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ABSTRACT

This thesis addresses the possibility of applying the compressed sensing

(CS) framework to Functional Magnetic Resonance Imaging (fMRI) ac-

quisition. The fMRI is one of the non-invasive neuroimaging technique

that allows the brain activity to be captured and analysed in a living

body. One disadvantage of fMRI is the trade-off between the spatial and

temporal resolution of the data. To keep the experiments within a rea-

sonable length of time, the current acquisition technique sacrifices the

spatial resolution in favour of the temporal resolution. It is possible to

improve this trade-off using compressed sensing.

The main contribution of this thesis is to propose a novel reconstruc-

tion method, named Referenced Compressed Sensing, which exploits the

redundancy between a signal and a correlated reference by using their

distance as an objective function. The compressed video sequences recon-

structed using Referenced CS have at least 50% higher in terms of Peak

Signal-to-Noise Ratio (PSNR) compared to state-of-the-art conventional

reconstruction methods. This thesis also addresses two issues related to

Referenced CS. Firstly, the relationship between the reference and the

reconstruction performance is studied. To maintain the high-quality ref-

erences, the Running Gaussian Average (RGA) reference estimator is

proposed. The reconstructed results have at least 3dB better PSNR per-

formance with the use of RGA references. Secondly, the Referenced CS

with Least Squares is proposed. This study shows that by incorporating

the correlated reference, it is possible to perform a linear reconstruction

as opposed to the iterative reconstruction commonly used in CS. This ap-

proach gives at least 19% improvement in PSNR compared to the state

of the art, while reduces the computation time by at most 1200 times.

The proposed method is applied to the fMRI data. This study shows

that, using the same amount of samples, the data reconstructed using

Referenced CS has higher resolution than the conventional acquisition

technique and has on average 50% higher PSNR than state-of-the-art

reconstructions. Lastly, to enhance the feature of interest in the fMRI

data, the baseline independent (BI) analysis is proposed. Using the BI

analysis shows up to 25% improvement in the accuracy of the Referenced

CS feature.
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Chapter 1

Introduction

One of the most advanced neuroimaging techniques available in the present

is Functional Magnetic Resonance Imaging (fMRI). fMRI allows the

study of the inner working of the brain by mapping the information

regarding the activation region of the brain as a signal. Despite all its

wonders, however, the fMRI technique suffers from many challenging en-

gineering issues including the trade-off between the spatial resolution and

the length of its experiment. One approach to tackling this issue is to

employ the compressed sensing [106]. The aim of this thesis is to study

the possibility of applying the compressed sensing method to the fMRI

acquisition scheme. It shows that, by using a novel compressed sensing

reconstruction method called Referenced Compressed Sensing, it is pos-

sible to obtain accurate fMRI data using a fraction of time and samples

while retaining important clinical features.
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1.1 Functional Magnetic Resonance Imag-

ing

fMRI is a functional neuroimaging technique primarily used to detect

and monitor activities of the brain [123]. fMRI has many applications

in both research and clinical fields. It is based on the concept of Mag-

netic Resonance Imaging (MRI) [123], a non-invasive medical imaging

technique used for scanning the cross-sectional parts of the body. The

principle of fMRI is similar to that of MRI in general. The subject of

study is exposed to a strong external magnetic field, which resonates with

the atoms of the human body. Once the atoms are excited by an exter-

nal radio-frequency pulse, they will emit back signals also in the form

of radio-frequency waves. Because of various properties of each tissue

affect the absorption and emission rate differently, the signals received

will create a contrast image of the cross-sectional body. This technique

allows radiologists and practitioners to examine the internal parts of a

subject without the need of an operation.

The difference between the standard MRI and fMRI techniques is that

the final output of fMRI is the brain activity map. The brain activity is

detected by using the relationship between the cerebral blood flow (blood

supplied to brain tissue) and the neuronal activation responsible for the

activity. This is due to the fact that when a part of the brain is in use,

it will require more oxygen to be supplied to, thus increasing the blood

flow. The increment of cerebral blood volume results in an increased

MR signal acquired from the active region of the brain, thus increasing

the voxel intensity of the region. This phenomenon is called the Blood-

Oxygen-Level Dependent contrast (BOLD) and is at the heart of fMRI
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(a) MRI scanner

(b) Anatomical MRI (c) Functional MRI

Figure 1.1: Example of (a) an MRI scanner, (b) a slice of high-resolution
anatomical MRI data, and (c) a slice of function MRI data showing
activated regions of the brain.

[121].

As fMRI is based on MR tomography, the scanned data is a series of

3-dimensional cross-sectional volumes with a relatively high spatial res-

olution. Unlike most MRI applications, where a single volume scan—a

tomography—is required, fMRI requires a series of successive volumes to

be scanned. The reason is that the BOLD contrast appears only in the

temporal changes of voxel’s intensity. The number of volumes required

per experiment is a big challenge in the practical fMRI experiment de-

sign [85]. It is not uncommon that each session could consist of hundreds

or even thousands of successive volumes. The sheer number of volumes

3



(a) EEG sensors (b) PET scanner

Figure 1.2: Example of (a) the Electroencephalography (EEG) sensors
and (b) a Positron Emission Tomography (PET) scanner

required, combined with the fact that the MRI acquisition rate is slower

than other medical imaging techniques, results in one of the biggest draw-

backs of fMRI: poor temporal resolution.

There are other alternatives to fMRI for the functional experiment.

Electroencephalography (EEG) [120] and its counterpart, Magnetoen-

cephalography (MEG) [76], are other popular non-invasive functional

techniques. These techniques are polar opposite to fMRI, as they are

rich in temporal resolution but poor in spatial resolution. For example,

the spatial resolution of EEG—a technique based on the measurement of

the brain’s electrical activity—is governed by the number of electrodes

placed on subject’s scalp. The electrodes limit the spatial resolution of

EEG to be only a few data points (less than 30), compared to a few

thousands of fMRI [147]. Also, since all the data points are measured

from the surface, EEG requires lots of interpretation regarding the spa-

tial location of each activation. However, EEG has a very high temporal

resolution, using the sampling rate varying from 250Hz to 20000Hz to

record the brain activity. The temporal resolution of EEG is, therefore,

in the order of milliseconds rather than seconds as of fMRI.
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Another alternative to fMRI is Positron Emission Tomography (PET)

[115]. PET relies on the same physiology as fMRI that the blood volume

is increased in the activated region of the brain. Unlike fMRI, the activa-

tion signal of PET is detected using a tracer such as Fluorodeoxyglucose

(FDG)[30]. The high-density concentration of the tracer, signifying the

region with high blood volume, can show the activated region precisely.

However, the use of tracer exposes the subject to ionising radiation in

the form of gamma rays [30].

Because each of the imaging technique has its own strength and weak-

nesses, it is possible to combine several techniques in one study [148, 1].

The combination of EEG and fMRI in particular is a common multi-

modal technique used in psychology studies [140, 80], which can measures

both high spatial resolution data (using fMRI) and high temporal resolu-

tion (using EEG) simultaneously. Nevertheless, fMRI remains one of the

most useful non-invasive functional imaging techniques that can deliver

the brain activity map with high spatial resolution without exposure to

ionising radiation from tracers or contrast agents.

1.2 Challenges in fMRI acquisition

One of the biggest disadvantages of MRI in general is its low tempo-

ral resolution. Compared to other imaging techniques, such as CT, the

speed of MRI is hundreds of time slower. This drawback has a significant

impact on the functional application in particular because fMRI consists

of not one, but a series of images acquired repeatedly. To capture the

brain activity signals, it is essential to acquire these images as fast as pos-

sible. Not only the fast acquisition can improve the temporal resolution

of fMRI, but it can also reduce the negative mental effect on the sub-
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(a) Anatomical image (b) Echo Planar Image

Figure 1.3: Examples of (a) a high resolution anatomical scan and (b)
Echo Planar Image (EPI) scan of the same slice

ject in the machine. Because of this, rapid acquisition techniques such

as Fast Spin Echo (FSE) and Echo-planar Imaging (EPI) are developed

and frequently employed in fMRI experiments [85].

EPI, in particular, is the most popular acquisition scheme for the

fMRI data. Compared to normal Cartesian trajectory, EPI can pro-

vide a much faster acquisition time at the cost of its spatial resolution.

Figure 1.3 shows the examples of EPI data as opposed to the typical

high-resolution scan commonly used for diagnosis. In general, EPI ac-

quires only a small portion of the entire scan space in a single excitation,

focusing only on the low frequency coefficients. The working of EPI is

discussed in details in Section 2.1.3.

In addition to the issue of acquisition time, another important chal-

lenge of the fMRI acquisition is the image quality—specifically in terms

of the signal-to-noise ratio [85, 77]. The challenge is the fact that, in

reality, the BOLD signal picked up by fMRI is very small. In most cases,

the BOLD signal has a peak magnitude at most no more than 5% of the

image’s total dynamic range. The signal-to-noise ratio is what limits the

spatio-temporal resolution of the acquisition. To increase the spatial res-
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olution without a negative impact on the temporal resolution will result

in a lower signal-to-noise ratio and vice-versa. To maintain a high signal-

to-noise ratio, it suffices to say that the spatial and temporal resolutions

have an inversely proportional relationship.

In conclusion, one of the biggest challenges for the fMRI acquisition

is to achieve a high temporal resolution, a high spatial resolution, and a

high signal-to-noise ratio simultaneously. Whilst EPI can satisfy the high

temporal resolution requirement, it suffers from the low spatial resolution

and low signal-to-noise ratio. This is in direct contrast to the conven-

tional acquisition scheme which yields the results with high resolution

and high signal-to-noise ratio with a very poor temporal resolution.

1.3 Compressed Sensing

One of the techniques which have the potential to solve many of the

aforementioned shortcomings of fMRI is the compressed sensing (CS)

[29]. It is a recently developed signal acquisition scheme in the field

of signal processing. Compressed sensing combines many mathematical

principles together, including the stochastic statistic and the mathemati-

cal optimisation, to become a framework that can efficiently acquire and

reconstruct a full-length signal from its highly undersampled measure-

ments. Compressed sensing enables us to obtain a sampling rate lower

than that limited by Shannon/Nyquist sampling theorem [29, 52].

The first work presenting the compressed sensing is the reconstruction

of partial Fourier data by Candès [28]. The formal framework, comprising

of both the sensing and reconstruction parts, is proposed by Donoho [52].

In essence, compressed sensing consists of 2 main parts: the sensing and

the reconstruction parts. While each author has individual notations
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and terms for these mechanisms, in this thesis, they are referred to as

operations. The sensing operation, an acquisition of the undersampled

signal from the physical world, is represented as a sensing operator. The

reconstruction operation, a process to recover the acquired undersampled

signal into a full-length, fully-determined signal normally obtained using

conventional sensing scheme, is represented as a reconstruction operator.

Compressed sensing shows that if a signal x of length n is a sparse

signal, it is possible to obtain only a small portion of its samples using

the sensing operation then reconstruct the full-length signal x̂ of length

n back accurately. The sensing operator S(Φ,x) is

y = S(Φ,x) = Φx, (1.1)

where the vector y of length m is the undersampled measurements of x,

and m� n. The matrix Φ is referred to as the sensing matrix, which is

required to be incoherent to the signal x [27].

The reconstruction operation—the counterpart of the sensing operation—

is generally a non-linear operation with the goal to obtain a reconstructed

signal x̂, i.e.,

x̂ = R(Φ,y), (1.2)

that makes x̂ ' x. The reconstruction operation of compressed sens-

ing has a root as the problem of the under-determined system of linear

equations, a much older problem compared to compressed sensing. Most

signal processing operations—such as signal transforms—are in the cat-

egory of the fully-determined problems and can be solved for a single

solution. In an under-determined problem, however, its feasible solu-

tions are infinitely many, thus, it cannot be solved directly.
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It is possible, however, to find the most desirable solution among the

space of infinitely many using a heuristic. By introducing an objective

function to the solution space and optimising it, it is possible to find a so-

lution with specific characteristics. To be specific, given a priori that the

solution is sparse, we can introduce a sparsity-promoting objective func-

tion such as l1-norm. Minimising l1-norm leads to the sparsest solution

among the solution space. This leads to the field known as the sparse

signal reconstruction or the sparse solution to inverse linear problems

[59]. The reconstruction operation of compressed sensing is developed

based on this concept of the sparse signal reconstruction.

The more detailed discussion of both the sensing and reconstruction

operators will follow in Section 2.2.2. Because compressed sensing allows

a signal to be acquired using fewer samples, it has become of interest as

a way to improve the resolution-acquisition time ratio of MRI. By using

compressed sensing to reduce the number of K-space samples required

per slice, it is possible to acquire high-resolution MRI data with the

acquisition time comparable to the high-speed technique such as EPI

[106].

1.4 Research Question

The main research question of this thesis is to study the possibility of

applying the compressed sensing framework to the Functional Magnetic

Resonance Imaging (fMRI) acquisition.

To achieve this goal, a set of sub-questions is to be studied and ad-

dressed, as followed:

1. The gap of the current state of the arts in applying the compressed

sensing to fMRI data (addressed in Chapter 2).
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2. The possibility to view the fMRI data as a form of spatio-temporal

signal (addressed in Chapter 2).

3. The performance of the available compressed sensing reconstruction

algorithms for spatio-temporal signals (addressed in Chapter 2).

4. To propose a generic and flexible compressed sensing reconstruction

algorithm for spatio-temporal signals (addressed in Chapter 3).

5. To verify the applicability of the propose algorithm to the fMRI

data (addressed in Chapter 5).

6. To address the practical requirements of the algorithm, including

the complexity (in Chapter 4) and the impact to the clinical anal-

ysis (in Chapter 5).

1.5 Structure of the Thesis

The structure of this thesis is organised as follows:

Introduction: this current chapter. Here we have introduced fMRI

and compressed sensing, discussed the motivation of this study, the re-

search questions, and the contributions.

Background and the Literature Review: this chapter addresses

the gap in the current state of the art, assesses the possibility of treating

the fMRI data as a spatio-temporal signal, and evaluate the performance

of the state-of-the-art reconstruction algorithms. This chapter is divided

into three separate sections of different themes.

1. Functional MRI: this section reviews the physics, the signal ac-

quisition scheme, and the state-of-the-art fast acquisition tech-

niques currently available for fMRI.
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2. Compressed sensing: the background and the state-of-the-art

literature regarding compressed sensing in general are reviewed

here.

3. Compressed sensing MRI: this section exclusively reviews the

literature involving the application of compressed sensing to MRI.

Referenced Compressed Sensing: this chapter proposes a novel

compressed sensing reconstruction method that exploits the redundancy

in a signal, such as images, video sequences, and the MRI data.

Extensions of Referenced Compressed Sensing: this chapter

presents the study involving the correlated references used by Referenced

Compressed Sensing, as well as proposing the low complexity variation

that allows a rapid signal reconstruction of compressed sensed measure-

ments.

Referenced Compressed Sensing and fMRI: the performance

of the Referenced Compressed Sensing for reconstructing the fMRI data

is evaluated in this chapter. While it is aimed specifically to preserve

the brain activity maps and clinical features in the reconstructed data,

both visual quality and feature accuracy are evaluated. The baseline-

independent analysis is also introduced in this chapter.

Conclusions: the conclusion of this thesis.

1.6 Contributions

The main contributions of this thesis are given in the following list.

1. The Referenced Compressed Sensing is introduced in Chapter 3.

The Referenced Compressed Sensing is an l1-norm minimisation-

based reconstruction algorithm for spatio-temporal signals, such
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as video sequences and the MRI data. By exploiting the redun-

dancy between the signal and arbitrary references, the Referenced

Compressed Sensing outperforms the state-of-the-art l1-norm min-

imisation algorithms by more than 50%.

2. The performance of the Referenced Compressed Sensing depends on

the conditions of the references. The Gaussian Running Average-

estimator for the correlated references is proposed in Chapter 4,Sec-

tion 4.1. By using this estimator, the performance of the Referenced

Compressed Sensing is improved by at least 3dB compared to using

the naive reference scheme, which much less noisy results.

3. The complexity issue of the Referenced Compressed Sensing is ad-

dressed in Chapter 4, Section 4.2.1. This section shows that by

exploiting the correlated reference, it is possible to perform the

Referenced Compressed Sensing using the l2-norm minimisation in-

stead of l1-norm while maintaining the reconstruction accuracy in

the acceptable level. Using l2-norm instead of l1-norm reduces the

computation time at most 1200 times. It also has at least 19%

improvement in reconstruction accuracy compared to l1-norm min-

imisation algorithm.

4. The study of the reconstruction of compressively sampled fMRI

data using the Referenced Compressed Sensing is presented in Chap-

ter 5. The study involves several settings and parameters related

to the application of the compressed sensing to the fMRI recon-

struction. It suggests that, by using the lossless pre-scan as an

initial reference, the fMRI data that has high visual quality can be

obtained using Referenced Compressed Sensing with either l1-norm
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or l2-norm objective functions. The final clinical features can be

obtained from the sampling rate as low as 30%.

5. Lastly, Chapter 5 also shows that most of the errors in the recon-

struction results from the Referenced Compressed Sensing are due

to the loss of dynamic range in the baseline. Here, it is shown that

by performing the baseline-independent analysis of the data, the

accuracy of the reconstructed data can be increased up to 25%.
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based reconstruction for video compressed sensing,” in Proceeding

of the 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2014.

3. W. Hotrakool and C. Abhayaratne, ”Efficient Reconstruction of

Functional Magnetic Resonance Imaging (fMRI) Data From Com-

pressive Measurements Based On Correlated Reference”, in Pro-

ceeding of the 10th IMA International Conference on Mathematics

in Signal Processing, 2014.
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4. W. Hotrakool and C. Abhayaratne, ”An optimal learning param-

eter for running Gaussian-based referenced compressive sensing”,

in Proceeding of the Intelligent Signal Processing Conference (ISP)

2015, IET, 2015.

1.8 Symbols and Conventions

In this thesis, we will work with various types of closely related, but

different signals. To avoid confusion and make the text easy to follow,

we will distinguish between each type using a different set of symbols

and conventions.

All signals mentioned in this thesis are treated as strictly discrete,

which can be represented perfectly using vectors and matrices without

the need to consider the factor of the analogue-to-digital conversion.

The most basic distinction is between scalars and vectors (as well as

matrices). Whenever a single value of scalar is referred, a regular italic

letter is used; for example, a pixel x1. On the other hand, when a vector

is referred, a bold letter is used instead; for example, a vector x. A vector

is always denoted using a lower case bold letter while a matrix of any

dimension larger than 1 is donated using a capital letter; for example, a

1-dimensional sparse signal x versus a 2-dimensional sparse matrix X.

We also make a distinction between a general (non-sparse or spatial)

signal, denoted by s or S, and a sparse signal, denoted by x or X. A

spatial image, which is a special class of 2-dimensional non-sparse signal,

is denoted exclusively as I. A reconstructed signal is denoted by a hat

symbol, e.g., a reconstructed sparse vector x̂. Moreover, for a sequence of

signals, each signal in the sequence is denoted by its index. For example,

a signal at time t is denoted as x(t).
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In the setting of fMRI, we denoted each volume of MR data as V.

The lower case v refers to each voxel in V, while v denotes a temporal

plot of a voxel v in the time domain.

The complete list of all symbols used in this thesis can be found in

the List of Symbols.

1.9 Summary

In this chapter, we have introduced fMRI and compressed sensing. The

main challenge of fMRI is the trade-off between its spatial resolution

and temporal resolution—as well as the length of its experiment. Com-

pressed sensing could tackle this issue by reconstructing the full fMRI

data from its compressively sampled measurements. The aim of this the-

sis is to study the possibility of doing so, to reconstruct the fMRI data

that retains accurate clinical features worthy of neurological studies.

To do this, the thorough understanding of the working and limitation

of fMRI is needed. The next chapter addresses these, along with the

state of the arts of compressed sensing in general, as well as the previous

attempts to apply compressed sensing to MRI.
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Chapter 2

Background and the

Literature Review

This chapter is divided into three separate sections. Section 2.1 describes

the background and working of fMRI in details. To understand the need

of the compressed sensing fMRI, firstly the thorough understanding of

fMRI and the MRI system has to be developed. Afterwards, the concept

of compressed sensing is introduced. Section 2.2 presents the background

and the state of the arts of compressed sensing in general. Finally, to

combine these concepts together, the review of literature involving both

compressed sensing and MRI is presented in Section 2.3.

2.1 Overview of Functional Magnetic

Resonance Imaging

This section presents an overview of fMRI, from the physics of the MRI

system to the principle of the fMRI. It also reviews the fast acquisition

techniques and modalities currently used in clinical fMRI experiments.
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2.1.1 The physics of Magnetic Resonance Imaging

We will first overview the physics and working of MRI in general, which is

common between anatomical and functional MRI. The processes involved

in MRI system can be distinguished into two parts: the signal generation

and the signal encoding. The signal generation is the part where the MR

signal is created from the subject body, while the signal encoding handles

the sampling and spatial mapping of the created signal, creating output

data.

MR signal generation

The principle behinds the MRI signal generation is the concept of Nuclear

Magnetic Resonance (NMR), proposed in 1938 by Isidor Rabi. NMR is a

quantum phenomenon where atomic nuclei, when induced by a magnetic

field, absorb and emit energy [77]. MRI is one of the direct applications

of NMR, along with other applications such as the NMR spectroscopy.

Every atomic nucleus has a quantum property called spin, which is

the phenomenon where each nucleus spins around a fixed axis. Even

though this atomic spin is a vector quantity, quantum mechanic dictates

that the spin can only take up two distinct values: down (clockwise)

and up (counter-clockwise). When a nucleus with odd-number protons

spins, without any counterpart to neutralise it, a surrounding magnetic

field will be induced. This induced magnetic field is represented by a

magnetisation vector (Figure 2.1).

In normal circumstances, magnetisation vectors from atoms in any ob-

ject arrange themselves randomly, cancelling each other out completely.

In other words, the net magnetisation vector, denoted M, is zero. How-

ever, when there is a presence of a strong external magnetic field B0, the

18



Figure 2.1: Atomic spin showing up spin (counter-clockwise) and its
magnetisation vector M

(a) Without B0 (b) With B0

Figure 2.2: Effect of an external magnetic field B0 to the net magnetisa-
tion vector M

nuclei will align their magnetisation vectors parallel to B0, either along

or against it depending on their energy states (Figure 2.2). This is the

magnetic resonance phenomenon, hence the name of the technique itself,

which creates a net magnetisation vectorM > 0 that represents the total

magnetic field of the entire object.

An interesting property of the magnetisation vector is the preces-

sion[77]. When nuclei align themselves with B0, their magnetisation

vectors do not steadily point parallel to the direction of B0. Instead,

their magnetisation vectors precess—rotate their points like a spinning
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(a) Low energy atom (b) High energy atom

Figure 2.3: The precession of the magnetisation vector M . The longi-
tudinal component of M is larger in the low energy state (a). However,
after the atom absorbs energy, M flips into the transverse plain (b).

top—around the axis of B0 (Figure 2.3). The frequency of the precession

is known as the Larmor Frequency, denoted by ω, and is governed by the

Larmor Equation:

ω = γB0. (2.1)

The Larmor Frequency ω depends only on the strength of the external

field B0 and a property of atom called Gyromagnetic ratio γ, which is a

unique constant for each element.

The Larmor Frequency has an important role in signal generation. In

a normal state, the precession angles of nuclei are very narrow; thus, the

magnetisation vectors mostly consist of their components in the longitu-

dinal plane (a plane along the external field B0, shown in Figure 2.3a).

However, the nuclei can be excited by a radio frequency (RF) pulse—a

short burst of electromagnetic wave—whose frequency matches with the

nuclei’s Larmor Frequency. The nuclei will absorb the energy and their

precession angles will begin to widen, increasing the magnetisation vec-
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tors’ component in the transverse plane (a plane perpendicular to B0, as

shown in 2.3b). The longer the RF pulse, the more energy the nuclei ab-

sorb until, eventually, the magnetisation vectors flip completely into the

longitudinal plane pointing against B0. The advantage of this technique

is that the nuclei will only absorb the energy and flip their magnetisation

vectors if and only if the frequency of RF pulse matches exactly with the

nuclei’s Larmor Frequency, which allows the precise control over which

type of atom to be excited.

After the RF pulse is turned off, the nuclei will begin to release their

absorbed energy in various forms. This process is called the relaxation, as

nuclei relax to their normal, low energy state. There are several different

types of relaxation, characterised by the source of the energy lost: T1,

T2, and T2* relaxation. T1 relaxation, also known as the spin-lattice

relaxation, is due to the loss of nuclei’s energy to the surrounding lattice.

T1 relaxation governs the rate of the return of the net magnetisation

vectorM back into the longitudinal plane. In other words, T1 relaxation

rate is the growth rate of the longitudinal component ofM after the RF

pulse is off. On the contrary, T2 relaxation, or spin-spin relaxation,

governs the rate of the decay of the transverse component ofM after the

RF pulse is off. The T2 relaxation is caused by the dephasing of each

atom in the precession, resulting in their magnetisation vectors cancelling

out each others. Both T1 and T2 relaxation rates are the unique property

of each tissue. The T2 relaxation rate is much higher than T1, and, as

a result, the decay of the transverse component is much faster than the

restoration of the longitudinal component. In addition, T2* relaxation

increases the decay rate of the transverse component even higher. T2*

relaxation, unlike T1 and T2, is caused by the inhomogeneity of external
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magnetic field B0 rather than being a constant property of the tissue.

Many factors such as the imperfection of the magnet, the air pockets in

a subject, or even the interference from the surrounding environment can

lead to a much higher decay rate of transverse magnetisation vectors.

The transition between the longitudinal plane and transverse plane of

the net magnetisation vectorM is the source of the MRI signal. In most

MRI scanners, there is a set of coils that functions as both an RF pulse

emitter and a signal receiver. The spinning magnetisation vector will

induce an electric current in the receiver coils, which is the observed MRI

signal. This induced signal is known as the Free Induction Decay(FID)

signal, as it decays due to the relaxation. As mentioned, the T1 and T2

relaxation rates of each tissue are different, thus, when the RF pulse is

turned off, each tissue will relax at a different rate. Normally a small

amount of time, called Echo Time(TE), is waited after the RF pulse

is off before measuring the MR signal. During this time, each tissue

relaxes at a different rate, which makes the received signals generated

from different tissues to have different magnitudes. For example, in T2-

weighted images, the higher the T2 relaxation rate of tissue, the lower

its magnitude of the magnetisation vector, thus, the lower magnitude of

the received signal. By utilising these relaxation rates, it allows several

types of image which focus on different types of tissue to be taken.

There are also other factors that affect the received MRI signal other

than the relaxation rates and the echo time. A property called the mag-

netic susceptibility affects the homogeneity of the magnetic field. Specif-

ically, most tissues in the human body are diamagnetic that repel the

external field through them, thus, behaving as they are exposed to a

slightly weaker magnetic field. On the contrary, parts of the body are
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Figure 2.4: In practice, the spatial image is obtained from K-space by
applying Inverse Fast Fourier Transform.

paramagnetic which increase the local magnetic field’s strength. The

changing of B0 due to these susceptibilities affect the relaxation time di-

rectly. Another important parameter affecting MRI signals is the proton

density. Clearly, the amount of emitted MRI signal from any given vol-

ume is directly proportional to the amount of nuclei in the volume. This

is the main reason why hydrogen is used as the main source of the signal

in MRI, because hydrogen can be found in abundance in every part of the

human body. Using hydrogen gives us the strongest MRI signal possible.

MR signal encoding

The other important aspect of MRI is the signal encoding. Because the

emitted signals gathered by the receiver coils are the induced electric

currents, the recorded MR signals are in the form of the magnitude and

phase coefficients of such currents. This information is recorded into the

discrete data space, known as K-space, which resembles the frequency

domain of the spatial image representing the part of the body the signal

originated from. The spatial image can be obtained easily by performing

the inverse Fourier transform upon the K-space, shown in Figure 2.4.

In order to construct K-spaces, another physical mechanism of the

MRI scanner is required: the gradient coils(Figure 2.5). The gradient
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Figure 2.5: The gradient coils. This figure shows the gradient coils in
x-axis (Gx) and y-axis (Gy).

(a) Axial (b) Coronal (c) Sagittal

Figure 2.6: Examples of spatial viewing plains showing a) axial plain, b)
coronal plain, and c) sagittal plain

coils consist of multiple electromagnetic coils that generate weak mag-

netic fields—far weaker than the external field B0—to create artificial

magnetic inhomogeneity to the subject. The coils are arranged in x-, y-,

and z-axis (denoted Gx, Gy, and Gz respectively). Their functions are in-

terchangeable depending on the design and requirement of the scanner’s

operator. Unless the scanned data is a complete 3-dimensional tomog-

raphy, the coils’ functions are also dictated by the viewing plain of the

spatial image Figure 2.6.

Each K-space can represent only a limited part of the body. Each

image created from a K-space, therefore, represents a single slice of the

subject’s body in any given plane. A process called slice selection selects

a part of the body to include in a K-space. To select a slice, a magnetic

gradient is applied to the subject along the direction perpendicular to the
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Figure 2.7: Slice selection using z-axis gradient (Gz) making magnetic
field B0 varies along the length of the body

slice’s plane. For example, in the transverse (x-y) plane, the slice selection

is done using z-axis gradient coil (Figure 2.7). This slice selection gradient

is applied during the excitation, which makes each slice of the body to

be subjected to a magnetic field of the different magnitude; thus, each

slice has a different Larmor Frequency. By exciting the subject using

RF pulses of a specific frequency, it is possible to locally excite only the

narrow slice of interest without affecting the other parts of the body. The

received MRI signal, therefore, contains only the signals originated from

the chosen slice.

Still, the received MRI signal is a mixture of all signals originated

from every voxel in the chosen slice. The process called spatial encoding

or spatial mapping handles the separation of these signals to match their

respective spatial positions. The two remaining gradient coils are used

in spatial encoding. One of the coils functions as the frequency encoding

coil while the other works as the phase encoding coil. In the transverse

plane, for example, the frequency encoding coil is the x-axis coil while

the y-axis coil takes the role of the phase encoding coil in general. The

y-direction (row) of the transverse K-space is phase encoded while the
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Figure 2.8: Examples of a pulse sequence of one TR cycle

x-direction (column) is frequency encoded.

The frequency encoding works by applying a gradient to the subject

during the readout (the sampling of the receiver coils). This makes each

voxel along the frequency encoding axis to experience a different magnetic

field’s strength, thus, the signal emitted from each voxel has different

frequency and their spatial information is recorded. On the contrary, the

phase encoding gradient is applied for a short period before the readout.

It makes each row along the phase encoding axis to precess in a different

phase, even though they still have the same frequency. By applying

phase encoding and frequency encoding gradients accordingly, the spatial

position of voxels is encoded as coefficients in the K-space. The described

signal encoding method, however, allows only a single row of K-space

(one phase distribution) to be sampled per excitation. Because the FID

signal decays rapidly, to maintain a sufficient signal-to-noise ratio, a new

excitation is required to readout each row.

The pulse sequence (Figure 2.8) describes the timing and magnitude

of the RF pulse and gradients require to encode the K-space, with one

cycle of pulse sequence per row. Therefore, to obtain a complete K-

space, several cycles of pulse sequence are required. Moreover, the pulse

sequence also shows the timing of readout. The readout time, or echo
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time, as mentioned before, controls the contrast of each tissue on the final

images. After the readout, a relatively long period of time is waited before

the next RF excitation can take place. This time period between each

excitation is called the repetition time (TR). This is to allow the tissue

to be fully relaxed, thus, TR is typically longer than T1 relaxation rate.

This TR is a major constraint of the acquisition speed, scanning more

rapidly than TR may cause the undesired contrast distortion. Generally,

given a total of n rows in K-space, if TR is t seconds, the time required

to obtain a single slice is t× n.

2.1.2 Functional Magnetic Resonance Imaging

fMRI utilises the MR imaging technique described earlier to record the

activities of the brain. The fundamental mechanism that allows the brain

activity to be captured by the MRI scanner is the theory of Blood Oxy-

genation Level Dependent(BOLD) contrast, proposed by S. Ogawa in

1990 [122]. The effect of BOLD increases the intensity of voxels where

the brain activities occur.

