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Abstract

Appropriate test models that can satisfy complex constraints are required for testing
model management programs in order to build confidence in their correctness. Mod-
els have inherently complex structures and are often required to satisfy non-trivial
constraints which makes them time consuming, labour intensive and error prone to
construct manually. Automated capabilities are therefore required, however, existing
fully-automated model generation tools cannot generate models that satisfy arbitrarily
complex constraints. This thesis addresses this problem by proposing a semi-automated
approach towards the generation of such models. A new framework named Epsilon
Model Generator (EMG) that implements this approach is presented. The framework
supports the development of model generators that can produce random and repro-
ducible test models that satisfy complex constraints.
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1 Introduction

Model Driven Engineering (MDE) makes use of models as first class artefacts for soft-
ware development. The structure of these models varies depending on their intended
usage and properties. The structure of models is described by metamodels and some-
times further external constraints might be imposed on the models so that they can
exhibit other desired characteristics not captured by the metamodels. In an MDE
process, models are manipulated by automated model management programs in the
context of activities such as model-to-model transformation, model validation, model
composition, etc. Such programs can have defects (bugs) and they therefore need to be
tested. In order to test them we need appropriate test data, i.e models that conform to
the respective metamodel and satisfy the required constraints. The application of MDE
to larger and more complex systems makes the structure of the metamodels complex
and harder constraints are needed in order to satisfy the intended purpose. In this con-
text, manual assembly of such test models is error prone, time and labour consuming,
hence there is a need to automate the generation process.

1.1 Motivation

This section summarises the current state of the art in automated model generation and
highlights the problem that motivated the work in this thesis.

1.1.1 Models in Model Driven Engineering

A model [1] can be defined as an abstraction of a phenomena of interest. In Model
Driven Engineering (MDE), models are defined using a set of well-defined rules and
semantics which are encapsulated in what is called their metamodels [2]. Therefore,
a metamodel is a model that defines another model. The metamodel usually enforces
some constraints in order to specify the model it defines. However, due to the complexity
of the phenomena described by a model, its metamodel may not be able to fully capture
all the properties the model is expected to have, therefore additional external constraints
may also be necessary. A valid model is required to exhibit the characteristics specified
by its metamodel and satisfy any additional external constraints.

Traditionally, models have been used in software development mainly for documen-
tation and they were rarely updated when changes were made to the code. MDE makes
use of models as first class artefacts to be used throughout the software development
process. This makes it easier to focus on the software design without considering
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the underlying computing environment or programming language, thereby reducing
software development time.

Two types of modelling languages are generally recognised: general purpose and
domain-specific languages [3]. General purpose languages such as UML [4] generally
capture a wide range of problems and provide constructs that can be used for diverse
applications. Domain-specific languages are designed to be used in a narrow range of
problems and therefore provide constructs that are restricted to a particular domain.

1.1.2 Model Management Programs

MDE inherently relies on mechanisms that can be used to execute different operations
on models. These operations are termed model management operations. A model
management program is a software program that can be used to manipulate models
automatically (e.g. validate, compare, transform, merge). As MDE is increasingly
applied to larger and more complex systems, the models that the model management
programs need to manage also grow significantly in complexity and are required to
satisfy increasingly more complex constraints. Within the context of this thesis, complex
constraints include constraints that involves string literals, multiple first-order OCL
operations [5] or compound associations between the metamodel elements’ types [6].
A simple constraint does not have any of the afore-mentioned features.

1.1.3 Model Generation

Appropriate test data is essential for testing software programs in order to build con-
fidence on their correctness. The test data required for testing model management
programs is models. Models inherently have complex structures, yet this complexity
is further amplified because they are often required to satisfy non-trivial constraints.
Manual generation of such models is error prone, labour intensive and time consuming
therefore automated generation of test models is needed. An ideal model generator
should be able to:

1. Generate models that conform to a target metamodel and respect additional (com-
plex) constraints.

2. Exhibit other desired characteristics such as randomness and repeatability of the
models produced.

Several state-of-the-art model generation tools have been evaluated using an existing
complex model transformation as a case study and none of them were able to generate
models that satisfy the constraints which are pre-conditions of the transformation. This
situation has motivated the research presented in this thesis.
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1.2 Research Contributions

A new approach that simplifies the development of model generators has been pro-
posed, and a framework named Epsilon Model Generator that implements the proposed
approach has been developed. The framework is a semantic extension to an existing
language named Epsilon Pattern Language (EPL) [7] and provides first-class support
for common tasks in a model generation process. The framework has been used to
develop model generators that can generate repeatable and random models that satisfy
complex constraints.

1.3 Thesis Structure

Chapter 2 provides a detailed review of related work. Section 2.1 introduces the concept
of MDE and presents various types of model management programs of interest. The
section also reviews languages and tools for specifying and executing such programs.
Section 2.2 discusses various approaches to testing software programs and the different
types of testing that currently exist. Section 2.3 discusses major barriers towards testing
of automated model management programs and the significance of an appropriate
model generation process is highlighted. Section 2.4 examines important requirements
to be fulfilled by an ideal model generator and reviews existing automated generation
approaches, their merits and limitations.

Chapter 3 provides a detailed analysis of current model generation tools based on
the approaches identified earlier and highlights their weaknesses particularly in gener-
ating models that satisfy complex constraints as well as their inability to reproduce the
generated models. Chapter 4 summarizes the findings of the literature review and the
limitations of existing approaches and tools. The chapter also states the objectives of
this research and how we intend to achieve them. Chapter 5 introduces a new approach
towards generating models and presents a model generation framework based on the
approach and built on top of the Epsilon platform. Section 5.4 gives a practical demon-
stration of how the framework can be used to generate models that are repeatable,
random and easy to parameterize.

Chapter 6 evaluates the proposed framework and shows how it meets the research
objectives stated in Chapter 4. The final Chapter summarises the work done and outlines
possible future research directions.
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2 Literature Review

This chapter provides a comprehensive review of related work in the field of auto-
mated model generation within the context of Model Driven Engineering (MDE). The
aim of Section 2.1 is to introduce the core MDE concepts to the reader with a focus on
technologies that will be used in the remainder of the project (e.g. Eclipse Modeling
Framework, Epsilon). An extensive review of all the different dimensions of MDE (e.g.
different metamodelling frameworks , model-to-model and model-to-text transforma-
tion languages etc.) is beyond the scope of this section as this work only contributes to a
specific facet of MDE (automated test model generation). Section 2.2 discusses various
approaches to testing software programs. Section 2.3 discusses the process of testing
model management programs and also highlights the significance of using appropri-
ate test models. Section 2.4 examines current approaches towards automated model
generation, their merits and limitations.

2.1 Model Driven Engineering

Models [1] have been used since the inception of the field of software engineering
with notations such as flowcharts and finite state machines due to their usefulness in
simplifying the complexity of software systems and communicating technical aspect of
the software development process to non-technical audiences [2, 8, 1]. In a traditional
software engineering process, models are mainly used for documentation and com-
munication of software design. Occasionally, they may also be used for partial code
generation but the developer has to modify and complete the code using traditional
programming languages. The models were seldom updated as changes applied to the
code are rarely reflected back in the models.

MDE elevates models as first class artefacts to be used throughout the software de-
velopment lifecycle. This enables developers to focus on the problem space rather than
on the underlying computing environment [9]. Problems can therefore be expressed in
terms of concepts in the problem domain such as health, automotive, etc. By providing
support for capabilities such as automated code generation, MDE reduces the gap be-
tween models and code thereby eliminating the need for their manual translation which
can be error-prone and time consuming.

The concepts in a problem space are abstracted in models which are described using
what is called their metamodels [2]. Metamodels are models that describe the concepts
in each domain and the relationships among them. A conformance relationship exists
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Figure 2.1: A Metamodel and its Conforming Model

between a model and a metamodel hence, a model is said to conform to the metamodel
when each of its elements’ type is in the metamodel and the relationship among the
model elements follows the defined relationships among the corresponding types in the
metamodel. A conforming model is also a valid instance of the metamodel.

Figure 2.1 presents an example of a directed graph metamodel (in MOF [10]) and a
model that conforms to it. The metamodel describes that a directed graph is composed
of nodes which are connected by edges. Each edge connects exactly two nodes: one
as a source and the other as a target. The source node treats the edge as an incoming
connection while the target node treats it as an outgoing connection. Sometimes it
may be necessary to add further external constraints to the models so that they can
exhibit additional characteristics. For example we may add the following constraint to
the graph metamodel: there should be two special nodes, one that connects via only
outgoing Edges and the other connects via only incoming Edges.

2.1.1 Modelling Technologies

This thesis deals with generation of models that can be used for testing model man-
agement programs. This section introduces modelling technologies that are useful
for specifying models while Section 2.1.2 discusses model management programs and
existing frameworks for executing them.

Modelling technologies are important for specifying and constructing models. Some
of the state-of-the-art modelling technologies include: Microsoft Software Factories [11]
which provides a set of APIs for constructing models in Microsoft Visual Studio and
NetBeans Metadata Repository [12], a framework for constructing, storing and manag-
ing MOF 1.4 compliant models. MetaEdit+ [13] is a commercial modelling technology
that provides a collaborative environment for managing models. As discussed above,
a comprehensive survey of different modelling technologies is beyond the scope of this
section, hence below we focus on the modelling technologies used in this work.
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Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [14] is possibly the most commonly used
modeling framework. EMF is a modeling extension to the Eclipse IDE1 and provides
capabilities for creating, deleting and querying models and model elements via a set
of APIs. At the core of EMF is an object-oriented metamodeling language called Ecore
which can be used to describe metamodels and also provides capabilities for runtime
change notification and persistence support via XML serialization. The Ecore meta-
model is its own metamodel i.e it is a meta-metamodel.

Graphical Modeling Framework

The Graphical Modeling Framework (GMF) [15] is an Eclipse-based framework that pro-
vides runtime capabilities for generating graphical editors using EMF and the Graphical
Editing Framework (GEF) 2. GEF provides the necessary infrastructure for creating rich
graphical editors and views therefore, GMF can be seen as a bridge that links the EMF
to GEF at runtime. GMF requires as input an Ecore metamodel, a graphical notation
model, a tooling model and a mapping model that links the first three models.

2.1.2 Model Management Frameworks

Model management frameworks and tools are useful for specifying and executing
model management programs i.e software programs that can manipulate models by
automatically executing model management operations. Common operations that can
be performed on models are stated below.

1. Model to model transformation: This is the process whereby a model is trans-
formed into another model corresponding to the same or to a different metamodel.

2. Model to text transformation: This is the process of transforming a model into
textual artefacts. It forms the basis of code generation and attempts to close the
gap between models and code similar to the role of compilers in translating high
level code to executable instructions.

3. Model validation: This is the process of verifying if a model conforms to its
metamodel and satisfies a set of constraints.

4. Model merging: This is the process of combining two or more models into a single
model.

5. Model comparison: This is the process of comparing models and identifying
common elements. It consists of two main tasks: model matching which identifies
common elements and model differencing which highlights the differences in the
models using the results of the previous task.

1eclipse.org
2http://www.eclipse.org/gef/
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6. Model migration: This deals with automated updating of a model due to changes
in its metamodel.

Presently, there are several model management frameworks and tools. They include:
ATL Transformation Language (ATL) [16], Acceleo [17], Xtend [18], VIATRA [19], etc.
but they will not be reviewed in detail here because, for the purpose of this work, model
management programs will be treated as black boxes. However, we will briefly examine
the Epsilon framework [7] because it is used in the remainder of this work.

Epsilon Framework

The Epsilon framework [7] is a family of languages for different types of model man-
agement programs. The framework provides a layer of abstraction that enables diverse
modelling technologies (such as EMF) to be manipulated in a uniform manner. The
following languages currently exist in the Epsilon framework:

1. Epsilon Object Language (EOL) [20]: This is the core of the Epsilon framework.
It is a computationally complete language that provides a set of reusable model
management facilities on top of which task specific languages can be implemented.
It can also be used as a standalone language for generic model management.

2. Epsilon Pattern Language (EPL) [7]: EPL matches patterns in a model based on the
rules specified using the language. Pattern matching is an important step in many
model management operations hence, EPL was designed to be easily integrable
with diverse modelling technologies and other model management programs.

3. Epsilon Transformation Language (ETL) [21]: The language was designed for
hybrid model to model transformation. It takes as input an arbitrary number of
source models and transforms them into an arbitrary number of target models
corresponding to the same or different metamodels. ETL also supports diverse
modelling languages and technologies.

4. Epsilon Validation Language (EVL) [22]: This provides model validation support
to the Epsilon framework. It can be used to specify and verify complex constraints
on models.

5. Epsilon Wizard Language (EWL) [23]: This is used for automating repetitive tasks
during model management operations.

6. Epsilon Generation Language (EGL)[24]: EGL provides model to text transforma-
tion capabilities to the Epsilon platform.

7. Epsilon Comparism Language (ECL) [25]: ECL is useful for comparing model ele-
ments between two models of potentially different metamodels and/or modelling
technologies.

8. Epsilon Merging Language (EML) [26]: EML contributes capabilities for carrying
out model merging operations.
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9. Epsilon Flock for Model Migration [27]: This provides support for efficient model
migration operations.

Each language was designed to effectively manage a particular model management task.
Some languages such as EPL and EWL are not bound to a specific model management
task but provide generic support that can be used in executing other tasks. All the
languages of the Epsilon platform are built on top of the EOL which provides a uniform
set of reusable operations. This helps to remove unnecessary complexities such as
diverse syntax and duplication of code.

2.2 Software Testing

Having introduced the core concepts of MDE in Section 2.1, this section provides a brief
overview of software testing approaches and types, in preparation for Section 2.3 which
presents an overview of existing work on testing model management programs and
highlights the importance of generating appropriate models - which is the topic of this
thesis.

Software testing is the process of analysing a software system in order to detect
bugs or evaluate its features [28, 29]. A bug is an error in the system that makes the
system produce unexpected results or behave in an unwanted manner. The presence
of bugs in a system has led to considerable costs in form of correction and sometimes
the development of a new system [30]. For example in 2012, Knight Capital Group3 lost
about 440 million dollars in 30 minutes due to bugs in its trading software4. Therefore
it is important that computer system should be adequately tested in order to boost the
level of confidence in their correctness. Different types of bugs [31, 32] to be detected
include:

1. Inability of a program to produce the expected output.

2. Failure of a program for input that satisfies its preconditions (in this case either
the program needs to be fixed or its preconditions need to be strengthened).

3. An incorrect step in the program.

4. A human mistake.

5. Inability of the program to interoperate with other software and hardware.

2.2.1 Approaches to Software Testing

There are three main approaches to software testing. In one approach which is known
as black-box testing [33, 34, 35], the tester does not have any special knowledge about

3https://www.kcg.com/
4http://fortune.com/2012/08/02/why-knight-lost-440-million-in-45-minutes/
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the internal structure and implementation of the system that is being tested. The tester
only knows what the system is expected to do and not how it does it. They use their
intuition and experience to select suitable test cases that are likely to detect bugs in the
system. This approach works best for verifying that the system performs according to
its specification e.g detection of incorrect functionality, performance errors, etc. [36, 37].

Another approach is white-box testing [38, 34, 35], where the tester has detailed
knowledge of the inner workings of the system. The tester uses this knowledge, to
produce test cases that can detect bugs e.g test cases that will go through error prone
code paths, or code paths that are only executed in exceptional circumstances. This
approach works best for verifying that the system performs its operation in the correct
way e.g detection of invalid data structures, etc. [36, 35].

A third approach known as grey-box testing [34, 39] is a combination of black-box and
white-box approaches. The tester has only a partial knowledge of the inner workings of
the system that makes it easy for them to design suitable test cases while still ignorant
of the main execution process.

2.2.2 Types of Software Testing

There are different types of software testing that are designed for different purposes.
They include:

1. Destructive testing [40]: This is a type of software testing whereby the system is
tested with different varieties of test cases with an intent of making the system fail.
It can be used to verify the performance of the system when it receives unexpected
or incorrect input thereby establishing its robustness. This form of testing is used,
for example, by the Android Monkey tool 5.

