
Opinion Analysis through Constraint Optimisation

Suraj Jung Pandey

Department of Computer Science

University of York

A dissertation submitted for the degree

MSc by Research

January 2011

Abstract

Opinion lexicon plays a vital role in sentiment classification. A previous

study shows that a compositional model can be effective in sentiment clas-

sification. But such a model has been only applied using hand-crafted com-

position rules. The need for hand-crafted rules arise when dealing with

conflicting polarity values within the same phrase. In this thesis, we show

that an alternative is to employ a weighted polarity lexicon. There are sev-

eral key advantages of a weighted polarity lexicon. Firstly, compositionality

rules simply become linear sums without requiring conflict resolution rules.

Secondly, a weighted polarity lexicon can be automatically learnt from re-

view data using constraint optimisation. Thirdly, instead of providing just

a binary positive or negative output, our model can be used to provide a

graded overall sentiment. Our experiments show that our model provides

state-of-the-art opinion classification.

2

Contents

1 Introduction 11

1.1 Scope . 11

1.2 Motivation . 12

1.3 Thesis Aims . 13

1.3.1 Thesis Contribution 13

1.4 Related Work and Background 14

1.4.1 Opinion Lexicon . 15

1.4.2 Target Extraction . 16

1.4.3 Opinion Classification 18

1.4.4 Linear programming/ Constraint optimisation/ Con-

straint Solver . 19

1.5 Conclusions . 21

2 Acquiring A Weighted Opinion Lexicon through Constraint

Optimisation 23

2.1 Introduction . 23

2.2 Simple Compositional Model [19] 26

2.3 Weighted Additive Compositional Model 27

2.4 Equation Construction . 29

2.4.1 Baseline (MinErr) . 31

2.4.2 Force zeroes (MinErrFZ) 32

2.4.3 Conflict Resolution (MinErrFZCR) 33

2.5 Experiments . 35

2.5.1 Evaluation . 37

2.6 Related Work . 43

2.7 Conclusions . 45

3

4 CONTENTS

3 Multi-class and Features Related Opinion Classification 46

3.1 Introduction . 46

3.2 Motivation for using Mixed Linear Programming 49

3.3 Multi-class opinion classification 50

3.3.1 Experimental Settings 51

3.3.2 Evaluation . 55

3.3.3 Related Work . 57

3.3.4 Conclusions . 57

3.4 Features-related opinion classification 58

3.4.1 Target Extraction . 59

3.4.2 Opinion words extraction 59

3.4.3 Extracting subjective expressions unique to each feature 60

3.4.4 Experiments . 70

3.4.5 Evaluation . 72

3.4.6 Related Work . 73

3.4.7 Conclusions . 75

4 Feature Exploration for Sentiment Classification 77

4.1 Introduction . 77

4.2 Background . 80

4.2.1 Word sub-sequences 80

4.2.2 Mining Frequent Sub-sequence Patterns 83

4.2.3 Feature Selection . 84

4.3 Experiments . 86

4.3.1 Data Set . 86

4.3.2 Feature Extraction . 86

4.3.3 Results . 90

4.4 Related Work . 92

4.5 Conclusions . 94

5 Target Extraction 96

5.1 Introduction . 96

5.2 Main Concept . 97

5.2.1 Log-Likelihood . 98

5.2.2 Filter . 100

5.3 Experiments . 101

5.3.1 Data Set . 101

CONTENTS 5

5.3.2 Result . 102

5.4 Related Work . 104

5.5 Application . 106

6 Conclusions and Directions for Future Work 107

6.1 Summary of Results and Contribution 108

6.1.1 Weighted Opinion Lexicon 108

6.1.2 Linear Sum for Opinion Classification 108

6.1.3 Need for Multi-class Opinion Classification 108

6.1.4 Fine-grained subjectivity by exploiting opinion targets

and opinion words relations 109

6.2 Directions for Future Work 109

List of Figures

1.1 Graph plot of equations in Example 1.2 20

2.1 Partial and complete parse tree of Example 2.2[19] 26

2.2 Distribution of opinion words in the generated lexicon. The

x-axis corresponds to the polarity and the y-axis corresponds

to the total number of words. 36

3.1 Star scale along y-axis . 52

3.2 40% coverage for +50 and -50 54

3.3 Propagation of polarity in a sentence 63

4.1 Word sub-sequences of sentence, “The movie Avatar has a

great story” . 79

4.2 Word sub-sequences and n-gram patterns of the sentence “The

actors in the movie are brilliant” 80

4.3 SVM hyperplane and normal 85

4.4 Parsed sentence highlighting the SBAR tag 88

6

List of Tables

2.1 Parts of Speech tags removed from the review 29

2.2 Conflict resolution rules. 33

2.3 Number of positive, negative and neutral words in each setting. 35

2.4 Top 10 positive, negative and neutral opinion words learnt in

each setting . 37

2.5 Polarity statistics of the adjectives from the dataset 37

2.6 Positive and negative adjectives extracted from the algorithm 38

2.7 Precision and recall for positive and negative adjectives ex-

tracted . 38

2.8 Sample lexicon generated using MinErrFZCR along with their

polarity values. 39

2.9 Accuracy scores on opinion classification. 40

2.10 Accuracy for opinion classification using SVM. 40

2.11 Sample lexicon generated using LL along with their polarity

values. 42

2.12 Accuracy scores on opinion classification for the movie review

dataset. 43

2.13 Accuracy before and after feature selection 43

3.1 Accuracy for additive model 55

3.2 Accuracy for SVM . 56

3.3 Syntactic relation with {feature, opinion} pair 65

3.4 Feature table with unique subjective sentence for each feature 69

3.5 Number of positive and negative reviews 71

3.6 Number of positive and negative words extracted by Min-

ErrFZCR . 71

3.7 Sample positive and negative words extracted by MinErrFZCR 71

7

8 LIST OF TABLES

3.8 Accuracy for correctly identifying positive and negative features 72

4.1 All the possible sub-sequences of the sentence The actors in

the movie are brilliant . 82

4.2 Part of the speech tags removed from the review 86

4.3 The clauses extracted by using SBAR as pivot 89

4.4 Sample 15 frequent sub-sequences extracted from dataset . . 90

4.5 Accuracy obtained on each feature type 90

4.6 Accuracy obtained on the same dataset by different authors . 91

4.7 Accuracy before and after feature selection 91

4.8 Top 15 weighted unigram features 93

5.1 Review sentences and potential non-common targets 98

5.2 The contingency table to calculate LL ratio. Here, C[i,j] de-

notes the count of the number of times j occurs in i. Total

corpus size is N=7851. 99

5.3 Top 15 words extracted for each category. 100

5.4 Corpus Statistics . 101

5.5 Precision obtained in each dataset by LL method 102

5.6 Precision obtained in each dataset by Liu et al. 102

5.7 Corpus statistics of the camera 103

5.8 Top 15 target extracted from combined Camera dataset . . . 104

Acknowledgements

Firstly I would like to thank my supervisor Suresh Manandhar. He has been

a great source of encouragement. His advices and assistance always got me

back on the track whenever I was confused and astray. He has been a great

source of inspiration for me.

A special thanks goes to Shailesh Pandey who initially helped me a lot to

adjust in England and also recommended many valuable papers to read. He

showed great enthusiasm and interest to answer any of my questions.

I owe a great deal to my friends at York. Particularly Matt Naylor who

along with making my stay in York very pleasant also helped me a lot with

Latex codes. Suresh Katwal, my friend from Nepal always made me smile

with his phone calls.

Finally supporting me always although far was my family, Dad, Mum, Nisha

and Jyoti.

9

Declaration

I hereby declare that I composed this thesis entirely myself and it describes

my own research.

Suraj Jung Pandey

University of York

10

Chapter 1

Introduction

Sentiment Analysis (SA) is primarily the extraction and identification of at-

titude towards something in a text. Attitude may be anger, love, happiness,

resentment, hate etc and something can be anything from a presidential

candidate to a product like a TV, item of clothing, a nail, a movie, a book,

an article etc. Sentiment Analysis is also synonymously known as affect

extraction, opinion mining and subjectivity analysis. In its most basic form

SA task is to classify a given text into a positive or a negative sentiment.

For example, “This is an excellent camera” provides positive sentiment and

“His actions were appalling” provides negative sentiment.

1.1 Scope

Due to the availability of huge volumes of online information, the opinion of

the general public has become a major concern [23]1. For example, people

could check the different opinions of the voters before voting or see the

reviews and opinions of a product before buying it. Opinions are even more

important to the product manufacturer. A politician may want to know

what people think about him, so that he knows what he can do to increase

his popularity. A manufacturer could want to know consumers’ opinions

about their product so they can improve it accordingly. Online discussion

1The author shows a survey demonstrating how the availability of online reviews has
bolstered people’s decisions; Page 1.

11

12 CHAPTER 1. INTRODUCTION

forums could use SA techniques to track the sentiment of its users over a

certain time period or even to track inflammatory messages.

1.2 Motivation

Sentiment analysis involves steps that include 1) identifying the sentiment-

bearing sentences or phrases, 2) classifying them according to the sentiment

they possess and finally 3) combining these to generate an overall sentiment

of the text. Each individual step is a challenge in itself [1, 10, 15, 24, 33,

35, 38]. Many phrases will have a different sentiment depending upon the

context, e.g. unpredictable may be a bad review for car steering but a good

review for a movie [32]. Extracting sentiment-bearing sentences will mainly

depend on the presence of sentiment-bearing words, but this is not always

the case. For example, “President of National Environment Trust” has no

sentiment even with the presence of the word trust [35]. Even after successful

completion of these steps, computing the final overall sentiment of a text is

also not straightforward. As shown in [24], generating the overall sentiment

is not as simple as summing and averaging the constituent sentiments of the

text.

Example 1.1

This film should be brilliant. It sounds like a great plot, the

actors are first grade, and the supporting cast is good as well, and

Stallone is attempting to deliver a good performance. However,

it can’t hold up.

What overall sentiment should we assign to Example 1.1? One could argue

that with all the positive words present, the review is a positive one. Alter-

natively, one could argue the final sentence is negative, thus it is a negative

review. Therefore, SA is both complex, requiring multiple steps, and also

challenging, since each step is hard.

1.3. THESIS AIMS 13

1.3 Thesis Aims

The principal aim of this thesis is to provide a solution towards weighing each

individual sentence and individual words with a polarity value. Associating

polarity values with individual words results in a weighted opinion lexicon.

This can in turn be used to provide a weighted polarity value to each review.

With a weighted opinion lexicon we could classify the review in Example 1.1

as 3 star, where 5 star is the most positive and 1 star is the least positive. We

aim to produce a complete sentiment analysis system with opinion lexicon,

target lexicon, and an effective classifier that can exploit such a lexicon to

classify the sentiment of the review text.

1.3.1 Thesis Contribution

The specific contribution of this thesis can be summarised as follows:

1. The thesis develops a new additive compositional model for opinion

classification. The model consists of a weighted opinion lexicon that

can be learnt from data. The additive model classifies the opinion-

ated text through linear sum of the opinion value of words in the

text. Accuracy obtained by the additive model is in par with current

state-of-the-art supervised methods. This is a significant contribution

because previously opinion classification through linear sum of con-

stituent opinion words was considered incorrect. This is due to the

fact that the opinion lexicon used was not weighted, but each word in

the lexicon will have three values namely positive, negative and neu-

tral. A linear sum with such lexicons can lead to incorrect decisions

[19].

This thesis shows that by using a weighted lexicon a linear additive

model can be used for opinion classification.

2. The thesis explores the use of the compositional nature of the opin-

ion text for both opinion classification and opinion lexicon extraction.

Although the compositional nature of opinion text has been exploited

quite successfully by [19], the model depends heavily on a pre-acquired

opinion lexicon and hand-crafted rules for classification.

14 CHAPTER 1. INTRODUCTION

Firstly, we provide a fully automatic method for acquiring a weighted

lexicon from data through constraint optimisation with compositional

additive constraints. We then use this lexicon for opinion classification

with an additive model. Secondly, we provide an effective way of

incorporating the prior knowledge of the domain during the learning

phase.

3. The thesis explains an easy-to-implement association-based approach

to acquire targets (topics on which an opinion is expressed e.g. camera)

of opinions from review topics. The method is fully unsupervised and

does not require any prior knowledge on reviews and targets. Our

method is based on the observation that words have either strong or

weak association to different topics. The approach is very simplistic,

it is efficient compared to manual labeling of the targets in the review

and easier compared to the hand-crafted rules as our method does not

require any domain knowledge. The targets acquired from the reviews

can be used for fine-grained sentiment analysis.

4. We investigated different features used by supervised opinion classi-

fication system. This led us to acquire effective features for opinion

classification. The thesis utilises a feature selection technique to form

a commendable set of features for opinion classification without using

any prior domain knowledge. This is an important contribution as the

accuracy obtained using our set of features is highest among all the

other supervised classification algorithms on the same dataset.

5. The thesis provides a systematic algorithm to acquire unit clauses

which expresses opinion towards a single feature. This is a significant

contribution as our algorithm can provide detailed opinion on multiple

features of any product.

1.4 Related Work and Background

This section consists a brief discussion of the previous literature relating to

the areas covered in this thesis. All individual chapters also include a more

in-depth related work discussion.

1.4. RELATED WORK AND BACKGROUND 15

1.4.1 Opinion Lexicon

A common approach to sentiment analysis is to use a lexicon with infor-

mation about the polarity of the words. The compilation of such lexicons

involves the task of classifying sentiment-bearing words or phrases into ei-

ther a positive sentiment or negative sentiment. This task is difficult in itself,

as pointed out by Wilson et al. [35], where the author showed the effect that

context/topic will have on specifying the sentiment of given phrases.

Different approaches are taken to annotate phrases with polarity. The ap-

proaches vary from manual annotation [36] to various forms of automatic

annotation. Most of the earlier work on automatic annotation for senti-

ment polarity have has been based on word association [20, 32]. In Turney’s

[32] work, similarity, Pointwise Mutual Information (PMI) between phrase

and words “excellent” and “poor” was calculated by issuing queries to a web

search engine and then counting the number of hits the phrase + seed-words

get. Based on this concept the Semantic Orientation (SO) of the phrase was

calculated using the formula:

SO(phrase) = log2

[
hits(phrase Near ”excellent”) hits(”poor”)

hits(phrase Near ”poor”) hits(”excellent”)

]
A positive SO value means that the phrase is semantically closer to the word

“excellent”, thus is a positive sentiment. Similarly, negative SO means the

phrase has a negative sentiment. The results obtained were impressive, e.g.

“Low fees, SO=0.333, and “unethical practices”, SO=-8.484 but they would

fail in cases where the context senses different semantics to the phrases, e.g.

“Lesser evil”, SO=-2.288.

To overcome this problem Wilson et al. [35] manually annotated a Multi

Purpose Question Answering (MPQA) corpus with contextual polarity and

trained classifiers like SVM, Ripper etc on it using different features. For

example in the sentence, “They have not succeeded, and will never succeed

(positive), in breaking the will of this valiant people“, the feature will be

the negative phrase breaking the will along with the polarity shifter phrase

will never succeed. The polarity shifter will contribute towards making the

sentiment of the sentence positive. The result was a classifier which could

determine the polarity of the phrase with 71.6% accuracy (SVM). But then

this approach would require huge amount of manually tagged data to work

16 CHAPTER 1. INTRODUCTION

reliably.

WordNet glosses have been used successfully to derive sentiment lexicon

[1, 9, 10]. Esuli et al. [10] used WordNet synset and gloss to form SentiWord-

Net. Their semi-supervised approach to building a lexicon involved seed

positive and negative polarity WordNet synset. Then iteratively, synsets

connected with other synsets by WordNet’s also-see relation were given the

same polarity and opposite polarity were given to the synsets connected by

direct antonymy relation. Vectors for input to classifier were formed by in-

dexing the synset with its gloss, which represents the semantics in textual

form. The classifier was learned with these vectors, then the trained clas-

sifier was applied to all of the vector representations of WordNet synset,

thus producing “Sentiment classification of the whole WordNet”. But the

evaluation of SentiWordNet remains incomplete since author did not have

any baseline approach for comparing the results.

1.4.2 Target Extraction

Target extraction or opinion feature mining from an opinionated text is

an integral part of an opinion analysis system. Opinion targets are pri-

marily used for detecting subjective sentences and for fine-grained feature-

specific opinion analysis. Target extraction for opinion analysis has been

done mainly through the following approaches:

Manual target extraction

In most of the opinion analysis systems, targets are assumed to be limited,

i.e. the features that are reviewed are in few numbers and can be provided

by the manufacturers for any kind of analysis. This can be true to some

extent but [13] shows some of the irregularities that might occur when using

the target lexicon provided by the manufacturer. For example, the customer

may not use the same word for a certain feature as used by the manufacturer.

Pre-defined feature list can be expanded using Wikipedia’s category sys-

tem2[11]. The category tree specifies the named entity such as product

2http://en.wikipedia.org/wiki/Portal:Contents/Categorical index

1.4. RELATED WORK AND BACKGROUND 17

names, proper names and brand names. Most of the time these entities are

the targets of the review text.

Target extraction based on bootstrapping

Most of the time targets in an opinion review are considered to be nouns or

noun phrases. Lui et al. [39] use an information extraction method to mine

product targets and an opinion lexicon together. The Double Propagation

approach is based on the fact that the opinion targets are modified by mod

relation as given by the dependency parser. They use an initial opinion

lexicon and target lexicon to search through the dataset to identify such

a relation. The bootstrapping process continues until no further opinion

words or targets are found. The targets extracted in this case are all nouns

or noun phrases.

Yi and Niblack [37] used three different relations with respect to the topic

of the review and feature, these relations are:

• a part of a relation with the given topic

• an attribute relationship with the given topic

• an attribute relation with a known feature of given the topic

After extracting such phrases only those are selected which have the gram-

matical constructs as: { “NN”; “NN NN”; “NN NN NN”; “JJ NN”; “JJ

NN NN”; “JJ JJ NN”}. For all the candidate phrases a log-likelihood score

−2logλ is calculated. From the sorted list thus acquired, the only phrases

considered as features are those which lie above a threshold margin.

Target extraction based on statistical measures

Hu and Liu [13] identify the targets from a review text, first by extracting all

the nouns and noun phrases from the text and then by using the association

mining rule [2]. The association mining rule can be considered as a frequent

phrases mining algorithm, where the phrases which occur at least equal to

a certain threshold are termed as frequent.

18 CHAPTER 1. INTRODUCTION

Another such approach is one used by Liu et al. [17] to develop a system

called OPINE. OPINE first extracts noun phrases from the reviews and

retains only those with frequency greater than a certain threshold. Then, it

evaluates each noun phrases by computing the Pointwise Mutual Information

(PMI) score between the phrases and meronymy discriminators associated

with the product. Only those noun phrases were extracted as features whose

PMI score was greater than a certain threshold.

1.4.3 Opinion Classification

Features used

The presence and the frequency of sentiment-bearing phrases are the key fea-

tures used for generating the overall sentiment[24]. Subjectivity is always a

prominent feature to extract sentiment [20, 21, 36]. Objective sentences can

be misguiding and should be avoided. For example the objective sentence,

“The protagonist tries to protect her good name” has the word “good” but

does not portray any sentiment towards the topic(in this case a movie), so

such sentences should be excluded.

Context can change the overall sentiment of a phrase. For example in the

sentence, “They have not succeeded, and will never succeed, in breaking the

will of this valiant people”, even with the presence of negative sentiment

phrases the sentence shows a positive sentiment. Detecting and classifying

contexts has been done by machine learning [35] or by just using bigrams

[32].

Negation reverses the sentiment polarity. For example, in the phrase He

is not good, the word “not“ reverses the polarity of “good“. Adverbs are

a good source for increasing or decreasing the intensity of sentiment. For

example in the sentence, The concert was thoroughly enjoyable, the adverb

“thoroughly” increases the effect of “enjoyable“ and should not be disre-

garded during sentiment summarisation. Benamara et al. [4] proved the

effect of adverbs by stating “ Adverbs are better than Adjectives alone”.

