 (Sigma-Aldrich: 99.9%, 99.5% 

respectively) were prepared in He and stored in covered glass bulbs. The reactions were 

initiated by pulsed laser photolysis using an excimer laser ( = 248 nm, ~ 50 mJ cm-2) and 

the gas sampled was photoionised using  = 118 nm light (for details see Chapter II). At 

this photoionization energy the only CH2OO isomer ionized is the C1 Criegee intermediate 

(Welz et al., 2012). 

As described in Chapter II all of the experiments were controlled using a LabVIEW™ 

program, designed specifically for data collection and storage from the PIMS apparatus 

(Baeza-Romero et al., 2012). The data collected from individual traces were then analysed 

using OriginPro graphical software to describe the time-resolved ion signal and were fitted 

using the equations outlined below (E6.1-6.3). A pseudo-first order bimolecular plot of the 

data-set was produced by plotting these data points (see Figure 6.4). 

 
𝑀1 =

(𝑆C1height × 𝑘′
CH2I+O2 × 𝑘samp)

(𝑘′C1total −  𝑘′CH2I+O2)
 (E6.1) 

   

 
𝑀2 =  

𝑒−𝑘′
CH2I+O2× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
CH2I+O2)

 - 
𝑒−𝑘′

C1total× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
C1total)

 (E6.2) 

   

 𝑆CH2OO = 𝑀1 × 𝑀2 + 𝑆bg (E6.3) 

   

where SCH2OO is the time-resolved Criegee signal; SC1height is the maximum height of SCH2OO; 

k’CH2I+O2 is the rate of CH2OO formation; k’C1total is the total loss rate of CH2OO; ksamp is the 

rate of transportation of the gas to the mass spectrometer (this was held constant during data 

analysis, ksamp = 30000 s-1); t is time; and Sbg represents the background signal measured for 

the individual data traces. 
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6.1.3 CH2OO + SO2 

The following section will detail the subsequent reaction between the stabilised C1 Criegee 

intermediate, CH2OO, and SO2 (R6.4). This reaction is expected form an intermediary 

secondary ozonide, which readily dissociates into HCHO and SO3 at low pressures (R6.4a) 

(Vereecken et al., 2012). 

 CH2OO + SO2  →  Products (R6.4) 

   

 CH2OO + SO2  → SOZ* → HCHO + SO3 (R6.4a) 

   

Using the PIMS technique it is possible to monitor the formation and subsequent decay of 

the C1 stabilised Criegee intermediate, which can be measured at m/z = 46 in the mass 

spectrometer. At first, several problems were encountered whilst trying to observe the C1 

Criegee biradical; for example there were issues introducing diiodomethane into the PIMS 

set-up (see section 6.1.2). Initially, the total pseudo first-order loss rate of CH2OO (k’C1total) 

was extremely high, even in the absence of any SO2, typical1y k’C1total > 3000 s-1 at 

[SO2] = 0 molecules cm-3. To prevent confusion, the y-intercept of the bimolecular plot of 

the CH2OO + SO2 reaction will henceforth be referred to as k’other. k’other not only describes 

the loss from the Criegee self-reaction but also any other losses of CH2OO from the system, 

for example the loss of CI to the walls of the reactor. Note that: k’other ≡ k’C1total in the 

absence of SO2. 

 2 CH2OO  →  2 HCHO  +  O2 (R6.5) 

   

 CH2OO  → walls (R6.6) 

   

At the time of these preliminary experiments, the wall losses (R6.6) were known to be large 

(1000 s-1 > kwall > 2000 s-1) due to contamination in the system from amino-compounds used 

in other work, and this partially explains the high k’other observed. However, despite taking 

the high wall loss rate into account, the observed k’other indicates that the initial Criegee 

intermediate concentration, [CH2OO]0, was very high ([CH2OO] ≈ 2 1013 molecule cm-3), 

suggesting that self-reaction was contributing to the overall CI loss. Concentrations of 

CH2OO this high bring into question the pseudo first-order nature and hence the validity of 

some of the earlier experiments completed during this study (Figure 6.4). Note: [CH2OO] 

was estimated assuming kC1SR ≈ 7.1 10-11 cm3 molecule-1 s-1, an averaged value of recently 

reported rate coefficients of the CH2OO self-reaction, kC1SR (Buras et al., 2015, Ting et al., 

2014, Chhantyal-Pun et al., 2015). 
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Figure 6.4: An early pseudo first-order bimolecular plot obtained in this study: note the large y-

intercept.  The error quoted is propagated using the random errors quoted from the experiments 

(1σ) and a 10% systematic error. Confidence limits quoted at 1σ. 

 

Even though a sensible evaluation of kC1SO2 could be determined from the data shown in 

Figure 6.4, the quality of the data was generally poor.  The linear regression fit shown in 

Figure 6.4 was weighted using the individual error of the k’C1total calculated from the non-

linear equations E6.1-6.3; the same fitting procedure was used throughout this chapter. As 

can be seen from Figure 6.5 there are several different ways in which CH2OO is lost in the 

system, and it was recognised that in order to improve the quality of the data collected, both 

the wall losses and initial concentrations of the C1 Criegee intermediate must be reduced to 

minimise k’other. Much time was therefore dedicated to optimizing the CH2OO detection in 

the mass spectrometer, and minimising the initial concentration of CH2I2. In addition the 

walls of the flowtube were cleaned and a recoated using halocarbon wax. 
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Figure 6.5: Diagram of the CH2OO + SO2 reaction scheme.  

 

The quality of the Criegee signal (SCH2OO) was further improved by increasing the [O2], thus 

making CI formation very fast (kCH2I+O2 ≈ 20,000 s-1), this both enhanced the amplitude of 

SCH2OO and also made the data analysis more facile. An example of the CH2OO signal 

observed (m/z = 46) can be seen in Figure 6.6. The data from this plot yield signal-to-noise-

ratios (SNR) of approximately 30; this was not atypical for the data set as a whole, once the 

reaction system was better understood, and was well above the minimum signal-to-noise 

ratio required for detection (3 < SNRmin).  
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Figure 6.6: An example of time-resolved C1 CI signal, SCH2OO,  in the presence and absence of SO2. 
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As the technique was refined, the total Criegee loss rates (in the absence of SO2) were 

slowly reduced and eventually values of k’other < 250 s-1 were typically met. Interestingly, 

closer analysis suggests that, even for this relatively low value of k’other, the CH2OO decays 

looked to be mixed 1st and 2nd order, in the absence of SO2 (Figure 6.7). Moreover, the first 

order analysis still gave a better fit to the data, implying that the loss contribution from kwall 

was still greater than kC1SR in these experiments.  
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Figure 6.7: The upper graph is a raw data set for CH2OO decay in the absence of any SO2 (given in 

arb. units).  The middle graph is a first order plot of ln(SCH2OO) vs. time, here, the linear fit to the 

data is good, suggesting the decay trace still is more first order in nature than second order. The 

lower graph is a second order plot of 1/(SCH2OO) vs. time and the linear fit to data is not very good, 

implying the second order characteristics are small. Note: SCH2OO is equivalent to the observed 

experimental signal from CH2OO. 

 

To try and gain a better understanding of both the experimental conditions, and the mixed 

order nature of the data, a Kintecus model was created (Table 6.2 + 6.3) to describe a 

simplified version CH2OO system (i.e. [SO2] = 0 molecule cm-3) (Ianni, 2002). In this 

system the only loss processes considered are the CH2OO self-reaction (kC1SR[CH2OO]) and 

k’FOL, where k’FOL is the combined rate of all the first-order loss processes in the system 

(clearly, this excludes the rate coefficient for self- reaction, kC1SR, and the CI + SO2 rate 

coefficient, kC1SO2). The sum of these components must equal the total loss rate CH2OO 

observed (k’other). Initially, the model assumed that the CI loss rate was entirely second-

order and k’FOL was equal to zero; this led to an estimated initial CH2OO concentration of 
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[CH2OO]0 ≈ 2.8 1012 molecule cm-3. Subsequently, the first-order component (k’FOL) was 

incrementally increased until k’FOL= 150 s-1 ([CH2OO] ≈ 0.8 1012 molecule cm-3). The 

output from these models were then scaled and plotted alongside some of the raw data 

collected (see Figure 6.8).  

Table 6.2: Shows the simple reaction scheme used for the Kintecus simulations. 

Reaction  Rate coefficient 

CH2I + O2  →  CH2OO + I kCH2I+O2 = 1.8 10-12 cm3 molecule-1 s-1 

CH2OO + CH2OO →  2 HCHO +  O2 kC1SR = 7.1 10-11 cm3 molecule-1 s-1 

CH2OO →  loss 0 < k’FOL (s-1) <150 

 

Table 6.3: Highlights the initial concentrations of the different species involved. 

Species      Initial concentration / molecule cm-3 

CH2I  (0.8-2.8) 1012  

O2 1.0 1016  

CH2OO 0 

SO2 0 
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Figure 6.8: A plot of some raw CH2OO data (where [SO2] = 0 molecule cm-3), additionally the 

scaled models simulated using the Kintecus software are also shown.  

 

All of the Kintecus simulations do a reasonable job at fitting the raw data, however, it is 

clear the best fittings to the data correspond to those more first-order in their nature. The 

Kintecus models indicate that the initial Criegee intermediate concentrations, [CH2OO]0, 

could conceivably be below 1.0 1012 molecule cm-3. However, a more conservative 

estimate of [CH2OO]0 ≈ (1.5±0.5) 1012 molecule cm-3 is recommended. Crucially, this 

means that the system can be considered to be under pseudo first-order conditions for [SO2] 

as low as ~1.5 1013 molecule cm-3. 
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Figure 6.9: A bimolecular plot of the CH2OO + SO2 reaction. The red line is a weighted linear fit to 

the data; the confidence limits shown are quoted to 1σ level; the error quoted is propagated using 

the random errors quoted from the experiments and a 10% systematic error. 

 

Figure 6.9 shows a bimolecular plot for the CH2OO + SO2 reaction with visible 

improvements in the data quality; firstly the y-intercept is far smaller (lower [CH2OO], less 

Criegee self-reaction and a lower kwall). Secondly, the scatter of the individual data points is 

less. It should be noted that for the analysis it was assumed that the initial concentration of 

CI was the same for all of the experiments performed in a given data set. This is thought to 

be a valid postulation as experiments where [SO2] = 0 molecule cm-3 were made randomly 

during the course of each data set, were self-consistent. With this assumption, k’other is 

constant and the gradient of the bimolecular plot is equivalent to kC1SO2. A summary of all 

of the experiments conducted in this study is presented in Table 6.4, all of the measured rate 

coefficients are in excellent agreement with each other, despite being collected over the 

course of several years.    

Table 6.4: kC1SO2 values obtained from this study. The data set named 11/2015b was taken at low 

SO2 concentrations, [SO2] < 8 1013 molecule cm-3. *This rate coefficient was excluded from the 

average, see text. 

Date of Experiments kC1SO2 (10-11 cm3 molecule-1 s-1) Level of Uncertainty 

05/2013 3.6 ± 0.5* 1σ 

01/2014 3.7 ± 0.4 1σ 

07/2015 4.0 ± 0.6 1σ 

11/2015a 3.8 ± 0.4 1σ 

11/2015b 3.7 ± 0.4 1σ 

Average 3.8 ± 0.2 1σ 
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The average value of kC1SO2 quoted in Table 6.4 excludes the data from May 2013 as it is 

thought that pseudo first-order conditions were not met for all of these experiments. From 

this work an average bimolecular rate coefficient of kC1SO2 = (3.8 ± 0.2) 10-11 cm3 

molecule-1 s-1 was measured. This value is in good agreement with many of the recently 

measured values of kC1SO2 (Table 6.5). It should be noted that all of the errors quoted were 

determined by propagating the random errors obtained from the bimolecular plots (1σ) with 

a systematic experimental error of 10%.  

Table 6.5: A selection of rate coefficients, k, for the CH2OO + SO2 reaction measured using a 

variety of different techniques. Where: GC–FID = gas chromatography with flame ionization 

detection; UVA = ultra-violet absorption; CRDS = cavity ring down spectrometry. *Total CH2OO 

removal rate measured in the presence of low SO2, [SO2] < 7 × 1012 molecule cm-3.  

Technique k/ 10-11 cm3 molecule-1 s-1 Reference 

GC-FID 0.0004 ± 0.0001 (Johnson et al., 2001) 

PIMS 3.9 ± 0.7 (Welz et al., 2012) 

LIF and PIMS 3.42 ± 0.50 (Stone et al., 2014) 

LIF 3.53 ± 0.29 (Liu et al., 2014) 

Time resolved UVA 4.1 ± 0.3 (Sheps, 2013) 

CRDS  3.80 ± 0.04 (Chhantyal-Pun et al., 2015) 

CRDS 7.46 ± 0.29* (Chhantyal-Pun et al., 2015) 

PIMS 3.8 ± 0.2 This Study 

 

The data presented in Table 6.5 show some anomalous results. The value reported by 

Johnson et al., (2001), kC1SO2 = (0.4 ± 0.1) × 10-14 cm3 molecule-1 s-1, is the oldest of the 

measurements and was listed to highlight that, until very recently, the reactivity of CIs 

towards most trace gas species was thought to be low, and hence CI chemistry was thought 

to have little impact within the atmosphere. However, the enhanced reactivity of CH2OO 

towards SO2 indicates that Criegee chemistry may have a direct impact on atmospheric 

concentrations of H2SO4 from increased SO2 oxidation.   

The second anomalous value was measured by Chhantyal-Pun et al. (2015) at low [SO2], 

where 1 1012 molecule cm-3 < [SO2] < 7 1012 molecule cm-3. The authors explain this 

enhanced CH2OO removal rate using a complex mechanism (Figure 6.10). A simplified 

version of this mechanism is shown below (R6.4, R6.7-R6.9): 

 CH2OO + SO2  →  HCHO + SO3 (R6.4) 

   

 CH2OO →  Loss (R6.7) 

   

 CH2OO + SO2  ⇌  intermediate + SO2 
(R6.8) 

   

 intermediate  →  Products (R6.9) 
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Figure 6.10: Simplified Mechanism of CH2OO losses in the presence of SO2. Adapted from 

Chhantyal-Pun et al. (2015). *Loss is equal sum of all other loss mechanisms (i.e. wall losses, 

diffusional losses, self-reaction, etc.) 

 

In this mechanism an SO2-catalysed reversible isomerisation/intersystem crossing (ISC) 

reaction is proposed to be in competition with the CH2OO + SO2 reaction. The impact this 

has on the overall reaction scheme is determined by invoking a steady state approximation 

upon the concentration of the intermediate product of this reaction. At high concentrations 

of SO2: k-R6.8[SO2] >> kR6.9, therefore the dominant loss mechanism of CH2OO under these 

conditions is thought to be R6.4. 

However, at low concentration of SO2 things are slightly more complex. Under these 

conditions k-R6.8[SO2] << kR6.9, meaning that any of the intermediate formed will be quickly 

lost via reaction channel R6.9 (see Figure 6.10), and thus the reaction forming the 

intermediate is the rate-determining step, hence the rate of reaction under low [SO2] will be 

dependent upon kR6.8. Specifically, the rate of CH2OO loss is dependent upon (kC1SO2 + 

kR6.8)[SO2] at low [SO2]; a parameter which is dependent upon both kC1SO2 and kR6.8. 

Therefore, if it is assumed that kC1SO2 that remains constant, the loss of CH2OO must be 

greater at lower concentrations of SO2, explaining the augmentation in the CH2OO decay 

observed by Chhantyal-Pun et al. (2015). Figure 6.10 is a simplification of the original 

Chhantyal-Pun et al. (2015) mechanism and it should be noted that the loss channel R6.7 is 

an amalgamation of several different channels which are independent of [SO2]. 

This hypothesis is a very elegant solution to explain the observed behaviour; however, some 

of the methodology used in the low [SO2] experiments and subsequent analysis were both 

novel and unconventional. For example, all of the other studies probing the CH2OO and 

SO2 reaction were performed under pseudo first-order conditions, where the concentration 

of SO2 was kept in excess over the Criegee concentration ([SO2] > 10 × [CH2OO]). By 

doing this, a graph of the pseudo first-order rate coefficient, k’C1SO2, versus [SO2] can be 
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plotted, and the rate coefficient kC1SO2 determined (see Chapter I, Section 1.5 for details of 

pseudo first-order reactions). However, in the work of Chhantyal-Pun et al. (2015) the 

experiments were not all conducted using pseudo first-order condition at low [SO2], in fact, 

for some of the measurements the concentration of CH2OO was larger than the 

concentration of SO2. This meant that for these experiments the contribution to the loss of 

CH2OO was greater from the CI self-reaction (R6.5) than from the Criegee + SO2 reaction 

(R6.4). Furthermore, the loss of CH2OO has mixed 1st and 2nd order components, with 

significant second-order character, thus making the analysis more complicated than if the 

experiments were done under pseudo first-order conditions.  Due to this methodology, a 

simultaneous first and second order fit was used during the data analysis to extract kC1SO2. 

This was a different approach to solving this problem and therefore it is important compare 

this newer method of data analysis with other more established techniques to test its validity 

for interpreting CI chemistry. It was therefore decided that the CH2OO + SO2 experiments 

should be repeated at low [SO2] to try and replicate the results of Chhantyal-Pun et al. 

(2015), but using more conventional pseudo first-order reaction conditions. It should be 

noted at this point that the quality of data collected by Chhantyal-Pun et al. (2015) is very 

good; it is the reaction conditions used and the interpretation of the data that are novel. 

Note: the method of data analysis used attempts to fit loss rate constants for both the CI 

self-reaction, kC1SR, and CI + SO2 reaction, kC1SO2, simultaneously. 

As previously stated it is estimated that the initial concentration of CH2OO radicals in these 

experiments was [CH2OO]0 ≈ (1.5 ± 0.5) 1012 molecule cm-3; before starting experiments 

it was necessary to probe the minimum [SO2] where the Criegee loss rate could be 

described as first-order dominated (although actually mixed order in nature), and where the 

conditions close to pseudo first-order ([SO2]end ≈ 0.9 [SO2]0).  As a starting-point, it was 

assumed that to maintain pseudo first-order conditions [SO2] must be greater 

than 3 × [CH2OO]0. A Kintecus model was run for the reaction under these starting 

conditions and from this it became apparent that the concentration of SO2 remained almost 

constant during the course of this reaction (i.e. at t = 10 ms, [SO2]t = 0.85 [SO2]0), and this 

can be seen more clearly in Figure 6.11 (Ianni, 2002). As the k’FOL component is significant 

(k’FOL ≈ 100 s-1), reaction with SO2 is not the only loss channel for CH2OO. Hence, the 

concentration of SO2 remains nearly constant throughout the course of the reaction and 

therefore the conditions can be considered as near pseudo first-order. Furthermore, the 

Kintecus model (see Figure 6.11) suggests that even at this low concentration of SO2 the 

nature of the CH2OO loss is dominated by the first-order processes (k’FOL and kC1SO2[SO2]). 

Therefore a minimum [SO2] of 3 × [CH2OO]0 was chosen for experiments.  
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Figure 6.11: A model of the CH2OO + SO2 reaction; [CH2OO] = 1.5 1012 molecule cm-3, 

[SO2] = 4.5 1012 molecule cm-3. An estimate of kC1SR = 7.1 10-11 cm3 molecule-1 s-1 and 

kwall  = 100 s-1 was used for modelling. 
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Figure 6.12: The upper graph is an example of a raw data set for CH2OO decay (SCH2OO, arb. units) 

with [SO2] ≈ 4.5 1012 molecule cm-3.  The middle graph is a first order plot of ln(SCH2OO) vs. time, 

here, the linear fit to the data is very good suggesting the system is more first order in nature than 

second. The lower graph is a second order plot of 1/(SCH2OO) vs. time and the linear fit to data is 

poor implying that the system is not second order. Note: SCH2OO is equivalent to the experimental 

signal from CH2OO observed. 
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In Figure 6.12 the data collected from the low [SO2] experiment previously described 

(where [SO2] = 3 × [CH2OO]0) is shown. Notably, closer analysis of this data indicates that 

although the CH2OO decay must be mixed order, the decay can be better described using 

first-order analysis (plot of ln(SCH2OO) vs. time) than second-order (plot of 1/(SCH2OO) vs. 

time). This result suggests that the CH2OO + SO2 experiments is indeed under near pseudo 

first-order conditions at [SO2] ≈ 4.5 1012 molecule cm-3. Once this lower limit of [SO2] 

was established, a full set of data was collected for 4 1012 < [SO2] (molecule cm-3) < 

81013. Using these data a bimolecular plot was constructed, the results from the low [SO2] 

study can be seen below in Figure 6.13. It should be noted that although the conditions are 

near pseudo first-order for the low [SO2] experiments, for the reactions where [SO2] < 1 

1013 molecule cm-3 concentration of SO2 upon the completion of the reaction is below 

90% of its initial concentration, and therefore cannot (conventionally) be considered as 

pseudo first-order (see Chapter I, Section 1.5). To account for this, these data points are 

plotted (on the x-axis) at their average concentration of SO2 throughout the reaction, 

[SO2]av, rather than their initial SO2 concentration, [SO2]0, as their initial concentration 

cannot be considered as constant; note [SO2]av < [SO2]0. It should also be highlighted that 

the difference that these adjustments made to the overall rate coefficient, kC1SO2, was 

negligible. 
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Figure 6.13: The bimolecular plot obtained for the CH2OO + SO2 reaction at low [SO2] 

concentrations. The error quoted is propagated using the random errors quoted from the 

experiments (1σ) and a 10% systematic error. Confidence limits quoted at 1σ. 
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From this plot (Figure 6.13) it is apparent that there is no change in kC1SO2 at low 

concentrations of SO2. However, to further verify this result a ‘global fitting’ procedure was 

used which allows multiple data sets to be fitted simultaneously. Global fitting uses 

parameters which are ‘shared’ across many individual data sets and yield a single best-fit 

value, which is then applied to the data set as a whole (OriginPro). For this analysis the rate 

coefficient, kC1SO2, could be determined from a single fitting, as opposed to the k’C1total 

determined from the individual traces. An example of the global fitting can be seen in 

Figure 6.14; all of the fittings (red lines) were determined simultaneously to give the best 

universal fit to the whole data set.  
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Figure 6.14: An example of the global fitting which is plotted across several individual traces 

simultaneously; the fitting uses all of data to give the ‘global’ fit.  