2. Stress testing [41]: In this type of testing, the system is subjected to an intense
pressure usually above its normal working capacity and to its break point in order
to determine its maximum workload.

3. Regression testing [42, 36]: This is used to verify that a modified system that has
been previously tested still performs correctly after the modification. The main
objective is to verify that new changes to the system did not create new bugs.

4. Performance testing [43, 44]: This type of testing verifies how a system performs
under a particular workload. It is used to ascertain some properties of the system
such as its scalability or reliability.

5. Fault injection [45, 46, 47]: This is a form of testing whereby a bug is intentionally
added to the system to verify if the bug will be detected or not. It is used to
ascertain the robustness of the testing procedure.

5http://developer.android.com/tools/help/monkey.html
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6. Mutation testing [48, 49]: This type of testing aims to verify the robustness of
the testing process. A slightly modified variant of the system called mutant is
automatically generated using some (mutation) operators. The testing process is
then executed to assess if the changes can be detected.

2.3 Testing of Model Management Programs

Automated model management programs are software programs, therefore they can
have bugs. The testing of these programs is therefore important in order to build
confidence in their correctness [50]. The various approaches to testing a traditional
software discussed in Section 2.2 is also applicable when testing model management
programs. However, model management programs and the required input data (test
models) are inherently complex which makes the testing process more difficult. [51]
outlines three main barriers to testing of model management programs. They are test
data generation, adequacy criteria and oracle construction.

Test Data Generation

Constructing test data that satisfy a set of criteria is an important requirement in any
software testing operation [52, 53, 54]. The test data required in the testing process of
model management programs are models [55]. Models usually have complex struc-
tures which makes them error prone and time consuming to create manually therefore,
automated capabilities are required.

Adequacy Criteria

A typical model management program typically has an infinite number of input models
that it can process. Therefore, only a representative sample of the expected input models
can be used during a testing process. A major challenge is how to determine if a specific
set of models is enough to test all the requirements the program is expected to fulfil and
to detect any bugs, if present [56]. A common approach is to employ the service of a
seasoned tester who is familiar with common bugs and the models that are appropriate
to test for their presence. Another approach is the application of additional constraints
to the test data in order to boost the level of confidence in the testing process [51, 57] e.g
Every class in the models’ metamodel must be instantiated at least once in each of the
models.

Oracle Function

This is a function to determine if the result of the testing operation is correct [58]. If an
expected model is available, the generated model can be compared with the expected
model [25, 59]. For example, to test model transformation or merging programs, the
oracle is an expected model while, for model validation it is a set of constraints the
models are expected to pass or fail. However, if an expected model is not available,
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a partial oracle that satisfies some specified properties may be constructed [60]. For
example , in the generation of random models for a model to model transformation,
the expected outcome of the random generation process is unknown, therefore the test
oracles would be to determine if the transformation process would produce a runtime
exception in the transformation or satisfaction of constraints. An exception would
indicate a failure while a pass is indicated by the absence of any exception. This is a
form of destructive software testing because it is aimed at causing the system to fail.

2.4 Model Generation

As shown in Section 2.2 and 2.3, the generation of test models is central to the testing
of model management programs when using a black-box testing approach. In white-
box testing, the tester has access to inner workings of the system and the necessary
models are usually manually crafted for the intended purpose. But in black-box testing
approach, the tester only knows what the system does and not how it does it. Hence in
order to test the functionalities, different kinds of models are required therefore there
is need for model generation. Once an oracle function has been constructed and the
test adequacy criteria have been defined, the generation of test models that meet these
requirements is essential. Manual constructions of these models is time consuming and
error prone hence, there is a need to automate the process of generating these models.
[55, 61] highlights some important criteria that should be fulfilled by an automated
model generator. They are:

1. Validity: Generate models that conform to their metamodels and respect any
constraints imposed on them.

2. Adequacy: The number of models or model elements generated should meet the
adequacy criteria.

3. Scalability: Able to generate models with many model elements.

4. Flexibility: The generator should be easy to parameterize so that different kinds
of models can be generated for different testing scenarios.

We would like to add a new criterion called repeatability and this is the ability of the
model generator to reproduce exactly the same test models generated previously. This
is important if there is a need to reproduce a bug or for independent confirmation. It
is also useful in ensuring that developers don’t have to exchange - potentially large -
models to reproduce problems across different machines, in which case the generation
process may simply be repeated instead of transferring the models.

Several approaches are found in the literature on how to automate model generation
and they can be grouped into four main classes.
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Constraint Satisfaction: This is the most common approach found in the literature
and has been used in [62, 63, 64, 65]. In this approach, the metamodel and constraints are
transformed into a Constraint Satisfaction Problem (CSP) or a Satisfiable Modulo Theory
(SMT). These problems are then solved using a CSP or SMT solver and the resulting
solutions which represent valid instances of the metamodel are transformed back to
a model format. A major challenge confronting this approach is automatic constraint
solving since the constraint problems are usually heterogeneous and complex. This
approach is flexible and produces valid models but it can only handle simple constraints
[66, 67, 68, 55].

Model Fragmentation: In this approach, which has been implemented by [52], a
partial model known as model fragment is manually created and the remaining part of
the model is automatically generated based on the information in the model fragment.
The major motivation is that most of the times, there are specific properties the user
is interested in when generating a model, however these properties have some other
dependencies that must be satisfied in order to produce a valid model. This approach
enables the user to focus on the objects of interest i.e the model fragments, and the
rest are then automatically generated. This approach is flexible, but not suitable for
large models with many elements. It cannot handle external constraints and substantial
human intervention is required due to the need for model fragments [52, 69, 61].

Configuration: The Configuration approach [70, 71] transforms the metamodel and
the constraints into a configuration model e.g grammar, with some rules which are
determined by the relationship of the types in the metamodel. Model elements are first
generated and the rules are then used to determine the kind of relationship that should
exist among them. External constraints are not considered during the generation phase
but a constraint checker (e.g Prover9 [72]) may be used to filter the valid models. This
approach is scalable but it may produce invalid models [69, 66, 55].

Tree: In the Tree approach [61], the metamodel is represented as a tree specification
by mapping the classes and relationships in the metamodel to nodes and edges in
the specification. Large random trees corresponding to the tree specification are then
generated using the Boltzman algorithm [73]. These trees are then transformed back to
a model format. This approach is suitable for generating large numbers of models but
the generated models may be invalid [66, 69].

In summary, the Constraint Satisfaction approach is not scalable and can only handle
simple constraints while the Model Fragment approach requires substantial human
effort as the interesting parts of the test model are constructed manually. Both the
Configuration approach and the Tree approach do not consider external constraints,
therefore they may be unable to generate valid models. None of these approaches
considers the repeatability of the generated test models. Table 2.1 provides a summary
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Table 2.1: Summary of Approaches to Automated Test Model Generation
Approaches Valid Adequate Scalable Flexible
Constraint satisfaction Yes ? No Yes
Model fragmentation ? Yes No Yes
Configuration No Yes Yes No
Tree No No Yes No

of our review of existing approaches. A question mark (?) denotes that such criterion
cannot be verified from the literature for the specific approach.

2.5 Chapter Summary

This chapter has motivated the need for automated model generation as well as the
criteria an ideal model generator is expected to fulfil. The different approaches that
are currently being used to automatically generate models were discussed and for
each approach, its merit and limitations were highlighted. This review has identified
two main research problems: existing approaches to model generation do not support
complex external constraints. Also repeatability of the generated models, an essential
requirement for reproducing a testing process was not considered in the state-of-the-art
approaches.
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3 Assessment of Existing Tools

This chapter provides a comprehensive assessment of existing fully-automated model
generation tools. Section 3.1 presents our running example, a real-world complex
model transformation that requires input metamodels that satisfy a set of non-trivial
constraints. Section 3.2 examines existing tools based on the approaches identified
earlier and establishes their inability to generate models that can satisfy sets of non-
trivial constraints.

3.1 Running Example: Eugenia

Eugenia [74] was chosen as a running example because it is a complex transformation
that pre-dates this research and requires its input metamodels to satisfy complex con-
straints. Eugenia is a tool that transforms an appropriately annotated Ecore metamodel
into a set of models from which the Eclipse Graphical Modelling Framework [15] can
generate a complete graphical editor for instances of the metamodel. The input Ecore
metamodel must satisfy a set of Eugenia-specific constraints (e.g. the ”@gmf.diagram”
annotation needs to appear in exactly one class in the metamodel) before the transfor-
mation can be executed. Figure 3.1 provides an overview of the Eugenia transformation
process.

A typical Eugenia transformation process involves two model management opera-
tions; a model validation and a model transformation. The model validation process
checks if the input Ecore metamodel satisfies the Eugenia-Specific constraints while
the model transformation process adds a graphical editor for models that conforms

Figure 3.1: Eugenia Framework
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to the metamodel. In total, Eugenia requires its input Ecore metamodels to satisfy 26
constraints (364 lines of code) specified using Epsilon Validation Language (EVL) [22].
Listing 3.1 illustrates three of these constraints.

Listing 3.1: Subset of Eugenia Constraints
1 context EPackage {
2 c o n s t r a i n t DiagramIsDefined {

3 check : getDiagramClass ( ) . i sDef ined ( )
4 message : ’One c l a s s must be spec i f ied as gmf . diagram ’
5 }

6 c o n s t r a i n t ContainmentReferencesAreDefined {

7 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
8 check : getDiagramClass ( ) . getContainmentReferences ( ) . s i z e

( ) >0
9 message : ’ Diagram c l a s s ’ + getDiagramClass ( ) . name + ’

must define ’ + ’ a t l e a s t one containment reference ’
10 }

11 c o n s t r a i n t NodesAreDefined {

12 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
13 check : getNodes ( ) . s i z e ( )>0
14 message : ’No nodes (gmf . node ) have been defined ’
15 }

16 }

Constraint ”DiagramIsDefined” specifies that exactly one EClass should be annotated
as ”gmf.diagram”. Constraints ”ContainmentReferencesAreDefined” and ” NodesAre-
Defined” state that the EClass annotated as ”gmf.diagram” must also have at least
one containment reference and a reference to an EClass that has been annotated as
”gmf.node” respectively. Appropriate error messages are produced if any of the con-
straints are not satisfied. Listing 3.2 is an example of an appropriately annotated Ecore
metamodel expressed in the Emfatic textual notation 1.

Listing 3.2: Eugenia-annotated Ecore model in Emfatic
1 @namespace ( u r i=”graph” , p r e f i x=”graph” )
2 package Graph ;
3 @gmf . diagram
4 c l a s s Graph {

5 val Node [ ∗ ] nodes ;
6 val Edge [ ∗ ] edges ;
7 }

8 @gmf . node ( l a b e l=”name” )
9 c l a s s Node {

10 a t t r S t r i n g name ;
11 r e f Edge [ ∗ ] # source incoming ;
12 r e f Edge [ ∗ ] # t a r g e t outgoing ;
13 }

1http://www.eclipse.org/modeling/emft/emfatic/
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Figure 3.2: A Sample GMF Editor

14 @gmf . l i n k ( l a b e l=”name” , source=” source ” , t a r g e t=” t a r g e t ” ,
s t y l e=”dot” , width=”2” )

15 c l a s s Edge {
16 a t t r S t r i n g name ;
17 r e f Node#incoming source ;
18 r e f Node# outgoing t a r g e t ;
19 }

The complete set of constraints along with a short explanation of each of the constraints
is available in Appendix A while an OCL translation is provided in Appendix B. Existing
model transformation tools do not support EVL constraints therefore an OCL translation
is needed to assess existing tools. A direct translation from EVL to OCL was carried
out during the course of this work for each of the Eugenia constraint. The translation is
straightforward and its faithfulness has been evaluated through testing.

If an input Ecore metamodel satisfies these constraints, the model transformation
process is expected to generate the required set of models (gmfgraph,gmftool and
gmfmap) for GMF to produce a graphical editor for instances of the input metamodel.
The generated models are produced based on the annotations that are specified by the
Eugenia constraints. For example, the class annotated as ”gmf.diagram” is assumed
to be the root object while classes annotated as ”gmf.node” are shown as nodes in the
generated diagram. However since exactly one class must be the root object, constraint
”DiagramIsDefined” is used to enforce this. Similar constraints are used to describe
required properties needed for an efficient transformation. Figure 3.2 is a sample GMF
editor for the Ecore metamodel in Listing 3.2.

In order to test Eugenia, there is a need to automatically generate Eugenia-annotated
Ecore models (as test cases) and try to identify cases where models satisfy the tool’s
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additional 26 constraints but cause the transformation to fail. These tests are intended
to either reveal missing constraints or bugs in the transformation.

3.2 Assessment of Existing Fully-Automated Model
Generation Tools

This section reports our findings on the ability of state-of-the-art fully-automated tools
to generate models that can satisfy the Eugenia constraints discussed in Section 3.1.
Nine Ecore-based tools were identified in the literature, however only five of them were
available at the time of writing this thesis. The performance of these tools in generating
models that satisfy complex constraints was examined and their ability to reproduce
exactly the same generated models was also assessed. The available tools are:

1. Grimm [55]: This is a tool developed based on the Constraints Satisfaction ap-
proach. It takes as input an Ecore based metamodel and an optional set of OCL
constraints which are translated into instances of Constraint Satisfaction Problems
(CSP) and solved using the Abscon solver [75].

2. EMFtoCSP [64]: This tool implements the Constraints Satisfaction approach to
model generation. The tool translates Ecore based metamodels and OCL con-
straints into CSP instances which are solved using the ECLiPSe solver2. Other
properties such as partial or full satisfaction of the constraints and constraint re-
dundancies e.g. if a constraint depends on another constraint, can also be verified.

3. Cartier (Pranama) [65] and Alloy [76] : This tool was previously called ”Cartier”
but has now been renamed as ”Pranama”. It is based on a Constraints Satisfaction
approach and automatically translates an Ecore based metamodel into a Kermata-
based [77] metamodel. The Kermata metamodel is then translated into instances of
Satisfiable Modulo Theory (SMT) problems along with additional OCL constraints
which are then solved using an Alloy solver. The OCL constraints currently require
manual translation into Alloy SMT problems which are then added to the ones
translated from the Kermata metamodel. The solutions are then automatically
transformed into the required model format.

4. RMG [71]: This tool implements a Configuration approach towards model gener-
ation. It takes as input an Ecore based metamodel and a set of constraints which
are specified using a graphical interface provided by the tool. The metamodel and
the constraints are then transformed into a configuration model which is used to
guide the generation process. However, since the constraints have to be entered
using a graphical interface, only specific types of constraints supported by the
interface can be imposed on the model. The constraints supported include num-
ber of instances of model elements and a range of primitive values for attributes

2http://eclipseclp.org/
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while assignment of specific values to attributes and existential quantifiers are not
supported.

5. MM2GRAGRA[70]: This tool uses a Configuration approach in which an XMI
based metamodel is translated into instances of graph grammar using a graph
transformation tool called Attributed Graph Grammar System (AGG)3. A re-
stricted form of OCL constraints can be translated as graph constraints which
are added to the automatically generated instances of the graph grammar . The
instances of the graph grammar and the graph constraints are used by the AGG
tool to guide the generation process of an arbitrary number of models.

The unavailable tools include:

1. ASMIG [78] : A Small Metamodel Instance Generator (ASMIG) is a tool that
implements the Constraints Satisfaction approach towards model generation by
translating an Ecore based metamodel and a set of OCL constraints into SMT
problems using an attributed graph notation [79]. The SMT problems are then
solved by SMT solvers that support the SMT-Lib V2 specification4 such as Z3 SMT
solver [80], Mathsat5 [81] or SMTInterpol [82]. The tool is presently available5 but
documentation on how to use it is not yet ready.

2. Trust [62]: This tool uses a combination of Constraint Satisfaction approach and
search techniques to generate models. The metamodel and a set of OCL constraints
is translated into a CSP which is solved by a solver that uses search techniques to
generate valid instances.