The presence of lexicon which mentions the polarity of subjective expression

has resulted in increasing the accuracy of sentiment summarisation [29, 6].

1.4. RELATED WORK AND BACKGROUND 19

1.4.4 Linear programming/ Constraint optimisation/ Con-

straint Solver

Linear Programming (LP) is defined as the method of solving linear equal-

ities or inequalities for its optimal value, where optimality is defined under

certain criteria. Formerly, LP is defined as the problem of maximising or

minimising a linear objective function subject to linear constraints, where

constraints are linear equalities or inequalities. Mathematically, LP is writ-

ten as:

Minimise or Maximise : c1x1 + c2x2 +cnxn

Subject to : a11x1 + a12x2 +a1nxn ∼ b1
a21x1 + a22x2+.....a2nxn ∼ b2

.

.

.

.

am1x1 + am2x2+.....amnxn ∼ bm

with bounds : l1 ≤ x1 ≤ u1.....ln ≤ xn ≤ un

where the symbol ∼ may be any of the symbols from the set [≤,≥, <,>,=]

and the lower bound variable l and upper bound variable u can be any value

from positive infinity to negative infinity or any real number. Also in the

above equations:

c1...cn is optimisation coefficient

x1...xn is unknown variables

a11...amn is constraint coefficient

b1...bm is the right hand side of the constraint equation

To see how a linear equation works consider a simple example:

Example 1.2

Minimise or Maximise : x1 + x2

20 CHAPTER 1. INTRODUCTION

Figure 1.1: Graph plot of equations in Example 1.2

Subject to : x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

with bounds : x1 ≥ 0, x2 ≥ 0

The equations in Example 1.2 contains two unknown variables, thus we can

solve them by plotting a graph for all the constraints as shown in Figure

1.1. Once the graph is plotted we can search the co-ordinate that maximises

the objective function in the solution plane. Each constraint forms a plane

on either side of the line obtained from its equation. The bound equation

limits the plane to positive axes. The solution plane is the region where

all planes of constraints intersect. It is shown in Figure 1.1 by the shaded

region. The shaded region has five corners, the objective function being

linear and the solution set being bounded, it is always the case that the

minimum and maximum value will occur at one of these corners. We can

see that the objective function is constant at slope -1, as we can write the

objective function as equality x1 = −x2. So, if we draw a line with slope

1.5. CONCLUSIONS 21

-1 and start moving it from the origin to the rightmost part of the solution

region (as we are maximising the objective function), we will see that the

maximum value for the objective function is attained at the intersection of

lines x1 + 2x2 ≤ 4 and 4x1 + 2x2 ≤ 12. The value for x1 is 8/3 and the value

for x2 is 2/3 thus the value for objective function x1 +x2 is 8/3+2/3=10/3.

For this study we use CPLEX solver 3. The software is free to use for

academic purposes. We fed the above example to the solver and it took 0.06

seconds to solve the problem and the following result was obtained:

Objective value : 3.33e+00

Variable Name Solution Value

x1 2.66

x2 0.66

CPLEX not only solves linear programs but also also mixed linear programs.

A mixed linear program is a problem when either constraints or the opti-

misation equation are not linear. This property is essential to our study

because we have non-linearity in our optimisation equation. All the equa-

tions described later in this report follow the general convention of writing

a constraint programming problem as described above.

1.5 Conclusions

In the above sections we discussed various approaches for solving different

aspects of sentiment analysis. The above sections shows that opinion lexi-

cons are important for the opinion classification task. In this thesis we aim

to provide a single model which can solve both the opinion lexicon extraction

and opinion classification task. In addition to this we also aim to investigate

other aspects of opinion analysis. We aim to provide a statistical approach

to solve the opinion target extraction problem and see how it compares to

the rule-based target extraction algorithm. We discussed various features

that are used for opinion classification task but few are learned from the

data itself. Most of the features are derived from prior knowledge. In this

thesis we aim to investigate the usefulness of the features learnt from the

opinion data itself.

3http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

22 CHAPTER 1. INTRODUCTION

Our aim is to investigate each above discussed aspect of opinion analysis

and provide simple but effective directions on solving each problem.

Chapter 2

Acquiring Weighted Opinion

Lexicon through Constraint

Optimisation

2.1 Introduction

A common approach in sentiment analysis is to use an opinion lexicon con-

taining the polarity of the words. For example, a simple opinion lexicon can

be represented as:

good : positive

bad : negative

great : positive

One simple method to infer the polarity of opinionated text is by considering

the presence of words from the opinion lexicon. For example, the clause “a

very good movie” will be positive but the clause “a bad movie” will be

negative and a clause like “a movie” will be neutral provided both “a” and

“movie” are not present in the opinion lexicon. Many effective sentiment

analysis systems are based on using an opinion lexicon [7, 19, 26].

The task of opinion lexicon building can be divided into two coarse sub-

tasks: 1) to identify the opinionated words, and 2) to identify the polarity of

the opinionated words. Both of these tasks can be challenging. One obvious

approach for the solution of the first task is to select all the adjectives from

23

24 CHAPTER 2. WEIGHTED OPINION LEXICON

the text. However, this is not always true. For example, words like “boring”

(verb), “lack” (noun), “enjoy” (verb) and “love” (noun/verb). are highly

opinionated and not adjectives. Similarly, not all the nouns and verbs are

opinionated.

The task of identifying the polarity of the opinionated words is also chal-

lenging since the polarity of many words is highly domain dependent. For

example, “unpredictable” in “the movie was very unpredictable” implies a

positive review. On the other hand, in “the steering is very unpredictable”,

“unpredictable” implies a negative review. This property of the opinionated

words rules out a general lexicon for all domains.

Also an opinionated word cannot simply be positive or negative, some are

less positive/negative than others.

Example 2.1

1. “The product has value”
2. “disappointed in its value”

From sentence 1 in Example 2.1 it is easy to make out that “value” is an

opinionated word and in this case is positive. Sentence 2 has two words

which define the opinion of the whole sentence. Thus, both of these words,

“disappointed” and “value”, are opinionated. Sentence 2 implies negativity

towards the product. However, one or both of these opinionated words in

sentence 2 must be negative for the sentence to be negative. In sentence

1, “value” is already regarded as a positive word, thus for sentence 2 to

be negative, “disappointed” should have the property to negate the positive

opinion of the word “value”.

Thus, an opinion lexicon should be weighted such that a word like “disap-

pointed” is more negative than the absolute weight of a word like “value”.

The weighted lexicon may be the following:

good : +10

bad : -10

great : +10

disapointed : -4

The use of compositionality for sentiment analysis is well explained in [19].

Apart from this paper, there is hardly any other published work on exploit-

2.1. INTRODUCTION 25

ing the compositional nature of opinion-bearing sentences. For example,

suppose we have a lexicon as {“value=+1”;“disappointed=-4”}, then for

sentence 1 in Example 2.1 polarity is equal to +1 and for sentence 2 in

Example 2.1 it is −4 + (+1) = −3. This shows the additive nature of the

sentiment-bearing phrases. It also implies that not all the words in the clause

contribute to its overall polarity; we conveniently left out the, product, has,

in and its from the calculation. At this point we have to point out that our

work does not directly handle the negative and the positive polarity shifters

[35]. For example, words like “little” can in some cases completely reverse

the polarity of the sentence and in other cases can reduce/increase its po-

larity strength. For example, “value′′[+]; “little value′′[−], “criticism′′[−];

“little criticism′′[less negative]. Handling of such polarity shifters for now is

left as future work; intuitively a bigram lexicon might be effective for such

cases.

In this chapter we propose an effective way of generating a domain-dependent

weighted opinion lexicon through exploitation of the compositional nature of

the opinion clauses by modeling the opinion text as a constraint optimisation

problem.

Our work further explores the compositional nature of the opinionated text

previously explained by [19] and owes a lot to their work.

We begin by describing how the compositional nature of the opinionated text

can be used to accurately classify the opinion expressed by such texts. We

then propose an additive compositional model which extends the previous

compositional model capable of identifying polarity in binary form (positive

and negative) by also providing a score for each opinionated text along with

the polarity value.

We then show how such scores for the opinionated text on the training

data can in turn be used to generate a weighted opinion lexicon and claim

that such a lexicon in conjunction with an additive model can identify the

polarity in a fully automatic setting as compared to the compositional model

proposed in [19].

We then convert the opinionated text of the form {star rating, text} into

a set of linear equations. Inspired by the effective use of the constraint

programming in the natural language task by [28], we solve the linear equa-

26 CHAPTER 2. WEIGHTED OPINION LEXICON

tions through the constraint optimisation. We describe a baseline model,

primarily based on the error minimisation for each equation.

We then show how prior knowledge on opinionated text can be seamlessly

integrated in our baseline model to further generate newer models more con-

sistent with the nature shown by the opinionated text. We go on to prove

that our additive model works accurately to identify the polarity of the

opinionated text through evaluations and comparison with SVM, a popular

classifier for the opinion classification task. The results obtained are promis-

ing and open gateways for other opinion analysis tasks such as multi-class

opinion classification.

2.2 Simple Compositional Model [19]

Example 2.2

“The senators supporting[+] the leader[+] failed[−] to praise[+] his

hopeless[−] HIV [−] prevention program.”

Example 2.2has 3 positive and 3 negative words, thus counting just the

positive and the negative words would fail to recognise the negative opin-

ion of the whole sentence. Figure 2.1 shows the compositional solution to

NP
(-)

Subj-Det:NP Head:Nom
(-)

Mod:Adj Head:Nom
(+)

Mod:Nom
(+)

Head:N

Head:N

his
(=)

hopeless
(-)

Mod:N Head:N

HIV
(-)

prevention
(¬)

program
(=)

(a) Object Noun Phrase 1

NP
(+)

Det:Det Head:Nom
(+)

Head:N Comp:VP
(+)

Comp:NP
(+)

The
(=)

senators
(=)

Det:Det Head:N

the
(=)

leader
(+)

Head:V

supporting
(+)

(b) Object Noun Phrase 2

S
(-1)

Comp:NP
(+2)

Head:VP
(-3)

Head:V Comp:VP
(+1)

Head:VGrp
(+3)

Comp:NP
(-2)

The
sentors
supporti
ng the
leader

failed
(-4)

Mod:TO Head:V

to
(0)

praise
(+3)

His
hopeless
HIV
preventi
on
program

(c) Sentence

Figure 2.1: Partial and complete parse tree of Example 2.2[19]

sentence 1. The compositionality (⊕) is defined as {[+] ⊕ [=] → [+]};
{[-] ⊕ [=] → [-]}; {[+] ⊕ [¬] → [-]}; {[-] ⊕ [¬] → [+]} for the non-

2.3. WEIGHTED ADDITIVE COMPOSITIONAL MODEL 27

conflicting polarities. If we have a conflicting composition like {[+]⊕ [-]}
the decision is taken based on the conflict resolution rules.

Figures 2.1a and 2.1b show the object Noun Phrases (NP) of Example 2.2.

From Figure 2.1a we can see that the negative sentiment of HIV is reversed

by ¬prevention. The resulting positive sentiment propagates upwards, un-

affected by the neutral sentiment of the word program. A conflict occurs

when compared with the negative sentiment of hopeless but the dominance

of pre-modifiers in this syntactic situation resolves the conflict and propa-

gates the negative sentiment henceforth. Finally, the neutral sentiment of

his means that the global sentiment of the whole NP will be negative. In a

similar manner we can deduce the global polarity of the NP shown in Figure

2.1b to be positive.

Now, after we combine the two noun phrases and the remaining part of the

sentence to form a complete sentence as shown in the Figure 2.1c, the NP

[his hopeless HIV prevention program](−) is reversed when it is combined

with a verb group outputting positivity ([to praise](+)). The resultant (+)

VP undergoes a polarity reversal through ¬failed, yielding a (-) VP ([failed

to praise his hopeless HIV prevention program](−)). Lastly, the (+) subject

NP combines with the (-) predicate, while the polarity conflict is resolved

by choosing the polarity of dominant the constituent. The global polarity

of the sentence will then be negative.

2.3 Weighted Additive Compositional Model

If we maintain a weighted opinion lexicon then the compositional solution

proposed by [19] with a non-weighted lexicon can be solved through an

additive compositional model. For example, assume the following weighted

lexicon:

hopeless -3 supporting +1 praise +3

HIV -1 leader +1

prevention +2 failed -4

28 CHAPTER 2. WEIGHTED OPINION LEXICON

The overall sentiment of Example 2.2can therefore be derived as follows:

his(0) + hopeless(−3) +HIV (−1) + prevention(+2) + program(0) = −2

and

The(0) + senator(0) + supporting(+1) + the(0) + leader(+1) = +2

thus,

(+2) + failed(−4) + to(0) + praise(+3) + (−2) = −1

We can see that through a weighted lexicon we can correctly predict the

polarity of each of the noun phrases and finally the polarity of the sentence.

The manual identification of the dominant constituent for the conflict reso-

lution described in [19] becomes a default case with such a weighted lexicon.

For example, the compositional solution of (hopeless−⊕(program+HIV +

Prevention)+)− was based on the pre-assumed fact that the syntactic con-

struct of hopeless dominates the syntactic construct of [program+HIV +

Prevention]. Once we have a weighted lexicon we do not have to make such

an assumption; we can see that the negative weight of hopeless cancelled the

positive effect of its adjacent construct to give an overall negative opinion.

We can also observe this problem from another point of view. We have

established that a weighted lexicon in conjunction with an additive model

can provide an overall polarity score for a text. Following this statement

we can say that the reverse of this must also be true, i.e. if a text has a

polarity scored assigned to it, then the score is the additive solution of the

score of the constituent words in the text. For example, if the review texts

are represented as:

his+ hopeless+HIV + prevention+ program = −2

and

The+ senator + supporting + the+ leader = +2

thus,

NP2 + failed+ to+ praise+NP1 = −1

The scores on the right-hand side must come from the score of each word

on the left hand-side. Thus, by representing texts by linear sum and solving

those equations, we can learn the weight of the constituent words in the

text.

2.4. EQUATION CONSTRUCTION 29

POS tag Examples POS tag Examples

AUX do, done, have, is NNPS Americans

CC and, both, either PDT all, both, half

CD 0.5, 1 POS ”s

DT all, an, the PRP hers, herself, him

EX there PRP$ her, his, mine

FW jeux RP along, across

IN astride, among, whether SYM &

LS DS-400, second TO to
NNP Ranzer WDT that, what, which

Table 2.1: Parts of Speech tags removed from the review

There are two key advantages of this simple additive model:

1. The sentiment lexicon can be learnt from reviews

2. The overall score assigned to a sentiment text shows the degree to

which the polarity is positive or negative.

The focus of this chapter is primarily 1. and although it is clear that our

model provides 2. we leave the full evaluation for this as future work.

2.4 Equation Construction

We assume that for training our model, reviews for the given domain are

available. Each review is of the form {star rating, review text}, where the

star rating represents the polarity ranking of the review, star rating 1 being

negative and star rating 5 being positive.

Example 2.3

1. 5 : I would highly recommend this book.

2. 1 : I was disappointed with this book.

Review 1 has star rating 5, thus it is a positive review. Review 2 has

star rating 1, thus review 2 is a negative review. Before converting these

reviews into equations, the review text is passed through various filters. We

30 CHAPTER 2. WEIGHTED OPINION LEXICON

used TextCat1 to remove all non-English text. All the punctuation symbols

were removed from the data. We used a morphological analyser and each

word was replaced to its base form. For example, “disappointed” will be

converted into “disappoint”. Words with a certain part of speech that bears

no sentiment, for example personal pronouns, were also removed from the

text. Table 2.1 shows the full list of parts of speech tags which bear no

sentiment. Finally, words were converted to lowercase.

Example 2.4 Sample review dataset after pre-processing

1. 5 : would highly recommend book

2. 1 : be disappoint book.

If each word type in a text is represented by xi and star rating 1 is rep-

resented as -5 and star rating 5 as +5, then, following the discussion in

Section 2.3, the additive model of Example 2.4 will be:

xwould + xhighly + xrecommend + xbook = 5

xbe + xdisappoint + xbook = −5

If we solve these equations simultaneously, one possible solution is:

0 + 2 + 3 + 0 = 5

0− 5 + 0 = −5

yielding a lexicon {xwould = 0; xhighly = 2; xrecommend = 3; xdisappoint =

−5}. Words that occur frequently in positive reviews are positive in na-

ture and vice-versa. Also words that occur frequently in both positive and

negative reviews tend to be neutral, for example “book” in the above case.

Thus representing reviews as additive equations provides a mechanism to

generate a weighted lexicon. We can observe from this example that not

all the words in the opinionated text have certain values. Some words are

neutral and their value should be set to zero.

In a bag-of-words representation, each dictionary word is represented by a

variable xi and the {star rating, review text} pair is represented by the

equation:
n∑
i=1

xi = s

1http://www.let.rug.nl/~vannoord/TextCat/

2.4. EQUATION CONSTRUCTION 31

where s represents the star rating.

As the input is noisy, when the number of variables and the number of equa-

tions both increase, a solution to the set of equations cannot be found. To

overcome this problem, we introduce an error variable Et for each equation.

Following this formulation our example equations will be of the form:

xwould + xhighly + xrecommend + xbook − 5 = E1

xbe + xdisappoint + xbook + 5 = E2

Thus our equation can be re-written as:

n∑
i=1

xi − s = Ek

When a perfect solution is achieved, values of all the error variables will

be zero. With this basic setup we build three different models to solve the

opinion lexicon acquisition problem.

2.4.1 Baseline (MinErr)

We have established our basic form of the equation and also found out that

the optimum solution desired is the one where all the error values are set to

zero. Thus, the problem can be viewed as a minimisation problem, where

the aim will be to minimise the sum of all the error variables.

Let {(X1, S1)....(XR, SR)} denote the set of {review, star rating} pairs.

Each Xi is a bag-of-words {xi1,xi|Xi|}. Multiple instances of the same

word share the same variable in the equations. Thus our baseline model

which minimises the error in each equation (MinErr) will be:

Minimise:
R∑
k=1

|Ek|

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

32 CHAPTER 2. WEIGHTED OPINION LEXICON

with bounds :

−10 ≤ xki ≤ +10 : ∀k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤ |Xk|

−100 ≤ Ek ≤ +100 : ∀k 1 ≤ k ≤ R

where, −10 for xki represents the highest weighted negative po-

larity and +10 represents the highest weighted positive polarity,

and the range for Ek represents the allowed error range for each

equation.

To balance the number of words in each review we set the value of “s” for

the review with star rating 1 as -100 and for the review with star rating 5

we set it +100. Minimising the absolute value of E causes X to be as close

as possible to its respective S value. The baseline model is purely based on

the classical solution for the collection of linear equations where the aim is

to minimise the error. This equation holds true for any graded text. Further

models proposed in this chapter are more native to the characteristics of the

opinionated text.

2.4.2 Force zeroes (MinErrFZ)

Following the discussion in Section 2.1 and Section 2.3, it is desirable that

most of the words in the text have a value zero. Only a small number of

words show sentiment and only they decide on the global polarity of the

sentence. Thus we need to incorporate this prior knowledge into our model.

This can be achieved by introducing a squared loss function.

Minimise:
R∑
k=1

|Ek|+
|Xk|∑
i=1

(xi)
2

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

with bounds :

−10 ≤ xki ≤ +10 : ∀k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤ |Xk|

2.4. EQUATION CONSTRUCTION 33

Dependency triples Rules Example

amod(arg1, arg2) |arg2| > |arg1|, if and only if arg1 is NN “trivial problem”

advmod(arg1, arg2) |arg2| > |arg1|, if and only if arg1 is NN or RB “decreasingly happy”

pobj(arg1, arg2) |arg1| > |arg2|, if and only if arg2 is NN “against racism”

Table 2.2: Conflict resolution rules.