 

 𝑘′C1total = (𝑘C1SO2 × [SO2]) +  𝑘′other (E6.4) 

   

 
𝑀1 =

(𝑆C1height × 𝑘′
CH2I+O2 × 𝑘samp)

(𝑘′C1total −  𝑘′CH2I+O2)
 

(E6.1) 

   

 
𝑀2 =  

𝑒−𝑘′
CH2I+O2× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
CH2I+O2)

 - 
𝑒−𝑘′

C1total× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
C1total)

 
(E6.2) 

   

 𝑆CH2OO = 𝑀1 × 𝑀2 + Sbg (E6.3) 

   

SC1height is the signal height of CH2OO; k’CH2I+O2 is the rate of CH2OO formation; k’C1total is 

the total loss rate of CH2OO; ksamp is the rate of transportation of the gas to the mass 
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spectrometer (this was held constant during data analysis, ksamp = 30000 s-1); t is time; and 

Sbg represents the background signal measured for the individual data traces. 

The equations used to fit the data globally are shown above (E6.1-6.4); notably the 

equations (E6.1-6.3) were also used to fit the individual traces. However, there are two 

subtle additions to the fitting procedure: firstly, the [SO2] associated with each individual 

trace was input as a z parameter (i.e. a parameter local to each individual trace). This 

combined with the introduction of E6.4 directly links k’C1total and kC1SO2 (by multiplying 

with the [SO2]) and allows for a direct evaluation of kC1SO2 for the whole dataset. As many 

of the parameters as possible were shared in the analysis: kC1SO2, k’other, kCH2I+O2, ksamp and 

some of the parameters were kept constant: Sbg and ksamp. A number of the parameters were 

allowed to float during the iterations of the fitting until χ2 was minimised; critically kC1SO2 

was floated to give the best-fit to the data, the results from this analysis are in Table 6.6. 

Table 6.6: Results of the global fitting technique, errors quoted were propagated from the 

associated error from the global fitting and a 12.5% systematic error. 

[SO2] Range / molecule cm-3 [SO2] kC1SO2 / cm3 molecule-1 s-1 

0 – 1.5 1013 Low (3.46 ± 0.40) 10-11  

0 – 2.5 1013 medium (3.65 ± 0.39) 10-11  

0 – 7.5 1013 high (3.67 ± 0.38) 10-11  

  

Much information was gained from the global analysis: firstly, none of the calculated rate 

coefficients, kC1SO2, were significantly different from the kC1SO2 obtained from the 

bimolecular plot (Figure 6.13, kC1SO2 = (3.7 ± 0.4) 10-11 cm3 molecule-1 s-1), suggesting that 

the global analysis is a valid method for determining kC1SO2. In addition, even the largest 

and smallest evaluations of kC1SO2 are in good agreement with each other, 

kC1SO2 = (3.67 ± 0.38) 10-11 cm3 molecule-1  s-1 and (3.46  ±  0.40) 10-11 cm3 molecule-1 s-1 

respectively. Finally, and more interestingly, it is clear that for the data collected in this 

study, there is no evidence of an increased kC1SO2 at low concentrations of SO2, unlike in the 

work of Chhantyal-Pun et al. (2015). In fact, the analysis suggests that kC1SO2 is lower at low 

[SO2], however, the difference is very marginal and is not thought to be significant. In order 

to understand the discrepancies between the studies, a model of the CH2OO + SO2 system 

was created, Table 6.7, (using Kintecus software) and run for the reaction conditions 

reported in Chhantyal-Pun et al. (2015). Note: similar models had been used to model the 

data from this study and had accurately simulated the experimental data.  

Initially, the model was run in the absence of any SO2 to see if it was possible to reproduce 

the data collected in Chhantyal-Pun et al. (2015). This model was simple and excluded any 

ICH2OO chemistry: ICH2OO was assumed to be present in low concentrations due to the 

low pressures (~7 Torr) used by Chhantyal-Pun et al. (2015). Moreover, ICH2OO is thought 



Chapter VI: Kinetic Studies of Criegee Intermediates with SO2 and NO2 

 

171 

to react rapidly with CH2OO (kICH2OO ≈ 2 10-10 cm3 molecule-1 s-1), therefore, if significant 

concentrations of ICH2OO were present, the reaction between ICH2OO and CH2OO would 

have been the dominant loss process for CH2OO. However, Chhantyal-Pun et al. (2015) 

suggest that 2nd order loss from the Criegee self-reaction is the dominant sink for CH2OO. 

This means that any ICH2OO formed is only present in small amounts. The reactions and 

the rate coefficients used to model the data are shown below (Table 6.7), and the initial 

conditions used in the model are listed in Table 6.8. 

 

Table 6.7: The simplified version of the model used to reproduce the data collected by Chhantyal-

Pun et al. (2015).  All the rate coefficients listed were retrieved from Chhantyal-Pun et al. (2015), 

except kCH2I+O2, which was measured by Sheps (2013). 

Reaction  Rate coefficient 

CH2I + O2  →  CH2OO + I kCH2I+O2 = 1.8 10-12 cm3 molecule-1 s-1 

CH2OO + CH2OO →  2 HCHO +  O2 kC1SR = 7.3510-11 cm3 molecule-1 s-1 

CH2OO + I →  products kC1+I = 1 10-11 cm3 molecule-1 s-1 

CH2OO + SO2 →  products kC1SO2 = 7.46 10-11 cm3 molecule-1 s-1   

or 

kC1SO2 = 3.80 10-11 cm3 molecule-1 s-1 

CH2OO →  products kuni = 1s-1 

 

 

Table 6.8: Initial concentrations of reactants used in the Kintecus model. The concentrations used 

were estimated from Chhantyal-Pun et al. (2015). Note that in Chhantyal-Pun et al. (2015) the 

[CH2OO] ≈ 5.1 1012 molecule cm-3. 

Species      Initial concentration / molecule cm-3 

CH2I  5.1 1012  

O2 3.0 1016  

I 5.1 1012 

CH2OO 0 

SO2 0 
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Figure 6.15: (Left) the graph shows a sample of the data collected from Chhantyal-Pun et al., 

(2015), where [CH2OO]0 ≈ 5.1  1012  molecule cm-3. The blue lines are used to scale the data from 

Chhantyal-Pun et al. (2015) to the modelled data to allow for comparison. (Right) the graph shows 

simulated data from a model run using Kintecus in red, input parameters are the conditions used in 

the study by Chhantyal-Pun et al., (2015). The error quoted is 8.5%, which is equivalent to the 

uncertainty of the Criegee self-reaction. The blue data points are the results scaled from 

Chhantyal-Pun et al. (2015), the error quoted are 10%.  

 

Using this information, a simulation of the data from Chhantyal-Pun et al., (2015) could be 

modelled; a comparison of the modelled data and the experimental data can be seen in 

Figure 6.15. Unfortunately, it was not possible to directly compare the two datasets; 

however, the model appears to do a good job at reproducing experimental data (Figure 6.15, 

Right). By estimating the change in the signal between specific time points it is possible to 

compare the data, although it is appreciated that this is not the most accurate method of data 

comparison (Figure 6.15, Right). Moreover, it can be seen that even with the errors 

included, some of data points shown in Figure 6.15 are thought to be significantly different 

from each other. It should be noted that this analysis did highlight that the data from 

Chhantyal-Pun et al. (2015) had more second-order character than the modelled data; this is 

probably because the value for kC1+I used in the model is the upper limit for this rate 

coefficient. However, although it is not perfect, the model seemed to do a respectable job at 

replicating the data from Chhantyal-Pun et al., (2015) so the model was left unchanged and 

used to simulate the reaction system in the presence of SO2.  

The model was re-run with an initial SO2 concentration of 1.1  1012 molecule cm-3 using 

kC1SO2 = 7.46 10-11 cm3 molecule-1 s-1 for the CH2OO + SO2 rate constant, this second set 

of modelled data was then plotted with the data set simulated with no SO2 present (Figure 

6.16).  
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Figure 6.16: A comparison of the reaction system when [SO2] = 0 molecule cm-3 and when 

[SO2] = 1.1 × 1012 molecule cm-3. The error quoted for the model run with SO2 in the system was 

~9.5%, this was calculated by propagating the errors associate with kC1SR and kC1SO2. 

 

Interestingly, when the errors associated with the model are included in the analysis, these 

models are not significantly different from each other until ~5 ms had passed (half the 

length of the total reaction time). This result suggests that the removal of CH2OO by SO2 is 

only minimal under these reaction conditions. The model was then run using the high [SO2] 

evaluation of the rate coefficient, kC1SO2 = (3.80 ± 0.04) 10-11 cm3 molecule-1 s-1, to see 

what impact this had on the CH2OO decays (Figure 6.17). 
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Figure 6.17: (Left) A comparison of the simulated Criegee concentrations using two different 

reaction models at [SO2] = 1.1  1012 molecule cm-3.  These simulations use the two differing values 

of kC1SO2 reported by Chhantyal-Pun et al., (2015): kC1SO2 = 7.46 10-11 cm3 molecule-1 s-1 (red); and 

kC1SO2 = 3.80 10-11 cm3 molecule-1 s-1 (blue). (Right) Graph displays the same data at t > 6 ms, this 

plot highlights that the datasets are not significantly different from each other, even at long times 

(~ 10 ms). The error bars quoted for the modelled Criegee concentrations are ~9.5% for kC1SO2 = 

7.46 10-11 cm3 molecule-1 s-1 and ~8.5% for kC1SO2 = 3.80 10-11 cm3 molecule-1 s-1, these were 

calculated by propagating the errors associated with kC1SR and kC1SO2. 

 



Chapter VI: Kinetic Studies of Criegee Intermediates with SO2 and NO2 

 

174 

From Figure 6.17 it can be seen that there is no significant difference between these two 

models at any point during the reaction. Similar results were obtained for models using the 

two different kC1SO2 values at [SO2] = 2.2  1012 molecule cm-3; indeed, at this [SO2], the 

simulated Criegee concentrations were not significantly different for at least the first 8 ms 

of the reaction. These results suggest that, at [SO2] < 2.2  1012 molecules cm-3, the majority 

of the CH2OO decay is insensitive to the CH2OO + SO2 rate coefficient. Of course, this is 

only a model of the data from Chhantyal-Pun et al., (2015) and therefore does not mean that 

the same can definitively be said for the experimental data. However, if the model is 

accurate it certainly implies that the validity of the low [SO2] experiments may be 

questionable. At SO2 concentrations higher than 4  1012 molecule cm-3 it is believed that 

the evaluation of kC1SO2 becomes significant in the models, therefore it is assumed that there 

is no question about the validity of these data points (see Figure 6.18). It should be noted 

that simulations were also run in the presence and the absence of any I atom chemistry; 

under both sets of conditions the evaluation of kC1SO2 did not make any significant 

difference to the loss of CH2OO at [SO2] < 2.5 1012 molecule cm-3 either.  
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Figure 6.18: (Left) A comparison of the reaction system when [SO2] = 5  1012 molecule cm-3; Note 

that kC1SO2 = 3.80 10-11 cm3 molecule-1 s-1 (blue) and kC1SO2 = 7.46 10-11 cm3 molecule-1 s-1 (red); 

(Right) highlights that the datasets are significantly different from each other. The error bars 

quoted for the model with SO2 is ~9.5% for kC1SO2 = 7.46 10-11 cm3 molecule-1 s-1 and ~8.5% for 

kC1SO2 = 3.80 10-11 cm3 molecule-1 s-1, this was calculated by propagating the errors associated with 

kC1SR and kC1SO2. 

 

In Chhantyal-Pun et al., (2015) there is some ambiguity as to the actual value of the rate 

coefficient, kC1+I, and under pseudo first-order conditions this does not matter as the reaction 

between CH2OO + I is only a minor channel. However, under the conditions used by 

Chhantyal-Pun et al., (2015) this reaction may cause interference in the data analysis which 

may account for the enhanced value of kC1SO2 at low [SO2]. 
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6.1.3.1 C1 CI+ SO2 Conclusions 

Over the course of this section (6.1.3) a self-consistent body of evidence has been reported 

concerning the reaction of CH2OO + SO2. Initially, some problems were encountered, 

however, by minimising the [CH2OO]0 to ~1.5  1012 molecule cm-3, the second-order loss 

of CH2OO via self-reaction were minimised. In this study, a value of kC1SO2 was determined, 

kC1SO2 = (3.8 ± 0.2)  10-11 cm3 molecule-1 s-1, which is in excellent agreement previous 

estimations of kC1SO2 (Welz et al., 2012, Stone et al., 2014, Liu et al., 2014).  

In addition, an in depth analysis of the CH2OO + SO2 reaction at low [SO2] has been 

completed under pseudo first-order conditions. As a part of the analysis a global fitting was 

used to fit multiple Criegee traces simultaneously, the results for this analysis indicate that 

kC1SO2 is unchanged at low [SO2]; this result differs from the work of Chhantyal-Pun et al., 

(2015), however, this is not an wholly unexpected result. Chhantyal-Pun et al., (2015) is the 

first study to report a bimolecular plot with a positive but decreasing slope. Chhantyal-Pun 

et al. (2015) make a comparison of this result to the work Sheps (2013). Significantly, 

unlike the experiments described in Chhantyal-Pun et al. (2015), the work of Sheps (2013) 

maintains pseudo first-order conditions throughout. According to Chhantyal-Pun et al. 

(2015), the bimolecular plot from Sheps (2013) could also be interpreted as having a 

decreasing slope (Figure 6.19); however, it should be noted that no such observation was 

suggested in the study (Sheps, 2013). Furthermore, there are only a couple of data points 

taken at low SO2 concentrations, [SO2] < 1.5   1013 molecule cm-3, in Sheps (2013) and 

these points also seem to be within the  individual error quoted from the line of best fit.   

 

Figure 6.19: Bimolecular plot of the CH2OO + SO2 plot reported in Sheps (2013). Note that k3’ and 

k3 are the pseudo first-order and first-order rate for the reaction between CH2OO and SO2, 

respectively. 

 

Moreover, in order to explain this behaviour, a complex and novel chemical mechanism is 

hypothesised by Chhantyal-Pun et al, (2015). To justify their observations a SO2-catalysed 
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reversible isomerisation (or ISC) reaction is postulated. However, the potential energy 

surface of the CH2OO biradical suggests that all of the isomers of the C1 Criegee 

intermediate are considerably more thermodynamically stable (~60 kJ mol-1), meaning that 

the proposed reversibility of this isomerisation step is highly unlikely to occur (Vereecken 

et al., 2012). 

Conversely, the low [SO2] results reported in this study contradict the interpretation of 

Chhantyal-Pun et al., (2015). This work was conducted under more conventional pseudo 

first-order conditions and shows no evidence of an increased value of kC1SO2 at low [SO2]. 

Clearly, if it is assumed that kC1SO2 remains constant at all concentrations of SO2 then the 

reaction can be, once again, described using simple reaction kinetics. 

6.1.4 CH2OO + NO2 

In this section of the chapter, results concerning the reaction of the stabilised C1 Criegee 

intermediate and NO2 will be discussed. Different studies have probed this reaction before 

(Welz et al., 2012, Stone et al., 2014), and, notably, there is still a sizeable discrepancy 

between the literature results. Welz et al. (2012) report a rate coefficient for this reaction of 

kC1NO2 = (6.8 ± 2.0)  10-12 cm3 molecule-1 s-1; as with the reaction between CH2OO + SO2, 

this rate coefficient (kC1NO2) was at least three orders of magnitudes faster than previous 

work had suggested (Calvert, 2000). However, in Stone et al. (2014) the rate coefficient 

measured was approximately five times smaller, kC1NO2 = (1.5 ± 0.4)  10-12 cm3 molecule-1 

s-1. Notably, the work of Stone et al. (2014) was an indirect study, which utilised LIF to 

measure HCHO production. Therefore, it is clear that more work is needed to establish 

which of these recent evaluations is most accurate.  

For this study diiodomethane photolysis in the presence of excess oxygen was used for 

CH2OO production (R6.1-6.2). The reaction of CH2OO with NO2 was then monitored using 

the PIMS technique, which allows for the direct detection of the stabilised C1 Criegee 

intermediate (m/z = 46) in the mass spectrometer.  

 CH2OO + NO2  →  Products (R6.10) 

   

Problems were encountered using this method of detection as NO2 and CH2OO yield the 

same mass-to-charge ratios (m/z = 46). However, it was assumed that the ionization 

efficiency of NO2 was low, as the even when large amounts of NO2 were added to the 

system, the NO2 peak was still relatively small. Although, a broad signal was observed at 

m/z = 46 (particularly at high [NO2]), which was assumed to be caused by NO2. This made 

it very difficult to monitor CH2OO at high [NO2] as the Criegee signal (SCH2OO) became 

difficult to see above the background NO2 signal. The experiments were therefore 

conducted over a limited range of [NO2] (0.2 - 1.0  1014 molecule cm-3) as the quality of 
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SCH2OO was significantly compromised at high [NO2] and signal-to-noise ratios of less than 

5 were not uncommon. An example of the data collected in the presence of NO2 can be seen 

in Figure 6.20, inset, the bimolecular plot from this data is also shown. 
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Figure 6.20: A bimolecular plot obtained for the CH2OO + NO2 reaction at 

[NO2] < 1 1014 molecule cm-3.  The blue line is equivalent to kC1NO2 ≈ 7  10-12 cm3 molecule-1 s-1, i.e. 

the rate coefficient reported in Welz et al. (2012). The error quoted is propagated using the random 

errors quoted from the experiments (1σ) and a 10% systematic error. (Inset) An example of the 

Criegee signal measured during the experiments with NO2. [NO2] = 3.8 × 1013 molecule cm-3; 

[CH2OO]0 = 1.5 × 1012 molecule cm-3.   

 

From Figure 6.20 it can be seen that the y-intercept of the bimolecular plot (i.e. k’C1total in 

the absence of NO2) is approximately 150 s-1, this can be used to infer the initial 

concentration of C1 CI, [CH2OO]0. The calculated concentration of CH2OO present in the 

system was low, [CH2OO]0 < 1.5  1012 molecule cm-3; as the NO2 concentrations were a 

kept above [NO2] > 2 1013 molecule cm-3, all of the experiments were conducted under 

pseudo first-order conditions. It was also evident that the rate coefficient for the reaction 

between CH2OO and NO2 was relatively small; this was highlighted as only minor changes 

in the total CH2OO loss (k’C1total) were observed when comparatively large concentrations of 

NO2 were added ([NO2] = 1  1014 molecule cm-3). From these experiments a rate 

coefficient of kC1NO2 = (1.2 ± 0.3)  10-12 cm3 molecule-1 s-1 was determined, and an upper 

limit of kC1NO2 < 2.3  10-12 cm3 molecule-1 s-1. It was immediately clear from this work that 

the value of kC1NO2 measured is lower from the evaluation in Welz et al. (2012). This is 

highlighted in Figure 6.20 by the dashed blue line, which is equivalent to the evaluation of 

the rate coefficient reported in Welz et al. (2012) of kC1NO2 ≈ 7  10-12 cm3 molecule-1 s-1. 

Both the rate coefficient, kC1NO2 = (1.2 ± 0.3)  10-12 cm3 molecule-1 s-1, and the upper limit 
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determined suggest that rate of the CH2OO + NO2 reaction is significantly lower than the 

evaluation by Welz et al. (2012). Conversely, the value of kC1NO2 is in good agreement with 

the indirect rate coefficient reported in Stone et al. (2014) of kC1NO2 = (1.5 ± 0.4)  10-12 cm3 

molecule-1 s-1. 

6.1.4.1 C1 CI + NO2 Conclusions 

The results from this study suggest that any reaction taking place between CH2OO and NO2 

is relatively slow in comparison to CH2OO + SO2. That being said, the rate coefficient 

kC1NO2 determined from this study was still several orders of magnitude faster than 

previously thought (Calvert, 2000). The evaluation of kC1NO2 is also significantly smaller 

than the corresponding rate coefficient reported by Welz et al. (2012), although is of the 

same order of magnitude. There was some interference evident at high [NO2] in this study 

as NO2 and CH2OO both have m/z = 46; notably, this was not an issue in Welz et al. (2012) 

as the experiments were conducted using 13CH2OO (m/z = 47). It is possible that this NO2 

interference maybe been responsible for the discrepancies in kC1NO2 measured. That being 

said, the bimolecular plot in supporting information of Welz et al. (2012) suggests that the 

[13CH2OO] used in these experiments was approximately an order of magnitude greater than 

used in this study. It is therefore feasible that additional reaction channels (possibly I atom 

chemistry) may lead to the enhanced CH2OO decay observed. Equally, it should be noted 

that the experiments reported by Welz et al. (2012) were all completed under pseudo first-

order condition so this explanation for the discrepancies is unlikely. However, the results 

from this study do agree very well with the work of Stone et al. (2014), indicating the lower 

evaluation of kC1NO2 is more reproducible. 