3. Omogen [52]: This tool implements a Model Fragmentation approach towards
model generation. It takes as input a metamodel and a set of model fragments.
Instances of the metamodel are then generated based on the elements in the
model fragments. The developers of the tool noted that it cannot handle external
constraints.

4. Tree Spec [61]: The tool was developed based on the Tree approach with a focus on
the scalability of the models generated i.e models with millions of model elements.
A metamodel is transformed into a tree specification and then huge number of
instances are generated using Boltzmann algorithm [73]. However, the evaluation
of additional external constraints to the metamodel was not fully considered.

3.2.1 Assessment Process

The first task was to assess whether the available tools were able to generate Ecore
models (instances of Ecore.ecore metamodel) without any additional constraints. None
of the tools were able to generate instances of the metamodel because they do not

3http://user.cs.tu-berlin.de/ gragra/agg
4http://smtlib.cs.uiowa.edu/
5https://bitbucket.org/classciwuhao/asmig/overview
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support all the features in the Ecore metamodel. Although not all features of the Ecore
metamodel are required in order to generate models that satisfy the Eugenia constraints,
the tools failed because they attempted to instantiate every class and feature present in
the metamodel even when it was not necessary.

A simplified version of the Ecore metamodel was then developed and all the tools
were able to generate models conforming to this metamodel without any additional
constraints. However, none of the tools was able to reproduce the exact models gen-
erated because they do not provide support for reproducing generated models. The
Eugenia constraints were then translated into different formats supported by each tool
(specified in Table 3.1) and added as input to the simplified Ecore metamodel. None of
the tools were able to produce a valid model that satisfies the Eugenia constraints.

Grimm produces a ”constraints is unsatisfiable” error because it does not support the
”exists” feature of OCL and assignment of specific values to attributes therefore con-
straints such as ”DiagramIsDefined” which specifies that exactly one class should be
annotated as ”gmf.diagram” could not be satisfied. EMFtoCSP stopped responding and
the program was terminated after about 2 hours. The program was re-executed many
times and the tool becomes unresponsive during each execution cycle. The cause of this
behaviour could not be determined and execution process had to be manually termi-
nated after few hours. RMG’s (graphical) constraint language is not expressive enough
to specify the Eugenia constraints because it lacks support for bounded constraints, ex-
istential quantifiers etc. thereby making it impossible to specify most of the constraints.
Pranama, formerly called ”Cartier”, was combined with an Alloy CSP solver but Alloy
does not currently support string literals. This makes it impossible for the tool to satisfy
constraints such as ”DiagramIsDefined” and ”NodesAreDefined” which requires some
classes to be annotated with a specified string literal i.e ”gmf.diagram” and ”gmf.node”
respectively. MM2GRAGRA also produces an error because it does not support string
literals. Table 3.1 summarises the findings of this exercise.
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Table 3.1: Analysis of Automated Model Generation Tools

Tool
Input
Meta-
model

Con-
straints

Approach Output
Reason for
Failure

Grimm Ecore OCL Constraints
Error:
constraint is
unsatisfiable

Does not
support OCL
function
”exists”

EMFto
CSP

Ecore OCL Constraints
Non-
deterministic

Hangs

RMG Ecore Graph-
ical

Configura-
tion

Constraints
cannot be
translated to
RMG
specification

Graphical
constraint
language not
expressive
enough

Pranama
& Alloy

Ecore OCL Constraints Error
String literals
not supported

MM2GR
AGRA

AAG AAG
Configura-
tion

Error
String literals
not supported

3.3 Chapter Summary

This chapter has examined existing model generation tools and their ability to generate
models that can satisfy complex constraints. This chapter has validated the research
problems identified in Chapter 2 by demonstrating that: none of the tools based on
existing approaches were able to generate models that can satisfy complex constraints
such as Eugenia constraints. Also repeatability of the generated models, an essential
requirement for reproducing a testing process was lacking in these tools.
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4 Analysis and Hypothesis

Through the review of related work in Chapter 2 and the assessment of existing tools in
Chapter 3, a number of challenges were identified. This chapter further analyses these
challenges and then establishes the research hypothesis and objectives of this thesis.
Finally, the research methodology we intend to follow in order to meet these objectives
is outlined.

4.1 Research Challenges

This section summarizes the research challenges identified in Chapters 2 and 3.

Automated model management programs usually manipulate models that can satisfy
complex constraints, therefore it is essential that for testing such programs, models that
satisfy such constraints are used as input test data. Existing fully-automated tools have
been shown to be unable to produce complex models that would be necessary to test
real-world model transformations (such as Eugenia).

For scenarios in which fully-automated model generators fail, the alternative is for
developers to either construct test models manually or write bespoke model genera-
tors using a programming/model management language such as Java, QVTo 1 or EOL
[83]. Manual construction of such models is error-prone, labour intensive and time
consuming. Developing a bespoke model generator from scratch is a challenging en-
deavour as developers need to think about important properties from first principles.
The properties are stated below.

1. Expressiveness of the language selected to develop model generators is important
in order to be able to construct any arbitrarily complex model. Most program-
ming/model management languages are usually computationally complete, hence
they are suitable for developing model generators that can generate complex mod-
els.

2. Readability makes a generator easy to understand and enhances user-friendliness
[84].

3. Conciseness, which is the ability to develop a model generator with minimal
syntactic constructs, is necessary to improve maintainability [85].

1https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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4. Performance is important for producing models with large number of model
elements in reasonable time. The increasing complexity of modern software has
steadily led to models with large number of model elements, hence performance
is often an important consideration.

5. Randomness is necessary in a testing process in order to minimize bias.

6. Reproducibility is necessary for remote/independent confirmation of results.

An ideal model generation process should be expressive, readable, concise, high-
performing, random and reproducible.

4.2 Research Hypothesis

With regards to the challenges presented above, the context of the research hypothesis
is as follows:

As MDE is increasingly applied to larger and more complex systems, models that
are manipulated by model management programs also increase in complexity and the
constraints that they are required to satisfy become harder. Testing such programs
requires models that satisfy complex constraints as input test data. Manual assembly
of such models using a general purpose language is error prone, labour intensive and
existing fully-automated model generation approaches fail in generating models which
satisfy complex constraints.

In this context, the hypothesis of this thesis is stated below:

A dedicated language for model generation can be used to develop more concise, configurably
random and reproducible model generators that perform better than generators constructed with
a general purpose language without sacrificing expressiveness and readability.

The objectives of this research are to:

1. Identify recurring patterns during the model generation process.

2. Encode the identified patterns in the syntax of a dedicated language.

3. Evaluate the validity of the hypothesis beginning with conciseness and ability to
reproduce models.

4.3 Research Scope

A decision has been made to limit the scope of this work to the generation of EMF-based
models. EMF is a typical 3-layer metamodelling architecture and as such it is expected
that the results of this research are trivially portable to any other similar architecture.
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Figure 4.1: Overview of research methodology

4.4 Research Methodology

An iterative process has been followed in order to evaluate the hypothesis. This includes
an initial analysis phase followed by design, implementation, testing and evaluation
cycles. Figure 4.1 provides a graphical overview of the process.

4.4.1 Analysis

A review of existing work on automated model generation has been conducted in the
analysis phase. The features, strengths and shortcomings of available tools have been
evaluated using a non-trivial case-study. A number of research challenges that have
motivated the research hypothesis and objectives of this thesis were also identified.

4.4.2 Design and Implementation

Based on the findings of the analysis phase, a new approach towards model generation
has been conceived to investigate the hypothesis. This approach has been implemented
in the form of a framework that simplifies the development of model generators that
can produce random and repeatable models.

4.4.3 Testing and Evaluation

Several model generators have been developed using the framework to assess how
well they exhibit desired properties. A comparison with similar model generators
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constructed using a general purpose language has also been carried out in order to
validate the research hypothesis.

4.5 Chapter Summary

This chapter summarized the challenges identified in the literature review. The hypoth-
esis and objectives of this thesis were also stated and the methodology we intend to
follow in order to meet these objectives was also discussed.

31



5 Semi-Automated Model Generation

This chapter discusses recurring tasks in developing a bespoke model generator and
then introduces a semi-automated approach to model generation, which is aimed at
model generation scenarios for which fully-automated solutions currently fail. The
Epsilon Model Generation (EMG) framework that implements this approach is also
presented.

5.1 Recurring Patterns in a Bespoke Model Generation

A bespoke model generator is usually developed using a programming/model man-
agement language such as Java, QVTo1 or EOL [83] for model generation scenarios that
cannot be handled by fully-automated tools. However, developing a bespoke model
generator from scratch is a challenging endeavour as developers need to think about
properties such as reproducibility, randomness and flexibility from first principles. Ran-
domness is necessary to reduce bias while reproducibility is essential for repeating a
generation scenario which may be required due to a fault in the process or for confir-
mation of results. Flexibility, which in this context refers to the ability to configure the
size of generated models, is important so that the generator can be adapted for diverse
purposes (e.g. correctness/peformance testing). In general, model generation involves
three recurring tasks.

1. Creation of model elements. For example, in producing a Graph model that
conforms to the Ecore metamodel such as the one produced in Section 5.6.1,
model elements of type Graph, Node and Edge need to be created. Two common
subtasks associated with this task are also identified: specifying the number of
instances of each element type that should be created and (optionally) identifiers
for the elements created.

2. Generation of appropriate (random) values and assignment of these values to the
attributes of the model elements.

3. Linking the model elements together so that the generated model conforms to the
metamodel and satisfies any additional constraints.

1https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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Figure 5.1: Overview of the Generation Framework

5.2 Epsilon Model Generation Framework

The Epsilon Model Generation (EMG) framework has been developed within the context
of this work to simplify the development of model generators. The framework is built
on top of the Epsilon platform [83] and implements a semi-automated approach to
model generation by automating recurring tasks in a model generation process. EMG
leverages an existing Epsilon language (Epsilon Pattern Language [7]) to support the
development of model generators that fulfil the following requirements:

Randomness Generate random models that conform to an Ecore-based metamodel.

Parameterization Characteristics of these models (e.g how many instances/type, values
for features) are easily parametrized.

Repeatability Generated models are reproducible.

Figure 5.1 is a graphical overview of the generation framework. The framework takes as
input an Ecore-based metamodel, an optional ”seed” parameter and model generation
rules written in the Epsilon Model Generation language (EMG), a language developed
within the context of this work and explained in detail in Section 5.4. The expected
inputs are:

1. Ecore-based metamodel: This is the metamodel of the models to be generated. The
types of model elements in the generated model must be present in the metamodel.

2. Seed: This is an optional (integer) parameter that is used to ensure repeatability of
the models generated. If the same seed is supplied, it is expected that the frame-
work would be able to reproduce a model that has been generated previously.
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However, if no seed is supplied, the framework randomly produces a seed which
may be used in the next generation cycle.

3. Generator specification: This is a set of rules that governs the generation process
and contains two types of rules: element creation rules for generating model ele-
ments and element linking rules which determine how the model elements should
be linked together in order to conform to the specifications in the metamodel and
satisfy any required constraints.

Since this is a semi-automated approach, it should be stressed that the responsibility
for ensuring that generated models conform to the Ecore metamodel and satisfy the
required constraints lies with the developer of the model generation rules.

5.3 Epsilon

The EMG framework is built on top of the Epsilon platform which has been briefly
introduced in Section 2.1.2. In particular, the EMG language extends the Epsilon Pattern
Language (EPL) [7] and makes use of Epsilon Object Language (EOL) operations [20]
These languages (EPL and EOL) are discussed in detail because most of their features
were reused in EMG.

5.3.1 Epsilon Object Language

The Epsilon Object Language (EOL) [20] is the core of the Epsilon framework and
provides a set of reusable components that simplify the development of other task-
specific languages. EOL programs are organised in modules that contain a body and a
number of user-defined operations. An EOL operation typically has a type, a name, a
return type and a set of annotations as shown in Figure 5.2. The type specifies the context
(instances of a type in the metamodel or an in-built type) of the operation’s execution, the
name is the operation’s identifier and the return type specifies the context of the return
value. Annotations may also be added to provide additional information about the
operation. Two types of annotations are supported: simple annotations, whose values are
determined at compilation time and dynamic annotation whose values are computed at
runtime. A simple annotation is denoted with the prefix @ while a dynamic annotation
is denoted with the prefix $. EOL also supports polymorphism whereby multiple
operations may have the same name and parameters with unique context types.

Listing 5.1: A sample EOL operation
1 @cache
2 operation Graph isEmpty ( ) : Boolean {
3 i f ( s e l f . nodes . isEmpty ( ) ) {
4 return s e l f . edges . isEmpty ( ) ;
5 }

6 return f a l s e ;
7 }
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Figure 5.2: Abstract Syntax of an EOL Operation [7]

Listing 5.1 is a sample EOL operation named ”isEmpty” that checks if a Graph is empty
(i.e it has no node or edge ) and returns object of type ”Boolean”. The context type
for this operation is ”Graph” meaning that this operation can be called on objects of
type ”Graph”. The operation has no parameter and checks if the nodes of the Graph
are empty using an inbuilt operation called isEmpty which checks if the size of a
collection is 0. If the nodes are empty, the operation then checks if its edges are empty.
This operation has a simple annotation named ”cached” to indicate that it is a cached
operation i.e the operation is only executed once: subsequent calls return the same
result without executing its body again.

5.3.2 Epsilon Pattern Language

Epsilon Pattern Language (EPL) [7] is a language for specifying and identifying instances
of patterns among model elements. The language is organised into modules and it is
computationally complete because it extends EOL which is a computationally-complete
language [86, 87]. An EPL module contains a number of patterns, EOL operations and
optional pre and post EOL statement blocks that are executed before and after the
execution of the main process respectively. Figure 5.3 gives an overview of the abstract
syntax of an EPL module [7].
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Figure 5.3: Abstract Syntax of an EPL Module [7]

Listing 5.2: A sample EPL pattern
1 pattern linkNode
2 source : Node ,
3 t a r g e t : Node ,
4 edge : Edge
5 from : ( Edge . a l l . s e l e c t ( E | E . name . isDef ined ( ) ) )
6 guard : edge . source . isUndefined ( ) and edge . t a r g e t . isUndefined ( ) {
7 onmatch {
8 edge . source=source ;
9 edge . t a r g e t= t a r g e t ;

10 }

11 }

Listing 5.2 is a sample EPL pattern named ”linkNode” that links two objects of type
”Node” together using an object of type ”Edge”. The two Nodes are named ”source”
and ”target” while the Edge is named ”edge”. A domain is specified for the ”edge”
using the keyword ”from” which indicates that only Edges whose names are defined
are considered for the matching process. This domain is further restricted using the
”guard” notation by specifying a condition to be satisfied i.e the Edge should be unused
for connecting either source or target nodes. No domain or guard is specified for the
Nodes; all available Nodes are therefore considered for the matching process. The
”onmatch” notation specifies the action to be executed if a match is found and in this
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Figure 5.4: Abstract Syntax of EMG

sample i.e it connects two matching Nodes together by linking them to an Edge.

5.4 Epsilon Model Generation (EMG) language

The Epsilon Model Generation (EMG) language was developed within the context of
this work to specify model generation rules. The language is a semantic extension to
EPL whose syntax was not changed but its execution semantics has been altered to
better fit the problem of model generation. New built-in operations and annotations
have been added and support for desirable properties such as repeatability has been
provided. Changes to the execution semantics of EPL include: altering all random
functions to have a common seed (for repeatability) and ensuring that special EOL
operations (used for creating model elements) are always executed before the linking
(this means all model elements are usually created before starting the linking process).