−100 ≤ Ek ≤ +100 : ∀k 1 ≤ k ≤ R

The squared loss
∑|Xk|
i=1 (xi)

2 forces the values of most variables to be close

or equal to zero.

2.4.3 Conflict Resolution (MinErrFZCR)

In [19] approach, conflict resolution is a method dealing with the case

when two adjacent words have different polarities. The decision is taken

on the basis of the parts of speech of competing words. For example, in

Example 2.2([Mod : Adj]hopeless− ⊕ [Head : Nom]((program + HIV +

Prevention))+)−, overall negative polarity is chosen since adjectives are

considered more opinionated than the nominal phrase [4].

Such linguistic knowledge can be easily incorporated into our model to fur-

ther improve the quality of the learnt lexicon. Table 2.2 shows some of the

conflict resolution rules in terms of dependency2 triples. Following [19] we

only consider dependency triples of the form modifier(arg1, arg2). Con-

flict resolution imposes a stronger constraint that states that when conflicts

arise in certain modifier(arg1, agr2) constructions it is a priori the case that

|arg1| > |arg2| when the modifier is pobj and |arg2| > |arg1| when the mod-

ifier is either amod or advmod. Rules in Table 2.2 are too general and are

only intended to be applicable when two competing words have opposite po-

larities. Thus, when we have a neutral construction such as “financial hub”

with the dependency relation amod (hub, financial), generating a constraint

such as xfinancial > xhub does not make any sense.

To overcome this problem we implement conflict resolution as a two-step

process. First we parse the full review text to generate a dependency parse

of the review. Next, for all amod(xa, xb), advmod(xa, xb) and pobj(xb, xa)

2The dependency parser used in this case is Stanford’s dependency parser3, and all the
abbreviations have their usual meaning.

34 CHAPTER 2. WEIGHTED OPINION LEXICON

relations, we employ the MinErrFZ model to find out the polarities of xa

and xb. Then, whenever sign(xa) 6= sign(xb) we add a new constraint

|xb| > |xa|.

Algorithm 1

1. L = learn an opinion lexicon through MinErrFZ

2. R = dependency relations for confict resolution like

advmod,pobj etc.

3. D = dependency parse the dataset

4. C = constraint of form arg2 > arg1, initially null

5. for each dependency triples in D

6. Sel_D=select dependency triple which are in R

7. for each dependency triple in Sel_D

8. apply opinion to argument from L

9. if sign of arg2 is not equal to sign of arg1

10. add constraint arg2 > agr1 to C

Algorithm 1 describes the selection method for a conflicting pair.

The new minimisation model obtained will thus be:

Minimise:
R∑
k=1

|Ek|+
|Xk|∑
i=1

(xi)
2

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

and

|xb| > |xa| for each conflicting pair (xa, xb)

with bounds :

−10 ≤ xki ≤ +10 : ∀k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤ |Xk|

−100 ≤ Ek ≤ +100 : ∀k 1 ≤ k ≤ R

where a and b are the indices of selected words.

2.5. EXPERIMENTS 35

Setting Positive Negative Neutral

MinErr 1195 881 0

MinErrFZ 328 136 1612

MinErrFZCR 540 360 1176

Table 2.3: Number of positive, negative and neutral words in each setting.

The added constraint |xb| > |xa| adds prior knowledge about the

opinionated text into our model.

2.5 Experiments

For all the experiments shown here we used the Multi-Domain Sentiment

Dataset4 that contains product reviews taken from Amazon.com. We chose

book reviews for our experiment. All the reviews in the dataset have a

helpfulness ranking. This score shows whether the review written is liked

by the reader or not. This counts the number of “likes” and “dislikes”

posted by the reader for reviews. A review with its number of “likes” set at

zero is generally spam. These are the reviews which provide no significant

information and sometimes are even misleading. For example, a review

which was read by 11 people and none of them liked it has a sentence ‘“I did

not like the book because it’s a country book”. The sentence is very misleading

since books have genres, and to point out that one does not like the book

because it is a “country book“ is an improper review. Thus such reviews

are filtered in the initial phase. From the remaining reviews we extracted

1000 reviews with star rating 1 as negative reviews and 1000 reviews with

star rating 5 as positive reviews. All the experiments were conducted using

the ILOG cplex solver5.

Table 2.3 shows the distribution within the generated lexicons from each

model. We can see that MinErr generates no neutral words, i.e. all the words

are labelled as either positive or negative. The distribution of the lexicon

value generated by MinErr as shown in Figure 2.2a shows a high percentage

region around zero (but no actual zeroes) and a fairly flat distribution.

4http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
5http://www-01.ibm.com/software/integration/

optimisation/cplex-optimizer/

36 CHAPTER 2. WEIGHTED OPINION LEXICON

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

(a) MinErr

0

0.05

0.1

0.15

0.2

0.25

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

(b) MinErrFZ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

(c) MinErrFZCR

Figure 2.2: Distribution of opinion words in the generated lexicon. The
x-axis corresponds to the polarity and the y-axis corresponds to the total
number of words.

MinErrRZ generates the highest proportion of neutral words and adding

conflict resolution decreases the number of neutral words. The distribution

diagram reflects the nature of our models. MinErr was about minimising

the equation error, thus the optimal solution was more concerned with error

value than the actual value of the words. This is the reason we did not get

any zeroes as expected (since opinionated text has many neutral words) from

MinErr. But the distribution shows a clear high percentage data around

zero, thus even though there were no actual zeroes, the high percentage of

data around zero supports our claim about the nature of opinionated text

and in turn shows that linear additive equations can model opinionated text.

The squared loss function forced most of the words to attain a zero value

and finally the MinErrFZCR with the conflict rules reduced the number of

zeroes or neutral variables. The effectiveness of each model can be further

seen in the evaluation section (2.5.1).

We can observe that the number of positive opinion words is higher than

negative opinion words. This is due to the fact that people tend to express

negative opinion in most cases by actually negating the positive word rather

than using the negative words itself. For example, using “not impressive”

instead of “unimpressive”.

Some of the constraints added by MinErrFZCR are

• frustrating > reading

• useless > joke

• terrible > book

2.5. EXPERIMENTS 37

MinErr MinErrFZ MinErrFZCR

Positive Negative Neutral Positive Negative Neutral Positive Negative Neutral

skill website love disappoint french clear disappoint website
dedicate gross highly nothing dozen love poor sticker
2nd disappoint wonderful bad please fun bad future
carefully dry life instead conclusion highly poorly sister
stream worthless good poorly publish favourite completely teaching
thank error recommend however book wonderful useless relation
concisely file read money review life disappointing turner
nicely sorry must poor someone excellent error collect
warm cent excellent useless pics great boring desk
essential difficult easy little people easy little version

Table 2.4: Top 10 positive, negative and neutral opinion words learnt in
each setting

Polarity Count Examples

Positive 134 reliable; commercial; nice; apprehensive

Negative 91 implausible; long; unglorified; incorrect

Table 2.5: Polarity statistics of the adjectives from the dataset

• outdated > information

Table 2.4 shows the top 10 ranked positive and negative words along with

the neutral words in each setting. The neutral column for MinErr is empty

because no neutral words, or words with a value exactly zero, were gen-

erated in MinErr. The ordering of some of the words are changed when

comparing MinErr with MinErrFZ. For example, in a positive column of

MinErrFZCR, words like clear, great, favourite are introduced in the top 10

which are clearly missing in MinErr. For a book review, all of these words

are significant for a positive review. Similarly in the negative column of

MinErrFZCR, words like error and boring have made their way to the top

10. These words are absent from the top 10 in MinErrFZ. Also, the word

useless has gone up the ranks in MinErrFZCR as compared to MinErrFZ.

2.5.1 Evaluation

Precision-Recall

The first part of the experiment is the evaluation of the lexicon extracted

in terms of precision and recall. To carry out this experiment we extracted

the sentiment-bearing word from the dataset. Adjectives are considered to

be highly opinionated and thus we only extracted adjectives from the data

38 CHAPTER 2. WEIGHTED OPINION LEXICON

Negative Positive

stupid nice
confusing good
horrible ultimate
same open
useless spiritual
difficult comprehensive
disappointing terrific
online worth
real serious
obvious wonderful
free cool
basic glad
outdated essential

Table 2.6: Positive and negative adjectives extracted from the algorithm

Polarity Precision Recall

Positive 0.95 0.52

Negative 0.85 0.33

Table 2.7: Precision and recall for positive and negative adjectives extracted

set. The adjectives are manually annotated 6 with the polarity based on the

context that they are used. Table 2.5 shows the count for both positive and

negative adjectives in the dataset.

The lexicon generated from each setting namely MinErr, MinErrFZ and

MinErrFZCR, contains words which are adjectives along with words which

have other parts of speech. For this experiment we chose to use the lexi-

con generated from MinErrFZCR. From all the positive and negative words

generated by MinErrFZCR we only extracted those words which are adjec-

tives. Table 2.6 lists some of the adjectives that are selected from the whole

lexicon.

The precision and recall for the extracted adjectives is shown in Table 2.7.

The precision for both the positive and negative adjectives is very high.

This shows that our method works well to extract the correct opinion for

the words. However, on the other hand the recall is low. The low recall is

6The annotation was done by a single person; a better approach would be to use two
annotators and compute the agreement between them.

2.5. EXPERIMENTS 39

Positive Value Negative Value

clear 10 disappoint -10
love 10 poor -10
fun 10 bad -10
highly 10 poorly -10
informative 7.49 completely -10
unique 6.98 outdated -7.67
depth 6.91 return -6.67
nicely 5.14 similar -4.93
intermediate 3.45 repeat -3.93
colorful 3 sleep -3

Table 2.8: Sample lexicon generated using MinErrFZCR along with their
polarity values.

due to the less frequent occurrence of the annotated words in the data set.

Experiments showed that words like “satanic”, “blatant”, “unabridged” and

many others were used just once in the dataset. Our algorithm performs

poorly when the words are used infrequently in the dataset. Most of the time

such words are coined as neutral by our algorithm. Also we have to keep in

mind that these are just the adjective part of our whole lexicon. The lexicon

contains other words which are not adjectives but are still highly opinion-

ated. Even though the recall for the adjective is very low, the high precision

obtained for all the extracted adjectives and the significant percentage of

non-adjectives in the lexicon proves that our algorithm works significantly

well to extract opinionated words from the text.

Accuracy

The next part of the evaluation is based on polarity detection using our

generated lexicon.Accuracy measures the total number of reviews correctly

identified by using the generated lexicon in an additive compositional model.

We used 10-fold cross validation with the dataset for evaluation.

We follow the same pre-processing steps as during training to generate the

bag-of-words corresponding to each review. We then take a test review,

replace the words with their respective value (zero value assigned for un-

known words) from the learnt opinion lexicon and add them. If the sum

results in a negative value then the review is deemed negative, but if the

40 CHAPTER 2. WEIGHTED OPINION LEXICON

Setting Positive Negative Overall

MinErr 83.7% 80.5% 82.1%

MinErrFZ 90.6% 71% 80.8%

MinErrFZCR 88.2% 87.6% 87.9%

Table 2.9: Accuracy scores on opinion classification.

Features Positive Negative Overall

a) All words 88.45% 84.67% 86.56%

b) Top ranked features by SVM 90.76% 86.14% 88.45%

c) Positive and negative terms
generated by MinErrFZCR

91.86% 89.54% 90.70%

Table 2.10: Accuracy for opinion classification using SVM.

sum results in a positive value then the review is deemed positive. For

example, the sentence “This book was totally disjointed” will have values,

this(0), book(0), was(0), totally(−3.00),

disjointed(−3.39), resulting in the equation:

0 + 0 + 0− 3.00− 3.39 = −6.39

Thus we will classify the above sentence as negative.

Table 2.9 shows the accuracy obtained by each setting on the test set. The

high accuracy on MinErr supports our initial claim that opinionated text is

compositional, and an additive model works well for classifying opinionated

text.

From Table 2.9, we also observe that for MinErrFZ there is a major dip in

accuracy in negative text. This is due to the fact that MinErrFZ is more

biased towards positive text. We can see from Table 2.3 that among all

the three settings MinErrFZ has the highest positive-to-negative ratio, 2.4

compared to 1.3 and 1.5 of MinErr and MinErrFZ, respectively. Among

the three settings MinErrFZCR has the highest average accuracy of 87.9%.

This is a clear improvement over our baseline accuracy of 82.1% and is

highly statistically significant (p < 0.01, paired t-test). This shows that the

automatic method of resolving the conflict in the opinion text worked very

well to increase the accuracy of the system.

2.5. EXPERIMENTS 41

Next we ran an SVM7 on the same dataset (prepared following the same

pre-processing steps described in 2.4) with unigram as a feature. On the test

set, using the SVM resulted in 86.56% accuracy. The accuracy obtained by

our best-performing system is slightly higher than the accuracy obtained by

SVM (however, this is not statistically significant).

Next, to test the effectiveness of the lexicon obtained by our method, we

compared it with the lexicon obtained by SVM. To extract the lexicon learnt

by the SVM we used a feature selection method to extract top-weighted un-

igrams [14]. We extracted the top-ranked unigrams from the SVM classifier

trained on the training dataset. Then the SVM was trained again using just

the extracted features on the same training dataset.

Also a separate SVM was trained by using only a lexicon generated by

MinErrFZCR. The idea behind this setting is that this would reveal the

effectiveness of our lexicon when compared to features selected by SVM.

Following this setting, we can see from Table 2.10 that the accuracy obtained

by SVM trained on a lexicon generated by MinErrFZCR is higher and is

statistically significant (p < 0.05, paired t-test) than that obtained by SVM

trained on a lexicon generated by SVM itself. Thus we can say that our

method of opinion lexicon generation works significantly well.

To show that the constraint optimisation model adds value when compared

with the less expensive methods, we performed a baseline experiment using

association-based method. The idea behind this method is to generate words

which are highly associated with either positive reviews or negative reviews.

Using the association method we can also generate weight of the association.

Thus, two separate lexicons will result, one containing words with positive

polarity and the other containing words with negative polarity. We used the

Log-Likelihood (LL) method on our training dataset (prepared following the

same pre-processing steps described in 2.4) with a unigram as a feature. The

data preparation, the motivation and the formulas to implement LL method

are described in detail in Chapter 5.

Table 2.11 shows the positive and negative words generated from the LL

method. For each word in the lexicon appearing in both the positive and

the negative lists, a choice is made to remove it from one of the lists. The

7http://www.csie.ntu.edu.tw/~cjlin/libsvm/

42 CHAPTER 2. WEIGHTED OPINION LEXICON

Positive Value Negative Value

great +79387.09 not -79336.56
easy +79390.89 money -79360.95
do +79401.71 waste -79373.34
no +79403.9 disappoint -79405.2
content +79407.5 poorly -79415.32
must +79409 disappointment -79417.44
excellent +79409.42 instead -79417.68
nothing +79411.07 error -79418.85
love +79412.19 useless -79418.85
read +79416.15 enjoy -79420.49

Table 2.11: Sample lexicon generated using LL along with their polarity
values.

choice is based on the index (a highly associated word gets 1 and so forth)

and the weight assigned to the word. Priority is given to the index rather

than the weight. If both the index and the weight for the word appearing in

both the lexicon are the same, then the word is termed neutral and assigned

weight 0. The sign(+/-) for all the words in the positive lexicon is assigned

“+” and “-” for the words in the negative lexicon. Applying the LL lexicon

to the additive model classified the test set into positive and negative re-

views with 63.5% accuracy. The accuracy obtained is significantly less than

the accuracy achieved by the baseline method (MinErr). Therefore, we can

claim that the constraint optimisation method is more suitable for gener-

ating opinion lexicons than the association method. Thus, the additional

resources requirement for implementing a constraint optimisation method

for opinion lexicon generation is rational.

For further comparison we applied an additive model to the dataset used

later in Chapter 4. The dataset used is the one used in Pang et al. [24] and

it consists of 1,000 positive and 1,000 negative movie reviews. The dataset

was filtered using all the pre-processing tasks mentioned above. Accuracy

is measured in a similar setting as mentioned above.

Table 2.12 shows the accuracy obtained in the movie review dataset. The

nature of the accuracy for all the 3 different settings matches the discus-

sion we have provided above. Table 2.13 shows the accuracy obtained by

the SVM after applying various feature selection techniques (explained in

Chapter 4). The first 4 rows show the accuracy taken from methods used in

2.6. RELATED WORK 43

Setting Positive Negative Overall

MinErr 84.3% 81.5% 82.9%

MinErrFZ 88.9% 82.1% 85.5%

MinErrFZCR 93.3% 89.6% 91.45%

Table 2.12: Accuracy scores on opinion classification for the movie review
dataset.

Chapter 4. Among them, the feature selection technique which uses selected

unigrams and frequent sub-sequences outperforms the rest with an accuracy

score of 97.69%. Next we used, as features, positive and negative words

generated by MinErrFZCR. The accuracy obtained in this case is 94.0%.

This is an acceptable score and thus further strengthens our claim that the

lexicon generated by our system is of significance to polarity detection and

performs considerably well when applied for the same.

Features Accuracy %

Unigram 85.0

Unigram selected 86.3

Unigram + frequent sub-sequences 85.8434

Unigram selected + frequent sub-sequences 97.69

Positive and negative terms generated by MinErrFZCR 94.0

Table 2.13: Accuracy before and after feature selection

2.6 Related Work

The compositional nature of opinion expression has already been shown

in [19], but linear programming has not been used to date to exploit the

compositional nature for learning weighted opinion lexicons. In this paper

we show how linear equations can be formulated for opinion expression which

exploits its compositional nature (Section 2.2). A weighted opinion lexicon

can be derived by solving such equations.

Our work can be related to the sentiment compositional model introduced

in [19] in the sense that both uses the compositional property of opinionated

text. In [19] an opinion lexicon is given and opinion classification is done

by using handcrafted rules. Thus their approach can be considered more

manual than automatic. In contrast, we exploit the compositional nature

44 CHAPTER 2. WEIGHTED OPINION LEXICON

of the opinionated text to learn an additive model. The model results in

a sentiment lexicon that can be effectively used for classifying sentiment

text. Thus, unlike [19], we do not pre-assume an opinion lexicon but instead

generate it automatically.

Since not all the words occurring in the opinion clauses bear sentiment, the

weight of most of the clause in the lexicon should be zero or, in other words

be absent from the lexicon. Instead of searching opinion words in text as

done in [16, 15, 12, 10], we show an efficient approach which forces most of

the words towards zero, thus generating non-zero words as polarity words.

Within our framework the task of identifying opinionated words and their

polarity is solved simultaneously through constraints optimisation.

Certain parts of speech always have higher sentiment weight than others

[4]. For example, adjectives are considered to be more opinionated than

nouns in most cases. Previous literature shows that such rules can be used

with high effect whenever the compositional nature of the opinion text is

exploited [19]. We show how such linguistic knowledge can be incorporated

into our model.

Minimum-cuts also a type of linear programming, have been used to classify

opinion text into positive and negative [21]. The statistically significant

result obtained by incorporating context information like sentence proximity

in the minimum-cut framework shows that linear programming can be used

successfully for opinion classification. Instead of classifying text, we used

linear programming for classifying words and also incorporated different

prior knowledge like conflict resolution.

Another work closely related to our work is the Integer Linear Programming

(ILP) approach to adapt a polarity lexicon to a specific domain by [7].

They employed the relation between the word and the sentiment expression

to calculate the degree of polarity of the word. They defined the degree

of polarity of the word by the number of different sentiment expressions

containing the word. The primary disadvantage of their approach is the fact

that an initial sentiment lexicon is needed in their approach. In contrast,

our method can be employed to directly learn a domain-specific weighted

sentiment lexicon.

2.7. CONCLUSIONS 45

2.7 Conclusions

In this chapter we developed a weighted additive model for sentiment clas-

sification. Our model allows learning a weighted opinion lexicon through

constraint optimisation. We also showed how prior knowledge of the domain

can be seamlessly integrated into our model to obtain improved results. Fi-

nally, we showed that using the acquired lexicons as features within an SVM

allows us to obtain state-of-the-art results on opinion classification.