6.2 CH3CHOO Reactivity 

6.2.1 Introduction to C2 Criegee Intermediates 

Unlike the C1 Criegee intermediate, the C2 CI has two different conformations; they are 

known as syn- and anti- conformers. Rotation around the central carbon atom is impeded 

causing the conformers exhibit distinct chemical properties (see Chapter V, Section 5.1.1 

for details). It is understood that the syn-conformer is the more stable of the conformations 

and it is thought to be the formed in greater abundance from CH3CHI2 photolysis (~ 90%) 

(Kuwata et al., 2010, Taatjes, 2013). Work done by Taatjes et al. (2013) established that the 

stabilized C2 Criegee biradicals (syn-CH3CHOO and anti-CH3CHOO) both react at a 

similar rate to the stabilized C1 Criegee intermediate with both SO2 and NO2. Unfortunately, 

unlike the PIMS set-up used by Taatjes et al. (2013), the Leeds PLP-PIMS system is unable 

to differentiate between the syn- and anti- conformers. However, as the syn-conformer is 
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formed more abundantly (~90%) the observed kinetics will be dominated by the reaction of 

SO2 with the syn-CH3CHOO, and the rate coefficient determined specific to this reaction. 

Notably, the reaction between H2O and syn-CH3CHOO is thought to be orders of magnitude 

less reactive than the anti- conformer and has been estimated to have a rate coefficient 

between 3 × 10-18 < ksynC2H2O (cm3 molecule-1 s-1) < 4 × 10-15 (Vereecken et al., 2012, 

Taatjes, 2013). Therefore, if the syn-C2 + H2O reaction rate is on the lower end of the range 

given, then  the reactions of certain trace gases (such as SO2 and NO2) may compete with 

H2O as a minor sinks for the C2 Criegee intermediate in certain environments. Furthermore, 

as the syn-conformer is the more stable conformer and is expected to be formed more 

abundantly in the atmosphere, understanding the kinetics of this conformer is of greater 

importance. However, recent work by Newland et al. (2015) suggests that the syn-

CH3CHOO may be may undergo significant decomposition within the atmosphere 

(Newland et al., 2015). Therefore, if the decomposition of the stabilized syn-CH3CHOO is 

high, the reaction between the C2 CI and SO2 may be largely insignificant in the 

atmosphere.  

6.2.2 Experimental  

The kinetics of the C2 Criegee intermediates with SO2 and NO2 were, again, studied directly 

by monitoring the C2 CI (m/z = 60) using time-resolved mass spectrometry. For the C2 

Criegee reactions a CH3CHI2/O2/He/trace gas mixture was used, these experiments were 

carried out at low pressures (1.0-2.5 Torr) and the gas flows of the helium and oxygen were 

regulated using mass flow controllers. As with the C1 Criegee experiments there were 

problems getting the diiodo-compound to flow through the MFC. To rectify this, the same 

‘bubbling’ procedure was used for the CH3CHI2 (Sigma-Aldrich, 98%) as described in 

Section 6.1.1 (Figure 6.2).  

The pathway to the C2 Criegee intermediate formation can be seen in R6.11-6.13:  

 CH3CHI2 + hν  →  CH3CHI + I (R6.11) 

   

 CH3CHI + O2  ⇌  CH3CHIO2* →  CH3CHOO + I (R6.12) 

   

 CH3CHI + O2  ⇌  CH3CHIO2*  + M  →  CH3CHIO2 +  M (R6.13) 

   

In this section the kinetics of the C2 Criegee intermediates were investigated with SO2 and 

NO2. Typically 2 - 4% samples of SO2 and NO2 (Sigma-Aldrich: 99.9%, 99.5% 

respectively) were prepared in He and stored in glass bulbs.  

For the entirety of this study, diiodo-precursors were initiated by pulsed laser photolysis 

using an excimer laser ( = 248 nm, ~50 mJ cm-2) and the gas sampled was photoionized 
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using  = 118 nm light (for details see Chapter II). At this photoionization wavelength the 

kinetics of the syn-conformer should be dominant due to its larger concentration, which is 

estimated to be approximately an order of magnitude greater than the anti-conformer 

(Taatjes, 2013). It should be noted that the photoionization spectra are slightly different for 

the syn- and anti- conformers and the anti-conformer can be detected at longer ionization 

wavelengths (~133 nm or ~9.2 eV), meaning the kinetics of both conformers can be 

measured. However, this was not within the scope of this experiment as the necessary 

photoionization wavelengths were not attainable.  

Again the experiments were controlled using a LabVIEW™ program, designed specifically 

for data collection and storage from the PIMS apparatus (Baeza-Romero et al., 2012). The 

data collected was then analysed using OriginPro graphical software to describe the ion 

signals and was fitted using the equations outlined below (E6.5-6.7). A pseudo-first order 

bimolecular plot of the data-set was produced by plotting these data points. 

 
𝑀1 =

(𝑆C2height × 𝑘′
CH3CHI+O2 × 𝑘samp)

(𝑘′C2total − 𝑘′
CH3CHI+O2)

 
(E6.5) 

   

 
𝑀2 =  

𝑒−𝑘′
CH3CHI+O2× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
CH3CHI+O2)

 - 
𝑒−𝑘′

C2total× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
C2total)

 
(E6.6) 

   

 𝑆CH3CHOO = 𝑀1 × 𝑀2 + 𝑆bg (E6.7) 

   

where SCH3CHOO is the time-resolved Criegee signal; SC2height is the maximum height of 

SCH3CHOO; k’CH3CHI+O2 is the rate of CH2OO formation; k’C2total is the total loss rate of CH2OO; 

ksamp is the rate of transportation of the sampled gas to the mass spectrometer (this was held 

constant during data analysis, ksamp = 30000 s-1); t is time; and Sbg represents the background 

signal measured for the individual data traces. 

6.2.3 CH3CHOO Formation 

The rate of the CH2I + O2 reaction, forming the C1 Criegee intermediate (R6.2), has been 

previously studied in the literature and a rate coefficient of kCH2I+O2 = (1.28-1.82) × 10-12 cm3 

molecule-1 s-1 has been measured (Enami et al., 2008, Sheps, 2013). The yield of stabilised 

Criegee intermediates formed from this reaction has also been measured and is estimated to 

be close to unity at low pressures (Stone et al., 2013). The work by Stone et al. (2013) also 

highlights the competition between the substitution and association reactions, suggesting 

that the association reaction (R6.3) is the major channel and the substitution reaction (R6.2), 

which leads to Criegee formation, is the minor channel (~ 18%) at 760 Torr (Stone et al., 

2013): 

 CH2I + O2  ⇌  ICH2O2* →  CH2OO + I (R6.2) 
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 CH2I + O2  ⇌  ICH2O2*  + M  →  ICH2O2 +  M (R6.3) 

   

Currently, there is only one published rate coefficient for the reaction between CH3CHI + 

O2 (R6.12), where kCH3CHI+O2 = (8.0 ± 0.8) × 10-12 cm3 molecule-1 s-1 (Sheps et al., 2014); 

notably this is approximately 5 times larger than the corresponding reaction for C1 Criegee 

formation (R6.2) (Enami et al., 2008). Therefore, it is clear that more work is needed to 

verify the coefficient for the CH3CHI + O2 reaction.  

Initially, a pseudo first-order study monitoring the I atom (m/z =127) was completed, where 

the concentrations of O2 were varied from approximately 5 × 1013 – 1 × 1015 molecule cm-3, 

a bimolecular plot of these results was then constructed. However, the analysis of the iodine 

atom data proved difficult, because the I atom signal was observed to increase at long times 

in both the presence and the absence of oxygen (Figure 6.21). A possible explanation for 

this could be poor alignment of the photolysis beam. Consequently, the pseudo first-order 

rate coefficients determined were highly dependent upon this secondary growth of iodine 

(Figure 6.22, Left). The data were analysed two different ways: initially, the secondary 

growth was assumed to be zero and a rate coefficient of kCH3CHI+O2 = (4.7 ± 0.7) × 10-12 cm3 

molecule-1 s-1 was determined (Figure 6.22, Right). The data were also analysed taking the 

secondary growth into account, using this approach a larger rate coefficient of 

kCH3CHI+O2 = (8.6 ± 1.5) × 10-12 cm3 molecule-1 s-1 was obtained.  
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Figure 6.21: A schematic showing diiodoethane photolysis where no oxygen is present (blue line); 

and in the presence of oxygen (pink), where the addition growth is due to Criegee formation.  
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Figure 6.22: (Left) A plot of the I atom signal vs. time, with two different fitting methods used. The 

red curve takes the secondary growth into account, the green curve does not (Right) The 

bimolecular plots highlight the differing rate coefficients determined from the different methods of 

analysis. The linear fittings shown are both unweighted, and the confidence limits are given to 1σ. 

 

To probe the kinetic behaviour of the observed I atom growth at long-times, further 

experiments were conducted over t = 20 ms. Moreover, higher concentrations of oxygen 

([O2] ≈ 1.5× 1016 molecule cm-3) were used simplify analysis; at high oxygen concentrations 

the pseudo first-order rate coefficient for CI formation will be large (k’CH3CHI+O2 ≈ 75000 s-1) 

and, therefore, deconvoluted from the kinetics of long-time I atom signal (Figure 6.23).  
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Figure 6.23: A time-profile of the iodine atom signal over 20 ms. At short times (t < 100 μs) the 

observed I atom signal is cause by both the photolytic and reactive I atom signal. At longer times 

(t > 100 μs) a slow increase in I atom signals is observed. 

 

From Figure 6.23, it can be seen that the total I atom signal is a combination of three 

different channels. Analysis of the long-time data sets yields an average rate coefficient for 

the slow growth of iodine of kslowI ≈ 450 s-1, this is much larger than the rate of slow iodine 
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signal observed on the shorter time-scale and suggests the kslowI is dependent upon the 

oxygen concentration.  

 One possible explanation for the slow I atom signal is spin-orbit quenching of excited state 

iodine, I(2P1/2) or I*, by oxygen; assuming that the excited state I* has a small ionization 

efficiency. Notably, the yield of I(2P1/2) from CH2I2 photolysis (at λ = 248 nm) has been 

previously determined to be ~45% (Koffend and Leone, 1981). Therefore, assuming 

CH3CHI2 photolyses in a similar manner, the slow growth of iodine observed could be 

caused by spin-orbit quenching of excited state iodine, I*, by oxygen. However, there were 

several problems with this hypothesis; firstly, there is no obvious reason why the ionization 

efficiency of I* would be much smaller than that of I. Secondly, the kinetics of the slow 

iodine atom signal are far too slow to be caused by O2 quenching. Note: at this 

concentration of oxygen, [O2] ≈ 1.5× 1016 molecule cm-3, a pseudo first-order rate 

coefficient of k’slowI ≈ 500000 s-1 would be expected (Derwent et al., 1970), three orders of 

magnitude larger than was observed from the experiments. 

Alternatively, the slow augmentation of the I atom signal may be caused from chemical 

reaction. During the study it was observed that the diiodoethane precursor had a subtle 

colour change over time, turning from pale yellow to pale red, suggesting the formation of 

I2 in the bubbler. Therefore, the long-time I atom signal could be caused by the reaction of 

I2 with the Criegee intermediate (R6.14). This would also explain the possible dependence 

upon oxygen, as the rate of formation of CIs would also be greater at higher oxygen 

concentrations.  

 CH3CHOO + I2 → CH3CHO + IO + I (R6.14) 

   

 IO + IO → OIO + I (R6.15) 

   

It should be highlighted that the CI chemistry cannot account for all of the long-time I atom 

signal as the pseudo first-order loss rates of CH3CHOO, k’C2total, monitored at m/z =46 were 

consistently at least three times lower, k’C2total < 150 s-1; moreover, some of the CIs are 

predicted to undergo self-reaction, and wall losses are also possible.  

The slow I atom signal could also be from reaction or decomposition of any stabilised 

ICH3CHO2 present in the system (R6.16a-6.16b). However, this cannot be a major channel 

for slow I atom growth, as the relative ratio of the photolytic signal compared to the 

combined CI + slow I signal is greater than 1:1 (see Figure 6.23) and theoretically, this is 

not possible (see R6.11-6.13). However, reactions R6.14-6.16 are examples of reactions that 

would lead to the formation of iodine atoms at long-times.  

  ICH3CHO2 + X → I + Products (R6.16a) 
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 ICH3CHO2 → I + Products (R6.16b) 

   

In reaction R6.16a, X represents any radical that could lead to the production of I by 

reacting with ICH3CHO2. 

Following the investigation into the long-time I atom signal, a global data analysis was 

performed to fit both the rate coefficients for C2 Criegee formation and the long-time I atom 

signal simultaneously (E6.8-6.13). 

 𝑘′CH3CHI+O2 = (𝑘CH3CHI+O2 × [O2]) (E6.8) 

   

 
𝑌SCI =

𝑆CI

𝑆photolytic
 

(E6.9) 

   

 
𝑀1 =

(𝑆CI × 𝑘′
CH3CHI+O2 × 𝑘eff)

(𝑘slowI − 𝑘′
CH3CHI+O2)

 
(E6.10) 

   

 
𝑀2 =  

𝑒−𝑘′
CH3CHI+O2× t−𝑒−𝑘eff× t

(𝑘eff− 𝑘′
CH3CHI+O2)

 - 
𝑒−𝑘slowI× t−𝑒−𝑘eff× t

(𝑘eff− 𝑘slowI)
 

(E6.11) 

   

 
𝑀3 =

(𝑆photolytic × 𝑘eff )

(𝑘eff −  𝑘slowI)
× (𝑒−𝑘slowI×t − 𝑒−𝑘eff×t ) 

(E6.12) 

   

 𝑆Iatom = 𝑀1 × 𝑀2 + 𝑀3 + 𝑆bg (E6.13) 

   

Several new parameters have been introduced in E6.8-6.13: SIatom is the time-resolved 

iodine signal; kCH3CHI+O2 is the rate coefficient of the Criegee formation; kslowI is the rate 

coefficient for the slow iodine formation; YSCI is equivalent to the yield of stabilised CIs 

formed; SCI represents the I atom signal height caused by Criegee intermediate formation; 

Sphotolytic is equal to the signal height for the photolytic I atom signal observed; and Sbg 

represented the background signal at m/z = 127. For the purpose of this analysis the 

following parameters were shared globally: kCH3CHI+O2, kslowI, ksamp, YSCI; additionally, ksamp 

was held constant at 20000 s-1. Using this methodology a rate coefficient for C2 CI 

formation (R6.12) of kCH3CHI+O2 = (8.4±1.2) × 10-12 cm3 molecule-1 s-1 was determined.  

Another advantage of using the global analysis is that an estimation of the of the stabilised 

CI yield, YSCI, could also be calculated (E6.9). For this analysis the yield of stabilised C2 

CIs can be considered as the relative height of the iodine signal from Criegee formation 

(R6.12) compared to the height of the photolytic I signal formed in R6.11 (see Figure 6.21, 

E6.9). From the global analysis of these experiments a high stabilised C2 CI yield of 

YSCI = (86 ± 11) %, was determined at ~2 Torr.  
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6.2.3.1 CH3CHI + O2 Conclusions 

From this study a rate coefficient for the formation of the C2 Criegee intermediate of 

kCH3CHI+O2 = (8.4±1.2) × 10-12 cm3 molecule-1 s-1 was measured, this is excellent agreement 

with the rate coefficient previously reported by Sheps et al. (2014) of kCH3CHI+O2 = (8.0±0.8) 

× 10-12 cm3 molecule-1 s-1. This work has also determined that the yield of stabilised C2 

Criegee intermediates formed at low pressure is high, YSCI = (86 ± 11) %. This yield is lower 

than the equivalent yield of stabilised C1 CIs, which is close to unity (Stone et al., 2013). 

However, due to the greater (statistical) distribution of energy within the nascent 

ICH3CHO2*, stabilisation to ICH3CHO2 would be more favourable than the corresponding 

stabilisation of ICH2O2*; hence the lower yield of stabilised the C2 CIs is to be expected. 

Unfortunately, it was not possible to investigate the pressure dependence of this reaction 

using the PIMS set-up but it seems likely that the YSCI will decrease as the pressure 

increases (R6.13). Reactions R6.11-6.12 contribute only very little to C2 CI formation 

within the atmosphere; however, it is possible that in marine environments, where 

halogenated organic compounds are abundant, reactions similar to this will play a role in CI 

production (Stone et al., 2013). Therefore it is important that work is done to try to 

understand the pressure dependence of the yield of stabilised CH3CHOO formed. 

6.2.4 CH3CHOO + SO2 

The reaction between CH3CHOO + SO2 has been studied closely in recent years (Taatjes, 

2013). Similarly to the C1 Criegee intermediate, the rate coefficient of this reaction has been 

found to be several orders of magnitude larger than earlier measurements indicated (Taatjes, 

2013). Crucially, the reaction between CH3CHOO + SO2 potentially represents a possible 

oxidation pathway for sulphur from the S(IV) oxidation state to S(VI), which is a key step in 

the formation of H2SO4 in the atmosphere. However, this is highly dependent on the 

mechanism of the C2 CI + SO2 reaction, over which there is still some ambiguity (R6.17a-

6.17b). 

 CH3CHOO + SO2  →  CH3CHO + SO3 (R6.17a) 

   

 CH3CHOO + SO2  →  secondary ozonide / adduct (R6.17b) 

   

Theoretical studies have predicted that the reaction of larger Criegee intermediates with SO2 

will be pressure dependent (Vereecken et al., 2012). It has also been hypothesised that at 

atmospheric pressure, and assuming a statistical distribution of energy, the larger Criegee-

SO2 intermediate complexes are likely to stabilise to a secondary ozonide species (SOZ); 

therefore the production of SO3 in reactions of larger Criegee intermediates is unlikely. This 

means the impacts of SO2 + Criegee intermediate reactions on H2SO4 and sulphate aerosol 
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production will be reduced for larger CIs. That said, field observations from a Finnish 

boreal forest indicate that larger Criegee intermediates, such as those produced 

monoterpene ozonolysis, still have some impact on atmospheric concentrations of 

H2SO4 from SO2 oxidation (Mauldin et al., 2012). However, further work is still required to 

investigate both the products and pressure dependence of the reactions of larger Criegee 

intermediates. The aim of this study was to try to better understand the kinetics and the 

mechanism of this reaction; in particular to identify some of the products of this reaction at 

the low pressure limit.  

Due to its lower volatility, it was difficult to get significant quantities of 1,1-diiodoethane 

into the reactor. An advantage of this was that the concentration of CH3CHOO was kept 

relatively low. The exact initial concentrations for these experiments were unknown, but 

can be conservatively estimated to be [CH3CHOO]0 < 2.0 × 1012 molecule cm-3. It should be 

noted that this evaluation is based upon a pseudo first order rate coefficient for the C2 CI 

self-reaction of k’C2SR = 100 s-1, and a bimolecular rate coefficient of kC2SR > 5 × 10-

11 molecule-1 cm-3 s-1; given that rate of the CH2OO self-reaction is kC1SR ≈ 7 × 10-

11 molecule-1 cm-3 s-1, this estimation does not seem unreasonable. 

The disadvantage of working with low concentrations of CH3CHOO was that the quality of 

the data collected was poor; signal-to-noise-ratios as low as ~5 were not uncommon 

(minimum required SNR of 3).  A range of different concentrations of SO2 were added to 

the system and a bimolecular plot was constructed (Figure 6.24). It should be noted that the 

[SO2] was kept in excess to ensure pseudo first-order conditions were met. 
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Figure 6.24: A bimolecular plot of the reaction between syn-CH3CHOO and SO2. The error quoted 

is propagated using the random errors quoted from the experiments (1σ) and a 10% systematic 

error. 
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From Figure 6.24, a bimolecular rate coefficient for the reaction between CH3CHOO and 

SO2 of kC2SO2 = (1.7 ± 0.2) × 10-11 molecule-1 cm-3 s-1 was determined. As previously stated, 

at the photoionization energies used for the experiment, it is predominantly the reactivity of 

the syn-CH3CHOO conformer which is probed (Taatjes, 2013). As can be seen from Table 

6.9, this evaluation of the rate coefficient compares favourably to other recent studies 

(Taatjes, 2013, Sheps et al., 2014, Smith et al., 2014). Although the rate coefficient 

determined from this work is generally lower than the other recommended values, it is 

within error of the rate coefficient measured by Smith et al. (2014) of kC2SO2 = (2.0 ± 0.3) × 

10−11 cm3 molecule−1 s−1.  

Table 6.9: Recent evaluations of kC2SO2 from literature. 

kC2SO2  / 10-11 cm3 molecule-1 s-1 Reference 

2.4 ± 0.3 Taatjes et al. (2013) 

2.0 ± 0.3 Smith et al. (2014) 

2.9 ± 0.3 Sheps et al. (2014) 

1.7 ± 0.2 This Work 

 

From Figure 6.24 it can also be seen that the y-intercept of the plot is small, k’C2total = (102 ± 

50) s-1; the y-intercept of the bimolecular plot (Figure 6.24) is equal to all of the C2 CI loss 

processes, which includes wall losses, self-reaction and unimolecular decomposition. 

Notably, this means the rate of decomposition, kd, must be below ~100 s-1; this is lower than 

the evaluation of kd for the syn-conformer made by Newland et al. (2015) of kd = (288 ± 

275) s-1, although due to the larger uncertainty quoted by Newland et al. (2015) the 

measurements are not significantly different. Furthermore, the self-reaction and wall losses 

are thought to contribute to the value of the y-intercept, suggesting that the rate of 

decomposition must be less than kd ≈ 100 s-1. Previous experiments indicate that wall losses 

in the system are kwall ≈ 50 s-1, meaning a rate coefficient for unimolecular decomposition of 

kd ≤ 50 s-1.   