The origin of the BOLD contrast is the relationship between the brain

activity and the cerebral blood volume—the amount of blood flow in the

brain. Human brains consist of billions of small neuron cells which handle

all the thinking, memory, and all of the psychological activities. Despite

their special functions, these neurons are, nevertheless, cells; they require

energy to work like any other cell in the body. As the neurons work,

they require more energy to be consumed. The metabolism process that

generates energy for these neurons requires the consumption of glucose

and oxygen. As more energy is needed, more oxygen supply has to be

transported to the neuron via blood. As a consequence, more blood will
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be supplied to the activated region to increase the amount of oxygen.

This results in a rapid increase of blood flow in that region.

The oxygen is carried by blood using a protein called haemoglobin,

which binds itself with oxygen molecules to carry them from lungs to any

part of the body. Haemoglobin has an interesting property that it changes

its magnetic susceptibility when it carries oxygen. The oxyhaemoglobin—

the red haemoglobin that is bound with oxygen—is diamagnetic. How-

ever, when the oxygen is released, the deoxyhaemoglobin is strongly para-

magnetic. This magnetic susceptibility of haemoglobin is the origin of

BOLD contrast. Despite the paramagnetic deoxyhaemoglobin creating

more magnetic homogeneity, thus reducing the magnitude of MR signal,

the greatly increased amount of blood flow into the activated region over-

comes this effect and increases the observed MR signal in such region.

The BOLD response has a unique characteristic which can be ob-

served as the changing of the contrast of a region of activity over time.

First, when the neural activity starts, the intensity of the signal at the ac-

tivated region will drop slightly due to the increase of deoxyhaemoglobin

as more oxygen are being consumed. After few seconds, more blood is

sent into the region, which significantly increases the intensity of the sig-

nal. Lastly, when the activity stops, the blood level in the region will drop

down. The intensity of signal during this period is observed to be lower

than the normal baseline intensity for a few seconds before returning to

the baseline, even though the exact mechanism behind this phenomenon

is yet to be explained. This characteristic change in the intensity of MR

signal is known as the Haemodynamic Response which is the feature of

interest for the localisation of brain activity. Figure 2.9 shows the unique

characteristics of the Haemodynamic Response Function.
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Figure 2.9: Haemodynamic Response function for a stimulus impulse at
time 0.

The haemodynamic response is observed in the time domain—along

the temporal axis. Therefore, in order to observe the haemodynamic

response, a time-series of scanned data is required. This is one of the

biggest distinctions, and disadvantages, of fMRI in that, like dynamic

MRI technique, it requires a series of consecutively scanned data in order

to obtain the desired information.

The BOLD contrast is not the only contributor to the changes in the

intensity of a voxel in the temporal axis. Many sources of noise also

contribute to the temporal variation of the signal, for example, machine

noise, coil imperfection, and external magnetic interference etc. One of

the biggest challenges for computational neuroscientists is to extract the

BOLD contrast signal from the noise and identify it as a haemodynamic

response. If this is the case, the region of the brain that contains such

response is labelled as an activated region or a region of activity.

There are many techniques currently employed to analyse the data in

order to separate the BOLD contrast from the noise and identify it as a

haemodynamic response. The most notable techniques are as follow:
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• Subtraction technique: This is the easiest technique for a two-

state experiment, where a task—the activity currently under study—

is simply turn on and off. This technique simply subtracts the av-

erage of the images acquired during the on state of the task with

the average of those acquired during the off state [9, 178]. However,

it cannot cope with the overlapping responses and is sensitive to

many factors.

• Correlation technique: This technique computes the correlation

between the data and the predicted response which is estimated

from the task’s stimulus. This technique is less sensitive to move-

ment and uncontrolled physiological changes than the subtraction

technique, though it requires the assumption of the response func-

tion to work correctly [71, 37, 170, 169].

• General Linear Model: The General Linear Model (GLM) is

the generalised version of the previous correlation technique. The

GLM is also based on fitting the predicted response to the data;

however, the GLM also works with an experiment that contains

multiple tasks [68, 67]. Not only the GLM can fit the data to the

multiple-task responses, but it can also yield the statistical analysis

over joint-task (multiple stimuli applied simultaneously) and group

experiment (joint analysis of data from several subjects over the

same stimuli). The GLM is the analysis method used in a software

package Statistical Parametric Mapping (SPM), which is one of the

most widely used fMRI analysis software[66].

• Analysis of Variance (ANOVA): This technique is different

from the previously mentioned techniques that it does not require
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the assumption of the shape of the response function. ANOVA

works by computing a variance based on sliding window technique

across the entire signal. This variance is used to identify the active

response. Any changes in the data that have local variance bigger

than the global variance are labelled as active responses [109, 72].

ANOVA (along with other techniques) is implemented in FSL pack-

age, another widely used fMRI analysis software [84].

2.1.3 Challenges of fMRI

There are two main challenges regarding fMRI from the engineering point

of view. The first challenge is the low signal-to-noise ratio of the fMRI

data. The reason for this is that the variation in the magnitude of the

fMRI data from the BOLD contrast is not much different from that of

noise. The peak variation of the haemodynamic response is usually no

bigger than 3 to 5 percent of the baseline intensity. This is a physical

limitation of the scanner and the only way to increase the signal-to-noise

ratio further is to increase the strength of the magnetic field B0. However,

due to the negative effect of the strong magnetic field to organic bodies,

most clinical scanners only use weak field with the field strength between

1.5T to 3T. The use of very strong field MRI scanners (those having

the field strength of more than 6 Tesla) is usually limited to research

purposes.

The second challenge is the long experimental time required for fMRI.

As the haemodynamic response is observed along the temporal axis, a

large amount of scanned data has to be collected over a long period of

time. In a typical fMRI experiment, several volumes of brain data are

scanned while the tasks are given to the subject, a session of this experi-
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ment could last up to 30 minutes or more. As discussed in Section 2.1.1,

each volume of data contains several slices of the image, each constructed

from a K-Space. Using the typical MRI encoding strategy, only one row

of the K-Space can be recorded per one cycle of the pulse sequence. To

obtain a volume of the size m× n× z, at least n× z cycles are required,

given that a slice has the resolution of m×n and z is the number of slices

in a volume. Because the length of pulse sequence’s cycle is limited by

the value of TR (as shown in Section 2.1.1), there is a limit to how many

volumes can be obtained during a single session.

In fMRI, unlike most structural MRI techniques that prefer high spa-

tial resolution, the high temporal resolution is more desirable than high

spatial resolution. In the data with high temporal resolution, it is easier

to distinguish between the haemodynamic responses from the noise. It is

also necessary for capturing short haemodynamic responses, those that

only last for a few seconds after the stimuli are applied. Therefore, it is

preferable to have the temporal resolution to be as high as possible in

fMRI experiments.

As outlined earlier in Section 2.1.1 and Section 2.1.2, there are many

factors that affect the acquisition speed and signal-to-noise ratio of the

fMRI experiments. Among these, TR is the most prominent restriction.

Because TR itself is the parameter that controls the contrast of the ac-

quired image—changing this parameter will results in a change of tissue’s

contrast—it is a controlled parameter that cannot be changed for the sake

of the acquisition speed. Thus, the length of a pulse sequence is fixed by

TR and cannot be shortened. Instead, to improve the acquisition speed,

radiologists came up with various methods which utilise the scanner more

efficiently. The most popular acquisition techniques employed nowadays
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in real clinical applications are Fast Spin Echo and Echo Planar Imaging.

Fast Spin Echo

In Fast Spin Echo, it is possible to acquire several readouts from the

receiver coils in a single pulse sequence. As mentioned in Section 2.1.1,

one of the mechanisms that reduce the FID signal over time is the T2

relaxation, where the magnetisation vector in transverse plane loses its

magnitude due to the de-phasing of nuclei. A standard technique to cope

with the T2 relaxation is known as Spin Echo. In a Spin Echo sequence,

the second excitation by RF pulse is applied before the readout. This

second excitation is known as an 180-degree excitation, as its purpose is

to flip the direction of the magnetisation vectors. This, in effect, makes

the de-phasing vectors start to be in-phase again. This pulse is also

commonly known as the refocusing pulse.

In Fast Spin Echo, instead of using just one refocusing pulse per a

sequence, a series of refocusing pulses is used to refocus the magnetisation

vectors time and time again. Each time the vectors are focused, the

received signal is at the maximum magnitude consisting solely of T1

relaxation, without any effect from T2 relaxation. This allows a readout

every time the vectors are in phase, thus, several readouts can be acquired

in a single pulse sequence.

Fast Spin Echo is currently the most commonly used acquisition se-

quence in the MRI experiments. It is versatile and can be used with

many types of MRI data. It can improve up to 32 times the acquisition

speed compared to the normal Spin Echo technique. The disadvantages

of Fast Spin Echo, however, are the edge blurring artefact of the scanned

data and—most importantly for fMRI—its long TR period [101]. By ex-
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Figure 2.10: Pulse sequence for Fast Spin Echo shows 3 readouts us-
ing 180-degree refocusing radio frequency (RF) pulses after a 90-degree
excitation pulse, along with the x- and y-gradient coil (Gx and Gy).

citing the subject repeatedly with the refocusing pulses, the TR period

is much longer, thus, the final speed improvement is not significant.

Echo Planar Imaging

Echo Planar Imaging (EPI) is the fastest technique available for the

fast acquisition of MRI data. Recall that in the conventional MR en-

coding (discussed in Section 2.1.1), to get a complete K-Space, several

readouts—each with a different phase encoding—are acquired, which in

turns requires several pulse sequences. On the contrary, using EPI, a

complete K-Space can be acquired within a single pulse sequence. This

leads to a dramatic improvement in acquisition speed over the conven-

tional MR encoding scheme. The time required to acquire one volume

depends on the number of samples, the TR period, and the desired con-

trast; in typical Spin Echo MRI, it generally takes about 380 seconds per

volume. In EPI, the same volume could be acquired within 150 millisec-

34



(a) Conventional trajectory (b) EPI trajectory

Figure 2.11: Scan trajectory of Echo Planar Imaging versus the conven-
tional trajectory

onds; thousands of times faster than the conventional technique [130].

This dramatic speed of EPI is the reason EPI is the most commonly

used acquisition technique for the fMRI experiment.

EPI does this by using the rapidly switching readout (frequency en-

coding) gradient. Within the period of a single pulse sequence, EPI

rapidly applies the phase encoding gradient while reading MRI signal to

and fro simultaneously (shown in Figure 2.11 and Figure 2.12). This

rapid switching gradient requires special hardware to operate, thus, only

some scanners that are fitted with this specially built gradient coils can

perform EPI.

The main drawback of EPI is the fact that using the high strength

gradient field gives a narrower bandwidth compared to the conventional

trajectory, especially along the phase encoding axis. The narrower band-

width results in the loss of fine details in the data acquired using EPI,

coupling with the loss of spatial resolution. The loss of the spatial reso-

lution and details are the biggest disadvantages of EPI. Though EPI can

deliver data with a good temporal resolution within a reasonable length

of session, the loss of the spatial resolution limits the accuracy of the
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Figure 2.12: Pulse sequence of Echo Planar Imaging. The notations are
similar to Figure 2.10.

studies of the data.

From these two commonly used acquisition techniques, we can see the

inversely proportional relationship between the temporal resolution and

the spatial resolution. One approach to improve the ratio of this trade-

off, i.e., to increase the spatial resolution without reducing the temporal

resolution, or vice versa, is to incorporate in the compressed sensing.

2.2 Compressed Sensing

As introduced in Section 1.3, compressed sensing is a signal acquisition

scheme emerged in the field of signal processing during the last decade

that allows the acquisition of a full-length signal from underdetermined

samples. In this section, we will explore the basic background of the

compressed sensing, along with the state of the arts in the field. The

works of literature we survey here include those regarding compressed

sensing in general, on both the sensing operation and the reconstruction
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operation. The works regarding the use of compressed sensing to MRI

will be covered specifically in Section 2.3.

2.2.1 Sparse Representation of Signal

Even though compressed sensing has been introduced in 2006, the root

of it can be traced back more than just a decade ago. It can be said

that the starting point of compressed sensing is the concept of the sparse

representation of signals and its reconstruction.

Sparse Representation of Signal

Consider a natural signal s ∈ Rn of length n. The natural signal s is

some unknown function in either time or spatial domain. There is no a

priori characteristic that can be said more specifically about this signal.

Generally, such signal is dense in the sense that most of its element have

some (non-zero) value, i.e., there are si 6= 0|i = 1, ..., k and k ≈ n.

To define the dense signal precisely, we have to consider the distribu-

tion of its energy. The energy Es of a discrete signal s is defined as

Es =
n∑
i=0

|si|2. (2.2)

The energy of each element |si|2 contributes to the sum Es differently

and can be plotted into a distribution plot. We can now define the dense

signal precisely.

Definition 1. A dense signal s is a signal which sees the distribution of

its energy spreads over the entire signals.

Figure 2.13 shows an example of a dense signal and its energy distri-

bution.
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(a) Dense signal (b) Signal energy

Figure 2.13: Example of a dense signal and its ordered energy distribution

It is well known that signals in the time domain can be efficiently

processed in some transform domains. Indeed, the use of transform do-

mains is the heart of signal processing. Many transform domains result

in transformed coefficients that are sparse. Strictly speaking, a sparse

signal x ∈ Rn has most of its elements as zero elements, i.e., there are

xi 6= 0|i = 1, ..., k and k � n. Such signal is referred to as a strictly

sparse signal. Some signals are not strictly sparse but, however, most of

their elements are relatively negligible compared to a few of their much

larger elements. Such signals are called approximately sparse signals. To

define our sparse signals to include both the strictly and approximately

sparse signals, we can employ the same concept of energy distribution:

Definition 2. A sparse signal x is a signal which has the distribution of

its energy concentrates only on few of its elements.

Figure 2.14 shows an example of the sparse signal (the discrete cosine

coefficients of the signal in Figure 2.13) and its energy distribution.

Following the Definition 2, a strictly sparse signal is a sparse signal

where only a few high energy, non-zero elements exist, whereas all other

elements are zeros and have no energy. On the other hand, an approxi-
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(a) Sparse signal (b) Signal energy

Figure 2.14: Example of a sparse signal and its ordered energy distribu-
tion

mately sparse signal is a sparse signal where there are many low energy,

non-zero elements exist alongside a few of high energy elements. It is

worth noting that while the sparse signals generally considered in early

compressed sensing literature are strictly sparse, most sparse represen-

tations from the transformation of real-world signals are approximately

sparse.

Sparsifying Basis of Signal

To transform a dense signal s to its sparse representation x, a sparsifying

basis Ψ is required. The sparsifying basis is the matrix representation of

a signal transformation. The sparse representation of a dense signal s is,

therefore,

x = Ψs. (2.3)

Any transformations that aim to achieve a more compact energy dis-

tribution of signal can be used as a sparsifying basis [59]. The most

commonly used bases are the Fourier Transform basis, Discrete Cosine

Transform (DCT) basis, and Wavelet Transform basis. For examples, by
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using the Discrete Fourier Transform as a sparsifying basis Ψ ∈ CN×N ,

it is defined as

ΨDFT =
1√
N



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


, (2.4)

where ω = e−
2πi
N . Fourier basis is one of the most commonly used spar-

sifying bases.

Another example of a commonly used basis is the Haar Wavelet basis,

which is defined as

ΨW =


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1
2
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0 0 1
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· · · 0 0

...
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2

1
2

1
2
−1
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0 0 · · · 0 0

0 0 1
2
−1
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· · · 0 0
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... . . .
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0 0 0 0 · · · 1
2
−1

2



. (2.5)

Figure 2.15 shows the example of sparse representation using these

sparsifying bases.

The sparsifying basis is a square matrix. Thus, the sparse repre-

sentation of a signal always has the same length as its original dense

counterpart.

40



(a) Spatial image (b) DFT Coefficients (c) DWT Coefficients

Figure 2.15: Examples of sparse representation of an image using Discrete
Fourier Transform and Discrete Wavelet Transform. All coefficients are
presented in logarithmic scale.

Application of Sparse Representation of Signal

It is possible to represent the sparse signal further using a matrix called

a dictionary D ∈ Rm×n. This dictionary is different depending on each

application, however, every dictionary shares the same characteristic.

Unlike the sparse bases, which are square, dictionaries are frequently

underdetermined, i.e., m < n. Each element of D is referred to as an

atom. Using the dictionary, a feature set f of a sparse signal x can be

obtained from

f = Dx. (2.6)

The use of the sparse dictionary and sparse representation has been

employed in a wide range of applications. For example, image deblur-

ring [40, 64], denoising[61, 60], and imprinting[62]. Figure 2.16 shows

examples of these application.

Sparse Signal Reconstruction

The use of the dictionary is paired with the inverse process to recover the

processed sparse signal x̂ from the feature set f . We refer to this inverse
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(a) Deblurring application showing a blurry image (left) is
deblurred (right) using a dictionary based on DWT

(b) Denoising application showing a noisy image (left) is de-
noised (right) using a dictionary based on DCT

Figure 2.16: Examples of the applications of the sparse representation of
signal [59]
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process as a reconstruction operator,

x̂ = R(D, f). (2.7)

Unfortunately, because the feature set f is underdetermined, the linear

solutions to the inverse problem are infinitely many. To solve this re-

covery problem, the a priori fact that the sparse signal has only a few

non-zero elements is exploited. The problem to recover the sparse sig-

nal has become an optimisation problem to optimise the sparsity of the

recovered signal.

Many objective functions can be used to promote the signal sparsity.

The most straightforward objective function that promotes sparsity is the

minimisation of l0-norm. Strictly, l0-norm is not a proper norm because

it does not follow the homogeneity property; however, the l0-norm of a

signal x is defined as

‖x‖0 = #{i|xi 6= 0, i ∈ I+}. (2.8)

In words, it is the number of non-zero elements in x [59].

Using the l0-norm as the objective function, we can define the recon-

struction operation as an optimisation problem

(P0) min ‖x̂‖0 subject to Dx̂ = f . (2.9)

The sparsest solution of the (P0) problem is the desired solution with

high probability.

However, this (P0) problem is NP-hard for arbitrary dictionaries,

which has no tractable algorithm to solve it [59]. In [59], it is shown
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that the solution to the (P1) problem,

(P1) min ‖x̂‖1 subject to Dx̂ = f , (2.10)

where l1-norm of x is defined as

‖x‖1 =
n∑
i=1

|xi|, (2.11)

is the same as that of the (P0) problem of sparse signals. In other words,

both (P0) and (P1) problems are equivalent when x is a sparse signal.

The (P1) problem, however, can be solved using various available optimi-

sation algorithm. Reconstruction of sparse signal by solving (P1) problem

is referred to as the l1-norm minimisation—or l1-minimisation in some

literatures. The details regarding the reconstruction algorithms will be

discussed later in Section 2.2.4.

2.2.2 Compressed Sensing background

In 2006, Candès [28] and Donoho [52] independently came up with the

concept of compressed sensing (the term itself coined by Donoho in his

paper). Built on the available concept of the recovery of the sparse

representation of signals, both Candès and Donoho showed that if the

dictionary satisfies a certain property, it is possible to acquire samples

in the underdetermined fashion and reconstruct the full-length signal

perfectly.

The broad idea of compressed sensing looks very similar to the re-

covery of sparse representation. As we once introduced in Section 1.3,

compressed sensing can be viewed as consisting of two operations: the

sensing operation and the reconstruction operation. The reconstruction
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is done in the same way as the sparse recovery by using the optimisation

algorithms. The main difference between compressed sensing and the

sparse recovery is, however, the sensing operation.

Given a signal s ∈ Cn of length n, the undersampled measurements—

or samples—y ∈ Rm, where m � n, can be obtained from the sensing

operation

y = As. (2.12)

We can compare the matrix A in the sensing operation of compressed

sensing to the sparse dictionary D of the sparse representation in Sec-

tion 2.2.1. While the dictionary D is a matrix consisting of sparse atoms,

the matrix A consists of two parts, i.e.,

A = ΦΨ. (2.13)

In other words, the undersampled measurements y is obtained from

y = ΦΨs. (2.14)

The first part of A is the sparsifying basis Ψ ∈ Cn×n. The task of the

sparsifying basis is to get a sparse representation of s. As discussed in

Section 2.2.1, there are many sparsifying bases available, with the Fourier

basis being one of the popular choices. Indeed, the paper of Candès [28]

specifically proposes the use of the Fourier basis as a necessary condition.

However, in his later works [27] and Donoho’s work, it is shown that other

sparsity bases can also serve as Ψ. In imaging applications, Discrete

Cosine Transform and Wavelet Transform are also popular choices as

sparsity bases.

The other part of A is the incoherent sampling matrix Φ ∈ Rm×n.
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This part is the heart of compressed sensing. Candès showed that in or-

der to reconstruct the full-length signal successfully from the undersam-

pled measurements, the sampling matrix Φ has to satisfy the Restricted

Isometry Property (RIP) [22]. It is found that, in general, most random

matrices—especially the Gaussian matrix—satisfy the RIP property and

thus can be used as the sampling matrix successfully [52]. The use of

the undersampled Gaussian matrix as a sampling matrix has become the

most common setting of compressed sensing. The more detailed discus-

sion regarding the sensing matrix A will follow in Section 2.2.3.

In order to obtain the full-length signal ŝ from the undersampled mea-

surement y, the reconstruction operation is employed. The reconstructed

signal ŝ can be obtained from its reconstructed sparse representation x̂

easily as

ŝ = Ψ−1x̂. (2.15)

The reconstructed sparse signal x̂, in turn, is obtained from

x̂ = R(Φ,y). (2.16)

We can see that the reconstruction operation works very similarly in

compressed sensing to what we previously discussed in Section 2.2.1. It

is the same sparse reconstruction problem, with the aim to maximise the

sparsity of x̂. In this setting, the reconstruction operation is done by

solving the optimisation problem:

min ‖x̂‖1 subject to Φx̂ = y. (2.17)

Candès proved that the solution to Eq. (2.17) is the exact reconstruction

of x̂ if x is exactly sparse and the sampling matrix Φ satisfies the RIP
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property. Eq. (2.17) can be solved by various optimisation algorithms,

which will be discussed in Section 2.2.4.

2.2.3 Sensing Matrices

One of the two major parts of compressed sensing is the compressive

acquisition by the sensing operation. The goal of the compressive ac-

quisition is to obtain measurements of a signal such that the length of

measurements is much smaller than the number of elements of the sig-

nal. That is, given a signal s ∈ Rn, we want to obtain the measurement

y ∈ Cm such that m� n. As introduced in Section 2.2.2, the measure-

ment y,

y = ΦΨs, (2.18)

where Φ is the downsampling sensing matrix and Ψ is a sparsifying basis.

We have already discussed the sparsifying basis Ψ in Section 2.2.1. The

focus of this section is on the sensing matrix Φ.

Since the early development of compressed sensing, the traditional

non-deterministic, non-adaptive, random sensing matrices are most com-

monly used. This is evident in the original works by Donoho and Candès

[52, 28], and other works thereafter [138, 129, 142]—including the famous

single pixel camera, the first hardware implemented using compressed

sensing [56]. The random matrix with the Gaussian distribution, in par-

ticular, is the most popular choice as a sensing matrix. The random

Gaussian matrix is a matrix Φ where each element φi is drawn from the

Gaussian distribution N (φi, µ, σ
2),

N (φi, µ, σ
2) =

1√
2πσ2

e−
(φi−µ)

2

2σ2 , (2.19)
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with some value of average µ—commonly µ = 0—and variance σ2. The

main reason for this popularity is because the random Gaussian matrix

has low coherence with nearly all sparsifying bases [93, 65]. Even though,

most of the time, random matrices are not the most incoherence choice

of the sensing matrix for any particular basis, using random matrices

guarantees to satisfy the RIP (details follow in the next subsection).

However, using a traditional random matrix as a sensing matrix has

many drawbacks and limitations, namely:

• the low incoherence of random matrices reduces the accuracy of the

reconstruction operation,

• random matrices are not efficient in term of storage memory and the

transmission bandwidth. For example, to compressively sense an

image with the resolution of 256×256 at 25% sampling rate, as the

image has to be vectorised into a 65536-element vector, the sensing

matrix Φ ∈ R16384×65536 is needed, containing the total of 1.075×109

elements. With the usual 64-bit double precision per element used

in most computational packages, this sensing matrix would require

approximately 8 gigabytes of memory to store. Moreover, unless the

construction of Φ is based on a seeded pseudorandom generator, the

whole matrix has to be stored and transmitted across the network

in many applications. It is clear that this restricts the practical

applications of compressed sensing.

• Random matrices are application-independent, signal-independent,

cost function-independent, and algorithm-independent. They are

non-adaptive, work equally as good or as bad with any signals,

costs, and algorithms.
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These mentioned issues motivated many works on sensing matrices that

are more efficient, sparsifying basis-specific, application-specific, and adap-

tive.

Incoherence of Random Sensing Matrices

To measure the undersampled measurements y that allows the full-length

signal x̂ to be reconstructed with the reconstruction operation (Eq. (2.17)),

the sensing matrix Φ has to be incoherent to the sparse signal x = Ψs.

Candès proposed the formal notion to measure this incoherence, which

is now known as the Restricted Isometry Property (RIP). It is demon-

strated in [24, 22] that if the sensing matrix Φ satisfies the RIP, the

full-length signal x̂ can be reconstructed with overwhelming probability.

The RIP is a concept that guarantees the minimum incoherence be-

tween the sensing matrix Φ and the sparse basis Ψ in any given sensing

operation. The RIP is defined in terms of the restricted isometry con-

stants.

Definition 3. [22] For each integer s = 1, 2, ..., define the isometry

constant δk of a matrix Φ as the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (2.20)

holds for all k-sparse vectors. A vector is said to be k-sparse if it has at

most k nonzero entries.

It is shown in [22] that if the restricted isometry constant δk of Φ is

small, then the accurate reconstruction can be obtained. Let xk be the

x with all but the largest k nonzero elements set to zero, then:
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Theorem 1. [22] Assume that δ2k <
√

2−1, the solution x̂ to Eq. (2.17)

obeys

‖x̂− x‖1 ≤ C0‖x− xk‖1 (2.21)

and

‖x̂− x‖2 ≤ C0k
−1/2‖x− xk‖1 (2.22)

for some small constant C0. In particular, if x is k-sparse, the recon-

struction is exact.

Theorem 1 shows the relation between the sensing matrix and the

reconstruction operation. In general, when δ2k < 1, then the l0-norm

optimisation has a unique k-sparse solution. For compressed sensing, the

solution to the l1-norm optimisation is the same as the l0-norm solution

when δ2k <
√

2− 1 [22].

In [10], it is shown that all random matrices satisfy the RIP prop-

erty. Intensive studies also reveal that random matrices also satisfy other

lessor-known incoherence guarantees such as the Nullspace Property, and

are incoherent with almost every sparse basis [29, 46, 111, 152, 65]. This

makes random matrices—particularly the random Gaussian matrix de-

scribed in 2.2.3—become the de facto sensing matrices that work with a

large variety of sparsifying bases.

Deterministic Sensing Matrices

To overcome the issues of random sensing matrices described earlier,

the deterministic sensing matrices are developed. The deterministic ap-

proach to create sensing matrices allows the identical matrices to be recre-

ated during both acquisition and reconstruction parts, thus removing the

need to store and transmit large matrices. A deterministic sensing matrix
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is created by using a generator function, and only a small set of param-

eters are required to replicate a specific matrix. While there are several

approaches currently present to create deterministic sensing matrices,

each application has its physical limitation that limits the availability of

the approaches, as highlighted by Duarte in [57].

One of the simple deterministic matrices is Subsampled Incoherent

Basis. Subsampled Incoherent Basis matrices are obtained by selecting

a subset of the coefficients of an orthonormal basis that is incoherent

with a given sparsity basis. To be precise, assume that an orthonormal

basis B ∈ Rn×n is incoherent to a sparsity basis Ψ. The sensing matrix

Φ = B̄T is created from a column submatrix B̄ ∈ Rm×n of B, m < n. The

selection of the submatrix’s columns is typically made randomly. In fact,

one would argue that Subsampled Bases are not completely deterministic

since there presents a certain number of randomness. However, they do

have a clear structure and, thus, can be replicated if only a small number

of indices are known.

The performance of the Subsampled Incoherent Bases are defined in

term of the mutual coherence [24].

Definition 4. The mutual coherence of the N-dimensional orthonormal

bases B and Ψ is the maximum absolute value of the inner product be-

tween elements of the two bases:

µ(B,Ψ) = max
1≤i,j≤N

|〈bi, ψj〉|, (2.23)

where bi denotes the ith row of B and ψj denotes the jth column of Ψ.

It is shown that the Subsampled Incoherent Basis provides a recovery

guarantee.
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Theorem 2. [24] Let x = Ψs be a K-sparse signal in Psi with sup-

port Ω ⊂ {1, ..., N}. |Ω| = K, and with entries having signs chosen

uniformly at random for the set of observed measurements M . Suppose

that M ≥ CKNµ2(Φ,Ψ) log(N
δ

) and M ≥ C ′ log2(N
δ

) for fixed values of

δ < 1, C, C ′. Then with probability at least 1− δ, ŝ is the solution to the

Eq. (2.17).

Moreover, Rudelson and Vershynin also demonstrates the link be-

tween the mutual coherence and the restricted isometry constants [143].

Theorem 3. Choose a subset Γ ⊆ {1, ..., N} for the set of observed

measurements, with M = |Γ|. Suppose that

M ≥ CK
√
Ntµ(Φ,Ψ) log(tK logN) log2K (2.24)

for a fixed value of C and t > 1. Then with probability at least 1− 5e−t

the matrix ΦTΨ has the RIP with constant δ2K ≤ 1
2
.

The Subsampled Incoherent Basis matrices are applicable in a wide

range of applications because of the freedom of choosing any pair of bases

of choice. It is suitable for both applications where the choice of sparsity

basis is freely available and the ones with limited choices of basis. The

examples of the application without the basis restriction is the imaging

application in [32, 176]. This kind of application requires a sensing matrix

design that can be implemented easily in hardware. Interestingly, both

examples employ the noiselet basis as their sensing matrices. Noiselet

was proposed in [38] by Coifman et al. as a noise-like function in the

sense that it is completely incompressible by orthogonal wavelet packet.
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The noiselet function f(t) is defined as a recursive function

f1(t) = χ[0,1)(t), (2.25)

f2n(t) = (1− i)fn(2t) + (1 + i)fn(2t− 1), (2.26)

f2n+1(t) = (1 + i)fn(2t) + (1− i)fn(2t− 1), (2.27)

where

χ[0,1)(x) =


1, x ∈ [0, 1)

0, otherwise.

(2.28)

Each Noiselet vector fi(t) corresponds to each row or column in a Noise-

let matrix. Figure 2.17 shows an example of 16 × 16 Noiselet matrix

where its rows are composed of the iterations f16 to f31 Noiselet vectors.

Noiselet has become of interest because it is proven to have maximum

incoherence with Haar wavelet basis, a popular sparsity basis employed

in many imaging applications [159]. It can also be computed very ef-

ficiently, making it very desirable for most applications. Although it is

best to pair the Subsampled Noiselet sensing matrix Φ with Haar wavelet

basis Ψ, Noiselet basis is also highly incoherent with other sparse bases.

Wen showed the combination of the quantised Discrete Cosine Transform

with Noiselet basis in [168].

The other applications commonly seen the Subsampled Incoherent

Basis matrices employed are those with restricted choices of the sparsity

basis. The clearest examples of such applications are the MRI and the

tomographic imaging. In these examples, their sparsity basis—limited

by their hardware— is the 2-dimensional Fourier transform. Because

the basic functions of the Fourier transform are sinusoidal, the most

incoherent bases are those with localised supports, e.g.the wavelet basis
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(a) Real part (b) Imaginary part

Figure 2.17: An example of a 16× 16 Noiselet matrix

and Total Variation basis [24, 28]. More details on the choices of bases

for MRI are discussed in Section 2.3.

Noiselet matrix is an example of structurally random matrices. These

are pseudo-random matrices that are created in a deterministic fashion.

Such matrices can then be subsampled either randomly or linearly while

still maintain the properties of random matrices. Another example of the

structurally random matrices is the matrix proposed by Thong Do in [49].