Chapter 3

Multi-class and

Features-Related Opinion

Classification

3.1 Introduction

Many papers define Opinion Classification as classification of opinion text

into one of the two classes, namely, positive and negative [24, 20, 32, 19, 31].

This is true in many cases, and the most fundamental thinking of anyone

reviewing a product, whether the product is a camera, a movie, a food item

or even an election candidate, is that either you like that product or you

don’t. However this is a very generalised point of view; this is what we say

when we talk about a product with friends or when we are in real a hurry.

Written reviews are more elaborate. This is driven by the need for infor-

mation. You would not want to go out and buy a camera without knowing

the pros and cons of its every aspect (lens, viewfinder, body etc.), and you

would still go to a restaurant which serves bad desserts but has amazing

fish. Consumers’ taste are different; some would not mind a mind-boggling

action flick with mediocre acting and some would prefer a mediocre plot

with awesome acting. So there is certainly a need for elaborate information,

but why we have all this information? The answer is “features“.

Every product has features. A camera has lens, viewfinder, body etc; a movie

46

3.1. INTRODUCTION 47

has actors, acting, plot, direction; an election candidate has his or her own

set of policies. In a best case scenario or in worst case scenario all the features

will get a positive review or negative review respectively. But there are

also cases when some features get positive reviews while others get negative

reviews. In a review data set taken from Amazon, where a star rating of 1

is termed negative and 5 is termed positive, of 3791 reviews 1180 reviews

were rated with stars 2 and 4. This statistic states that approximately 31%

of the reviews were neither positive nor negative. Thus a document opinion

classification which separates a positive review from negative ones starts off

with a 31% error rate without even seeing any training data. This is a major

problem, a problem which arises from sentences like, The camera is fine but

the bland brown colour is not eye catching. This sentence is taken from a

review about a camera from Amazon which has a star rating of 4.

There is a need to divert from binary classification of opinion to more elab-

orate graded classification. There are possibly two directions that can be

taken. One is to model opinion analysis as multi-class classification where

each class resembles the magnitude of the sentiment in the document. For

example, there could be 5 classes, each class representing a star rating in

reviews, where 1 is the most negative and 5 is the most positive. The other

direction is to model opinion analysis as opinion on features instead of opin-

ion on the whole product. The system would output a result after reading a

review of a camera under three categories {Feature : Opinion : Sentence}
where “Feature“ is the specific feature of the product, “Opinion“ is the

opinion expressed in the product either positive or negative and “Sentence“

is the sentence in the review showing the opinion. An example output for a

camera review could be:

Feature Opinion Sentence

lens Positive the lens in the camera is spectacular

viewfinder Negative you can barely look through the viewfinder

body Positive the body is light and sturdy

In this report we show the implementation on both the directions. The

major contributions of this study are:

• We propose a diversion from the classical model of opinion classifica-

48 CHAPTER 3. OPINION CLASSIFICATION

tion as a two-class model to a multi-class model. We show a method

of classifying opinionated text into multiple classes, namely 4 classes

termed as 1 star, 2 star, 4 star and 5 star. We left out star value

3 because these reviews are more neutral in nature and lack distinc-

tion from 2 star and 4 star. We propose a method based on mixed

linear programming where classification is done based on the weights

attained by each feature sentence. This is a more fine-grained method

of classifying opinionated text than blindly counting the number of

positive sentences and negative sentences. For example, in the re-

view text “The lens is very good. The viewfinder is bad.“, there is 1

positive sentence and 1 negative sentence, thus a count of positive or

negative sentence would lead us nowhere. But we propose a system

which weighs the opinion and classifies the text accordingly. In the

above sentence, since the positive review is more stressed (i.e. the

sentiment intensifier very is used) than the negative, the product has

a higher chance of getting 4 stars, which is plausible.

• We also propose a fine-grained opinion analysis model where an opin-

ion text or review is split into sentences reviewing different features

and an opinion (positive or negative) is assigned to such sentences.

The concept of fine grain analysis of opinion text is well established in

the opinion analysis domain. We propose a method of identifying such

sentences from the review by using targets (opinion feature), opinion-

ated words and grammatical constructs. The target is extracted from

an annotated review. The opinionated words are extracted by using

the lexicon extraction method described in Chapter 2. The method

successfully extracts opinionated sentences on a particular feature from

the review text. The opinion assignment on the extracted sentence is

done according to the weighted lexicon and compositionality shown by

the opinionated text.

3.2. MOTIVATION FOR USING MIXED LINEAR PROGRAMMING 49

3.2 Motivation for using Mixed Linear Program-

ming

The major motivation for using Mixed Linear Programming is because of the

way the compositional nature of the opinionated text lends itself to linear

programming formulations. The compositionality of the opinionated text

is explained in Chapter 2 Section 2.2. In very simple terms, the additive

model for opinionated text is: selected words which adds up to give a certain

rating (star value) to the text. For example,

• Text 1 : good lens + attractive design + excellent speed = 5

• Text 2 : good lens + average shutter speed = 4

• Text 3 : worst camera + horrible = 1

The example shows the probable words in any review which may have a star

rating of 5 or 4 or 1. The words which are not opinionated are removed. We

can see that each text can be represented as a linear equation. Solving the

collection of these equations gives us an estimate for each variable, resulting

in an opinion lexicon. The compositional nature of opinionated text which

lends itself as a linear equation fits perfectly to the linear programming

paradigm which makes it obvious to use linear programming to solve the

problem.

One of the prominent requirements of such an additive model is that not all

the words in the text can be added, i.e not all the words in the text have an

opinion. For example, a full sentence for Text 1 could be The brown camera

that came out today has a good lens. The additive model just extracts the

phrase good terms from the whole sentence. What we are effectively saying

is that all the words in the sentence other than good and lens should have

their values set to zero. Thus if we form our linear equations with all the

words in the sentence, we need to have a global function which forces the

value of each variable to be zero unless otherwise absolutely necessary. Such

condition can be implemented easily with the use of an objective function

of the linear equation. The ease in the usability and implementation is

another motivating factor for using linear programming. A simple solution

to achieve above condition would be to write an objective function which

50 CHAPTER 3. OPINION CLASSIFICATION

minimises the value of each variable. This will cause the linear program to

select the solution in which the words have as minimum value as possible.

In our case, for better results we set the objective function to minimise the

square of each variable. Since our objective function is not linear we used

mixed linear programming.

In an opinion analysis system and especially in our model where we want

to separate opinions into multiple classes, variables (words) should have

different weights. A linear programming approach will effectively result in

weighted variables following an optimal setting. In addition to this, a linear

programming setting can also use prior knowledge of data. The prior knowl-

edge can be easily added in as constraints. From the work of Moilanen et al.

[19] we know that certain grammatical constructs outweigh other in terms

of opinion expression. For example, an adverb modifier is weighted higher

than the noun it modifies, e.g. trivial >>problem . For a more detailed

explanation of such rules see Chapter 2 Section 2.4.3. To incorporate such

knowledge into our system we just have to add some constraints which state

that certain variables are greater than others. Thus, because of the way

the whole idea of opinion analysis fits easily in the mixed linear program-

ming and the desired output also fits the output of any linear programming

system, the use of mixed linear programming becomes obvious.

3.3 Multi-class opinion classification

We classify opinionated text in terms of stars, 1-4, increasing in positivity.

We have already shown in Chapter 2 an opinion on a sentence cannot be

always inferred correctly by counting the number of positive and negative

words in the sentence. On the other hand, opinionated sentences show com-

positionality [19], which can be used to correctly classify a positive opinion

from a negative opinion. We showed in Chapter 2 how the compositional

property of opinionated text can be used to form a linear additive model

from which we could learn a weighted opinion lexicon. Such weighted opin-

ion lexicons not only could classify the positive opinion from a negative

opinion but also can give a degree to the polarity assigned. For example,

The(0) + senator(0) + supporting(+1) + the(0) + leader(+1) = +2

3.3. MULTI-CLASS OPINION CLASSIFICATION 51

We can see that the additive model not only classifies the sentence as positive

but also gives a score to the sentence, in this case 2. We use such scores to

classify opinionated text into multiple classes. Thus, our multi-class opinion

classification completes in two steps: first we learn a weighted opinion lexicon

from the data, then, use this opinion lexicon under a linear additive model

for classification.

3.3.1 Experimental Settings

Data set

For all the experiments shown here we used the Multi-Domain Sentiment

Dataset1 that contains product reviews taken from Amazon.com. The train-

ing set consists of reviews with star ratings 1, 2, 4 and 5. Star rating 3 was

left out because there is no clear separation between the text in star rating

3 with text in either star rating 2 or star rating 4.

Equation Construction

Each review is of the form {star rating, review text} where the star rating

represents the graded polarity of the text and ranges from 1 to 5 in increasing

order of polarity. Following the approach taken in chapter 2, in a bag-of-

words representation each dictionary word is represented by a variable xi

and the {star rating, review text} pair is represented by the equation:

n∑
i=1

xi − s = E

where, s represents the star rating. The star values are assigned as two

graded values, where each star rating has an opposite pair. Star rating

1 has the value -100 and its opposite pair, i.e. star rating 5, has the value

+100. Similarly star rating 2 has the value -50 and its opposite pair, i.e. star

rating 4, has the value +50. Figure 3.1 shows a graphical representation of

the star rating value across the y-axis. E represents the error value allowed

1http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/

52 CHAPTER 3. OPINION CLASSIFICATION

0

-50

-100

+50

+100

Star rating 1

Star rating 2

Star rating 4

Star rating 5

Y

Figure 3.1: Star scale along y-axis

so that even noisy data can have a solution. In case of a perfect solution

the value of E will be zero.

For completion we will revisit our three minimisation models already de-

scribed in detail in chapter 2:

1. Baseline (MinErr)

Let { (X1, S1)....(XR, SR)} denote the set of (review,star rating) pairs.

Each Xi is a bag-of-words {xi1,xi|Xi|}. Multiple instances of the

same word share the same variable in the equations.

Minimise:
R∑
k=1

| Ek |

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

with bounds :

−10 ≤ xki ≤ +10 : ∀ k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤| Xk |

−100 ≤ Ek ≤ +100 : ∀ k 1 ≤ k ≤ R

where, −10 for xki represents the highest weighted negative

polarity and +10 represents the highest weighted positive

3.3. MULTI-CLASS OPINION CLASSIFICATION 53

polarity,

while the range for Ek represents the allowed error range for

each equation.

2. Force zeroes (MinErrFZ)

Minimise:
R∑
k=1

| Ek | +
|Xk|∑
i=1

(xi)
2

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

with bounds :

−10 ≤ xki ≤ +10 : ∀ k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤| Xk |

−100 ≤ Ek ≤ +100 : ∀ k 1 ≤ k ≤ R

3. Conflict Resolution (MinErrFZCR)

Minimise:
R∑
k=1

| Ek | +
|Xk|∑
i=1

(xi)
2

subject to :

{
|X1|∑
i=1

x1i − s1 = E1,,

|XR|∑
i=1

xRi − sR = ER}

and

| xb |>| xa | for each conflicting pair (xa, xb)

with bounds :

−10 ≤ xki ≤ +10 : ∀ k ∀i 1 ≤ k ≤ R ,−1 ≤ i ≤| Xk |

−100 ≤ Ek ≤ +100 : ∀ k 1 ≤ k ≤ R

54 CHAPTER 3. OPINION CLASSIFICATION

0

-50

-100

+50

+100

Star rating 1

Star rating 2

Star rating 4

Star rating 5

Y

-70

-25

+20

+10

+25

-10

40% coverage of +50

40% coverage of -50

Figure 3.2: 40% coverage for +50 and -50

Experiments

For all the experiments shown here we used the Multi-Domain Sentiment

Dataset2 that contains product reviews taken from Amazon.com. We chose

book reviews for our experiment. For training we extracted 600 reviews with

star rating 1, 300 reviews with star rating 2, 300 reviews with star rating

4 and 600 reviews with star rating 5. Since the observations showed that

there can be similarities between star rating 2 and star rating 4, to scale the

training data we only extracted 300 reviews from each.

Before converting these reviews into equations, the review text was passed

through various filters. We used TextCat3 to remove all non-English text.

All punctuation symbols were removed from the data. We used a morpho-

logical analyser and each word was replaced by its base form. For example,

“disappointed” would be converted into “disappoint”. Words with certain

parts of speech that bear no sentiment, for example personal pronouns, were

also removed from the text. Finally, words were converted to lower case.

All the experiments were conducted using the ILOG CPLEX solver4.

2http://www.cs.jhu.edu/∼ mdredze/datasets/sentiment/
3http://www.let.rug.nl/∼ vannoord/TextCat/
4http://www-01.ibm.com/software/integration/optimisation/cplex-optimizer/

3.3. MULTI-CLASS OPINION CLASSIFICATION 55

star 1 star 2 star 4 star 5

61.91 43.33 47.33 64.94

Table 3.1: Accuracy for additive model

3.3.2 Evaluation

Each of our three models were run to get three separate opinion lexicons.

The values obtained from these lexicons are used in an additive model to

get the star rating for each review. With the scaling we are expecting a

review with the star rating 1 to have the value -100, star rating 2 to have

the value -50, star rating 4 to have +50 and star rating 5 to have +100.

It is almost impossible to get the exact value for each class, i.e. using the

additive model it is impossible to get the value -100 for star rating 1 on the

test set or +100 for star rating 5. Thus, for each star rating we allowed

a certain range defining the coverage of each star rating. The coverage is

defined by the gap between each star rating and the next. Figure 3.2 shows

the 40% coverage for star rating 2 (-50) and 4 (+50). The gap between -50

and -100 is less than that of -50 and +50, thus the coverage of each on either

side is of a different value.

The evaluation is based on correctly classifying the review text into any of 4

classes using our generated lexicon. The test set consists of 70 unseen reviews

with star rating 1, 30 reviews with star rating 2, 30 reviews with star rating

4 and 70 reviews with star rating 5 taken from the same data set. Accuracy

measures the total number of reviews in the test set correctly graded to its

respected star rating by using the generated lexicon. We used 10-fold cross

validation with the data set for evaluation. We can see from Table 3.1 that

the results obtained are not encouraging. Classifying the documents into

four different classes highly degraded the performance. The result obtained

for coverage less than 40% and with models other than MinErrFZCR are

very poor. We only considered the result with 40% coverage using the model

MinErrFZCR.

We can see that the accuracy on star ratings 1 and 5 are relatively high

than those on 2 and 4. This shows that our classifier still works relatively

well to separate positive from negative ones. The higher results on either

end are encouraging to further pursue the additive model for the opinion

56 CHAPTER 3. OPINION CLASSIFICATION

star 1 star 2 star 4 star 5

78.0366 64.2551 65.0873 79.5511

Table 3.2: Accuracy for SVM

classification task.

For comparison we used SVM to classify the same training data set into

multiple classes by using the one vs the rest strategy. Four different training

sets are sampled from the original training data set. The training set to

classify star rating 1 from the rest consisted of 600 reviews of star rating 1

and 1200 of the other remaining reviews. The training set for the rest of

the star ratings were created in a similar way. The pre-processing that was

done was similar to that done before the equation construction. LIBSVM5

with optimised learning parameter C with a unigram as a feature is used for

training. The test set is the same as was used in our experiments with the

additive model.

Table 3.2 shows the accuracy score obtained by SVM. We can see that SVM

also performs relatively well on either end. The accuracy results for the

star rating 2 and star rating 4 are lower than those for star rating 5 and

star rating 1. The accuracy obtained by SVM is higher than that obtained

by our classifier. The thing that has to be noted here is that our classifier

does the whole classification with one trained classifier, i.e a single classifier

is classifying the data into 4 different classes. The SVM used here uses

different training sets to classify 2 classes at a time. We did not set up our

classifier with the same 1 vs the rest strategy because we felt that it negates

the whole purpose of using an additive model to get a score for each review.

Our assumption is that star rating 4 is different from star rating 5 in some

ways, and if we did a 1 vs the rest training then on multiple instances we

have to consider these two different star ratings as one. Thus we avoided

the 1 vs the rest scenario for our classifier.

Our additive model has already shown an impressive performance in clas-

sifying the data into two classes (see Chapter 2). Even though the result

obtained for the multi-class classification is poor, the former shows an en-

couraging paths to explore the additive model to improve on the multi-class

5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

3.3. MULTI-CLASS OPINION CLASSIFICATION 57

classification.

3.3.3 Related Work

The multi-class opinion classification has not been explored much in the

opinion analysis domain. Of the few researches done on this task the most

prominent one is the work on rating-inference problem carried out by [22].

They first evaluated the classification problem on the basis of human perfor-

mance. The results showed that the performance decreased as the number

of ratings i.e stars increased. The reason for this problem is the same as we

discussed before; as the rating scale increases the adjacent scales are more

similar than different. The authors also applied a regression algorithm and

found that the results obtained were not impressive. Then they applied a

metric algorithm to alter the result of n-ary’s classifier so that the similar

items received similar scores. For this they counted the total number of pos-

itive words in each review. This improved the results obtained by just using

SVR (for regression). This is an encouraging result, as similar to metric

labeling, our weighted score can be used in conjunction with any regression

algorithm combined to proper feature selection to produce better results.

We leave this task for future work. In this study we wanted to test how an

additive model can tackle a multi-class opinion classification problem.

3.3.4 Conclusions

In this section we classified the opinionated text into multiple classes using

our additive compositional method. Although the results obtained were not

exactly what we had hoped for, the result obtained is still encouraging and

shows the direction for future work. We compared our approach with SVM.

SVM also showed comparable poor results in classifying the opinionated text

into four different classes. Considering the success of our additive model and

also SVM in classifying the opinionated text into two polar classes, we can

say that classifying opinionated text into multi-classes is a hard problem.

The problem is due to the grey line between the reviews with star rating 5

and star rating 4 and between the reviews with star rating 1 and star rating

2. Although human reviewers can decide which review they want to tag as

58 CHAPTER 3. OPINION CLASSIFICATION

star 1 and which they want to tag as star 2, there is no clear algorithm or

rules governing such. A review with star rating 2 has a more positive sense

than a review with star rating 1, and similarly a review with star rating 4

has a more negative sense than a review with star rating 5. Our additive

model considers such cases but the whole constraint system cannot quantify

a consistent value throughout.

The future work to solve the problem could be a multi-iteration process

where the first step will be to detect a negative anomaly on star rating 4

and a positive anomaly on star rating 2 and then introduce a parameter,

say α, to balance out the equation. For example:

This film should be brilliant. It sounds like a great plot, the

actors are first grade, and the supporting cast is good as well, and

Stallone is attempting to deliver a good performance. However,

it can’t hold up.

The above review could be represented as:

This film should be brilliant. It sounds like a great plot, the

actors are first grade, and the supporting cast is good as well, and

Stallone is attempting to deliver a good performance. α(However,

it can’t hold up) =4

Training such parameters could be a better way of achieving a consistent

optimisation.

We showed in this section that multi-class opinion analysis is a difficult

problem, and even though we could not achieve better results, we believe

that the additive method can be used as the base platform for future research

on multi-class opinion analysis.

3.4 Features-related opinion classification

Any expression which expresses opinion towards some targets is an opin-

ionated expression or subjective expression. Subjective expressions contain

at least a target and an opinion expression reviewing the target. For ex-

ample, good camera is a subjective expression because it has both target

(camera) and opinion (good). On the contrary, this camera has a lens is not

3.4. FEATURES-RELATED OPINION CLASSIFICATION 59

a subjective expression because even though it has two targets (camera and

lens), it lacks any opinion towards these targets. Features-related opinion

classification is completed in 4 steps:

1) Extracting targets of opinion from the review text: For this

study, targets are extracted from the annotated data.

2) Extracting opinion words from the review text: Opinion words

are extracted from the review text using constraints optimization over

an additive model as described in Chapter 2.

3) Extracting subjective expression unique to each feature: Sub-

jective expressions are extracted by mining the expression which has

both opinion words and target words present in it. A different text

mining technique is used to identify use of multiple features in one

subjective expression.