The frequent activities in a model generation process identified in Section 5.1 have
been abstracted into language constructs in EMG. As such, an EMG program is com-
posed of two types of rules, creation rules for producing model elements and linking rules
for connecting them. Creation rules produce a configurable number of model elements
and an optional identifier associated with them. Linking rules provide support for
specifying groups of elements to be linked together and how they should be linked.
Annotations are used to add more information on how the rules should be executed
e.g the ”instances” annotation associated with a creation rule is used for specifying the
number of elements to be produced. In-built operations provide support for generat-
ing and assigning values to model elements while additional user-defined tasks can be
automated using standard EOL operations. Figure 5.4 provides a graphical overview
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of the abstract syntax of the EMG language. A generator specification is organized as
an EMGModule, an extension of EPLModule that contains EOL operations and EPL
patterns. In an EMGModule, creation rules are EOL operations named ”create” and
have a context of type EOLModelElement (i.e instances of a type in the metamodel)
while the linking rules are EPL patterns.

5.4.1 Creation Rules

These are used to create model elements and assign values to the elements’ attributes.
A creation rule is specified by an EOL operation named ”create” whose context type
indicates the type of model elements to be created. Two EOL annotations may be added
to this operation. They are:

1. $instances: This is a dynamic annotation named ”instances” and its expected
value is an integer or a range of two integers to indicate the number of model
elements to be generated. If an integer is assigned, the exact number of elements
is produced but if its value is a range, then a random number of elements between
the boundaries of the range (inclusive) is produced. If no value is assigned or the
annotation is not specified, only one instance is created. A dynamic annotation is
used because if the specified value is a range, the actual value (a random number
between the range’s boundaries) is computed at runtime.

2. @name: This is a (optional) simple annotation named ”name” and its expected
value is a String which is used as an identifier for grouping the model elements
created by the operation. If multiple operations specify the same value, all the
model elements created from such operations are grouped together and identified
by the value of the annotation.

5.4.2 Linking Rules

Our initial consideration was to use EOL operations to implement linking rules. How-
ever, we found out that most of the support we would need to add to EOL operations
in order to optimize them for linking model elements already exists in EPL patterns.
Hence a decision was made to specify the linking rules by EPL patterns with additional
in-built operations and annotations for linking created elements. An EPL Pattern com-
prises several roles, each of which has a name, a type, a domain (from) and a guard. The
guard specifies additional constraints to be satisfied by candidate elements. An EPL
pattern also has an ”onmatch” attribute that specifies the actions to be executed when
matches are found. Additional information can also be provided on a pattern by using
annotations.

An additional built-in operation is provided for linking elements created using cre-
ation rules. The operation named ”getCreatedElements(value:String)” has a String
argument and returns a collection of objects that were generated by the creation rules
associated with the identifier specified by the ”value” of the operation’s argument.
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Specific annotations may also be added to the patterns and they are:

1. @probability: This is a simple annotation named ”probability” and it specifies
the probability that a successful match will be returned. A probability of 1 indi-
cates that the ”onmatch” actions are executed for all successful matches while a
probability of 0 would not execute these actions for any successful match. This
is important in cases where elements can only be linked together if they satisfy
some constraints but the satisfaction of the constraints does not require that the
elements should be linked.

2. @noRepeat: This is a simple annotation named ”noRepeat” and it specifies that
once a match has been found, the matching elements would no longer be consid-
ered within the same context for a possible match by other unmatched elements.

3. @number: This is a simple annotation named ”number” that indicates the max-
imum number of matches required. When this number of matches is found, the
matching process of that pattern is stopped.

5.4.3 Code Reusability

New tasks may be implemented using standard EOL operations so that the implemen-
tation code can be reused many times in the same/different EMG program. However
these operations should not be named ”create” so as to be differentiated from a creation
rule.

5.4.4 Randomness

Several in-built random operations that can be used to ensure randomness of the struc-
ture of the model and to generate random values to be assigned to model elements have
been added to EMG. These operations can generate objects of primitive types or select
a random object from a collection. They are listed in Table 5.1.

5.4.5 Repeatability

The same random value generation facility is used throughout the generation process
to ensure that the generated model can be reproduced. The random generator produces
values for attributes of the model elements and also guides the matching process using
the indexes of the newly-created model elements. The seed of this random value
generator may be specified using the runtime configuration tool provided with this
framework (shown in Figure D.3) when a particular generated model needs to be
reproduced or it may be randomly generated by EMG for new models.

5.4.6 Parameterization

In order to improve the flexibility of the model generators, some aspects e.g number of
instances of model elements to be generated can be represented as parameters whose
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Table 5.1: Additional In-built Operations

Signature
Context
Type

Description

uniRandomD():
Any

Any
Selects a random object from a collection of
objects using a uniform distribution

uniRandom
(size:Integer):
Collection

Collection
Returns a collection with ”size” objects from
a collection of objects using a uniform
distribution

binRandom():Any Collection
Selects a random object from a collection of
objects using a binomial distribution

binRandom(
mean:Integer,
variance:Integer)
:Any

Collection
Selects a random object from a collection of
objects using a binomial distribution with a
mean and variance

expRandom(): Any Collection
Selects a random object from a collection of
objects using an exponential distribution

randomString():
String

Any
Generates a random string of a random
length between 5 and 20

randomString(
exp:String):String

Any
Generates a random string based on the
regular expression specified in the
argument

randomString
(low:Integer,
high:Integer):Any

Any
Generates a random string of a random
length between the value ”low” and ”high”

randomInteger():
integer

Any Generates a random integer

randomInteger
(low:Integer,
high:Integer):
Integer

Any
Generates a random integer between the
numbers ”low” and ”high”

randomReal(): Real Any Generates a random real number
randomReal
(low:Real,
high:Real):Real

Any
Generates a random real number between
”low” and ”high”

random-
Boolean():Boolean

Any Generates a random boolean.

randomBoolean
(num:Real): Boolean

Any

Generates a random boolean with the
probability of generating a true value being
”num” where num is between 0 and 1
(inclusive)

values are provided at runtime. This makes it easy to generate models of different
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structures and sizes without changing the specification rules. For example the number
of nodes to be generated may be represented by a parameter called ”nodeCount”.
This is implemented in EMG by assigning ”nodeCount” as a value to the ”$instances”
annotation. A value of 5 may then be assigned to the parameter ”nodeCount” at runtime
to indicate that 5 Nodes should be created.

5.4.7 Completeness

The EMG language extends EPL which is a computationally complete language. Hence,
EMG can be used to express arbitrarily complex model generation logic.

5.5 Generation of Models

EMG simplifies the development of bespoke model generators by using a 2-step ap-
proach to generate models based on recurring patterns in a typical model generation
process that was identified in Section 5.1. The 2-step approach separates the genera-
tion of model elements and linkage of the generated elements. In the first step, model
elements are generated using the creation rules while the second step links the model
elements based on the linking rules. This 2-step approach ensures that all the elements
are equally considered during the linking phase as opposed to creating and linking
them simultaneously. Secondly, it also ensures that arbitrarily complex constraints,
which may require linking up yet-to-be-created model elements (if both steps were
done simultaneously) can be expressed in EMG.

EMG adopts a semi-automated approach, hence the generation rules need to be
written manually using the EMG language. Therefore, the correctness of the generated
models lies with the developer of the model generation rules.

5.6 Sample model Generators

This section presents two sample generators that have been developed using EMG as
running examples to demonstrate the interplay and usefulness of the features discussed
above. The first generator generates Graph models with simple constraints with the
second generator generate models that satisfy Eugenia constraints.

5.6.1 Graph

Consider the case in which we want to generate models that conform to the Graph
metamodel, where each Graph contains N maxNodes which are connected by Edges,
where N is a random Integer greater than two. Each Node is also expected to be
connected to exactly two other Nodes; one as incoming and the other as an outgoing
connection. Figure 5.5 is the metamodel of the models to be generated and it is the same
as the one shown in Figure 2.1.
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Figure 5.5: Graph Metamodel

Listing 5.3 displays an EMG program that contains rules for generating models that
conform to the Graph metamodel and satisfy the additional constraints.

Listing 5.3: EMG Program to Generate a Graph Model
1 operation Graph c r e a t e ( ) {
2 }

3 $ instances Sequence {2 , maxNodes }
4 operation Node c r e a t e ( ) {
5 s e l f . name= randomString ( ) ;
6 }

7 pattern linkNodes
8 graph : Graph , node : Node
9 guard : node . incoming . isEmpty ( ) {

10 onmatch {
11 var edge : new Edge ;
12 edge . source= node ;
13 edge . t a r g e t=
14 Node . a l l . s e l e c t ( n | n . outgoing . isEmpty ) . uniRandom ( ) ;
15 graph . nodes . add ( node ) ;
16 graph . edges . add ( edge ) ;
17 }

18 }

Two creation rules (lines 1 to 6) and one linking rule (lines 7 to 18) have been specified.
The create operation for Graph (line 1) creates a single element of the type ”Graph”.
Lines 3 to 6 create the Nodes; the number of instances to be created is a random integer
between 2 and the parameter called ”maxNodes” (line 3) whose value is specified by
the user at runtime. The ”name” property of all the created Nodes is set using strings
generated by the in-built method, randomString() (line 5). The size of the string to
be returned can be configured using (optionally) integers as an argument. The format
can also be configured by specifying a string of regular expressions as its argument.
The execution of these operations produces a set of model elements that need to be
connected together as shown in Figure 5.6a.
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Figure 5.6: Unconnected and Connected Model Elements

(a) Unconnected Model Elements (b) A Complete Graph Model

Lines 7 to 16 specify the linking rule for connecting the generated elements. Each
element of type Graph and type Node that is not connected to an incoming Edge
(lines 8 and 9) needs to be connected. When a match is found (lines 11 to 14), the
Node is connected to the Graph and a new Edge is created that connects the Node to
another random Node without any outgoing connection. Figure 5.6b displays a sample
generated model.

5.6.2 Eugenia

EMG has also been used to develop a model generator that generates models that satisfy
constraints of the Eugenia transformation that was discussed in Section 3.1. Due to the
complexity of the constraints, only a subset of the generation rules is discussed here
while the complete set of rules is provided in Appendix C. Most of the constraints that
do not deal with references to other model elements are satisfied in the creation rule
of the appropriate objects while the rest are satisfied using linking rules. The complete
set of generation rules contains 6 creation rules, 7 helper EOL operations, 8 linking
rules and 2 user-defined parameters ”nodeCount” and ”linkCount” which specifies the
approximate number of classes that should be annotated as ”gmf.node” and ”gmf.link”
respectively. Listing 5.4 shows a subset of the Eugenia constraints and Listing 5.5 their
respective generation rules.

Listing 5.4: Eugenia constraint
1 / / EVL
2 context EPackage {
3 c o n s t r a i n t DiagramIsDefined {

4 check : getDiagramClass ( ) . i sDef ined ( )
5 message : ’One c l a s s must be spec i f ied as gmf . diagram ’
6 }

7 c r i t i q u e ReferenceLinksAreDefined {

8 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
9 check : getReferenceLinks ( ) . s i z e ( ) > 0 or getLinks ( ) . s i z e > 0

10 message : ’No reference links (gmf . link ) have been defined ’
11 }

12 }
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13 context EClass {
14 guard : s e l f . i sL ink ( )
15 c o n s t r a i n t LinkSourceIsDefined {

16 check : s e l f . getAnnotationValue ( ’gmf . link ’ , ’ source ’ ) . i sDef ined ( )
17 message : ’No source defined for link c l a s s ’ + s e l f . name
18 }

19 c o n s t r a i n t LinkSourceExis ts {
20 guard : s e l f . s a t i s f i e s ( ’ LinkSourceIsDefined ’ )
21 check : s e l f . getReference ( s e l f . getAnnotationValue ( ’gmf . link ’ , ’

source ’ ) ) . i sDef ined ( )
22 message : ’No reference named ’+ s e l f . getAnnotationValue ( ’gmf . link ’

, ’ source ’ )+ ’ e x i s t s in link c l a s s ’ + s e l f . name
23 }

24 }

Listing 5.5: EMG generation rules
1 operation EClass c r e a t e ( ) {
2 s e l f . name=randomString ( ) ;
3 s e l f . annotate ( ”gmf . diagram” ) ;
4 }

5 $ instances Sequence {1 , linkCount }
6 operation EClass c r e a t e ( ) {
7 s e l f . name=randomString ( ) ;
8 var d e t a i l : new Map ;
9 d e t a i l . put ( ’ source ’ , randomString ( ) ) ;

10 s e l f . annotate ( ”gmf . link ” , d e t a i l ) ;
11 }

12 pattern l inkSource
13 c l a s s 1 : EClass
14 guard : c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” source ” ) . i sDef ined ( ) {
15 onmatch {
16 var r =EReference . c r e a t e I n s t a n c e ( ) ;
17 r . name= c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” source ” ) ;
18 r . eType= EClass . a l l . excluding ( c l a s s 1 ) . uniRandom ( ) ;
19 c l a s s 1 . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
20 }

21 }

The sample Eugenia constraints include four invariants i.e three constraints and one
critique, while the EMG program that satisfies these constraints contains two creation
rules and one linking rule. The invariants and how they are satisfied by the respective
creation and linking rules are discussed below:

1. Constraint DiagramIsDefined: This constraint specifies that exactly one EClass
should be annotated as ”gmf.diagram”. This EClass is designated as the root class
in the diagram that will be generated by Eugenia. The constraint is satisfied using
the first creation rule (lines 1 to 4) in which an EClass is created and annotated as
”gmf.diagram”.
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2. Critique ReferenceLinksAreDefined: This critique specifies that at least one EClass
or a non-containment EReference in the root class should be annotated as ”gmf.link”.
These classes or references are represented as links in the diagram. A link in this
context is similar to an Edge in the Graph model and it is expected to have a
source and a target that it connects together. This critique is satisfied in the second
creation rule (lines 5 to 11) that creates a random number of classes between one
and the parameter ”linkCount” whose value is specified at runtime.

3. Constraint LinkSourceIsDefined: This constraint specifies that if a class is anno-
tated as ”gmf.link”, then such an annotation must also have an EStringToStringMapEn-
try with a key of value ”source”. This means that a link in the diagram is expected
to have a ”source”. This constraint is also satisfied in the second creation rule by
annotating the EClass with an appropriate value.

4. Constraint LinkSourceExists: This constraint verifies that the source of the link is a
valid entity in the diagram by specifying that if a class is annotated as ”gmf.link”,
then an EReference in the class should be named with the value of the EString-
ToStringMapEntry key called ”source”. This constraint is satisfied using the link-
ing rule because it needs a reference to another class. Pattern ”linkSource” (lines
12 to 21) satisfies this condition by linking all EClasses annotated as ”gmf.link”
which have an EStringToStringMapEntry with key ”source”(guard specification)
to a new EReference. If an EClass that fulfils the ”guard” condition is found, a
new instance of EReference is created and assigned with the name specified by
the constraint ”LinkSourceIsDefined” and a type of any random EClass other than
the container EClass.

5.7 Tool Support

In order to make it easy for practical use, a set of development tools that extends existing
Epsilon tools is provided as Eclipse plugins. The tools include an editor, a console and
a run configuration interface. All the sample graphical representations are provided in
Appendix D.

5.7.1 EPL Editor

The EPL editor has been reused because no changes were made to the concrete syntax
of the base language. The editor highlights keywords (such as ”operation”, ”pattern”,
”guard”), comments, numbers and strings. Inline markers that highlight places that
contain errors are also supported. Figure D.1 in the appendix is a sample EPL editor.

5.7.2 Epsilon Console

This is a common console for all Epsilon languages that provides feedback at runtime.
Runtime errors with an hyper link to where they occur in the program are displayed
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as texts in the console. The user can also send messages to the console by using in-
built EOL operations ”print()” and ”println()”. Figure D.2 in the appendix is a sample
Epsilon console.

5.7.3 Run Configuration

A run configuration interface comprising a number of tabs is provided. To generate
a Graph model, the ”Source” tab which is shown in Figure D.3, is used to specify the
EMG program file (named ”graph.emg”) that contains the model generation rules. A
”seed” can also be specified or randomly generated for repeatability. Figure D.4 shows
the ”Models” tab which is used to specify features (such as name and metamodel) of
the model to be generated. If the ”add” button is clicked, a new interface for specifying
these features is displayed. As seen in Figure D.5, the name of the model is ”graph”, its
metamodel is ”graph.ecore” and it will be stored in a file named ”graph.graph”. As the
file does not exist before the execution of the program, we do not select the ”Read on
load” checkbox, however we expect the model to be stored in a file after its execution.
User-defined parameters such as ”nodeCount” are specified in the ”Parameters” tab as
shown in Figure D.6. All the figures are provided in the appendix.