A major advantage of using the PIMS set-up is that multiple species may be monitored 

simultaneously, meaning that it was possible to investigate the products of the reaction as 

well. It is understood that at low pressures the primary products of the reaction will be 

CH3CHO + SO3 (Figure 6.25); in fact evidence of SO3 production had previously been 

observed by Taatjes et al. (2013), however, no study has ever reported acetaldehyde as a 

product from this reaction. 
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Figure 6.25: A diagram of the proposed reaction scheme of the C2 CI with SO2. Note: SOZ refers to 

secondary ozonide. 

 

In addition to the Criegee signal, SCH3CHOO, recorded at m/z = 60, a second signal was also 

observed at m/z = 44. Notably, the signal was comprised of a small instant growth and a 

slower secondary growth (i.e. one formed by chemical reaction). More interestingly still, 

the kinetics of the m/z = 44 signal appeared to be anti-correlated to the observed CH3CHOO 

signal (m/z = 60), suggesting that the signal at m/z = 44 was formed as CH3CHOO was 

consumed (Figure 6.26). Due to the mass of the species (m/z =44) it was assumed that this 

signal was caused by acetaldehyde, which was an expected product from the reaction at low 

pressures (Figure 6.25). Additionally, it was also noted that there was a very slow increase 

in the CH3CHO signal at [SO2] = 0 molecules cm-3. It is suspected that this slow increase in 

the CH3CHO signal was due to the self-reaction of the C2 CI. Upon analysis a rate 

coefficient of kg = (51±30) s-1 was obtained for the slow growth at m/z = 44. This results 

suggest an upper limit for unimolecular decomposition of kd < 79 s-1 (if it is assumed kw = 0) 

and indicates that kd for the syn-C2 CI is in agreement with the previous estimation of rate of 

unimolecular decomposition by Novelli et al. (2014) of 3 < k (s-1) < 30. 
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Figure 6.26: A plot showings CH3CHOO decay, Sm/z=60, and the simultaneous formation of a species 

at m/z = 44, Sm/z=44, assumed to be acetaldehyde. The orange and green lines are the fittings to the 

m/z=60 and the m/z=44 data respectively. 

 

Following the preliminary analysis, the relationship observed between the two species was 

compelling. However, to try and verify whether the two species are anti-correlated, a 

globally fitting function was used. Unlike the previous global fitting methods described 

(E6.1-6.4), the function must fit both the m/z = 60 signal and the m/z = 44 signal 

simultaneously. To fit both data-sets the equations previously used required significant 

adaptation, including the addition of a second ‘z’ parameter (z1) within the spreadsheet and 

an if-statement to allow the correct function to be selected for the CH3CHOO and CH3CHO 

data respectively (E6.14-6.23): 

 If z1 = 1:  

 𝑘′C2total = (𝑘C2SO2 × [SO2]) +  𝑘w +  𝑘X (E6.14) 

   

 
𝑀1 =

(𝑆C2height × 𝑘′
C2+O2 × 𝑘eff)

(𝑘′C2total −  𝑘′C2+O2)
 

(E6.15) 

   

 
𝑀2 =  

𝑒−𝑘′
C2+O2× 𝑡−𝑒−𝑘eff× 𝑡

(𝑘eff− 𝑘′
C2+O2)

 - 
𝑒−𝑘′

C2total× 𝑡−𝑒−𝑘eff× 𝑡

(𝑘eff− 𝑘′
C2total)

 
(E6.16) 

   

 𝑆CH3CHOO = 𝑀1 × 𝑀2 + 𝑆bg (E6.17) 

   

 If z1 = 2:  

 𝑘′CH3CHO = (𝑘C2SO2 × [SO2]) +  𝑘w +  𝑘X (E6.18) 
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𝑆CH3CHOheight = 𝑆C2height × 𝐴 ×  (

(𝑘C2SO2 × [SO2]) +   𝑘X

𝑘′CH3CHO
) 

(E6.19) 

   

 
𝑁1 =

(𝑆CH3CHOheight × 𝑘′
CH3CHO × 𝑘eff)

(𝑘′LossCH3CHO −  𝑘′CH3CHO)
 

(E6.20) 

   

 
𝑁2 =  

𝑒−𝑘′
CH3CHO× t−𝑒−𝑘eff× t

(𝑘eff− 𝑘′
CH3CHO)

 - 
𝑒−𝑘′

LossCH3CHO× t−𝑒−𝑘eff× t

(𝑘eff− 𝑘′
LossCH3CHO)

 
(E6.21) 

   

 
𝑁3 =

(𝑆instant × 𝑘eff )

(𝑘eff −  𝑘′LossCH3CHO)
× (𝑒−𝑘LossCH3CHO×t − 𝑒−𝑘eff×t ) 

(E6.22) 

   

 𝑆CH3CHO = 𝑁1 × 𝑁2 + 𝑁3 +  𝑆bg2 (E6.23) 

   

A number of new parameters have been introduced in E6.14-6.23: k’CH3CHO is the rate 

coefficient of the acetaldehyde formation; kX is the rate coefficient of other reactions which 

contribute to the production of CH3CHO (e.g. C2 CI self-reaction); kw is the non-chemical 

contributions to CH3CHOO loss (such as wall reactions); SCH3CHOheight is height of the 

CH3CHO signal; A is a scaling factor; kLossCH3CHO is equivalent to loss rate of acetaldehyde; 

Sinstant is the signal height of any instant CH3CHO observed; and Sbg2 represented the 

background signal at m/z = 44. 

Using the equations E6.14-6.23, it was possible to fit the whole data-sets for both 

CH3CHOO and CH3CHO simultaneously, and as many of the parameters as possible were 

shared in the analysis: kC1SO2, kX, kw, kCH2I+O2, ksamp, kLossCH3CHO, A. Some of the parameters 

were kept constant (ksamp, Sbg and Sbg2) and the rest were allowed to float during the 

iterations of the fitting until χ2 was minimised. Using this technique a rate coefficient of 

kC2SO2 = (1.8 ± 0.3) × 10-11 cm3 molecule-1 s-1 was evaluated. At first, the value of kC2SO2 

determined was very sensitive to Sinstant, the precise value of which was unknown; however, 

an estimate of Sinstant could be deduced from traces where [SO2] = 0 molecule cm-3. The 

values of Sinstant observed in these experiments were then used to constrain the global fitting, 

reducing the uncertainty of the fitting. The rate coefficient determined using this 

methodology is in agreement with both the earlier work from this study and with literature 

values (Taatjes, 2013, Smith et al., 2014). 

As mentioned above, it was apparent that there were several channels adding to the signal 

observed at m/z = 44. To determine if any acetaldehyde was produced from CH3CHOO + 

SO2, alternative equations were used in the global analysis for both the rate of acetaldehyde 

formation and the yield of acetaldehyde (E6.18b-6.19b). Notably, these equations suggest 

that acetaldehyde formation is entirely independent of the CH3CHOO + SO2 reaction. 

 𝑘′CH3CHO =  𝑘w +  𝑘X (E6.18b) 
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𝑆CH3CHOheight = 𝑆C2height × 𝐴 ×  (

 𝑘X

𝑘′CH3CHO
) (E6.19b) 

   

Whilst using E6.18b-6.19b to fit the data it became apparent that these equations could not 

produce a good fit to the data, much worse than equations E6.18-6.19 (Figure 6.27). As the 

as better fit to the data is yielded from the E6.18-6.19, it suggests the acetaldehyde signal is 

dependent on the CH3CHOO + SO2 reaction. Therefore, this reaction must be partially 

responsible for the signal at m/z = 44, proving that these species are correlated with each 

other. 

 
 

 

Figure 6.27: (Left) A plot of the data used the Criegee dependent equations (E6.20-6.21); (Right) A 

plot of the data, here the Criegee independent equations were used to fit the data (E6.20a-6.21a). 

 

It should be noted that other possible products (i.e. SO3 and the secondary ozonide species) 

from the reaction were searched for, although none were found. This is not entirely 

surprising as the ionization potential of SO3 is ~13 eV (Snow and Thomas, 1990). There 

was also no sign of the secondary ozonide at m/z = 124, this was very close to the I atom 

signal at m/z = 127 (a very large and broad peak); it is therefore plausible that signal from 

the SOZ may have been masked by this signal. It is also possible that any SOZ formed was 

fragmented by the photoionization beam. In fact the acetaldehyde observed is actually 

produced during photoionization rather than by unimolecular decomposition of the SOZ 

species (see Figure 6.25). That said, as all of the experiments were conducted at low 

pressures (p < 2.5 Torr) it is thought that decomposition channel will be dominant under 

these condition. If more time was available, experiments would have been conducted to test 

whether the CH3CHO was formed was from photoionization or decomposition; during these 

experiments a scavenger for CH3CHO would be added to the system (such as OH radicals). 

If the CH3CHO was formed by decomposition, the CH3CHO would react with the 

scavenger and the signal at m/z = 44 would be depleted. However, if the CH3CHO was 
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formed during photoionization, there would be insufficient time for any scavenging to occur 

and signal at m/z = 44 would persist. 

6.2.4.1 C2 CI + SO2 Conclusions 

The results from this study suggest that the rate coefficient of the reaction between the syn-

C2 Criegee and SO2 is kC2SO2 = (1.8 ± 0.3) × 10-11 molecule-1 cm-3 s-1. This value is 

marginally lower than others found in literature; however it is just within error of the syn-C2 

Criegee + SO2 rate coefficient measured by Taatjes et al. (2013), where kC2SO2 = (2.4 ± 0.3) 

× 10-11 molecule-1 cm-3 s-1. From this study some of the low pressure products of the 

reaction have been identified. In particular, a strong anti-correlation was observed between 

the CH3CHOO and a species at m/z = 44. By using a global fitting it was made clear that the 

species was formed as the C2 CI reacts with SO2, and given the mass, this species is most 

likely CH3CHO. This result verifies prior observations made by Taatjes et al. (2013). 

Significantly, it suggests that (at low pressures) this reaction leads to the formation of SO3 

and the oxidation of sulphur from the S(IV) to the S(VI) is a crucial step to the formation of 

H2SO4 in the atmosphere. However, it is unlikely that this is the major pathway for this 

reaction at atmospherically relevant pressures, but it could still play minor role. 

Additionally, this study also suggests a decomposition rate coefficient for the syn-C2 CI of 

kd < 79 s-1, this evaluation is in good agreement with the evaluation made by Novelli et al. 

(2014) and is not significantly different from the kd value reported for syn-C2 CI 

decomposition in Newland et al. (2015). 

6.2.5 CH3CHOO + NO2 

The final reaction explored during this study was that between the C2 Criegee intermediate 

and NO2. This reaction has been previously studied and is thought to react significantly 

slower than the corresponding C1 Criegee + NO2 reaction. The same methodology was used 

for this study as is described in Section 6.5.2, with CH3CHOO being monitored directly at 

m/z = 60. As with the C1 CI reaction, it was evident that any reaction occurring between 

these reactants was only very minor. Indeed, even upon adding large concentrations of NO2, 

[NO2] = 2.5 × 1014 molecule cm-3, the change in the total Criegee loss rate (k’C2total) was 

only just significantly larger than experiments run in the absence of NO2; leading to an 

upper limit of kC2NO2 < 1.2 × 10-12 molecule-1 cm-3 s-1 for the rate coefficient of the syn-C2 CI 

+ NO2 reaction. 
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Figure 6.28: A bimolecular plot from the results of the C2 CI + NO2 reaction. The confidence limits 

are at the 1σ level, the error quoted is propagated using the random errors quoted from the plot 

(1σ) and a 10% systematic experimental error. (Inset) An example of the Criegee signal, SCH3CHOO, 

measured during the experiments with NO2. [NO2] = 1.3 × 1014 molecule cm-3. 

 

The results from this study were used to produce a bimolecular plot (Figure 6.28). From 

Figure 6.28 a C2 CI concentration of [CH3CHOO] ≈ 2.5 × 1012 molecule cm-3 is estimated 

from the y-intercept; however, it is thought that pseudo first-order conditions were upheld 

due to the large concentrations of NO2 that were added. From this plot a rate coefficient of 

kC2NO2 = (7.0 ± 1.5) × 10-13 molecule-1 cm-3 s-1 was determined for the syn-CH3CHOO + 

NO2 reaction. The results from these experiments suggest that it is only just possible to say 

that any significant reactivity was observed, however the rate coefficient retrieved compares 

relatively well to the other literature evaluations; Taatjes et al. (2013) suggest a value of 

kC2NO2 = (2 ± 1) × 10-12 molecule-1 cm-3 s-1. The products of this reaction were also probed. 

Previous theoretical and experimental work suggests that, unlike the C2 CI + SO2 reaction, a 

CH3CHOO-NO2 adduct is formed in this reaction, even at low pressures (Taatjes, 2013). 

Unfortunately, there was no sign of this species; although there was evidence of CH3CHO 

present in the system. However, the quality of the data was low and hence the correlation 

between Criegee destruction and acetaldehyde formation was not as clear for the C2 CI + 

NO2 reaction; the global fitting procedure was utilised to establish whether acetaldehyde 

was formed in the CH3CHOO + NO2 reaction. The data was fitted using equations (E6.24-

6.25) and then using (E6.24b-6.25b): 

Scenario 1: Acetaldehyde formation is dependent on kC2NO2 

 𝑘′CH3CHO = (𝑘C2NO2 × [NO2]) + 𝑘w +  𝑘X (E6.24) 
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𝑆CH3CHOheight = 𝑆C2height × 𝐴 ×  (

(𝑘C2NO2 × [NO2]) +   𝑘X

𝑘′CH3CHO
) (E6.25) 

   

Scenario 2: Acetaldehyde formation is independent on kC2NO2 

 𝑘′CH3CHO = 𝑘w +  𝑘X (E6.24b) 

   

 
𝑆CH3CHOheight = 𝑆C2height × 𝐴 ×  (

 𝑘X

𝑘′CH3CHO
) (E6.25b) 

   

For the C2 Criegee + NO2 reaction, both equations (E6.24-6.25) and (E6.24b-6.25b) gave 

equally good fits to the data. Furthermore, both fittings yielded much smaller rate 

coefficients (kC2NO2 ≈ (2 - 5) × 10-13 cm3 molecule-1 s-1). This implies that the previous 

estimate the upper limit for this reaction, kC2NO2 < 1.2 × 10-12 molecule-1 cm-3 s-1, may be an 

over-estimation for the C2 CI + NO2 reaction. It is also evident from these fittings that both 

set of equations are capable of describing the growth of acetaldehyde. This suggests that the 

acetaldehyde formation may be independent of the reaction between CH3CHOO and NO2; 

however, the equations E6.24-6.25 also yield a reasonable fit to the data so this cannot be 

stated conclusively. As the quality of the data was low (SNR ≈ 3), it is impossible to say 

anything definitive about this. 

6.2.5.1 C2 CI + NO2 Conclusions 

For the reaction between the syn-C2 Criegee and NO2, a rate coefficient of 

kC2NO2 = (7.0 ± 1.5) × 10-13 cm3 molecule-1 s-1 was determined, with an upper limit of 

kC2NO2 < 1.2 × 10-12 molecule-1 cm-3 s-1 recommended.  The results of this study compare 

reasonably well to other literature evaluations, which reported a rate coefficient of 

kC2NO2 = (2 ± 1) × 10-12 molecule-1 cm-3 s-1 for the syn-C2 Criegee + NO2 reaction (Taatjes, 

2013). An acetaldehyde signal was again observed after t = 0 s; little could be said about 

this signal as the quality of the data was poor. However, unlike the C2 CI + SO2 reaction, 

the acetaldehyde formation is potentially independent of the CH3CHOO + NO2 reaction.  

6.3 Atmospheric Implications  

The atmospheric implications of the reactions studied in this chapter depend largely upon 

Criegee reactivity towards water and its dimer. However, for the C1 Criegee intermediate, 

even when very conservative estimates for the water and water dimer rate coefficients are 

used, reactions with water dimer + monomer are still predicted to be the overwhelmingly 

dominant sinks for CH2OO (Vereecken et al., 2012, Lewis et al., 2015, Anglada and Sole, 

2016).  
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However, the rate coefficient for the syn-CH3CHOO + H2O is known to be extremely slow 

and has an estimated rate coefficient of 2.5 × 10-18 < kC2H2O < 4.5 × 10-15 cm3 molecule-1 s-1 

(Taatjes, 2013, Vereecken et al., 2012). This means that potentially the reactions of NO2 

and SO2 may be minor sinks for the syn-C2 Criegee intermediate. Again, it should be 

highlighted that, as the syn- conformer is expected to be formed more abundantly in marine 

environments, understanding the kinetics of this conformer is of greater importance for 

these regions. 

Due to its greater atmospheric abundance, the reaction of NO2 has more potential as a sink 

for the C2 Criegee (Brasseur et al., 1999, Vereecken et al., 2012); however, because kC2NO2 

is so small, this channel is assumed to be almost negligible. It is possible that in dry, but 

polluted environments, reaction with NO2 may occur, although any such reactivity would 

still only be very minor (Vereecken et al., 2012). That being said, using the rate coefficients 

measured in this work it is estimated that the reaction with NO2 would be responsible for a 

maximum of 0.5% of syn-CH3CHOO destruction, even in the most polluted environments 

(e.g. high [NOx]). Note: this is using an estimate of the syn-C2 CI + H2O rate coefficient of 

ksynC2H2O = 2× 10-17 cm3 molecule-1 s-1; this rate coefficient is an approximate average of 

those reported in Vereecken et al. (2012) and Sheps (2013). The syn-C2 CI + (H2O)2 rate 

constant was estimated using a conversion factor from Vereecken et al. (2012) (Anglada et 

al., 2011, Ryzhkov and Ariya, 2004). 

In polluted environments, such as mega cities, it is plausible that the C2 CI + SO2 reaction 

may be a minor channel for the syn-CH3CHOO destruction (Table 6.10). For example, in 

Beijing, China an average concentration of SO2 of [SO2] > 2.5 × 1011 molecule cm-3 was 

recorded (Lin et al., 2012); under these conditions the reaction with SO2 may be responsible 

for ~2% of the syn-CH3CHOO loss (T = 283 K). This model may well be a slight over-

estimate of the importance of this channel, as the kinetics of other destruction channels 

(primarily the carboxylic acids) were not taken into account. These results suggest that in 

certain environments, SO2 may play a role in C2 Criegee destruction. In addition to this, the 

reaction with Criegee intermediates is thought to enhance SO2 oxidation leading to 

increased [H2SO4]; this will be of particular importance at night when OH concentrations 

are low (see Chapter I). Note that the reaction between OH + SO2 is the dominant oxidation 

reaction leading to sulphate formation in the atmosphere. 
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Table 6.10: Shows the major loss channels for the C2 CI. In certain regions SO2 can compete with 

the major loss channels and contribute to C2 CI decay.  

Temp. 

/ K  

Region RH / 

% 

[H2O] / 

cm-3 

[(H2O)2] / 

cm-3 

[SO2] / 

cm-3 

% loss 

H2O  

% loss 

(H2O)2  

% loss 

SO2  

298 Urban 75 5.8×1017 5.5×1014 2.5×1011 0.7 99.1 0.3 

298 Urban 50 3.9×1017 2.4×1014 2.5×1011 1.0 98.4 0.6 

298 Rural  75 5.8×1017 5.5×1014 2.0×1010 0.7 99.3 0.02 

298 Rural  50 3.9×1017 2.4×1014 2.0×1010 1.0 99.0 0.05 
 

  
   

        

283 Urban 75 2.4×1017 9.9×1013 2.5×1011 0.9 98.2 0.9 

283 Urban 50 1.6×1017 4.4×1013 2.5×1011 1.3 96.7 2.1 

283 Rural  75 2.4×1017 9. ×1013 2.0×1010 0.9 99.0 0.1 

283 Rural  50 1.6×1017 4.4×1013 2.0×1010 1.3 98.5 0.2 

 

For modelling purposes the following rate coefficients were used: kC2SO2 = 2 × 10-11 cm3 

molecule-1 s-1; ksynC2H2O = 2 × 10-17 cm3 molecule-1 s-1. Values of ksynC2H2O2 (283 K) = 3.2 × 

10-12 cm3 molecule-1 s-1 (calculated from (Vereecken et al., 2012)); ksynC2H2O2 (283 K) = 6 × 

10-12 cm3 molecule-1 s-1 (Vereecken et al., 2012). Notably, the values for ksynC2H2O2 were 

doubled for the calculations at 283 K due to the strong, negative, temperature dependence 

observed by Smith et al. (2015),   

In one recent study, large discrepancies between modelled and measured H2SO4 

concentrations in a Finnish boreal forest were observed, implying an unexpected increase in 

SO2 oxidation. It has been postulated that this oxidation may be caused by CIs produced by 

monoterpene ozonolysis (Mauldin et al., 2012). Indeed, one recent study suggests that on a 

regional scale the impact that Criegee chemistry may have on [H2SO4] is significant 

(Percival et al., 2013). In the work of Percival et al. (2013), it is hypothesised that in certain 

environments the oxidation of SO2 by Criegee intermediates may compete, and in fact 

dominate over the other SO2 oxidation pathways. However, it should be noted that the 

simulations reported in this study do not account for the reaction between CIs and the water 

dimer in the steady-state calculations for [CI]. Therefore, it is likely that this study 

overestimates the steady-state concentration of Criegee intermediates in the atmosphere and 

hence exaggerates the contribution of CIs to the atmospheric oxidation of SO2. Note: in 

Percival et al. (2013) a steady-state concentration of CIs between 4.2 × 104 < [CI] (molecule 

cm-3) < 3.75 × 105 is calculated. When the contribution of the water dimer reaction is taken 

into account a steady-state concentration between 2×102 < [CI] (molecule cm-3) < 7.5×103 is 

estimated (see Appendix C). Using lower estimations of CI concentration, it is calculated 

that Criegee intermediates still contribute as minor channels in the SO2 oxidation process, 

particularly at night when the hydroxyl radical concentration is low. These calculations 

suggest that Criegee intermediates may account for up to ~8% of SO2 removal during the 
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day and ~45% at night. These calculations support the work of Mauldin et al. (2012), which 

reported large night time concentrations of H2SO4 which could not be explained by OH 

removal alone.  