4) Classifying the opinion and summarising the results: Once we

have the subjective expression we identify the polarity of that expres-

sion. Once the polarity has been decided we summarise the result as

discussed in Section 5.1.

3.4.1 Target Extraction

The data set used for this study already came with annotated targets. To

get the best result out of our algorithm to extract fine-grained subjective

expressions we opted to use the annotated target. We also developed our

own target extraction algorithm which is described in detail in Chapter 5.

3.4.2 Opinion words extraction

Opinion words are extracted from the review text using constraints optimi-

sation over an additive model as described in Chapter 2. We used our best

performing model (MinErrFZCR) for the opinion word extraction.

60 CHAPTER 3. OPINION CLASSIFICATION

3.4.3 Extracting subjective expressions unique to each fea-

ture

An expression which shows an opinion towards a certain target is termed as

a subjective expression. For example, the camera is beautiful is a subjective

expression, whereas the camera comes in black, is non-subjective because

it describes a feature of the camera rather than pointing out any opinion

towards camera.

Filters based on features and opinion words (Feat&Op)

Once we have the potential features and opinion lexicon for a domain, we

can extract subjective sentences from the review text by only selecting those

sentences which contain both features and opinion words.

Example 3.1 Sentences containing features/targets and opinion words:

1. “The picture turned out quite nicely.”

2. “In a word, awesome is how I would describe this camera.”

Sentences are extracted using feature lexicon {“picture”; “camera”} and

opinion lexicon {“nice”; “awesome”}.

By extracting only those sentences which have both feature and opinion

words we filter out sentences which are non-subjective. For example, sen-

tences which describe a product rather than provide an opinion about it, like

The camera comes in black. Even though this sentence contains a feature

word, the whole sentence mentions nothing about the quality of the feature.

Each sentence in Example 3.1 is considered as the review for the target it

mentions. This method can separate subjective sentences from the non-

subjective sentences but will fail to identify sentences unique to the feature

in certain cases. These methods will work in cases where there is only

one target mentioned in the sentence, but as the number of targets in the

sentence increases, we cannot identify a sentence as a review of a particular

target. For example, the sentence, “It has a beautiful design, would use it

but the battery is horrible” has two target words, thus we cannot regard the

whole sentence as a review of either design or battery.

3.4. FEATURES-RELATED OPINION CLASSIFICATION 61

Phrase level splitting (SBARsplit)

Example 3.2

1. “It has a beautiful design, would use it but the battery is horrible”

2. “the menus are easy to navigate and the buttons are easy to use”

Sentences are extracted using feature lexicon {“design”; “battery; “menu”;

“buttons”} and opinion lexicon {“beautiful”; “horrible”; “easy”}.

We can see in Example 3.2 that each sentence is reviewing multiple features,

for example, sentence 1 of Example 3.2 reviews design and battery. An

opinion classification algorithm would classify the above sentences as either

positive or negative. For sentence 2 of Example 3.2 , since both of the

features have the same polarity, it would be valid if they share the overall

polarity of the sentence. But in sentence 1 of Example 3.2 we can see that

each feature has the opposite opinion towards them. Thus any opinion we

get for sentence 2 won’t be true for one of the features. Thus it is necessary

to split the sentences into different parts, where each part is a review of a

single feature.

In sentences which contain opinions for more than one feature, it is the case

that clausal boundaries would help extract unit reviews. Thus, separating

sentences into clauses might solve the problem shown in Example 3.2 . We

split a sentence into clauses with occurrences of nodes labeled “SBAR”,

which indicates the root of a sub-ordinate clause in a phrase structure parse

tree of a sentence. We used Stanford’s parser6 to obtain the phrase structure

parse tree of a sentence. The clauses of sentences in Example 3.2 are:

Example 3.3

1. Clauses of Sentence 1 of Example 3.2

1.1. it has a beautiful design,

1.2. would use it but

1.3. the battery is horrible.

6http://nlp.stanford.edu:8080/parser/

62 CHAPTER 3. OPINION CLASSIFICATION

2. Clauses of Sentence 2 of Example 3.2

2.1. the menus are easy to navigate and the buttons are easy to use

We can see from the first example of Example 3.3 that by splitting a sentence

into clauses, we can successfully extract parts which have an opinion about

a single feature. For example, Sentence 1.1 of Example 3.3 is a review about

the design and Sentence 1.3 of Example 3.3 is a review about the battery.

Not only this, but we can again apply Feat&Op on the extracted clauses

and filter out non-subjective clauses. For example, clause 1.2 of Example

3.3 will be filtered out since it does not contain feature terms and opinion

words.

Using SBARsplit we can get clauses unique to a feature but this does not

work in all cases. We can see in sentence 2.1 of Example 3.3 that the clause

extracted still contains multiple features. This points the necessity of further

splitting the clauses into smaller parts.

Direct Dependency Extraction (DDE)

Example 3.4

1. the menus are easy to navigate and the buttons are easy to use

2. it takes great pictures, operates quickly, and feels solid

3. who is looking for excellent quality pictures and a combination of ease

of use and the flexibility to get advanced with many options to adjust

4. has a great lens, but a horrible viewfinder.

Sentences in Example 3.4 are the clauses containing more than one feature,

extracted after applying SBARsplit. Our Direct Dependency Extraction

(DDE) method to extract clauses unique to a particular feature is based

on the fact that there is a natural relationship between opinion words and

features as the former modifies the latter. Furthermore as shown in [26],

there are various grammatical relations between polarity influencers (opinion

words in our case) and their target feature. We define such relations via the

dependency parser based on dependency grammar.

3.4. FEATURES-RELATED OPINION CLASSIFICATION 63

Dependency grammar describes the relation between words in a sentence.

After parsing a sentence by the dependency parser, we will get relations

between words in the sentence. For example, in a sentence, “It is a good

lens.”, good is an opinionated word and lens is its target. After parsing

the sentence with the dependency parser we will find that good depends on

lens by mod relation. A direct dependency (DD) relation is defined as the

direct dependency of two words with modifiers. Any multilevel dependency

relation is considered indirect dependency (ID) relation. Figure 3.3a shows

the type 1 direct dependency where a word A is dependent on word B

directly by a modifier. Figure 3.3b is the type 2 direct dependency where a

word A is related to word C with type 1 DD and word B is also related to

word C with type 1 DD, thus word A shows a direct dependency relation to

word B.

A

A B

B

B

A

B

C

(a) DD type 1

A

A B

C

B

A

B C

(b) DD type 2

A

A B

B

B

A

B C

(c) ID

Figure 3.3: Propagation of polarity in a sentence

An opinion word is related to the target word through a dependency rela-

tion. Dependency relations have been successfully applied to extract {target,

opinion} a pair by [13] and as a feature for sentiment classification by [35].

We use dependency relations to extract clauses unique to features. We pro-

pose that, in any sentence which has an opinion about multiple features,

each feature is modified by its own opinion expression. For example, the

dependency parse of sentence 4 of Example 3.4 yields:

amod(lens-3, great-2)

dobj(has-1, lens-3)

cc(lens-3, but-5)

64 CHAPTER 3. OPINION CLASSIFICATION

amod(viewfinder-7, horrible-6)

conj(lens-3, viewfinder-7)

The dependency relation shows that lens and great are dependent on each

other by the modifier amod and viewfinder and horrible are dependent on

each other also through the modifier amod. Thus, lens is only related to great

and viewfinder is only related to horrible. The possible clause extracted for

each feature will be:

1. lens great

2. viewfinder horrible

Thus a dependency triples modifier(arg1, arg2), where arg1 and arg2 are

opinion words and target words pair, can identify the opinion towards a

target. Thus, each direct dependency of type 1 with constraints on syntactic

relation is a part of the unique review for the feature word present in the

relation. These dependency triples are the seed to generate independent

clauses for each feature.

The syntactic constraints, M, is the set of{mod, subj, comp, conj}. An

example of each modifier is shown in Table 3.3. Only the syntactic modifier

in set M is considered to be relevant to opinion analysis; the rest of the

modifier relations are ignored. From the syntactic modifier in set M, only

those dependency triples are selected as seed dependency triples which have

one argument as the target word and the other as the opinion word. All

the direct dependency of type 2 and indirect dependency between the target

and opinion words are ignored because they add to the noise and the clauses

that expanded from such constructs are little different from the original

sentence. Therefore, we formulate a seed relation Mod-OF as a quadruple

of << DDT1, S, wo, wt >> where DDT1 is the direct dependency relation

of type 1 between wo and wt, S is the syntactic modifier in set M and wo

and wt are the arguments of the dependency triples where wo is the opinion

word in the opinion lexicon and wt is the target/feature word in the target

lexicon.

There are many instances when the opinions on two features are expressed

with the conjunction relation to both. For example, in the sentence.,“The

camera and the lens are both awesome”, both the features camera and lens

3.4. FEATURES-RELATED OPINION CLASSIFICATION 65

Modifier Dependency triple Sentence

mod
amod(a,b) this is an example sentence
vmod(a,b) this is also an example sentence

subj
dsubj(a,b) this is an example sentence
isubjmod(a,b) this is also an example sentence

comp
xcomp(a,b) this is an example sentence
acomp(a,b) this is also an example sentence

conj conj(a,b),conj(a,b) The camera is great and so is the viewfinder.

Table 3.3: Syntactic relation with {feature, opinion} pair

have one opinionated word, awesome, related to them. The parse tree of

such a construct yields:

Example 3.5

det(viewfinder-2, The-1)

nsubj(awesome-8, viewfinder-2)

cc(viewfinder-2, and-3)

det(lens-5, the-4)

conj(viewfinder-2, lens-5)

cop(awesome-8, are-6)

dep(awesome-8, both-7)

In such cases where two features are related to each other by dependency

modifier conj, it is the case that the opinion on one of the features is also the

opinion on the other. Thus, a dependency triple with modifier conj and both

the arguments as feature words are also considered a seed dependency triple

if one of the arguments of such triples is of Mod-OF. In Example 3.5 the de-

pendency triple conj(viewfinder-2, lens-5) is considered a seed dependency

triple because one of its arguments viewfinder satisfies Mod-OF in depen-

dency triple nsubj(awesome-8, viewfinder-2). Therefore, we formulate a sec-

ond seed relation Mod-FF as << DDT1, conj, wt1, wt2, NotIN, IN >>

where DDT1 is the direct dependency relation of type 1 between wt1 and

wt2, conj is the syntactic modifier, wt1 and wt2 are the arguments of the

dependency triples where wt1 is the target/feature word and wt2 is the an-

other target/feature word present in the target lexicon. NotIN states that

either wt1 or wt2 has not already been extracted and IN states that either

wt1 or wt2 satisfies the relation Mod-OF.

66 CHAPTER 3. OPINION CLASSIFICATION

Once we have our seed relations we extract all the direct dependency of type

1 involving the arguments of the seed dependency triples as the clauses for

each feature. We term this step as Expand. The procedure can be explained

by the following algorithm.

Algorithm 3.1

1. fill opinion lexicon

2. fill target lexicon

3. D=Dependency parse the sentence si

4. F=features in sentence si

5. for each dependency triples in D

6. Sel_D=select dependency triples which satisfies relation

Mod-OF

7. if NOT all features in F IN Sel_D

8. Sel_D=Sel_D+ dependency triples which satisfies relation

Mod-FF

9. for each dependency triples in Sel_D

10. select all the dependency triples which share DD type 1

with one of the arguments.

11 Expand for each feature to get feature clauses.

If we apply Algorithm 3.1on sentence 4 of Example 3.4 , in each step we will

get the following output, in which the opinion lexicon and target lexicon are

assumed to be given:

Step 3. dependency parse the sentence

amod(lens-3, great-2)

dobj(has-1, lens-3)

cc(lens-3, but-5)

amod(viewfinder-7, horrible-6)

conj(lens-3, viewfinder-7)

Step 4. select features in the sentence

{lens, viewfinder}

Step 6 . select dependency triples which satisfy relation Mod-OF

3.4. FEATURES-RELATED OPINION CLASSIFICATION 67

amod(lens-3, great-2)

amod(viewfinder-7, horrible-6)

Step 7 . since the dependency triples for all the features in F have been found,

further searches are not necessary

Step 9 . for each selected dependency triples, expand the DD type 1 relation

Feature ‘‘lens’’

amod(lens-3, great-2)

DD type 1 relations:

dobj(has-1, lens-3)

cc(lens-3, but-5)

conj(lens-3, viewfinder-7)

Feature ‘‘viewfinder’’

amod(viewfinder-7, horrible-6)

DD type 1 relations:

conj(lens-3, viewfinder-7)

Step 11. Expand to get clauses

Feature ‘‘lens’’

lens great has but viewfinder

Feature ‘‘viewfinder’’

viewfinder horrible lens

Thus we can see that we can extract clauses unique to each feature. Let us

assume the following lexicon for opinion words and features:

68 CHAPTER 3. OPINION CLASSIFICATION

Opinion Lexicon Feature Lexicon

easy menu

great buttons

operates picture

excellent feel

ease options

advanced pictures

horrible used

lens

viewfinder

Following Algorithm 3.1, the clauses extracted from the sentences in Exam-

ple 3.4 are:

Example 3.6

1. the menus are easy navigate and

2. easy the buttons are, use

3. great pictures operates

4. operates feels solid

5. for excellent quality pictures and combination

6. has great lens, but

7. but horrible viewfinder

We can see that we managed to extract most of the clauses unique to each

feature. Since we only used the direct dependency relation of type 1 we

missed out on some of the clauses in sentence 3 of Example 3.4 . We can

also see that the clause which we extracted from sentence 3 of Example 3.4

is correct to the feature. This points to the fact that even though the recall

of each clause unique to the feature could be low with our algorithm, the

precision can be quite high.

Thus our method of extracting subjective expressions unique to each feature

is an iterative approach which can be described as:

3.4. FEATURES-RELATED OPINION CLASSIFICATION 69

Feature Sentences/Clauses

picture
The picture turned out quite nicely
great pictures operates
for excellent quality pictures and combination

camera In a word, awesome is how I would describe this camera.

design it has a beautiful design

battery the battery is horrible

menu the menus are easy navigate and

button easy the buttons are, use

feel operates feels solid

lens has great lens, but

viewfinder but horrible viewfinder

Table 3.4: Feature table with unique subjective sentence for each feature

Algorithm 3.2

1: Extract subjective sentences using Feat&Op

2: store each sentence with single feature mention

to feature table.

3: For each sentence with multiple features do

4: SBARsplit

5: For each clauses extracted by SBARsplit do

6: filter using Feat&Op

7: store each clause with single feature mention

to feature table

8: For each sentence with multiple features do

DDE

9: store each clause to its respective

feature table

2

If we take all the example sentences from Example 3.1 to Example 3.4 and

apply Algorithm 3.2 , the feature table would look like that shown in Table

3.4.

70 CHAPTER 3. OPINION CLASSIFICATION

Classifying the opinion in the sentences/clauses

The opinion class of each sentences/clause is either positive or negative. For

classification we use our linear additive classifier from Chapter 2. We use our

best performing classifier, namely, MinErrFZCR. We train the classifier

on the review data set containing complete sentences, i.e. a data set not

divided into individual clauses. Since our model is additive and it gives

weight to each part of the sentences, we can safely use a classifier trained

for complete sentences to classify the polarity of clauses obtained from the

sentences. For example, consider the following sentence:

Example 3.7

“The senators supporting the leader failed to praise his hopeless

HIV prevention programme.”

Then the overall sentiment of Example 3.7 can be derived as follows:

1. his(0) + hopeless(−3) +HIV (−1) + prevention(+2) + programme(0) = −2

2. The(0) + senator(0) + supporting(+1) + the(0) + leader(+1) = +2

3. failed(−4) + to(0) + praise(+3) = −1

4. −2− 1 + 2 = −1

We can see that a lexicon learnt from a complete sentence through an ad-

ditive model can classify correctly the opinion expressed in each part of the

sentence.

3.4.4 Experiments

For all our experiments we used the Customers’ Review Dataset7. The

data set contains review of different products. We chose reviews on cam-

eras(“Canon” for the training and “Nikon” for the testing) for our exper-

iments. The data set already has all the targets labelled. Each target is

also labelled with a polarity score. The polarity score for each target ranges

from [-1, +3]. To train our MinErrFZCR we converted the whole data set

7http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html

3.4. FEATURES-RELATED OPINION CLASSIFICATION 71

number of positive reviews 314

number of negative reviews 85

Table 3.5: Number of positive and negative reviews

number of positive words 102

number of negative words 51

total words 328

Table 3.6: Number of positive and negative words extracted by Min-
ErrFZCR

to positive and negative reviews. All the sentences with a positive score to-

wards the feature is considered a positive review and all the sentences with

a negative score towards them is considered a negative review. In case of

multiple targets in a single sentence, we added the opinion score provided

for each feature. If the total sum is negative then the review is considered

negative and if the total sum is positive, the review is considered positive.

Table 3.5 shows the total number of positive and negative reviews in the data

set. Table 3.7 shows the number of positive and negative words extracted

by applying MinErrFZCR on the data set. The total number of words is the

number of unigrams used to train the MinErrFZCR. The total number of

words is quite low because most of the reviews are single sentence reviews.

Also we applied pre-processing as discussed in Chapter 2 to remove irrelevant

words from the dataset.

Negative Positive

obstruct great
problem quality
only easy
blurry love
heavy good
plastic happy
average awesome
lack excellent
minor price
flaw please

Table 3.7: Sample positive and negative words extracted by MinErrFZCR

72 CHAPTER 3. OPINION CLASSIFICATION

Positive Negative

80.98% 74.11%

Table 3.8: Accuracy for correctly identifying positive and negative features

3.4.5 Evaluation

The test was performed on the different Camera review (Nikon). For the

evaluation of all the fine-grained clauses/sentences extracted by our method,

we first collected the features/targets from the data set along with their po-

larity values. In the whole data set there are 107 different kinds of features,

with each feature having multiple polarity assigned to it. The features are

both single words and multiple words, for example , “picture” is a feature

and “picture quality” is also a feature. For the experiment we only used sin-

gle word features. We re-labelled the data with a single word feature where

we could and avoided it where we could not. For example, some instances

of “picture quality” were changed to “picture”. Since we have a labelled

data set, experiments exploiting the labelled data seemed more reasonable.

Also the major target of this work is more to extract fine-grained opinion

on each feature than to extract the feature itself, thus we opted for using

the labelled feature.

With these labelled features and the opinion words extracted through the

opinion lexicon generated by MinErrFZCR (we only considered words with

positive and negative values, words with value 0 are neutral and thus not

opinionated), we calculated how accurately we could extract the correct

number of opinions from each feature. Accuracy is defined as the percentage

average number of correct answers for each feature, for example if the feature

“lens” has 3 positive opinions and 1 negative opinion on the whole data set

and if our system can extract 3 clauses for “lens“ and says all of them are

positive, then the accuracy for positive for “lens” is 100% and for negative

is 0%. Accordingly accuracy for each individual clauses for each feature

was calculated. The final accuracy is the average of the accuracy obtained

on each individual clauses. The overall accuracy is the number of correct

positive reviews identified for each feature divided by the actual number of

positive reviews for that feature, and the same for the negative.

Table 3.8 shows the accuracy of classifying positive and negative reviews

3.4. FEATURES-RELATED OPINION CLASSIFICATION 73

based on each feature. The above results are quite impressive owing to the

fact that the opinion lexicon is learnt from the data. The major cause of

not performing significantly well is that in the sentences not all the features

are used in their original form. For example, a sentence with the feature

“camera” with a positive opinion was:

the more i work with it, the more i love it

Here, “it” refers to “camera”. We have not used a pronominal anaphora

resolution, so such sentences will not be extracted by our system. Thus the

accuracy dips with such sentences.

Another reason for the dip in accuracy is due to the lemmatised use of

features for labelling. All the features are labelled in its root grammatical

form, such as , in the sentence, “This camera offers functional conveniences.”