5.8 Chapter Summary

This chapter has identified recurring tasks in model generation processes and intro-
duced a novel 2-step semi-automated approach to model generation. The Epsilon
Model Generation (EMG) framework that simplifies the development of model gener-
ators and implements this approach has been presented. The framework is a semantic
extension to the Epsilon Pattern Language (EPL) and provides first class support for
model generation tasks. A discussion on how the framework can be used to produce
models that can exhibit desired characteristics such as repeatability and randomness
was also provided. Sample model generators were also illustrated and the available
supporting tools were presented.
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6 Evaluation

This thesis has introduced a novel approach towards generation of models. Based
on this approach, a framework was developed to simplify the development of model
generators that can produce repeatable and random models. This chapter evaluates
to what extent the research hypothesis is valid and how well the framework satisfies
the research objectives stated in Section 4.2. Section 6.1 examines whether EMG can be
used to generate models that conform to complex constraints for which fully-automated
model generators fail. Section 6.2 examines the robustness of the built-in random
functions provided by EMG and the ability of the framework to reproduce generated
models. Section 6.3 compares EMG with a general purpose language and in Section
6.4, a comparison with other frameworks that may be able to generate similar models
is conducted. Section 6.5 compares the semi-automated approach to existing fully-
automated approaches while Section 6.6 discusses the shortcomings of this work.

6.1 Generation of Models with Complex Constraints

In Section 5.6.2, a model generator that can produce models that satisfy Eugenia-specific
constraints was developed using EMG. This section assesses whether the generated
models fully exercise and satisfy the Eugenia constraints using a test program. The
test program creates instances of EmgModules that contain the generation rules and
EvlModules that contain the Eugenia constraints. The models generated by the Emg-
Module are validated by the EvlModule at runtime.

Figure 6.1 shows how invariants are evaluated in EVL based on the explanations in
[7]. The invariants can only be evaluated if the ”guard” condition is satisfied or if the
invariants contain no ”guard” conditions. If the guard is not satisfied, the constraint is
unchecked and it cannot be ascertained if the generator can produce models that can
satisfy that particular constraint or not. Hence we analysed the generated models based
on not only when the constraints are satisfied but also when the ”guard” condition was
satisfied and the number of times each constraint was evaluated.

Table 6.1 presents the results of the analysis on models generated after 100 model
generation cycles for three groups of models containing 10, 50 and 100 EClasses which
gives a total of three hundred models. In all generated models, no unsatisfied constraint
was observed i.e there was no constraint that meets the ”guard” condition and was
unsatisfied. This gives a high probability that our generator can truly generate valid
models that satisfy the constraints. There was no constraints that was not examined
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Figure 6.1: Evaluation of EVL constraints

(checked) at least once in any group of models. Figure 6.2 shows the total number of
models where each constraint is checked in the group of models containing about 100
EClasses each. Also each model has between 16 and 24 constraints checked while each
of the constraints was checked in at least 28 out of the 100 models. The total number
of constraints in Eugenia is 26 and a detailed explanation of each of the constraints is
provided in appendix A.
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Figure 6.2: Number of Times Each Constraint is Satisfied

0 20 40 60 80 100 120

LinkTargetIsDefined
 LinkTargetExists

 IsValidRGB
 IsValidNodeFigure

 LinkSourceExists
 DiagramIsDefined
 NodesAreDefined

 IsValidCompartmentLayout
 IsValidLabelPlacement

 ReferenceLinksAreDefined
 IsValidSvgNode
 IsValidLineStyle

 IsValidListOfIntegers
 CanBeVisualized

 ContainmentReferencesAreDefined
 IsValidCompartment

 NodeLabelsExist
 IsValidDimension

 LinkTargetAndSourceMustBeDifferent
 LinkLabelExists
 IsValidInteger

 IsValidBoolean
 IsValidPolygonNode

 IsValidLinkDecoration
 NodeLabelIsDefined
 LinkSourceIsDefined

Number of Times Satisfied

C
o

n
st

ra
in

ts
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Table 6.1: Analysis of Models Generated

Approx. EClass
Unsatisfied
Constraints

Constraints
Satisfied Every
Time

Min models
”checked” for
Any Constraint

10 0 11 18
50 0 12 27
100 0 13 28

6.2 Randomness and Repeatability

100 different models with about 100 EClasses each were generated to test for the robust-
ness of the random functions using the default uniform distribution. Our results show
great diversity in the number of models generated as shown in Figure 6.4. Furthermore,
the range of values was also random as it was observed that for the EClass annotated
as ”gmf.diagram”, no two EClasses had the same name in the 100 generated models.

Another set of 100 models were further generated using a specified seed in order to
assess the ability of the framework to reproduce generated models. Exactly the same
model with the same structure and values assigned to model elements was generated
throughout these cycles.

6.3 Comparison with a General Purpose Language

This section compares a model generator developed in EMG with a similar bespoke
generator constructed using EOL in terms of conciseness, performance and ability to
reproduce generated models. EOL has been chosen as an example of an imperative
model-oriented programming language. Other languages such as QVTo or Kermeta
could also have been used for this purpose.

6.3.1 Case Study

Our case study is a real-life railway system developed by domain experts [88]. The
railway is composed of Routes, Signals, Switches, SwitchPositions, (abstract) TrackEle-
ments, Segments and Sensors. A Route is defined by a set of Sensors. Sensors are
associated with TrackElements which are either Segments (with a specific length) or
Switches. A Route can also be associated to SwitchPositions which describe the re-
quired state of a Switch belonging to the route. Different Routes can specify different
states for a specific Switch. Figure 6.5 illustrates the metamodel of the system in Ecore
[89] while Figure 6.5(b) depicts the containment hierarchy among the elements in the
metamodel. The system is also expected to satisfy the following constraints.
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Figure 6.4: Number of EClasses Generated for 100 Models
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1. Semaphore-Neighbour constraint: Routes connected through Sensor and Track-
Element must belong to the same Semaphore.

2. PosLength: the length of a segment should be positive.

3. SwitchSensor: every switch must have at least one sensor connected to it.

4. SwitchSet: the entry semaphore of a route should only show GO if all the switches
associated with the route are in the position prescribed by the route.

Figure 6.6(a) and (b) is a visual representation of the Semaphore-Neighbour and Switch-
set constraints respectively. Listing 1 and Listing 2 in Appendix E are sample EMG and
EOL programs written by me that can be used to generate appropriate models respec-
tively.

6.3.2 Analysis

EMG is significantly less verbose than EOL because it needs a lesser amount of code
to generate similar models. A total of 65 lines of code were used in EMG while 100
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Figure 6.5: Railway Metamodel
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(b) Supertype Relationships

lines of code consisting of 19 ”for” loops and 13 ”if” statements were used to generate
similar models in EOL. Furthermore, EOL does not provide capabilities for reproducing
generated models and supports only uniform random distribution. Both EMG and EOL
produce similar models.
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Figure 6.6: Added Constraints
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Figure 6.7: Execution times for EOL and EMG
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Figure 6.7 summarizes the execution times of EOL and EMG in generating Railway
models with different number of model elements. The results show that EOL currently
performs better than EMG. This is because EMG extends EPL and its internal execution
mechanism has not been optimized for model generation. This limitation could not be
addressed in this work due to time constraints and has been identified as a topic for
future research.
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6.4 Comparison with other Generators

The only framework providing similar functionality to EMG is RandomEMF [67], a
framework for generating large random models that can be used for benchmarking.
The framework also adopts a semi-automated approach to model generation, similar
to the one used in EMG. RandomEMF’s generation rules are specified with Rcore, a
language developed using Xtext1. RandomEMF was developed about the same time
with this work.

In EMG, all the required model elements are first generated before linking them
together but in RandomEMF, the linking is done as soon as an element is created which
means the elements generated later are not considered for the linking operation. Listing
6.1 is a RandomEMF program that generates Graph models. The number of Edges is also
manually determined which may be inadequate or excessive for connecting the Nodes.
A Graph model was used as a case study because the RandomEMF code for generating
Graph models was produced by the developer of RandomEMF. This is important to
minimize bias due to our limited knowledge of RandomEMF.

Listing 6.1: Rcore Program to Generate Graph Model
1 package de . hub . rcore . graph
2 import s t a t i c de . hub . randomemf . runtime . Random . ∗
3 import s t a t i c de . hub . rcore . graph . RandomGraphUtil . ∗
4 generator RandomGraph ( i n t nodeCount , i n t edgeCount ) f o r graph in ”

platform : / resource /de . hub . rcore . graph /model / graph . ecore ” {
5 root : Graph −>
6 nodes += node#nodeCount
7 edges += edge#edgeCount
8 ;
9 node : Node −>

10 name := LatinCamel ( Normal ( 4 , 2 ) ) . toFirs tLower
11 ;
12 edge : Edge −>
13 name := LatinCamel ( Normal ( 4 , 2 ) ) . toFirs tLower
14 source := @( model . nodes . get ( Uniform ( 0 , model . nodes . s i z e ) ) )
15 t a r g e t := @( r e j e c t ( s e l f . source )
16 [ model . nodes . get ( Uniform ( 0 , model . nodes . s i z e ) ) ] )
17 ;
18 }

Similar number of codes were used by both EMG and RandomEMF to generate the
Graph models. The quality of the generated models were also similar. Figure 6.8 shows
that RandomEMF is faster for generating models with large number of model elements.
This is largely because EMG is an interpreted language while Rcore compiles down to
Java.

1https://eclipse.org/Xtext/

54



Figure 6.8: Execution Times for EMG and RandomEMF
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6.5 Comparison with Other Approaches

This section compares the semi-automated generation approach adopted in this thesis
with similar approaches listed in Section 2.4. The semi-automated approach is similar to
the configuration approach. However instead of automatically generating a configura-
tion model, the developer manually constructs generation rules to guide the generation
process. Using the same criteria listed in Section 2.4, the following are observed:

1. Validity: This approach can be used to generate valid models as discussed in
Section 6.1. However, the responsibility for ensuring that generated models con-
form to the Ecore metamodel and satisfy the required constraints lies with the
developer of the model generation rules.

2. Adequacy: The approach is adequate i.e it can be used to generate models that
satisfy arbitrarily complex constraints.

3. Scalability: The ability of this approach to efficiently generate models with a large
number of model elements cannot be established for now.
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Figure 6.9: Performance Evaluation for EMG, Grimm and RMG
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4. Flexibility: This approach can be used to develop flexible model generators that
are easy to parameterize. Section 5.4.6 and the running examples in Section 5.6
shows that EMG is easy to parameterize.

Although the scalability of EMG cannot be established for now, its performance
has been compared with tools that are developed using the Constraint Satisfaction
approach. Tools that were developed based on Model Fragment and Tree approaches
are not currently available while the execution time of MM2GRAGRA [70], the only
available tool that implements the Configuration approach, cannot be estimated. Only
the execution times of Grimm [55] and RMG [71] can be programatically estimated.
Furthermore, it was not possible to configure the number of model elements in the
generated model with these tools, hence only models with minimal elements were
produced. Averagely, EMG was able to generate a Graph model in 32ms while Grimm
and RMG execution times were 200ms and 250ms respectively. Both Grimm and RMG
were fully automated tools, hence no code was required to produce a Graph model,
while EMG uses 20 lines of code to generate a similar model. Figure 6.9 summarizes
the results of this exercise.
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Table 6.2: Comparison with other Approaches
Approaches Valid Adequate Scalable Flexible
Semi-Automated Yes Yes ? Yes
Constraint Satisfaction Yes ? No Yes
Model Fragmentation ? Yes No Yes
Configuration No Yes Yes No
Tree No No Yes No

Table 6.2 summarizes the comparison of this approach to fully automated approaches.
In the semi-automated approach implemented by EMG, a question mark (?) denotes
that the criterion is yet to be proven. In other approaches, it denotes that such criterion
cannot be verified from the literature for the specific approach.

6.6 Shortcomings

A technical shortcoming of EMG is its performance for generating models with large
numbers of model elements, hence it may not be ideal for generating models for bench-
marking. To address this limitation, optimisation of the EMG interpreter and/or compi-
lation of EMG programs to a more performant representation (e.g. Java) are directions
for future exploration.

6.7 Threats to Validity

EMG has been used to develop only a small number of model generators. Hence, it
may be possible that EMG is not more concise than EOL for developing any generator.

6.8 Chapter Summary

This chapter has shown that EMG can be used to produce random and repeatable
models that satisfy complex constraints. It has also been shown that the framework
can be used to develop more concise model generators than constructing them with
a general purpose language thus validating the first part of the research hypothesis.
A shortcoming in terms of processing speed for large models has been identified and
recommendations that can help alleviate this shortcoming have been provided.
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7 Conclusion and Future Work

7.1 Review Findings

Chapter 2 and Chapter 3 of this thesis provided a review of related work in auto-
mated model generation. We’ve identified four main approaches and several tools
implemented using this approaches. We were also able to identify that:

1. None of the existing tools were able to generate models that satisfy arbitrarily
constraints.

2. Existing approaches do not deal with repeatability of the models generated and
none of the tools was able to reproduce generated models.

3. Existing tools attempt to generate instances of all the classes in the metamodel
even if not all the classes are necessary.

7.2 Research Hypothesis

The research challenges identified in our review of related work was tackled with respect
to the following hypothesis originally stated in Section 4.2:

A dedicated language for model generation can be used to develop more concise, configurably
random and reproducible model generators that perform better than generators constructed with
a general purpose language without sacrificing expressiveness and readability.

The objectives of this research were to:

1. Identify recurring patterns during the model generation process.

2. Encode the identified patterns in the syntax of a dedicated language.

3. Evaluate the validity of the hypothesis beginning with conciseness and ability to
reproduce models.

7.3 Prototype Solution

With respect to the research objectives of this thesis, Section 5.1 identified recurring
patterns in a bespoke model generation process. Section 5.2 introduced a novel 2-step
semi-automated approach towards model generation and presented a framework with
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a language based on this approach. The framework named Epsilon Model Generator
(EMG), is a semantic extension to Epsilon Pattern Language (EPL) while its language
can be used for specifying model generation rules. The syntax of the language also
encoded the identified patterns in Section 5.1. We were able to demonstrate how the
framework can be used to generate models that exhibit properties such as randomness,
repeatability and flexibility.

7.4 Evaluation Results

This section states how the research objectives have been met and to what extent the
research hypothesis has been validated. The objectives of this thesis were to:

1. Identify recurring patterns during the model generation process.

2. Encode the identified patterns in the syntax of a dedicated language.

3. Evaluate the validity of the hypothesis.

Chapter 5 identified recurring patterns in a bespoke model generation process and
encoded the identified patterns in the syntax of a dedicated language named EMG
thereby satisfying the first and second objectives of this research. The evaluation of the
research hypothesis has been conducted in Chapter 6 thus achieving the third objective.

The research hypothesis of this thesis, which was originally presented in Section 4.2,
states that:

A dedicated language for model generation can be used to develop more concise, configurably
random and reproducible model generators that perform better than generators constructed
with a general purpose language without sacrificing expressiveness and readability.

The extent to which this hypothesis has been validated is stated below.

1. Conciseness: We have shown in Section 6.3 that EMG is more concise than a
general purpose language.

2. Configurable randomness: EMG provides built-in support for parametric random
operations which are necessary in order to generate models of different sizes using
the same EMG specification.

3. Reproducibility: EMG is able to reproduce generated models by using the same
seed as shown in Section 6.2.

4. Performance: Performance was found to be a weakness of EMG in comparison
with EOL. Additional work (e.g. optimisation or compilation instead of interpre-
tation) is needed to improve EMG’s performance.
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5. Expressiveness: It has been demonstrated that EMG can be used to produce
models that satisfy complex constraints.