Table 6.11: Shows the competition between OH and CIs for the removal of SO2 in the troposphere. 

The effect of the CI concentration is also highlighted. 

Time kOH/ cm3 s-1 kSO2/ cm3 s-1 [OH] / cm-3 [CI] / cm-3 
loss OH / 

% 

loss CI / 

% 

Day 1.5×10-12 2.5×10-11 1×106 5×102 99.2 0.8 

Day 1.5×10-12 2.5×10-11 1×106 5×103 92.3 7.7 

     
    

Night 1.5×10-12 2.5×10-11 1×105 5×102 92.3 7.7 

Night 1.5×10-12 2.5×10-11 1×105 5×103 54.5 45.5 

 

The calculations in Table 6.11 were determined using the following rate coefficients: 

kSO2 = 2.5× 10-11 cm3 molecule-1 s-1, which is an averaged value from the (C1 and C2) CI + 

SO2 rate coefficients determined from this study; kOH = 1.5× 10-12 cm3 molecule-1 s-1 

(Atkinson et al., 2004). 
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7. Kinetic Studies of Criegee Intermediate with Organic Acids 

and Alkenes 

Recent work by Welz et al. (2014) has explored the reactivity between both the C1 and C2 

Criegee intermediates and organic acids. This chapter aims to build on the work of Welz et 

al. (2014) by measuring both the kinetics and products for the reactions of the C1 CI with 

both formic, kC1FA, and acetic acid, kC1AA. From this study rate coefficients of kC1FA = (3.7 ± 

0.6) × 10-11 cm3 molecule-1 s-1 and kC1AA = (7.1±1.1) × 10-11 cm3 molecule-1 s-1 for the 

reactions with formic and acetic acid respectively. Notably, the rate coefficient measured 

from this study for the reaction between C1 CI and formic acid is approximately a third of 

the value reported by Welz et al. (2014), kC1FA = (1.1 ± 0.1) × 10-10 cm3 molecule-1 s-1. 

The C1 CI + acetic acid rate coefficient is approximately half the previous evaluation of 

kC1AA = (1.3 ± 0.1) × 10-10 cm3 molecule-1 s-1 (Welz et al., 2014).  

Additionally, this chapter also contains the results from work investigating the reactivity of 

the C1 and C2 Criegee intermediates with various alkenes (ethene and isoprene). From this 

work an upper limit of kC1ethene < 2 × 10-14 cm3 molecule-1 s-1 was measured for the reaction 

between the C1 Criegee intermediate and ethene. For isoprene an upper limit of kC1isoprene < 3 

× 10-13 cm3 molecule-1 s-1 was measured for the reaction with the C1 CI, and a rate 

coefficient of kC2isoprene = (8.3 ± 4.1) × 10-13 cm3 molecule-1 s-1 was measured for the C2 CI. 

7.1 CH2OO + Organic Acids 

7.1.1 Introduction 

Following the discovery of the enhanced reactivity of stabilised Criegee intermediates 

(SCIs) towards atmospheric trace gases (Welz et al., 2012), a number of modelling studies 

were conducted to determine the impact  this additional chemistry had on CI destruction 

pathways (Vereecken et al., 2012). Previously, it had been assumed that reaction with H2O 

and its dimer were the exclusive sinks of CIs; however, Vereecken et al. (2012) showed that 

for substituted CIs this may not be true in certain environments. In Vereecken et al. (2012), 

a single rate coefficient of kOrgAcids = 5 × 10-12 cm3 molecule-1 s-1 was applied for carboxylic 

acids; using this evaluation it is predicted that carboxylic acids will be a minor sink for C1 

and syn-C2 CIs (Vereecken et al., 2012). However, recent measurements of CI reactivity 

with formic and acetic acid suggest that the estimate made by Vereecken et al. (2012) is 

very conservative (Sipilä et al., 2014, Welz et al., 2014) . Both the work of Welz et al. 

(2014) and Sipilä et al. (2014) suggest that CIs react extremely rapidly with carboxylic 

acids (Table 7.1).  
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Table 7.1: Rate coefficient for CI + carboxylic acids reactions determined from recent studies. 

Reaction k (× 10-11 cm3 molecule-1 s-1) Reference 

CH2OO + HCOOH 11 ± 1 Welz et al. (2014) 

CH2OO + CH3COOH 13 ± 1 Welz et al. (2014) 

   

anti-CH3CHOO + HCOOH 50 ± 3 Welz et al. (2014) 

syn-CH3CHOO + HCOOH 25 ± 3 Welz et al. (2014) 

anti-CH3CHOO + CH3COOH 25 ± 6 Welz et al. (2014) 

syn-CH3CHOO + CH3COOH 17 ± 5 Welz et al. (2014) 

   

(CH3)2OO + HCOOH 5.6 ± 0.6* Sipilä et al. (2014) 

(CH3)2OO + CH3COOH 6.9 ± 0.8* Sipilä et al. (2014) 

*Note: the results from Sipilä et al. (2014) were done using a relative rate method with SO2, the rate 

coefficients listed were calculated using a kC2SO2 = 2.0 × 10-11 cm3 molecule-1 s-1. 

 

These results imply that organic acids may be responsible for a significant proportion of CI 

loss in the atmosphere; in fact, Welz et al. (2014) suggest that carboxylic acids may cause 

up to ~10% of CH2OO destruction in boreal forests. The estimation of ~10% is thought to 

be a slight over-estimation of the CH2OO + acids loss pathway as this model was executed 

using, what is now thought to be, a conservative value of kC1H2O = 9 × 10-17 cm3 molecule-1  

s-1 (Stone et al., 2014). However, it is possible that organic acids may be minor sinks of 

CH2OO; moreover, it is likely that carboxylic acids are significant sinks for larger CIs (such 

as syn-CH3CHOO).  

It is hypothesised that the reaction of CH2OO and formic acid rapidly forms 

hydroperoxymethyl formate (Figure 7.1); the formation of this HPMF is thought to be 

barrierless (Long et al., 2009). Hydroperoxymethyl formate (HPMF) is also known to be a 

key intermediate in the low temperature combustion of dimethyl ether (DME) and was 

recently positively identified as a product from DME oxidation at 540 K (Moshammer et 

al., 2015). Furthermore, in a theoretical study conducted by Andersen and Carter (2003) 

CH2OO and formic acid have previously been hypothesised as potential products from 

HPMF decomposition (Figure 7.2). Therefore, having an understanding of the kinetics and 

products of this reaction may be relevant for both atmospheric and combustion systems.  
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Figure 7.1:A schematic of the potential energy surface of the reaction between CH2OO and 

HCOOH. Adapted from Long et al. (2009). The exothermicity of the formation of HPMF is 

estimated from Long et al. (2009). 

 

The aim of this study is to investigate the kinetics of the C1 CI with both formic and acetic 

acid with the hope to corroborate the previous work done exploring these reactions (Welz et 

al., 2014). In addition to this, information about the products from these reactions will also 

be monitored using pulsed laser photolysis coupled with photoionization mass spectrometry 

(PLP-PIMS). 
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Figure 7.2: A schematic of the potential energy surface showing the HPMF formation in DME 

oxidation and the hypothesised pathway leading to CH2OO + HCOOH (Andersen and Carter, 

2003). The exothermicity of the formation of HPMF is estimated from Andersen et al. (2003). 

 

7.1.2 Experimental 

A similar experimental approach was used for this work as in the previous SCI experiments 

described in Chapter VI; however, a brief recap of the experimental methodology given be 

given. For all of the experiments conducted CH2I2/O2/He/HCOOH or CH3COOH gas 

mixtures were flowed through the reactor via calibrated mass flow controllers (MFCs); all 

the experiments done using the PIMS technique were conducted at low pressures 

(1.0-2.5 Torr). To ensure that a reproducible amount of CH2I2 was added, a bubbler was 

used placed after the MFC (see Figure 6.2). Only small amounts of the diiodomethane 

([CH2I2] < 1  1013-14 cm-3) were added during the experiments as the flow of helium from 

the MFC and the flow of gases (He and CH2I2) out of the bubbler were balanced using a 

needle valve, which ensured that only the diluted vapours of the diiodo-species were 

introduced into the reactor. The C1 CIs were generated by adding large quantities of neat 

oxygen ([O2] = 1 × 1016 molecule cm3) to the CH2I radicals produced from diiodomethane 

photolysis (R7.1-7.2).  

 CH2I2 + hν  →  CH2I + I (R7.1) 

   

 CH2I + O2  →  CH2OO + I (R7.2) 

   

For the entirety of this study, diiodo-precursors were initiated by pulsed laser photolysis 

using an excimer laser ( = 248 nm, ~50 mJ cm-2) and the gas sampled was photoionized 

using  = 118 nm light (for details see Chapter II).  
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To ensure the experiments were completed under pseudo first-order conditions both the 

formic and acetic acid added had to be kept in excess of [CH2OO]. Initially, as with the 

previous SCI experiments, dilute (~2%) gas bulbs of HCOOH and CH3COOH (Sigma-

Aldrich >98% and Fluka >99.8% respectively) were prepared; however, it became clear that 

this was a poor method of delivery for the carboxylic acids. It was discovered that in order 

to get significant (and reproducible) amounts of HCOOH and CH3COOH through the 

MFCs, the gases needed to be flowed for a long time prior to the experiments (often 

overnight). Therefore, it was decided that using a gas bubbler may be a better choice of 

apparatus; it should be noted that, unlike for the diiodomethane, the bubbler was placed 

prior to the mass flow controller (Figure 7.3). This added the extra complication that the 

concentrations of acid had to be determined by calculating the vapour pressure for both 

formic and acetic acid using Antoine equations described in E7.1 and E7.3 (Speight, 2005). 

All of the experiments were conducted at 293 K; at this temperature the vapour pressures of 

the formic and acetic acid are 31.5 Torr and 11.5 Torr respectively (Speight, 2005). 

Following the calculation of the vapour pressure, the overall concentrations can be 

calculated using (E7.2 and E7.4). 

 

Figure 7.3: A schematic of the bubbling apparatus used to introduce both formic and acetic acid 

into the reactor.  

 

 
HCOOH vapour pressure (Torr) = 10

(6.94459− 
1295.26

218+T(°C)
)
 (E7.1) 

   

 
[HCOOH] (%) =  

HCOOH vapour pressure (Torr)

total pressure (Torr)
 × 100% 

(E7.2) 

   

 
CH3COOH vapour pressure (Torr) = 10

(7.80307− 
1651.2

225+T(°C)
)
 

(E7.3) 
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[CH3COOH] (%) =  

CH3COOH vapour pressure (Torr)

total pressure (Torr)
 × 100% 

(E7.4) 

   

When using the gas bulbs it is thought that typically the concentrations are accurate to 

approximately ±5%. Using the vapour pressure method to estimate the concentration is 

thought to be a less precise technique as there are a number of variables which are assumed 

to be constant; such as the variations in the backing pressure of helium or possibly small 

fluctuations in liquid temperature. Both these variables were monitored but may have 

changed slightly during the course of the experiments. Due to these variables an uncertainty 

of ±10% is assumed in [carboxylic acid], which when propagated with other systematic 

uncertainties, led to a total systematic experimental error of ~15%.  

It should also be highlighted that both formic and acetic acid have strong intermolecular 

forces (hydrogen bonds), which lead the formation stable dimer species at high 

concentrations. In this study the concentrations of both acids (in the reaction mixtures) were 

kept below 1 × 1014 molecule cm-3, which was low enough to ensure that the monomer was 

the dominant species ([monomer] > 99% at T = 293 K) (Winkler and Hess, 1994). 

Moreover, MESMER calculations (completed by D.D.J Medeiros) indicate that the dimer 

lifetime, τ, is ~25 ms for HCOOH (for CH3COOH τ < 2 ms), the mixing time prior to the 

flowtube is at least 0.25 s; this means essentially all of the acid will be in monomer for the 

reaction. Conversely, the vapour pressures of the acids (i.e. prior to the MFC and further 

dilution) are much more concentrated ([HCOOH] ≈ 1×1018 molecule cm-3), and at these 

concentrations ~80% of the HCOOH is dimer (82.5% for CH3COOH). The vapour pressure 

of the acids are described by the following equations (Khamaganov et al., 2006): 

 𝑃t =  𝑃D +  𝑃M (E7.5) 

Or:   

 𝑁t =  𝑁D + 𝑁M (E7.6) 

   

 𝑁D ⇌  2𝑁M (R7.3) 

   

where: Pt is the total vapour pressure; PD is the partial pressure of the dimer; and PM is the 

partial pressure of the monomer. In equation E7.6: Nt is the total number density; ND is the 

number density of the dimer; and NM is the number density of the monomer. 

As every dimer is the system is converted to two monomers in the mixing manifold (R7.3), 

this means an adjustment is required to calculate the actual concentrations of acid monomer 

in the gas mixture (E7.7). 

 𝑁M∗ = 2𝑁D + 𝑁M (E7.7) 
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where NM* is the corrected monomer number density in the reaction mixture. 

The methods of data collection and analysis techniques used in this CH2OO + organic acid 

study were analogous to those described in Chapter VI. The experiments were controlled 

using a LabVIEW™ program, which was designed specifically for data collection and 

storage using the PIMS setup (Baeza-Romero et al., 2012). The data collected were then 

analysed used OriginPro graphical software (E7.8-7.10) and used to construct a bimolecular 

plot.    

 
𝑀1 =

(𝑆C1height × 𝑘′
CH2I+O2 × 𝑘samp)

(𝑘′C1total − 𝑘′CH2I+O2)
 

(E7.8) 

   

 
𝑀2 =  

𝑒−𝑘′
CH2I+O2× 𝑡−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
CH2I+O2)

 - 
𝑒−𝑘′

C1total× t−𝑒−𝑘samp× 𝑡

(𝑘samp− 𝑘′
C1total)

 
(E7.9) 

   

 𝑆CH2OO = 𝑀1 × 𝑀2 + 𝑆bg (E7.10) 

   

SCH2OO represents the time-resolved C1 CI signal; SC1height is the maximum height of SCH2OO; 

k’CH2I+O2 is equivalent to the rate of CH2OO formation; k’C1total is equal to the total loss rate 

of CH2OO; ksamp is the rate of transportation of the gas to the mass spectrometer (this was 

held constant during data analysis, ksamp = 30000 s-1); t is time; and Sbg represents the 

background signal measured for the individual data traces. 

7.1.3 CH2OO + HCOOH Reaction 

The reaction of the C1 Criegee intermediate with formic acid is potentially an important 

reaction not only for atmospheric chemistry, but also for DME combustion as well. Recent 

studies have identified that the rate coefficient for this reaction, kC1FA, is extremely fast 

(kC1FA > 1 × 10-10 cm3 molecule-1 s-1) (Welz et al., 2014); this rate coefficient was several 

orders of magnitude faster than had previously been estimated (Johnson et al., 2001). As 

yet, there has been little reported about the products from this reaction, although it has been 

hypothesised that hydroperoxymethyl formate (m/z = 92) is a likely product. However, 

HPMF is yet to be positively identified as a product for the reaction; although the formation 

of HPMF has been inferred from the detection of formic acid anhydride (FAN, m/z = 74), 

which is thought to be the major product from HPMF decomposition (Neeb et al., 1998). 

However, the exact mechanism for this reaction is still unknown. Although there have been 

a number of theoretical studies which have determined the most energetically favourable 

reaction pathways for the reactions, and the most probable products, of which HPMF is one 

(Long et al., 2009). The work by Long et al. (2009) identifies two possible channels for the 

CH2OO + HCOOH reaction: the first being the attack of the Criegee intermediate on the 

OH group of the formic acid, leading to the formation of HPMF; and the second being the 
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formation of a hydroxylated secondary ozonide (Figure 7.1 and Figure 7.4). In addition to 

the channels reported by Long et al. (2009), an alternative pathway (Figure 7.4, 3) is also 

shown; in this reaction the Criegee intermediate is inserted into the C-H bond of the acid 

species. 

 
Figure 7.4: A schematic of the possible reaction mechanisms for the reaction between CH2OO and 

HCOOH (Long et al., 2009). 

 

Both of these mechanisms reported by Long et al. (2009) were barrierless, with HPMF 

channel being marginally more thermodynamically favourable. Unlike the work of 

Andersen and Carter (2003) and Neeb et al. (1998), Long et al. (2009) suggest that there is a 

significant energy barrier to formic acid anhydride, FAN, formation (Figure 7.1); 

suggesting that HPMF, rather than FAN, is the kinetically stable product. It should also be 

noted that Long et al. (2009) predict the hydroxylated secondary ozonide will be the 

kinetically stable product, even though formic acid and CO2 are the thermodynamically 

favoured products from this reaction channel, due to the large barrier for H2 elimination 

(Figure 7.1). 

Throughout this study it was determined that the concentration of CH2OO used was 

[CH2OO]0 ≈ 4 × 1012 molecule cm-3; under these conditions the quality of the data was high 

and signal-to-noise ratios between 20 < SNR < 35 were measured after ~10 traces. Each of 

the traces collected were analysed using equations E6.1-6.3; the data were then used to 

create a bimolecular plot (Figure 7.5).  It should be noted that the linear regression fit 

plotted was weighted using the error of the individual data points, meaning the rate 

coefficient determined put less emphasis of the data with high uncertainties. 
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Figure 7.5: An example of the quality of the data collected can be seen in the upper left-hand corner 

of the bimolecular plot of obtained for the reaction between the C1 CI + HCOOH. The error quoted 

is propagated using the random errors quoted from the plot and a 15% systematic experimental 

error. Uncertainty limits shown are to 2σ.  

 

From Figure 7.5 a rate coefficient of kC1FA = (3.7 ± 0.6) × 10-11 cm3 molecule-1 s-1 is 

obtained. This evaluation is approximately a factor of 3 lower than those made by Sipilä et 

al. (2014) and Welz et al. (2014) (see Table 7.1). Nevertheless, the value of kC1FA from this 

work is still several orders of magnitude greater than CH2OO + acetic acid rate coefficients 

as originally established, where an upper limit of kC1AA < 1 × 10-14 cm3 molecule-1 s-1 was 

proposed (Johnson et al., 2001). It should be noted that in Johnson et al. (2001), a rate 

coefficient for the CH2OO + formic acid reaction was not reported. However, Welz et al. 

(2014) do not give details about how they account for dimer to monomer conversion, 

although they do suggest dimerization is taken into account. It may be possible that acid 

concentrations were not adjusted for dimer to monomer conversion using the same 

methodology. If this is the case then it may be prudent to investigate how the adjustment 

made for dimerization alters the rate coefficient determined from this study, and how the 

unadjusted rate coefficient compares with the previous literature (Table 7.2). 

Table 7.2: Demonstrates the effect that formic acid dimerization has on kC1FA and how our 

measurements compare to recent literature results. 

kC1FA (×10-11) / cm3 

molecule-1 s-1 

Is dimerization 

accounted for? 

Method used to adjust 

concentration 
Reference 

3.7 ± 0.6 Yes 𝑁M∗ = 2𝑁D +  𝑁M This study 

6.7 ± 1.1 No No adjustment This study 

11 ± 1 Yes Unknown (Welz et al., 2014) 
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Adjusting the HCOOH concentration for dimerization has a significant effect on the rate 

coefficient, kC1FA. As can be seen from Table 7.2, if HCOOH dimerization is not accounted 

for, a rate coefficient of (6.7 ± 1.1) ×10-11 cm3 molecule-1 s-1 was determined. Notably, this 

evaluation was still approximately half the rate coefficient reported by Welz et al. (2014). 

However, when acid dimerization is ignored, the rate coefficient calculated from this study 

are closer to those quoted in Welz et al. (2014). That said, it must be highlighted that the 

work presented in Table 7.2 is based upon the assumption that neither of the previous 

studies study took the dimerization of formic acid into account using E7.7; this is doubtful, 

particularly as Welz et al. (2014) state that dimerization is considered, although, they do not 

specifically state exactly how this is done.  

In addition to the kinetic observations made for the C1 CI + HCOOH reaction, the aim of 

this study was to investigate the products from this reaction as well; however, detection of 

the reaction products proved to be very difficult. Indeed, the expected parent mass signal at 

m/z = 92 from HPMF formation proved to be elusive throughout the entirety of the 

experiments. In fact there was no conclusive evidence for any product formation. However, 

a small signal was observed at m/z = 64 during some of these experiments (Figure 7.6); 

although this signal was not always reproducible and was only observed when the quality of 

data was at its highest.  

  
Figure 7.6: Photographs of the mass spectrum observed on the oscilloscope. (Left; green line, peak 

circled in red) in between the orange markers a small signal is observed (m/z = 64) at t = 1 ms; 

(Right; green line, peak circled in red) however, in the absence of 248 nm light no such signal can 

be seen between the markers. 