The feature listed in this sentence is ‘function”, but our tool to extract

lemma of words does not return a lemma “function” for “functional”. Thus

the sentence won’t be detected.

Another reason for the dip in accuracy is that the features are not men-

tioned in the review explicitly. For example, a sentence tagged with the

feature “weight” is “rather heavy for point and shoot”. Our system does not

incorporate any knowledge to find a relation between “weight” and “heavy”.

On the other hand, our system also detected some features which were not

tagged as feature in the sentence. For example, in the following sentence:

i ’d highly recommend this camera for anyone who is looking for

excellent quality pictures and a combination of ease of use and

the flexibility to get advanced with many options to adjust if you

like .

Features tagged were “picture”, “use” and “option”. Our system also ex-

tracted a clause “i ’d highly recommend this camera for anyone” as a review

for the camera and the classifier classified this as positive.

3.4.6 Related Work

We would like our work to differ from subjective expression extraction as

our work is more about extracting topic span. Topic span is the collection

74 CHAPTER 3. OPINION CLASSIFICATION

of words which provide the overall opinion on that topic. Subjectivity in

our case is defined in a very simple manner. If an expression contains both

a topic word and an opinion word then such an expression is subjective. We

believe that even if such expressions are not subjective, then our algorithm

further filters out such expressions. Lots of work has been done in classify-

ing subjective expression from non-subjective expression. One of the early

works is of Pang and Lee [21], who used graph-based min-cuts method to

classify subjective text from non-subjective text. Their work showed that

subjectivity extracts can compress a review to a much smaller size but still

retain the polarity of the whole text.

Target extraction and opinion words/expression extraction are done in con-

junction with each other. With a seed opinion and target word, a bootstrap-

ping process based on the fact that target and opinion modify each other

through some syntactic constructs is used to generate further opinion and

target words. Hu and Liu [13] and Qui et al. [12] are some of the works which

follow the bootstrapping method. Hu and Liu [13] identify the opinion on

the target based on the polarity of the opinion word that modifies the target.

Our work does not only depend on the polarity of the opinion words but

also considers the other words that target words and opinion words modify.

Such information is necessary as they contribute a lot towards the overall

opinion of the expression. For example, the polarity of “not good” is oppo-

site to that of “good”. Wiebe et al. [34] introduced the concept of “Direct

Subjective Expressions” (DSEs) and “Expressive Subjective Expressions”

(ISEs). For example, in the sentence,

Tsvangirai said the election result was illegitimate and a clear

case of highway robbery .

The bold face span of text is the DSE and the span of words in italics

are the ISEs. This matches our concept of extracting only the related text

spans from the whole sentence. Breck et al. [5] used conditional random

field to tag such expressions. Their approach requires data tagged with

DSEs and ISEs, whereas we concentrate on extracting fine-grained subjective

expression based on the feature term itself. If an opinion and feature lexicon

is provided then our algorithm does not require any further annotation to

extract subjective text spans.

3.4. FEATURES-RELATED OPINION CLASSIFICATION 75

Fahrni and Klenner [11] used Wikipedia’s category system to extract tar-

gets and used syntactic relations to further identify target-specific opinion

lexicons. Such lexicons are important because phrases like “cold coke” and

“cold pizza” don’t share the same opinion. We concentrate more on ex-

tracting topic span than generating a topic-specific lexicon. We claim that

once a topic span is created a classifier can be trained to disambiguate such

anomalies.

Yi and Niblack’s [37] work on fine-grained opinion analysis is very closely

related to our work. They define a syntactic pattern that forms an opinion

expression. For example,

This camera takes excellent pictures.

- predicate: take

- pattern: <"take" OP SP>

- subject phrase (SP): this camera

- object phrase (OP) : excellent pictures

- sentiment of the OP: positive

Although there is no comparison done to their work, we believe that our

work takes into account the context more than them. We let the expression

build from the sentence itself and mine every direct relationship to the target

and opinion words in contrast to matching a database pattern. In doing so

we extract almost every piece of contextual information relating to target

and opinion words.

3.4.7 Conclusions

In this work we presented a step-wise and descriptive algorithm to extract

clauses/sentences unique to a single feature of the product. The uniqueness

refers to the fact that the extracted clauses shows opinions about a single

feature of any product. Classifying such clauses into positive and negative

opinions leads us to summarise the opinions on each individual feature of

the product concerned. Through this we can get the fine-grained opinions

on each feature of the product, as:

Product 1:

Feature 1:

76 CHAPTER 3. OPINION CLASSIFICATION

Positive : 21 {Positive clauses/sentences}

Negative : 3 {Negative clauses/sentences}

--

Feature 2:

Positive : 10 {Positive clauses/sentences}

Negative : 4 {Negative clauses/sentences}

--

Feature 3:

Positive : 2 {Positive clauses/sentences}

Negative : 14 {Negative clauses/sentences}

.

.

.

Even though our algorithm showed some promising results, it also has some

significant shortcomings. Our algorithm does not take into account the

pronominal resolution, thus it becomes ineffective when pronouns are used

to identify features. This can be resolved by using a pronominal resolution

on the data, and we leave this to future work. Also other possible future

directions could be to use word sense disambiguation to extract words with

similar sense as the feature word, e.g. “weight” used in the same sense

as “heavy”. Using such filters can also improve the performance of our

algorithm.

Chapter 4

Feature Exploration for

Sentiment Classification

4.1 Introduction

Document Sentiment classification is a task to label documents as either

positive or negative, depending upon the content of the document.

Example 1

• Document 1

The movie Avatar has a great story. The actors in

the movie are brilliant.

• Document 2

The movie lacks substance. The acting is really

appalling.

The task of the document level sentiment classification system is to label

document 1 as positive and document 2 as negative. A person who knows

about movies would quickly identify keywords such as movie-great-story and

actors-brilliant from document 1 and keywords such as lacks-substance and

acting-appalling from document 2 and with the knowledge to infer meaning

from such words, they can easily tag document 1 as positive and document

77

78 CHAPTER 4. FEATURE EXPLORATION FOR SC

2 as negative. A machine can also be trained to do the task in a similar

manner. First devise an algorithm so that the machine can pick up such

keywords, and then make the machine learn the meaning of such words.

Thus, the task of document sentiment classification can be divided into two

sub-tasks: 1) to identify relevant keywords from the document, and 2) to

learn the extracted pattern for classification. A supervised setting can make

task 2 quite easy. Instead of teaching the machine the meaning of each word,

we could feed the machine with sufficient examples of positive keywords and

also of negative keywords, then write an algorithm so that the machine can

separate positive patterns from negative patterns. Such supervised pattern

recognition and classification algorithms have been researched a lot and

have been perfected rapidly. Support Vector Machine (SVM) is one such

supervised classification algorithm which we will be using in this research.

The classification problem of our task is sorted out, but the major problem

still remains, which is to devise an algorithm so that the machine can pick

up keywords which are significant for the sentiment classification of the doc-

ument. Many works have been done in this area too. The works are based

mainly on two aspects. One is to mine the keywords from the text using

popular techniques like unigram-based model in Pang et al. [21] and others

are mining keywords by applying well formulated rules, like rules which ex-

tract dependency relations from the text as done in Wilson et al. [35]. Both

of the techniques work reasonably well, but they have certain shortcomings.

The unigram or even n-gram model fails to capture significant links between

two non-consecutive words in the text. For example, in document 1 of Ex-

ample 1, a unigram model will fail to capture the link between movie-great,

thus it misses out on the context. A carefully crafted rule may be able to

capture such a relation but, as the data grows, rules might not work prop-

erly. Formulating rules requires proper and exact data knowledge and also

such rules might not migrate easily when the dataset is changed.

This study reports on a method which concentrates on overcoming the non-

context capturing nature of unigram models, removing unwanted features

when applying the n-gram model and capturing related keywords without

applying hand-crafted rules. The sentiment classification result obtained

using such features beats the results obtained thus far in the same dataset.

Following are the contributions of this report:

4.1. INTRODUCTION 79

``The movie Avatar has a great story’’

The movie Avatar has a great story

Word-sequences

sub-sequences

The movie

great

storyhas

The movie story

movie

Figure 4.1: Word sub-sequences of sentence, “The movie Avatar has a great
story”

• To overcome the non-context capturing nature of the unigram model,

we explore the sub-sequence mining from the text. Sub-sequences

are the sets of sequences of words obtained after removing a non-zero

number of words from a sentence. An example of sub-sequence mining

is shown in Figure 4.1. We can see from the figure that there is a direct

link between movie and great, which is very desirable as a feature for

opinion classification.

• When using n-grams, say, bi-grams or trigrams, or even sub-sequences,

we capture much non-related text. For example, one of the trigrams

in the sentence The movie Avatar has a great story will be “the movie

Avatar”, which is irrelevant to the sentiment analysis model. There

are only certain context which are relevant, and these contexts de-

fine the subjectivity of the text. In a given domain, such contexts

are frequently occurring. For example, in a movie domain, patterns

like, “movie-great” or “movie-bad” occur more often than patterns like

“movie Avatar”. This report explains how such frequent patterns can

be mined from the text. Mining frequent patterns from the text is

an automatic way of generating relevant context information without

using hand-written rules.

80 CHAPTER 4. FEATURE EXPLORATION FOR SC

• Most of the words that occur in the opinion text are irrelevant for

sentiment analysis; for example, in the movie domain, the name of the

actor, movies, etc. To filter out these non-related terms from the text

we propose a two-step feature selection process. In the first step we

will learn from all the features and in the next we will apply a feature

selection process to select only the relevant features. This report also

shows how the accuracy of the system can be improved by applying

feature selection techniques.

4.2 Background

4.2.1 Word sub-sequences

A word sub-sequence is defined as a set of sequences of words obtained after

removing a non-zero number of words from a sentence. The order of the

words in the sentence is maintained in the sub-sequence. We can see from

The actors in the movie are brilliant

a sentence with sequence of word

actors movie brilliant

aremovie brilliant

actors brilliant

possible sub-sequences of sentence

(a) Sub-sequences

1 gram :
“The” “actors” “in” “the” “movie” “are” “brilliant”

2 gram :
“The actors” “actors in” “in the” “the movie” “movie
are” “are brilliant”

3 gram :
“The actors in” “actors in the” “in the movie” “the
movie are” “movie are brilliant”

4 gram :
“The actors in the” “actors in the movie” “the movie
are brilliant”

5 gram :
“The actors in the movie” “actors in the movie are” “
in the movie are brilliant”

6 gram :
“The actors in the movie are ” “actors in the movie
are brilliant”

7 gram :
“The actors in the movie are brilliant”

N-gram

(b) N-grams

Figure 4.2: Word sub-sequences and n-gram patterns of the sentence “The
actors in the movie are brilliant”

Figure 4.2 that n-gram can only extract N continuous occurring words from

4.2. BACKGROUND 81

a text, but if we take a sub-sequence of a word it extracts not only the

co-occurring words but also non-co-occurring words. Also the sub-sequence

is not restricted to any specific N number of words; it can be any number

of words within the sentence. Thus using sub-sequences as the keywords for

classification becomes more effective.

For the sentence “The actors in the movie are brilliant” it is already es-

tablished that the most potential candidate as the feature for sentiment

analysis is “actor-brilliant”. We can see from Figure 4.2b that it is not

possible to extract a direct relation from the word “actors” to the word

“brilliant” using any of the n-gram technique. Only when we use 6-gram

and 7-gram do both of these words occur in the same frame. Taking such a

long frame can hurt the classification, since it will be hard to find a matching

pattern for such lengthy frames. For example, taking a 7-gram will result

in the phrase “The actors in the movie are brilliant”; the probability of

finding another phrase from the text which is an exact match is very low.

A classifier learns from similar patterns, so using long frames will make

features very sparse, thus resulting in poor performance. In contrast to

this, we can see in Figure 4.2a that one of the sub-sequences is “actors-

brilliant” which is very desirable to be used as a feature for the classifica-

tion task. Also the probability of finding a sub-sequence phrase “actors-

brilliant” in an opinionated document about movies is quite high, thus

we get desirable features from sentences in abundance. A simple pseudo-

code to extract all possible sub-sequences from a sentence is given below:

82 CHAPTER 4. FEATURE EXPLORATION FOR SC

Define List<String> subseq

Define token[]=sentence.toTokens()

for (int i = 0; i < token.length; i++)

if (NOT(token[i] In subseq))

Add token[i] to subseq

String seq = token[i];

for (int j = i + 1, l = i + 1; j < token.length; j++)

seq = seq + " " + token[j];

if (NOT(seq In subseq))

Add seq to subseq

if (j == token.length - 1)

j = l;

l++;

seq = token[i];

Sentence The actors in the movie are brilliant

Sub-sequences The, The actors, The actors in, The actors in the, The actors
in the movie, The actors in the movie are, The actors in the
movie are brilliant, The in, The in the, The in the movie, The
in the movie are, The in the movie are brilliant, The the, The
the movie, The the movie are, The the movie are brilliant,
The movie, The movie are, The movie are brilliant, The are,
The are brilliant, The brilliant, actors, actors in, actors in
the, actors in the movie, actors in the movie are, actors in
the movie are brilliant, actors the, actors the movie, actors
the movie are, actors the movie are brilliant, actors movie,
actors movie are, actors movie are brilliant, actors are, actors
are brilliant, actors brilliant, in, in the, in the movie, in the
movie are, in the movie are brilliant, in movie, in movie are,
in movie are brilliant, in are, in are brilliant, in brilliant,
the, the movie, the movie are, the movie are brilliant, the
are, the are brilliant, the brilliant, movie, movie are, movie
are brilliant, movie brilliant, are, are brilliant, brilliant

Table 4.1: All the possible sub-sequences of the sentence The actors in the
movie are brilliant

Table 4.1 shows all the possible 63 sub-sequences obtained by applying the

above pseudo code to the sentence “The actors in the movie are brilliant”.

4.2. BACKGROUND 83

We can see that sub-sequence mining captures all the necessary syntactic re-

lations from a sentence. On the contrary, sub-sequence mining can also lead

to overwhelming features. From a single sentence, 63 unique sub-sequences

were extracted, not all of which are necessary. We are only interested in

those sequences which occur frequently in our dataset (barring some com-

mon grammatical sequence like “in are”). This leads to the necessity of

mining frequent clauses from the sentences.

4.2.2 Mining Frequent Sub-sequence Patterns

Frequent sub-sequences are mined from a sequential dataset by using se-

quential pattern mining algorithms. The sequential pattern mining problem

was first introduced by Agrawal et al. [3]:

“Given a set of sequences, where each sequence consists of a list

of elements and each element consists of a set of items, and given

a user specified minimum support threshold, sequential pattern

mining is to find all of the frequent sub-sequences, i.e., the sub-

sequences whose occurrence frequency in the set of sequences is

no less than minimum support.”

To mine frequent sub-sequences we used PrefixSpan [25]. PrefixSpan (Pro-

jected Sequential Pattern Mining) mines the complete set of frequent pat-

terns but greatly reduces the effort of candidate sub-sequence generation by

exploring prefix projection in sequential pattern mining.

PrefixSpan builds in a simple logic that for any sequence to be frequent, it

has to be that the prefix of that sequence is also frequent. Thus instead of

mining all the sequences in the dataset, the algorithm only expands those

sub-sequences which have a frequent prefix. If a minimum possible sub-

sequence is a single word, and a sentence is a single sequence, PrefixSpan

first mines all the frequent words, i.e. all the words whose occurrence in a

multiple sequence is greater than a certain threshold. Then the algorithm

expands each already-obtained frequent sub-sequence of size k by attaching

a new item to obtain a frequent sequence of size k + 1. By repeating the

latter step recursively, the algorithm obtains all frequent sub-sequences.

84 CHAPTER 4. FEATURE EXPLORATION FOR SC

However, expanding a sub-sequence by attaching a new item to an arbi-

trary position leads to duplicated enumeration of the same candidate sub-

sequence. To avoid such enumeration, the algorithm restricts the position

to attach a new item to the end of the newly-obtained sub-sequence in left-

to-right order.

4.2.3 Feature Selection

Mining frequent sub-sequences has to be done with a sequence size greater

than or equal to two, or else we run the risk of including many irrelevant

words as features. But we cannot neglect the significance of a single word

token for the determination of opinions in a document. Most of the time a

document with a significant number of positive words is positive. Words like

“good”, “bad”, “brilliant” and “appalling” are used quite a lot in opinion

text, especially in movie reviews. We do want to use the effectiveness of sub-

sequences as a feature, but also we do not want to miss out on significant

single words which are highly opinionated. Thus, we propose a feature

selection technique to acquire only those unigrams which have significance

in opinion classification.

To select only significant unigrams, a classifier is trained with a unigram

as a feature on the dataset. Then we select only those unigrams which are

coined by the classifier as the most relevant for the classification purpose.

Previous study shows that not all the words in the text are relevant for

polarity detection. Only limited numbers of words are significant for polarity

detection. Thus, from the sorted list of the unigrams obtained from the

classifier, we only select top half words as selected unigrams. We use Support

Vector Machine (SVM)1 for the classification. For this study we use the

linear kernel of the SVM. The process is very straightforward, first train the

linear SVM with the unigram on the dataset. This results in a classifier

which can separate a positive opinion document from the negative opinion

document. In SVM, the classifier actually is a hyperplane which separates

positive examples and negative examples as shown in Figure 4.3. These

examples can be represented by a normal, a vector perpendicular to the

hyperplane, as shown by w in the Figure 4.3. Only those features are selected

1http://www.csie.ntu.edu.tw/∼ cjlin/libsvm/

4.2. BACKGROUND 85

X1

X2

Figure 4.3: SVM hyperplane and normal

from the normal which have higher weights than a given threshold.

Mathematically, if data features are described with vectors, xi = (xi1...xin),

where n is the feature dimension. Then, the class predictor trained by SVM

using linear kernel (K(x, z) = xT z) has the form:

sgn[b+ wTx]

for w =
∑
i

aixi

where w = (w1...wn) can be computed and accessed directly. As shown in

Figure 4.3 the class predictor uses the hyperplane to separate the positive

examples to the negative examples and w is the normal to the hyperplane.

The linear classifier categorises new data instances by testing whether the

linear combination w1x1 + .. + wnxn of the components of the vector x =

(x1, ..., xn) is above or below some threshold b; mostly 0. In our feature

selection approach we use the absolute value | wi | as the weight of feature i.

We retain only those features for which the value of | wi | exceeds a certain

threshold.

86 CHAPTER 4. FEATURE EXPLORATION FOR SC

POS tag Examples POS tag Examples

AUX do, done, have, is NNPS Americans

CC and, both, either PDT all, both, half

CD 0.5, 1 POS ”s

DT all, an, the PRP hers, herself,him

EX there PRP$ her,his,mine

FW jeux RP along,across

IN astride, among, whether SYM &

LS DS-400, second TO to
NNP Ranzer WDT that, what, which

Table 4.2: Part of the speech tags removed from the review

4.3 Experiments

4.3.1 Data Set

The dataset used is the one used in Pang et al. [24] and it consists of 1000

positive and 1000 negative movie reviews. All the experiments are carried

out using the same setting as in Pang et al. [24]. All the experiments are

carried out using 10-fold cross validation.

4.3.2 Feature Extraction

The report shows the experiment done with the word unigram, word bigram

and word sub-sequences. There are certain grammatical constructs which

show no opinion and also provide minimum knowledge about the opinion

of the sentence. For example, in the sentence, “The movie was good”, the

word “The” does not bear any opinion and can be easily discarded for the

opinion analysis task. Matsumoto et al. [31] have listed out such parts of

the speech tags which do not show any opinion. Table 4.2 shows such parts

of the speech tag with examples. In all the experiments, words with such

parts of the speech tag were removed from the dataset. The dataset was

tagged with parts of the speech tags using Stanford’s part of speech tagger
2. Also all the punctuation symbols were removed from the dataset. The

following section explains how each features is extracted from the dataset.