6. Readability: Section 6.3 shows that EMG can be used to construct model generators
with fewer low-level constructs such as ”for” and ”if” statements than a general
purpose language, which arguably enhances readability.

In summary, the research objectives of this thesis has been met and the first part of the
research hypothesis has been validated. The second part of the hypothesis could not be
validated and is proposed as a possible direction for future work.

7.5 Future Work

Some directions for improving on this work have been identified. In terms of speed,
it may be necessary to optimise the EMG interpreter and/or compile EMG programs
to a more performant representation (e.g. Java) in order to reduce execution times for
models with large model elements. In order to minimize the manual process of writing
EMG programs, automated transformation of EVL constraints to EMG rules may be
considered.
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A Eugenia Constraints

This section presents the Eugenia constraints 1 discussed in Section 3.1 and provides
a short explanation of each of them. The Eugenia constraints apply to Ecore models
and are written in EVL. A typical EVL constraint contains a name, a guard block that
specifies the pre-conditions to be satisfied before the constraint can be executed, a check
block that specifies the success condition and a message block that contains information
to be sent to the user if the constraint is not satisfied. An EVL constraint may also have a
context type which means that the constraint would be evaluated for only objects of that
type. In EVL, a Critique is used to highlight desired but optional properties a model
should have. A Critique is similar to a Constraint except that an unsatisfied Constraint
invalidates the model while an unsatisfied Critique only produces a warning. The
imported EcoreUtil.eol file is available online 2

1 import ’ ECoreUtil . eol ’ ;
2

3 context EPackage {
4

5 c o n s t r a i n t DiagramIsDefined {

6

7 check : getDiagramClass ( ) . i sDef ined ( )
8

9 message : ’One c l a s s must be spec i f ied as gmf . diagram ’
10

11 }

12

13 c o n s t r a i n t ContainmentReferencesAreDefined {

14

15 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
16

17 check : getDiagramClass ( ) . getContainmentReferences ( ) . s i z e ( )
> 0

18

19 message : ’ Diagram c l a s s ’ + getDiagramClass ( ) . name + ’
must define ’

20 + ’ a t l e a s t one containment reference ’
21

22 }

23

24 c o n s t r a i n t NodesAreDefined {

25

26 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
27

28 check : getNodes ( ) . s i z e ( ) > 0

1https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/plugins/org.eclipse.epsilon.eugenia/
transformations/ECore2GMF.eol

2https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/plugins/org.eclipse.epsilon.eugenia/
transformations/ECoreUtil.eol
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29

30 message : ’No nodes (gmf . node ) have been defined ’
31

32 }

33

34 c r i t i q u e ReferenceLinksAreDefined {

35

36 guard : s e l f . s a t i s f i e s ( ’ DiagramIsDefined ’ )
37

38 check : getReferenceLinks ( ) . s i z e ( ) > 0 or getLinks ( ) . s i z e >
0

39

40 message : ’No reference links (gmf . link ) have been defined ’
41 }

42

43 }

44

45 context EClass {
46

47 guard : s e l f . isNode ( )
48

49 c o n s t r a i n t IsValidSvgNode {
50

51 check : ( s e l f . getAnnotationValue ( ’gmf . node ’ , ’ f igure ’ ) = ”
svg” ) impl ies

52 ( s e l f . getAnnotationValue ( ’gmf . node ’ , ’ svg . ur i ’ ) . i sDef ined ( )
)

53

54 message : ”No svg . uri provided for SVG figure ” + s e l f . name
55

56 }

57

58 c o n s t r a i n t IsValidPolygonNode {
59

60 check : ( s e l f . getAnnotationValue ( ’gmf . node ’ , ’ f igure ’ ) = ”
polygon” ) impl ies

61 ( s e l f . getAnnotationValue ( ’gmf . node ’ , ’ polygon . x ’ ) . i sDef ined
( ) and s e l f . getAnnotationValue ( ’gmf . node ’ , ’ polygon . y ’ ) .
i sDef ined ( ) )

62

63 message : ”No polygon x / y coordinates provided for polygon
figure ” + s e l f . name

64

65 }

66

67 c o n s t r a i n t NodeLabelIsDefined {

68 guard : s e l f . getAnnotationValue ( ’gmf . node ’ , ’ label .
placement ’ ) <> ”none”

69
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70 check : s e l f . getAnnotationValue ( ’gmf . node ’ , ’ label ’ ) .
i sDef ined ( )

71

72 message : ’No label defined for c l a s s ’ + s e l f . name
73 }

74

75 c o n s t r a i n t NodeLabelsExist {
76

77 guard : s e l f . s a t i s f i e s ( ’ NodeLabelIsDefined ’ )
78

79 check {

80 var missing : Sequence ( String ) ;
81 for ( l a b e l : String in s e l f . getAnnotationValue ( ’gmf . node ’ ,

’ label ’ ) . s p l i t ( ’ , ’ ) . c o l l e c t ( s | s . tr im ( ) ) ) {
82 i f ( not s e l f . g e t A t t r i b u t e ( l a b e l ) . i sDef ined ( ) ) {
83 missing . add ( l a b e l ) ;
84 }

85 }

86 return missing . s i z e ( ) = 0 ;
87 }

88

89 message : ’ Label a t t r i b u t e ( s ) ’ + missing . concat ( ’ , ’ )
90 + ’ do ( es ) not e x i s t in c l a s s ’ + s e l f . name
91

92 }

93

94 }

95

96 context EAnnotation {

97

98 c o n s t r a i n t IsValidCompartment {
99

100 guard : s e l f . source = ”gmf . compartment”
101

102 check : s e l f . eContainer ( ) . isTypeOf ( EReference ) and s e l f .
eContainer ( ) . containment = t rue

103

104 message : ” EReference ” + s e l f . eContainer ( ) . name + ” i s not
a containment reference ”

105

106 }

107

108 }

109

110 / ∗
111 ∗ Val idat ion r u l e s for annoations d e t a i l s
112 ∗ /
113 context EStringToStringMapEntry {

114
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115 c r i t i q u e IsVal idLinkDecorat ion {

116

117 guard : s e l f . i s ( ’gmf . link ’ , ’ source . decoration ’ ) or
118 s e l f . i s ( ’gmf . link ’ , ’ t a r g e t . decoration ’ )
119

120 check {

121 var values := Sequence { ’ none ’ , ’ arrow ’ , ’rhomb ’ , ’
filledrhomb ’ ,

122 ’ square ’ , ’ f i l l e d s q u a r e ’ , ’ closedarrow ’ , ’ f i l ledclosedarrow ’
} ;

123

124 return s e l f . value . isWithinValuesOrLooksLikeJavaClassName (
values ) ;

125

126 }

127

128 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ’ must be one
of : ’ + values . concat ( ’ , ’ ) +

129 ” or a fully−qual i f ied Java c l a s s name”
130 }

131

132 c r i t i q u e IsValidNodeFigure {
133

134 guard : s e l f . i s ( ’gmf . node ’ , ’ f igure ’ )
135

136 check {

137 var values := Sequence { ’ rec tangle ’ , ’ e l l i p s e ’ , ’ rounded ’ , ’
svg ’ , ’ polygon ’ } ;

138

139 return s e l f . value . isWithinValuesOrLooksLikeJavaClassName (
values ) ;

140

141 }

142

143 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ’ must be
one of : ’ + values . concat ( ’ , ’ ) + ” or a fully−qual i f ied

Java c l a s s name”
144 }

145

146 c o n s t r a i n t IsVal idLabelPlacement {
147

148 guard : s e l f . i s ( ’gmf . node ’ , ’ label . placement ’ )
149

150 check {

151 var values := Sequence { ’ i n t e r n a l ’ , ’ e x t e r n a l ’ , ’ none ’ } ;
152 return values . inc ludes ( s e l f . value ) ;
153 }

154
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155 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ’ must be
one of : ’ + values . concat ( ’ , ’ )

156 }

157

158 c o n s t r a i n t I s V a l i d I n t e g e r {
159 guard : s e l f . i s ( ’gmf . node ’ , ’ border . width ’ ) or
160 s e l f . i s ( ’gmf . node ’ , ’ margin ’ )
161

162 check : s e l f . value . i s I n t e g e r ( )
163

164 message : ’The value of ’ + s e l f . key + ” i s not a valid
integer ”

165 }

166

167 c o n s t r a i n t I s V a l i d L i s t O f I n t e g e r s {
168 guard : s e l f . i s ( ’gmf . node ’ , ’ polygon . x ’ ) or
169 s e l f . i s ( ’gmf . node ’ , ’ polygon . y ’ )
170

171 check : s e l f . value . matches ( ” (\\ s ∗\\d+)+” )
172

173 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ” i s not a
valid l i s t of i n t e g e r s ”

174 }

175

176 c o n s t r a i n t IsValidDimension {

177 guard : s e l f . i s ( ’gmf . node ’ , ’ s ize ’ )
178

179 check : s e l f . value . matches ( ”\\ s ∗\\d+ ,\\ s ∗\\d+\\s ∗” )
180

181 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ” i s not a
valid dimension”

182 }

183

184 c o n s t r a i n t IsValidRGB {

185 guard : s e l f . i s ( ’gmf . node ’ , ’ border . color ’ ) or
186 s e l f . i s ( ’gmf . node ’ , ’ co lor ’ ) or
187 s e l f . i s ( ’gmf . link ’ , ’ co lor ’ )
188

189 check : s e l f . value . matches ( ”\\ s ∗\\d+ ,\\ s ∗\\d+ ,\\ s ∗\\d+\\s ∗”
)

190

191 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ” i s not a
valid RGB color ”

192 }

193

194 c o n s t r a i n t IsVal idBoolean {

195

196 guard : s e l f . i s ( ’gmf . diagram ’ , ’ rcp ’ ) or
197 s e l f . i s ( ’gmf . node ’ , ’ label . icon ’ ) or
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198 s e l f . i s ( ’gmf . node ’ , ’ label . readOnly ’ ) or
199 s e l f . i s ( ’gmf . node ’ , ’phantom ’ ) or
200 s e l f . i s ( ’gmf . node ’ , ’ r e s i z a b l e ’ ) or
201 s e l f . i s ( ’gmf . compartment ’ , ’ c o l l a p s i b l e ’ ) or
202 s e l f . i s ( ’gmf . label ’ , ’ label . readOnly ’ )
203

204 check {

205 var values := Sequence { ’ t rue ’ , ’ f a l s e ’ } ;
206 return values . inc ludes ( s e l f . value ) ;
207 }

208

209 message : ’The value of ’ + s e l f . toEmfat ic ( ) + ’ must be
one of : ’ + values . concat ( ’ , ’ )

210 }

211

212 c o n s t r a i n t I s V a l i d L i n e S t y l e {

213

214 guard : s e l f . i s ( ’gmf . node ’ , ’ border . s t y l e ’ ) or
215 s e l f . i s ( ’gmf . link ’ , ’ s t y l e ’ )
216

217 check {

218 var values := Sequence { ’ dot ’ , ’ dash ’ , ’ so l id ’ } ;
219 return values . inc ludes ( s e l f . value ) ;
220 }

221

222 message : ”The value of ” + s e l f . toEmfat ic ( ) + ” must be
one of : ” + values . concat ( ’ , ’ )

223 }

224

225 c o n s t r a i n t IsValidCompartmentLayout {
226

227 guard : s e l f . key = ’ layout ’
228

229 check {

230 var values := Sequence { ’ l i s t ’ , ’ f ree ’ } ;
231 return values . inc ludes ( s e l f . value ) ;
232 }

233

234 message : ’The layout of the ’ + s e l f . eContainer ( ) .
eContainer ( ) . name +

235 ’ compartment must be one of : ’ + values . concat ( ’ , ’ )
236 }

237 }

238

239 context EClass {
240

241 guard : s e l f . i sL ink ( )
242

243 c o n s t r a i n t LinkLabe lEx is t s {
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244

245 guard : s e l f . getAnnotationValue ( ’gmf . link ’ , ’ label ’ ) .
i sDef ined ( )

246

247 check {

248 var missing : Sequence ( String ) ;
249 for ( l a b e l : String in s e l f . getAnnotationValue ( ’gmf . link ’ ,

’ label ’ ) . s p l i t ( ’ , ’ ) . c o l l e c t ( s | s . tr im ( ) ) ) {
250 i f ( not s e l f . g e t A t t r i b u t e ( l a b e l ) . i sDef ined ( ) ) {
251 missing . add ( l a b e l ) ;
252 }

253 }

254 return missing . s i z e ( ) = 0 ;
255 }

256

257 message : ’ Label a t t r i b u t e ( s ) ’ + missing . concat ( ’ , ’ )
258 + ’ does not e x i s t in link c l a s s ’ + s e l f . name
259

260 }

261

262

263 c o n s t r a i n t LinkSourceIsDefined {

264

265 check : s e l f . getAnnotationValue ( ’gmf . link ’ , ’ source ’ ) .
i sDef ined ( )

266

267 message : ’No source defined for link c l a s s ’ + s e l f . name
268

269 }

270

271 c o n s t r a i n t LinkSourceExis ts {
272

273 guard : s e l f . s a t i s f i e s ( ’ LinkSourceIsDefined ’ )
274

275 check : s e l f . getReference ( s e l f . getAnnotationValue ( ’gmf . link
’ , ’ source ’ ) ) . i sDef ined ( )

276

277 message : ’No reference named ’ + s e l f . getAnnotationValue ( ’
gmf . link ’ , ’ source ’ )

278 + ’ e x i s t s in link c l a s s ’ + s e l f . name
279

280 }

281

282 c o n s t r a i n t LinkTargetIsDef ined {

283

284 check : s e l f . getAnnotationValue ( ’gmf . link ’ , ’ t a r g e t ’ ) .
i sDef ined ( )

285

286 message : ’No t a r g e t defined for link c l a s s ’ + s e l f . name
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287

288 }

289

290 c o n s t r a i n t LinkTargetEx is t s {
291

292 guard : s e l f . s a t i s f i e s ( ’ LinkTargetIsDefined ’ )
293

294 check : s e l f . getReference ( s e l f . getAnnotationValue ( ’gmf . link
’ , ’ t a r g e t ’ ) ) . i sDef ined ( )

295

296 message : ’No reference named ’ + s e l f . getAnnotationValue ( ’
gmf . link ’ , ’ t a r g e t ’ )

297 + ’ e x i s t s in link c l a s s ’ + s e l f . name
298

299 }

300

301 c o n s t r a i n t LinkTargetAndSourceMustBeDifferent {
302

303 guard : s e l f . s a t i s f i e s ( ’ LinkSourceExists ’ ) and s e l f .
s a t i s f i e s ( ’ LinkTargetExists ’ )

304

305 check : s e l f . getAnnotationValue ( ’gmf . link ’ , ’ source ’ ) <>
s e l f . getAnnotationValue ( ’gmf . link ’ , ’ t a r g e t ’ )

306

307 message : ’ Source and t a r g e t a t t r i b u t e s must be d i f f e r e n t
in link c l a s s ’ + s e l f . name

308

309 }

310

311 c r i t i q u e CanBeVisualized {

312

313 guard : getDiagramClass ( ) . i sDef ined ( )
314

315 check : getDiagramContainmentReference ( s e l f ) . i sDef ined ( )
316

317 message : ’ Cannot generate link for c l a s s ’ + s e l f . name +
318 ’ because i t cannot be contained in any containment

reference ’ + ’ of diagram root ’ + getDiagramClass ( ) .
name

319 }

320 }

321

322 operation String isWithinValuesOrLooksLikeJavaClassName (
values : Sequence ) {

323 return values . inc ludes ( s e l f ) or s e l f . indexOf ( ’ . ’ ) > −1;
324 }

325

326 operation EStringToStringMapEntry i s ( annotat ion : String , key
: String ) {
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327 return s e l f . eContainer ( ) . source = annotat ion and s e l f . key =
key ;

328 }

329

330 operation ECore ! EClass g e t A t t r i b u t e (name : String ) {
331 return s e l f . e A l l S t r u c t u r a l F e a t u r e s . se lectOne ( s f : ECore !