 

Notably, the m/z = 64 signal observed (at t = 1 ms) in the Figure 7.6 was only measurable 

when the photolysis laser was operative and in the presence of O2; this implies that the 

species at m/z = 64 is only produced in the presence of CH2OO. To establish whether this 

was true, the Criegee signal (m/z = 46) and the mass at m/z = 64 were monitored 

simultaneously and the data were plotted on a graph together, Figure 7.7. From this plot it 

can be seen that the m/z =64 signal does seem to be formed on a similar time-scale as the 

Criegee signal (SCH2OO) is lost: note this was verified upon data analysis. Unfortunately, 
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there was insufficient data collected with the m/z = 64 signal, meaning that a global fitting 

of the data (as described in Chapter VI, section 6.2.3) could not be used to analyse the data 

more rigorously than this. However, it should be noted that Welz et al. (2014) also mention 

the formation of a small mass at m/z = 64 in the C1 + HCOOH reaction. In addition to this, a 

study exploring low temperature DME oxidation also measures the formation of a mass at 

m/z = 64 (Moshammer et al., 2015) and is attributed as a fragmentation channel of HPMF, 

HOOCH2OH+, caused by photoionization. As alluded to, the observation of a mass at m/z = 

64 implies that the C1 + HCOOH occurs via HPMF formation, as it is difficult to reconcile 

how a fragment of mass m/z = 28 (most likely CO) could be lost by either of the alternative 

pathways shown in Figure 7.4. Notably, HPMF formation was predicted to be the most 

thermodynamically stable channel for this reaction (Long et al., 2009).     
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Figure 7.7: A plot showing the correlation between the loss of CH2OO from the reaction system and 

the formation of the species at m/z = 64. 

 

Additionally, as part of this study hydroxyl radical detection was implemented (see Chapter 

III, Section 3.1 for details); the OH radical is known to have an ionization potential (IP) 

significantly greater than photoionization wavelength used in the PIMS technique 

(~10.49 eV); however, by utilizing a 1 + 1’ multiphoton ionization (MPI) scheme OH 

detection was achieved (Beames et al., 2011). Using this MPI technique a conservative OH 

detection limit of [OH] < 7 × 1011 molecule cm-3 has been established. Therefore, at the 

concentrations of CH2OO used throughout these experiments OH detection should be 

possible, if the yield of hydroxyl radicals from these reactions is substantial (YOH > 0.175). It 

was decided that the OH detection technique should be used as two of the possible 

mechanisms for the CH2OO + HCOOH reaction yield products with hydroperoxy- groups (-
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OOH) attached. Notably, the O-O bond is by far the weakest of the bonds in either the 

HPMF or the hydroperoxy-acetic acid species shown in Figure 7.4. It is likely that OH 

radicals may be formed from either of these two channels, and so the detection of OH 

would give some insight as to the mechanism of the reaction. 

However, throughout all of the experiments conducted with formic (and acetic) acid, there 

was no OH was measured. Initially, it was thought that a time-resolved OH signal was 

observable. However, on closer inspection it was clear that the peak was a consequence of 

an overloading signal at m/z = 14 (attributed as CH2 formed during diiodomethane 

photolysis), which caused changing background signal at m/z  = 17, which in turn led to the 

pseudo OH signal observed. The signal at m/z = 14 was removing by selectively gating the 

voltages to dispense with this overloading signal; however, even with the gating enabled, no 

time-resolved OH signal was observed. Moreover, no OH signal even registered on the 

oscilloscope, this was the best method of detecting smaller signals as the averaging method 

was faster and 1000 traces could be averaged in 2 minutes, whereas using the LabviewTM 

program data averaging was much slower (see Chapter III, Section 3.1). 

This result was slightly unexpected (due to the inherent weakness of the O-O bond in 

HPMF) and suggests that if any OH is formed from the reaction it is only a minor channel 

(YOH > 0.175). To verify these results, it was decided that the OH detection technique should 

be tested to ensure it was sensitive toward hydroxyl radicals. Prior to these experiments, this 

method of OH detection had only been used for monitoring OH as a reactant; in these 

experiments the [OH] used was reasonably high ~ 3.5 × 1012 molecule cm-3. From these 

experiments it was calculated that the technique would be able to detect OH to 

concentrations at least 50 times lower than this; however, it had never been tested, nor had 

OH ever been observed as a product from a reaction (and not a reactant). To ensure that this 

method of OH detection was of practical use, and to verify the results from the C1 + 

HCOOH reaction, a complementary study exploring the reaction between acetaldehyde and 

chlorine (in the presence of O2) was undertaken. This reaction scheme was selected, not 

only because it is known to recycle OH (R7.3-7.5), but also because it has been previously 

investigated using the PIMS set-up (see Chapter IV), so it is known that this technique can 

be used effectively to probe the CH3CHO + Cl reaction.   

 CH3CHO + Cl  →  CH3CO + HCl (R7.3) 

   

 CH3CO + O2  →  CH3(O)O2* (R7.4) 

   

 CH3(O)O2*  +  M  ⇌  CH3(O)O2  +  M*   (R7.5a) 

   

 CH3(O)O2*  →  cyclo-CH2(O)O  +  OH   (R7.5b) 
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 Through the investigation of the reaction scheme (R7.3-7.5), it was quickly established that 

the multiphoton ionization technique for OH detection was sensitive to the hydroxyl 

radicals formed in these experiments. Following this initial discovery, it was decided that 

the sensitivity of the OH detection method should be explored using this reaction system. 

Using a Kintecus model of the reaction scheme (R7.3-7.5), the starting conditions of the 

reaction were investigated to find a mixture of reactants to yield hydroxyl concentration of 

[OH] ≈ 5 × 1011 molecule cm-3; the purpose of this being to ensure that OH detection was 

possible at lower hydroxyl radical concentrations. The results of the subsequent experiment 

can be seen in Figure 7.8.  
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Figure 7.8: A plot highlighting the sensitivity of the MPI technique for OH detection. On the left-

hand side y-axis the ion signals collected from the experiments are plotted, on the right-hand side 

the modelled concentrations are plotted. 

 

From Figure 7.8 it is clear that OH detection was possible under these conditions, although 

the observed signal was small and the data quality low (SNR ≈ 3). Nonetheless, OH 

detection was achieved at low [OH], from the model of the reaction scheme, it is 

determined that the OH concentration during this experiment was [OH] = (4.0 ± 1.5) × 1011 

cm3 molecule-1 s-1. This result suggests that OH detection is possible below [OH] < 5 × 1011 

cm3 molecule-1 s-1; this is significantly lower than the CH2OO used in the C1 CI + HCOOH 

experiments and suggests that any OH formed from this reaction must be minimal. Indeed, 

through the investigation of the CH3CHO + Cl + O2 experiments, a maximum yield of OH 

can be put on the CH2OO + HCOOH of YOH < (0.10 ± 0.04), indicating that if any OH 

formation is occurring it must only be a minor channel. Although intuitively OH formation 
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seemed probable from HPMF, it is not entirely surprising that no OH was observed. Even 

though the O-O bond of the hydroperoxy- group is a weak bond (bond enthalpy, 

D0 ≈ 200 kJ mol-1) (Blanksby and Ellison, 2003), the energy required to break this bond is 

still larger than the exothermicity of the CH2OO + HCOOH (ΔH ≈ 185 kJ mol-1) (Long et 

al., 2009). Therefore, there is still a significant energy barrier which must be surpassed 

before the scission of the O-O bond can occur. 

7.1.3.1 CH2OO + HCOOH Conclusions 

From this study of the reaction between CH2OO + HCOOH a rate coefficient of 

kC1FA = (3.7 ± 0.7) × 10-11 cm3 molecule-1 s-1 was determined. This evaluation of kC1FA is 

orders of magnitude greater than earlier determinations of CI + carboxylic acids suggested 

(Johnson et al., 2001). However, the value of kC1FA from this study is approximately three 

times smaller than other recent work suggests. Furthermore, unlike the work of Sipila et al. 

(2014) and Welz et al. (2014) the rate coefficient determined for the C1 + HCOOH reaction 

is found to be significantly lower than the reaction of the C1 + CH3COOH.  

In addition to this kinetic information of the CH2OO + HCOOH reaction, the products were 

also investigated. Similarly to the work of Welz et al. (2014), it was not possible to observe 

any parent mass at m/z = 92. It was hoped that this would be possible as work by 

Moshammer et al. (2015) had proved that HPMF detection was possible using 

photoionization mass spectrometry (IP ≈ 10.2 eV) from low temperature DME oxidation 

(540 K). However, the formation of HPMF via the pathway shown in Figure 7.2 is 

estimated to be ~100 kJ mol-1 more exothermic than the C1 + HCOOH reaction, shown in 

Figure 7.1 (Andersen and Carter, 2003, Long et al., 2009). Therefore, it is possible that 

increased internal energy stored within the HPMF formed via DME oxidation may lead to 

greater photoionization of this species. There was some evidence of a mass present at 

m/ = 64, although this species was not observed during all of the experiments and was right 

on the limit of detection of the PIMS set-up used. Notably, the observation of a species at 

m/z = 64 is thought to be a fragmentation channel of HPMF photoionization 

(HOOCH2OH+) (Moshammer et al., 2015), and hence indicates that this is the mechanism 

by which the CH2OO + HCOOH reaction occurs (Figure 7.4).  

Finally, in addition to the basic PIMS set-up, a multiphoton ionization technique was also 

implemented to allow for OH detection (Beames et al., 2011). However, throughout all of 

the CH2OO + HCOOH experiments conducted no OH was observed; this suggests that 

either no OH was formed from this reaction, or the amount of OH formed from the reaction 

is so small that it was below the detection limit of the MPI technique. From a 
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complementary study of the CH3CHO + Cl + O2 reaction system a maximum yield of OH 

can be put on the CH2OO + HCOOH of YOH < (0.10 ± 0.04), which suggests that if any OH 

formation is occurring it must only be a minor channel.   

7.1.4 CH2OO + CH3COOH 

From Table 7.1 it can be seen that a rate coefficient for the C1 CI + CH3COOH in excess of 

kC1AA = 1 × 10-10 cm3 molecule-1 s-1 (Welz et al., 2014), these measurements are at least four 

orders of magnitude larger than previous evaluations, where an upper limit of kC1AA > 1× 

10-14 cm3 molecule-1 s-1 was reported (Johnson et al., 2001). However, thus far there have 

been no studies which have specifically probed the products from this reaction. 

Additionally, unlike the CH2OO + HCOOH reaction, there are no theoretical studies which 

discuss the possible mechanisms or products of the C1 + CH3COOH reaction; however, it 

will likely react in a similar fashion. The three most probable reaction pathways are shown 

in Figure 7.9. The first possible mechanism involves the CH2OO attacking the OH group, 

yielding hydroperoxymethyl acetate (HPMA). It has been hypothesized that the 

corresponding product from the C1 + HCOOH reaction (HPMF) may be dehydrated to form 

formic acid anhydride (Long et al., 2009). The second possible reaction is a cycloaddition to 

an intermediary hydroxylated secondary ozonide species (Aplincourt and Ruiz-López, 

2000); in the final possible reaction the Criegee intermediate is inserted into the C-H bond 

of the acid species. One of the main objectives of this study is to try and gain some insight 

as to the mechanism of the reaction. 

 

Figure 7.9: A schematic of the most likely reaction mechanisms for the reaction between CH2OO 

and CH3COOH. 

 

Initially, the experiments were conducted at low concentrations of CH2OO (1.0 × 1012 < 

[CH2OO]0/molecule cm-3 < 1.5 × 1012). However, due to the low concentration of CH2OO, 

the quality of the data was compromised and typically signal-to-noise ratios (SNR) below 
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ten were recorded. That meant that some of the total C1 CI loss rates (k’C1total) determined 

had sizeable uncertainties (1σ), as large as ~25% for the high [CH3COOH] data points. 

After the analysis using equations E7.1-7.3, the data were compiled and a bimolecular plot 

of the data was constructed (Figure 7.10). The linear regression fit plotted was weighted 

using the error of the individual data points, meaning the rate coefficient determined put 

less emphasis of the data with high uncertainties. 

0.0 2.0x10
13

4.0x10
13

6.0x10
13

8.0x10
13

1.0x10
14

0

2000

4000

6000

8000

k
CAA

 = (7.1 ± 1.1)  10
-11

 molecule cm
3
 s

-1
 

k
' C

to
ta

l 
/ 

s-1

[CH
3
COOH] / molecule cm

-3

 

Figure 7.10: A bimolecular plot of obtained for the reaction between the C1 CI + CH3COOH. The 

error quoted is propagated using the random errors quoted from the plot (1σ) and a 15% 

systematic experimental error. Uncertainty limits shown are to 2σ.  

 

From the bimolecular plot shown in Figure 7.10 a rate coefficient of kC1AA = (7.1 ±1.1) × 

10-11 cm3 molecule-1 s-1 for the reaction between CH2OO + CH3COOH was determined, this 

evaluation is approximately 45% lower than previous literature estimation (see Table 7.3). 

However, if the dimer to monomer conversion factor that was applied to the [CH3COOH] 

prior to analysis is ignored, a different value of kC1FA is obtained (Table 7.3). 

Table 7.3: Highlights the effect that acetic acid dimerization has on kC1FA and how our 

measurements compare to recent literature results. 

kC1FA (×10-11) / cm3 

molecule-1 s-1 

Is dimerization 

accounted for? 

Method used to 

adjust concentration 
Reference 

7.1 ± 1.1 Yes 𝑁M∗ = 2𝑁D +  𝑁M This study 

12.8 ± 2.0 No No adjustment This study 

13 ± 1 Yes Unknown (Welz et al., 2014) 

 

From Table 7.3, it can be seen that if CH3COOH dimerization is ignored the measurements 

made from this study correspond very well with the work of Welz et al. (2014). However, 

these results are based upon the assumption that neither of the previous studies study took 
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the dimerization of formic acid into account using E7.7; this is highly unlikely as Welz et 

al. (2014) state that dimerization is considered, although they do not state how this is done.  

The quality from this data was insufficient to yield quantitative information about the 

products of the reaction, although, there was some evidence for a species with a mass of 

approximately m/z ≈ 75. To gain a better understanding of the products from the reaction, 

time was spent trying to improve sensitivity of the instrumentation; this was achieved by 

realignment of the photoionization lasers to maximise the signal and also fine tuning of the 

pinhole position below the mass spectrometer. To further improve the quality of the data 

collected from this experiment, a new fill was given to the excimer laser; this increased the 

laser power to approximately 75-100 mJ cm-2. This, in turn, increased the initial 

concentration of CI to approximately [CH2OO]0 ~ 4 × 1012 molecule cm-3. After these 

alterations the quality of the Criegee signal (SCH2OO) was much improved (SNR > 30), and 

the products of the reactions could be properly investigated. It should be noted that a second 

bimolecular plot was constructed from the new (higher quality) data and a rate coefficient 

of kC1AA = (6.1±0.9) × 10-11 cm3 molecule-1 s-1. However, due to the larger initial 

concentration of CH2OO used, it is thought that for some of the low [CH3COOH] 

experiments pseudo first-order conditions were not met. Despite this, the rate coefficient 

retrieved from the bimolecular plot was not significantly different from the previous 

evaluation made in this study. The emphasis of these experiments was not to obtain kinetic 

information about the reaction, but instead to try and understand the mechanics of the 

reaction. Similarly to the C1 + HCOOH reaction, OH detection was attempted, but no mass 

was observed at m/z = 17. However, with the augmentation in the sensitivity of the 

detection, it was clear that there was indeed a product forming around m/z ~ 75; the exact 

mass of the species was actually m/z = 74 (Figure 7.11).  
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Figure 7.11: A plot showing CH2OO decay and corresponding formation of a product at m/z = 74. 

Note both the CH2OO decay rate coefficient and the m/z = 74 growth rate coefficient fitted with a 

pseudo first-order rate coefficients of k’ = (1560 ± 10) s-1. The inset shows the bimolecular plots 

produced from analysis of the CH2OO signal (red) and the signal at m/z=74 (blue).   

 

There seems to be a clear correlation between the destruction of the CH2OO and the 

formation of a species at m/z = 74. To establish whether the species forming at m/z = 74 was 

a product from the reaction between CH2OO + CH3COOH, a bimolecular plot of both the 

CH2OO and the m/z =74 pseudo first-order rate coefficients were plotted together (Figure 

7.11, inset). Notably, the rate coefficient obtained from the m/z = 74 signal, 

km/z=74 = (6.6±1.1) × 10-11 cm3 molecule-1 s-1, was not significantly larger than rate 

coefficient determined from the CH2OO signal, kC1AA = (6.1±0.9) × 10-11 cm3 molecule-1 s-1. 

To verify this result a global fitting, similar to that described in Chapter VI, section 6.3.2., 

was used. The premise of this type of function is to fit all of the Criegee loss data and 

m/z = 74 growth data simultaneously, meaning that a single evaluation of kC1AA can be 

calculated for all of the data (a more detailed description of the global fitting procedure can 

be found in Chapter VI). The data were fitted using two different sets of equations, for two 

different scenarios; the first set of equations assumes that the formation of the species at 

m/z = 74 is directly dependent upon the loss of CH2OO from reaction with CH3COOH 

(E7.8-7.9). Conversely, the second pair of equations assume that m/z = 74 formation is 

independent of the CH2OO loss (E7.8a-7.9a). Examples of the fittings produced for both 

scenarios can be found in Figure 7.11.  

 𝑘′𝑚/𝑧74 = (𝑘C1AA × [CH3COOH]) + 𝑘w +  𝑘X (E7.8) 

0 1x10
13

2x10
13

3x10
13

4x10
13

5x10
13

0

1000

2000

3000

4000

k
m/z=74

  = (6.6±1.1)  10
-11

 cm
3
 molecule

-1
 s

-1
 

k
' 

/ 
s-1

[CH
3
COOH] / molecule cm

-3

k
CH2OO

 = (6.1±0.9)  10
-11

 cm
3
 molecule

-1
 s

-1
 



Chapter VIII: Concluding Remarks and Future Work  

 

220 

   

 
𝑆𝑚/𝑧74height = 𝑆C1height × 𝐴 × (

(𝑘C1AA × [CH3COOH]) +  𝑘X

𝑘′𝑚/𝑧74 
) (E7.9) 

   

 𝑘′m/z74 =  𝑘w + 𝑘X (E7.8a) 

   

 
𝑆𝑚/𝑧74height = 𝑆C1height × 𝐴 ×  (

 𝑘X

 𝑘′m/z74
) (E7.9a) 

   

In E6.14-6.23: k’m/z74 is the rate coefficient for the formation of the species at m/z = 74; 

SC1height is the height of the Criegee signal (m/z =46); Sm/z=74height represents the height of the 

signal at m/z = 74;  kX is the rate coefficient of other reactions which contribute to the 

chemical production of m/z = 74 (e.g. C1 CI self-reaction); kw is the non-chemical 

contribution to m/z = 74 production; A is a scaling factor. 

  

  
Figure 7.12: (Upper) these graphs are a sample of the globally fitted plots using equations E7.8-7.9, 

the green points represent the Criegee signal, the black points represent the m/z = 74 data and the 

red line is the fitting through the data. (Lower) these plots are fit using equations E7.8a-7.9a, here 

the red points represent the Criegee signal, the green points represent the m/z = 74 data and the 

blue line is the fitting through the data. (Left-side) the data shown in both of the plots on the left-

hand side were done at [CH3COOH] = 2.3 × 1013 molecule cm-3. (Right-side) the data shown on the 

right-hand side were done at [CH3COOH] = 3.4 × 1013 molecule cm-3. 
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From Figure 7.12 it is clear to see the equations E7.8-7.9 give a much better fit to the 

m/z = 74 data, meaning that the species at m/z = 74 is dependent upon kC1AA and must be a 

product the reaction between CH2OO and CH3COOH. Furthermore, the rate coefficient 

determined from the global fitting, kC1AA = (5.8±0.9) × 10-11 cm3 molecule-1 s-1, was also in 

good agreement with the previous analysis.  

If it is assumed that the reaction mechanism is similar to the C1 + HCOOH reaction, there 

are two possible reaction pathways; the first to be considered is the formation of a 

hydroxylated secondary ozonide (Long et al., 2009). Once formed it is possible that the 

secondary ozonide may decompose to O2 and methyl acetate, m/z = 74 (Figure 7.13).  

 

Figure 7.13: Expected products from secondary ozonide species. 

 

Methyl acetate also has an ionization potential of ~10.2 eV (Cannington and Ham, 1985), 

which is below the threshold of the ionization source (10.5 eV). Conversely, methyl formate 

has an ionization potential of ~10.8 eV (Watanabe et al., 1962); this would explain why no 

peak corresponding to methyl formate (m/z = 60) was observed in the reaction between 

CH2OO + HCOOH. However, the weakest bond in the secondary ozonide species is the O-

O bond, making it the most likely to break and it is difficult to justify why reaction would 

not proceed via this mechanism. 

The same thought process is applied to the alternative mechanism, where the OH group on 

the acid attacks the Criegee’s central carbon atom to form hydroperoxymethyl acetate. 

Interestingly, when exploring this mechanism it is possible to reconcile the formation of a 

species with m/z = 74 (Figure 7.14). The species formed is formic acid anhydride (FAN), 

ionization potential ~ 10.65 eV (Moshammer et al., 2015). However, if this were the 

mechanism, formic acid anhydride would also be an expected product from the reaction 

between CH2OO + HCOOH and no such mass was observed. Although, a small barrier to 

FAN formation is predicted for the CH2OO + HCOOH reaction (Long et al., 2009); this 

may explain no signal was observed at m/z = 74 for the C1 + HCOOH reaction. It is also 

possible that the signal observed at m/z = 74 was from fragmentation of HPMA during 

photoionization, although if this were the case it would be expected that similar peak would 

be observed in the formic acid reaction. 
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Figure 7.14: Potential products from hydroperoxymethyl acetate decomposition. 
 