This matrix works by systematically scrambling the supports of a sparse

signal’s elements, as well as flipping their signs. The signal is subsampled

after it is transformed into a sparse domain. This matrix satisfies the

requirements of the structurally random matrices he previously laid out

in [50], i.e., a structurally random matrix should have universality (work

with a variety of sparse bases), optimality (achieve optimal number of

measurements required for exact reconstruction), and low complexity

(can be constructed easily).

The next family of deterministic sensing matrices is the subsampled

circulant matrices. The circulant matrix is a square matrix in the form
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of

C =



c1 c2 c3 · · · cn

cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

...
...

...
. . .

...

c2 c3 c4 · · · c1


. (2.29)

Circulant matrix is a special case of Toeplitz matrix—or diagonal-constant

matrix—a matrix in which all elements in each diagonal are equal. The

circulant matrix is a Toeplitz matrix that each row is a right-shifted of

its previous row. The subsampled circulant matrix can be created by

randomly subsampling the circulant matrix similarly to the Subsampled

Incoherent Basis matrices. If the first row of the circulant matrix—known

as a seed—is drawn from a random distribution, then the subsampled cir-

culant matrix has the properties of the random matrix and, thus, satisfies

the conditions as an incoherent sensing matrix.

The use of both Circulant matrix and Toeplitz matrix in compressed

sensing first appears in communication applications, e.g., channel esti-

mation [8, 78, 144]. The advantage of using circulant sensing matrix is

that it is easy to implement the circulant matrix into hardware as a con-

volution. This reduces the complexity of the sampling operation to just a

linear subsampling. There are also other advantages of using a circulant

and Toeplitz sensing matrix. For example, it draws only n random vari-

ables instead of m×n, making the generation, transmission, and storage

much more efficient. Also, the multiplication of Toeplitz matrix can be

implemented efficiently using fast Fourier transform [8, 96]. Surprisingly,

Valsesia and Magli demonstrated in [162] that it is possible to perform

basic signal processing operations, e.g., filtering and transforms, directly

in the measurement domain via the circulant sensing matrices . This
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leads to a potential of the measurement domain signal processing.

Another family of deterministic sensing matrices is the Separable

Sensing Matrices. The sensing matrix in this family is generated from

a set of smaller matrices, making it very computationally efficient for

applications which have large signals [141]. Separable Sensing Matrices

are normally created using Kronecker products. The Kronecker product

of two matrices A and B is

A⊗B :=



A1,1B A1,2B · · · A1,qB

A2,1B A2,2B · · · A2,qB

...
...

. . .
...

Ap,1B Ap,2B · · · Ap,qB


. (2.30)

If A has the size p× q and B has the size r× s, then the product A⊗B

is of size pr × qs. A sensing matrix Φ can be obtained from

Φ̄ = Φ1 ⊗Φ2 ⊗ ...⊗ΦD, (2.31)

where each Φi, i ∈ {1, 2, ..., D} is a basis for each dimension for the

D-dimensional signal. It is possible to exploit the sparsity of multiple

dimensions simultaneously using Kronecker sensing matrices [55]. Since

the sensing matrices created from Kronecker products are best suited for

multi-dimension signals, particularly those with information of interest

spans across many dimensions, they found many uses in various large-

scale applications. Kronecker sensing matrices are used in applications

involving video sequences and temporal sparsity [57].

Apart from the previously discussed families of deterministic matri-

ces, over the years there were many attempts trying to create determinis-

tic sensing matrices using other approaches. [151] proposed a determin-
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istic matrix construction based on adjacency matrices of bipartite graphs

which have a large girth (the length of the shortest cycle in the graph).

[171] proposed a construction of sensing matrices by deterministically se-

lecting rows of partial Fourier matrix with orthonormal columns, which

is clearly an extension of the Subsampled Incoherent Bases. It replaces

the last randomise aspect of random columns selection by a deterministic

approach. In [97], Shuxing Li et al. proposed a deterministic construc-

tion of compressed sensing matrices by using algebraic curves over finite

fields. His work shows that the sensing matrices constructed from Elliptic

curves and Hermitian curves provide comparable recovery performance

to the Gaussian random matrices, with a better perfect recovery per-

centage for small signal reconstruction. Li later extended his work to

create deterministic binary sensing matrices derived from near orthogo-

nal systems and Finite Geometry [99, 98]. The binary sensing matrix is

a special class of deterministic matrix which will be discussed further on

in Section 2.2.3.

Adaptive Sensing Matrices

All sensing matrices discussed so far, both random and deterministic,

are non-adaptive. They are generic and work with any applications that

satisfy their conditions. However, such non-adaptive matrices do not of-

fer the optimality in term of application-specific performance. To tackle

this problem, there are works of literature that proposed the use of adap-

tive sensing matrices. Instead of linearly sampling every element equally,

adaptive sensing matrices aim to dynamically sample the signal in a way

that maximises the signal’s feature of interest. The adaptive sensing

matrices are most excel in applications that deal with dynamic, undeter-
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mined data.

The most prominent attempt to create adaptive sensing matrices is

developed from the concept of Bayesian Compressed Sensing. Originally,

the aim of Bayesian Compressed Sensing is not the adaptive sensing ma-

trix, but rather the compressed sensing framework that can estimate the

confidence of its reconstruction [86]. That is, not only Bayesian Com-

pressed Sensing framework estimates the reconstructed signal x̂, it also

estimates the error variance σ2, i.e., the range of uncertainty for the re-

construction. In [86], the error variance is obtained from the Bayesian

inversion using Relevance Vector Machine. These error predictions pro-

vide the sense of confidence of the reconstruction—the larger the error,

the less accurate the reconstruction. However, the concept of error pre-

diction provided by Bayesian Compressed Sensing Framework created the

possibility of the Adaptive Compressed Sensing matrices. Particularly,

the error prediction helps to 1) adaptively select the sensing matrices

such that the uncertainty is minimal, and 2) determine the number of

measurements required that is enough for the accurate reconstruction

[11].

From this beginning, the probability approach to compressed sensing

developed further. The adaptive sensing matrices based on Bayesian

approach is now a part of adaptive compressed sensing framework, along

with the adaptive reconstruction as its counterpart.

A blind adaptive sensing for images was proposed in [45]. It is based

on the proposed Statistical Pursuit, where the sampling is restricted by a

set of masks. The masks are generated in a way such that they preserve

the underlying statistical model of a target image. This method provides

the sensing matrices that are adapted to image structures. The authors
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of this work also proposed Blind Wavelet Sampling, a special case of

Statistical Pursuit that exploits the statistical model of wavelet structure.

An adaptive sensing matrix for temporal data was also proposed. In

[125], a structurally random matrix based on a random Gabor system was

proposed. This matrix was designed for time-frequency signal sensing,

originally for the channel estimation application [126] and remote sensing

[79], but later was generalised and shown to work with other types of

temporal signals [127].

However, there are counterarguments that the use of Adaptive Sens-

ing Matrices does not reach its potential of better reconstruction per-

formance. Arias-Castro et al. shows that the improvement offered by

the adaptive strategy, compared to the non-adaptive one, is minimal at

best [6] and negligible at worst. Given the complexity of sophisticated

adaptive strategies, for most applications, the traditional, non-adaptive

matrices are the most accuracy-versus-complexity efficient. Neverthe-

less, adaptive sensing matrices are shown to give a clear improvement on

specific problems where the structure of the signal is very distinct.

More recent works on Adaptive Sensing Matrices focus more on adap-

tively choosing the number of rows of the sensing matrix, effectively

resulting in the compressed sensing with adaptive downsampling rate

[177, 42]. This approach couples with the adaptive reconstruction allows

the compressed sensing framework that sensed the signal at the optimal

rate.

Binary Compressed Sensing Matrices

A special class of compressed sensing matrices is the binary compressed

sensing matrices [17, 18]. Traditional sensing matrices are linear mapping
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functions Φ : Rn → Rm, where Φ ∈ Rm×n. Unlike the traditional sensing

matrices, the binary sensing matrices map the real signal into a binary

space, i.e., mapping functions Φb : Rn → Fm2 , where Φb ∈ Fm×n2 . The

term binary here does not refer to the value of 0 and 1, but rather to the

fact that there are only two possible values for the measurements. The

most common type of binary sensing matrices is the sign matrix, where

the elements of Φb and y = Φbx are {−1, 1}. It is also common that Φb

is preferred to be a orthonormal matrix.

The use of Binary Sensing Matrices simplifies the sensing operation,

since both the sensing matrices and measurements are only 1 bit deep.

It was first proposed in [17] as the 1-bit Compressed Sensing. Unlike

later Binary Compressed Sensing, this work employs a traditional random

sensing matrix. The random measurements, however, preserve only the

sign information without any magnitude. It also shows that whilst it is

possible to reconstruct 1-bit measurements using traditional methods, it

is more beneficial to reformulate the reconstruction problem to use sign

constraints rather than norm constraints. Binary Compressive Imaging

was later proposed in [18], which is a framework designed to use the

binary sensing matrix together with a binary reconstruction method on

high dimension images [18].

Not only the Binary Sensing Matrices are more efficient in term of

complexity, but it is also easier to be constructed in a deterministic fash-

ion. Consider the example of Noiselet matrix in Figure 2.17. Both the

real part and the imaginary part of the Noiselet matrix can be regarded

as a binary sensing matrix. This leads to the state-of-the-art sensing

matrices which are the Deterministic Binary Sensing Matrices.

It is found that Binary Sensing Matrices can be generated efficiently

60



Figure 2.18: An example of a Low Density Frame with its Factor Graph

and deterministically by deriving from coding matrices. Amini and Mar-

vasti first established the connection between the Orthogonal Optimal

Codes and binary sensing matrices in [5]. This leads to a successful gen-

eration of binary (0,1), bipolar (-1,1), and ternary (-1,0,1) deterministic

sensing matrices. It is now clear that many codewords in coding theory

can be used to generate sensing matrices. One of the Binary Sensing Ma-

trices derived from coding theory is the Low Density Frame, proposed in

[3, 4]. The Low Density Frame is a matrix that has the zero elements

in the majority of each row and column. It is directly derived from the

parity-check matrix of the Low-Density Parity-Check code (LDPC). As

with LDPC, the Low Density Frame can be represented by factor graphs.

For example, a factor graph in Figure 2.18 represents the Low Density

Frame



1 0 1 1 0

0 1 0 1 1

1 1 0 0 0

0 0 1 0 1


. (2.32)

So far we have surveyed the varieties of compressed sensing matrices.

61



There are many challenges around the use of random sensing matrices

in early work of literature. The challenges of the complexity and storage

of random matrices led to the development of Deterministic Sensing Ma-

trices while the challenge of optimal performance in specific applications

led to the development of Adaptive Sensing Matrices. The Binary Sens-

ing Matrices are designed to reduce the complexity of both the sensing

operation and reconstruction. Finally, the deterministic binary matrices

such as Delsarte-Goethals Frame attempts to make the simplest, most

efficient sensing matrices that suit the need of practical applications.

Despite many disadvantages, however, the random sensing matrices—

particularly the Gaussian random matrices—remain the most popular

sensing matrices of choice. As such, there is still research in progress

on the improvement of random sensing matrices. For example, in [95],

the authors stepped away from the concept of global incoherence to a

notion of local coherence, i.e., to measure the correlation between each

sensing vector and the sparse basis independently. The local coherence

was shown to have more correlation to the reconstruction quality of im-

ages. [91] also demonstrated that an efficient random sensing matrices

can be obtained by randomly selecting rows of scrambled Fourier basis.

The sensing matrix obtained from subsampled scrambled Fourier basis is

superior to the naively subsampled Fourier basis. It also shows that even

when deterministically subsampled, the RIP bound is still retained.

2.2.4 Reconstruction Algorithms

Another main component of compressed sensing alongside the sensing

operation is the reconstruction operation done using reconstruction al-

gorithms. The primary goal of compressed sensing reconstruction is to
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find the solution to Eq. (2.17). Historically, it is known that a signal

with a sparse dictionary can be recovered from an undersampled vector

(see Section 2.2.1 for more details). Such recovery is done by maximising

the sparsity of the target signal. Ideally, the sparsity of a signal can be

computed as a l0-norm of the signal. By minimising the l0-norm, one

can maximise the sparsity of the signal (Eq. (2.9)). The optimisation of

l0-norm, however, is NP-hard and intractable.

To avoid the use of l0-norm, there are three main approaches. The

first approach is to solve the basis pursuit via convex optimisation. This

is the most true-to-the-theory approach that was developed by using

mathematical optimisation techniques to minimise the l1-norm, the re-

laxed cost function of the l0-norm, straightforwardly. Unlike l0-norm, the

minimisation of l1-norm, known as the basis pursuit, is tractable [36]. It is

shown that the basis pursuit (Eq. (2.17)) yields the approximate sparse

solution that is very close to the solution of the l0-norm minimisation

Eq. (2.9) [53]. Indeed, the solution of the basis pursuit is exact if the

sparse signal x is K-sparse with small K (refer to 2.2.3).

The second approach is a family of algorithms referred to as greedy

algorithms. Most commonly, the greedy algorithms are variants of the

Matching Pursuit, in which the sparse solution is searched for in a greedy

fashion. That is, the location of the non-zero elements in the solution

are to be found first, usually by maximum correlation to the measure-

ments, then their values are estimated later [108]. Matching pursuit has

much lower complexity than the basis pursuit, thus, resulting in a faster

recovery. Basis pursuit, on the other hand, optimises the whole signal

simultaneously, resulting in the more accurate reconstructions than the

matching pursuit.
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The third approach is the variants of hard thresholding algorithms,

including the Iterative Hard Thresholding. This approach does not find

the sparse solution by minimising the l1-norm. Instead, the sparse so-

lution is found by applying the inverse of residue and hard thresholding

repeatedly [15]. This approach has the lowest complexity of all three

discussed here. However, its performance is limited to the knowledge of

the target sparse signal.

This section will discuss these three reconstruction approaches in

more details. Here, reconstruction operations aim to reconstruct the

full-length sparse signal x̂ from the undersampled measurements y of

x, obtained using the sensing operation, without a priori information

regarding the structure of x.

Basis Pursuit via Convex Optimisation

Recall the basis pursuit in Eq. (2.17), the basis pursuit is the l1-norm

minimisation problem in the form of

min ‖x̂‖1 subject to Φx̂ = y. (2.33)

The basis pursuit is the most straightforward and most mathematically

accurate reconstruction of compressed sensing. As Candès showed in

Theorem 1, discussed in Section 2.2.3, the solution to Eq. (2.33) exactly

matches the solution of the l0-norm minimisation (Eq. (2.9)) if the sensing

matrix Φ satisfies the RIP, i.e., Φ is incoherent to the sparsity basis Ψ of

x. Basis pursuit, in essence, tries to find the optimal point in the convex

set of feasible solutions. Figure 2.19 shows the geometric examples of

several lp-norm in 3-dimensional space. It is clear that when 0 < p ≤ 1,

the 3-tuple solution is sparse. In contrast, when p > 1, the optimal
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(a) l0.5-norm (b) l1-norm (c) l2-norm

Figure 2.19: Examples of l0.5-norm, l1-norm, and l2-norm objective func-
tions

solution on the feasible set is no longer guaranteed to be the sparsest

solution.

In early literature, the basis pursuit for CS reconstruction was solved

by casting the basis pursuit problem into a linear programming problem.

That is, we cast the basis pursuit problem in (Eq. (2.33)) into a linear

programming problem in the form of

min cTx subject to Φx = y,x ≥ 0. (2.34)

It is shown in [25, 34] that such conversion is possible, and resulting in a

parametric linear programming problem:

min 1Tt subject to x− t ≤ 0, x + t ≥ 0, Φx = y. (2.35)

By casting the basis pursuit into a linear programming problem, the

solution to Eq. (2.35) can be found by generic linear programming algo-

rithms, e.g., the interior-point method and the simplex algorithm. All

early works on compressed sensing employed the linear programming-

based reconstruction algorithms. The l1-Magic software [23] by Candès

employs the simplex algorithm whilst the SparseLab [51] by Donoho and

CVX package [74] employ the interior-point method.
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It should be noted that the size of the linear programming problem in

Eq. (2.35) can be reduced by the concept of dual problem. The solution

to the dual problem, in the form of

min bTw subject to ΦTw + x = c, (2.36)

is equivalent to the primal problem in Eq. (2.34). The dual problem of

Eq. (2.35) can be expressed in terms of dual variables w,v,u as

min bTw subject to ΦTw − 2v = −e, 0 ≤ v ≤ e, (2.37)

where e = v + u [34].

The reconstruction from basis pursuit discussed so far is theoretically

exact only in the noiseless case, i.e., when y = Φx exactly. However,

because any real-world measurement systems always subject to some

degree of noise, the result of Eq. (2.33) is not reliable. When there is

noise presents in the measurement system, i.e., when y = Φx+n, where

n is assumed to be independent and identically distributed noise, it is

possible to solve the basis pursuit problem in the ”approximate” fashion

known as the basis pursuit denoising. Basis pursuit denoising relaxes the

constraints of the feasible set to obtain the approximate solution x̂′ such

that ‖x̂′− x̂‖2 ≤ ε, where ε is a small scalar threshold. The basis pursuit

denoising solves the optimisation problem:

min ‖x̂‖1 subject to ‖Φx̂− y‖2 ≤ ε. (2.38)

Further regularisation results in a regularised l1-norm minimisation prob-
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lem:

min ‖y −Φx‖1, (2.39)

which is equivalent to the linear programming problem [25]

min 1Tt subject to −t ≤ y −Φx ≤ t. (2.40)

The more generalised form of basis pursuit designed to work with

noisy measurement is the Dantzig Selector, proposed in [26]. Dantzig

Selector is the convex optimisation problem in the form of:

min ‖x̂‖1 subject to ‖Φ∗e‖∞ ≤ λnσ (2.41)

for some λn > 0, where

‖Φ∗e‖∞ = sup
1≤i≤n

|(Φ∗e)i| (2.42)

and

e = y −Φx̂ (2.43)

is the residuals vector.

The Dantzig Selector searches for the sparsest approximate solution

x̂ that are consistent with the constraints. Unlike the basis pursuit de-

noising which tries to keep the solution close to the feasible set globally

using the Euclidean norm, Dantzig Selector in Eq. (2.41) employs the

l∞-norm which essentially keep each element of the solution consistent

individually. It is shown in Theorem 4 that the Dantzig selector is very

accurate in the presence of noise [26].

Theorem 4. [26] Suppose x ∈ Rn is any K-sparse vector of parameters
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obeying δ2K + θK,2K < 1. Choose λn =
√

2 log n in Eq. (2.41). Then with

large probability, x̂ obeys

‖x̂− x‖2
2 ≤ C2

1(2 log n)Kσ2, (2.44)

with C1 = 4/(1− δK − θK,2K).

Apart from the Dantzig Selector, there are other generalisations of

the basis pursuit. One attempt is to generalise the objective function as

the Nuclear-norm Minimisation [139]. Nuclear-norm is the name given

to the vector’s element-wise norms, which also include the family of lp-

norm. This work aims to generalise the compressed sensing to work with

2-dimensional matrices instead of vectors. Here the vector sparsity is

replaced by the matrix rank, with the goal to minimise the rank of the

reconstructed matrix.

Apart from solving the basis pursuit by casting into the linear pro-

gramming problem, there are many reconstruction algorithms proposed

which aim to solve the basis pursuit directly. Unlike the generic solvers

such as the interior-point method, these algorithms are tailored for the

purpose of compressed sensing reconstruction. The following are the

most notable variants of these algorithms.

• SPGL1 solver [163, 164]: SPGL1 solves the dual basis pursuit prob-

lem using the concept of Pareto curve to find the root of the dual

solution.

• YALL1 solver [173]: YALL1 solves the primal basis pursuit using

the concept of Alternating Direction Method of Multiplier (ADMM).

In essence, ADMM solves the convex optimisation problem by split-

ting the problem into several smaller problems to be optimised
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jointly.

• ISAL1 solver [102, 103]: ISAL1 is an example of a family of opti-

misation solver known as a gradient projection solver. This family

of solvers traces the gradient of the cost function until the opti-

mal solution is reached. Methods in this family are derived from

the well-known method steepest gradient descent and the method

of conjugate gradient. These conventional methods, however, are

applicable to the fully determined problem.

• l1-homotopy solver [7]: Homotopy method solves the basis pursuit

by iteratively reweighting the optimisation problem, effectively try-

ing to find the simplest sparse solution that fit the constraints.

As shown in [103], these tailored algorithms yield more accurate recon-

structed signals than the generic optimisation solvers. Moreover, tailored

algorithms are less complex and can handle problems on a larger scale.

Among these algorithms, the SparseLab (Interior-point method), ISAL1

and l1-homotopy are shown to be the most efficient in terms of the recon-

struction complexity and accuracy and are chosen for further evaluation.

The details of both these algorithms are also discussed in Section 2.2.5

and Section 3.4.

Matching Pursuit

The biggest disadvantage of the convex optimisation approach is its

high complexity. This is the main motivation for another reconstruc-

tion approach that has lower computation complexity. Algorithms us-

ing this approach are known as greedy algorithms, or more commonly

known—inspired by the most popular algorithm—as matching pursuits
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algorithms. These algorithms are generally faster and easier to imple-

ment compared to the convex optimisation approach, thus, they are more

practical in many applications that do not require highly accurate recon-

structions [156].

Matching pursuit is a classical sparse approximation technique avail-

able for more than a few decades. As discussed in Section 2.2.1, match-

ing pursuit algorithms aim to find the sparse signal x̂ that is the best

match to the dictionary D. Naturally, early works in compressed sensing

adopted the use of matching pursuit in order to reconstruct the sparse

signal x̂ from the sensing matrix Φ.

Algorithm 1 Orthogonal Matching Pursuit [59]

Input: the sensing matrix Φ, the measurements vector y, and the error
threshold ε0.
Output: approximate solution of min ‖x̂‖0 subject to Φx̂ = y.

1: Initialise the solution x(0) := 0, the residual e(0) := y − Φx(0) = y,
support set S(0) := ∅, and t = 0.

2: repeat t := t+ 1
3: Compute the error εj = minzj ‖φjzj − e(t−1)‖2

2 for every column j

using zj = φT
j e(t−1)/‖φj‖2

2.

4: Find j0 /∈ S(t−1) and ∀j, εj0 ≤ εj, then update S(t) := S(t−1)∪{j0}.
5: Compute x(t) as the solution of minx ‖Φx − y‖2

2 where the sup-
ports of x(t) is S(t).

6: Compute e(t) := y −Φx(t).
7: until ‖e(t)‖2 < ε0

The earliest used matching pursuit algorithm for compressed sensing

reconstruction is the Orthogonal Matching Pursuit (OMP) [59]. Algo-

rithm 1 describes the algorithm of the OMP, where φj is a jth column of

Φ [59]. In essence, the OMP finds the locations of the non-zero elements

(known as sparse supports) in x̂ by selecting the indices where Φx̂ have

to biggest magnitudes, one element per iteration while estimating their

values using the least square approximation. This selection rule of the

OMP is the simplest greedy rule. It is shown in [156, 157, 54] that the
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OMP produces near-optimal sparse approximations, i.e.,

‖rt‖2 ≤
√

1 + 6t‖x− xt∗‖2, (2.45)

where xt∗ denotes the best l2 approximation of x as a linear combination

of t columns of Φ. The OMP, however, assumes that each column of the

sensing matrix Φ is orthogonal to one another, thus, only orthogonalised

sensing matrix may be used. Another drawback of the OMP is that,

by adding one element at a time, the accuracy of the reconstruction

decreases as the sparsity level K increases along with its complexity.

Regularised Orthogonal Matching Pursuit (ROMP), a more refined

version of the OMP, is proposed in [119]. The ROMP aims to combine

the benefits of the OMP with a more accurate performance guarantee

of convex optimisation approach. Currently, a large variety of match-

ing pursuit algorithms have been proposed. There were several attempts

to incorporate probabilistic approach into the support selection step of

matching pursuit (using Bayesian approach [145, 11] and Expectation-

maximisation [48, 47]). Some works addressed the bias in support selec-

tion, another drawback of matching pursuit. For example, in the OMP,

once the support is added to the support set S, it remains there without

any chance of being removed. [149, 150] addressed this issue by reassess-

ing the columns of Φ in a cyclic manner. On the other hand, [114] tackled

this by using splitting the sensing matrix into several random submatri-

ces instead of one. This allows each column of the sensing matrix to be

assessed several times. It is also possible to modify the matching pur-

suit algorithm to work with the Binary Compressed Sensing (discussed

in Section 2.2.3) [172].

In [20], the authors proposed the use of an iterative tree search to
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find the sparse approximation instead of searching through the entire

space of possible support sets. The concept of reducing the space of sup-

port sets is employed in two nearly identical state-of-the-art algorithms,

known as the Subspace Pursuit (SP) [41] and the Compressed Sensing

Matching Pursuit (CoSaMP) [118]. These techniques add the following

improvements to the conventional matching pursuit approach: 1) mul-

tiple columns are selected per iteration, 2) pruning the support sets to

remove supports with too small magnitude, 3) performance guaranteed

based on the restricted isometry property. Algorithm 2 describes the

CoSaMP algorithm. It is shown in [118, 157, 15] that CoSaMP algo-

rithm has the error bound in such that, given y = Φx + n, the output x̂

of CoSaMP converges to satisfy

‖x− x̂‖2 ≤ Ck−1/2‖x− xK‖1 + C‖n‖2, (2.46)

where xK is x with all but K largest elements set to zero, and C is a

constant.

Iterative Thresholding

The last approach covered in this section is the family of reconstruction

algorithms known as the iterative thresholding. The distinct character-

istic of algorithms in this family is that their aim is not to solve the

basis pursuit by using optimisation techniques. Rather, these algorithms

try to recover the target sparse signal x̂ directly by applying the residue

inversion and using a threshold to reinforce the constraint.

The most well-known algorithm in this family is the Iterative Hard

Thresholding [15]. This algorithm is shown to give near-optimal er-

ror guarantees using minimal observations. Given the measurements
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Algorithm 2 Compressed Sensing Matching Pursuit (CoSaMP) [118]

Input: a signal y, the sensing matrix Φ, target sparsity K, tuning pa-
rameter α, and the error threshold ε0
Output: a K-sparse signal x̂

1: Initialise x(0) := 0, residual e(0) := y, and t := 1.
2: repeat t := t+ 1
3: Find α columns of Φ that are most strongly correlated with e(t−1):

Ω ∈ arg min
St

∑
j∈St
|〈e(t−1), φj〉|.

4: S(t) := S(t−1) ∪ Ω.
5: Find the best coefficients that fit the residual with the given S(t)

w(t) = arg min
w
‖e(t−1) −ΦS(t)w‖2.

6: Retain only the K largest elements: x(t) := [w(t)]K .
7: update the residual: e(t) := y −Φx(t).
8: until ‖e(t)‖2 < ε0.

y = Φx, the reconstructed sparse signal x̂ can be obtained by using

the iteration

x(t+1) = HK(x(t) + ΦT(y − Φx(t)), (2.47)

where t = 0, 1, 2, ... and HK(a) is the non-linear operator that sets all but

the largest K elements of a to zero. It is shown in [16] that the iteration

Eq. (2.47) converges to an optimal solution of the optimisation problenm

min
x̂
‖y −Φx̂‖2

2 subject to ‖x̂‖0 ≤ K. (2.48)

In other words, Eq. (2.47) converges to a K-sparse solution x̂ that ap-

proximately satisfies the constraint Φx̂ = y. Algorithm 3 summarises

the Iterative Hard Thresholding algorithm.

The error bound of the reconstruction using the Iterative Hard Thresh-

olding is given in Theorem 5.

Theorem 5. [15] Given a noisy observation y = Φx + n, where x is an
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Algorithm 3 Iterative Hard Thresholding (IHT) [15]

Input: a signal y, the sensing matrix Φ, target sparsity K, and the error
threshold ε0
Output: a K-sparse signal x̂

1: Initialise x(0) := 0, and t := 1.
2: repeat t := t+ 1
3: Compute the residual e(t) := y −Φx(t−1).
4: Update the signal w(t) := x(t) + ΦTr(t).
5: Update the signal x(t) := HK(w(t)), with a hard threshold HK .
6: until ‖y −Φx(t)‖2 ≤ ε0.

arbitrary vector. Let xK be an approximation to x with no more than K

non-zero elements for which ‖x − xK‖2 is minimal. If Φ has restricted

isometry property with δ3K < 1/
√

32, then, at iteration t, Iterative Hard

Thresholding will recover an approximation x(t) satisfying

‖x− x(t)‖2 ≤ 2−t‖xK‖2 + 6ε̃K , (2.49)

where

ε̃K = ‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖n‖2. (2.50)

Furthermore, after at most

t∗ = dlog2(
‖xK‖2

ε̃K
)e (2.51)

iterations, Iterative Hard Thresholding estimates x with accuracy

‖x− x(t)‖2 ≤ 7[‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖n‖2]. (2.52)

Despite the simplicity of this approach, Theorem 5 shows that the

performance guarantee of the Iterative Hard Thresholding is comparable

to that of the Compressed Sensing Matching Pursuit (shown in Sec-

tion 2.2.4).
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Apart from the Iterative Hard Thresholding, many works using this

approach are also present. In [82], the Iterative Hard Thresholding is

extended to solve the Binary Compressed Sensing problem (more de-

tails in Section 2.2.3). Instead of using a blind hard thresholding, in

[132], the authors developed the Generalised Expectation-Maximisation

(GEM) hard thresholding that aims to reconstruct the signal in the pres-

ence of Gaussian noise. The same authors later proposed a more gener-

alised version of their algorithm in [133] that works with a wider range

of sensing matrices and sparse bases. A more extreme example of iter-

ative thresholding approach can be seen in [58, 112] where the authors

attempted to reconstruct an image from undersampled measurements by

applying spatial filters to the inverse back-projection results repeatedly.

The demonstrated results show the successful reconstruction from partial

Fourier coefficients, however, it did not gain enough traction compared

to a more generalised Iterative Hard Thresholding algorithm.

The biggest limitation of algorithms using this approach is that, much

like most of the greedy algorithms, the level of sparsity has to be known

in advance. The error bound in Theorem 5, for example, shows that the

reconstructed signal x̂ is guaranteed to be close to xK . Thus, unless the

sparsity level K of x is known, it is unlikely that x̂K will be close to x.

2.2.5 Comparison of Reconstruction Algorithms

The fact that there are many reconstruction algorithms available makes

it a challenge to compare for the best algorithm, especially when each has

its own strength. In general, the convex optimisation based algorithms,

such as l1-homotopy and Interior-point method, yield more accurate re-

construction than greedy and iterative thresholding methods. However,
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they also suffer from higher complexity, resulting in a larger computa-

tional time.

Because of the time and space constraint, it is impractical to evaluate

the results of this study using every available reconstruction methods and

approaches. Instead, in this section, the most optimal method in terms

of reconstruction accuracy and complexity is identified and is used as the

state-of-the-art benchmark for the rest of the study. Here the accuracy is

given more priority than the complexity because it is vital for our focus,

the fMRI data, to have an accurate reconstruction. Thus, the optimal

reconstruction algorithm for other applications may vary.

To evaluate, the reconstruction algorithms are used to reconstruct a

set of test signals and images from compressive measurements obtained

using various sampling rate. The following reconstruction algorithms are

evaluated:

• Sparselab [51]

• ISAL1 [103]

• l1-homotopy [7]

• Orthogonal Matching Pursuit (OMP) (Algorithm 1)

• Compressed Sensing Matching Pursuit (CoSaMP) [118]

• Iterative Hard Thresholding (IHT) [15]

It should be noted that the reconstruction accuracy and the compu-

tational time depend on the implementation of these algorithms. The

original authors’ supplied code and our own implementation have been

tested and found that there are little effects between different implemen-
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tations. To maximise their performance, the originally supplied code is

used in the following evaluation.

The first test is the set of exact sparse signal randomly generated.