EAttr ibute | s f . name = name) ;
332 }

333

334 operation ECore ! EClass getReference (name : String ) {
335 return s e l f . e A l l S t r u c t u r a l F e a t u r e s . se lectOne ( s f : ECore !

EReference | s f . name = name) ;
336 }

337

338 operation EStringToStringMapEntry toEmfat ic ( ) {
339 var s = ”@” + s e l f . eContainer . source + ” ( ” + s e l f . key + ” ) ” ;
340 i f ( s e l f . eContainer ( ) . isKindOf ( E S t r u c t u r a l F e a t u r e ) ) {
341 s = s + ” of ” + s e l f . eContainer ( ) . eContainer ( ) . eContainer

( ) . name + ” . ” +
342 s e l f . eContainer ( ) . eContainer ( ) . name ;
343 }

344 e lse {

345 s = s + ” of ” + s e l f . eContainer ( ) . eContainer ( ) . name ;
346 }

347 return s ;
348 }

349

350 operation Any getTopEPackage ( ) {
351 i f ( s e l f . eContainer ( ) . i sDef ined ( ) ) {
352 return s e l f . eContainer ( ) . getTopEPackage ( ) ;
353 }

354 e lse {

355 return s e l f ;
356 }

357 }

Constraint ”DiagramIsDefined” specifies that one class should be annotated as ”gmf.diagram”
as defined in the EOL Operation ”getDiagramClass()”. Constraint ”ContainmentRefer-
encesAreDefined” states that the class annotated as ”gmf.diagram” should have at least
one containment reference. Constraint ”NodesAreDefined” specifies that at least one
class should be annotated as ”gmf.node” while Critique ”ReferenceLinksAreDefined”
states that at least one class should be annotated as ”gmf.link”.

The following constraints are also specified for a class that has been annotated as
”gmf.node”: Constraint ”IsValidSvgNode” specifies that if the ”gmf.node” annotation
contains a key named ”figure” with a value of ”svg”, then a key named ”svg.uri” must be
defined. Constraint ”IsValidPolygonNode” specifies that if the ”gmf.node” annotation
contains a key named ”figure” with a value of ”svg”, then two keys named ”ploygon.x”
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and ”polygon.y” must be defined. Constraint ”NodeLabelIsDefined” specifies that if a
key named ”label.placement” has a value of ”none”, then a key named ”label” must be
defined. Constraint ”NodeLabelsExist” states that if Constraint ”NodeLabelIsDefined”
is satisfied, then the class annotated with gmf.node must have ”attributes” specified by
the value of the key named ”label”.

Constraint ”IsValidCompartment” specifies that if a class is annotated as ”gmf.compartment”,
then the class must be a containment reference. Critique ”IsValidLinkDecoration”
states that if a ”gmf.link” annotation has a key named ”source.decoration” or ”tar-
get.decoration”, then its value must be one of the values stated in the Critique’s check
block. Critique ”IsValidNodeFigure ” states if a ”gmf.node” annotation has a key
named ”figure”, then its value must be one of the values stated in the Critique’s check
block. Constraint ”IsValidLabelPlacement” specifies if a ”gmf.node” annotation has
a key named ”label.placement”, then its value must be one of the values stated in
the Constraint’s check block. Constraint ”IsValidInteger” specifies that the value of
the ”gmf.node” annotation’s key named ”border.width” or ”margin” must be a valid
integer. Constraint ”IsValidListOfIntegers” checks for valid list of integers while Con-
straint ”IsValidDimension” checks for valid dimensions for associated ”gmf.node” an-
notations. Constraint ”IsValidRGB” specifies a valid color, Constraint ”IsValidBoolean”
specifies a valid Boolean value, Constraint ”IsValidLineStyle” checks if the style of the
line to be drawn is valid while Constraint ”IsValidCompartmentLayout” validates the
layout of associated annotations.

If a class has been annotated as ”gmf.link”, the following constraints are expected
to be satisfied: Constraint ”LinkLabelExists” states that if a key named ”label” is de-
fined, then its value (separated by commas) should be attributes of the class. Constraint
”LinkSourceIsDefined” and Constraint ”LinkSourceExists” specifies that a key named
”source” should be defined and a value should be assigned to it while Constraint ”Link-
TargetIsDefined” and Constraint ”LinkTargetExists” specifies that a key named ”target”
should be defined and a value should be assigned to it. Constraint ”LinkTargetAnd-
SourceMustBeDifferent” states that the values of the keys named ”source” and ”target”
must be different from each other while Constraint ”CanBeVisualized” validates that
this class (annotated as ”gmf.link”) is a containment reference for the class annotated as
”gmf.diagram”. Some of the EOL operations that were used in some of the constraints
were also defined in the code. Other EOL operations were defined in ”EcoreUtil.eol”
that was imported into the EVL code in line 1.
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B OCL Translation for Eugenia Constraints

This is a direct OCL translation of the Eugenia constraints (originally written in EVL).
This translation was needed in order to assess existing fully-automated tools that do
not support EVL. The translation was done by the author and its faithfulness has
been verified through testing. The assessment of existing fully-automated tools was
discussed in Section 3.2.

1 import ’ http : / /www. e c l i p s e . org / emf /2 0 0 2 / Ecore ’
2 package ecore
3

4 context EPackage
5

6 def : isDiagramDefined ( ) : EClass = s e l f . e C l a s s i f i e r s −> s e l e c t (
c | c . oclIsTypeOf ( EClass ) and c−>e x i s t s ( a | a .

eAnnotations−> s e l e c t ( s | s . source = ’gmf . diagram ’ ) ) )
7

8 def : NodesAreDefined ( ) : EBoolean= s e l f . e C l a s s i f i e r s −> s e l e c t (
a | a . eAnnotations−> e x i s t s ( s | s . source = ’gmf . node ’ ) )

9

10 def : ReferenceLinksAreDefined ( ) : EBoolean= s e l f . e C l a s s i f i e r s
−> s e l e c t ( a | a . eAnnotations−>e x i s t s ( s | s . source = ’gmf . link ’
) )

11

12 inv : isDiagramDefined ( ) . ocl IsUndefined ( ) =f a l s e
13

14 inv : isDiagramDefined ( ) . ocl IsUndefined ( ) =f a l s e implies
NodesAreDefined ( )

15

16 inv : isDiagramDefined ( ) . ocl IsUndefined ( ) =f a l s e implies
ReferenceLinksAreDefined ( )

17

18

19 context EClass
20

21 def : l inkSource ( ) : S t r i n g= s e l f . eAnnotations−> s e l e c t ( s | s .
source= ’gmf . link ’ and s . d e t a i l s −>e x i s t s ( k | k . key= ’ source ’
and k . value . s i z e ( ) >0) )

22

23 def : l i n k T a r g e t ( ) : EAnnotation= s e l f . eAnnotations−> s e l e c t ( s |
s . source= ’gmf . link ’ and s . d e t a i l s −>e x i s t s ( k | k . key= ’ t a g e t ’

and k . value . s i z e ( ) >0) )
24

25 def : ContainmentReferencesAreDefined ( ) : EBoolean= s e l f .
e A l l S t r u c t u r a l F e a t u r e s −> s e l e c t ( c | c . oclIsTypeOf (
EReference ) )

26

27 inv IsValidSvgNode : s e l f . eAnnotations−>e x i s t s ( s | s . source= ’
gmf . node ’ and s . d e t a i l s −> e x i s t s ( k | k . key= ’ f igure ’ and k .
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value= ’ svg ’ ) ) implies s e l f . eAnnotations−> e x i s t s ( s | s .
source= ’gmf . node ’ and s . d e t a i l s −>e x i s t s ( k | k . key= ’ svg . ur i ’

and k . value . s i z e ( ) >0) )
28

29 inv IsVlidPolygonNode : s e l f . eAnnotations−>e x i s t s ( s | s . source=
’gmf . node ’ and s . d e t a i l s −>e x i s t s ( k | k . key= ’ f igure ’ and k .
value= ’ polygon ’ ) ) implies s e l f . eAnnotations−>e x i s t s ( s , t | s
. source= ’gmf . node ’ and t . source= ’gmf . node ’ and s . d e t a i l s
−>e x i s t s ( k | k . key= ’ polygon . x ’ and k . value . s i z e ( ) >0)and t .
d e t a i l s −> e x i s t s ( k | k . key= ’ polygon . y ’ and k . value . s i z e ( )
>0) )

30

31 inv NodeLabelIsDefined : s e l f . eAnnotations−>e x i s t s ( s | s . source
= ’gmf . node ’ and s . d e t a i l s −>e x i s t s ( k | k . key= ’ label .
placement ’ and k . value . s i z e ( ) >0) ) implies s e l f .
eAnnotations−>e x i s t s ( s | s . source= ’gmf . node ’ and s . d e t a i l s
−> e x i s t s ( k | k . key= ’ label ’ and k . value . s i z e ( ) >0) )

32

33 inv LinkSourceIsDefined : s e l f . eAnnotations−>e x i s t s ( s | s .
source= ’gmf . link ’ ) implies s e l f . eAnnotations−>e x i s t s ( s | s .
source= ’gmf . link ’ and s . d e t a i l s −> e x i s t s ( k | k . key= ’ source ’

and k . value . s i z e ( ) >0) )
34

35 inv LinkTargetIsDef ined : s e l f . eAnnotations−>e x i s t s ( s | s .
source= ’gmf . link ’ ) implies s e l f . eAnnotations−>e x i s t s ( s | s .
source= ’gmf . link ’ and s . d e t a i l s −> e x i s t s ( k | k . key= ’ t a r g e t ’

and k . value . s i z e ( ) >0) )
36

37 context EAnnotation
38

39 inv isValidCompartment : s e l f . source= ’gmf . compartment ’ implies
s e l f . eContainer ( ) . oclIsTypeOf ( EReference )

40 endpackage

72



C EMG program for Eugenia Constraints

This section contains an EMG program that produces models that satisfy the Eugenia
constraint discussed in Section 3.1.

1 operation EPackage c r e a t e ( ) {
2 s e l f . name=” ecore ” ;
3 }

4

5 operation EClass c r e a t e ( ) {
6 var d e t a i l :Map = new Map ;
7 i f ( randomBoolean ( ) ) {
8 d e t a i l . put ( ’ rcp ’ , Sequence { ’ t rue ’ , ’ f a l s e ’ } . uniRandom ( ) ) ;
9 }

10 s e l f . annotate ( ”gmf . diagram” , d e t a i l ) ;
11 s e l f . name=randomString ( ) ;
12 }

13

14 $ instances Sequence {1 , nodeCount }
15 operation EClass c r e a t e ( ) {
16 s e l f . name=randomString ( ) ;
17 var d e t a i l :Map= new Map ;
18 i f ( randomBoolean ( ) ) {
19 var seq= Sequence { ’ rec tangle ’ , ’ e l l i p s e ’ , ’ rounded ’ , ’ svg ’

, ’ polygon ’ } ;
20 var s t r i n g : String =seq . uniRandom ( ) ;
21 d e t a i l . put ( ” f igure ” , s t r i n g ) ;
22 i f ( s t r i n g= ’ polygon ’ ) {
23 d e t a i l . put ( ”polygon . x” , randomInteger ( 2 0 )+”” ) ;
24 d e t a i l . put ( ”polygon . y” , randomInteger ( 2 0 )+”” ) ;
25 }

26 e lse i f ( s t r i n g= ’ svg ’ ) {
27 d e t a i l . put ( ”svg . uri ” , randomString ( ) ) ;
28 }

29 }

30

31 / / l a b e l
32 var sequence1= Sequence { ’ i n t e r n a l ’ , ’ e x t e r n a l ’ , ’ none ’ } ;
33 var s t r i n g : String = sequence1 . uniRandom ( ) ;
34 i f ( s t r i n g <> ’ none ’ ) {
35 var l a b e l : String= ”” ;
36 for ( n in Sequence { 1 . . randomInteger ( 1 , 4 ) } ) {
37 var r : EAttr ibute = new EAttr ibute ;
38 r . name= randomString ( ) ;
39 l a b e l= l a b e l+” , ”+ r . name ;
40 s e l f . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
41 }

42 d e t a i l . put ( ” label ” , l a b e l . subStr ing ( 1 ) ) ;
43 i f ( randomBoolean ( 0 . 7 5 ) ) {
44 d e t a i l . put ( ” label . placement” , s t r i n g ) ;
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45 }

46 }

47 e lse {
48 d e t a i l . put ( ” label . placement” , s t r i n g ) ;
49 }

50 s e l f . annotate ( ”gmf . node” , d e t a i l ) ;
51 }

52

53 $ instances Sequence {1 , linkCount }
54 operation EClass c r e a t e ( ) {
55 s e l f . name=randomString ( ) ;
56 var d e t a i l :Map= new Map ;
57 d e t a i l . put ( ’ source ’ , randomString ( ) ) ;
58 d e t a i l . put ( ’ t a r g e t ’ , randomString ( ) ) ;
59 / / l a b e l
60 var sequence1= Sequence { ’ i n t e r n a l ’ , ’ e x t e r n a l ’ , ’ none ’ } ;
61 var s t r i n g : String = sequence1 . uniRandom ( ) ;
62 i f ( s t r i n g <> ’ none ’ ) {
63 var l a b e l : String= ”” ;
64 for ( n in Sequence { 1 . . randomInteger ( 1 , 4 ) } ) {
65 var r : EAttr ibute = new EAttr ibute ;
66 r . name= randomString ( ) ;
67 l a b e l= l a b e l+” , ”+ r . name ;
68 s e l f . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
69 }

70 d e t a i l . put ( ” label ” , l a b e l . subStr ing ( 1 ) ) ;
71 i f ( randomBoolean ( 0 . 7 5 ) ) {
72 d e t a i l . put ( ” label . placement” , s t r i n g ) ;
73 }

74 }

75 e lse {
76 d e t a i l . put ( ” label . placement” , s t r i n g ) ;
77 }

78 s e l f . annotate ( ”gmf . link ” , d e t a i l ) ;
79 }

80

81 $ instances 5
82 operation EDataType c r e a t e ( ) {
83 s e l f . name=randomString ( ) ;
84 }

85

86 pattern package
87 pack : EPackage , pack2 : EPackage , c l a s : EClass , c l a s 2 : EDataType
88 guard : pack . name=” ecore ” and pack2<>pack {
89 onmatch {
90 pack . e C l a s s i f i e r s . add ( c l a s ) ;
91 pack2 . e C l a s s i f i e r s . add ( c l a s 2 ) ;
92 pack . eSubpackages . add ( pack2 ) ;
93 }
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94 }

95

96 pattern a t t r i b u t e
97 a t t r : EAt t r ibute
98 guard : a t t r . etype . isUndefined ( ) {
99 onmatch {

100 a t t r . eType=EDataType . a l l . uniRandom ( ) ;
101 }

102 }

103

104 $number Sequence {1 , EClass . a l l . s e l e c t ( t | t . isAnnotatedAs (”gmf .
node ”) ) . s ize ( ) }

105 pattern node
106 root : EClass , node : EClass
107 guard : root . isAnnotatedAs ( ”gmf . diagram” ) and node .

isAnnotatedAs ( ”gmf . node” ) {
108 onmatch {
109 var r= EReference . c r e a t e I n s t a n c e ( ) ;
110 r . name=randomString ( ) ;
111 r . eType=node ;
112 root . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
113 }

114 }

115

116 pattern l i n k
117 root : EClass , l i n k : EClass
118 guard : root . isAnnotatedAs ( ”gmf . diagram” ) and
119 l i n k . isAnnotatedAs ( ”gmf . link ” ) {
120 onmatch {
121 var r= EReference . c r e a t e I n s t a n c e ( ) ;
122 r . name=randomString ( ) ;
123 r . eType= l i n k ;
124 r . containment=t rue ;
125 root . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
126 }

127 }

128

129 pattern l inkSource
130 c l a s s 1 : EClass
131 guard : c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” source ” ) .