7.1.4.1 CH2OO + CH3COOH Conclusions 

This work describes a comprehensive study of the reaction between C1 Creigee intermediate 

and acetic acid, and reports both kinetic and mechanistic information about this channel. 

The rate coefficient of the reaction was found to be extremely fast, kC1AA = (7.1±1.1) × 10-11 

cm3 molecule-1 s-1, however, this measurement is still approximately 45% lower than other 

recent studies of the reaction (Sipilä et al., 2014, Welz et al., 2014). Additionally, the 

products of the reaction were also observed and a small signal at m/z = 74 was measured. 

Upon closer analysis it was apparent that the species at m/z = 74 was a product from the 

CH2OO + CH3COOH reaction. This is an interesting result as it gives some mechanistic 

information about the reaction. Indeed, from only one of the suggested mechanisms will a 

species with m/z = 74 be likely formed; this result therefore implies that the most probable 

reaction pathway for the reaction is via a hydroperoxymethyl acetate species (Figure 7.14). 

The equivalent pathway for the CH2OO + HCOOH reaction is hypothesised to be the most 

thermodynamically stable reaction channel (Aplincourt and Ruiz-López, 2000).  

7.1.5 Atmospheric Implications 

It is well known that for the C1 Criegee intermediate the reaction with water and its dimer 

are the dominant atmospheric sinks; although it is thought that the enhanced kinetics of 

carboxylic acids may allow these species to compete as a sink for CH2OO. Indeed, in Welz 

et al. (2014) it is suggested that the carboxylic acids may be responsible for up to 10% of 

the CH2OO removal in boreal forest environments; however, there are some major 

oversights in these calculations. For instance, the calculations by Welz et al. (2014) do not 

include (H2O)2, the dominant sink for CH2OO in the atmosphere. Another problem is that 

these calculations do not take any temperature dependency into account for either the 

carboxylic acids or the water dimer, which is thought to have a strong negative temperature 

dependence.  

However, in the calculations performed as part of this study all of the problems mentioned 

were taken into account. The concentrations of water used were determined for the different 

values of the relative humidity (RH) and the water dimer concentrations were calculated 

using a equilibrium constant of Keqm = 0.04 atm-1 at 298 K and Keqm = 0.045 atm-1 at 283 K 

(Shillings et al., 2011). The concentration of acid (where [acid] = [HCOOH + CH3COOH]) 
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was estimated using measurements from a paper reviewing atmospheric concentrations of 

formic and acetic acid (Khare et al., 1999); from this source an [acid] of 2.5 ppbv was used 

and for the calculations in the rural areas. In Khare et al. (1999) it was also observed that 

generally much greater concentrations of HCOOH and CH3COOH were measured in urban 

environments, for these calculations carboxylic acid concentration of [acid] = 10 ppbv was 

used. All of this information was then used to calculate the contribution of each sink of the 

total loss of CH2OO (Table 7.4). The calculations were done at two different temperatures 

(298 K and 283 K) to explore the effect of water dimerization, and for rural and urban 

environments. 

Table 7.4: Highlights the major loss channels (including organic acids) for the C1 CI, these are 

displayed a percentage loss.  

Temp. 

/ K  

Region RH / 

% 

[H2O] / 

cm-3 

[(H2O)2] 

/ cm-3 

[Acid] / 

cm-3 

% Loss 

H2O  

% Loss 

(H2O)2  

% Loss 

Acid  

298 Rural  75 5.8×1017 5.5×1014 6.3×1010 21.0 78.6 0.4 

298 Rural  50 3.9×1017 2.4×1014 6.3×1010 28.6 71.2 0.3 

298 Urban  75 5.8×1017 5.5×1014 2.5×1011 21.0 78.5 0.5 

298 Urban  50 3.9×1017 2.4×1014 2.5×1011 28.3 70.7 1.0 
         

283 Rural  75 2.3×1017 9.9×1013 6.3×1010 22.8 77.0 0.1 

283 Rural  50 1.6×1017 4.4×1013 6.3×1010 30.7 69.0 0.3 

283 Urban  75 2.3×1017 9.9×1013 2.5×1011 22.7 76.7 0.6 

283 Urban  50 1.6×1017 4.4×1013 2.5×1011 30.4 68.4 1.2 

 

The calculations in Table 7.4 were determined using the following rate coefficients: 

kC1H2O = 1× 10-15 cm3 molecule-1 s-1 (Newland et al., 2015); kC2(H2O)2 = 4× 10-12 cm3 

molecule-1 s-1 at 298 K (Lewis et al., 2015), to take into account the negative temperature 

dependence previously observed, this value was doubled for the calculations at 283 K 

(Smith et al., 2015); finally kC1Acid = 5.5× 10-10 cm3 molecule-1 s-1.  

From Table 7.4 it can be seen that in rural environments the dominant sinks for CH2OO are 

water and its dimer, with the carboxylic acid channel making little impact. However, in 

urban environments the contribution from the carboxylic acid is greater and this C1 + acid 

reaction can be considered a minor channel for CH2OO destruction. Furthermore, it is 

thought that in some specific environments the percentage of C1 CI reaction with carboxylic 

acids may be greater still. For example, a study was conducted investigating atmospheric 

carboxylic acids levels in Arizona (Dawson and Farmer, 1988). In Dawson and Farmer 

(1988) concentrations of HCOOH and CH3COOH were measured at ~ 3 ppbv and ~ 4 ppbv, 

respectively. Moreover, the relative humidity in Arizona is generally very low (typically 

RH = 50% in the morning and 25% in the afternoon) (Osborn, 2016); under these 
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atmospheric conditions it is calculated that the CH2OO loss from HCOOH and CH3COOH 

will be ~3%. 

 In addition, CI + acids reactions may have a significant impact upon the oxidation of 

carboxylic acids in the atmosphere. In fact, calculations suggest that CIs may be a moderate 

sink for carboxylic acids present in the troposphere, particularly at night when the 

concentration of OH is low (Table 7.5).  

Table 7.5: Highlights the competition between OH and CIs for the removal of carboxylic acid in the 

troposphere.  

Time kOH/ cm3 s-1 kAcid/  cm3 s-1 [OH] / cm-3 [CI] / cm-3 
loss OH / 

% 

loss CI / 

% 

Day 7.5×10-13 5.0×10-11 1×106 1×103 93.2 6.8 

       

Night 7.5×10-13 5.0×10-11 1×105 1×103 57.7 42.3 

 

It should be noted that the calculations in Table 7.5 were determined using the following 

rate coefficients: kAcid = 5.5× 10-11 cm3 molecule-1 s-1, which is an averaged value from the 

C1 CI + carboxylic acid rate coefficients determined from this study; kOH = 7.5× 10-13 cm3 

molecule-1 s-1, note this is the rate coefficient of the OH + CH3COOH reaction (Atkinson et 

al., 2001). 

The calculations presented in Table 7.5 suggest that a significant proportion of atmospheric 

carboxylic acids (~7% during the day and ~40% at night) are removed by Criegee 

intermediates. Previously, it has been assumed that the atmospheric oxidation of organic 

acids was dominated by the reaction with OH (R7.8) (Calvert, 2011). 

 CH2OO + HCOOH →  HCOO + H2O  (R7.8) 

   

 HCOO → H + CO2 (R7.9) 

   

However, if these calculations are accurate and Criegee intermediate also contribute to 

organic acid removal, the oxidation pathway will clearly be different, with different (initial) 

products, such as HPMF and HPMA, being formed; this may lead to increased SOA 

formation in these environments. 

7.2 CI + Alkenes 

7.2.1 Introduction 

 Criegee intermediates are predominantly formed from alkene ozonolysis in the atmosphere; 

notably, CI concentrations are understood to be greatest in regions with high alkene 

concentrations, such as boreal forests. However, currently there is very little known about 

Criegee reactivity towards alkenes, and only one previous study has measured any rate 
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coefficients for this group of reactions (Buras et al., 2014). Originally, it was thought that 

these species may play an important role as CH2OO sinks in forest environments where 

alkene concentrations are high (Stone et al., 2011). However, due to the low reactivity of 

CIs towards the alkenes, it is predicted that the impact on Criegee loss will be minimal. 

That said, understanding the rate coefficients for these reactions is still important and in this 

section the results from experiments of the C1 CI + ethene (C2H4) reaction are reported. In 

addition to this, the rate coefficients from the reactions of the C1 + C2 CIs with isoprene 

(C5H8) are also described; notably, there are no previous measurements of this reaction in 

the literature. 

7.2.2 Experimental 

In this section a brief summary of the experimental methodology will be given. For all of 

the experiments conducted CH2I2 (or CH3CHI2)/O2/He/Alkene gas mixture were flowed 

through the reactor via calibrated mass flow controllers (MFCs); these experiments 

conducted using the PIMS technique were conducted at low pressures (1.0-2.5 Torr). 

Bubblers were used to ensure a reproducible amount of the diiodo- species were added (see 

Chapter VI, Figure 6.2). The C1 + C2 CIs were generated by adding large quantities of neat 

oxygen ([O2] = 1 × 1016 molecule cm3) to the CH2I and CH3CHI radicals, produced from 

the diiodo- precursors photolysis, respectively (R7.1-7.2 and R6.11-6.12, Chapter VI).  

To ensure the experiments were completed under pseudo-first-order conditions both the 

ethene and isoprene added had to be kept in excess of [CI]. For the purpose of these 

experiments dilute samples, ~ 5%, of both isoprene (Sigma-Aldrich, ≥ 99%) and ethene 

(BOC, 99.9%) were prepared in helium and stored in bulbs. This method worked well for 

isoprene; however, ethene was so unreactive towards CH2OO that no observed change was 

measured in the SCH2OO. To rectify this, pure ethene was added directly from the gas 

cylinder.   

Finally, during this study, diiodo-precursors were initiated by pulsed laser photolysis using 

an excimer laser ( = 248 nm, typically ~ 50 mJ cm-2) and the gas sampled was 

photoionised using  = 118 nm light (for details see Chapter II). The data analysis for the CI 

+ alkene study was done using equations E7.1-7.3 (see Section 7.1.2). Additionally, the data 

collection and analysis techniques used in this CH2OO + alkene study have been described 

previously (Chapter VI).  
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7.2.3 CH2OO + Ethene 

 CH2OO + C2H4  →  Products (R7.10) 

   

In this section of the chapter, results concerning the reaction of the stabilised C1 Criegee 

intermediate and ethene will be discussed (R7.10). This reaction was chosen because ethene 

is one of the more abundant alkenes in the atmosphere, 5 < [C2H4] < 30 ppbv (Myers et al., 

2015, Na et al., 2001); indeed, in polluted environments atmospheric [C2H4] > 700 ppbv 

have been measured in urban environments (Abeles and Heggestad, 1973). It is therefore 

thought that the potential of ethene as a sink of Criegee intermediates will be greater than 

for most other alkenes. Only one previous study has probed this reaction (Buras et al., 

2014). In the study by Buras et al. (2014) a rate coefficient for this reaction of 

kC1ethene = (0.7±0.1)  10-15 cm3 molecule-1 s-1 was measured.  

As mentioned in the experimental section, initially no observable change in SCH2OO was 

measured, even when relatively high ethene concentrations were added to the system 

([C2H4] ≈ 2.5 × 1014 molecule cm3). This problem was, somewhat, solved by adding pure 

ethene into system ([C2H4] > 3.5 × 1015 molecule cm3); although the increase in k’C1total was 

still only very marginal, implying that the rate coefficient for the reaction, kC1ethene, was 

small. In general the quality of the data collected was low (5 < SNR < 10) (Figure 7.14); 

moreover, it was observed that the quality of the data was significantly worse at the higher 

concentrations of ethene (SNR < 5). It should be noted that throughout these experiments 

the concentration of the C1 CI was thought to be [CH2OO]0 ≈ 1× 1012 molecule cm3.  
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Figure 7.15: An example of the Criegee signal measured during the C1 + ethene experiments. 

[C2H4] = 9×1014 molecule cm-3, [CH2OO]0 < 1.5×1012 molecule cm-3.  
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The data collected from the C1 + ethene experiments were collated and a bimolecular plot 

was assembled (Figure 7.15). From the bimolecular plot of this reaction (Figure 7.15) a rate 

coefficient for the C1 + ethene reaction of kC1ethene = (8 ± 2) × 10-15 cm3 molecule-1 s-1 was 

determined. However, even at high [ethene], the changes in k’C1total are only minor, which 

suggests that any reaction taking place between CH2OO and ethene is very slow. Indeed, 

insufficient ethene could be added to definitively say that any reaction is actually occurring 

and many of the k’C1total values obtained from the data at high [ethene] (> 2.5 × 1015 

molecule cm3 ) were not significantly larger than the evaluations of k’other (the value of 

k’C1total at [ethene] = 0 molecule cm-3). With data of this quality, where no discernible 

reaction can be seen taking places, it makes little sense quoting a rate coefficient, instead an 

upper limit of kC1ethene < 2 × 10-14 cm3 molecule-1 s-1 is recommended. 
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Figure 7.16: A bimolecular plot of the data from the C1 + ethene study. The error quoted is 

propagated using the random errors quoted from the plot and a 10% systematic experimental 

error. Uncertainty limits shown are to 1σ. 

 

The evaluation of kC1ethene using this technique is more than an order of magnitude higher 

than the rate coefficient by Buras et al. (2014). However, it should be noted that in our 

experiments the pressure was restricted to approximately 2 Torr, which limited the 

maximum amount of ethene which could be added to the system ([C2H4] < 5× 1015 

molecule cm3). It is for this reason that the rate coefficient evaluated from this study is 

described as an upper limit from the reaction. Whereas, the experiments described in Buras 

et al. (2014) were conducted at higher pressures (10 – 50 Torr), meaning that far greater 

concentrations of alkene could be added ([C2H4]  > 2 × 1017 molecule cm3 ) and significant 

changes to k’C1total were observed, ∆k’C1total ≥ 200 s-1. Therefore the measurement of 

kC1ethene = 0.7 × 10-15 cm3 molecule-1 s-1 made by Buras et al. (2014) is likely to be the more 
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accurate evaluation. However, from this study the rate of this reaction shown to be very 

slow (with an upper limit kC1ethene < 2 × 10-14 cm3 molecule-1 s-1), meaning that the reaction 

with ethene is not a sink of CH2OO anywhere in the atmosphere (see section 7.2.6). 

7.2.4 C1 and C2 CI with Isoprene   

The second alkene used as part of this study was isoprene (C5H8); unlike the ethene 

reaction, the reactivity of isoprene towards both the C1 and syn-C2 Criegee intermediates 

was investigated. The rate coefficient of CI + isoprene reactions had never previously been 

recorded in literature, which is surprising given the importance of isoprene within the 

atmosphere. Isoprene a major biogenic emission (>500 Tg yr-1), is primarily released into 

the atmosphere from trees and vegetation, and it is thought to play an important role in the 

HOx and ozone budgets in certain environments (e.g. rainforests) (Guenther et al., 2006, 

Stone, 2011). Isoprene has an atmospheric lifetime of only 1- 2 hours (Karl et al., 2006), 

which is largely due to its reaction with the OH radical. This reaction directly leads to the 

formation of the isoprene peroxy-radical and HO2, both of which will further react, and 

ultimately produce ozone. It should be noted that as part of this reaction cycle both OH and 

HO2 are recycled (Peeters et al., 2009); this is important as both these HOx species are 

integral to the oxidation within the troposphere (Chapter I). The ozonolysis of isoprene is 

another important atmospheric reaction contributing largely to the tropospheric production 

of organic and organic acid compounds, as well as generating OH and HO2 radicals in 

yields of approximately 0.26 molecules per molecule of isoprene consumed (Malkin et al., 

2010). Due to the reactivity of isoprene in the atmosphere and the volume emitted, isoprene 

has a key role in determining the oxidising capacity of the atmosphere. It is therefore 

essential that we understand all the different reactions of isoprene, including its reactivity 

towards CIs.  

Throughout all of the CI + isoprene experiments conducted the quality of the data collected 

were low (SNR < 10). Concentrations of [CH2OO]0 ≈ 1.5 × 1012 molecule cm3 and 

[CH3CHOO] < 2.5 × 1012 molecule cm3 are estimated for the  C1 and C2 Criegee 

intermediates respectively. An example of the data for the C1 + isoprene reaction can be 

seen in Figure 7.16, as with the ethene reaction the rate coefficient was small. In fact, even 

at high isoprene concentrations, [isoprene] > 2.5 × 1014 molecule cm-3, the value of k’C1total 

was only just significantly greater than k’other. Therefore, from this data only an upper limit 

for the C1 + isoprene reaction could be reliably determined, kC1isoprene < 3 × 10-13 cm3 

molecule-1 s-1. 
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Figure 7.17: A example of the data traces from the C1 + isoprene reaction. The isoprene 

concentration for the blue data points is [isoprene] = 0 molecule cm-3. The isoprene concentration 

for the red data points is [isoprene] = 2.6× 1014 molecule cm-3. 

 

 

Table 7.6: Shows the rate coefficients obtained from the C1 and C2 CI reactions with isoprene. 

Criegee intermediate kisoprene/ cm3 molecule-1 s-1 

CH2OO < 3 × 10-13 

CH3CHOO (8.3 ± 4.1) × 10-13 

 

In Table 7.6 the rate coefficients measured for both the C1 and C2 CIs with isoprene are 

listed. Notably, the rate for the C2 reaction, kC2isoprene, was significantly greater than the 

corresponding rate coefficient measured for the C1 reaction. However, the quality of the 

data at high [isoprene] was generally poor (2.5 < SNR < 5); this led to significant errors 

associated with k’C2total that were calculated using equations E7.1-7.3. This meant that the 

majority of the values of k’C2total were not significantly bigger than k’other (Figure 7.17). As 

the quality of the Criegee signal for the C2 CI got worse at higher isoprene concentrations, 

repeating the experiments over a larger range of [isoprene] would have further reduce the 

quality of the data and so was not attempted. 
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Figure 7.18: A bimolecular plot of the data from the C2 + isoprene study. The error quoted is 

propagated using the random errors quoted from the plot and a 10% systematic experimental 

error. Uncertainty limits shown are to 1σ. The inset is an example of the data quality at   

 

It should be noted that the syn- conformer of the C2 CI is preferentially formed over the 

anti- in the approximate ratio of 9:1, meaning the reaction being predominantly probed is 

between the syn-C2 CI and isoprene. From these experiments conducted there was some 

evidence of a reaction occurring between the syn-C2 + isoprene. However, the reaction was 

clearly slow, with an estimated rate coefficient of kC2isoprene = (8.3 ± 4.1) × 10-13 cm3 

molecule-1 s-1. 

7.2.5 Atmospheric and Experimental Implications 

From the experiments conducted in the study, both the reactions of ethene and isoprene with 

the C1 Criegee intermediate were found to be very slow (k < 5 × 10-13 cm3 molecule-1 s-1). 

Therefore, even though both of these species are relatively abundant in the atmosphere their 

contribution to CH2OO destruction can be considered to be negligible (> 0.05%), even in 

environments where their concentrations are at their peak. 

However, the rate coefficient for the syn-C2 CI with isoprene is significantly faster than 

either of the C1 + alkene reactions. Moreover, the rate coefficient of the syn-CH3CHOO 

with H2O is thought to be considerably smaller than that of CH2OO + H2O. To determine 

the impact that the reaction with isoprene may have on the loss of the syn-C2 CI, 

calculations to evaluate the contribution of the C2 CI + isoprene channel were performed 

(Table 7.7). 
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Table 7.7: Shows the loss channels for the C2 CI, including isoprene (excluding organic acids), these 

are displayed a percentage loss.  

Temp 

/ K 

Region RH 

/ % 

[H2O] / 

cm-3 

[(H2O)2] / 

cm-3 

[C5H8] / 

cm-3 

% loss 

H2O 

% loss 

(H2O)2 

% loss 

C5H8 

298 Forested  75 5.8×1017 5.5×1014 6.3×1011 0.7 99.3 0.01 

298 Forested  50 3.9×1017 2.4×1014 6.3×1011 1.0 99.0 0.03 

298 Urban  75 5.8×1017 5.5×1014 1.3×1011 0.7 99.3 0.01 

298 Urban  50 3.9×1017 2.4×1014 1.3×1011 1.0 99.0 0.02 
     

       

283 Forested  75 2.3×1017 9.9×1013 6.3×1011 0.8 99.2 0.04 

283 Forested  50 1.6×1017 4.4×1013 6.3×1011 1.2 98.7 0.09 

283 Urban  75 2.3×1017 9.9×1013 1.3×1011 0.8 99.2 0.02 

283 Urban  50 1.6×1017 4.4×1013 1.3×1011 1.2 98.8 0.05 

 

In the calculations in Table 7.7, the relative loss rates were determined using the following 

rate coefficients: kC2isoprene = 1× 10-12 cm3 molecule-1 s-1; kC2H2O = 1× 10-17 cm3 molecule-1 s-1; 

kC2(H2O)2 = 3 × 10-12 cm3 molecule-1 s-1 at 298 K (Ryzhkov and Ariya, 2004) and kC2(H2O)2 = 6 

× 10-12 cm3 molecule-1 s-1 at 283 K. Notably, differing values for kC1H2O2 were used for the 

calculation at 298 K and 283 K due to the strong, negative, temperature dependence 

observed by Smith et al. (2015).   

From Table 7.4 it can be seen that, even under the most favourable conditions, the 

contribution of isoprene to the total loss of the C2 CI is still minimal (0.14%). It should be 

noted that these calculations excluded the contribution from any CI + carboxylic acid 

chemistry, meaning that this will be an overestimation of the isoprene contribution. 