Each signal is 1-dimensional, 500 elements long with K = 100 non-zero

elements. Figure 2.20 shows the example of such a signal. These signals

are the kind most compressed sensing literature work with, i.e., they are

short—only a few hundreds elements long—and very sparse. Figure 2.21

shows the average PSNR of the reconstructed signals versus the sampling

rate using each algorithm. The results following the theoretical prediction

discussed in Section 2.2.4 can be seen clearly. The convex optimisation

based algorithms yield the best quality in terms of PSNR. The greedy

algorithms give lower PSNR, with CoSaMP—the state-of-the-art greedy

method—gives the results comparable to l1-homotopy, down to the very

low PSNR results given by OMP. On the other hand, Figure 2.22 shows a

very interesting result. This is where the difference between the theoret-

ical prediction and practice can be observed. It shows that, in practice,

the convex optimisation based algorithms are several degree faster than

greedy algorithms. The reason for this is that greedy algorithms, such

as OMP and CoSaMP, optimise only one element per iteration. De-

spite having a much lower complexity—that is, simpler mathematical

operations—in an iteration, these algorithms take a much higher number

of iteration to converge to the optimal solution compared to optimisation

based algorithms.

The contrast can be seen in the second test of real images. The set

of test images consists of 64× 64-pixel images, sparsified using Discrete

Fourier basis. Unlike the previous test set, these images are only approx-

imately sparse and are much larger in size. Figure 2.23 shows an example
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(a) original

(b) SparseLab (c) ISAL1

(d) l1-homotopy (e) IHT

(f) OMP (g) CoSaMP

Figure 2.20: Example of a test sparse signal and its reconstruction from
30% samples
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Figure 2.21: Average PSNR versus sampling rate comparison for exact
sparse signals

Figure 2.22: Average computation time versus sampling rate comparison
for exact sparse signals
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(a) original

(b) SparseLab (c) ISAL1

(d) l1-homotopy (e) IHT

(f) OMP (g) CoSaMP

Figure 2.23: Example of a test image and its reconstruction from 30%
samples
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of the images and the reconstructed results. In this test, the PSNR plot,

shown in Figure 2.24, shows that many of the algorithms do not work

with large, approximately sparse signals. Interestingly, the OMP now

yields results with high PSNR, outperforms CoSAMP, IHT, and even

SparseLab. Because these algorithms work fine with short signals but

not the larger ones, it is difficult to employ them in practical signal re-

construction such as images, video sequences, and—for our purpose in

particular—the MRI data. To pinpoint exactly whether this phenomenon

is a fault in their implementation or their theoretical limitation is beyond

the scope of this study. Figure 2.25 shows the average computation time.

The same observation about computation time as in Figure 2.22 can also

be observed here. Now that the signals are much larger, it takes much

longer time for the greedy algorithms to converge to the solution.

In conclusion, because the MRI data reconstruction gives a higher

priority to accuracy, the ISAL1 algorithm is chosen—after taking both

reconstruction accuracy and computational time for consideration— as

the state-of-the-art reconstruction algorithm for l1-norm minimisation.

2.3 Compressed sensing and MRI

So far, we have explored the general backgrounds and the state of the

arts of compressed sensing framework, including both the sensing and

reconstruction operations. In this section, we will explore the literature

focuses specifically on applying the compressed sensing to MRI data.
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Figure 2.24: Average PSNR versus sampling rate comparison for test
images

Figure 2.25: Average computation time versus sampling rate comparison
for test images
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2.3.1 Possibility of compressed sensing MRI

This section explores the possibility of applying compressed sensing frame-

work to the MRI data. The MRI data has been one of the most interested

in types of data among compressed sensing researchers. The primary rea-

son for this is the nature of the MRI data and its acquisition scheme. As

previously discussed in Section 2.1.1, the raw data is acquired from MRI

hardware readily in the frequency domain, i.e., the Fourier coefficients.

It is one of the applications where the data is acquired directly in a sparse

domain, thus, it has been mentioned as an example for an application of

compressed sensing ever since the earliest works. Indeed, the first work

on compressed sensing by Candès [28] aimed to retrieve the complete

data from undersampled Fourier measurements, which fits into the MRI

paradigm perfectly.

While the MRI raw data is a sparse signal in nature; to apply com-

pressed sensing to MRI in practice, there are many MRI-specific issues

arise. The biggest MRI specific issue involving the implementation of

the sensing operation. Theoretically the sensing operation is defined as

a linear operation of a sensing matrix to a target signal (Eq. (2.18) in

Section 2.2.3). The challenge is to realise this equation in the physical

hardware. The target signal in this case is a sparse signal, thus, instead

of Eq. (2.18), the sensing operation reduces to

y = Φx. (2.53)

In practice, the sensing matrix Φ has to be implemented as a hardware

or as a special pulse sequence (refer to Section 2.1.1).

The partial Fourier basis, a type of Subsampled Incoherent Basis

83



Matrices (Section 2.2.3), is one of the most popular sensing matrices for

the MRI data. The partial Fourier matrix can be implemented relatively

easily by randomly dropping some line from the scan trajectories, as first

shown by Lustig et al. in [106, 105]. Instead of Cartesian trajectory,

it is also shown that randomly drop lines in other scan trajectories—

radial trajectory in particular—performs better as a sensing operator

[104, 137, 161]. These works showed that not only compressed sensing

can be incorporated into MRI, but they are also highly compatible.

There is also a real practical reason for attempting to apply com-

pressed sensing to the MRI acquisition scheme. As discussed in Sec-

tion 2.1.3, the MRI data has a trade-off between its spatial resolution

and the acquisition time. To acquire data with higher resolution, the

subject is required to remain in the scanner for a longer period of time.

This has negative effects on both the subject’s mental conditions and

the limitation of data acquisition, particularly in fMRI experiments. A

Recent study showed that compressed sensing, using random subsampled

and iterative thresholding reconstruction, can accelerate the acquisition

speed up to 4 times while retaining the diagnostically acceptable quality

of the reconstruction results [92].

2.3.2 Compressed Sensing with Structural MRI

The majority of works attempted to apply compressed sensing to MRI,

especially during the early days, focussed on the structural MRI. The

terms structural MRI, anatomical MRI, and diagnostic MRI refer to the

high-resolution scan that is used mainly for clinical diagnosis and med-

ical study. The aim of the structural MRI is to provide the accurate

anatomical details inside of the body. It has the characteristic similar
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to other common medical imaging techniques, such as X-ray and CT,

consisting of fine anatomical details of a single cross-sectional snapshot

at a specific location of the body. High-resolution data is compulsory for

structural MRI to reveal small anatomical details, thus, the aim of ap-

plying compressed sensing to the structural MRI is mainly to achieve the

best reconstruction of data from the accelerated scan. Here the under-

sampled measurements are acquired as a mean to improve the acquisition

speed.

There are many comprehensive works of literature on compressed

sensing with structural MRI, both from the engineering point-of-view

[105, 70, 117], and the clinical point-of-view [83, 81]. Clinical literature

focuses primarily on the diagnosis effects of the CS-MRI data. On the

other hand, from the engineering point-of-view, literature focuses more

on the implementation issue and signal processing of such system. This

thesis, too, looks at the CS-MRI from the engineering point-of-view.

Roughly speaking, we can group these works of literature into two cate-

gories: the work on sensing operation and the reconstruction operation.

Let us first consider the works on the sensing operation. Because

of the fact that MRI data is acquired in the sparse domain directly,

most of the issue involving the sensing operation is the implementation

of the sensing matrix. As previously mentioned, the first work on this

issue is Lustig’s Sparse MRI [105]. In this work, Lustig suggested sev-

eral incoherent sensing strategy for MRI, all of them involve randomly

dropping some trajectory lines during the scan, creating the random Sub-

sampled Incoherent Matrix (Section 2.2.3). The randomly dropped lines

can be done in many scan trajectories, such as a 2-dimensional Carte-

sian, a 3-dimensional Cartesian, and even a radial trajectory (Shown in
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(a) 2D Cartesian (b) 3D Cartesian

(c) Spiral (d) Radial

Figure 2.26: Randomly dropped trajectory in (a) 2-dimentional Carte-
sian, (b) 3-dimentional Cartesian (random points in 2D plain), (c) spiral
trajectory, and (d) radial trajectory

Figure 2.26). He also suggested that randomly dropped lines in radial

trajectory achieves the highest incoherence to the K-space data.

These trajectories studied by Lustig are the normal MRI trajectories

widely employed by radiologists. However, it is also possible to have

a random trajectory specifically tailored for compressed sensing, such

as proposed in [81]. This kind of tailored trajectory works well with

compressed sensing because it can capture most of the k-space energy in

only a small number of sample.

Another approach to implement the sensing matrix aims to modify

the RF excitation pulse instead of the readout trajectory. As mentioned

in Section 2.1.1, MRI depends on the excitation using radio-frequency

pulses. Rather than using a constant frequency pulse, this pulse can be

used to encode the randomness into the acquisition. In [75], it proposed
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(a) Conventional encoding (b) Random encoding

Figure 2.27: Random encoding using random magnitude RF pulse [75]

the use of random magnitude RF pulse as an implementation of the

sensing matrix (shown in Figure 2.27).

Later, more research has followed in this direction. It finally devel-

oped into Spread Spectrum Compressed Sensing MRI, where the ran-

domness is applied to the phase encoding via specialised RF pulse. For

examples, it can be implemented by using linear frequency-swept RF

pulses [135], random phase encoding gradient [174], or even a physical

modification of the machine—as originally proposed—by using shim coils

[131]. It is shown in [131] that the Spread Spectrum Compressed Sens-

ing MRI has lower distortion compared to the variable-density scan, as

proposed by Lustig.

While the issue regarding the implementation of the sensing operation

is important, more research is focusing on the reconstruction operation.

The reason for this is because, as we have discussed, the accuracy of the

standard out-of-the-box compressed sensing reconstructions do not sat-

isfy the extra-high accuracy requirement of medical imaging. This leads

to an explosion of research on novel reconstruction algorithms and meth-

ods tailored for compressed sensing MRI application. One of the common

approaches is the two-stage reconstruction method where the first stage
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solves the compressed sensing reconstruction problem itself follows by

the second stage where the reconstructed solution is optimised for bet-

ter visual quality. Many works of literature using this approach employ

different technique for the second stage; for examples, using the smooth

l0-norm optimisation for the second stage [134],using the weighted linear

least square estimation [165], and using the relaxed l1-norm minimisation

[44]. The authors of [44] later developed the two-stage reconstruction ap-

proach further. This two stage reconstruction separates the MR data into

low frequency and high frequency parts, and reconstruct each part sepa-

rately, using the low-frequency reconstruction to guide the reconstruction

of the high-frequency part [175]. This approach can also be seen in a sim-

ilar approach proposed in [180], where the reconstruction is done using

two different scales of discrete wavelet transform. It should be noted that

the main goal of structural MRI is the visual quality for clinical diagno-

sis. The overall subjective meaning is more important than the accuracy

of each voxel’s value. As such, these mentioned two-stage approaches

do not aim to provide an accurate reconstruction directly, but rather to

provide the most meaningful reconstruction—or the reconstruction with

the best visual quality.

Another big issue regarding the reconstruction operator of compressed

sensing MRI is the computational complexity. It is very undesirable to

have the acquisition system that takes ages to process the acquired data

for viewing. This has a severe clinical impact since in many cases the

diagnosis is needed to be done in urgency. Not to mentioned the frus-

tration and difficulty of patients and practitioners involved. Indeed, if

the reconstruction of the MRI data took too long, the technique would

be abandoned in favour of other, more instantaneous imaging techniques
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instead. This is exactly the issue of compressed sensing MRI, of which

the processing time is dramatically increased as a trade-off for the higher

temporal resolution. To tackle this issue, many works have been done to

develop fast reconstruction methods for compressed sensing MRI. Char-

trand is among the first who proposes the fast algorithms for the com-

pressed sensing MRI in [33] by extending the two-stage reconstruction

approach in [175] into a multi-stage reconstruction with the aim to reduce

the complexity. The SENSE reconstruction algorithm, one of the popu-

lar reconstruction algorithm for compressed sensing MRI, also employs

the same splitting concept of Chartrand [87]. Though this splitting ap-

proach work with general MRI techniques, more specialised approaches

with better performance are developed for each specialised MRI tech-

niques. For example, [116] proposes the faster variation of l1-SPiRiT al-

gorithm for compressed sensing Parallel MRI. While most reconstruction

techniques focus on the 2-dimensional problem, following the conven-

tional compressed sensing paradigm, [113] proposes the extension of the

two-stage splitting approach by exploiting the feature of 3-dimensional

space, which is the actual space that the MRI data is in. On the other

hand, [181] proposes the fast reconstruction by reducing the problem’s

dimension using the principal component analysis.

The structural MRI generally consists of only a single high-resolution

volume, thus, there is no temporal redundancy available. In other types

of MRI—which will be discussed in the next part—that have temporal

redundancy, the exploitation of this temporal redundancy has become

the biggest improvement in reconstruction quality. Before we move on,

we would like to mention few works of literature on structural MRI,

which are out of categories that were discussed. Compressed Sensing
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MRI based on Nonsubsampled Contourlet Transform, proposed in [136],

employs a contourlet transform as a sparsifying basis, which is shown

to outperform the wavelet basis and Fourier basis. However, because

of the complexity of the contourlet transform, and also its non-rigorous

mathematical formulation, this approach never catches on. [160] employs

the Gaussian Mixture Model to the sparse representation of the structural

MR data. This approach, however, finds its success in methods involves

temporal redundancy which will be discussed in the next section.

Finally, while most of the aforementioned works are from the engi-

neering field, there are some works of literature from the medical field

verifying the successfulness of compressed sensing with the structural

MRI data. In particular, [110] reports the evaluation from clinical point-

of-view of compressed sensing MRI which shows a satisfactory result.

Also, [2] reports a successful application of compressed sensing in Hyper-

polarized 3He Lung Angiography.

2.3.3 Compressed sensing with Dynamic MRI

In this section, we will focus on the works of literature applying com-

pressed sensing framework to the Dynamic MRI. Dynamic MRI is a

special application of MRI aims specifically to capture the movement

(dynamic) of body organs. It is especially useful as a diagnosis tool for

the heart, lung, and joint monitoring, allowing the practitioners to study

the working of these organs in real time (Figure 2.28), as opposed to just

a snapshot of their appearance as with the structural MRI.

Because the data of Dynamic MRI is sequentially acquired over time,

it is obvious that the Dynamic MRI data is rich with temporal redun-

dancy. As we have seen from in the case of general compressed sensing,

90



Figure 2.28: Example of dynamic MRI [158]

the use of the temporal redundancy as a side-information works well

and is very desirable. Thus, it comes at no surprise that most works of

literature involving compressed sensing and Dynamic MRI exploit this

temporal redundancy in one way or another. The presence of the tempo-

ral redundancy in the data is the clear distinction between methods for

Dynamic MRI and methods for the structural MRI.

The exploitation of the spatio-temporal redundancy in Dynamic MRI

dates back beyond the introduction of compressed sensing. The methods

exploiting such redundancy to increase the acquisition rate of Dynamic

MRI, namely k-t Broad-use Linear Acquisition Speed-up Technique (k-t

BLAST) and k-t Sensitivity Encoding (k-t SENSE), have been intro-

duced in [158]. Both techniques essentially undersampled the k-space

data in temporal direction and filled in the missing data using a trained

interpolation method.

The k-t BLAST/SENSE methods have become the conventional mean

of acquiring the Dynamic MRI data. The exploitation of the spatio-

temporal redundancy is later incorporated into compressed sensing Dy-

namic MRI in most literature. The works in [69], [35], and [107] all

employ the temporal redundancy to improve the compressed sensing re-
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construction of the Dynamic MRI data. This concept of using both the

redundancy and compressed sensing for dynamic MRI has matured into a

state-of-the-art algorithm known as k-t FOCUSS (k-t Focal Underdeter-

mined System Solver) [89]. k-t FOCUSS works by exploiting the sparsity

of the frame difference. To put it simply, given two consecutive Dynamic

MRI volumes V1 and V2, it is well-known that V2 − V1 is sparser than V2

itself, thus solving for min ‖V2−V1‖1 yields better results than solving for

min ‖V2‖1. It is shown that k-t FOCUSS outperforms the conventional

k-t BLAST/SENSE techniques and is successfully applied to the in vivo

cardiac Dynamic MRI experiment [88].

Apart from k-t FOCUSS, there are many attempts trying to im-

prove the reconstruction quality and acquisition rate of Dynamic MRI

further. Zhao improves the reconstruction quality by applying the two-

stage reconstruction approach commonly employed in the structural MRI

method into Dynamic MRI [179]. In [153], the authors improved the ac-

quisition rate by adopting the spiral trajectories scan in place of the

Cartesian trajectories commonly used by k-t FOCUSS.

The characteristic of Dynamic MRI can be viewed as the affine trans-

formation of an object (including translation and rotation for joint, and

skewing for the heart). This fact leads to the attempts to apply methods

designed to cope with the motion; for example, by applying the motion

compensation before exploiting the redundancy [14]. Also, there is a

suggestion involving a trained sparsity basis tailored specifically for Dy-

namic MRI application. For example, a novel dictionary learning time

sparsity basis for Dynamic MRI, proposed in [21], can outperform the

fixed sparsity basis used by k-t FOCUSS.

Finally, even though Dynamic MRI can be viewed as the affine trans-
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formation, more general methods exploiting the temporal redundancy

can also be used. Weizman and Eldar, in particular, proposed the com-

pressed sensing for the longitudinal MRI, a generalised format of MRI

in the temporal domain. The redundancy can be exploited in both the

temporal redundancy between 2 adjacent volumes (Vn and Vn+1) [166],

and the spatial redundancy between 2 adjacent slices (InandIn+1) [167].

These methods share similarity with k-t FOCUSS. This approach is called

the temporal compressed sensing (TCS). Given a compressive measure-

ments y = Φx, at any time instance t, the reconstructed k-space x̂ is

min ‖x̂(t) − x̂(t−1)‖2 subject to Φx̂(t) = y. (2.54)

This approach is not limited to work only on the affine changing time-

series data like dynamic MRI but also on the stationary, intensity-varying

data of functional MRI, which leads us to the next section on functional

MRI.

2.3.4 Compressed Sensing with Functional MRI

As the fMRI data consists of a time series of several volumes, fMRI can

be benefited from the presence of temporal redundancy similar to the

Dynamic MRI. However, the goal—and thus the characteristic—of fMRI

is different from that of Dynamic MRI. In dynamic MRI, the goal is to

study the moving parts of bodily organs. In essence, it is still anatomi-

cally focused like the structural MRI, with only the extension for moni-

toring the changing over time. On the other hand, fMRI primary aim is

to monitor the brain activity, i.e., its function. This difference in focus

between functional and structural results in a different feature of inter-

est. Whereas both the structural MRI and Dynamic MRI are concerned
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with the image data as is, fMRI is interested in the brain activity the

data inferring to. Whereas both the structural MRI and Dynamic MRI

focus on how the organ looks like spatially, fMRI focuses on the changing

intensity value of each voxel, specifically the changes due to the blood-

oxygen-level dependent (BOLD) effect. These differences not only affect

how the techniques are used but also affect how the compressed sensing

be applied.

Most compressed sensing literature on the structural MRI, as dis-

cussed in Section 2.3.2, employ the two-stage reconstruction technique,

where overall visual quality is preferred over the exact voxel intensity

value. This technique is clearly not suitable for fMRI data, as the changes

in voxel intensity lie at the heart of fMRI and is more important that the

visual quality. Techniques for Dynamic MRI which are mostly based on

k-t BLAST/SENSE also depend on the interpolation of intensity value.

Unlike the linear translation of physical organs, the BOLD signal is not

linear and cannot be interpolated easily. It is shown that by using k-t

SENSE with the fMRI data, while the acquisition time can be success-

fully cut in half, suffered a lost in the final activity map [43]. Thus, the

technique commonly employed in Dynamic MRI is also not suitable for

fMRI.

It is notable that very few works have been done in the field of com-

pressed sensing and fMRI compared to other types of MRI. The number

of research is even strikingly small compared to compressed sensing field

as a whole. The lack of literature in this area of study is an obvious gap

that requires more research.

Among the current works of literature on this subject so far, there

is no clear “theme” or the general trend of how the compressed sensing
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should be applied. The first attempt to apply compressed sensing to

fMRI is in [90], where the k-t FOCUSS technique is applied to the fMRI

experiment in order to evaluate the effect on the BOLD signal acquisition

and analysis. The aim of this work is to improve the temporal resolution

of MRI and [90] successfully shows that using k-t FOCUSS in conjunction

with Karhunen-Loeve transform (KLT) in temporal direction can yield

an accurate BOLD signal detection.

On the other hand, [146] employs the use of low-rank and sparse

decomposition to obtain the higher temporal resolution. In this approach,

the entire time-series fMRI data is modelled as a large matrix M, which

is a superposition of a low-rank matrix XL and a sparse matrix XS. The

sparse matrix part can then be undersampled and reconstructed using the

convex optimisation, i.e., the reconstructed data is obtained by solving

min ‖XL‖1 + ‖ΨXS‖1 subject to Φ(XL + XS) = y, (2.55)

where Ψ is the sparsifying basis, Φ is the undersampling operator and y

is the undersampled data.

Both approaches aim to increase the temporal resolution of the fMRI

data. However, the temporal resolution can also be improved by aiming

directly for the brain activity information. As the brain activity is the

true goal of fMRI, it is reasonable to aim for the more accurate activity

detection rather than only the data with high temporal resolution. An

example of this approach is the proposal in [31] to use a Bayesian ap-

proach to classifying the activation regions. Another example is [100],

which goes a step forward to propose the use of a learned dictionary tai-

lored for the undersampled acquisition of the BOLD signal. In this work,

the notion of acquiring the brain image has been put aside for the BOLD
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signal. The learned dictionary is decided so that the reconstructed sparse

signal, which is not a common image representation, is compatible with

the General Linear Model and the BOLD signal can be extracted.

Also, not all works of literature focus on the improvement of the tem-

poral resolution. As there are many conventional fast acquisition tech-

niques available that improve the temporal resolution by sacrificing the

spatial resolution (see Section 2.1.3), it is desirable to have a technique

that can improve the spatial resolution of such fast acquisition techniques.

For example, in [63], the authors aimed to obtain high spatial resolution

fMRI data. In this work, randomly undersampled measurements from

a specially decided trajectory are obtained and reconstructed using the

convex optimisation. It is reported to achieve 6 times improvement in

spatial resolution with low distortion.

Despite the lack of the research trend in this field, we can see the gen-

eral requirement for the desirable compressed sensing fMRI. The com-

pressed sensing fMRI should

1. yield an accurate—or, if possible, even more detailed—BOLD sig-

nal and activity detection,

2. achieve a good ratio of the spatial resolution/temporal resolution

trade-off which outperforms the conventional fast acquisition tech-

niques such as EPI, and

3. be efficiently implemented, without and with little hardware alter-

ation.

Apart from these requirements, the ability to obtain the reconstructed

data quickly or in real time is also desirable. As with the case of dynamic

MRI, the real-time acquisition is important in many clinical conditions.
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The research in this thesis will aim to adhere to the requirement of com-

pressed sensing fMRI stated here.

2.4 Summary

This chapter has surveyed the background and literature of fMRI and

compressed sensing. The fMRI data captures the activities of the brain

in the form of temporal intensity variation of the voxel magnitude. Its

acquisition speed and resolution are dictated by the physical constraints

of the system.

To improve the trade-off ratio between the acquisition speed and res-

olution, one method is to use compressed sensing. Compressed sensing

allows a full-length signal to be acquired from undersampled measure-

ments, using an incoherent sensing operation and a non-linear recon-

struction operation based on mathematical optimisation. The chapter

has presented several variations of the sensing and reconstruction oper-

ations and identified the benefits and disadvantages of them. There are

many attempts to combine compressed sensing can be applied to MRI

acquisition scheme. Most of these works focus on a specific application

of MRI; mainly the structural MRI and Dynamic MRI. On the other

hands, the literature combining compressed sensing to fMRI presents

only in small number.

From this review, we have identified the requirements for the com-

pressed sensing fMRI: high accuracy, high spatial/temporal resolution

trade-off, and easy to implement. The reconstruction operation that can

satisfy these requirements is introduced in the next chapter.

97



98



Chapter 3

Compressive Sensing

Reconstruction From A

Correlated Reference

Compressed sensing aims to obtain the full-length signal from compres-

sive measurements by minimising the l1-norm objective function. How-

ever, this is not always necessary. This chapter proposes a novel com-

pressed sensing reconstruction method that minimises the difference be-

tween a signal and an arbitrary reference. As a proof of concept, the

reconstruction method, called Referenced Compressed Sensing (Refer-

enced CS), is shown to reconstruct images in the spatial domain and

works especially well with video sequences.

3.1 Motivation

One major characteristic of natural signals,i.e., signals acquired using

a physical system from real-world sources, is the information redun-

dancy. Unlike artificially created signals, in which abrupt changes can
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Figure 3.1: Example of a natural image

be observed, variation in natural signals exhibits smooth and continuous

changes. It results in a high amount of redundancy in any given signal.

Exploiting the signal redundancy is also a main technique in data com-

pression, in which a set of redundant signals is represented using a much

smaller representation (such as entropy coding).

Let us explore such redundancy in more details. Consider an image in

Figure 3.1. We can observe many redundancies between each part of the

image. For examples, each row of the image resembles each other, as in

Figure 3.2. The image can be split into several small blocks. This block-

based analysis is one of the most common image processing techniques.

Figure 3.3 shows the examples of these blocks of the image. We can

notice that each block resembles its neighbours to some degree.

All these redundancies in the image’s pixel data are referred to as the

spatial redundancy. The spatial redundancy finds many applications in

intra-coding technique, where the spatial redundancy of a single video

frame is exploited.

Objectively, we can compute the distance between each part of the

image. This distance, specifically the Euclidean distance, is computed
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Figure 3.2: Example of spatial redundancy in image rows

Figure 3.3: Example of spatial redundancy in image blocks
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Table 3.1: Average Euclidean distance between I(j) and I(j−l)

Image l
Distance

rows columns

Lena

1 155.71 224.45
2 251.84 356.25
3 310.69 425.93
5 398.41 514.96
10 483.02 669.98

Peppers

1 190.34 228.95
2 314.58 378.54
3 398.93 471.75
5 508.46 569.79
10 611.93 681.92

Cameraman

1 183.83 288.33
2 294.62 327.44
3 344.16 387.06
5 423.73 453.87
10 522.30 553.55

as the l2-norm between two signals. We say that the signal is more

redundant or more correlated as the distance gets smaller. Let a signal

I(j) be a part of the image in Figure 3.1. For examples, each row in

Figure 3.2 can be a signal I(j), where j denotes the index of the row. The

distance between two parts I(j) and I(k), for any j, k within the boundary

of the image is

‖I(j) − I(k)‖2 =

√∑
i

|(I(j)
i − I

(k)
i )2|, (3.1)

where I
(j)
i denotes each pixel of I(j).

Table 3.1 shows that, indeed, the distance between neighbouring

parts, i.e., between I(j) and I(j−1) is smaller than those further away.

It also shows that this spatial redundancy between neighbours is observ-

able both between rows and columns.

A more obvious type of redundancy is the temporal redundancy, which
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Figure 3.4: Example of temporal redundancy in a video sequence

is the redundant information between each time instance of a temporal

sequence (such as a video sequence). Consider a video sequence in Fig-

ure 3.4, it is clear that the difference between each frame is very small

compared to the whole frame. By exploiting this observation, the tempo-

ral redundancy leads to a dramatic result in the inter-frame compression,

where only the information regarding the difference is kept most of the

time.

Again, we can employ the same analysis we did for the spatial redun-

dancy. Let I(t) denotes each frame of the video sequence in Figure 3.4

at time instance t. We can compute the Euclidean distance between any

two frames I(t) and I(q) as

‖I(t) − I(q)‖2 =

√∑
i

|(I(t)
i − I

(q)
i )2|, (3.2)

where I
(t)
i denotes each pixel of I(t).

Table 3.2 shows that the relationship between the temporal redun-

dancy and the neighbour distance follows the same pattern as of spatial

redundancy. The adjacent neighbours ( e.g.I(t) and I(t−1)) are indeed

closer than the further ones.

Suppose that we want to perform a compressive sensing reconstruc-

tion of the frame I(t). The signal I(t), having n elements in total, can
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Table 3.2: Average Euclidean distance between I(t) and I(t−l)

Sequence l Distance

Claire

1 352.89
2 621.35
3 842.22
5 1141.06
10 1576.83

Coast guard

1 1482.23
2 2285.91
3 2697.42
5 3193.51
10 3912.04

News

1 837.07
2 1333.93
3 1706.59
5 2210.63
10 2837.14

Table 3.3: Average l1-norm of I(t) and average l1-norm of I(t) − I(t−1)

Sample sequence ‖I(t)‖1 ‖I(t) − I(t−1)‖1

Akiyo 2.37× 106 1.90× 104

Claire 2.44× 106 2.12× 104

Coast guard 2.88× 106 1.37× 105

Hall 3.33× 106 4.39× 104

News 2.13× 106 3.78× 104

be viewed as a point in n-dimensional space. The traditional l1-norm

objective function, ‖Î(t)‖1, can be viewed as different between the recon-

structed signal Î(t) and the origin. In other words, we can express the

l1-norm objective function as

‖Î(t)‖1 = ‖Î(t) − 0‖1, (3.3)

with 0 denotes an all-zero vector of length n. We can see in Table 3.3

that, for any frame I(t), the l1-norm of the difference between I(t) and its

neighbour I(t−1) is much smaller than the l1-norm of I(t) itself.

Geometrically, we can say that I(t−1) is closer to I(t) than the ori-
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gin. The difference between two signal is a much precise estimation of

the location of I(t) than the l1-norm, thus this prior knowledge can be

served as a priori information for the reconstruction algorithm. This is a

motivation of many compressive sensing reconstruction algorithms based

on prior knowledge. Most notably, the Temporal Compressive Sensing

[167, 166].

3.2 The Proposed Method

Here we propose a novel compressive sensing reconstruction method that

exploits the mentioned redundancies in signals. This method, named

Referenced Compressive Sensing (Referenced CS), is a broad framework

on the changing the basic l1-minimisation problem into a minimisation

of error between a signal and another signal. First, let us define the

related symbols. A large signal, such as images and video sequences, can

be viewed as a collection C consists of several smaller sub-signals.

Definition 5. Any x(j) ∈ Rn, j = 1, 2, ..., k is a sub-signal in the collec-

tion C, where n is the length of each signal x(j) and k is the total number

of x in C.

From Definition 5, we can define a notion of a correlated reference.

Definition 6. For any signal x ∈ Rn, a correlated reference r of x is a

signal such that r ∈ Rn and

‖r− x‖2 ≤ ε, (3.4)

for a small 0 < ε� ‖x‖2.

Definition 6 shows that the correlated reference r can, in fact, be
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any arbitrary signal close to x. This is one of the novel features of

the Referenced CS that the correlated reference is not required to be a

member of the same collection x belongs, i.e., the condition r ∈ C is not

necessary. The distance between the reference signal r and the signal

x in Definition 6, denoted δ = ‖r − x‖2, has a very important role in

Referenced CS. With this, we propose the following proposition:

Proposition 1. Given a sensing operator Φ ∈ Rm×n, a compressive

measurement y ∈ Rm,y = Φx, and a correlated reference r ∈ Rn, an

orthogonal projection x̂P from r onto the feasible subspace X̂Φ,y = {x̂|y =

Φx} satisfies

sup
x̂P

‖x̂P − x‖2 ≤ δ. (3.5)

Proof. Consider the case of x ∈ R2 in Figure 3.5. Let a reference r be

a member of a set of references R such that R = {r|‖r − x‖2 ≤ δ}.

Also define an orthogonal projection x̂P , which is the projection of the

reference r ∈ R onto the feasible subspace X̂Φ,y.

Let L = ‖x̂P − r‖2 be the length of the projection. One finds that

L ≤ δ sin θ, (3.6)

where θ is the angle between the vectors r − x and x̂P − x. Because of

the relationship

‖x̂P − x‖2
2 = δ2 − L2, (3.7)

we can see that ‖x̂P − x‖2 is maximised when L = 0, i.e., θ = 0. This

implies that, for any r ∈ R,

sup
x̂P

‖x̂P − x‖2 ≤ δ. (3.8)
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Figure 3.5: Geometric example of Proposition 1 where x ∈ R2.

Proposition 1 leads to the main finding for our proposed reconstruc-

tion method. We can find the solution x̂1 using l1-norm minimisation

instead of using the orthogonal projection. In this case, unlike x̂P , the

sparsity of x̂1 is promoted.