i sDef ined ( ) {
132 onmatch {
133 var r =EReference . c r e a t e I n s t a n c e ( ) ;
134 r . name= c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” source ” ) ;
135 r . eType= EClass . a l l . excluding ( c l a s s 1 ) . uniRandom ( ) ;
136 c l a s s 1 . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
137 }

138 }

139
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140 pattern l i n k T a r g e t
141 c l a s s 1 : EClass
142 guard : c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” t a r g e t ” ) .

i sDef ined ( ) {
143 onmatch {
144 var r =EReference . c r e a t e I n s t a n c e ( ) ;
145 r . name= c l a s s 1 . getAnnotationValue ( ”gmf . link ” , ” t a r g e t ” ) ;
146 r . eType=EClass . a l l . excluding ( c l a s s 1 ) . uniRandom ( ) ;
147 c l a s s 1 . e S t r u c t u r a l F e a t u r e s . add ( r ) ;
148 }

149 }

150

151 @probabi l i ty 0 . 4
152 pattern nodeAnnotation
153 node : EAnnotation
154 guard : node . source=”gmf . node” or node . source=”gmf . link ” {
155 onmatch {
156 var s t : String= getKey ( node . source ) ;
157 var d e t a i l s :Map = new Map ;
158 d e t a i l s . put ( s t , getValue ( s t ) ) ;
159 node . addDetai ls ( d e t a i l s ) ;
160 }

161 }

162

163 @number 3
164 @probabi l i ty 0 . 4
165 pattern isValidCompartment
166 r e f : EReference {
167 onmatch {
168 var d e t a i l :Map= new Map ;
169 i f ( randomBoolean ( ) ) {
170 var s t : String=Sequence { ’ c o l l a p s i b l e ’ , ’ layout ’ } . uniRandom

( ) ;
171 d e t a i l . put ( s t , getValue ( s t ) ) ;
172 }

173 r e f . containment=t rue ;
174 r e f . annotate ( ”gmf . compartment” , d e t a i l ) ;
175 }

176 }

177

178 / / user−d e f i n e d o p e r a t i o n s
179 operation EClass isAnnotatedAs ( source : String ) {
180 return s e l f . getEAnnotation ( source ) . i sDef ined ( ) ;
181 }

182 operation EClass getAnnotationValue ( source : String , key : String )
{

183 i f ( s e l f . getEAnnotation ( source ) . i sDef ined ( ) ) {
184 var d e t a i l : EStringToStringMapEntry= s e l f . getEAnnotation (

source ) . d e t a i l s . se lectOne ( k | k . key=key ) ;
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185 i f ( d e t a i l . i sDef ined ( ) ) {
186 var value : String = d e t a i l . value ;
187 i f ( value . i sDef ined ( ) ) {
188 return value ;
189 }

190 }

191 }

192 return n u l l ;
193 }

194

195 operation EModelElement annotate ( s t r i n g : String ) {
196 s e l f . annotate ( s t r i n g , new Map) ;
197 }

198

199 operation EModelElement annotate ( s t r i n g : String , d e t a i l s :Map) {
200 var ann : new EAnnotation ;
201 ann . source=s t r i n g ;
202 ann . addDetai ls ( d e t a i l s ) ;
203 s e l f . eAnnotations . add ( ann ) ;
204 }

205

206 operation EAnnotation addDetai ls ( d e t a i l s :Map) {
207 for ( d in d e t a i l s . keySet ( ) ) {
208 var d e t a i l : new EStringToStringMapEntry ;
209 d e t a i l . key=d ;
210 d e t a i l . value=d e t a i l s . get ( d ) ;
211 s e l f . d e t a i l s . add ( d e t a i l ) ;
212 }

213 }

214

215 operation getValue ( s t r i n g : String ) {
216 var s t : String=”” ;
217 i f ( s t r i n g= ’ border . s t y l e ’ or s t r i n g= ’ s t y l e ’ ) {
218 s t= Sequence { ’ dot ’ , ’ dash ’ , ’ so l id ’ } . uniRandom ( ) ;
219 }

220 e lse i f ( s t r i n g=” layout ” ) {
221 s t=Sequence { ’ l i s t ’ , ’ f ree ’ } . uniRandom ( ) ;
222 }

223 e lse i f ( s t r i n g= ’ rcp ’ or s t r i n g= ’ label . icon ’ or s t r i n g= ’
label . readOnly ’ or s t r i n g= ’phantom ’ or s t r i n g= ’ r e s i z a b l e
’ or s t r i n g= ’ c o l l a p s i b l e ’ or s t r i n g= ’ label . readOnly ’ ) {

224 s t=Sequence { ’ t rue ’ , ’ f a l s e ’ } . uniRandom ( ) ;
225 }

226 e lse i f ( s t r i n g= ’ border . color ’ or s t r i n g= ’ co lor ’ ) {
227 s t= randomInteger ( 2 5 6 )+” , ”+randomInteger ( 2 5 6 )+” , ”+

randomInteger ( 2 5 6 ) ;
228 }

229 e lse i f ( s t r i n g= ’ s ize ’ ) {
230 s t= randomInteger ( 2 0 )+” , ”+randomInteger ( 2 0 ) ;
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231 }

232 e lse i f ( s t r i n g = ’ border . width ’ or s t r i n g= ’ margin ’ ) {
233 s t=randomInteger ( 2 0 )+”” ;
234 }

235 e lse i f ( s t r i n g=” source . decoration ” or s t r i n g=” t a r g e t .
decoration ” ) {

236 s t = Sequence { ’ none ’ , ’ arrow ’ , ’rhomb ’ , ’ filledrhomb ’ , ’
square ’ , ’ f i l l e d s q u a r e ’ , ’ closedarrow ’ , ’
f i l ledclosedarrow ’ } . uniRandom ( ) ;

237 }

238 return s t ;
239 }

240

241 operation getKey ( s t r i n g : String ) {
242 var s t : String=”” ;
243 i f ( s t r i n g=”gmf . node” ) {
244 s t = Sequence { ’ border . width ’ , ’ margin ’ , ’ s ize ’ , ’ border . color

’ , ’ co lor ’ , ’ border . s t y l e ’ , ’ label . icon ’ , ’ label . readOnly ’
, ’phantom ’ , ’ r e s i z a b l e ’ } . uniRandom ( ) ;

245 }

246 e lse i f ( s t r i n g=”gmf . link ” ) {
247 s t = Sequence { ’ source . decoration ’ , ’ t a r g e t . decoration ’ , ’

co lor ’ , ’ s t y l e ’ } . uniRandom ( ) ;
248 }

249 return s t ;
250 }
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D Figures for EMG Tools

This section contains graphical diagrams of available tools in EMG as described in
Section 5.7. Figure D.1 is a sample EPL editor while Figure D.2 is a sample Epsilon
console. Figures D.3, D.4, D.5 and D.6 are sample tabs of the runtime configuration tool
described in Section 5.7.3.

Figure D.1: EPL Editor
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Figure D.2: Epsilon Console
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Figure D.3: Run Configuration Interface: Source Tab

Figure D.4: Run Configuration Interface: Models Tab
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Figure D.5: New Model Configuration Interface
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Figure D.6: Run Configuration Interface: parameters Tab
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E EMG and EOL Code for Generating Railway Models

This section contains EMG and EOL code for generating railway models described in
Section 6.3.1.

Listing 1: A Sample EMG Railway Generator
1 operation RailwayContainer c r e a t e ( ) {
2 }

3

4 $ instances semaphore
5 operation Semaphore c r e a t e ( ) {
6 s e l f . s i g n a l= Sequence { Signa l #FAILURE , S igna l #STOP } . randomD ( )

;
7 }

8

9 $ instances Sequence { 1 . . route }
10 operation Route c r e a t e ( ) {
11 }

12

13 $ instances posi t ion
14 operation Sensor c r e a t e ( ) {
15 }

16

17 $ instances Sequence { 1 . . swit }
18 operation Switch c r e a t e ( ) {
19 s e l f . P o s i t i o n= Sequence { P o s i t i o n #FAILURE , P o s i t i o n #LEFT ,

P o s i t i o n #RIGHT, P o s i t i o n #STRAIGHT } . randomD ( ) ;
20 }

21

22 $ instances segment
23 operation Segment c r e a t e ( ) {
24 s e l f . length= randomInteger ( ) ;
25 }

26

27 $ instances posi t ion ∗2
28 operation SwitchPos i t ion c r e a t e ( ) {
29 s e l f . c u r r e n t P o s i t i o n= Sequence { P o s i t i o n #FAILURE , P o s i t i o n #

LEFT , P o s i t i o n #RIGHT, P o s i t i o n #STRAIGHT } . randomD ( ) ;
30 }

31

32 pattern SemaphoreNeighbour
33 t ra ck 1 : TrackElement , t ra ck 2 : TrackElement
34 from : TrackElement . a l l . s e l e c t ( t | t . connectsTo . s i z e ( )>0 and t

. sensor . i sDef ined ( ) )
35 guard : t r ac k 1 . connectsTo . inc ludes ( t r a ck 2 ) , route1 : Route ,

route2 : Route
36 guard : route1<>route2 and route1 . definedBy . inc ludes ( t r ac k1 .

sensor ) and route2 . definedBy . inc ludes ( t r ac k2 . sensor ) {
37 onmatch {
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38 var s : Semaphore= new Semaphore ;
39 s . s i g n a l= Sequence { Signa l #FAILURE , S igna l #STOP } . randomD ( ) ;
40 route1 . e x i t=s ;
41 route2 . entry=s ;
42 }

43 }

44

45 @probabi l i ty 0 . 8
46 pattern SwitchSet
47 swP : SwitchPosi t ion , sw : Switch , route : Route
48 guard : route . fo l lows . inc ludes (swP) and sw . p o s i t i o n s .

inc ludes (swP) and swP . p o s i t i o n=sw . c u r r e n t P o s i t i o n {
49 onmatch {
50 route . entry . s i g n a l=Signa l #GO;
51 }

52 }

53

54 pattern RailwayContainer
55 rai lway : RailwayContainer , route : Route , sem : Semaphore
56 guard : rai lway . routes . excludes ( route ) and rai lway . semaphores

. excludes ( sem ) {
57 onmatch {
58 rai lway . routes . add ( route ) ;
59 rai lway . semaphores . add ( sem ) ;
60 }

61 }

62

63 @noRepeat
64 pattern I n v a l i d s
65 r a i l : RailwayContainer , route : Route , sw : Switch , swPos :

SwitchPosi t ion , seg : Segment
66 guard : ( route . entry . i sDef ined ( ) or route . e x i t . i sDef ined ( )

or
67 route . definedBy . s i z e ( ) >1) and ( swPos . route . i sDef ined or
68 swPos . switch . isDef ined ) and sw . sensor . i sDef ined and seg .

length >0 and
69 r a i l . i n v a l i d s . excludeAll ( Sequence { route , sw , swPos , seg } ) {
70 onmatch {
71 var rai lway= RailwayContainer . a l l . randomD ( ) ;
72 rai lway . i n v a l i d s . addAll ( Sequence { route , sw , swPos , seg } ) ;
73 }

74 }

Listing 2: A Sample EOL Railway Generator
1 var rai lway = new RailwayContainer ;
2 for ( i in 1 . to ( randomNumber ( 1 , node ) ) ) {
3 var route= new Route ;
4 }

5
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6 for ( i in 1 . to ( randomNumber ( 1 , node ) ) ) {
7 var sensor= new Sensor ;
8 }

9

10 for ( i in 1 . to ( randomNumber ( 1 , node ) ) ) {
11 var swPosit ion= new SwitchPos i t ion ;
12 sw . c u r r e n t P o s i t i o n= Sequence { P o s i t i o n #FAILURE , P o s i t i o n #LEFT

, P o s i t i o n #RIGHT, P o s i t i o n #STRAIGHT } . randomD ( ) ;
13 }

14

15 for ( i in 1 . to ( randomNumber ( 1 , node ) ) ) {
16 var segment= new Segment ;
17 segment . length= randomInteger ( 5 0 0 0 0 0 ) ;
18 }

19

20 for ( i in 1 . to ( randomNumber ( 1 , node ) ) ) {
21 var sw= new SwitchPos i t ion ;
22 sw . c u r r e n t P o s i t i o n= Sequence { P o s i t i o n #FAILURE , P o s i t i o n #LEFT

, P o s i t i o n #RIGHT, P o s i t i o n #STRAIGHT } . randomD ( ) ;
23 }

24

25 / / s emaphore n e i g h b o u r c o n s t r a i n t
26 for ( t ra ck 1 in TrackElement . a l l ( ) ) {
27 for ( t ra ck 2 in TrackElement . a l l ( ) ) {
28 i f ( t ra ck 1 . connectsTo . inc ludes ( t ra c k2 ) and t ra ck 2 . connectTo .

s i z e ( ) >0) {
29 for ( route1 in Route . a l l ) {
30 for ( route2 in Route . a l l ) {
31 i f ( route1<>route2 and route1 . definedBy . inc ludes ( t r ac k1 .

sensor ) and route2 . definedBy . inc ludes ( t r ac k2 . sensor ) )
{

32 var s : Semaphore= new Semaphore ;
33 s . s i g n a l= Sequence { Signa l #FAILURE , S igna l #STOP , S igna l #GO

} . randomD ( ) ;
34 route1 . e x i t=s ;
35 route2 . entry=s ;
36 }

37 }

38 }

39 }

40 }

41 }

42

43 / / s w i t c h s e t
44 for ( swp in SwitchPos i t ion . a l l ) {
45 for ( sw in Switch . a l l ) {
46 for ( route in Route . a l l ) {
47 i f ( route . fo l lows . inc ludes (swP) and sw . p o s i t i o n s . inc ludes (

swP) and swP . p o s i t i o n=sw . c u r r e n t P o s i t i o n ) {
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48 i f ( randomInteger ( 1 0 ) <8) {
49 route . entry . s i g n a l=Signa l #GO;
50 }

51 }

52 }

53 }

54 }

55

56 / / r a i l w a y C o n t a i n e r
57 for ( route in Route . a l l ) {
58 i f ( rai lway . routes . excludes ( route ) ) {
59 rai lway . routes . add ( route ) ;
60 }

61 }

62 for ( sem in Semaphore . a l l ) {
63 i f ( rai lway . semaphores . excludes ( sem ) ) {
64 rai lway . semaphores . add ( sem ) ;
65 }

66 }

67

68 / / i n v a l i d s
69 for ( route in Route . a l l ) {
70 i f ( route . entry . isUndefined ( ) or route . e x i t . isUndefined ( ) or

route . definedBy . s i z e ( ) <2) {
71 i f ( rai lway . i n v a l i d s . excludes ( route ) ) {
72 rai lway . i n v a l i d s . add ( route ) ;
73 }

74 }

75 }

76 for ( sw in Switch . a l l ) {
77 i f ( sw . sensor . isUndefined ) {
78 i f ( rai lway . i n v a l i d s . exclude (sw) ) {
79 rai lway . i n v a l i d s . add (sw) ;
80 }

81 }

82 }

83 for ( swPos in SwitchPos i t ion . a l l ) {
84 i f ( swPos . ‘ switch ‘ . isUndefined ) {
85 i f ( rai lway . i n v a l i d s . exclude ( swPos ) ) {
86 rai lway . i n v a l i d s . add ( swPos ) ;
87 }

88 }

89 }

90 for ( seg in Segment . a l l ) {
91 i f ( seg . length . s ize <0) {
92 i f ( rai lway . i n v a l i d s . exclude ( seg ) ) {
93 rai lway . i n v a l i d s . add ( seg ) ;
94 }

95 }
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96 }

97

98 operation randomNumber ( low : Integer , high : Integer ) {
99 var num: Sequence= Sequence { low . . high } ;

100 return num. random ( ) ;
101 }

102 operation randomString ( ) {
103 var l e t t e r : String= ”abcdefghijklmnopqrstuvwxyz” ;
104 var s t : String= ”” ;
105 for ( i in 5 . to ( 2 0 ) ) {
106 s t = s t . concat ( l e t t e r . charAt ( randomNumber ( 0 , 2 5 ) )+”” ) ;
107 }

108 return s t ;
109 }
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