All of the results from this study suggest that the reactions between C1 and C2 Criegee 

intermediate and alkenes are likely to contribute only very marginally to the total loss of CIs 

in the atmosphere. This is an important result, and is of particular interest for isoprene, 

which as previously mentioned plays an important role in both the HOx and ozone budgets 

in certain forest environments. The results from this study not only suggest that isoprene is 

responsible for only a small amount of CI loss, but they also imply that CIs (which are 

thought to have an atmospheric concentration of [CI] ≈ 1 × 103 molecule cm-3) will have 

only a small impact on atmospheric [isoprene]. Moreover, as the tropospheric removal of 

isoprene by OH is extremely fast, kOHisoprene = (10.0 ± 1.2)  10-11 cm3 molecule-1 s-1, 

meaning that the reaction with OH will dominate isoprene removal. Therefore, it is likely 

that the impact of the CI + isoprene reactions will be so small as to be negligible and means 

that these reactions need not be included in the atmospheric modelling of isoprene. 

For chamber studies investigating alkene ozonolysis and Criegee intermediate reactivity 

with trace gases, higher alkene concentrations (in comparison to tropospheric levels) are 

often used. However, any interference from the CI + alkene reaction will still likely be 
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minimal provided sensible starting conditions are used. For example, in the ethene 

ozonolysis chamber experiments described in Newland et al. (2015), the rate coefficient for 

the CH2OO + H2O reaction was inferred using relative rate experiments. In all of these 

experiments high concentrations of ethene were used (500 ppbv, [C2H4] ≈ 1×1013 molecule 

cm-3) at a range of different relative humidities (1.5 – 20 %). However, even at the lowest 

water concentrations (RH = 1.5%, [H2O] ≈ 1×1016 molecule cm-3), any CI pseudo first-order 

loss from the CH2OO + ethene reaction is calculated to be at least two orders of magnitude 

smaller than from the CH2OO + water reaction (when using the value of kC1ethene determined 

from this study). Furthermore, Newland et al. (2015) also determined the rate of 

unimolecular decomposition for the C1 CI from linear plots of [SO2] (
1

𝑓
−  1) vs. [H2O]: 

 [SO2] (
1

𝑓
−  1) =  

𝑘C1H2O

𝑘C1SO2
 [H2O] +  

𝑘d + 𝐿

𝑘C1SO2
 (E7.10) 

   

In equation E7.10: f is the fraction of SCIs, which react with the SO2; kC1H2O is the rate 

coefficient of the CH2OO + H2O reaction; kC1SO2 is the rate coefficient of the CH2OO + SO2 

reaction; kd is the rate of unimolecular decomposition; L is equal to the other pseudo first-

order losses in the system. The generic loss term, L, includes CI + alkene chemistry. Ideally, 

L should be small, meaning the y-intercept is equal to 
𝑘d

𝑘C1SO2
 ; conversely, if CI + alkene loss 

is significant, calculating kd becomes more difficult. However, modelling of this ethene 

ozonolysis system again indicates that the CI + alkene pseudo first-order contribution will 

be small in comparison to the y-intercept, hence verifying the assumption that the y-

intercept is equal to 
𝑘d

𝑘C1SO2
 . 
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8. Concluding Remarks and Future Work  

8.1 Summary of Work and Atmospheric Implications 

In the first chapter of this thesis the tropospheric oxidation of both anthropogenic and 

biogenic organic species to CO2 were outlined, as were the potential impacts these species 

have on the Earth’s climate. In particular, the importance of the species involved with 

atmospheric oxidation is highlighted. Furthermore, all of the work presented in chapters IV, 

VI and VII has a direct impact on oxidation within the lower atmosphere; in particular, how 

small changes in the understanding of the tropospheric chemistry can influence the 

oxidation of different atmospheric pollutants (such as VOCs, SO2 and NO2) in both polluted 

(Chapter IV) and remote forested environments (Chapters VI + VII).  

In Chapter IV the mechanism of the reaction between CH3CHO + OH was probed in detail, 

from this study all of the evidence suggests that the reaction does not proceed by a simple 

abstraction reaction (Butkovskaya et al., 2004), although in the proposed mechanism, 

hydrogen abstraction from the acyl carbon is the first step. During this study, the products 

of the reaction were monitored directly using time-resolved mass spectrometry. Using this 

technique it was observed that methyl radicals were generated from this reaction; moreover, 

these radicals had identical time profiles to the acetyl radicals. Therefore it is proposed that 

due to the exothermicity of the abstraction reaction, a significant fraction (~15%) of the 

nascent acetyl radicals formed have sufficient energy to dissociate, forming CH3 and CO 

radicals (D'Anna et al., 2003). It should be noted that experiments were conducted to prove 

that the methyl radicals were not formed during acetyl photoionization.  

 CH3CHO  +  OH   → CH3CO  +  H2O  (R8.1a) 

   

                                 → CH3  + CO  +  H2O (R8.1b) 

   

All of the experiments in this study were conducted at low pressures (1 – 60 Torr); 

however, MESMER calculations suggest that even at atmospherically relevant pressures 

approximately 10% of the nascent acetyl radicals will still undergo the chemically activated 

dissociation to methyl radicals. Although reaction R8.1b is only a minor channel, it will still 

have an impact on both tropospheric concentrations of PAN, which will be reduced, and 

formaldehyde, a stable product from methyl radical oxidation (Brasseur et al., 1999). 

Chapters VI and VII are focussed around a different family of tropospheric oxidants, 

Criegee intermediates. Generally, atmospheric concentrations of CIs are so low they can be 

considered as only minor (or negligible) oxidants within the atmosphere. However, in 

certain forested environments (where BVOC emissions are high) it has been suggested that 
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CIs may be a small sink for trace gas pollutants such as SO2 and NO2 (Mauldin et al., 2012, 

Welz et al., 2012). Notably, the focus of Chapter VI was to investigate the reaction of both 

the C1 and C2 Criegee intermediates with SO2 and NO2. From this study, the rate 

coefficients of all of the reactions were found to be orders of magnitude larger than 

previous, indirect measurements had reported (Johnson et al., 2001). Furthermore, the work 

reported in this chapter is the first to identify acetaldehyde as a product from the C2 CI + 

SO2, indirectly implying that the reaction oxidises SO2 to SO3. This is understood to be a 

crucial step in the formation of H2SO4 within the atmosphere. The results from this study 

support the findings from previous laboratory work (Welz et al., 2012, Taatjes, 2013); they 

also support field measurements from Finland where an extra night time source of H2SO4 is 

observed, which they attribute to the oxidation of SO2 to SO3 by CIs (Mauldin et al., 2012). 

Moreover, although the C2 Criegee intermediate is only a minor sink of SO2 in the 

atmosphere, larger CIs may prove to be more significant as their reactivity towards water 

and the water dimer, are thought to be much smaller (Anglada and Sole, 2016). 

The aim of Chapter VII was to further investigate the reactions of Criegee intermediates 

with carboxylic acids reactions, and in particular to elucidate on the products of these 

reactions. Notably, the C1 CI and formic acid have previously been suggested as an 

intermediate in the decomposition of hydroperoxy methyl formate, which itself is an 

intermediate the oxidation of DME (Andersen and Carter, 2003). It was hoped that HPMF 

would be observed as a product from the C1 + HCOOH reaction, however, this was not 

possible using the PLP-PIMS set-up. From the results of these experiments nothing 

quantitative could be said about the products, although product analysis has made it 

possible to hypothesise potential pathways for the reactions. Moreover, the products 

observed from both of the reactions, m/z = 64 and m/z = 74, for the formic and acetic acid 

reactions respectively, were consistent with the study by Welz et al. (2014), where the same 

mass peaks were also observed. Lastly, the significance of CIs as atmospheric oxidants of 

carboxylic acids was determined. From these calculations it was apparent that CIs may 

contribute considerably to the removal of organic acids from the atmosphere, particularly at 

night. This is of substantial interest as the products from CI + carboxylic acid reactions will 

be very different from the products of OH + carboxylic acid reactions it is in competition 

with (Long et al., 2009, Calvert, 2011). (Welz et al., 2014) 

8.2 Other Possible Implications 

As alluded to above, the atmospheric impact of the chemistry discussed in this thesis is 

likely to be relatively small, however, their impact may be more significant when discussing 

the low temperature (T < 800 K) combustion of oxyfuels such as ethanol and dimethyl ether 
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(DME). There are a number of similarities atmospheric oxidation and combustion 

chemistry, indeed, the atmosphere is often considered as a low temperature combustion 

system. Therefore, it is unsurprising that, often, similar oxidation pathways for specific 

species (i.e. ethanol) can be used to describe both systems. A theoretical study completed by 

Lee et al. (2002), focussed on the formation of acetyl peroxy in low temperature 

combustion systems; in this study it was predicted that a significant proportion (43.1%) of 

the nascent acetyl radicals reacted to form acetyl peroxy (p = 1 atm and T < 550 K) (Lee et 

al., 2002). However, it is likely that this does not take into account the existence of the post 

reaction complex predicted in Chapter IV, and hence may underestimate the fraction of 

acetyl radicals which undergo dissociation (D'Anna et al., 2003).     

Similarly, the C1 Criegee intermediate, CH2OO, is also hypothesised to be implicated in the 

low temperature combustion of DME (Andersen and Carter, 2003); this work highlights all 

of the possible loss channels of hydroperoxymethyl formate (HPMF). Notably, in Andersen 

and Carter (2003) the unimolecular decomposition of the hydroperoxymethyl formate to 

form formic acid and a Creigee intermediate is presented, a pathway which had not 

previously been considered (Andersen and Carter, 2003). Furthermore, it is predicted that 

this channel has a reasonably low activation energy, making it competitive with the other 

reaction pathways hypothesised (Figure 8.1). A study by Gutbrod et al. (1997) has shown 

the decomposition of the Creigee intermediate can lead to the recycling of a second 

hydroxyl radical, and hence chain-branching. However, this is not the most favourable path 

(Gutbrod et al., 1997). 

 

Figure 8.1: Schematic summary of the theoretical loss reactions of HPMF (Andersen and Carter, 

2003). 
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8.3 Future Work 

There are several different avenues in which the work presented in this thesis could be taken 

in the future: firstly, more work is still needed to expand the functionality of the PLP-PIMS 

set-up, discussed in Chapter III. Additionally, more work still needed to fully understand 

the some of the atmospheric species examined, in particular the atmospheric fate of Criegee 

intermediates and their products. 

8.3.1 Future Work: Instrument Development 

The results from Chapter III suggest that the configuration changes made to adapt for a high 

pressure set-up were largely ineffective and the sensitivity was found much lower than 

expected; this suggests that there is little point continuing with the development of this 

configuration. However, there is potential in the OH detection technique described (Beames 

et al., 2011), although the reliability and sensitivity must be improved. For example, one 

way to increase the sensitivity of the technique would be to optimise the length of the delay 

line of the photoionization pulse, to ensure it overlaps in time with the 282.5 nm laser pulse. 

It should be noted that some testing has been done to improve the synchronisation of the 

laser pulses, however further optimisation would undoubtedly improve the sensitivity of the 

technique. Thus far, the technique has also relied upon the Nd:YAG laser to produce both 

the 355 nm light necessary for photoionization and the 532 nm light (required for 282.5 nm 

generation) simultaneously. Currently, to achieve the required output power of the 532 nm, 

light was detuned on the doubling crystal to reduce its power. A consequence of the 

detuning the 532 nm light output is that the laser power decreased over time and constant 

retuning is necessary. However, it is believed this could be rectified by the use of an 

additional laser, such that the 532 nm and 355 nm light could be generated separately. 

As mentioned above, all of the reaction systems investigated in this thesis have implications 

for the Earth’s atmosphere (and combustion chemistry). To increase the relevance of the 

results from this work, especially their relevance for combustion systems, the temperature 

dependences must be fully understood. Therefore, a reconfiguration of the PLP-PIMS set-

up to include some level of temperature control would be useful. In recent years a high 

temperature and pressure LIF set-up has been under development at the University of Leeds 

(Stone et al., 2016). In the LIF system the temperature of the gas in the reactor tube is 

controlled by varying the voltage applied to a heating coil (Watlow, WATROD tubular 

heater) surrounding the reactor (Figure 8.2a).  



Chapter VIII: Concluding Remarks and Future Work  

 

 

 
 

Figure 8.2: (a) A photograph on the left shows the tubular heating coil used in the high temperature 

and pressure LIF set-up; (b) A plot on the right shows the temperature profile of the heated gases 

along the length of the reactor tube (Stone et al., 2016).  

 

Using this technique it is possible to heat the gas to approximately 750 K, moreover, once 

heated temperature of the gas remained constant for the length of the flowtube (Figure 

8.2b). It is thought that a similar temperature control system could be implemented for the 

PLP-PIMS set-up.   

8.3.2 Future Work: Criegee Intermediates 

Over the past five years there have been a number of important discoveries which have 

greatly improved our understanding of the role Criegee intermediates in the atmosphere. 

Initially, the enhanced kinetics shown from the direct measurement of the C1 and C2 CIs 

with SO2 and NO2 created a renewed interest in Criegee chemistry and it was proposed that 

the reactions with these trace gases may be a significant sink for CIs (Percival et al., 2013). 

However, recent kinetic measurements of the CI + H2O suggest that the dominant sink for 

Criegee intermediates is the reaction with the water dimer (Lewis et al., 2015); making SO2 

and NO2 only very minor sinks for Criegee intermediates. Although there is now a general 

consensus that the water dimer is the dominant sink for C1 and C2 Criegee intermediates, 

there is much which is still unknown about the Criegee intermediate chemistry within the 

atmosphere. For example, even though theoretical studies investigating the mechanism of 

the C1 CI + water dimer reaction (Anglada and Sole, 2016), there is still very little 

experimental evidence of the products (or the mechanism) for this reaction.  

Furthermore, while the reactivity of the C1 CI is relatively well understood, our current 

understanding of the larger Criegee intermediate is more uncertain. For example, there is 

still ambiguity as the rate of the syn-C2 CI with H2O. Moreover, there are currently no direct 

measurements of the C2 CI with the water dimer. Another area where there still appears to 

be some debate is decomposition rate of the C2 Criegee intermediate, where currently 
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values ranging between 3 s-1 and 563 s-1 are estimated (Novelli et al., 2014, Newland et al., 

2015). It should be highlighted that using the PLP-PIMS set-up a decomposition rate 

coefficient of between 20 < kd (s
-1) < 80. However, due to the large variation between these 

measurements, more work is still needed to verify this. Notably, having a clear 

understanding of both the reactivity and decomposition of the C2 Criegee intermediate is 

imperative for accurate atmospheric modelling. 
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Appendix A – Steady State Approximation of Ozone  

In Chapter 1, Section 1.3.2, the steady state for O3 in polluted environments was shown, the 

derivation of this is given below (Seinfeld and Pandis, 2012). 

 NO2  +  hv (λ < 430 nm)  →  NO +  O(3P) (RA.1) 

   

 O(3P) + O2 + M →  O3  +  M (RA.2) 

   

 NO  + O3  →  NO2  +  O2 (RA.3) 

   

Before the steady state approximation for O3 can be determined, the rate equations for O[3P] 

and O3 must first be determined: 

 
𝑑[O( P)]3

𝑑𝑡
=  𝐽A1[NO2] − 𝑘A2[O( P3 )][O2][M] (EA.1) 

   

 
𝑑[O3]

𝑑𝑡
=  𝑘A2[O( P3 )][O2][M] − 𝑘A3[O3][NO]  (EA.2) 

   

Following this a steady state approximations were sequentially applied to [O(3P)] and [O3]: 

𝑑[O( P)]3

𝑑𝑡
= 0 

 [O( P3 )] =  
𝐽10[NO2]

𝑘2[O2][M]
 (EA.3) 

𝑑[O3]

𝑑𝑡
= 0 

 [O3] =  
𝑘A2[O( P3 )][O2][M]

𝑘A3[NO]
 (EA.4) 

   

A final substitution gives the steady state approximation for O3: 

 

[O3] =  
𝐽10[NO2]

𝑘12[NO]
 

 

(EA.5) 
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Appendix B – Further Details of Stimulated Emission 

In Chapter II, Section 2.3.1, the principles behind stimulated emission are discussed and a 

simplified version of the relationship between population inversion and the Beer-Lambert is 

shown in E2.2. In Appendix B this relationship will be discussed in more detail.  

Lasing will only commence if there is a sufficient net increase in photon density in a single 

orientation. This can be a challenge as stimulated emission generally reaches an equilibrium 

where absorption and emission occur at the same rate. This was first suggested by Albert 

Einstein and can be explained by the following equation (Einstein, 1917): 

 𝑁1. 𝐵12. ρ(ν) = 𝑁2. 𝐵21. 𝜌(𝜈) +  𝑁2. 𝐴21 (EB.1) 

   

In equation EB.1: N1 equals the number of species in lower state (ground state), N2 is 

number of species in the upper state, B12 is the Einstein transition probability coefficient 

from state 1 to 2, and B21 is the Einstein transition probability from state 2 to 1, ρ(ν) is the 

photon energy density at frequency υ, and finally A21 the Einstein coefficient for 

spontaneous emission (Einstein, 1917). 

The equation above can be split into the three processes associated with absorption and 

emission: the first component of the equation N1.B12.ρ(ν) refers to the transition rate of 

stimulated absorption. The second element N2.B21.ρ(ν) describes the rate of stimulated 

emission, finally the rate of spontaneous emission is equal to N2.A21.  It should be noted that 

as part of his 1917 paper Einstein proved that the probability of a transition is independent 

of direction i.e. B12 = B21.  

Equation EB.1 highlights a challenge in lasing, as under normal conditions N1 is far greater 

the N2, meaning the system will reach an equilibrium where stimulated absorption and 

emission occur at similar rates and emission is limited by absorption. In order for lasing to 

commence, this equilibrium must be disrupted and the rate of stimulated emission must be 

greater than the rate of stimulated absorption; for this to occur N2 must be greater than N1 

and the population of the states should be inverted. If N2 is greater than N1 then there will be 

an exponential increase in light transmission which leads to the amplification of light of the 

associated wavelength – this can be explained with the Beer-Lambert law (EB.2): 

 𝐼t = 𝐼0𝑒(−𝜎𝑛𝑙) = 𝐼0𝑒(−𝛼𝑙) (EB.2) 

   

It represents the intensity of transmitted light, I0 is the intensity of the incident light, σ is the 

absorption cross section, n is the number density, α is the extinction coefficient (note: α = 

σ×n), and l is the path length of the laser medium. 
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𝛼 = 𝐵12 (

hν

c
) (𝑁1 − 𝑁2) 

(EB.3) 

   

The above equation (EB.3) is known as the extinction coefficient equation. In this equation: 

c represents the speed of light, 2.99792458 × 108 m s-1 (Penrose, 2005). Note all the other 

terms in EB.3have previously been described. 

From these equations (EB.2 and EB.3) we can see that the intensity of transmitted light is 

proportional to a negative exponent of the absorption cross-section, which itself is directly 

dependent on N1 – N2. Therefore if N2 > N1 the intensity of transmitted light will increase 

exponentially, and hence lasing can occur. 
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Appendix C – Estimation of Steady-state concentration for 

Criegee intermediates  

The steady-state concentration of Criegee intermediates can be determined using the 

following equation: 

 [CI] =  
𝑘CI𝑓SCI[O3][alkene]

𝑘(H2O)2[(H2O)2] + 𝑘H2O[H2O] + 𝑘SO2[SO2] + 𝑘acid[acid] + 𝑘uni 
 (EC.1) 

   

In equation EC.1: [CI] is the steady-state concentration of Criegee intermediates; kCI is the 

rate coefficient of CI formation; fSCI is the fraction of SCI formed; k(H2O)2 is the rate 

coefficient of CI + (H2O)2 reaction; kH2O is the rate coefficient of CI + H2O reaction; kSO2 is 

the rate coefficient of CI + SO2 reaction; kacid is the rate coefficient of CI + carboxylic acid 

reactions; and kuni is the rate coefficient of unimolecular decomposition. 

A range of [CI] concentrations were estimated using the following parameters: fSCI =0.3;   

kCI = 5×10-18 cm3 molecule-1 s-1; 5×1011 < [O3] (molecule cm-3) <  7.5×1011 (Percival et al., 

2013); 5×1010 < [alkene] (molecule cm-3) <  7.5×1011 (Percival et al., 2013, Newland et al., 

2015); k(H2O)2 = 4×10-12 cm3 molecule-1 s-1 (Lewis et al., 2015); 2.5×1014 < [(H2O)2] (molecule 

cm-3) <  5.5×1014; kH2O = 1×10-16 cm3 molecule-1 s-1 (Welz et al., 2014); 4×1017 < [(H2O)2] 

(molecule cm-3) <  6×1017; kSO2 = 2.5×10-11 cm3 molecule-1 s-1; 1 ×1010 < [SO2] (molecule cm-3) 

<  2.5 ×1011 (Vereecken et al., 2012, Lin et al., 2012); kacid= 5×10-11 cm3 molecule-1 s-1; 6×1010 

< [acid] (molecule cm-3) <  2.5×1011 (Vereecken et al., 2012, Souza et al., 1999); and kuni = 100 

s-1. 

Using this information above a range for the steady-state CI concentration can be estimated 

at 2.0×102 < [CI] (molecule cm-3) < 7.5×103. This leads to a conservative estimation of 

[CI] ≈ 1×103 molecule cm-3; a value, which when necessary, will be used in subsequent 

calculations.  
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the basis for Chapters VI and IV of this thesis. 

 

 

 