Proposition 2. Given a sensing operator Φ ∈ Rm×n, a compressive

measurement y ∈ Rm,y = Φx, and a correlated reference r ∈ Rn, a least

l1-norm reconstruction x̂1, which is the solution of

min
x̂
‖x̂− r‖1 subject to Φx̂ = y, (3.9)
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satisfies

‖x̂1 − x‖2 ≤ 2δ. (3.10)

Proof. Consider the case of x ∈ R2 in Figure 3.6. Let a reference r be

a member of a set of references R such that R = {r|‖r − x‖2 ≤ δ}.

The least l1-norm solution x̂1 is a point on the feasible subspace X̂Φ,y =

{x̂|y = Φx} such that the norm ‖x̂1−r‖1 is minimised. Define the angle

between vector x̂1−r and x̂P−r as ρ. Both x̂1 and x̂P are on the feasible

subspace X̂Φ,y, because x̂P is an orthogonal projection, it is clear that

‖x̂P − r‖2 ≤ ‖x̂1 − r‖2. (3.11)

From Figure 3.6, it can be seen that

‖x̂1 − x̂P‖2 = ‖x̂P − r‖2 tan ρ. (3.12)

From Proposition 1, we know that ‖x̂P − r‖2 ≤ δ. Also, from Figure 3.6,

it can be seen that ρ ≤ π
4

for x̂1 to be the smallest l1-norm solution, thus,

‖x̂1 − x̂P‖2 ≤ δ. (3.13)

This implies that, for any r ∈ R,

sup
x̂1

‖x̂1 − x‖2 = ‖x̂1 − x̂P‖2 + ‖x̂P − x̂‖2, (3.14)

≤ 2δ. (3.15)

Proposition 2 shows that the error of the least l1-norm reconstruction

x̂1 depends on the distance δ from the reference r to x. Moreover, if the
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Figure 3.6: Geometric example of Proposition 2 where x ∈ R2.

109



sensing operation S(x) = Φx satisfies the conditions of the compressed

sensing matrix (Section 2.2.3), then the Lemma 1—asserted by Donoho

in [52]—holds.

Lemma 1. [52] Any x̂c ∈ X̂Φ,y that is a solution of a general lp-norm

minimisation problem

min
Φx̂
‖x̂‖p subject to y = Φx̂ (3.16)

satisfies

sup ‖x− x̂c‖2 ≤ 2Rc(Φ, X̂Φ,y), (3.17)

where Rc(Φ, X̂Φ,y) is the optimal result obtained from the central algo-

rithm [128, 155].

Lemma 1 is asserted by employing the concept of central algorithm,

which is the theoretical algorithm that yields the closest possible opti-

mal solution according to the fields of Optimal Recovery (OR) [128] and

Information-Based Complexity (IBC) [155]. Unfortunately, as Donoho

suggested, the central algorithm is intractable in practice. Nonetheless,

this concept of the central algorithm from OR/IBC is the main tool

Donoho used to derive the original compressed sensing reconstruction

method.

Lemma 1 shows that any least l1-norm solution must be within the

factor of two from the theoretical optimal solution. Eq. (3.15) together

with Lemma 1 suggest that the Referenced CS solution from Eq. (3.9)

must also be close to the optimal solution, with the exact solution dis-

tance depending on the reference distance δ.
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3.2.1 Comparison with Temporal Compressive Sens-

ing

Referenced Compressive Sensing find the best reconstruction by solving

the optimisation problem in Eq. (3.9). This can be seen as a minimisa-

tion of error between 2 signals, in this case, the reconstructed signal x̂

and the correlated reference r. This approach is very similar to many

reconstruction algorithms that employ side-information, particularly the

TCS[167].

The TCS is a reconstruction method specifically designed for tempo-

ral signal reconstruction, as its name suggests. This means for the TCS,

the collection C is a temporal signal such as a video sequence and each

sub-signal x(t) ∈ C is a progression in the temporal axis at each time

instance t. The TCS reconstructs each sub-signal x̂(t) from compressed

measurements by solving the following optimisation problem:

min
x̂(t)
‖Ψx̂(t)‖1 + ‖x̂(t) − x(t−1)‖1 subject to Φx(t) = y. (3.18)

The two main differences between Referenced CS and the TCS are as

follows:

1. The first term of the TCS objective function promotes the sparsity

of x(t). In Referenced CS, there is no explicit notion of maximising

the sparsity of x itself.

2. The TCS requires another signal from within the same collection C

as a priori, the correlated reference r of Referenced CS is arbitrary.

While Referenced CS is indeed inspired by the TCS and is primarily

designed to reconstruct temporal signals, it is not limited only to such

setting.
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One can also see that Referenced CS can be extended to promote

the sparsity of the signal in the same fashion as the TCS. Specifically,

one can promote both the sparsity and reference closeness by solving the

optimisation problem:

min
x̂(t)
‖Ψx̂(t)‖1 + ‖x̂(t) − r(t)‖1 subject to Φx(t) = y. (3.19)

Eq. (3.19) can be converted into the TCS in Eq. (3.18) easily by choosing

the immediate neighbour of x(t) in C, i.e., x(t−1), as the reference r(t).

3.3 Relationship between Correlated Ref-

erence, Sampling Rate, and Reconstruc-

tion Error

The relationship between the correlated reference r, the sampling rate,

and the reconstruction error is explored experimentally. As discussed,

the reference r is characterised by the distance from signal x, i.e., δ =

‖r − x‖2. The sampling rate s directly affects the sensing operator.

Specifically, the sensing matrix Φ ∈ Rm×n has m = sn rows. Lastly, our

goal is to minimise the reconstruction error E(x̂,x) = ‖x̂− x‖2.

Let us first consider the relationship between δ and E(x̂,x). Here

we employ the Monte Carlo method over the sensing-reconstruction op-

eration. We consider a pool of signal P = {x|x ∈ R256} containing

1000 linearly independent random vectors. Each element xi ∈ x ranges

between 0 and 255, with the number of non-zero elements fixed to 50.

Figure 3.7 shows an example of such vector x from the pool P .

A set of 20 randomly chosen vectors PI ⊂ P is used as an input
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Figure 3.7: Example of a vector x in the random pool P

signal. For each signal x ∈ PI , we apply the sensing and reconstruction

operations on it repeatedly, each time using another vector in P as a

reference r. In other words, we perform

x̂ = R(Φ,y, r)|∀x ∈ PI ,∀r ∈ P,x 6= r, (3.20)

where R(Φ,y, r) denotes the reconstruction operation. Figure 3.8 shows

the scatter plot of each reconstructed signal between δ against E(x̂,x),

along with their linear regression trend. The reconstruction is done using

Referenced CS (Eq. (3.9)). It clearly shows that the lower δ indeed leads

to the lower reconstruction error. Figure 3.9 shows the same scatter plot,

this time the reconstruction also employs the sparsity term (Eq. (3.19)).

It can be seen that, given that it is known in advance that x is sparse,

adding the sparsity term greatly improves the reconstruction error. Also,

in both figures, a number of reconstruction results are observed to be

reconstructed exactly due to the low sparsity of x. It should be noted

that the average reconstruction error is far lower than the limit imposed

by Proposition 2.
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Figure 3.8: A scatter plot shows the relationship between the reference
distance δ and the reconstruction error E(x̂,x)of Referenced CS, along
with their linear regression.

Figure 3.9: A scatter plot shows the relationship between the reference
distance δ and the reconstruction error E(x̂,x)of Referenced CS with
sparsity term, along with their linear regression.
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The random pool P used in this experiment has the exaggeratedly

high reference distance δ compared to other settings. This is because

both components of each vector, sparse supports, and magnitudes, are

completely random. Thus, each signal-reference pair contains no obvious

correlation. This is intentional in order to study the case where the

reference is completely arbitrary to the target signal. This strategy is, of

course, not optimal and may result in a very large reconstruction error.

Now, let us consider the relationship between the sampling rate s and

the reconstruction error E(x̂,x), with and without the presence of the

reference r. Again, we employ the Monte Carlo method here using the

same pool of random vectors P . This time, every signal x ∈ P is used as

an input. We apply the sensing and reconstruction operations on each

signal repeatedly, each time using a different sampling rate s in the range

from 0.1 to 0.9. The reference r is created by adding random white noise

on the input signal. Specifically, for each x, we create a reference signal

r = x + kn, (3.21)

where n is a uniform white noise, such that

‖r− x‖2 = k‖x‖2. (3.22)

In this experiment, three values of k are chosen, resulting in three dis-

tances: δL = 0.25‖x‖2, δM = 0.5‖x‖2, and δH = 0.75‖x‖2.

Figure 3.10 and Figure 3.11 show the average plot between the sam-

pling rate s and the error E(x̂,x). In Figure 3.10, the reconstruction is

done using Referenced CS without the sparsity term (Eq. (3.9)) As one

would expect, the error goes up as the sampling rate decreases. However,
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Figure 3.10: Relationship between the sampling rate s, the reference
distance δ, and the reconstruction error E(x̂,x)of Referenced CS

Figure 3.11: Relationship between the sampling rate s, the reference
distance δ, and the reconstruction error E(x̂,x)of Referenced CS with
sparsity term
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the error also reduces as the distance δ decreases. The small δ–where r

is close to x–clearly results in the lower reconstruction error.

In addition, the difference between the reconstruction error between

the low and high sampling rate also reduces along with δ. Let Eδ,s de-

notes the average reconstruction error when x is sampled at rate s and is

reconstructed using the reference with distance δ. El1,s denotes the recon-

struction using l1-norm minimisation, which error difference between two

rates El1,0.1−El1,0.9 = 2379.7. Using Referenced CS reduces the difference

dramatically. For examples, with large reference distance δH = 0.75‖x‖2,

the difference is EδH ,0.1−EδH ,0.9 = 880.18. With small reference distance

δL = 0.25‖x‖2, the difference reduces to EδL,0.1 − EδL,0.9 = 175.58. In

other words, the lower sampling rate can be reconstructed more accu-

rately if the reference distance δ is low.

Figure 3.11 shows the average reconstruction error, akin to Figure 3.10,

but using Referenced CS with the sparsity term (Eq. (3.19)). The same

observations as of Figure 3.10 can be made with this figure. Compare

Figure 3.11 with Figure 3.10, we can notice that Referenced CS with the

sparsity term (Figure 3.11) yields lower error than without the sparsity

term when the sampling rate is high, i.e., more than 40 %. When the

sampling rate is small—especially at 10–30%—Referenced CS without

the sparsity term (Figure 3.10) yields lower error. Moreover, the effect

of the sparsity term is more significant when the reference distance δ

is higher. Figure 3.10 and Figure 3.11 also show lines indicating the

value twice the reference distance (2δ). This is the limit imposed by

Proposition 2, which is derived for Eq. (3.9). It shows that Referenced

CS reconstruction strictly obeys Proposition 2. However, by adding the

sparsity term as in Eq. (3.19), Proposition 2 is not held. Thus, Refer-
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enced CS is recommended to be employed without the sparsity term, as

stated in Eq. (3.9).

3.4 Implementation of Referenced CS

Referenced CS presented in Section 3.2 is a non-linear optimisation prob-

lem, much like its l1-norm minimisation predecessor. As shown in Sec-

tion 2.2.4, unlike its linear counterpart, the non-linear optimisation prob-

lem requires more sophisticated reconstruction algorithm to solve. In this

section, a few modifications to the popular l1-norm minimisation algo-

rithms are demonstrated to make them work with the Referenced CS

problem.

3.4.1 Linear programming

The most primitive strategy to solve the l1-norm minimisation problem

is to cast the problem into a linear programming problem, then solve it

using standard linear programming solvers such as the Simplex method

or the Interior-point method. As discussed in Section 2.2.4, most early

compressive sensing reconstruction algorithms work in this fashion.

The l1-norm minimisation problem,

min ‖x̂‖1 subject to Φx̂ = y, (3.23)

can be written in a parametric form as

min
x

µ‖x‖1 + ‖ε‖1 (3.24)

subject to Φx + ε = y.
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By expressing x = x+ − x− and ε = ε+ − ε−, where x+,x−, ε+, ε− are

non-negative, Eq. (3.24) can be cast into a linear programming as

min
x+,x−,ε+,ε−

µ1T(x+ + x−) + 1T(ε+ + ε−) (3.25)

subject to Φ(x+ − x−) + (ε+ − ε−) = y,

x+,x−, ε+, ε− ≥ 0.

The Referenced CS replaces the objective function from ‖x‖1 to ‖x−

r‖1. We can cast the Referenced CS problem into a linear programming

problem in the same fashion by letting z = x − r and z = z+ − z−, it

follows that Referenced CS can be written in the parametric form as

min
z

µ‖z‖1 + ‖ε‖1 (3.26)

subject to Φz + Φr + ε = y.

Thus it can be cast into a linear programming problem as

min
z+,z−,ε+,ε−

µ1T(z+ + z−) + 1T(ε+ + ε−) (3.27)

subject to Φ(z+ −Φ−) + A(r+ − r−) + (ε+ − ε−) = y,

z+, z−, r+, r−, ε+, ε− ≥ 0.

The linear programming problem in Eq. (3.27) solves for the solution

of Referenced CS in Proposition 2. This problem can be solved by any

linear programming solvers. This is an easy to use option since there

are many solvers available. The standard methods for solving linear pro-

gramming work fine here, including the simplex method and the interior-

point method. L1-Magic toolbox [23] employs the simplex method while
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Sparselab [51] employs the interior-point method. These toolboxes, how-

ever, hard-coded their solver to solve the l1-norm minimisation problem

specifically and thus are not easy to modify. Many generic linear pro-

gramming solvers are available, both open source such as GNU Linear

Programming Kit (GLPK) or commercial software such as Matlab op-

timisation toolbox and CVX toolbox [74, 73]. However, generic solvers

tend to have a much lower performance and result in a much longer

runtime compared to dedicated l1-norm minimisation solvers.

3.4.2 Projected subgradient Method

Instead of solving the problem using the linear programming, it can be

solved using convex optimisation methods directly. One of the most

efficient means to solve l1-norm minimisation problem is the Projected

Subgradient method. This method is an extension of the subgradient

method, such as the steepest gradient and the conjugate gradient method,

commonly used to solve fully-determined linear systems. The projected

subgradient, however, is designed to solve a convex optimisation problem.

This method performs the basic two steps. Step 1, the signal is updated

toward the optimal solution directly using a subgradient – a scaled-down

gradient by a dynamic step size λ. The step size in this method, however,

is not determined to be an optimal value as in the normal subgradient

method. Rather, it is set to a large value initially and decreases over

time. This results in the updated signal sometimes get outside the set

of feasible solutions defined by the constraints. In step 2, the updated

signal is projected back onto the feasible set. In this method, as the step

size λ decreases, the signal converges gradually to the optimal solution,

thus, the optimal solution x̂ is obtained when λ→ 0.
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One good implementation of this method is the Infeasible-point Sub-

gradient Algorithm (ISA), implementing in ISAL1 solver [102]. Its work-

ing follows the steps mentioned above, as it projects the signal toward

the optimal objective function using a sub-gradient, follows by the back-

projection operation ϕ using Conjugate Gradient method. Algorithm 4

summarises ISA, with the objective function f = ‖x‖1 in case of l1-norm

minimisation problem. The complete implementation details, such as the

setting of each parameter, can be found in [103].

Algorithm 4 Infeasible Subgradient Algorithm (ISA) [103]

Input: a starting point x(0), objective function f , estimated optimal
objective ϕ
Output: an approximate solution to 3.9

1: initialise k := 0, x(1) := x(0), subgradient h(1) := 0, step size λ(1) := 0
2: repeat
3: choose subgradient h(k) ∈ ∂f(x(k))
4: if f(x(k)) ≤ ϕ or h(k) = 0 then
5: stop ( optimal if hk = 0)
6: end if
7: compute step size λ(k)

8: compute the next iterate x(k+1) := P(x− λ(k)h(k))
9: increase k := k + 1

10: until a stopping criterion is satisfied

The ISA algorithm is efficient and accurate. To solve Referenced CS

using the ISA algorithm, it can be done easily by replace the objective

function term, i.e., replacing f = ‖x‖1 with f = ‖x− r‖1. If fact, many

simple convex objective function (those involve only matrix arithmetic)

can be solved by ISA as easily. More complex objective function, such

as the total variation-norm minimisation, can also be solved with ISA.

However, the modification is no longer trivial. Unless stated otherwise,

all results of Referenced CS in this study are obtained using the imple-

mentation of the ISA algorithm.
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3.4.3 Greedy methods

Other widely used reconstruction algorithms for l1-norm minimisation

problem are the greedy methods. As discussed in Section 2.2.4, greedy

methods such as Matching Pursuit, Subspace Pursuit, and CoSaMP do

not reconstruct the signal by solving the optimisation problem mathe-

matically. Rather, each method follows its heuristic function during the

reconstruction. The heuristic may not directly contribute to the actual

objective function.

For example, in the OMP, the algorithm starts from the vector con-

sisting of all zero—the sparsest possible solution. It then tries to fit this

vector to the set of feasible solutions as dictated by the constraints. It

can be said that OMP works inversely to the convex optimisation-based

methods, where the solution starts off within the feasible set and moves

to the sparsest solution afterward.

The summary of the OMP is shown in Algorithm 1 (Section 2.2.4).

Even though the OMP does not have an explicit objective function in the

algorithm, we can modify OMP to work with Referenced CS easily. As

the OMP minimises ‖x‖1 by setting the initial solution x(0) = 0, where

0 is an all-zero vector—the smallest l1-norm possible—we can minimises

‖x − r‖1 by setting the initial solution x(0) = r. Thereby makes x(0) to

be closest to the reference r, i.e., ‖x(0) − r‖1 = 0. It is also possible to

modify other greedy methods, such as CoSaMP, in a similar manner to

work with Referenced CS.
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3.5 Experimental Results

This section shows the experimental results of the Referenced CS recon-

struction in various scenarios. There are three scenarios considered here:

the row-based reconstruction of images, the block-based reconstruction

of images, and the video sequence reconstruction. The first two scenar-

ios exploit the spatial redundancy within an image while the last one

exploits the temporal redundancy between video frames.

3.5.1 Row-based Image Reconstruction

The first scenario exploits the spatial redundancy between each row of

an image. In this scenario, we show that Referenced CS can outperform

the l1-norm minimisation and can reconstruct images in a row-by-row

fashion. This scenario is a proof-of-concept to demonstrate the fact that

Referenced CS, by default, does not employ the sparsity information and

can be applied to both sparse and dense signal reconstruction.

Following the convention used previously, we can regard an image as

a collection of sub-signals I(j), j = 0, ..., n, each I(j) represents each row

of the image, where n is the number of row presents. The compressed

measurements y(j) are obtained for each I(j) using a random Gaussian

sensing matrix Φ. The sampling rates s used here are set to 0.25, 0.5,

and 0.75.

A set of test images used in this experiment is shown in Figure 3.12.

Firstly, let us consider the reconstruction results when the sensing

and reconstruction operations are applied to the sparse domain. In this

case, the sensing operation is

y(j) = ΦΨI(j), (3.28)
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(a) Aerial (b) Baboon (c) Barbara (d) Boat

(e) Cameraman (f) Goldhill (g) Lena (h) Peppers

Figure 3.12: Test images

where Ψ is the discrete cosine transform basis and Φ is the random

Gaussian sensing matrix. The reconstruction is obtained via the recon-

struction operation

x̂(j) = R(Φ,y(j), r(j)), (3.29)

Î(j) = Ψ−1x̂(j), (3.30)

where r(j) = x̂(j−1), and the operation R(Φ,y, r) is either Referenced

CS (Eq. (3.9)) or the l1-norm minimisation. Table 3.4 compares the

Structural Similarity Measure (SSIM) between the results from Refer-

enced CS and the l1-norm minimisation. It can be seen that Referenced

CS outperforms the l1-norm minimisation. At the sampling rate of 50%,

Referenced CS yields on average 32% higher SSIM index than the l1-norm

minimisation.

Even more interesting is Table 3.5 which shows the comparison be-
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Table 3.4: SSIM comparison between l1-norm minimisation results and
Referenced CS results on sparse domain

Test image Sampling rate s l1-min SSIM RefCS SSIM

Aerial

0.1 0.067 0.075
0.2 0.108 0.110
0.3 0.138 0.178
0.4 0.165 0.229
0.5 0.195 0.283

Baboon

0.1 0.056 0.035
0.2 0.079 0.109
0.3 0.089 0.129
0.4 0.126 0.150
0.5 0.191 0.213

Barbara

0.1 0.045 0.064
0.2 0.088 0.122
0.3 0.125 0.156
0.4 0.156 0.153
0.5 0.201 0.260

Boat

0.1 0.076 0.068
0.2 0.111 0.107
0.3 0.132 0.155
0.4 0.146 0.204
0.5 0.199 0.235

Cameraman

0.1 0.062 0.067
0.2 0.091 0.109
0.3 0.113 0.155
0.4 0.141 0.191
0.5 0.123 0.217

Goldhill

0.1 0.060 0.055
0.2 0.076 0.107
0.3 0.142 0.125
0.4 0.142 0.159
0.5 0.151 0.186

Lena

0.1 0.068 0.044
0.2 0.152 0.115
0.3 0.150 0.168
0.4 0.175 0.189
0.5 0.211 0.241

Peppers

0.1 0.071 0.059
0.2 0.101 0.119
0.3 0.129 0.172
0.4 0.184 0.235
0.5 0.233 0.283

125



Table 3.5: Average norms and distances for image row reconstruction in
sparse domain

Test image ‖r− x‖2 ‖x‖2 E(x̂,x) ‖r− x‖1 ‖x‖1

Aerial 597.49 1547.70 607.11 10171.00 5218.80
Baboon 579.01 1505.50 577.45 9339.10 5112.30
Barbara 601.69 1355.00 595.16 8263.50 5027.81

Boat 616.71 1529.30 1125.80 9183.22 5239.19
Cameraman 655.66 1484.43 625.59 8493.30 5010.40

Goldhill 793.87 1324.31 1313.70 8015.61 6068.80
Lena 592.37 1245.80 586.95 7531.60 4987.53

Peppers 600.24 1333.42 583.77 7805.90 4923.22

tween the reference distance δ = ‖r− x‖2, the origin distance ‖x‖2, and

the reconstruction error E(x̂,x)= ‖x̂ − x‖2. It can be seen that the re-

construction errors of Referenced CS are indeed less than twice the size

of δ, as predicted in Proposition 2. Table 3.5 also shows that the l1 dis-

tance of ‖r− x‖1 in this scenario is smaller than the l1-norm of x itself,

making it a better objective function.

This effect is very clear when the reconstruction is applied to the

non-sparse signal. Let us consider another scenario when the sensing

and reconstruction operations are applied instead to the dense domain.

The sensing operation in this case is

y(j) = ΦI(j), (3.31)

without any sparsifying bases. This time the reconstruction operation

yields the reconstruction directly, i.e.,

Î(j) = R(Φ,y(j), r(j)). (3.32)

In other words, this time the sensing and reconstruction are done to the

non-sparse signal directly in its spatial domain. The same reconstruction
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operator in Eq. (3.29) is employed here. Table 3.6 compares the SSIM

between the Referenced CS reconstruction and the l1-norm minimisation

reconstruction. It comes at no surprise that the l1-norm minimisation

fails completely to reconstruct any image. Referenced CS, however, suc-

cessfully reconstructs more structure of the image, albeit with lower ac-

curacy than the sparse version. The difference of SSIM index between

two algorithms is larger compared to the sparse reconstruction, with 86%

higher SSIM index on average for Referenced CS. Table 3.7 shows the

reference distance δ, ‖x‖2, and the error E(x̂,x). This time, we can see

that the reference is much closer to x than the origin. Again, Table 3.7

shows that the norm ‖r− x‖1 is much smaller than ‖x‖1.

3.5.2 Block-based Image Reconstruction

This scenario is similar to the previous one as it also deals with the image

reconstruction. In this case, the spatial redundancy exploited comes from

each small block in the image instead of its rows. Again, we regard an

image as a collection of sub-signals I(j,k). Let I(j,k) denotes a block at

the row j and column k of the image, and i(j,k) is a vectorised form of a

block I(j,k). As shown previously in Section 3.1, these blocks are highly

correlated to their neighbours, thus, they are good candidates for being

used as references.

The sensing operation is applied to each block individually, i.e., the

compressed measurements y(j,k) are obtained from

y(j,k) = ΦΨi(j,k). (3.33)
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Table 3.6: SSIM comparison between l1-norm minimisation results and
Referenced CS results on spatial domain

Test image Sampling rate s l1-min SSIM RefCS SSIM

Aerial

0.1 0.066 0.074
0.2 0.091 0.115
0.3 0.101 0.155
0.4 0.118 0.229
0.5 0.169 0.266

Baboon

0.1 0.065 0.053
0.2 0.069 0.078
0.3 0.062 0.132
0.4 0.097 0.148
0.5 0.109 0.229

Barbara

0.1 0.082 0.053
0.2 0.078 0.093
0.3 0.104 0.163
0.4 0.104 0.203
0.5 0.106 0.233

Boat

0.1 0.044 0.055
0.2 0.040 0.099
0.3 0.084 0.124
0.4 0.095 0.158
0.5 0.125 0.176

Cameraman

0.1 0.057 0.053
0.2 0.091 0.094
0.3 0.102 0.155
0.4 0.093 0.158
0.5 0.106 0.177

Goldhill

0.1 0.051 0.058
0.2 0.065 0.105
0.3 0.080 0.101
0.4 0.092 0.141
0.5 0.098 0.157

Lena

0.1 0.037 0.058
0.2 0.105 0.134
0.3 0.116 0.141
0.4 0.127 0.242
0.5 0.170 0.263

Peppers

0.1 0.066 0.049
0.2 0.087 0.136
0.3 0.128 0.183
0.4 0.129 0.161
0.5 0.087 0.245
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Table 3.7: Average norms and distances for image row reconstruction in
spatial domain

Test image ‖r− x‖2 ‖x‖2 E(x̂,x) ‖r− x‖1 ‖x‖1

Aerial 606.18 1547.70 620.39 16907 5554.20
Baboon 536.79 1508.50 541.79 16533 4880.50
Barbara 640.88 1355.05 644.35 14394 5992.71

Boat 787.01 1529.31 796.64 16603 7808.70
Cameraman 717.19 1484.42 1208.80 15197 6622.40

Goldhill 792.99 1324.31 786.33 14364 7727.21
Lena 678.65 1245.80 677.99 12805 6459.12

Peppers 618.62 1333.42 626.17 13348 5649.41

The reconstruction

x̂(j,k) = R(Φ,y(j,k), r(j,k)), (3.34)

î(j,k) = Ψ−1x̂(j,k), (3.35)

can be obtained using the Referenced CS or the l1-norm minimisation as

the reconstruction operation. The previous block on the same row is used

as a reference, i.e., r(j,k) = x̂(j,k−1). The special case is the first column

(k = 1), which are always reconstructed using the l1-norm minimisation.

Figure 3.13 demonstrates the block-based reconstruction strategy.

Figure 3.14 shows the reconstruction results from using this strategy.

This figure, together Table 3.8, shows that the results of Referenced CS

contain less noise than the results from l1-norm minimisation. The same

analysis we did in Section 3.5.1 can be employed here. On average, the

reconstruction from 50% sample using Referenced CS has 18% higher

SSIM index. Table 3.9 shows the average reference distance δ, the origin

distance ‖xi,j‖2, and the reconstruction error E(x̂,x).
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Table 3.8: SSIM comparison between l1-norm minimisation results and
Referenced CS results on sparse domain

Test image Sampling rate s l1-min SSIM RefCS SSIM

Aerial

0.1 0.157 0.168
0.2 0.265 0.329
0.3 0.349 0.439
0.4 0.439 0.552
0.5 0.524 0.639

Baboon

0.1 0.171 0.167
0.2 0.306 0.373
0.3 0.425 0.507
0.4 0.522 0.625
0.5 0.610 0.715

Barbara

0.1 0.111 0.226
0.2 0.328 0.416
0.3 0.454 0.544
0.4 0.557 0.664
0.5 0.655 0.755

Boat

0.1 0.122 0.185
0.2 0.249 0.339
0.3 0.398 0.464
0.4 0.519 0.610
0.5 0.613 0.709

Cameraman

0.1 0.119 0.177
0.2 0.199 0.266
0.3 0.279 0.371
0.4 0.353 0.457
0.5 0.426 0.546

Goldhill

0.1 0.178 0.245
0.2 0.302 0.359
0.3 0.422 0.522
0.4 0.549 0.629
0.5 0.644 0.745

Lena

0.1 0.177 0.224
0.2 0.337 0.401
0.3 0.446 0.528
0.4 0.543 0.635
0.5 0.629 0.711

Peppers

0.1 0.124 0.214
0.2 0.283 0.383
0.3 0.415 0.504
0.4 0.501 0.617
0.5 0.597 0.702
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Figure 3.13: Block-based image reconstruction strategy

Table 3.9: Average norms and distances for image block reconstruction
in sparse domain

Test image ‖r− x‖2 ‖x‖2 E(x̂,x) ‖r− x‖1 ‖x‖1

Aerial 2.13× 103 4.36× 103 854.17 2.55× 104 2.12× 104

Baboon 2.11× 103 4.24× 103 527.10 1.76× 104 1.98× 104

Barbara 2.34× 103 3.81× 103 516.02 1.71× 104 2.18× 104

Boat 2.26× 103 4.33× 103 548.99 1.78× 104 2.07× 104

Cameraman 2.93× 103 4.14× 103 684.81 1.92× 104 2.66× 104

Goldhill 1.96× 103 3.77× 103 481.30 1.56× 104 1.85× 104

Lena 2.37× 103 3.48× 103 519.35 1.76× 104 2.17× 104

Peppers 2.73× 103 3.73× 103 623.44 2.05× 104 2.61× 104
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l1-norm RefCS l1-norm RefCS

(a) Aerial (b) Baboon

(c) Barbara (d) Boat

(e) Cameraman (f) Goldhill

(g) Lena (h) Peppers

Figure 3.14: Results of the reconstruction in sparse domain, using l1-
norm minimisation and Referenced CS. The reconstruction is done from
50% samples.
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3.5.3 Video Sequence Reconstruction

The last scenario to experiment is the reconstruction of video sequences

by exploiting their temporal redundancy. This is the most intuitive sce-

nario for Referenced CS because, as discussed in Section 3.1, each frame

in a video sequence usually contains a high amount of temporal redun-

dancy to its neighbours. In this scenario, each signal I(t) is a frame of

the video sequence at time t. The compressed measurements y(t) are

obtained for each frame by the sensing operation:

y(t) = ΦΨi(t), (3.36)

where i(t) is a vectorised form of I(t). As usual, Referenced CS and

the l1-norm minimisation are used as the reconstruction operation. The

reconstructed frame î(t) is obtained by

x̂(t) = R(Φ,y(t), r(t)), (3.37)

î(t) = Ψ−1x̂(t), (3.38)

where r(t) = x̂(t−1). The first frame of the sequence is always recon-

structed using the l1-norm minimisation. Figure 3.15 summarises the

video sequence reconstruction strategy used in this experiment.

In this experiment, the sensing-reconstruction is done on 14 stan-

dard test sequences, shown in Figure 3.16. These sequences can be seen

online at http://svc.group.shef.ac.uk/shefcswh.html. These se-

quences can be grouped into 3 categories: low activity sequences, medium

activity sequences, and high activity sequences. Figure 3.17 shows the

examples of the reconstructed sequences using the l1-norm minimisation,

while Figure 3.18 shows the reconstructed sequences using Referenced
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Figure 3.15: Referenced CS strategy for video sequence reconstruction

CS. The visual quality of Referenced CS results is superior to those of

l1-norm minimisation. In particular, Referenced CS results show the re-

duction of the noise-like reconstruction error which can be observed easily

in l1-norm minimisation results.

It can be noticed in Figure 3.18 that the visual quality of Referenced

CS results is proportional to the amount of activity in the sequences.

This is because the distance between 2 frames is higher in the high ac-

tivity sequences that consist of lots of movements, such as the Skate

sequence, than that of the low activity ones. In effect, the high activity

sequences have larger reference distance δ. This amount of activity does

not affect the result of the l1-norm minimisation, though, as each frame

is reconstructed independently from each other.