2http://nlp.stanford.edu/software/tagger.shtml

4.3. EXPERIMENTS 87

• Unigram:

After applying all the filters mentioned above, all the distinct single

token words were extracted from the dataset. Only those words whose

count in the dataset was more than two were kept.

• Bigram:

After applying all the filters mentioned above, all the distinct bigrams

were extracted from the dataset. Only those bigrams whose count in

the dataset was more than two were kept.

• Frequent Sub-sequence:

Frequent sub-sequence was extracted from the dataset by applying the

algorithm PrefixSpan as explained in Section 4.2.2. PrefixSpan has a

simple data input format:

Sequence ID (SID) : Sequence (Seq)

The number of patterns extracted by the algorithm grows exponen-

tially as the length of the sequence grows. Thus, it is a good idea

to shorten the sequence as much as possible. Thus instead of using a

single sentence from a document as a sequence, the sentences were sub-

divided into clauses and each clause was considered as a sequence. To

divide the sentence into clauses, Stanford’s parser was used 3. From

the parsed sentence, occurrence of the Penn Treebank tag SBAR is

considered as the pivot point to separate the sentence into clauses.

Figure 4.4 shows the parse tree obtained by parsing the sentence “Al-

though grand new technology exists that makes the technical sequences,

including several mechanical sharks , obsolete , none of it could im-

prove the film because it only would lead to overkill .“ by Stanford’s

parser. Figure 4.4 also highlights the SBAR tag. Table 4.3 shows

the clause extracted from the sentence by splitting the sentence using

SBAR tag brackets.

Once the clauses are extracted, all the filters described in Section 4.3.2

are applied. Following the input pattern to the PrefixSpan algorithm,

the extracted clauses are fed in to the algorithm as:

01: although -1 grand -1 new -1 technology -1 exists

3http://nlp.stanford.edu:8080/parser/

88 CHAPTER 4. FEATURE EXPLORATION FOR SC

Figure 4.4: Parsed sentence highlighting the SBAR tag

4.3. EXPERIMENTS 89

Sentence Although grand new technology exists that makes the tech-
nical sequences, including several mechanical sharks , obso-
lete , none of it could improve the film because it only would
lead to overkill.

Clauses
1. Although grand new technology exists
2. that makes the technical sequences, including several

mechanical sharks, obsolete
3. none of it could improve the film
4. because it only would lead to overkill.

Table 4.3: The clauses extracted by using SBAR as pivot

02: that -1 makes -1 the -1 technical -1 sequences -1 includ-

ing -1 several -1 mechanical -1 sharks -1 obsolete

03: none -1 of -1 it -1 could -1 improve -1 the -1 film

04: because -1 it -1 only -1 would -1 lead -1 to -1 overkill

-1 is put between words to tell the PrefixSpan algorithm that the words

are ordered, i.e. each item occurs before the next one. This is neces-

sary because we want to preserve the word order in the sub-sequences

generated. PrefixSpan takes a set of sequences as input. It finds all the

sub-sequences that appear in at least minimum support (MINSUP) %

of sequences. MINSUP is a parameter that has to be chosen when

running PrefixSpan. For example, in the above four sequences, if we

want to mine a single word sequence which occurs in at least half of

the sequences, then we have to set MINSUP as 50%. After running

the PrefixSpan we will get the result:

Pattern 1 : the SID : 02,03

Pattern 2 : it SID : 03,04

We get “the and it” as a pattern because only “it” and “the” occur

in two different sequences. All the experiments are carried out using

MINSUP at 10% and sequence length at 2 or greater than 2. Thus

from all the clauses extracted from the sentences of 2000 review docu-

ments only those sub-sequences are extracted which occur in at least

10% of the total number of clauses. Table 4.4 shows the frequent

sub-sequences extracted from the dataset with the above-mentioned

90 CHAPTER 4. FEATURE EXPLORATION FOR SC

Frequent Sub-sequences

oddly enough

family entertainment

rather good

always great

yet performance

actor performance

dialogue bad

sense movie

fun movie

special bad

problem film

special effects good

film very entertaining

is very good film

is violence would be

Table 4.4: Sample 15 frequent sub-sequences extracted from dataset

Features Accuracy %

Unigram 85.0

Bigram 83.2

Frequent sub-sequences 86.4458

Table 4.5: Accuracy obtained on each feature type

setting.

4.3.3 Results

After pre-processing and sub-sequence feature generation, the features are

trained using the SVM. The features are fed in as presence rather than

its count in the SVM feature file. LIBSVM4 with linear a kernel is used

in all the experiments. The learning parameter of the linear kernel, soft

margin parameter (C), is adjusted using the grid search tool provided with

the LIBSVM. The grid search tool takes in the feature vector and with a

cross-validation technique returns the optimised value of parameter C.

Table 4.5 shows the result obtained in all the different feature settings.

4http://www.csie.ntu.edu.tw/ cjlin/libsvm/

4.3. EXPERIMENTS 91

Authors Accuracy %

Pang et al. [24] (unigram) 87.0

Matsumoto et al. [31] (dependency subtree) 93.2

Mullen et al. [20] (lemmatized unigram+semantic orientation of words) 84.6

Table 4.6: Accuracy obtained on the same dataset by different authors

Table 4.6 shows the top accuracy obtained by different authors on the same

dataset. Unigram-based accuracy is considered as the baseline accuracy.

We can observe that a unigram alone can achieve decent accuracy. The

respectable accuracy obtained by using a unigram alone backs our point of

using feature selection to extract highly related unigrams.

Context capturing is essential in opinion analysis. We can take a very sim-

ple example to illustrate the importance of context in opinion analysis. The

word “good” has a positive opinion but when used as “not good”, the whole

term becomes negative. Bigrams are used as a feature to help capture con-

texts that a unigram cannot capture. But the accuracy obtained by bigrams

is lower than that of a unigram as shown in Table 4.5. This proves that bi-

grams as features are not effective in capturing the context.

On the contrary, the sub-sequences have quite high accuracy compared to bi-

grams and higher than unigram too. Although the increase in accuracy from

unigram to frequent sub-sequences is not statistically significant but the dif-

ference in accuracy from bigram to frequent sub-sequences is statistically

significant (p < 0.05, paired t-test). This proves that using sub-sequences as

a context capturing mechanism is quite effective compared to using bigrams.

This is because, as shown in Section 4.2, the context-related information is

in a longer range rather than in a shorter range. Thus, instead of using con-

tinuous words as a context, a non-continuous scheme such as sub-sequences

is more effective in capturing context.

Features Accuracy %

Unigram + Frequent sub-sequences 85.8434

Unigram selected 86.3

Unigram selected + Frequent sub-sequences 97.69

Table 4.7: Accuracy before and after feature selection

Table 4.7 shows the accuracy obtained by combining unigram and sub-

sequence features. The accuracy obtained in this setting is 97.69%, which

92 CHAPTER 4. FEATURE EXPLORATION FOR SC

is the highest and highly statistically significant (p < 0.01, paired t-test)

compared to all the other features and also the highest accuracy obtained

in this dataset with similar settings. It outperforms all the other methods

used thus far.

For combining two different features, two different experiments are carried

out. First, all the extracted unigrams and all the extracted frequent features

are combined and trained with SVM. The accuracy obtained is 85.84% which

is less than using sub-sequences alone. This proves our previous statement

that using all unigram adds to the noise in the features. With the addition

of all the unrelated features, the classifier performs poorly.

Secondly, we used our feature selection technique as described in Section

4.2.3 and only extracted those unigrams which were significant. All the

unigrams were sorted according to their weight of the normal from the clas-

sifier’s hyperplane. From this sorted data only the top half of the unigrams

was combined with the frequent sub-sequences. Table 4.8 shows the top 15

unigrams obtained after sorting. The classifier, thus trained, obtained an

accuracy of 97.69%, which is quite high compared to all the other accuracies

for different features and is also higher than the results obtained by other

methods as shown in Table 4.6.

The relatively high accuracy obtained by using only a unigram as shown in

Table 4.5 points to the fact that the unigram can be an important feature

for opinion analysis. But when used in conjunction with proper context

capturing techniques like sub-sequences, it hurts the performance by adding

too much noise. But with proper feature selection techniques the advantage

of a unigram can be used in combination with sub-sequences to achieve

commendable accuracy.

4.4 Related Work

Our work is primarily an automatic way of extracting features from the

data. Our work expands on the work done by Matsumoto et al. [31]. Their

work is based on using frequent sub-sequences and frequent dependency sub-

trees as features for sentiment classification. Our work is primarily based on

frequent sub-sequences as features. Our thinking is that using a dependency

4.4. RELATED WORK 93

Top 15 selected unigrams

worst

awful

waste

bad

nothing

poor

memorable

unfortunately

plot

only

boring

as

mess

excellent

have

Table 4.8: Top 15 weighted unigram features

sub-tree makes the features redundant, as there is no relation left which

sub-sequences do not capture. Also we use a feature selection technique to

extract important word tokens from the dataset and combine them with

frequent sub-sequences to get a very high accuracy for classification. For

completion we had to re-define various aspects of sub-sequences, already

defined in [31], but we have put on a slightly different approach to it.

Another closely related work is a features extraction technique used by Wil-

son et al. [35]. They used a manually annotated MPQA dataset and ex-

tracted different features from the data and learnt a polarity classifier for a

clue instance present in the data. For example, in the sentence :

‘‘They have not succeeded, and will never succeed’’

(positive), in breaking the will of this valiant people.

The clue instance is the phrase They have not succeeded, and will never

succeed. Even though the phrase itself is negative its contextual polarity in

the whole sentence is positive. With data annotated with such clue instances

they built a classifier which could predict the contextual polarity of such clue

instances. To accomplish this they used different features, namely:

• Word tokens: includes the word used in the clue instance along with

94 CHAPTER 4. FEATURE EXPLORATION FOR SC

words before and after the clue instance. Prior polarity of such a word

token, if present in a lexicon, is included.

• Modification features : these are the binary features which are true if,

clue instance is preceded by an adjective, or preceded by an adverb or

preceded by an intensifier [26] and other polarity modifiers.

• Negation features : these are also binary features whose values are

true if the clue instance is negated by words present within certain

word frames of the clue instance.

An SVM classifier trained with the above features could disambiguate the

contextual polarity of any clue instance with 81.6% accuracy. We worked

on a document level polarity classification rather than a clause level clas-

sification, but their work on feature extraction was a great inspiration for

us. They showed how carefully crafted features can radically increase the

accuracy of opinion classification of text. They extracted modification fea-

tures from the dependency tree of the sentence. Most of the modification

features did not occur right after the clue instance, thus using an n-gram

model was not efficient. We took more automatic ways of extracting the

features, rather than manually annotating all the features. Sub-sequences

as the features were successful to capture relevant features for sentiment

classification. Also we chose to learn the lexicon from the data to be used

as a prior polarity rather than use a manually generated lexicon.

Mullen at al. [20] used Semantic Orientation (SO) as a feature. The SO for

a phrase is the difference between its Point-wise Mutual Association (PMI)

with the word “excellent” and its PMI with the word “poor”. The PMI

for a phrase was calculated by counting the number of hits obtained by

querying the search engine with keywords {phrase + “poor”} or {phrase +

“excellent”}. SVM trained with a lemmatised unigram combined with SO

obtained an accuracy of 84.6%. Instead of using the SO of the words as a

feature we chose to use selected words as features.

4.5 Conclusions

We proved that sub-sequences are better as features in sentiment analysis

than bigrams. The results obtained by using only sub-sequences as features

4.5. CONCLUSIONS 95

easily beats the results obtained by using bigrams as features. The result

also compares to the result obtained by using manually crafted rules as in

[35] (see Section 4.4). This further proves that sub-sequences are more effi-

cient and effective in capturing long-range relations (see Sec5.1) and better

at capturing context than using an n-gram approach. Also we conclude that

word tokens can become very effective for sentiment classification if used se-

lectively. Using all the words in an opinionated text hurts the classification,

but selecting a small fraction of the total words through a feature selection

technique greatly improves the accuracy. The result obtained by combining

the selected unigram and the frequent sub-sequences generated beats all the

results obtained in the data set till to date.

Chapter 5

Target Extraction

5.1 Introduction

A review expresses an opinion on a certain topic. These topics are the

targets of the opinions. The target could be a movie, or a product like a

camera, kitchen appliance, book etc . For example,

(a) This knife is great for cutting.

(b) The movie was superb.

The above two sentences are reviews about a knife and a movie respectively.

Without the review targets, sentiment analysis is of little value. It makes

no sense in identifying the orientation of the review without identifying its

target. For example, for a sentence The book was great, from a review about

a movie, it would be positive if it was analyzed without the target. The

analysis would be true for a book’s review but for a review about a movie

the sentence can easily be regarded as a negative sentence.

Within a single topic there can be multiple targets. For example, a review

about a movie consists of reviews about actors, cinematography, story etc.

A combination of all these reviews form a review for a movie. It is also not

necessary that a negative review about a movie will have a negative review

about all its constituents’ targets. A reviewer can easily dislike the story of

a movie but find the acting superb. A camera can easily have a magnificent

shutter speed but an appalling viewfinder. The likes and dislikes of a product

96

5.2. MAIN CONCEPT 97

is an emerging market trend. The pros and cons initiate/force improvements

and support purchases. Thus it is important to identify different targets

within a single review and extract the sentiment being expressed in each.

This chapter explains an easy-to-implement association-based approach to

acquire targets on different review topics. The method assumes no prior

knowledge on any particular topic and only requires data grouped into dif-

ferent topics. This unsupervised method is based on the observation that

word has different associations relating to different topics. The association

relation can be acquired from statistical hypothesis test.

The basic principle of this approach is to extract targets for a topic depend-

ing on its association with the given topic and also other topics. The method

is simple yet effective. Target pruning is applied to improve the results. In

evaluation, the results are tested against the manually annotated data and

also a comparison between other target extraction methods are shown. The

results are compared to other methods which use more prior knowledge than

our approach.

5.2 Main Concept

Log-Likelihood (LL) target extraction system is based on a very simple

concept of association between the review and its topic.

A review consists of primarily opinion words, targets of the opinions ex-

pressed by sentiment-bearing words and other grammatical necessities. For

review of any products, this basic form is valid. Thus, a review about a cam-

era and a movie will have the same set of opinion words and the same set

of grammatical necessities. For example, consider the following sentences:

(a) It was a fantastic movie.

(b) This camera takes amazing pictures.

Sentence (a) is a review about a movie and sentence (b) is a review about

a camera. Now, if we rewrite the sentences by interchanging the italicised

words, we will get:

(a) It was an amazing movie.

(b) This camera takes fantastic pictures.

98 CHAPTER 5. TARGET EXTRACTION

Camera Grocery

Sentences g3 worth every single cent i
spent on it; i really haven’t
taken a bad picture yet; the
lens cover is surely loose

Coconut had bad flavour;
Choc bar cost a little more
than cent; The noodles loosen
up after you stir it

Targets g3, picture, lens, cover Coconut, Choc bar, noodles

Table 5.1: Review sentences and potential non-common targets

We can see that interchanging the words makes no significant difference to

the subjectivity of the sentence, even if it had changed the orientation of

the polarity like in unpredictable movie and unpredictable steering. Words

like fantastic and amazing could have been used in either review. The only

major difference in the context of sentiment analysis in these two sentences

is the targets. One review is about a camera while the other is about a

movie. This simple fact about the nature of the reviews leads to a simple

hypothesis that:

The content of two reviews about different products would pri-

marily only differ by the product they are reviewing.

Thus if we filter out all the common parts between the reviews about dif-

ferent topics, what remains is the target of the reviews. Such a filter is

achieved by using the log-likelihood ratio principle. Log-likelihood ratio re-

wards distinct associations but punishes common associations. Table 5.1

shows different sentences taken from a review about a camera and a review

about grocery products. The removal of common words (including similar

grammatical constructs) between these reviews and also considering only

nouns yields words, which are the targets of each individual review.

5.2.1 Log-Likelihood

To find the association between the word and the topic we use the log-

likelihood ratio (LL) [8]. The word with the highest topic-to-word LL is

most strongly associated with the topic. The association of the word to

the topic is calculated in comparison to the association of the same word

with a different topic. From the above discussion we conclude that targets

are very specific to the domain. Thus we want to reward words which are

5.2. MAIN CONCEPT 99

highly associated with the domain of concern and at the same time punish

the words which are highly associated with some other domain. In a simple

form, this can be represented by the following equation:

Association Ratio =
Association with current domain

Association with other domain

Thus a potential target is one which has a higher value for the numerator

and lower value for the denomenator, i.e a potential target will have a high

association ratio. We calculate the association ratio by calculating the log-

likelihood ratio of topic T to word W. In order to compute the log-likelihood

ratio of topic T to word W, we create a contingency table for each topic.

The contingency table is shown in Table 5.2. The contingency table contains

the observed value taken from the corpus.

C[i,j] Count in topic camera count in topic ¬camera(eg Grocery)

lens 11 1 12 C[lens]

¬lens 1304 6535 7839 C[¬lens]

1315 6536
C[Total camera] C[Total ¬camera]

Table 5.2: The contingency table to calculate LL ratio. Here, C[i,j] denotes
the count of the number of times j occurs in i. Total corpus size is N=7851.

The LL value of topic T and word W is given by,

LL(T,W) =
∑

iε{T,¬T},jε{W,¬W}
2C(i, j)log

C(i, j)N

C(i)C(j)

Table 5.2 shows the contingency table created for calculating the log-likelihood

ratio for topic camera to the word lens. The data used is a review text on

the camera domain and the other domain (¬camera) is the review about

groceries. We can see that of the 1315 tokens in camera data the word lens

occurs 11 times and of the 6536 word tokens in the grocery data the word

lens occurs 1 time. Thus LL will be computed as:

LL(camera, lens) =
∑

iε{camera,¬camera},jε{lens,¬lens}

2C(i, j)log
C(i, j)7851

C(i)C(j)

or

LL(camera, lens) = −6148.88

Similarly, if we take the LL value of “good” which occurred 75 times in the

100 CHAPTER 5. TARGET EXTRACTION

Canon(camera) Nokia(mobile) Zen(mp3) DVD Player Nikon(camera)

camera phone player player camera
picture nokia software dvd picture
canon product ipod apex card
lens radio song disc battery
g3 service music unit mode
image battery battery picture nikon
product screen zen problem pics
battery speakerphone amazon button image
photo feature computer christmas shot
flash option nomad movie lens
mode camera button dvds setting
film menu cd output quality
viewfinder reception device display model
card game unit model resolution
software voice product feature flash

Table 5.3: Top 15 words extracted for each category.

camera review and 80 times in the grocery review then

LL(camera, good) = −6126.28

the magnitude of LL(camera,good) is quite low compared to LL(camera,lens)

considering there is a very minute change in LL value over large change in

count value of the words. Thus through LL we can separate out target words

from non-target words.

5.2.2 Filter

According to [13] target words are commonly nouns. Following this ap-

proach, only nouns were extracted as targets. This significantly increased

precision. The tagged targets from the dataset are also all nouns.

Table 5.3 shows the top 15 ranked targets extracted for each dataset by the

LL system.

5.3. EXPERIMENTS 101

Dataset Number of tokens Number of noun tokens Number of targets

Canon G3(camera) 11547 2311 55
DVD player 12051 2264 52
Zen(mp3) 31705 6000 96
Nikon(camera) 6498 1315 31
Nokia(mobile) 9290 1851 67

Table 5.4: Corpus Statistics

5.3 Experiments

This section evaluates the proposed method. The dataset is described first,

then the evaluation and comparison of results with the double propagation

[12] method is shown.

5.3.1 Data Set

The data used is the customer review 1 from [13]. The dataset consists of

reviews of 5 different products: 2 cameras, 1 DVD player, 1 MP3 player and

1 mobile. The detailed statistics of each dataset is given in Table 5.4. The

data set is already tagged with targets for each applicable sentence. The

tagged target is in its base form and is converted to lower case.

Data Preparation

All the punctuation marks from the data ware removed. The data were then

converted into tokens and each category had one file which had a single word

in each line. The tokens were then lemmatised using treeTagger2.