Figure 3.19 shows the objective comparison of the reconstruction ac-

curacy between both reconstruction methods using PSNR, which shows

that Referenced CS results in at least 40% higher in PSNR than the

l1-norm minimisation. The improvement of Referenced CS is largely the

suppression of the reconstruction error. More detailed analysis can be

seen in Table 3.10, which compares the average reference distance δ,
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(a) Akiyo (b) Clair (c) Container

(d) Road (e) MissUSA (f) Car

(g) Coastguard (h) Office (i) Mother

(j) News (k) Salesman (l) Foreman

(m) Skate (n) Silence

Figure 3.16: Example frames from the set of test video sequences. (a)–
(e) are low activity sequences, (f)–(k) are medium, and (l)–(n) are high
activity sequences. 135



(a) Akiyo (b) Clair (c) Container

(d) Road (e) MissUSA (f) Car

(g) Coastguard (h) Office (i) Mother

(j) News (k) Salesman (l) Foreman

(m) Skate (n) Silence

Figure 3.17: Examples of reconstructed video sequences using l1-norm
minimisation from 50% of samples
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(a) Akiyo (b) Clair (c) Container

(d) Road (e) MissUSA (f) Car

(g) Coastguard (h) Office (i) Mother

(j) News (k) Salesman (l) Foreman

(m) Skate (n) Silence

Figure 3.18: Examples of reconstructed video sequences using Referenced
CS from 50% of samples
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Table 3.10: Average norms and distances for video sequence reconstruc-
tion

Test image ‖r− x‖2 ‖x‖2 E(x̂,x) ‖r− x‖1 ‖x‖1

Low activity sequence
Akiyo 9.09× 102 8.26× 103 8.00× 102 5.53× 104 7.76× 104

Clair 9.26× 102 8.79× 103 7.83× 102 5.76× 104 8.95× 104

Container 11.48× 102 12.05× 103 10.31× 102 6.92× 104 9.57× 104

Road 6.79× 102 14.22× 103 5.45× 102 4.22× 104 6.51× 104

MissUSA 5.78× 102 5.49× 103 4.84× 102 3.58× 104 5.24× 104

Medium activity sequence
Car 12.19× 102 9.20× 103 10.35× 102 7.42× 104 10.29× 104

Coastguard 8.56× 102 10.07× 103 7.18× 102 5.17× 104 7.32× 104

Office 11.93× 102 11.87× 103 10.53× 102 7.18× 104 9.82× 104

Mother 7.67× 102 9.63× 103 6.51× 102 4.69× 104 7.16× 104

News 13.93× 102 7.16× 103 12.19× 102 8.22× 104 10.14× 104

Salesman 9.60× 102 6.29× 103 8.52× 102 5.71× 104 7.28× 104

High activity sequence
Foreman 12.81× 102 13.43× 103 9.94× 102 7.69× 104 10.76× 104

Skate 26.60× 102 11.14× 103 12.87× 102 12.33× 104 12.25× 104

Silence 10.13× 102 10.81× 103 8.57× 102 6.14× 104 8.96× 104

origin distance ‖x(t)‖2, and the reconstruction error E(x̂,x)of each se-

quence. It also compares two objective function, ‖x(t)‖1 and ‖r(t)−x(t)‖1.

Table 3.10 shows that, again, the reference distance is much smaller

than the sparsity and, thus, is more desirable. The reconstruction er-

ror E(x̂,x)= ‖x̂ − x‖ is also shown to be less than twice the reference

distance δ, satisfying Proposition 2.

3.6 Summary

In this chapter, Referenced Compressed Sensing, a novel reconstruction

approach for compressed sensing, has been introduced. Referenced CS

exploits the redundancy between the signal and an arbitrary correlated

reference. It is possible to exploit both the spatial redundancy, with more

than 18% improvement in SSIM index for the image reconstruction, and
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Figure 3.19: Average PSNR across 14 test sequences versus sampling
rate s.

the temporal redundancy which results in much less reconstruction error,

with at least 50% improvement in PSNR. Referenced CS can be imple-

mented easily from currently available l1-norm minimisation algorithms.

The results in this chapter have shown the proof-of-concept of several

possible scenarios where Referenced CS could be employed. However, to

employ Referenced CS in practical applications, there are two issues to

be considered. Finally, it is shown that the performance of Referenced

CS depends largely on the distance between the correlated reference and

the signal, thus, it is important to have the reference with the highest

correlation. Another issue with Referenced CS is its high computational

complexity due to the use of the iterative reconstruction algorithm to

minimise the l1-norm objective function. This complexity prevents the

use of Referenced CS in many applications, including the fMRI acquisi-

tion, and must be addressed. Both issues that are to be discussed in the

next chapter.
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Chapter 4

Extensions on Referenced

Compressed Sensing

A few complimentary works for Referenced CS (Chapter 3) are presented

in this chapter. Firstly, this chapter proposes an estimation strategy for

the correlated reference based on Running Gaussian Average (RGA).

The effect of the estimation and its specific learning parameter are also

studied. Secondly, this chapter presents the low-complexity variation of

the Referenced CS reconstruction by substituting the l1-norm objective

function with the l2-norm. This technique, referred to as Referenced CS

with the Least Squares (Referenced CS/LS), demonstrates the fascinat-

ing outcome that, by exploiting the correlated reference, it is possible to

perform the compressed sensing reconstruction without using iterative

algorithms.
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4.1 Correlated Reference Estimation using

Running Gaussian Average

The first thing to look at is the estimation of the correlated reference r. In

Chapter 3, we have discussed the compressed sensing reconstruction that

exploits the redundancy between a signal x and a correlated reference—

an arbitrary signal close to the target signal. It also shows that the

performance of the proposed reconstruction algorithm depends heavily

on the reference distance δ = ‖r− x‖2 (defined in Definition 6), thus, it

is clear that the task of finding a good reference is important.

In this section, a reference estimation strategy designed for the Ref-

erenced CS reconstruction of temporal signals is proposed. The strategy

uses the concepts of Running Gaussian Average to create a dynamic refer-

ence with a high amount of temporal redundancy suitable for Referenced

CS.

4.1.1 Motivation and Method

Consider a simple Referenced CS reconstruction of a video sequence in

Figure 3.15, where the reference r is the reconstructed result of the pre-

vious frame, i.e., r(t) = x̂(t−1). It can be seen that the quality of refer-

ences gets worse as time progresses. Specifically, the reference distance

δ becomes larger over time due to the reconstruction error and content

changes. These distorted references results in distorted reconstructions,

which in turn result in an even more inaccuracy of reference. This phe-

nomenon is called the error propagation of reconstruction error, where

the error from older frames carries onto the next frame. Unless one can

guarantee perfect, error-free reconstruction results, using previous results
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as references always generate this error propagation issue. Unfortunately,

the compressed sensing reconstruction operation is prone to reconstruc-

tion error by many factors, such as the limitation of objective function,

algorithm performance, and even the implementation and round-up error

could result in reconstruction error. Thus, it is clear that procedure to

obtain reliable references despite this shortcoming is needed.

First, consider a task of reconstructing a video sequence. Compressive

measurements y(t) = ΦΨi(t), where i(t) is a vectorised form of a frame

I(t), can be observed for every time instance t. Here, we model each

reconstructed frame î(t) = Ψ−1R(Φ,y(t), r(t)) as a combination of the

lossless signal i(t) and the reconstruction error e(t), i.e.,

î(t) = i(t) + e(t), (4.1)

where the error e(t) is assumed to be a vector of random variable drawn

from a random process of some unspecified distribution.

Here we propose the correlated reference estimator with the aim to

negate the effect of the error propagation. This is the RGA-based ref-

erence estimator, which performs a running average over the entire col-

lection of the reconstructed signals. RGA is inspired by the Gaussian

Mixture Model in background estimation problem [39]. While Gaussian

Mixture models the value of each pixel as a combination of several Gaus-

sian distributions, each representing the possible value of background and

foreground objects [12, 13], RGA in its simplified form only models each

pixel using one Gaussian distribution.

The correlated reference r(t) used in Referenced CS reconstruction

is obtained from r(t) = Ψi
(t−1)
r , where ir denotes a vectorised reference

image in the spatial domain. Each pixel of the reference image i
(t)
r is
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drawn from the Gaussian distribution N (µ
(t)
ir
, ς

(t)
ir

), where µ
(t)
ir

and ς
(t)
ir

are the vectors containing the mean and the variance of each pixel in i
(t)
r

respectively.

We define the update rule of i
(t)
r , the reference image at frame t, in

terms of µ
(t)
ir

and ς
(t)
ir

as

µ
(t)
ir

= (1− α)µ
(t−1)
ir

+ α̂i(t), (4.2)

ς
(t)
ir

= (1− α)ς
(t−1)
ir

+ α
[
(̂i(t) − µ(t)

ir
)T(̂i(t) − µ(t)

ir
)
]
, (4.3)

where î(j,t) is a pixel of the reconstructed image î(t) = Ψ−1x̂(t). In other

words, both the mean and variance of the reference is updated on the

fly with the latest reconstruction result î(t). The parameter α is called

a learning parameter, which defines the rate of which the reference is

updated given the reconstruction results. Large values of α gives the ref-

erence a faster response to the changes of contents inside a sequence, but

reduce the performance in terms of reducing error propagation. Small

values of α, on the other hands, can suppress more of the error propaga-

tion, but response slowly to the changes of contents. This could poten-

tially lead to outdated reference and, thus, results in the large reference

distance.

In practice, the references used in Referenced CS are obtained as

vectors of mean values.

4.1.2 Relationship between Learning Parameter and

Reconstruction Error

To study the relationship between the learning parameter and the re-

construction accuracy, we employ the Monte Carlo method. A sensing
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operation and the Referenced CS reconstruction, described in Chapter 3,

are applied to a sequence of signals C, which is constructed as follows.

Each signal x ∈ C is a sparse signal with K non-zero elements, i.e.,

K-sparse, for a small K. Both the locations (supports) and magnitude

of the non-zero elements of x(1), the first instance of the sequence C,

are drawn from uniformly random process. To generate other instances

x(t) ∈ C, t > 1, while maintaining their likeliness to x(1), we employ the

following procedures for each instance x(t):

1. A new support is randomly added to the support set of x(t). Its

magnitude is drawn randomly.

2. An existing support of x(t) is randomly removed. Its magnitude is

reset to zero.

3. Each element of x(t) is multiplied by a random gain 0.9 ≤ β ≤ 1.1.

4. Each support, along with its magnitude, of x(t) is randomly shifted.*

Each sequence C is then compressively sampled and reconstructed

using Referenced CS,

min ‖x̂(t) − r(t)‖1 subject to Φx̂(t) = y(t), (4.4)

and y(t) = Φx(t). The reference r(t) used for the reconstruction is esti-

mated using the RGA estimator in Eq. (4.2) using a various value of the

learning parameter α.

Two sets, each contains the total of 1000 sequences of C, are em-

ployed in the Monte Carlo simulation to map the relationship between

the learning parameter α and PSNR of the reconstruction results. The

first set of C is created without using the 4th procedure (*), i.e., no shift
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Figure 4.1: PSNR versus learning parameter of test set C without sup-
port shifts.

in the locations of the non-zero elements. Figure 4.1 shows the scatter

plot between α and PSNR of this set. The regression line shows that

when the sparse supports are stationary, a larger value of α provides the

results with high PSNR with the highest probability. The use of the

naive reference (α = 1) also provides a very good accuracy, thus, the use

of RGA estimator is trivial.

The second set of C is created with the random support shift pro-

cedure (*). It can be seen in Figure 4.2 that the situation is in reverse

when the sparse supports are no longer stationary. In this case, the use

of small values of α gives better reconstruction accuracy than the larger

ones. The middle range of α, therefore, provides a middle ground for

both signals with stationary and non-stationary supports.

It should be noted that natural signals acquired in real-world applica-

tions have, in general, non-stationary supports. An example case study

of this is shown in Figure 4.3, where two frames from a video sequence are
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Figure 4.2: PSNR versus learning parameter of test set C with support
shifts.

represented using discrete Fourier transform. While the general positions

and shape of the sparse coefficients seem similar, many of the supports

are not in the same position. Figure 4.3 shows the position of approxi-

mately sparse support—those with the coefficient value larger than 5% of

the maximum value—and the difference in position between two frames.

Surprisingly, as many as 100 supports out of 480, i.e., 20%, change their

position between these two visually similar frames. As natural signals

consist of both stationary and non-stationary supports, the middle range

of α is preferable than any one extreme.

4.1.3 Optimal dynamic learning parameter

Instead of using any fixed value for the learning parameter α, it is possible

to use a dynamic rate. Recall that, given a collection of spatio-temporal
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Figure 4.3: Displacement in support locations between two video frames

148



signal C, we can express a reconstructed signal î(t) of i(t) ∈ C as

î(t) = i(t) + e(t), (4.5)

where e(t) is the reconstruction error that is assumed to be a vector

of random variable drawn from a random process of some unspecified

distribution. Suppose we require the reference r(t+1) = Ψi
(t+1)
r to be the

sparse domain of the average of the first t instances of î, i.e.,

i(t+1)
r =

1

t

t∑
k=1

î(k). (4.6)

Since

i(t)r =
1

t− 1

t−1∑
k=1

î(k), (4.7)

we can derive that

i(t+1)
r =

1

t
î(t) +

t− 1

t
i(t)r . (4.8)

Compare Eq. (4.8) to Eq. (4.2), thus, we can see that by setting the learn-

ing parameter α = 1
t

for any value of t makes i
(t)
r to be the average of the

first t− 1 instances of î. This has the advantage of computing the aver-

age of all t− 1 instances without the need to store all the reconstructed

results within the memory.

The learning parameter α = 1
t

is optimal in the sense that the refer-

ence r completely disregards the presence of reconstruction noise in the

reconstructed sequence. By expressing Eq. (4.7) in terms of Eq. (4.5),
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we can see that

i(t)r =
1

t− 1
[̂i(1) + · · ·+ î(t−1)] (4.9)

=
1

t− 1
[(i(1) + e(1)) + · · ·+ (i(t−1) + e(t−1))] (4.10)

=
1

t− 1
[(i(1) + · · ·+ i(t−1)) + (e(1) + · · ·+ e(t−1))]. (4.11)

Since each e term is drawn from a random process, by Central Limit

Theorem, when t is large, the distribution of the summation of e becomes

a normal distribution. Thus, we obtain

i(t)r ≡
∑t−1

k=1 i(k)

t− 1
+

(t− 1)N (0, σ2)

t− 1
(4.12)

≡ ī(t−1) +N (0, σ2), (4.13)

where ī(t−1) is the average of the first t− 1 instances.

While the main focus of this approach is to provide a reference that

is more robust to reconstruction error, quantitatively the general recon-

struction accuracy is about on par with the middle range fixed learning

parameters. By using Monte Carlo on the same test sets used in Sec-

tion 4.1.2, the average PSNR when using the dynamic learning param-

eter is 28.23 dB for the stationary supports set and 29.72 dB for the

non-stationary set.

4.1.4 Experimental results

The experiment in this section aims to demonstrate the effect of the

learning parameter α in the reconstruction of real video sequences. The

dataset used here is the same set used in Section 3.5.3(Figure 3.16), con-

sisting of 14 sequences grouped into 3 categories of low, medium, and
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high activity. The sampling operation and reconstruction operation are

applied to each sequence. The reconstruction in this experiment is done

strictly using the Referenced CS. Several strategies for choosing the cor-

related reference r are employed and compared between each other. The

simplest reference, referred to as a naive reference, is the case when α = 1.

In other words, only the immediate reconstructed frame is used as a ref-

erence for the next frame (r
(t)
naive = x̂(t−1)). This is exactly what was done

in Section 3.5.3. The Running Gaussian references are estimated using

fixed learning parameters α = 0.1, 0.3, and 0.5—denoted as r
(t)
0.1, r

(t)
0.3, and

r
(t)
0.5 respectively—as well as the optimal reference r

(t)
opt using the dynamic

parameter α = 1
t
. Moreover, the reconstructed results using these refer-

ences are also compared with the results using lossless references. The

lossless reference is a controlled benchmark, obtained directly from the

input without the application of the sensing and reconstruction opera-

tions, i.e., r
(t)
lossless = x(t−1). Such a reference is, of course, unavailable in

practice and is shown here only for the comparison purpose.

Figure 4.4 shows the examples of the reconstructed sequences. Each

row in Figure 4.4 shows the results obtained using a different type of ref-

erences. The sequences in the first and seconds columns are the examples

of low activity sequences. The third and fourth columns are medium ac-

tivity sequences while the last column shows the examples of high activity

sequences. Subjectively it is clear that, in all sequences, the reconstruc-

tions using references with optimal learning parameter result in better

visual quality than other settings. Also, it can be noticed that the re-

sults obtained using r
(t)
0.1 have resulted in less error than those obtained

using r
(t)
0.5. Moreover, the results using naive references demonstrate the

highest amount of reconstruction error. This follows the discussion in
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(a) Lossless reference

(b) Optimal reference

(c) Reference with α = 0.1

(d) Reference with α = 0.3

(e) Reference with α = 0.5

(f) Naive reference

Figure 4.4: Examples of reconstructed sequences using various types of
references
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Section 4.1.2 that when the locations of signal sparse supports are not

stationary, as in the case of most natural signals, the small values of α

provides the most robust reconstruction results.

The above observation is verified by Table 4.1, which shows the PSNR

of each reconstructed sequence using each reference setting. This table

confirms that despite the tendency of higher reconstruction quality as α

gets smaller, the optimal reference using the dynamic parameter outper-

forms all fixed learning parameters in natural sequences reconstruction.

The dynamic parameter can be seen as a progression from large α (α = 1)

to smaller ones (α → 0 as t increases). This implies that the estimator

is more confident during the initial part of the reconstructed sequence,

where the level of reconstruction error is still small. Table 4.1 also shows

that the effects of the learning parameter are more prominent when the

activity level in the sequence is higher. As such, the difference in recon-

struction quality using references with different learning parameters can

be observed more easily in high activity sequences than in the lower ones.

4.2 Improvement in Referenced CS Com-

plexity

One of the major issues that prevent a practical deployment of com-

pressed sensing is the high computational complexity of the iterative

reconstruction operation. High complexity makes the reconstruction of

large data be a time-consuming task, especially if the data is very large.

This issue heavily affects the use of CS to obtain the fMRI data because,

as discussed in Section 2.1.3, fMRI requires a very large dataset com-

pared to other imaging techniques. This chapter attempts to tackle this
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Table 4.1: Peak Signal-to-Noise Ratio of reconstructed video sequences
using various types of references

Lossless Naive α = 0.5 α = 0.3 α = 0.1 optimal
Low activity sequences

Akiyo 46.16 34.79 34.96 35.20 35.43 35.59
Clair 47.76 35.17 35.48 36.69 36.94 36.94

Container 44.64 25.75 25.78 25.78 25.89 32.87
Road 40.13 34.06 34.58 35.19 35.93 37.16

MissUSA 46.05 37.18 37.42 38.05 38.87 39.24
Medium activity sequences

Car 37.53 31.53 31.36 32.37 32.50 33.56
Coastguard 35.37 29.66 29.96 30.62 31.24 32.11

Office 41.08 32.20 32.70 32.81 33.08 33.56
Mother 44.78 34.63 34.73 35.75 35.79 36.09
News 42.89 32.31 32.45 32.55 33.06 33.11

Salesman 41.98 31.55 31.84 32.57 32.74 33.17
High activity sequences

Foreman 35.88 29.54 29.73 30.55 31.05 32.04
Skate 36.56 29.60 29.76 30.36 30.82 32.61

Silence 41.30 31.85 32.06 32.76 32.83 33.18

issue by introducing a method to greatly reduce the complexity of the

CS reconstruction. This method involves a relaxation of the objective

function from the l1-norm to the l2-norm, thus allows the reconstruction

to be done using a linear method: the least squares approximation.

4.2.1 Complexity of Iterative Reconstruction Algo-

rithms

As discussed in Section 3.2, the non-smooth nature of the l1-norm objec-

tive function requires the reconstruction algorithms to work iteratively.

Moreover, the complexity of the algorithms is proportional to the size

of the signal in a non-linear fashion. Thus, reconstructing several small

signals are faster than a single large signal.

The reconstruction algorithms modified for Referenced CS in Sec-

tion 3.4 have vary degree of complexity. The linear programming algo-
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Table 4.2: Comparison of computational time per frame using different
reconstruction algorithms

Algorithm small (88× 72 pixel) large (176× 144 pixel)
SparseLab 22.67 906.84

ISAL1 17.34 693.61
l1-homotopy 42.87 1714.83

IHT 1.12 44.87
OMP 217.16 8686.41

CoSaMP 198.62 7944.87

rithms have high complexity. The simplex method has the worst case

complexity of O(n22n) for the signal of n elements. The worst case

complexity of the Interior-point Method (used in SparseLab toolbox)

is O(n3.5) [94]. The worst running time of the OMP is O(Kmn), to

reconstruct K-sparse signal of length n from the compressive measure-

ments of m elements [156]. The worst case complexity of Infeasible Point

Subgradient Method (ISA) has not been assessed, however, the author

did an intensive simulation test to find out that ISA’s complexity is in

between those of linear-programming methods’ and OMP’s [103].

In Section 2.2.5, Figure 2.25 plots the computational time against the

sampling rate, comparing between each algorithm when reconstructing

the set of test images. Table 4.2 shows this comparison in details, showing

the time it takes for each algorithm to reconstruct a frame of the video

sequences from Figure 3.16 using various sampling rates.

Table 4.2 also shows the computational time per frame for the same

set of sequences with twice the resolution. It can be seen clearly that

when the length n of signal is four times larger, the complexity increases

dramatically. If we increase the resolution even higher, soon the recon-

struction algorithms will become intractable in practice.

This observation is especially true for the fMRI data. The typical

data from the EPI technique generally have the resolution of 64-by-64
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pixels per slice, with around 30-64 slices per volume. This makes the to-

tal number of element per volume to be around 1.23× 105 to 2.62× 105.

Though this number is not too large in the general imaging sense, the

reconstruction time is already quite high. As a single fMRI experiment

could consist of several hundreds of volumes, easy calculation shows that

using CS reconstruction is indeed intractable for a practical fMRI exper-

iment.

4.2.2 Referenced CS with Least Squares Method

One of the main promises of Referenced CS is the fact that it moves away

from the notion of sparsity. Recall the same symbols from Section 3.2.

As shown in Proposition 2 that the reconstruction error E(x̂,x) depends

only on the distance δ = ‖r−x‖2 between the reference r and the signal

x. This proposition is valid for any lp-norm, 0 < p ≤ ∞. As we no

longer need to maximise the sparsity using the l1-norm, it is desirable to

relax the optimisation problem back to the l2-norm objective function.

The l2-norm objective function has found its use in a great many fields

of science and engineering because it is smooth and differentiable. This

allows the l2-norm to be solved using a straightforward linear method,

such as the least squares approximation method, rather than complex

iterative algorithms. Linearity makes the least squares method much

simpler than iterative algorithms used to solve the l1-norm minimisation

problem.

Here, we assert that the least squares should be able to perform rea-

sonably well with the incorporation of the correlated reference. Particu-

larly since the degree of sparsity of most natural signals does not reach

the exact reconstruction level—and with the bound defined by Proposi-
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tion 2—the reconstruction error from the least squares method should be

similar to the error of the l1-norm solution in terms of magnitude. The

sources of error are different, however. The error of l1-norm minimisa-

tion comes from the fact that the l1-norm solution is too sparse than the

natural signals. The error of the least squares, on the other hand, is due

to the fact that the l2-norm solution’s sparsity is too small.

We propose to use the least squares method to solve for the solution

of Referenced CS, referred to as Referenced CS with the Least Squares

(Reference CS/LS), following the Proposition 3.

Proposition 3. Let r ∈ Rn be a correlated reference of a signal x ∈ Rn,

the reconstructed signal x̂ ∈ Rn can be obtained from the compressive

measurements y ∈ Rm,y = Φx by

x̂ = r + ΦT(ΦΦT)−1(y −Φr). (4.14)

Proof. Following Eq. (3.9), we define a Referenced CS l2-norm minimi-

sation problem as

min
x̂
‖x̂− r‖2 subject to Φx̂ = y. (4.15)

Define a Lagrangian function as

L(x̂) = ‖x̂− r‖2
2 + λT(Φx̂− y), (4.16)

where λ is the Lagrange multiplier. Set a derivative of L(x̂) to zero, i.e.,

∂

∂x̂
L(x̂) = 2x̂− 2r + ΦTλ = 0, (4.17)
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to obtain

x̂ = r− 1

2
ΦTλ. (4.18)

To solve for the Lagrange multiplier λ, substitute Eq. (4.18) into y = Φx̂

to obtain

y = Φx̂ = Φ(r− 1

2
ΦTλ) (4.19)

= Φr− 1

2
ΦΦTλ. (4.20)

From Eq. (4.20), we can get

ΦΦTλ = −2(y −Φr), (4.21)

and finally,

λ = −2(ΦΦT)−1(y −Φr). (4.22)

Substitute Eq. (4.22) back into Eq. (4.18) to obtain

x̂ = r + ΦT(ΦΦT)−1(y −Φr). (4.23)

4.2.3 Experiment on Referenced CS using Least Squares

To verify the performance of Referenced CS/LS, proposed in Proposi-

tion 3, here the same experiment performed in Section 3.5.3 is repeated.

The sampling and reconstruction operations are applied to the same set

of 14 test sequences in Figure 3.16. In this experiment, the reconstruction

results come from using the following reconstruction operation: 1) Refer-

enced CS/LS (using the least squares approximation), 2) Referenced CS
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(using l1-norm objective function), 3) the l1-norm minimisation, and 4)

the conventional least squares method. Both the l1-norm minimisation

and the least squares method are for the benchmarking purpose.

Figure 4.5 shows the example frames from the reconstructed sequences

using the conventional least squares method while Figure 4.6 shows the

examples of the Referenced CS/LS results. The examples of recon-

structed sequences using the l1-minimisation and Referenced CS can be

found in Figure 3.17 and Figure 3.18 respectively. While it comes at no

surprise that the results of the conventional least squares method have

extremely poor quality, the results of Referenced CS/LS, on the other

hand, show very good visual quality, comparable to those obtained from

the iterative algorithms. The same observation made with Referenced

CS can be made here also. The reconstruction error is present mainly

as additive reconstruction error. The reconstruction accuracy largely de-

pends on the reference distance δ, thus, the quality is higher in the low

activity sequences than in high-quality ones.

Figure 4.7 shows the average PSNR versus sampling rate of each

algorithm. It can be seen that as the sampling rate s gets higher, the

reconstruction accuracy of Referenced CS/LS improves rapidly. With

a sampling rate higher than 35%, the results of Referenced CS/LS—

despite having a much lower complexity—outperforms the conventional

l1-norm minimisation method. At 50%, Referenced CS/LS yields 19%

higher PSNR than l1-norm minimisation and 3 times higher than the

conventional least squares method.

Table 4.3 shows the average time required to reconstruct a frame of

the test sequences. It shows clearly than the computational time required

by the least squares-based method, including Referenced CS/LS, is sev-
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(a) Akiyo (b) Clair (c) Container

(d) Road (e) MissUSA (f) Car

(g) Coastguard (h) Office (i) Mother

(j) News (k) Salesman (l) Foreman

(m) Skate (n) Silence

Figure 4.5: Examples of reconstructed video sequences using the least
squares method from 50% of samples
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(a) Akiyo (b) Clair (c) Container

(d) Road (e) MissUSA (f) Car

(g) Coastguard (h) Office (i) Mother

(j) News (k) Salesman (l) Foreman

(m) Skate (n) Silence

Figure 4.6: Examples of reconstructed video sequences using Referenced
CS/LS from 50% of samples
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Figure 4.7: Average PSNR across 14 test sequences versus sampling rate.
The reconstruction is done using Referenced CS (RefCS), Referenced
CS/LS (RefCS/LS), l1-norm minimisation (l1-min), and the least squares
method (LS).

Table 4.3: Average reconstruction time per frame in seconds

Method sampling rate s (%)
10 20 30 40 50

RefCS 0.90 1.14 1.59 1.82 2.21
RefCS/LS 3.80× 10−4 7.57× 10−4 11.19× 10−4 14.72× 10−4 17.89× 10−4

l1-min 0.86 1.12 1.41 1.79 2.18
LS 1.86× 10−4 3.39× 10−4 5.18× 10−4 6.93× 10−4 9.09× 10−4

eral degree less than that required by the iterative algorithms. Because

Referenced CS/LS uses a linear operation, the computational time now

depends on the performance of the mathematical software package used

to complete such operation rather than the complexity of the algorithm.

On average, at the sampling rate of 50%, Table 4.3 shows that Refer-

enced CS with the Least Squares can reconstruct the result at least 1200

times faster than the l1-norm minimisation via convex optimisation.
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4.3 Summary

This chapter addressed two main issues of the Referenced Compressed

Sensing. The first issue addressed is the estimation of the correlated ref-

erence. In this chapter, the novel correlated reference estimator based on

Running Gaussian Average has been proposed, where the correlated ref-

erence is obtained from a Running Gaussian Average of the reconstructed

frames. The effect of the learning parameter of the Running Gaussian

Average has been studied, and it is shown that the reference that can

suppress error propagation can be obtained by using the dynamic optimal

learning parameter rather than a fixed value.

The second issue addressed in this chapter is the computational com-

plexity of Referenced CS. The low complexity version, referred to as

Referenced CS with the Least Squares, is proposed. It is shown that, by

replacing the l1-norm objective function to the l2-norm, the reconstruc-

tion can be more than 1200 times faster. Moreover, it is shown that by

exploiting the redundancy of the correlated reference, the reconstruction

result using the least squares approximation is, surprisingly, comparable

to the results of iterative algorithms.
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Chapter 5

Compressed Sensing for

Functional MRI

In previous chapters, the novel compressed sensing reconstruction tech-

nique, Referenced CS, has been developed. This technique is to be ap-

plied to the fMRI data in this chapter. The aim is to obtain the fMRI

data from compressive measurements such that it has a high spatial res-

olution and maintains the accuracy of its activity map. Firstly, we will

describe the methods and settings for applying the compressed sensing

to the fMRI data. Each relevant parameter is to be analysed in terms

of visual quality to identify the best setting for Referenced Compressed

Sensing fMRI. The reconstruction using this novel technique will then be

compared to the results from other state-of-the-art reconstruction algo-

rithms as well as the currently employed fast acquisition technique—the

EPI. Finally, we introduce another analysis approach, the baseline inde-

pendent analysis of the data, to show that the error resulting from the

compressed sensing technique can be excluded from the analysis.
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Figure 5.1: MRI data is a temporal collection of several 3-dimensional
MR volumes

5.1 Applying Compressed Sensing to fMRI

As discussed in Section 1.1, the fMRI data can be viewed as a temporal

collection of several MRI volumes. As such, Referenced CS, which is

designed specifically for the temporal data reconstruction, is applicable

to the fMRI data.

Figure 5.1 shows the characteristic of the fMRI data, which is a col-

lection of MRI volumes V. Each volume itself is a collection of slices

I ∈ Rm×n. Each slice I is obtained from the K-space x, which is the

frequency domain of I. In other words, i = Ψ−1x, where i ∈ Rmn is the

vectorised representation of I and Ψ−1 is the inverse Fourier basis.

Instead of acquiring a complete K-space from the scanner, the com-

pressed sensing fMRI aims to reconstruct the K-space x̂ from the com-

pressive measurements

y = Φx, (5.1)

where Φ denotes the incoherent sensing matrix (described in Section 2.2.3).

There exist many approaches to implement the sensing operation into the

practical MRI scheme, as discussed in Section 2.3.
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However, our focus is the reconstruction operation. The reconstructed

K-space x̂ can be obtained using various reconstruction methods, includ-

ing the conventional l1-norm minimisation, the proposed Referenced CS

method, and even the low complexity variation of Referenced CS such as

Referenced CS/LS.

The straightforward extension of compressed sensing to fMRI is to

treat each slice i as an independent signal. First we reconstruct the full

resolution K-space x̂ from the measurement y. For each K-space x of a

slice i, with its compressive measurements obtained from the sampling

operation y = Φx, the reconstruction operation is defined as

R(Φ,y) = min ‖x̂‖1 subject to Φx̂ = y. (5.2)

Eq. (5.2) can be solved using any available l1-norm minimisation solvers.

Afterward, the reconstructed slice î is obtained from x̂ by applying the

basis, i.e.,

î = Ψ−1x̂ (5.3)

= Ψ−1R(Φ,y). (5.4)

On the other hand, using the proposed Referenced CS, each slice is

reconstructed based on its own reference. Thus, the collection of ref-

erence slices themselves can be considered to be a volume, called the

Reference Volume (Vr). Given the compressive measurement y, and the

corresponding reference slice r, the reconstruction operation is defined as

R(Φ,y, r) = min ‖x̂− r‖1 subject to Φx̂ = y. (5.5)
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Eq. (5.5) can be solved using the modified solvers presented in Section 3.4.

Again the reconstructed slice î can then be obtained from î = Ψ−1x̂.

The complexity of the reconstruction operation can be reduced by

using Referenced CS/LS. As discussed in Section 4.2.2, by relaxing the

l1-norm objective function into the l2-norm, it is possible to obtain a

reconstruction result in much less time at the cost of the reconstruction

accuracy. With the proper choice of Vr, however, it is possible to obtain

an acceptable reconstruction result much faster than the conventional

l1-norm minimisation could.

By Definition 6, the reference volume Vr can be any arbitrary 3-

dimensional signal. However, as the reconstruction accuracy of Refer-

enced CS depends heavily on the reference distance ‖V − Vr‖2, it is

desirable to have the reference volume that is close to the target K-

space. There are several variations on the Referenced CS setting, each

with its strength and weakness. The choices of Initial Reference Volume,

reference reset strategy, and update strategy all affect the performance

of Referenced CS.

5.1.1 Initial Reference Volume

Figure 5.2 shows two strategies for the Initial Reference Volume V
(0)
r ,

i.e., the reference for reconstructing the first volume V(0) of the data. A

simple and straightforward choice for the Initial Reference Volume V
(0)
r

is a zero volume, denoted 0, which is the volume that consists of all zeros

(Figure 5.2a). This in effect is equivalent to the reconstruction of the first

volume using the conventional l1-norm minimisation. This choice of V
(0)
r

is easy to implement and requires no alteration to the readout sequence.

However, this method leads to the reconstruction error constitutes to the
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(a) Using zero volume as R0

(b) Using a lossless pre-scan volume as R0

Figure 5.2: Strategies for the Initial Reference Volume

l1-norm minimisation method, which will propagate to the next reference

volume. Despite the fact that we can reduce the effect of reconstruction

error propagation by using RGA estimation, it is more desirable to have

a good V
(0)
r in the first place.

A good Initial Reference Volume can be obtained by doing a com-

plete, lossless acquisition of the K-space. It could be done either by

acquiring the first volume uncompressed—sampling at 100%—or by us-

ing a pre-scan volume as a reference volume, i.e., V
(0)
r = V(−1), where

V(−1) denotes a pre-scan volume (Figure 5.2b). While this strategy might

sound unattractive in other applications, it is natural in the MRI acqui-

sition where a pre-scan is needed most of the time to compensate and

calibrate the hardware [77].
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(a) No update

(b) Naive reference

(c) Running Gaussian reference

Figure 5.3: Strategies for the Initial Reference Volume
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5.1.2 Reference Volume Update Strategy

Figure 5.3 shows several ways of how to use the reference volume to re-

construct each volume. The first choice is to use the Initial Reference

Volume V
(0)
r to reconstruct each and every successive volume after it

(Figure 5.3a). Using the reference volume in this fashion does not make

the reference to be up-to-date to the data. However, because the Initial

Reference Volume is used purely, its quality will dictate all the recon-

struction quality. If V
(0)
r is obtained from the uncompressed acquisition,

as suggested previously, then it is in the best, reconstruction-error-free

condition that can yield a very good result. However, if it is obtained

from the l1-norm minimisation, its reconstruction error will also greatly

damage the reconstruction results.

Another choice is to use the latest reconstructed volume as the ref-

erence volume for the next reconstruction, i.e., let V
(t)
r = V̂(t−1) where

t denotes the volume index. This approach is referred to as the naive

reference (Figure 5.3b), similar to what was used in Section 3.5.3. As

discussed in Chapter 4, this approach is very sensitive to reconstruction

error in the long run, thus, the error will propagate from one volume to

its subsequent volumes rapidly.

Instead of these two extremes, the reference volume can be estimated

using the RGA estimator (Figure 5.3c). Section 4.1.1 shows that the

running Gaussian reference works better than the naive reconstruction

while provides a way to negate the propagation of reconstruction error.

The learning parameter α required by the estimator can be fixed to any

value, or set to the optimal value as discussed in Section 4.1.3.
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5.1.3 Reference Volume Reset

Similar to the case of natural video sequences, it is desirable to reset the

Initial Reference Volume from time to time. Despite the fact that the

RGA estimator can provide the changing reference volume with minimal

error propagation as time passes, the reference distance will become too

great due to the aggregated error or the changing of the signal itself. For

examples, the movement of the subject in the machine or the changing of

the subject’s haemodynamic system could result in a totally uncorrelated

volume compared to the V
(0)
r .

Having a reset for the reference volume will provide a great improve-

ment in the reconstruction accuracy at the cost of the design complexity.

For example, a new Initial Reference Volume can be acquired at every

period T using the lossless sampling. All successive volumes during the

same period T are acquired compressively and reconstructed using Refer-

enced CS instead. In essence, this strategy provides a trade-off between

the robustness and accuracy of the compressed sensed fMRI data and

the length and the complexity of the experiment.

These strategies for Referenced CS will be evaluated in terms of re-

construction error in details later on in Section 5.4.

5.2 fMRI Datasets

Throughout this study, the following fMRI data are used during the

study:

• Dataset 1: Attention to visual motion dataset [19],

• Dataset 2: Auditory fMRI dataset [19],
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 5.4: Examples of the datasets

• Dataset 3: Mixed-gambles task fMRI dataset (obtained from the

OpenfMRI database with accession number ds000005 [154]),

• Dataset 4: Visual object recognition dataset (obtained from the

OpenfMRI database with accession number ds000105 [124]).

The example of these datasets are shown in Figure 5.4.

The sensing and reconstruction operations are applied to these orig-

inal datasets using various settings to create the final test data for this

study. Further on, each data will be identified not only by the source

data but also by their CS acquisition setting, including the sampling rate,

the strategy for Initial Reference Volume, its update, and its reset. To

simplify, each dataset is labelled in the following format: <the source

number>–<sampling rate>–<acquisition flag>. For example, data DS1-

30-110 refers to Dataset 1 which is compressively sampled at 30% using

pre-scan Initial Reference Volume, the each reference is estimated naive

reference, and no reset to the reference is employed. Table 5.1 shows all
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the available data that has been created.

The first digit of the acquisition flag identifies the choice of the Initial

Reference Volume V
(0)
r —0: V

(0)
r is obtained using the traditional l1-

norm minimisation, 1: V
(0)
r is obtained using the lossless pre-scan. The

second digit indicates the reference update strategy— 0 means no update

employed (V
(t)
r = V

(0)
r ), 1 being the naive reference (V

(t)
r = V̂(t−1)), and

2 being the Running Gaussian-based reference. The third digit of the

flag indicates the Reference reset strategy; 0: no reference reset at all,

1 means that the new Initial Reference Volume is reacquired at every

arbitrary T volumes, resetting the reference periodically. 2 and 3 are

similar to 1, but the reset is done at every T/2 and T/4 respectively.

The choice of T used in in this study is chosen based on the TR of each

dataset, such that the period T × TR is equal to one minute. In the

case of the RGA-based reference update, there will also be the forth flag

indicating the value of the learning parameter α.

Due to the limitation of time, it is not possible to explore every combi-

nation of parameters. Section 5.3 shows that, in general, the reconstruc-

tion operation could take up to more than 30 hours. To workaround this

limitation, in this study, the effect of each parameter will be evaluated

individually. Only one parameter is treated as an independent variable at

a time while all other parameters are fixed. Once the effect of the acquisi-

tion parameters has been evaluated, the proposed Referenced CS will be

compared to the l1-norm minimisation obtained from the state-of-the-art

algorithm.

Firstly, the complexity of compressed sensing fMRI will be evaluated,

followed by the visual quality and the accuracy of the activity map.
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Table 5.1: Compressive sensing fMRI dataset

Data ID Source sampling V
(0)
r Update Reset

rate (%) strategy strategy

DS1-30-000 DS1 30 l1-min no update no reset
DS1-30-100 DS1 30 Pre-scan no update no reset
DS1-30-101 DS1 30 Pre-scan no update at T
DS1-30-102 DS1 30 Pre-scan no update at T/2
DS1-30-104 DS1 30 Pre-scan no update at T/4
DS1-30-112 DS1 30 Pre-scan naive at T/2
DS1-30-1221 DS1 30 Pre-scan RGA,α = 0.1 at T/2
DS1-30-1223 DS1 30 Pre-scan RGA,α = 0.3 at T/2
DS1-30-1225 DS1 30 Pre-scan RGA,α = 0.5 at T/2
DS1-30-122o DS1 30 Pre-scan RGA,optimal α at T/2
DS1-10-1225 DS1 10 Pre-scan RGA,α = 0.5 at T/2
DS1-50-1225 DS1 50 Pre-scan RGA,α = 0.5 at T/2

DS2-30-000 DS2 30 l1-min no update no reset
DS2-30-100 DS2 30 Pre-scan no update no reset
DS2-30-101 DS2 30 Pre-scan no update at T
DS2-30-102 DS2 30 Pre-scan no update at T/2
DS2-30-104 DS2 30 Pre-scan no update at T/4
DS2-30-112 DS2 30 Pre-scan naive at T/2
DS2-30-1221 DS2 30 Pre-scan RGA,α = 0.1 at T/2
DS2-30-1223 DS2 30 Pre-scan RGA,α = 0.3 at T/2
DS2-30-1225 DS2 30 Pre-scan RGA,α = 0.5 at T/2
DS2-30-122o DS2 30 Pre-scan RGA,optimal α at T/2
DS2-10-1225 DS2 10 Pre-scan RGA,α = 0.5 at T/2
DS2-50-1225 DS2 50 Pre-scan RGA,α = 0.5 at T/2
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Table 5.2: Compressive sensing fMRI dataset (continue)

Data ID Source sampling V
(0)
r Update Reset

rate (%) strategy strategy

DS3-30-000 DS3 30 l1-min no update no reset
DS3-30-100 DS3 30 Pre-scan no update no reset
DS3-30-101 DS3 30 Pre-scan no update at T
DS3-30-102 DS3 30 Pre-scan no update at T/2
DS3-30-104 DS3 30 Pre-scan no update at T/4
DS3-30-112 DS3 30 Pre-scan naive at T/2
DS3-30-1221 DS3 30 Pre-scan RGA,α = 0.1 at T/2
DS3-30-1223 DS3 30 Pre-scan RGA,α = 0.3 at T/2
DS3-30-1225 DS3 30 Pre-scan RGA,α = 0.5 at T/2
DS3-30-122o DS3 30 Pre-scan RGA,optimal α at T/2
DS3-10-1225 DS3 10 Pre-scan RGA,α = 0.5 at T/2

DS4-30-000 DS4 30 l1-min no update no reset
DS4-30-100 DS4 30 Pre-scan no update no reset
DS4-30-101 DS4 30 Pre-scan no update at T
DS4-30-102 DS4 30 Pre-scan no update at T/2
DS4-30-104 DS4 30 Pre-scan no update at T/4
DS4-30-112 DS4 30 Pre-scan naive at T/2
DS4-30-1221 DS4 30 Pre-scan RGA,α = 0.1 at T/2
DS4-30-1223 DS4 30 Pre-scan RGA,α = 0.3 at T/2
DS4-30-1225 DS4 30 Pre-scan RGA,α = 0.5 at T/2
DS4-30-122o DS4 30 Pre-scan RGA,optimal α at T/2
DS4-10-1225 DS4 10 Pre-scan RGA,α = 0.5 at T/2
DS4-50-1225 DS4 50 Pre-scan RGA,α = 0.5 at T/2
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5.3 Acquisition Time and Reconstruction

Time

The first thing to be evaluated is the time involved in the compressed

sensing fMRI. There are two types of time to be considered; the acqui-

sition time is the time required to obtain to raw measurements from the

MRI scanner, and the reconstruction time which is the time required to

reconstruct the MRI volumes from the measurements.

5.3.1 Acquisition Time

The acquisition time depends mainly on the scanning technique and pulse

sequence used for the scan. The high-resolution scan used in the struc-

tural MRI requires several signal readouts to obtain a single K-space.

Even though this process can be accelerated up to 4 times using Fast

Spin Echo (Section 2.1.3), it still takes several TRs cycle per K-space.

On the other hand, EPI—commonly used in the fMRI experiments—can

obtain an entire K-space within one TR at the cost of the loss of spatial

resolution.

The use of compressed sensing in fMRI allows the high-resolution

scan, with the same resolution as in the structural MR data, to be

acquired within the same time required for the EPI data. Table 5.3

shows the comparison of the acquisition time required for each acqui-

sition method. Here the high-resolution data is supposed to have the

resolution of n× n× k, where n, k are an arbitrary integer. The acquisi-

tion time in Table 5.3 is presented in terms of the number of TR period

required to obtain the data. Because faster acquisition means more data

can be acquired in a given period of time, Table 5.3 clearly shows the
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Table 5.3: Acquisition time required to obtain MR data

Acquisition method Time per slice Time per volume Resolution
(# of TR) (# of TR)

High resolution
n n× k n× n× k

(Conventional)
High resolution n

4
n
4
× k n× n× k

(Fast Spin Echo)
Echo Planar Imaging 1 k n

4
× n

4
× k

CS-MRI 1 k n× n× k

benefit of applying the compressed sensing to the fMRI data: to improve

the ratio between the spatial resolution and the temporal resolution.

5.3.2 Reconstruction times

The reconstruction time refers to the time required to reconstruct the

MRI volume V from the raw measurements. In the conventional MRI,

the reconstruction time is nearly instantaneous, as the only step required

is to apply the Fourier basis to the K-space. In the compressed sensing

MRI, on the other hand, the reconstruction time is much higher due to

the time required to solve the optimisation problem. Thus, the recon-

struction time depends largely on the complexity of the reconstruction

algorithm.

Table 5.4 shows the average time required to compute a volume of

MRI data from the datasets used in this study. The computation is done

using Matlab2014b on a machine running Windows 7 64-bit, with Intel

Core i5 3.3GHz processor and 4GB of memory. The clear separation can

be noticed between the algorithms based on the l1-norm and the l2-norm

minimisation. The time required for both the l1-norm minimisation and

Referenced CS methods is several degree longer than Referenced CS/LS

and the least squares method, both employ the l2-norm minimisation. For
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Table 5.4: Average time required to reconstruct each volume in datasets

Methods sampling rate TR (seconds)
DS1 DS2 DS3 DS4

l1-min
0.1 218.91 374.28 206.66 194.34
0.3 391.42 602.31 380.46 310.78
0.5 641.68 874.00 662.47 513.71

RefCS
0.1 214.32 373.63 208.13 194.93
0.3 383.95 579.32 385.86 310.87
0.5 636.43 872.67 660.37 496.87

Least squares
0.1 0.27 0.41 0.22 0.28
0.3 0.44 0.86 0.49 0.44
0.5 0.66 1.27 0.68 0.59

RefCS/LS
0.1 0.41 0.53 0.35 0.27
0.3 0.92 1.22 0.77 0.72
0.5 1.21 1.71 1.15 1.08

example, the computational time of Referenced CS is at least 4.56× 104

percent longer than that of Referenced CS/LS.

In the context of this specific study, Table 5.5 shows the total time

required to compute each dataset in its completeness. It can be seen that

the computational complexity of the l1-based methods is impractical in

real fMRI experiments. The amount of time requires to reconstruct a

complete series of MRI volumes would be too large for any clinical pur-

poses. Even in the situation where the data is not required ungently,

such as in the research environment, the time it takes to process the

data would slow down the research more than the benefit of the acceler-

ated acquisition offered by the compressed sensing fMRI. It is clear that

the method with lower complexity, such as Referenced CS/LS, is more

desirable in real applications. The difference in reconstruction quality

between these methods is to be discussed in the next section.
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Table 5.5: Time required to reconstruct each dataset

Methods sampling rate Time (seconds)
DS1 DS2 DS3 DS4

l1-min
0.1 37871.75 35556.24 48595.28 23320.24
0.3 67715.31 57219.39 89409.16 37293.82
0.5 111010.71 83030.31 146518.39 61645.29

RefCS
0.1 37078.33 35494.29 48911.35 23391.1
0.3 66423.21 55035.74 90677.98 37624.81
0.5 110103.01 82903.69 145976.49 59624.8

Least squares
0.1 46.78 45.09 60.061 25.01
0.3 105.29 90.91 132.24 56.54
0.5 161.37 144.21 196.20 80.59

RefCS/LS
0.1 70.66 49.83 82.11 32.23
0.3 159.69 115.44 180.25 86.82
0.5 209.27 162.6 270.76 129.81

5.4 Reconstruction Quality of Compressed

Sensing fMRI

In this section, the simulated compressed sensing fMRI data are evaluated

in terms of visual quality. The purpose of this evaluation is not only to

compare the reconstruction from Referenced CS with the state-of-the-art

algorithm, but it is also to study the effect of each acquisition strategy

and setting for Referenced CS in the fMRI environment. The various

strategies for Referenced CS discussed in Section 5.1 are to be evaluated

first, followed by the comparisons with the state-of-the-art algorithm.

5.4.1 Study on the Initial Reference Volume

In this first study, the goal is to determine the best strategy for choosing

the Initial Reference Volume V
(0)
r . As discussed in previous section, the

naive approach for choosing V
(0)
r , the reference for the very first volume

to reconstruct, is to set V
(0)
r = 0. This essentially turns the Referenced

CS problem into a normal l1-norm minimisation problem.
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In contrast, it is a common practice in the MRI experiment that a

pre-scan is to be performed before the actual experiment. This serves

many reasons, ranging from the machine calibration to the stabilisation

of the subject’s physiology. The ultimate fact is, there usually is redun-

dant information readily at hands prior to the experiment, which we can

employ as a initial reference volume.

In the strict application viewpoint, the use of pre-scan initial reference

might seem to defeat the goal of the compressive sensing fMRI, since the

complete information is required. It is worth noting that our goal here is

to improve the spatial-temporal resolution trade-off rather than to reduce

the resolution of the acquisition hardware. However, it is true that by

employing the pre-scan information as a reference, the implementation

complexity is increased—also increases is the complexity of experiment

design.

Figure 5.5–Figure 5.8 show the examples of the reconstructed data

using different types of the initial reference volume. In this test, apart

from the choice of V
(0)
r , all other parameters are fixed, namely, the V

(0)
r

reset is disabled (flag 0), no reference update over time (flag 0), and

the sampling rate is fixed at 30%. These examples show that when

using V
(0)
r = 0, essentially reconstructs the first volume using the l1-

norm minimisation, the noise-like reconstruction error of the l1-norm

minimisation is propagated over to all the subsequent reconstructions

of Referenced CS. This effect is more severe in the case of Referenced

CS/LS, as by using V
(0)
r = 0, the reconstruction problem effectively

turns into a regular least squares problem. It is, however, possible to use

Referenced CS exclusively to reconstruct the first volume using V
(0)
r =

0, followed by Referenced CS/LS for all other volumes. On the other
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(a) Lossless scan (b) RefCS reconstruc-

tion using V
(0)
r = 0

(c) RefCS/LS recon-

struction using V
(0)
r =

0

(d) RefCS reconstruc-

tion using V
(0)
r from

Pre-scan data

(e) RefCS/LS recon-

struction using V
(0)
r

from Pre-scan data

Figure 5.5: Examples of Dataset 1 reconstruction using Referenced CS
and Referenced CS/LS employing different strategies for Initial Reference

Volume V
(0)
r . DS1-30-000 (V

(0)
r = 0) and DS1-30-100 (V

(0)
r from pre-scan

data) are compressively sampled at 30.

182



(a) Lossless scan (b) RefCS reconstruc-

tion using V
(0)
r = 0

(c) RefCS/LS recon-

struction using V
(0)
r =

0

(d) RefCS reconstruc-

tion using V
(0)
r from

Pre-scan data

(e) RefCS/LS recon-

struction using V
(0)
r

from Pre-scan data

Figure 5.6: Examples of Dataset 2 reconstruction using Referenced CS
and Referenced CS/LS employing different strategies for Initial Reference

Volume V
(0)
r . DS2-30-000 (V

(0)
r = 0) and DS2-30-100 (V

(0)
r from pre-scan

data) are compressively sampled at 30.
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(a) Lossless scan (b) RefCS reconstruc-

tion using V
(0)
r = 0

(c) RefCS/LS recon-

struction using V
(0)
r =

0

(d) RefCS reconstruc-

tion using V
(0)
r from

Pre-scan data

(e) RefCS/LS recon-

struction using V
(0)
r

from Pre-scan data

Figure 5.7: Examples of Dataset 3 reconstruction using Referenced CS
and Referenced CS/LS employing different strategies for Initial Reference

Volume V
(0)
r . DS3-30-000 (V

(0)
r = 0) and DS3-30-100 (V

(0)
r from pre-scan

data) are compressively sampled at 30.
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(a) Lossless scan (b) RefCS reconstruc-

tion using V
(0)
r = 0

(c) RefCS/LS recon-

struction using V
(0)
r =

0

(d) RefCS reconstruc-

tion using V
(0)
r from

Pre-scan data

(e) RefCS/LS recon-

struction using V
(0)
r

from Pre-scan data

Figure 5.8: Examples of Dataset 4 reconstruction using Referenced CS
and Referenced CS/LS employing different strategies for Initial Reference

Volume V
(0)
r . DS4-30-000 (V

(0)
r = 0) and DS4-30-100 (V

(0)
r from pre-scan

data) are compressively sampled at 30.

Table 5.6: Average PSNR of reconstruction using different Initial Refer-
ence Volume V

(0)
r

Dataset
V

(0)
r = 0 pre-scan

RefCS RefCS/LS RefCS RefCS/LS
DS1 38.68 22.28 59.47 56.41
DS2 30.90 21.99 39.31 37.90
DS3 37.29 25.39 48.01 48.09
DS4 30.31 17.57 44.04 44.13

hand, when the pre-scan V
(0)
r is used, both the problem of initial error

propagation and the failure of Referenced CS/LS to reconstruct the first

volume are avoided. As a result, the subsequent reconstruction volumes

show a much less reconstruction error.

Table 5.6 shows the visual quality metric using the PSNR. Also Fig-

ure 5.9–Figure 5.12 show the variation of the PSNR across each dataset.

These results indeed verify the observation we got from the examples.

In general, the quality of the Initial Reference Volume acts as the upper
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Figure 5.9: PSNR variation across Dataset 1 showing the difference in
the choice of V

(0)
r

bound for all the subsequent reconstruction. Once V
(0)
r already suffers

from poor reconstruction quality, the entire series of data would suffer

also. Thus, it is mandatory to employ the V
(0)
r with the best quality

possible, which is the lossless pre-scan volume in the setting of the fMRI

experiment.

5.4.2 Study on the Initial Reference Reset

In this study, we compare several reset strategies for the reference volume

Vr. The strategies employed here are no reset (flag 0), reset a new V
(0)
r

at every period T (flag 1), at every T/2 (flag 2), at every T/4 (flag 4).

Specifically, in this experiment, T is chosen to be 20 for DS1, DS2, and

DS3, and 16 for DS4, in order to make a reset period T × TR to be

one minute, corresponding to the TR parameter of each dataset. All

other parameters are fixed throughout this study. The choice of Initial
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Figure 5.10: PSNR variation across Dataset 2 showing the difference in
the choice of V

(0)
r

Figure 5.11: PSNR variation across Dataset 3 showing the difference in
the choice of V

(0)
r
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Figure 5.12: PSNR variation across Dataset 4 showing the difference in
the choice of V

(0)
r

Reference Volume is set to be pre-scan (flag 1), with no the reference

update (flag 0), and the sampling rate at 30%.

Figure 5.13–Figure 5.16 show the examples of the reconstructed data

using different reset strategies. Table 5.7 and Figure 5.17–Figure 5.20

show the visual quality metric using PSNR.

The benefit of the reference reset can be seen clearly in Dataset 2

(Figure 5.18), Dataset 3 (Figure 5.19), and Dataset 4 (Figure 5.20). In

these datasets, there exist the sudden changes in the data due to the

physical—not related to the reconstruction operation—phenomena. The

source of these changes could be the movement of the subject in the scan-

ner or a sudden change of the haemodynamic process. In these datasets,

with the reset strategy for the reference, the quality of the reconstruction

can be recovered after every reset, providing a more robust and adapt-

able system. On the other hands, without the reference reset, once such

a change is experienced, the subsequent reconstructions suffer to the loss
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(a) Lossless scan

(b) RefCS with no re-
set

(c) RefCS/LS with no
reset

(d) RefCS with reset
at T

(e) RefCS/LS with re-
set at T

(f) RefCS with reset
at T/2

(g) RefCS/LS with
reset at T/2

(h) RefCS with reset
at T/4

(i) RefCS/LS with re-
set at T/4

Figure 5.13: Examples of Dataset 1 reconstruction using Referenced CS
and Referenced CS/LS employing different reset strategies for the Initial

Reference Volume V
(0)
r . DS1-30-30-100 (no reset), DS1-30-101 (reset

at T ), DS1-30-102 (reset at T/2), and DS1-30-103 (reset at T/4) are
compressively sampled at 30%.
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(a) Lossless scan

(b) RefCS with
no reset

(c) RefCS/LS
with no reset

(d) RefCS with
reset at T

(e) RefCS/LS
with reset at T

(f) RefCS with re-
set at T/2

(g) RefCS/LS
with reset at T/2

(h) RefCS with
reset at T/4

(i) RefCS/LS
with reset at T/4

Figure 5.14: Examples of Dataset 2 reconstruction using Referenced CS
and Referenced CS/LS employing different reset strategies for the Ini-

tial Reference Volume V
(0)
r . DS2-30-100 (no reset), DS2-30-101 (reset

at T ), DS2-30-102 (reset at T/2), and DS2-30-103 (reset at T/4) are
compressively sampled at 30%.
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(a) Lossless scan

(b) RefCS with
no reset

(c) RefCS/LS
with no reset

(d) RefCS with
reset at T

(e) RefCS/LS
with reset at T

(f) RefCS with re-
set at T/2

(g) RefCS/LS
with reset at T/2

(h) RefCS with
reset at T/4

(i) RefCS/LS
with reset at T/4

Figure 5.15: Examples of Dataset 3 reconstruction using Referenced CS
and Referenced CS/LS employing different reset strategies for the Ini-

tial Reference Volume V
(0)
r . DS3-30-100 (no reset), DS3-30-101 (reset

at T ), DS3-30-102 (reset at T/2), and DS3-30-103 (reset at T/4) are
compressively sampled at 30%.

191



(a) Lossless scan

(b) RefCS with no re-
set

(c) RefCS/LS with no
reset

(d) RefCS with reset
at T

(e) RefCS/LS with re-
set at T

(f) RefCS with reset
at T/2

(g) RefCS/LS with re-
set at T/2

(h) RefCS with reset
at T/4

(i) RefCS/LS with re-
set at T/4

Figure 5.16: Examples of Dataset 4 reconstruction using Referenced CS
and Referenced CS/LS employing different reset strategies for the Ini-

tial Reference Volume V
(0)
r . DS4-30-100 (no reset), DS4-30-101 (reset

at T ), DS4-30-102 (reset at T/2), and DS4-30-103 (reset at T/4) are
compressively sampled at 30%.
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Table 5.7: Average PSNR of reconstruction using different reset strate-
gies for Initial Reference Volume V

(0)
r

DS1 DS2 DS3 DS4

No reset
RefCS 59.47 39.31 48.01 44.04

RefCS/LS 56.41 37.90 48.09 44.13

Reset at T
RefCS 60.32 42.36 52.06 46.14

RefCS/LS 57.57 42.00 52.29 46.28

Reset at T/2
RefCS 60.29 42.99 52.40 46.31

RefCS/LS 57.63 42.86 52.61 46.49

Reset at T/4
RefCS 60.25 43.38 52.64 46.25

RefCS/LS 58.41 43.33 52.83 46.42

of quality. In this particularly important because, in the real fMRI ex-

periments, the first few volumes acquired are especially unstable due to

the physical limitation of the system.

5.4.3 Study on the Reference Update Strategy

In this study, we are going to compare between several update strategies

for the reference volume. Even though we have demonstrated in Chap-

ter 4 that the RGA with optimal learning parameter can provide a good

reference that negate the propagation of the reconstruction error in natu-

ral video sequences, its effect on the fMRI data is still uncertain. Because

the fMRI data can be viewed as a collection of temporally-sequenced

data, just like video sequences, it is trivial that the same reconstruction

error propagation problem exists in the fMRI data. The difference, how-

ever, is the different characteristics of the video sequence and fMRI. In

video sequences, the changes are typically spatially object displacements,

i.e., objects moving around the frame. In contrast, objects in the fMRI

data are mostly stationary, and movements are undesirable. Thus, the

changes in the fMRI data are typically magnitude-wise, very similar to

the video sequences with low-activity level.
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Figure 5.17: PSNR variation across Dataset 1 with different reset strate-
gies

Figure 5.18: PSNR variation across Dataset 2 with different reset strate-
gies
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Figure 5.19: PSNR variation across Dataset 3 with different reset strate-
gies

Figure 5.20: PSNR variation across Dataset 4 with different reset strate-
gies
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Table 5.8: Average PSNR of reconstruction using different reference up-
date strategies

DS1 DS2 DS3 DS4

No update
RefCS 60.2930 42.9933 52.4020 46.3077

RefCS/LS 57.6256 42.8647 52.6056 46.4855

Naive update
RefCS 59.0277 42.0219 51.3442 45.0733

RefCS/LS 57.6163 42.8528 52.6070 46.4753
RGA RefCS 60.3007 42.9970 52.4304 46.3288

with α = 0.1 RefCS/LS 57.5834 42.8516 52.6058 46.4726
RGA RefCS 60.1664 42.8420 52.4402 46.3275

with α = 0.3 RefCS/LS 57.6106 42.8589 52.6062 46.4772
RGA RefCS 60.4532 43.0626 52.4727 46.3965

with optimal α RefCS/LS 57.6224 42.8563 52.6074 46.4889

To study the reference update, here we compare the visual quality and

the activity map of reconstructed data obtained using different update

strategies. Figure shows the examples of the reconstructed data using

no update (V
(t)
r = V

(0)
r ) (flag 0), naive reference (V

(t)
r = V̂(t−1)) (flag 1),

and RGA-based reference (flag 2) with α = 0.1, 0.3, and the optimal α

presented in Section 4.1.3. Again, all other parameters are fixed; namely,

the choice of V
(0)
r is pre-scan, the reference is reset at every period T ,

and the sampling rate is 30% throughout. Examples of the results using

different update strategies are shown in Figure 5.21–Figure 5.24.