The association test could be performed in pairs of topics or in a one vs the

rest strategy. The experiments showed an insignificant difference between

the results obtained from both of the methods. When considering the pair

method for association mining, the best result is obtained when the pair are

as dissimilar as possible. For example, if the pair considered for the test are

the topics camera and dvd player, then the result might be poor since both

topics have many features in common. For example, battery, screen and

picture are potential targets for both camera and DVD player. So naturally

1http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

102 CHAPTER 5. TARGET EXTRACTION

Dataset Precision

Canon G3(camera) 0.65
DVD player 0.71
Zen(mp3) 0.72
Nikon(camera) 0.55
Nokia(mobile) 0.76

Table 5.5: Precision obtained in each dataset by LL method

Dataset Precision

Canon G3(camera) 0.87
DVD player 0.90
Zen(mp3) 0.81
Nikon(camera) 0.90
Nokia(mobile) 0.92

Table 5.6: Precision obtained in each dataset by Liu et al.

the contents of the topics would have a higher presence of these words. Since

the log-likelihood test punishes common association, these words will have

lower values as potential targets and may be disregarded. On the other

hand, if the pair considered for the topics are, for example, camera and

grocery, there is very little chance that the targets of these topics are the

same. Thus, targets in this case will be extracted with higher precision.

5.3.2 Result

Table 5.5 shows the precision obtained by the LL system in each dataset.

The precision is calculated by selecting the top N targets from the ranked

list generated by LL system. N is set to the number of annotated targets

extracted for each dataset. With this setting calculation of recall becomes

insignificant as it equals the precision.

The precision obtained by the LL system cannot be directly compared to

current state of the art [12] which also uses the same dataset. The reason for

this is that they have included both a single word target and phrasal target

like battery life in their evaluation. The highest precision obtained by their

system for each dataset is shown in Table 5.6. The data was taken from

their paper. The dataset used is a medium sized dataset with a significantly

small number of target words. The Double Propagation [12] system works

5.3. EXPERIMENTS 103

well in medium-sized corpora but will introduce noise in larger corpora and

leads to low precision. When applied to larger corpora their precision falls

to as low as 0.62 [39]. This can also be seen from Table 5.6, where there

is a distinct fall in precision from the dataset with fewer number of word

tokens to the dataset with a comparatively higher number of tokens: Nokia

Pr: 0.90 #:6498 to Zen Pr: 0.81 #:31705. Contrary to this, the LL system

proposed here reacts better to the increase in the number of tokens or the

potential targets, as seen by the increase in the precision in Zen MP3 player

and Nokia mobiles. This is due to the fact that, as the size of the dataset

increases, the ratio of the number of distinct words in each topic to the

number of common words between topics decreases, thus the association

between the distinct words will have a comparatively higher value. This will

lead to identifying more targets with much higher ranks than the non-targets

words.

To support this theory, a simple experiment was done. To increase the

amount of data and number of potential targets, both of the camera reviews

in the dataset (Canon + Nikon) were combined to form one whole review.

This led to a significant increase in the number of tokens and a slight increase

in the number of targets, as most of the targets were common to both the

reviews. The new statistics are shown in Table 5.7.

Dataset Number of tokens Number of noun tokens Number of targets

Camera(Canon+Nikon) 18054 3626 64

Table 5.7: Corpus statistics of the camera

The log-likelihood ranking thus generated with this new data showed an

increase in precision by 6% to the previous high for the camera. This proves

that the LL system works better with larger data and a larger number of

targets. As the data size increases, the top ranked product becomes more

distinct which results in the increase of precision. The top 15 products

extracted from the new combined data are shown in Table 5.8.

104 CHAPTER 5. TARGET EXTRACTION

Camera(Canon+Nikon)

camera
picture
product
battery
lens
canon
card
image
g3
mode
photo
flash
nikon
shot
quality

Table 5.8: Top 15 target extracted from combined Camera dataset

5.4 Related Work

• [18] uses the topic sentiment mixture model to extract topic and sen-

timent together. The LL approach is different from this, as it only

extracts topics. Mei et al’s [18] approach lacks clear evaluation for

any comparison and such topic modeling methods can only extract

coarse/general topics. The LL approach proposed here can even ex-

tract very infrequent targets.

• [13] classified targets in any review as frequent nouns and noun phrases.

The LL system also uses only nouns. But instead of just mining fre-

quent nouns it uses the association principle. It is not always the case

that frequent nouns are the target in reviews. For example, in our

dataset on the camera review, the word “software“ occurred just five

times. One of the review of the software is, “Software in it is quite

bad”. Thus we can see that “software” is the potential target in the

review. In a corpus with other targets such as “camera” occurring

137 times, 5 is very infrequent and according to Hu’s approach can be

neglected. Our system ranked “software” quite high as the potential

target.

5.4. RELATED WORK 105

• Popescu et al. [27] also followed the same approach as Hu’s to mine

noun targets. Their algorithm requires that the product feature is

known. The algorithm determines whether nouns/noun phrases are

targets by computing Pointwise Mutual Information (PMI) between

phrases and class-specific determiners, e.g. “x has”, “x is”. The LL

system is different from theirs as it does not need to search through the

dataset to identify the part relation which can be quite time consuming

for a large dataset.

• Lui [39] uses an information extraction method to mine product tar-

gets and opinion lexicons together. The Double Propagation approach

is based on the fact that the opinion targets are modified by some mod

relation as given by the dependency parser. They use an initial opin-

ion lexicon and target lexicon to search through the dataset to identify

such relations. The bootstrapping process continues until no further

opinion words or targets are found. LL Approach differs from theirs

as the LL approach does not need any seed lexicon thus it is purely

unsupervised. Also the double propagation method uses only direct

dependency relations but the target and opinion words are also con-

nected through the indirect dependency relation [12]. Thus the double

propagation method fails in such cases, and also when the size of data

increases it tends to insert more noise thus decreasing precision. The

result section shows that the LL method shows better results with an

increase in size of the dataset.

• Stoyanov at al. [30] extract topics through topic co-reference resolu-

tion. Their work is based on the hypothesis that the two opinions are

topic co-referent if they share the same opinion topic. To accomplish

this they form a cluster of co-referent topics and label the cluster with

the names of the topics. They train a classifier on the clusters. Even

though the idea of target clusters according to topics shares similar-

ities with the LL approach, the LL approach is quite different from

theirs as it is unsupervised and does not need any labelled data.

106 CHAPTER 5. TARGET EXTRACTION

5.5 Application

As already discussed in Section 5.1, target extraction plays an important

role in sentiment analysis. The most important application is to extract

clauses which are relevant towards providing the sentiment of the review.

It is already established that opinion is expressed towards the target, thus

any opinionated clause will have a target present in it. Thus, to extract any

opinionated clause, we can extract clauses which have a target word present

in it. Below are the clauses which were extracted from the camera review.

• the software was terrible

• It ’s batteries died all the time and lost all of the pictures .

• The neck strap is not worth the difference

• And the price is right for the features and MP

• This lens is one of my favorites

• Camera comes with the software

The clauses were extracted with the highlighted targets. It can been seen

that the target-based extraction of the opinionated clauses works reasonably

well. Since the pronominal resolution of the corpus was not done, clauses

like “it was great” were not extracted. The other limitation of this approach

is that the target containing term may not be subjective/opinionated all the

times. It may be the case that the reviewer is just talking about the product

without expressing any opinion on it. For example, the last clause in the

above list has a target word camera but does not show any opinion. But

this can be solved by extracting the clauses which contain both targets and

the opinionated word. So a subjective clause will be the one which has the

presence of not only the target word but also the word which expresses an

opinion towards that target.

Chapter 6

Conclusions and Directions

for Future Work

This thesis investigated the various aspects of opinion analysis, namely, opin-

ion lexicon extraction, opinion classification (including multi-class), opinion

target extraction and summarising opinions of reviews.

The opinion lexicon extraction and opinion classification focused on using

the compositional property of opinionated text. The thesis described an

additive model with constraints optimisation which is used for both opinion

lexicon extraction and opinion classification.

The thesis described an unsupervised algorithm to acquire opinion targets

from the reviews. It also investigated the relations between opinion targets

and opinionated words to devise an algorithm for extraction of fine-grained

subjective clauses.

The thesis also showed the use of feature selection methods to improve on

a previous work of opinion classification.

107

108CHAPTER 6. CONCLUSIONS ANDDIRECTIONS FOR FUTUREWORK

6.1 Summary of Results and Contribution

6.1.1 Weighted Opinion Lexicon

The major part of the thesis revolves around the idea that in a given domain

two opinionated words can have different weights, even if they share the same

polarity. If such is the case, the thesis showed with examples how a weighted

lexicon can be used to successfully identify the polarity of the opinion on a

text. The thesis explained an effective algorithm to generate such weighted

lexicon from opinionated text. The generated lexicon when used for opinion

classification showed promising results. The result bolstered our claim that

the opinion lexicon should not only contain the polarity of the words but

should also contains weight of the polarity.

6.1.2 Linear Sum for Opinion Classification

The thesis showed how an opinionated text can be represented by a linear

additive equation. This part of the work was influenced by the successful

use of compositionality for opinion classification in [19]. Contrary to prior

belief that opinion classification of a text cannot be done by linear sum of

constituent opinion words, the thesis successfully built a model which used

the linear sum of weighted opinion words for opinion classification.

6.1.3 Need for Multi-class Opinion Classification

The thesis showed that a text cannot just be positive and negative; some

are more positive/negative than others. With examples, the thesis showed

the need for multi-class opinion classification. The experiments showed that

our additive model which worked well for binary opinion classification failed

to produce impressive results for multi-class opinion classification. We also

used SVM for the same task; the results obtained by SVM for multi-class

classification were also very low on accuracy as compared to SVM’s result

on binary classification. This led us to the conclusion that the irregularities

in tagging a review as either 1 star or 2 star (5 star or 4 star) makes the

multi-class opinion classification a very difficult problem.

6.2. DIRECTIONS FOR FUTURE WORK 109

6.1.4 Fine-grained subjectivity by exploiting opinion targets

and opinion words relations

Many previous works used relations between opinion targets and opinion

words to extract opinion targets and opinion words. The thesis showed that

such relations can also be used to extract sentences/clauses which show

an opinion towards a single feature/target of a topic. Using the output

of syntactic parser, we developed hierarchical rules to successfully extract

feature/target specific clauses/sentences from the whole review text. Since

not all the words in a review text are opinionated and an opinion word

modifies its target through certain syntactic modifiers, we can select a subset

of words from the review text which will be subjective and the opinion will

be targeted to a single feature.

6.2 Directions for Future Work

The important contribution of our work is the use of a linear additive model

to classify the polarity of the opinionated text. We successfully showed

that classification tasks can be achieved by the linear sum. We tried to

use the same model for the multi-class classification but could not attain

good results. Our model is based on the principle of weight distribution

of opinion throughout the opinionated text. The lack of better accuracy

on multi-class opinion classification is due to non-disambiguating opinion

weight distribution among the classes in the middle, i.e 2 and 4 stars in our

case. Possible future work would be to incorporate additional knowledge

about the text with star rating 2 and star rating 4 and add this knowledge

as an additional parameter in our model. The most basic knowledge could

be the number of positive and negative sentences in the text. The use of such

knowledge has shown an increase in performance in previous studies. We

could formulate our constraints not only to incorporate an opinion lexicon

but also parameters for multi-class opinion classification.

Further future work will be to extract not only single words as opinion words

and target words but to extract phrases as potential opinion expression and

target expression. The phrasal target extraction can in turn improve our

feature selection algorithm.

Bibliography

[1] Alina Adreevskaia and Sabine Bergler. Mining wordnet for fuzzy sen-

timent: Sentiment tag extraction from wordnet glosses. In 11th Con-

ference of the European Chapter of the Association for Computational

Linguistics, pages 209–216, 2006.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-

ing association rules in large databases. In Jorge B. Bocca, Matthias

Jarke, and Carlo Zaniolo, editors, VLDB’94, Proceedings of 20th Inter-

national Conference on Very Large Data Bases, September 12-15, 1994,

Santiago de Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential pat-

terns. pages 3–14, 1995.

[4] Farah Benamara, Carmine Cesarano, Antonio Picariello, Diego Refor-

giato, and V. S. Subrahmanian. Sentiment analysis: Adjectives and

adverbs are better than adjectives alone. In Proceedings of the Interna-

tional Conference on Weblogs and Social Media (ICWSM), 2007. Short

paper.

[5] Eric Breck, Yejin Choi, and Claire Cardie. Identifying expressions of

opinion in context. In IJCAI, pages 2683–2688, 2007.

[6] Yejin Choi and Claire Cardie. Learning with compositional semantics

as structural inference for subsentential sentiment analysis. In EMNLP

‘08 : Proceedings of the Conference on Empirical Methods in Natu-

ral Language Processing, pages 793–801, Morristown, NJ, USA, 2008.

Association for Computational Linguistics.

110

BIBLIOGRAPHY 111

[7] Yejin Choi and Claire Cardie. Adapting a polarity lexicon using inte-

ger linear programming for domain-specific sentiment classification. In

EMNLP, pages 590–598, 2009.

[8] Ted Dunning. Accurate methods for the statistics of surprise and coin-

cidence. COMPUTATIONAL LINGUISTICS, 19(1):61–74, 1993.

[9] Andrea Esuli and Fabrizio Sebastiani. Determining the semantic orien-

tation of terms through gloss analysis. In Proceedings of the ACM SI-

GIR Conference on Information and Knowledge Management (CIKM),

2005.

[10] Andrea Esuli and Fabrizio Sebastiani. SentiWordNet: A publicly avail-

able lexical resource for opinion mining. In Proceedings of Language

Resources and Evaluation (LREC), 2006.

[11] Angela Fahrni and Manfred Klenner. Old Wine or Warm Beer: Target-

Specific Sentiment Analysis of Adjectives. In Proc.of the Symposium

on Affective Language in Human and Machine, AISB 2008 Convention,

1st-2nd April 2008. University of Aberdeen, Aberdeen, Scotland, pages

60 – 63, 2008.

[12] Jiajun Bu Guang Qiu, Bing Liu and Chun Chen. Opinion word expan-

sion and target extraction through double propagation. COMPUTA-

TIONAL LINGUISTICS, 2010.

[13] Minqing Hu and Bing Liu. Mining and summarizing customer reviews.

In KDD ’04: Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 168–177,

New York, NY, USA, 2004. ACM.

[14] N. Milic-Frayling J. Brank, M. Grobelnik and D. Mladenic. Feature

selection using linear support vector machines. In Technical report,

Microsoft Research, 2002.

[15] Nobuhiro Kaji and Masaru Kitsuregawa. Building lexicon for sentiment

analysis from massive collection of HTML documents. In Proceedings

of the Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-

CoNLL), pages 1075–1083, 2007.

112 BIBLIOGRAPHY

[16] Hiroshi Kanayama and Tetsuya Nasukawa. Fully automatic lexicon

expansion for domain-oriented sentiment analysis. In EMNLP, pages

355–363, 2006.

[17] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: analyz-

ing and comparing opinions on the web. In WWW ’05: Proceedings of

the 14th international conference on World Wide Web, pages 342–351,

New York, NY, USA, 2005. ACM.

[18] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang

Zhai. Topic sentiment mixture: modeling facets and opinions in we-

blogs. In Proceedings of the 16th international conference on World

Wide Web, WWW ’07, pages 171–180, New York, NY, USA, 2007.

ACM.

[19] Karo Moilanen and Pulman Stephen. Sentiment composition. In Pro-

ceedings of Recent Advances in Natural Language Processing (RANLP

2007), pages 378–382, September 27-29 2007.

[20] Tony Mullen and Nigel Collier. Sentiment analysis using support vector

machines with diverse information sources. In Dekang Lin and Dekai

Wu, editors, Proceedings of EMNLP 2004, pages 412–418, Barcelona,

Spain, July 2004. Association for Computational Linguistics.

[21] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis

using subjectivity summarization based on minimum cuts. In Proceed-

ings of the ACL, pages 271–278, 2004.

[22] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for

sentiment categorization with respect to rating scales. In Proceedings

of the ACL, pages 115–124, 2005.

[23] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foun-

dations and Trends in Information Retrieval, 2(1-2):1–135, January

2008.

[24] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?

Sentiment classification using machine learning techniques. In Proceed-

ings of the 2002 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 79–86, 2002.

BIBLIOGRAPHY 113

[25] Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Helen Pinto, Qiming Chen,

Umeshwar Dayal, and Mei chun Hsu. Prefixspan: Mining sequential

patterns efficiently by prefix-projected pattern growth. pages 215–224,

2001.

[26] Livia Polanyi and Annie Zaenen. Contextual lexical valence shifters. In

Proceedings of the AAAI Spring Symposium on Exploring Attitude and

Affect in Text: Theories and Applications, 2004.

[27] Ana-Maria Popescu and Oren Etzioni. Extracting product features and

opinions from reviews. In Proceedings of the conference on Human Lan-

guage Technology and Empirical Methods in Natural Language Process-

ing, HLT ’05, pages 339–346, Morristown, NJ, USA, 2005. Association

for Computational Linguistics.

[28] Dan Roth and Wen tau Yih. A linear programming formulation for

global inference in natural language tasks. In In Proceedings of CoNLL-

2004, pages 1–8, 2004.

[29] Vikas Sindhwani and Prem Melville. Document-word co-regularization

for semi-supervised sentiment analysis. In ICDM ’08: Proceedings of

the 2008 Eighth IEEE International Conference on Data Mining, pages

1025–1030, Washington, DC, USA, 2008. IEEE Computer Society.

[30] Veselin Stoyanov and Claire Cardie. Topic identification for fine-grained

opinion analysis. In Proceedings of the 22nd International Conference

on Computational Linguistics - Volume 1, COLING ’08, pages 817–824,

Morristown, NJ, USA, 2008. Association for Computational Linguistics.

[31] Shotaro Okumura Takamura, Hiroya Matsumoto and Manabu. Senti-

ment classification using word sub-sequences and dependency sub-trees.

In Proceeding of PAKDD’05, the 9th Pacific-Asia Conference on Ad-

vances in Knowledge Discovery and Data Mining, volume 301310, page

3518, 2005.

[32] Peter D. Turney. Thumbs up or thumbs down? semantic orientation

applied to unsupervised classification of reviews. In ACL, pages 417–

424, 2002.

[33] Casey Whitelaw, Navendu Garg, and Shlomo Argamon. Using appraisal

groups for sentiment analysis. In CIKM ’05: Proceedings of the 14th

114 BIBLIOGRAPHY

ACM international conference on Information and knowledge manage-

ment, pages 625–631, New York, NY, USA, 2005. ACM.

[34] Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expres-

sions of opinions and emotions in language. Language Resources and

Evaluation, 39(2-3):165–210, 2005.

[35] Theresa Wilson and Janyce Wiebe andPaul Hoffmann. Recognizing

contextual polarity: An exploration of features for phrase-level senti-

ment analysis. Computational Linguistics, 35(3):399–433, 2009.

[36] Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and Wayne Niblack.

Sentiment analyzer: Extracting sentiments about a given topic using

natural language processing techniques. Data Mining, IEEE Interna-

tional Conference on, 0:427, 2003.

[37] Jeonghee Yi and Wayne Niblack. Sentiment mining in webfountain.

In Proceedings of the 21st International Conference on Data Engineer-

ing, ICDE ’05, pages 1073–1083, Washington, DC, USA, 2005. IEEE

Computer Society.

[38] Hong Yu and Vasileios Hatzivassiloglou. Towards answering opinion

questions: separating facts from opinions and identifying the polarity of

opinion sentences. In Proceedings of the 2003 conference on Empirical

methods in natural language processing, pages 129–136, Morristown,

NJ, USA, 2003. Association for Computational Linguistics.

[39] Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn O’Brien-Strain. Ex-

tracting and ranking product features in opinion documents. In Coling

2010: Posters, pages 1462–1470, Beijing, China, August 2010. Coling

2010 Organizing Committee.