Table 5.8 and Figure 5.25–Figure 5.28 show the quality metric using

the PSNR. These results verify that the RGA-based reference with opti-

mal learning parameter indeed yields the best reconstruction quality. The

more interesting observation is that, in fact, any low-value fixed learning

parameter, such as α = 0.1 or α = 0 (no update), also yield good results

compared to the naive reference. The naive reference (where α = 1), also

known as the TCS, shows the worst performance among all the possible

strategies. This is following the result presented in Section 4.1.2 that the

small value of α gives a better performance than the large value of α.
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(a) RefCS with no up-
date

(b) RefCS with naive
update

(c) RefCS/LS with no
update

(d) RefCS/LS with
naive update

(e) RefCS with RGA,
α = 0.1

(f) RefCS with RGA,
α = 0.3

(g) RefCS with RGA,
optimal α

(h) RefCS/LS with
RGA, α = 0.1

(i) RefCS/LS with
RGA, α = 0.3

(j) RefCS/LS with
RGA, optimal α

Figure 5.21: Examples of Dataset 1 reconstruction using Referenced CS
and Referenced CS/LS employing different reference update strategies.
DS1-30-102 (no update), DS1-30-112 (naive update), DS1-30-122 (RGA
update with α = 0.1, 0.3, 0.5) are compressively sampled at 30%.
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(a) RefCS with no
update

(b) RefCS with
naive update

(c) RefCS/LS with
no update

(d) RefCS/LS with
naive update

(e) RefCS with
RGA, α = 0.1

(f) RefCS with
RGA, α = 0.3

(g) RefCS with
RGA, optimal α

(h) RefCS/LS with
RGA, α = 0.1

(i) RefCS/LS with
RGA, α = 0.3

(j) RefCS/LS with
RGA, optimal α

Figure 5.22: Examples of Dataset 2 reconstruction using Referenced CS
and Referenced CS/LS employing different reference update strategies.
DS2-30-102 (no update), DS2-30-112 (naive update), DS2-30-122 (RGA
update with α = 0.1, 0.3, 0.5) are compressively sampled at 30%.
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(a) RefCS with no
update

(b) RefCS with
naive update

(c) RefCS/LS with
no update

(d) RefCS/LS with
naive update

(e) RefCS with
RGA, α = 0.1

(f) RefCS with
RGA, α = 0.3

(g) RefCS with
RGA, optimal α

(h) RefCS/LS with
RGA, α = 0.1

(i) RefCS/LS with
RGA, α = 0.3

(j) RefCS/LS with
RGA, optimal α

Figure 5.23: Examples of Dataset 3 reconstruction using Referenced CS
and Referenced CS/LS employing different reference update strategies.
DS3-30-102 (no update), DS3-30-112 (naive update), DS3-30-122 (RGA
update with alpha = 0.1, 0.3, 0.5) are compressively sampled at 30%.
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(a) RefCS with no
update

(b) RefCS with
naive update

(c) RefCS/LS with
no update

(d) RefCS/LS with
naive update

(e) RefCS with
RGA, α = 0.1

(f) RefCS with
RGA, α = 0.3

(g) RefCS with
RGA, optimal α

(h) RefCS/LS with
RGA, α = 0.1

(i) RefCS/LS with
RGA, α = 0.3

(j) RefCS/LS with
RGA, optimal α

Figure 5.24: Examples of Dataset 4 reconstruction using Referenced CS
and Referenced CS/LS employing different reference update strategies.
DS4-30-102 (no update), DS4-30-112 (naive update), DS4-30-122 (RGA
update with alpha = 0.1, 0.3, 0.5) are compressively sampled at 30%.
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Figure 5.25: PSNR variation across Dataset 1 with different reference
update strategies

Figure 5.26: PSNR variation across Dataset 2 with different reference
update strategies
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Figure 5.27: PSNR variation across Dataset 3 with different reference
update strategies

Figure 5.28: PSNR variation across Dataset 4 with different reference
update strategies
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5.4.4 Comparison Between Reconstruction Strate-

gies

Now that we have identified the optimal parameters setting for the pro-

posed Referenced CS method, it is now possible to compare the perfor-

mance between Referenced CS and the traditional l1-norm minimisation

reconstruction. Specifically, both visual quality and the activity map are

to be compared with the reconstructed data using a) the l1-norm minimi-

sation, b) the l2-norm minimisation (the least squares), c) Referenced CS,

and d) Referenced CS/LS. The parameters for Referenced CS are fixed

throughout this study as the optimal parameters obtained from previous

studies. Not only several reconstruction strategies are employed, here

the reconstruction is also performed using several sampling rates, i.e.,

sampling rate s = 0.1 (10%), 0.3 (30%) and 0.5 (50%) are used.

Figure 5.29–Figure 5.32 display the examples of reconstructed data

using the l1-norm minimisation against Referenced CS at several sam-

pling rates. Subjectively, it is clear that the reconstruction quality of

the Referenced CS reconstruction results is far superior to the l1-norm

minimisation results as the absence of reconstruction error is obvious. In-

terestingly, while the results of the least squares are completely abysmal,

the results of Referenced CS/LS have good reconstruction quality, de-

spite the fact that it employs the similar linear reconstruction as the

least squares.

Objectively, Table 5.9 and Figure 5.33–Figure 5.36 verify the result

of subjective observation using the PSNR. Not only that Referenced CS

yields 2–3 times higher PSNR than the l1-norm minimisation, they also

show that, in general, the performance of Referenced CS/LS is compa-

rable to that of Referenced CS. It should be noted that these dramatic
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(a) l1-min at s = 0.1 (b) l1-min at s = 0.3 (c) l1-min at s = 0.5

(d) Least squares at
s = 0.1

(e) Least squares at
s = 0.3

(f) Least squares at
s = 0.5

(g) RefCS at s = 0.1 (h) RefCS at s = 0.3 (i) RefCS/LS at s =
0.5

(j) RefCS/LS at s =
0.1

(k) RefCS/LS at s =
0.3

(l) RefCS/LS at s =
0.5

Figure 5.29: Examples of Dataset 1 reconstruction using l1-norm min-
imisation, Least Squares, Referenced CS and Referenced CS/LS. The
reconstruction is done on the compressively sampled data using the sam-
pling rate of 10% (s = 0.1), 30% (s = 0.3), and 50% (s = 0.5).
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(a) l1-min at s = 0.1 (b) l1-min at s = 0.3 (c) l1-min at s = 0.5

(d) Least squares at
s = 0.1

(e) Least squares at
s = 0.3

(f) Least squares at s =
0.5

(g) RefCS at s = 0.1 (h) RefCS at s = 0.3 (i) RefCS/LS at s =
0.5

(j) RefCS/LS at s =
0.1

(k) RefCS/LS at s =
0.3

(l) RefCS/LS at s =
0.5

Figure 5.30: Examples of Dataset 2 reconstruction using l1-norm min-
imisation, Least Squares, Referenced CS and Referenced CS/LS. The
reconstruction is done on the compressively sampled data using the sam-
pling rate of 10% (s = 0.1), 30% (s = 0.3), and 50% (s = 0.5).
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(a) l1-min at s = 0.1 (b) l1-min at s = 0.3

(c) Least squares at
s = 0.1

(d) Least squares at
s = 0.3

(e) RefCS at s = 0.1 (f) RefCS at s = 0.3

(g) RefCS/LS at s =
0.1

(h) RefCS/LS at s =
0.3

Figure 5.31: Examples of Dataset 3 reconstruction using l1-norm min-
imisation, Least Squares, Referenced CS and Referenced CS/LS. The
reconstruction is done on the compressively sampled data using the sam-
pling rate of 10% (s = 0.1), and 30% (s = 0.3).
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(a) l1-min at s = 0.1 (b) l1-min at s = 0.3 (c) l1-min at s = 0.5

(d) Least squares at
s = 0.1

(e) Least squares at
s = 0.3

(f) Least squares at s =
0.5

(g) RefCS at s = 0.1 (h) RefCS at s = 0.3 (i) RefCS/LS at s =
0.5

(j) RefCS/LS at s =
0.1

(k) RefCS/LS at s =
0.3

(l) RefCS/LS at s =
0.5

Figure 5.32: Examples of Dataset 4 reconstruction using l1-norm min-
imisation, Least Squares, Referenced CS and Referenced CS/LS. The
reconstruction is done on the compressively sampled data using the sam-
pling rate of 10% (s = 0.1), 30% (s = 0.3), and 50% (s = 0.5).
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Table 5.9: Average PSNR of reconstruction using different reconstruction
algorithms

sampling rate s Algorithm DS1 DS2 DS3 DS4

0.1

l1-min 24.97 16.22 26.35 21.79
Least squares 20.67 20.53 24.09 16.03

RefCS 56.35 41.19 50.86 44.69
RefCS/LS 56.05 41.27 51.03 44.92

0.3

l1-min 25.56 24.94 34.86 26.03
Least squares 22.28 22.04 25.59 17.62

RefCS 60.14 42.85 52.25 46.11
RefCS/LS 57.60 42.86 52.60 46.48

0.5

l1-min 32.87 25.24 36.12 30.21
Least squares 23.96 23.61 26.11 19.18

RefCS 65.23 44.78 55.32 48.01
RefCS/LS 59.59 44.84 55.89 48.45

Figure 5.33: PSNR variation across Dataset 1 using different reconstruc-
tion strategies and sampling rate s
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Figure 5.34: PSNR variation across Dataset 2 using different reconstruc-
tion strategies and sampling rate s

Figure 5.35: PSNR variation across Dataset 3 using different reconstruc-
tion strategies and sampling rate s
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Figure 5.36: PSNR variation across Dataset 4 using different reconstruc-
tion strategies and sampling rate s

results require an accurate Initial Reference Volume V
(0)
r , such as the

lossless pre-scan V
(0)
r .

5.4.5 Comparison with Conventional Fast Acquisi-

tion Techniques

One of the biggest questions on the usefulness of the compressed sens-

ing fMRI is how it is compared to the fast acquisition techniques cur-

rently employed—such as EPI. One clear distinction between the com-

pressive sensing fMRI and EPI is their different goals. As discussed in

Section 2.1.3, EPI aims to improve the acquisition rate by sacrificing the

spatial resolution. In contrast, the goal of the compressed sensing fMRI

is to reconstruct the full resolution data, albeit with some reconstruc-

tion error, from the same amount of samples acquired by EPI. Thus,

this approach can be viewed as either the improved spatial resolution of
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the undersampled acquisition or the improved temporal resolution of the

full-size acquisition.

To verify this aim, this study compares the error of the compressed

sensing reconstructed data to the error of the low-resolution EPI data,

using the lossless data as the ground truth. Unfortunately, because we

have no opportunity to perform the experiment with live subjects in

a physical scanner, the EPI data used in this study are procedurally

generated from the test datasets.

Figure 5.37 compares the examples of data from the compressed sens-

ing reconstruction against the low-resolution data obtained using EPI,

where the number of K-Space sample in both cases are fixed at 30%. Un-

like in compressed sensing, in the case of EPI, the sampling rate is the

ratio between the area of acquired K-space to the area of total K-space.

From the results in Figure 5.37, it can be seen that the Referenced CS

results have better fine details. The sharpen edges in the Referenced

CS results can be observed quite clearly in Dataset 2 and Dataset 3.

This is to be expected because EPI data only contains the low frequency

coefficients of the K-Space, as opposed to the Referenced CS data that

contains the entire fully-reconstructed K-Space.

Objectively, Figure 5.38–Figure 5.41 show the PSNR across the entire

datasets. These figures show that, apart from some outliers, most of the

errors in Dataset 2 and Dataset 3 is due to sudden subject movements,

in which case Referenced CS yields higher PSNR than EPI. In this par-

ticular case of 30% sample, on average, Referenced CS and Referenced

CS/LS yield 10.3% and 9.6% more PSNR than EPI respectively.
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(a) DS1 EPI (b) DS1 RefCS (c) DS1 RefCS/LS

(d) DS2 EPI (e) DS2 RefCS (f) DS2 RefCS/LS

(g) DS3 EPI (h) DS3 RefCS (i) DS3 RefCS/LS

(j) DS4 EPI (k) DS4 RefCS (l) DS4 RefCS/LS

Figure 5.37: Examples of EPI result compared with the results of Ref-
erenced CS and Referenced CS/LS. All results shown are obtained from
30% of sample.
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Figure 5.38: PSNR variation across Dataset 1 using EPI, Referenced CS,
and Referenced CS/LS with sampling rate at 30%.

Figure 5.39: PSNR variation across Dataset 2 using EPI, Referenced CS,
and Referenced CS/LS with sampling rate at 30%.
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Figure 5.40: PSNR variation across Dataset 3 using EPI, Referenced CS,
and Referenced CS/LS with sampling rate at 30%.

Figure 5.41: PSNR variation across Dataset 4 using EPI, Referenced CS,
and Referenced CS/LS with sampling rate at 30%.
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5.5 Accuracy and Preservation of Clinical

Features

In this section, the reconstructed fMRI data is evaluated in terms of the

accuracy and preservation of clinical features, namely, the brain activity

map. One of the most common practices to obtain the brain activity map

is through the use of an analysis toolbox, such as SPM. In this study,

SPM12 is used as a primary analysis toolbox. Figure 5.42 and Figure 5.43

show the activity maps of Dataset 1 and Dataset2, respectively, obtained

using Referenced CS and Referenced CS/LS compared against the map

of the lossless data. The reconstructed data using the l1-norm minimisa-

tion and the least squares, unfortunately, fail completely to create their

resulting activity maps, and the attempt to do so are rejected by the

toolbox. These figures show that the activity maps obtained from Ref-

erenced CS and Referenced CS/LS contain the noise-like fluctuation due

to the reconstruction error. Despite this, it can be seen that the peak

spots (positive activity regions) are situated in the correct location. The

effect of these fluctuations is, in fact, small (less than 10%) compared to

the activity regions. In practice, a threshold is applied to these activity

maps according to the discretion of the experimenter.

To evaluate the accuracy of the clinical features based on the maps ob-

tained using a toolbox has a shortcoming, i.e., the resulting maps depend

heavily on the parameters and setting of the toolbox. These settings can

be varied according to the situation and discretion of the experimenter.

Also, it is possible that there exist some bias between the settings and

the acquisition method; for example, the setting which yields the best re-

sult for the low-resolution data but disregard high-frequency contents are
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(a) Lossless

(b) Referenced CS (c) Referenced CS/LS

Figure 5.42: The activity map of Dataset 1 obtained from SPM toolbox.
The data is reconstructed from 30% sample.

(a) Lossless

(b) Referenced CS (c) Referenced CS/LS

Figure 5.43: The activity map of Dataset 2 obtained from SPM toolbox.
The data is reconstructed from 30% sample.
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not suitable for the higher resolution acquisition method. Unfortunately,

the exact relationship between the setting and the acquisition method

are not included in this study due to the time constraint and requires

further study on the topic.

To avoid the above complication, the metric used in this study is

the normalised cross-correlation (NCC) of the voxel temporal signals. A

voxel temporal signal is a one-dimensional signal of the changing mag-

nitude of a voxel along the temporal axis. The voxel temporal magni-

tude signal v(i,j,k) at the position i, j of slice k is the magnitude of a

voxel v(i,j,k,t) ∈ V(t), for all t. Figure 5.44 shows the example of a voxel

temporal signal from the active region of Dataset 2. The normalised

cross-correlation C of the voxel temporal signals v1 and v2 is defined as

C(v1,v2) =
1

2

(v1 − µ11)T(v2 − µ21)

σ1σ2

, (5.6)

where n is the length of the signal v1 and v2, µ1, µ2 and σ1, σ2 are the

mean and the standard deviation of v1 and v2 respectively. The vector

1 is a vector of all 1s with length n.

Table 5.10 shows that, in 3 out of 4 datasets, the results of Refer-

enced CS/LS are comparable to the results of Referenced CS in terms

of preserving the temporal variation of the voxel magnitude. The results

of the l1-norm minimisation, on the other hand, largely fail to preserve

the voxel temporal signals especially at low sampling rates. Despite this,

the correlation between these reconstructed data and the lossless data is

admittedly very low. By observation, it is found that one of the biggest

sources of error is due to the loss of dynamic range in the low-frequency

component (Figure 5.45c). This error in the low frequency variation is

referred to as a baseline error. The next section addresses this issue
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(a) Lossless

(b) l1-min

(c) RefCS

(d) RefCS/LS

Figure 5.44: Examples of voxel temporal signal of an activated voxel.
This example shows the reconstructed data using sampling rate of 30%
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Table 5.10: Normalised Cross-correlation coefficient of fMRI data using
different reconstruction methods

Method Sampling NCC coefficient (%)
rate (%) DS1 DS2 DS3 DS4

RefCS
10 31.10 29.37 32.28 28.35
30 54.19 45.09 45.02 43.47
50 70.48 59.99 58.14 58.96

RefCS/LS
10 28.68 28.35 32.84 29.90
30 40.51 45.29 47.57 46.15
50 52.14 61.25 61.53 61.72

l1-min
10 14.52 11.52 8.57 8.24
30 26.13 24.09 19.36 22.09
50 35.24 36.77 46.10 33.75

LS
10 1.23 3.09 3.86 8.22
30 1.61 10.75 13.72 13.17
50 5.37 13.35 27.11 23.62

specifically and proposes several techniques to improve the correlation

between the reconstructed and lossless data further.

5.6 Baseline-independent Analysis of Com-

pressed sensing fMRI

The previous section has demonstrated that compressed sensing can be

used to obtain the fMRI data from the compressive measurements. Not

only it can reconstruct the visually resemble the fMRI data, but it is

also possible to perform clinical analysis—specifically to obtain the brain

activity map—on these reconstructed data.

The problem of the l1-norm minimisation reconstruction error which

affects the accuracy of analysis results has improved by the use of the

proposed Referenced CS. However, while the issue of error propagation

has been addressed by the introduction of RGA reference, it is found

that the fMRI data reconstructed using Referenced CS suffers the loss

219



of dynamic range. The magnitude of a single activated voxel over time,

shown in Figure 5.44, clearly demonstrates this phenomenon. In the

fMRI data, the main feature of interest, the haemodynamic response

function (HRF), lies in the high frequency variation of the signal, which

appears as the shape and the local relationship. While these features,

referred to as a voxel’s profile, are similar in all the shown signals, the

difference between each signal lies on its low frequency variation—the

baseline.

This section attempts to tackle this issue by using the baseline inde-

pendent (BI) analysis on these data. Because the loss of dynamic range

in the Referenced CS data is due to the use of the temporal informa-

tion which slows down the variation of the low frequency components,

BI analysis offers a way to remove this effect from the clinical analysis

results.

5.6.1 Methods and Formulations

In this work, assume that the fMRI data is composed of 2 components:

profile and baseline. The profile is primarily defined by the haemody-

namic response function, which directly corresponds to the stimuli pre-

sented to the brain. The profile presents itself as the high frequency

variation of fMRI data. The baseline, on the other hand, is governed by

other physical factors unrelated to the stimuli and presents itself as the

low frequency variation. The magnitude of the profile is relatively small

compared to the baseline function.

Let v denotes the signal of a voxel’s intensity over time. The signal

v can be modelled as

v = vb + vp + e, (5.7)
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where vb denotes the baseline signal, vp denotes the profile signal, and

e denotes the acquisition error. Also let v(t), v
(t)
b , v

(t)
p , and e(t) denote a

point on each signal v,vb,vp, and e at time t respectively. Because only

the profile vp is interested in, it is desirable to minimise the effects of the

baseline vb and the error e.

To remove the effect of the baseline, the first task is to estimate

the baseline signal vb. Unlike the profile, the baseline can be estimated

relatively easily. Here we consider several strategies for the baseline esti-

mation. Once the baseline is estimated, the baseline independent voxel

intensity signal v′ can be obtained by

v′ = v − vb. (5.8)

Low-pass filtering

A straightforward way to estimate the baseline is to view it as a regular

low-passed signal of v. This strategy is especially captivating if it is

assumed that the distribution of vp and e is identical and independent.

Under this assumption, the baseline can be estimated using various low-

pass filtering methods.

The most direct method is to apply a window function to v. Any

low-pass windows—such as Gaussian, Hamming, or Blackman—could

be used. Because window functions are applied globally, this method

of estimation does not perform well with signals containing multi-scale

features, as it risks incorporating large scale profiles into the estimation.

The more localised low-pass filtering can be achieved using the spatial

low-pass filtering such as the moving average filter. The k-point weighted
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moving average can be computed as

b(t) =

t+ k−1
2∑

i=t− k−1
2

w(i)v(i), (5.9)

where k is an odd integer and w(i) is the weight function.

Curve estimation

A more sophisticate way of estimating the baseline is to fit the baseline

function vb to the voxel signal v such that the error between vb and v is

minimised. Specifically, assume that the baseline function vb is a degree

n polynomial in the form of

v
(t)
b = an(x(t))n + an−1(x(t))n−1 + · · ·+ a1(x(t))1 + a0, (5.10)

where A = {a0, ..., an} are the coefficients of vb, the baseline function is

obtained from

vb = arg min
A
‖vb − v‖2. (5.11)

The solution of Eq. (5.11) can be solved using any optimisation tech-

niques.

The baseline estimated this way is a more “whole picture” approach

than the previous low-pass filtering approach. It works well to extract

the slowly changing nature of the baseline, without compromising the

high frequency information of the profile.

5.6.2 Simulation Results

Here, the proposed BI fMRI data are created by applying the baseline

estimation methods to the reconstructed fMRI data. The reconstructed
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Table 5.11: Average NCC coefficients in percentage (%) across all 4
datasets between reconstructed and lossless BI data using global filtering
estimation.

Method
Sampling Baseline- Baseline-independent
rate (%) dependent Gaussian Blackman

RefCS
0.1 30.27 30.69 31.16
0.3 46.94 47.63 48.71
0.5 61.89 62.78 64.14

RefCS/LS
0.1 29.94 34.31 34.49
0.3 44.88 52.09 52.32
0.5 59.16 66.81 67.05

l1-min
0.1 10.71 10.66 10.53
0.3 22.92 22.50 22.32
0.5 37.97 36.91 36.71

LS
0.1 4.10 4.22 4.17
0.3 9.81 10.04 9.98
0.5 17.36 17.53 17.46

data is the same set of data used in Section 5.5. The estimation of the

baseline are done using global filtering (Gaussian Window and Blackman

Window), Moving Average (5-point (5-pt MA) and 10-point (10-pt MA)),

and curve fitting (degree 1,2, and 3).

Figure 5.45 shows the examples of the baseline-independent activated

voxel, the same voxel shown in Figure 5.44. It can be seen that the

low frequency variation of the baseline is removed and that the voxel

temporal signal now contains only the profile, very small in magnitude

compared to the magnitude of the baseline-dependent version. It can

also be noticed that the dynamic range of all data is now in a much

closer range. Table 5.11–Table 5.13 show that the correlation between

the BI reconstructed data and BI lossless data improves greatly in the

case of Referenced CS and Referenced CS/LS data, compared to baseline-

dependent version. The use of BI analysis, however, does not benefit the

regular l1-norm minimisation and the least squares results.

Table 5.11 shows that by using the global filtering to estimate the
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(a) Lossless

(b) l1-min

(c) RefCS

(d) RefCS/LS

Figure 5.45: Examples of baseline-independent voxel temporal signal of
an activated voxel. This example shows the reconstructed data using
sampling rate of 30%. The baseline is estimated using Degree 2 Curve
Fitting.
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Table 5.12: Average NCC coefficients in percentage (%) across all 4
datasets between reconstructed and lossless BI data using moving average
estimation.

Method
Sampling Baseline- Baseline-independent
rate (%) dependent 5-pt MA 10-pt MA

RefCS
0.1 30.27 39.71 38.92
0.3 46.94 61.16 59.76
0.5 61.89 78.03 76.41

RefCS/LS
0.1 29.94 34.84 33.29
0.3 44.88 52.41 50.40
0.5 59.16 67.13 65.16

l1-min
0.1 10.71 11.16 11.43
0.3 22.92 22.56 21.92
0.5 37.97 36.23 35.48

LS
0.1 4.10 3.98 4.12
0.3 9.81 9.9 10.00
0.5 17.36 17.26 17.33

Table 5.13: Average NCC coefficients in percentage (%) across all 4
datasets between reconstructed and lossless BI data using curve fitting
estimation.

Method
Sampling Baseline- Baseline-independent
rate (%) dependent Degree 1 CF Degree 2 CF Degree 3 CF

RefCS
0.1 30.27 34.13 35.33 36.18
0.3 46.94 52.99 55.10 56.39
0.5 61.89 69.02 71.2 72.74

RefCS/LS
0.1 29.94 33.95 33.83 33.74
0.3 44.88 51.27 51.91 53.45
0.5 59.16 66.02 65.71 65.68

l1-min
0.1 10.71 10.85 10.83 10.83
0.3 22.92 22.40 22.17 22.10
0.5 37.97 36.22 35.98 35.86

LS
0.1 4.10 4.75 5.03 5.31
0.3 9.81 10.39 10.81 11.15
0.5 17.36 17.79 18.1 18.42
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baseline to create the BI data, the improvement of the NCC for the

Referenced CS results is mere ≈ 1% while the improvement of Referenced

CS/LS is at least 14 %. The moving average (Table 5.12), on the other

hand, shows the improvement of Referenced CS at least 25%, while the

improvement of Referenced CS/LS is at about 16%. Finally, the curve

fitting estimation (Table 5.13) shows the improvement of approximately

12% for both Referenced CS and Referenced CS/LS.

5.7 Summary

In this section, it has been shown that Referenced Compressed Sens-

ing can be applied to the fMRI data successfully. The various possible

settings for the compressed sensing fMRI environment are shown and

evaluated. The reconstructed fMRI data using Referenced CS and Ref-

erenced CS/LS—despite much less complexity—are shown to have much

better reconstruction quality than the data obtained using the l1-norm

minimisation method. It is also shown that it is possible to reconstruct

the brain activity map from the reconstructed data. However, to use the

method for medical purposes, the high amount of reconstruction accuracy

is essential. Despite being able to construct the brain activity map from

the Referenced CS data, the NCC coefficients of the reconstructed results

are yet to reach an acceptable margin. The baseline-independent analy-

sis of the data is also proposed to remedy the loss of dynamic range issue

suffered by Referenced CS reconstructed data, which improves the NCC

coefficient further. However, further improvements are needed before the

compressed sensing fMRI can be employed for any clinical purposes.
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Chapter 6

Conclusions

One of the biggest challenges of fMRI is the trade-off between the spatial

and temporal resolution of the data. The current fast acquisition tech-

nique employed in the fMRI experiments sacrifices the spatial resolution

in order to reduce the acquisition time required to acquire a large number

of brain image volumes. One of the approaches to improve this trade-off

is to incorporate the compressed sensing framework to the fMRI acquisi-

tion scheme. The main research question of this study, the possibility of

applying compressed sensing to the fMRI acquisition scheme, has been

thoroughly studied throughout this thesis.

In Chapter 2, it is shown that while the current acquisition tech-

nique has reached the maximum possible speed allowed by the physical

limitation of the MRI theory, it is possible to use the same amount of

sampled data to reconstruct the higher resolution data via compressed

sensing. For compressed sensing to success, it requires two parts: the

sensing operation and the reconstruction operation. This study focuses

on the reconstruction operation, as it is shown that despite there are

many works of literature present, there is clearly the lack of works on the

compressed sensing fMRI. As most state-of-the-art MRI reconstruction
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algorithms aim to reconstruct the data with high visual quality, which is

ideal for diagnosis, they do not focus on the accurate reconstruction of

each voxel which the fMRI studies heavily rely upon.

In Chapter 3, the novel compressed sensing reconstruction method has

been proposed. The method, named Referenced Compressed Sensing, ex-

ploits either the spatial or temporal redundancy between a signal and an

arbitrary reference. This method moves away from the general concept

of maximising sparsity, allowing novel reconstruction scenario unsuitable

for the traditional compressed sensing to be performed. It works espe-

cially well with spatio-temporal signals such as video sequences. In this

chapter, it is shown that, on average, the use of Referenced CS yields

at least 50% higher in terms of the PSNR when reconstructing video

sequences.

The performance of Referenced CS depends heavily on the quality of

the reference. When reconstructing video sequences, it is possible that

the reconstruction error of one frame will propagate into the reference and

get carried over to the next frame. To remedy this error propagation, the

reference estimation method based on the Running Gaussian Average is

proposed in Chapter 4. Also, one of the challenges of using compressed

sensing in practice is the computational complexity of its iterative re-

construction algorithms. Chapter 4 addressed this issue by introducing

the low complexity version of Referenced CS. The method, referred to

as Referenced CS/LS, relaxes the objective function of the Referenced

CS from the l1-norm to the l2-norm, essentially converts the problem

into the linear least squares approximation. While the traditional least

squares approximation fails to work with compressed sensing completely,

it is shown that, by exploiting the correlated reference, the Referenced
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CS/LS can yield the result comparable to the l1-norm minimisation with

at least 1200 times faster in computation time.

Finally, the proposed Referenced CS is applied to the fMRI data in

Chapter 5. There are many possible settings for a practical Referenced

CS-fMRI acquisition scheme. Chapter 5 explores these settings, including

the Initial Reference Volume, the reset strategy, and the update strat-

egy. The results of Referenced CS outperform the results of the l1-norm

minimisation vastly in terms of visual quality, with at least twice the

value of the PSNR. It also shows that, surprisingly, the visual quality

of Referenced CS/LS results are comparable to Referenced CS, despite

its much faster computational time. The reconstructed fMRI data has

much higher resolution than the conventional fast acquisition technique,

resulting in more detailed image data. On the other hand, while it is

possible to create the brain activity map from the reconstructed data

with accurate activity regions, the resulting map contains some amount

of noise due to the reconstruction error. One source of error is the loss

of dynamic range due to the use of Referenced CS. To tackle this issue,

Chapter 5 also suggested the use of baseline-independent analysis of the

fMRI data, where the error in the low frequency baseline is negated.

In conclusion, by employing compressed sensing to the fMRI acquisi-

tion scheme, it is possible to obtain high-resolution data with high visual

quality from a small amount of measurements. However, further devel-

opment is still needed to guarantee the complete accuracy of the activity

map created from the compressed sensing fMRI data.

229



6.1 Future works

This thesis has shown the proof-of-concept for the compressed sensing

fMRI. During this study, many possibilities for further investigation arise.

For any technique to be employed in the actual clinical use, it is

important that the technique is studied intensively and thoroughly. This,

too, applies to the proposed method in this thesis. It is beneficial to

evaluate the sensing operation and the proposed reconstruction operation

in the in vivo experiments, i.e., experiments involving live subjects.

A further research could be done in regards of the evaluation metric.

Global quality metrics commonly employed to evaluate the quality of

signals, such as Mean Squares Error and the PSNR, do not necessarily

match the subjective quality observed by human. This is the main moti-

vation behind many subjective-driven quality metric, such as the SSIM.

As the activity map is subjected to experimenters and neurologists pref-

erences and procedures, the only suitable way to evaluate the quality of

the activity map is by using subjective expert opinion. The same concept

of SSIM could be done for the fMRI data evaluation, i.e., an objective

metric that matches or represents the subjective quality as interested

by experts. Such a metric will focus more on high-level features, such

as the statistical changes in the signals, rather than just their absolute

magnitude.

The baseline-independent analysis and the baseline estimations can

be improved further upon. It is possible to use more advanced approxi-

mation techniques to separate the baseline from the features of interest.

The extraction of baseline signal from the features of interest is a prob-

lem of source separation and, as such, many techniques can be employed.

Some of these techniques, such as the Principal Components Analysis and
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Independent Component Analysis, are of special interest because these

techniques have already found their use in many conventional fMRI ex-

periments.

The most important parameter that affects the performance of Refer-

enced CS is the distance between the correlated reference r and the sparse

signal x. As such, a method that can blindly predict the reference dis-

tance can benefits Reference CS greatly. For example, one can use such

prediction to determine whether to reconstruct the signal using Refer-

enced CS or the conventional CS, which can be useful in many scenarios

such as when a video sequence has high amount of activity or consists

of scene changes. In other words, suppose that the reference distance

prediction is lower than a threshold, which means that the reference is

considerably different from the signal, the reconstruction can switch back

to the conventional CS reconstruction for better reconstruction accuracy.

This prediction is also useful to determine the efficient reference volume

reset in the compressed sensing fMRI system that is more adaptive to

changing conditions than the fixed period resets studied in this thesis.

One potential technique to predict the reference distance could be discov-

ered by studying the relationship between the compressed measurements

y = Φx and yr = Φr in more details.

The reconstruction based on Referenced CS can be greatly benefited

from many advanced concepts in image and video coding. As shown in

Section 3.5.2, Referenced CS can also work with the spatial redundancy

in the signal. The intra coding concepts employed in latest video coding

technique can be used as a way to exploit such spatial redundancy. Sim-

ilarly, the temporal redundancy can be enhanced by using the motion

estimation techniques. In general, it is possible for many techniques em-
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ployed in the latest video coding standard, such as High Efficiency Video

Coding, to be incorporated into the framework of Referenced CS.

Finally, the computational complexity is the biggest challenge of

the successful compressed sensing fMRI application. While Referenced

CS/LS proposed in this study provides a remedy to this issue, but as

shown in Section 4.2.3 and Section 5.5, the reconstruction based on the

l1-norm can often yield superior reconstruction accuracy. A fast algo-

rithm for l1-norm-based iterative reconstruction methods will be of great

benefit to both this specific application and compressed sensing applica-

tion in the wider field. One possible way to improve the complexity of

the iterative algorithms is to reduce the size of the signals. As shown

in Section 4.2.1, the computational time is proportional to the length of

the signal. Thus, by reducing the signal into a set of smaller signal, the

iterative algorithms can be accelerated.
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